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ABSTRACT

A homology theory is defined for equivalence classes of links under isotopy in

S3. Chain modules for a link L are generated by certain surfaces whose boundary is

L, using surface signature as the homological grading. In the end, the diagramless

homology of a link is found to be equal to some number of copies of the Khovanov

homology of that link. There is also a discussion of how one would generalize the

diagramless homology theory (hence the theory of Khovanov homology) to links in

arbitrary closed oriented 3-manifolds.
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CHAPTER 1

INTRODUCTION AND BACKGROUND INFORMATION

1.1 Introduction

A link of n components is a smooth embedding of n circles into S3 up to

ambient isotopy. A link of one component is referred to as a knot. An oriented link

is a link together with a chosen direction for each component of the link, usually

indicated by arrows.

Although knots and links had been studied mathematically as early as the

nineteenth century (see [13] or [17]), it wasn’t until the use of diagrams and Reide-

meister moves that the field of knot theory really started to flourish; many major

results in knot theory use link diagrams as their medium for studying knots and

links.

A link diagram is a planar projection of a link along with extra information

at double points, called crossings. Crossings contain information that shows which

strand is an “over crossing” and which strand is an “under crossing”. A link is

uniquely determined by its diagram(s), up to Reidemeister moves (named for Rei-

demeister’s work in [19]). That is, any two diagrams for the same link are related

by a series of the Reidemeister moves shown in Figure 1.1.

In this thesis, a new link invariant is defined. A link invariant is a function

from the set of links to some other set, such as integers, polynomials, or groups.

Hence, two different link diagrams for the same link will always be assigned the

same value by a given link invariant. On the other hand, link diagrams for different

links may or may not be assigned the same value by a link invariant. Therefore,

link invariants can be used to tell links apart, but not to show they are the same.

A polynomial link invariant of interest is the Jones Polynomial. Instead of

defining this polynomial the way Jones originally did in [9], we will instead define the
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Figure 1.1: Reidemeister moves type I, II, and III.

Jones polynomial using a related polynomial commonly referred to as the Kauffman

bracket. The Kauffman bracket is a Laurant polynomial in the variable A with

integer coefficients obtained from a link diagram by recursively appling the following

three axioms from [12]:

• 〈 ◦ 〉 = 1, where ◦ is the unknot.

• 〈 〉 = A〈 〉+ A−1〈 〉

• 〈 ◦ ∪ L 〉 = (−A2 − A−2)〈 L 〉

Example 1.1. Below is an example showing the computation of the Kauffman

bracket of a certain diagram for the Hopf link.
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〈 〉 = A〈 〉+ A−1〈 〉

= A

(
A〈 〉+ A−1〈 〉

)
+ A−1

(
A〈 〉+ A−1〈 〉

)
= A (A(−A2 − A−2) + A−1) + A−1 (A+ A−1(−A2 − A−2))

= −A4 − A−4

If two link diagrams (for the same link) are related by Reidemeister moves of

type II and III only, then their Kauffman bracket is the same (this fact is proved

in [12]). However, changing a link diagram by the type I Reidemeister move also

changes the Kauffman bracket. Hence, the Kauffman bracket is not a link invariant.1

Modifying the Kauffman bracket to be invariant under all three Reidemeister

moves is one way of obtaining the Jones polynomial. Before doing this, some pre-

liminary definition is necessary. First note that each crossing of an oriented link

diagram can be described by exactly one of the two pictures in Figure 1.2; each

crossing of an oriented link diagram is either positive or negative. Now define the

writhe of an oriented link diagram D, denoted w(D), to be equal to the number of

positive crossings minus the number of negative crossings. At times, we are only

interested in the positive (resp. negative) number of crossings of a link diagram,

and use n+ (resp. n−) to denote this number. Hence w(D) = n+ − n−.

Figure 1.2: A positive crossing (to the left) and a negative crossing (to the right).

1Although the Kauffman bracket is not a full link invariant, it is an invariant for “framed links”.
Framed link and the Kauffman bracket (which Kauffman refers to as the bracket polynomial) are
discussed in section 3.1 of [16].
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The usual version of the Jones polynomial results from multiplying the Kauff-

man bracket polynomial by (−A3)−w(L) and then performing the change of variable

A = t−
1
4 . One can show that the Jones polynomial is a Laurant polynomial in the

variable t
1
2 with integer coefficients (see [9]).

In [14], Khovanov uses a slightly modified version of the Jones polynomial

that is renormalized to correspond more directly with his homology theory. To

obtain Khovanov’s version of the Jones polynomial from the original formulation,

one substitutes t = −q2 then multiplies by (q + q−1).

Example 1.2. In Example 1.1 we found the Kauffman bracket of the Hopf link

to be −A4 − A−4. For knot diagrams, the writhe is independent of the choice

of orientation. For link diagrams, the writhe depends upon the particular link

orientation. In the case of the Hopf link depicted in the previous example, there

are two possibilities for the writhe, w(D) = +2 or w(D) = −2, depending upon the

choice of orientations. Suppose w(D) = +2. Then the original version of the Jones

polynomial is

(−A3)−2(−A4 − A−4) = −A−2 − A−10 7→ −t1/2 − t5/2,

and Khovanov’s renormalization is

−t1/2 − t5/2 7→ (q + q5)
·(q+q−1)

−−−−→ (q + q5)(q + q−1) = 1 + q2 + q4 + q6.

A more complicated link invariant is the Khovanov homology of a link. In

[14] Khovanov defines a homology theory for knots and links that “categorifies” the

Jones polynomial. Categorification refers to the process of translating a set-theoretic

structure to a category theoretic one. Khovanov gives a categorification of the Jones

polynomial by defining a homology theory whose graded Euler characteristic is equal

to the Jones polynomial. Before giving a precise definition of Khovanov homology,

we will review the definition of a (co)chain complex and its resulting (co)homology

groups.

Definition 1.3. A chain complex (resp. cochain complex ) is a sequence of abelian
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groups or modules {Ci} (resp. denoted {Ci}) along with homomorphisms di : Ci →

Ci−1 (resp di : Ci → Ci+1) which satisfy di ◦ di+1 = 0 (resp. di+1 ◦ di = 0) for all i.

Such a complex is denoted by (Ci, di) (resp. (Ci, di)).

For a chain complex we have that im(di+1) ⊆ ker(di) because di ◦ di+1 = 0.

Furthermore, since the Ci are abelian groups or modules, we can take the quo-

tient ker(di)/im(di+1). Similarly, for a cochain complex we can take the quotient

ker(di)/im(di−1). These facts allow us to define homology and cohomology as fol-

lows.

Definition 1.4. Given a chain complex (Ci, di), the ith homology group is Hn =

ker(di)/im(di+1). Similarly, the ith cohomology group of a cochain complex (Ci, di)

is Hn = ker(di)/im(di−1).

One might notice that the above definitions of homology and cohomology are

more or less the same, but with arrows reversed. Due to this similarity, we are

sometimes relaxed with terminology and simply refer to both as “homology”. This

is the case for Khovanov homology; Khovanov “homology” is actually a cohomology.

There are many preliminary definitions needed before getting to Khovanov

homology. The setup and notation used here differs somewhat from the original

formulation of Khovanov homology in [14]. As Viro does in [21], we define our

chain modules as submodules of a graded module with a certain index, but much of

the notation we use is more consistent with [3] and [14]. Also, as to mimic the use of

the Kauffman bracket in constructing the Jones polynomial, [3] and [14] define an

intermediary chain complex before defining the Khovanov complex used to obtain

Khovanov homology. Here, we define Khovanov chain complex directly.

To each crossing of a link diagram, we can assign a short line segment called

a (Kauffman) marker. As shown at the top of Figure 1.3, the marker is called

a positive marker (resp. negative marker) if it must be turned clockwise (resp.

counter-clockwise) to coincide with the over crossing strand. Each marker defines a
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smoothing of the underlying crossing which reconnects the four incoming strands of

the crossing to that there is no longer a double point. There are two possible ways

to “smooth” a crossing, positive or negative; the type of smoothing is dictated by

the type of marker present, as shown in Figure 1.3.

positive marker negative marker

positive smoothing negative smoothing

Figure 1.3: Positive and negative markers and their resulting smoothings.

Given a link diagram D, a Kauffman state sD is the diagram D together with a

collection of markers, one for each crossing. Since each marker defines a smoothing

near the crossing with no double point, a Kauffman state sD defines a complete

smoothing of D which consists of a collection of disjoint circles. An example of a

Kauffman state and the corresponding complete smoothing is given in Figure 1.4.

A diagram D A Kauffman state sD A complete smoothing

Figure 1.4: A Kauffman state and its corresponding complete smoothing
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Note that a graded vector space is a vector space along with extra informa-

tion concerning how the vector space is decomposed into vector subspaces. Let

W =
⊕

kWk be a graded vector space. The graded dimension of W is q dimW :=

Σkq
k dimWk, and the degree shift {`} on W , denoted W{`}, changes the grading in-

dex by ` so that W{`} :=
⊕

kWk−`. Hence, we have that q dimW{`} = q`q dimW .

Let V be the graded vector space with generators v+ and v− of dimension 1

and −1, respectively. To be clear, the graded dimension of V is q dimV = q + q−1.

The chain modules for Khovanov homology will be defined in terms of the vector

space V , but first we must define the appropriate index to use.

Given a Kauffman state, let σ+ (resp. σ−) denote the number of positive

markers (resp. negative markers) in the Kauffman state. Then for any Kauffman

state sD of an oriented diagram D we define i(sD) = σ+ − n−. To each Kauffman

state sD of a link diagram D, associate the graded vector space Vs(D) := V ⊗k{σ+ +

n+ − 2n−}, where k is the circles in the complete smoothing of sD.

Given an oriented link diagram D, let C(D) denote the free module generated

by the graded vector spaces Vs(D) ranging over all Kauffman states sD of D. Let

Ci(D) denote the the submodule of C(D) generated by the graded vector spaces

Vs(D) with i(sD) = i.

The differential map ∂ is equal to a linear combination of “local” maps, de-

noted by ‘d’s, between certain graded vector spaces Vs(D) whose i-grading differs by

one. Since each Vs(D) is associated with a Kauffman state, these local maps can be

described geometrically. The only non-zero local maps are those between Kauffman

states whose markers are all the same except at one crossing. A local geometric

interpretation of the map d is given in Figure 1.5; note that d always maps to the

Kauffman state with fewer positive markers.

Recall that each Kauffman state defines a complete smoothing. Hence, the

map d can also be interpreted as being between complete smoothings, as shown in
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Figure 1.5: A geometric interpretation of the differential map d.

Figure 1.5. Since each Kauffman state sD is associated to Vs(D) := V k{σ+ + n+ −

2n−}, where k is the circles in the complete smoothing of sD, it is important to

pay attention to the number of circles before and after applying the map d. As

illustrated in Figure 1.6, the map d either joins two circles into one or splits one

circle into two. Hence, the map d can locally be thought of as d : V ⊗ V → V or

d : V → V ⊗ V .

Figure 1.6: Examples of d joining circles (left) and splitting a circle (right).

If d represents the joining of circles, then d : V ⊗ V → V is defined by

v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0
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If d represents the splitting of circles, then d : V → V ⊗ V is defined by

v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

(q + q−1)2 − 2q(q + q−1) + q2(q + q−1)2

= q4 + q2 + 1 + q−2
(normalization)

−−−−−−−→ q5 + q
(q = −

√
t)

−−−−−→ −t5/2 − t1/2

Figure 1.7: The Khovanov complex of a diagram for Hopf link

The Khovanov chain complex for a diagram of the Hopf link is shown in

Figure 1.7, but the Khovanov homology is not given. At the bottom of this figure,

the calculations used to obtain graded Euler characteristic are shown. The graded

Euler characteristic of a chain complex is a Laurant polynomial which equals the

alternating sum of the graded dimensions of the chain groups (or, in our case,

modules). It is proved in [14] that the graded Euler characteristic of the Khovanov

chain complex is equal to the Jones polynomial (renormalized as before, in the

variable q). Indeed, we see that the graded Euler characteristic from the bottom of
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Figure 1.7 is equal to the Jones polynomial at the end of Example 1.2.

Remark 1.5. Sometimes the graded Euler characteristic of a chain complex is

defined to be the alternating sum of the resulting homology groups instead of the

chain groups. It turns out that, for Khovanov homology, these two definitions yield

the same result. This has to do with the fact that the differential is a degree zero

map. For more on this, see [3] or [14].

The Khovanov homology is obtained from the Khovanov chain complex in the

usual way, as defined in Definition 1.4. Using the example from Figure 1.7, one

finds that the homology consists of two copies of V in the i = 0 grading and two

copies of V in the i = 2 grading.

1.2 Motivation

In Section 1.1 we saw that Kauffman states served as the building blocks for

the chain modules of Khovanov homology. Corresponding to each Kauffman state

of a link diagram there is a surface whose boundary is that link. In [18] Ozawa

names such surfaces state surfaces, so we will use the same terminology here. The

initial motivation for the “diagramless” link homology theory defined in this thesis

was the possibility of using state surfaces as the building blocks for chain modules

of a chain complex not dependent on link diagrams.

Figure 1.8: A Kauffman state, its complete smoothing, and the state surface.

Example 1.6. Figure 1.8 gives an example of a state surface built from the same

Kauffman state used as an example in Figure 1.4. Building a state surface from



11

a Kauffman state is meant to be intuitive, but for detailed instructions on how to

construct a of state surface, see [1] or [18].

Since the information of positive and negative markers is not present on state

surfaces, another tool must be used to keep track of the homological grading. It

turns out that the signature of surfaces can be used as the homological grading

because the signature of a state surface is related to the number of positive and

negative markers from its corresponding Kauffman state. In brief, the signature of

a surface is equal to the difference of the number of positive and negative eigenvalues

of its Goeritz matrix. For more on this, see Definitions 2.1 and 2.2 of this thesis, or

see [7].

Although state surfaces seem to be the appropriate choice for generating the

chain modules, a modification must be made in order to define a differential. In the

Khovanov complex, the differential is composed of maps that act locally near cross-

ings. With state surfaces, however, there is no information concerning crossings.

To remedy this, we allow our surfaces to contain properly embedded arcs, called

crosscuts, that correspond to crossings of the underlying Kauffman state. Crosscuts

are formally defined in Definition 2.3, and an example of a surface with crosscuts is

given in Figure 2.1.

The presence of crosscuts on our state surfaces allow one to find maps between

surfaces (with crosscuts) analogous to the local maps comprising Khovanov’s differ-

ential shown in Figure 1.5. These new local maps act near a crosscut c by replacing

a neighborhood of c with a new piece of surface, as shown below.2

dc
c

c

2Note that the crosscuts shown are colored and oriented. The color and orientation of a crosscut
provide additional information which is necessary for various reasons. See Chapter 2 for details.
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At this point, one could generate homology using state surfaces as chain mod-

ules, surface signature as homological grading, and the above map as the differential.

However, since state surfaces are in a one-to-one correspondence with Kauffman

states, and since the differential between surfaces is analogous to Khovanov’s differ-

ential, one would of course find that the resulting homology is precisely the same as

Khovanov’s homology.3 Instead, we use this setup to define a link homology theory

whose chain modules are based on surfaces (with crosscuts) that are not dependent

upon Kauffman states or link diagrams. To achieve this we consider all ‘reasonable’

surfaces (with crosscuts), and without any mention of diagrams.

Determining which surfaces are ‘reasonable’ is an intricate process. For ex-

ample, should crosscuts on a surface to correspond to local twisting of that surface,

intuitively replacing the idea of a crossing in a diagram? And how should this be

implemented? After much deliberation, the appropriate class of surfaces was found;

such surfaces are defined in Definition 2.12 and are referred to as Dk-surfaces.

The chain complex built from using Dk-surfaces is defined in Chapter 3 of

this thesis. The resulting homology theory is vast, making calculations of homology

difficult. Ways of reducing the theory to become more manageable are presented in

Chapter 4. The final simplification of the homology theory is named the diagramless

homology of a link.

The methods used for trimming down our initial homology theory to “dia-

gramless” homology were inspired by the ideas in [2], [4], [11], and [14]. Recall that

in our setup for Khovanov homology in Section 1.1 we assigned a graded vector

space to each complete smoothing of a Kauffman state. Similarly, one can associate

to each local map between Kauffman states a two-dimensional cobordism between

the corresponding complete smoothings.4 In [4] Bar-Natan defines local “relations”

3Some details are still needed in order to compute homology, but that is not the point. The
point is that, thus far, the only changes from Khovanov’s original theory have been superficial.

4This association is known as a topological quantum field theory, or TQFT. The TQFT used
in [?] is a functor from the category of two-dimensional cobordisms between one-dimensional
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between cobordisms that are used by others in [2] and [11] to generate a module

referred to as the Bar-Natan skein module. A precise definition of the Bar-Natan

skein module is given later, in Chapter 4.

The use of the Bar-Natan skein module suggests that the diagramless homol-

ogy of a link should be related in some way to the Khovanov homology of that link.

This relationship is explored in Chapter 5, where we find that there is an injection

from the diagramless chain complex to the Khovanov chain complex. Furthermore,

we are able to prove that the span of state surfaces and the span of Dk-surfaces are

equal modulo the relations constituting the Bar-Natan skein module. The result of

this is Theorem 5.14, which says that the diagramless homology of a link is equal

to the direct sum of some number of copies of Khovanov homology for that link.

It might seem that after all that work we merely ended up duplicating Kho-

vanov’s theory, despite avoiding diagrams. However, the diagramless theory has its

advantages. Unlike Khovanov homology, diagramless homology easily generalizes

to links in 3-manifolds. Since the dependence of Khovonov homology on diagrams

impedes its ability to extend it to links in 3-manifolds, the possibility of generalizing

the diagramless theory gives a roundabout way of extending Khovanov homology.

This is discussed in more detail in Section 7.1.

manifolds to the category of graded Z[c]-modules. See [14] or [15] for more details.
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CHAPTER 2

PRELIMINARY DEFINITIONS

Readers unfamiliar with the next two definitions can find more information in

[7].

Definition 2.1. Given a surface F , the Goeritz matrix1 GF of F is the n×n matrix

whose (i, j) entry is lk(ai, τaj), where the ai are generators for H1(F,Q), ‘lk’ denotes

linking number, and τaj is the pushoff of 2aj into the complement of F .

Definition 2.2. The signature of a surface F , denoted by sig(F ), is defined to be

the signature of the Goeritz matrix GF of that surface. Recall that the signature

of a matrix is the number of positive eigenvalues minus the number of negative

eigenvalues.

Given a link L, we will only be interested in surfaces F such that ∂(F ) = L.

Our surfaces will be decorated by dots and crosscuts, a term which is defined next.

Definition 2.3. Given a surface F with boundary, a crosscut c ∈ F is a properly

embedded arc in F , i.e. ∂c = c ∩ ∂F . In other words there exists an embedding

f : [0, 1]→ F with f({0, 1}) = f([0, 1]) ∩ ∂F .

Remark 2.4. In this thesis, crosscuts will be given an orientation (direction).

Definition 2.5. Crosscuts will be labeled as active or inactive. Active crosscuts

will be denoted by a green color, and inactive crosscuts by a red color.

Remark. Crosscuts on a surface are present to keep track of twisting that may occur

in the surface. Just as there are two different ways to twist a surface (left-hand and

right-hand twists), there are two different types of crosscuts: active and inactive.

An example of a surface with crosscuts is given in Figure 2.1.

Definition 2.6. For a surface F with crosscuts, the cross-dual of F , denoted F cd,

1The reader may be used to the definition of the Goeritz matrix being associated with generators
for H1(F,Z) as opposed to H1(F,Q) (as in [7]). For this thesis we work over Q for simplicity,
without affecting any of our results.
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CCO CCO

Figure 2.1: A surface with crosscuts.

is the surface obtained by replacing each neighborhood of each crosscut in F by the

corresponding piece of (locally oriented) surface as explained below:

• Cut along each inactive crosscut and insert a locally oriented piece of surface

with a left-handed 1
2
-twist so that the local orientation agrees with the (cut)

crosscut sites. The orientation information is kept local, and the crosscut

information is forgotten.

F F cd

• Cut along each active crosscut and insert a locally oriented piece of surface

with a right-handed 1
2
-twist so that the local orientation agrees with the (cut)

crosscut sites. The orientation information is kept local, and the crosscut

information is forgotten.

F F cd

Remark 2.7. At times in this thesis we will need to refer to the locally oriented

pieces of surface inserted at (cut) crosscut sites on a cross-dual surface. Denote the

piece of (locally oriented) surface inserted along the crosscut c by F cd|c.

The next definition makes use of this new notation.
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Definition 2.8. Given a cross-dual surface F cd with pieces of (locally oriented) sur-

face {F cd|c1 , ..., F cd|ck}, the skeleton of F cd, denoted skel(F cd), equals those pieces

of surface along with the boundary of the cross-dual. That is,

skel(F cd) = ∂(F cd) ∪
(
F cd|c1 ∪ · · · ∪ F cd|ck

)
.

Example 2.9. Below is an example of a surface F , its cross-dual F cd, and the

skeleton skel(F cd).

�

@
@I

cross-dual−→

F

skeleton−→

F cd

skel(F cd)

Definition 2.10. For F a surface with crosscuts {c1, ..., ck}, refer to the components

of F−{N(c1), ..., N(ck)} as the facets of F , where N(c) is a small open neighborhood

in F of the crosscut c. On the other hand, we refer to the components of F cd −

skel(F cd) as the facets of F cd.

The following lemma tells us that the two definitions of facets above describe

the same things. This lemma will be used in later sections.

Lemma 2.11. The facets of F are isotopic to the corresponding facets of F cd.

Proof. Facets of F and F cd are each obtained by removing surface near cross-

cuts. Since F and F cd only differ near crosscuts, this means that the facets of F

are isotopic to the corresponding facets of F cd. Figure 2.2 shows the relationship

between facets of F and facets of F cd near a crosscut.

Definition 2.12. A Dk-surface is a compact surface F with k crosscuts {c1, ..., ck}
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F F cd

facets of F facets of F cd∼=
Figure 2.2: The facets of F and F cd.

such that

• the crosscuts are oriented and ordered,

• the facets of F are allowed to be decorated by dots (which are not allowed to

move from one facet to another),

• the cross-dual F cd is orientable (this global orientatibility is independent of

the local orientations of the cross-dual), and

• there exists embedded 3-balls B3
+, B

3
− ⊆ S3 and an embedded oriented 2-

sphere Σ ⊆ S3, with Σ = B3
+ ∩B3

−, such that

◦ skel(F cd) ⊆ Σ,

◦ all of the locally oriented pieces of surface of F cd agree with the orienta-

tion of Σ, and

◦ F cd − skel(F cd) = {the facets of F cd} ⊆ B3
+.

Although the crosscuts of a Dk-surface are to be ordered, we will define a

homology theory (in Section 4.2) for which the particular choice of crosscut ordering

does not matter.

Example 2.13. It is easy to check that the surface F given in Example 2.9 is a Dk-

surface (except that an ordering of the crosscuts is not given). F cd is an orientable

surface, the skeleton of F cd is planar with both pieces of surface having a positive
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orientation in the plane, and F cd can be viewed as having all of its facets sitting

behind the plane. Hence, F is a D2-surface for the Hopf link because F has k = 2

crosscuts and ∂(F ) = the Hopf link.
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CHAPTER 3

CHAIN MODULES AND THE DIFFERENTIAL

3.1 Chain Modules

In the definition of Dk-surface, it was noted that the facets of F are allowed

to be decorated by dots. Denote the total number of dots on the surface F by δ:

δ(F ) = # dots on F.

The homology has four gradings, which are each fixed by the differential d.

Given a Dk-surface F , define

• I(F ) := sig(F ). This will be our homological grading.

• J(F ) := −χ(F )− sig(F ) + 2 · δ(F ). This will be our polynomial grading.1

• K(F ) := k. This is the number of crosscuts on F .

• B(F ) := sig(F ) + (# of active crosscuts on F ).

The chain modules for homology are defined next. In later sections, reduced

chain modules will be introduced to produce a more interesting homology.

Definition 3.1. Given a link L, we let Ci,j,k,b(L) be the free module of isotopy

classes of Dk-surfaces in S3 with I = i, J = j,K = k,B = b, and ∂(F ) = L.

3.2 The Differential

Now the process of defining our differential d : Ci,j,k,b → Ci+1,j,k,b begins. We

define d in parts, acting locally on neighborhoods of active crosscuts on Dk-surfaces

in Ci,j,k,b.

Definition 3.2. Given a Dk-surface F with an active (and oriented) crosscut c on

F , define dc to be the map which replaces a neighborhood of c in F with the piece

1The J-grading is called the polynomial grading due to its similarity to the polynomial grading
found in Khovanov homology.
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of surface shown below2:

dc
c

c
F dc(F )

There is a potential issue with the above definition that needs to be checked.

Given a neighborhood of a crosscut c in F , in general there is no way of distinguish-

ing one side of this piece of surface from the other. One might worry that viewing a

neighborhood of c from the ‘front’ side versus the ‘back’ side will result in different

surfaces after applying dc. However, this is not the case. This is proved below.

Theorem 3.3. The same surface is obtained after applying dc to either side of a

neighborhood of the crosscut c.

Proof.

Make note that when the x, y, and z axes are referred to,

the coordinate system shown to the right is being used.

z

x
y

First, rotate the piece of surface 180◦ about the z-axis so that the ‘back’ side

is shown, then apply dc.

‘front’ side

cA B
� about z axis

−−−−− →

‘back’ side

c AB

applying dc

−−−−− → AB

Next we isotopically stretch and twist parts of the surface so that what follows

becomes easier to visualize. What follows is a 180◦ rotation about the y-axis that

rotates everything except for the piece of surface marked with a *.

2For figures depicting surfaces, darker shading indicated the presence of more layers of sur-
face. For example, in Definition 3.2, the surface labeled dc(F ) is a 1

2 -twisted band with a second
1
2 -twisted band attached to it. The second 1

2 -twisted band has a darker shading to indicate that
it is in front of the other band from our viewpoint.
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AB
isotopy

−−−−− → AB

isotopy

−−−−− →
AB

*

� about y axis

−−−−− →

AB

Lastly, perform a 180◦ rotation about the x-axis, then isotopically push down

the crosscut to show that we have the same piece of surface that applying dc to the

‘front’ side would have given.

AB

� about x axis

−−−−− → A B

isotopy

−−−−− → cA BAB cA B

We define the map d in terms of the dc’s and show that d is well defined on

Ci,j,k,b.

Definition 3.4. Define d : Ci,j,k,b −→ Ci+1,j,k,b by

d(F ) :=
∑

active crosscuts c∈F

(−1)α(c)dc(F ),

where α(c) is the number of inactive crosscuts that come before c in the

ordering of crosscuts on F . The map d is defined on linear combinations of surfaces

by linear extension.

To see that the map d is well defined, we must show that if F is a Dk-

surface with grading (I, J,K,B) = (i, j, k, b), then d(F ) is a Dk-surface with grading

(I, J,K,B) = (i+ 1, j, k, b).

Before proving the well-definedness of d, a lemma concerning the generators
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for the 1st homology of a compact surface will be useful.

Lemma 3.5. Given a compact surface F , and a neighborhood of a closed inter-

val embedded inside the surface (as shown in the proof below), there is a basis for

H1(F,Q) which has at most one S.C.C. (simple closed curve) class representative

running through the local piece of surface in question. Furthermore, the basis can

be chosen so that this representative only runs through this piece of surface once.

Proof. Let F be a compact surface, suppose {[α1], [α2], ..., [αn]} is a basis

for H1(F ) which has a S.C.C. class representative which runs through the piece of

surface in question more than once. Suppose without loss of generality that α1 is

the S.C.C. class representative which runs through the piece of surface more than

once. Since α1 runs through the piece of surface multiple times, it may or may not

change directions from one pass through the piece of surface to the next.

First we consider the case where α1 runs through the piece of surface at least

once in both directions.

α1

α1

α1

α1

β0 β1

Replace α1 with the two S.C.C.’s shown above, β0 and β1, which are defined in

terms of (part of) α1. Construct β1 and β0 so that [α1] = [β1]− [β0]. Then

span({[α1], [α2], ..., [αn]}) ⊆ span({[β0], [β1], [α2], ..., [αn]}).

As {[α1], [α2], ..., [αn]} is a basis, it spansH1(F ), so the above set inclusion is actually

an equality. Since {[β0], [β1], [α2], ..., [αn]} is a spanning set with n + 1 elements,

it must be linearly dependent. This means that there is an n-element subset of

{[β0], [β1], [α2], ..., [αn]} which is a basis for H1(F ). Notice that β0 and β1 must run

through the piece of surface strictly fewer times than α1 does. Hence, this process

can be repeated a finite number of times until there is a basis for H1(F ) which

contains no S.C.C.’s running through the piece of surface multiple times in different

directions.
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Now consider the case where α1 runs through the piece of surface in the same

direction each time.

α1

α1

α1

α1

↑
β1

↑
β0

Replace α1 with the two S.C.C.’s shown above, β0 and β1, which are defined in

terms of (part of) α1. This time, construct β1 and β0 so that [α1] = [β1] + [β0],

again yielding

span({[α1], [α2], ..., [αn]}) ⊆ span({[β0], [β1], [α2], ..., [αn]}).

As {[α1], [α2], ..., [αn]} is a basis for H1(F ), it spans H1(F ). This implies that the

above set inclusion is instead an equality. The set {[β0], [β1], [α2], ..., [αn]} is then a

spanning set for H1(F ) with n+ 1 elements, and so it’s linearly dependent. By this

linear dependence there must be an n-element subset which is a basis for H1(F ).

Therefore, this process uses the basis {[α1], [α2], ..., [αn]} to find a basis that replaces

α1 with a S.C.C. that passes through the piece of surface strictly fewer times than

α1 does. Repeat this process until a basis for H1(F ) is found in which every S.C.C.

passes through the given piece of surface at most once each.

Lastly, the following must be shown: given a basis for H1(F ) in which every

S.C.C. passes through the given piece of surface 0 or 1 times, a basis can be created in

which (at most) one S.C.C. runs through the piece of surface. Let {[α1], [α2], ..., [αn]}

be the given basis. If 0 or 1 S.C.C.’s pass though the piece of surface, we are done.

Otherwise, suppose without loss of generality that α1 and α2 both pass through the

piece of surface. Whether or not α1 and α2 pass through the surface in the same

direction does not matter, since [α1] = [−α1].

α2

α1

α2

α1

β β

Now define β as shown, so that [α1] + [α2] = [β]. Since [α1] = [β] − [α2], we have
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that

span({[α1], [α2], ..., [αn]}) ⊆ span({[β], [α2], ..., [αn]}).

Since {[α1], [α2], ..., [αn]} is a basis for H1(F ), the above set inclusion is actually an

equality. Thus, the set {[β], [α2], ..., [αn]} is a basis for H1(F ) which has one fewer

element passing through the given piece of surface than the basis {[α1], [α2], ..., [αn]}.

This process replaces a basis which has two or more S.C.C.’s which pass through

the piece of surface with a basis that has one fewer element passing through the

piece of surface. Repeat this process until we are left with a basis that has only one

element passing through the given piece of surface.

Now we return to the matter at hand, working to show that d is well defined.

Proposition 3.6. The differential d increases the homological grading I (= signa-

ture) by +1.

Proof. It suffices to consider an arbitrary active crossing of an arbitrary surface

F ∈ Ci,j,k,b.

dc
cF dc(F )

c

By Lemma 3.5, we may assume we have a basis {[β1], ..., [βn]} for H1(F,Q) which

has at most one curve, say β1, passing through the crosscut c, at most once. Since F

and dc(F ) only differ locally at the piece of surface shown, we can construct a basis

{[α0], [α1], ..., [αn]} for H1(dc(F ),Q) from the basis {[β1], ..., [βn]}. Since none of

β2, ..., βn cross the local piece of surface, we can choose {α2, ..., αn} that are isotopic

to {β2, ..., βn}. Let α1 be the curve corresponding to β1 as shown below.

F
β1

dc(F )α1

α0

Notice that a curve traveling around the 1
2
-twisted loop in dc(F ) is needed to span

H1(F,Q). Let α0 be the curve traveling around the 1
2
-twisted loop shown in the

figure above. Then {[α0], [α1], ..., [αn]} is a basis for H1(dc(F ),Q).
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Now consider the Goeritz matrices for dc(F ) and F . We have that dim(Gdc(F )) =

(n + 1) × (n + 1) and dim(GF ) = n × n. Let m = lk(α1, τα1). Since α1 travels

along surface that has an extra right-handed 1
2
-twist compared with β1, we have

that lk(β1, τβ1) = m − 1. Let A be the (n − 1) × (n − 1) minor of the Goeritz

matrix corresponding to {α2, ..., αn}. Since {α2, ..., αn} are isotopic to {β2, ..., βn},

A is also the minor of the Goeritz matrix corresponding to {β2, ..., βn}. From this

we have that

(
Gdc(F )

)
=



1 1 0

1 m ←R→

0

↑

C

↓

A



α0

α1

α2

...

αn

τα0 τα1 τα2 · · ·ταn

and

(
GF

)
=



m− 1 ←R→

↑

C

↓

A



β1

β2

...

βn

τβ1 τβ2 · · · τβn

,

where row and column of entries denoted by R and C are the same in the two

matrices above. This is due to the fact that α1 and β1 are the same away the

local pieces of surface shown. Now, by Sylvester’s law of inertia [20], signature is

unchanged by matrix congruence, and so the following calculation is useful (where

‘∼=’ denotes matrix congruency, not matrix similarity):
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(
Gdc(F )

)
=



1 1 0

1 m ←R→

0

↑

C

↓

A


∼=



1 0 0

0 m− 1 ←R→

0

↑

C

↓

A


=

 1 0

0 GF

 .

It follows from the divide-and-conquer method for computing eigenvalues that sig(dc(F ))

= sig(F )+1.

Proposition 3.7. The differential d fixes the gradings J,K and B.

Proof. It is a simple exercise to check that applying dc changes the Euler

characteristic by -1. Since applying dc does not change the number of dots on a

surface, we have that δ(F ) = δ(dc(F )). Proposition 3.6 implies that applying dc

increases signature by +1, and so J = −χ− I + 2δ the same for F and dc(F ).

The number of crosscuts does not change, so K is also fixed.

Finally, using Proposition 3.6 gives us that B = (b + # of active crosscuts) is

constant.

Proposition 3.8. The differential d applied to a Dk-surface is a Dk-surface.

Proof. Assume F is a Dk-surface, with oriented crosscuts {c1, ..., ck}. Consider

the cross-dual surfaces of F and dc(F ) as well as their skeletons. Since F and

dc(F ) only differ near the crosscut c, and since the corresponding cross-dual surfaces

skeletons only potentially differ in that same area, we restrict our attention to a

neighborhood of the crosscut c. This setup is depicted in Figure 3.1.

Consider the cross-dual surfaces shown in Figure 3.1. If ignore local orienta-

tions and keep track of the two sides of the surface in each figure, we see that F cd is

orientable if and only if (dc(F ))cd is orientable. Also, note that the skeletons of F cd

and (dc(F ))cd are isotopic to one another (even with the consideration of the local

orientations). Therefore, if F satisfies the conditions required to be a Dk-surface,
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dc
cF dc(F )

↓ cross-dual ↓ ↓ cross-dual ↓

F cd (dc(F ))cd

↓ skeleton ↓ ↓ skeleton ↓

↓ isotopy ↓
iso

top
ic

Figure 3.1: Dk-surfaces F and dc(F ) near crosscut c, along with their skeletons.

then dc(F ) satisfies those conditions as well.

The previous propositions together prove the following theorem.

Theorem 3.9. The map d : Ci,j,k,b −→ Ci+1,j,k,b is well-defined.

Now recall each local map dc acts on a neighborhood of the crosscut c and

nowhere else. Given two crosscuts ci and cj, we can choose small enough neighbor-

hoods so that the maps dci and dcj do not interact with one another. This means

that these maps (positively) commute with one another. Since we defined the map

d : Ci,j,k,b −→ Ci+1,j,k,b by

d :=
∑

F∈Ci,j,k,b

∑
active crosscuts c∈F

(−1)α(c)dc,

we get that all pairs of maps dci and dcj will negatively commute. This is be-

cause (−1)α(cj)dcj ◦ (−1)α(ci)dci and (−1)α(ci)dci ◦ (−1)α(cj)dcj will have opposite sign

regardless of whether i < j or j < i. Thus the following theorem is proved.

Theorem 3.10. d ◦ d = 0.
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CHAPTER 4

REDUCING TO DIAGRAMLESS HOMOLOGY

4.1 Reduced Chain Complexes

In this section, we use the chain complex defined in the previous sections

to define a reduced chain complex. The idea is to take the quotient of the chain

complex C by a certain submodule. This submodule is generated by skein relations

that come from a Frobenius system.

Before defining Frobenius system, we must first define Frobenius extension.

There are different (equivalent) ways to define Frobenius extension, but we will

follow [15], where Khovanov defines a Frobenius extension as an inclusion ι : R→ A

of commutative unital rings whose left and right adjoint functors are isomorphic.

Khovanov continues by giving the following proposition (whose proof can be found

in section 4 of [10]).

Proposition 4.1. The inclusion ι is a Frobenius extension if and only if there exists

an A-bimodule map ∆ : A → A ⊗R A and an R-module map ε : A → R such that

∆ is coassociative and cocommutative, and (ε⊗ Id)∆ = Id.

Still following [15], we now define Frobenius system with the above proposition

in mind.

Definition 4.2. A Frobenius extension, together with a choice of ε and ∆, will be

denoted F = (R,A, ε,∆) and called a Frobenius system.

Remark 4.3. Since we will be using results from Kaiser’s paper [11], it should

be noted that Kaiser defines a Frobenius algebra to be what we call a Frobenius

system. Kaiser reserves the term Frobenius system for when a choice of ui, vi ∈ A

for which ∆(1) = Σr
i=1ui ⊗R vi is specified.

Now we turn our attention to a specific Frobenius system (which we will denote

by F5 in order to be consistent with [15]).
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Definition 4.4. Let F5 be the Frobenius system defined by R = Z[h, t], A =

R[x]/(x2−hx− t), ε(1) = 0, ε(x) = 1, and ∆(1) = 1⊗ x+ x⊗ 1−h(1⊗1). Then

∆(x) follows from A-bilinearity:

∆(x) = ∆(1)x = (1⊗ x+ x⊗ 1− h(1⊗ 1))x

= 1⊗ x2 + x⊗ x− h(1⊗ x)

= 1⊗ (hx+ t) + x⊗ x− 1⊗ (hx)

= 1⊗ t+ x⊗ x

Remark 4.5. The Frobenius system F5 is referred to as the the rank two universal

Frobenius algebra in [11]. It is universal in the sense that any rank two Frobenius

system can be obtained from F5 by base changing and ‘twisting’ – see [15] for further

explanation and a proof.

In [11], Kaiser obtains skein relations from a given Frobenius system by allow-

ing surfaces to be ‘colored’ by elements of A. We follow Kaiser’s procedure using F5

as our Frobenius system. Since {1, x} is a basis for F5, it suffices to only consider

colorings by 1 and x. In this thesis, Dk-surfaces may be marked by dots. Identify

(the coloring of) 1 to all undotted facets of Dk-surfaces and identify (the coloring

of) x to all once-dotted facets of Dk-surfaces.

The Dk-surfaces with n ≥ 2 dots would be identified with a coloring of xn;

however, since x2−hx− t = 0, such surfaces may always be written as Z[h, t]-linear

combinations of surfaces with at most one dot on each facet. An example of this is

shown in Figure 4.1.

Remark 4.6. By assigning one of the two basis elements {1, x} of A = Z[x]/(x2−

hx−t) to every facet of each (non-zero) Dk-surface F , we are associating A⊗n to each

Dk-surface F with n facets. This will be useful later when calculating homology.

We have:

Ci,j,k,b(L) :=
⊕

Dk-surfaces F , with

A⊗n,

I = i, J = j, B = b, ∂(F ) = L
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•
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•
+ t ��

��1

•

Figure 4.1: The relation x2 − ht− t = 0 applied to Dk-surfaces.

where n is the number of facets of F .

Following [11], we now use our Frobenius system to define the following sub-

modules.

Definition 4.7. Let R(F5)i,j,k,b(L) be the submodule of Ci,j,k,b(L) generated by the

following four elements:

(S0) Any Dk-surface F ∈ Ci,j,k,b(L) which has an undotted sphere as a component.

That is, there exists a (possibly null) Dk-surface F ′ ∈ Ci,j,k,b(L) such that

F = F ′ t Σ, where t denotes disjoint union and Σ is an undotted sphere.

F ′ t )(

(S1) The difference of a Dk-surface F ∈ Ci,j,k,b(L) and the union of F with a once-

dotted sphere component.

F − F t
•

)()(

(NC) If a Dk-surface F ∈ Ci,j,k,b(L) has a simple closed curve γ ∈ F that [1] does not

intersect any crosscuts and [2] bounds a disk D ∈ S3 satisfying D∩F = γ, then

let F̄ denote the surface obtained from compressing F along D. Compression

involves replacing an annular neighborhood of γ with two disks, D− and D+, a

process that may or may not split the facet involved into two different facets.
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Let F̄• (resp. F̄ •) denote the surface F̄ with a dot placed on the part of the

surface comprised of D− (resp. D+). The combination F − F̄• − F̄ • − hF̄ is

an element of R(F5)i,j,k,b(L).

A local picture of such an element is given below.

− • −
•

− h

Remark 4.8. Since we plan to take the quotient Ci,j,k,b(L)/R(F5)i,j,k,b(L), the el-

ements of R(F5)i,j,k,b(L) will be equal to zero. Hence, we will often refer to (S0),

(S1) and (NC) as ‘relations’ (specifically, they are known as the sphere relations and

the neck-cutting relation, respectively). The reader should note that for relations

involving multiple Dk-surfaces, if one surface is a Dk-surface, then all surfaces are

Dk-surfaces. To ensure that R(F5)i,j,k,b(L) is indeed a submodule of Ci,j,k,b(L), we

must have that relations involving multiple Dk-surfaces all have the same values of

the gradings I, J,K and B. This is proved below.

Proposition 4.9. For each relation defined in R(F5)i,j,k,b(L), all surfaces involved

have the same value of I, J,K, and B.

Proof. It is only necessary to check the relations involving multiple surfaces,

(S1) and (NC).

(S1): A sphere cannot contribute to signature, so I is unchanged. Since a dotted

sphere contributes +2 to Euler characteristic and has one dot, J = −χ−I+2δ

is the same after the removal of the dotted sphere. As no crosscuts are present

on a sphere, K and B are also unchanged.

(NC): For the index I, consider the generators for the 1st homology of the surfaces

involved. If the surface with the neck does not need to have a generator run
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along the neck, then a curve traveling around the neck must be null-homotopic.

In this case the local relation would not affect any of the generating curves,

and hence would not affect signature. Suppose there are generators of the 1st

homology that run along the neck. By an argument similar to that in the

proof of Lemma 3.5, we can find a basis {[α1], [α2], ..., [αn]} in which only one

element runs along the neck, traveling across it only once. Without loss of

generality, call this element α1. In this case, a curve traveling around the neck

could not be null-homotopic, and therefore would be a non-trivial element of

the 1st homology, different from α1. Without loss of generality, let α2 be this

curve. See Figure 4.2 for a local picture of these curves near a compressing

disk.

α1

α2

Figure 4.2: Homology generators before and after using the relation (NC).

Now, since the set {[α1], [α2], [α3], ..., [αn]} is a basis for the 1st homology of

the surface with the neck, then {[α3], ..., [αn]} would serve as a basis for the

1st homology of the corresponding surface with the cut neck. Now let Gneck

be the Goeritz matrix for the surface with the neck, and Gcut be the Goeritz

matrix for the corresponding surface with the cut neck. Then dim(Gneck) =

n × n and dim(Gcut) = (n − 2) × (n − 2). Letting m = lk(α1, τα1), we have

the following matrix congruence calculation:
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Gneck =



m 1 ← ?→

1 0 0

↑

?

↓

0 Gcut



α1

α2

α3

...

αn

τα1 τα2 τα3 · · · ταn

∼=


0 1 0

1 0 0

0 0 Gcut

 ∼=

−1 0 0

0 1 0

0 0 Gcut



By Sylvester’s law of inertia [20] and the divide-and-conquer method for com-

puting eigenvalues, it follows that sig(Gneck) = sig(Gcut).

Next, it is straightforward to calculate that cutting a neck changes the Euler

characteristic by +2. Since the surface with the cut neck gets an additional

dot, we have that J = −χ− I + 2δ is unchanged. Finally, the local relation d

does not affect crosscuts, so K and L are also unchanged.

Definition 4.10. Define the universal chain modules of L by

UCi,j,k,b(L) := Ci,j,k,b(L)/R(F5)i,j,k,b(L).

Hence, each UCi,j,k,b(L) is a free module of equivalence classes of isotopy classes of

Dk-surfaces in S3 with I = i, J = j,K = k,B = b, and ∂(F ) = L. Let UC denote

the resulting chain complex, called the universal chain complex.

The map d will also serve as the differential for the universal chain complex

UC. For d to be well defined on UC, we must have that d(F ) ∈ R(F5)i,j,k,b(L), for

all F ∈ R(F5)i,j,k,b(L). It suffices to show that applying d to each of the three types

of relations that generate R(F5)i,j,k,b(L) is equal to zero. This is proved below.

Proposition 4.11. The differential d applied to each relation equals zero.

Proof. First consider the (S0) relation. Note that dc only changes a surface

near a neighborhood of a crosscut. Since a sphere cannot have any crosscuts on it, a

surface which has a sphere bounding a ball as a component will still have this same

sphere after applying dc. Therefore the relation still equals zero after applying dc.
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For similar reasons, a sphere with a dot will not be affected by applying dc.

Thus a dotted sphere may be removed before or after applying dc, with the same

effect. So (S1) is also zero after applying dc.

Finally, for (NC), we again exploit the fact that the all of the action of dc

happens away from the relation in question. Recall that for the (NC) relation,

compressing along a disk whose boundary intersects a crosscut is not permitted.

Hence the equality of the surface with the neck and the sum of the dotted surfaces

without the neck carries through after applying dc.

It follows that we still have d ◦ d = 0, so the universal chain complex is indeed

a chain complex. Though one could proceed using the full generality of the F5 (the

‘universal rank two’ Frobenius system), we will only consider the special case of

when h = 0 and t = 0, where A = Z[h, t][x]/(x2 − hx − t) = Z[x]/(x2). This gives

the Frobenius system introduced by Khovanov in [14].

Definition 4.12. Let F1 be the Frobenius system F5, but with h = 0 and t = 0 (We

use F1 to match the notation used in [15]). That is, F1 is the Frobenius system with

R = Z, A = Z[x]/(x2), ε(1) = 0, ε(x) = 1,∆(1) = 1⊗x+x⊗1, and ∆(x) = x⊗x.

The resulting relations that generate the submodule R(F1)i,j,k,b(L) of C are

referred to as Bar-Natan skein relations by Asaeda and Frohman in [2]. Hence, we

will name the quotient modules that we obtain accordingly.

Definition 4.13. Define the Bar-Natan chain modules of L by

BCi,j,k,b(L) := Ci,j,k,b(L)/R(F1)i,j,k,b(L).

Hence, each BCi,j,k,b(L) is a free module of equivalence classes of isotopy classes of

Dk-surfaces in S3 with I = i, J = j,K = k,B = b, and ∂(F ) = L. Let BC denote

the resulting chain complex, called the Bar-Natan chain complex.

Remark 4.14. The Frobenius system F1 is the Frobenius system that will be used

for the remainder of this thesis. Since using F1 implies that h = 0 and t = 0,

the (NC) relation (from Definition 4.7) and the process of reducing facets with 2 or
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more dots (as shown in Figure 4.1) are both simplified. Figures 4.3, 4.4, 4.5, and 4.6

give a visual summary of how the relations from Definition 4.7 and the dot-reducing

process appear under the use of the Frobenius system F1. From here on, we will

refer to this dot-reducing process as the (D2) relation. Together, the four relations

(S0), (S1), (NC) and (D2) are known as the Bar-Natan skein relations in [2].

F t )( = 0

Figure 4.3: The (S0) relation.

F t
•

= F )()(

Figure 4.4: The (S1) relation.

=

•
+ •

Figure 4.5: The (NC) relation.

4.2 The Diagramless Homology of a Link L

In Chapter 2, we required the crosscuts of a Dk-surface to be ordered. In

this section, we prove that different choices of crosscut orderings yield the same

homology for L (see Theorem 4.15). In fact, our Bar-Natan complex can often be

seen as a sum of distinct (but isomorphic) subcomplexes, each of which corresponds
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= 0
• •

Figure 4.6: The (D2) realtion.

to different crosscut ordering. The resulting homology can usually be seen some

number of repeat copies of a more basic quantity.

We wish to avoid having multiple copies of the same homology due to different

(but equivalent) crosscut orderings. With this in mind, we will define an equivalence

relation between certain subcomplexes which only differ by a crosscut reordering.

The diagramless homology of a link L, denoted DH(L), will be constructed by

choosing one representative from each equivalence class of subcomplexes for the

diagramless complex.

Theorem 4.15. Let BC be a Bar-Natan chain complex for the link L with a certain

ordering of crosscuts for each Dk-surface (equivalence class) in BC, and let BC ′ be

the Bar-Natan chain complex for the link L differing from BC only in that the

ordering of crosscuts has been permuted. Then there exists a chain isomorphism

ψ : BC → BC ′.

Proof. Without loss of generality, label the crosscuts of eachDk-surface (equiv-

alence class) of BC by {c1, c2, ..., ck}. The complex BC ′ differs from BC only in that

the ordering of the crosscuts has been permuted. This reordering of the crosscuts

can be seen as an action of the symmetric group Sk on the subscripts of the cross-

cut labels. Given σ ∈ Sk, we have σ({c1, c2, ..., ck}) = {cσ(1), cσ(2), ..., cσ(k)}. Since

Sk is generated by all the transpositions of the form (i i+1), for i = 1, ..., k − 1,

it suffices to prove that the reordering given by σ = (i i+1) yields an isomorphic

chain complex.

For each crosscut, let 0 denote an active crosscut and let 1 denote an inactive
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crosscut. Let m1m2 · · ·mk denote a length k string of 0’s and 1’s – we’ll call this

a binary string. To each surface in BC we associate the binary string m1m2 · · ·mk,

where mj = 0 if cj is active, and mj = 1 if cj is inactive (for 1 ≤ j ≤ k). Use the

notation Fm1m2···mk to denote a surface F which has the binary string m1m2 · · ·mk

associated to it.

The chain isomorphism will depend on the reordering defined by σ ∈ Sk. We

are supposing σ = (i i+1), and so we define the ψσ by sending each Dk-surface

F from the chain complex BC to (+1) or (−1) times the corresponding surface in

BC ′. The surface F gets sent to the surface which is the same as F except that the

crosscuts ci and ci+1 have their subscript labels interchanged. Whether the weight

(+1) or (−1) is used depends on whether the crosscuts ci and ci+1 are active or

inactive. The weight (−1) is used if both crosscuts are inactive, and weight (+1) is

used otherwise. Using the notation described in the previous paragraph, we have

that

ψσ(Fm1···mimi+1···mk) =

 −Fm1···mi+1mi···mk if mi = mi+1 = 1

Fm1···mi+1mi···mk otherwise

It is clear that ψσ is an isomorphism, but we must check that it is a chain

map. To show that ψσ commutes with the differential d, it suffices to show that

ψσ ◦ (−1)α(cj)dcj = (−1)α(cσ(j))dcσ(j)
◦ ψσ for 1 ≤ j ≤ k, where α(c) is the number of

inactive crosscuts that come before c in the ordering of crosscuts on F (as described

in definition 3.4). This problem may be seen as showing that a diagram commutes.

The diagram in question is given below. For ease of notation in constructing the

diagram below, we use 1 < i < i+ 1 < j < k. We will not assume that this true in

general.
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Fm1···mimi+1···0···mk Fm1···mi+1mi···0···mk-

? ?

ψσ

(−1)α(cj)dcj (−1)α(cσ(j))dcσ(j)

Fm1···mimi+1···1···mk Fm1···mi+1mi···1···mk-
ψσ

From how ψ and dcj are defined, we know that ψσ◦(−1)α(cj)dcj = ±[(−1)α(cσ(j))dcσ(j)
◦

ψσ]. To show that we always have ψσ ◦ (−1)α(cj)dcj = +[(−1)α(cσ(j))dcσ(j)
◦ ψσ], it

suffices to show that

sign[ψσ(Fm1···mj−1 0 mj+1···mk)] 6= sign[ψσ(Fm1···mj−1 1 mj+1···mk)]

⇐⇒

sign[(−1)α(cj)dcj ] 6= sign[(−1)α(cσ(j))dcσ(j)
].

(⇒) In this case, exactly one of ψσ(Fm1···mj−1 0 mj+1···mk) and ψσ(Fm1···mj−1 1 mj+1···mk)

is negative. Since ψσ is only negative when i = i + 1 = 1, it must be

that one of mi and mi+1 is mj and the other equals 1. We then have that

α(ci) = α(ci+1)± 1. Hence, [(−1)α(cj)dcj ] = −[(−1)α(cσ(j))dcσ(j)
].

(⇐) If sign[(−1)α(cj)dcj ] 6= sign[(−1)α(cσ(j))dcσ(j)
], then the number of 1’s which

come before mj must be different than the number of 1’s which come before

mσ(j). This could not be the case if either j < i or i + 1 < j, so it must be

that j = i or j = i + 1. Also, if one of mi and mi+1 is mj, and the other

equals 0, then [(−1)α(cj)dcj ] = [(−1)α(cσ(j))dcσ(j)
], a contradiction. Therefore

it must be that one of mi and mi+1 is mj, and the other equals 1. We

then have that ψσ(Fm1···mj−1 0 mj+1···mk) is the positive identity map, and that

ψσ(Fm1···mj−1 1 mj+1···mk) is multiplication by (−1).

Recall that in Definition 4.13, we defined the Bar-Natan chain modulesBCi,j,k,b(L)

of the Bar-Natan chain complex BC to be the free module of equivalence classes of

isotopy classes of Dk-surfaces in S3 with I = i, J = j,K = k,B = b, and ∂(F ) = L.
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In other words, the complex BC is a sequence of free modules BCi,j,k,b(L) with bases

that consist of (equivalence classes of isotopy classes of) Dk-surfaces.

Definition 4.16. Let BC be a Bar-Natan chain complex whose sequence of Bar-

Natan modules BCi,j,k,b have bases {F i,j,k,b
a }a∈Ai,j,k,b and let BD ⊆ BC be a (Bar-

Natan) subcomplex of BC with bases {F i,j,k,b
a }a∈A′i,j,k,b (where all A′i,j,k,b and Ai,j,k,b

are indexing sets with A′i,j,k,b ⊆ Ai,j,k,b for all i, j, k, b). Use BD′ to denote the com-

plementary (Bar-Natan) subcomplex ofBC generated by the basis {F i,j,k,b
a }a∈Ai,j,k,b−A′i,j,k,b .

We say that BD is an isolated subcomplex of BC if there are no non-zero local maps

dc between basis elements in BD and basis elements in BD′. If BD′ is non-empty,

then it follows that BD′ is an isolated subcomplex of BC as well.

Definition 4.17. Given an isolated subcomplex BD ⊆ BC, we say that BD is

i-reducible if there exists an isolated (nonzero) subcomplex BD′ ⊂ BC with BD′ (

BD. Otherwise, we say that BD is i-irreducible.

The following proposition and corollary are both easy to show – their proofs

are left to the reader.

Proposition 4.18. If BD1, BD2 ⊆ BC are isolated subcomplexes, then either (BD1

and BD2) are disjoint or (BD1 ∩BD2) is an isolated subcomplex of BC.

Corollary 4.19. All i-irreducible (isolated) subcomplexes of a Bar-Natan chain

complex are pairwise disjoint.

Now we define an equivalence relation on the i-irreducible subcomplexes of

a Bar-Natan chain complex BC via group action. Given two i-irreducible sub-

complexes BD, BD′ ⊆ BC, we say BD ∼ BD′ if and only if there exists a chain

isomorphism ψσ : BC → BC ′ induced by an action of the symmetric group Sk on

the underlying ordering of the crosscuts of the Dk-surfaces in BC (as in the proof

of Theorem 4.15) which maps BD onto BD′.

Definition 4.20. Consider the equivalence classes given by the orbits of the group

action described above. Each equivalence class consists of some number (at most
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k!) of i-irreducible subcomplexes of BC which only differ by permutations on the

ordering of the crosscuts. Choose one representative (an i-irreducible subcomplex

of BC) for each equivalence class; such a choice corresponds to picking a fixed

ordering of the crosscuts. Taking the union of the bases for these representative

subcomplexes creates a basis for new chain complex. Let this new chain complex

be the diagramless complex of the link L, denoted by DC(L). Refer to the resulting

homology as the diagramless homology of L, and denote it by DH(L).

Example 4.21. Examples of i-irreducible (isolated) subcomplexes are given in Fig-

ures 4.7, 4.8, and 4.9. The first two are in the same equivalence class because they

only differ by a reordering of the crosscuts. The third is in a different equivalence

class because the crosscut orientations (directions) do not all match up correctly.

In general, equivalence of i-irreducible subcomplexes may be obstructed by differing

crosscut orientation, by differing number/placement of dots or by differing num-

ber/type of surfaces involved.

-dc1
-c2

-c1 ���c1

c2
-

Figure 4.7: An i-irreducible subcomplex (example 1 of 3).

-dc2
-c1

-c2 ���c2

c1
-

Figure 4.8: An i-irreducible subcomplex (example 2 of 3).
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-dc2
�c1

-c2 ���c2

c1
�

Figure 4.9: An i-irreducible subcomplex (example 3 of 3).
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CHAPTER 5

RELATING KHOVANOV HOMOLOGY AND DIAGRAMLESS
HOMOLOGY

5.1 An Injection from Kk(D) to Ci,j,k,b(L)

In [14] Mikhail Khovanov defined a homology for a given diagram of a link.

In this section it is shown that for a given link diagram D of a link L, there is

an injection from the chain complex for Khovanov homology of D into the chain

complex for the diagramless homology of L. We obtain an injective chain map ι

by finding chain modules in the diagramless homology that correspond to the chain

modules of Khovanov homology. To do this, we must first develop language to talk

about the Khovanov chain modules.

In [12] Kauffman defines a state of a link diagram to be a collection of markers

(one for each crossing) that specify a pair of opposite angles. A marker at a crossing

defines a ‘smoothing’ of that crossing, depending on the the type of marker present.

Figure 5.1 shows the two types of markers, positive and negative, along with the

corresponding smoothings.

positive marker negative marker

positive smoothing negative smoothing

Figure 5.1: Positive and negative markers and their resulting smoothings.

A state sD of a link diagram D defines a smoothing at each crossing. Hence
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to each state sD there is a planar collection of disjoint (possible embedded) circles

obtained by smoothing each crossing of the link diagram – this is referred to as the

‘complete smoothing’.

We borrow notation from Viro’s paper [21] and use enhanced Kauffman state

to refer to a state sD which is enhanced by an assignment of a plus or minus to

each circle in the complete smoothing of sD. A capital SD is used to refer to an

enhanced Kauffman state.

We define the chain module Kk for Khovanov homology to be the free module

of isotopy classes of enhanced Kauffman states with exactly k positive markers. The

differential for the Khovanov chain complex can be defined as a certain combination

of local maps which consist of replacing a positive marker by a negative marker.

This differential and these local maps will be defined later in this section.

Each Khovanov chain module is generated by enhanced Kauffman states with

a specified number of positive markers. Hence, to define the chain map ι : Kk(D) ↪→

Ci,j,k,b(L) on chain modules of Khovanov homology, it suffices to show where ι sends

enhanced Kauffman states. Given an enhanced Kauffman state SD, we will de-

fine a Dk-surface FSD and set ι(SD) := FSD . We will call FSD the state surface

corresponding to SD.1

Definition 5.1. Let D be a link diagram with a given ordering of its crossings and

let SD an enhanced Kauffman state of D. The state surface corresponding to SD is

denoted by FSD and is built from SD as follows:

Consider the complete smoothing of the enhanced Kauffman state SD. The

complete smoothing of SD consists of a finite number of disjoint (possibly embedded)

circles each marked with a plus or a minus (an example of an enhanced state for the

figure eight knot is given in Figure 5.2). Assume there exists an oriented 2-sphere

1In [18], Ozawa uses the name σ-state surface for something similar to our state surfaces. The
‘σ-’ prefix includes the information of the Kauffman state from which the surface is derived. Our
state surfaces will be built in a similar fashion, but from enhanced Kauffman states.
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Σ embedded in S3 and there exist closed 3-balls B3
+ and B3

− embedded in S3 such

that the complete smoothing of SD is in Σ, and Σ = B3
+ ∩B3

−.

A link diagram D An enhanced state SD

−

++

The complete smoothing

−

++

Figure 5.2: An enhanced state and the corresponding complete smoothing.

For each circle of the complete smoothing, take a copy of the disk it bounds in

Σ and push the interior of the disk into B3
+. The disk interiors should be pushed into

B3
+ so that they do not interest one another. For each disk, if the disk is bounded by

a circle marked with a plus, place a dot on the interior of the disk. Disks bounded by

circles marked by a minus receive no dots. At this point, the plus/minus information

of the circles can be forgotten. Figure 5.3 shows this process for the same enhanced

state used in Figure 5.2.

Creating disks from circles

••

The cross-dual surface

••

The state surface

••

Figure 5.3: An example of the creation of a state surface.

To obtain the cross-dual surface, insert a locally oriented rectangular strip of

surface in Σ that connects two disks at each location of a former crossing. The locally

oriented pieces should be oriented so that they appear to be positively oriented when
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viewed from the B3
− side of Σ.

To obtain the the state surface, FSD , replace each locally oriented rectangular

strip of surface by a (non-oriented) piece of surface with a 1
2
-twist that has a crosscut

running across it. If the site of the former crossing (of the Kauffman state) had a

positive marker, a right-handed 1
2
-twist with an active crosscut should be placed.

If the site of the former crossing (of the Kauffman state) had a negative marker,

a left-handed 1
2
-twist with an inactive crosscut should be placed. In either case,

the crosscut should be oriented to point away from the B3
+ region towards the B3

−

region2, and the boundary of the 1
2
-twisted piece of surface inserted should agree

with the original link diagram. By construction, the number of crossings of D is

equal to number of crosscuts of FSD . Use the ordering of the crossings of D to

induce the ordering of the crosscuts of FSD .

Remark 5.2. In Section 4.2 the diagramless chain complex was obtained from the

Bar-Natan chain complex by identifying all subcomplexes that differed only by a

reordering of the crosscuts. With the diagramless complex, instead of considering

all k! different ways to orient k crosscuts, we can pick an arbitrary fixed ordering of

the crosscuts that is consistent between all related Dk-surfaces. A similar approach

can be taken when constructing the Khovanov chain complex of a link diagram; an

arbitrary fixed ordering of the crossings is chosen.

In this section, an arbitrary ordering of the crossings of the link diagram is

used. This ordering of the diagram’s crossings induces an ordering of the crosscuts

of the resulting state surfaces, as we just saw in Definition 5.1.

Given an enhanced Kauffman state SD, we wish to define ι(SD) := FSD . To

do this, it must be shown that the state surface FSD is a Dk-surface, the proof of

2As stated above, the crosscuts placed on the 1
2 -twisted pieces of surface should be oriented to

point away from the B3
+ region towards the B3

− region. Since the surface is depicted as being viewed
from the B3

− side of Σ, all crosscuts should appear to point toward us. Also, this is equivalent to
orienting the crosscuts in such a way that replacing crosscut neighborhoods to obtain the cross-
dual (as in Definition 2.6) would result in the a cross-dual surface with the same local orientations
as was obtained in the previous step.
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which is somewhat technical.

Proposition 5.3. Given an enhanced Kauffman state SD, the resulting state surface

FSD is a Dk-surface.

Proof. In definition 5.1, the state surface (as well at its cross-dual and skeleton)

are built to satisfy the conditions required to be a Dk-surface. The disk interiors

involved in the construction, which are the facets of the cross-dual surface, live

in B3
+. The rest of the cross-dual surface (the skeleton of the cross-dual) is in

the embedded oriented 2-sphere Σ. The locally oriented pieces of surface are all

oriented to agree with the orientation of Σ. The only Dk-surface condition that is

not immediately seen to be satisfied from the construction of a state surface is the

orientability of the cross-dual.

We now show that the cross-dual of the state surface is orientable. Consider

the underlying ‘complete smoothing’ for the state surface. The complete smoothing

is a set of (possibly embedded) circles in Σ. Pick a point in p ∈ Σ that lies outside

of the original link diagram. The label each circle bounding that region with a ‘1’.

Remove these 1-circles from this region, then mark each circle bounding this new

region with a ‘2’. Again, remove the 2-circles and mark the next set of bounding

circles (if any) with a ‘3’. Continue this process until all circles are marked with a

positive integer.

These circles separate Σ into regions. To the region containing the point p,

give a (temporary) local orientation that agrees with the orientation of Σ. To all

regions between 1-circles and 2-circles give (temporary) local orientations that dis-

agree with that of Σ. Continue in this fashion, giving successive regions alternating

orientations, until all such regions have a (temporary) local orientation.

Since these (temporary) local orientations of the regions alternate, they induce

a (temporary) orientation on the circles. In turn, we can use the orientations of the

circles to induce orientations on the facets (disks) that they bound in the cross-dual
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surface. Give the facets of the cross-dual a (permanent) orientation that agrees with

the orientations of their boundary circles. An example is given in Figure 5.4.

← 2-circle

←− 1-circle

←− 1-circle
← 2-circle

←− 1-circle

←− 1-circle

	

�

�	

	

�

�

Figure 5.4: A Kauffman state and the cross-dual of its state surface.

To give a (global) orientation to the cross-dual surface, we let the pieces of

surface that connect the oriented disks receive an orientation consistent with those

disks. However, we must check that such an orientation is possible.

First, some terminology. Let σ be one of the circles from the complete smooth-

ing. Use the terms outside and inside of σ to mean the regions of (Σ − σ) that

contain the point p and do not contain the point p, respectively. Since consecutive

embedded circles have consecutive integer labels, the pieces of surface connecting

the circles in Σ either connect circles with the same label or connect circles with

labels that differ by plus or minus one.

If a piece of surface connects circles with the same label, the piece of surface

is either connecting a circle to itself or is connecting neighboring circles (circles that

do not appear to be embedded in one another with respect to the outside region

containing the point p). In the former case, the piece of surface is either on the inside

or outside of the circle, meaning it can be oriented to disagree with the circle’s local

orientation at both spots. In the latter case, the piece of surface is on the outside

of both circles, connecting them. Since those two circles have the same label, the

piece of surface may be oriented to disagree with both of them.

If a piece of surface connects two circles with different labels, it must be
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connecting a circle embedded inside of another (with respect to the outside region

containing the point p). Hence, the piece of surface connects to the outside of one

circle and to the inside of the other. This implies that the piece of surface may be

oriented to disagree with the local orientation of both circles (since the circles have

opposite types of local orientations based on their different labels).

Therefore, the cross-dual surface of the state surface is orientable. Since all

conditions were met, the state surface is a Dk-surface.

Next we describe how ι relates the differential of the Khovanov chain complex

to differential of the diagramless chain complex. Recall that in Definition 3.4 the

differential d for the diagramless chain complex is defined to be the weighted sum

of local operators dc, where dc acts on a neighborhood of the crosscut c. Similarly,

the differential ∂ for the Khovanov complex can be defined as a weighted sum of

certain local operators. We will use the notation ∂i to refer to the local operator

that acts on the ith crossing of the link diagram D.

For the Khovanov chain complex, the local operators ∂i act on an enhanced

Kauffman state SD by replacing a positive marker with a negative marker, where the

crossing involved was labeled as the ith crossing of D. This is equivalent to changing

a positively smoothed crossing into a negatively smoothed one. This process either

results in the merging of two distinct circles or results in the splitting of one circle

into two. The fact that circles are marked with a plus or minus sign in (smoothed)

enhanced Kauffman states complicates the situation.

Due to Khovanov’s differential ∂ being bidegree (1,0), there are certain re-

strictions on the ± markings of the resulting circle(s) after merging or splitting.3

In Viro’s paper [21] he shows that these restrictions have the following implications

3The Khovanov chain complex can be seen to be bigraded with a homological grading and a
polynomial grading. In this thesis, the polynomial grading of the Khovanov complex is ignored.
However, the chain complex for the diagramless homology is bestowed with a polynomial grading
which is designed to have a natural correspondence with the Khovanov polynomial grading.
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for the local operator ∂i:

1. If applying ∂i corresponds to the splitting of one positively marked circle, then

both of the resulting circles are positively marked.

+ +

+

∂i

2. If applying ∂i corresponds to the splitting of one negatively marked circle,

then the result is a sum of two different enhanced Kauffman states, namely

the ones obtained from the two different ways to positively mark one circle

and negatively mark the other.

− +

−

∂i +

−

+

3. If applying ∂i corresponds to the merging of two circles that are both nega-

tively marked, then the resulting circle is also negatively marked.

− − −∂i

4. If applying ∂i corresponds to the merging of two circles, where one is nega-

tively marked and the other is positively marked, then the resulting circle is

positively marked.

− + +∂i
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5. If applying ∂i corresponds to the merging of two circles that are both positively

marked, then ∂i is the zero-map.

+ + ∂i 0 (zero)

Now we use these local operators to define the Khovanov chain complex dif-

ferential ∂, which takes an enhanced Kauffman state of a link diagram D with

n positively smoothed crossings to an enhanced Kauffman state of D with n − 1

positively smoothed crossings.

∂ :=
∑

enhanced Kauffman states

SD of D

∑
positively smoothed

crossings of D

(−1)σ(i)∂i

The crossings of D are ordered 1, ..., k, and σ(i) is the number positively

smoothed crossings of SD that are come before i in the ordering 1, ..., k.

Now we are ready to describe how ι relates the differential of the Khovanov

chain complex to differential of the chain complex for the diagramless homology.

Let L be a link, and D be a link diagram of L with crossings 1, ..., k. Since ∂

is defined in terms of the ∂i, it suffices to say where ι sends the ∂i. Define ι(∂i) to be

the local map dci , where dci acts on the ith crosscut of a Dk-surface with boundary

L, as described in Definition 3.2.

ι(∂i) = dci

In order for ι to be a chain map from the Khovanov chain complex to the chain

complex for diagramless homology, it must satisfy the relation dci◦ ι = ι ◦ ∂i. Since

the chain (modules/groups) for the Khovanov complex are generated by enhanced

Kauffman states, it suffices to show that this relation holds for an arbitrary enhanced
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Kauffman state.

Let SD be an enhanced Kauffman state of a link diagram D. We must show

that dci(ι(SD)) = ι (∂i(SD)). By definition of ι, dci(ι(SD)) = ι (∂i(SD)) now becomes

dci(FSD) = F∂i(SD). Hence, we must show that applying dci to the state surface for

SD gives the state surface for the enhanced Kauffman state F∂i(SD). The five different

situations of the local operator ∂i will be considered separately.

1. This case involves applying ∂i when it corresponds to the splitting of one

positively marked circle into two positively marked circles. Applying ι to

the result gives the state surface F∂i(SD), which has 1 dot on each of the two

neighboring facets of the crosscut ci. On the other hand, applying ι first

gives the state surface FSD , which has only one facet. This facet has 1 dot.

Applying dci reveals the presence of a compressing disk. Using the relation

(NC) to compress and then using (D2) yields the same surface as before, as

shown below.

+ +

+

∂i

�
�
�	

ι @
@
@R

ι�

•
-dci6

•
-

••
(NC)
=

-

•

•

+
-

•

•
(D2)
=

-

2. This case is very similar to case 1. The difference here is that applying ∂i

corresponds to the splitting of one negatively marked circle, resulting in a sum

of two different enhanced Kauffman states, namely the ones obtained from the

two different ways to positively mark one circle and negatively mark the other.

The other difference is the absence of dots on certain facets. However, just
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the right number of dots are absent in just the right places. We get the same

result if we apply ∂i then ι or if we apply ι then dci .

− +

−

∂i +

−

+

�
��


ι B
BBN

ι�

-dci6
-

•
(NC)
=

-

•
+

-

3. Here applying ∂i corresponds to the merging of two circles that are both

negatively marked, and the resulting circle is also negatively marked. For

this case it is easy to verify that dci(ι(SD)) = ι (∂i(SD)) since no relations are

involved.

− − −∂i

?

ι
?

ι�

-
dci

6

-

4. Here applying ∂i corresponds to the merging of two circles, where one is neg-

atively marked and the other is positively marked, and the resulting circle is

positively marked. Like case 3, it is easy to verify that dci(ι(SD)) = ι (∂i(SD))

since no relations are involved.
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− + +∂i

?

ι
?

ι�

-dci•6
- •

5. Here applying ∂i corresponds to the merging of two circles that are both

positively marked, and ∂i is defined to be the zero-map. Since ι is a homo-

morphism, ι(0) = 0. Hence, we must have that applying ι followed by dci

also gives zero. In this case, ι is applied to two positively marked circles and

gives a twice dotted state surface. Applying dci to this surface yields a single

faceted surface with two dots, which equals zero by the (D2) relation.

+ + ∂i 0 (zero)

�
�
��

ι A
A
AU

ι�

-dci• •6
-
•• 0 (zero)

(D2)
=

The above five cases prove the following proposition.

Proposition 5.4. The map ι, from the Khovanov complex to the diagramless com-

plex, is a chain map.

We will now show that ι is an injective chain map.

Proposition 5.5. The chain map ι is injective.

Proof. We will show that the kernel of ι is trivial. Since the Khovanov chain

complex is generated by enhanced Kauffman states, it suffices to show that if ap-

plying ι to an enhanced Kauffman state equals zero, then this implies the Kauffman
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state is zero as well.

Let SD be an enhanced Kauffman state and suppose ι(SD) = 0. By definition

of ι, SD is sent to the corresponding state surface FSD . Now it will be shown that

FSD equals the zero surface without the use of the relations (S0), (S1), (D2) or

(NC).

The process of building a state surface never produces any spheres (dotted

or undotted), and so FSD cannot equal zero via the relations (S0) and (S1). Since

state surfaces are built from disks connected by bands with crosscuts on them, each

facet must be incompressible. That is, a compressing disk on FSD would have to

run across a crosscut because disks are incompressible surfaces. The relation (NC)

is not allowed if the boundary of the compressing disk intersects a crosscut, thus

the relation (NC) cannot be used to replace FSD with surfaces with additional dots.

Since the process of building FSD places at most one dot on each facet, and since

(NC) cannot be used to place additional dots on any facet, the surface FSD cannot

equal zero via the (D2) relation. Therefore, ι(SD) = FSD = 0 without the use of

relations.

Since FSD equals zero directly, this implies that the corresponding (smoothed)

enhanced Kauffman state SD had zero circles. That is, SD = 0.

The fact that ι is an injective chain map implies that the given Khovanov

complex can be embedded in the diagramless complex. However, there is a much

stronger statement that can be made. In the following section, it is proved that the

state surfaces from the embedded Khovanov complex (when considering all possible

diagrams for the given link) span the set of all Dk-surfaces for the diagramless

complex. In other words, the diagramless complex only consists of embedded copies

of the Khovanov complex.
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5.2 Relating the Diagramless Homology to Khovanov Homology

This section begins with a remark and some lemmas that will be used to

help prove Proposition 5.9, which says that every Dk-surface is equal to a linear

combination of state surfaces. This in turn implies that the diagramless complex is

comprised entirely of embedded copies of Khovanov complexes for diagrams of the

given link. In the end we are able to prove Theorem 5.14, which states that the

diagramless homology of a link is equal to the direct sum of some number of copies

of Khovanov homology for that link.

Remark 5.6. The relation (NC) can be used (repeatedly) to compress a Dk-surface

and replace it with the linear combination of ‘incompressible’ Dk-surfaces. It may

not be clear what incompressible means in this situation. When we use the relation

(NC) so that a facet f of a Dk-surface F is incompressible, this means that f is

incompressible in f ∪ (S3 − F ), not necessarily that f is incompressible in S3. If

every facet of a Dk-surface is incompressible in this way, we say that the Dk-surface

is incompressible.

Lemma 5.7. If F is a Dk-surface that does not contain any sphere components and

has the property that each facet f of F is incompressible in f ∪ (S3 − F ), then all

of the facets of F are disks.

Proof. Let F be a such a Dk-surface. Consider the cross-dual F cd. By Lemma

2.11, the facets of F are isotopic to the facets of F cd, and so F cd does not contain

any sphere components and has the property that each facet f of F is incompressible

in f ∪ (S3 − F ). Also by Lemma 2.11, it suffices to prove that the facets of F cd are

all disks.

By the definition of Dk-surface there exists an embedded oriented 2-sphere

Σ ⊂ S3 and embedded 3-balls B3
+, B

3
− ⊆ S3 such that

(1) Σ = B3
+ ∩B3

−,

(2) skel(F cd) ⊆ Σ,
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(3) all of the locally oriented pieces of surface of F cd agree with the orientation

of Σ, and

(4) F cd − skel(F cd) = {the facets of F cd} ⊆ B3
+.

Since the boundary of F cd is a subset of the skeleton of F cd, and since skel(F cd) ⊆ Σ,

we know that ∂(F cd) is a planar set.

∂(F cd) is planar set, and so it is a disjoint collection of circles. Since F cd is

orientable by the definition of Dk-surface, each of its facets are orientable. By the

classification of closed surfaces, it follows that each facet of F cd is a sphere with

punctures or is a n-handled torus with punctures, properly embedded in B3
+. We

will now apply “Corollary 6.2” from Hempel’s text on 3-manifolds, [8], which says

If F is a 2-sided incompressible surface (properly embedded) in a 3-manifold M ,

then ker(π1(F ) ↪→ π1(M)) = 1.

Since π1(B
3
+) ∼= 1, the above result implies that π1({the facets of F cd}) ∼= 1.

There cannot exist facets which are n-handled tori nor can there exists facets

which are spheres with two or more punctures because this would contradict that

π1({the facets of F cd}) ∼= 1. Therefore, all facets are spheres with a single puncture.

In other words, each facet is a disk.

Lemma 5.8. Every Dk-surface is equal to a linear combination of Dk-surfaces

whose facets are all disks, and this representation is unique.

Proof. If F were a Dk-surface for a split link, then it would suffice to show

that each connected component of F equaled a linear combination of Dk-surfaces

whose facets were all disks. Thus, we may suppose that our link is not a split link.

Let F be a Dk-surface for a non-split link L = ∂(F ). If F contains any

components without boundary, then the relations (S0), (S1), (D2) and (NC) can

be used to remove such components and replace F with a connected Dk-surface,

F ′ = F (F ′ is connected since it contains no components without boundary and

∂(F ′) = L is connected). We will proceed by showing that F ′ can be written as a



57

linear combination of Dk-surfaces whose facets are all disks.

By the repeated use of the relation (NC), replace F ′ with a (finite) linear com-

bination of Dk-surfaces which have incompressible facets (this process terminates

after a finite number of steps because compressing either increases Euler character-

istic or leaves Euler characteristic the same while increasing the number of compo-

nents). Use the relations (S0) and (S1) to remove and replace any Dk-surfaces in

this sum which contain components without boundary. Hence, we have

F ′ =
N∑
n=1

anFn

where each an ∈ Z and each Fn is a Dk-surface whose facets are not spheres and are

incompressible. By Lemma 5.7, each Dk-surface Fn in this sum has the property

that all of its facets are disks. Therefore, F can be written as the linear combination

of Dk-surfaces whose facets are all disks.

It remains to be seen that this representation is unique. Let F be a Dk-

surface in S3 = B3
+ ∪ B3

− such that F =
∑N

n=1 anFn is a decomposition of F into

Dk-surfaces with disks as facets. Since the relations (S0), (S1), (D2) and (NC) do

not affect a surface near its boundary or its crosscuts, each Dk-surface Fn in this

linear combination is equal to F inside of a regular neighborhood of the boundary

union the crosscuts. The only thing left to show is that there is only one way to

place the facets (disks) of the Fn up to isotopy.

Since a Dk-surface and its cross-dual only differ near crosscuts, it suffices to

show that there is only one way to attach the facets (disks) of each cross-dual

surface to its skeleton. By the definition of Dk-surface, each cross-dual surface can

be isotoped so that its skeleton is embedded in Σ = B3
+ ∩ B3

− such that each facet

(disk) is in B3
+. When viewed in this way, we see that attaching the facets of the

cross-dual to the skeleton is the same as placing a system of properly embedded

disks with predetermined boundary in a closed 3-ball. Since the process of placing
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a system of properly embedded disks with predetermined boundary in a closed 3-ball

is unique up to isotopy, we are done.

Now we recall the results from Section 5.1 concerning states surfaces (defined

in Definition 5.1). Proposition 5.3 says that every state surface is a Dk-surface.

Given a projection of a link and Khovanov chain complex corresponding to that

link projection, Propositions 5.4 and 5.5 prove that there is an injective chain map

ι from the Khovanov chain complex into the diagramless chain complex. Below we

show that every Dk-surface can be written as a linear combination of state surfaces,

meaning that the diagramless complex contains copies of embedded Khovanov chain

complexes and nothing more.

Proposition 5.9. Every Dk-surface is equal to a linear combination of state sur-

faces, and this representation is unique.

Proof. Let F be a Dk-surface. Using Lemma 5.8, write F as a linear combi-

nation of Dk-surfaces whose facets are all disks:

F =
N∑
n=1

anFn.

Let Fn be an arbitrary Dk-surface in this sum. It suffices to show that Fn is equal

to a state surface.

By the definition of Dk-surface there exists an embedded oriented 2-sphere

Σ ⊆ S3 and embedded 3-balls B3
+, B

3
− ⊆ S3 such that

(1) Σ = B3
+ ∩B3

−,

(2) skel(F cd
n ) ⊆ Σ,

(3) all of the locally oriented pieces of surface of F cd
n agree with the orientation

of Σ, and

(4) F cd
n − skel(F cd

n ) = {the facets of F cd
n } ⊆ B3

+.
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We know that the facets of Fn are all disks, so Lemma 2.11 tells us that all of the

facets of F cd
n are disks as well. Hence, F cd

n is comprised of properly embedded disks

in B3
+ with locally oriented rectangular pieces of surface in Σ which are connected

to the boundary of two (possibly the same) disks. Thus F cd
n can be used as the

cross-dual surface in Definition 5.1 to build a state surface, implying that Fn is a

state surface.

Lemma 5.8 tells us that any Dk-surface is equal to a unique linear combination

of Dk-surfaces with facets that are all disks, and we just showed that Dk-surfaces

with disks as facets are in fact state surfaces. Therefore any decomposition of a

Dk-surface into state surfaces must be unique.

The diagramless chain complex is built from Dk-surfaces, so an arbitrary ele-

ment of the chain complex is a linear combination of Dk-surfaces. By Proposition

5.9, we may write a given linear combination of Dk-surfaces as a linear combination

of state surfaces. Hence, an arbitrary element of the diagramless chain complex can

be written as a linear combination of state surfaces.

We know that the diagramless complex for a link L consists only of embedded

Khovanov complexes for diagrams of the link L. We would like to say that the

diagramless complex of a link is equal to the direct sum of some number of em-

bedded Khovanov complexes for that link. This can be achieved by showing linear

independence between certain link diagram equivalence classes. The appropriate

equivalence classes are defined below.

Definition 5.10. Let Σ be a 2-sphere embedded in S3, and let D,D′ be link

diagrams in Σ. We say that D is equivalent to D and write D ∼ D′ if there

exist enhanced Kauffman states SD and SD′ such that SD = SD′ as Dk-surfaces.

Denote the equivalence class of D by [D].

Remark 5.11. It should be pointed out that if two link diagrams D and D′ differ

only by a 2-space isotopy, then [D] = [D′].
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What isn’t obvious is that the converse does not hold. For a counterexample,

consider a split link diagram D = D1 t D2 in the 2-sphere Σ, where D1 and D2

are sufficiently complicated knot diagrams. Up to isotopy, there are many different

ways to view D = D1tD2 because we could put the knot diagram D1 in any of the

different components of Σ−D2.

Remark 5.12. By construction, each state surface corresponds to exactly one link

diagram equivalence class. When needed, we denote a such a correspondence by a

superscript on the state surface. For example, a state surface corresponding to the

link diagram equivalence class [D1] could be denoted by FD1 or F 1.

Using these equivalence classes of link diagrams, we are able to show that the

diagramless complex breaks as a direct sum of subcomplexes which correspond to

distinct link diagram equivalence classes. This result and the analogous result on

the level of homology are stated and proved below.

Proposition 5.13. Let L be link and DC(L) be the diagramless complex of that link,

as described in Section 4.2. Denote the distinct link diagram equivalence classes for

L by [D1], [D2], ..., [DN ]. Then we have that

DC(L) =
N⊕
n=1

DCn(L)

where DCn(L) is the subcomplex spanned by the state surfaces which correspond to

the link diagram equivalence class [Dn].

Proof. Consider an arbitrary element F of DC(L). Through the use of Propo-

sition 5.9, we can write F as the linear combination of state surfaces. Since each

state surface corresponds to exactly one link diagram equivalence class, we may

group the linear combination of state surfaces by equivalence class and write

F =
N∑
n=1

Mn∑
m=1

anmF
n
m =

(
M1∑
m=1

a1
mF

1
m

)
+

(
M2∑
m=1

a2
mF

2
m

)
+ · · ·+

(
MN∑
m=1

aNmF
N
m

)
(*)

Above we have F , an arbitrary element of the diagramless chain complex,

written as the N -term sum of linear combinations of state surfaces corresponding
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to N distinct link diagram equivalence classes. To show that DC(L) breaks as

the direct sum of the subcomplexes DC1(L), ...,DCN(L), it suffices to show that if

F = 0, then each of the N terms in equation (*) equal zero. That is,we must show

that if F = 0, then
∑Mn

m=1 a
N
mF

N
m = 0 for 0 ≤ n ≤ N .

Suppose F = 0. If each of the N terms in equation (*) equal zero, we are done.

Otherwise, at least two of the N terms in (*) are non-zero, implying that there

is cancellation between terms corresponding to different link diagram equivalent

classes. As noted in Remark 5.12, each state surface corresponds to exactly one

link diagram equivalence class, so direct cancellation between different link diagram

equivalent classes is not possible. That is, any cancellation that takes place between

different link diagram equivalent classes must involve the relations (S1), (S2), (NC)

or (D2). However, this would imply that the use of these relations to represent a

Dk-surface as a linear combination state surfaces is not unique. This contradicts

Proposition 5.9.

As a corollary, we have the following theorem.

Theorem 5.14. Let L be a link and let KH(L) denote the Khovanov homology of

that link. The diagramless homology of a link is equal to the direct sum of some

number of copies of Khovanov homology for that link. That is,

DHi
k(L) =

N⊕
n=1

KHi(L) = N · KHi(L)

where k is the number of crosscuts and i is the homological grading.
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CHAPTER 6

EXAMPLES

In Chapter 5, the relationship between the diagramless homology and the

Khovanov homology of a link was uncovered; the diagramless homology of a link L

is equal to the direct sum of some number of copies of the Khovanov homology of

L. Since the Khovanov homology of a link is already well-studied and is relatively

easy to calculate (see Bar-Natan’s calculations in [4]), we will only bother with

demonstrating a few calculations of the diagramless homology. In Chapter 7, the

value ofN , the number of copies of Khovanov homology in the diagramless homology

of a given link, is discussed.

6.1 The unknot with k = 0 crosscuts

With no crosscuts, a (connected) Dk-surface or a non-split link will only have

one facet. By Lemma 5.8, we know that it suffices to consider Dk-surfaces whose

facets are disks. Therefore, the only surface we need to consider is a disk.

Recall that facets of surfaces are allowed to decorated by dots. Nontrivially,

surfaces can only be decorated by zero or one dot per facet due to the (D2) relation.

Therefore, the dotless disk and the once dotted disk are the only two surfaces

considered when calculating the k = 0 diagramless homology of the unknot. The

calculation of the diagramless homology is simple and is show in Figure 6.1.

The notation in the above calculation needs explanation. Recall that the

graded Z-module MF := M⊗n is associated to every Dk-surface F , where n is the

number of facets of F . We defined M to be the graded Z-module Z[x]/(x2), which

is spanned by 1 and x. Finally, recall that 1 is identified to a facet without a dot

and x is identified to a facet with a dot.

Since the dottedness of facets is kept track of by the choice of generator 1 or

x, displaying dotted versions of surfaces can be circumvented. In light of this fact,
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0 0

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷I = −1 I = 0 I = 1

︸ ︷︷ ︸
ker/im

q

〈∅〉

︸ ︷︷ ︸
ker/im

q

〈1, x〉

︸ ︷︷ ︸
ker/im

q

〈∅〉

Figure 6.1: The diagramless complex for the unknot with k = 0.

we will use the convention that the completely undotted version of a surface will

represent all possible dot decorations of that surface. This will make large diagrams

of surfaces much more manageable. With this convention, the diagram of surfaces

from Figure 6.1 can be represented as the smaller diagram of surfaces shown in

Figure 6.2.

Using the definitions of the four induces (given in Section 3.1 of this thesis),

the gradings of the above homology generators 1 and x are easily calculated. The

gradings for 1 and x are (I, J,K,B) = (0,−1, 0, 0) and (I, J,K,B) = (0, 1, 0, 0)

respectively. Note that since M = Z[x]/(x2) is a Z-module, 〈1〉 ∼= Z and 〈x〉 ∼= Z.

We will use DHi
k(L) to denote the diagramless homology of the link L present

in the gradings K = k and I = i. The notation DHi,j,b
k (L) can be used to distinguish

between different J and B gradings when necessary. With this notation, we can

summarize the results for the unknot, [©], with k = 0 as follows.
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- -0 0

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷I = −1 I = 0 I = 1

︸ ︷︷ ︸
ker/im

q

〈∅〉

︸ ︷︷ ︸
ker/im

q

〈1, x〉

︸ ︷︷ ︸
ker/im

q

〈∅〉

Figure 6.2: A diagramless complex with dots suppressed.

DHi
0([©]) =

 Z⊕ Z for i = 0

0 otherwise

6.2 The unknot with k = 1 crosscut

In this example we will find that the diagramless homology of the unknot with

k = 1 is equal to the direct sum of two copies of Khovanov homology.

By Proposition 5.9, it suffices to only determine the state surfaces. Since state

surfaces with one crosscut are built from enhanced Kauffman states that come from

diagrams with one crossing, there are a small number of such surfaces to calculate.

Without the consideration of dots, there are only two types of state surfaces

for the unknot with one crosscut: the disk and the Mobius strip. The disk may

contain an active or an inactive crosscut, but the type of Mobius strip (left handed

or right handed) determines the type of crosscut allowed. Also, each facet of a

surface is allowed to be decorated with (at most) one dot. After this consideration,

while distinguishing between different facets, we have that there are 12 distinct state

surfaces for the unknot (up to isotopy) with one crosscut. The 12 state surfaces for

the unknot with one crosscut are given with their respective (I, J,K,B) values in
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Figure 6.3.

(0,−1, 1, 1) (0,−1, 1, 0)

��
��1

��
��1

(−1, 1, 1, 0) (0, 1, 1, 1) (0, 1, 1, 0) (1,−1, 1, 1)

���

��
��1

•
��

��1

•

���

(−1, 3, 1, 0) (0, 1, 1, 1) (0, 1, 1, 0) (1, 1, 1, 1)

���

• ��
��1
•

��
��1
• ���

•

(0, 3, 1, 1) (0, 3, 1, 0)

��
��1
•

•
��

��1
•

•

Figure 6.3: State surfaces for the unknot with one crosscut.

Typically, the visual presence of dots will be suppressed and instead we de-

note a dotted facet by an x and an undotted facet by a 1 (this convention was

explained at the end of Section 6.1). The n facets of a state surface are labeled by

1, ..., n. An x (resp. 1) in the `th coordinate of a tensor product denotes the presence

(resp. absence) of a dot on facet ` of the surface.
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With this notation, the 12 different state surfaces from Figure 6.3 can be

represented by the 4 surfaces shown in Figure 6.4.

���

1
��

��1
1

2
��

��1
1

2

���

1

1⊗ 1 ∼ (0,−1, 1, 1) 1⊗ 1 ∼ (0,−1, 1, 0)

1 ∼ (−1, 1, 1, 0) 1⊗ x ∼ (0, 1, 1, 1) 1⊗ x ∼ (0, 1, 1, 0) 1 ∼ (1,−1, 1, 1)

x ∼ (−1, 3, 1, 0) x⊗ 1 ∼ (0, 1, 1, 1) x⊗ 1 ∼ (0, 1, 1, 0) x ∼ (1, 1, 1, 1)

x⊗ x ∼ (0, 3, 1, 1) x⊗ x ∼ (0, 3, 1, 0)

Figure 6.4: State surfaces for the unknot with one crosscut, using dotless notation.

Now that the state surfaces are known, the diagramless homology for the

unknot with k = 1 can be calculated. A diagram corresponding to this calculation

is shown in Figure 6.5.

In the diagram in Figure 6.5 we see how the diagramless chain complex splits

into a direct sum of Khovanov chain complexes, each with a different value of the

index B. For B = 0 (the top complex), the only nontrivial homology is in the I = 0

grading. Here 〈1 ⊗ x,1 ⊗ 1〉 ∼= Z ⊕ Z. For B = 1 (the bottom complex), the only

nontrivial homology is again in the I = 0 grading. Here 〈1⊗x−x⊗1, x⊗x〉 ∼= Z⊕Z

as well.

Using the notation introduced at the end of Section 6.1, the diagramless ho-

mology for the unknot with k = 1 is summarized below.

DHi,b
1 ([©]) ∼=


Z⊕ Z for i = 0, b = 0

Z⊕ Z for i = 0, b = 1

0 otherwise
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︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷I = −1 I = 0 I = 1

︸ ︷︷ ︸
ker/im

q

〈∅〉/〈∅〉

q

〈∅〉

︸ ︷︷ ︸
ker/im

q
〈1⊗x,1⊗1,x⊗x,x⊗1〉
〈1⊗x+x⊗1,x⊗x〉

⊕ 〈1⊗x−x⊗1,x⊗x〉
〈∅〉

q

〈1⊗ x,1⊗ 1〉 ⊕ 〈1⊗ x− x⊗ 1, x⊗ x〉

︸ ︷︷ ︸
ker/im

q

〈1, x〉/〈1, x〉

q

〈∅〉

���

1

Figure 6.5: The diagramless complex for the unknot with k = 1.

6.3 The unknot with k = 2 crosscuts

Just as in the previous section, realize that it suffices to only consider states

surface by Proposition 5.9. Hence, we only need to find the enhanced Kauffman

states that come from diagrams for the unknot with 2 crossings. In this example,

there are many state surfaces. Table 6.1 lists the undotted version of each surface.

The diagramless homology of the unknot for k = 2 will be calculated using the

same conventions as the previous example – the n facets of a Dk-surface are labeled

by 1, ..., n, and an x (resp. 1) in the `th coordinate of a tensor product denotes the

presence (resp. absence) of a dot on facet ` of the surface. For the k = 1 diagramless

homology of the unknot, we saw that the chain complex could be viewed as two
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-

∼=
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Table 6.1: The (dotless) state surfaces for the unknot with k = 2.
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subcomplexes separated by different B-grading values. For k = 2, there are three

non-trivial subcomplexes separated by different B-grading values, each of which can

be further decomposed into two copies of embedded Khovanov complexes. These

complexes are shown in Figures 6.6, 6.7, and 6.8.1

The calculations of the diagramless homology for the unknot from Figures

6.6, 6.7, and 6.8 are summarized below. The copies of Z are grouped to show the

correspondence to Khovanov homology – two copies of (Z⊕ Z) in each B-grading.

DHi,b
2 ([©]) ∼=



(Z⊕ Z)⊕ (Z⊕ Z) for i = 0, b = 0

(Z⊕ Z)⊕ (Z⊕ Z) for i = 0, b = 1

(Z⊕ Z)⊕ (Z⊕ Z) for i = 0, b = 2

0 otherwise

1Recall that the differential d is defined a weighted sum of the dc maps, where the weight is
either +1 or -1. If a map dc has a negative weight, we will note this by putting a small circle at
the initial point of the arrow representing that map in our homology diagram. This is the same
convention that Bar-Natan uses in his paper on Khovanov homology, [3].
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Figure 6.6: The diagramless subcomplex for unknot with k = 2 and b = 0.
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Figure 6.7: The diagramless subcomplex for unknot with k = 2 and b = 1.



72

-

-c1

c2

1

2

3

���c1

c2
-

1

2

���c2

c1
-

1

2

��
��

��1

PPPPPPq �
��

�*

HHHHj

◦

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷I = 0 I = 1 I = 2

���@@I c2c1

1

-

�

c1

c2

1

2

3

���c1

c2
�

1

2

���c2

c1
�

1

2

��
��

��1

PPPPPPq �
��

�*

HHHHj

◦

︸ ︷︷ ︸
ker/im

q
...

q

〈1⊗ x⊗ x− x⊗ 1⊗ x+ x⊗ x⊗ 1, x⊗ x⊗ x〉

⊕

〈1⊗ x⊗ x− x⊗ 1⊗ x+ x⊗ x⊗ 1, x⊗ x⊗ x〉

︸ ︷︷ ︸
ker/im

q
...

q

〈∅〉

⊕

〈∅〉

︸ ︷︷ ︸
ker/im

q
...

q

〈∅〉

⊕

〈∅〉

���c2c1
@@R

1

Figure 6.8: The diagramless subcomplex for unknot with k = 2 and b = 2.
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CHAPTER 7

ADDITIONAL REMARKS

7.1 Diagramless Homology for Links in 3-manifolds

One of the main benefits of realizing the Khovanov homology of a link using

this diagramless approach is its potential to be generalized to links in 3-manifolds

other than the 3-sphere. In Chapter 2 we defined Dk-surfaces as being contained in

S3. Could we have used 3-manifolds other than S3? The answer is yes.

7.1.1 The Homological Grading

One issue is that the homological grading is defined in terms of linking number.

It is well known that the definition of linking number can be extended to simple

closed curves in a homology sphere. In this way the same homological grading could

be used for Dk-surfaces in a homology sphere. Defining a version of linking number

in more general manifolds has been studied recently by Chernov and Rudyak (see

[6]).

Another way to define the homological grading for surfaces in 3-manifolds

would be to use a local grading. That is, simply let I = (# of active crosscuts of F );

this results in a bonafide homological grading. The difference is that the N copies

of Khovanov homology that appeared before all had the same signature, but the

underlying surfaces had different numbers of active crosscuts. Hence, corresponding

copies of homology will no longer have the same homological grading.

7.1.2 The Definition of Dk-surface

Another potential issue is how one should define Dk-surface in a 3-manifold

other than S3. Recall that S3 = B3
+ ∪ B3

−, and that the definition of Dk-surface

requires the surface to be able to be isotoped so that the skeleton of the cross-dual
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is embedded in Σ = B3
+ ∩B3

− and the facets are properly embedded in B3
+.

Translating this condition from S3 to another 3-manifold M requires M to

have a (fixed) Heegaard splitting. Let A and B be handlebodies such that M =

A∪B, with Heegaard surface S = A∩B. Then the following definition of Dk-surface

is the proposed one for links in arbitrary closed oriented 3-manifolds.

Definition 7.1. A Dk-surface is a compact surface F ⊆M = A∪B with k crosscuts

{c1, ..., ck} such that

• the crosscuts are oriented and ordered,

• the facets of F are allowed to be decorated by dots (which are not allowed to

move from one facet to another),

• the cross-dual F cd is orientable (this global orientatibility is independent of

the local orientations of the cross-dual),

• skel(F cd) ⊆ S with all of the locally oriented pieces of surface of F cd agreeing

with the orientation of S, and

• F cd − skel(F cd) = {the facets of F cd} ⊆ A.

7.1.3 Computing Examples

Although this diagramless homology theory might be easily defined for links

in any closed orientable 3-manifold M , computing examples could be difficult. In

this thesis, the Dk-surfaces involved in an example are easy to consider because

of the ease of visualizing surfaces in 3-space. In addition to this, Proposition 5.9

allows us to work with state surfaces instead of Dk-surfaces; it is unlikely that such

a proposition can be exploited for links in more general 3-manifolds. Other methods

will have to be used to successfully compute examples.
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7.2 Boundary Slope and Signature

A possible improvement to this theory would be the ability to distinguish

between different orientations of links. A link’s orientation does not factor in when

calculating the signature of a surface. However, there is an alternative to surface

signature which does detect link orientation: boundary slope.

The boundary slope of a surface is the linking number of the boundary of the

surface with the pushoff of the boundary in the tangential direction away from the

surface. Although signature seems to be the natural choice for the homological

grading for the diagramless homology theory, the following proposition would allow

the use of boundary slope as the homological grading, hence distinguishing between

different orientations of a given link.

Proposition 7.2. The differential d for the diagramless homology theory increases

boundary slope by +2. Therefore, for a collection surfaces in the same diagramless

subcomplex, the boundary slope and two times the signature differ by a constant.

Proof. It is straightforward to calculate that dc, hence d, increases boundary

slope by +2. In Figure 7.1, one can calculate that the linking number of the blue

and red pushoffs with the boundary are (locally) 0 on the left and (locally) +2 on

the right. Reversing the orientation of one or both of the red or blue lines (as well

as the corresponding parts of the boundary) gives the same result.

dc

Figure 7.1: The effects applying dc has on boundary slope.
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7.3 The Value of N in Theorem 5.14

Theorem 5.14 states that, for a fixed number of crosscuts, k, the diagramless

homology of a link is equal to the direct sum of N copies of the Khovanov homology

of that link. The value of N could determine a link invariant if, for example, we let

k equal the minimum crossing number of the link. The particular value of N for a

given number of crosscuts k is not explored in depth in this thesis. However, two

conjectures are given concerning the value of N .

Conjecture 7.3. If the number of crosscuts, k, is less than the minimum crossing

number of a link, then N = 0.

The motivation for the next conjecture comes from Definition 5.10, where

the link diagram equivalence classes are defined. Essentially, two diagrams (for a

non-split link are equivalent if they are isotopic in 2-space, after possibly turning

one diagrams upside-down (flipping it). This extra flipping means that the usual

number of link diagram equivalence classes (under 2-space isotopy only) could differ

from the number of our equivalence classes by up to a factor of two.

Conjecture 7.4. Let L be a non-split link and k be a fixed positive integer. If

nk(L) is the number of distinct k-crossing link diagrams for L up to 2-space isotopy,

then

nk(L)

2
≤ N ≤ nk(L),

where N is the number from Theorem 5.14, which equals the number of copies of

Khovanov homology in the diagramless homology of L with k crosscuts.

If the above conjecture is true, we then have the following corollary. However,

this corollary could likely be proved without the above conjecture.

Corollary 7.5. Let L be a link. If there is only one k-crossing diagram for L up

to 2-space isotopy, then N = 1.

Putting tight bounds on N when L is a split link may be more difficult. The

way in which link diagram equivalence classes are defined in this thesis allows for
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disconnected components of diagrams to be moved around and be embedded in

different regions of the other diagram component(s).

7.4 Morphisms Between Diagramless Complexes

In one of his papers on Khovanov homology ([4]), Bar-Natan uses smoothings

of enhanced Kauffman states of link diagrams as objects in a category he calls Cob3.

In this category, morphisms are the cobordisms between such smoothings. Below

we explore possibility to define a similar category for the diagramless theory.

At first, it would seem that the corresponding category for the diagramless

theory would have Dk-surfaces as the objects instead of diagram smoothings. How-

ever, Proposition 5.9 allows us to work with state surfaces instead of Dk-surfaces,

and state surfaces are built from smoothings of enhanced Kauffman states. Hence,

the objects in the category for the diagramless theory might be represented by

smoothings as well. In this case the morphisms would be represented by cobor-

disms.

In [5], Carter and Saito use movie moves to study such cobordisms. Carter

and Saito introduce movie moves by showing them alongside their corresponding

cobordisms. Since we would be considering the state surfaces corresponding to the

smoothings involved, we would be interested in ‘movies of state surfaces’. A few

examples are given in Figures 7.2, 7.3, and 7.4.

Figure 7.2: The type 1 Reidemeister move.
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Figure 7.3: Deletion of a circle // a death (viewed from bottom to top).

Figure 7.4: A smoothing change near a crossing // a saddle.

Due to the presence of crosscuts which are ordered, oriented, and given a

label of or inactive, additional information must be given along with the movie or

cobordism representing the morphism at hand. Determining how best to do this

requires more work, but a thorough treatment of morphisms is not given in this

thesis.
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