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ABSTRACT

Microarrays have been widely used to study differential gepeession at the
genomic level. They can also provide genome-wide co-expression atformRobust
approaches are needed for integration and validation of independelttigted datasets
which may contribute to a common hypothesis. Previously, attempt®tatamalysis
have contributed to solutions to this problem. As an alternative,itwoanray data from
multiple highly similar biological experimental designs, a enddirect combined
approach is possible. In this thesis, a novel approach is describadicdmarray
combined analysis, including gene-level unification into a virtual platform followeg b
normalization and a method for ranking candidate genes based on eesxpr
information — calledCoex-Rank. We applied this approach to our Sppar (a PPARtant)
dataset, which illustrated an improvement in statistical poweramdmplementary
advantage of the Coex-Rank method from a biological perspective.

We also performed analysis to other PRABated microarray datasets. From the
perspective of gene sets, we observed that up-regulated genesiterneated with the
PPARy ligand rosiglitazone were significantly down-regulated in migth a global
knock-in dominant-negative mutation of PPARtegrated with publicly available PPRE
(PPAR Response Element) datasets, we found that the genes wdnehmost up-
regulated by rosiglitazone treatment and which were alsadegulated by the global
knock-in mutation of PPARwere robustly enriched in PPRESs near transcription start
sites. In addition, we identified several potential PRPARrgets in the aorta and

mesenteric artery for further experimental validation, such as Rhobtb1 abd Rg
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CHAPTER 1: INTRODUCTION

High-throughput microarray technologies have become popular hanmgewide
investigation of gene expression profiles. Careful experimensgmdollowed by a
variety of proper computational analyses can reveal interactiogeioés and related
biological pathways [1]. For data analysis, a common goal is tectddifferentially
expressed genes (DEGSs) [1] between controls and cases qgansedo specific factors,
such as time and dose effects. Different laboratories may cart microarray
experiments with related biological experimental design, but udifigrent types of
platforms. Due to the high cost of microarrays, many studidersudém the problem of
small sample size, which may lead to high false discoveeg (&DR) or low sensitivity
in determination of DEGs [2]. Combining related but independent miapalatasets
increases sample size and theoretically would result in highiability of novel gene
candidate discovery from a purely statistical view [3]. Suttoanbined approach” may
be able to detect small but consistent changes. In fact, this is one of theingpfaetors
for the construction of public microarray databases, such as Bewession Omnibus
(GEO) [4]. Alternately, successful combined analyses may demtas the
reproducibility of independent studies [5], which is a fundamental issualidation of
biological experiments.

For combined analysis of microarray studies, however, complicatiters arise
from biological variations and technical differences [6]. Metayaigl which has been
well-studied in statistics, is a practical way to solve thisblem [6]. It involves

combining results from independent but related studies. The applichtioata-analysis



to microarray data has been demonstrated by different group® gensensus has been
reached as to the best method. Hong et al. evaluated the perfermfamifferent
microarray meta-analysis methods and recommended approachesd deom two
different philosophies. One is a t-based modeling approach [6], and tmasotheank-
product approach. The latter has the advantage of robustness igrgekes over the t-
based method, but only provides relative prioritization of genes [6].rdimkeproduct
approach has also been shown to have similar performance to theggaegadion
method. [6]

As an alternative to meta-analysis, a more direct combippdoach is also
possible for datasets resulting from experiments with highlylasirbiological design.
With the continued development of microarray technologies, more compnehansys
are becoming available for researchers in biological fieldsekample, exon arrays are
designed to focus on exon-level analysis, but can also provide acassassments for
gene-level expression analysis [7]. Thus, there existaes sdrmicroarray datasets with
similar biological samples but from significantly differentagr platforms. Obviously,
there are scale and distribution differences among such hetemge datasets. To
address this issue, gene-level normalization across dataseypibaliyt been performed,
but the details of this step have not been widely discussed in thensahdmalysis of
microarray datasets. In this thesis, | describe a novel appfoacbmbined microarray
analysis based on gene-level unification followed by normalization anehggriegation.

Gene-level normalization is generally the preferred option foroarray analysis
in a single study, and this has been revealed by an applicdtiie M-A based loess

normalization to a wholly defined control dataset from a “spikeexfjeriment [8]. A



previous study regarding the comparison of probe level normalizatidrodsesuggested
that complete data methods including the M-A based loess nortializad the quantile
normalization have better performance compared to other methods medangf a
baseline array [9]. Therefore, we have adopted both M-A basedrossslization and
guantile normalization, and then combined them with scale normalization for aegehe-|
analysis implementation.

Before normalization, gene-level unification into a virtual platf is demanded,
as differences arise from various platform coverages. Tdrereonly genes with
common annotations either in gene symbol or mRNA accession numlmenardered to
form a virtual platform. For the issue regarding multiple probg-setching a unique
gene, we employ two strategies as the solutions, includingtiselebased on most
significant p-value from a statistical test or highest average of expndsvels.

After gene-level normalization, a linear model is devised, vhi&ps to identify
lists of differentially expressed genes. Different normébra methods lead to
(potentially different) lists of relevant genes, and a rank-aggjoegapproach is used to
merge the power of different normalization methods.

To further complement the rank-aggregation approach, we have incerpouat
expression information to prioritize DEGs. The co-expression patiegenes at the
MRNA level can be recognized from large sets of microatedg. The rich body of data
in GEO serves to provide this added dimension to our method. The basits itteit
genes with similar mRNA expression profiles are likelyb® regulated via the same
mechanism or share common functions [10]. This correlation infaymadi useful for

detecting or prioritizing genes with weak differential expr@s, since these genes are



expected to co-express with other highly DEGs [11]. A staaistieethod of predicting
genes with differential expressions based on co-expressionngatias already been
proposed [11]. Moreover, rank-aggregation for similar items has beertigated as

well [12]. Thus, in our work we have improved upon the rank-aggregation approach
adding genome-wide co-expression information, which we ter@oasxpression-Rank-
aggregation (Coex-Rank).

The Coex-Rank approach for combined microarray analysis proceeas f
normalization and linear modeling to rank-aggregation. Previous studies have
demonstrated that methods using linear modeling have very sipaifeaviors to the t-
based modeling approach [6]. The rank-aggregation method has alsshbgento have
similar performance to a rank-product approach [6]. Thus, frone@retical view, our
approach addresses the problem from both perspectives.

We applied this Coex-Rank featured approach of microarray comhbiaggis to
our own Sppar (a mutant PPARdataset [13], which illustrated an improvement in
statistical power in identification of differentially expredsgenes and a complementary
advantage of the Coex-Rank approach from a biological perspectivewufason study
was also conducted to demonstrate that the strength of this methotliisited to our
specific datasets.

The core novelty of our approach lies in the Coex-Rank process, vdsighisan
the discovery of functional clusters of genes and biologiciiwaats. Coex-Rank is not
only flexible regarding different gene-level normalization methadsa combined

analysis, but also useful in “merging” the power from diffegatistical methods within



a single dataset analysis. This solution also provides an dlerita a seemingly
arbitrary choice among many good computational methods.

We also applied this approach to other PRA&ated microarray datasets, taking
advantage of this merging power from different statisticathods. PPAR is a
transcription factor belonging to the nuclear receptor superfaifi]. PPAR
heterodimerizes with the retinoid X receptor (RXR) and bindspieciBc response
elements termed PPAR response elements (PPRESs) in taigmte promoters. The
activation of target gene transcription depends on the binding of theldl{@d]. The
endogenous ligand remains unclear although a number of fatty acids asdneids
have been proposed to be endogenous ligands. The synthetic antidiabetic
thiazolidinediones (TZDs) represent a group of high affinity ligaiodsPPARy [15].
The importance of PPARcan be gleaned from patients with dominant negative
mutations (P467L or V290M) in the ligand binding domain of PPRAR these have been
reported to cause severe insulin resistance leading to full-blgyenittgliabetes mellitus
and early onset hypertension [16].

From the perspective of gene sets, for example, we observed thegulgted
genes from mice treated with the PPARjand rosiglitazone are significantly down-
regulated in mice with a global knock-in dominant-negative mutatiétPé&Ry. We also
integrated DEGs from microarray experiments with publicly labee PPRE datasets
from ChIP-chip [17] and ChIP-seq [18] and we found that genes wigrh most up-
regulated by rosiglitazone treatment and which were alsadegulated by the global
knock-in dominant-negative mutation of PPARre robustly enriched in PPREs near

transcription start sites.



From this analysis we also identified several potential PPlaRjets in the aorta
and mesenteric artery that now require further experimenifidatian. These genes are
therefore candidates for explaining why mice carrying thesetions are more likely to
develop hypertension and vascular dysfunction. For instance, Tnncldiagctr the
microarray profile, is about 20-fold up-regulated in the aomanfiSppar mice (mice
expressing PPARmutations in vascular smooth muscle cells). Tnncl is known to have
mutations that affect the functional properties of Troponin C by asimg the CH-
sensitivity of contraction [19]. Another candidate is Rhobtbl which isqgfathe Rho
Kinase pathway [20]. The Rho Kinase pathway is up-regulated gttt of Sppar [13].
We are also investigating Rgs5, a regulator of G protein sigpalhich is known to
interact with angiotensin AT1 receptors [21]. Rgs5 is down-regliliatehe mesenteric

artery of the Sppar mice and angiotensin II-mediated contraction is a¢hagfanced.



CHAPTER 2: BACKGROUND

2.1 Introduction to PPAR

2.1.1 All about PPARs

Peroxisome proliferator-activated receptors (PPARSs) areoapgof nuclear
receptor proteins. They serve as transcription factors, modulatimg expression [14].
PPARs play essential roles in a variety of cellular prosgsseluding major metabolic
and inflammatory regulations [14].

As a subcellular organelle, the peroxisome plays a crucial irol cellular
metabolism. In rodents, peroxisome proliferation can be inducedabyus chemical
compounds [15]. A member of the steroid hormone receptor superfamilgusenwas
found to be activated by peroxisome proliferators by Issemannagtdalt was named
PPAR [22]. There are three major types of PPARSs: alpha, gaamdadelta/beta [15].
PPARux (alpha) is expressed in liver, heart, brown adipose tissue and kilR&y/6
(beta/delta) is expressed in many tissues, but markedly in bdipgse tissue, skeletal
muscle, gut and skin [14]. PPARgamma) has two different forms through alternative
promoter usage and differential splicing. PRARs expressed in virtually all tissues,
including heart, skeletal muscle, colon, small and large intsstkidney, pancreas, and
spleen; PPAIRRZ is expressed mainly in adipose tissue (30 amino acids longer) [23].
Mouse and human PPARare highly homologous with 95% sequence identity at the

protein level [24].



All PPARs heterodimerize with the retinoid X receptor (RX&d bind to
response elements termed PPAR response elements (PPRESs).NFhe&oDsensus
sequence is AGGTCAXAGGTCA, with X being a random nucleotide, knowthas
direct repeat 1 (DR1) pattern [14] [25]. In general, this sequertem the promoter
regions of target genes. With the presence of its ligand, a H#&RR to PPRE and

transcription of its downstream gene is typically activated or increadéd [

2.1.2 PPAR Overview

2.1.2.1 Protein structure of PPAR

As a nuclear receptor, PPARs modular in structure (See Figure 1) and has two
important domains: the DNA-binding domain (DBD) and the ligand bindingatfom
(LBD) [26]. Along with the DBD, the LBD contributes to the dinzation interface of
the receptor and binding of coactivator or corepressor proteins [LAPHABy2 protein
contains an additional 30 amino acids at the N terminus comparedA®yPPThe C-
terminal region contains the major transcriptional activation dgmgermed the

activation function 2 (AF2) domain [26].



V2 AF2
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Figure 1. Domain structure of PPARThe PPAR2 protein contains an additional 30
amino acids at the N terminus compared to PPRARDNA binding domain (DBD),
ligand-binding domain (LBD) and activation function 2 (AF2) are shdwm left to
right (N terminus to C terminus). This figure is modified fromegsiew paper by Peter
Tontonoz et al [26].

2.1.2.2 Classic working modes of PPAR

There are two classic working modes of PRARyand-dependent activation and
ligand-independent repression (see Figure 2). Functional sigméicah interaction
between PPAR and coactivators in transcriptional regulation has been imgdicet
recent investigation [15]. Steroid receptor coactivator-1 (SRC-1)ca&MP response
element binding protein (CREB)-binding protein (CBP)/p300 are knowatigators of
PPARy [27, 28]. In fact, the interaction between PRA&d CBP/p300 or SRC-1 is
initiated by PPAR coactivator-1 (PGC-1) with the presence of ligand [29]. PPaRo
recruits corepressor, such as the silencing mediator of retimoidtheyroid hormone
receptors (SMRT) and the nuclear receptor corepressor (NGOR)hey are capable of

down-regulating PPARmediated transcriptional activity in the absence of ligand.
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However, by adding PPARIligand pioglitazone, these PPARorepressor complexes

were shown to be dissociated [30].

@ Ligand

@ \ o @
—|..AGGTCAXAGGTCA...= TATA | —|...AGGTCAXAGGTCA...I TATA |

PPRE PPRE

Ligand dependent activation Ligand independent repression

Figure 2. Two classic working modes of PPAM®N the left panel, with the binding of
ligand, PPAR and RXR heterodimer recruits coactivators and then downstreaes ge
are activated or up-regulated; on the right panel, in the absence of ligandessoepare
recruited instead and results in the repression or down-regulatiamget genes. The
figure is modified from Carmen Halabi’s [31] thesis.

The first endogenous ligand discovered for PRPARthe PGJ2 metabolite 15-
deoxy-delta 12,14-PGJ2 (PG is short for prostaglandin). It binds gitecPPAR and
promotes efficient adipogenesis [32]. PRARIso has pharmacological ligands — the
antidiabetic thiazolidinediones (TZDs), including troglitazonegiiiazone, ciglitazone,
and rosiglitazone. They bind PPARvith various affinities, but are thought to be much

greater than that of endogenous ligand [15] [33].
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2.1.2.3 PPARn adipocyte differentiation

and glucose homeostasis

PPARy is a master regulator of adipocyte differentiation [26]. Theatlibinding
of a TZD drug — rosiglitazone has been demonstrated. These attugs agonists for
PPARy and lead to the differentiation of adipose cells [33]. During theurala
differentiation of pre-adipocytes into adipocytes, PRAR induced, which is highly
expressed in both white and brown adipose tissues [34]. With the ectppgs&on of
PPARy, expressions of adipose-specific genes were shown to be indudedobiiaists
and morphologic differentiation could be observed [35]. Later, a studyteeptrat
adipogenesis of cultured pre-adipocytes would be inhibited by PRAR dominant
negative mutation [16]. Moreover, for the cells of a PRARII model, formation of
adipocytes was also abolished [36].

As mentioned above, PPARs a biological receptor for TZD drugs. The TZDs
were found to have the capability of lowering glucose levels in rodentstd26isLater,
in human, they were confirmed to have the function of improving insulintiseygq37].
TZDs exert their biological effects on insulin sensitivityotlngh binding to PPAR[26],
with evidences shown as below: 1.) PRARth non-TZD agonists (rationally designed)
led to improvement of insulin sensitivity [38]; 2.) Mutated PRAMRSsulted in insulin

resistance in both rodents and humans [16].
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2.1.2.4 PPARIn inflammation and atherosclerosis

While PPAR plays an important role in the regulation of adipogenesis and
glucose homeostasis, a great deal of evidence has emerged, sumporsgential role
of PPARy in inflammation and atherosclerosis [26].

PPARy is also induced during monocyte differentiation into macrophages. It is
revealed to have a high expression level in activated macroplsagbsas the foam cells
of atherosclerosis lesions [39]. Macrophages are able to detbclear pathogens and
release immune modulators at inflammatory sites. It has beemghawtarget genes of
PPARy with up-regulated pattern in macrophages are largely overlappihgthose
target genes arisen from adipose tissues, including Fabp4 and Cd36d3&6]serves as
a transporter of fatty acids. Consistent with this function, itheesh demonstrated that
lipid uptake has been to be promoted in PRPARBonist treatment of macrophages [39].
Glass’s group reported that macrophage inflammatory genes, sddtFa and MMP-9,
were inhibited by PPARIligands [41]. PPAR was illustrated to cross-talk with N&
on the promoters of these inflammatory genes, which is responsiblthdogene
repression [42]. However, PPREs have not generally been found in the prosgates
of these repressed genes. Without direct binding to DNA sequéneeashibitory ability
of PPARy is termed as transrepression [26].

For the development of atherosclerotic lesion, inflammatory lsignahe vessel
wall are recognized as a critical part [26]. Low densipppirotein (LDL) is directly
involved in atherosclerosis, because LDL-cholesterol accumulatke bldod. For male
LDL-receptor deficient mice, administration of rosiglitazone |doueduce the

development of atherosclerosis [43]. The reduction in numbers and sile=soof was
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coupled with improvement of insulin sensitivity. At the same timpressions of certain

inflammatory marker genes were decreased as well [43].

2.1.2.5 PPARIn endothelial and

vascular smooth muscle cells

PPARy appears to have effects in endothelial cells and vascular smaosttiem
cells (VSMCs) as well, with impact to cardiovascular dise4$B]. It was reported that
treatment of several cultured endothelial cells (both bovine andrfumith troglitazone
and pioglitazone enhanced the secretion of the vasodilator C-typeretat peptide
(CNP) and decreased expression of endothelin-1 (ET-1), a potent vasotamgi4].
Expression of vascular cell adhesion molecule-1 (VCAM-1) camihibited by PPAR
activators, such as ciglitazone and troglitazone, which exeeffibeh effects in limiting
chronic inflammation mediated by VCAM-1 [45]. Migration of vascidarooth muscle
cells is a critical step in the formation of atherosclerasid TZDs have been shown to

function as inhibitors to VSMCs migration pathway [46].

2.1.2.6 PPAR and hypertension

PPARy activation with TZDs has been shown to attenuate hypertension in both
animal models and human [47]. TZDs attenuated the development of hyjertens
angiotensin ll-infused rats [48]. Structural abnormalities and endaltlisisfunction of
these rats were corrected as well [48]. Fullert et abded a placebo-controlled double-

blinded study to test the efficacy of TZDs. Patients withegmsion but not diabetes
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were treated with pioglitazone and 6-mm Hg greater reduatidinastolic blood pressure
(DBP) over placebo was observed [49]. In another large cliniadl dfi5238 patients
with type 2 diabetes mellitus, systolic blood pressure was obsé&wvbd lowered by
pioglitazone by 3 mm Hg [50]. Generally, the lowering blood pressifieet of TZDs is
modest, but small decreases in arterial pressure are still bendffg[al, 52].

Interestingly, two separate dominant negative mutations of huRRARy
(V290M and P467L) have been described. Patients carrying one ofntisgons have
severe insulin resistance and develop full-blown type Il diabetdgum@nd early onset
hypertension later [16]. With mutations in the LBD, they have abeyrhigh affinity for
corepressor molecules instead of coactivators [16]. In addition,46@éLPmutation is
dominant negative, because its more reduced promoter turnover rkes mhaout-
compete the wild type (WT) receptor for promoter binding [53].

From the evidence above, we continue to hypothesize that PRARs an
important role in vascular function and hypertension. However, fudhaties are
required to understand the role and mechanisms by which PRR&ts its effect in

genome-wide transcriptional regulation of its target genes.

2.2 Co-expression indicates co-function

Genes sharing common biological functions have similar expressi@npd his
feature is conserved from prokaryotic cells to eukaryotic ones,witht different
regulatory mechanisms [10]. From the aspect of energy allocatiailar regulation of
genes involved in the same biological process saves unnecessayy esage for a cell,

which is critical to cell’'s survival [54].
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2.2.1 Example from prokaryotes

In bacteria, operon refers to a cluster of genes with commotidonmder the
same control of transcription. Genes are physically locatetitoeeach other, sharing a
single regulatory signal or promoter. As the result, theyti@mscribed together and
demonstrate the pattern of co-expression [54].

One of the classic examples is the operon of the bacteriascherichia coli (E.
coli) [54]. There are three genes encoded by the lac operon: |la¥Z alad lacA. which
are transcribed in the presence of lactose. lacZ mak@sgakctosidase, an intracellular
enzyme that cleaves the lactose. Plus, lacY produces the |petosease enzyme and it
is responsible for transporting lactose into the cell [54]. Thesefroteins encoded by

lac operon genes are involved in the processing of lactose, sharing common functions.

2.2.2 An instance in Eukaryotes

For eukaryotes, the co-regulation of gene expressions is genadligved
through common regulatory elements [54]. Take three genes GAL1, GALGAL10
of yeast for illustration, they share upstream activator sequenc&AL (UASg). Their
transcription can be initiated in the presence of galactose. They prodteiepnovolved
in galactose processing, respectively galactose transfegats#ctose epimerase, and
galactokinase [54]. Thus, co-expression patterns of genes indicateguatory

mechanisms and shared functions.



16

2.3 Introduction to microarrays

2.3.1 General information of microarray experiments

High-throughput microarray technologies have become populaefmnge-wide
investigation of gene expression profiles. Careful experimensgmdollowed by a
variety of proper computational analyses can reveal interactiogeioés and related
biological pathways [1]. For the experimental procedure, the needednaterials are
different biological RNA samples. These isolated RNA sampteslabeled and then
hybridized to arrays with tens of thousands of probes [1]. Nexgrtags are scanned to
generate images which provide information of relative fluorescamensities for each
element (refers to probe). Using software package for ingagatitation, the relative
amount of original input RNA (indication of gene expression levelg) i robustly
measured [1]. Generally, there are two strategies regardingytirédization process.
One-channel microarray is designed to use a single label and moi@epearray for each
sample, while two-channel microarrays can afford two sangrlesne array at the same
time, using distinguishable fluorescent dye labels [1].

For the data analysis, a common goal is to detect differgnéapressed genes
(DEGS) [1] between/among different groups of samples, such as cerstralases and
distinctive responses to a specific factor. Before the apprepc@mhparison can be
carried out, quantitative transformation of raw data should be perotméalance
intensities from different arrays, which is termed normalafil]. Why data must be
normalized? Because differences might arise from unequaingtamnount of RNA,

varied efficiencies of fluorescent labeling, image detectrmhso on [1]. Normalization
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is based on the assumption that the total intensities summed loslensnts on an array

should be the same for every biological sample in a microarray experiment [1]

2.3.2 Combined analysis of multiple sets of microarray data

Different laboratories may carry out microarray experimewith related
biological experimental design, but using different types of platgorDue to the high
cost of microarrays, many studies suffer from the problem allssample size, which
may lead to a high false discovery rate (FDR) in determinafi@EGs [2]. Combining
related but independent microarray datasets increases sanmglansizmay result in
higher reliability of novel gene candidate discovery from aissizal view [3]. For
example, a combined approach may be able to detect small butt&oinsisanges. In
fact, this is one of the motivating factors for the constructiorpudflic microarray
databases, such as GEO (Gene Expression Omnibus) [4]. In anothesusegssful
combined analysis demonstrates the reproducibility of theseestyfl], which is a
fundamental issue in validation of biological experiments.

However, rarely is a direct combined analysis suitablenficroarray studies, as
complications arise from biological variations and technical wdiffees [6]. Meta-
analysis, which has been well-studied in statistics, is a praat#ato solve this problem
[6]. The application of meta-analysis to microarray data has lmeemonstrated by
different groups, yet no consensus has been reached as to the best iHenhg,F. et al.
evaluated the performance of different microarray meta-asalysethods and
recommended approaches derived from two different philosophies. Ohe isbased

modeling approach, which offers a comparison of the magnitudes of tmdrg¢aon
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different genes [6]. Methods using linear models or from a Baygmespective have
very similar behaviors to the t-based modeling approach [6]. The istherank-product
approach, which shows indistinguishable performance with the rankgatjgre method
[6]. This approach has the advantage of robustness in ranking gemetheeased

method, but only provides relative prioritization of genes [6].

2.3.3 Co-expression information in microarray analysis

Microarray data not only provide us with gene expression profilealbatco-
expression information of genes investigated by certain platfdespecially, for a large
set of microarrays, which is available from the rich bodydatGEO [4], robust co-
expression information of genes can be derived.

As we have introduced in Section 2.2, genes with similar mRKi#ession
profiles across different tissues are likely to be regulaiadthe same mechanism or
share common functions [10]. This correlated information is useifuldétecting or
prioritizing genes with relatively weaker differentialpegssion levels, since these genes
are expected to co-express with other highly DEGs [11]. Asttai method of
predicting genes with differential expressions based on co-exprgegiems in a single
dataset analysis has already been proposed [11]. A microar@ysetatollected for a
prostate cancer study was demonstrated as an application, mtiwhiproposed method
identified many genes with weak differential expressions andaesfethese genes were

known in literature to be associated with the disease [11].
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2.4 Genome-wide profiling of DNA-binding proteins

To fully understand the mechanism of transcriptional regulatios esential to
obtain the genome-wide mapping of protein-DNA interactions [55]. Therge-wide
regulatory network of genes can be revealed by a precise map of bsitbsgfor

transcription factors, core transcriptional machinery and other-DiN&ing proteins [55].

2.4.1 ChIP-chip

Chromatin immunoprecipitation (ChlIP) is the major tool to investighese
mechanisms [55]. It is a technique for assaying protein-DNA bindirmiyo, which gives
the interactive picture occurring inside the nucleus of livindscf6]. In a ChIP
experiment, DNA-binding proteins in living cells are cross-lthke the DNA with the
treatment of formaldehyde at the beginning. Next, the celldyaesl and the DNA is
sonicated into small pieces (about 0.2-1 kb long). By using an antgpmtyfic to a
putative protein, the target protein-DNA complexes can be pulled dtuthvare later
separated through a process of heat driven cross-link reversal [56].

To identify these DNA fragments isolated from ChIP assay @enome-wide
scale, high-density DNA tiling arrays can be used [57]. For tiheg arrays,
oligonucleotide probes are placed across an entire genome oredettdcomosomal
regions, such as promoter regions [55]. DNA fragments are hyddidizthe tiling arrays.

Followed by computational analysis, enriched genomic regions can be detkfatihe
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2.4.2 ChiP-seq

With the rapid development of next-generation sequencing technologyretma
of sequencing tens or hundreds of millions of short DNA fragments single run
becomes true [55]. This technique has been widely applied to whole gesguencing,
MRNA sequencing for gene expression profiling (RNA-seq) and DN@eseing from
ChIP assay (ChlIP-seq) [55].

For ChIP-seq, sequencing of DNA fragments of interestausched after the
ChIP experiment instead hybridization to tiling arrays [58]. @otational analysis to
identify the DNA-binding sites is also a critical part of this method. Tiethod has been
shown to have higher resolution, fewer artifacts and greater covesag®ared to ChlIP-

chip approach [55].

2.5 Rank aggregation

Combining several ordered lists in a proper and efficient mammex real
challenge in the field of bioinformatics. Rank aggregation providsslaion with a
general framework and flexibility [59]. The goal of rank aggregeis to find a “robust”
list, which is as close as possible to all individual input Bstsultaneously [60]. To cast
the problem into optimization area, the objective function is defasedhe following
formula:

m
o=argmin Y wid @ Li).
=1
In this formulay is the robust list to be determined. The number of input lists is

andL; stands for they, input list. The functiord( , ) calculates the distance between the
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robust list and one of the input lists ang is the weight associated with the
corresponding list [61].
In the literature, there are many choices for a distamoetibn. One of the most

popular methods is Spearman footrule distance [60], which is defined as below:

d(s,Li)= > |s-rank(t)— Li-rank(t)| .

teLiUs

In this formulat stands for a gene in the union of bbtlando lists andL;-rank(t)
gives the rank of gerteon listL;. If genet is absent on lidt;, its rank will be assigned as
the length ofL; plus 1. As an intuitive metric for comparing two ordered listsaBpan
footrule distance sums up the absolute differences between the rarmitls urfique
elements from both input lists [60].

To determine the robust list, a framework should be constructeeatohsthe
solution space. The Cross-Entropy Monte Carlo algorithm has been deatexh$o be
effective in discovering the optimal ordering of elements irothtput list [60]. The main
steps of this algorithm are described with a simple example as follows:

(1) Initialization: At each rank position, every element has dgineesprobability to
be selected [60]. For example, consider input lists each with tjemes, and there are
five genes in the union of all the lists. Therefore, at eack pasition, the probability is

0.20 (see Table 1).
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Table 1. Probability Matrix at the initialization stage.

Rank 1 Rank 2 Rank 3
Gene_a 0.20 0.20 0.20
Gene_b 0.20 0.20 0.20
Gene_c 0.20 0.20 0.20
Gene_d 0.20 0.20 0.20
Gene_e 0.20 0.20 0.20

Note: A simple example with each list having 3 genes and 5 genetal. At each rank,
every gene has the same probability to be selected.

(2) Sampling: Based on the current probability matrix, candidiate are
generated for evaluation by the objective function [60]. To select elsrfuerd candidate
list, the procedure starts from the first rank to the last onilelollowing example, the
goal is to choose a gene at “Rank 1” position. Table 2 containsl| pafidianation — only
“Rank 1” from the probability matrix and then the cumulative probabigitgalculated
for each gene from the top row to the bottom row. The gene for “RaisksElected via
conditional random generation. A number is drawn randomly from a uniftnibdition
between 0 and 1. If the variate is X, we choose the gene withmidléest cumulative
probability that is larger than or equal to x and in this case (F€.2%), the result is
Gene_b with cumulative probability 0.40 (see Table 2). After fuiglithe position of
“Rank 17, the probability matrix should be re-scaled using the mEnwpigenes to

continue the sampling process.
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Table 2. Probability Matrix for the sampling stage.

Rank 1 Cumulative Prob.
Gene_a 0.20 0.20
Gene_b 0.20 0.40
Gene_c 0.20 0.60
Gene_d 0.20 0.80
Gene_e 0.20 1.00

Note: A simple example with each list having 3 genes andnggin total. Cumulative
probabilities at “Rank 1" are shown.

(3) Updating: In practice, tens of thousands of candidate listsu{tlen=5xkxu,
where K is the size of each input list and u is the number of urtgyue in the union of
all the input lists) are generated by the above sampling methedeTists are evaluated
by the objective function and the probability matrix is updated basddsts with the
highest scores (default: nx1%) [60]. At the same time, thevitbtthe highest score (the
top one) is identified as the optimal list. The following simgkample is shown with
each list having 3 genes and 5 unique genes in total. We focus 6rcémelidate lists
with highest scores generated by the sampling processiurhieers of each gene at each
rank are summed up, shown in Table 3, on the left panel. The corresppratadilities
are calculated, shown in Table 3, on the right panel.

(4) Convergence: The searching procedure will be terminated when timabpti

list does not change in a fixed number of iterations [60].



Table 3. Probability Matrix at the updating stage.
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Top 6 candidate lists Prob. Matrix

Rank 1 Rank 2 | Rank 3 Rank 1 Rank 2 Rank 3
Gene_a 5 Gene_a 0.833
Gene_b 1 1 1 Gene_b 0.167 0.167 0.167
Gene_c 1 1 Gene_c 0.167 0.167
Gene_d 1 2 Gene_d 0.167 0.333
Gene_e 3 2 Gene_e 0.500 0.333

Note: A simple example with each list having 3 genes and 5 gernetal. The numbers
of each gene at each rank are shown on the left panel and the@odiag probabilities
are shown on the right panel.
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CHAPTER 3: COEX-RANK, AN APPROACH FOR MICROARRAY COMBINED

ANALYSIS

3.1 Motivating datasets

As mentioned in Chapter 1, microarrays have been widely used tyg stud
differential gene expression at the genomic level and bioldgicelated datasets from
independent studies are publicly available. This situation requirestrabusbined
approaches for integration and validation. Previously, meta-asdigsi been adopted to
solve this problem [6]. As an alternative, for microarray daith Wwigh similarity in
biological experimental design, a more direct combined method basednedeyel
unification followed by normalization is feasible.

Before introducing the pipeline of methods, | will first provideo tmotivating
datasets, with similar, but non-identical experimental designsoramdiatforms. The
Sigmund laboratory has generated transgenic mice with dominantivee@PAR
(P467L) targeted to vascular smooth muscle cells (VSMCs) asd thiee (called Sppar
mice) have been shown to exhibit severe aortic dysfunction [M¢ independent
microarray experiments were carried out using RNA from theathoraortas of these
mice, compared to wild-type littermate controls (denoted as Sppiasets). The first
experiment was performed using the Affymetrix mouse genome 430 2.0 afiexyed to
as expression array), with only 2 control and 3 transgenic samplesseécond set of
samples from the same mice took advantage of the more receaillgbée Affymetrix
mouse exon 1.0 ST array (referred to as exon array); thiswvithe5 control and 7

transgenic samples. In fact, this experiment was originallygdedias 6 control and 6
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transgenic. Upon validation of the genotypes from tails of micedaelll at sacrifice, 1
control was found to be transgenic and thus it was transferred tatisgenic group. In
the expression array experiment, each hybridization contained RINAZ pooled aortas,
while in the exon array experiment, the RNA was extractau fa single aorta followed
by amplification. Clearly, there are multiple challenges priestby this heterogeneity of

experimental designs.

3.2 Methods

3.2.1 Gene-level unification into a virtual platform

To generate gene-level expression values, we used the RMA (Rabiltisthip
Average) algorithm [62, 63]. For expression array data, the implaten was carried
out in R using theaffy package and resulted in 45,101 probe-sets. The Affymetrix
Expression Console software (http://www.affymetrix.com/products_sersmidware/Sp
ecific/expression_console_software.affx) was applied to data tihhenexon arrays and
101,176 gene-level probe-set records were generated. Demanded byismmaaross
different platforms, we considered genes with common annotions mo &wirtual
platform.

We attempted to remove redundant and ambiguous probe-sets (See3figure
First of all, probe-sets without annotations such as gene symbol&®RAMccession
information (according to Affymetrix annotation, release 30) wemoved. As the
annotation information is not always perfect, there might be dupicéms regarding

the same record (see Figure 3), which should be cleared before further processing
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a.) Delete duplication and concatenate all the annotations

Microarray data with comprehensive " - I .
= 2Ne symoo 1 daccession
annotations and p-value from T test. Napl111 /// Nap1l1 D12618
4 Gene symbol mRNA accession
Delete probe-sets without any annotations of Nap111 D12618
gene symbol or mRNA accession information
: I
@ Gene annotations
Naplll // D12618
a.) For each probe-set, concatenate all the
annotations after deletion of duplications
b.) Merge probe-sets with overlapping annotation:
iL p-value dependent
f
b.) Merge probe-sets with overlapping
annotation: p-value dependent Gene annotations p-value
D12618 /// Napll1 0041
o NM_015781 /// Nap1l1 0.813
Probe-sets with unique annotations Gene annotations p-value
D12618 /// Naplll /// NM_015781  0.041

Figure 3. Pre-processing of probe-sets on a microarray platiine general steps are
listed on the left panel, while a simple example is shown onighe panel using best p-
value selection strategy.

In the case of multiple probe-sets matching the same genethadnvas needed
to remove this redundancy. We explored using both the most significetigp and the
highest average expression value as determining factors. Studetes with equal
variance was used to calculate the p-value, comparing control vgemamsamples. For
example (see Figure 3), there is one record with annotathii 015781 /// Nap1ll”

and another record annotated as “D12618 /// Napll1”. Therefore, theyeegedrinto a
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new record as they share the same gene symbol “Naplll’hisnekample, we
demonstrate with the p-value dependent approach. As the record with “D1/2618
Naplll” has the more significant p-value, the raw data i@ tecord are selected.
Moreover, its annotation is extended to incorporate “NM_015781" to pravidee
comprehensive information. Through the above steps, 26,766 probe-sets on the
expression array and 33,312 probe-sets on exon array were retainedw&remmbined
probe-sets from two datasets if they had overlapping annotations. Fagjltws rule, we

finally generated two combined datasets, each with 18,204 recordss €#ledted based

on the best p-value and the other is chosen according to the hagleestie expression

level.

3.2.2 Normalization

Normalization is naturally driven by the relative scale dfetgnces in the
distribution of expression levels among arrays from multiple ssudin the case of Sppar
data for example (see Figure 4), the distributions of gene ssipreintensities are
markedly dissimilar between the two platforms, and if analystcegaded without
normalization, the results would be invalid and very misleading. Innoplementation,
we applied scale normalization first, which is capable of congdinear variations,

followed by either quantile or M-A based loess normalization [9].
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Figure 4. The boxplots of all 17 arrays from Sppar datasetX5Xkfer to data from the
expression arrays and they show different distributions from X6-X18 plothe exon
arrays

Scale normalization is sometimes referred as global nommializ which
enforces an equal median or mean intensity criteria for @alys [9]. In our
implementation, we selected a method based on median, whiclssissémsitive to
extreme data points. The details are explained as follows:

1.) calculate the median intensity of each array;

2.) select the array having the median of the median intensities as the basaine

3.) normalize each of the remaining arrays to the baseline bayrayultiplying by a
coefficientp; :

- median(array _baselin

= , i=1,2...n (nis the number of all arrays).
l mediar( array )i ( ys)
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Quantile normalization enforces an equal distidyuof intensity values across all
the arrays [9]. Here is one example of its use [8gare 5). This is a simple case with
only 4 genes and 2 arrays. Table X is the origilz&. First we sort the intensities from
low to high on each array and to get Table XsoextNwe calculate the average for each
gene and use the mean values instead of the peewvitansities to generate Table X’sort.

Finally, we move each gene to its original rankifias to achieve Table Xnormalized.

sort sort normalized
Gene_a 238 | 284 238 | 218 228 | 228 228 | 299
Gene b | 314 | 412 314 | 284 299 | 299 299 | 411
E— — E—
Gene ¢ 410 | 218 318 | 356 337 337 411 228
Gene d 318 | 356 410 | 412 411 | 411 337 | 337
Array1 Array2 Array1 Array2 Array1 Array2 Array1 Array2

Figure 5. An example of quantile normalizationsliated by 4 genes from 2 arrays.

M-A based Loess normalization is a classical methHod cDNA array
normalization and can also be applied to two orankl arrays [64]. First, Y and X
denote the logscaled expression values from two arrays. M dentiesdifference
between Y and X, while A represents the averag¥ a@ind X. That is, M=Y-X and
A=(Y+X)/2. The M'-A’ plot after loess regression sild show a cloud of points

scattered about the M'=0 axis. Y’, X’ are then geed [64].
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Loess normalization can be realized via two d#feérapproaches — either a
median-base method or a trim-mean method. For #gian-base method, consider the
Sppar combined data mentioned above. In eachidgerat proceeds from arrayxto
array X7, while X is the array storing the median of thediaa intensities of all arrays
(termed as X.s9, therefore there are 17 rounds of loess regmessibor each loess
regression, X is selected dynamically based orctineent expression values of all arrays,
and both Y’ and X’ are used to update Y and X. peeudo code of this algorithm is as
follows:

for (iin l:#interation ) /*the number of iteratis*/

{
for (j in 1:#sample) /* sample size=17 in our Sppataset*/
{
Y=Xj ; X=Xpase;
Loess normalization using Y and X ;
}
}

For the trim-mean method, in each iteration, Ycpexs from array Xto array
Xi7, while X is the reference array, dynamically geted consisting of the 0.05 trim
mean of all 17 arrays. As X is only a series oérefice arrays, only Y is updated using

Y’
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For loess normalization, the regression can atsgdrformed using only rank-
invariant genes. The size of the rank-invariantegent is data dependent. Genes are

defined as rank-invariant as described in a prevgiudy [65].

3.2.3 Linear model

After normalizing using different methods, we gexted lists of significantly
changed genes for further comparison or validabypa simple linear model. A variety of
complex methods have been proposed, but they doauaissarily perform better than a
simple one. Further, complex methods may add backgt noise and even induce bias if
all assumptions are not satisfied [66]. For exanpbnsider our Sppar data, a linear
model can be constructed for each gene by thewwoitpformula:

Y=Db +8X; + axXy,
where Y is the observed value of gene expressiahbars the baseline level of gene
expression. Data from expression array and wilé e considered as the baselines. The
exon array effect is indicated by and X = (0 or 1). The Sppar mutant effect is
measured by.and X% = (0 or 1) as well. The regression is carried usihg R function
Im( ) and then ANOVA is used to test the statisticahgigance of a. The +/- sign of a
indicates up or down regulation and the absolubeevaf g indicates fold-change, which
is different from the original scale but can dbi# used to rank genes or indicate relative

changes.
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3.2.4 Co-expression-Rank-aggregation (Coex-Rank)

Multiple lists of up/down-regulated genes can benegated from different
normalization methods. To take advantage of thegpdvom merging all these lists, we
investigated the rank-aggregation method [60], tHacuses on finding a robust list
with minimum distance among all available ordenstslof genes. We chose to use R
RankAggreg package from CRAN which is publicly available [6@ne of the most
popular distance functions — Spearman footruleadist has been implemented in this
package. The realization of rank-aggregation is/idexl with two different algorithms
and the Cross-entropy Monte Carlo algorithm (CH)etter recommended [60].

For the Coex-Rank approach, we modified the R émantation of rank-
aggregation by incorporating co-expression inforomatThe goal of Coex-Rank is to
prioritize genes highly correlated with genes whate already highly ranked. For
instance (see Figure 6), Gene_a and Gene_a’ andytdgrrelated in expression across
different tissues of a specific species. Gene aahighly-ranked gene on all input lists for
Coex-Rank, but Gene_a’ is present at the bottosoofe of the input lists. Through our

Coex-Rank process, Gene_a’ will be pulled up neatap of the output list.
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Input list 1 Input list 2 Output list
Rank | Gene Rank | Gene Rank | Gene
1 a 1 a 1 a
2 2 2
3 3  — 3 a
98 a' 98 98
99 99 99
100 100 100

a' not on list 2

Figure 6. Demonstration of the Coex-Rank appro&sne_a is a highly-ranked gene on
all input lists for Coex-Rank, but Gene_a’ is praseear the bottom of some of the input
lists. The Coex-Rank approach enhances the priofityene_a’ that is highly correlated
with an already-highly-ranked Gene_a.

For our implementation, the co-expression inforarats included in the distance
calculation step. This information is obtained francombination of microarray datasets
with samples from different tissues of the sameciggeto avoid bias. To be consistent
with our case study, mouse Sppar data, we useddatasets available from GEO:
GSE10246 with 182 samples on the Affymetrix mous@ogne 430 2.0 array and
GSE15998 with 106 samples on the Affymetrix mousenel.0 ST array [67]. The co-
expression coefficients calculation was based enptiobe-sets matching with the final
combined Sppar dataset as described in Sectio@. ZThen, for any two genes, the

Pearson’s correlation coefficient was calculatednf288 pairs of records.
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Distance calculation with co-expression informati® the heart of the Coex-Rank
algorithm. The distance D( ) between two rankedegksts Ly and L, given the co-

expression coefficients, is defined as follows:
1
D(,Lo)= E x ( F(Ly,L1-co) + F(L,L2-c0)),

where F( ) is the Spearman footrule distance ofltste [12]. List L;-co contains all the
genes from list L but the rank information is obtained from list. lFor genes also
present on list 4, their ranks remain the same, while for genes prégent on list Lbut

not on list Ly, the ranks of their highly correlated genes frash lL; are used instead. In
practice, we need to determine a cut-off value ¢orexpression coefficients for
consideration. For example, Gene_a is only pregerist L;, and it has n highly

correlated genes on list.LThe rank of Gene_a on lis{-co is defined as follows:

Li-co-rank (Gene_a)% x5 L,-Rank ( Gene )i

,1=1,2, ...n.
21 Co(Gene_a,Gene)_:I

Co(Gene_a,Gene_i) denotes the co-expression deeffibetween Gene_a and Gene_i
(we used the Pearson correlation coefficient inioyglementation) and £Rank (Gene_i)
is the rank of Gene_i on lisbLFor genes only present on listtut not on list k, if they
do not have any highly correlated genes from ligt their ranks are assigned as
Length(L,)+1, where Length() is the length of the gene list

The R  program is freely available for download niro

http://genome.uiowa.edu/Coex-Rank with simple datan example.
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3.3 Results

All the results below are based on the combinetdsga formed by removing

redundant probes based on best p-value as despriadusly.

3.3.1 Similar effect of different normalization rhetls

For our mouse Sppar data, 10 different normabpathethods were implemented
as follows: 1.) quantile normalization; 2.) loessdran-base normalization; 3.) loess-
median-base-invariant normalization; 4.) loess-im@an normalization; 5.) loess-trim-
mean-invariant normalization. In addition, the safhenethods with first round scale
normalization were also used.

For the loess-median-base approach, with or witlouinvariant gene set, 10
iterations were chosen for normalization. More fiieress should result in more similar
distributions of intensities from different arrayss many as 50 iterations were calculated,
but no significant improvement in the results waseayved, shown by an example using

scale-loess-median-base-invariant normalizatiorhote{see Figures 7-9).
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Figure 7. The boxplots of all 17 arrays from Sppatasets after scale-loess-median-base-
invariant normalization with 10 iterations. X1-X&fer to data from the 5 expression
arrays and X6-X17 plots are according to data ftiben12 exon arrays.
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Figure 8. The boxplots of all 17 arrays from Sppatasets after scale-loess-median-base-
invariant normalization with 20 iterations. X1-X&fer to data from the 5 expression
arrays and X6-X17 plots are according to data ftiben12 exon arrays.
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Figure 9. The boxplots of all 17 arrays from Sppatasets after scale-loess-median-base-
invariant normalization with 50 iterations. X1-X&fer to data from the 5 expression
arrays and X6-X17 plots are according to data ftihen12 exon arrays.

After applying the scale-loess-median-base-invérrmethod for normalization,
with 10, 20 or 50 iterations, up/down-regulated egetists were generated from these
normalizations, each list with the 100 most higidpked genes. Comparisons were
carried out separately for up-regulated or down#dagd gene lists (see Table 4). The
mimimum size of overlapping geneset was 91 (intdise of genes from 10 iterations
and 50 iterations), indicating that increasing thember of iterations does not
dramatically improve the normalization. Note: theserations are computationally

demanding.
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Table 4. Size of intersection of any two lists frdifferent iterations in normalization.

Up-regulated genes Down-regulated genes
Iterations 20 50 20 50
10 97 95 95 91

The loess-trim-mean approach narrows the distdbubf intensities after a
sufficiently large number of iterations. In an extre example of 50 iterations, the
boxplots of intensities degenerate into many reggbafata points. Thus, we selected 5
iterations for the Sppar data, which produced sindlistributions of intensities as other
approaches.

For the loess regression based on rank-invarianeg a separate analysis (data
shown in Section 3.3.2) showed that no more th@Q(Lgenes significantly changed
between control and transgenic groups. Thus, wd 3¢000 as the size of our rank-
invariant gene-set.

After normalization using each method, linear nisdeere created for each gene.
An ANOVA test was applied to generate lists of wwd-regulated genes due to the
Sppar effect. Next, a comparison of 10 up-reguldistd was performed, each with the
100 most highly-ranked genes based on p-valueTab 5). In the table showing the
size of the union of any two gene lists, the larges contains 129 genes, which indicates

that lists from any two normalization methods haleut 70% overlapping genes at least.
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Table 5. Size of union of any two lists from ditet normalizations for up genes.

M 1 2 3 4 5 6 7 8 9 1C
1 | quantile 10C 11z 11z 11C 10¢ 12¢ 12¢ 127 122
2 | scalequantile 112 112 11C 10¢ 12¢ 12¢ 127 12z
3 loes«-trim-meat 10z 111 10¢ 12¢ 12¢ 12t 12¢€
4 scaleloes«-trim-mear 11C 10¢ 127 127 12t 124
5 loes+-trim-meair-invarian 10z 127 12¢ 12¢ 11¢
6 scde-loes«-trim-mear-invarian 12¢€ 12¢ 12¢ 12C
7 loes-mediar-bast 12¢ 11t 127
8 scale-loes-mediar-bast 127 122
9 loes-mediar-basw-invarian 127
10 | scale-loes-mediar-baseinvarian
Note: The first row and the first column show thmlex of normalization Methods

(M).The maximum union size is 129, highlighted illge.

For down-regulated genes, the results are sir(slze Table 6). Though different

normalization methods were applied, similar gests livere generated, which motivated

our selection of the rank-aggregation approachntmrporate information from all the

normalization methods.
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Table 6. Size of union of any two lists from ditet normalizations for down genes.

M 1 2 3 4 5 6 7 8 9 10
1 guantile 101 116 114 112 111 127 122 123 117
2 scalequantile 116 114 112 111 127 12¢ 123 118
3 | loes«trim-meat 10z 105 106 13C 127 138 123
4 | scaleloes«-trim-mear 104 1c4 128 125 131 121
5 loes«-trim-mear-invarian 102 128 125 129 121
6 | scaleloes«-trim-mear-invarian 127 124 128 12C
7 loes:-medial-bast 13C 124 124
8 | scaleloes-mediar-bast 128 114
9 loes-medial-bastinvarian 122
10 | scaleloes-mediar-bastinvarian

Note: The first row and the first column show thdex of normalization Methods (M).
The maximum union size is 133, highlighted in y&ilo

3.3.2 Combined analysis increases statistical power

In general, increasing the sample size will resuétn increase in statistical power
of an analysis. For our Sppar data, the combinediysis has a sample size of 17, while
the separate datasets have sample sizes of 5 amddetively. Comparison of the two
different analyses demonstrates (in this casebénefit of the larger sample size.

For the case of separate analyses, student’s Witdsequal variance was used to
compare control vs. transgenic samples. This statigest is mathematically equivalent
to a one-way ANOVA test. When we selected a p-veu@05 as a cut-off value, we

could achieve roughly twice the number of genesceiabined analysis, compared to the



43

separate approach (see Table 7). The statistitiseofombined analysis were based on
the scale-loess-trim-mean-invariant normalizatiogthnd; other normalization methods

resulted in similar numbers.

Table 7. Comparison of combined and separate ambfsSppar data.

Expression Array Exon Array Combined Analysis
p-value FDR p-value FDR p-value DRF
#Total 288 5 218 23 583 286
#Up 200 2 115 9 283 140
#Down 88 3 103 14 300 146

Note: Numbers of total DEGs and up/down-regulatedeg are shown separately for
expression/exon array data and combined analysis.clit-off value: p-value < 0.005
and FDR < 0.05 are used.

We also corrected for multiple comparisons using R qvalue package [68].
When we set FDR (False Discovery Rate, also cajledlue) < 0.05, we could see a
dramatic improvement with the combined analysienfr5 genes from the expression
arrays, 23 genes from the exon arrays to 286 gépes the combined analysis (see
Table 7). Two different cut-off values were set amore genes were selected as DEGs in

the combined analysis, indicating the increasetisitaal power of this approach.

3.3.3 Complementary advantage of Coex-Rank

Gene lists from 5 normalization methods startinthecale normalization were

used as the input for both the rank-aggregation thedCoex-Rank approaches. For
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example, for the up-regulated genes, consideringlype < 0.005 as the cut-off, 5 gene
lists were generated and then the genes were ragildteet by p-value or fold change,

which resulted in 10 different lists. The 100 mioigthly-ranked genes were selected from
each list and then served as the input for bothrah&-aggregation and the Coex-Rank
approaches. Although the choice of 100 as the numolbegenes to consider was

somewhat arbitrary, it is noteworthy that theseegewere all significantly up-regulated

according to the FDR < 0.05 cut-off value. Thus,wik continue to use this convenient

list size for the remainder of this example preseon.

The parameter settings for the rank-aggregatiep stere the default values
(Spearman footrule distance and cross-entropy idhgoy, except that the maximum-
iteration was increased from 1000 to 1500 for opp& data. For the Coex-Rank
approach, one more parameter for the cut-off vafusn-expression coefficients was set
to 0.7 for our Sppar data. As there were 198 unigueegulated genes from 10 different
lists (each with 100 genes), there were 197x19&56B pairs of genes for correlation
calculation and 572 pairs resulted in coefficiegitsater than 0.7. Similarly, for down-
regulated genes, there were 199 unique genes, whithto 19,701 co-expression
coefficients; 954 of them were greater than 0.7ré&fore, the 0.7 cut-off value roughly
selected the highest 3-5% genes based on the vafluks correlation coefficients. The
output of both the rank-aggregation and the CoexkRagoproaches were lists, each with
100 genes.

We note that the rank-aggregation and the CoeXRagthods, both generated
different lists of genes, but that they shared ab@®@% genes in common (73 for up-

regulated genes and 71 for down-regulated genes).inVestigate the biological
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significance of these genes, we focused on thelement of their public annotations. We
compared the gene lists from two approaches byetkigenerated by DAVID [69] (the

default low classification stringency was used) gqathways provided by exon array
annotations from Affymetrix. The Coex-Rank approdeth to greater enrichments (see

Table 8) due to the incorporation of co-expressnbormation.

Table 8. Comparison of annotation enrichment fahlaggregation approaches.

Up-regulated genes Down-regulated genes
#Clusters #Pathways #Clusters  #Pathways
Rank-aggregation 5 17 6 11
Coex-Rank 7 21 6 14

However, the Coex-Rank approach prioritizes gehighly correlated with
already-highly-ranked genes on the input listshat tost of sometimes excluding the
already-highly-ranked genes. These scenarios &mse the optimization process of
rank-aggregation. The Cross-Entropy algorithm gatesra series of candidate lists for
evaluation (which finds a super list with minimunstdnce among all input lists). If one
candidate list lacks some of the highly-ranked-gen@m most input lists, but has genes
with counterparts that are already highly rankeel,may still choose this as the super-list.

For example, in our analysis gene “Tes” was thén 2&hked gene on the list of up-
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regulated genes from the rank-aggregation protesgst was absent on the list from the
Coex-Rank approach. Its highly correlated countérgane “Runx1” was prioritized at
rank 25 by the Coex-Rank approach, but it was aldsem the list of up-regulated genes
from the rank-aggregation process. Therefore, viddd to add non-overlapping genes
from the Coex-Rank approach to those 100 gene<tsdldy the rank-aggregation
method and in total we promoted 127 up-regulatesegend 129 down-regulated genes
to the final reported lists. These up-regulatedegegenerate 10 clusters according to
DAVID (with low classification stringency). For dowegulated genes, 8 clusters were
generated. While the above discussion primarilysm®rs sensitivity as the quality
metric for evaluating our approach, it should bentimmed that specificity may likewise
be controlled by requiring greater concordance aniists, and thus, not including genes

in the final list which did not overlap.

3.4 Discussion

3.4.1 Simulation: advantage of combined analysis

To increase confidence that the results describeglection 3.3.2 regarding the
advantage of combined analysis over separate amalgs not dataset dependent, we
conducted a simulation study consisting of one s#thom exon arrays and one dataset
from expression arrays. Each dataset had six samntpiee controls v.s. three treatments
and each sample covered 18,204 genes. Considex&nple a simulated exon array

dataset generated as follows:



(1)

(2)

@)

a7

The sample means (i = 1, 2, 3..18,204 ) were from a real dataset. Four arrays
using mammary gland were exacted from GSE1024Glemndame probe-sets were
selected as in our Sppar case study. Sample mearscalculated for 18,204 genes

separately.
Background variations were added according todheviing formulas:

Yi=wi +Z; (=1,2,3...18, 204,j=1,2,3,4,5,6),

Z ~ N(0,69),

o = a%X(0.3-0.02xpxG;, G~Gamma(b).
Y; refers to the expression value of tiegene from the'j sample and: is a
parameter controlling the scale of variation [2]e Wvaluated: = 0.1, 0.2, and 0.3
to demonstrate different levels of background noidere, we also made the
assumption that the amount of variation jglgpendent. As it is often seen in real
data, genes with smaller expression values may bgxtarger proportional
variations [2].
The first 200 genes from treated samples were addddifferential expression
values as follows [2]:

Yi=pi+Z+8 (i=1,2,3 ......200, = 4,5,6),

5 =0.2x(2xg - 1) xG,

B~Bernoulli(0.5), G~ Gamma(5).

The simulation data from expression arrays weregged in a similar way. At

step 1, the four arrays using mammary gland wetaebed from GSE15998 and at step
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3, the differential expression value for a speajfeme was scaled by the ratio of sample
means from two platforms.

We then generated 10 datasets for each platformajplied both separate and
combined analyses including normalization and lineagression followed by an
ANOVA test as described in our Methods Section. WWed a p-value cutoff of 0.001 to
select significantly changed genes. The numberiftérdntially expressed genes was
averaged for calculation of sensitivity and spedifi and FDR (False Discovery Rate)
respectively for expression array data, exon adetg and a combined dataset. As shown
in Table 9, the combined analysis increases thesitsgty and reduces the FDR
compared to the separate analysis, with specifreityaining consistent (around 0.99) at
different levels of background noise. The consisyasf specificity is due to the nature of

microarray data, as the expression levels of maiség are unchanged.

Table 9. Comparison of combined and separate asbased on simulation.

Expression Array Exon Array Combined Analysis

Sensitivity FDR Sensitivity FDR Sensitivity FDR
a=0.1 0.89 0.09 0.69 0.11 0.94 0.07
a=0.2 0.67 0.12 0.40 0.17 0.82 0.07
a=0.3 0.47 0.16 0.24 0.28 0.64 0.09

Note: Combined analysis has advantages in incrgasirsensitivity and decreasing of
FDR. Different background variation has been eveliaiaa = 0.1, 0.2 and 0.3.
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3.4.2 Similar results from different selection obpe-sets

In Section 3.2.1, we described two approachegdolve the issue of ambiguous
mapping of genes to probe sets. One approach &ug-dependent, in which the probe-
set with the most significant p-value is selectigw other is determined by expression
value, in which the probe-set with the highest agervalue of expression is chosen.
However, in Section 3.3, only the p-value dependemtbe-sets were used in the
presentation of our Sppar case study. In factateysis proceeding from the highest
average expression value selection approach wastexp and the results were found to
be similar.

As mentioned previously, after the p-value depahd#ataset was processed
through the pipeline of normalization, linear reggien and rank-aggregation (including
the Coex-Rank method) procedures, 127 up-regulgéstes and 129 down-regulated
genes were selected. For the original dataset ysinge-sets chosen dependent on
expression values, 124 genes were significantlyegpdated and 128 genes were down-
regulated. The two sets of up-regulated genes Halddgenes (around 80%) in common
and the two down-regulated gene sets overlappdd9a8igenes (around 72%).

If we only focus on the comparison directly attee probe-set selection step, both
approaches selected 18,204 probe-sets from theessipn array data respectively and
resulted in 13,141 probe-sets (around 72%) in comrfrothe case of exon array data,
the two approaches led to as many as 16,897 oypémigprobe-sets (around 92%). At
least in this case, it appears that the exon adatg are more robust compared to

expression array data, however, this may be inchaetto the larger sample size.
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3.4.3 Similar effects of different statistical st

In Section 3.2.3, we described a simple linear ehéallowed by an ANOVA test
to generate lists of significantly changed genes.al¢o took advantage of an R package
limma, which implements a Bayesian linear model [70]. ¥sumed that 1% of the
genes were differentially expressed, as the defseiling. The moderated-F test was
employed, which is similar to the ordinary F-stidisrom ANOVA except that the
denominator mean squares are moderated across (édfsFollowing the same
normalization schema, two different statistical noels resulted in similar lists of
up/down-regulated genes in our Sppar dataset. wadists of the most highly-ranked
100 genes from each method, they produced at7€8stgenes in common (see Table 10,

which shows the size of the union set of the twsts lfrom different statistical methods).

Table 10. Size of the union of two lists from difnt statistical tests.

NM_1 NM_2 NM_3 NM_4 NM_5
Up-regulated genes 122 126 128 126 126
Down-regulated genes 127 126 128 130 126

Note: The normalization methods (NM) 1-5 are scalaertgile, scale-loess-trim-mean,
scale-loess-trim-mean-invariant, scale-loess-medas®, and scale-loess-median-base-
invariant sequentially.
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The similarity between these two different statadt methods demonstrated by
our Sppar case study is at an identical level wiltk resemblance of different
normalization approaches applied to the same selatf. Thus, we could extend the

Coex-Rank process to accept input lists from deifieistatistical methods as well.
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CHAPTER 4: ANALYSES OF PPARRELATED MICROARRAY DATASETS

As we have mentioned in Section 2.1, PRABRays an important role in the
regulation of vascular function and blood pressBrevious clinical studies reported that
patients with dominant negative (DN) mutations (A46r V290M) in the ligand binding
domain of PPAR had type Il diabetes and early onset hyperteridiéh TZD drugs (e.qg.
rosiglitazone) are pharmacological ligands of PRARhe ligand-mediated activation of
PPARy has been shown to have beneficial effects in lmgeblood pressure [47]. To
better understand the molecular mechanisms of RP&ferting its effects on the
genome-wide regulation of transcription, we tookadage of microarray technologies
to determine gene expression profiles in mouseathioraortas in response to ligand
activation or interference with different models dysfunctional PPAR We also

examined mesenteric arteries in one of these models

4.1 Microarray datasets information

4.1.1 Rosi Dataset

Adult male mice (aged 5-7 months) froB67BL/6J strain were used in this
experiment. PPAR was activated by rosiglitazone treatment in a tiaved dose
dependent manner. The administration of rosiglt@zwas for either 2 or 14 days at a
dose of 3 or 10 mg/kg/day via a custom-made distratise identical to standard chow.
This resulted in four different treatment groupsn@ol mice were fed standard chow.

Mouse RNA extracted from thoracic aortas were hybped to Affymetrix GeneChip
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Mouse Genome 430 2.0 array. For each treatmentédagroup, 3 biological replicates
were used, except the group with 14 days rosigliitaztreatment at the dose of 10
mg/kg/day having only 2 samples. In each sampleA RMs pooled from 8-9 different

mouse thoracic aortas.

4.1.2 Gppar Dataset

To model the effect of the P467L mutation of PRARsai et al generated knock-
in mice, replacing one normal PPARIlele with a P465L allele, which is equivalent to
P467L in human [71]. In these mice, the interfeeewith the PPAR signaling pathway
is in all the tissues normally expressing PRASb we consider these mice to be model of
“global PPAR interference” and refer them as the “Gppar” miGgpar mice were
reported to have hypertension at baseline by Tsai[@1]. Our lab also confirmed that a
10-mm Hg increase of arterial pressure in male Mii@. The genetic background of
Gppar mice are F1 of 129/SvEv and C57BL/6J strains.

In our microarray study, adult male mice with affesn 5 to 7 months were used.
RNA extracted from thoracic aortas were hybridizedAffymetrix GeneChip Mouse
Genome 430 2.0 array. There were two groups indkperiment, controls vs. mutant
mice, each group with 3 replicated samples. In eschple, RNA was pooled from 8

different mouse thoracic aortas.

4.1.3 Sppar Datasets
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General information of Sppar Datasets has beevigad in details in Section 3.1
— Motivating Datasets. These mice have been badketdo® C57BL/6J strain. All mice

used in the experiment were male and aged from/sntonths.

4.1.4 Msppar Dataset

The mutant mice involved in this experiment wamnt the same model as those
in Sppar experiment. We used RNA isolated from miese arteries for microarray
experiment. The hybridization was performed usinifyretrix mouse exon 1.0 ST
array. There were two groups for comparison, 4 rotgtv.s. 3 transgenic samples. In

each sample, RNA was extracted from a single mouse.

4.1.5 Ksppar Dataset

Chang et al generated mice with vascular smootéctaicell-selective deletion of
PPARy using Cre-loxP system [73]. Unlike our transgeBppar mice, these mice were
reported to have hypotension, with 14-mm Hg de@@as-month-old male mice [73].
As this is a knock-out model and specific to theosth muscle cells, we label them as
“Ksppar” mice. These mice have been backcross€tbiBL/6J strain. Mice with ages
from 5-7 months were used in our microarray stidguse RNA from thoracic aortas
was hybridized to Affymetrix mouse exon 1.0 ST wriigor the experimental design, we
had three groups, two groups of controls and opnemof smooth muscle cells specific

PPARy knock-out mice. For Cre-control group, the sange was 5 and the sample size
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was 3 for flox-control group. The knock-out miceogp had 6 samples in total. In each

sample, RNA was extracted from a single mouse.

4.2 Methods

4.2.1 Affymetrix Present/Absent Calls Detection Mxth

A detection call helps to answer the question Wiather a gene is expressed in a
particular biological sample. Present call referghie expressed status of a gene, while
absent call indicates non-distinguishable from gaomknd noise. For expression arrays,
Affymetrix MAS 5.0 algorithm can be used to achigkie detection calls [74]. Though
MAS 5.0 algorithm for generating expression sumnsahas been criticized for high
False Positive, its approach to determine predeserfd calls is still widely used [75].
MAS 5.0 algorithm calculates a discrimination scéwe each probe pair using both
Perfect Match (PM) and Mismatch (MM) probes’ informati Next, each probe-set is
assigned a detection P-value from one-sided Wilssxsigned rank test, based on
previous discrimination scores. To make the caiy significance levels; = 0.04 anc,
= 0.06 are set as the default. If P-value;<it is labeled “Present”; if P-value >, it is
called “Absent”; otherwise, it is assigned “Mardin@6]. The software is available as an
R package calledaffy”’, which can be directly installed from Bio-condactThe specific
function is ‘masbcalls( ).

For exon arrays, the corresponding algorithm mnéel as Detection Above
BackGround (DABG) [77]. A detection metric of eaeM probe is generated based on
comparison to a distribution of background poolhwihe same GC content. Then,

interrelated probe level p-values are combined atprobe-set level p-value using
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Fisher's method [77]. The software is availablenfran Affymetrix tool — Expression
Console. Along with exon-level normalization, theitput file of DABG will be

automatically generated, in which a p-value is eis¢ed with each exon.

4.2.2 Extension of Coex-Rank featured approach

As we have discussed in Chapter 3, Coex-Rank wpbed to generate robust
results from different normalization methods. Indae applicable to merge gene lists
from different comparison groups or multiple st#tel tests as well. Thus, our Coex-
Rank solution also provides an alternative to ansegly arbitrary choice among many

good approaches.

4.2.3 Gene set enrichment analysis (GSEA)

Normally, analysis at single-gene level reveatdelisimilarity between/among
independent microarray studies, even with relaietb@ical experimental design. Gene
set enrichment analysis (GSEA) [78] gains its polsertaking advantage of gene-sets.
Genes within a set share common biological functiortocate near each other on the
same chromosome or demonstrate similar regulatatjeqnm. Typically, genes from
microarray experiments are ranked according tor téferential expression between
control and treatment groups [78]. The core of &%Eto determine if a set of candidate
genes tend to be near the top/bottom of the preerhrgene list or just randomly
distribute through the whole gene list. This applodelps to interpret biological

significance of the microarray data from a gene-petspective [78]. For the
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mathematical description, an enrichment score lsulzted for a gene set by walking
down the pre-ranked gene list. When we encountggre in the gene set, the running-
sum statistic increases,; otherwise, it decread®as.fifial score is the maximum absolute
value of the running-sum and this is actually aghted Kolmogorov-Smirnov-like
statistic [78]. Next, the enrichment score is ndirea, taking the size of the gene set
into account. Finally, False Discovery Rate (FDR)omputed based on permutations
[78]. The software IS freely available for dowrdoa

(http://www.broadinstitute.org/gsea/msigdb/downiegsp).

4.2.4 DAVID, a tool for functional enrichment ansity

Microarray technologies usually produce lists dérasting genes under a certain
biological condition. The Database for AnnotatioWjsualization and Integrated
Discovery (DAVID) [69] provides a promising stratetp extract biological meanings
out of these gene lists. Compared to other pubbslgilable tools, DAVID has some
advanced capabilities, especially in a comprehengatabase and a novel module-centric
algorithm [69]. The database is known as DAVID Wiexlgebase. It integrates more
than 40 heterogeneous gene annotation resouragisufaaly across NCBI and UniProt
systems. This wide range of information facilitatégh throughput gene functional
analysis.

For the novel algorithm, it is designed to groupdtionally related genes into
biological modules to identify pertinent biologicpatocesses in a study [69]. Before
grouping related genes, a method of measuring gene-similarity is implemented,

based on the assumption that functionally relakaeg share global annotation profiles
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with each other. Then a DAVID agglomeration aldumtis applied for gene grouping,
which allows a gene to participate in more than @mectional group. This fuzziness
feature better reflects the nature of genes — ptpmultiple roles in a biological system.

The software is freely available online (http://@h&bcc.ncifcrf.gov/).

4.3 Results

4.3.1 Present/absent status of genes in microarrays

The sets of microarray data involve mice with eli#nt genetic backgrounds
(including C57BL/6J, backcrossed to C57BL/6J and df1129/SvEv and C57BL/6J
strains) and various vascular tissues (thoracitaaor.s. mesenteric arteries). To obtain
the present/absent calls of genes on microarragspok advantage of MAS5 and DABG
algorithms, respectively for expression arrays amdn arrays. We used genetically-
matched wild-type mice for these analyses and fodysed those genes covered by both
platforms (18,204 common genes determined by highesrage expression levels as
described Section 3.2.1).

We used the functionniasbcalls( )” from “affy” R package to generate output
files containing present/absent information of gef@ data from expression arrays.
There were three different labels in these fil€xgsent”, “Absent” and “Marginal”. We
considered the “Marginal” label the same as “Absénthake a relatively strict rule. The
numbers of genes with “Present” calls are showkigure 10 for Rosi dataset, Gppar
dataset and the part of expression arrays fromrSggiaset. The genetic background of
Gppar mice is different from the other two groupsnice. The numbers of genes in the

intersection of any pair of datasets were alsoutaied, shown with percentage in Figure
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10. On average, 95% genes are in common betweetwanyroups, though there are two

different genetic backgrounds involved.

Rosi Gppar Sppar
| #genes 9979 9873 10532

9526 9818 9624
(96.0%overlap) (95.7%overlap) (94 3%overlap)

Figure 10. Intersection of expressed genes fronresspn array experiments. Pink
stands for Rosi dataset, yellow stands for Gppéasgh and blue stands for the part of
expression arrays from Sppar dataset.

For the present/absent call analysis regardingetten arrays, DABG method
only provides p-values that indicate expressiotuses at exon level, not at gene level.
As it is recommended by a recent study for exoayaanalysis, an exon with p-value <
0.05 can be considered as “Present” and a genadh&0p6 of its exons expressed can be
assigned a “Present” call [79]. We followed thisthoel and also explored 60% and 70%

cutoff values in addition to 50%. The results dreven in Figure 11.
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10582 11658
(89.7%overlap) (92.0%overlap)
Sppar MSppar | KSppar
#genes 8745 9781 9104
7804 8428

(87.44%overlap)

(89.26%overlap)
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Intersection of expressed genes fromnexay experiments. Different

parameters used in determination of genes’ exmmesgatus. A gene having 50%, 60%
or 70% of its exons expressed is assigned a “Presah

For the three datasets in our analysis, Mspparrerpet used mouse mesenteric

arteries and the other two used mouse thoraci@asoHowever, the gene expression
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status in the Msppar experiment was slightly momilar to Ksppar experiment,
compared with other pair-wise groups, no mattercwisutoff value was used. This
scenario can not be explained by difference of wmasctissues involved in these
experiments. It might be due to variations from exkpental processing, as RNA of
Msppar and Ksppar experiments were extracted bys#me person and microarray

hybridizations were carried out at almost the sime.

4.3.2 Identification of DEGs from each microarraatset

DEGs from Sppar dataset were generated as desanilighapter 3. For the other
four experiments, we extended the Coex-Rank fedtapproach to identify DEGs from
each microarray dataset. As different experimet¢signs were involved in all the five
datasets, different strategies were selected fon eaalysis. For the pre-processing part
of microarray data, the RMA algorithm was used ascdeed in Section 3.2.1, which
resulted in 45,101 probe-sets on expression atedfopm and 101,176 gene-level probe-
set records on exon array platform. For exon adatp, probe-sets without annotations
such as gene symbols or mRNA accession informafamtording to Affymetrix
annotation, release 30) were removed and resuitedhaller datasets, each with 40,434
probe-sets. In these four datasets, we retainedipheuprobe-sets matching the same
genes to avoid introducing any bias in selectiopabe-sets, which was required in
combining datasets from different microarray platfs.

For the Rosi dataset, there were four groups féérént rosiglitazone treatments
and only one group of controls. Therefore, we camgbaeach treatment group with the

control group and resulted in four separate corspas. For each comparison, as the
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sample size was small, we took advantage of andRagelimma, which implements a
Bayesian linear model [70]. This method has beeamenended as a significance test for
microarray data with small sample size [2]. Forregke, for up-regulated probe-sets,
considering p-value < 0.01 as the cut-off, 4 prebelists were generated, each from one
comparison group. Then, these probe-sets were dagikiger by p-value or fold change,
which resulted in 8 different lists. To generateitar number of DEGs as in Sppar
dataset, we also selected 100 most highly-rankelepsets from each list as the input for
both the rank-aggregation and the Coex-Rank aphesac

For Gppar dataset, only one group of comparisos aailable and the sample
size was also small. We applied both Student’sst wath equal variance andmma
method to calculate the p-values. After filtering p-value < 0.01, probe-sets were
ranked either by p-value or fold change, which ltesiuin 4 different lists for up/down-
regulation. To be consistent, we focused on 100t inighly-ranked probe-sets for both
the rank-aggregation and the Coex-Rank approaches.

For Sppar dataset, details have been providechaptér 3. We also carried out
analysis only based on data from exon arrays usiagsame approach applied to the
above Gppar dataset.

For Msppar dataset, the same strategy as the @ppaset was adopted as well.
The only difference was the selection of threshmlchlue < 0.02. Different p-value cut-
off values were used for each dataset, becausémezl do select a reasonable number of
probe-sets (200-300 probe-sets), which could bkeciby either p-value or fold change

later.
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For Ksppar dataset, there were two groups of otstnd only one group of
knock-out mice. First, we compared the two congrolups and found 1209 probe-sets to
be differentially expressed according to p-valu®.€1 from Student’'s T test. If we
compared one group of controls with the knock-aoug, using the same cut-off values,
we could select 1037 probe-sets in comparison uixgcontrols and 1052 probe-sets
with cre-controls. The levels of differences wetgte similar. Therefore, we focused on
those probe-sets with robust behaviors in both @ispns and chose a less stringent
criterion p-value < 0.05. Ranking by either p-va@refold change and 100 most highly-
ranked probe-sets selection were used as routingsnierate input lists of both the rank-
aggregation and the Coex-Rank processes.

The final reported lists of probe-sets were merfyech the output of both the
rank-aggregation and the Coex-Rank processes. Wadnok care of the issue regarding
multiple probe-sets matching a unique gene. Thebeusnof DEGs identified in each

dataset were summarized in Table 11.

Table 11. Numbers of unique DEGs identified in eadtroarray dataset.

Rosi data Gppar data Sppar data Msppar data K stayar

# up genes 129 139 127 119 135

# down genes 141 138 129 121 131
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DAVID analysis was performed on each list of DE@sl we obtained some
interesting biological explanations about theseegernrThe default lowest clustering
criterion of DAVID was used, as we would like to pére as much biological
information as possible, which might help us to malpothesis for future experimental
investigation. Briefly, for genes up-regulated insRexperiment, they are enriched with
annotations especially related to PPAR signalinthway and positive regulation of
transcription, which fits with the molecular meclsmn of ligand dependent activation of
PPARy. For down-regulated genes in Gppar experimenty #re also enriched with
PPAR signaling pathway annotation. Moreover, thexerenother gene cluster annotated
with negative regulation of transcription, whichyrexplain the down-regulation pattern.
The most attractive functional characteristic op&pand Msppar datasets is that up-
regulated genes are enriched with calcium ion bmdirhe most up-regulated gene in
Sppar experiment is Tnncl (troponin C type 1) witRO fold change robustly in both
expression array and exon array platforms. It b l@een validated by real-time PCR to

have more than 100-fold change (see Figure 12).
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Tnncl

up fold change

1 2 3 4

independent experiment

Figure 12. Real-time PCR validation of up-regulatédncl in Sppar mice. Four
independent experiments show robustly more tharfdldQup-regulation of Tnncl.

According to the Gene database of NCBI (Nationahtér for Biotechnology
Information), the protein encoded by Tnncl (Tropo@) is a subunit of Troponin, which
is a central regulatory protein of striated musmatraction. The binding of calcium to
Troponin C abolishes the function of Troponin | (ahibitor of actomyosin ATPase),
thus allowing the interaction of actin with myosihe hydrolysis of ATP, and leading to
the generation of muscle contraction. Tnncl hasn bekassified as one of the
hypertrophic cardiomyopathy susceptibility genesgtations of which (A8V and D145E)
affect the functional properties of Troponin C hycrieasing the Césensitivity of

contraction [19].
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4.3.3 Comparisons of all PPARelated datasets

We performed pair-wise comparisons of these 18 46 DEGs from 5 microarray
datasets, but limited numbers of genes (0~5 gemes) found to be in the intersections.
This scenario is quite common in microarray studi®vious research has shown that
microarray analysis at single-gene level reveadtte lisimilarity even with related
biological experimental design. In fact, this i thnotivation for the development of
Gene Set Enrichment Analysis (GSEA) [78], whichnggbower by taking advantage of
gene sets. Therefore, we utilized this tool to olesegeneral biological patterns in
comparisons of all the 5 PPARelated microarray datasets. We focused only en th
genes covered by both expression and exon arr@/204 common genes determined by
highest average expression levels as Section 3litause the comparisons were across
all the datasets.

As the input required by GSEA, there should berexrpnked list of all genes
involved in a microarray experiment and severalegeets. GSEA helps to answer the
guestion that if genes in a set have differentigkpressed patterns in a microarray
experiment. Generally, there are two approachearik all the genes in an experiment,
either by p-value from a statistical test or folthnge. We explored both of them to draw
robust conclusions.

When we used p-value to rank all genes in a micagaexperiment, the query
gene sets were also selected by most significamadye strategy in order to be consistent.
The p-values based on which we ranked the genes gesrerated from Students’ T test
with equal variance. For some datasets (e.g. Rgmranent including 4 comparisons of

controls v.s. treatments), we simply averaged paslfrom each comparison. The most
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significantly up-regulated genes were ranked nbartop of the list, while the most
significantly down-regulated genes were near thigoba In total, we had 5 pre-ranked
gene lists and 10 gene sets. For gene sets, eaxclvitta100 most up/down-regulated
genes from an experiment. All the implementatioeseacarried out in a similar way for
fold change ranking approach.

For the parameter setting of GSEA, the defauld@ permutations were used to
calculate False Discovery Rate (FDR). The resukseworganized into Table 12 and
Table 13, respectively for both p-value and foldrmye approaches. In Table 12, the first
row refers to the gene sets. For instance, roggjeme set contains 100 most up-regulated
genes according p-value in Rosi dataset. The dokimn refers to the pre-ranked gene
lists. For example, Rosi_expression list has al genes ranked by p-value, with up-
regulated genes near the top and down-regulategsgesar the bottom. All the numbers
in the table are FDRs from statistical tests. Augabf 0.00000 can be observed, which
indicates the real number is < 0.00001. The ply(#minus (-) sign before the number
indicates up or down regulation, respectively.dotf it was not necessary to run rosi_up
and rosi_down gene sets with pre-ranked lists fRoai experiment, they were known to
be near the top/bottom of the list. We still inaddthem in our analysis, as we
considered them as internal controls. In the resiblies, we highlight all these types of
internal controls using yellow color. We used FDR.€1 as cut-off values. We highlight
all the robust (consistent result from both p-vahre fold change approaches) and
significant FDRs with either pink or blue colorsheve pink indicates up-regulation and

blue refers to down-regulation.
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Table 12. Summary table of FDRs from GSEA usingue ranking method.

rosi_up rosi_down gppar_up gppar_dow sppar_up
Rosi_exp +0.00000 -0.00000 -0.00140 +0.00000 -0.00000
Gppar_exp -0.00000 -0.00196 +0.00000 -0.00000 +0.28406
Sppar_com -0.00000 +0.00154 +0.37313 -0.00531 +0.00000
Msppar_exon -0.00000 -0.06255 +0.70554 -0.00281 +0.0000(
Ksppar_exon -0.00000 -0.21224 +0.79238 -0.00000 -0.00000
sppar_down msppar_up msppar_doywn ksppar_up ksgbpan
Rosi_exp -0.00104 +0.12024 +0.00050 +0.00674 +0.00038
Gppar_exp +0.00432 +0.18745 +0.37467 +0.00000 -0.00065
Sppar_com -0.00000 +0.43570 -0.00000 -0.00000 +0.28070
Msppar_exon -0.00000 +0.00000 -0.00000 -0.00000 -0.00000
Ksppar_exon +0.00000 +0.00949 +0.00000 +0.00000 -0.00000

Note: We used FDR < 0.01 as cut-off values andlaevaf 0.00000 indicates the real
number is < 0.00001. The plus (+) or minus (-) digiore the number indicates up or
down regulation, respectively. Yellow indicatesemmal controls, pink stands for up-
regulation and blue refers to down-regulation.
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Table 13. Summary table of FDRs from GSEA usind fdlange ranking method.

rosi_up rosi_down gppar_up gppar_dow sppar_up
Rosi_exp +0.00000 -0.00000 -0.01412 +0.00950 -0.00000
Gppar_exp -0.00000 +0.00000 +0.00000 -0.00000 +0.04008
Sppar_com -0.00000 +0.00832 -0.43329 -0.65847 +0.00000
Msppar_exon -0.00075 +0.29549 +0.78901 -0.48735 +0.11544
Ksppar_exon -0.00027 -0.02466 +0.17062 -0.88936 -0.00000
sppar_down msppar_up msppar_doywn ksppar_up ksgbpan
Rosi_exp -0.00000 +0.54647 -0.10437 -0.91511 -0.00108
Gppar_exp +0.00063 -0.88050 -0.92694 +0.00000 +0.45364
Sppar_com -0.00000 +0.00000 -0.00000 -0.00000 +0.00014
Msppar_exon -0.00000 +0.00000 -0.00000 -0.26204 -0.28184
Ksppar_exon +0.00000 +0.23956 +0.03070 +0.0000 -0.00000

Note: We used FDR < 0.01 as cut-off values andlaevaf 0.00000 indicates the real
number is < 0.00001. The plus (+) or minus (-) digiore the number indicates up or
down regulation, respectively. Yellow indicatesemmal controls, pink stands for up-
regulation and blue refers to down-regulation.

Based on these summary tables of FDRs, we cowddtifg several pair-wise
patterns with biological meanings, shown as thiewahg:

(1) First of all, rosi_up gene-set was signifitandown-regulated in Gppar
experiment and gppar_down gene-set was significatiregulated in Rosi experiment.
These genes that were up-regulated by rosiglitazcerament but down-regulated in
Gppar mutant mice might be direct targets of PIPAR

(2) Secondly, rosi_down gene-set was significanily-regulated in Sppar
experiment and sppar_up gene-set was significalaiyn-regulated in Rosi experiment.
These genes were down-regulated by rosiglitazaranrent and up-regulated in Sppar

mutant mice. They might be affected indirectly B3ARy transcriptional regulation.
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(3) The third pattern was that sppar_down genessset significantly down-
regulated in Msppar experiment and msppar_down geheras also significantly down-
regulated in Sppar experiment. This similarity migk due to the same transgenic mice
model used in two experiments, suggesting that danminegative mutation of PPARS
responsible for down-regulation of genes in diffédglood vessels.

(4) The last one involved significantly down-regfgld genes in Sppar experiment
and significantly up-regulated genes in Ksppar erpent. And these genes might help
to explain the different phenotypes of two PRARysfunctional mice models,
specifically, hypertension v.s. hypotension.

To further extract biological meanings out of tngene lists with interesting pair-
wise regulation patterns, we utilized a tool cal@dVID to generate gene clusters based
on functional annotations. The default lowest @tisg criterion was used as well. For
example, for genes with up-regulated pattern ini Raperiment and down-regulated
feature in Gppar experiment, we had two separate gets, one from p-value ranking
and the other from fold change ranking. We useth bbthem for DAVID analysis and
reported the consistent functional enrichment fobfferent input lists of genes.

According DAVID analysis, genes with expressionttgra “rosi_up and
gppar_down” generated two clusters (shown in Ta#land Table 15) that are functional
enriched by annotation “PPAR signaling pathway”’né&ein Table 14 are also enriched
with annotations, such as fatty-acid binding, lipidding and cytoplasm. Rbp7 (retinol
binding protein 7) has been shown to be highlyedated with PPAR at the levels of

expression across different tissues [80] and therotwo genes are classic targets of
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PPARy. Genes in Table 15 are functional enriched witftcgbrotein and transmembrane

annotations.

Table 14. First cluster of genes enriched with “RPAgnaling pathway”.

Probe-set ID Gene Name
1449461 at retinol binding protein 7, cellular
1416023 at fatty acid binding protein 3, muscle hedrt
1417023 a at fatty acid binding protein 4, adipecyt

Note: Genes are also enriched with annotationd) asdatty-acid binding, lipid binding
and cytoplasm.

Table 15. Second cluster of genes enriched witlARPBignaling pathway”.

Probe-set ID Gene Name
1450883 a at CD36 antigen

1418848 at aquaporin 7

1418197 at uncoupling protein 1 (mitochondrial,tprocarrier)
1417130 _s_at angiopoietin-like 4

Note: Genes are functional enriched with glycoproéad transmembrane annotations.

Genes with expression pattern “sppar_down and amsgpwn” led to a cluster
with “GTPase” annotation (see Table 16). Previdusl\sin our laboratory showed that
the response of thoracic aortas from Sppar mica teasoconstrictor — the peptide

endothelin-1 (ET-1) was remarkably augmented, coatpwith normal mice. Treatment
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with the Rho kinase-specific inhibitor Y27632 rdedl in a significant inhibition of the
contractile response, which suggested the depeadepon Rho kinase activity [13].
Furthermore, the increasing activity of Rho kinaseSppar mice has been confirmed
recently by our laboratory. Rho kinase is knowraaseffector of RhoA. Rho subfamily
of small GTPases can be divided into five groups: Rho-like (RhoA-C), Cdc42-like,
Rac-like, Rnd-like and RhoBTB (RhoBTB1-3) protej28]. The functions of RhoBTB
proteins have not been defined yet. One memberBRB2 has been identified as a
component of cullin3-dependent ubiquitin ligase pteres [20]. This property is highly
probably shared with other RhoBTB members [20].li@8lis the core subunit of CRL3
(Cullin-RING ubiquitin ligase 3), which was discaoed by Chen et al to target the RhoA
for degradation [81]. Therefore, we hypothesizet tihe Rho kinase activity may lie
downstream of RhoBTB1 in Sppar mice. The down-raguh RhoBTB1 might cause the
increasing of Rho kinase activity via RhoA/Rho lgaasignaling pathway. The down-
regulation of RhoBTB1 has already been confirmedday-time PCR in Sppar mice (see

Figure 13).

Table 16. A cluster of genes enriched with “GTPas®iotation.

Probe-set ID Gene Name
1422562 at Ras-related associated with diabetes
1428067_at RAS-like, family 12
1437100 _x_at proviral integration site 3
1429206_at Rho-related BTB domain containing 1
1432415 at RAB3C, member RAS oncogene family
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Figure 13. Real-time PCR validation of down-regesRhobtbl in Sppar mice. Four
independent experiments show robustly more tharftvdodown-regulation of Tnncl.

Genes with expression pattern “sppar_down andakspip” resulted in a cluster
with “kinase” annotation (Table 17). Genes prodymeteins with functions of
phosphorylation might be targets for future invgation. As we have discussed above,
Rho kinase activity is increased in Sppar mice,cwhs related with vasoconstriction.
Take Camk4 (calcium/calmodulin-dependent protermage 1V) for example, the product
of this gene belongs to the Talmodulin-dependent protein kinase subfamily [82]
Though it has not been demonstrated to be involaediood pressure regulation, its
sibling Camk2 (calcium/calmodulin-dependent protaimase II) is implicated to inhibit
vascular smooth muscle contraction [82]. As showrFigure 14, phosphorylation of
MLC (light chain of myosin) by MLCK (myosin lighthain kinase) allows interaction of
myosin and actin, which results in vascular smoptuscle contraction. MLCK is
activated by the G&CaM (C&*-calmodulin complex) and it can be inhibited by &&m

[82].
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Table 17. A cluster of genes enriched with “kinaaehotation.

Probe-set ID Gene Name
1435319 at inositol hexaphosphate kinase 2
1416069 at phosphofructokinase, platelet
1451140 s at protein kinase, AMP-activated, gammar2catalytic subunit
1437100_x_at proviral integration site 3
1434513 at ATPase type 13A3
1422084 at BMX non-receptor tyrosine kinase
1453817 at ATP-binding cassette, sub-family A (ABGiiember 6
1452572 _at calcium/calmodulin-dependent proteiasénlV
1431167 _at diacylglycerol kinase, gamma

\@/

MLC + —» Contraction

Figure 14. Camk2 involved in biological pathwaywakcular smooth muscle contraction.
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In addition to these pair-wise patterns, there tare other interesting patterns
involved more experiments at the same time. Th&t s that rosi_up gene-set are
robustly and significantly down-regulated in alletlother four experiments. This is
biological reasonable, as all the other four experits using mice with dysfunctional
PPARy or even without PPAR When we focused on individual genes that aresfsadi
with this criterion, only a few genes could be stdd, shown in Table 18.

Cd36 (CD36 antigen) and Fabp4 (fatty acid bindangtein 4) are classic target
genes of PPAR Ppargclb (peroxisome proliferative activated ptme gamma,
coactivator 1 beta) is the co-activator of PRARherefore, their down-regulation fits
with the PPAR dysfunctional models reasonably. Inactivation bbR by PKA (Protein
Kinase A) / PKG (Protein Kinase G) has been repotbet the underlying mechanism is
still not fully understood. Prkar2b (protein kinag&MP dependent regulatory, type Il
beta) belongs to PKA and its down-regulation radaatks the activation of RhoA/Rho

kinase signaling pathway in PPARYysfunctional models [83].
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Table 18. Genes up-regulated in Rosi experimentiown in others.

Probe-set ID Gene Name
1450883 a_at CD36 antigen
1417765 _a_at amylase 1, salivary
1417561 _at apolipoprotein C-I
1456611 _at family with sequence similarity 13, memA
1417023 a_at fatty acid binding protein 4, adipecyt
1449945 at peroxisome proliferative activated remegamma, coactivator 1 beta
1423972_at electron transferring flavoprotein, alpblypeptide
1438664 at protein kinase, cCAMP dependent reguylatgpe Il beta
Probe-set ID Functional Annotations Pathway
1450883 a_at lipoprotein, transport PPAR signagliathway
1417765 a_at Calcium, carbohydrate metabolism I$tand sucrose metabolism
1417561 _at lipid transport
1456611 at phosphoprotein
1417023 a_at lipid binding, transport PPAR sigraapathway
1449945 at activator, transcription
1423972_at electron transport, flavoprotein
1438664 at acetylation, cCAMP binding Insulin signglpathway

Another interesting pattern is that “rosi_up andppar_down and ksppar_up”
gene-sets were all significantly down-regulated Sppar experiment. The scenario
perfectly matches with a predictive model of PRARmMolecular mechanism [47]. As
shown in Figure 15, for Sppar/Msppar mice with DNtation PPAR, without binding
of ligands, corepressors and histone deacetylaseearuited, which results in repression

of transcription of PPARtarget genes. For wild-type mice, treatment usosiglitazone
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provides ligands for PPAR Therefore, coactivators, such as P@Gihd SRC, are
recruited instead of corepressors, and PPAsiRget genes are activated or up-regulated.
For Ksppar mice, PPARis knocked out, there might be other transcriptiaators
binding to PPRE, like heterodimer of RXRs, whictade to intermediate level of
transcription of PPARtarget genes. This model was proposed to exgiaimypotension

phenotype of Ksppar mice [47].

Sppar / Msppar Mice Ksppar Mice WT Mice with Rosi treatment

transcription

transeription
>

PPRE

Figure 15. Postulated model of PPARmolecular mechanism. The length and width of
the arrows reflect levels of transcription. PBAR orange and RXR is blue. CoR
indicates corepressor; HDAC, histone deacetylas#, Coactivator; PGCd, PPARy
coactivator-1 alpha; SRC, steroid receptor coattiryaRNAP, RNA polymerase; TF,
transcription factors; PPRE, PPAResponse element. The figure is modified from a
review paper [47].

Genes falling in this criterion are shown in Tall® Serpinel (serine/cysteine

peptidase inhibitor, clade E, member 1) has thetian of regulation of angiogenesis,
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which is a physiological process involving the gtiovef new blood vessels from pre-
existing vessels, according to Gene database ofINEB also annotated with positive

regulation of coagulation (a complex process ofollldorming clots), in the same

database.

Table 19. Genes consistent with a predictive warkimodel of PPAR.

Probe-set ID Gene Name
1418719 at 4HAUS augmin-like complex, subunit 8
1450554 at defensin beta 2
1416021 _a_at fatty acid binding protein 5, epidérma
1452388 at heat shock protein 1A
1437100_x_at proviral integration site 3
1417466_at regulator of G-protein signaling 5
1419149 at serine (or cysteine) peptidase inhibifade E, member 1
Probe-set ID Functional Annotations Pathway
1418719 at alternative splicing, mitosig
1450554 at antibiotic, defensin
1416021 a at lipid-binding, transport PPAR sigrjmathway,
1452388 at atp-binding, chaperone MAPK signalinthway, endocytosis
1437100_x_at atp-binding, protein kinase
1417466_at signal transduction inhibito
1419149 at plasminogen activation p53 signalingway, coagulation cascades

Rgs5 (regulator of G-protein signaling 5) is inxed in the regulation of
heterotrimeric G proteins by acting as GTPase attirg. Rgs5 has been identified as an

antihypertensive target (down-regulated in hypesitenmodels) by vascular microarray
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profiling in two rat models of hypertension [84]h&hges in RGS (regulator of G-protein
signaling) expression and function correlate widscular remodeling. Xi Wang et al
showed that RGS5 inhibits angiotensin Il (anglQtuoed signaling in smooth muscle
cells by in vitro overexpression studies [21]. It is known that &nigads to

vasoconstriction [82].
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CHAPTER 5: INVESTIGATION OF PPARRELATED DEGS WITH PPARES

As introduced in Chapter 2, PPAReterodimerizes with RXR and binds to DNA
elements called PPAR Response Elements (PPREsknbwen PPRES have a consensus
sequence of AGGTCAXAGGTCA, with X being a randomcleoatide. This initial
conclusion was based on analysis of approximat@lw8ll-characterized PPARarget
genes [25]. More recent studies, as described bdlawe characterized PPARInding

sites on a genome-wide level.

5.1 Genome-wide binding sites of PPAfRRom literature

5.1.1 PPREs identified by ChIP-chip technique

Leferova et al used ChIP (chromatin immunopreatmn) followed by
hybridization to whole genome tiling arrays (Chliip) to determine the genome-wide
binding sites of PPAR[17]. PPAR is expressed at highest levels during differeiatmat
of mouse fibroblasts into adipocytes. The ChIP yassas performed using 3T3-L1
adipocytes harvested at day 10 post-hormonal immtuodf adipogenesis. Immuno-
precipitated chromatin fragments were hybridizedhe whole genome Mouse Tiling
2.0R Array Set (Affymetrix). The model-based analysf tiling arrays (MAT) was
employed to determine genome-wide binding siteBRARy. Filtering by the cutoffs of
FDR (False Discovery Rate) <=1% and enrichment ARy signal over control 1gG
equal to or greater than two fold, 5299 PPREs videatified (mapped to reference

genome mm8), with each region about 1000 basgImgajidong [17].
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The results from ChlIP-chip experiment were vakdaby ChiP-quantitative PCR
(QPCR) and with a different PPARntibody. These additional studies suggestedttleat
actual FDR was around 5%. The previously known hfiotiPPREs was found at most of
the identified binding sites. Moreover, ChIP for RiKBhowed a co-localization pattern

with PPARy at nearly all the tested binding sites [17].

5.1.2 PPREs identified by ChlIP-seq technique

Nielsen et al took advantage of deep sequencoimntdogy, combined with ChIP
assay to map genome-wide PPABInding sites [18]. The samples for ChIP were 3T3-
L1 cells at day 6 post differentiation. For dataalgsis, mapping short sequences to
mouse genome was performed by the lllumina Analggeline and detection of binding
sites was carried out using FindPeaks at an FDBI kV0.001. They identified 6952
binding sites for PPAR (mapped to mm9 reference genome), most of whiate we-
localized with RXR binding sites. Motif search was also carried outl ahowed

positive re-confirmation, matching with the knowRFE [18].

5.2 Methods

5.2.1 Bowtie — a tool for alignment

With the development of high-throughput sequend¢eahnology, it is necessary
to optimize the alignment of large sets of shortADd¢quences (reads) to large genomes.
Bowtie is an ultrafast, memory-efficient short realigner, which facilitates further

sequence analysis [85]. For example, Bowtie ali§bsase-pair reads to the human
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genome at a rate of 25 million reads per hour typal workstation. It has been shown
to consume less time and computational resour@es dther similar tools, such as Maq
and SOAP [85]. The efficiency of Bowtie lies in avel indexing strategy — Burrows-
Wheeler index to keep its memory footprint smalowéver, Bowtie is not a general-
purpose alignment tool like BLAST. For the curreatsion, it does not yet report gapped

alignments [85]. The software is freely availablenh http://bowtie-bio.sourceforge.net.

5.2.2 MACS - a tool for peak detection in ChiP-seq

Chromatin immunoprecipitation (ChlIP), integrateittvadvanced next-generation
sequencing technology (ChIP-seq), [86] providda tlzat only represent the ends (about
30 bp) of the ChIP fragments. These short seque(c@ked tags) are aligned to a
reference genome and then their accumulationsffateht genomic loci are detected as
the binding sites of transcription factors. There &arious algorithms for the peak
detection part [86].

Generally, ChlP-seq experiments can be performét wr without control
samples. For data without controls, peaks are ttesgainst background information.
To model the background noise, Poisson distribusgoreferred to uniform distribution,
which has been used previously [86]. According teee@ent study comparing different
methods for peak detection, two methods — MACS SifiISRs are available for the
public ChIP-seq data analysis. The better perfoomaaof MACS over SISSRs is
supported by reproducibility of the detections amdernal validation using gPCR, at

least in a third party comparison study [86].
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MACS stands for Model-based Analysis of ChIP-Seqgmiproves the spatial
resolution of predicted binding sites by modelihg shift size of tags empirically [87].
Furthermore, the dynamic Poisson distribution erygaio by MACS can effectively
capture local biases in the genome. The softwase awvailable from

http://liulab.dfci.harvard.edu/MACS/.

5.3 Results

5.3.1 Analysis of ChlP-seq data for identificatmiPPRES

The raw data are available for ChIP-seq experimeggarding PPRES
identification from http://www.ncbi.nim.nih.gov/ttas/sra/ with study accession number
SRP000630. Thus, we decided to carry out the daéidysis using the tools for both
sequence alignment and peak detection describkerear

In our application of bowtie, according to the inal manual (http://bowtie-
bio.sourceforge.net/manual.shtml), we used thevotig options in parameter setting:

--best, which guarantees the best reported somglalignment. “Best” is defined
in terms of the number of mismatches or the quakiyes at the mismatched positions.
This mode also removes all strand bias.

-n, which stands for the maximum number of mistmascfor alignment. To be
consistent with original paper, we allowed one na@trh in our analysis.

-m, which keeps Bowtie from reporting any alignitsefor reads having more
than a certain number of reportable alignments. s&tem=1 for this parameter, which

was able to report a loose “unique” alignments.
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As the result, 35.70% of original short reads 26,479) were reported to have
unique alignments mapping to mm9 reference genome.

In application of MACS, we kept all the default gaueter settings. By using the
recommended cutoffs — p-value < 1%ldnhd fold enrichment > 32, we identified 4656
PPARy binding sites (labeled as ChiIP-seg-1). Accordimgatrecent study comparing
different methods for peak detection [86], the HEIWOO most significant binding sites
of a transcription factor are robustly detectedabyariety of computational approaches.
So we also used a strict criterion that p-valuexd@®f and fold enrichment > 38 to

determine 1647 PPREs (labeled as ChlIP-seq-2).

5.3.2 Result of PPRE enrichment analysis

All the PPAR related microarrays were carried out using RNAsaexed from
blood vessels, but the genome-wide sets of PPRIEs identified from ChIP-seq/ChlIP-
chip using DNAs from 3T3-L1 adipocytes. Therefore limited our PPREs enrichment
analysis to those genes also expressed in 3T3-ifjoades. The expression status
(present or absent) of a gene in 3T3-L1 adipocytas determined using datasets
GSE14004 and GSE8682, which are publicly avail&gen GEO. We used ten lists of
DEGs we had already identified (see details in @rap). For example, list Rosi_up
stands for the list of genes up-regulated in Repeeament. As the sets of PPREs were
based on either mm8 or mm9 reference genome, wainebt both versions of the
genomic locations of genes’ TSS (transcriptiontstde) from UCSC Genome Browser.
For each list of DEGs, we calculated the percentdggenes having at least one PPRE

within a certain distance. We used three scalestdinces, 10k, 50k and 100k from TSS,
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including both up-stream and down-stream directioii® assess the statistical
significance of the PPRE enrichment, we calculaéibedempirical p-values from random
permutations.

The results of PPRE enrichment analysis using SktR1 dataset is shown in
Table 20, with the percentage of genes havingaat lene PPRE within a certain distance.
The corresponding empirical p-values were obtaifinech 10,000 random permutations

(see Table 21). Up-regulated genes from Rosi exy@t are statistically enriched for

PPREs within the distance of 50k.

Table 20. Percentage of genes with PPRE in analgsig) ChiP-seq-1 dataset.

Distance Rosi_up Rosi_down Gppar_up Gppar_down ISppa
10k 6.98% 3.66% 6.45% 4.55% 7.55%
50k 43.02% 21.95% 35.48% 25.00% 30.19%
100k 54.65% 40.24% 50.00% 50.00% 41.51%

Distance Sppar_down Msppar_ug Msppar_down Ksppar_pKsppar_down
10k 6.67% 6.06% 2.44% 3.57% 8.33%
50k 37.78% 30.3% 36.59% 35.71% 20.83%

100k 51.11% 45.45% 46.34% 35.71% 41.67%

Table 21. P-values of PPRE enrichment analysigguShiP-seq-1 dataset.

Distance Rosi_up Rosi_down Gppar_up Gppar_down rSppa
10k 0.4818 0.8961 0.4818 0.7878 0.3305
50k 0.0005 0.9401 0.0612 0.7360 0.3289
100k 0.0330 0.8248 0.1466 0.1466 0.7713

Distance Sppar_down Msppar_ug Msppar_down Ksppar_pEKsppar_down
10k 0.4818 0.4818 0.9653 0.8961 0.2076
50k 0.0211 0.3289 0.0367 0.0612 0.9649
100k 0.1048 0.4713 0.3947 0.9757 0.7713
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The results of PPRE enrichment analysis using SbktR2 dataset is shown is
Table 22 and Table 23. These p-values were obtdined 10,000 permutations as well.
Up-regulated genes from Rosi experiment are alabsstally enriched with PPREs

within the distance of 50k.

Table 22. Percentage of genes with PPRE in analgsig ChIP-seq-2 dataset

Distance Rosi_up Rosi_down Gppar_up Gppar_down ISppa
10k 2.33% 1.22% 3.23% 2.27% 0.00%
50k 22.09% 7.32% 12.90% 11.36% 9.43%
100k 29.07% 13.41% 20.97% 18.18% 16.98%

Distance Sppar_down Msppar_ug Msppar_down Ksppar_uKsppar_down
10k 0.00% 3.03% 0.00% 0.00% 6.25%
50k 13.33% 12.12% 12.20% 17.86% 12.50%
100k 17.78% 15.15% 14.63% 25.00% 20.83%

Table 23. P-values of PPRE enrichment analysiggushiP-seq-2 dataset.

Distance Rosi_up Rosi_down Gppar_up Gppar_down ISppa
10k 0.3378 0.6075 0.1508 0.3378 0.8775
50k 0.0001 0.8319 0.2267 0.3355 0.5954
100k 0.0044 0.9193 0.3157 0.5114 0.7124

Distance Sppar_down Msppar_ug Msppar_down Ksppar_pKsppar_down
10k 0.8775 0.1508 0.8775 0.8775 0.0043
50k 0.1480 0.2267 0.2267 0.0136 0.2267

100k 0.6183 0.7977 0.8655 0.0464 0.3157

The results of PPRE enrichment analysis using €hlp dataset is shown is

Table 24 and Table 25. These p-values were obtdnoad 100,000 permutations. Up-
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three different distances. The number 0.00000 satep-value < 0.00001.

Table 24. Percentage of genes with PPRE in analgsig) ChIP-chip dataset.

Distance Rosi_up Rosi_down Gppar_up Gppar_down ISppa
10k 45.24% 13.41% 8.93% 20.45% 17.65%
50k 70.24% 43.90% 39.29% 45.45% 49.02%
100k 83.33% 57.32% 50.00% 63.64% 62.75%

Distance Sppar_down Msppar_ug Msppar_down Ksppar_uKsppar_down
10k 21.43% 12.12% 21.62% 7.14% 24.44%
50k 52.38% 48.48% 51.35% 39.29% 51.11%
100k 59.52% 63.64% 62.17% 42.86% 66.67%

Table 25. P-values of PPRE enrichment analysiggushiP-seq-2 dataset.

Distance Rosi_up Rosi_down Gppar_up Gppar_down ISppa
10k 0.00000 0.37909 0.89601 0.01216 0.07319
50k 0.00000 0.01429 0.08335 0.00459 0.00032
100k 0.00000 0.02158 0.26940 0.00054 0.00126

Distance Sppar_down Msppar_ug Msppar_down Ksppar_pKsppar_down
10k 0.00589 0.49615 0.00589 0.94567 0.00047
50k 0.00004 0.00064 0.00008 0.08335 0.00008
100k 0.00768 0.00054 0.00126 0.83528 0.00005

In fact, we previously performed 10,000 permutadias we did to two ChiIP-seq
datasets. However, not only Rosi_up genes but sdsoe other gene-sets, including
Sppar_down, Msppar_down and Ksppar_down genes,duoné to have p-values <

0.0001 as well. According to the original data érefto percentage of genes with PPRE),
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we found that 70.24% of Rosi_up genes are assdciaitth PPREs within 50k bp

distance, compared to around 50% of Sppar_down, Msdpwn and Ksppar_down
genes having PPREs. Obviously, Rosi_up genes aoh more enriched with PPREsS
than the other three sets of genes. Therefore aweed out 100,000 permutations, which
helped us to obtain distinguishable p-values. Teee up-regulated genes from Rosi
experiment are robustly and significantly enrichath PPREs from both ChlIP-seq and
ChlIP-chip datasets.

As we discussed in Chapter 4, up-regulated gan&si experiment, as a gene-
set, were found to be down-regulated in Gppar exymt. However, the Gppar_down
genes did not show up with the pattern of PPREcknrent. Thus, we divided these
genes into two sets, one with the trend of downHiagn in Gppar experiment and the
other with up-regulated direction. Then, PPRE dmmient analysis was carried out for all
three sets. As shown in Table 26, only up-regulgiedes in Rosi experiment that also
have a trend of down-regulation in the Gppar datase robustly and significantly
enriched with PPRES, consistent with a previousyaisa[80]. This scenario fits with the
conventional model of PPARaction, in which activation of its target genesndads

ligand binding to PPREs, as we have described qusly in Chapter 2.
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Table 26. P-values of PPRE enrichment analysi&&si_up genes.
ChiP-seqg-1 ChiP-seq-2 ChlP-chip
Distance | R _up_ G dowhn R_up G JuR _up_G_dowrfR_up_G up R up G downR_up_G_uf
10k 0.0612 0.6450 0.0536 0.8775 0.00000 0.11960
50k 0.0001 0.3289 0.0000 0.4631 0.00000 0.00811
100k 0.0043 0.4713 0.0003 0.7977 0.00000 0.00230

Note: All three sets of PPREs were used, includdgP-seg-1, ChiP-seqg-2 and ChlP-
chip. For p-value=0.0000 means p-value < 0.000lichvkvas calculated from 10,000
permutations and for p-value=0.00000 means p-val@00001, which was calculated

from 100,000 permutations.
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