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ABSTRACT

In the analysis of survival outcome supplemented with both clinical infor-

mation and high-dimensional gene expression data, traditional Cox proportional

hazard model fails to meet some emerging needs in biological research. First, the

number of covariates is generally much larger the sample size. Secondly, predicting

an outcome with individual gene expressions is inadequate because a gene’s expres-

sion is regulated by multiple biological processes and functional units. There is a

need to understand the impact of changes at a higher level such as molecular func-

tion, cellular component, biological process, or pathway. The change at a higher

level is usually measured with a set of gene expressions related to the biological

process. That is, we need to model the outcome with gene sets as variable groups

and the gene sets could be partially overlapped also.

In this thesis work, we investigate the impact of a penalized Cox regression

procedure on regularization, parameter estimation, variable group selection, and

nonparametric modeling of nonlinear effects with a time-to-event outcome.

We formulate the problem as a partially linear additive Cox model with

high-dimensional data. We group genes into gene sets and approximate the non-

parametric components by truncated series expansions with B-spline bases. After

grouping and approximation, the problem of variable selection becomes that of

selecting groups of coefficients in a gene set or in an approximation. We apply

the group Lasso to obtain an initial solution path and reduce the dimension of
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the problem and then update the whole solution path with the adaptive group

Lasso. We also propose a generalized group lasso method to provide more freedom

in specifying the penalty and excluding covariates from being penalized.

A modified Newton-Raphson method is designed for stable and rapid com-

putation. The core programs are written in the C language. An user-friendly R

interface is implemented to perform all the calculations by calling the core pro-

grams.

We demonstrate the asymptotic properties of the proposed methods. Sim-

ulation studies are carried out to evaluate the finite sample performance of the

proposed procedure using several tuning parameter selection methods for choosing

the point on the solution path as the final estimator. We also apply the proposed

approach on two real data examples.
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the problem and then update the whole solution path with the adaptive group

Lasso. We also propose a generalized group lasso method to provide more freedom

in specifying the penalty and excluding covariates from being penalized.

A modified Newton-Raphson method is designed for stable and rapid com-

putation. The core programs are written in the C language. An user-friendly R

interface is implemented to perform all the calculations by calling the core pro-

grams.

We demonstrate the asymptotic properties of the proposed methods. Sim-

ulation studies are carried out to evaluate the finite sample performance of the

proposed procedure using several tuning parameter selection methods for choosing

the point on the solution path as the final estimator. We also apply the proposed

approach on two real data examples.
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CHAPTER 1
INTRODUCTION

High-throughput gene expression profiling technologies generate an enor-

mous amount of data. High-dimensional gene expression data are increasingly

used for modeling various clinical outcomes to facilitate disease diagnosis, disease

prognosis, and prediction of treatment outcome(Yasrebi et al. 2009).

Modeling gene expression data imposes a few challenges onto the traditional

statistical methods. First, the number of covariates is generally much larger than

the sample size. Secondly, predicting an outcome with individual gene expressions

is inadequate because a gene’s expression is regulated by multiple biological pro-

cesses and functional units. There is a need to understand the impact of changes

at a higher level such as molecular function, cellular component, biological process,

or pathway. The change at a higher level is usually measured with a set of gene ex-

pressions related to the biological process. That is, we need to model the outcome

with gene sets as variable groups and the gene sets could be partially overlapped

also. Thirdly, some clinical effects are known to be nonlinear.

We formulate this gene expression problem with a time-to-event outcome

into a high-dimensional partially linear additive Cox model. Penalized regression

methods are effective ways to deal with high-dimensional data and have been ap-

plied successfully to parametric models such as linear model and logistic regression.

This chapter first describes a gene expression dataset collected in two inde-

pendent clinical trials, then introduces the Cox PH model, partially linear additive
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Cox model, penalized regression, and related work in the literature.

1.1 Motivating example and test dataset

The thesis work is motivated by gene expression data. Norway/Stanford

breast tumor data is a gene expression dataset with survival outcome and supple-

mental clinical information such as age at diagnosis and tumor stage. In Chapter

5, the procedure developed in this thesis work is applied to this dataset to illus-

trate the capacity of the method. PBC data is a relatively small dataset provided

in the R package survival. This dataset is used to debug the computational im-

plementation of the method and to illustrate the various concepts throughout the

thesis.

1.1.1 Norway/Stanford breast tumors data

A total of 115 advanced breast cancer patients were enrolled into two in-

dependent studies as described in Geisler et al. (2001) and Geisler et al. (2003).

The dataset includes 12,793 gene features and a set of clinical information such as

survival outcome, age at diagnosis, Estrogen receptor status, tumor grade, and so

on.

We group the gene features into gene oncology (GO) related biological pro-

cesses to facilitate the modeling of the survival outcome. 3,776 of the gene features

mapped into 825 GO biological processes, i.e., gene sets. The remaining 9,017 gene

features cannot be mapped into any gene set and thus are not excluded from the

statistical model in this thesis work. Each gene set includes multiple gene features
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includes.
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as shown by the histogram in 1.1. Each gene feature can be mapped into multiple

gene sets as shown in table 1.1. As a result, there are 30,388 gene features in total

in the 825 gene sets.

The dataset can be extracted from the R package survJamDa.data or down-

loaded from the National Center for Biotechnology Information (NCBI) website.

R package GSA is used to map the gene features into GO gene sets.

1.1.2 PBC data

Mayo clinic conducted a placebo controlled trial on the theraputical effect

of the drug D-penicillamine on patients with primary biliary cirrhosis (PBC) of

liver from 1974 to 1984. 312 PBC patients were randomized into the study. The

measurements listed in Table 1.2 are available for all 312 participants without

missing values. 185 were censored by the end of the study.

Except the 2 outcome variables, time and status, the remaining 14 variables

in Table 1.2 are included as covariates in a penalized Cox model. According to

Aalen et al. (2007), most of the continuous variables have nonlinear effects. A B-

spline with 6 degrees of freedom is used to approximate the nonparametric effects

of the 6 continuous variables, age, alb, alkphos, bili, protime, and sgot. The 6

columns of the B-spline basis matrix corresponding to each continuous variable

are grouped together. Categorical variables, stage and edtrt, have more than two

levels and their respective dummy variables are grouped together. Dichotomous

variables, ascites, edema, hepmeg, sex, spiders, and trt, are one variable per group.
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Table 1.1: Frequency table of gene features by the number of gene sets that a gene

feature is mapped into.

Gene sets N(%) of gene features

1 77 (21)

2 542 (14)

3 451 (12)

4 298 ( 8)

5 260 ( 7)

6 215 ( 6)

7 156 ( 4)

8 130 ( 3)

9 124 ( 3)

10 92 ( 2)

11-20 453 (12)

21-30 148 ( 4)

31-100 115 ( 3)

101-800 15 ( 0)
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Table 1.2: Description of variables in the PBC data.

Variable name Description

age in years

alb serum albumin

alkphos alkaline phosphotase

ascites presence of ascites

bili serum bilirunbin

edema presence of edema

edtrt 0 no edema, 0.5 untreated or successfully treated

1 unsuccessfully treated edema

hepmeg enlarged liver

time number of days between registration and the earlier of death

transplantion, or study analysis in July, 1986

protime standardised blood clotting time

sex 1 = male

sgot liver enzyme (now called AST)

spiders blood vessel malformations in the skin

stage histologic stage of disease (needs biopsy)

status status at endpoint, 0/1/2 for censored, transplant, dead

trt 1 for control and 2 for treatment
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The penalized model with this PBC dataset is described in the computa-

tional implementation section in Chapter 2. All the illustrative plots throughout

the thesis report are based on this dataset.

1.2 Cox proportional hazard (PH) model

Let X = (x1, x2, ⋅ ⋅ ⋅ , xp)′ be a vector of p covariates measured at or before

time 0 on individuals under a study, and let T be a corresponding absolutely

continuous failure time. In the Cox PH model, the hazard function is assumed to

be (Kalbfleisch and Prentice 2002)

�(t∣X) = lim
ℎ→0+

P (t ≤ T < t+ ℎ ∣ T ≥ t,X)/ℎ

= �0(t) exp(X ′�) (1.1)

where �0 is an arbitrary unspecified baseline hazard function and � is a vector of

regression coefficients of length p.

Suppose there are n observations in a study and the itℎ observation is (Yi,

Xi, Δi). Yi = min(Ti, Ci) and Δi = 1(Ti ≤ Ci), where Ti is the survival time

or failure time, Ci is the censoring time, and Xi is a vector of p covariates. Let

t1 < t2 < ⋅ ⋅ ⋅ < tk be the k distinct failure times and assume that there are

no tied failure times, under the independent right censoring assumption and Cox

proportional hazard assumption, the partial likelihood for � is

L(�) =
n∏
i=1

{
exp(X ′i�)∑

j∈R(ti)
exp(X ′j�)

}Δi

where R(t) = {k;Yk ≥ t} is the set of items at risk of failure at time t−, just prior
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to time t.

When there are ties among the failure times, the partial likelihood can be

adjusted in various ways. Let D(t) = {k;Yk = t and Δk = 1} be the set of tied

failures at time t and suppose there are dj failures at time tj. Efron(1997) suggested

the following correction for ties

L(�) =
k∏
i=1

∏
l∈D(ti)

exp(X ′l�)∏di−1
r=0 {

∑
j∈R(ti)

exp(X ′j�)− r
di

∑
l∈D(ti)

exp(X ′l�)}

The log partial likelihood function is

ℓ(�) = log{L(�)}

=
k∑
i=1

{ ∑
l∈D(ti)

X ′l� −
di−1∑
r=0

log
{ ∑
j∈R(ti)

exp(X ′j�)−

r

di

∑
l∈D(ti)

exp(X ′l�)
}}

(1.2)

1.3 Partially linear additive Cox model

The partially linear additive Cox model is an extension of the linear additive

Cox model which allows flexible modeling of covariate effects semiparametrically

(Huang 1999). Assume Z = (X,W ) ∈ Rp × Rq is the set of baseline covariates.

In the partially linear additive Cox model, the hazard function takes the following

form,

�(t∣X,W ) = �0(t) exp(X ′� +

q∑
i=1

�i(Wi)) (1.3)

where �1, ⋅ ⋅ ⋅ , �q are smooth functions.

Numerous work has been done to reduce the dimensionality of a functional

form such as �i(⋅). Stone(1986) first proposed using a polynomial spline to study
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a fully nonparametric additive Cox model. Lu (2007) used splines to approximate

the mean function of a counting process and found that the estimation is consistent

and the convergence rate is faster than n
1
3 . Huang (1999) studied the estimation

efficiency when some nuisance covariates were estimated using splines. He found

that although the estimated convergence rate for the spline approximated compo-

nents is slower than root n, the convergence rate for the components of interest is

efficient and in the order of root n.

1.4 LARS algorithm and penalized methods

Efron et al. (2004) described the least angle regression (LARS) algorithm to

estimate parameters and to select an optimal model in the classic linear regression

setting Y = X� + �. The LARS algorithm builds up the estimation �̂ = X�̂ in

successive steps. In each step, it adds the covariate that has the largest correlation

coefficient with the residuals into the model. The regression at each step is pro-

ceeded along the equiangular direction defined by the covariates in the model until

a new covariate has the same correlation coefficient with the residuals as those

covariates already in the model. If there are p covariates in total, only p steps are

needed to computer the solution path and the path is piecewise linear.

The LARS algorithm motivated a large amount of research in the penalized

regression field in terms of finding the solution path.

Breiman (1995) demonstrated that the traditional subset selections are dis-

continuous, computation intensive when the number of covariates is large, unsatis-
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factory in terms of prediction accuracy and stability, and proposed the non-negative

garrotte, a penalized method, which is shown to be more accurate and stable.

Tibshirani (1996) proposed a penalization method called lasso. The lasso

estimation of � is

�̂LASSO(�) = arg min
�
{−l(�) + �∥�∥1} (1.4)

where � is a tuning parameter and ∥ ⋅∥1 is the l1-norm. Under the l1 penalty, some

elements of � are estimated to be zero to achieve a sparse solution.

Efron et al. (2004) also studied how to modify the LARS algorithm to find

the solution path for the lasso penalized linear model. The major modification is

to allow a covariate to drop out of the model when the sign of its estimate changes.

Tibshirani (1997) looked into the lasso penalized Cox proportional hazard

model and found that this method shrinks the regression coefficients and produces

a sparse soltion. Furthermore, his simulation studies demonstrated that the lasso

is more accurate than stepwise method in terms of variable selection..

Bakin (1999) proposed a generalized penalty term for selecting prespecified

groups of variables, which is called group lasso.

Huang et al.(2006) studied a group bridge penalized method which is capa-

ble of both bi-level variable selection in the linear regression setting. Huang et al.

(2010) studied the adaptive group lasso method in nonparametric additive models.

Xie (2007) studied the property of the smoothly clipped absolute deviation

penalty imposed on the linear regression model and on the accelerated failure time

model and demonstrated the oracle property achieved by the method.
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There are various form of penalties studied by other researchers too. Fan

and Li (2001) studied the SCAD penalty. Zou and Hastie (2005) studied regular-

ization and variable selection via the elastic net. The ridge regression is the first

penalized method proposed by Hoerl and Kennard (1970).

Yuan and Lin (2006) studied the model selection and estimation properties

with grouped variables in linear regression framework. Three methods for grouped

variable estimation and selection, the grouped least angle regression, the group

lasso, and the group non-negative garrotte, were compared. They concluded that

the group lasso enjoys excellent performance but its solution path is not piecewise

linear and therefore requires intensive computation in large-scale problems. Meier

et al. (2008) studied the group lasso for logistic regression. They proposed the

block co-ordinate descent algorithm to solve the problem and claimed that it was

efficient.

Nardi, Y. and Rinaldo, A. (2008) established estimation and model selection

consistency, prediction and estimation bounds and persistence for the group-lasso

estimator and model selector proposed by Yuan and Lin (2006) for least squares

problems where the covariates have a natural grouping structure. They considered

the case of a fixed-dimensional parameter space with increasing sample size and the

double asymptotic scenario where the model complexity changes with the sample

size.

Zhang and Lu (2007) studied the adaptive lasso in the Cox proportional

hazards model framework. Their adaptive lasso penalty was based on parameter
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estimates from the regular Cox model and thus is unsuitable for high-dimensional

data. Furthermore, the optimal tuning parameter was determined using the gen-

eralized cross-validation instead of finding it along a solution path. They also

showed that adaptive lasso penalized method has the oracle properties under a

proper choice of the tuning parameter.

1.5 Outline of the thesis

In Chapter 2, we study the properties and computational issues in the group

lasso penalized partially linear additive Cox model. An algorithm to calculate the

solution path is proposed and implemented in R. AIC, BIC, and cross validation

(CV) are adapted separately to select an optimal model and its corresponding op-

timal tuning parameter �. The implementation works not only in the traditional

setting of p < n, but also in the high-dimensional setting when p > n. Asymptotic

results indicate that group lasso estimator is root-n consistent under some regular-

ity conditions. It can reduce the dimension of a Cox regression problem, however,

it is inconsistent in terms of variable selection.

Based on the work on the group lasso, we investigate the properties of the

adaptive group lasso method on the same Cox regression framework in Chapter

3. Generally speaking, we first apply group lasso on a Cox regression problem to

get an initial optimal model with reduced dimension. We then refine the resulting

model with adaptive group lasso to improve model fitting and promote sparsity.

The method is demonstrated to be not only estimation consistent but also variable
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selection consistent. That is, it possesses oracle properties.

Both group lasso and adaptive group lasso estimates are biased to trade for

sparsity despite they are asymptotically unbiased. There is a need to estimate the

unbiased effect of some covariates and to put different penalty on different covariate

group. A generalized group lasso method is proposed, studied, and implemented

based on the previous work in Chapter 4.

In Chapter 5, a numerical study is conducted to compare the three methods

and the generalized group lasso method is applied to analyze a gene expression

dataset. Some discussion and potential future work conclude the thesis in Chapter

6.
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CHAPTER 2
GROUP LASSO PENALIZED PARTIALLY LINEAR ADDITIVE

COX REGRESSION

2.1 Approximation of nonlinear effects in a partially linear additive

Cox model

Truncated B-spline approximation is utilized to estimate a nonlinear effect.

Assume � is a smooth function defined on [a, b] with a > −∞ and b <∞.

Assume there exists a finite set of knots, {�i}Ki=0, such that a = �0 < �1 < �2 <

⋅ ⋅ ⋅ < �K = b. Thus, {�i}Ki=0 partitions [a, b] into K subintervals. Let S be the

set of polynomial splines of order l ≥ 1 defined on [a, b], such that ∀s ∈ S, s is a

polynomial of order l in [�i−1, �i], ∀1 ≤ i ≤ K and s is l − 2 times continuously

differentiable on [a, b] if l ≥ 2. According to Schumaker (1981), there exists a set

of local basis functions on [a, b], {Bt, t = 1, ⋅ ⋅ ⋅ , K + l}, for S. That is, ∀s ∈ S,

there exists {bt ∈ R, t = 1, ⋅ ⋅ ⋅ , K + l}, such that

s(⋅) =
K+l∑
t=1

btBt(⋅).

With a set of suitably chosen knots {�i}Ki=0 and l for S, and under some

suitable smoothness conditions on �, � can be well approximated by a function in

S.

A B-spline is a spline function that has minimal support with respect to a

given degree, smoothness, and domain partition. By induction, it can be proved

that the sum of the B-spline basis functions for a particular value of the covariate

is unity. This is known as the partition of unity property of the basis functions
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(Boor 2001). Since the intercept part of a Cox model is absorbed in the baseline

function, we exclude the last column of the basis matrix for each covariate to avoid

the model identification problem. The rationale is

s(⋅) =
m+1∑
t=1

btBt(⋅)

=
m∑
t=1

btBt(⋅) + bm+1Bm+1(⋅)

=
m∑
t=1

btBt(⋅) + bm+1

(
1−

m∑
t=1

Bt(⋅)
)

=
m∑
t=1

(bt − bm+1)Bt(⋅) + bm+1

=
m∑
t=1

b∗tBt(⋅) + bm+1

where m = K + l − 1. That is, we can use all the B-spline basis functions except

the last one to approximate a covariate’s nonlinear effect.

As to the partially linear additive Cox model introduced above, we need

to find a set of suitable basis {Bj,t ∈ R, t = 1, ⋅ ⋅ ⋅ ,mj} and the corresponding

coefficients {bj,t ∈ R, t = 1, ⋅ ⋅ ⋅ ,mj} to approximate each functional form �j(⋅).

Let Wj,b = [Bj,1(Wj), Bj,2(Wj), ⋅ ⋅ ⋅ , Bj,m(Wj)] be the basis matrix of Wj,

Wb = [W1,b,W2,b, ⋅ ⋅ ⋅ ,Wq,b] be the basis matrix of W , b = {bj,k; 1 < k < mj, 1 <

j < q}, Z = (X,Wb), and � = (�, b), then the partial likelihood for the partially

linear additive Cox model can be approximated by

L(�) =
n∏
i=1

{
exp(Z ′i�)∑

j∈R(ti)
exp(Z ′j�)

}Δi

This is in the same form as the partial likelihood for the Cox PH model. We can

incorporate Efron’s method on top of this approximation to deal with tied failure
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times. In the remaining of this thesis, we still use X to represent the complete set

of covariates instead of Z

Partially linear additive Cox model is equivalent in form to a regular Cox PH

model once the basis matrix for a nonlinear effect to be modeled nonparametrically

is generated. R function bs can be used to generate the basis matrix for a covariate.

However, the set of coefficients corresponding to the basis matrix of a non-

linear effect needs to be grouped together for the purpose of variable selection.

This kind of grouping is treated the same way as the grouping of genes into a gene

set in this thesis work.

2.2 Group lasso penalized Cox regression

In group lasso penalized regression, the objective is to minimize the follow-

ing function over �

Qn(�, �) = − 1

n
ℓn(�) + �

K∑
j=1

√
pj∥�(j)∥

�̂n(�) = arg min
�
Qn(�, �)

(2.1)

where Qn(�, �) is the objective function and ℓn(�) is the partial log likelihood from

the partially linear additive Cox model as introduced in the previous section.

The covariates are grouped into K groups. �(j) is the regression coefficient

for covariate group j, where j = 1, ⋅ ⋅ ⋅ , K. Thus, � = (�′(1), ⋅ ⋅ ⋅ , �′(K))
′. ∥ ⋅ ∥ is the

L2 norm.

� is the tuning parameter. Intuitively, it controls the trade-off between the
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estimation bias and the estimation variance. In a traditional Cox regression setting

with n > p, if � = 0, then there is no estimation bias and the estimation variance

is relative large. As � increases, the estimation bias increases and the estimation

variance decreases. When � is large enough, all the parameter estimates are zeros

and their variances are zeros also.

The minimization problem in (2.1) is the Lagrangian form of the following

optimization problem,

min
�
−ℓn(�)

s.t.
K∑
j=1

√
pj∥�(j)∥ ≤ t

(2.2)

Where t is the upper bound of the constraints on �.

−n−1ℓ̈n(�) is symmetric and thus nonnegative definite. It is positive definite

when n > p or when the covariates are linearly independent. ∥�(j)∥ is convex

∀j ∈ {1, 2, ⋅ ⋅ ⋅ , K}, thus
∑K

j=1

√
pj∥�(j)∥ is convex. As a result, the objective

function in (2.1) to be minimized is strictly convex and finding the group lasso

estimation in (2.1) is a strictly convex optimization problem. As a result, any local

optimal point is also the global optimal point (Boyd and Vandenberghe 2004).

2.3 KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions for finding the minimizer in

(2.1) are ⎧⎨⎩
− 1
n
ℓ̇n(j)(�) +

�
√
pj�(j)
∥�(j)∥

= 0 ∀�(j) ∕= 0

∥ 1
n
ℓ̇n(j)(�)∥ ≤ �

√
pj ∀�(j) = 0

(2.3)
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where ℓ̇n(j)(�) denotes ∂ℓn(�)/∂�(j).

The KKT conditions are not only necessary but also sufficient. That is, the

solution to the conditions in (2.3) is the minimizer for both (2.1) and (2.2). We

call the collection of variable groups corresponding to those �̂n(j) ∕= 0 the active

set A and that corresponding to �̂n(j) = 0 the non-active set Ā.

The above KKT conditions provide a lot of information about the group

lasso estimates. In order for a covariate group to have nonzero estimate, i.e., to

be in the active set A, it has to meet the second KKT condition. This explains

why the group lasso can produce zero estimates for some covariate groups and

thus reduce the dimensionality of a regression problem. The first KKT condition

implies ∥ℓ̇n(j)(�̂n)∥/√pj = �, ∀�̂n(j) ∕= 0. The first KKT condition allows us to

find the penalized estimates once the active set is known.

If p < n and the set of covariates has full column rank, we can define

�max = inf{�; �̂n(�) = 0}

= max
j

∥ℓ̇n(j)(0)∥
n
√
pj

tmax =
K∑
j=1

√
pj∥�̂n(j)(0)∥

where ℓ̇n(j)(0) includes the components of the score function ℓ̇n(�) at � = 0 corre-

sponding to the jtℎ grouped variable.

Figure 2.1 illustrates the relationship between � and t. As � decreases from

�max to 0, the penalized estimate for � changes continuously from 0 to the regular

Cox model estimate. Furthermore, t increases from 0 to tmax when � decreases



19

0 50 100 150

0.
00

0.
02

0.
04

0.
06

0.
08

t

λ

Figure 2.1: Plot of �− t with PBC data.

from �max to 0. That is, the constraint in (2.2) is tight when t ∈ [0, tmax]. Since t

is a strictly decreasing function of � when � ∈ [0, �max], the � estimate can also be

denoted as a function of t, �̂n(t). We call both �̂n(�) where � decreases from �max

to 0 and �̂n(t) where t increases from 0 to tmax the solution path for the group

lasso penalized model.

When p > n or the set of covariates does not have full rank, then � need to

be a positive number to obtain a unique parameter estimation.

2.4 Modified Newton-Raphson method

Newton-Raphson method generally has quadratic convergence rate and is

preferred when the number of parameters is not too large. When the number of
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parameters is large, block co-ordinate descent algorithm proposed by Meier et al.

(2008) can be implemented to speed up the process. In the loop of updating one

block at a time, the algorithm is essentially New-Raphson at each step.

Applying the Newton-Raphson method to our problem requires the calcu-

lation of the following first and second order derivatives of the objective function

in (2.1) corresponding to the active set A.

Q̇nA(�, �) = − 1

n
ℓ̇nA(�) +

[
��1
√
p1

∥�1∥
, ⋅ ⋅ ⋅ ,

��(j)
√
pj

∥�(j)∥

]
A

Q̈nA(�, �) = − 1

n
ℓ̈nA(�) + diag

(
�
√
pj

∥�(j)∥

(
Ipj×pj −

�(j)�
′
(j)

∥�(j)∥2

))
A

(2.4)

where (⋅)A is a subset operation, which selects only the components that are in the

active set A.

It is important that Q̈nA(�, �) is positive definite in order to have a unique

solution for a give �. If there is only one variable group in the variable group,

then diag

(
�
√
pj

∥�(j)∥

(
Ipj×pj −

�(j)�
′
(j)

∥�(j)∥2

))
A

has a rank of A∗ − 1 with A∗ denoting the

number of covariates in the active set. The only zero eigenvalue of this matrix

has an eigenvector of �A. If �A is not an eigenvector of ℓ̈nA(�) corresponding to a

zero eigenvalue, then QnA(�, �) is positive definite. This condition is easy to meet

when the group size is larger then one. With similar argument, we know that it is

easy for QnA(�, �) to be positively definite if most of the group sizes are greater

than one. This also explains why the number of covariates in the active sets could

be larger than the sample size in the gene expression data example described in

Chapter 5.

Similar to LARS, the active set grows as � decreases from �max to 0. When
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� = �max the, active set is empty. If we let � decreases along a set of fine grid points

between �max and 0, the covariates will enter into the active set gradually according

to the criteria specified in the KKT conditions. At the same time, covariate groups

might also move out of the active set. When the grid points are densely placed, we

expect that the change in the active set and the change in the � estimate are small

between two consecutive � values. Also, the previous � estimate is an excellent

initial guess for finding the next � estimate. The active set corresponding to the

previous � value is a close estimate of the current active set. In addition, the

second KKT condition provides a criterion to evaluate whether a covariate group

should enter into or move out of the active set.

There are a couple of reasons that we need to modify the Newton-Raphson

method to make it work in our computational implementation.

The first challenge of applying the Newton-Raphson method to solve the

convex minimization problem in (2.2) is that the estimates of some variable groups,

could be zero. For those zero estimates, their first and second derivatives do not

exist. We don’t know the exact set of non-active covariates in advance even if we

search along the solution path. During the iterations of finding a solution for a

specific �, the estimate for a non-active covariate group could be approximately

zero before it the iteration converges.

The second challenge of applying the Newton-Raphson method is the pos-

sible overflow of floating point in computational implementation. The overlow of

floating point is mainly caused by extremely small ∥�(j)∥ for j ∈ A. When � is
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slightly smaller than �max, a small change in � or equivalently in t will lead to a

dramatic change in �. This is evident in the plot of the relationship between �

and t in Figure 2.1. That means that some components of the � estimate could

be extremely small.

The solution is that we set ∥�(j)∥ = � whenever ∥�(j)∥ < � with a prespeci-

fied � > 0. This modification also makes sure that any previous � estimate won’t

cause any problem as an initial guess for finding the next � estimate and that the

Newton-Raphson algorithm is robust.

Define

Q̇∗nA(�, �) = − 1

n
ℓ̇nA(�) +

[
��1
√
p1

∥�1∥∗
, ⋅ ⋅ ⋅ ,

��(j)
√
pj

∥�(j)∥∗

]
A

Q̈∗nA(�, �) = − 1

n
ℓ̈nA(�) + diag

(
�
√
pj

∥�(j)∥∗
(
Ipj×pj −

�(j)�
′
(j)

∥�(j)∥∗2
))

A

(2.5)

where ∥�(j)∥∗ = max(∥�(j)∥, 10−9). (⋅)A is a subset operation, which selects only

the components that are in the active set A.

After the modification, Q̈∗nA(�, �) is still a symmetric matrix, Cholesky

decomposition is used to speed up the calculation of its inverse. If an initial guess

of � is �̂0
n, then the update of � estimate is

�̂nA(�) = �̂0
nA − Q̈∗−1

nA (�̂0
n, �)Q̇∗nA(�̂0

n, �) (2.6)

2.5 Algorithm to find the penalized solution path

A set ofM grid points {�i}Mi=0 equally spaced on the log scale within [0, �max]

is chosen to find the penalized solution path. If n > p, the last � value is chosen

to be zero to obtain the regular Cox estimate.
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⎧⎨⎩

�1 = �max

�i = �i−1

c
∀i ∈ [2,M ]

�M = 0 if n > p

(2.7)

In the above expression, c > 1 and c could be modified to space the grid

points differently. A small � value could cause the computation to be unstable

when the number of covariates is larger than the sample size.

The following steps are implemented in R to find the solution path:

∙ Initialize: set A = ∅, �̂n = 0, and i = 2.

∙ (1) Calculate ∥ℓ̇n(j)(�̂n)/n∥ corresponding to each variable group, j = 1, ⋅ ⋅ ⋅ , K.

∙ For each j /∈ A, if ∥ℓ̇n(j)(�̂n)/n∥ > �i
√
pj, then variable group j is selected

into the active set A. That is,

A = A ∪ {j; ∥ 1

n
ℓ̇n(j)(�̂n)∥ > �i

√
pj, j /∈ A}

The parameter estimate for those newly added variable group is set to be

zero.

∙ (2) Update �̂n using the formula in (2.6) until convergence. Note that only

the components in the active set A are updated.

∙ Check for the dropping of variable groups. For each variable group j ∈ A,

set �̂0
n = �̂n and again set �̂0

n(j) = 0. If ∥ℓ̇n(j)(�̂
0
n)/n∥ < �i

√
pj, drop variable
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group j from the active set, set �̂n(j) = 0, and go to step (2). If there is no

variable group to be dropped, continue.

∙ Check for the adding of variable groups. For each variable group j /∈ A, if

∥ℓ̇n(j)(�̂n)/n∥ > �i
√
pj, then add variable group j to the active set and go to

step (2). Otherwise continue. If the total number of covariates in the active

set is greater than n, stop.

∙ Save current result and set i = i+ 1. Go to step (1) until i > M .

Figure 2.2 illustrates a group lasso penalized solution path from modeling

the PBC data. The model details are described in the computational implemen-

tation in this chapter.

2.6 Model selection - find an optimal tuning parameter �

AIC, BIC, and cross-validation are adapted to find the optimal � values

along the solution path. Since there is a penalty term in the group lasso penalized

Cox model, the effective number of parameters is less than the number of param-

eters in the active set when � ∈ (0, �max). Moody (1992) proposed the following

formula to calculate the effective number of parameters in a penalized model.

d.f.(�) = trace{− 1

n
ℓ̈nA(�̂n(�))Q̈∗−1

nA (�̂n(�), �)}

where �̂n(�) is the penalized estimate of � and ℓ̈nA(�̂n(�)) is the negative Hessian

matrix of the Cox partial likelihood which corresponds to the active set A and

is evaluated at �̂n(�). Q̈nA(�̂n(�), �) is the second derivative of the Lagrangian
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Figure 2.2: Plot of a group lasso penalized solution path with the PBC data. The

horizontal axis is the the tuning parameter �. The vertical lines are optimal models

chosen by AIC, BIC, and cross validation. The estimates for each variable group

are plotted using the same line type.
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Figure 2.3: Plot of the effective N of parameters and the N of active covariates

with the PBC data.

function which corresponds to the active set A and is evaluated at (�̂n(�), �).

Figure 2.3 is a plot of the effective number of parameters and the number

of active covariates with the PBC data.

At each � value along the solution path, the modified variable selection

criteria are

AIC(�) = −2ℓn(�̂n(�))/n+ 2d.f.(�)/n

BIC(�) = −2ℓn(�̂n(�))/n+ 2d.f.(�) log(n)/n

k-fold cross validation is also implemented in R to select an optimal � value.

Generally speaking, in a k-fold cross validation, the modeling data is randomly

divided into k subsets with approximately equal sample size. Each time, one
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subset is left out as the test set while the remaining k-1 subsets are used as the

training set to estimate �. The cross validation error for the subset is naturally

chosen to be the negative log likelihood. The overall cross validation error is the

sum of the errors across the k subsets divided by the total number of observations

in the original dataset. Put it in a mathematical form, the k-fold cross validation

error can be expressed as,

CVk(�) = −
k∑
i=1

ℓin(�̂n(−i)(�))/n (2.8)

�̂n(−i)(�) is the penalized estimate for � at � with the itℎ subset taken out as the

test set and the remaining k − 1 subsets kept as the training set. ℓin(.) is the log

partial likelihood for the itℎ subset.

With each of the three model selection methods, the goal is to choose an

optimal � that minimizes the corresponding criterion. It is well known that AIC

tends to choose a relatively more complicated model than BIC does and a more

complicated model is generally associated with a smaller � value. Cross valida-

tion generally performs better because it is a data driven method, however it is

extremely computation intensive.

It is worthwhile to note that the popular leave-one-out cross validation

methods is asymptotically equivalent to the AIC model selection criterion. Shao

(1993) pointed out that both AIC and k-fold cross-validation are asymptotically

inconsistent in the sense that the probability of selection the model with the best

predictive ability does not converge to 1 as the total number of observations n→

∞. He also proved that a leave-nv-out cross validation with is asymptotically
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Figure 2.4: Plot of the three model selection criteria with the PBC data.

consistent if nv/n→ 1 and nv →∞ as n→∞.

Figure 2.4 plots the three model selection criteria with the PBC data. It

illustrates the different optimal � values chosen by the three model selection cri-

teria.

2.7 Asymptotic Results

In this section, we list the asymptotic properties of the group lasso estimator

for the Cox PH model. The results are derived with the number of covariates being

fixed while the sample size increases. The B-spline approximation of a covariate’s

nonparametric effect is not considered here.
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2.7.1 Set up

The objective function in the group lasso penalized Cox PH model is

Qn(�, �n) = − 1

n
ℓn(�) + �n

K∑
j=1

√
pj
∥∥�(j)

∥∥
whereQn(�, �n) is the objective function to be minimized over the model parameter

� with a given �n and n is the sample size. ℓn(�) is the partial likelihood from a

Cox PH model.

�n refers to an optimal tuning parameter which changes with the sample

size. In the computational implementation, a tuning parameter is usually pre-

specified and an optimal tunning parameter is generally chosen according to some

criterion such as AIC, BIC, cross validation, or generalized cross validation. How-

ever, in the proofs of the asymptotic results, �n is assumed to converge at a rate

in addition to the regularity conditions for Cox PH model.

The model parameter � is decomposed into K vectors �(j), j = 1, 2, ⋅ ⋅ ⋅ , K,

which correspond to the K covariate groups, respectively. A covariate group could

include only one covariate or multiple covariates. The number of covariates in

group j is denoted by pj, j = 1, 2, ⋅ ⋅ ⋅ , K, and ∥⋅∥ is the L2 norm.

The true model parameter is denoted as �0. Without loss of generality, we

assume the coefficients of the first S, S ≤ K, covariate groups are nonzero and

the remaining are zero. That is, �0
(j) ∕= 0 for j = 1, 2, ⋅ ⋅ ⋅ , S, and �0

(j) = 0 for j =

S + 1, S + 2, ⋅ ⋅ ⋅ , K. The set of nonzero covariate groups are denoted as A and we

use the subscript (A) to represent it.
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The group lasso estimator for a Cox PH model with an optimal tuning

parameter �n is defined as

�̂n(�n) = arg min
�
Qn(�, �n)

2.7.2 Preparation

The proofs of the asymptotic results stated in this section builds up on two

asymptotic results given by Andersen and Gill (1982). According to Theorem 3.2

in Andersen and Gill (1982), the following two results hold given the regularity

conditions (A) - (D).

n−1/2ℓ̇n(�0)
p→ N(0,Σ)

− 1

n
ℓ̈n(�∗)

p→ Σ for any random �∗
p→ �0

where �0 is the true model parameter and ℓ̇n(�0) and ℓ̈n(�∗) are the first and the

second order derivatives of ℓn(�), i.e., the score function and the Hessian matrix,

evaluated at �0 and �∗ respectively. Σ is the positive definite Fisher information

matrix and Σ
Δ
= E{−ℓ̈(�0)}. Σ = Eℓ̇(�0)⊗2 holds also because the model is

assumed to be true.

Theorem 2.1. (Consistency) Under regularity conditions (A) - (D) in

Andersen and Gill (1982), if �n → 0 as n → 0, then there exists a minimizer

�̂n(�n) of Qn(�, �n) such that �̂n(�n)
p→ �0 as n→∞.

Proof of Theorem 2.1

Proof. Theorem 5.7 in Van der Vaart(1998) can be applied to prove the

theorem. However, a slightly different approach is adopted in this proof.
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As in Van der Vaart and Wellner (1996), We only need to show that ∀a > 0,

Pr{ sup
�:∥�−�0∥=a

Qn(�, �n) > Qn(�0, �n)} → 1 (2.9)

This implies that with probability goes to 1, Qn(�, �n) has a local minima

in the ball {� : ∥� − �0∥ < a} for a given �n. As discussed in the previous section,

the local minima is also a global minima since the objective function is concave.

Thus, we have[
sup

�:∥�−�0∥=a
Qn(�, �n) > Qn(�0, �n)

]
⊆
[∥∥∥�̂n(�n)− �0

∥∥∥ < a
]

where [⋅] represents the event set which satisfies the condition inside the bracket.

Therefore,

Pr
{∥∥∥�̂n(�n)− �0

∥∥∥ < a
}
≥ Pr

{
sup

�:∥�−�0∥=a
Qn(�, �n) > Qn(�0, �n)}

}

which implies,

Pr
{∥∥∥�̂n(�n)− �0

∥∥∥}→ 1

Now, we will show that equation (2.9) holds.

Qn(�, �n)−Qn(�0, �n)

= − 1

n

(
ℓn(�)− ℓn(�0)

)
+

K∑
j=1

�n
√
pj
(∥∥�(j)

∥∥− ∥∥�0
(j)

∥∥)
≥ −n−1/2

(
n−1/2∂ℓn(�0)

∂�

)′
(� − �0) + (� − �0)′

(
n−1∂

2ℓn(�0)

∂�2

)
(� − �0)

+n−1op(
∥∥� − �0

∥∥2
)− �n

K∑
j=1

√
pj
∥∥� − �0

∥∥
≥ −n−1/2Op(1)

∥∥� − �0
∥∥+ (� − �0)′ (Σ + op(1)) (� − �0)

+n−1op

(∥∥� − �0
∥∥2
)
− �n

K∑
j=1

√
pj
∥∥� − �0

∥∥
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Since �n → 0 as n → 0, the above quantity is dominated by the second term

(� − �0)′ (Σ + op(1)) (� − �0). It is positive since Σ is positive definite. Hence,

equation (2.9) holds. This completes the proof.

Theorem 2.2. (Convergence rate) Under regularity conditions (A) - (D)

in Andersen and Gill (1982), if �n = O(n−1/2), then
∥∥∥�̂n(�n)− �0

∥∥∥ = Op

(
n−1/2

)
Proof of Theorem 2.2

Proof. We need to show
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ = Op (1), that is, ∀� > 0,

∃M > 0, such that

P ∗
{√

n
∥∥∥�̂(�n)− �0

∥∥∥ > 2M
}
< � as n→∞

where P ∗ is an outer probability measure.

As in the proof of Theorem 3.2.5 in Van der Vaart and Wellner (1996), for

a given integer M > 0, partition the the parameter space
{
�;
√
n ∥� − �0∥ ≥ 2M

}
into the ”shells” Sj,n = {�; 2j−1 <

√
n ∥� − �0∥ ≤ 2j} with j = M + 1,M + 2, ⋅ ⋅ ⋅ .

Thus, for every � > 0, we have

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > 2M
}

=
∑
j>M

2j≤�
√
n

P ∗
{

2j−1 <
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ ≤ 2j
}

+

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > �
√
n
}

=
∑
j>M

2j≤�
√
n

P ∗
{
�̂n(�n) ∈ Sj,n

}
+ P ∗

{∥∥∥�̂n(�n)− �0
∥∥∥ > �

}

From Theorem 2.1, the second term → 0 as � → ∞. As to the first term,
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since �̂n(�n) ∈ Sj,n implies

inf
�∈Sj,n

Qn(�, �n) ≤ Qn(�0, �n)

thus,

P ∗
{
�̂n(�n) ∈ Sj,n

}
≤ P ∗

{
inf

�∈Sj,n

{
Qn(�, �n)−Qn(�0, �n)

}
≤ 0

}

Let ℎn
Δ
=
√
n(� − �0) and r1 be the smallest eigenvalue of Σ. From the

proof of Theorem 2.1, we have

Qn(�, �n)−Qn(�0, �n)

≥ −n−1

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + n−1ℎ′n

(
n−1∂

2ℓn(�0)

∂�2

)
ℎn −

n−1/2�n

K∑
j=1

√
pj ∥ℎn∥+ n−2op(∥ℎn∥2)

≥ −n−1

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + n−1r1 ∥ℎn∥2 − n−1/2�n

K∑
j=1

√
pj ∥ℎn∥+

n−2op(∥ℎn∥2)

By assumption, �n = O(n−1/2), which means

�n
√
n

K∑
j=1

√
pj ∥ℎn∥ ≤ 0.5r1 ∥ℎn∥2

for any ∥ℎn∥ > 2M if we choose n and 2M large enough. Thus,

Qn(�, �n)−Qn(�0, �n) ≥ − 1

n

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn+0.5n−1r1 ∥ℎn∥2 +n−2op(∥ℎn∥2)
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Let r2 be the largest eigenvalue of Σ and denote
8
√

(r2)

r1
as r, then we have

P ∗
{
�̂n(�n) ∈ Sj,n

}
≤ o(1) + P ∗

{
inf

2j−1<∥ℎn∥≤2j
−
(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + 0.5r1 ∥ℎn∥2 ≤ 0

}
≤ o(1) + P ∗

{
sup

2j−1<∥ℎn∥≤2j

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn ≥ r122j−3

}

≤ o(1) +

E

∣∣∣∣sup2j−1<∥ℎn∥≤2j

(
n−1/2 ∂ℓn(�0)

∂�

)′
ℎn

∣∣∣∣
r122j−3

≤ o(1) +

E1/2

{
sup2j−1<∥ℎn∥≤2j ℎ

′
n

(
n−1/2 ∂ℓn(�0)

∂�

)⊗2

ℎn

}
r122j−3

≤ o(1) +
E1/2

{
sup2j−1<∥ℎn∥≤2j ℎ

′
n(Σ +Op(1))ℎn

}
r122j−3

≤ o(1) +
2j ∗ √r2

r122j−3

≤ o(1) + r2−j

That is,

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > 2M
}
≤ o(1) +

∞∑
j=M+1

r2−j ≤ o(1) + r2−M

This indicates
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ = Op(1).

2.7.3 Lack of oracle property

Sparsity means that the estimate of zero coefficients goes to zero with prob-

ability tending to 1. The oracle property includes not only sparsity, but also that

the estimate of nonzero coefficients reaches the Cramer-Rao lower bound asymp-

totically as if the set of zero coefficients were known in advance. In the Group

Lasso penalized Cox PH model, the estimator is root-n consistent, however it does
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not have sparsity or oracle property. From the proofs of Theorem 3.3 in Chapter

3, we conclude that a necessary condition for an estimator to be sparse is that the

first order derivative of the penalty function with respect to those zero coefficients

needs to go to infinity with probability tending to 1.

2.8 Computational implementation of the algorithm

2.8.1 Simplification of the calculations of the log partial likelihood function,

score function and negative Hessian matrix

The calculation of the three expressions could be complicated and time-

consuming because of their dependence on risk sets and tied-failure groups. Fur-

thermore, we need to evaluate them numerous time while calculating the solution

path for the group lasso penalized Cox model. A pre-processing is implemented to

better structure the calculation.

First, all the observations are sorted first by survival time in ascending order

and then by status indicator with events first and censoring second. After sorting

data in this way, each group of tied failures is aggregated together and the risk set

for each failure starts from itself till the last observation when there are no tied

failures.

Second, for each group of tied failure events, the start index and number of

ties are searched and saved to speed up the processing of tie correction.
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Third, define the following three qualities s∗0,j, s
∗
1,j, and s∗2,j.

s∗0,j =

∑
l∈D(ti) exp(X′l�)

di

s∗1,j =

∑
l∈D(ti) exp(X′l�)Xl

di

s∗2,j =

∑
l∈D(ti) exp(X′l�)XlX

′
l

di

∀i ∈ {1, 2, ⋅ ⋅ ⋅ , k} ∀j ∈ D(ti)

The calculation of the three expressions now becomes

ℓn(�) =
n∑
i=1

Δi

{
X ′i� − log

{ n∑
j=i

s∗0,j

}}

ℓ̇n(�) =
n∑
i=1

Δi

{
X ′i −

∑n
j=i s

∗
1,j∑n

j=i s
∗
0,j

}

ℓ̈n(�) = −
n∑
i=1

Δi

{∑n
j=i s

∗
2,j∑n

j=i s
∗
0,j

−
{∑n

j=i s
∗
1,j

}{∑n
j=i s

∗
1,j

}′{∑n
j=i s

∗
0,j

}2

}

With this processing, the only extra work needed for tie correction is just

as that described in the third step. Since each group of tied failure events is

aggregated together after the sorting in the first step and we’ve saved the start

index and number of each tied failure group in the second step, the correction of

ties in the third step is greatly simplified. After the correction of ties, the remaining

calculation is the same as the situation without ties. Furthermore, there is no need

to search for risk sets in order to calculate the three expressions after the sorting.

2.8.2 R Interface

This R implemention of the grouped variable selection in a high-dimensional

partially linear additive Cox model, gs.coxph, inherits the interface for R function
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coxph. This interface provides a convenient way to specify the Cox model and the

model covariates. With this interface, a categorical variable can be incorporated

into the model specification using the factor keyword. Similarly, if we need to

use B-spline to approximate the nonparamatric effect of a covariate, we can use R

function bs to obtain the basis matrix.

Four new arguments are added to the interface to make it suitable for the

specification of a group lasso penalized Cox model. Two additional arguments for

the adaptive group lasso and for the generalized group lasso are also described here

to make the description complete.

∙ n.freevars specifies the how many covariate at the beginning of the covariate

set are free variables. The default value is zero. More information on free

variables is available in Chapter 4. It is zero by default.

∙ group.selection. A vector is used to indicate which variables belong to a

group. For example, if there are 16 variables included in a Cox model and

2 free variables and the group specification is c(3,1,8), then covariates 1-2

are free variables, variables 3-5 form the first group, covariate 6 the second

group, covariates 7-14 the third group, and the remaining two covariates

are one covariate per group. The default value NULL indicates there is no

grouping of covariates.

∙ lambda argument. The default value is NULL. It could be specified as one

value or a vector of values. If lambda=NULL, then 200 � values are chosen
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according to the rules specified in (2.7). Otherwise, it will calculate a solution

corresponding to the specified � value or a solution path is it is a vector of

values.

∙ lambdaRate. It is equivalent to c in (2.7). The default value is 1.03. It is

ignored if lambda is not NULL.

∙ LassoWGT specifies the adaptive weight which is described in Chapter 3.

∙ debugtype. The default value is zero for calculating a solution path. If de-

bugtype = 2, it performs a 5-fold cross validation and lambda needs to be

specified too.

fit1 = gs.coxph(Surv(time, status) ˜ factor(stage) + factor(edtrt)

+ bs(age, df=6) + bs(bili, df = 6) + sex + trt + edema,

data = pbc1, lambda = NULL, debugtype = 0,

group.selection = c(3,2,6, 6),

control = list(iter.max = 50))

The above example illustrates how to call the R function gs.coxph to calculate the

group lasso penalized solution path with the PBC data.

∙ In gs.coxph, the specification of a Cox model is the same as that in coxph.

∙ Data pbc1 is a subset of pbc dataset that comes with the survival package.

More information about the PBC data is available in Chapter 1. The subset

excludes observations 313-418 and a few covariates because of missing values.
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∙ The whole solution path will be calculated since lambda is NULL.

∙ group.selection is used to specify covariate groups. The four levels of stage

are coded by three dummy covariates, which constitute the first group. Sim-

ilarly, the three levels of edtrt are coded by two dummy covariates in the

second group. B-spline with 6 degrees of freedom is used to approximate

the nonparametric effect of age. The 6 columns of the B-spline basis matrix

for age form the third group. Similarly, the 6 columns of the B-spline basis

matrix for bili form the fourth group. The last three covariates, sex, trt,

and edema, are one variable per group, which is not explicitly specified in

group.selection.

To find an optimal � value using 5-fold cross validation, it takes another

functional call to gs.coxph. The specification of the function call is as the following.

cv1 = gs.coxph(Surv(time, status) ˜ factor(stage) + factor(edtrt)

+ bs(age, df=6) + bs(bili, df = 6) + sex + trt + edema,

data = pbc1, lambda = fit1$Lambdas, debugtype = 2,

group.selection = c(3,2,6, 6),

control = list(iter.max = 50))

Most of the specifications are similar to those in the first function call to

gs.coxph except the specifications of lambda and debugtype. Here lamba is set to

be fit1$Lambdas, where fit1 is an R dataset returned by the first function call

and Lambdas is a component of fit1 and contains a set of � grid points where
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the solution path are located on. debugtype is set to 2 to require a 5-fold cross

validation. It returns the cross validation errors along the solution path.

2.8.3 Optimization of R implementation

Rewriting R functions in C dramatically speeds up the calculation as it can

reduce computing time and optimize memory usage.

∙ R offers a user friendly interface at the cost of computation efficiency. It is

well known that R is extremely slow when there are more than three levels

of nested for loops. The calculation of the three Cox expressions, the partial

log-likelihood, the score function, and the Hessian matrix takes about 99% of

the computation time when it is implemented in R. Rewriting the calculation

of the three Cox expressions in C speeds up the computation by about 400

times.

∙ Memory usage is another bottleneck for modeling high-dimensional survival

data. R function interface passes data by value, which means it will make

a temporary copy for each input data at the beginning of a function call.

However, C functions that can be called inside R via R function .Call to

pass data by reference, which means that all the input datasets are directly

accessed via pointers.

∙ Since the negative Hessian matrix is symmetric, only the lower triangular

part of the matrix is saved during calculation. This reduces the memory

usage almost by half.
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∙ A general practice in R and C mixed programming, which is also followed in

our implementation, is to implement the input part and the output part in R

and put the computational intensive part in C. Thus, we can make use of the

various packages available to create high quality graphs and summarize the

results with little effort. By putting the computation intensive part in C, the

computing time and memory requirement can be dramatically reduced. Fur-

thermore, a lot of R functions have their corresponding API version available

to be called inside C.

2.9 Conclusion

In this chapter, the properties and computational issues of the group lasso

method with high-dimensional partially linear additive Cox model are studied. A

method to find the solution path is proposed and implemented in R. AIC, BIC,

and cross validation are adapted to select an optimal � value. The group lasso

estimate is demonstrated to be root-n consistent under some regularity conditions,

However, it does not have oracle property.

Although group lasso penalized model gives out some zero estimates, it

tends to select a large model which includes zero effects. That is, group lasso is

not model selection consistent. An improved method is introduced next.
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CHAPTER 3
ADAPTIVE GROUP LASSO PENALIZED COX REGRESSION

In this Chapter, we study the adaptive group lasso variables selection in

high-dimensional partially linear additive Cox PH model. This method is closely

related to the group lasso method. The computational implementation of the

method builds up on the implementation of group lasso. The strength of this

method is that it can produce a sparse solution and possesses oracle properties.

This strength is what the group lasso method lacks of.

3.1 Adaptive group lasso

In the group lasso method, the penalty is in the following form,

�
K∑
j=1

√
pj
∥∥�(j)

∥∥
The penalty is continuous in �. A disadvantage of continuous penalty is

that it does not discriminate zero coefficient and nonzero coefficient efficiently.

This is the reason that group lasso does not possess oracle property.

The ideal adaptive group lasso penalty is

�

K∑
j=1

√
pjI{�(j) ∕= 0} (3.1)

The penalty is discontinuous and jumps at zero. As proved in the theoretical results

section in this chapter, the adaptive group lasso penalty encourages estimates of

coefficients to be zero and enjoys oracle property.
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3.1.1 Approximation of the adaptive group lasso penalty

The adaptive group lasso penalty is discontinuous, which increases the com-

plexity of computational implementation significantly. An approximation of the

penalty could result in a penalty that is continuous and yet preserve the advantages

of adaptive group lasso. The approximation is to incorporate a known consistent

estimate of �, denoted as �̃, into the penalty as follows,

K∑
j=1

�
√
pj∥∥∥�̃(j)

∥∥∥
∥∥�(j)

∥∥ (3.2)

Compared to the group lasso penalty, the above approximated adaptive

group lasso penalty penalizes small coefficients more and the large coefficients less.

This approximated method lies in somewhere between the group lasso method and

the ideal adaptive group lasso method. It is asymptotically equivalent to the ideal

adaptive group lasso method. All the thesis work on adaptive group lasso uses the

approximated penalty in expression (3.2). From now on, we refer to expression

(3.2) whenever we talk about the adaptive group lasso method.

It is continuous which makes the implementation of the method relatively

easier and yet preserves the properties of adaptive group lasso when n is large.

A slight modification of the group lasso implementation will be able to solve the

adaptive group lasso penalized method, if there is a consistent estimate of � known

in advance.

From the asymptotic properties of the group lasso, we know that the group

lasso estimate is root-n consistent, thus the group lasso estimate can be used as �̃

in the approximation of the adaptive group lasso penalty in expression (3.2).
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Three choices of �̃ are considered. Two of them are group lasso estimates

and one is the parameter estimate from a regular Cox PH model. The first one is

the optimal group lasso estimate chosen by cross validation, which is a constant.

The optimal group lasso estimate chosen by other variable selection criteria such

as AIC or BIC will work as well. The second one is the group lasso estimate with

its tuning parameter equal to that in expression (3.2). This weight varies as the

tuning parameter � in expression (3.2) changes. When the number of covariates is

less than the sample size and a regular Cox PH model can be fitted on the data,

the regular Cox estimate can be used to substitute �̃ also. This is the third choice

and is also a constant with respect to � in (3.2).

It is worthy to note that the second choice of �̃ is somewhat unsatisfactory

as it is not always a consistent estimate of � as � changes. If a group coefficient,

�̃(j), is zero, then 1/
∥∥∥�̃(j)

∥∥∥ =∞ and the covariate group j would be excluded from

the adaptive group lasso penalized model. Figure 3.1 illustrates three different

solution paths.

3.1.2 Objective function and KKT conditions

Similar to group lasso method, in adaptive group lasso the objective is to

minimize the following function,

Φn(�, �) = − 1

n
ℓn(�) +

K∑
j=1

�
√
pj∥∥∥�̃(j)

∥∥∥
∥∥�(j)

∥∥ (3.3)
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Figure 3.1: Solution paths. (a) - Group lasso, (b) - Adaptive group lasso with

�̃ from the optimal model chosen by cross validation, (c) - Adaptive group lasso

using the whole group lasso solution path as �̃.

where ℓ(�) is the partial likelihood of partially linear additive Cox PH model using

B-spline to approximate the nonlinear effects as introduced in the previous chapter.

For a given �, the adaptive group lasso estimate �̂n(�) is defined as

�̂n(�) = arg min
�

Φn(�, �)

By taking the first-order derivative on the objective function Φn(�, �), we

have derived the following KKT conditions for finding the minimizer of Φn(�, �)

over �. ⎧⎨⎩

�(j) = 0 ∀�̃(j) = 0

− 1
n
ℓ̇n(j)(�) +

�
√
pj

∥�̃(j)∥
�(j)
∥�(j)∥

= 0 ∀�(j) ∕= 0 and �̃(j) ∕= 0

∥ 1
n
ℓ̇n(j)(�)∥ ≤ �

√
pj

∥�̃(j)∥
∀�(j) = 0 and �̃(j) ∕= 0

(3.4)

The first condition is a special case of the third condition since we define 1
0

=∞.
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It is listed separately just to make it explicit. In addition to the first condition, the

third condition forces some components of � to be zero. Again the KKT conditions

are not only necessary but also sufficient. The computational implementation

of the adaptive group lasso method is based on how to solve the above KKT

conditions.

The minimization problem in (4.3) is equivalent to the following optimiza-

tion problem,

min
�
−ℓn(�)

s.t.
J∑
j=1

√
pj

∥�̃(j)∥
∥�(j)∥ ≤ t

(3.5)

where t is the upper bound of the constraints on � and reflects the relative mag-

nitude of �.

3.1.3 Selection of the tuning parameter �

The maximum meaningful �, �max, is defined as the minimum � that gives

out an adaptive group lasso estimate of all zeros. That is,

�max = inf{�; �̂n(�) = 0}

= max
j

∥ℓ̇n(j)(0)∥∥�̃(j)∥
n
√
pj

The minimum of �, �min, can be zero if the sample size is larger than the number

of covariates in the model and none of the covariates is a linear combination of

other covariates. Otherwise, �min can be chosen to be a small positive number.

As � decreases from �max to �min, the adaptive group lasso estimate �̂n(�)

increases and forms a solution path.
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Correspondingly, the meaningful range of t, (tmin, tmax), is defined as the

following,

tmin =
K∑
j=1

√
pj∥∥∥�̃(j)

∥∥∥ �̂n(j)(�max)

= 0

tmax =
K∑
j=1

√
pj∥∥∥�̃(j)

∥∥∥ �̂n(j)(�min)

=
K∑
j=1

√
pj∥∥∥�̃(j)

∥∥∥∥�̂n(j)(0)∥ if �min = 0

where ℓ̇n(j)(0) includes the items of the score function ℓ̇n(�) evaluated at � = 0

that correspond to the jtℎ variable group.

There is a one to one relationship between � and t, that is, t increases

strictly as � decreases from �max to �min.

Similar to the group lasso method, modified AIC, BIC, and cross-validation

are implemented to find the optimal tuning parameter �.

3.2 Asymptotic Results

In this section, we list the asymptotic properties of the adaptive group

lasso estimator for the Cox PH model. The results are derived with the number of

covariates being fixed while the sample size increases. The B-spline approximation

of a covariate’s nonparametric effect is not considered here.

3.2.1 Set up

The objective function in the adaptive group lasso penalized Cox PH model

with tuning parameter �n is
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Φn(�, �n) = − 1

n
ℓn(�) + �n

K∑
j=1

√
pj

�̃(j)

∥∥�(j)

∥∥
where Φn(�, �n) is the objective function to be minimized over the model

parameter � with a given �n and n is the sample size. ℓn(�) is the partial likelihood

from a Cox PH model.

�n refers to an optimal tuning parameter which changes with the sample

size. In the computational implementation, a tuning parameter is usually pre-

specified and an optimal tunning parameter is generally chosen according to some

criterion such as AIC, BIC, cross validation, or generalized cross validation. How-

ever, in the proofs of the asymptotic results, �n is assumed to converge at a rate.

The model parameter � is decomposed into K vectors �(j), j = 1, 2, ⋅ ⋅ ⋅ , K,

which corresponds to the K covariate groups. A covariate group could include

only one covariate or multiple covariates. The number of covariates in group j is

denoted by pj, j = 1, 2, ⋅ ⋅ ⋅ , K, and ∥⋅∥ is the L2 norm.

The true model parameter is denoted as �0. Without loss of generality, we

assume the coefficients of the first S, S ≤ K, covariate groups are nonzero and

the remaining are zero. That is, �0
(j) ∕= 0 for j = 1, 2, ⋅ ⋅ ⋅ , S, and �0

(j) = 0 for j =

S + 1, S + 2, ⋅ ⋅ ⋅ , K. The set of nonzero covariate groups are denoted as A and we

use the subscript (A) to represent it.

The adaptive group lasso estimator for a Cox PH model with an optimal

tuning parameter �n is defined as

�̂n(�n) = arg min
�

Φn(�, �n)
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3.2.2 Preparation

The proofs of the asymptotic results stated in this section builds up on two

asymptotic results given by Andersen and Gill (1982). According to Theorem 3.2

in Andersen and Gill (1982), the following two results hold given the regularity

conditions (A) - (D).

n−1/2ℓ̇n(�0)
p→ N(0,Σ)

− 1

n
ℓ̈n(�∗)

p→ Σ for any random �∗
p→ �0

where �0 is the true model parameter and ℓ̇n(�0) and ℓ̈n(�∗) are the first and the

second order derivatives of ℓn(�), i.e., the score function and the Hessian matrix,

evaluated at �0 and �∗ respectively. Σ is the positive definite Fisher information

matrix and Σ
Δ
= E{−ℓ̈(�0)}. Σ = Eℓ̇(�0)⊗2 holds also because the model is

assumed to be true.

Theorem 3.1. (Consistency) Under regularity conditions (A) - (D) in

Andersen and Gill (1982), if �n → 0 as n → 0, then there exists a minimizer

�̂n(�n) of Φn(�, �n) such that �̂n(�n)
p→ �0 as n→∞.

Proof of Theorem 3.1

Proof. Theorem 5.7 in Van der Vaart(1998) can be applied to prove the

theorem. However, a slightly different approach is adopted in this proof.

As in Van der Vaart and Wellner (1996), We only need to show that ∀a > 0,

Pr{ sup
�:∥�−�0∥=a

Φn(�, �n) > Φn(�0, �n)} → 1 (3.6)

This implies that with probability goes to 1, Φn(�, �n) has a local min-
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ima in the ball {� : ∥� − �0∥ < a} for a given �n. In addition, E{Φn(�0, �n)} →

E{−n−1ℓn(�)} as �n → 0 and E{−n−1ℓn(�)} is a strictly convex function with a

well separated global minimizer �0. Thus, we have[
sup

�:∥�−�0∥=a
Φn(�, �n) > Φn(�0, �n)

]
⊆
[∥∥∥�̂n(�n)− �0

∥∥∥ < a
]

where [⋅] represents the event set which satisfies the condition inside the bracket.

Therefore,

Pr
{∥∥∥�̂n(�n)− �0

∥∥∥ < a
}
≥ Pr

{
sup

�:∥�−�0∥=a
Φn(�, �n) > Φn(�0, �n)}

}

which implies,

Pr
{∥∥∥�̂n(�n)− �0

∥∥∥}→ 1

Now, we will show that equation (3.6) holds. Since �̃ is a consistent

estimate of �0, thus we have,

∥∥∥�̃(j)

∥∥∥ I{�0
(j) ∕= 0} > 1

2

∥∥�0
(j)

∥∥ with probability tending to 1

and there exists a c > 0 such that,

S

min
j=1

∥∥∥�̃(j)

∥∥∥ > 1

2

S

min
j=1

∥∥�0
(j)

∥∥ > c

Φn(�, �n)− Φn(�0, �n)

= − 1

n

(
ℓn(�)− ℓn(�0)

)
+

K∑
j=1

�n
√
pj∥∥∥�̃(j)
∥∥∥
(∥∥�(j)

∥∥− ∥∥�0
(j)

∥∥)
≥ −n−1/2

(
n−1/2∂ℓn(�0)

∂�

)′
(� − �0) + (� − �0)′

(
n−1∂

2ℓn(�0)

∂�2

)
(� − �0)
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+n−1op(
∥∥� − �0

∥∥2
) + �n

S∑
j=1

√
pj∥∥∥�̃(j)
∥∥∥
(∥∥�(j)

∥∥− ∥∥�0
(j)

∥∥)
≥ −n−1/2Op(1)

∥∥� − �0
∥∥+ (� − �0)′ (Σ + op(1)) (� − �0)

+n−1op

(∥∥� − �0
∥∥2
)
− �n

S∑
j=1

√
pj

c

∥∥� − �0
∥∥

Since �n → 0 as n → 0, the above quantity is dominated by the second term

(� − �0)′ (Σ + op(1)) (� − �0). It is positive since Σ is positive definite. Hence,

equation (3.6) holds. This completes the proof.

Theorem 3.2. (Convergence rate) Under regularity conditions (A) - (D)

in Andersen and Gill (1982), if �n = O(n−1/2), then
∥∥∥�̂(�n)− �0

∥∥∥ = Op

(
n−1/2

)
Proof of Theorem 3.2

Proof. We need to show
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ = Op (1), that is, ∀� > 0,

∃M > 0, such that

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > 2M
}
< � as n→∞

where P ∗ is an outer probability measure.

As in the proof of Theorem 3.2.5 in Van der Vaart and Wellner (1996), for

a given integer M > 0, partition the the parameter space
{
�;
√
n ∥� − �0∥ ≥ 2M

}
into the ”shells” Sj,n = {�; 2j−1 <

√
n ∥� − �0∥ ≤ 2j} with j = M + 1,M + 2, ⋅ ⋅ ⋅ .
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Thus, for every � > 0, we have

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > 2M
}

=
∑
j>M

2j≤�
√
n

P ∗
{

2j−1 <
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ ≤ 2j
}

+

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > �
√
n
}

=
∑
j>M

2j≤�
√
n

P ∗
{
�̂n(�n) ∈ Sj,n

}
+ P ∗

{∥∥∥�̂n(�n)− �0
∥∥∥ > �

}

From Theorem 3.1, the second term → 0 as � → ∞. As to the first term,

since �̂n(�n) ∈ Sj,n implies

inf
�∈Sj,n

Φn(�, �n) ≤ Φn(�0, �n)

thus,

P ∗
{
�̂n(�n) ∈ Sj,n

}
≤ P ∗

{
inf

�∈Sj,n

{
Φn(�, �n)− Φn(�0, �n)

}
≤ 0

}

Let ℎn
Δ
=
√
n(� − �0) and r1 be the smallest eigenvalue of Σ. From the

proof of Theorem 3.1, we have

Φn(�, �n)− Φn(�0, �n)

≥ −n−1

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + n−1ℎ′n

(
n−1∂

2ℓn(�0)

∂�2

)
ℎn

−n−1/2�n

S∑
j=1

√
pj

c
∥ℎn∥+ n−2op(∥ℎn∥2)

≥ −n−1

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + n−1r1 ∥ℎn∥2 − n−1/2�n

S∑
j=1

√
pj

c
∥ℎn∥

+n−2op(∥ℎn∥2)
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By assumption, �n = O(n−1/2), which means

�n
√
n

S∑
j=1

√
pj

c
∥ℎn∥ ≤ 0.5r1 ∥ℎn∥2

for any ∥ℎn∥ > 2M if we choose n and 2M large enough. Thus,

Φn(�, �n)−Φn(�0, �n) ≥ −n−1

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn+0.5n−1r1 ∥ℎn∥2+n−2op(∥ℎn∥2)

Let r2 be the largest eigenvalue of Σ and denote 8
√

(r2)/r1 as r, then we

have

P ∗
{
�̂n(�n) ∈ Sj,n

}
≤ o(1) + P ∗

{
inf

2j−1<∥ℎn∥≤2j
−
(
n−1/2∂ℓn(�0)

∂�

)′
ℎn + 0.5r1 ∥ℎn∥2 ≤ 0

}
≤ o(1) + P ∗

{
sup

2j−1<∥ℎn∥≤2j

(
n−1/2∂ℓn(�0)

∂�

)′
ℎn ≥ r122j−3

}

≤ o(1) +

E

∣∣∣∣sup2j−1<∥ℎn∥≤2j

(
n−1/2 ∂ℓn(�0)

∂�

)′
ℎn

∣∣∣∣
r122j−3

≤ o(1) +

E1/2

{
sup2j−1<∥ℎn∥≤2j ℎ

′
n

(
n−1/2 ∂ℓn(�0)

∂�

)⊗2

ℎn

}
r122j−3

≤ o(1) +
E1/2

{
sup2j−1<∥ℎn∥≤2j ℎ

′
n(Σ + op(1))ℎn

}
r122j−3

≤ o(1) +
2j ∗ √r2

r122j−3

≤ o(1) + r2−j

That is,

P ∗
{√

n
∥∥∥�̂n(�n)− �0

∥∥∥ > 2M
}
≤ o(1) +

∞∑
j=M+1

r2−j ≤ o(1) + r2−M

This indicates
√
n
∥∥∥�̂n(�n)− �0

∥∥∥ = Op(1).
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Theorem 3.3. (Oracle property) Assume the regularity conditions (A) -

(D) in Andersen and Gill(1982) and assume there exist � > 0 and q ∈ (0.5, 1)

such that �nn
q → � as n → ∞. From Theorem 3.2, we know �̂n(�n) is a root-n

consistent minimizer of Φn(�, �n).

(a) (Sparsity) For ∀j ∈ Ā, i.e., �(j) = 0, let �̂n(j)(�n), a sub vector of

�̂n(�n), be the estimator of �(j), then �̂n(j)(�n) = 0 with probability tending to 1.

(b) (Asymptotic Normality) Let �̂n(A)(�n), a sub vector of �̂n(�n), be the

estimator of all {�(j); j ∈ A}, then
√
n(�̂n(A)(�n)− �(A))

D→ N(0,Σ−1
(A)).

Proof of Theorem 3.3

Proof. First, we prove the sparsity as specified in (a).

Since the KKT conditions derived for the adaptive group Lasso penalized

Cox PH model are both necessary and sufficient condition to minimize the ob-

jective function,
[
�̂n(j)(�n) = 0

]
equals to

[
n−1

∥∥∥ℓ̇(j)

(
�̂n(�n)

)∥∥∥ ≤ �n
√
pj/
∥∥∥�̃(j)

∥∥∥].
We only need to show

Pr
{
n−1/2

∥∥∥ℓ̇n(j)(�̂n(�n))
∥∥∥ ≥ �n

√
n
√
pj/
∥∥∥�̃(j)

∥∥∥}→ 0 as n→ 0

Apply Taylor’s expansion, we have

n−1/2ℓ̇n(j)(�̂n(�n))
Δ
= n−1/2∂ℓn(�̂n(�n))

∂(�(j))

= n−1/2ℓ̇n(j)(�
0) +

1

n

(
∂ℓ̇n(j)(�

∗)

∂�

)′
√
n
(
�̂n(�n)− �0

)
= Op(1)−Op(1)Op(1)

= Op(1)

where �∗ is on the line segment between �̂n(�n) and �0.
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Whereas

�n
√
n
√
pj/
∥∥∥�̃(j)

∥∥∥ = �n
√
n
√
pj/O(n−1/2) = �nn

√
pjO(1)→∞ as n→ 0

Thus the probability of
[
n−1/2

∥∥∥ℓ̇n(j)(�̂n(�n))
∥∥∥ ≥ �n

√
n
√
pj/
∥∥∥�̃(j)

∥∥∥] tends to 0.

That is, �̂n(j)(�n) = 0 with probability tending to 1.

Secondly, we prove the asymptotic normality.

From the root-n consistency and sparsity property we have just demon-

strated, there exists a root-n consistent estimator �̂n(�n) = (�̂n(A)(�n)′, 0)′ that

satisfies the first KKT condition. That is,

0 =
√
n
∂Φn(�̂n(�n), �n)

∂�(A)

= n−1/2ℓ̇n(A)(�
0) +

1

n

∂ℓ̇n(A)(�
∗)

∂�(A)

√
n
(
�̂n(A)(�n)− �0

(A)

)
+�n
√
n

⎛⎝ �0
(1)

√
p1∥∥∥�̃(1)

∥∥∥∥∥∥�0
(1)

∥∥∥ , ⋅ ⋅ ⋅ ,
�0

(S)

√
pS∥∥∥�̃(S)

∥∥∥∥∥∥�0
(S)

∥∥∥
⎞⎠′

+�n
√
ndiag

⎧⎨⎩
√
p1∥∥∥�̃(1)

∥∥∥∥∥∥�∗(1)

∥∥∥
(
Ip1×p1 −

�(1)�
′
(1)

∥�∗(1)∥2

)
, ⋅ ⋅ ⋅ ,

√
pS∥∥∥�̃(S)

∥∥∥∥∥∥�∗(S)

∥∥∥
(
IpS×pS −

�(S)�
′
(S)

∥�∗(S)∥2

)⎫⎬⎭(�̂n(A)(�n)− �0
(A)

)
= N(0,Σ(A)) + op(1)− (Σ(A) + op(1))

√
n
(
�̂n(A)(�n)− �0

(A)

)
+o(1)Op(1) + o(1)O(1)op(n

−1/2)

= N(0,Σ(A)) + op(1)− Σ(A)

√
n
(
�̂n(A)(�n)− �0

(A)

)
From the above equation, we have

√
n
(
�̂n(A)(�n)− �0

(A)

)
D→ N(0,Σ−1

(A))
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3.3 Computational implementation

The implementation of the adaptive group lasso method builds on the im-

plementation of the group lasso method. There are a few major additions and

modifications.

∙ Allow input of �̃ and can automatically identify which type of �̃ is provided.

If the input is a constant type, it will calculate the range of � and select

grid points approximately equally spaced on the log scale. If the input is a

varying type, it will also look for the input of an � vector associating with �̃

and use it as the grid points.

∙ Take overflow of floating point into consideration. Since computer does not

have exact zeros and the inverse of a small number could cause the overflow of

floating point, a cutoff value � > 0 is chosen for �̃. If
∥∥∥�̃(j)

∥∥∥ < �, then
∥∥∥�̃(j)

∥∥∥ is

set to 0 and the estimate for the covariate group j will be set to zero according

to the first KKT condition. In the implementation, � is chosen to be 1e −

10. This slight modification prevents potentially unintentional interruption

of computation. However, this modification might have an impact on the

sparsity property if the choice of � is not small enough. The appropriate

choice of � depends on the magnitude of the high-dimensional problem, that

is, both the sample size and the number of covariates.

∙ The algorithm for updating the active set is modified correspondingly to

match the new KKT conditions.
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∙ The updating algorithm for finding the adaptive group lasso estimate is mod-

ified according to the new objective function and its first- and second-order

derivatives.

In general, there are four steps to follow in order to find the optimal adaptive

group lasso estimate with our computational implementation.

∙ In step one, a group lasso regression is fit on the data to find the group lasso

solution path.

∙ In step 2, modified AIC, modified BIC, and cross validation criteria are

calculated along the solution path to find the optimal tuning parameter and

thus the optimal group lasso estimate corresponding to each of the three

variable selection criteria.

Either the whole group lasso solution path, or one of the optimal group lasso

estimates, or the regular Cox PH model estimate can be chosen as �̃ for the

adaptive group lasso model.

∙ In step three, an adaptive group lasso regression is fit to find the adaptive

group lasso solution path.

∙ In step four, modified AIC, modified BIC, and cross validation criteria are

calculated along the solution path to find the optimal tuning parameters and

thus the optimal adaptive group lasso estimates.

More information on the interface of the implementation are provided in

the next chapter on generalized group lasso method as both the group lasso
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and the adaptive group lasso are special cases of the generalized group lasso

method.
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CHAPTER 4
GENERALIZED GROUP LASSO PENALIZED COX REGRESSION

Both group lasso method and adaptive group lasso method produces sparse

and consistent estimate of the model parameters. However, both estimates are

somewhat biased towards zero in the finite sample setting. In reality, we might

want to know the unbiased effects of some covariates such as treatment. We might

also want to put different penalty weights for different covariate groups. In this

chapter, we extend the adaptive group lasso method in high-dimensional partially

linear additive Cox PH model to reflect these two requirements. The computational

implementation of the method builds up on the implementations of the adaptive

group lasso and the group lasso.

4.1 Generalized group lasso method

In the adaptive group lasso, the penality is

K∑
j=1

�
√
pj∥∥∥�̃(j)

∥∥∥
∥∥�(j)

∥∥ (4.1)

In the generalized group lasso, we assume there is no penalty on the first F

covariates and the remaining covariates are still grouped into K sets. We also use

wj to substitute �̃(j), now the penalty becomes,

K∑
j=1

�
√
pj

wj

∥∥�(j)

∥∥ (4.2)

where wj > 0,∀j = 1, 2, ⋅ ⋅ ⋅ , K.
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In both group lasso and adaptive group lasso, � = (�′(1), ⋅ ⋅ ⋅ , �′(K))
′. How-

ever, � = (�1, ⋅ ⋅ ⋅ , �F , �′(1), ⋅ ⋅ ⋅ , �′(K))
′ in generalized group lasso.

4.1.1 Objective function and KKT conditions

The objective is to minimize the following function,

Φn(�, �) = − 1

n
ℓn(�) +

K∑
j=1

�
√
pj

wj

∥∥�(j)

∥∥ (4.3)

where ℓ(�) is the partial likelihood of partially linear additive Cox PH model

using B-spline to approximate the nonlinear effects as introduced in the previous

chapter.

For a given �, the adaptive group lasso estimate �̂n(�) is defined as

�̂n(�) = arg min
�

Φn(�, �)

By taking the first-order derivative on the objective function Φn(�, �), we

have derived the following KKT conditions for finding the minimizer of Φn(�, �)

over �. ⎧⎨⎩

∂ℓn(�)
∂�j

= 0 ∀j = 1, ⋅ ⋅ ⋅ , F

− 1
n
∂ℓn(�)
∂�(j)

+
�
√
pj

wj

�(j)
∥�(j)∥

= 0 ∀�(j) ∕= 0 and wj ∕= 0

�(j) = 0 ∀wj = 0

∥ 1
n
∂ℓn(�)
∂�(j)
∥ ≤ �

√
pj

wj
∀�(j) = 0 and wj ∕= 0

(4.4)

The KKT conditions are not only necessary but also sufficient to minimize

the objective function.
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4.2 Asymptotic Results

Similar to the proofs in the previous chapter, we have the same asymptotic

results on the generalized group lasso method with an additional assumption on

w1, ⋅ ⋅ ⋅ , wK .

The addition assumption is that minKj=1wj > 0 or w1, ⋅ ⋅ ⋅ , wK are consistent

estimates of
∥∥∥�0

(1)

∥∥∥ , ⋅ ⋅ ⋅ ,∥∥∥�0
(K)

∥∥∥
Theorem 4.1. (Consistency) Under regularity conditions (A) - (D) in

Andersen and Gill (1982), if �n → 0 as n → 0, then there exists a maximizer

�̂n(�n) of Φn(�, �n) such that �̂n(�n)
p→ �0 as n→∞.

Theorem 4.2. (Convergence rate) Under regularity conditions (A) - (D)

in Andersen and Gill (1982), if �n = O(n−1/2), then
∥∥∥�̂(�n)− �0

∥∥∥ = Op

(
n−1/2

)
Theorem 4.3. (Oracle property) Assume the regularity conditions (A) -

(D) in Andersen and Gill(1982) and assume there exist � > 0 and q ∈ (0.5, 1)

such that �nn
q → � as n → ∞. From Theorem 3.2, we know �̂n(�n) is a root-n

consistent estimate of �0.

(a) (Sparsity) For ∀j ∈ Ā, i.e., �(j) = 0, let �̂n(j)(�n), a sub vector of

�̂n(�n), be the estimator of �(j), then �̂n(j)(�n) = 0 with probability tending to 1.

(b) (Asymptotic Normality) Let �̂n(A)(�n), a sub vector of �̂n(�n), be the

estimator of all {�j; j = 1, ⋅ ⋅ ⋅ , F} and {�(j); �(j) ∕= 0}, then
√
n(�̂n(A)(�n) −

�(A))
D→ N(0,Σ−1

(A)).
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4.3 Bias and standard error

The bias and standard error can be estimated via the following estimation

ℓ̇n(�̂n(�n)) = ℓ̇n(�0) + ℓ̈n(�∗)
(
�̂n(�n)− �0

)
where �∗ is on the line segment between �̂n(�n) and �0.

Since n−1ℓ̇n(�0)
a.s.−→ 0, n−1ℓ̈n(�∗)

p−→ Σ which is a positive definite matrix,

and ℓ̈n(�∗) can be approximated by ℓ̈n(�̂n(�n)), thus the bias of �̂n(�n) can be

estimated by (
ℓ̈n(�̂n(�n))

)−1 (
ℓ̇n(�̂n(�n))

)
It also implies that the estimate for a free variable is unbiased.

In a parametric regression without a penalty, we have ℓ̇n(�̂n(�n)) ≡ 0. In

our generalized group lasso penalized regression, ℓ̇n(�̂n(�n)) is determined jointly

by the penalty term and the optimal tuning parameter �n, which is independent

of any random variables. Thus, the covariance of �̂n(�n) can be approximated by

(
ℓ̈n(�̂n(�n))

)−1

Cov
(
ℓ̇n(�0)

)(
ℓ̈n(�̂n(�n))

)−1

According to Lin and Wei (1989), we can estimate Cov
(
ℓ̇n(�0)

)
with∑n

i=1Wi(�̂n(�n))⊗2, where

Wi(�) = Δi

{
Xi −

∑n
j=i s

∗
1,i∑n

j=i s
∗
0,i

}
−

i∑
j=1

Δjs
∗
0,i

n
∑n

k=j s
∗
0,k

{
Xi −

∑n
k=j s

∗
1,k∑n

k=j s
∗
0,k

}
− 1

n
ℓ̇n(�̂n(�n))

Thus the variance of �̂n(�n) can be estimated by

(
ℓ̈n(�̂n(�n))

)−1
n∑
i=1

Wi(�̂n(�n))⊗2
(
ℓ̈n(�̂n(�n))

)−1
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When ℓ̈n(�̂n(�n)) is not positive definite, it can be replaced by Φ̈n(�̂n(�n), �n)

where the derivative is with respect to the first parameter.

4.4 Computational implementation

The implementation of the generalized group lasso method builds on that of

the adaptive group lasso method. As introduced at the beginning of this chapter,

there are a couple of modifications.

∙ Allow covariates in the model whose coefficients are not penalized.

∙ Allow the input the weight wj, j = 1, ⋅ ⋅ ⋅ , K, and identify the type of weight

being used.

∙ Modify the algorithm to update the active set according to the new KKT

conditions.

∙ Update the modified Newton-Raphson method to reflect the new KKT con-

ditions.

Below is an example of R code to fit a generalized group lasso method using

the PBC data as introduced in Chapter 1.

################

# Group lasso

################

# Solution path

fit1 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = NULL, debugtype = 0, n.freevars= 1,

group.selection = c(6,1,1,6,6,6,1,1),
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control = list(iter.max = 50))

# Cross validation

set.seed(175445)

cv1 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = fit1$Lambdas, debugtype = 2,

n.freevars= 1, group.selection = c(6,1,1,6,6,6,1,1),

control = list(iter.max = 50))

# Optimal tuning parameters

nobs = NROW(pbc1)

cvs1 = apply(cv1, 1, sum)/nobs

ind1 = which.min(cvs1)

aic1 = 2*fit1$Objectives1 + 2*fit1$Ds/nobs

bic1 = 2*fit1$Objectives1 + 2*fit1$Ds*log(nobs)/nobs

aind1 = which.min(aic1)

bind1 = which.min(bic1)

################

# Adaptive group lasso - Type 1

################

# Solution path

fit2 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = NULL, LassoWGT = fit1$Betas[ind1,], debugtype = 0,

n.freevars= 1, group.selection = c(6,1,1,6,6,6,1,1),

control = list(iter.max = 50))

# Cross validation

set.seed(11010013)

cv2 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = NULL, LassoWGT = fit1$Betas[ind1,], debugtype = 2,

n.freevars= 1, group.selection = c(6,1,1,6,6,6,1,1),

control = list(iter.max = 50))

# Optimal tuning parameters

cvs2 = apply(cv2, 1, sum)/nobs

ind2 = which.min(cvs2)
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aic2 = 2*fit2$Objectives1 + 2*fit2$Ds/nobs

bic2 = 2*fit2$Objectives1 + 2*fit2$Ds*log(nobs)/nobs

aind2 = which.min(aic2)

bind2 = which.min(bic2)

################

# Adaptive group lasso - Type 2

################

# Solution path

fit3 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = NULL,

LassoWGT = list(Lambdas = fit1$Lambdas, Betas = fit1$Betas),

debugtype = 0, n.freevars= 1,

group.selection = c(6,1,1,6,6,6,1,1),

control = list(iter.max = 50))

# Cross validation

set.seed(11010017)

cv3 = gs.coxph( Surv(time, status) ˜ trt + bs(age, df=6)

+ sex + edema + bs(bili, df = 6) + bs(protime, df = 6)

+ bs(albumin, df = 6) + spiders + ascites, data=pbc1,

lambda = NULL,

LassoWGT = list(Lambdas = fit1$Lambdas, Betas = fit1$Betas),

debugtype = 2, n.freevars= 1,

group.selection = c(6,1,1,6,6,6,1,1),

control = list(iter.max = 50))

# Optimal tuning parameters

cvs3 = apply(cv3, 1, sum)/nobs

ind3 = which.min(cvs3)

aic3 = 2*fit3$Objectives1 + 2*fit3$Ds/nobs

bic3 = 2*fit3$Objectives1 + 2*fit3$Ds*log(nobs)/nobs

aind3 = which.min(aic3)

bind3 = which.min(bic3)

In the above R code, gs.coxph is the R function to complete all the major

computations in the following steps.
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1. Fit a group lasso penalized partially linear additive Cox PH model with the

first covariate trt not being penalized.

2. Calculate the variable selection criteria including modified AIC, modified

BIC, and cross validation along the solution path.

3. Using the optimal tuning parameter chosen by cross validation and the same

Cox model from the group lasso method, calculate an adaptive group lasso

penalized solution path.

4. Calculate the three variable selection criteria along the adaptive group lasso

solution path.

5. Using the whole group lasso solution path and the corresponding grid points

on �, calculate another type of adaptive group lasso penalized solution path.

6. Calculate the three variable selection criteria along this adaptive group lasso

solution path.

4.5 Concluding remarks

In this thesis work, we have studied and implemented step-by-step the gen-

eralized group lasso method in the high dimensional partially linear additive Cox

Model. The method works in both the p < n setting and the p > n setting. It

allows both free covariates and penalized covariates coexisting in one model. The

penalized covariates can be classified into groups based on the nature of the co-

variate structure with each covariate group including one or multiple covariates.
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Each covariate group can have different weights based on modeling objectives and

on pre-existing knowledge of the covariates groups.

We prove that the generalized group lasso method in a Cox PH model en-

joys estimation consistency and variable selection consistency. The computational

implementation of the generalized group lasso in R environment is also described.
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CHAPTER 5
NUMERICAL STUDIES

In this chapter, simulations are conducted to study the parameter estima-

tion and variable selection properties of the three methods, the group lasso, the

adaptive group lasso, and the generalized group lasso. The generalized group lasso

method is then applied to a gene expression dataset, the Norway/Stanford breast

tumor dataset.

5.1 Simulation study

A simulation study is carried out to evaluate the parameter estimation

and model selection performance of the three penalized methods. The underlying

hazard function is

�(t∣X,w1, �) = exp(X� + log(w1))

where the first five elements of � are (−0.5, 1, 1.5, 0.2,−1.5) and the remaining 45

elements of � are zeros. All elements in X, X1−X50, are independently sampled

from Unif [0, 1] and w1 is sampled from Unif [0.1, 1.1]. In addition, X and w1 are

independently sampled. About 2% of the data is right censored with the censoring

time being independent of the survival outcome.

5.1.1 Study I with a sample size of 200

200 datasets with a sample size of 200 are simulated. For each dataset, two

proportional partially linear additive Cox models are fitted. Model 1 includes the
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5 nonzero covariates, X1−X5, the 45 zero covariates X6−X50, and the B-spline

approximation of the nonparametric effect of w1. The B-spline approximation is

chosen to have 6 columns of basis matrix, which forms a covariate group. X1−X50

are one variable per group. Model 2 is similar to Model 1 except that X1 is a free

variable which does not contribute to the penalty. A group lasso penalized method

is applied to each model. An optimal group lasso estimate is selected with 5-fold

cross validation. Then, this optimal group lasso estimate functions as �̃ in the

adaptive group lasso. Again, an optimal adaptive group lasso estimate is selected

with 5-fold cross validation. The average parameter estimation bias and error are

reported in Table 5.1 and the percentage of time that a variable is selection into

an optimal model is reported in Table 5.2.

From Table 5.1, we know that the penalized estimates for nonzero effects

are all biased towards zero. The adaptive lasso estimates have smaller bias and

larger variance compared to the group lasso estimates. the bias of X1 is close to

zero when it is a free variable, i.e., not penalized.

In Table 5.2, the probability of a nonzero effect being selected into the

optimal model is decreased with the adaptive group lasso method. The decrease is

ignorable for covariates with relatively larger effects and is noticeable for covariates

with relatively smaller effects. However, with the adaptive group lasso method, the

probability of a zero effect being selected into the optimal model is also smaller.
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Table 5.1: Average parameter estimation bias and error: sample size = 200, N of

repetitions = 200.

X1 is penalized X1 is a free variable

Adaptive Adaptive

Covariates Group Lasso Group Lasso Group Lasso Group Lasso

X1(−0.5) 0.28(0.21) 0.17(0.34) 0.04(0.26) -0.04(0.30)

X2(1.0) -0.43(0.25) -0.12(0.33) -0.43(0.26) -0.09(0.34)

X3(1.5) -0.46(0.28) -0.06(0.31) -0.45(0.28) -0.02(0.33)

X4(0.2) -0.14(0.15) -0.10(0.22) -0.14(0.15) -0.10(0.24)

X5(−1.5) 0.45(0.29) 0.04(0.32) 0.45(0.28) 0.00(0.32)

X6−X50(0) 0.00(0.10) 0.00(0.15) 0.00(0.10) 0.00(0.16)
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Table 5.2: Percentage of time that a variables is selected into the optimal model:

sample size = 200, N of repetitions = 200.

X1 is penalized X1 is a free variable

Adaptive Adaptive

Covariates Group Lasso Group Lasso Group Lasso Group Lasso

X1(−0.5) 75 59

X2(1.0) 99 99 99 99

X3(1.5) 100 100 100 100

X4(0.2) 38 23 40 28

X5(−1.5) 100 100 100 100

w1(logw1) 100 100 100 100

X6−X50(0) 28 15 28 16
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Table 5.3: Average parameter estimation bias and error: sample size = 600, N of

repetitions = 200.

X1 is penalized X1 is a free variable

Adaptive Adaptive

Covariates Group Lasso Group Lasso Group Lasso Group Lasso

X1(−0.5) 0.16(0.16) 0.08(0.20) 0.05(0.16) -0.01(0.17)

X2(1.0) -0.17(0.16) -0.03(0.17) -0.18(0.16) -0.01(0.17)

X3(1.5) -0.21(0.16) -0.02(0.16) -0.21(0.16) 0.00(0.16)

X4(0.2) -0.09(0.12) -0.09(0.15) -0.09(0.12) -0.08(0.16)

X5(−1.5) 0.21(0.16) 0.02(0.15) 0.21(0.15) 0.00(0.16)

X6−X50(0) 0.00(0.08) 0.00(0.08) 0.00(0.07) 0.00(0.08)

5.1.2 Study II with a sample size of 600

Simulation study I is repeated with a sample size of 600 to examine the

parameter estimation and variable selection properties of the three method. The

results are reported in Tables 5.3 and 5.4.

The patterns observed in Study I are also found in Study II. Comparing the

two studies with different sample sizes, we can see that as the sample size increases,

the estimation biases and errors decrease and the probabilities of selecting the

nonzero effects and excluding the zero effects increase. The simulation results

support the theoretic results in the previous chapters.
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Table 5.4: Percentage of time that a variables is selected into the optimal model:

sample size = 600, N of repetitions = 200.

X1 is penalized X1 is a free variable

Adaptive Adaptive

Covariates Group Lasso Group Lasso Group Lasso Group Lasso

X1(−0.5) 97 93

X2(1.0) 100 100 100 100

X3(1.5) 100 100 100 100

X4(0.2) 71 47 70 51

X5(−1.5) 100 100 100 100

w1(logw1) 100 100 100 100

X6−X50(0) 22 11 23 11
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5.1.3 Nonparametric estimation of a nonlinear effect

Same as in the simulation study II, a data set with a sample size of 600 is

generated. The same group lasso and adaptive group lasso penalized models with

X1 being a free covariate are fitted. The nonparametric estimations of w1’s effect

and the true effect log(w1) are plotted in Figure 5.1. We can see that within a

relatively larger range, the adaptive group lasso estimated effect is close to the true

underlying effect. However, at both end of the range of w1, the estimation error

increases dramatically.

5.2 Real data example

In this section, the group lasso penalized grouped variable selection method

is applied to the Norway/Stanford Breast Tumors dataset.

The survival model includes ER status and tumor grade greater than 3

as free variables, age is modeled nonparametrically using B-spline approximation

with 6 degrees of freedom, and the 825 gene sets. The effects of age and the 825

gene sets are penalized as covariate groups.

A group lasso method is first fitted on the dataset and the 5-fold cross

validation is then performed to select the optimal model. Age is excluded from

the optimal model. 6 out of the 825 gene sets are selected into the optimal model.

The total number of gene features in the 6 gene sets is 155, and the number of

unique genes in the 6 sets is 130.The gene sets and the number of gene features

mapped into each gene set are listed in Table 5.5.
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Figure 5.1: Effects of w1 true effect, estimated effect with group lasso method, and

estimated effect with adaptive group lasso method. All the effects are normalized

to have a zero mean.
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Table 5.5: The 6 gene sets chosen by the group lasso method

Gene set name N of genes features

G PROTEIN SIGNALING ADENYLATE 10

EPITHELIAL CELL DIFFERENTIATION 7

DEFENSE RESPONSE 54

PROTEIN TARGETING TO MITOCHONDRION 11

PROTEIN POLYUBIQUITINATION 10

CYCLASE INHIBITING PATHWAY

RESPONSE TO WOUNDING 63

The gene features in each of the 6 gene sets are listed below in the same

order as in Table 5.5.

∙ CHRM5 DRD2 HR NP NPY NPY1R OPRK1 PRL RGS1 T

∙ EHF ELF3 F3 KRT4 MB T UPK1A

∙ ADM ADORA1 AFAP1 AFAP1L2 AHSG AIF1 ALB AR BLNK C2 C5 CAD

CADM1 CCR5 CCR6 CD4 CD40 CD48 CDC2 CFP CLEC5A COLEC12

CR2 CX3CR1 DCDC2 F11 F11R F2 FAP GAL HR KL KLRC2 KLRC3

LGALS3 LGALS3BP LILRA2 LILRB2 LILRB3 LTB MST1 MST1R NCF2

RAC1 S100A7 S100A8 S100A9 T TPST1 TYR TYROBP VEZF1 VPS45

WFDC1
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∙ F3 MFN2 MIPEP T TIMM17A TIMM17B TIMM23 TIMM44 TOMM34

TRNT1 TSPO

∙ AMFR DDB2 ERCC8 HUWE1 STUB1 T TRAF6 UBE2D1 UBE2V2 UBE3C

∙ ACHE ADORA1 AIF1 AIP AR C3AR1 CBL CCL3 CCR5 CD36 CD4 CD40

CDO1 CR2 CTGF CX3CR1 CXCL1 CXCL10 DCBLD2 F10 F11 F11R F12

F13A1 F2 F2R F2RL2 F2RL3 F5 F7 F8 GC GGCX GNA12 GP9 HNF4A

HR IL13 IL1A L3MBTL4 LTB MB MMRN1 NFE2 NFE2L1 REL RELA

S100A8 S100A9 SERPINE1 T TF TFPI TG TGFB1 TGFB2 TH THBD

TNF TNFAIP6 TPST1 VPS45 XCL1

We then apply the adaptive group lasso method on the dataset. The model

includes the 2 free variables and the 6 gene sets selected by group lasso. The group

lasso estimate acts as the adaptive weight. The 5-fold cross validation selects the

first 3 gene sets as listed in the above table into the final model. The three

biological processes identified in the final model are related to the effectiveness of

treatment, tumor progression, and tumor-inflammatory response in the advanced

breast cancer patients as reported by Filardo et al. (2002), Hudson et al (2001),

and Aaroe et al. (2010)

The number of active variables and the number of active variable groups

along the group lasso penalized solution path are plotted in Figure 5.2. The penal-

ized solution paths are plotted in Figure 5.3. The effective number of parameters

and the variable selection criteria are plotted in Figures 5.4 and 5.5.
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Figure 5.2: Number of active variables and Number of active variable groups along

the group lasso penalized solution path. The vertical lines indicate the optimal

model chosen by the 5-fold cross validation.
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CHAPTER 6
DISCUSSION AND FUTURE WORK

With the rapid advance of new technologies, a huge amount of information

in various fields are collected, stored, and available for statistical analysis. The goal

of statistical analyses is either to enhance the understanding of a biological process,

or to improve some business practice, or to show the safety and efficacy profile

of an investigational substance targeting at a disease, and so on. These needs

push statistical analysis towards high-dimensional data and performing variable

selections at grouped-variable level.

Some reports of the work on high-dimensional data analysis exist in the liter-

ature. Most of them are focused on linear regressions because of the relative lower

burden in computational implementation. Not much work on high-dimensional

survival analysis is reported in the literature and none of them studies the whole

solution path to understand the nature of the issue.

We study the group lasso penalized method in the high-dimensional par-

tially linear additive Cox model, propose and implement an efficient algorithm to

find the solution path and to locate the optimal tuning parameter using modi-

fied AIC, modified BIC, and cross validation criteria. We extend the group lasso

method to the adaptive group lasso and then to the generalized group lasso. The

extension provides more flexibility in the statical modeling of high-dimensional

survival data. we demonstrate that adaptive group lasso and generalized group

lasso enjoys parameter estimation and variable selection consistency under some
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regularity conditions.

This work opens the possibility of more future work along the line. For

example, we can take the covariate correlation structure into consideration in the

penalty. We can also examine the asymptotic properties when the number of

covariates goes to infinity as the sample size goes to infinity. The derivation of the

asymptotic results assumes a convergence rate on the optimal tuning parameter

�n, however the optimal tuning parameter is chosen with some variable selection

criterion in the computational implementation. There is a possibility to eliminate

this discrepancy, as what Shao (1993) did to prove that cross validation is able to

find the best predictive model under some conditions in linear regression.

The computational implementation works well on a Thinkpad T400 with

4G of memories when the number of covariates p is less than 6×104 and the number

of covariates in the active set is less then 500. If there is a need to identify more

than 500 nonzero covariates, the inverse of the second order derivative needs to be

improved with more efficient algorithm. If p > 6× 104, we might need to give up

the R environment and implement the procedure purely with the C language. It is

also recommended by others to implement the procedure using the combination of

R, MySQL and Python when the number of observations is in the order of millions.

In conclusion, this thesis work extends the penalized regression method in

high dimensional survival analysis to enjoy more freedom in terms of allowing free

covariates, specifying covariate groups, and incorporating prior knowledge into the

penalty. It opens an foundation for more future work in this field.
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