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ABSTRACT 

 
 Microarrays have been widely used to study differential gene expression at the 

genomic level. They can also provide genome-wide co-expression information. Robust 

approaches are needed for integration and validation of independently-collected datasets 

which may contribute to a common hypothesis. Previously, attempts at meta-analysis 

have contributed to solutions to this problem. As an alternative, for microarray data from 

multiple highly similar biological experimental designs, a more direct combined 

approach is possible. In this thesis, a novel approach is described for microarray 

combined analysis, including gene-level unification into a virtual platform followed by 

normalization and a method for ranking candidate genes based on co-expression 

information – called Coex-Rank. We applied this approach to our Sppar (a PPARγ mutant) 

dataset, which illustrated an improvement in statistical power and a complementary 

advantage of the Coex-Rank method from a biological perspective. 

 We also performed analysis to other PPARγ-related microarray datasets. From the 

perspective of gene sets, we observed that up-regulated genes from mice treated with the 

PPARγ ligand rosiglitazone were significantly down-regulated in mice with a global 

knock-in dominant-negative mutation of PPARγ. Integrated with publicly available PPRE 

(PPAR Response Element) datasets, we found that the genes which were most up-

regulated by rosiglitazone treatment and which were also down-regulated by the global 

knock-in mutation of PPARγ were robustly enriched in PPREs near transcription start 

sites.  In addition, we identified several potential PPARγ targets in the aorta and 

mesenteric artery for further experimental validation, such as Rhobtb1 and Rgs5.   
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CHAPTER 1: INTRODUCTION  

 

 High-throughput microarray technologies have become popular for genome-wide 

investigation of gene expression profiles. Careful experimental design followed by a 

variety of proper computational analyses can reveal interaction of genes and related 

biological pathways [1]. For data analysis, a common goal is to detect differentially 

expressed genes (DEGs) [1] between controls and cases or in response to specific factors, 

such as time and dose effects.  Different laboratories may carry out microarray 

experiments with related biological experimental design, but using different types of 

platforms. Due to the high cost of microarrays, many studies suffer from the problem of 

small sample size, which may lead to high false discovery rates (FDR) or low sensitivity 

in determination of DEGs [2]. Combining related but independent microarray datasets 

increases sample size and theoretically would result in higher reliability of novel gene 

candidate discovery from a purely statistical view [3]. Such a “combined approach” may 

be able to detect small but consistent changes. In fact, this is one of the motivating factors 

for the construction of public microarray databases, such as Gene Expression Omnibus 

(GEO) [4]. Alternately, successful combined analyses may demonstrate the 

reproducibility of independent studies [5], which is a fundamental issue in validation of 

biological experiments.  

 For combined analysis of microarray studies, however, complications often arise 

from biological variations and technical differences [6]. Meta-analysis, which has been 

well-studied in statistics, is a practical way to solve this problem [6]. It involves 

combining results from independent but related studies. The application of meta-analysis 
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to microarray data has been demonstrated by different groups, yet no consensus has been 

reached as to the best method. Hong et al. evaluated the performance of different 

microarray meta-analysis methods and recommended approaches derived from two 

different philosophies. One is a t-based modeling approach [6], and the other is a rank-

product approach.  The latter has the advantage of robustness in ranking genes over the t-

based method, but only provides relative prioritization of genes [6]. The rank-product 

approach has also been shown to have similar performance to the rank-aggregation 

method. [6] 

 As an alternative to meta-analysis, a more direct combined approach is also 

possible for datasets resulting from experiments with highly similar biological design. 

With the continued development of microarray technologies, more comprehensive arrays 

are becoming available for researchers in biological fields. For example, exon arrays are 

designed to focus on exon-level analysis, but can also provide accurate assessments for 

gene-level expression analysis [7]. Thus, there exists a series of microarray datasets with 

similar biological samples but from significantly different array platforms. Obviously, 

there are scale and distribution differences among such heterogeneous datasets. To 

address this issue, gene-level normalization across datasets has typically been performed, 

but the details of this step have not been widely discussed in the combined analysis of 

microarray datasets. In this thesis, I describe a novel approach for combined microarray 

analysis based on gene-level unification followed by normalization and rank-aggregation.  

 Gene-level normalization is generally the preferred option for microarray analysis 

in a single study, and this has been revealed by an application of the M-A based loess 

normalization to a wholly defined control dataset from a “spike-in” experiment [8]. A 



3 

  

previous study regarding the comparison of probe level normalization methods suggested 

that complete data methods including the M-A based loess normalization and the quantile 

normalization have better performance compared to other methods making use of a 

baseline array [9]. Therefore, we have adopted both M-A based loess normalization and 

quantile normalization, and then combined them with scale normalization for a gene-level 

analysis implementation.  

 Before normalization, gene-level unification into a virtual platform is demanded, 

as differences arise from various platform coverages. Therefore, only genes with 

common annotations either in gene symbol or mRNA accession number are considered to 

form a virtual platform. For the issue regarding multiple probe-sets matching a unique 

gene, we employ two strategies as the solutions, including selection based on most 

significant p-value from a statistical test or highest average of expression levels.  

 After gene-level normalization, a linear model is devised, which helps to identify 

lists of differentially expressed genes. Different normalization methods lead to 

(potentially different) lists of relevant genes, and a rank-aggregation approach is used to 

merge the power of different normalization methods.  

 To further complement the rank-aggregation approach, we have incorporated co-

expression information to prioritize DEGs. The co-expression pattern of genes at the 

mRNA level can be recognized from large sets of microarray data. The rich body of data 

in GEO serves to provide this added dimension to our method. The basic idea is that 

genes with similar mRNA expression profiles are likely to be regulated via the same 

mechanism or share common functions [10]. This correlation information is useful for 

detecting or prioritizing genes with weak differential expression, since these genes are 
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expected to co-express with other highly DEGs [11]. A statistical method of predicting 

genes with differential expressions based on co-expression patterns has already been 

proposed [11]. Moreover, rank-aggregation for similar items has been investigated as 

well [12]. Thus, in our work we have improved upon the rank-aggregation approach 

adding genome-wide co-expression information, which we term as Co-expression-Rank-

aggregation (Coex-Rank).  

 The Coex-Rank approach for combined microarray analysis proceeds from 

normalization and linear modeling to rank-aggregation. Previous studies have 

demonstrated that methods using linear modeling have very similar behaviors to the t-

based modeling approach [6]. The rank-aggregation method has also been shown to have 

similar performance to a rank-product approach [6].  Thus, from a theoretical view, our 

approach addresses the problem from both perspectives.  

 We applied this Coex-Rank featured approach of microarray combined analysis to 

our own Sppar (a mutant PPARγ) dataset [13], which illustrated an improvement in 

statistical power in identification of differentially expressed genes and a complementary 

advantage of the Coex-Rank approach from a biological perspective. A simulation study 

was also conducted to demonstrate that the strength of this method is not limited to our 

specific datasets. 

 The core novelty of our approach lies in the Coex-Rank process, which assists in 

the discovery of functional clusters of genes and biological pathways. Coex-Rank is not 

only flexible regarding different gene-level normalization methods in a combined 

analysis, but also useful in “merging” the power from different statistical methods within 
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a single dataset analysis. This solution also provides an alternative to a seemingly 

arbitrary choice among many good computational methods.  

 We also applied this approach to other PPARγ-related microarray datasets, taking 

advantage of this merging power from different statistical methods. PPARγ is a 

transcription factor belonging to the nuclear receptor superfamily [14]. PPARγ 

heterodimerizes with the retinoid X receptor (RXR) and binds to specific response 

elements termed PPAR response elements (PPREs) in targeted gene promoters. The 

activation of target gene transcription depends on the binding of the ligand [14].  The 

endogenous ligand remains unclear although a number of fatty acids and eicosanoids 

have been proposed to be endogenous ligands. The synthetic antidiabetic 

thiazolidinediones (TZDs) represent a group of high affinity ligands for PPARγ [15].   

The importance of PPARγ can be gleaned from patients with dominant negative 

mutations (P467L or V290M) in the ligand binding domain of PPARγ, as these have been 

reported to cause severe insulin resistance leading to full-blown type II diabetes mellitus 

and early onset hypertension [16].  

 From the perspective of gene sets, for example, we observed that up-regulated 

genes from mice treated with the PPARγ ligand rosiglitazone are significantly down-

regulated in mice with a global knock-in dominant-negative mutation of PPARγ. We also 

integrated DEGs from microarray experiments with publicly available PPRE datasets 

from ChIP-chip [17] and ChIP-seq [18] and we found that genes which were most up-

regulated by rosiglitazone treatment and which were also down-regulated by the global 

knock-in dominant-negative mutation of PPARγ are robustly enriched in PPREs near 

transcription start sites.   
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 From this analysis we also identified several potential PPARγ targets in the aorta 

and mesenteric artery that now require further experimental validation.  These genes are 

therefore candidates for explaining why mice carrying these mutations are more likely to 

develop hypertension and vascular dysfunction.  For instance, Tnnc1, according to the 

microarray profile, is about 20-fold up-regulated in the aorta from Sppar mice (mice 

expressing PPARγ mutations in vascular smooth muscle cells). Tnnc1 is known to have 

mutations that affect the functional properties of Troponin C by increasing the Ca2+-

sensitivity of contraction [19].  Another candidate is Rhobtb1 which is part of the Rho 

Kinase pathway [20].  The Rho Kinase pathway is up-regulated in the aorta of Sppar [13].  

We are also investigating Rgs5, a regulator of G protein signaling, which is known to 

interact with angiotensin AT1 receptors [21]. Rgs5 is down-regulated in the mesenteric 

artery of the Sppar mice and angiotensin II-mediated contraction is markedly enhanced.  
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CHAPTER 2: BACKGROUND  

 

2.1 Introduction to PPARγ 

2.1.1 All about PPARs  

 Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear 

receptor proteins. They serve as transcription factors, modulating gene expression [14]. 

PPARs play essential roles in a variety of cellular processes, including major metabolic 

and inflammatory regulations [14].  

 As a subcellular organelle, the peroxisome plays a crucial role in cellular 

metabolism. In rodents, peroxisome proliferation can be induced by various chemical 

compounds [15]. A member of the steroid hormone receptor superfamily in mouse was 

found to be activated by peroxisome proliferators by Issemann et al and it was named 

PPAR [22]. There are three major types of PPARs: alpha, gamma, and delta/beta [15]. 

PPARα (alpha) is expressed in liver, heart, brown adipose tissue and kidney. PPARβ/δ 

(beta/delta) is expressed in many tissues, but markedly in brain, adipose tissue, skeletal 

muscle, gut and skin [14]. PPARγ (gamma) has two different forms through alternative 

promoter usage and differential splicing. PPARγ1 is expressed in virtually all tissues, 

including heart, skeletal muscle, colon, small and large intestines, kidney, pancreas, and 

spleen; PPARγ2 is expressed mainly in adipose tissue (30 amino acids longer) [23]. 

Mouse and human PPARγ are highly homologous with 95% sequence identity at the 

protein level [24].  



8 

  

 All PPARs heterodimerize with the retinoid X receptor (RXR) and bind to 

response elements termed PPAR response elements (PPREs). The DNA consensus 

sequence is AGGTCAXAGGTCA, with X being a random nucleotide, known as the 

direct repeat 1 (DR1) pattern [14] [25]. In general, this sequence occurs in the promoter 

regions of target genes. With the presence of its ligand, a PPAR binds to PPRE and 

transcription of its downstream gene is typically activated or increased [14].  

 

2.1.2 PPARγ Overview  

2.1.2.1 Protein structure of PPARγ 

 As a nuclear receptor, PPARγ is modular in structure (See Figure 1) and has two 

important domains: the DNA-binding domain (DBD) and the ligand binding domain 

(LBD) [26]. Along with the DBD, the LBD contributes to the dimerization interface of 

the receptor and binding of coactivator or corepressor proteins [14]. The PPARγ2 protein 

contains an additional 30 amino acids at the N terminus compared to PPARγ1. The C-

terminal region contains the major transcriptional activation domain, termed the 

activation function 2 (AF2) domain [26]. 
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Figure 1. Domain structure of PPARγ. The PPARγ2 protein contains an additional 30 
amino acids at the N terminus compared to PPARγ1. DNA binding domain (DBD), 
ligand-binding domain (LBD) and activation function 2 (AF2) are shown from left to 
right (N terminus to C terminus). This figure is modified from a review paper by Peter 
Tontonoz et al [26]. 
 

   

 

   2.1.2.2 Classic working modes of PPARγ 

 There are two classic working modes of PPARγ: ligand-dependent activation and 

ligand-independent repression (see Figure 2). Functional significance of interaction 

between PPARγ and coactivators in transcriptional regulation has been implicated in 

recent investigation [15]. Steroid receptor coactivator-1 (SRC-1) and cAMP response 

element binding protein (CREB)-binding protein (CBP)/p300 are known coactivators of 

PPARγ [27, 28]. In fact, the interaction between PPARγ and CBP/p300 or SRC-1 is 

initiated by PPARγ coactivator-1 (PGC-1) with the presence of ligand [29]. PPARγ also 

recruits corepressor, such as the silencing mediator of retinoid and thyroid hormone 

receptors (SMRT) and the nuclear receptor corepressor (NCoR) [30]. They are capable of 

down-regulating PPARγ-mediated transcriptional activity in the absence of ligand. 
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However, by adding PPARγ ligand pioglitazone, these PPARγ-corepressor complexes 

were shown to be dissociated [30].  

 

 

 

Figure 2. Two classic working modes of PPARγ. On the left panel, with the binding of 
ligand, PPARγ and RXR heterodimer recruits coactivators and then downstream genes 
are activated or up-regulated; on the right panel, in the absence of ligand, corepressors are 
recruited instead and results in the repression or down-regulation of target genes. The 
figure is modified from Carmen Halabi’s [31] thesis.  

 
 
 
 

 The first endogenous ligand discovered for PPARγ is the PGJ2 metabolite 15-

deoxy-delta 12,14-PGJ2 (PG is short for prostaglandin). It binds directly to PPARγ and 

promotes efficient adipogenesis [32]. PPARγ also has pharmacological ligands – the 

antidiabetic thiazolidinediones (TZDs), including troglitazone, pioglitazone, ciglitazone, 

and rosiglitazone. They bind PPARγ with various affinities, but are thought to be much 

greater than that of endogenous ligand [15] [33].  
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2.1.2.3 PPARγ in adipocyte differentiation  

and glucose homeostasis 

 PPARγ is a master regulator of adipocyte differentiation [26]. The direct binding 

of a TZD drug – rosiglitazone has been demonstrated. These drugs act as agonists for 

PPARγ and lead to the differentiation of adipose cells [33]. During the natural 

differentiation of pre-adipocytes into adipocytes, PPARγ is induced, which is highly 

expressed in both white and brown adipose tissues [34]. With the ectopic expression of 

PPARγ, expressions of adipose-specific genes were shown to be induced in fibroblasts 

and morphologic differentiation could be observed [35]. Later, a study reported that 

adipogenesis of cultured pre-adipocytes would be inhibited by PPARγ with dominant 

negative mutation [16]. Moreover, for the cells of a PPARγ-null model, formation of 

adipocytes was also abolished [36].  

 As mentioned above, PPARγ is a biological receptor for TZD drugs. The TZDs 

were found to have the capability of lowering glucose levels in rodents at first [26]. Later, 

in human, they were confirmed to have the function of improving insulin sensitivity [37]. 

TZDs exert their biological effects on insulin sensitivity through binding to PPARγ [26], 

with evidences shown as below: 1.) PPARγ with non-TZD agonists (rationally designed) 

led to improvement of insulin sensitivity [38]; 2.) Mutated PPARγ resulted in insulin 

resistance in both rodents and humans [16].  
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2.1.2.4 PPARγ in inflammation and atherosclerosis 

 While PPARγ plays an important role in the regulation of adipogenesis and 

glucose homeostasis, a great deal of evidence has emerged, supporting an essential role 

of PPARγ in inflammation and atherosclerosis [26].  

 PPARγ is also induced during monocyte differentiation into macrophages. It is 

revealed to have a high expression level in activated macrophages, such as the foam cells 

of atherosclerosis lesions [39]. Macrophages are able to detect and clear pathogens and 

release immune modulators at inflammatory sites. It has been shown that target genes of 

PPARγ with up-regulated pattern in macrophages are largely overlapping with those 

target genes arisen from adipose tissues, including Fabp4 and Cd36 [40]. Cd36 serves as 

a transporter of fatty acids. Consistent with this function, it has been demonstrated that 

lipid uptake has been to be promoted in PPARγ agonist treatment of macrophages [39]. 

Glass’s group reported that macrophage inflammatory genes, such as TNFα and MMP-9, 

were inhibited by PPARγ ligands [41]. PPARγ was illustrated to cross-talk with NF-κB 

on the promoters of these inflammatory genes, which is responsible for the gene 

repression [42]. However, PPREs have not generally been found in the promoter regions 

of these repressed genes. Without direct binding to DNA sequences, the inhibitory ability 

of PPARγ is termed as transrepression [26].  

 For the development of atherosclerotic lesion, inflammatory signals in the vessel 

wall are recognized as a critical part [26]. Low density lipoprotein (LDL) is directly 

involved in atherosclerosis, because LDL-cholesterol accumulates in the blood. For male 

LDL-receptor deficient mice, administration of rosiglitazone could reduce the 

development of atherosclerosis [43]. The reduction in numbers and sizes of lesions was 
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coupled with improvement of insulin sensitivity. At the same time, expressions of certain 

inflammatory marker genes were decreased as well [43]. 

 

2.1.2.5 PPARγ in endothelial and  

vascular smooth muscle cells 

 PPARγ appears to have effects in endothelial cells and vascular smooth muscle 

cells (VSMCs) as well, with impact to cardiovascular diseases [15]. It was reported that 

treatment of several cultured endothelial cells (both bovine and human) with troglitazone 

and pioglitazone enhanced the secretion of the vasodilator C-type natriuretic peptide 

(CNP) and decreased expression of endothelin-1 (ET-1), a potent vasoconstrictor [44]. 

Expression of vascular cell adhesion molecule-1 (VCAM-1) can be inhibited by PPARγ 

activators, such as ciglitazone and troglitazone, which exert beneficial effects in limiting 

chronic inflammation mediated by VCAM-1 [45]. Migration of vascular smooth muscle 

cells is a critical step in the formation of atherosclerosis and TZDs have been shown to 

function as inhibitors to VSMCs migration pathway [46].  

 

2.1.2.6 PPARγ and hypertension 

 PPARγ activation with TZDs has been shown to attenuate hypertension in both 

animal models and human [47]. TZDs attenuated the development of hypertension in 

angiotensin II-infused rats [48]. Structural abnormalities and endothelial dysfunction of 

these rats were corrected as well [48]. Fullert et al designed a placebo-controlled double-

blinded study to test the efficacy of TZDs. Patients with hypertension but not diabetes 
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were treated with pioglitazone and 6-mm Hg greater reduction in diastolic blood pressure 

(DBP) over placebo was observed [49]. In another large clinical trial of 5238 patients 

with type 2 diabetes mellitus, systolic blood pressure was observed to be lowered by 

pioglitazone by 3 mm Hg [50]. Generally, the lowering blood pressure effect of TZDs is 

modest, but small decreases in arterial pressure are still beneficial [47][51, 52].  

 Interestingly, two separate dominant negative mutations of human PPARγ 

(V290M and P467L) have been described. Patients carrying one of these mutations have 

severe insulin resistance and develop full-blown type II diabetes mellitus and early onset 

hypertension later [16]. With mutations in the LBD, they have aberrantly high affinity for 

corepressor molecules instead of coactivators [16]. In addition, the P467L mutation is 

dominant negative, because its more reduced promoter turnover rate makes it out-

compete the wild type (WT) receptor for promoter binding [53].  

 From the evidence above, we continue to hypothesize that PPARγ plays an 

important role in vascular function and hypertension. However, further studies are 

required to understand the role and mechanisms by which PPARγ exerts its effect in 

genome-wide transcriptional regulation of its target genes.  

 

2.2 Co-expression indicates co-function 

 Genes sharing common biological functions have similar expression pattern. This 

feature is conserved from prokaryotic cells to eukaryotic ones, but with different 

regulatory mechanisms [10]. From the aspect of energy allocation, similar regulation of 

genes involved in the same biological process saves unnecessary energy usage for a cell, 

which is critical to cell’s survival [54].  
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2.2.1 Example from prokaryotes 

 In bacteria, operon refers to a cluster of genes with common function under the 

same control of transcription. Genes are physically located next to each other, sharing a 

single regulatory signal or promoter. As the result, they are transcribed together and 

demonstrate the pattern of co-expression [54]. 

 One of the classic examples is the lac operon of the bacteria Escherichia coli (E. 

coli) [54]. There are three genes encoded by the lac operon: lacZ, lacY, and lacA. which 

are transcribed in the presence of lactose. lacZ makes the β-galactosidase, an intracellular 

enzyme that cleaves the lactose. Plus, lacY produces the lactose permease enzyme and it 

is responsible for transporting lactose into the cell [54]. Therefore, proteins encoded by 

lac operon genes are involved in the processing of lactose, sharing common functions.   

 

2.2.2 An instance in Eukaryotes 

 For eukaryotes, the co-regulation of gene expressions is generally achieved 

through common regulatory elements [54]. Take three genes GAL1, GAL7 and GAL10 

of yeast for illustration, they share upstream activator sequence for GAL (UASG). Their 

transcription can be initiated in the presence of galactose. They produce proteins involved 

in galactose processing, respectively galactose transferase, galactose epimerase, and 

galactokinase [54]. Thus, co-expression patterns of genes indicate co-regulatory 

mechanisms and shared functions. 
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2.3 Introduction to microarrays 

2.3.1 General information of microarray experiments 

 High-throughput microarray technologies have become popular for genome-wide 

investigation of gene expression profiles. Careful experimental design followed by a 

variety of proper computational analyses can reveal interaction of genes and related 

biological pathways [1]. For the experimental procedure, the needed raw materials are 

different biological RNA samples. These isolated RNA samples are labeled and then 

hybridized to arrays with tens of thousands of probes [1]. Next, the arrays are scanned to 

generate images which provide information of relative fluorescence intensities for each 

element (refers to probe). Using software package for image quantitation, the relative 

amount of original input RNA (indication of gene expression levels) can be robustly 

measured [1]. Generally, there are two strategies regarding the hybridization process. 

One-channel microarray is designed to use a single label and independent array for each 

sample, while two-channel microarrays can afford two samples on one array at the same 

time, using distinguishable fluorescent dye labels [1].  

 For the data analysis, a common goal is to detect differentially expressed genes 

(DEGs) [1] between/among different groups of samples, such as control v.s. cases and 

distinctive responses to a specific factor.  Before the appropriate comparison can be 

carried out, quantitative transformation of raw data should be performed to balance 

intensities from different arrays, which is termed normalization [1]. Why data must be 

normalized? Because differences might arise from unequal starting amount of RNA, 

varied efficiencies of fluorescent labeling, image detection and so on [1]. Normalization 
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is based on the assumption that the total intensities summed over all elements on an array 

should be the same for every biological sample in a microarray experiment [1].  

 

2.3.2 Combined analysis of multiple sets of microarray data  

 Different laboratories may carry out microarray experiments with related 

biological experimental design, but using different types of platforms. Due to the high 

cost of microarrays, many studies suffer from the problem of small sample size, which 

may lead to a high false discovery rate (FDR) in determination of DEGs [2]. Combining 

related but independent microarray datasets increases sample size and may result in 

higher reliability of novel gene candidate discovery from a statistical view [3]. For 

example, a combined approach may be able to detect small but consistent changes. In 

fact, this is one of the motivating factors for the construction of public microarray 

databases, such as GEO (Gene Expression Omnibus) [4]. In another way, successful 

combined analysis demonstrates the reproducibility of these studies [5], which is a 

fundamental issue in validation of biological experiments.   

 However, rarely is a direct combined analysis suitable for microarray studies, as 

complications arise from biological variations and technical differences [6]. Meta-

analysis, which has been well-studied in statistics, is a practical way to solve this problem 

[6]. The application of meta-analysis to microarray data has been demonstrated by 

different groups, yet no consensus has been reached as to the best method. Hong,F. et al. 

evaluated the performance of different microarray meta-analysis methods and 

recommended approaches derived from two different philosophies. One is the t-based 

modeling approach, which offers a comparison of the magnitudes of a treatment on 
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different genes [6]. Methods using linear models or from a Bayesian perspective have 

very similar behaviors to the t-based modeling approach [6]. The other is a rank-product 

approach, which shows indistinguishable performance with the rank-aggregation method 

[6]. This approach has the advantage of robustness in ranking genes over the t-based 

method, but only provides relative prioritization of genes [6]. 

 

2.3.3 Co-expression information in microarray analysis 

 Microarray data not only provide us with gene expression profiles but also co-

expression information of genes investigated by certain platforms. Especially, for a large 

set of microarrays, which is available from the rich body data in GEO [4], robust co-

expression information of genes can be derived.  

 As we have introduced in Section 2.2, genes with similar mRNA expression 

profiles across different tissues are likely to be regulated via the same mechanism or 

share common functions [10]. This correlated information is useful for detecting or 

prioritizing genes with relatively weaker differential expression levels, since these genes 

are expected to co-express with other highly DEGs [11]. A statistical method of 

predicting genes with differential expressions based on co-expression patterns in a single 

dataset analysis has already been proposed [11]. A microarray data set collected for a 

prostate cancer study was demonstrated as an application, in which the proposed method 

identified many genes with weak differential expressions and several of these genes were 

known in literature to be associated with the disease [11].   
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2.4 Genome-wide profiling of DNA-binding proteins 

 To fully understand the mechanism of transcriptional regulation, it is essential to 

obtain the genome-wide mapping of protein-DNA interactions [55]. The genome-wide 

regulatory network of genes can be revealed by a precise map of binding sites for 

transcription factors, core transcriptional machinery and other DNA-binding proteins [55].  

 

2.4.1 ChIP-chip 

 Chromatin immunoprecipitation (ChIP) is the major tool to investigate these 

mechanisms [55]. It is a technique for assaying protein-DNA binding in vivo, which gives 

the interactive picture occurring inside the nucleus of living cells [56]. In a ChIP 

experiment, DNA-binding proteins in living cells are cross-linked to the DNA with the 

treatment of formaldehyde at the beginning. Next, the cells are lysed and the DNA is 

sonicated into small pieces (about 0.2–1 kb long). By using an antibody specific to a 

putative protein, the target protein-DNA complexes can be pulled out, which are later 

separated through a process of heat driven cross-link reversal [56].  

 To identify these DNA fragments isolated from ChIP assay on a genome-wide 

scale, high-density DNA tiling arrays can be used [57]. For the tiling arrays, 

oligonucleotide probes are placed across an entire genome or selected chromosomal 

regions, such as promoter regions [55]. DNA fragments are hybridized to the tiling arrays. 

Followed by computational analysis, enriched genomic regions can be determined [55].  
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2.4.2 ChIP-seq 

 With the rapid development of next-generation sequencing technology, the dream 

of sequencing tens or hundreds of millions of short DNA fragments in a single run 

becomes true [55]. This technique has been widely applied to whole genome sequencing, 

mRNA sequencing for gene expression profiling (RNA-seq) and DNA sequencing from 

ChIP assay (ChIP-seq) [55].  

 For ChIP-seq, sequencing of DNA fragments of interests is launched after the 

ChIP experiment instead hybridization to tiling arrays [58]. Computational analysis to 

identify the DNA-binding sites is also a critical part of this method. This method has been 

shown to have higher resolution, fewer artifacts and greater coverage compared to ChIP-

chip approach [55].  

 

2.5 Rank aggregation 

 Combining several ordered lists in a proper and efficient manner is a real 

challenge in the field of bioinformatics. Rank aggregation provides a solution with a 

general framework and flexibility [59]. The goal of rank aggregation is to find a “robust” 

list, which is as close as possible to all individual input lists simultaneously [60]. To cast 

the problem into optimization area, the objective function is defined as the following 

formula: 

                                  arg min ( , )
1

i i

m
w d L

i
δ δ= ∑

=
 . 

 
 In this formula, δ is the robust list to be determined. The number of input lists is m 

and Li stands for the ith input list. The function d( , ) calculates the distance between the 



21 

  

robust list and one of the input lists and wi is the weight associated with the 

corresponding list [61].  

 In the literature, there are many choices for a distance function. One of the most 

popular methods is Spearman footrule distance [60], which is defined as below: 

                          ( , ) - ( ) - ( )
i

i i

t L

d L rank t L rank t
δ

δ δ
∈

= −∑
U

 . 

 In this formula, t stands for a gene in the union of both Li and δ lists and Li-rank(t) 

gives the rank of gene t on list Li. If gene t is absent on list Li, its rank will be assigned as 

the length of Li plus 1. As an intuitive metric for comparing two ordered lists, Spearman 

footrule distance sums up the absolute differences between the ranks of all unique 

elements from both input lists [60].  

 To determine the robust list, a framework should be constructed to search the 

solution space. The Cross-Entropy Monte Carlo algorithm has been demonstrated to be 

effective in discovering the optimal ordering of elements in the output list [60]. The main 

steps of this algorithm are described with a simple example as follows: 

 (1) Initialization: At each rank position, every element has the same probability to 

be selected [60]. For example, consider input lists each with three genes, and there are 

five genes in the union of all the lists. Therefore, at each rank position, the probability is 

0.20 (see Table 1).  
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Table 1. Probability Matrix at the initialization stage. 

 Rank 1 Rank 2 Rank 3 

Gene_a 0.20 0.20 0.20 

Gene_b 0.20 0.20 0.20 

Gene_c 0.20 0.20 0.20 

Gene_d 0.20 0.20 0.20 

Gene_e 0.20 0.20 0.20 

 

Note: A simple example with each list having 3 genes and 5 genes in total. At each rank, 
every gene has the same probability to be selected.  

 
 
 

 (2) Sampling: Based on the current probability matrix, candidate lists are 

generated for evaluation by the objective function [60]. To select elements for a candidate 

list, the procedure starts from the first rank to the last one. In the following example, the 

goal is to choose a gene at “Rank 1” position. Table 2 contains partial information – only 

“Rank 1” from the probability matrix and then the cumulative probability is calculated 

for each gene from the top row to the bottom row. The gene for “Rank 1” is selected via 

conditional random generation. A number is drawn randomly from a uniform distribution 

between 0 and 1. If the variate is x, we choose the gene with the smallest cumulative 

probability that is larger than or equal to x and in this case (i.e., x=0.25), the result is 

Gene_b with cumulative probability 0.40 (see Table 2). After fulfilling the position of 

“Rank 1”, the probability matrix should be re-scaled using the remaining genes to 

continue the sampling process. 
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Table 2. Probability Matrix for the sampling stage. 

 Rank 1 Cumulative Prob. 

Gene_a 0.20 0.20 

Gene_b 0.20 0.40 

Gene_c 0.20 0.60 

Gene_d 0.20 0.80 

Gene_e 0.20 1.00 

Note: A simple example with each list having 3 genes and 5 genes in total. Cumulative 
probabilities at “Rank 1” are shown. 

 

 

 (3) Updating: In practice, tens of thousands of candidate lists (default: n=5×k×u, 

where k is the size of each input list and u is the number of unique items in the union of 

all the input lists) are generated by the above sampling method. These lists are evaluated 

by the objective function and the probability matrix is updated based on lists with the 

highest scores (default: n×1%) [60]. At the same time, the list with the highest score (the 

top one) is identified as the optimal list. The following simple example is shown with 

each list having 3 genes and 5 unique genes in total.  We focus on the 6 candidate lists 

with highest scores generated by the sampling process. The numbers of each gene at each 

rank are summed up, shown in Table 3, on the left panel. The corresponding probabilities 

are calculated, shown in Table 3, on the right panel.  

(4) Convergence: The searching procedure will be terminated when the optimal 

list does not change in a fixed number of iterations [60].  
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Table 3. Probability Matrix at the updating stage. 

  

Note: A simple example with each list having 3 genes and 5 genes in total. The numbers 
of each gene at each rank are shown on the left panel and the corresponding probabilities 
are shown on the right panel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Top 6 candidate lists    Prob. Matrix   

 Rank 1 Rank 2 Rank 3   Rank 1 Rank 2 Rank 3 

Gene_a 5    Gene_a 0.833   

Gene_b 1 1 1  Gene_b 0.167 0.167 0.167 

Gene_c  1 1  Gene_c  0.167 0.167 

Gene_d  1 2  Gene_d  0.167 0.333 

Gene_e  3 2  Gene_e  0.500 0.333 
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CHAPTER 3: COEX-RANK, AN APPROACH FOR MICROARRAY COMBINED 

ANALYSIS 

 

3.1 Motivating datasets 

 As mentioned in Chapter 1, microarrays have been widely used to study 

differential gene expression at the genomic level and biologically related datasets from 

independent studies are publicly available. This situation requires robust combined 

approaches for integration and validation. Previously, meta-analysis has been adopted to 

solve this problem [6]. As an alternative, for microarray data with high similarity in 

biological experimental design, a more direct combined method based on gene-level 

unification followed by normalization is feasible.  

 Before introducing the pipeline of methods, I will first provide two motivating 

datasets, with similar, but non-identical experimental designs and/or platforms. The 

Sigmund laboratory has generated transgenic mice with dominant negative PPARγ 

(P467L) targeted to vascular smooth muscle cells (VSMCs) and these mice (called Sppar 

mice) have been shown to exhibit severe aortic dysfunction [13]. Two independent 

microarray experiments were carried out using RNA from the thoracic aortas of these 

mice, compared to wild-type littermate controls (denoted as Sppar datasets). The first 

experiment was performed using the Affymetrix mouse genome 430 2.0 array (referred to 

as expression array), with only 2 control and 3 transgenic samples. The second set of 

samples from the same mice took advantage of the more recently available Affymetrix 

mouse exon 1.0 ST array (referred to as exon array); this time with 5 control and 7 

transgenic samples. In fact, this experiment was originally designed as 6 control and 6 
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transgenic. Upon validation of the genotypes from tails of mice collected at sacrifice, 1 

control was found to be transgenic and thus it was transferred to the transgenic group. In 

the expression array experiment, each hybridization contained RNA from 8 pooled aortas, 

while in the exon array experiment, the RNA was extracted from a single aorta followed 

by amplification. Clearly, there are multiple challenges presented by this heterogeneity of 

experimental designs. 

 

3.2 Methods 

3.2.1 Gene-level unification into a virtual platform 

 To generate gene-level expression values, we used the RMA (Robust Multi-chip 

Average) algorithm [62, 63]. For expression array data, the implementation was carried 

out in R using the affy package and resulted in 45,101 probe-sets. The Affymetrix 

Expression Console software (http://www.affymetrix.com/products_services/software/Sp 

ecific/expression_console_software.affx) was applied to data from the exon arrays and 

101,176 gene-level probe-set records were generated. Demanded by comparison across 

different platforms, we considered genes with common annotions to form a virtual 

platform.  

 We attempted to remove redundant and ambiguous probe-sets (See Figure 3). 

First of all, probe-sets without annotations such as gene symbols or mRNA accession 

information (according to Affymetrix annotation, release 30) were removed. As the 

annotation information is not always perfect, there might be duplicated items regarding 

the same record (see Figure 3), which should be cleared before further processing.  
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Figure 3. Pre-processing of probe-sets on a microarray platform. The general steps are 
listed on the left panel, while a simple example is shown on the right panel using best p-
value selection strategy.  

 
 

 

 In the case of multiple probe-sets matching the same gene, a method was needed 

to remove this redundancy. We explored using both the most significant p-value and the 

highest average expression value as determining factors. Student’s T test with equal 

variance was used to calculate the p-value, comparing control vs. transgenic samples. For 

example (see Figure 3), there is one record with annotations “NM_015781 /// Nap1l1” 

and another record annotated as “D12618 /// Nap1l1”. Therefore, they are merged into a 
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new record as they share the same gene symbol “Nap1l1”. In this example, we 

demonstrate with the p-value dependent approach. As the record with “D12618 /// 

Nap1l1” has the more significant p-value, the raw data for this record are selected. 

Moreover, its annotation is extended to incorporate “NM_015781” to provide more 

comprehensive information. Through the above steps, 26,766 probe-sets on the 

expression array and 33,312 probe-sets on exon array were retained. Then, we combined 

probe-sets from two datasets if they had overlapping annotations. Following this rule, we 

finally generated two combined datasets, each with 18,204 records. One is selected based 

on the best p-value and the other is chosen according to the highest average expression 

level. 

 

3.2.2 Normalization 

 Normalization is naturally driven by the relative scale or differences in the 

distribution of expression levels among arrays from multiple studies. In the case of Sppar 

data for example (see Figure 4), the distributions of gene expression intensities are 

markedly dissimilar between the two platforms, and if analysis proceeded without 

normalization, the results would be invalid and very misleading. In our implementation, 

we applied scale normalization first, which is capable of correcting linear variations, 

followed by either quantile or M-A based loess normalization [9].  
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Figure 4. The boxplots of all 17 arrays from Sppar datasets. X1-X5 refer to data from the 
expression arrays and they show different distributions from X6-X17 plots of the exon 
arrays 

 

 

 Scale normalization is sometimes referred as global normalization, which 

enforces an equal median or mean intensity criteria for all arrays [9]. In our 

implementation, we selected a method based on median, which is less sensitive to 

extreme data points. The details are explained as follows:  

1.) calculate the median intensity of each array;  

2.) select the array having the median of the median intensities as the baseline array;  

3.) normalize each of the remaining arrays to the baseline array by multiplying by a 

coefficient βi : 

        
( )

median(array _ baseline)
i median array _ i
β =  ,  i = 1,2…n (n is the number of all arrays).  
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 Quantile normalization enforces an equal distribution of intensity values across all 

the arrays [9]. Here is one example of its use (see Figure 5). This is a simple case with 

only 4 genes and 2 arrays. Table X is the original data. First we sort the intensities from 

low to high on each array and to get Table Xsort. Next, we calculate the average for each 

gene and use the mean values instead of the previous intensities to generate Table X’sort. 

Finally, we move each gene to its original rank position to achieve Table Xnormalized. 

 

 

 

Figure 5. An example of quantile normalization illustrated by 4 genes from 2 arrays.  

 

 

 

 M-A based Loess normalization is a classical method for cDNA array 

normalization and can also be applied to two one-channel arrays [64]. First, Y and X 

denote the log2-scaled expression values from two arrays. M denotes the difference 

between Y and X, while A represents the average of Y and X.  That is, M=Y–X and 

A=(Y+X)/2. The M’-A’ plot after loess regression should show a cloud of points 

scattered about the M’=0 axis. Y’, X’ are then generated [64].  
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 Loess normalization can be realized via two different approaches – either a 

median-base method or a trim-mean method. For the median-base method, consider the 

Sppar combined data mentioned above. In each iteration, Y proceeds from array X1 to 

array X17, while X is the array storing the median of the median intensities of all arrays 

(termed as Xbase), therefore there are 17 rounds of loess regressions. For each loess 

regression, X is selected dynamically based on the current expression values of all arrays, 

and both Y’ and X’ are used to update Y and X. The pseudo code of this algorithm is as 

follows:  

for ( i in 1:#interation ) /*the number of iterations*/ 

{ 

for (j in 1:#sample)  /* sample size=17 in our Sppar dataset*/ 

{ 

Y=X j ; X=Xbase ; 

Loess normalization using Y and X ; 

} 

} 

 For the trim-mean method, in each iteration, Y proceeds from array X1 to array 

X17, while X is the reference array, dynamically generated consisting of the 0.05 trim 

mean of all 17 arrays. As X is only a series of reference arrays, only Y is updated using 

Y’.  
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 For loess normalization, the regression can also be performed using only rank-

invariant genes. The size of the rank-invariant gene set is data dependent. Genes are 

defined as rank-invariant as described in a previous study [65].  

 

3.2.3 Linear model 

 After normalizing using different methods, we generated lists of significantly 

changed genes for further comparison or validation by a simple linear model. A variety of 

complex methods have been proposed, but they do not necessarily perform better than a 

simple one. Further, complex methods may add background noise and even induce bias if 

all assumptions are not satisfied [66].  For example, consider our Sppar data, a linear 

model can be constructed for each gene by the following formula:  

                         Y= b + a1×X1 + a2 ×X2 , 

where Y is the observed value of gene expression and b is the baseline level of gene 

expression. Data from expression array and wild type are considered as the baselines. The 

exon array effect is indicated by a1 and X1 = (0 or 1).  The Sppar mutant effect is 

measured by a2 and X2 = (0 or 1) as well. The regression is carried out using R function 

lm( ) and then ANOVA is used to test the statistical significance of a2. The +/- sign of a2 

indicates up or down regulation and the absolute value of a2 indicates fold-change, which 

is different from the original scale but can still be used to rank genes or indicate relative 

changes. 
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3.2.4 Co-expression-Rank-aggregation (Coex-Rank) 

 Multiple lists of up/down-regulated genes can be generated from different 

normalization methods. To take advantage of the power from merging all these lists, we 

investigated the rank-aggregation method [60], which focuses on finding a robust list 

with minimum distance among all available ordered lists of genes. We chose to use R 

RankAggreg package from CRAN which is publicly available [60]. One of the most 

popular distance functions – Spearman footrule distance has been implemented in this 

package. The realization of rank-aggregation is provided with two different algorithms 

and the Cross-entropy Monte Carlo algorithm (CE) is better recommended [60].  

 For the Coex-Rank approach, we modified the R implementation of rank-

aggregation by incorporating co-expression information. The goal of Coex-Rank is to 

prioritize genes highly correlated with genes which are already highly ranked. For 

instance (see Figure 6), Gene_a and Gene_a’ are highly correlated in expression across 

different tissues of a specific species. Gene_a is a highly-ranked gene on all input lists for 

Coex-Rank, but Gene_a’ is present at the bottom of some of the input lists. Through our 

Coex-Rank process, Gene_a’ will be pulled up near the top of the output list. 
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Figure 6. Demonstration of the Coex-Rank approach. Gene_a is a highly-ranked gene on 
all input lists for Coex-Rank, but Gene_a’ is present near the bottom of some of the input 
lists. The Coex-Rank approach enhances the priority of Gene_a’ that is highly correlated 
with an already-highly-ranked Gene_a. 

 

 

 For our implementation, the co-expression information is included in the distance 

calculation step. This information is obtained from a combination of microarray datasets 

with samples from different tissues of the same species to avoid bias. To be consistent 

with our case study, mouse Sppar data, we used two datasets available from GEO: 

GSE10246 with 182 samples on the Affymetrix mouse genome 430 2.0 array and 

GSE15998 with 106 samples on the Affymetrix mouse exon 1.0 ST array [67]. The co-

expression coefficients calculation was based on the probe-sets matching with the final 

combined Sppar dataset as described in Section 2.1.2. Then, for any two genes, the 

Pearson’s correlation coefficient was calculated from 288 pairs of records.  
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 Distance calculation with co-expression information is the heart of the Coex-Rank 

algorithm. The distance D( ) between two ranked gene lists L1 and L2, given the co-

expression coefficients, is defined as follows:  

                      D(L1,L2)= 
1

2
 × ( F(L1,L1-co) + F(L2,L2-co)), 

where F( ) is the Spearman footrule distance of two lists [12]. List L1-co contains all the 

genes from list L1 but the rank information is obtained from list L2. For genes also 

present on list L2, their ranks remain the same, while for genes only present on list L1 but 

not on list L2, the ranks of their highly correlated genes from list L2 are used instead. In 

practice, we need to determine a cut-off value for co-expression coefficients for 

consideration. For example, Gene_a is only present in list L1, and it has n highly 

correlated genes on list L2. The rank of Gene_a on list L1-co is defined as follows: 

 L1-co-rank (Gene_a) = 
1

n
 × 

n

i=1
∑ [

( )
( )
2L -Rank Gene _ i

Co Gene _ a,Gene _ i
], i = 1,2, …n. 

Co(Gene_a,Gene_i) denotes the co-expression coefficient between Gene_a and Gene_i 

(we used the Pearson correlation coefficient in our implementation) and L2-Rank (Gene_i) 

is the rank of Gene_i on list L2. For genes only present on list L1 but not on list L2, if they 

do not have any highly correlated genes from list L2, their ranks are assigned as 

Length(L2)+1, where Length( ) is the length of the gene list.  

 The R program is freely available for download from 

http://genome.uiowa.edu/Coex-Rank with simple data as an example. 
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3.3 Results  

 All the results below are based on the combined dataset formed by removing 

redundant probes based on best p-value as described previously. 

 

3.3.1 Similar effect of different normalization methods 

 For our mouse Sppar data, 10 different normalization methods were implemented 

as follows: 1.) quantile normalization; 2.) loess-median-base normalization; 3.) loess-

median-base-invariant normalization; 4.) loess-trim-mean normalization; 5.) loess-trim-

mean-invariant normalization. In addition, the same 5 methods with first round scale 

normalization were also used.   

 For the loess-median-base approach, with or without an invariant gene set, 10 

iterations were chosen for normalization. More iterations should result in more similar 

distributions of intensities from different arrays. As many as 50 iterations were calculated, 

but no significant improvement in the results was observed, shown by an example using 

scale-loess-median-base-invariant normalization method (see Figures 7-9).  
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Figure 7. The boxplots of all 17 arrays from Sppar datasets after scale-loess-median-base-
invariant normalization with 10 iterations. X1-X5 refer to data from the 5 expression 
arrays and X6-X17 plots are according to data from the 12 exon arrays.  
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Figure 8. The boxplots of all 17 arrays from Sppar datasets after scale-loess-median-base-
invariant normalization with 20 iterations. X1-X5 refer to data from the 5 expression 
arrays and X6-X17 plots are according to data from the 12 exon arrays. 
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Figure 9. The boxplots of all 17 arrays from Sppar datasets after scale-loess-median-base-
invariant normalization with 50 iterations. X1-X5 refer to data from the 5 expression 
arrays and X6-X17 plots are according to data from the 12 exon arrays. 

 

 

 After applying the scale-loess-median-base-invariant method for normalization, 

with 10, 20 or 50 iterations, up/down-regulated genes lists were generated from these 

normalizations, each list with the 100 most highly-ranked genes. Comparisons were 

carried out separately for up-regulated or down-regulated gene lists (see Table 4). The 

mimimum size of overlapping geneset was 91 (intersection of genes from 10 iterations 

and 50 iterations), indicating that increasing the number of iterations does not 

dramatically improve the normalization. Note: these iterations are computationally 

demanding. 



40 

  

 

Table 4. Size of intersection of any two lists from different iterations in normalization. 

  

 Up-regulated genes Down-regulated genes 

Iterations 20 50 20 50 

10 97 95 95 91 

 

 

 The loess-trim-mean approach narrows the distribution of intensities after a 

sufficiently large number of iterations. In an extreme example of 50 iterations, the 

boxplots of intensities degenerate into many repeated data points. Thus, we selected 5 

iterations for the Sppar data, which produced similar distributions of intensities as other 

approaches.  

 For the loess regression based on rank-invariant genes, a separate analysis (data 

shown in Section 3.3.2) showed that no more than 1,000 genes significantly changed 

between control and transgenic groups. Thus, we used 17,000 as the size of our rank-

invariant gene-set.  

 After normalization using each method, linear models were created for each gene. 

An ANOVA test was applied to generate lists of up/down-regulated genes due to the 

Sppar effect. Next, a comparison of 10 up-regulated lists was performed, each with the 

100 most highly-ranked genes based on p-value (see Table 5). In the table showing the 

size of the union of any two gene lists, the largest set contains 129 genes, which indicates 

that lists from any two normalization methods have about 70% overlapping genes at least.  
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Table 5. Size of union of any two lists from different normalizations for up genes.  
 

 
 

Note: The first row and the first column show the index of normalization Methods 
(M).The maximum union size is 129, highlighted in yellow. 
 

 

 

 For down-regulated genes, the results are similar (see Table 6). Though different 

normalization methods were applied, similar gene lists were generated, which motivated 

our selection of the rank-aggregation approach to incorporate information from all the 

normalization methods. 

 

 

 

 

 
 
 
 
 

M 1 2 3 4 5 6 7 8 9 10 

1 quantile 100 113 112 110 108 129 123 127 122 

2 scale-quantile 113 112 110 108 129 123 127 122 

3 loess-trim-mean 102 111 109 128 129 125 126 

4 scale-loess-trim-mean 110 108 127 127 125 124 

5 loess-trim-mean-invariant 103 127 123 126 119 

6 scale-loess-trim-mean-invariant 126 123 126 120 

7 loess-median-base 128 115 127 

8 scale-loess-median-base 127 122 

9 loess-median-base-invariant 127 

10 scale-loess-median-base-invariant 
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Table 6. Size of union of any two lists from different normalizations for down genes.  

 
 

 
 

Note: The first row and the first column show the index of normalization Methods (M). 
The maximum union size is 133, highlighted in yellow. 

 
 
 
 

3.3.2 Combined analysis increases statistical power 

 In general, increasing the sample size will result in an increase in statistical power 

of an analysis. For our Sppar data, the combined analysis has a sample size of 17, while 

the separate datasets have sample sizes of 5 and 12 respectively. Comparison of the two 

different analyses demonstrates (in this case) the benefit of the larger sample size.  

 For the case of separate analyses, student’s T test with equal variance was used to 

compare control vs. transgenic samples. This statistical test is mathematically equivalent 

to a one-way ANOVA test. When we selected a p-value<0.005 as a cut-off value, we 

could achieve roughly twice the number of genes via combined analysis, compared to the 

M 1 2 3 4 5 6 7 8 9 10 

1 quantile 101 116 114 112 111 127 122 123 117 

2 scale-quantile 116 114 112 111 127 123 123 118 

3 loess-trim-mean 102 105 106 130 127 133 123 

4 scale-loess-trim-mean 104 104 128 125 131 121 

5 loess-trim-mean-invariant 102 128 125 129 121 

6 scale-loess-trim-mean-invariant 127 124 128 120 

7 loess-median-base 130 124 124 

8 scale-loess-median-base 128 114 

9 loess-median-base-invariant 122 

10 scale-loess-median-base-invariant 
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separate approach (see Table 7). The statistics of the combined analysis were based on 

the scale-loess-trim-mean-invariant normalization method; other normalization methods 

resulted in similar numbers.  

 

Table 7. Comparison of combined and separate analyses of Sppar data. 
 

 Expression Array Exon Array Combined Analysis 

p-value       FDR p-value       FDR p-value       FDR 

#Total 288        5 218        23 583        286 

#Up 200        2 115          9 283        140 

#Down 88          3 103        14 300        146 

 
 

Note: Numbers of total DEGs and up/down-regulated genes are shown separately for 
expression/exon array data and combined analysis. The cut-off value: p-value < 0.005 
and FDR < 0.05 are used.  
 
 
 

 We also corrected for multiple comparisons using the R qvalue package [68]. 

When we set FDR (False Discovery Rate, also called q-value) < 0.05, we could see a 

dramatic improvement with the combined analysis; from 5 genes from the expression 

arrays, 23 genes from the exon arrays to 286 genes from the combined analysis (see 

Table 7). Two different cut-off values were set and more genes were selected as DEGs in 

the combined analysis, indicating the increased statistical power of this approach. 

 

3.3.3 Complementary advantage of Coex-Rank 

 Gene lists from 5 normalization methods starting with scale normalization were 

used as the input for both the rank-aggregation and the Coex-Rank approaches. For 
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example, for the up-regulated genes, considering p-value < 0.005 as the cut-off, 5 gene 

lists were generated and then the genes were ranked either by p-value or fold change, 

which resulted in 10 different lists. The 100 most highly-ranked genes were selected from 

each list and then served as the input for both the rank-aggregation and the Coex-Rank 

approaches. Although the choice of 100 as the number of genes to consider was 

somewhat arbitrary, it is noteworthy that these genes were all significantly up-regulated 

according to the FDR < 0.05 cut-off value. Thus, we will continue to use this convenient 

list size for the remainder of this example presentation. 

 The parameter settings for the rank-aggregation step were the default values 

(Spearman footrule distance and cross-entropy algorithm), except that the maximum-

iteration was increased from 1000 to 1500 for our Sppar data. For the Coex-Rank 

approach, one more parameter for the cut-off value of co-expression coefficients was set 

to 0.7 for our Sppar data. As there were 198 unique up-regulated genes from 10 different 

lists (each with 100 genes), there were 197×198/2=19,503 pairs of genes for correlation 

calculation and 572 pairs resulted in coefficients greater than 0.7. Similarly, for down-

regulated genes, there were 199 unique genes, which led to 19,701 co-expression 

coefficients; 954 of them were greater than 0.7. Therefore, the 0.7 cut-off value roughly 

selected the highest 3-5% genes based on the values of the correlation coefficients. The 

output of both the rank-aggregation and the Coex-Rank approaches were lists, each with 

100 genes.  

 We note that the rank-aggregation and the Coex-Rank methods, both generated 

different lists of genes, but that they shared about 70% genes in common (73 for up-

regulated genes and 71 for down-regulated genes). To investigate the biological 
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significance of these genes, we focused on the enrichment of their public annotations. We 

compared the gene lists from two approaches by clusters generated by DAVID [69] (the 

default low classification stringency was used) and pathways provided by exon array 

annotations from Affymetrix. The Coex-Rank approach led to greater enrichments (see 

Table 8) due to the incorporation of co-expression information.  

 

Table 8. Comparison of annotation enrichment for both aggregation approaches.  

 

 

 

Up-regulated genes Down-regulated genes 

#Clusters    #Pathways #Clusters      #Pathways 

Rank-aggregation 5                17 6                11 

Coex-Rank 7                21 6                14 

 

 

 

 However, the Coex-Rank approach prioritizes genes highly correlated with 

already-highly-ranked genes on the input lists at the cost of sometimes excluding the 

already-highly-ranked genes. These scenarios arise from the optimization process of 

rank-aggregation. The Cross-Entropy algorithm generates a series of candidate lists for 

evaluation (which finds a super list with minimum distance among all input lists). If one 

candidate list lacks some of the highly-ranked-genes from most input lists, but has genes 

with counterparts that are already highly ranked, we may still choose this as the super-list. 

For example, in our analysis gene “Tes” was the 25th ranked gene on the list of up-
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regulated genes from the rank-aggregation process, but it was absent on the list from the 

Coex-Rank approach. Its highly correlated counterpart gene “Runx1” was prioritized at 

rank 25 by the Coex-Rank approach, but it was absent from the list of up-regulated genes 

from the rank-aggregation process. Therefore, we decided to add non-overlapping genes 

from the Coex-Rank approach to those 100 genes selected by the rank-aggregation 

method and in total we promoted 127 up-regulated genes and 129 down-regulated genes 

to the final reported lists. These up-regulated genes generate 10 clusters according to 

DAVID (with low classification stringency). For down-regulated genes, 8 clusters were 

generated. While the above discussion primarily considers sensitivity as the quality 

metric for evaluating our approach, it should be mentioned that specificity may likewise 

be controlled by requiring greater concordance among lists, and thus, not including genes 

in the final list which did not overlap.  

 

3.4 Discussion  

3.4.1 Simulation: advantage of combined analysis 

 To increase confidence that the results described in Section 3.3.2 regarding the 

advantage of combined analysis over separate analysis was not dataset dependent, we 

conducted a simulation study consisting of one dataset from exon arrays and one dataset 

from expression arrays. Each dataset had six samples, three controls v.s. three treatments 

and each sample covered 18,204 genes. Consider for example a simulated exon array 

dataset generated as follows:  
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(1) The sample means µi ( i = 1, 2, 3…18,204 ) were from a real dataset. Four arrays 

using mammary gland were exacted from GSE10246 and the same probe-sets were 

selected as in our Sppar case study. Sample means were calculated for 18,204 genes 

separately.  

(2) Background variations were added according to the following formulas: 

         Yij=µi +Zij  (i=1,2,3…18, 204,j=1,2,3,4,5,6), 

         Zij ~ N(0,σ 2),  

           σ= α×(0.3–0.02×µi)×Gi, Gi~Gamma(5). 

Y ij refers to the expression value of the ith gene from the jth sample and α is a 

parameter controlling the scale of variation [2]. We evaluated α = 0.1, 0.2, and 0.3 

to demonstrate different levels of background noise. Here, we also made the 

assumption that the amount of variation is µi dependent. As it is often seen in real 

data, genes with smaller expression values may exhibit larger proportional 

variations [2].  

(3) The first 200 genes from treated samples were added with differential expression 

values as follows [2]: 

        Yij=µi+Zij+δ ij (i = 1,2,3 ……200, j = 4,5,6),  

        δ ij = 0.2×(2×Bij - 1) ×Gi ,  

        Bij~Bernoulli(0.5), Gi ~ Gamma(5).  

 The simulation data from expression arrays were generated in a similar way. At 

step 1, the four arrays using mammary gland were extracted from GSE15998 and at step 
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3, the differential expression value for a specific gene was scaled by the ratio of sample 

means from two platforms.  

 We then generated 10 datasets for each platform. We applied both separate and 

combined analyses including normalization and linear regression followed by an 

ANOVA test as described in our Methods Section. We used a p-value cutoff of 0.001 to 

select significantly changed genes. The number of differentially expressed genes was 

averaged for calculation of sensitivity and specificity and FDR (False Discovery Rate) 

respectively for expression array data, exon array data and a combined dataset. As shown 

in Table 9, the combined analysis increases the sensitivity and reduces the FDR 

compared to the separate analysis, with specificity remaining consistent (around 0.99) at 

different levels of background noise. The consistency of specificity is due to the nature of 

microarray data, as the expression levels of most genes are unchanged.  

 

 

Table 9. Comparison of combined and separate analyses based on simulation. 

  

 Expression Array Exon Array Combined Analysis 

Sensitivity     FDR Sensitivity     FDR Sensitivity      FDR 

α = 0.1 0.89          0.09 0.69           0.11 0.94           0.07 

α = 0.2 0.67          0.12 0.40           0.17 0.82           0.07 

α = 0.3 0.47          0.16 0.24           0.28 0.64           0.09 

 
 

Note: Combined analysis has advantages in increasing of sensitivity and decreasing of 
FDR. Different background variation has been evaluated via α = 0.1, 0.2 and 0.3. 
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3.4.2 Similar results from different selection of probe-sets 

 In Section 3.2.1, we described two approaches to resolve the issue of ambiguous 

mapping of genes to probe sets. One approach is p-value dependent, in which the probe-

set with the most significant p-value is selected; the other is determined by expression 

value, in which the probe-set with the highest average value of expression is chosen. 

However, in Section 3.3, only the p-value dependent probe-sets were used in the 

presentation of our Sppar case study. In fact, the analysis proceeding from the highest 

average expression value selection approach was repeated and the results were found to 

be similar.  

 As mentioned previously, after the p-value dependent dataset was processed 

through the pipeline of normalization, linear regression and rank-aggregation (including 

the Coex-Rank method) procedures, 127 up-regulated genes and 129 down-regulated 

genes were selected. For the original dataset using probe-sets chosen dependent on 

expression values, 124 genes were significantly up-regulated and 128 genes were down-

regulated. The two sets of up-regulated genes held 100 genes (around 80%) in common 

and the two down-regulated gene sets overlapped with 93 genes (around 72%).  

 If we only focus on the comparison directly after the probe-set selection step, both 

approaches selected 18,204 probe-sets from the expression array data respectively and 

resulted in 13,141 probe-sets (around 72%) in common. In the case of exon array data, 

the two approaches led to as many as 16,897 overlapping probe-sets (around 92%). At 

least in this case, it appears that the exon array data are more robust compared to 

expression array data, however, this may be in part due to the larger sample size.  
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3.4.3 Similar effects of different statistical tests  

 In Section 3.2.3, we described a simple linear model followed by an ANOVA test 

to generate lists of significantly changed genes. We also took advantage of an R package 

limma, which implements a Bayesian linear model [70]. We assumed that 1% of the 

genes were differentially expressed, as the default setting. The moderated-F test was 

employed, which is similar to the ordinary F-statistic from ANOVA except that the 

denominator mean squares are moderated across genes [70]. Following the same 

normalization schema, two different statistical methods resulted in similar lists of 

up/down-regulated genes in our Sppar dataset. For two lists of the most highly-ranked 

100 genes from each method, they produced at least 70% genes in common (see Table 10, 

which shows the size of the union set of the two lists from different statistical methods).  

 

 

Table 10.  Size of the union of two lists from different statistical tests.  
 
 

 NM_1 NM_2 NM_3 NM_4 NM_5 

Up-regulated genes 122 126 128 126 126 

Down-regulated genes 127 126 128 130 126 

 

Note: The normalization methods (NM) 1-5 are scale-quantile, scale-loess-trim-mean, 
scale-loess-trim-mean-invariant, scale-loess-median-base, and scale-loess-median-base-
invariant sequentially.  
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 The similarity between these two different statistical methods demonstrated by 

our Sppar case study is at an identical level with the resemblance of different 

normalization approaches applied to the same set of data. Thus, we could extend the 

Coex-Rank process to accept input lists from different statistical methods as well.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



52 

  

CHAPTER 4: ANALYSES OF PPARγ RELATED MICROARRAY DATASETS 

 
 
 As we have mentioned in Section 2.1, PPARγ plays an important role in the 

regulation of vascular function and blood pressure. Previous clinical studies reported that 

patients with dominant negative (DN) mutations (P467L or V290M) in the ligand binding 

domain of PPARγ had type II diabetes and early onset hypertension [16]. TZD drugs (e.g. 

rosiglitazone) are pharmacological ligands of PPARγ. The ligand-mediated activation of 

PPARγ has been shown to have beneficial effects in lowering blood pressure [47]. To 

better understand the molecular mechanisms of PPARγ exerting its effects on the 

genome-wide regulation of transcription, we took advantage of microarray technologies 

to determine gene expression profiles in mouse thoracic aortas in response to ligand 

activation or interference with different models of dysfunctional PPARγ. We also 

examined mesenteric arteries in one of these models. 

 

4.1 Microarray datasets information 

4.1.1 Rosi Dataset 

 Adult male mice (aged 5-7 months) from C57BL/6J strain were used in this 

experiment. PPARγ was activated by rosiglitazone treatment in a time and dose 

dependent manner. The administration of rosiglitazone was for either 2 or 14 days at a 

dose of 3 or 10 mg/kg/day via a custom-made diet otherwise identical to standard chow. 

This resulted in four different treatment groups. Control mice were fed standard chow. 

Mouse RNA extracted from thoracic aortas were hybridized to Affymetrix GeneChip 



53 

  

Mouse Genome 430 2.0 array. For each treatment/control group, 3 biological replicates 

were used, except the group with 14 days rosiglitazone treatment at the dose of 10 

mg/kg/day having only 2 samples. In each sample, RNA was pooled from 8-9 different 

mouse thoracic aortas. 

 

4.1.2 Gppar Dataset 

 To model the effect of the P467L mutation of PPARγ, Tsai et al generated knock-

in mice, replacing one normal PPARγ allele with a P465L allele, which is equivalent to 

P467L in human [71]. In these mice, the interference with the PPARγ signaling pathway 

is in all the tissues normally expressing PPARγ, so we consider these mice to be model of 

“global PPARγ interference” and refer them as the “Gppar” mice. Gppar mice were 

reported to have hypertension at baseline by Tsai et al [71].  Our lab also confirmed that a 

10-mm Hg increase of arterial pressure in male mice [72]. The genetic background of 

Gppar mice are F1 of 129/SvEv and C57BL/6J strains.  

 In our microarray study, adult male mice with ages from 5 to 7 months were used. 

RNA extracted from thoracic aortas were hybridized to Affymetrix GeneChip Mouse 

Genome 430 2.0 array. There were two groups in this experiment, controls vs. mutant 

mice, each group with 3 replicated samples. In each sample, RNA was pooled from 8 

different mouse thoracic aortas. 

 

4.1.3 Sppar Datasets 
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 General information of Sppar Datasets has been provided in details in Section 3.1 

– Motivating Datasets. These mice have been backcrossed to C57BL/6J strain. All mice 

used in the experiment were male and aged from 5 to 7 months.  

 

4.1.4 Msppar Dataset 

 The mutant mice involved in this experiment were from the same model as those 

in Sppar experiment. We used RNA isolated from mesenteric arteries for microarray 

experiment. The hybridization was performed using Affymetrix mouse exon 1.0 ST 

array. There were two groups for comparison, 4 controls v.s. 3 transgenic samples. In 

each sample, RNA was extracted from a single mouse. 

 

4.1.5 Ksppar Dataset  

 Chang et al generated mice with vascular smooth muscle cell-selective deletion of 

PPARγ using Cre-loxP system [73]. Unlike our transgenic Sppar mice, these mice were 

reported to have hypotension, with 14-mm Hg decrease in 6-month-old male mice [73]. 

As this is a knock-out model and specific to the smooth muscle cells, we label them as 

“Ksppar” mice. These mice have been backcrossed to C57BL/6J strain. Mice with ages 

from 5-7 months were used in our microarray study. Mouse RNA from thoracic aortas 

was hybridized to Affymetrix mouse exon 1.0 ST array. For the experimental design, we 

had three groups, two groups of controls and one group of smooth muscle cells specific 

PPARγ knock-out mice. For Cre-control group, the sample size was 5 and the sample size 
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was 3 for flox-control group. The knock-out mice group had 6 samples in total. In each 

sample, RNA was extracted from a single mouse.  

 

4.2 Methods 

4.2.1 Affymetrix Present/Absent Calls Detection Method 

 A detection call helps to answer the question that whether a gene is expressed in a 

particular biological sample. Present call refers to the expressed status of a gene, while 

absent call indicates non-distinguishable from background noise.  For expression arrays, 

Affymetrix MAS 5.0 algorithm can be used to achieve the detection calls [74]. Though 

MAS 5.0 algorithm for generating expression summaries has been criticized for high 

False Positive, its approach to determine present/absent calls is still widely used [75].  

MAS 5.0 algorithm calculates a discrimination score for each probe pair using both 

Perfect Match (PM) and Mismatch (MM) probes’ information. Next, each probe-set is 

assigned a detection P-value from one-sided Wilcoxon’s signed rank test, based on 

previous discrimination scores. To make the call, two significance levels α1 = 0.04 and α2 

= 0.06 are set as the default. If P-value < α1, it is labeled “Present”; if P-value >= α2, it is 

called “Absent”; otherwise, it is assigned “Marginal” [76]. The software is available as an 

R package called “affy”, which can be directly installed from Bio-conductor. The specific 

function is “mas5calls( )”.  

 For exon arrays, the corresponding algorithm is termed as Detection Above 

BackGround (DABG) [77]. A detection metric of each PM probe is generated based on 

comparison to a distribution of background pool with the same GC content. Then, 

interrelated probe level p-values are combined into a probe-set level p-value using 
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Fisher’s method [77]. The software is available from an Affymetrix tool – Expression 

Console. Along with exon-level normalization, the output file of DABG will be 

automatically generated, in which a p-value is associated with each exon.  

 

4.2.2 Extension of Coex-Rank featured approach  

 As we have discussed in Chapter 3, Coex-Rank was applied to generate robust 

results from different normalization methods. It can be applicable to merge gene lists 

from different comparison groups or multiple statistical tests as well. Thus, our Coex-

Rank solution also provides an alternative to a seemingly arbitrary choice among many 

good approaches.  

 

4.2.3 Gene set enrichment analysis (GSEA) 

 Normally, analysis at single-gene level reveals little similarity between/among 

independent microarray studies, even with related biological experimental design. Gene 

set enrichment analysis (GSEA) [78] gains its power by taking advantage of gene-sets. 

Genes within a set share common biological function or locate near each other on the 

same chromosome or demonstrate similar regulatory pattern. Typically, genes from 

microarray experiments are ranked according to their differential expression between 

control and treatment groups [78].  The core of GSEA is to determine if a set of candidate 

genes tend to be near the top/bottom of the pre-ranked gene list or just randomly 

distribute through the whole gene list. This approach helps to interpret biological 

significance of the microarray data from a gene-set perspective [78]. For the 
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mathematical description, an enrichment score is calculated for a gene set by walking 

down the pre-ranked gene list. When we encounter a gene in the gene set, the running-

sum statistic increases; otherwise, it decreases. The final score is the maximum absolute 

value of the running-sum and this is actually a weighted Kolmogorov-Smirnov-like 

statistic [78]. Next, the enrichment score is normalized, taking the size of the gene set 

into account. Finally, False Discovery Rate (FDR) is computed based on permutations 

[78].  The software is freely available for download 

(http://www.broadinstitute.org/gsea/msigdb/downloads.jsp).  

 

4.2.4 DAVID, a tool for functional enrichment analysis 

 Microarray technologies usually produce lists of interesting genes under a certain 

biological condition. The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) [69] provides a promising strategy to extract biological meanings 

out of these gene lists. Compared to other publicly available tools, DAVID has some 

advanced capabilities, especially in a comprehensive database and a novel module-centric 

algorithm [69].  The database is known as DAVID knowledgebase. It integrates more 

than 40 heterogeneous gene annotation resources, particularly across NCBI and UniProt 

systems. This wide range of information facilitates high throughput gene functional 

analysis.  

 For the novel algorithm, it is designed to group functionally related genes into 

biological modules to identify pertinent biological processes in a study [69]. Before 

grouping related genes, a method of measuring gene-gene similarity is implemented, 

based on the assumption that functionally related genes share global annotation profiles 
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with each other. Then a DAVID agglomeration algorithm is applied for gene grouping, 

which allows a gene to participate in more than one functional group. This fuzziness 

feature better reflects the nature of genes – playing multiple roles in a biological system. 

The software is freely available online (http://david.abcc.ncifcrf.gov/).    

 

4.3 Results 

4.3.1 Present/absent status of genes in microarrays 

 The sets of microarray data involve mice with different genetic backgrounds 

(including C57BL/6J, backcrossed to C57BL/6J and F1 of 129/SvEv and C57BL/6J 

strains) and various vascular tissues (thoracic aortas v.s. mesenteric arteries). To obtain 

the present/absent calls of genes on microarrays, we took advantage of MAS5 and DABG 

algorithms, respectively for expression arrays and exon arrays. We used genetically-

matched wild-type mice for these analyses and only focused those genes covered by both 

platforms (18,204 common genes determined by highest average expression levels as 

described Section 3.2.1).  

 We used the function “mas5calls( )” from “affy” R package to generate output 

files containing present/absent information of genes for data from expression arrays. 

There were three different labels in these files, “Present”, “Absent” and “Marginal”. We 

considered the “Marginal” label the same as “Absent” to make a relatively strict rule. The 

numbers of genes with “Present” calls are shown in Figure 10 for Rosi dataset, Gppar 

dataset and the part of expression arrays from Sppar dataset. The genetic background of 

Gppar mice is different from the other two groups of mice. The numbers of genes in the 

intersection of any pair of datasets were also calculated, shown with percentage in Figure 
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10. On average, 95% genes are in common between any two groups, though there are two 

different genetic backgrounds involved.   

 

 

 

Figure 10. Intersection of expressed genes from expression array experiments. Pink 
stands for Rosi dataset, yellow stands for Gppar dataset and blue stands for the part of 
expression arrays from Sppar dataset.  

 
 
 

 For the present/absent call analysis regarding the exon arrays, DABG method 

only provides p-values that indicate expression statuses at exon level, not at gene level. 

As it is recommended by a recent study for exon array analysis, an exon with p-value < 

0.05 can be considered as “Present” and a gene having 50% of its exons expressed can be 

assigned a “Present” call [79]. We followed this method and also explored 60% and 70% 

cutoff values in addition to 50%. The results are shown in Figure 11.  
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Figure 11. Intersection of expressed genes from exon array experiments. Different 
parameters used in determination of genes’ expression status. A gene having 50%, 60% 
or 70% of its exons expressed is assigned a “Present” call. 

 
 
 
 
 For the three datasets in our analysis, Msppar experiment used mouse mesenteric 

arteries and the other two used mouse thoracic aortas. However, the gene expression 
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status in the Msppar experiment was slightly more similar to Ksppar experiment, 

compared with other pair-wise groups, no matter which cutoff value was used.  This 

scenario can not be explained by difference of vascular tissues involved in these 

experiments. It might be due to variations from experimental processing, as RNA of 

Msppar and Ksppar experiments were extracted by the same person and microarray 

hybridizations were carried out at almost the same time. 

 

4.3.2 Identification of DEGs from each microarray dataset 

 DEGs from Sppar dataset were generated as described in Chapter 3. For the other 

four experiments, we extended the Coex-Rank featured approach to identify DEGs from 

each microarray dataset. As different experimental designs were involved in all the five 

datasets, different strategies were selected for each analysis. For the pre-processing part 

of microarray data, the RMA algorithm was used as described in Section 3.2.1, which 

resulted in 45,101 probe-sets on expression array platform and 101,176 gene-level probe-

set records on exon array platform. For exon array data, probe-sets without annotations 

such as gene symbols or mRNA accession information (according to Affymetrix 

annotation, release 30) were removed and resulted in smaller datasets, each with 40,434 

probe-sets. In these four datasets, we retained multiple probe-sets matching the same 

genes to avoid introducing any bias in selection of probe-sets, which was required in 

combining datasets from different microarray platforms.  

 For the Rosi dataset, there were four groups of different rosiglitazone treatments 

and only one group of controls. Therefore, we compared each treatment group with the 

control group and resulted in four separate comparisons. For each comparison, as the 
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sample size was small, we took advantage of an R package limma, which implements a 

Bayesian linear model [70]. This method has been recommended as a significance test for 

microarray data with small sample size [2]. For example, for up-regulated probe-sets, 

considering p-value < 0.01 as the cut-off, 4 probe-set lists were generated, each from one 

comparison group. Then, these probe-sets were ranked either by p-value or fold change, 

which resulted in 8 different lists. To generate similar number of DEGs as in Sppar 

dataset, we also selected 100 most highly-ranked probe-sets from each list as the input for 

both the rank-aggregation and the Coex-Rank approaches. 

 For Gppar dataset, only one group of comparison was available and the sample 

size was also small. We applied both Student’s T test with equal variance and limma 

method to calculate the p-values. After filtering by p-value < 0.01, probe-sets were 

ranked either by p-value or fold change, which resulted in 4 different lists for up/down-

regulation. To be consistent, we focused on 100 most highly-ranked probe-sets for both 

the rank-aggregation and the Coex-Rank approaches. 

 For Sppar dataset, details have been provided in Chapter 3. We also carried out 

analysis only based on data from exon arrays using the same approach applied to the 

above Gppar dataset. 

 For Msppar dataset, the same strategy as the Gppar dataset was adopted as well. 

The only difference was the selection of threshold p-value < 0.02. Different p-value cut-

off values were used for each dataset, because we aimed to select a reasonable number of 

probe-sets (200-300 probe-sets), which could be ranked by either p-value or fold change 

later.  
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 For Ksppar dataset, there were two groups of controls and only one group of 

knock-out mice. First, we compared the two control groups and found 1209 probe-sets to 

be differentially expressed according to p-value < 0.01 from Student’s T test. If we 

compared one group of controls with the knock-out group, using the same cut-off values, 

we could select 1037 probe-sets in comparison using flox-controls and 1052 probe-sets 

with cre-controls. The levels of differences were quite similar. Therefore, we focused on 

those probe-sets with robust behaviors in both comparisons and chose a less stringent 

criterion p-value < 0.05. Ranking by either p-value or fold change and 100 most highly-

ranked probe-sets selection were used as routines to generate input lists of both the rank-

aggregation and the Coex-Rank processes. 

 The final reported lists of probe-sets were merged from the output of both the 

rank-aggregation and the Coex-Rank processes. Then we took care of the issue regarding 

multiple probe-sets matching a unique gene. The numbers of DEGs identified in each 

dataset were summarized in Table 11.  

 

Table 11. Numbers of unique DEGs identified in each microarray dataset. 

 Rosi data Gppar data Sppar data Msppar data Ksppar data 

# up genes 129 139 127 119 135 

# down genes 141 138 129 121 131 
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 DAVID analysis was performed on each list of DEGs and we obtained some 

interesting biological explanations about these genes. The default lowest clustering 

criterion of DAVID was used, as we would like to explore as much biological 

information as possible, which might help us to make hypothesis for future experimental 

investigation. Briefly, for genes up-regulated in Rosi experiment, they are enriched with 

annotations especially related to PPAR signaling pathway and positive regulation of 

transcription, which fits with the molecular mechanism of ligand dependent activation of 

PPARγ. For down-regulated genes in Gppar experiment, they are also enriched with 

PPAR signaling pathway annotation. Moreover, they have another gene cluster annotated 

with negative regulation of transcription, which may explain the down-regulation pattern. 

The most attractive functional characteristic of Sppar and Msppar datasets is that up-

regulated genes are enriched with calcium ion binding. The most up-regulated gene in 

Sppar experiment is Tnnc1 (troponin C type 1) with ~ 20 fold change robustly in both 

expression array and exon array platforms. It has also been validated by real-time PCR to 

have more than 100-fold change (see Figure 12).  
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Figure 12. Real-time PCR validation of up-regulated Tnnc1 in Sppar mice. Four 
independent experiments show robustly more than 100-fold up-regulation of Tnnc1.  

 

 

 According to the Gene database of NCBI (National Center for Biotechnology 

Information), the protein encoded by Tnnc1 (Troponin C) is a subunit of Troponin, which 

is a central regulatory protein of striated muscle contraction. The binding of calcium to 

Troponin C abolishes the function of Troponin I (an inhibitor of actomyosin ATPase), 

thus allowing the interaction of actin with myosin, the hydrolysis of ATP, and leading to 

the generation of muscle contraction. Tnnc1 has been classified as one of the 

hypertrophic cardiomyopathy susceptibility genes, mutations of which (A8V and D145E) 

affect the functional properties of Troponin C by increasing the Ca2+-sensitivity of 

contraction [19]. 
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4.3.3 Comparisons of all PPARγ related datasets 

 We performed pair-wise comparisons of these 10 lists of DEGs from 5 microarray 

datasets, but limited numbers of genes (0~5 genes) were found to be in the intersections. 

This scenario is quite common in microarray studies. Previous research has shown that 

microarray analysis at single-gene level reveals little similarity even with related 

biological experimental design. In fact, this is the motivation for the development of 

Gene Set Enrichment Analysis (GSEA) [78], which gains power by taking advantage of 

gene sets. Therefore, we utilized this tool to observe general biological patterns in 

comparisons of all the 5 PPARγ related microarray datasets. We focused only on the 

genes covered by both expression and exon arrays (18,204 common genes determined by 

highest average expression levels as Section 3.2.1), because the comparisons were across 

all the datasets. 

 As the input required by GSEA, there should be a pre-ranked list of all genes 

involved in a microarray experiment and several gene-sets. GSEA helps to answer the 

question that if genes in a set have differentially expressed patterns in a microarray 

experiment. Generally, there are two approaches to rank all the genes in an experiment, 

either by p-value from a statistical test or fold change. We explored both of them to draw 

robust conclusions.  

 When we used p-value to rank all genes in a microarray experiment, the query 

gene sets were also selected by most significant p-value strategy in order to be consistent. 

The p-values based on which we ranked the genes were generated from Students’ T test 

with equal variance. For some datasets (e.g. Rosi experiment including 4 comparisons of 

controls v.s. treatments), we simply averaged p-values from each comparison. The most 
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significantly up-regulated genes were ranked near the top of the list, while the most 

significantly down-regulated genes were near the bottom. In total, we had 5 pre-ranked 

gene lists and 10 gene sets. For gene sets, each was with 100 most up/down-regulated 

genes from an experiment. All the implementations were carried out in a similar way for 

fold change ranking approach.  

 For the parameter setting of GSEA, the default 1,000 permutations were used to 

calculate False Discovery Rate (FDR). The results were organized into Table 12 and 

Table 13, respectively for both p-value and fold change approaches. In Table 12, the first 

row refers to the gene sets. For instance, rosi_up gene set contains 100 most up-regulated 

genes according p-value in Rosi dataset. The first column refers to the pre-ranked gene 

lists. For example, Rosi_expression list has all the genes ranked by p-value, with up-

regulated genes near the top and down-regulated genes near the bottom. All the numbers 

in the table are FDRs from statistical tests. A value of 0.00000 can be observed, which 

indicates the real number is < 0.00001. The plus (+) or minus (-) sign before the number 

indicates up or down regulation, respectively. In fact, it was not necessary to run rosi_up 

and rosi_down gene sets with pre-ranked lists from Rosi experiment, they were known to 

be near the top/bottom of the list. We still included them in our analysis, as we 

considered them as internal controls. In the result tables, we highlight all these types of 

internal controls using yellow color. We used FDR < 0.01 as cut-off values. We highlight 

all the robust (consistent result from both p-value and fold change approaches) and 

significant FDRs with either pink or blue colors, where pink indicates up-regulation and 

blue refers to down-regulation.  
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Table 12. Summary table of FDRs from GSEA using p-value ranking method. 

 rosi_up rosi_down gppar_up gppar_down sppar_up 

Rosi_exp +0.00000 -0.00000 -0.00140 +0.00000 -0.00000 

Gppar_exp -0.00000 -0.00196 +0.00000 -0.00000 +0.28406 

Sppar_com -0.00000 +0.00154 +0.37313 -0.00531 +0.00000 

Msppar_exon -0.00000 -0.06255 +0.70554 -0.00281 +0.00000 

Ksppar_exon -0.00000 -0.21224 +0.79238 -0.00000 -0.00000 

 sppar_down msppar_up msppar_down ksppar_up ksppar_down 

Rosi_exp -0.00104 +0.12024 +0.00050 +0.00674 +0.00038 

Gppar_exp +0.00432 +0.18745 +0.37467 +0.00000 -0.00065 

Sppar_com -0.00000 +0.43570 -0.00000 -0.00000 +0.28070 

Msppar_exon -0.00000 +0.00000 -0.00000 -0.00000 -0.00000 

Ksppar_exon +0.00000 +0.00949 +0.00000 +0.00000 -0.00000 

Note: We used FDR < 0.01 as cut-off values and a value of 0.00000 indicates the real 
number is < 0.00001. The plus (+) or minus (-) sign before the number indicates up or 
down regulation, respectively. Yellow indicates internal controls, pink stands for up-
regulation and blue refers to down-regulation.  
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Table 13. Summary table of FDRs from GSEA using fold change ranking method. 

 rosi_up rosi_down gppar_up gppar_down sppar_up 

Rosi_exp +0.00000 -0.00000 -0.01412 +0.00950 -0.00000 

Gppar_exp -0.00000 +0.00000 +0.00000 -0.00000 +0.04008 

Sppar_com -0.00000 +0.00832 -0.43329 -0.65847 +0.00000 

Msppar_exon -0.00075 +0.29549 +0.78901 -0.48735 +0.11544 

Ksppar_exon -0.00027 -0.02466 +0.17062 -0.88936 -0.00000 

 sppar_down msppar_up msppar_down ksppar_up ksppar_down 

Rosi_exp -0.00000 +0.54647 -0.10437 -0.91511 -0.00108 

Gppar_exp +0.00063 -0.88050 -0.92694 +0.00000 +0.45364 

Sppar_com -0.00000 +0.00000 -0.00000 -0.00000 +0.00014 

Msppar_exon -0.00000 +0.00000 -0.00000 -0.26204 -0.28184 

Ksppar_exon +0.00000 +0.23956 +0.03070 +0.0000 -0.00000 

Note: We used FDR < 0.01 as cut-off values and a value of 0.00000 indicates the real 
number is < 0.00001. The plus (+) or minus (-) sign before the number indicates up or 
down regulation, respectively. Yellow indicates internal controls, pink stands for up-
regulation and blue refers to down-regulation.  

 

 

 Based on these summary tables of FDRs, we could identify several pair-wise 

patterns with biological meanings, shown as the following: 

 (1) First of all, rosi_up gene-set was significantly down-regulated in Gppar 

experiment and gppar_down gene-set was significantly up-regulated in Rosi experiment. 

These genes that were up-regulated by rosiglitazone treatment but down-regulated in 

Gppar mutant mice might be direct targets of PPARγ.   

 (2) Secondly, rosi_down gene-set was significantly up-regulated in Sppar 

experiment and sppar_up gene-set was significantly down-regulated in Rosi experiment. 

These genes were down-regulated by rosiglitazone treatment and up-regulated in Sppar 

mutant mice. They might be affected indirectly by PPARγ transcriptional regulation.  
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 (3) The third pattern was that sppar_down gene-set was significantly down-

regulated in Msppar experiment and msppar_down gene-set was also significantly down-

regulated in Sppar experiment. This similarity might be due to the same transgenic mice 

model used in two experiments, suggesting that dominant negative mutation of PPARγ is 

responsible for down-regulation of genes in different blood vessels.  

 (4) The last one involved significantly down-regulated genes in Sppar experiment 

and significantly up-regulated genes in Ksppar experiment. And these genes might help 

to explain the different phenotypes of two PPARγ dysfunctional mice models, 

specifically, hypertension v.s. hypotension.  

 To further extract biological meanings out of these gene lists with interesting pair-

wise regulation patterns, we utilized a tool called DAVID to generate gene clusters based 

on functional annotations. The default lowest clustering criterion was used as well. For 

example, for genes with up-regulated pattern in Rosi experiment and down-regulated 

feature in Gppar experiment, we had two separate gene sets, one from p-value ranking 

and the other from fold change ranking. We used both of them for DAVID analysis and 

reported the consistent functional enrichment from different input lists of genes.  

 According DAVID analysis, genes with expression pattern “rosi_up and 

gppar_down” generated two clusters (shown in Table 14 and Table 15) that are functional 

enriched by annotation “PPAR signaling pathway”. Genes in Table 14 are also enriched 

with annotations, such as fatty-acid binding, lipid binding and cytoplasm. Rbp7 (retinol 

binding protein 7) has been shown to be highly correlated with PPARγ at the levels of 

expression across different tissues [80] and the other two genes are classic targets of 
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PPARγ. Genes in Table 15 are functional enriched with glycoprotein and transmembrane 

annotations. 

 

 

Table 14. First cluster of genes enriched with “PPAR signaling pathway”.  

Probe-set ID Gene Name 

1449461_at retinol binding protein 7, cellular 

1416023_at fatty acid binding protein 3, muscle and heart 

1417023_a_at fatty acid binding protein 4, adipocyte 

Note: Genes are also enriched with annotations, such as fatty-acid binding, lipid binding 
and cytoplasm. 

 

 

Table 15. Second cluster of genes enriched with “PPAR signaling pathway”.  

Probe-set ID Gene Name 

1450883_a_at CD36 antigen 

1418848_at aquaporin 7 

1418197_at uncoupling protein 1 (mitochondrial, proton carrier) 

1417130_s_at angiopoietin-like 4 

Note: Genes are functional enriched with glycoprotein and transmembrane annotations. 

 
 
 

 Genes with expression pattern “sppar_down and msppar_down” led to a cluster 

with “GTPase” annotation (see Table 16). Previous study in our laboratory showed that 

the response of thoracic aortas from Sppar mice to a vasoconstrictor – the peptide 

endothelin-1 (ET-1) was remarkably augmented, compared with normal mice. Treatment 
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with the Rho kinase-specific inhibitor Y27632 resulted in a significant inhibition of the 

contractile response, which suggested the dependence upon Rho kinase activity [13]. 

Furthermore, the increasing activity of Rho kinase in Sppar mice has been confirmed 

recently by our laboratory. Rho kinase is known as an effector of RhoA. Rho subfamily 

of small GTPases can be divided into five groups: the Rho-like (RhoA-C), Cdc42-like, 

Rac-like, Rnd-like and RhoBTB (RhoBTB1-3) proteins [20]. The functions of RhoBTB 

proteins have not been defined yet. One member, RhoBTB2 has been identified as a 

component of cullin3-dependent ubiquitin ligase complexes [20]. This property is highly 

probably shared with other RhoBTB members [20]. Cullin3 is the core subunit of CRL3 

(Cullin-RING ubiquitin ligase 3), which was discovered by Chen et al to target the RhoA 

for degradation [81]. Therefore, we hypothesize that the Rho kinase activity may lie 

downstream of RhoBTB1 in Sppar mice. The down-regulation RhoBTB1 might cause the 

increasing of Rho kinase activity via RhoA/Rho kinase signaling pathway. The down-

regulation of RhoBTB1 has already been confirmed by real-time PCR in Sppar mice (see 

Figure 13). 

 

Table 16. A cluster of genes enriched with “GTPase” annotation. 

Probe-set ID Gene Name 

1422562_at Ras-related associated with diabetes 

1428067_at RAS-like, family 12 

1437100_x_at proviral integration site 3 

1429206_at Rho-related BTB domain containing 1 

1432415_at RAB3C, member RAS oncogene family 
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Figure 13. Real-time PCR validation of down-regulated Rhobtb1 in Sppar mice. Four 
independent experiments show robustly more than two fold down-regulation of Tnnc1.  

 

 Genes with expression pattern “sppar_down and ksppar_up” resulted in a cluster 

with “kinase” annotation (Table 17). Genes produce proteins with functions of 

phosphorylation might be targets for future investigation. As we have discussed above, 

Rho kinase activity is increased in Sppar mice, which is related with vasoconstriction. 

Take Camk4 (calcium/calmodulin-dependent protein kinase IV) for example, the product 

of this gene belongs to the Ca2+/calmodulin-dependent protein kinase subfamily [82]. 

Though it has not been demonstrated to be involved in blood pressure regulation, its 

sibling Camk2 (calcium/calmodulin-dependent protein kinase II) is implicated to inhibit 

vascular smooth muscle contraction [82]. As shown in Figure 14, phosphorylation of 

MLC (light chain of myosin) by MLCK (myosin light chain kinase) allows interaction of 

myosin and actin, which results in vascular smooth muscle contraction. MLCK is 

activated by the Ca2+-CaM (Ca2+-calmodulin complex) and it can be inhibited by Camk2 

[82].  
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Table 17. A cluster of genes enriched with “kinase” annotation. 

Probe-set ID Gene Name 

1435319_at inositol hexaphosphate kinase 2 

1416069_at phosphofructokinase, platelet 

1451140_s_at protein kinase, AMP-activated, gamma 2 non-catalytic subunit 

1437100_x_at proviral integration site 3 

1434513_at ATPase type 13A3 

1422084_at BMX non-receptor tyrosine kinase 

1453817_at ATP-binding cassette, sub-family A (ABC1), member 6 

1452572_at calcium/calmodulin-dependent protein kinase IV 

1431167_at diacylglycerol kinase, gamma 

 

 

 

 

Figure 14. Camk2 involved in biological pathway of vascular smooth muscle contraction. 
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 In addition to these pair-wise patterns, there are two other interesting patterns 

involved more experiments at the same time. The first is that rosi_up gene-set are 

robustly and significantly down-regulated in all the other four experiments. This is 

biological reasonable, as all the other four experiments using mice with dysfunctional 

PPARγ or even without PPARγ. When we focused on individual genes that are satisfied 

with this criterion, only a few genes could be selected, shown in Table 18.  

 Cd36 (CD36 antigen) and Fabp4 (fatty acid binding protein 4) are classic target 

genes of PPARγ; Ppargc1b (peroxisome proliferative activated receptor, gamma, 

coactivator 1 beta) is the co-activator of PPARγ. Therefore, their down-regulation fits 

with the PPARγ dysfunctional models reasonably. Inactivation of RhoA by PKA (Protein 

Kinase A) / PKG (Protein Kinase G) has been reported, but the underlying mechanism is 

still not fully understood. Prkar2b (protein kinase, cAMP dependent regulatory, type II 

beta) belongs to PKA and its down-regulation re-indicates the activation of RhoA/Rho 

kinase signaling pathway in PPARγ dysfunctional models [83].  
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Table 18. Genes up-regulated in Rosi experiment, but down in others. 

Probe-set ID Gene Name 

1450883_a_at CD36 antigen 

1417765_a_at amylase 1, salivary 

1417561_at apolipoprotein C-I 

1456611_at family with sequence similarity 13, member A 

1417023_a_at fatty acid binding protein 4, adipocyte 

1449945_at peroxisome proliferative activated receptor, gamma, coactivator 1 beta 

1423972_at electron transferring flavoprotein, alpha polypeptide 

1438664_at protein kinase, cAMP dependent regulatory, type II beta 

  

Probe-set ID Functional Annotations Pathway 

1450883_a_at lipoprotein, transport PPAR signaling pathway 

1417765_a_at Calcium, carbohydrate metabolism Starch and sucrose metabolism 

1417561_at lipid transport  

1456611_at phosphoprotein  

1417023_a_at lipid binding, transport PPAR signaling pathway 

1449945_at activator, transcription  

1423972_at electron transport, flavoprotein  

1438664_at acetylation, cAMP binding Insulin signaling pathway 

 

   

 

 Another interesting pattern is that “rosi_up and msppar_down and ksppar_up” 

gene-sets were all significantly down-regulated in Sppar experiment. The scenario 

perfectly matches with a predictive model of PPARγ’s molecular mechanism [47]. As 

shown in Figure 15, for Sppar/Msppar mice with DN mutation PPARγ, without binding 

of ligands, corepressors and histone deacetylase are recruited, which results in repression 

of transcription of PPARγ target genes.  For wild-type mice, treatment using rosiglitazone 
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provides ligands for PPARγ. Therefore, coactivators, such as PGC1α and SRC, are 

recruited instead of corepressors, and PPARγ target genes are activated or up-regulated. 

For Ksppar mice, PPARγ is knocked out, there might be other transcription factors 

binding to PPRE, like heterodimer of RXRs, which leads to intermediate level of 

transcription of PPARγ target genes. This model was proposed to explain the hypotension 

phenotype of Ksppar mice [47].  

 

  

 

Figure 15. Postulated model of PPARγ’s molecular mechanism. The length and width of 
the arrows reflect levels of transcription. PPARγ is orange and RXR is blue. CoR 
indicates corepressor; HDAC, histone deacetylase; CoA, coactivator; PGC1α, PPARγ 
coactivator-1 alpha; SRC, steroid receptor coactivator; RNAP, RNA polymerase; TF, 
transcription factors; PPRE, PPARγ response element. The figure is modified from a 
review paper [47]. 

 
 
 
 
 
 Genes falling in this criterion are shown in Table 19. Serpine1 (serine/cysteine 

peptidase inhibitor, clade E, member 1) has the function of regulation of angiogenesis, 
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which is a physiological process involving the growth of new blood vessels from pre-

existing vessels, according to Gene database of NCBI. It is also annotated with positive 

regulation of coagulation (a complex process of blood forming clots), in the same 

database.  

 
 

Table 19. Genes consistent with a predictive working model of PPARγ.  

Probe-set ID Gene Name 

1418719_at 4HAUS augmin-like complex, subunit 8 

1450554_at defensin beta 2 

1416021_a_at fatty acid binding protein 5, epidermal 

1452388_at heat shock protein 1A 

1437100_x_at proviral integration site 3 

1417466_at regulator of G-protein signaling 5 

1419149_at serine (or cysteine) peptidase inhibitor, clade E, member 1 

  

Probe-set ID Functional Annotations Pathway 

1418719_at alternative splicing, mitosis  

1450554_at antibiotic, defensin  

1416021_a_at lipid-binding, transport PPAR signaling pathway, 

1452388_at atp-binding, chaperone MAPK signaling pathway, endocytosis 

1437100_x_at atp-binding, protein kinase  

1417466_at signal transduction inhibitor  

1419149_at plasminogen activation p53 signaling pathway, coagulation cascades 

 

 

 

 Rgs5 (regulator of G-protein signaling 5) is involved in the regulation of 

heterotrimeric G proteins by acting as GTPase activators. Rgs5 has been identified as an 

antihypertensive target (down-regulated in hypertensive models) by vascular microarray 
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profiling in two rat models of hypertension [84]. Changes in RGS (regulator of G-protein 

signaling) expression and function correlate with vascular remodeling. Xi Wang et al 

showed that RGS5 inhibits angiotensin II (angII)-induced signaling in smooth muscle 

cells by in vitro overexpression studies [21]. It is known that angII leads to 

vasoconstriction [82].  
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CHAPTER 5: INVESTIGATION OF PPARγ RELATED DEGS WITH PPARES 

 

 As introduced in Chapter 2, PPARγ heterodimerizes with RXR and binds to DNA 

elements called PPAR Response Elements (PPREs). The known PPREs have a consensus 

sequence of AGGTCAXAGGTCA, with X being a random nucleotide. This initial 

conclusion was based on analysis of approximately 30 well-characterized PPARγ target 

genes [25]. More recent studies, as described below, have characterized PPARγ binding 

sites on a genome-wide level.  

 

5.1 Genome-wide binding sites of PPARγ from literature 

5.1.1 PPREs identified by ChIP-chip technique 

 Leferova et al used ChIP (chromatin immunoprecipitation) followed by 

hybridization to whole genome tiling arrays (ChIP-chip) to determine the genome-wide 

binding sites of PPARγ [17]. PPARγ is expressed at highest levels during differentiation 

of mouse fibroblasts into adipocytes. The ChIP assay was performed using 3T3-L1 

adipocytes harvested at day 10 post-hormonal induction of adipogenesis. Immuno-

precipitated chromatin fragments were hybridized to the whole genome Mouse Tiling 

2.0R Array Set (Affymetrix). The model-based analysis of tiling arrays (MAT) was 

employed to determine genome-wide binding sites of PPARγ. Filtering by the cutoffs of 

FDR (False Discovery Rate) <=1% and enrichment of PPARγ signal over control IgG 

equal to or greater than two fold, 5299 PPREs were identified (mapped to reference 

genome mm8), with each region about 1000 base pair (bp) long [17].   
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 The results from ChIP-chip experiment were validated by ChIP-quantitative PCR 

(QPCR) and with a different PPARγ antibody. These additional studies suggested that the 

actual FDR was around 5%. The previously known motif for PPREs was found at most of 

the identified binding sites. Moreover, ChIP for RXRα showed a co-localization pattern 

with PPARγ at nearly all the tested binding sites [17].  

 

5.1.2 PPREs identified by ChIP-seq technique 

 Nielsen et al took advantage of deep sequencing technology, combined with ChIP 

assay to map genome-wide PPARγ binding sites [18]. The samples for ChIP were 3T3-

L1 cells at day 6 post differentiation. For data analysis, mapping short sequences to 

mouse genome was performed by the Illumina Analysis Pipeline and detection of binding 

sites was carried out using FindPeaks at an FDR level < 0.001. They identified 6952 

binding sites for PPARγ (mapped to mm9 reference genome), most of which were co-

localized with RXRα binding sites. Motif search was also carried out and showed 

positive re-confirmation, matching with the known PPRE [18].  

 

5.2 Methods 

5.2.1 Bowtie – a tool for alignment 

 With the development of high-throughput sequencing technology, it is necessary 

to optimize the alignment of large sets of short DNA sequences (reads) to large genomes. 

Bowtie is an ultrafast, memory-efficient short read aligner, which facilitates further 

sequence analysis [85]. For example, Bowtie aligns 35-base-pair reads to the human 
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genome at a rate of 25 million reads per hour on a typical workstation. It has been shown 

to consume less time and computational resources than other similar tools, such as Maq 

and SOAP [85]. The efficiency of Bowtie lies in a novel indexing strategy – Burrows-

Wheeler index to keep its memory footprint small. However, Bowtie is not a general-

purpose alignment tool like BLAST. For the current version, it does not yet report gapped 

alignments [85]. The software is freely available from http://bowtie-bio.sourceforge.net. 

 

5.2.2 MACS – a tool for peak detection in ChIP-seq  

 Chromatin immunoprecipitation (ChIP), integrated with advanced next-generation 

sequencing technology (ChIP-seq), [86]  provides data that only represent the ends (about 

30 bp) of the ChIP fragments. These short sequences (called tags) are aligned to a 

reference genome and then their accumulations at different genomic loci are detected as 

the binding sites of transcription factors. There are various algorithms for the peak 

detection part [86].  

 Generally, ChIP-seq experiments can be performed with or without control 

samples. For data without controls, peaks are detected against background information. 

To model the background noise, Poisson distribution is preferred to uniform distribution, 

which has been used previously [86]. According to a recent study comparing different 

methods for peak detection, two methods – MACS and SISSRs are available for the 

public ChIP-seq data analysis. The better performance of MACS over SISSRs is 

supported by reproducibility of the detections and external validation using qPCR, at 

least in a third party comparison study [86].  
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 MACS stands for Model-based Analysis of ChIP-Seq. It improves the spatial 

resolution of predicted binding sites by modeling the shift size of tags empirically [87]. 

Furthermore, the dynamic Poisson distribution employed by MACS can effectively 

capture local biases in the genome.  The software is available from 

http://liulab.dfci.harvard.edu/MACS/. 

 

5.3 Results 

5.3.1 Analysis of ChIP-seq data for identification of PPREs  

 The raw data are available for ChIP-seq experiment regarding PPREs 

identification from http://www.ncbi.nlm.nih.gov/traces/sra/ with study accession number 

SRP000630. Thus, we decided to carry out the data analysis using the tools for both 

sequence alignment and peak detection described earlier.   

 In our application of bowtie, according to the online manual (http://bowtie-

bio.sourceforge.net/manual.shtml), we used the following options in parameter setting: 

 --best, which guarantees the best reported singleton alignment. “Best” is defined 

in terms of the number of mismatches or the quality values at the mismatched positions. 

This mode also removes all strand bias.  

 -n, which stands for the maximum number of mismatches for alignment. To be 

consistent with original paper, we allowed one mismatch in our analysis. 

 -m, which keeps Bowtie from reporting any alignments for reads having more 

than a certain number of reportable alignments. We set m=1 for this parameter, which 

was able to report a loose “unique” alignments.  
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 As the result, 35.70% of original short reads (5,420,479) were reported to have 

unique alignments mapping to mm9 reference genome.  

 In application of MACS, we kept all the default parameter settings. By using the 

recommended cutoffs – p-value < 1×10-5 and fold enrichment > 32, we identified 4656 

PPARγ binding sites (labeled as ChIP-seq-1). According to a recent study comparing 

different methods for peak detection [86], the 1000~2000 most significant binding sites 

of a transcription factor are robustly detected by a variety of computational approaches. 

So we also used a strict criterion that p-value < 1×10-8 and fold enrichment > 38 to 

determine 1647 PPREs (labeled as ChIP-seq-2).   

 

5.3.2 Result of PPRE enrichment analysis 

 All the PPARγ related microarrays were carried out using RNAs extracted from 

blood vessels, but the genome-wide sets of PPREs were identified from ChIP-seq/ChIP-

chip using DNAs from 3T3-L1 adipocytes. Therefore, we limited our PPREs enrichment 

analysis to those genes also expressed in 3T3-L1 adipocytes. The expression status 

(present or absent) of a gene in 3T3-L1 adipocytes was determined using datasets 

GSE14004 and GSE8682, which are publicly available from GEO. We used ten lists of 

DEGs we had already identified (see details in Chapter 4). For example, list Rosi_up 

stands for the list of genes up-regulated in Rosi experiment. As the sets of PPREs were 

based on either mm8 or mm9 reference genome, we obtained both versions of the 

genomic locations of genes’ TSS (transcription start site) from UCSC Genome Browser.  

For each list of DEGs, we calculated the percentage of genes having at least one PPRE 

within a certain distance. We used three scales of distances, 10k, 50k and 100k from TSS, 
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including both up-stream and down-stream directions. To assess the statistical 

significance of the PPRE enrichment, we calculated the empirical p-values from random 

permutations.  

 The results of PPRE enrichment analysis using ChIP-seq-1 dataset is shown in 

Table 20, with the percentage of genes having at least one PPRE within a certain distance. 

The corresponding empirical p-values were obtained from 10,000 random permutations  

(see Table 21). Up-regulated genes from Rosi experiment are statistically enriched for 

PPREs within the distance of 50k.   

 

Table 20. Percentage of genes with PPRE in analysis using ChIP-seq-1 dataset. 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 6.98% 3.66% 6.45% 4.55% 7.55% 

50k 43.02% 21.95% 35.48% 25.00% 30.19% 

100k 54.65% 40.24% 50.00% 50.00% 41.51% 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 6.67% 6.06% 2.44% 3.57% 8.33% 

50k 37.78% 30.3% 36.59% 35.71% 20.83% 

100k 51.11% 45.45% 46.34% 35.71% 41.67% 

 

Table 21. P-values of PPRE enrichment analysis using ChIP-seq-1 dataset. 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 0.4818 0.8961 0.4818 0.7878 0.3305 

50k 0.0005 0.9401 0.0612 0.7360 0.3289 

100k 0.0330 0.8248 0.1466 0.1466 0.7713 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 0.4818 0.4818 0.9653 0.8961 0.2076 

50k 0.0211 0.3289 0.0367 0.0612 0.9649 

100k 0.1048 0.4713 0.3947 0.9757 0.7713 
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 The results of PPRE enrichment analysis using ChIP-seq-2 dataset is shown is 

Table 22 and Table 23. These p-values were obtained from 10,000 permutations as well. 

Up-regulated genes from Rosi experiment are also statistically enriched with PPREs 

within the distance of 50k.   

 

 

Table 22. Percentage of genes with PPRE in analysis using ChIP-seq-2 dataset 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 2.33% 1.22% 3.23% 2.27% 0.00% 

50k 22.09% 7.32% 12.90% 11.36% 9.43% 

100k 29.07% 13.41% 20.97% 18.18% 16.98% 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 0.00% 3.03% 0.00% 0.00% 6.25% 

50k 13.33% 12.12% 12.20% 17.86% 12.50% 

100k 17.78% 15.15% 14.63% 25.00% 20.83% 

 

 
 
Table 23. P-values of PPRE enrichment analysis using ChIP-seq-2 dataset. 
 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 0.3378 0.6075 0.1508 0.3378 0.8775 

50k 0.0001 0.8319 0.2267 0.3355 0.5954 

100k 0.0044 0.9193 0.3157 0.5114 0.7124 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 0.8775 0.1508 0.8775 0.8775 0.0043 

50k 0.1480 0.2267 0.2267 0.0136 0.2267 

100k 0.6183 0.7977 0.8655 0.0464 0.3157 
 

 
 
 
 
 The results of PPRE enrichment analysis using ChIP-chip dataset is shown is 

Table 24 and Table 25. These p-values were obtained from 100,000 permutations. Up-
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regulated genes from Rosi experiment are statistically enriched with PPREs within the all 

three different distances. The number 0.00000 refers to p-value < 0.00001.  

 

Table 24. Percentage of genes with PPRE in analysis using ChIP-chip dataset. 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 45.24% 13.41% 8.93% 20.45% 17.65% 

50k 70.24% 43.90% 39.29% 45.45% 49.02% 

100k 83.33% 57.32% 50.00% 63.64% 62.75% 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 21.43% 12.12% 21.62% 7.14% 24.44% 

50k 52.38% 48.48% 51.35% 39.29% 51.11% 

100k 59.52% 63.64% 62.17% 42.86% 66.67% 
 

 

Table 25. P-values of PPRE enrichment analysis using ChIP-seq-2 dataset. 

Distance Rosi_up Rosi_down Gppar_up Gppar_down Sppar_up 

10k 0.00000 0.37909 0.89601 0.01216 0.07319 

50k 0.00000 0.01429 0.08335 0.00459 0.00032 

100k 0.00000 0.02158 0.26940 0.00054 0.00126 

Distance Sppar_down Msppar_up Msppar_down Ksppar_up Ksppar_down 

10k 0.00589 0.49615 0.00589 0.94567 0.00047 

50k 0.00004 0.00064 0.00008 0.08335 0.00008 

100k 0.00768 0.00054 0.00126 0.83528 0.00005 
 

 

 

 In fact, we previously performed 10,000 permutations as we did to two ChIP-seq 

datasets. However, not only Rosi_up genes but also some other gene-sets, including 

Sppar_down, Msppar_down and Ksppar_down genes, turned out to have p-values < 

0.0001 as well. According to the original data (refers to percentage of genes with PPRE), 
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we found that 70.24% of Rosi_up genes are associated with PPREs within 50k bp 

distance, compared to around 50% of Sppar_down, Msppar_down and Ksppar_down 

genes having PPREs. Obviously, Rosi_up genes are much more enriched with PPREs 

than the other three sets of genes. Therefore, we carried out 100,000 permutations, which 

helped us to obtain distinguishable p-values. Therefore, up-regulated genes from Rosi 

experiment are robustly and significantly enriched with PPREs from both ChIP-seq and 

ChIP-chip datasets.  

 As we discussed in Chapter 4, up-regulated genes in Rosi experiment, as a gene-

set, were found to be down-regulated in Gppar experiment. However, the Gppar_down 

genes did not show up with the pattern of PPRE enrichment. Thus, we divided these 

genes into two sets, one with the trend of down-regulation in Gppar experiment and the 

other with up-regulated direction. Then, PPRE enrichment analysis was carried out for all 

three sets. As shown in Table 26, only up-regulated genes in Rosi experiment that also 

have a trend of down-regulation in the Gppar dataset are robustly and significantly 

enriched with PPREs, consistent with a previous analysis [80]. This scenario fits with the 

conventional model of PPARγ action, in which activation of its target genes demands 

ligand binding to PPREs, as we have described previously in Chapter 2.  
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Table 26. P-values of PPRE enrichment analysis for Rosi_up genes. 

 ChIP-seq-1 ChIP-seq-2 ChIP-chip 

Distance R_up_G_down R_up_G_up R_up_G_down R_up_G_up R_up_G_down R_up_G_up 

10k 0.0612 0.6450 0.0536 0.8775 0.00000 0.11960 

50k 0.0001 0.3289 0.0000 0.4631 0.00000 0.00811 

100k 0.0043 0.4713 0.0003 0.7977 0.00000 0.00230 

Note: All three sets of PPREs were used, including ChIP-seq-1, ChIP-seq-2 and ChIP-
chip. For p-value=0.0000 means p-value < 0.0001, which was calculated from 10,000 
permutations and for p-value=0.00000 means p-value < 0.00001, which was calculated 
from 100,000 permutations.  
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