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ABSTRACT 

The purpose of this research was to develop observed score and true score equating 

procedures to be used in conjunction with the Multidimensional Item Response Theory (MIRT) 

framework.  Currently, MIRT scale linking procedures exist to place item parameter estimates 

and ability estimates on the same scale after separate calibrations are conducted.  These 

procedures account for indeterminacies in (1) translation, (2) dilation, (3) rotation, and (4) 

correlation.  However, no procedures currently exist to equate number correct scores after 

parameter estimates are placed on the same scale.  This research sought to fill this void in the 

current psychometric literature. 

Three equating procedures—two observed score procedures and one true score 

procedure—were created and described in detail.  One observed score procedure was presented 

as a direct extension of unidimensional IRT observed score equating, and is referred to as the 

“Full MIRT Observed Score Equating Procedure.”  The true score procedure and the second 

observed score procedure incorporated the statistical definition of the “direction of best 

measurement” in an attempt to equate exams using unidimensional IRT (UIRT) equating 

principles.  These procedures are referred to as the “Unidimensional Approximation of MIRT 

True Score Equating Procedure” and the “Unidimensional Approximation of MIRT Observed 

Score Equating Procedure,” respectively. 

Three exams within the Iowa Test of Educational Development (ITED) Form A and 

Form B batteries were used to conduct UIRT observed score and true score equating, MIRT 

observed score and true score equating, and equipercentile equating.  The equipercentile equating 

procedure was conducted for the purpose of comparison since this procedure does not explicitly 

violate the IRT assumption of unidimensionality. 

Results indicated that the MIRT equating procedures performed more similarly to the 

equipercentile equating procedure than the UIRT equating procedures, presumably due to the 

violation of the unidimensionality assumption under the UIRT equating procedures.  Future 
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studies are expected to address how the MIRT procedures perform under varying levels of 

multidimensionality (weak, moderate, strong), varying frameworks of dimensionality (simple 

structure vs. complex structure), and number of dimensions, among other conditions. 
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ABSTRACT 

The purpose of this research was to develop observed score and true score 

equating procedures to be used in conjunction with the Multidimensional Item Response 

Theory (MIRT) framework.  Currently, MIRT scale linking procedures exist to place 

item parameter estimates and ability estimates on the same scale after separate 

calibrations are conducted.  These procedures account for indeterminacies in (1) 

translation, (2) dilation, (3) rotation, and (4) correlation.  However, no procedures 

currently exist to equate number correct scores after parameter estimates are placed on 

the same scale.  This research sought to fill this void in the current psychometric 

literature. 

Three equating procedures—two observed score procedures and one true score 

procedure—were created and described in detail.  One observed score procedure was 

presented as a direct extension of unidimensional IRT observed score equating, and is 

referred to as the “Full MIRT Observed Score Equating Procedure.”  The true score 

procedure and the second observed score procedure incorporated the statistical definition 

of the “direction of best measurement” in an attempt to equate exams using 

unidimensional IRT (UIRT) equating principles.  These procedures are referred to as the 

“Unidimensional Approximation of MIRT True Score Equating Procedure” and the 

“Unidimensional Approximation of MIRT Observed Score Equating Procedure,” 

respectively. 

Three exams within the Iowa Test of Educational Development (ITED) Form A 

and Form B batteries were used to conduct UIRT observed score and true score equating, 

MIRT observed score and true score equating, and equipercentile equating.  The 

equipercentile equating procedure was conducted for the purpose of comparison since 

this procedure does not explicitly violate the IRT assumption of unidimensionality. 
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Results indicated that the MIRT equating procedures performed more similarly to 

the equipercentile equating procedure than the UIRT equating procedures, presumably 

due to the violation of the unidimensionality assumption under the UIRT equating 

procedures.  Future studies are expected to address how the MIRT procedures perform 

under varying levels of multidimensionality (weak, moderate, strong), varying 

frameworks of dimensionality (simple structure vs. complex structure), and number of 

dimensions, among other conditions. 
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CHAPTER I  

INTRODUCTION 

 Large-scale testing programs often create and administer parallel test forms 

because of item exposure and test security issues (Kolen & Brennan, 2004).  Although 

parallel forms are constructed to be as similar as possible in terms of content and 

statistical specifications, often the exams differ in difficulty.  As a result, an adjustment 

must be made to correct for differences in difficulty in order for examinee scores to be 

comparable across test forms.  This adjustment process is known as “equating.”  

“Equating is a statistical process that is used to adjust scores on test forms so that scores 

on the forms can be used interchangeably.  Equating adjusts for differences in difficulty 

among forms that are built to be similar in difficulty and content.” (Kolen & Brennan, 

2004, p. 2). 

 The equating process should be designed to yield the most accurate equating 

relationship possible.  If accurate relationships are derived from the equating process, 

examinees can be compared on parallel forms since differences in form difficulty have 

been taken into account.  If the equating procedure yields inaccurate results, scores on 

different forms cannot be compared: there is no common metric on which scores can be 

evaluated (Kolen & Brennan, 2004).   

Observed Score and True Score Equating 

Various equating procedures have been developed and are used in conjunction 

with different psychometric models.  Equating procedures typically fall within one of two 

categories: procedures that focus on observed scores (and observed score distributions), 

and procedures that focus on true scores.  The goal of observed score equating is to make 
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an adjustment such that the properties of score distributions across parallel forms are as 

similar as possible.  The result is an established equating relationship between observed 

scores on two parallel forms.  The goal of true score equating procedures is to map true 

scores on one form to true scores on another form (via the definition of true score in 

either classical test theory or item response theory), as opposed to mapping observed 

scores (Kolen & Brennan, 2004). 

 Both observed score and true score equating procedures can be conducted in 

conjunction with one of several data collection methods, or “equating designs” (Kolen & 

Brennan, 2004).  In a single-group design, for example, examinees complete both a 

linking form (denoted “Form A” in this study), and a base form (“Form B”).  In practice, 

counterbalancing is typically used (half of the examinees take Form A first, and then 

Form B; the rest of the examinees take Form B first, and then Form A) to help account 

for order effect.  After the test administration, scores on Form A are mapped to scores on 

Form B.  In a random groups design, examinees take either Form A or Form B, not both.  

The assumption that both groups are randomly equivalent is exploited in order to 

determine an equating relationship between the forms.  In the common-item 

nonequivalent groups design, items which are common to both Form A and Form B serve 

as the basis on which to compute the appropriate statistical adjustment.  Although the 

groups are not assumed to be equal in the measured trait, performance on the common 

items between the two groups can be compared to determine an overall equating 

relationship between the forms.   

Equating procedures have been developed for many combinations of data 

collection design (single-group, random group, and common-item nonequivalent group) 
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and procedure type (observed score and true score).  Mean, linear, and equipercentile 

procedures—which focus on properties of the observed score distributions—have been 

developed for use with the random groups design.  Extensions of the linear equating 

procedure—namely the Tucker and Levine observed score methods—have been 

developed for use with the common-item nonequivalent groups (CINEG) design.  A 

technique known as “frequency estimation”—which can be viewed as an extension of the 

equipercentile procedure—has been developed for the nonequivalent groups design.  The 

chained linear and chained equipercentile procedures—which first determine an equating 

relationship between Form A and common items, and then transfer the relationship to 

Form B—have also been created for use with the CINEG design.  The Levine true score 

method—a procedure to be used in conjunction with the classical congeneric 

psychometric model—has been developed for use with the common-item nonequivalent 

groups design (Kolen & Brennan, 2004).   

Item Response Theory 

 Whereas the methods previously described either do not require the explicit use of 

a psychometric model or are closely aligned with the classical test theory (CTT) 

framework, another class of equating procedures has been developed to be used in 

conjunction with the item response theory (IRT) framework.  Item response theory 

consists of a family of probabilistic models which relates an examinee’s proficiency level 

( ) to the probability of answering an item within a particular category (Lord, 1980).  

Items are typically classified as either dichotomous, meaning that there are only two 

response categories (usually denoted “correct” and “incorrect”); or polytomous, meaning 

that responses can be scored in one of several categories. 
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Two common mathematical forms that are used to model the probability of a 

correct response for dichotomous items are logistic models and normal ogive models 

(Lord, 1980).  Logistic models are of the form: 

)(7.1
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)1()(

jij

jij
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Normal ogive models are of the form: 
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For both models, ja  represents the item discrimination parameter, jb  represents the item 

difficulty parameter, jc  represents the lower asymptote parameter, i  represents a 

specific proficiency level, and, for the normal ogive model,   represents the standard 

normal cumulative distribution function (CDF) (Lord, 1980). 

IRT Equating 

 Before equating can be conducted in the IRT framework, item parameters and 

examinee abilities must first be estimated.  Due to the scale indeterminacy property of 

item response theory, any linear transformation of the ability scale will yield the same 

probabilistic relationships, assuming that both the ability scale and item parameters are 

transformed.  To resolve the indeterminacy issue, IRT calibrations are typically specified 

to yield an ability distribution with mean of 0 and standard deviation of 1 (Kolen & 

Brennan, 2004).  Therefore, when item parameters and abilities are calibrated separately 

for groups of examinees who are different with respect to the measured ability (i.e., 

nonequivalent groups) the estimates will be placed on different—yet linearly related—

ability scales.  “In item response theory the item parameters are invariant from group to 

group as long as the ability scale is not changed…Similarly, ability is invariant across 
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tests of the same psychological dimension as long as the ability scale is not changed”  

(Lord, p.  38).  Therefore, a scale linking procedure must first be conducted to place item 

parameter estimates and ability estimates from the Form A scale to that of the Form B 

scale before equating can be conducted (Kolen & Brennan, 2004). 

When parameter estimates are placed on different scales due to separate 

calibrations under the nonequivalent groups design, the scale of Form A and the scale of 

Form B may differ in two aspects: the scales may differ in (1) origin (i.e., mean) and (2) 

unit of measurement (i.e., standard deviation).  Scale linking is not required when item 

parameters and abilities are estimated in the same calibration for both groups (concurrent 

calibration), or when separate calibrations are conducted under the random groups 

design.  If separate calibrations are conducted under the random groups design, 

examinees that were administered different forms are assumed to be equivalent on the 

measured trait.  That is, examinees that were administered different tests are assumed to 

have equal means and standard deviations on the ability scale.  If both calibrations are 

specified to yield a standard normal ability distribution, no scale linking method must be 

employed since means and standard deviations are specified to be equal across groups 

(Kolen & Brennan, 2004). 

Both observed score equating and true score equating can be conducted within the 

IRT framework.  To conduct IRT observed score equating, conditional observed score 

distributions are first estimated at each specified ability level.  The conditional 

distributions are then multiplied by the ability density and integrated (or summed) across 

all ability levels to produce an estimated marginal observed score distribution.  Once this 

process has been completed for both Form A and Form B, equipercentile equating is 
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conducted to determine an equating relationship between the two forms (Kolen & 

Brennan, 2004). 

 IRT true score equating establishes a relationship between true scores on both 

forms.  First, a true score on Form A is selected.  Using an iterative procedure such as the 

Newton-Raphson method, the ability level ( ) associated with this true score is 

estimated.  The true score on Form B that corresponds to this ability level is then 

estimated using the IRT definition of true score—i.e.  
Bj

jjjiijiB cbap
:

),,;()(  .  This 

procedure is typically conducted for each integer raw score on Form A in order to 

establish a relationship between true scores on both forms (Kolen & Brennan, 2004). 

Multidimensional Item Response Theory 

In order to use item response theory to analyze test data, the statistical 

assumptions underlying the particular IRT model must first be adequately satisfied.  

Oftentimes, it is assumed that a test is unidimensional, i.e., that the test measures only 

one ability.  If the test measures more than one trait but the responses are analyzed using 

a unidimensional IRT model, the resulting ability estimates and item parameter estimates 

may be highly inaccurate depending on the nature of the other variables being measured 

(Ansley & Forsyth, 1985; Reckase, 1985; Sireci, Thissen, & Wainer, 1991).  An 

extension of item response theory—known as multidimensional item response theory (or 

“MIRT”)—has been developed for use with multidimensional data (Ackerman, 1994; 

Ackerman, Gierl, & Walker, 2003; Reckase, 1985; Reckase, 2009).   

Similar to unidimensional IRT, MIRT consists of a family of probabilistic 

models.  MIRT models typically fall within one of two categories: compensatory and 

non-compensatory models (Ackerman, 1994; Ackerman, 1996; Ackerman et al., 2003; 
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Reckase, 2009).  The mathematical form that compensatory MIRT models take is 

additive in nature, allowing examinees who have low proficiency on one trait to 

compensate for this weakness by having high proficiency on another trait.  The non-

compensatory MIRT model is multiplicative in nature and stands in contrast to the 

compensatory model: examinees that have low proficiency on one trait cannot 

compensate by having high proficiency on another trait.  In comparison to 

unidimensional IRT models, which relate an examinee’s proficiency level ( ) to the 

probability of correctly answering an item, both compensatory and non-compensatory 

MIRT models relate a vector of an examinee’s proficiency levels (θ ) on the specified 

traits to the probability of correctly answering an item.  Each element in the proficiency 

vector (θ ) corresponds to one of the specified dimensions on the exam (Ackerman, 1994; 

Ackerman, 1996; Ackerman et al., 2003; Reckase, 1985; Reckase, 2009). 

Though several compensatory MIRT models exist, two of these models can be 

viewed as direct extensions of their unidimensional counterparts: the multidimensional 

compensatory logistic model and the multidimensional compensatory normal ogive 

model (Ackerman, 1994; Ackerman, 1996; Ackerman et al., 2003; Reckase, 1985; 

Reckase, 2009).  Multidimensional logistic models are of the form: 

 
 












)(7.1exp1

)(7.1exp
)1()(

jij

jij
jjiij d

d
ccp

θa

θa
θ

T

T

    (1.3) 

Multidimensional normal ogive models are of form: 

)()1()( jijjjiij dccp  θaθ T       (1.4) 

In both of these equations, Ta j  represents the item discrimination vector, jd  represents a 

scalar location parameter related to multidimensional item difficulty, jc  represents the 
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lower asymptote parameter, iθ  represents a vector of proficiency levels corresponding to 

each specified trait, T represents the transpose function, and, for the multidimensional 

normal ogive model,   represents the standard normal cumulative distribution function 

(CDF) (Ackerman, 1994; Ackerman, 1996; Ackerman et al., 2003; Reckase, 1985; 

Reckase, 2009). 

Multidimensional IRT Equating 

The success of an IRT equating is dependent in part upon the statistical 

assumptions associated with the chosen model being met.  If a unidimensional IRT 

equating procedure is applied to multidimensional data, the resulting equating 

relationships will most likely be inaccurate.  Rather than using unidimensional IRT 

equating methodology for multidimensional data, MIRT equating methodology should be 

developed to be used in conjunction with multidimensional data to help ensure equating 

accuracy (if it is desired to conduct equating within a specific psychometric framework 

such as IRT or MIRT). 

 To adjust for multidimensional data, several procedures have been developed to 

link scales within the MIRT framework (Davey et al., 1996; Hirsch, 1989; Li & Lissitz, 

2000; Min, 2003; Oshima et al., 2000; Thompson et al., 1997; Yon, 2006).  Whereas 

unidimensional scale linking procedures estimate two coefficients to adjust for 

differences in (1) origin and (2) unit of measurement resulting from separate calibrations, 

MIRT scale linking procedures typically estimate scalar and matrix coefficients to adjust 

for differences in (1) rotation, (2) correlation, (3) translation (similar to “origin” in 

unidimensional IRT), and (4) dilation (similar to “unit of measurement” in 

unidimensional IRT).  That is, separate calibrations within the MIRT framework may 
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place ability estimates and item parameter estimates on separate scales due to rotational 

indeterminacy (similar to factor analysis procedures), correlational indeterminacy 

(though solutions are often derived by fixing multidimensional traits to follow a 

multivariate standard normal distribution with no correlation between dimensions, i.e., 

),( I0MVN ), translation indeterminacy, and dilation indeterminacy. 

Although various procedures have been developed to link scales in the MIRT 

framework, no procedures have yet been developed to equate number-correct scores 

within the MIRT framework (Reckase, 2009).  Whereas scale linking and number-correct 

score equating have been developed for the unidimensional IRT framework, only scale 

linking has been developed for the MIRT framework.  As a result, number-correct 

equating procedures should be developed for the MIRT framework to help ensure 

equating accuracy for multidimensional data. 

Research Statements 

Equating is an integral aspect of the test development process if scores are to be 

comparable across parallel forms.  The equating procedure should estimate—as 

accurately as possible—the relationship between scores on two parallel forms.  If a 

unidimensional IRT equating procedure is applied to multidimensional data, the resulting 

equating relationships will most likely contain a large amount of systematic error due to 

the violation of the unidimensionality assumption.  Therefore, it is imperative that MIRT 

equating procedures are developed to be used in conjunction with the MIRT framework.  

The purpose of the present research is to: 

(1) Develop theoretical foundations for conducting observed score and true score 

 equating within the MIRT framework. 
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(2) Demonstrate how these procedures are conducted by applying these 

 procedures to real test data. 

(3) Compare the MIRT equating results to results produced by unidimensional 

 IRT equating and traditional equipercentile equating using the same datasets. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is comprised of seven main sections.  First, a review of Item 

Response Theory and Multidimensional Item Response Theory will be presented, with 

special attention given to features related to equating methodology.  Next, a discussion 

concerning unidimensionality and dimensionality assessment appears.  Following that, 

current procedures for conducting IRT scale linking and MIRT scale linking will be 

presented.  Lastly, current procedures for conducting IRT equating, followed by a 

discussion of existing methodology that will form the bases for conducting the proposed 

MIRT equating procedures, will be presented.  These topics were selected to follow the 

equating sequence typically followed in practice, i.e., dimensionality assessment, linking 

scales (if necessary), and then conducting equating. 

Item Response Theory 

Item response theory consists of a family of probabilistic models which relate an 

examinee’s proficiency level ( ) to the probability of correctly answering an item (Lord, 

1980).  For dichotomous items, the probability of correctly answering an item can be 

modeled mathematically using the logistic model or the normal ogive model.  This 

relationship can also be represented graphically through the item characteristic curve 

(ICC) (see Figure 2-1 for a graphical representation of an ICC).  The form of the three 

parameter logistic model is dictated by three parameters: the item discrimination 

parameter ( a ), the item difficulty parameter ( b ), and the lower asymptote parameter ( c ) 

(Lord, 1980). 
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Figure 2-1.  Example Item Characteristic Curve (ICC) 

3.1a , 5.0b , and 18.0c  

 
The item difficulty parameter provides an indication of the difficulty level of the 

item and primarily dictates the location of the ICC with respect to the ability ( ) scale.  

A larger difficulty parameter results in a more difficult item and shifts the ICC upscale in 

reference to the ability scale.  The item discrimination parameter provides an indication 

of how well the item discriminates between examinees of similar ability level and 

primarily dictates the magnitude of the slope of the ICC.  A larger discrimination 

parameter results in more discrimination power and yields a steeper ICC slope.  Finally, 
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the lower asymptote parameter takes random responding (guessing) into account and 

provides an indication of how well an examinee of very low ability should perform on the 

item (Lord, 1980). 

Two other concepts related to the form of the IRT model are the test characteristic 

curve (TCC) and the information function.  The test characteristic curve is the sum of the 

item characteristic curves across all items and is conceptually viewed as the regression of 

the summed score responses on ability (Lord, 1980) (see Figure 2-2 for an example of a 

TCC).  The information function can be viewed as the precision of the estimation 

procedure at a specific ability level (for MLE procedures) and is determined by the 

characteristics of the ICC.  Information can be determined for each item individually, or 

item-level information functions can be summed across all items to determine 

information at the test level.  Graphically, information for measuring a particular ability 

level from the summed score responses can be viewed as the slope of the TCC divided by 

the error variance at that particular ability level (Lord, 1980). 
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Figure 2-2.  Example Test Characteristic Curve (TCC) 

for a 50-item Test 

 

Item response theory is, in essence, a scaling method.  Estimation procedures 

attempt to locate both persons and items along a single continuum.  In order to accurately 

locate persons and items along this continuum, it must be assumed that a test measures 

only one trait in the population of interest, and that items and examinees can be ordered 

along this continuum.  If more than one dimension is present, yet the responses are 

modeled by a unidimensional IRT (UIRT) model, persons and items will still be scaled 

along a single continuum.  In this situation, the UIRT procedure would collapse across 
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other relevant dimensions which discriminate between persons of different abilities, 

resulting in inaccurate relationships between examinee abilities and the probability of 

obtaining a correct response.  Whereas examinees may be scaled in similar locations 

according to the single continuum, examinees may actually differ substantially on another 

dimension not accounted for in the unidimensional estimation procedure (Reckase, 2009). 

Multidimensional Item Response Theory 

Multidimensional item response theory (MIRT) was developed as an extension of 

IRT to provide a more accurate representation of persons and items in multidimensional 

space.  As a result, the probability of obtaining a correct response can be more accurately 

modeled in the MIRT framework if, in fact, more than one dimension is being measured.  

Whereas UIRT models relate examinee ability to the probability of a correct response 

through the item characteristic curve, MIRT models relate examinee abilities (on two or 

more traits) to the probability of a correct response through the item characteristic surface 

(ICS) (see Figure 2-3 for a graphical representation of a two-dimensional ICS).  Similar 

to the item characteristic curve, the item characteristic surface is dictated by parameters 

related to item discrimination, item difficulty, and a lower asymptote. 
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Figure 2-3.  Example Item Characteristic Surface (ICS) plot   

5.11 a , 5.02 a , 0c , and 7.0d .   

 
 MIRT models typically contain one discrimination parameter ( a ) per dimension.  

Similar to UIRT, larger discrimination parameters are indicative of better discrimination 

power for the item.  However, in contrast to UIRT—which only discriminates in one 

direction (the single trait being measured)—MIRT discrimination parameters provide an 

indication of how well the item discriminates on each dimension.  This information 

provides an indication of which composite of skills are most precisely measured by the 

item, i.e., in which direction along the ICS the item best discriminates.  The magnitude of 

the discrimination parameter on a particular dimension, relative to the magnitude of the 

discrimination parameters on other dimensions, indicates to what degree the item is 

measuring that particular trait.  For example, if the first discrimination parameter is a 

positive value and all other discrimination parameters for the item are 0, then the item 

measures only the first dimension.  In this situation, the item best discriminates in a 
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direction that falls parallel to the first dimension.  If all discrimination parameters are 

equal, then the item equally measures all specified dimensions, and the item direction 

will be midway between all specified dimensions. 

For comparative purposes, discrimination parameters were denoted by ( a ) for 

both UIRT and MIRT models.  However, whereas UIRT models contain a difficulty 

parameter (b ) directly related to the location of the ICC in reference to the ability scale, 

MIRT models are often parameterized using an index ( d ) that is indirectly related to the 

location of the ICS in reference to the ability axes.  Consider the mathematical form of 

UIRT models which primarily dictates the location and the slope of the ICC, 

)()( ababa   .  The MIRT index ( d ) is the multidimensional equivalent to the 

unidimensional parameterization, ( ab ).  That is, abd  , and 
a

d
b


 .  As a result, 

the MIRT equivalent of the UIRT difficulty is computed as 

aaT
d

b


          (2.1) 

In this equation, d  is the parameterized value for the model, and Ta  represents the vector 

of discrimination parameters. 

The MIRT lower asymptote parameter ( c ) is directly comparable to the UIRT 

lower asymptote parameter.  Both of these parameters account for random response 

(guessing) and dictate the lower bound for the ICC or ICS, respectively.  In fact, the c -

parameter resulting from a unidimensional calibration is often used as the c -parameter 

value for a MIRT parameterization of the same item (Reckase, 2009). 

The direction in which the item best measures—described previously as being 

related to the item discrimination parameters—is of critical importance for understanding 



 18

the new equating methodology described in this research.  This direction can be 

quantified by the vector of angles between the direction that the item best measures and 

each of the coordinate axes.  For example, this vector may be displayed as 

...],,[ 321 jjj  , where jk  represents the angle between the direction that the item best 

measures and axis (dimension) k  for item j .  To determine these angles, the direction 

cosine corresponding to each dimension is first computed as 

 




d

k
jk

jk
jk

a

a

1

2

cos         (2.2) 

The arccosine of  jkcos  determines angle jk .  If the angle is 0 degrees between an 

item and a specific dimension, then the item measures only that dimension: in this case, 

the item does not measure a composite of the various traits being assessed by the test.  As 

the angles between the item and the various dimensions become more similar, the item is 

interpreted as measuring a composite of the various traits. 

An example in two-dimensional space appears in Figure 2-4.  The angle between 

the direction of best measurement and the first coordinate axis is 80 degrees, implying 

that the angle between the direction of best measurement and the second coordinate axis 

is 10 degrees.  This item provides an example where the second dimension is more 

precisely measured than the first dimension, yet the item does measure a composite of 

both traits. 
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Figure 2-4.  Angle between direction of best measurement and coordinate axes  

 

Whereas these properties hold at the item level, it may be of interest to determine 

which direction (i.e., which composite of traits) is best measured at the test level.  In 

order to do so, the multidimensional equivalent of the UIRT test characteristic curve and 

information function must first be reviewed. 

A direct extension of the unidimensional test characteristic curve (TCC) is the 

multidimensional test characteristic surface (TCS).  Similar to UIRT, the TCS is 

computed as the sum of the item characteristic surfaces across all items, and is 

conceptually viewed as the regression of the summed score responses on the vector of 

ability traits (Reckase, 2009) (see Figure 2-5 for an example TCC).  However, 

unidimensional and multidimensional information functions are somewhat discrepant.  

Whereas in UIRT, information can be viewed as the slope of the TCC divided by the 

error variance at that particular ability level, in MIRT, the slope of the TCS is different 
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depending on the direction from the origin under consideration.  As a result, information 

can be evaluated at each direction from the origin, and the information yielded in each 

direction will most likely be different.   

 

 

Figure 2-5.  Example Test Characteristic Surface (TCS) 

for a 25 Item Test 

 

The properties of item discrimination and test information can be exploited to 

determine the unidimensional projection that would result from applying a UIRT model 

to the multidimensional data, and to determine which direction (i.e., which composite of 

traits) is best measured at the test level.  Wang (1985, 1986) determined the relationship 

between the multidimensional ability space and the unidimensional projection that would 

result from applying a UIRT model to the multidimensional data.  Defining the 

unidimensional scale as the “reference composite” for the test, she demonstrated that this 

unidimensional projection is equal to the first eigenvector of the matrix AAT , where the 
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matrix A  contains discrimination parameters for each item on the exam.  Each row in 

this matrix corresponds to an item, and each column in the matrix corresponds to a 

specific dimension.  The reference composite contains one element per specified 

dimension, and each element is conceptually similar to the discrimination parameter on 

that dimension.  To describe the direction of the reference composite, angles can be 

determined between each coordinate axis and the reference composite.  A test that 

primarily measures the first dimension will yield a reference composite that falls nearly 

parallel to the first coordinate axis.  A test that equally measures all dimensions will yield 

a reference composite that falls between each of the coordinate axes. 

An example of a reference composite appears in Figure 2-6.  Note that the test is 

primarily comprised of two clusters of items: a set of items that primarily measures the 

second dimension, and a set of items that primarily measures the first dimension (though 

both clusters measure a composite of the dimensions).  As a result, the reference 

composite points in a direction midway between the directions that each of these clusters 

primarily point. 

 



 22

 

Figure 2-6.  Example Reference Composite  

 
Whereas the reference composite determines the unidimensional projection that 

would result from applying a UIRT model to the multidimensional data, Zhang and Stout 

(1999a) defined a similar concept, the “direction of best measurement,” as the linear 

composite of abilities which the multidimensional test “best measures.”  Although these 

two concepts are similar in that a unidimensional projection is determined from the 

multidimensional space, the concepts are mathematically different.  The reference 

composite yields a unidimensional scale that points in a direction solely determined by 

the item discrimination parameters.  The direction of best measurement takes into 

account the multidimensional information yielded by the measurement procedure on each 

item and computes a unidimensional scale that represents that composite of traits best 

represented by a single observed score.  Zhang and Stout (1999a) conceptually 
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determined the direction of best measurement by computing the average 

multidimensional information function across all directions.  The result is a standardized 

vector of weights corresponding to each dimension.  The mathematical expression for 

this direction will be presented later in this chapter. 

Dimensionality Assessment 

Several dimensionality assessment procedures have been created to help 

determine whether a unidimensional IRT model or a multidimensional IRT model should 

be used to analyze test data (Douglas, Kim, Habing, & Gao, 1996; Kim, 1994; Roussos & 

Stout, 1996; Stout, 1990; Zhang & Stout, 1999b).  In order to adequately use UIRT to 

model examinee responses on an exam, the assumption of unidimensionality must not be 

seriously violated (Lord, 1980).  A test that is unidimensional measures only one trait in 

the population of interest.  If the test measures more than one trait but the responses are 

analyzed using a unidimensional IRT model, the resulting ability estimates and item 

parameter estimates may be highly inaccurate depending on the nature of the other 

variables being measured (Ansley & Forsyth, 1985; Reckase, 1985; Sireci, Thissen, and 

Wainer, 1991).  Due to the potential seriousness of these violations, several 

dimensionality assessment procedures have been developed to estimate the number of 

dimensions measured by an exam, and to determine whether unidimensionality is a 

feasible assumption (Douglas, Kim, Habing, & Gao, 1996; Kim, 1994; Roussos & Stout, 

1996; Stout, 1990; Zhang & Stout, 1999b). 

One of these procedures—a nonparametric procedure originally developed by 

Zhang and Stout (1999b) and implemented in the computer program DETECT 

(Dimensionality Evaluation To Enumerate Contributing Traits)—has been widely used to 
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assess the feasibility of the unidimensionality assumption (Reckase 2009; Zhang & Stout, 

1999b).  The algorithm incorporated in this program essentially searches for 

homogeneous clusters of items that conform to either a pre-specified (confirmatory) or an 

unspecified (exploratory) simple structure solution.  This procedure is accomplished by 

first determining the direction of best measurement at the test level, and then partitioning 

the test into homogeneous clusters such that the directions of best measurement at the 

cluster-level deviate as far as possible from the test-level direction of best measurement. 

Included in the DETECT output are three statistics: the maximum DETECT value, 

the ratio r , and the IDN index value.  The maximum DETECT value typically ranges 

between 0 and 1 and provides an indication of the degree of multidimensionality in the data 

(values less than 0.2 are viewed as “essentially unidimensional,” values between 0.2 and 

0.4 as “weak to moderate multidimensionality,” values between 0.4 and 1.0 as “moderate 

to strong multidimensionality,” and values above 1.0 as “large multidimensionality” 

(Kim, 1994; Zhang & Stout, 1999b).  The ratio r  ranges from 0 to 1 and incorporates a 

cross-validation technique (i.e., the procedure randomly divides the sample into two 

groups) to provide an indication of the stability of the solution.  A value close to 1 is 

indicative of a stable solution, i.e., that a similar solution is likely to result if this 

procedure is conducted on a different (yet comparable) group of examinees.  The IDN 

index value ranges from 0 to 1 and indicates how well the data conform to a simple 

structure model (as opposed to a “complex” structure model).  Values close to 1 are 

indicative of good fit for a simple structure model. 

Unidimensional IRT Scale Linking 

 Before IRT observed score or true score equating can be performed, item 

parameters and examinee abilities must first be estimated.  Due to the scale 
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indeterminacy property of item response theory, any linear transformation of the ability 

scale will yield the same probabilistic relationships, assuming that both the ability scale 

and item parameters are transformed.  “If an IRT model fits a set of data, then any linear 

transformation of the  -scale also fits the set of data, provided that the item parameters 

also are transformed” (Kolen & Brennan, 2004, p. 161).  To resolve this indeterminacy 

issue, IRT calibrations are typically specified to yield an ability distribution with mean of 

0 and standard deviation of 1 (Kolen & Brennan, 2004).   

When parallel forms are to be equated, parameters on the different forms can 

either be estimated at the same time (concurrent calibration) or in separate calibrations.  

If concurrent calibration is used, no scale linking methods need to be employed to ensure 

that parameter estimates are on the same scale.  By nature of the single calibration, 

parameter estimates are already on the same scale.  If separate calibrations are conducted 

under the random groups design, groups that were administered different forms are 

assumed to be equivalent on the measured trait.  That is, groups are assumed to have 

equal means and standard deviations on the ability scale.  If both calibrations are 

specified to yield an ability distribution with mean of 0 and standard deviation of 1, no 

scale linking method is necessary since means and standard deviations are specified to be 

equal across groups (Kolen & Brennan, 2004). 

However, when item parameters and abilities are calibrated separately for groups 

of examinees who are different with respect to the measured trait (i.e., nonequivalent 

groups) the estimates will be placed on different—yet linearly related—ability scales.  

Therefore, a scale linking procedure must be conducted to place item parameter estimates 

and ability estimates from the Form A scale to that of the Form B scale before equating 
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can be conducted.  “When the IRT model holds, the parameter estimates from different 

computer runs are on linearly related  -scales.  Thus, a linear equation can be used to 

convert IRT parameter estimates to the same scale” (Kolen & Brennan, 2004, p.  161). 

When separate calibrations are performed under the nonequivalent groups design, 

the scale of Form A and the scale of Form B may differ in two aspects: the scales may 

differ in (1) origin (i.e., mean) and (2) unit of measurement (i.e., standard deviation).  

Since the scales are linearly related, two coefficients ( K  and L ) must be determined to 

transform linking scale ( I ) parameters to the base scale ( J ) as follows: 

LK IiJi            (2.3a) 

K

a
a Ij

Jj           (2.3b) 

LKbb IjJj           (2.3c) 

IjJj cc           (2.3d) 

In this series of transformations, a  is item discrimination, b  is item difficulty, and c  is 

the lower asymptote parameter for either scale I  or J .  The parameters K  and L  are 

two linking coefficients that account for differences in scale origin and unit of 

measurement resulting from separate calibrations.  Several methods exist for estimating 

these parameters—namely, the mean/mean, mean/sigma, Haebara, and Stocking-Lord 

procedures (Kolen & Brennan, 2004). 

Moment Transformation Methods 

 The mean/mean and mean/sigma transformation methods use moments of the 

discrimination and difficulty parameters over common items to estimate the two linking 

coefficients ( K  and L ).  Note that in the linear transformation of the ability scale (i.e., 
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LK IiJi   ), K  represents the slope coefficient and L  represents the intercept 

coefficient.  As a result, for any two individuals i  and *i , or for any two items j  and *j  

(Kolen & Brennan, 2004, p.  163), 
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       (2.4a) 

and 

IiJiIjJj KKbbL          (2.4b) 

As these equations express K  and L  in terms of two individuals or two items, the 

linking coefficients can also be expressed in terms of populations of items or populations 

of examinees as: 
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)()()()( IJIJ KbKbL        (2.5b) 

In this series of equations,   represents the population mean,   represents the 

population standard deviation, and  , a , andb  represent examinee ability, item 

discrimination, and item difficulty on common items for scale I  or scale J , respectively. 

 When population values are used in Equations 2.5a and 2.5b, the relationships as 

defined in these equations hold perfectly.  However, when statistics are substituted as 

estimates of population parameters, these relationships will not be equal.  For example, 

when statistics are substituted for population parameters in Equation 2.5a, it is most 

likely that 
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 .  The mean/mean and mean/sigma differ with respect to 

which parameterization is used to estimate the K  parameter (Kolen & Brennan, 2004). 
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Mean/Mean Method 

The mean/mean method incorporates the means of the discrimination parameters 

and the means of the difficulty parameters over common items to estimate the linking 

coefficients as follows (Loyd & Hoover, 1980): 
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J

I

a

a
K




          (2.6a) 

)()( IJ bKbL           (2.6b) 

An advantage of the mean/mean method (over the mean/sigma method) is that the sample 

mean tends to yield more stable estimates of the respective population value than the 

sample standard deviation (Baker & Al-Karni, 1991).  However, item difficulty 

parameters tend to yield more stable estimates than item discrimination parameters 

(Kolen & Brennan, 2004). 

Mean/Sigma Method 

 The mean/sigma method incorporates the means and the standard deviations of 

the difficulty parameters over common items to estimate the linking coefficients as 

follows (Marco, 1977): 
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          (2.7a) 

)()( IJ bKbL           (2.7b) 

Again, item difficulty parameters tend to yield more stable estimates than item 

discrimination parameters (the mean/sigma method uses only item difficulty parameters), 

but sample means tend to yield more stable estimates than sample standard deviations 

(Baker & Al-Karni, 1991). 
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Characteristic Curve Transformation Methods 

A weakness of the mean/mean and mean/sigma transformation methods is that 

these methods do not take into account all item parameter estimates simultaneously to 

estimate linking coefficients (Kolen & Brennan, 2004).  In response to this inadequacy, 

Haebara (1980) and Stocking and Lord (1983) derived scale linking methods which focus 

on the item characteristic curve (ICC) or test characteristic curve (TCC), respectively, in 

order to estimate linking coefficients.  The characteristic curve methods exploit the fact 

that, due to the scale indeterminacy property of IRT, for any set of item parameters, 

),,;(),,;( IjIj
Ij

IiijJjJjJjJiij cLKb
K

a
LKpcbap   .   (2.8) 

This equation is strictly true for item parameters.  However, when item parameter 

estimates are substituted for population values, this equation most likely will not hold.  

The characteristic curve methods compute linking coefficients ( K  and L ) which 

minimize differences in these probabilities over common items.  The characteristic curve 

methods differ in which function is specified to derive differences in these probabilities.   

Haebara Method 

The Haebara (1980) method seeks to estimate linking coefficients ( K  and L ) 

which minimize the squared differences in item characteristic curves across all common 

items.  That is, the Haebara method seeks to minimize the function: 
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The summation is taken over all common items ( Vj : ).  After this function is summed 

over common items, these differences are then summed across examinee abilities to 

derive the minimization function as: 
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
i

iHdiffHcrit )(         (2.10) 

Stocking and Lord Approach 

The Stocking and Lord (1983) method seeks to estimate linking coefficients 

which minimize the squared differences in test characteristic curves across all common 

items.  That is, the Stocking and Lord method seeks to minimize the function: 

2
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;()ˆ,ˆ,ˆ;()( 







 

Vj
IjIj

Ij
Iiij

Vj
JjJjJjJiiji cLbK

K

a
LKpcbapSLdiff   (2.11) 

The summation is taken over all common items ( Vj : ).  After this function is summed 

over common items, these differences are then summed across examinee abilities to 

derive the minimization function as: 


i

iSLdiffSLcrit )(        (2.12) 

For the Haebara (1980) method and the Stocking and Lord (1983) method, the quadrature 

points and weights for Hcrit  and SLcrit  can be selected via a variety of methods (Kolen 

& Brennan, 2004). 

MIRT Scale Linking 

 Several procedures have been developed to link scales within the 

multidimensional IRT (MIRT) framework (Davey et al., 1996; Hirsch, 1989; Li & 

Lissitz, 2000; Min, 2003; Oshima et al., 2000; Thompson et al., 1997; Yon, 2006).  

Whereas unidimensional scale linking procedures estimate two coefficients ( K  and L ) 

to adjust for differences in (1) origin and (2) unit of measurement from separate 

calibrations, MIRT scale linking procedures typically estimate scalar coefficients and 

matrices to adjust for differences in (1) rotation, (2) correlation, (3) translation (similar to 
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“origin” in unidimensional IRT), and (4) dilation (similar to “unit of measurement” in 

unidimensional IRT).  That is, separate calibrations within the MIRT framework may 

place ability estimates and item parameter estimates on separate scales due to rotational 

indeterminacy (similar to factor analysis), correlation indeterminacy (though solutions are 

often derived by fixing multidimensional traits to be multivariate normally distributed 

and uncorrelated, i.e., distributed ),( I0MVN ), and indeterminacy in origin and unit of 

measurement (see Figure 2-7 for a comparison between UIRT and MIRT linking 

procedures). 
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Figure 2-7.  A comparison of UIRT and MIRT Linking Methods 

O  represents origin and U  represents unit of measurement for 

Scales I  and J , respectively. 

(Modified from Min, 2003) 

 

Depending on the nature of the linking procedure and the assumptions associated 

with each procedure, several different mathematical expressions exist for transforming 

item parameter estimates and ability estimates from the linking scale ( I ) to the base scale 

( J ).  However, a generic expression is as follows: 

βθTθ  
IiJi

1         (2.13a) 

Taa TT
IjJj           (2.13b) 
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TβaTIjIjJj dd          (2.13c) 

IjJj cc           (2.13d) 

(Davey et al., 1996; Li & Lissitz, 2000; Min, 2003; Oshima et al., 2000; Thompson et al., 

1997).  In this series of equations, T  represents an oblique or orthogonal matrix to 

account for rotational indeterminacy and dilation indeterminacy, and β  represents a 

matrix to account for translation indeterminacy (Davey et al., 1996; Li & Lissitz, 2000; 

Min, 2003; Oshima et al., 2000).  Depending on the nature of the linking design, β  might 

equal 0  (Thompson et al., 1997), T  might be the product of a rotation matrix and a 

single dilation parameter (Li & Lissitz, 2000), T  might be the product of a rotation 

matrix and a diagonal dilation matrix which accounts for separate dilation parameters on 

each dimension (Min, 2003), or T  might simply be a rotation matrix.  Note that the 

equations used to perform scale linking in the MIRT framework are direct extensions of 

their unidimensional counterparts, with matrices replacing scalar coefficients. 

MIRT Scale Linking for Nonequivalent Groups 

Most MIRT scale linking procedures that have been developed are used in 

conjunction with the nonequivalent groups design (Simon, 2008).  In the MIRT 

framework, the nonequivalent groups design can either incorporate items which are 

common to both forms (common items), or examinees which are administered both forms 

(common examinees).  The different scale linking procedures for the nonequivalent 

groups design typically differ in: (1) whether an orthogonal matrix or non-orthogonal 

(oblique) matrix is used to rotate parameter estimates to account for rotational 

indeterminacy; (2) whether dilation parameters are incorporated into the linking 

procedure to account for dilation (unit of measurement) indeterminacy; (3) for designs 
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which incorporate dilation parameters, whether one dilation parameter is applied to all 

dimensions or whether a separate dilation parameter is estimated to account for each 

dimension separately; and (4) whether transformation matrices and coefficients are 

estimated simultaneously or separately (Davey et al., 1996; Hirsch, 1989; Li & Lissitz, 

2000; Min, 2003; Oshima et al., 2000; Yon, 2006). 

 Hirsch (1989) developed a method to be used when there are common examinees, 

i.e., a set of examinees complete both Form B and Form A.  This procedure contains an 

orthogonal rotation matrix to account for rotational indeterminacy.  Furthermore, means 

and standard deviations are computed for common examinees on each dimension, which 

in turn are used to estimate translation and dilation coefficients.  These coefficients are 

applied to make means and standard deviations equal for the common examinees across 

forms on each dimension.   

 Oshima et al.  (2000) derived four separate MIRT linking methods, three of which 

are direct extensions of unidimensional linking methods (the equated function method, 

derived as an extension of the mean/mean method; the test characteristic function 

method, derived as an extension of the Stocking-Lord method; and the item characteristic 

function method, derived as an extension of the Haebara method).  For each of the four 

methods, a rotation matrix and a translation vector are determined simultaneously.  The 

rotation matrix, as determined by Oshima et al. (2000), rotates parameter estimates as 

well as dilates parameters to account for rotational indeterminacy and dilation 

indeterminacy.  When the correlation between traits is the same across forms, the rotation 

matrix is orthogonal; otherwise it is oblique. 
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 Li and Lissitz (2000) derived a method to link MIRT scales which consists of an 

orthogonal rotation matrix, a translation vector, and one dilation parameter.  The authors 

assert that only one dilation parameter is required (which is applied to all dimensions), 

since the process of estimating only one dilation parameter yields a more “tractable” 

solution, and since dispersion across specified dimensions is likely to be similar (Li & 

Lissitz, 2000, p. 116).  Min (2003) extended the Li and Lissitz (2000) approach to 

incorporate a diagonal dilation matrix—containing one dilation parameter per 

dimension—rather than using one dilation parameter across all dimensions. 

MIRT Scale Linking for Randomly Equivalent Groups 

In UIRT, separate calibrations under the random groups design will yield item 

parameter estimates and ability estimates which are on the same scale, assuming that 

ability distributions are specified to be the same in both calibrations (typically specified 

to follow a standard normal distribution).  Similar to UIRT, separate calibrations under 

the random groups design within the MIRT framework will yield item parameter 

estimates and ability estimates which are on the same scale in terms of translation (origin) 

and dilation (unit of measurement).  However, separate calibrations under this design are 

still subject to rotational indeterminacy (Thompson et al., 1997).  To account for 

rotational indeterminacy, Thompson et al. (1997) developed a procedure to estimate an 

orthogonal rotation matrix (T ) under the random groups design.  The orthogonal 

Procrustes rotation is then applied to ability estimates and item discrimination estimates 

to place the estimates on the same scale. 

The conceptual rationale underlying the Thompson et al. (1997) procedure is as 

follows.  If the forms to be equated are in fact, parallel, then the forms should measure 
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the same composite construct, and the tables of specifications for the forms should be 

nearly identical.  Based on the tables of specifications, and perhaps a further content 

analysis of what each item is intended to measure, items on each form can be grouped 

into homogeneous clusters.  Items which were identified in the same cluster should 

logically be measuring the same composite of traits.  Statistically, this means that the 

items within each cluster should discriminate in the same direction in multidimensional 

space, since they are intended to measure the same composite of traits.  As a result, a 

reference composite can be computed for each cluster of items to determine the 

unidimensional projection that would result from applying a UIRT model to the cluster, 

since each cluster of items is expected to be internally homogeneous, i.e., the items 

discriminate in the same direction.  The reference composite provides a stable indication 

of the direction of each cluster in multidimensional space.   

The objective then is to determine the orthogonal rotation matrix such that, after 

the rotation is applied, corresponding reference composites on parallel forms will be 

pointing in the same direction in multidimensional space.  Once the orthogonal rotation 

matrix has been determined for the reference composites (i.e., at the “cluster-level”), this 

matrix can be applied at the individual item level to ensure that item parameter estimates 

are on the same scale pending the rotational indeterminacy.  The reason that the 

orthogonal rotation matrix could not originally be determined at the item level is because 

there are no common items in this data collection design. 

Mathematically, the Thompson et al. (1997) procedure is conducted as follows.  

First, items are grouped into clusters based on content analysis of what each item is 

intended to measure.  Separate matrices ( CD ) are created for each cluster which contain 
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item discrimination parameters for each item within the cluster.  Each row of the matrix 

corresponds to a separate item, and each column of the matrix corresponds to a distinct 

dimension.  A reference composite, defined as “the eigenvector associated with the 

largest eigenvalue of C
T
CDD , where CD  is the matrix of item discriminations” 

(Thompson et al., 1997, p. 4) is then computed for each cluster of items to determine the 

unidimensional projection for this cluster.  The total number of reference composites is 

equal to the total number of clusters identified on the test, and the number of elements in 

each reference composite is equal to the number of specified dimensions on the test.   

The reference composites for each cluster on Form A and Form B are then 

concatenated to form matrices M  and N , corresponding to Form A and Form B, 

respectively.  Each row in matrices M  and N  corresponds to a separate reference 

composite, and each column in matrices M  and N  corresponds to a distinct dimension.  

Corresponding reference composites on Form A and on Form B must be placed in the 

same row.  The orthogonal rotation matrix T  is the solution which minimizes )( EETtr  

where MTNE   and )(tr  represents the trace function.  The solution to this matrix is 

obtained via the singular value decomposition, and is presented in Schonemann (1966).  

Specifically, the solution is obtained as: 

NMS T          (2.14a) 

TUQVS   (singular value decomposition)     (2.14b) 

TUVT           (2.14c) 

In this series of equations, Q  is a diagonal matrix containing the square root of the 

eigenvalues of S , and U  and V  are matrices containing the eigenvectors of S  

(Thompson et al., 1997).  Once the orthogonal rotation matrix (T ) is computed, the 
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orthogonal Procrustes rotation is applied to the Form A discrimination parameters and 

ability estimates in order for the Form A parameter estimates to be placed on the same 

scale as the Form B parameter estimates as: 

IiJi θTθ 1          (2.15a) 

Taa TT
IjJj           (2.15b) 

IjJj dd           (2.15c) 

IjJj cc           (2.15d) 

If the covariance matrix (Σ ) for examinee abilities was computed prior to the 

rotation, this matrix may change as a result of the rotation.  Let OΣ  represent the 

covariance matrix prior to the rotation, and NΣ  represent the covariance matrix after the 

rotation has been applied.  From statistical theory of linear composites, 

  1)(   TΣΤθΤΣ
T11

ON Var  (Johnson & Wichern, 2007).  However, often the 

correlational indeterminacy is solved by fixing multidimensional traits to follow a 

multivariate standard normal distribution with zero correlation between dimensions (i.e., 

),(~ I0θ MVN ).   

The metric of MIRT item parameter estimates usually refers to reference 
axes that are orthogonal and of unit length, because most MIRT parameter 
estimation programs solve the identification problem (or result in a unique 
solution) by requiring that the multidimensional traits (θ ) be distributed as 
a multivariate normal, ),( I0MVN .  Although real traits are likely to be 
correlated, items in the bank can be tentatively defined with reference to 
orthogonal axes in order to make it easier for future MIRT equating or for 
additions to a MIRT item bank.  The precalibrating parameters could be 
re-rotated obliquely, if necessary, for better interpretation (Li & Lissitz, 
2000, p. 116). 
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In this situation (i.e., under an orthogonal solution), the covariance matrix prior to 

rotation will be the same as the covariance matrix after the rotation.  Since IΣ O  

(where I  represents the identity matrix), NΣ  can be solved for as: 

NΣ    1 TΣΤ
T1

O        (2.16a) 

  1 ITΤ
T1         (2.16b) 

  1 TΤ
T1         (2.16c) 

  11 
 TΤT         (2.16d) 

   1
 TTT          (2.16e) 

1 I           (2.16f) 

I          (2.16g) 

OΣ          (2.16h) 

Thus, the covariance matrix will only change under a non-orthogonal (oblique) solution. 

Inherent in this procedure is the assumption that each form to be equated 

measures the same composite of traits.  That is, it does not suffice to simply measure the 

same traits on each form, but the degree to which each trait contributes to the single 

reported score must also be the same across forms: “The main assumption made in these 

studies is that each test form measures exactly the same unidimensional reference 

composite.  That is, not only must each test form measure the same constructs, but the 

composite construct formed must also be the same across test forms” (Thompson et al., 

1997, p. 2).  The assumptions associated with the scale linking procedure will be further 

addressed in the “Scale Linking and Equating Assumptions” section in Chapter 3. 
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 Thompson et al. (1997) described several procedures for assessing the quality of 

the rotation.  One method is to observe direction cosines (Miller & Hirsch, 1992) between 

each pair of reference composites to be aligned.  Direction cosines—defined as the cosine 

of the angle between the vectors to be aligned—can be computed before the rotation is 

applied and after the rotation is applied.  After the rotation is applied, the angle between 

corresponding reference composites should be smaller than the pre-rotation angle.  

Although no global criterion for assessing quality of the rotation based on direction 

cosines is presented, Thompson et al. (1997) noted that better fit is indicated by small 

post-rotation angles. 

 After the scale linking procedure has been conducted (i.e., item and ability 

parameters that have been estimated in separate calibrations have been placed on the 

same scale) and the linking procedure has been appropriately assessed, an equating 

procedure can be conducted to relate number-correct scores on the forms to be equated. 

Unidimensional IRT Equating 

If examinee scores are to be reported on the  -scale or on a linear transformation 

of the  -scale, then only an appropriate scale linking method is required.  However, 

oftentimes it is desired to use a scale other than the  -scale for score reporting.  In this 

situation, a procedure must be conducted to equate observed scores or true scores across 

parallel forms of an exam.  Two methods which have been derived for this purpose are 

IRT observed score equating and IRT true score equating.  IRT observed score equating 

estimates observed score distributions on both forms based on the IRT model.  Once the 

observed score distributions are estimated, equipercentile equating is conducted to 

determine an equating relationship between the forms (Kolen & Brennan, 2004).  IRT 
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true score equating relates true scores on both forms using the IRT definition of true 

score—i.e.  
j

jjjiiji cbap ),,;()(  .  First, a true score on Form A is selected; the 

ability level ( i ) associated with this true score is then estimated; finally, the true score 

on Form B associated with this ability level is computed (Kolen & Brennan, 2004). 

IRT Observed Score Equating 

 To conduct unidimensional IRT observed score equating, conditional observed 

score distributions (i.e., )|( ixf  ) are first determined at each ability level ( i ) using a 

recursion formula such as the Lord-Wingersky method (Lord & Wingersky, 1984).  This 

algorithm computes conditional distributions across all specified ability levels as: 

)|( ir xf   )1)(|(1 irir pxf        0x   (2.17a) 

  iriririr pxfpxf )|1()1)(|( 11     rx 0  (2.17b) 

  irir pxf )|1(1       rx    (2.17c) 

In this series of equations, )|( ir xf   is the conditional observed score distribution over 

the first r  items, )|(1 ir xf   is the conditional observed score distribution over the first 

1r  items, and irp  is the probability of correctly answering item r  for an examinee of 

ability level i .  In practice, this algorithm begins as: 

)|( ir xf   )1( irp      0x   (2.18a) 

  irp       1x   (2.18b) 

After this initial step, 1r  iterations are required to compute the conditional observed 

score distribution ( )|( ir xf  ) for r  items. 
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Once the conditional observed score distribution is determined at each specified 

ability level, the conditional distribution is then multiplied by the ability density ( )( ) 

and either summed or integrated over all ability levels to determine an observed marginal 

distribution for each form.  That is, 

)()|()( 

 xfxf         (2.19a) 

or 




 dxfxf )()|()(         (2.19b) 

depending on whether a discrete ability distribution or a continuous ability distribution is 

defined.  Once marginal distributions ( )(xf  and )(yf ) are determined for each form, 

Form A and Form B are equated using traditional equipercentile methods.  The 

equipercentile equating method relates observed scores on both forms with the same 

percentile rank (further discussion of this method will be presented in the next chapter). 

IRT True Score Equating 

IRT true score equating relates true scores on Form A with true scores on Form B 

using the IRT definition of true score.  Although no theoretical justification exists for 

applying the true score relationships to observed scores, often this is conducted in 

practice (Kolen & Brennan, 2004).  The unidimensional procedure is conducted in three 

stages: specifying a true score on Form A for which the corresponding true score on 

Form B is desired; determining the ability level ( i ) which corresponds to the given true 

score on Form A; and determining the true score on Form B which corresponds to the 

ability level ( i ).  A detailed explanation appears below. 
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First, a true score on Form A ( A ) is selected.  Usually this value is between the 

sum of the lower asymptote parameters and the total number of items on Form A, i.e., 

AA
Aj

j Nc  
:

, where AN  represents the total number of items on Form A.  Recall that 

true score at a particular ability level ( i ) is defined as the sum of the probabilities of 

obtaining a correct response for each item, i.e., ),,;()(
:

jjji
Aj

ijiA cbap   .  In order to 

determine the i  associated with the particular true score on Form A, an iterative 

procedure—such as the Newton-Raphson method—is typically used.  This root-finding 

algorithm essentially minimizes the difference ),,;()(
:

jjji
Aj

ijAi cbapfunc    by 

taking the derivative with respect to i , setting this value equal to 0, and solving for the 

minimum.  Once the particular i  is computed, this value is then substituted into the 

definition of true score on Form B, i.e., ),,;()(
:

jjji
Bj

ijiB cbap   .  Typically in 

practice, corresponding true scores on Form B are derived for each Form A integer score. 

Graphically, this procedure can be viewed as relating true scores through the test 

characteristic curve (TCC) for Form A and Form B (see Figure 2-8).  Recall that the test 

characteristic curve can be viewed as the regression of observed score ( X ) on ability 

level ( ) (Lord, 1980).  The expected value of the regression of observed score ( X ) on 

ability level ( ) is also known as the IRT true score ( ).   
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Figure 2-8.  Graphical Representation of True Score Equating  

 
Inherent in this procedure is the fact that the test characteristic curve (TCC) is a 

monotonically increasing function.  If the TCC were not monotonically increasing, then a 

unique solution may not exist for the true score equating procedure. 

Foundations for MIRT Equating 

No procedures currently exist for conducting observed score or true score 

equating in the MIRT framework.  As the purpose of the present research is to create 

such procedures, previously-existing literature which contributes toward the formation of 

this new methodology appears below. 

Unidimensional Approximation 

 Zhang (1996), Zhang and Stout (1999a), and Zhang and Wang (1998) 

demonstrated that any set of item responses that can be adequately modeled by a 

multidimensional IRT model can be closely approximated by a unidimensional IRT 
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model with estimated unidimensional ability parameters and estimated unidimensional 

item parameters.  Specifically, these authors demonstrated this to be true for any 

generalized  -dimensional compensatory model.  A generalized  -dimensional 

compensatory model is defined as having form 









 






1

)()(
k

jkkjjjijjiij daHdHp θaθ T     (2.20) 

where “ ),...,,( 21 jjjj aaaTa , jjj aaa ,...,, 21 are nonnegative and not all zero, and )(xH j  

is any non-decreasing function with 0)(' xH j  for all x and *)()( '
*

' xHxH jj  not being 

zero identically as *),( xx  varies for njj ,...,2,1*,   (mathematically rigorously, not 

being zero almost everywhere with respect to Lebesque measure suffices)” (Zhang & 

Stout, 1999a, p. 133).  For this family of models, Ta j  is the discrimination parameter 

vector, jd  is an index related to the difficulty parameter, and )(jH  is a link function 

(Zhang, 1996, Zhang & Stout, 1999a, and Zhang & Wang, 1998). 

Two commonly used generalized  -dimensional compensatory models include 

the multidimensional compensatory three parameter logistic model (M3PL) and the 

multidimensional compensatory normal ogive model.  The M3PL can be written as:  

 
 












)(7.1exp1

)(7.1exp
)1()(

jij

jij
jjiij d

d
ccp

θa

θa
θ

T

T

    (2.21) 

with corresponding link function 

 
 









θ7.1exp1

θ7.1exp
)1()θ( i jjj ccH       (2.22) 

The multidimensional compensatory normal ogive model can be written as: 

)()1()( jijjjiij dccp  θaθ T       (2.23) 
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with corresponding link function 

)()1()θ( i  jjj ccH        (2.24) 

where )(  is the standard normal distribution function. 

Again, any generalized  -dimensional compensatory model which adequately 

models the probability of a correct response for examinees of ability vector iθ  can be 

closely approximated by a unidimensional model with estimated unidimensional ability 

parameters and unidimensional item parameters.  Zhang (1996), Zhang and Stout 

(1999a), and Zhang and Wang (1998) define the estimated unidimensional ability (  , 

where   denotes a unidimensional approximation) as a standardized linear composite of 

the latent variables (  ,...,, 21 ).  The authors estimate this composite as: 







 
1

ˆˆˆˆˆ
k

kkθαT          (2.25) 

where 1ˆ
1

2 





k

k .  The coefficients for the linear composite are estimated as 

       jkjjjj

N

j
jjj

N

j
jk aHHwHEw ˆˆˆ1ˆˆˆˆˆ

2

1

1

2'

1 




























 ΘaΘaΘa TTT   (2.26) 

 
,ˆ

)ˆ|(

ˆˆ'

1
jk

jj
N

j
j a

YVar

H
Ew












 

 Θ

ΘaT
  ,...,2,1k      (2.27) 

where Θ̂  is the complete latent trait vector, jw  is the score weight,   is a positive 

constant such that 1ˆ
1

2 





k

k , and E  is the expectation operator.  Under the assumption 

that all terms 
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 
,

)ˆ|(

ˆˆ'













Θ

ΘaT

YVar

H
Ew jj

j  Nj ,...,2,1       (2.28) 

are equal, this becomes 

  



 






1

2

1

1

ˆ

ˆ
ˆ

k

N

j jk

N

j jk

k

a

a
       (2.29) 

where N  is the total number of items on the test.  The terms 
 













)ˆ|(

ˆˆ'

Θ

ΘaT

YVar

H
Ew jj

j  “may be 

considered to be ‘compound weights’ for items contributing to the test direction; each 

term is completely determined by the score weight jw  and the item model (theoretical) 

weight 
 













)ˆ|(

ˆˆ'

Θ

ΘaT

YVar

H
E jj  which is mainly determined by the derivative of the link 

function and the item discrimination parameter vector” (Zhang, 1996, p. 25). 

Furthermore, if the exam demonstrates approximate simple structure (i.e., under 

the oblique solution, each item on the exam loads on only one dimension), then the 

oblique solution for the thj  item discrimination parameter vector in the thk  cluster yields  
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As a result, 
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In this equation, jka  represents the non-zero discrimination parameter for the thj  item in 

the thk  cluster, where knj ,...,2,1 , ,...,2,1k , kn  is the number of items in the thk  
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cluster, and   is the number of dimensions.  It should further be noted that in the special 

case that all item discriminations are equal (i.e., under the Rasch model), 
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        (2.32) 

 When using the multidimensional normal ogive model, corresponding 

unidimensional item parameter estimates are derived as a function of the linear composite 

coefficients (α ), the multidimensional item discrimination vector ( Ta j ), the index related 

to multidimensional item difficulty ( jd ), and the multidimensional ability covariance 

matrix (Σ ) in the population of interest as follows: 

 )ˆˆˆ()ˆ|()ˆ|1( jjjj daUEUP        (2.33) 

where   is the standard normal cumulative distribution function (CDF) and 
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The authors continue by noting that the IRT true score ( T ) associated with the linear 

composite (  )—which is the sum of the probabilities of obtaining correct responses 

over all items at each composite ability level—is expressed as 
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This expression preserves the property of unidimensional IRT true scores in that the 

function )(  is strictly increasing.  

As the focus of this paper is not on the methods Zhang (1996), Zhang and Stout 

(1999a), and Zhang and Wang (1998) used to derive unidimensional linear composites 

and corresponding item parameter estimates, it should be noted in passing that the basis 

for their procedure was provided from MIRT theory and multivariate normal distribution 

theory.  Specifically, Zhang and colleagues used the definition of the “direction of best 

measurement” described earlier in this chapter—which is the direction corresponding to 

the average multidimensional information function evaluated in all directions—to 

determine which unidimensional composite would best represent a single reported score.  

Using the direction of best measurement as the unidimensional ability scale, Zhang and 

colleagues then proceeded to use multivariate normal distribution theory to determine 

unidimensional (marginal) item parameters corresponding to the unidimensional ability 

scale.  In essence, the coefficients for the linear composites (i.e., α ) as defined by Zhang 

and colleagues provide a unidimensional ability estimate which can be conceptually 

viewed as an approximation of the combination of the proficiencies that the test most 

precisely measures. 
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CHAPTER 3 

METHODOLOGY 

 This chapter consists of seven main sections.  First, a description of the data used 

in this study appears, accompanied by a list of the procedures that were conducted.  

Second, a description of how the unidimensional IRT equating procedures were 

conducted appears.  Third, a detailed description of the proposed new methodology for 

conducting MIRT observed score and true score equating is presented, followed by a 

description of how the MIRT equating procedures were conducted.  Next, a discussion of 

the assumptions associated with the MIRT equating procedures is presented.  Finally, a 

description of the equipercentile procedures that were conducted, followed by a 

framework for evaluating the procedures, is presented. 

Data and Procedures 

The data used in this study were collected under the random groups equating 

design and came from two forms of the Iowa Tests of Educational Development (ITED) 

(Forsyth, Ansley, Feldt, & Alnot, 2001), Level 17/18 battery.  Specifically, each of the 

following tests within these batteries were equated: (a) Mathematics: Concepts and 

Problem Solving, (b) Analysis of Science Materials, and (c) Analysis of Social Studies 

Materials.  The sample size for each form was 2,500.  

Each of the three tests consisted of several clusters of items as indicated by the 

ITED content classification tables.  For example, each item on the Mathematics: 

Concepts and Problem Solving test was classified as either Numbers and Operations on 

Numbers, Data Analysis/Probability/Statistics, Geometry/Measurement, or Algebraic 
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Concepts.  These clusters formed the bases by which the MIRT linking procedures were 

conducted.  

Each of the following procedures were conducted to equate Form A and Form B 

tests: (1) unidimensional IRT observed score equating, (2) unidimensional IRT true score 

equating, (3) full MIRT observed score equating, (4) unidimensional approximation of 

MIRT observed score equating, (5) unidimensional approximation of MIRT true score 

equating, and (6) equipercentile equating.  The equipercentile equating procedure was 

conducted for the purpose of comparison with the other procedures. 

Unidimensional Equating Procedures 

 BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) was originally used to 

estimate unidimensional item parameters.  Several problems arose when calibrating the 

sets of item responses using BILOG-MG, however.  Specifically, both discrimination and 

difficulty parameters for each form were very high and did not appear to be within the 

bounds typical for item parameters.  Provided that the medians for each form were 

relatively low, it was hypothesized that BILOG-MG may have had difficulty estimating 

the lower asymptote parameters for these difficult tests.  Therefore, various conditions 

were manipulated in BILOG-MG and the item parameters were recalibrated to see what 

the effects were.  Specifically, a series of BILOG-MG calibrations was conducted with 

various fixed lower asymptote parameters provided for each item (as opposed to 

estimating lower asymptote parameters during the calibration).  The results revealed that 

as the fixed lower asymptote parameters decreased in value, both discrimination 

parameter estimates and difficulty parameter estimates appeared more reasonable.  

Discrimination and difficulty parameters appeared the “best” when lower asymptote 
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parameters were all fixed at zero.  Therefore, all of the data analyses presented in this 

research were conducted under the two parameter logistic (2PL) model—rather than the 

three parameter logistic (3PL) model—in order to enhance the quality of the item 

parameter estimates. 

Furthermore, after the BILOG-MG calibrations were conducted, it seemed 

prudent to calibrate the unidimensional item parameters using TESTFACT (Bock, 

Gibbons, Schilling, Muraki, Wilson, & Wood, 2003), given that the multidimensional 

item parameters were also calibrated using this program.  As a result, any differences 

between unidimensional equating procedures and multidimensional equating procedures 

could be more confidently attributed to differences between the equating procedures and 

not to differences between item parameter estimation programs.  Therefore, the 

unidimensional procedures incorporated in this study were conducted using the 

TESTFACT program rather than BILOG-MG (it should be noted that although fixed 

lower asymptotes can be supplied for TESTFACT calibrations, this program does not 

estimate lower asymptote parameters). 

Since the data used in this study were collected under the random groups design, 

no scale linking procedures were required for the unidimensional procedures: the item 

parameter estimates were assumed to be on the same scale.  After item parameters were 

estimated, the unidimensional item parameters were then substituted into the computer 

program PIE (a computer Program for IRT Equating) (Hanson & Zeng, n.d.) to conduct 

both unidimensional observed score and true score equating procedures. 
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Multidimensional Equating Methodology 

 No procedures currently exist for conducting observed score or true score 

equating in the MIRT framework.  As the purpose of the present research is to create 

such procedures, three new equating procedures—two observed score procedures and one 

true score procedure—are detailed below.  First, an observed score equating procedure is 

presented as a direct extension of UIRT observed score equating.  This procedure is 

referred to as the “Full MIRT Observed Score Equating” procedure.   The true score 

equating procedure and the second observed score equating procedure use the 

unidimensional approximation methods detailed by Zhang and colleagues (Zhang, 1996; 

Zhang & Stout, 1999a; and Zhang & Wang, 1998), and are referred to as the 

“Unidimensional Approximation of MIRT True Score Equating” procedure and the 

“Unidimensional Approximation of MIRT Observed Score Equating” procedure, 

respectively. 

Full MIRT Observed Score Equating 

Relatively straightforward extensions can be implemented to conduct observed 

score equating in the MIRT framework.  In the unidimensional IRT framework, 

conditional observed score distributions (i.e., )|( xf ) are first determined at each ability 

level ( i ).  The MIRT analog is to derive conditional distributions for each combination 

of ability levels (i.e., )|( θxf ), where θ  denotes the entire ability space (Kolen & Wang, 

2007).  Similar to the UIRT framework, these can be computed using the Lord-

Wingersky algorithm.  To implement this algorithm, however, a vector of ability levels is 

used in place of a single ability level as follows: 

)|( ir xf θ  )1)(|(1 irir pxf   θ     0x   (3.1a) 
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  iriririr pxfpxf )|1()1)(|( 11 θθ    rx 0  (3.1b) 

  irir pxf )|1(1 θ      rx    (3.1c) 

In this series of equations, )|( ir xf θ  is the conditional observed score distribution over 

the first r  items, )|(1 ir xf θ  is the conditional observed score distribution over the first 

1r  items, and irp  is the probability of correctly answering item r  for an examinee of 

ability vector iθ .  In practice, this algorithm begins as: 

)|( ir xf θ  )1( irp      0x   (3.2a) 

  irp       1x   (3.2b) 

After this initial step, 1r  iterations are required to compute the conditional observed 

score distribution ( )|( ir xf θ ) for r  items. 

In the unidimensional IRT framework, these conditional distributions are then 

multiplied by the ability density ( )( ) and either summed or integrated over all ability 

levels to obtain a marginal observed score distribution for each form.  The MIRT analog 

is to multiply the conditional distributions by the multivariate ability density ( )(θ ) and 

sum (or integrate) over all ability spaces as, 

 
1 2

)()|(...)( θθ 


xfxf        (3.3a) 

or 

θθθ dxfxf )()|(...)(
1 2



          (3.3b) 

In these equations,   represents the number of dimensions.  Similar to the 

unidimensional case, traditional equipercentile methods can then be used to equate the 

two forms. 
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Unidimensional Approximation 

 Both the unidimensional approximation of the MIRT true score equating 

procedure and the unidimensional approximation of the MIRT observed score equating 

procedure are conducted by estimating unidimensional item parameters and 

unidimensional ability distributions from the multidimensional data.  Motivation for 

using unidimensional estimates, along with the unidimensional estimation procedures, 

appears below. 

 Several problems arise when trying to extend unidimensional IRT true score 

equating to the MIRT framework.  In the UIRT framework, true score equating was 

conducted by relating the forms to be equated through the respective test characteristic 

curves (TCCs).  Recall that the TCC relates the IRT definition of true score 

( 
j

jjjiiji cbap ),,;()(  ) to ability level ( ).  In MIRT, true scores are related to 

ability levels through the test characteristic surface (TCS), which is the multidimensional 

equivalent of the test characteristic curve.  For each combination of ability levels 

(corresponding to each dimension), the probabilities of obtaining correct responses to 

each item are summed to form true scores (i.e.,  )()( θθ p ).  As such, an infinite 

number of combinations of ability levels is associated with a particular true score.  The 

problem arises in that, when the test characteristic surface is computed for Form B, 

different combinations of ability levels corresponding to the Form A true score may map 

to different true scores on Form B.  That is, there is no unique solution for mapping true 

scores on Form A to true scores on Form B. 

 The problem discussed above can be bypassed using the results presented in 

Zhang (1996), Zhang and Stout (1999a), and Zhang and Wang (1998).  These authors 
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demonstrated that any set of item responses that can be adequately modeled by a 

multidimensional compensatory IRT model can be closely approximated by a 

unidimensional IRT model with estimated unidimensional ability and item parameters. 

 First, the vector of weights corresponding to the test-level direction of best 

measurement can be estimated as 
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where k  represents the thk  standardized coefficient in the vector of linear composite 

coefficients (α ), jka  represents the discrimination parameter for the thj  item on the thk  

dimension, Nj ,...,2,1 , ,...,2,1k , N  is the total number of items on the test, and   

is the number of dimensions (Zhang, 1996).  Under the oblique (simple structure) 

solution, this reduces to 
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where kn  represents the number of items in the thk  cluster.  (The number of clusters is 

assumed to equal the number of dimensions in this study).  Next, corresponding 

unidimensional item parameters can be estimated as: 
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jj cc ˆˆ           (3.6d) 

and 

 22 )ˆˆˆ(ˆˆˆˆ αΣaaΣa TT
jjjj         (3.6e) 

In this series of equations, the vector α  contains the standardized linear composite 

coefficients, Ta j  is the multidimensional discrimination vector, jd  is an index related to 

the multidimensional difficulty parameter, and Σ  is the multidimensional ability 

covariance matrix in the population.  Whereas this parameterization is in accordance with 

the normal ogive model, these parameters can be substituted as logistic model parameters 

by noting the fact that these models yield nearly identical probabilities.  That is,  
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where the first probability is parameterized according to the normal ogive model and the 

second probability is parameterized according to the logistic model.  The differences in 

these probabilities are less than 0.01 across the entire ability space (Lord, 1980).  

Although this change in parameterization will result in minor loss of precision, this 

should not have a significant effect on the results.  Thus, the probability of a correct 

response can be modeled as: 
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See Appendix C for an example of how these procedures are conducted.  It should 

be noted that  the IRT true score ( T ) associated with the linear composite (  )—which 

is the sum of the probabilities of obtaining correct responses over all items at each 

composite ability level—is expressed as 
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This expression preserves the property of unidimensional IRT true scores in that the 

function )(  is strictly increasing.   

 The previous results imply that 1) a unidimensional composite ability (  ) which 

approximates the ability which the test most closely measures can be constructed from 

any generalized  -dimensional compensatory model and that 2) unidimensional item 

parameters corresponding to the unidimensional composite ability can be produced.  

Consequently, a unidimensional test characteristic curve can be constructed which relates 

unidimensional composite ability level (  ) to composite true score ( T ).   

Unidimensional Approximation of MIRT True Score 

Equating 

Using the unidimensional approximations provided above, unidimensional IRT 

true score equating procedures can be conducted to relate composite true scores ( T ) on 

the multidimensional test forms.  First, a true score on Form A ( A ) can be selected for 

which the corresponding composite true score on Form B is desired.  Using an iterative 

procedure (specifically, the Newton-Raphson method), the corresponding unidimensional 

composite ability level (  ) associated with this Form A true score can be obtained by 

minimizing the difference ),,;()(
:

jjji
Aj

ijAi cbapfunc    .  Finally, using the 

IRT definition of true score, the composite true score on Form B associated with the 

Form A composite true score can be computed as ),,;()(
:

jjji
Bj

ijiB cbap    . 
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Unidimensional Approximation of MIRT Observed Score 

Equating 

To conduct unidimensional approximation of MIRT observed score equating, 

unidimensional item parameters and abilities can first be estimated using the 

methodology described above.  Conditional distributions )|( xf  can then be 

determined at each composite ability level (  ) using the Lord-Wingersky recursion 

formula.  The conditional distributions can then be multiplied by the estimated 

unidimensional ability distribution in the population of examinees and summed (or 

integrated) across the estimated unidimensional ability space as: 

)()|()( iixfxf 


 


         (3.10a) 

or 




  dxfxf ii )()|()(        (3.10b) 

Once marginal distributions are computed for each form, the forms can be equated using 

traditional equipercentile procedures. 

Multidimensional Procedures 

TESTFACT (Bock, Gibbons, Schilling, Muraki, Wilson, & Wood, 2003) was 

used to estimate multidimensional item parameters.  The TESTFACT program essentially 

conducts a factor analysis procedure on inter-item tetrachoric correlations using the 

marginal maximum likelihood procedure (Bock & Aitken, 1981).  The resulting 

parameterization is in accordance with the multidimensional normal ogive model.  Each 

TESTFACT calibration was specified to yield an orthogonal solution, with the number of 

specified dimensions equal to the number of clusters identified on the ITED form. 
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Item parameter estimates on Form A were then rotated to the scale of Form B to 

account for rotational indeterminacy (Thompson et al., 1997).  First, the orthogonal 

rotation matrix (T ) was determined using the methods discussed in the previous chapter.  

The matrix of item discrimination parameters on Form A was then post-multiplied by the 

orthogonal rotation matrix to rotate the estimated discrimination parameters as follows: 

Taa TT
IjJj           (3.11) 

In TESTFACT, translation and dilation indeterminacies for exploratory solutions are 

resolved by specifying axes to be orthogonal and of unit length (i.e., ),( I0MVN ).  

Therefore, quadrature points and weights were determined from the multivariate normal 

),( I0MVN  distribution.   

DETECT (Zhang & Stout, 1999b) was then used to assess dimensionality for each 

form, as well as to observe which clusters of items on each form were the most 

statistically similar (homogeneous).  This procedure was conducted twice for each form: 

the procedure was conducted in both an exploratory and a confirmatory manner.  For the 

confirmatory procedure, items on each form were clustered according to ITED content 

classification tables.  For example, each item on the Mathematics: Concepts and Problem 

Solving test was specified to load on either Numbers and Operations on Numbers, Data 

Analysis/Probability/Statistics, Geometry/Measurement, or Algebraic Concepts.  The 

exploratory procedure was conducted to determine how well the original ITED 

classification scheme was recovered by the DETECT procedure.  Ideally, the exploratory 

solution would yield as many clusters as there are classifications according to the ITED 

content classification tables, with each item clustering within its respective content 

classification.  Realistically, however, this is not likely to be the case.  It is more likely 
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that the original ITED classification scheme will not be perfectly recovered by the 

DETECT procedure. 

The discrepancy between the ITED classification tables and the clusters recovered 

under the exploratory DETECT procedure was then used as an indicator of how well the 

MIRT linking procedure can perform.  Recall that to perform this procedure, items were 

first clustered according to the content specifications.  The reference composite—

conceptually viewed as the average direction that the individual items in the cluster are 

pointing in—was then determined for each cluster.  If all items in a cluster are pointing in 

exactly the same direction (and thus measuring the same composite of traits), then the 

exploratory DETECT results will yield the same clustering scheme as the ITED 

classification tables.  In this situation, the reference composite can be used as a stable 

indicator of the direction that these items are pointing in.  To the degree that the items 

within a cluster point in different directions, it is likely that the DETECT exploratory 

results will yield a different clustering scheme than the ITED classification tables.  In this 

situation, the reference composite will still point in the average direction that the 

individual items within a cluster are pointing, yet the items will empirically appear to be 

measuring different traits.  Since the MIRT linking procedure is performed by aligning 

reference composites on Form A to be pointing in the same direction as the 

corresponding reference composites on Form B, a comparison of the exploratory 

DETECT solution and the ITED classification tables was used to evaluate how well the 

MIRT linking procedure may have worked.  

The maximum DETECT value was used to gauge the extent to which each form is 

multidimensional, and the IDN index value was used to gauge the extent to which the 
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specified solution (the ITED content classification scheme for the confirmatory analysis, 

and the homogeneous clusters dictated by the exploratory analysis) conforms to simple 

structure.  The ratio r  was used to gauge the stability of the estimation procedure. 

 After MIRT parameters were placed on the same scale, the MIRT true score 

equating procedure and both MIRT observed score equating procedures were conducted.  

To conduct the unidimensional approximation of the MIRT true score equating procedure 

and the unidimensional approximation of the MIRT observed score equating procedure, 

the unidimensional item parameters were first estimated using the methodology described 

above.   The unidimensional ability distributions were determined as follows.   

First, quadrature weights were defined in accordance with the multivariate 

standard normal distribution.  The number of quadrature points was equal to n , where 

n  represents the number of quadrature points per dimension and   represents the 

number of dimensions.  For example, the Science exams were calibrated with respect to 

two dimensions and forty quadrature points per dimension (i.e., 40n  and 2 ).  

Thus, there were 1600402   total quadrature points, and the multidimensional ability 

density was represented as, 
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To obtain unidimensional quadrature points, each vector of multidimensional quadrature 

points (i.e.,  0.41  , 0.42  ,  0.41  , 8.32  , etc.) was multiplied by the 

vector of standardized linear composite coefficients (α ) in accordance with the test-level 

direction of best measurement.  For example, the unidimensional quadrature point was 

equal to 2211   , where  21 ,α .  The density associated with each 

unidimensional quadrature point remained the same, and was equal to the multivariate 

normal density at the specific vector,  21 , . 

The resulting unidimensional density still contained n  quadrature points (which 

was the same number of points as the multivariate quadrature density), which proved to 

be quite unwieldy.  Therefore, the quadrature points were then rank ordered according to 

magnitude.  For example, the unidimensional ability density after rank ordering was 

represented as, 
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where 212111    is the smallest quadrature point, 222121    is the second smallest 

quadrature point,…, and 2211
  nn

  is the largest quadrature point.  The n  

quadrature points and weights were then collapsed into forty points and weights in order 

to yield a more feasible solution.  Specifically, equal-sized intervals were created from 

the n  quadrature points by dividing n  by 40 to determine how many of the n  points 

should appear within each interval.  The mean quadrature point for each interval was 
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used as the final quadrature point, and the sum of the quadrature weights within each 

interval was used as the final quadrature weight. 

After this procedure was conducted, however, the resulting ability density was 

revealed to be rather ragged (as opposed to being a smooth distribution).  To investigate 

this phenomenon, additional analyses which incorporated larger numbers of quadrature 

points per dimension were conducted.  The results revealed that as the number of 

quadrature points per dimension increased, the quadrature distribution converged to a 

standard normal distribution (see Figure A-22 in Appendix A, which reveals how the 

unidimensional ability distribution changes by incorporating more quadrature points per 

dimension).  Therefore, instead of using the “unsmoothed” ability distributions for the 

unidimensional approximation of MIRT observed score equating procedures, standard 

normal ability distributions were substituted.  These values were incorporated in the 

computer program PIE (Hanson & Zeng, n.d.) to conduct both the observed score and the 

true score equating procedure. 

 To conduct the full MIRT observed score equating procedure, conditional 

observed score distributions were first determined for each combination of  -values 

(using multivariate normal quadrature points) using a modified version of the Lord-

Wingersky algorithm for the MIRT framework.   The multivariate normal quadrature 

weights ( )(θ ) were then multiplied by the conditional observed score distributions 

( )|( θxf ) and summed over the ability space to determine an estimated marginal 

observed score distribution.   After this procedure was conducted for both forms, 

traditional equipercentile equating was conducted to equate the forms.   The entire full 

MIRT observed score equating procedure was conducted using the computer programs R 
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(R Development Core Team, 2008) and RAGE-RGEQUATE (Zeng, Kolen, Hanson, Cui, 

& Chien, 2004).  Specifically, R code was created to determine the conditional observed 

score distributions and the marginal observed score distribution for each form, and 

RAGE-RGEQUATE was used to conduct the equipercentile equating. 

Scale Linking and Equating Assumptions 

Several assumptions were made in order to conduct the scale linking and equating 

procedures described in this study.  Recall that the data used in this research were 

collected under the random groups equating design.  Therefore, examinees who were 

administered Form A and examinees who were administered Form B were assumed to be 

equivalent in both origin (translation) and unit of measurement (dilation) on each of the 

measured traits.  Thus, only an orthogonal rotation matrix was required to account for 

rotational indeterminacy for the scale linking procedures (Thompson et al., 1997). 

It is evident that the scale linking procedure used in this study requires that the 

same traits be measured on both forms to be equated.  Furthermore, this procedure also 

requires that the same composite of traits be measured by each form (as opposed to each 

trait simply being measured by each form).  Conceptually, this implies that the extent to 

which each trait contributes to the total score be the same across each form.  

Mathematically, this implies that the test-level reference composite must be the same for 

both forms to be equated: “Not only must each test form measure the same constructs, but 

the composite construct formed must also be the same across test forms.  The composite 

construct formed by the test items may be thought of as analogous to an alloy composed 

of various metals.  Just as differing proportions of copper and tin can be used to form 

different bronze alloys, different mixtures of geometry, trigonometry, and algebra items 
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(for example) can be used to form different overall math achievement reference 

composites” (Thompson et al., 1997, p. 2). 

Furthermore, the scale linking procedure only performs well when the angle 

between any two reference composites on one form to be equated is similar to the angle 

between the corresponding reference composites on the other form to be equated (recall 

that the angle between any two reference composites on the same form is related to the 

correlation between the reference composites).  The objective of the scale linking 

procedure is to determine the orthogonal rotation matrix (T ) such that, after the rotation 

is applied, corresponding reference composites on both forms to be equated are pointing 

in the same direction.  Mathematically, this implies that T  is determined by minimizing 

the function )( EETtr  where MTNE  , )(tr  represents the trace function, and N  and 

M  contain reference composites on Form B and Form A, respectively.  Conceptually, 

this implies that T  is the orthogonal rotation matrix such that after the rotation is applied, 

corresponding rows on N  and M  are as similar as possible.  The matrices N  and M  

display the following pattern: 
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Recall that the angle between any two eigenvectors on the same form does not change 

under an orthogonal rotation, and that a reference composite is, in essence, an 

eigenvector.   Under an orthogonal rotation, each eigenvector will rotate in relation to the 

coordinate axes, but the angle between the eigenvectors on the same form does not 

change.  Therefore, in order for each pair of corresponding reference composites to be 
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pointing in identical directions (or, equivalently, in order for corresponding rows in N  

and M  to be as similar as possible), the angle between any two reference composites on 

one form must necessarily be similar to the angle between the corresponding reference 

composites on the other form.   

After MIRT parameters were placed on the same scale, equating was conducted 

within the MIRT framework.  Two of the MIRT equating procedures—the 

unidimensional approximation of the MIRT observed score equating procedure and the 

unidimensional approximation of the MIRT true score equating procedure—are based on 

the derivations provided by Zhang (1996), Zhang and Stout (1999a), and Zhang and 

Wang (1998).  These authors demonstrated that any set of item responses that can be 

adequately modeled by a multidimensional compensatory IRT model can be closely 

approximated by a unidimensional IRT model with estimated unidimensional ability and 

item parameters.   

To compute unidimensional item parameter estimates, the multidimensional 

ability distribution in the population of examinees was assumed to follow a multivariate 

normal distribution (i.e.,  Σ0θ ,~ MVN ).  Furthermore, to estimate the unidimensional 

ability parameters, an assumption was made that each term 
 

,
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j  “may be considered 

to be ‘compound weights’ for items contributing to the test direction; each term is 

completely determined by the score weight jw  and the item model (theoretical) weight 
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 
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E jj  which is mainly determined by the derivative of the link function and 

the item discrimination parameter vector” (Zhang, 1996, p. 25). 

For the full MIRT observed score equating procedure, the multivariate quadrature 

distribution was specified to follow the multivariate standard normal distribution with 

uncorrelated abilities (i.e., I0θ ,(~ MVN ).  Since the MIRT parameter estimation 

procedure resolves translation and dilation indeterminacies by fixing the coordinate axes 

to yield a mean of 0  and standard deviation of 1 on each dimension, the ability density 

( I0θ ,(~ MVN )) should be correct with respect to mean and standard deviation.  

However, the ability estimates are likely to be correlated in practice.  That is, it is likely 

that  Σ0θ ,~ MVN , where the off-diagonal elements of Σ  are positive values between 

0  and 1.  In this study, however, correlations between ability estimates on different 

dimensions were not estimated, as item parameter estimates and ability estimates were 

calibrated under a “complex structure” model as opposed to a “simple structure” model 

(thus resulting in orthogonal axes as opposed to correlated axes).  Although the 

correlations between ability estimates on different dimensions could have been obtained 

via several different methods, these methods would not be empirically justified, as the 

exams did not demonstrate simple structure in accordance with the ITED classification 

tables (see the results pertaining to Dimensionality Assessment). 

For the unidimensional approximation of the MIRT observed score equating 

procedure, the unidimensional quadrature distribution was specified to follow a standard 

normal distribution.  This parameterization should be accurate, as the unidimensional 

quadrature distribution was empirically verified as following the standard normal 
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distribution (see the discussion concerning the quadrature distribution under the 

“Multidimensional Procedures” section above). 

Other Procedures for Conducting MIRT Equating 

It should be noted that the MIRT equating methods could have been conducted 

several different ways.  For example, another method for conducting the MIRT equating 

procedures would be to obtain the MIRT estimates of the lower asymptote parameter (c ) 

by calibrating each cluster of items separately under a UIRT model.  Since each cluster of 

items is expected to be internally homogeneous, this method might yield better estimates 

of the lower asymptote parameter for each item.  In IRT estimation procedures, parameter 

estimates are highly dependent upon one another.  In this study, all items within a 

specific test were calibrated simultaneously using a UIRT model to obtain lower 

asymptote parameters for each item (despite the multidimensional structure of the exam).  

These unidimensional lower asymptote parameters were originally substituted as the 

lower asymptote parameters for the MIRT model (before it was decided to fix all lower 

asymptote parameters to 0 ).  Since the unidimensional calibration is expected to yield 

biased estimates of item and person parameters due to the multidimensional structure of 

the exam, estimates for the lower asymptote may also be inaccurate (given that parameter 

estimates are highly dependent upon one another).  To obtain more accurate estimates, 

each cluster of items could be calibrated separately under a UIRT model.  In this 

particular study, however, this methodology did not seem feasible provided that some 

clusters of items contained very few items.  Furthermore, this methodology was not 

required, as all lower asymptote parameters were fixed to 0 . 
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Continuing, although the multidimensional procedures were conducted under a 

“complex structure” solution (i.e., items were allowed to measure more than one trait), 

the multidimensional procedures could have been conducted under a “simple structure” 

solution.  In this situation, each item would be specified to measure only one trait (as 

dictated by the ITED classification tables), and a correlation coefficient would be 

estimated for each pair of traits.  For example, all Math items within the Mathematics: 

Concepts and Problem Solving domain would be specified to measure only this domain, 

all Math items within the Numbers and Operations on Numbers domain would be 

specified to measure only this domain, and a correlation coefficient would provide an 

indication of the relationship between the Mathematics: Concepts and Problem Solving 

domain and the Numbers and Operations on Numbers domain.   

Under the “simple-structure” solution, the discrimination parameters for each item 

not associated with a particular domain would be fixed to 0 , resulting in only one 

positive discrimination parameter for each item.  Specifically, each row in the matrix of 

item discrimination parameters (A ) would contain only one non-zero element, which 

would appear in the column corresponding to the dimension that the specific item 

measures.  For this matrix, each row corresponds to an item and each column corresponds 

to a dimension.  Thus, the pattern for the entire item discrimination matrix (A ) would be: 
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In this series of equations, kn  represents the number of items in the thk  cluster, and   

represents the number of dimensions.  For each item, the simple structure solution 

constrains 1  discrimination parameters to 0 .  The simple structure solution assumes 

that the item responses adequately conform to simple structure, and that the matrix of 

item discrimination parameters (A ) can be adequately modeled with only one non-zero 

element per item.  This implies that each item measures only one trait (specifically, the 

trait as identified by the ITED classification tables) and that the traits may be correlated.  

However, this solution may not adequately model the data, as was the case in this study.  

If the matrix of item responses demonstrates complex structure—as opposed to simple 

structure—this assumption may not be feasible.  A better estimate of the item 

discrimination matrix (A ) may be obtained under an unconstrained (complex structure) 

solution.  The complex structure solution frees the previously constrained (to 0) 1  

discrimination parameters for each item.  As a result, the complex structure solution may 

yield a better estimate of the item discrimination matrix (A ). 
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 The simple-structure method did not appear feasible in this study, as empirical 

evidence from the DETECT procedure revealed that the ITED exams did not demonstrate 

simple structure (see the discussion of the Dimensionality Assessment procedures).  That 

is, the items within each ITED domain did not necessarily measure the exact same trait, 

and some items across the various ITED domains empirically appeared to measure 

similar traits. 

Lastly, it should be noted that the MIRT equating procedures presented in this 

research could be conducted in conjunction with any of the previously described equating 

designs (i.e., single group, random groups, or common item nonequivalent groups 

design).  Whereas the linking procedures would differ depending on the equating design 

used, the MIRT procedure to equate number-correct scores would remain the same. 

Equipercentile Equating 

Equipercentile equating was also conducted to equate each pair of forms, and a 

post-smoothing method was incorporated to reduce random error associated with this 

procedure.  Specifically, cubic splines were fit to each equipercentile equating 

relationship to determine an appropriate smoothing parameter.  After examining the 

effects of various post-smoothing parameters, a value of 20.0S  was applied to each of 

the three equipercentile equating procedures.  The results from both the unsmoothed 

equipercentile equating procedure and the smoothed equipercentile equating procedure 

were then compared with the results from the other equating procedures, since the 

assumptions associated with this procedure are not expected to be violated in this study 

(for example, the UIRT procedures are expected to violate the unidimensionality 

assumption, given the multidimensional nature of the exams).  The equipercentile 
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equating procedure essentially relates observed scores on both forms with the same 

percentile rank.   Since the data used were collected under the random groups design, 

examinees that were administered different forms were assumed to have identical 

distributions on the traits being measured.   These procedures were conducted using the 

computer program RAGE-RGEQUATE (Zeng, Kolen, Hanson, Cui, & Chien, 2004) and 

Equating Error (Hanson, n.d.). 

Evaluation Procedures 

The following six procedures were conducted to equate Form A and Form B for 

each set of tests: (1) unidimensional IRT observed score equating, (2) unidimensional 

IRT true score equating, (3) full MIRT observed score equating, (4) unidimensional 

approximation of MIRT observed score equating, (5) unidimensional approximation of 

MIRT true score equating, and (6) equipercentile equating.   

Several methods were used to determine the adequacy of the MIRT scale linking 

procedure for each set of forms.  Furthermore, dimensionality assessment methods were 

employed to determine the extent to which each form is multidimensional and to 

determine how well the ITED classification schemes were empirically recovered.  The 

standard error of equating (SEE) was used to determine how well the equipercentile 

procedure worked to equate each set of forms.  Discrepancies between each IRT or MIRT 

equating procedure and the equipercentile procedure were evaluated according to the 

Differences That Matter (DTM) standard (Dorans, Holland, Thayer, & Tateneni, 2003) 

and the standard error of equating (SEE).  A description of each procedure follows. 
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Evaluation of Linking Procedures 

 The accuracy of each linking rotation was determined by using a procedure 

described by Thompson, et al. (1997).  Recall that the orthogonal rotation matrix T  is the 

solution which minimizes )( EETtr , where MTNE  , )(tr  represents the trace 

function, and the matrices M  andN  contain reference composites for Form A and Form 

B, respectively.  The purpose of the rotation is to align reference composites to be 

pointing in exactly the same direction in the  -dimensional space after the rotation.  If 

the rotation works perfectly, then 0E  , meaning that the reference composites are 

pointing in exactly the same direction.  As a result, the angles between corresponding 

reference composites were compared prior to the rotation and after the rotation was 

applied.  A small post-rotation angle between corresponding reference composites is 

indicative of an accurate rotation.  Thompson, et al. (1997) warned that there is no global 

criterion based on pre- and post-rotation angles for assessing quality of rotation. 

 The cluster scheme provided by the exploratory DETECT procedure was also 

compared to the ITED classification tables to determine how well the MIRT linking 

procedure may have worked.  If the DETECT procedure yields the exact same clusters as 

the ITED classification tables, then each item within the respective cluster is pointing in 

nearly the same direction (i.e., each item is measuring the same composite of traits), and 

the corresponding reference composites provide a solid basis on which to conduct the 

MIRT linking procedure.  To the degree that the DETECT procedure yields clusters that 

are inconsistent with the ITED classification tables, the reference composites for each 

cluster might not provide a clear indication of which direction the items are intended to 

point (i.e., which composite of skills the items are intended to measure).  In this case, the 



 75

reference composites may still be used as the basis to conduct the MIRT scale linking 

procedure, but the solution for the reference composite is less stable. 

Standard Error of Equating 

All equating procedures are susceptible to both systematic error and random error 

(Kolen & Brennan, 2004).  The goal of an equating procedure is to compute the most 

accurate equating relationship possible so that examinees can be compared on parallel 

forms.  This goal is achieved by minimizing both systematic error and random error.  

Systematic error may result by performing the equating procedure in a manner that 

violates the assumptions associated with the procedure.  For example, if the data to be 

equated were collected under the random equivalent groups design, yet the groups were 

actually quite different on the measured trait, the equating results may be highly 

inaccurate due to the violation of this assumption.  In this particular study, performing the 

UIRT equating procedures on multidimensional data may result in systematic error due to 

the violation of the unidimensionality assumption. 

Whereas the amount of systematic error that affects an equating procedure may be 

difficult to quantify, procedures are available to help determine the amount of random 

error in an equating procedure. Random error may result from performing the equating 

procedure on a random sample of examinees as opposed to the entire population. 

The standard error of equating (SEE) was computed to help determine the amount 

of random error for the equipercentile procedure.  Specifically, bootstrap standard errors 

were used for this purpose.  Bootstrap methods, in general, incorporate a resampling 

procedure to estimate a population parameter a large number of times.  The standard 
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deviation of the estimated population parameter then serves as an estimate of the standard 

error of the sampling distribution for that particular statistic.   

In this situation, the raw scores for Form A and Form B were both sampled with 

replacement 2500 times (which is the same sample size as the number of examinees that 

completed each form).  The equipercentile equating procedure was then conducted to 

equate Form A and Form B using the resampled scores.  After this entire process was 

completed 1,000 times (i.e., resampling with replacement 2500 raw scores per form and 

then conducting equipercentile equating using the resampled scores), the standard 

deviation of the estimated equipercentile equating relationships at each raw score served 

as the estimated standard error of equating at each score.  These procedures were 

conducted using the computer program Equating Error (Hanson, n.d.). 

 The bootstrap standard error of equating was used to generate confidence bands 

around the estimated equipercentile equating relationship.  The equipercentile equating 

relationship and corresponding confidence bands were displayed graphically, along with 

the equating relationships for the other five procedures.  Equating relationships that fall 

outside of the error band are noted as differing significantly from the equipercentile 

equating relationships; equating relationships that fall within the error band are described 

as being similar to the equipercentile equating relationship.  Furthermore, the estimated 

SEE at each raw score was used as a cautionary device.  If the difference between the 

equipercentile equating procedure and another equating procedure is large at a particular 

raw score, yet the SEE is also large at that raw score, the interpretation should be 

restricted: the equipercentile procedure is subject to much random error at this score.  At 

scores for which the SEE is smaller, the interpretations do not need to be as restricted. 



 77

Differences That Matter 

Several problems arise when trying to determine an appropriate criterion by 

which the performance of each equating procedure can be evaluated.  First, the “true” 

equating relationship between each pair of forms is unknown.  However, even if the true 

equating relationship could be specified (via a simulation study), this relationship would 

most likely be different for observed score procedures and true score procedures.  

Specifically, IRT observed score procedures and IRT true score procedures are not 

necessarily expected to yield the same results, given that they are defined differently.  

True score equating relates true scores on both forms to be equated; although no 

theoretical justification exists for applying the true score equating results to observed 

scores, often this is conducted in practice.  Observed score equating, on the contrary, 

provides a statistical adjustment such that the observed score distributions on each form 

are as similar as possible. 

Since no perfect criterion exists for evaluating the performance of each equating 

procedure in this study, the equipercentile equating procedure was used as a benchmark 

for comparison for the UIRT and MIRT equating procedures.  Since the assumptions 

associated with this procedure are not expected to be violated in this study (as the UIRT 

procedures are expected to violate the unidimensionality assumption), this procedure 

might provide a better indication of how well each of the other equating procedures 

performs.  The UIRT equating procedures are expected to contain a large amount of 

systematic error, considering that these procedures do not take into account the 

multidimensional structure of the exams.   The MIRT equating procedures, on the 

contrary, are expected to perform more similarly to the equipercentile equating procedure 
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given that the MIRT procedures take into account the multidimensionality in the item 

responses.   

The criteria for this study included differences and absolute differences between 

equated scores for the equipercentile procedure and each of the other five procedures.  

The differences and absolute differences were also used to compute averages of the 

differences across all score points to provide a single summary statistic for each 

procedure.  Both tables (including numeric values) and plots were generated to reveal the 

magnitude of these differences.  Furthermore, because there are flaws in using the 

equipercentile equating procedure as the benchmark for comparison (described above), 

general trends for each of the equating procedure were also described qualitatively. 

Each difference was evaluated against the Difference That Matters (DTM) 

criterion (Dorans, Holland, Thayer, & Tateneni, 2003).  Although Dorans, et al. (2003) 

defined the DTM in terms of test linking procedures (i.e., placing scores on the same 

scale for tests that are not intended to be strictly parallel) and in terms of subgroups of 

examinees (for example, comparing linking results for males with linking results for 

females), the DTM concept was extended in this study to serve as a criterion for strict 

parallel form equating across different methods of equating.  Specifically, Dorans, et al. 

define the DTM as a 0.5 raw score difference point between linking results.  In this study, 

the absolute differences between equated scores for the equipercentile procedure and the 

other five procedures were compared to the 0.5 criterion. 
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CHAPTER 4 

RESULTS 

This chapter contains the results from the data analyses and is comprised of five 

main sections.  First, descriptive statistics for each test used in this study are presented.  

Second, descriptive statistics pertaining to the dimensionality assessment procedures are 

presented, followed by the results from the multidimensional scale linking procedures.  

Finally, standard errors of equating for the equipercentile equating procedures are 

presented, followed by the equating results for all methods.  

Descriptive Statistics for Each Form 

The data used in this study came from Form A and Form B of the Iowa Tests of 

Educational Development (ITED) (Forsyth, Ansley, Feldt, & Alnot, 2001), Level 17/18.  

Specifically, the scores used in this study consisted of a subset of the data that were 

collected for the purposes of national standardization of the ITED.  In the standardization, 

the exams were administered under uniform conditions to groups selected to reflect the 

relative breakdown of various minority and socioeconomic groups (Forsyth, Ansley, 

Feldt, & Alnot, 2001).  The sample size for each form used in this study was 2500. 

Descriptive statistics for each form used in this study are presented in Table A-1, 

and the distribution of scores on each form is presented in Figures A-1, A-2, and A-3.  

For each test, both the mean and the median scores were relatively low in comparison to 

the length of the scale (and in comparison to the standardization data as a whole), and the 

distribution of scores on each form was positively skewed.  Reliability for each form 

ranged between 0.88 and 0.90. 
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Dimensionality Assessment 

To investigate the dimensional structure of each form, the DETECT procedure 

was conducted in both an exploratory and a confirmatory fashion.  The exploratory 

procedure recovers internally homogeneous clusters of items via empirical investigation 

(i.e., items that point in nearly identical directions in multidimensional space are 

clustered together) and provides summary statistics in accordance with the recovered 

cluster scheme.  In contrast, the confirmatory procedure computes the summary statistics 

under a pre-specified solution (i.e., the user indicates how many clusters should appear on 

each form and the items to be associated with each cluster).  The program output for both 

the exploratory and the confirmatory analyses contains the DETECT value, the IDN 

index value, and the ratio r .  The DETECT value provides an indication of the extent to 

which the data are multidimensional (values less than 0.2 are viewed as “essentially 

unidimensional,” values between 0.2 and 0.4 as “weak to moderate multidimensionality,” 

values between 0.4 and 1.0 as “moderate to strong multidimensionality,” and values 

above 1.0 as “large multidimensionality” (Kim, 1994; Zhang & Stout, 1999b).  The IDN 

index value ranges from 0 to 1 and indicates how well the data conform to a simple 

structure model (as opposed to a “complex” structure model).  Values close to 1 are 

indicative of good fit for a simple structure model.  The ratio r  ranges from 0 to 1 and 

provides an indication of the stability of the solution.  A value close to 1 is indicative of a 

stable solution, i.e., a similar solution is likely to result if this procedure is conducted on a 

different (yet comparable) group of examinees.   

The summary statistics yielded by the DETECT analyses are presented in Tables 

A-2, A-3, and A-4.  For the unconstrained (exploratory) solution, the DETECT value 
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ranged between 0.223 and 0.300 across all subjects (Math, Science, and Social Studies) 

and both forms (Form A and Form B).  These results indicate that the scores on each 

form are “weak to moderately” multidimensional.  Under the constrained (confirmatory) 

solution, these values range between 0.073 and 0.108 and are higher on both Math forms 

than for the Science and Social Studies forms.  These results imply that the ITED 

domains are highly correlated within each test, resulting in a unidimensional 

interpretation under the simple structure model.  

Across all subjects and both forms, the IDN index values ranged between 0.662 

and 0.722 under the exploratory solution.  These values imply that—according to the 

clustering scheme derived by the DETECT procedure—the data moderately adhere to a 

simple structure solution.  Under the confirmatory solution, the IDN index values were 

smaller (ranging from 0.528 to 0.578).  The IDN index values are expected to be smaller 

under the confirmatory solution, as the clustering schemes recovered under the 

exploratory DETECT are formed by empirical evidence concerning which items point in 

the same direction.  Since items within each cluster as specified by the ITED 

classification tables do not necessarily point in the same direction, the degree to which 

the data conform to a simple structure model would necessarily be smaller.  Furthermore, 

as opposed to the DETECT values—which are higher for the Math forms than for the 

Science or Social Studies forms—the IDN index values do not appear to vary by subject.  

Under the exploratory solution, the ratio r  ranges from 0.488 to 0.600 and does 

not appear to vary by subject: the Social Studies Form A yielded the highest ratio r  

value, whereas the Social Studies Form B yielded the lowest ratio r  value.  The ratio r  

values obtained for each form indicate that a moderately stable solution was obtained.  
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These results imply that a different cluster scheme may be recovered under a different 

(yet comparable) group of examinees.  Similar to the other two statistics, the ratio r  is 

smaller under the confirmatory solution, and ranges between 0.149 and 0.227.  In contrast 

to the exploratory results, this statistic does appear to vary by subject, however: the 

confirmatory solution appears to yield a more stable result for both Math forms than for 

either of the Science or Social Studies forms. 

Linking Results 

After the study was completed, it was discovered that multidimensional scale 

linking procedures under the random groups design (which only consists of an orthogonal 

rotation) were not required to conduct observed score equating or true score equating 

within the MIRT framework.  That is, the same equating relationships would result 

regardless of whether rotational indeterminacy was accounted for (recall that the linking 

procedure did not take into account translation or dilation indeterminacies, as examinees 

who were administered Form A and examinees who were administered Form B are 

assumed to have the same mean (translation) and unit of measurement (dilation) under 

the random groups equating design).  This will only hold under certain conditions, 

however.  This topic will be further addressed in the next chapter.  Regardless, the scale 

linking results are still presented below, as the results provide additional information 

concerning the nature of each test used in this study. 

To perform the scale linking procedures, items were first grouped into clusters 

which are intended to be internally homogeneous as dictated by the ITED classification 

tables.  Given that each item within a given cluster is expected to measure the same 

composite of traits, statistically these items should point in the same direction in 
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multidimensional space.  As a result, a reference composite can be determined for each 

cluster of items to provide a stable indication of the average direction for these items.  

The objective of the scale linking procedure is then to determine the orthogonal rotation 

such that, after the rotation is applied, corresponding reference composites on the forms 

to be equated are pointing in the same direction.  Therefore, angles between 

corresponding reference composites can be computed prior to the rotation and after the 

rotation is applied to provide an indication of how well the scale linking procedure may 

have worked: smaller post-rotation angles are indicative of a more accurate linking 

procedure (Thompson, Nering, & Davey, 1997). 

Furthermore, the item clusters recovered by the exploratory DETECT procedure 

(Zhang & Stout, 1999b) can be compared with the ITED classification tables to provide 

an indication of how well the scale linking procedure may have worked.  This procedure 

determines the direction of best measurement for the overall test, and then proceeds to 

empirically determine homogeneous clusters of items such that the direction of best 

measurement for each cluster of items deviates as far as possible from the overall 

direction of best measurement.  The resulting cluster scheme provides empirical 

information concerning which items measure the same composites of traits.  Therefore, 

the DETECT classification scheme can be compared with the ITED classification tables 

to determine the extent to which reference composites should be used to align the 

orientation of the axes: if the empirical clustering scheme (i.e., the results from the 

exploratory DETECT procedure) is perfectly congruent with the ITED classification 

tables, then each cluster as specified by the ITED classification tables is internally 

homogeneous, and each reference composite provides a stable indication of the average 
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direction of the items.  As the empirical cluster scheme and the ITED classification tables 

become more disparate, each reference composite will still point in the average direction 

of the items within each cluster, yet this estimate of the cluster-level direction may be less 

stable. 

Table A-5 in Appendix A presents pre-rotation angles and post-rotation angles 

between corresponding reference composites on Forms A and B for each exam, 

respectively.  Nearly all of the post-rotation angles are smaller than pre-rotation angles, 

which indicate that the scale linking procedures were successful to some extent (there is 

currently no method available for estimating the degree of success, as no global criterion 

exists which indicates the extent to which post-rotation angles should be reduced).  

However, the angles between corresponding reference composites on two of the four 

Math composites increased as a result of the orthogonal rotation, which indicates that the 

procedure used to link scales on the Math exams may not have been as successful as the 

procedures used to link scales on the Science and Social Studies exams.   

Tables A-6, A-7, and A-8 present the cluster scheme recovered by the exploratory 

DETECT procedure for each of the six tests (Math Forms A and B; Science Forms A and 

B; and Social Studies Forms A and B, respectively).  For each form, the original ITED 

classification tables are presented, along with the classification scheme recovered under 

the exploratory DETECT procedure.  Furthermore, a column denoted “DETECT Pattern” 

was added for ease of interpretation.  This column provides a letter corresponding to each 

item in the “DETECT” column, indicating which ITED domain the item is associated 

with.  For example, each item corresponding to the Math table is coded as either “N,” 

“D,” “G,” or “A,” denoting whether the item was classified, respectively, as Numbers and 
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Operations on Numbers, Data Analysis/Probability/Statistics, Geometry/Measurement, or 

Algebraic Concepts according to the original ITED classification tables.  This 

information may provide a visually appealing method of determining the degree to which 

items within each specific content category empirically clustered together (for example, 

the degree to which items in the Numbers and Operations on Numbers category 

empirically clustered together, the degree to which items in the Data 

Analysis/Probability/Statistics category empirically clustered together, the degree to 

which items in the Geometry/Measurement category empirically clustered together, and 

the degree to which items in the Algebraic Concepts category empirically clustered 

together). 

Overall, the original ITED classification scheme was partially—but not 

perfectly—recovered.  For the Math exams, the Numbers and Operations on Numbers 

items tended to blend with the Data Analysis/Probability/Statistics items.  

Geometry/Measurement items and Algebraic Concepts items were interspersed 

throughout the empirical clusters.  Furthermore, whereas the DETECT procedure 

recovered four clusters on the Form B Math exam (as there were four ITED domains), the 

DETECT procedure recovered five clusters on the Form A Math exam.   

The exploratory DETECT procedure did not perfectly recover the ITED 

classification tables for the Science exams.  Though some clusters recovered by the 

DETECT procedure resembled the ITED classification tables (i.e., all of the items in the 

empirical cluster were intended to measure the same trait as specified by the ITED 

tables), other clusters recovered by the DETECT procedure contained a mixture of items 

from different domains.  For example, the second and third clusters on Form A and the 
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second cluster on Form B all contained items which were intended to measure the 

Physical Sciences/Earth and Environmental Science domain, and the fifth cluster on 

Form A contained items which were all intended to measure the Biological Science/Life 

Science domain.  All of the other empirical clusters contained a mixture of Biological 

Science/Life Science items and Physical Sciences/Earth and Environmental Science 

items.  Whereas only two domains were specified by the ITED classification tables, the 

DETECT procedure recovered five clusters on Form A and four clusters on Form B.   

Similarly, the ITED classification tables for the Social Studies exams were not 

perfectly recovered by the exploratory DETECT procedure.  The second empirical cluster 

formed by the DETECT procedure for both Forms A and B primarily contained 

Economics items, which align with the ITED classification tables.  Aside from these two 

clusters, however, items from each ITED domain were interspersed throughout the 

empirical clusters.  The exploratory DETECT procedure did recover the appropriate 

number of clusters, though: four clusters were recovered for both Form A and Form B 

Social Studies exams, just as the ITED classification tables specified that four domains 

were to be measured. 

Standard Error of Equating 

The bootstrap standard error of equating (SEE) was computed for each of the 

equipercentile equating procedures (corresponding to the Math, Science, and Social 

Studies exams) to estimate how much random error (i.e., error related to the sampling of 

examinees) may have affected this procedure.  The SEE values for the unsmoothed 

equipercentile equating procedures are presented in Table A-9, and the SEE values for 

the smoothed equipercentile equating procedures are presented in Table A-10.  The last 
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row in each table presents the average SEE across all raw score points for each respective 

exam. 

Overall, the equipercentile equating procedure for the Math exams appears to 

contain the least amount of random error.  The average SEE for the Math exams were 

0.300 and 0.265 (for the unsmoothed and smoothed procedures, respectively), whereas 

the average SEE’s for the Science and Social Studies exams were 0.349 and 0.296 

(unsmoothed and smoothed, respectively) and 0.363 and 0.320 (unsmoothed and 

smoothed, respectively).  Given that the score scales are of different lengths, however, 

comparisons at each raw score point cannot be made.  (For example, a raw score of 20 on 

the Math exam is in the exact middle of the score scale, whereas a raw score of 20 on the 

Social Studies exam is at the mid-to-lower end of the score scale; equating error is 

expected to vary at different points along the score scale).   

These values imply that—although the equipercentile equating procedure is used 

as the benchmark for comparison in this study—this procedure is not “error-free.”  

Furthermore, the magnitude of the SEE value at each specific raw score must be taken 

into account when evaluating the differences between the equipercentile equating 

procedure and each of the other respective procedures.  At scores where the SEE is large, 

interpretations concerning differences between the equipercentile equating procedure and 

another procedure must be tempered.  At scores where the SEE is smaller, interpretations 

do not need to be as restricted. 

Equating Results 

Lastly, equating results for each of the six procedures (equipercentile equating, 

UIRT observed score equating, unidimensional approximation of MIRT observed score 
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equating, full MIRT observed score equating, UIRT true score equating, and 

unidimensional approximation of MIRT true score equating) on each of the three subjects 

(Math, Science, and Social Studies) are presented in Tables A-11, A-12, and A-13.  Each 

table contains the raw score on Form A in the first column.  The Form B equivalents (i.e., 

the equated scores) appear in the next six columns and are primarily distinguished by 

procedure type (i.e., observed score versus true score).  These tables provide a useful 

resource for determining the equated scores for each of the equating procedures under 

each set of exams.  From these tables, it can be seen that both unidimensional equating 

procedures performed similarly and that all three of the multidimensional procedures 

performed similarly.  Also, within each type of equating (i.e., unidimensional and 

multidimensional), the observed score procedures and the true score procedure performed 

similarly. 

However, based on these tables alone, it is difficult to visually gauge exactly how 

similarly the unidimensional procedures performed and how similarly the 

multidimensional procedures performed.  Furthermore, it is also difficult to gauge how 

differently the unidimensional procedures and the multidimensional procedures 

performed.  Therefore, plots containing the differences between the identity equating 

procedure (i.e., the equating that would result if forms did not differ at all in difficulty) 

and each of the other six equating procedures appear in Figures A-4 through A-9.  

Figures A-4 and A-7 correspond to the Math exams, Figures A-5 and A-8 correspond to 

the Science exams, and Figures A-6 and A-9 correspond to the Social Studies exams.  

The difference between Figures A-4 through A-6 and Figures A-7 through A-9 pertains 

to the equipercentile equating procedure.  Specifically, Figures A-4, A-5, and A-6 contain 
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differences between the identity equating procedure and the unsmoothed equipercentile 

equating procedure, whereas Figures A-7, A-8, and A-9 contain differences between the 

identity equating procedure and the smoothed equipercentile equating procedure.  

(Differences between the identity equating procedure and each of the other equating 

procedures remain the same across both sets of figures).  A standard error band—formed 

by adding and subtracting the standard error of equating at each raw score point—is 

presented around the equipercentile equating results on each figure. 

Figures A-4 through A-9 reveal that although the unidimensional equating 

procedures and the multidimensional equating procedures performed differently, equating 

trends were very similar for the two sets of procedures.  Specifically, as the 

unidimensional procedures revealed larger differences between Form A and Form B, the 

multidimensional procedures also tended to reveal greater differences between Form A 

and Form B.  The magnitude of the equated scores tended to be dissimilar for the 

unidimensional and the multidimensional procedures, however. 

Whereas the aforementioned tables and figures primarily focus on similarities and 

differences between the unidimensional procedures and the multidimensional procedures, 

it is also of interest to determine how each set of equating procedures performed in 

relation to the equipercentile equating procedure.  Tables A-14, A-15, and A-16 contain 

differences between equated scores on each of the five procedures and the unsmoothed 

equipercentile equating procedure.  Differences between equated scores on each of the 

five procedures and the smoothed equipercentile procedure appear in Tables A-17, A-18, 

and A-19.  These differences are presented at each raw score on Form A.  Furthermore, 

average differences between the equipercentile equating procedure and each of the 
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respective equating procedures were computed and appear in the last four rows of each 

table.  Specifically, the first of these rows presents the average difference across all raw 

score points.  The absolute value of each difference was also computed and the average 

of these values appears in the next row.  The last two rows present average differences 

and average absolute differences using a weighted means procedure.  Specifically, the 

relative frequency for each Form A raw score was used as the weight for the difference at 

each particular score to compute average weighted differences.  The conceptual 

difference between the weighted and the unweighted means procedures is that the 

weighted means procedure gives more weight to differences where examinees score more 

frequently and less weight to differences where examinees do not score as frequently; the 

unweighted means procedure weights each difference equally.  

From these tables (A-14 through A-19), it can be seen that the multidimensional 

equating procedures tended to perform more similarly to the equipercentile equating 

procedure than the unidimensional equating procedures for both the Math and the Social 

Studies exams.  For the Science exams, the multidimensional equating procedures 

performed more similarly to the equipercentile equating procedure in an absolute sense, 

but the unidimensional equating procedures performed more similarly to the 

equipercentile equating procedure overall (using the unweighted means criterion).  For 

the weighted means criterion, the multidimensional equating procedures performed more 

similarly to the equipercentile equating procedure for the Science exams.  These results 

imply that for the Science exams, differences between the equipercentile equating 

procedure and the multidimensional procedures were smaller where examinees scored 

more frequently; differences between the equipercentile equating procedure and the 
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unidimensional procedures were smaller where examinees scored less frequently.  

Furthermore, both the unidimensional procedures and the multidimensional procedures 

tended to yield lower equated scores than the equipercentile equating procedure (given 

that most of the differences are negative).   

Plots containing the differences between the unsmoothed equipercentile procedure 

and each of the other five equating procedures appear in Figures A-10, A-11, and A-12 as 

a means of visually representing the data presented in Tables A-14 through A-19.  Plots 

containing the differences between the smoothed equipercentile procedure and each of 

the other five equating procedures appear in Figures A-13, A-14, and A-15.  Horizontal 

lines appear at values of -0.5 and 0.5 to elucidate the Difference That Matters (DTM) 

criterion (Dorans, Holland, Thayer, & Tateneni, 2003).  Furthermore, plots containing the 

absolute values of the differences between the unsmoothed equipercentile procedure and 

each of the other five equating procedures appear in Figures A-16, A-17, and A-18.  Plots 

containing the absolute values of the differences between the smoothed equipercentile 

procedure and each of the other five equating procedures appear in Figures A-19, A-20, 

and A-21.  A horizontal line appears at a value of 0.5 to elucidate the Difference That 

Matters (DTM) criterion.  These figures reveal that—as previously mentioned—the 

multidimensional equating procedures tended to perform more similarly to the 

equipercentile equating procedure than the unidimensional equating procedures for both 

the Math and the Social Studies exams.  For the Science exams, the multidimensional 

procedures performed more similarly to the equipercentile equating procedure in an 

absolute sense, though the unidimensional procedures performed more similarly to the 

equipercentile equating procedure according to the unweighted mean difference. 
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Overall Trends 

Across all three exams that were equated, the most significant difference among 

the various equating procedures was not necessarily by procedure type (i.e., observed 

score versus true score), but rather by psychometric framework (i.e., unidimensional 

versus multidimensional).  These trends are most visible in Figures A-4 through A-9.  

The UIRT observed score equating procedure and the UIRT true score equating 

procedure performed quite similarly, and the unidimensional approximation of the MIRT 

observed score equating procedure, the full MIRT observed score equating procedure, 

and the unidimensional approximation of the MIRT true score equating procedure 

performed quite similarly.  Although the unidimensional procedures and the 

multidimensional procedures performed differently, each set of procedures did reveal 

similar trends across the score scale.  For example, as the unidimensional procedures 

revealed greater differences between Form A and Form B, the multidimensional 

procedures also tended to reveal greater differences between Form A and Form B (see 

Figures A-10, A-11, and A-12).  Furthermore, although both sets of equating procedures 

performed somewhat differently from the equipercentile equating procedure at various 

points along the score scale, the multidimensional procedures tended to perform more 

similarly to the equipercentile equating procedures than the unidimensional procedures 

(see Figures A-16 through A-21).   

For both the Math and the Social Studies exams, Form B appeared to be more 

difficult than Form A at all points along the score scale (see Figures A-4, A-6, A-7, and 

A-9).  For the Science exams, Form B appeared to be more difficult than Form A at the 

upper end of the score scale, whereas Form A appeared to be more difficult than Form B 
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at the lower end of the score scale (see Figures A-5 and A-8).  In general, however, both 

the unidimensional procedures and the multidimensional procedures tended to reveal 

greater differences between Form A and Form B (in terms of difficulty) than the 

equipercentile procedure.  Further discussion of the equating results for each set of exams 

appears below. 

Equating of the Math Exams 

Equating trends for both the unidimensional procedures and the multidimensional 

procedures on the Math exams were very similar, though the unidimensional procedures 

tended to reveal greater differences between Form A and Form B than the 

multidimensional procedures (Figures A-4 and A-7).  Furthermore, the unidimensional 

procedures revealed greater differences from the equipercentile equating procedure than 

the multidimensional procedures at nearly every raw score (Figures A-16 and A-19). 

For the most part, differences between the unidimensional procedures and the 

equipercentile equating procedure remained around the 0.5 DTM criterion along most of 

the score scale (Figures A-16 and A-19).  At both the lower end of the score scale (raw 

scores of 10 and below) and at the upper end of the score scale (raw scores of 30 and 

above), the unidimensional procedures performed more similarly to the equipercentile 

procedure than in the middle of the score scale.  Furthermore, the equated scores for the 

unidimensional procedures were almost always less than the equated scores for the 

equipercentile procedure (Figures A-10 and A-13). 

As previously noted, trends for the unidimensional procedures and the 

multidimensional procedures were very similar for the Math exams.  Whereas differences 

between the unidimensional procedures and the equipercentile equating procedure tended 
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to remain around the 0.5 DTM criterion, differences between the multidimensional 

procedures and the equipercentile equating procedure were nearly all less than the 0.5 

DTM criterion (Figures A-16 and A-19). 

Equating of the Science Exams 

Similar to the Math exams, the unidimensional procedures and the 

multidimensional procedures also revealed similar equating trends for the Science exams 

(Figures A-5 and A-8).  At the region of the score scale where these procedures differed 

the most (at the upper end of the score scale), the unidimensional procedures revealed 

greater differences between Form A and Form B (in terms of difficulty) than the 

multidimensional procedures.  Unlike the equating for the Math exams, however, both 

the unidimensional procedures and the multidimensional procedures yielded higher 

equated scores than the equipercentile procedure at the lower end of the scale score and at 

the upper end of the scale score; both sets of procedures yielded lower equated scores 

than the equipercentile procedure in the middle of the score scale (Figures A-11 and A-

14).  Furthermore, the unidimensional procedures performed more similarly to the 

equipercentile equating procedure across all score points according to the unweighted 

mean difference criterion (Tables A-15 and A-18).  In contrast, the multidimensional 

procedures performed more similarly to the equipercentile equating procedure according 

to the absolute unweighted mean difference criterion and according to both weighted 

difference criteria (Tables A-15 and A-18).  The unweighted results indicate that 

although absolute differences between the unidimensional procedures and the 

equipercentile procedure were larger than the absolute differences between the 

multidimensional procedures and the equipercentile procedure, the differences between 
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the unidimensional procedures and the equipercentile procedure were both positive and 

negative, thus balancing out to yield a lower mean difference.  The weighted results 

indicate that differences between the equipercentile equating procedure and the 

multidimensional procedures were smaller where examinees scored more frequently, 

whereas differences between the equipercentile equating procedure and the 

unidimensional procedures were smaller where examinees scored less frequently. 

Both the unidimensional procedures and the multidimensional procedures nearly 

all exceeded that 0.5 DTM criterion at the lower end of the score scale (between raw 

scores of 0 and 9) for the Science exams (Figures A-17 and A-20).  Within this range, 

both sets of equating procedures yielded higher equated scores than the equipercentile 

equating procedure (Figures A-11 and A-14).  In the middle of the score scale, both sets 

of equating procedures tended to yield lower equated scores than the equipercentile 

equating procedure.  Within this range (roughly raw scores of 10 through 40), most 

differences with the equipercentile equating procedure were less than the 0.5 DTM 

criterion for both types of procedure; the exception is that the unidimensional procedures 

tended to exceed this criterion between raw scores of 28 through 37.  At the upper end of 

the score scale—between and including raw scores of 40 through 50—both the 

unidimensional and the multidimensional procedures yielded higher equated scores than 

the equipercentile procedure.  Within this range, most differences with the equipercentile 

procedure (for both unidimensional and multidimensional procedures) exceeded the 0.5 

DTM criterion. 
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Equating of the Social Studies Exams 

Similar to both the Math and the Science exams, the equating trends for the Social 

Studies exams were similar for the unidimensional procedures and the multidimensional 

procedures (Figures A-6 and A-9).  Furthermore, the unidimensional procedures tended 

to reveal greater differences between Form A and Form B (in terms of difficulty) than the 

multidimensional procedures, which is also similar to the results for the Math and 

Science exams.  Lastly, the multidimensional procedures performed more similarly to the 

equipercentile equating procedure than the unidimensional procedures on the Social 

Studies exams (Figures A-18 and A-21). 

At nearly all points along the score scale, the differences between the 

unidimensional procedures and the equipercentile equating procedure exceeded the 0.5 

DTM criterion, with the unidimensional procedures nearly always yielding lower equated 

scores than the equipercentile equating procedure (Figures A-12 and A-15).  The 

multidimensional procedures, on the contrary, tended only to exceed the 0.5 DTM 

criterion at the upper end of the score scale (between raw scores of 37 through 50).  

Similar to the unidimensional procedures, the multidimensional procedures tended to 

yield lower equated scores than the equipercentile equating procedure, with the exception 

of the range between scores of 18 through 31 (Figures A-12 and A-15). 

Summary of Equating Results 

Six procedures (equipercentile equating, UIRT observed score equating, 

unidimensional approximation of MIRT observed score equating, full MIRT observed 

score equating, UIRT true score equating, and unidimensional approximation of MIRT 

true score equating) were used to equate Forms A and B of the Math, Science, and Social 
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Studies Levels 17/18 ITED exams.  Differences between the equipercentile equating 

procedure and each of the five other equating procedures were evaluated according to the 

Difference That Matters (DTM) criterion (Dorans, Holland, Thayer, & Tateneni, 2003) 

and the standard error of equating (SEE) values. 

The most significant difference among the various equating procedures was not 

necessarily by procedure type (i.e., observed score versus true score), but rather by 

psychometric framework (i.e., unidimensional versus multidimensional).  The equated 

scores were very similar for both the UIRT observed score equating procedure and the 

UIRT true score equating procedure for all three subjects (Math, Science, and Social 

Studies).  Similarly, the equated scores were very similar for the unidimensional 

approximation of MIRT observed score equating procedure, the full MIRT observed 

score equating procedure, and the unidimensional approximation of MIRT true score 

equating procedure for all three subjects.  Given that two of the MIRT procedures were 

formed by approximating a UIRT model and one of the MIRT procedures was based on a 

full MIRT model, the fact that all three MIRT procedures performed very similarly is 

especially of interest.  Furthermore, the equated scores for the unidimensional procedures 

and the multidimensional procedures revealed very similar trends, though the magnitude 

of the equated scores tended to differ by type of equating procedure (the unidimensional 

procedures tended to yield lower equated scores than the multidimensional procedures). 

Across all three subjects (Math, Science, and Social Studies), the 

multidimensional procedures tended to perform more similarly to the equipercentile 

equating procedure than the unidimensional procedures.  Within the multidimensional 

procedures, the unidimensional approximation of the MIRT true score equating 
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procedure performed most similarly to the equipercentile equating procedure.  In general, 

both the unidimensional procedures and the multidimensional procedures tended to yield 

lower equated scores than the equipercentile equating procedure.  The only exceptions 

are at both ends of the score scale for the Science exams, and at several score points for 

the Social Studies exams. 

Whereas this chapter only provided the results for the data analyses, the next 

chapter explores these results in more detail and discusses possible explanations as to 

why these results were obtained.  Furthermore, implications of this research, as well as 

limitations, are discussed. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

This chapter consists of six main sections.  First, results and discussions are 

presented for each of the four main statistical analyses (the dimensionality assessment 

procedures, the scale linking procedures, the standard error of equating for the 

equipercentile equating procedures, and the equating procedures).  Next, limitations to 

this study are addressed.  Finally, a summary and conclusion are presented. 

Dimensionality Assessment 

DETECT (Zhang & Stout, 1999b) was used to assess dimensionality for each 

form, as well as to observe which clusters of items on each form were the most 

statistically similar (homogeneous).  The maximum DETECT value obtained under the 

exploratory solutions ranged between 0.223 and 0.300 across all test forms (Tables A-2, 

A-3, and A-4).  Therefore, each form used in this study was classified as “weak to 

moderately” multidimensional according to the DETECT classification scheme (Zhang & 

Stout, 1999b).  The maximum DETECT values obtained under the confirmatory solution 

are not as useful as the values obtained under the exploratory solution in this 

investigation, as the equating procedures were only conducted under an exploratory (i.e., 

“complex structure”) MIRT model. 

Given the “weak to moderately” multidimensional structure of each exam, the 

unidimensional equating procedures are expected to contain more systematic error than 

the multidimensional equating procedures due to the violation of the unidimensionality 

assumption.  However, the extent to which systematic error is expected to affect these 

results is restricted.  In general, forms that are “strongly” multidimensional would 
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logically be expected to contain more systematic error, whereas forms that are “weak” or 

“moderately” multidimensional would logically be expected to contain less systematic 

error.  Since each form used in this investigation was only classified as “weak to 

moderately” multidimensional, the unidimensional equating results are not expected to 

contain much systematic error. 

The unidimensional procedures and the multidimensional procedures performed 

as expected, given that each form was classified as “weak to moderately” 

multidimensional.  Specifically, as test forms become increasingly unidimensional, the 

unidimensional procedures and the multidimensional procedures would logically be 

expected to perform very similarly.  As test forms become increasingly multidimensional, 

the unidimensional procedures and the multidimensional procedures would logically be 

expected to perform differently, as the unidimensional procedures are expected to be 

greatly affected by systematic error.  In this investigation, unidimensional procedures and 

multidimensional procedures did perform differently, yet the equated scores for both sets 

of procedures revealed very similar trends.  This finding would most likely be expected 

from forms that are “weak to moderately” multidimensional. 

As the DETECT procedure classified each form as “weak to moderately” 

multidimensional, the DETECT procedure also produced either four or five 

homogeneous clusters of items for each form (Tables A-6, A-7, and A-8).  These results 

are congruent with the Math and Social Studies blueprints, given that the Math and Social 

Studies exams were intended to measure four distinct domains (though the empirical 

clusters derived by the DETECT procedure did not perfectly match the ITED 

classification tables).   The Science exams were only specified to measure two domains 
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(according to the ITED classification tables), despite the fact that five clusters were 

empirically recovered for Form A and four clusters were empirically recovered for Form 

B. 

As a result, the Science item parameters could have been calibrated under a four- 

or five-dimensional solution, as opposed to a two-dimensional solution (both the Math 

and the Social Studies exams were calibrated under a four-dimensional solution, as 

dictated by the ITED classification tables).  In conformity with the ITED classification 

tables, however, the Science exams were calibrated with respect to two dimensions.  The 

differences that would result from equating the exams under a two-dimensional solution 

as opposed to a four- or five-dimensional solution are currently unknown.  In general, the 

hypothesis is that after an adequate number of dimensions have been accounted for, 

equating results under even higher dimensional solutions would most likely be similar.  

For example, if dimensionality assessment procedures revealed that a two-dimensional 

solution would adequately account for multidimensionality in the item responses, and the 

equating procedures were also conducted under a four-dimensional solution, the equating 

results under the four-dimensional solution would most likely be similar to the equating 

results under the two-dimensional solution.  Equating results under lower dimensional 

solutions that do not adequately account for multidimensionality in the item responses 

would most likely be different, presumably due to increases in systematic error 

(specifically, not specifying an adequate number of dimensions). 

This logic is consistent with the results presented in Reckase (2009).  Although 

the author did not investigate equating results under varying number of dimensions, the 

author demonstrated that—after an adequate number of dimensions have been accounted 
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for—item parameter estimates and ability estimates would maintain the same relative 

structure under even higher dimensional solutions.  For example, consider the situation in 

which a two-dimensional solution is deemed sufficient to represent the item response 

pattern.  Geometrically, parameter estimates would vary with respect to two reference 

axes, i.e., the parameter estimates would be geometrically located along a plane.  If a 

three-dimensional solution were obtained for the same dataset, but examinees only varied 

according to two dimensions, the resulting parameter estimates would reveal differences 

in examinee abilities along a plane, though this plane would be embedded within a cube 

(i.e., with respect to three axes).  Thus, item parameter estimates and ability estimates 

would maintain the same relative structure under higher order solutions, which might be 

extended to imply that MIRT equating results should be similar under higher order 

solutions (after an adequate number of dimensions have been accounted for). 

Whereas the DETECT value provides an indication of the degree to which each 

form is multidimensional, the ratio r  value provides an indication of the stability of the 

solution (i.e., whether a similar solution is likely to result if the procedure is conducted on 

a different—yet comparable—group of examinees).  The ratio r  value obtained under the 

confirmatory solution was small, ranging between 0.149 and 0.227.  These values imply 

that a confirmatory solution that adhered to the ITED classification tables was not very 

stable.  Similarly, under the exploratory solution, the ratio r  values ranged between 

0.488 and 0.600—which imply that moderate stability was attained. 

Given that the ratio r  values obtained in this investigation were not very large, 

perhaps greater stability would be obtained if more examinees were administered each 

form (recall that in this investigation, 2500 examinees completed each form).  



 103

Furthermore, these results indicate that the cluster schemes recovered under the 

exploratory DETECT procedures were susceptible to random error.  If each exam used in 

this investigation were administered to a different (yet comparable) group of examinees, 

it is quite possible that the ITED classification scheme would be more closely recovered.  

Regardless, the clusters recovered by the exploratory DETECT procedure did provide 

empirical evidence concerning which items pointed in the same direction in 

multidimensional space for this sample. 

Linking Results 

As a result of the research conducted in this study, it was discovered that the 

MIRT scale linking procedures under the random groups design (which only consists of 

an orthogonal rotation) are not required in order to conduct the MIRT observed score and 

true score equating procedures.  That is, the same equating relationships would result 

regardless of whether the orthogonal rotation was first incorporated to account for 

rotational indeterminacy.  This will only hold under certain conditions, however.  First, 

item parameters and ability estimates must be calibrated with respect to orthogonal 

reference axes (i.e., the solution must be orthogonal as opposed oblique).  Second, the 

specified variance-covariance matrix for the ability estimates must be the identity matrix 

(i.e., each measured trait must be specified as uncorrelated with other measured traits and 

of unit length).  If either of these conditions does not hold, then the scale linking 

procedures under the random groups design must first be conducted.  An explanation as 

to why the scale linking procedures are not required under these conditions appears 

below. 
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To conduct the full MIRT observed score equating procedure, conditional 

observed score distributions are first determined at each vector of ability level (i.e., 

)|( θxf , where θ  denotes the ability vector).  These conditional distributions are then 

multiplied by the multivariate ability density ( )(θ ) and summed over the ability space 

as, 

 
1 2

)()|(...)( θθ 


xfxf       (5.1) 

After marginal distributions are determined for each form using Equation 5.1, the 

marginal distributions are then equated using traditional equipercentile equating methods. 

Under an orthogonal rotation, the MIRT difficulty parameter ( d ) will remain the 

same, though the discrimination parameters will change.  However, the overall 

discrimination power for each item—which is related to the geometric length of the item 

as represented in multidimensional space—will not change since each item is only rotated 

orthogonally as opposed to being dilated as well.  Furthermore, under the orthogonal 

rotation, the direction of best measurement for each item will be rotated the exact same 

amount (see Figure 5-1 for a two-item example in two-dimensional space).  Given that 

(1) the MIRT difficulty parameters will not change under an orthogonal rotation and (2) 

the geometric length of each item remains the same in multidimensional space (i.e., the 

discrimination parameters are rotated but not dilated), the conditional distribution 

( )|( θxf ) at any set of quadrature points prior to rotation will be identical to the 

conditional distribution at the rotated set of quadrature points after the rotation is 

applied.  This is the result of rotational indeterminacy in the MIRT framework, or 

specifically, 

),*,*,|1(),,,|1( cdXpcdXp aθaθ  ,      (5.2a) 
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where  

θTθ 1*           (5.2b) 

and 

Taa TT *          (5.2c) 

Furthermore, because the ability density ( )(θ ) is specified to follow a 

multivariate standard normal distribution with zero correlation between dimensions, all 

vectors of quadrature points which maintain the same Euclidean distance from the origin 

of the reference axes also have the same probability density (represented by the circles in 

Figure 5-1).  Therefore, after the orthogonal rotation is applied, the ability density 

associated with the set of quadrature points prior to rotation will be identical to the ability 

density associated with the rotated set of quadrature points after the rotation is applied. 

Given that each conditional distribution is the same prior to rotation and after the 

rotation is applied (though each conditional distribution now appears at the rotated vector 

of quadrature points), and given that the ability density corresponding to each conditional 

distribution is the same prior to rotation and after the rotation is applied, the term 

)()|( θθ xf  will be identical for the set of quadrature points before the rotation is 

applied and for the rotated set of quadrature points.  Therefore, the marginal distribution 

for each form—which is computed using Equation 5.1—will be identical for each form.  

In conclusion, when item parameters are calibrated with respect to orthogonal reference 

axes, and when the ability covariance matrix is specified as the identity matrix, the full 

MIRT procedure will perform the same regardless of whether rotational indeterminacy is 

taken into account. 
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Figure 5-1.  Comparison of Pre-Rotation and Post-Rotation Items 

Similar logic can be used to explain why MIRT scale linking procedures are not 

required for the unidimensional approximation of the MIRT observed score equating 

procedure and the unidimensional approximation of the MIRT true score equating 

procedure under the random groups design.  Recall that to perform these procedures, 

unidimensional item parameters are first estimated given the multidimensional parameter 

estimates.  To compute unidimensional item parameters, the direction of best 

measurement is first determined at the test-level using Equation 3.4.  Unidimensional 

discrimination and difficulty parameters are then computed using Equations 3.6a—3.6e. 

Under an orthogonal rotation, the direction of best measurement for each item 

will be rotated by exactly the same angle.  Furthermore, the test-level direction of best 

measurement will be rotated by the same angle as the item-level directions of best 

measurement.  The unidimensional item parameter estimates are primarily governed by 

the item discrimination vector, the test-level direction of best measurement, and the 
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covariance matrix of ability estimates.  Since both the test-level direction of best 

measurement and the item discrimination vector are rotated by the same angle, and the 

covariance matrix of ability estimates is the identity matrix in this situation, the resulting 

unidimensional item parameters will be the same prior to an orthogonal rotation and after 

an orthogonal rotation.  Thus, both the unidimensional approximation of the MIRT 

observed score equating procedure and the unidimensional approximation of the MIRT 

true score equating procedure will yield the same results regardless of whether rotational 

indeterminacy is taken into account, as the estimated unidimensional item parameters 

prior to rotation are the same as the estimated unidimensional item parameters after the 

rotation. 

Standard Error of Equating 

The standard error of equating (SEE) was computed to determine the extent to 

which random error might have affected the equipercentile equating procedures.  Across 

all score points, the SEE was smaller (on average) for the Math exams than for the 

Science and Social Studies exams.  For the Math exams, the (smoothed) average SEE 

was 0.265 across all score points, whereas for the Science and Social Studies exams, the 

(smoothed) average SEE was 0.296 and 0.320 across all score points, respectively.  These 

values imply that the equipercentile equating results may be less susceptible to random 

error for the Math equating than for the Science or Social Studies equatings.  It should be 

noted that the SEE values obtained in this study are similar to the SEE values obtained 

for comparable exams (Kolen & Brennan, 2004).  

Standard error bands were constructed around the equipercentile equating results 

by adding and subtracting one SEE at each raw score point.  These bands are plotted 
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around the equipercentile results in Figures A-4 through A-9.  Each band can be 

interpreted as a 68% confidence interval for the true equipercentile equating relationship 

at each raw score point, providing an indication of the true equipercentile equating 

relationship in the population of examinees.  This methodology is consistent with the 

methods typically used in practice (Kolen & Brennan, 2004). 

The standard error of equating is quite useful in the interpretation of each of the 

equating results.  For the most part, differences and absolute differences between the 

equipercentile equating procedure and each of the other equating procedures form the 

bases by which to evaluate the performance of each equating procedure.  However, the 

equipercentile equating procedure was not “error-free,” as indicated by the standard error 

of equating.  At several points along the score scale (for each set of exams), the SEE was 

near to or exceeds 0.5.  Despite the fact that many of these values were near to or greater 

than 0.5, differences between the equipercentile equating procedure and each of the other 

equating procedures were still evaluated according to the 0.5 DTM criterion (Dorans, 

Holland, Thayer, & Tateneni, 2003).  Absolute differences that exceeded 0.5 were 

classified as “significantly different,” whereas absolute differences that were smaller than 

0.5 were classified as insignificant.  The magnitude of each SEE value should guide the 

interpretation of each difference between the equipercentile equating procedure and the 

other respective equating procedures: when interpreting the magnitude of each difference, 

the SEE value at each raw score must also be taken into account.  Provided this 

limitation, perhaps general trends for each of the equating procedures—as opposed to 

strict differences and absolute differences between each equating procedure and the 
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equipercentile equating procedure—should be used for investigating the performance of 

each procedure. 

Equating Results 

After investigating the performance of each equating procedure, four themes were 

identified and will be described in detail in the next two sections:  

 (1) Both unidimensional procedures performed similarly, and all three 

multidimensional procedures performed similarly. 

(2) Unidimensional procedures and multidimensional procedures performed 

differently, though the pattern of equated scores was similar for both types of procedures. 

(3) Multidimensional procedures tended to perform more similar to the 

equipercentile equating procedure than the unidimensional procedures. 

 (4) Both the unidimensional procedures and the multidimensional procedures 

tended to indicate greater differences (in terms of difficulty) between Forms A and B than 

the equipercentile equating procedure. 

Differences Between Unidimensional Procedures and 

Multidimensional Procedures 

The most significant differences between the five equating procedures 

(unidimensional IRT observed score equating, unidimensional IRT true score equating, 

full MIRT observed score equating, unidimensional approximation of MIRT observed 

score equating, and unidimensional approximation of MIRT true score equating) were not 

necessarily by procedure type (i.e., observed score versus true score), but rather by 

psychometric framework (i.e., unidimensional versus multidimensional).  Both of the 

unidimensional procedures performed similarly, and each of the three multidimensional 
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procedures performed similarly.  The unidimensional procedures and the 

multidimensional procedures performed differently, though equating trends were similar 

for both types of procedures.  The fact that UIRT observed score and true score equating 

procedures performed similarly is consistent with previous research comparing these two 

methods (Han, Kolen, & Pohlmann, 1997). 

The fact that all three MIRT procedures performed very similarly—despite the 

fact that one of these procedures was based on a full MIRT model and the other two 

procedures incorporate multidimensional parameter estimates to approximate a UIRT 

model—is especially noteworthy.  It might appear as if the unidimensional approximation 

methods derived by Zhang and colleagues (Zhang, 1996; Zhang & Stout, 1999a; Zhang 

& Wang, 1998) performed very well at approximating a MIRT model using 

unidimensional item parameters.  However, this conclusion may be premature.  That is, it 

is currently unknown as to how well these procedures approximate a full MIRT model, or 

why the full MIRT procedure and the unidimensional approximation procedures 

performed so similarly. 

From a practical perspective, if future research in this area reveals that the full 

MIRT observed score equating procedure and the unidimensional approximation 

equating procedures always perform similarly under a specified set of conditions, then 

the unidimensional approximation methods may be the procedure of choice in practice.  

The full MIRT observed score equating procedure takes a substantially longer amount of 

computing time and resources than the unidimensional approximation procedures.  

However, this should be investigated in more detail in order to understand how each 

procedure performs under varying conditions. 
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A second noticeable theme in this study was that although the unidimensional 

equating procedures and the multidimensional equating procedures performed differently, 

equating trends were similar for both types of procedures.  For example, at points along 

the score scale where the unidimensional procedures revealed greater discrepancies 

between Form A and Form B exams (in terms of difficulty), the multidimensional 

procedures also tended to reveal greater discrepancies between the two forms. 

To investigate this occurrence, unidimensional item parameter estimates were 

compared with the unidimensional approximation item parameter estimates.  Recall that 

the unidimensional approximation procedures incorporate the statistical definition of the 

“direction of best measurement” used in conjunction with the multidimensional 

framework in order to estimate unidimensional item parameters for each item.  On the 

other hand, the unidimensional procedures simply estimate unidimensional item 

parameters regardless of the dimensional structure of the exam.  Therefore, in this study, 

three sets of item parameters were obtained for each item: unidimensional item parameter 

estimates, multidimensional item parameter estimates, and unidimensional approximation 

item parameter estimates.  Direct comparisons between unidimensional item parameter 

estimates and multidimensional item parameter estimates are difficult to evaluate, given 

that the item parameters are used in conjunction with different psychometric models.  

However, the unidimensional item parameter estimates and the unidimensional 

approximation item parameter estimates can be directly compared given that both sets of 

parameters are used in conjunction with the unidimensional logistic model.  Table A-20 

in Appendix A provides the mean, median, and standard deviation of discrimination 

parameters and difficulty parameters for both the unidimensional and the unidimensional 
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approximation procedures.  Table A-21 provides correlations between each set of 

estimated item parameters. 

Overall, both sets of item parameter estimates (unidimensional item parameter 

estimates and unidimensional approximation item parameter estimates) do appear to be 

very similar.  Correlations between unidimensional and unidimensional approximation 

discrimination parameter estimates ranged between 0.964 and 0.990, and correlations 

between unidimensional and unidimensional approximation difficulty parameter 

estimates ranged between 0.997 and 0.999.  Although there was a strong linear 

relationship between both sets of item parameter estimates, the magnitude of the 

parameter estimates was slightly different.  Specifically, unidimensional approximation 

difficulty parameter estimates tended to be slightly lower than unidimensional difficulty 

parameter estimates.  Differences in these parameter estimates were greater for both the 

Math and the Social Studies exams than for the Science exams (it should also be noted 

that the unidimensional procedures and the unidimensional approximation procedures 

performed more similarly for the Science exams than for the Math and the Social Studies 

exams).  Furthermore, although the mean discrimination parameter estimates were very 

similar, these values also tended to be slightly lower for the unidimensional 

approximation procedures than for the unidimensional procedures. 

The similarity between both sets of item parameter estimates may help to explain 

why the unidimensional procedures and the multidimensional procedures yielded similar 

trends across the score scale.  However, the fact that the unidimensional procedures and 

the unidimensional approximation procedures performed similarly at some locations 

along the score scale—whereas the two sets of procedures performed differently at other 
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locations along the score scale—may be explained via a generic discussion of how the 

dimensional structure of each exam may effect interpretations at various points along the 

scale. 

When more than one trait is measured by an exam, differences between scores at 

one part of the scale may have an entirely different meaning than differences between 

scores at another part of the scale.  For example, on the Science exams, differences 

between scores at the lower end of the scale may be primarily due to differences between 

examinees on the Biological Science/Life Science trait, whereas differences between 

scores at the upper end of the scale may be primarily due to differences between 

examinees on the Physical Sciences/Earth and Environmental Science trait.  Centroid 

plots (Reckase, 2009) are often used to determine which trait(s) contribute the most 

towards differences in scores at various points along the scale. 

In this study, there may be points along the scale that are more “unidimensional” 

than other points along the scale.  That is, at some points along the score scale, 

differences between scores may be the result of differences on only one trait, whereas at 

other points along the score scale, differences between scores may be the result of 

differences on more than one trait.  Therefore, the unidimensional and multidimensional 

equating procedures may perform more similarly where differences in scores are 

primarily due to differences on only one trait.  Continuing, the unidimensional and 

multidimensional equating procedures may perform less similarly where differences in 

scores are primarily due to differences on more than one trait.  However, this explanation 

remains a hypothesis at this point: no empirical investigations have been conducted in 

order to examine this phenomenon. 
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Differences with the Equipercentile Equating Procedure 

A third noticeable theme in this study was that the multidimensional procedures 

performed more similarly to the equipercentile equating procedure than the 

unidimensional procedures.  These results were expected, given that the unidimensional 

procedures were expected to contain more systematic error than the multidimensional 

procedures due to the violation of the unidimensionality assumption.  Furthermore, it 

might be expected that the multidimensional observed score procedures would perform 

more similarly to the equipercentile equating procedure than the multidimensional true 

score procedure, given that the equipercentile equating procedure is an observed score 

procedure (as opposed to a true score procedure).  On the contrary, the unidimensional 

approximation of the MIRT true score equating procedure performed more similarly to 

the equipercentile equating procedure than either of the multidimensional observed score 

equating procedures.  However, the differences between the MIRT observed score 

equating procedures and the MIRT true score equating procedure were minimal. 

The last equating theme identified in this study was that both the unidimensional 

procedures and the multidimensional procedures tended to reveal greater discrepancies 

(in terms of difficulty) between Form A and Form B than the equipercentile procedure; 

between the unidimensional procedures and the multidimensional procedures, the 

unidimensional procedures tended to reveal greater discrepancies between Form A and 

Form B. 

It is currently unknown as to why both the unidimensional procedures and the 

multidimensional procedures yielded lower equated scores than the equipercentile 

equating procedure.  As previously noted, the unidimensional equating procedures were 
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expected to contain more systematic error than the multidimensional equating procedures 

and the equipercentile equating procedure due to the violation of the unidimensionality 

assumption, which might help to explain why the unidimensional procedures performed 

differently than the equipercentile equating procedure.  As all equating methods are prone 

to systematic error, the multidimensional procedures were not expected to contain a large 

amount of systematic error, given that the multidimensional structure of each exam was 

accounted for in these procedures.  Most likely, the multidimensional procedures did 

contain some systematic error—though not as much as the unidimensional procedures—

which caused the multidimensional procedures to yield lower equated scores than the 

equipercentile equating procedure. 

Limitations and Future Studies 

  There are several limitations of this study that should be addressed.  Each 

limitation serves as a disclaimer that the equating procedures conducted in this study 

were not performed in a perfectly controlled setting, and therefore the conclusions should 

be restricted accordingly.  Each limitation can be primarily classified in one of two 

categories: limitations associated with using the equipercentile equating procedure as the 

benchmark for comparison, and limitations associated with using “real” test data to 

perform the equating procedures (as opposed to incorporating a simulation study).  Each 

set of limitations is addressed below. 

Limitations Associated with using the Equipercentile 

Equating Procedure as the Benchmark for Comparison 

 A major limitation of this study is that there was no global criterion to serve as a 

benchmark for comparison with each of the equating procedures.  In this study, the 
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results obtained for the equipercentile equating procedures served as the benchmark by 

which the results from the other procedures were evaluated since this method does not 

explicitly violate any statistical assumptions.  However, several limitations result from 

using the equipercentile equating procedure as the standard for comparison. 

 First, the equipercentile equating procedure is still subject to random error, which 

is why the standard error of equating (SEE) was estimated for each equipercentile 

equating procedure.  The fact that random error is still present in the equipercentile 

equating results implies that—although this procedure might be a good alternative to a 

criterion since the assumptions associated with this procedure are not expected to be 

violated in this study—the estimated equating relationship for this sample of examinees is 

still different than it would be for the population of examinees.  An estimate of how much 

the sample equating relationships might deviate from the population relationships is 

quantified by the SEE values. 

Furthermore, the estimated SEE for each equipercentile equating was large at 

several raw score points.  This result limits the utility of the 0.5 Difference That Matters 

(DTM) criteria.  Whereas the difference between the equipercentile equating procedure 

and another equating procedure may have exceeded 0.5 at a given raw score—thus 

resulting in a “significant difference” according to the DTM criteria—if the SEE was 

large at that score, this may not be a fair interpretation. 

 Secondly—and perhaps more importantly—each type of equating procedure is 

not necessarily expected to yield the same equating relationships, despite the fact that one 

benchmark (the equipercentile equating procedure) was used for comparison with all 

procedures.  Each equating procedure is expected to perform in accordance with how that 
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procedure is defined.  For example, true score equating procedures are defined as relating 

true scores on both forms to be equated.  In practice, this relationship is then applied to 

the observed scores on each form, although there is no theoretical justification for 

proceeding in this manner.  Observed score equating procedures, on the other hand, 

estimate a statistical adjustment such that the observed score distributions on both forms 

to be equated are as similar as possible.  Therefore, true score equating procedures and 

observed score equating procedures are not necessarily expected to perform identically, 

even under ideal conditions. 

Fundamentally, observed score equating procedures should be compared with an 

observed score equating criterion, and true score equating procedures should be 

compared with a true score equating criterion.  However, even this approach would be 

difficult to incorporate in a research setting: the equating procedure that is defined most 

similarly to the “true” equating relationship would most likely perform most similarly to 

the “true” equating relationship.  For example, consider the situation in which the “true” 

parameters are known, and the “true” model is specified as a multidimensional IRT 

model.  Then, if the “true” equating relationships were computed using observed score 

methods, then the observed score equating procedures would be expected to perform 

most similarly to the true equating relationship.  On the other hand, if the “true” equating 

relationship were computed using true score methods, then the true score equating 

procedures would be expected to perform most similarly to the true equating relationship.  

Thus, there should be a different criterion for observed score equating procedures and 

true score equating procedures. 
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Limitations of using “Real” Data 

The fact that “real” test data were used in this study (as opposed to incorporating 

a simulation study) limits the interpretations and conclusions that can be generated from 

this research.  First and foremost, the “true” equating relationships for each set of 

procedures were not known since authentic data were used.  These values could only be 

known by specifying the true parameters via a simulation study.  Therefore, the 

equipercentile equating procedure served as a benchmark for comparison with the other 

equating procedures. 

By incorporating a series of simulation studies—as opposed to demonstrating how 

these procedures work by using authentic data—several limitations in this study would be 

addressed.  First, the forms used in this study were demonstrated to be “weak to 

moderately” multidimensional.  A series of simulation studies could incorporate varying 

levels of multidimensionality (i.e., unidimensional, weak multidimensionality, moderate 

multidimensionality, strong multidimensionality) in order to determine how these 

procedures perform across varying levels of multidimensionality.  Secondly, each 

equating procedure was only conducted three times in this study (to equate the Math, 

Science, and Social Studies exams).  Therefore, the interpretations yielded in this study 

were generated from a small sample of equating results.  A simulation study would 

replicate each equating procedure many times (perhaps 100 or 1,000 replications) and 

therefore interpretations would be based on a much larger sample. 

Future research could incorporate a series of simulation studies to investigate how 

each of these procedures performs under a variety of settings.  Furthermore, it may also 

be of interest to determine how robust each of the MIRT equating procedures is to 
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violations of the assumptions that were required to perform them (see the Scale Linking 

and Equating Assumptions section in Chapter 3).  This research—in part—would require 

that the assumptions associated with both the MIRT scale linking procedures and the 

MIRT equating procedures be explicitly stated.  In general, the body of literature that 

comprises statistical assumptions associated with MIRT scale linking is incomplete.   

Oftentimes, discussions pertaining to scale linking within the MIRT framework 

are written from a purely mathematical perspective.  These discussions present methods 

for determining scale linking coefficients related to translation, dilation, rotation, and 

correlation indeterminacies, but often the practical assumptions related to the 

measurement of constructs across diverse populations are neglected.  Under the random 

groups design, this may not be as significant of an issue, as the same constructs are 

expected to be measured in the populations who were administered each form.  Under the 

nonequivalent groups design, however—where populations of examinees are not 

assumed to be identical in terms of the traits being measured—this limitation in the 

MIRT literature may be of much more consequence. 

For example, future research in this area should address the extent to which 

diverse populations under the nonequivalent groups design must be identical on the 

measured traits in order for the scale linking and equating procedures to be successful.  

This research might address whether the same constructs must be measured across 

nonequivalent populations, and the degree to which the relationships between the 

measured constructs must be identical in each population.  Although forms to be equated 

are typically designed to be the same in terms of content specifications, the fact that 

populations of examinees are different under the nonequivalent groups design implies 
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that various dimensions might carry different weight in constituting the total score for 

each population.  For example, some populations might not vary at all on specific 

measured traits, whereas other populations might vary a significant amount on measured 

traits.  Correlations between measured traits might also be expected to differ under the 

nonequivalent groups design.  In general, the assumptions related to both item parameter 

and ability estimation procedures—as well as scale linking and equating procedures—

must be explored and documented in order for these procedures to be implemented in 

practice. 

Summary and Conclusion 

The purposes of this research were to create equating procedures that can be used 

in conjunction with the MIRT framework and to demonstrate how these procedures were 

conducted using data from the Iowa Tests of Educational Development (Forsyth, Ansley, 

Feldt, & Alnot, 2001).  Six equating procedures were conducted and evaluated in this 

study: (1) unidimensional IRT observed score equating, (2) unidimensional IRT true 

score equating, (3) full MIRT observed score equating, (4) unidimensional approximation 

of MIRT observed score equating, (5) unidimensional approximation of MIRT true score 

equating, and (6) equipercentile equating.  

Both unidimensional equating procedures performed similarly and all three 

multidimensional equating procedures performed similarly.  This is especially 

noteworthy provided that two of the multidimensional procedures were formed by 

approximating a unidimensional IRT model given multidimensional parameter estimates, 

whereas the other procedure was based on a full MIRT model.  The unidimensional 

procedures and the multidimensional procedures tended to perform differently, though 



 121

both sets of procedures did yield similar trends.  Also, the multidimensional procedures 

performed more similarly to the equipercentile procedure than the unidimensional 

procedures; among the multidimensional procedures, the unidimensional approximation 

of the MIRT true score equating procedure performed most similarly to the equipercentile 

procedure.  Lastly, both the unidimensional procedures and the multidimensional 

procedures tended to reveal greater differences between Form A and Form B (in terms of 

difficulty) than the equipercentile equating procedure. 

Although the equipercentile equating procedure was used as the benchmark for 

comparison in this study, this procedure still provided a less-than-perfect benchmark for 

comparison.  This procedure was selected since the assumptions associated with this 

procedure are not expected to be violated in this study, and therefore systematic error 

should be limited under this procedure.  However, the equipercentile equating procedure 

was still subject to random error, as indicated by the standard error of equating (SEE).  

This implies that differences between the equipercentile equating procedure and each of 

the other equating procedures must interpreted with caution based on the magnitude of 

the SEE at each score point.  

Furthermore, the observed score and the true score equating procedures were not 

expected to perform identically even under ideal conditions, as each procedure was 

defined differently.  Observed score procedures provided a statistical adjustment in 

attempt to make observed score distributions on both forms as similar as possible, 

whereas true score procedures attempted to link true scores on both forms to be equated.  

Although no theoretical justification exists for applying the true score equating 

relationship to observed scores, often this is conducted in practice.  Therefore, perhaps a 
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description of the general trends for each equating procedure proves to be the most useful 

method for interpreting the equating methods. 

In conclusion, it appears as if the multidimensional equating procedures presented 

in this research may provide an adequate alternative to unidimensional IRT equating 

when the data are not strictly unidimensional.  Provided that the dimensional structure of 

each form is taken into account by the multidimensional equating procedures, results 

under these procedures may contain less systematic error than results under the 

unidimensional equating procedures when the data are not strictly unidimensional.  

However, the performance of these procedures should be empirically verified via a 

simulation study before these procedures are fully implemented in practice. 
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APPENDIX A.  TABLES AND FIGURES 

Table A-1.  Descriptive Statistics for Each Form 

 Math Science Social Studies 

 Form A Form B Form A Form B Form A Form B 

Scale 0-40 0-40 0-48 0-48 0-50 0-50 

Guessing 8.0 8.0 9.6 9.6 10.0 10.0 

Mean 16.35 14.85 19.27 19.42 22.87 20.31 

SD 8.01 7.70 9.65 9.03 9.90 9.33 

Minimum 0 2 1 0 3 2 

Median 15 13 16 17 21 18 

Maximum 40 39 47 47 49 48 

KR-20 0.88 0.88 0.90 0.88 0.90 0.89 

“Scale” represents the length of the scale for each form (for example, raw scores on the Math 
forms are between (and include) raw scores of 0 through 40).  “Guessing” represents the 
score that an individual can be expected to obtain if the individual responds randomly or 
“guesses” on each item. 
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Table A-2.  Confirmatory and Exploratory DETECT Statistics for Math Forms 

 Form A Form B 

 Confirmatory Exploratory Confirmatory Exploratory 

DETECT Value 0.1080 0.2755 0.0950 0.2696 

IDN Index Value 0.5564 0.6936 0.5782 0.7218 

Ratio r 0.2268 0.5783 0.2075 0.5890 

 

Table A-3.  Confirmatory and Exploratory DETECT Statistics for Science Forms 

 Form A Form B 

 Confirmatory Exploratory Confirmatory Exploratory 

DETECT Value 0.0733 0.2861 0.0735 0.2590 

IDN Index Value 0.5550 0.7057 0.5284 0.6622 

Ratio r 0.1502 0.5860 0.1500 0.5285 

 

Table A-4.  Confirmatory and Exploratory DETECT Statistics for Social Studies Forms 

 Form A Form B 

 Confirmatory Exploratory Confirmatory Exploratory 

DETECT Value 0.0745 0.2998 0.0798 0.2227 

IDN Index Value 0.5380 0.6955 0.5641 0.6743 

Ratio r 0.1491 0.6000 0.1747 0.4878 
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Table A-5.  Pre-rotation and Post-rotation Angles Between Corresponding Reference 
Composites 

 Math Science Social Studies 

Reference 
Composite 

Pre-Angle Post-Angle Pre-Angle Post-Angle Pre-Angle Post-Angle 

1 11.08 57.17 11.85 1.47 18.11 15.66 

2 11.45 33.57 22.71 1.47 46.09 6.02 

3 14.39 13.78   36.31 9.85 

4 29.14 5.12   35.92 31.78 
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Table A-6. Comparison of Math ITED Classification Tables and DETECT Procedure 

 Form A Form B 

CLUSTER 
(DOMAIN) 

ITED DETECT 
DETECT 

PATTERN 
ITED DETECT 

DETECT 
PATTERN 

Cluster 1 

(N) 

1 2 3 4 6 14 
15 16 17 19 
21 23 25 26 
28 29 31 32 
38 

1 2 3 4 5 6 
7 8 9 10 14 
15 16 17 19 

N N N N D 
N D D D D 
N N N N N 

1 2 8 9 10 
12 14 16 17 
21 22 25 26 
27 28 39 

1 5 8 16 17 
18 19 21 22 
23 24 25 26 

N D N N N 
D D N N A 
G N N 

Cluster 2 

(D) 

5 7 8 9 10 
35 36 37 39 
40 

18 26 27 30 
31 32 33 34 
35 36 37 39 
40 

A N G A N 
N G A D D 
D D D 

3 4 5 6 7 18 
19 33 34 35 

2 3 4 6 7 9 
10 11 12 13 
14 20  

N D D D D 
N N G N G 
N A 

Cluster 3 

(G) 

11 12 13 22 
24 27 33 

11 12 13 20 G G G A 11 13 24 30 
31 32 36 37 
38 

15 35 36 38 
39 40 

A D G G N 
A 

Cluster 4 

(A) 

18 20 30 34 21 22 23 24 
25 

N G N G N 15 20 23 29 
40 

27 28 29 30 
31 32 33 34 
37 

N N A G G 
G D D G 

Cluster 5  28 29 38 N N N    

N = Numbers and Operations on Numbers 

D = Data Analysis/Probability/Statistics 

G = Geometry/Measurement 

A = Algebraic Concepts 
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Table A-7.  Comparison of Science ITED Classification Tables and DETECT Procedure 

 Form A Form B 

CLUSTER 

(DOMAIN) 
ITED 

DETECT 
PATTERN 

DETECT 
ITED DETECT 

DETECT 
PATTERN 

Cluster 1 

(B) 

1 5 9 10 19 
20 21 22 23 
24 25 26 34 
35 36 37 38 
39 40 41 42 
43 44 45 46 
47 48 

1 2 3 4 5 6 7 
9 10 11 12 
13 14 16 17 
19 20 24 25 
26 

B P P P B P 
P B B P P P 
P P P B B 
B B B 

2 3 4 6 8 9 
10 12 13 15 
16 17 18 19 
20 21 22 23 
24 31 32 33 
34 35 36 37 

1 2 3 4 5 6 
7 8 9 10 12 
13 14 15 16 
17 18 20 

P B B B P B 
P B B B B B 
P B B B B B 

Cluster 2 

(P) 

2 3 4 6 7 8 
11 12 13 14 
15 16 17 18 
27 28 29 30 
31 32 33 

8 15 32 P P P 1 5 7 11 14 
25 26 27 28 
29 30 38 39 
40 41 42 43 
44 45 46 47 
48 

11 42 43 P P P 

Cluster 3 
 18 P  19 21 22 23 

24 25 26 27 
28 29 30 

B B B B B P 
P P P P P 

Cluster 4 

 21 22 23 27 
28 29 30 31 
33 34 

B B B P P 
P P P P B 

 31 32 33 34 
35 36 37 38 
39 40 41 44 
45 46 47 48 

B B B B B B 
B P P P P P 
P P P P 

Cluster 5 

 35 36 37 38 
39 40 41 42 
43 44 45 46 
47 48 

B B B B B 
B B B B B 
B B B B 

   

B = Biological Science/Life Science 

P = Physical Sciences/Earth and Environmental Science 
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Table A-8.  Comparison of Social Studies ITED Classification Tables and DETECT 
Procedure 

 Form A Form B 

CLUSTER 

(DOMAIN) 
ITED DETECT 

DETECT 
PATTERN ITED DETECT 

DETECT 
PATTERN 

Cluster 1 

(H) 

2 9 17 18 
19 23 24 25 

1 2 3 4 5 6 
7 8 9 11 12 
13 14 15 16 
18 34 

P H S E S S 
P P H P P E 
S P P H S 

4 13 14 15 
16 17 34 35 
39 40 

1 2 3 4 6 7 
8 9 10 11 
12 13 14 15 
16 17 23 

E P P H P P 
P S S P S H 
H H H H E 

Cluster 2 

(E) 

4 10 13 21 
30 31 32 40 
41 43 44 45 
46 48 49 50 

40 42 43 44 
45 46 47 48 
49 50 

E P E E E E 
P E E E 

1 5 18 19 
20 21 22 23 
24 25 36 37 
38 41 42 49 
50 

5 18 19 20 
21 22 24 27 
32 

E E E E E E 
E P P 

Cluster 3 

(P) 

1 7 8 11 12 
15 16 26 27 
28 29 35 36 
38 42 47 

19 20 21 22 
23 25 26 27 
30 31 32 33 
35 36 37 

H S E S H H 
P P E E E S 
P P S 

2 3 6 7 8 11 
26 27 28 29 
30 31 32 33 

25 26 28 29 
30 33 34 36 
37 39 40 

E P P P P P 
H E E H H 

Cluster 4 

(S) 

3 5 6 14 20 
22 33 34 37 
39 

10 17 24 28 
29 38 39 41 

E H H P P P 
S E 

9 10 12 43 
44 45 46 47 
48 

31 35 38 41 
42 43 44 45 
46 47 48 49 
50 

P H E E E S 
S S S S S E 
E 

H = History/Geography 

E = Economics 

P = Political Science 

S = Psychology/Sociology/Education/Anthropology 
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 Table A-9.  Standard Error of Equating for Unsmoothed Equipercentile Procedure 

Score Math Science Social Score Math Science Social 

0 0.0341 0.0394 0.0266 26 0.4896 0.5853 0.4577 

1 0.1024 0.1182 0.0797 27 0.6015 0.6149 0.4968 

2 0.1707 0.1970 0.1328 28 0.5631 0.6520 0.4902 

3 0.2390 0.2759 0.1859 29 0.5266 0.6543 0.5340 

4 0.2102 0.3547 0.2390 30 0.5852 0.6207 0.5314 

5 0.1769 0.4202 0.2921 31 0.6316 0.5944 0.5535 

6 0.1705 0.4262 0.3262 32 0.6387 0.5481 0.6415 

7 0.1581 0.3413 0.3501 33 0.5777 0.5103 0.6089 

8 0.1493 0.2175 0.2494 34 0.6194 0.5307 0.6138 

9 0.1641 0.1871 0.2331 35 0.5309 0.5694 0.6546 

10 0.1533 0.1680 0.2160 36 0.4752 0.5755 0.5847 

11 0.1572 0.1638 0.1818 37 0.4752 0.5920 0.5203 

12 0.1741 0.1751 0.1734 38 0.4691 0.5910 0.6637 

13 0.1935 0.1802 0.1812 39 0.2918 0.5403 0.6338 

14 0.2266 0.1923 0.1778 40 0.0973 0.6498 0.5572 

15 0.3001 0.2194 0.1954 41  0.6730 0.5548 

16 0.3047 0.2688 0.2272 42  0.5586 0.5172 

17 0.2931 0.3047 0.1968 43  0.4647 0.6290 

18 0.2963 0.3465 0.2009 44  0.4446 0.8071 

19 0.3646 0.4231 0.2330 45  0.5216 0.6475 

20 0.4131 0.4852 0.2905 46  0.7206 0.6376 

21 0.3877 0.5529 0.3136 47  0.4697 0.5610 

22 0.3999 0.5517 0.3519 48  0.1566 0.3923 

23 0.4561 0.5631 0.3937 49   0.2354 

24 0.5253 0.5414 0.4058 50   0.0785 

25 0.4641 0.4988 0.3925 Mean 0.3001 0.3490 0.3625 
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Table A-10.  Standard Error of Equating for Smoothed Equipercentile Procedure 

Score Math Science Social Score Math Science Social 

0 0.0260 0.0256 0.0170 26 0.4300 0.4367 0.4141 

1 0.0781 0.0767 0.0509 27 0.4380 0.4434 0.4337 

2 0.1301 0.1278 0.0848 28 0.4451 0.4490 0.4508 

3 0.1814 0.1789 0.1187 29 0.4513 0.4538 0.4652 

4 0.1761 0.2300 0.1526 30 0.4568 0.4580 0.4767 

5 0.1585 0.2783 0.1865 31 0.4617 0.4617 0.4854 

6 0.1443 0.2860 0.2157 32 0.4658 0.4651 0.4915 

7 0.1359 0.2433 0.2208 33 0.4696 0.4683 0.4952 

8 0.1334 0.2039 0.2028 34 0.4751 0.4711 0.4968 

9 0.1365 0.1740 0.1874 35 0.4864 0.4735 0.4968 

10 0.1439 0.1572 0.1762 36 0.5073 0.4752 0.4957 

11 0.1553 0.1551 0.1691 37 0.5075 0.4762 0.4940 

12 0.1715 0.1650 0.1659 38 0.4218 0.4764 0.4925 

13 0.1924 0.1829 0.1664 39 0.2599 0.4760 0.4920 

14 0.2165 0.2052 0.1705 40 0.0866 0.4753 0.4935 

15 0.2418 0.2300 0.1779 41  0.4749 0.4981 

16 0.2668 0.2561 0.1887 42  0.4758 0.5067 

17 0.2907 0.2825 0.2028 43  0.4789 0.5199 

18 0.3133 0.3084 0.2206 44  0.4863 0.5379 

19 0.3340 0.3328 0.2417 45  0.5239 0.5611 

20 0.3529 0.3551 0.2656 46  0.6462 0.5891 

21 0.3697 0.3750 0.2911 47  0.4489 0.6046 

22 0.3848 0.3921 0.3173 48  0.1508 0.4629 

23 0.3983 0.4066 0.3433 49   0.2781 

24 0.4102 0.4186 0.3684 50   0.0927 

25 0.4207 0.4285 0.3922 Mean 0.2652 0.2956 0.3198 
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Table A-11.  Equating Results for Math Exams 

Observed Score True Score 

Raw Score Equi UIRT Approx Full MIRT UIRT Approx 

0 1.625 -0.047 -0.054 -0.039 0.000 0.000 

1 1.750 0.873 0.873 0.878 0.924 0.962 

2 2.000 1.750 1.772 1.749 1.816 1.839 

3 3.269 2.587 2.654 2.604 2.655 2.710 

4 3.927 3.397 3.527 3.453 3.458 3.578 

5 4.640 4.196 4.399 4.312 4.244 4.443 

6 5.412 4.988 5.269 5.183 5.024 5.306 

7 6.321 5.778 6.137 6.063 5.807 6.168 

8 7.222 6.572 7.004 6.950 6.597 7.030 

9 8.201 7.381 7.871 7.837 7.398 7.893 

10 9.104 8.203 8.740 8.725 8.212 8.759 

11 9.891 9.037 9.611 9.617 9.040 9.628 

12 10.613 9.884 10.488 10.511 9.883 10.501 

13 11.350 10.746 11.373 11.409 10.742 11.381 

14 12.119 11.623 12.263 12.309 11.616 12.267 

15 13.019 12.515 13.160 13.217 12.507 13.160 

16 14.046 13.423 14.065 14.133 13.413 14.062 

17 14.934 14.344 14.978 15.055 14.334 14.973 

18 15.719 15.278 15.901 15.980 15.268 15.894 

19 16.639 16.222 16.834 16.910 16.214 16.825 

20 17.793 17.177 17.778 17.850 17.171 17.768 

21 18.782 18.143 18.733 18.800 18.139 18.722 

22 19.659 19.118 19.700 19.759 19.117 19.689 

23 20.690 20.105 20.679 20.732 20.106 20.668 

24 21.886 21.104 21.671 21.713 21.108 21.662 

25 22.960 22.117 22.677 22.705 22.125 22.669 

26 23.900 23.147 23.698 23.714 23.160 23.692 

27 25.056 24.196 24.733 24.738 24.218 24.731 

28 26.523 25.266 25.784 25.779 25.302 25.787 

29 27.453 26.360 26.851 26.838 26.417 26.860 
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Table A-11—continued 

30 28.453 27.476 27.935 27.914 27.566 27.952 

31 29.419 28.630 29.034 29.011 28.750 29.064 

32 30.455 29.810 30.150 30.125 29.967 30.195 

33 31.411 31.008 31.278 31.258 31.211 31.346 

34 32.735 32.209 32.417 32.404 32.470 32.515 

35 34.225 33.397 33.569 33.563 33.728 33.701 

36 35.643 34.584 34.740 34.738 34.964 34.901 

37 36.429 35.788 35.914 35.919 36.159 36.110 

38 37.111 36.963 37.084 37.090 37.310 37.321 

39 37.875 38.120 38.241 38.250 38.464 38.535 

40 38.750 39.285 39.379 39.389 40.000 40.000 

Equi = Equipercentile Equating Procedure 
UIRT = Unidimensional IRT Procedures (Observed Score or True Score) 
Approx = Unidimensional Approximation of MIRT Procedures (Observed Score or True Score) 
Full MIRT = Full MIRT Observed Score Procedure 
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Table A-12.  Equating Results for Science Exams 

Observed Score True Score 

Raw Score Equi UIRT Approx Full MIRT UIRT Approx 

0 -0.500 0.248 0.337 0.346 0.000 0.000 

1 0.000 1.385 1.476 1.516 1.337 1.376 

2 0.500 2.477 2.561 2.622 2.457 2.539 

3 1.500 3.546 3.627 3.703 3.538 3.629 

4 3.625 4.603 4.676 4.767 4.598 4.684 

5 4.813 5.650 5.709 5.823 5.643 5.718 

6 5.794 6.689 6.729 6.857 6.680 6.737 

7 7.000 7.722 7.739 7.859 7.712 7.745 

8 8.044 8.752 8.739 8.826 8.740 8.745 

9 9.208 9.776 9.732 9.765 9.767 9.737 

10 10.311 10.795 10.719 10.681 10.790 10.724 

11 11.526 11.808 11.700 11.592 11.808 11.705 

12 12.539 12.812 12.675 12.532 12.818 12.681 

13 13.628 13.805 13.645 13.542 13.818 13.652 

14 14.606 14.787 14.609 14.596 14.806 14.618 

15 15.571 15.755 15.568 15.633 15.779 15.578 

16 16.489 16.710 16.520 16.620 16.737 16.533 

17 17.642 17.650 17.467 17.568 17.680 17.481 

18 18.766 18.576 18.408 18.483 18.606 18.422 

19 19.793 19.488 19.343 19.378 19.517 19.357 

20 20.758 20.388 20.270 20.274 20.414 20.285 

21 21.635 21.275 21.192 21.172 21.297 21.206 

22 22.687 22.151 22.107 22.076 22.168 22.121 

23 23.534 23.018 23.016 22.988 23.029 23.029 

24 24.514 23.876 23.921 23.903 23.881 23.931 

25 25.214 24.728 24.820 24.811 24.725 24.828 

26 26.220 25.574 25.715 25.704 25.564 25.720 

27 27.061 26.418 26.607 26.592 26.400 26.608 
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Table A-12—continued 

28 27.838 27.262 27.497 27.483 27.234 27.493 

29 28.780 28.106 28.386 28.365 28.069 28.377 

30 29.690 28.952 29.275 29.271 28.906 29.260 

31 30.476 29.802 30.165 30.196 29.747 30.144 

32 31.239 30.659 31.057 31.136 30.596 31.030 

33 31.969 31.522 31.954 32.079 31.454 31.920 

34 32.737 32.401 32.856 33.006 32.324 32.816 

35 33.757 33.295 33.765 33.898 33.209 33.719 

36 34.603 34.204 34.684 34.751 34.112 34.631 

37 35.294 35.133 35.614 35.608 35.036 35.556 

38 36.074 36.083 36.557 36.514 35.984 36.497 

39 36.833 37.058 37.517 37.463 36.961 37.455 

40 37.735 38.061 38.497 38.449 37.972 38.437 

41 39.167 39.095 39.501 39.461 39.023 39.447 

42 40.175 40.160 40.534 40.486 40.120 40.492 

43 40.958 41.257 41.601 41.538 41.272 41.582 

44 41.875 42.381 42.709 42.636 42.493 42.729 

45 42.808 43.531 43.862 43.793 43.806 43.958 

46 43.423 44.809 45.056 45.014 45.264 45.311 

47 45.625 46.121 46.268 46.278 47.100 46.914 

48 48.000 47.397 47.440 47.429 48.000 48.000 

Equi = Equipercentile Equating Procedure 
UIRT = Unidimensional IRT Procedures (Observed Score or True Score) 
Approx = Unidimensional Approximation of MIRT Procedures (Observed Score or True Score) 
Full MIRT = Full MIRT Observed Score Procedure 
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Table A-13.  Equating Results for Social Studies Exams 

Observed Score True Score 

Raw Score Equi UIRT Approx Full MIRT UIRT Approx 

0 0.000 -0.192 0.009 0.004 0.000 0.000 

1 1.000 0.604 1.012 1.022 0.752 1.034 

2 1.500 1.358 1.993 2.018 1.536 2.085 

3 3.000 2.114 2.941 2.968 2.283 3.050 

4 4.800 2.868 3.859 3.878 3.013 3.967 

5 5.050 3.614 4.752 4.759 3.738 4.854 

6 5.350 4.360 5.626 5.625 4.466 5.720 

7 6.500 5.112 6.485 6.479 5.199 6.571 

8 7.444 5.869 7.335 7.326 5.942 7.413 

9 8.272 6.634 8.177 8.169 6.696 8.247 

10 9.202 7.411 9.014 9.008 7.462 9.076 

11 9.976 8.201 9.847 9.849 8.241 9.902 

12 10.708 9.002 10.677 10.690 9.034 10.726 

13 11.563 9.816 11.506 11.533 9.840 11.550 

14 12.449 10.641 12.338 12.378 10.660 12.375 

15 13.264 11.480 13.171 13.227 11.494 13.201 

16 14.194 12.334 14.006 14.080 12.341 14.030 

17 14.918 13.200 14.844 14.936 13.203 14.863 

18 15.526 14.079 15.685 15.794 14.078 15.700 

19 16.235 14.971 16.532 16.654 14.966 16.543 

20 16.979 15.875 17.385 17.513 15.867 17.391 

21 17.825 16.791 18.245 18.378 16.781 18.246 

22 18.725 17.718 19.111 19.251 17.707 19.108 

23 19.489 18.657 19.984 20.128 18.645 19.978 

24 20.434 19.606 20.865 21.010 19.595 20.856 

25 21.250 20.566 21.753 21.901 20.555 21.743 

26 22.162 21.535 22.651 22.800 21.526 22.638 

27 23.186 22.513 23.558 23.707 22.506 23.543 



 140

Table A-13—continued 

28 24.090 23.499 24.474 24.624 23.495 24.458 

29 25.075 24.493 25.399 25.552 24.492 25.383 

30 26.009 25.495 26.335 26.489 25.497 26.318 

31 27.000 26.503 27.281 27.430 26.508 27.264 

32 28.333 27.518 28.238 28.378 27.527 28.220 

33 29.500 28.539 29.205 29.332 28.552 29.188 

34 30.722 29.566 30.184 30.296 29.582 30.168 

35 31.710 30.600 31.176 31.268 30.619 31.161 

36 32.771 31.640 32.180 32.247 31.664 32.166 

37 33.634 32.689 33.198 33.235 32.716 33.186 

38 34.769 33.747 34.231 34.235 33.777 34.222 

39 36.339 34.817 35.281 35.250 34.851 35.276 

40 37.473 35.901 36.349 36.281 35.940 36.349 

41 38.548 37.003 37.438 37.332 37.051 37.446 

42 39.387 38.127 38.553 38.406 38.190 38.572 

43 40.423 39.277 39.702 39.514 39.369 39.733 

44 42.100 40.457 40.887 40.671 40.604 40.939 

45 43.471 41.708 42.113 41.881 41.922 42.206 

46 44.667 43.022 43.380 43.151 43.365 43.558 

47 45.857 44.370 44.727 44.489 45.022 45.040 

48 47.063 45.840 46.146 45.991 47.068 46.742 

49 47.500 47.324 47.552 47.487 49.415 48.813 

50 50.000 48.900 49.131 49.200 50.000 50.000 

Equi = Equipercentile Equating Procedure 
UIRT = Unidimensional IRT Procedures (Observed Score or True Score) 
Approx = Unidimensional Approximation of MIRT Procedures (Observed Score or True Score) 
Full MIRT = Full MIRT Observed Score Procedure 
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Table A-14.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Math Exams 

 Observed Score                   True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 -1.672 -1.679 -1.664 -1.625 -1.625 

1 -0.877 -0.877 -0.872 -0.826 -0.788 

2 -0.250 -0.228 -0.251 -0.184 -0.161 

3 -0.682 -0.615 -0.665 -0.614 -0.559 

4 -0.530 -0.400 -0.474 -0.469 -0.349 

5 -0.444 -0.241 -0.328 -0.396 -0.197 

6 -0.424 -0.143 -0.229 -0.388 -0.106 

7 -0.543 -0.184 -0.258 -0.514 -0.153 

8 -0.650 -0.218 -0.272 -0.625 -0.192 

9 -0.820 -0.330 -0.364 -0.803 -0.308 

10 -0.901 -0.364 -0.379 -0.892 -0.346 

11 -0.854 -0.280 -0.274 -0.851 -0.263 

12 -0.729 -0.125 -0.102 -0.730 -0.112 

13 -0.604 0.023 0.059 -0.609 0.031 

14 -0.496 0.144 0.190 -0.503 0.148 

15 -0.504 0.141 0.198 -0.512 0.141 

16 -0.623 0.019 0.087 -0.633 0.016 

17 -0.590 0.044 0.121 -0.600 0.039 

18 -0.442 0.182 0.261 -0.452 0.175 

19 -0.417 0.195 0.271 -0.425 0.186 

20 -0.616 -0.015 0.057 -0.622 -0.025 

21 -0.639 -0.049 0.018 -0.643 -0.060 

22 -0.541 0.041 0.100 -0.542 0.030 

23 -0.585 -0.011 0.042 -0.584 -0.022 

24 -0.782 -0.215 -0.173 -0.778 -0.225 

25 -0.843 -0.283 -0.255 -0.835 -0.291 

26 -0.753 -0.202 -0.186 -0.740 -0.208 

27 -0.860 -0.323 -0.318 -0.839 -0.325 
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Table A-14—continued 

28 -1.257 -0.739 -0.744 -1.221 -0.737 

29 -1.094 -0.602 -0.615 -1.037 -0.593 

30 -0.977 -0.518 -0.539 -0.888 -0.501 

31 -0.790 -0.385 -0.408 -0.669 -0.355 

32 -0.645 -0.305 -0.330 -0.488 -0.260 

33 -0.403 -0.133 -0.153 -0.200 -0.065 

34 -0.526 -0.318 -0.331 -0.265 -0.220 

35 -0.828 -0.656 -0.662 -0.497 -0.524 

36 -1.059 -0.903 -0.905 -0.679 -0.742 

37 -0.641 -0.515 -0.510 -0.270 -0.319 

38 -0.148 -0.027 -0.021 0.199 0.210 

39 0.245 0.366 0.375 0.589 0.660 

40 0.535 0.629 0.639 1.250 1.250 

Mean -0.640 -0.246 -0.241 -0.547 -0.189 

Abs Mean 0.678 0.333 0.359 0.646 0.330 

Wt. Mean -0.669 -0.150 -0.136 -0.643 -0.134 

Wt. Abs 0.671 0.215 0.247 0.649 0.202 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

“Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-15.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Science Exams 

 Observed Score True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 0.748 0.837 0.846 0.500 0.500 

1 1.385 1.476 1.516 1.337 1.376 

2 1.977 2.061 2.122 1.957 2.039 

3 2.046 2.127 2.203 2.038 2.129 

4 0.978 1.051 1.142 0.973 1.059 

5 0.837 0.896 1.010 0.830 0.905 

6 0.895 0.935 1.063 0.886 0.943 

7 0.722 0.739 0.859 0.712 0.745 

8 0.708 0.695 0.782 0.696 0.701 

9 0.568 0.524 0.557 0.559 0.529 

10 0.484 0.408 0.370 0.479 0.413 

11 0.282 0.174 0.066 0.282 0.179 

12 0.273 0.136 -0.007 0.279 0.142 

13 0.177 0.017 -0.086 0.190 0.024 

14 0.181 0.003 -0.010 0.200 0.012 

15 0.184 -0.003 0.062 0.208 0.007 

16 0.221 0.031 0.131 0.248 0.044 

17 0.008 -0.175 -0.074 0.038 -0.161 

18 -0.190 -0.358 -0.283 -0.160 -0.344 

19 -0.305 -0.451 -0.415 -0.276 -0.436 

20 -0.371 -0.488 -0.484 -0.344 -0.473 

21 -0.360 -0.443 -0.463 -0.338 -0.429 

22 -0.536 -0.580 -0.611 -0.519 -0.566 

23 -0.516 -0.518 -0.546 -0.505 -0.505 

24 -0.638 -0.594 -0.611 -0.633 -0.583 

25 -0.486 -0.394 -0.403 -0.489 -0.387 

26 -0.646 -0.505 -0.516 -0.656 -0.501 

27 -0.643 -0.454 -0.469 -0.661 -0.453 
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Table A-15—continued 

28 -0.576 -0.341 -0.355 -0.604 -0.345 

29 -0.674 -0.394 -0.415 -0.712 -0.403 

30 -0.738 -0.415 -0.419 -0.785 -0.430 

31 -0.674 -0.311 -0.280 -0.729 -0.332 

32 -0.581 -0.182 -0.103 -0.643 -0.209 

33 -0.447 -0.015 0.110 -0.515 -0.049 

34 -0.336 0.119 0.269 -0.413 0.079 

35 -0.462 0.008 0.141 -0.548 -0.038 

36 -0.399 0.081 0.148 -0.491 0.028 

37 -0.161 0.320 0.314 -0.259 0.262 

38 0.009 0.483 0.440 -0.090 0.423 

39 0.225 0.684 0.630 0.128 0.622 

40 0.326 0.762 0.714 0.237 0.702 

41 -0.072 0.334 0.294 -0.144 0.280 

42 -0.015 0.359 0.311 -0.055 0.317 

43 0.299 0.643 0.580 0.314 0.624 

44 0.506 0.834 0.761 0.618 0.854 

45 0.723 1.054 0.985 0.998 1.150 

46 1.386 1.633 1.591 1.841 1.888 

47 0.496 0.643 0.653 1.475 1.289 

48 -0.603 -0.561 -0.571 0.000 0.000 

Mean 0.127 0.263 0.277 0.152 0.278 

Abs Mean 0.552 0.556 0.567 0.584 0.549 

Wt. Mean 0.024 0.020 0.018 0.028 0.024 

Wt. Abs 0.356 0.295 0.290 0.373 0.296 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

“Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-16.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Social Studies Exams 

 Observed Score True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 -0.192 0.009 0.004 0.000 0.000 

1 -0.396 0.012 0.022 -0.248 0.034 

2 -0.142 0.493 0.518 0.036 0.585 

3 -0.886 -0.059 -0.032 -0.717 0.050 

4 -1.932 -0.941 -0.922 -1.787 -0.833 

5 -1.436 -0.298 -0.291 -1.312 -0.196 

6 -0.990 0.276 0.275 -0.884 0.370 

7 -1.388 -0.015 -0.021 -1.301 0.071 

8 -1.575 -0.110 -0.118 -1.502 -0.031 

9 -1.638 -0.095 -0.103 -1.576 -0.025 

10 -1.791 -0.188 -0.194 -1.740 -0.126 

11 -1.775 -0.129 -0.127 -1.735 -0.074 

12 -1.706 -0.031 -0.018 -1.674 0.018 

13 -1.748 -0.057 -0.030 -1.723 -0.013 

14 -1.808 -0.111 -0.071 -1.789 -0.075 

15 -1.784 -0.093 -0.037 -1.770 -0.063 

16 -1.860 -0.188 -0.114 -1.853 -0.164 

17 -1.718 -0.074 0.018 -1.715 -0.055 

18 -1.447 0.159 0.268 -1.449 0.174 

19 -1.264 0.297 0.419 -1.269 0.308 

20 -1.104 0.406 0.534 -1.112 0.412 

21 -1.035 0.420 0.553 -1.044 0.421 

22 -1.007 0.386 0.526 -1.018 0.383 

23 -0.832 0.495 0.639 -0.844 0.489 

24 -0.828 0.431 0.576 -0.839 0.422 

25 -0.685 0.503 0.651 -0.695 0.493 

26 -0.627 0.489 0.638 -0.636 0.476 

27 -0.673 0.372 0.521 -0.680 0.357 
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Table A-16—continued 

28 -0.591 0.384 0.534 -0.595 0.368 

29 -0.582 0.324 0.477 -0.583 0.308 

30 -0.514 0.326 0.480 -0.512 0.309 

31 -0.497 0.281 0.430 -0.492 0.264 

32 -0.815 -0.095 0.045 -0.806 -0.113 

33 -0.961 -0.295 -0.168 -0.949 -0.312 

34 -1.156 -0.538 -0.426 -1.140 -0.554 

35 -1.110 -0.534 -0.442 -1.091 -0.549 

36 -1.131 -0.591 -0.524 -1.108 -0.605 

37 -0.945 -0.436 -0.399 -0.919 -0.448 

38 -1.022 -0.538 -0.534 -0.992 -0.547 

39 -1.522 -1.058 -1.089 -1.488 -1.064 

40 -1.572 -1.124 -1.192 -1.533 -1.124 

41 -1.545 -1.110 -1.216 -1.497 -1.102 

42 -1.260 -0.834 -0.981 -1.197 -0.815 

43 -1.146 -0.721 -0.909 -1.054 -0.690 

44 -1.643 -1.213 -1.429 -1.496 -1.161 

45 -1.763 -1.358 -1.590 -1.550 -1.265 

46 -1.646 -1.287 -1.516 -1.302 -1.109 

47 -1.487 -1.130 -1.368 -0.836 -0.817 

48 -1.224 -0.917 -1.072 0.005 -0.321 

49 -0.176 0.052 -0.013 1.915 1.313 

50 -1.101 -0.869 -0.800 0.000 0.000 

Mean -1.170 -0.214 -0.189 -1.021 -0.130 

Abs Mean 1.170 0.454 0.507 1.098 0.429 

Wt. Mean -1.280 -0.033 0.036 -1.254 -0.014 

Wt. Abs 1.280 0.341 0.389 1.260 0.325 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

 “Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-17.  Differences Between Equating Results and Smoothed Equipercentile 
Results for Math Exams 

 Observed Score                       True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 -0.033 -0.040 -0.025 0.014 0.014 
1 -0.086 -0.086 -0.081 -0.035 0.003 
2 -0.182 -0.160 -0.183 -0.117 -0.093 
3 -0.318 -0.251 -0.301 -0.250 -0.195 
4 -0.390 -0.260 -0.334 -0.328 -0.209 
5 -0.440 -0.237 -0.324 -0.392 -0.193 
6 -0.497 -0.216 -0.302 -0.460 -0.179 
7 -0.560 -0.201 -0.275 -0.532 -0.171 
8 -0.624 -0.192 -0.246 -0.599 -0.166 
9 -0.672 -0.182 -0.216 -0.655 -0.160 

10 -0.705 -0.168 -0.183 -0.697 -0.150 
11 -0.723 -0.149 -0.143 -0.720 -0.132 
12 -0.727 -0.123 -0.100 -0.728 -0.109 
13 -0.720 -0.094 -0.057 -0.724 -0.085 
14 -0.706 -0.066 -0.020 -0.713 -0.063 
15 -0.690 -0.045 0.012 -0.698 -0.045 
16 -0.673 -0.031 0.037 -0.683 -0.034 
17 -0.658 -0.024 0.053 -0.669 -0.030 
18 -0.649 -0.025 0.054 -0.658 -0.032 
19 -0.646 -0.034 0.042 -0.654 -0.043 
20 -0.652 -0.051 0.021 -0.658 -0.061 
21 -0.665 -0.075 -0.008 -0.669 -0.086 
22 -0.688 -0.106 -0.047 -0.689 -0.117 
23 -0.716 -0.142 -0.089 -0.715 -0.153 
24 -0.750 -0.183 -0.141 -0.746 -0.193 
25 -0.785 -0.225 -0.197 -0.777 -0.233 
26 -0.817 -0.266 -0.250 -0.804 -0.272 
27 -0.842 -0.305 -0.300 -0.820 -0.307 
28 -0.856 -0.338 -0.343 -0.820 -0.335 
29 -0.855 -0.363 -0.376 -0.798 -0.354 
30 -0.839 -0.380 -0.401 -0.750 -0.363 
31 -0.796 -0.391 -0.414 -0.676 -0.362 
32 -0.736 -0.396 -0.421 -0.579 -0.351 
33 -0.670 -0.400 -0.420 -0.467 -0.333 
34 -0.615 -0.407 -0.420 -0.353 -0.308 
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Table A-17—continued 
35 -0.583 -0.411 -0.417 -0.251 -0.278 
36 -0.557 -0.401 -0.403 -0.177 -0.240 
37 -0.491 -0.365 -0.360 -0.120 -0.169 
38 -0.486 -0.365 -0.359 -0.140 -0.128 
39 -0.548 -0.427 -0.418 -0.205 -0.134 
40 -0.604 -0.510 -0.500 0.111 0.111 

Mean -0.616 -0.222 -0.216 -0.522 -0.164 
Abs Mean 0.616 0.222 0.227 0.528 0.171 
Wt. Mean -0.678 -0.159 -0.146 -0.653 -0.144 
Wt. Abs 0.678 0.159 0.162 0.653 0.144 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

 “Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-18.  Differences Between Equating Results and Smoothed Equipercentile 
Results for Science Exams 

Observed Score True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 0.244 0.333 0.342 -0.004 -0.004 
1 0.373 0.464 0.504 0.325 0.364 
2 0.457 0.541 0.602 0.437 0.519 
3 0.518 0.599 0.675 0.510 0.601 
4 0.567 0.640 0.731 0.562 0.648 
5 0.607 0.666 0.780 0.600 0.675 
6 0.613 0.653 0.781 0.604 0.661 
7 0.577 0.594 0.714 0.567 0.600 
8 0.537 0.524 0.611 0.525 0.529 
9 0.492 0.448 0.481 0.483 0.453 
10 0.446 0.370 0.332 0.441 0.375 
11 0.401 0.293 0.185 0.401 0.297 
12 0.355 0.218 0.075 0.361 0.224 
13 0.308 0.148 0.045 0.321 0.155 
14 0.261 0.083 0.070 0.279 0.091 
15 0.210 0.023 0.088 0.234 0.033 
16 0.158 -0.032 0.068 0.185 -0.019 
17 0.102 -0.081 0.020 0.131 -0.067 
18 0.043 -0.125 -0.050 0.073 -0.110 
19 -0.017 -0.163 -0.127 0.012 -0.147 
20 -0.077 -0.194 -0.190 -0.051 -0.179 
21 -0.137 -0.220 -0.240 -0.115 -0.205 
22 -0.197 -0.241 -0.272 -0.179 -0.227 
23 -0.254 -0.256 -0.284 -0.243 -0.243 
24 -0.311 -0.267 -0.284 -0.306 -0.256 
25 -0.363 -0.271 -0.280 -0.366 -0.264 
26 -0.414 -0.273 -0.284 -0.423 -0.268 
27 -0.459 -0.270 -0.285 -0.477 -0.269 
28 -0.497 -0.262 -0.276 -0.525 -0.266 
29 -0.530 -0.250 -0.271 -0.567 -0.259 
30 -0.557 -0.234 -0.238 -0.603 -0.248 
31 -0.576 -0.213 -0.182 -0.631 -0.234 
32 -0.587 -0.188 -0.109 -0.649 -0.215 
33 -0.589 -0.157 -0.032 -0.657 -0.191 
34 -0.576 -0.121 0.029 -0.653 -0.162 
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Table A-18—continued 
35 -0.549 -0.079 0.054 -0.635 -0.126 
36 -0.509 -0.029 0.038 -0.602 -0.082 
37 -0.452 0.029 0.023 -0.549 -0.029 
38 -0.377 0.097 0.054 -0.476 0.037 
39 -0.281 0.178 0.124 -0.377 0.117 
40 -0.160 0.276 0.228 -0.249 0.216 
41 -0.012 0.394 0.354 -0.084 0.340 
42 0.164 0.538 0.490 0.124 0.496 
43 0.370 0.714 0.651 0.386 0.695 
44 0.602 0.930 0.857 0.714 0.950 
45 0.830 1.161 1.092 1.105 1.258 
46 0.839 1.086 1.044 1.293 1.341 
47 0.381 0.528 0.538 1.360 1.174 
48 -0.182 -0.140 -0.150 0.421 0.421 

Mean 0.037 0.173 0.186 0.062 0.188 
Abs Mean 0.390 0.339 0.331 0.446 0.354 
Wt. Mean 0.081 0.076 0.075 0.085 0.080 
Wt. Abs 0.323 0.227 0.199 0.347 0.230 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

 “Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-19.  Differences Between Equating Results and Smoothed Equipercentile 
Results for Social Studies Exams 

 Observed Score True Score 

Raw Score UIRT Approx Full MIRT UIRT Approx 

0 -0.166 0.035 0.030 0.026 0.026 
1 -0.317 0.091 0.101 -0.169 0.113 
2 -0.511 0.124 0.149 -0.333 0.216 
3 -0.702 0.125 0.152 -0.534 0.233 
4 -0.896 0.095 0.114 -0.751 0.203 
5 -1.097 0.041 0.048 -0.973 0.142 
6 -1.296 -0.030 -0.031 -1.191 0.063 
7 -1.451 -0.078 -0.084 -1.364 0.008 
8 -1.527 -0.062 -0.070 -1.454 0.017 
9 -1.590 -0.047 -0.055 -1.528 0.022 

10 -1.639 -0.036 -0.042 -1.588 0.025 
11 -1.672 -0.026 -0.024 -1.632 0.028 
12 -1.691 -0.016 -0.003 -1.660 0.033 
13 -1.695 -0.004 0.023 -1.670 0.040 
14 -1.683 0.014 0.054 -1.664 0.050 
15 -1.656 0.035 0.091 -1.642 0.065 
16 -1.611 0.061 0.135 -1.604 0.085 
17 -1.554 0.090 0.182 -1.552 0.109 
18 -1.486 0.120 0.229 -1.487 0.135 
19 -1.410 0.151 0.273 -1.415 0.162 
20 -1.329 0.181 0.309 -1.337 0.187 
21 -1.248 0.207 0.340 -1.258 0.208 
22 -1.168 0.225 0.365 -1.178 0.223 
23 -1.090 0.237 0.381 -1.102 0.231 
24 -1.019 0.240 0.385 -1.030 0.231 
25 -0.955 0.233 0.381 -0.965 0.222 
26 -0.899 0.217 0.366 -0.908 0.204 
27 -0.855 0.190 0.339 -0.862 0.176 
28 -0.822 0.153 0.303 -0.827 0.137 
29 -0.803 0.103 0.256 -0.804 0.087 
30 -0.796 0.044 0.198 -0.794 0.027 
31 -0.804 -0.026 0.123 -0.798 -0.043 
32 -0.824 -0.104 0.036 -0.815 -0.122 
33 -0.857 -0.191 -0.064 -0.845 -0.208 
34 -0.902 -0.284 -0.172 -0.885 -0.300 
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Table A-19—continued 
35 -0.955 -0.379 -0.287 -0.935 -0.394 
36 -1.016 -0.476 -0.409 -0.993 -0.490 
37 -1.082 -0.573 -0.536 -1.056 -0.585 
38 -1.152 -0.668 -0.664 -1.122 -0.677 
39 -1.221 -0.757 -0.788 -1.188 -0.763 
40 -1.286 -0.838 -0.906 -1.247 -0.838 
41 -1.342 -0.907 -1.013 -1.294 -0.899 
42 -1.385 -0.959 -1.106 -1.321 -0.939 
43 -1.409 -0.984 -1.172 -1.317 -0.953 
44 -1.411 -0.981 -1.197 -1.264 -0.929 
45 -1.348 -0.943 -1.175 -1.134 -0.850 
46 -1.225 -0.866 -1.095 -0.881 -0.688 
47 -1.096 -0.739 -0.977 -0.444 -0.426 
48 -1.044 -0.737 -0.892 0.186 -0.141 
49 -1.005 -0.777 -0.842 1.086 0.483 
50 -0.877 -0.645 -0.576 0.224 0.224 

Mean -1.154 -0.199 -0.173 -1.006 -0.114 
Abs Mean 1.154 0.317 0.383 1.065 0.287 
Wt. Mean -1.299 -0.052 0.017 -1.273 -0.033 
Wt. Abs 1.299 0.211 0.282 1.277 0.212 

“Mean” represents the unweighted mean difference across all score points 

“Abs Mean” represents the unweighted mean absolute difference across all score points 

“Wt. Mean” represents the weighted mean difference across all score points 

 “Wt. Abs” represents the weighted mean absolute difference across all score points 
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Table A-20.  Statistics for Item Parameter Estimates 

 Discrimination Difficulty 

 Median Mean SD Median Mean SD 

UIRT Math A 0.989 1.004 0.412 0.570 0.804 1.156 

MIRT Math A 0.999 1.009 0.380 0.505 0.709 1.062 

UIRT Math B 0.967 0.978 0.405 0.877 1.145 1.115 

MIRT Math B 0.954 0.966 0.365 0.845 1.096 1.126 

UIRT Science A 1.015 0.986 0.369 0.449 0.977 1.410 

MIRT Science A 1.003 0.957 0.335 0.434 0.953 1.334 

UIRT Science B 0.935 0.913 0.402 0.535 0.867 1.112 

MIRT Science B 0.924 0.886 0.374 0.521 0.850 1.093 

UIRT Social A 0.929 0.975 0.361 0.357 0.538 1.004 

MIRT Social A 0.972 0.984 0.331 0.290 0.426 1.141 

UIRT Social B 0.837 0.896 0.344 0.508 0.809 1.089 

MIRT Social B 0.849 0.865 0.314 0.482 0.773 1.051 
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Table A-21.  Correlations Between Unidimensional Item Parameter Estimates and 
Unidimensional Approximation Item Parameter Estimates 

 Discrimination Difficulty 

Math A 0.965 0.999 

Math B 0.971 0.999 

Science A 0.990 0.999 

Science B 0.985 0.999 

Social A 0.964 0.997 

Social B 0.981 0.999 
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Figure A-1.  Observed Score Distributions for Math Forms 
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Figure A-2.  Observed Score Distributions for Science Forms 
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Figure A-3.  Observed Score Distributions for Social Studies Forms 
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Figure A-4.  Differences Between Unsmoothed Equating Results and Identity Equating 
for Math Exams 
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Figure A-5.  Differences Between Unsmoothed Equating Results and Identity Equating 
for Science Exams 
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Figure A-6.  Differences Between Unsmoothed Equating Results and Identity Equating 
for Social Studies Exams 
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Figure A-7.  Differences Between Smoothed Equating Results and Identity Equating for 
Math Exams 
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Figure A-8.  Differences Between Smoothed Equating Results and Identity Equating for 
Science Exams 



 163

 

Figure A-9.  Differences Between Smoothed Equating Results and Identity Equating for 
Social Studies Exams 
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Figure A-10.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Math Exams 
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Figure A-11.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Science Exams 
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Figure A-12.  Differences Between Equating Results and Unsmoothed Equipercentile 
Results for Social Studies Exams 
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Figure A-13.  Differences Between Equating Results and Smoothed Equipercentile 
Results for Math Exams 
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Figure A-14.  Differences Between Equating Results and Smoothed Equipercentile 
Results for Science Exams 
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Figure A-15.  Differences Between Equating Results and Smoothed Equipercentile 
Equating Results for Social Studies Exams 
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Figure A-16.  Absolute Differences Between Equating Results and Unsmoothed 
Equipercentile Results for Math Exams 
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Figure A-17.  Absolute Differences Between Equating Results and Unsmoothed 
Equipercentile Results for Science Exams 
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Figure A-18.  Absolute Differences Between Equating Results and Unsmoothed 
Equipercentile Results for Social Studies Exams 
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Figure A-19.  Absolute Differences Between Equating Results and Smoothed 
Equipercentile Results for Math Exams 
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Figure A-20.  Absolute Differences Between Equating Results and Smoothed 
Equipercentile Results for Science Exams 
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Figure A-21.  Abolute Differences Between Equating Results and Smoothed 
Equipercentile Results for Social Studies Exams 
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Figure A-22.  Ability Distributions as the Number of Quadrature Points Increases 
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APPENDIX B.  SAMPLE COMPUTER CODE 

Figure B-1.  TESTFACT Code for Form A Math Exam 

>TITLE 
MATHA.TSF-TRIAL RUN 
  Trial Run 
>PROBLEM NITEMS=40,RESPONSES=3; 
>NAMES  I01,I02,I03,I04,I05,I06,I07,I08,I09,I10,I11,I12,I13,I14,I15, 
I16,I17,I18,I19,I20,I21,I22,I23,I24,I25,I26,I27,I28,I29,I30,I31,I32,I33,I34,I35, 
I36,I37,I38,I39,I40; 
>RESPONSE  ' ', '0', '1'; 
>KEY  1111111111111111111111111111111111111111; 
>TETRACHORIC LIST,NDEC=3; 
>FACTOR  NFAC=4,NROOT=4,ROTATE=VARIMAX; 
>FULL  CYCLES=80; 
>TECHNICAL PRECISION=0.005; 
>SCORE  METHOD=2,LIST=20; 
>SAVE   PARM,FSCORE,ROTATE; 
>INPUT  NIDCHAR=5,SCORES,FILE='MATHA.TXT'; 
(5A1,4X,40A1) 
>STOP 
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Figure B-2.  R Code 

 
#COVARIANCE MATRICES FOR ABILITY DISTRIBUTIONS 

 

MATHA_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

MATHB_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

SCIENCEA_SIGMA <- matrix(c(1,0,0,1),ncol=2,byrow=T) 

SCIENCEB_SIGMA <- matrix(c(1,0,0,1),ncol=2,byrow=T) 

SOCIALA_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

SOCIALB_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

 

#DETERMINE DIRECTION OF BEST MEASUREMENT 

 

MATHA_alpha_1 <- sum(FINAL_MATHA[,1]) / sqrt((sum(FINAL_MATHA[,1]))^2 + 
(sum(FINAL_MATHA[,2]))^2 + (sum(FINAL_MATHA[,3]))^2 + 
(sum(FINAL_MATHA[,4]))^2) 

 

MATHA_alpha_2 <- sum(FINAL_MATHA[,2]) / sqrt((sum(FINAL_MATHA[,1]))^2 + 
(sum(FINAL_MATHA[,2]))^2 + (sum(FINAL_MATHA[,3]))^2 + 
(sum(FINAL_MATHA[,4]))^2) 

 

MATHA_alpha_3 <- sum(FINAL_MATHA[,3]) / sqrt((sum(FINAL_MATHA[,1]))^2 + 
(sum(FINAL_MATHA[,2]))^2 + (sum(FINAL_MATHA[,3]))^2 + 
(sum(FINAL_MATHA[,4]))^2) 

 

MATHA_alpha_4 <- sum(FINAL_MATHA[,4]) / sqrt((sum(FINAL_MATHA[,1]))^2 + 
(sum(FINAL_MATHA[,2]))^2 + (sum(FINAL_MATHA[,3]))^2 + 
(sum(FINAL_MATHA[,4]))^2) 

 

MATHB_alpha_1 <- sum(FINAL_MATHB[,1]) / sqrt((sum(FINAL_MATHB[,1]))^2 + 
(sum(FINAL_MATHB[,2]))^2 + (sum(FINAL_MATHB[,3]))^2 + 
(sum(FINAL_MATHB[,4]))^2) 
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Figure B-2—continued 

MATHB_alpha_2 <- sum(FINAL_MATHB[,2]) / sqrt((sum(FINAL_MATHB[,1]))^2 + 
(sum(FINAL_MATHB[,2]))^2 + (sum(FINAL_MATHB[,3]))^2 + 
(sum(FINAL_MATHB[,4]))^2) 

 

MATHB_alpha_3 <- sum(FINAL_MATHB[,3]) / sqrt((sum(FINAL_MATHB[,1]))^2 + 
(sum(FINAL_MATHB[,2]))^2 + (sum(FINAL_MATHB[,3]))^2 + 
(sum(FINAL_MATHB[,4]))^2) 

 

MATHB_alpha_4 <- sum(FINAL_MATHB[,4]) / sqrt((sum(FINAL_MATHB[,1]))^2 + 
(sum(FINAL_MATHB[,2]))^2 + (sum(FINAL_MATHB[,3]))^2 + 
(sum(FINAL_MATHB[,4]))^2) 

 

SCIENCEA_alpha_1 <- sum(FINAL_SCIENCEA[,1]) / sqrt((sum(FINAL_SCIENCEA[,1]))^2 
+ (sum(FINAL_SCIENCEA[,2]))^2) 

 

SCIENCEA_alpha_2 <- sum(FINAL_SCIENCEA[,2]) / sqrt((sum(FINAL_SCIENCEA[,1]))^2 
+ (sum(FINAL_SCIENCEA[,2]))^2) 

 

SCIENCEB_alpha_1 <- sum(FINAL_SCIENCEB[,1]) / sqrt((sum(FINAL_SCIENCEB[,1]))^2 
+ (sum(FINAL_SCIENCEB[,2]))^2) 

 

SCIENCEB_alpha_2 <- sum(FINAL_SCIENCEB[,2]) / sqrt((sum(FINAL_SCIENCEB[,1]))^2 
+ (sum(FINAL_SCIENCEB[,2]))^2) 

 

SOCIALA_alpha_1 <- sum(FINAL_SOCIALA[,1]) / sqrt((sum(FINAL_SOCIALA[,1]))^2 + 
(sum(FINAL_SOCIALA[,2]))^2 + (sum(FINAL_SOCIALA[,3]))^2 + 
(sum(FINAL_SOCIALA[,4]))^2) 

 

SOCIALA_alpha_2 <- sum(FINAL_SOCIALA[,2]) / sqrt((sum(FINAL_SOCIALA[,1]))^2 + 
(sum(FINAL_SOCIALA[,2]))^2 + (sum(FINAL_SOCIALA[,3]))^2 + 
(sum(FINAL_SOCIALA[,4]))^2) 

 

SOCIALA_alpha_3 <- sum(FINAL_SOCIALA[,3]) / sqrt((sum(FINAL_SOCIALA[,1]))^2 + 
(sum(FINAL_SOCIALA[,2]))^2 + (sum(FINAL_SOCIALA[,3]))^2 + 
(sum(FINAL_SOCIALA[,4]))^2) 

 

SOCIALA_alpha_4 <- sum(FINAL_SOCIALA[,4]) / sqrt((sum(FINAL_SOCIALA[,1]))^2 + 
(sum(FINAL_SOCIALA[,2]))^2 + (sum(FINAL_SOCIALA[,3]))^2 + 
(sum(FINAL_SOCIALA[,4]))^2) 
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Figure B-2—continued 

 

SOCIALB_alpha_1 <- sum(FINAL_SOCIALB[,1]) / sqrt((sum(FINAL_SOCIALB[,1]))^2 + 
(sum(FINAL_SOCIALB[,2]))^2 + (sum(FINAL_SOCIALB[,3]))^2 + 
(sum(FINAL_SOCIALB[,4]))^2) 

 

SOCIALB_alpha_2 <- sum(FINAL_SOCIALB[,2]) / sqrt((sum(FINAL_SOCIALB[,1]))^2 + 
(sum(FINAL_SOCIALB[,2]))^2 + (sum(FINAL_SOCIALB[,3]))^2 + 
(sum(FINAL_SOCIALB[,4]))^2) 

 

SOCIALB_alpha_3 <- sum(FINAL_SOCIALB[,3]) / sqrt((sum(FINAL_SOCIALB[,1]))^2 + 
(sum(FINAL_SOCIALB[,2]))^2 + (sum(FINAL_SOCIALB[,3]))^2 + 
(sum(FINAL_SOCIALB[,4]))^2) 

 

SOCIALB_alpha_4 <- sum(FINAL_SOCIALB[,4]) / sqrt((sum(FINAL_SOCIALB[,1]))^2 + 
(sum(FINAL_SOCIALB[,2]))^2 + (sum(FINAL_SOCIALB[,3]))^2 + 
(sum(FINAL_SOCIALB[,4]))^2) 

 

MATHA_alpha <- matrix(c(MATHA_alpha_1, MATHA_alpha_2, MATHA_alpha_3, 
MATHA_alpha_4),ncol=1,byrow=T) 

 

MATHB_alpha <- matrix(c(MATHB_alpha_1, MATHB_alpha_2, MATHB_alpha_3, 
MATHB_alpha_4),ncol=1,byrow=T) 

 

SCIENCEA_alpha <- matrix(c(SCIENCEA_alpha_1, SCIENCEA_alpha_2), ncol=1,byrow=T) 

 

SCIENCEB_alpha <- matrix(c(SCIENCEB_alpha_1, SCIENCEB_alpha_2), ncol=1,byrow=T) 

 

SOCIALA_alpha <- matrix(c(SOCIALA_alpha_1, SOCIALA_alpha_2, 
SOCIALA_alpha_3,SOCIALA_alpha_4),ncol=1,byrow=T) 

 

SOCIALB_alpha <- matrix(c(SOCIALB_alpha_1, SOCIALB_alpha_2, 
SOCIALB_alpha_3,SOCIALB_alpha_4),ncol=1,byrow=T) 

 

MATHA_alpha_repeat1 <- rep(MATHA_alpha,each=40) 

MATHA_alpha_repeat2 <- matrix(MATHA_alpha_repeat1,nrow=4,byrow=T) 

 

MATHB_alpha_repeat1 <- rep(MATHB_alpha,each=40) 



 181

Figure B-2—continued 

MATHB_alpha_repeat2 <- matrix(MATHB_alpha_repeat1,nrow=4,byrow=T) 

 

SCIENCEA_alpha_repeat1 <- rep(SCIENCEA_alpha,each=48) 

SCIENCEA_alpha_repeat2 <- matrix(SCIENCEA_alpha_repeat1,nrow=2,byrow=T) 

 

SCIENCEB_alpha_repeat1 <- rep(SCIENCEB_alpha,each=48) 

SCIENCEB_alpha_repeat2 <- matrix(SCIENCEB_alpha_repeat1,nrow=2,byrow=T) 

 

SOCIALA_alpha_repeat1 <- rep(SOCIALA_alpha,each=50) 

SOCIALA_alpha_repeat2 <- matrix(SOCIALA_alpha_repeat1,nrow=4,byrow=T) 

 

SOCIALB_alpha_repeat1 <- rep(SOCIALB_alpha,each=50) 

SOCIALB_alpha_repeat2 <- matrix(SOCIALB_alpha_repeat1,nrow=4,byrow=T) 

 

#CREATE MATRICES THAT ONLY CONTAIN DISCRIMINATION PARAMETERS 

 

rotated_MATHA <- MATHA[,-6] 

rotated_MATHA <- rotated_MATHA[,-5] 

rotated_MATHB <- MATHB[,-6] 

rotated_MATHB <- rotated_MATHB[,-5] 

 

rotated_SCIENCEA <- SCIENCEA[,-4] 

rotated_SCIENCEA <- rotated_SCIENCEA[,-3] 

rotated_SCIENCEB <- SCIENCEB[,-4] 

rotated_SCIENCEB <- rotated_SCIENCEB[,-3] 

 

rotated_SOCIALA <- SOCIALA[,-6] 

rotated_SOCIALA <- rotated_SOCIALA[,-5] 

rotated_SOCIALB <- SOCIALB[,-6] 

rotated_SOCIALB <- rotated_SOCIALB[,-5] 

 

#DETERMINE UNIDIMENSIONAL ITEM PARAMETERS 
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Figure B-2—continued 

MATHA_sigma_star_sq_matrix <- rotated_MATHA %*% MATHA_SIGMA %*% 
t(rotated_MATHA) - (rotated_MATHA %*% MATHA_SIGMA %*% 
MATHA_alpha_repeat2)^2 

 

MATHA_sigma_star_sq <- diag(MATHA_sigma_star_sq_matrix) 

 

MATHA_a_star <- (1+(MATHA_sigma_star_sq))^(-1/2) * diag(rotated_MATHA %*% 
MATHA_SIGMA %*% MATHA_alpha_repeat2) 

 

MATHA_d_star <- (1+(MATHA_sigma_star_sq))^(-1/2) * FINAL_MATHA[,5] 

 

MATHB_sigma_star_sq_matrix <- rotated_MATHB %*% MATHB_SIGMA %*% 
t(rotated_MATHB) - (rotated_MATHB %*% MATHB_SIGMA %*% 
MATHB_alpha_repeat2)^2 

 

MATHB_sigma_star_sq <- diag(MATHB_sigma_star_sq_matrix) 

 

MATHB_a_star <- (1+(MATHB_sigma_star_sq))^(-1/2) * diag(rotated_MATHB %*% 
MATHB_SIGMA %*% MATHB_alpha_repeat2) 

 

MATHB_d_star <- (1+(MATHB_sigma_star_sq))^(-1/2) * FINAL_MATHB[,5] 

 

SCIENCEA_sigma_star_sq_matrix <- rotated_SCIENCEA %*% SCIENCEA_SIGMA %*% 
t(rotated_SCIENCEA) - (rotated_SCIENCEA %*% SCIENCEA_SIGMA %*% 
SCIENCEA_alpha_repeat2)^2 

 

SCIENCEA_sigma_star_sq <- diag(SCIENCEA_sigma_star_sq_matrix) 

 

SCIENCEA_a_star <- (1+(SCIENCEA_sigma_star_sq))^(-1/2) * diag(rotated_SCIENCEA 
%*% SCIENCEA_SIGMA %*% SCIENCEA_alpha_repeat2) 

 

SCIENCEA_d_star <- (1+(SCIENCEA_sigma_star_sq))^(-1/2) * FINAL_SCIENCEA[,3] 

 

SCIENCEB_sigma_star_sq_matrix <- rotated_SCIENCEB %*% SCIENCEB_SIGMA %*% 
t(rotated_SCIENCEB) - (rotated_SCIENCEB %*% SCIENCEB_SIGMA %*% 
SCIENCEB_alpha_repeat2)^2 
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Figure B-2—continued 

 

SCIENCEB_sigma_star_sq <- diag(SCIENCEB_sigma_star_sq_matrix) 

 

SCIENCEB_a_star <- (1+(SCIENCEB_sigma_star_sq))^(-1/2) * diag(rotated_SCIENCEB 
%*% SCIENCEB_SIGMA %*% SCIENCEB_alpha_repeat2) 

 

SCIENCEB_d_star <- (1+(SCIENCEB_sigma_star_sq))^(-1/2) * FINAL_SCIENCEB[,3] 

 

SOCIALA_sigma_star_sq_matrix <- rotated_SOCIALA %*% SOCIALA_SIGMA %*% 
t(rotated_SOCIALA) - (rotated_SOCIALA %*% SOCIALA_SIGMA %*% 
SOCIALA_alpha_repeat2)^2 

 

SOCIALA_sigma_star_sq <- diag(SOCIALA_sigma_star_sq_matrix) 

 

SOCIALA_a_star <- (1+(SOCIALA_sigma_star_sq))^(-1/2) * diag(rotated_SOCIALA %*% 
SOCIALA_SIGMA %*% SOCIALA_alpha_repeat2) 

 

SOCIALA_d_star <- (1+(SOCIALA_sigma_star_sq))^(-1/2) * FINAL_SOCIALA[,5] 

 

SOCIALB_sigma_star_sq_matrix <- rotated_SOCIALB %*% SOCIALB_SIGMA %*% 
t(rotated_SOCIALB) - (rotated_SOCIALB %*% SOCIALB_SIGMA %*% 
SOCIALB_alpha_repeat2)^2 

 

SOCIALB_sigma_star_sq <- diag(SOCIALB_sigma_star_sq_matrix) 

 

SOCIALB_a_star <- (1+(SOCIALB_sigma_star_sq))^(-1/2) * diag(rotated_SOCIALB %*% 
SOCIALB_SIGMA %*% SOCIALB_alpha_repeat2) 

 

SOCIALB_d_star <- (1+(SOCIALB_sigma_star_sq))^(-1/2) * FINAL_SOCIALB[,5] 

 

#NORMAL OGIVE PARAMETERS 

 

MATHA_parm <- cbind(MATHA_a_star,MATHA_d_star,MATHA[,6]) 

MATHB_parm <- cbind(MATHB_a_star,MATHB_d_star,MATHB[,6]) 
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Figure B-2—continued 

SCIENCEA_parm <- cbind(SCIENCEA_a_star,SCIENCEA_d_star,SCIENCEA[,4]) 

SCIENCEB_parm <- cbind(SCIENCEB_a_star,SCIENCEB_d_star,SCIENCEB[,4]) 

 

SOCIALA_parm <- cbind(SOCIALA_a_star,SOCIALA_d_star,SOCIALA[,6]) 

SOCIALB_parm <- cbind(SOCIALB_a_star,SOCIALB_d_star,SOCIALB[,6]) 

 

#CONVERT NORMAL OGIVE PARAMATERS TO 3PL PARAMETERS 

#NOTE: 3PL PARAMETERIZATION IS: a(theta-b), WE HAVE a*theta+d 

 

MATHA_parm_3PL <- cbind(MATHA_a_star,-MATHA_d_star/MATHA_a_star, 
MATHA[,6]) 

 

MATHB_parm_3PL <- cbind(MATHB_a_star,-MATHB_d_star/MATHB_a_star, MATHB[,6]) 

 

SCIENCEA_parm_3PL <- cbind(SCIENCEA_a_star, 

-SCIENCEA_d_star/SCIENCEA_a_star,SCIENCEA[,4]) 

 

SCIENCEB_parm_3PL <- cbind(SCIENCEB_a_star, 

-SCIENCEB_d_star/SCIENCEB_a_star,SCIENCEB[,4]) 

 

SOCIALA_parm_3PL <- cbind(SOCIALA_a_star,  

-SOCIALA_d_star/SOCIALA_a_star,SOCIALA[,6]) 

 

SOCIALB_parm_3PL <- cbind(SOCIALB_a_star, 

-SOCIALB_d_star/SOCIALB_a_star,SOCIALB[,6]) 

 

#CREATE ITEM NUMBERS FOR PIE INPUT 

 

ITEM_NUM_MATH <- matrix(c(1:40),ncol=1) 

ITEM_NUM_SCIENCE <- matrix(c(1:48),ncol=1) 

ITEM_NUM_SOCIAL <- matrix(c(1:50),ncol=1) 

 

#CREATE PIE INPUT 
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Figure B-2—continued 

 

MATHA_PIE <- cbind(ITEM_NUM_MATH, MATHA_parm_3PL[,1], 
MATHA_parm_3PL[,2],MATHA_parm_3PL[,3]) 

 

MATHB_PIE <- cbind(ITEM_NUM_MATH, MATHB_parm_3PL[,1], 
MATHB_parm_3PL[,2],MATHB_parm_3PL[,3]) 

 

SCIENCEA_PIE <- cbind(ITEM_NUM_SCIENCE, SCIENCEA_parm_3PL[,1], 
SCIENCEA_parm_3PL[,2],SCIENCEA_parm_3PL[,3]) 

 

SCIENCEB_PIE <- cbind(ITEM_NUM_SCIENCE, SCIENCEB_parm_3PL[,1], 
SCIENCEB_parm_3PL[,2],SCIENCEB_parm_3PL[,3]) 

 

SOCIALA_PIE <- cbind(ITEM_NUM_SOCIAL, SOCIALA_parm_3PL[,1], 
SOCIALA_parm_3PL[,2],SOCIALA_parm_3PL[,3]) 

 

SOCIALB_PIE <- cbind(ITEM_NUM_SOCIAL, SOCIALB_parm_3PL[,1], 
SOCIALB_parm_3PL[,2],SOCIALB_parm_3PL[,3]) 

 

MATH_PIE_IN <- rbind(MATHA_PIE,MATHB_PIE) 

SCIENCE_PIE_IN <- rbind(SCIENCEA_PIE,SCIENCEB_PIE) 

SOCIAL_PIE_IN <- rbind(SOCIALA_PIE,SOCIALB_PIE) 

 

#write.table(MATH_PIE_IN, file="I:\\FINAL_MMATH_PIE_IN.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

 

#write.table(SCIENCE_PIE_IN, file="I:\\FINAL_MSCIENCE_PIE_IN.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

 

#write.table(SOCIAL_PIE_IN, file="I:\\FINAL_MSOCIAL_PIE_IN.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

 

#QUADRATURE POINTS AND WEIGHTS FOR PIE INPUT 

 

#install.packages("MASS") 

#install.packages("mvtnorm") 
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Figure B-2—continued 

 

library(MASS) 

library(mvtnorm) 

 

theta_2d <- expand.grid(theta1=c(seq(-4,4,by=0.20)), theta2=c(seq(-4,4,by=0.20))) 

theta_2d <- data.matrix(theta_2d) 

 

theta_4d <- expand.grid(theta1=c(seq(-4,4,by=0.20)), theta2=c(seq(-4,4,by=0.20)), 
theta3=c(seq(-4,4,by=0.20)), theta4=c(seq(-4,4,by=0.20))) 

theta_4d <- data.matrix(theta_4d) 

 

#MATH 

 

quadwts_MATH <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_MATH[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
MATHA_SIGMA, log = FALSE)  

 } 

quadpts_MATH <- theta_4d %*% MATHA_alpha 

QUAD_MATH <- cbind(quadpts_MATH,quadwts_MATH) 

QUAD_MATH=QUAD_MATH[order(QUAD_MATH[,1]), ] 

QUAD_MATH=QUAD_MATH[-dim(QUAD_MATH)[1],] 

QUAD_MATH <- data.frame(QUAD_MATH) 

QUAD_MATH$INDICATOR=rep(1:40,each=(dim(QUAD_MATH)[1])/40) 

FINAL_QUAD_WTS_MATH <- tapply(QUAD_MATH[,2], QUAD_MATH$INDICATOR, 
sum)  

FINAL_QUAD_PTS_MATH <- tapply(QUAD_MATH[,1], QUAD_MATH$INDICATOR, 
mean)  

FINAL_QUAD_MATH <- cbind(FINAL_QUAD_PTS_MATH, 
FINAL_QUAD_WTS_MATH) 

 

#SCIENCE 

 

quadwts_SCIENCE <- matrix(0,nrow=dim(theta_2d)[1],ncol=1) 
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for(j in 1:dim(theta_2d)[1]) 

 { 

quadwts_SCIENCE[j,1] <- dmvnorm(theta_2d[j,], mean = rep(0, dim(theta_2d)[2]), 
SCIENCEA_SIGMA, log = FALSE)  

 } 

quadpts_SCIENCE <- theta_2d %*% SCIENCEA_alpha 

QUAD_SCIENCE <- cbind(quadpts_SCIENCE,quadwts_SCIENCE) 

QUAD_SCIENCE=QUAD_SCIENCE[order(QUAD_SCIENCE[,1]), ] 

QUAD_SCIENCE=QUAD_SCIENCE[-dim(QUAD_SCIENCE)[1],] 

QUAD_SCIENCE <- data.frame(QUAD_SCIENCE) 

QUAD_SCIENCE$INDICATOR=rep(1:40,each=(dim(QUAD_SCIENCE)[1])/40) 

FINAL_QUAD_WTS_SCIENCE <- tapply(QUAD_SCIENCE[,2], 
QUAD_SCIENCE$INDICATOR, sum)  

FINAL_QUAD_PTS_SCIENCE <- tapply(QUAD_SCIENCE[,1], 
QUAD_SCIENCE$INDICATOR, mean)  

FINAL_QUAD_SCIENCE <- cbind(FINAL_QUAD_PTS_SCIENCE, 
FINAL_QUAD_WTS_SCIENCE) 

 

#SOCIAL STUDIES 

 

quadwts_SOCIAL <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_SOCIAL[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
SOCIALA_SIGMA, log = FALSE)  

 } 

quadpts_SOCIAL <- theta_4d %*% SOCIALA_alpha 

QUAD_SOCIAL <- cbind(quadpts_SOCIAL,quadwts_SOCIAL) 

QUAD_SOCIAL=QUAD_SOCIAL[order(QUAD_SOCIAL[,1]), ] 

QUAD_SOCIAL=QUAD_SOCIAL[-dim(QUAD_SOCIAL)[1],] 

QUAD_SOCIAL <- data.frame(QUAD_SOCIAL) 

QUAD_SOCIAL$INDICATOR=rep(1:40,each=(dim(QUAD_SOCIAL)[1])/40) 

FINAL_QUAD_WTS_SOCIAL <- tapply(QUAD_SOCIAL[,2], 
QUAD_SOCIAL$INDICATOR, sum)  
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FINAL_QUAD_PTS_SOCIAL <- tapply(QUAD_SOCIAL[,1], 
QUAD_SOCIAL$INDICATOR, mean)  

FINAL_QUAD_SOCIAL <- cbind(FINAL_QUAD_PTS_SOCIAL, 
FINAL_QUAD_WTS_SOCIAL) 

 

#write.table(FINAL_QUAD_MATH, file="I:\\QUAD_MATH.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

#write.table(FINAL_QUAD_SCIENCE, file="I:\\QUAD_SCIENCE.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

#write.table(FINAL_QUAD_SOCIAL, file="I:\\QUAD_SOCIAL.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

 

#FULL MIRT PROCEDURE 

 

MATHA_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

MATHB_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

SCIENCEA_SIGMA <- matrix(c(1,0,0,1),ncol=2,byrow=T) 

SCIENCEB_SIGMA <- matrix(c(1,0,0,1),ncol=2,byrow=T) 

SOCIALA_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

SOCIALB_SIGMA <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),ncol=4,byrow=T) 

 

#PROBS WILL BE A (40)^d x NUMBER_ITEMS MATRIX CONTAINING 
PROBABILITIES FOR EACH THETA COMBINATION (ROW) BY EACH ITEM 
(COLUMNS) 

 

theta_2d <- expand.grid(theta1=c(seq(-4,4,by=0.20)), theta2=c(seq(-4,4,by=0.20))) 

theta_4d <- expand.grid(theta1=c(seq(-4,4,by=0.20)), theta2=c(seq(-4,4,by=0.20)),  

 

#install.packages("MASS") 

#install.packages("mvtnorm") 

 

library(MASS) 

library(mvtnorm) 

 

#MATHA 
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Figure B-2—continued 

 

probs <- matrix(0,nrow=dim(theta_4d)[1],ncol=dim(MATHA)[1]) 

for(j in 1:dim(theta_4d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(MATHA)[1])  

 { 

probs[j,i] <- MATHA[i,6] + (1-(MATHA[i,6])) *  

pnorm((MATHA[i,1])*(theta_4d[j,1]) + (MATHA[i,2])*(theta_4d[j,2]) + 
(MATHA[i,3])*(theta_4d[j,3]) + (MATHA[i,4])*(theta_4d[j,4]) + (MATHA[i,5]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 

#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_4d),ncol=((dim(MATHA)[1])+1))  

for(j in 1:dim(theta_4d)[1]) 

 { 

for(i in 1:dim(MATHA)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       

px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 

vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 
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   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 

quadwts_MATH <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_MATH[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
MATHA_SIGMA, log = FALSE)  

 } 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_4d),ncol=((dim(MATHA)[1])+1)) 

joint_dist = px*quadwts_MATH[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_MATHA <- matrix(0,nrow=1,ncol=((dim(MATHA)[1])+1)) 

for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_MATHA[,i]=sum(joint_dist[,i]) 

 } 

 } 

marginal_MATHA <- round(10000*marginal_MATHA) 

 

#MATHB 

 

probs <- matrix(0,nrow=dim(theta_4d)[1],ncol=dim(MATHB)[1]) 

for(j in 1:dim(theta_4d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(MATHB)[1]) 

 { 
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probs[j,i] <- MATHB[i,6] + (1-(MATHB[i,6])) *  

pnorm((MATHB[i,1])*(theta_4d[j,1]) + (MATHB[i,2])*(theta_4d[j,2]) + 
(MATHB[i,3])*(theta_4d[j,3]) + (MATHB[i,4])*(theta_4d[j,4]) + (MATHB[i,5]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 

#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_4d),ncol=((dim(MATHB)[1])+1))  

for(j in 1:dim(theta_4d)[1]) 

 { 

for(i in 1:dim(MATHB)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       

px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 

vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 

   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 
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Figure B-2—continued 

quadwts_MATH <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_MATH[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
MATHB_SIGMA, log = FALSE)  

 } 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_4d),ncol=((dim(MATHB)[1])+1)) 

joint_dist = px*quadwts_MATH[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_MATHB <- matrix(0,nrow=1,ncol=((dim(MATHB)[1])+1)) 

for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_MATHB[,i]=sum(joint_dist[,i]) 

 } 

 } 

marginal_MATHB <- round(10000*marginal_MATHB) 

 

#SCIENCEA 

 

probs <- matrix(0,nrow=dim(theta_2d)[1],ncol=dim(SCIENCEA)[1]) 

for(j in 1:dim(theta_2d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(SCIENCEA)[1])  

 { 

probs[j,i] <- SCIENCEA[i,4] + (1-(SCIENCEA[i,4])) *  

pnorm((SCIENCEA[i,1])*(theta_2d[j,1]) + (SCIENCEA[i,2])*(theta_2d[j,2]) + 
(SCIENCEA[i,3]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 
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#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_2d),ncol=((dim(SCIENCEA)[1])+1))  

for(j in 1:dim(theta_2d)[1]) 

 { 

for(i in 1:dim(SCIENCEA)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       

px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 

vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 

   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 

quadwts_SCIENCE <- matrix(0,nrow=dim(theta_2d)[1],ncol=1) 

for(j in 1:dim(theta_2d)[1]) 

 { 

quadwts_SCIENCE[j,1] <- dmvnorm(theta_2d[j,], mean = rep(0, dim(theta_2d)[2]), 
SCIENCEA_SIGMA, log = FALSE)  

 } 
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Figure B-2—continued 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_2d),ncol=((dim(SCIENCEA)[1])+1)) 

joint_dist = px*quadwts_SCIENCE[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_SCIENCEA <- matrix(0,nrow=1,ncol=((dim(SCIENCEA)[1])+1)) 

for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_SCIENCEA[,i]=sum(joint_dist[,i]) 

 } 

 } 

marginal_SCIENCEA <- round(10000*marginal_SCIENCEA) 

 

#SCIENCEB 

 

probs <- matrix(0,nrow=dim(theta_2d)[1],ncol=dim(SCIENCEB)[1]) 

for(j in 1:dim(theta_2d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(SCIENCEB)[1])  

 { 

probs[j,i] <- SCIENCEB[i,4] + (1-(SCIENCEB[i,4])) *  

pnorm((SCIENCEB[i,1])*(theta_2d[j,1]) + (SCIENCEB[i,2])*(theta_2d[j,2]) + 
(SCIENCEB[i,3]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 

#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_2d),ncol=((dim(SCIENCEB)[1])+1))  

for(j in 1:dim(theta_2d)[1]) 
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 { 

for(i in 1:dim(SCIENCEB)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       

px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 

vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 

   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 

quadwts_SCIENCE <- matrix(0,nrow=dim(theta_2d)[1],ncol=1) 

for(j in 1:dim(theta_2d)[1]) 

 { 

quadwts_SCIENCE[j,1] <- dmvnorm(theta_2d[j,], mean = rep(0, dim(theta_2d)[2]), 
SCIENCEB_SIGMA, log = FALSE)  

 } 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_2d),ncol=((dim(SCIENCEB)[1])+1)) 

joint_dist = px*quadwts_SCIENCE[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_SCIENCEB <- matrix(0,nrow=1,ncol=((dim(SCIENCEB)[1])+1)) 
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for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_SCIENCEB[,i]=sum(joint_dist[,i]) 

 } 

 } 

marginal_SCIENCEB <- round(10000*marginal_SCIENCEB) 

 

#SOCIALA 

 

probs <- matrix(0,nrow=dim(theta_4d)[1],ncol=dim(SOCIALA)[1]) 

for(j in 1:dim(theta_4d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(SOCIALA)[1])  

 { 

probs[j,i] <- SOCIALA[i,6] + (1-(SOCIALA[i,6])) *  

pnorm((SOCIALA[i,1])*(theta_4d[j,1]) + (SOCIALA[i,2])*(theta_4d[j,2]) + 
(SOCIALA[i,3])*(theta_4d[j,3]) + (SOCIALA[i,4])*(theta_4d[j,4]) + (SOCIALA[i,5]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 

#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_4d),ncol=((dim(SOCIALA)[1])+1))  

for(j in 1:dim(theta_4d)[1]) 

 { 

for(i in 1:dim(SOCIALA)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       
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px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 

vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 

   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 

quadwts_SOCIAL <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_SOCIAL[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
SOCIALA_SIGMA, log = FALSE)  

 } 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_4d),ncol=((dim(SOCIALA)[1])+1)) 

joint_dist = px*quadwts_SOCIAL[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_SOCIALA <- matrix(0,nrow=1,ncol=((dim(SOCIALA)[1])+1)) 

for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_SOCIALA[,i]=sum(joint_dist[,i]) 

 } 
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 } 

marginal_SOCIALA <- round(10000*marginal_SOCIALA) 

 

#SOCIALB 

 

probs <- matrix(0,nrow=dim(theta_4d)[1],ncol=dim(SOCIALB)[1]) 

for(j in 1:dim(theta_4d)[1]) #LOOPS FOR ALL ROWS OF THETA COMBINATIONS 

 { 

for(i in 1:dim(SOCIALB)[1])  

 { 

probs[j,i] <- SOCIALB[i,6] + (1-(SOCIALB[i,6])) *  

pnorm((SOCIALB[i,1])*(theta_4d[j,1]) + (SOCIALB[i,2])*(theta_4d[j,2]) + 
(SOCIALB[i,3])*(theta_4d[j,3]) + (SOCIALB[i,4])*(theta_4d[j,4]) + (SOCIALB[i,5]), 

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) 

 } 

 } 

#WE HAVE PROBABILITIES (PROBS), NOW WE NEED TO CALCULATE LORD-
WINGERSKY 

#px = Prob X=x|theta, nrows = number of combinations of theta (quad points), ncols = number 
of items + 1 (could score 0) 

px <- matrix(0,nrow=dim(theta_4d),ncol=((dim(SOCIALB)[1])+1))  

for(j in 1:dim(theta_4d)[1]) 

 { 

for(i in 1:dim(SOCIALB)[1]) 

 { 

if(i == 1)          

  { 

px[j,1] = 1 - probs[j,i]       

px[j,2] = probs[j,i]        

  } 

else 

  { 

vector=c(rep(0,i+1)) 

vector[1] =px[j,i-(i-1)]*(1-probs[j,i]) 
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vector[i+1] =px[j,i]*probs[j,i] 

for(x in 2:i) 

   { 

vector[x] = px[j,x]*(1-probs[j,i])+px[j,x-1]*probs[j,i] 

   } 

px[j,1:(i+1)] = vector 

  } 

 } 

 } 

#DEFINE THETA DISTRIBUTION 

quadwts_SOCIAL <- matrix(0,nrow=dim(theta_4d)[1],ncol=1) 

for(j in 1:dim(theta_4d)[1]) 

 { 

quadwts_SOCIAL[j,1] <- dmvnorm(theta_4d[j,], mean = rep(0, dim(theta_4d)[2]), 
SOCIALB_SIGMA, log = FALSE)  

 } 

#MULTIPLY THETA DISTRIBUTION (quadwts) AND CONDITIONAL DISTRIBUTIONS 
(px) TO FORM JOINT DISTRIBUTION (joint_dist) 

joint_dist <- matrix(0,nrow=dim(theta_4d),ncol=((dim(SOCIALB)[1])+1)) 

joint_dist = px*quadwts_SOCIAL[,] 

#OBTAIN MARGINAL OBSERVED SCORE DISTRIBUTION (marginal) 

marginal_SOCIALB <- matrix(0,nrow=1,ncol=((dim(SOCIALB)[1])+1)) 

for(j in 1:dim(joint_dist)[1]) 

 { 

for(i in 1:dim(joint_dist)[2]) 

 { 

marginal_SOCIALB[,i]=sum(joint_dist[,i]) 

 } 

 } 

marginal_SOCIALB <- round(10000*marginal_SOCIALB) 

 

MATH_ITEM_ID <- matrix(rep(0:40),ncol=1) 

SCIENCE_ITEM_ID <- matrix(rep(0:48),ncol=1) 

SOCIAL_ITEM_ID <- matrix(rep(0:50),ncol=1) 
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Figure B-2—continued 

 

FULLMATH <- cbind(MATH_ITEM_ID, t(marginal_MATHA), t(marginal_MATHB), 
MATH_ITEM_ID) 

FULLSCIENCE <- cbind(SCIENCE_ITEM_ID, t(marginal_SCIENCEA), 
t(marginal_SCIENCEB), SCIENCE_ITEM_ID) 

FULLSOCIAL <- cbind(SOCIAL_ITEM_ID, t(marginal_SOCIALA), t(marginal_SOCIALB), 
SOCIAL_ITEM_ID) 

 

#write.table(FULLMATH, file="I:\\FINAL_FULLMATH.txt", sep="\t", row.names=FALSE, 
col.names=FALSE) 

#write.table(FULLSCIENCE, file="I:\\FINAL_FULLSCIENCE.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

#write.table(FULLSOCIAL, file="I:\\FINAL_FULLSOCIAL.txt", sep="\t", 
row.names=FALSE, col.names=FALSE) 

 

#PLOTS 

 

#install.packages("fields") 

 

data <- read.csv(file="E:\\IOWA\\1DIS.Equating Results.csv", header=TRUE) 

 

attach(data) 

library(fields) 

 

#par(mfrow=c(3,2))  

 

#UNSMOOTHED IDENTITY DIFFERENCE PLOTS 

 

plot(MATHRAW,IMATHEQUI,type="o",main="Math",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Form A Raw Score",xlim=c(0,40),ylim=c(-5,4),pch=15) 

lines(IMATHOBS,type="o",lty=1,pch=1) 

lines(IMATHUAOBS,type="o",lty=1,pch=2) 

lines(IMATHFULL,type="o",lty=1,pch=3) 

lines(IMATHTRUE,type="o",lty=1,pch=5) 

lines(IMATHUATRUE,type="o",lty=1,pch=6) 
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Figure B-2—continued 

lines(IMATHBELOW,lty=2) 

lines(IMATHABOVE,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 

 

plot(SCIENCERAW,ISCIENCEEQUI,type="o",main="Science",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Form A Raw Score",xlim=c(0,48),ylim=c(-5,4),pch=15) 

lines(ISCIENCEOBS,type="o",lty=1,pch=1) 

lines(ISCIENCEUAOBS,type="o",lty=1,pch=2) 

lines(ISCIENCEFULL,type="o",lty=1,pch=3) 

lines(ISCIENCETRUE,type="o",lty=1,pch=5) 

lines(ISCIENCEUATRUE,type="o",lty=1,pch=6) 

lines(ISCIENCEBELOW,lty=2) 

lines(ISCIENCEABOVE,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 

 

plot(SOCIALRAW,ISOCIALEQUI,type="o",main="Social Studies",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Form A Raw Score",xlim=c(0,50),ylim=c(-5,4),pch=15) 

lines(ISOCIALOBS,type="o",lty=1,pch=1) 

lines(ISOCIALUAOBS,type="o",lty=1,pch=2) 

lines(ISOCIALFULL,type="o",lty=1,pch=3) 

lines(ISOCIALTRUE,type="o",lty=1,pch=5) 

lines(ISOCIALUATRUE,type="o",lty=1,pch=6) 

lines(ISOCIALBELOW,lty=2) 

lines(ISOCIALABOVE,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 
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Figure B-2—continued 

#SMOOTHED IDENTITY DIFFERENCE PLOTS 

 

plot(MATHRAW,IMATHEQUISMOOTH,type="o",main="Math",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Form A Raw Score",xlim=c(0,40),ylim=c(-5,4),pch=15) 

lines(IMATHOBS,type="o",lty=1,pch=1) 

lines(IMATHUAOBS,type="o",lty=1,pch=2) 

lines(IMATHFULL,type="o",lty=1,pch=3) 

lines(IMATHTRUE,type="o",lty=1,pch=5) 

lines(IMATHUATRUE,type="o",lty=1,pch=6) 

lines(IMATHBELOWSMOOTH,lty=2) 

lines(IMATHABOVESMOOTH,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 

 

plot(SCIENCERAW,ISCIENCEEQUISMOOTH,type="o",main="Science",xlab="Raw Score 
Form A",ylab="Form B Equivalent Minus Form A Raw Score", xlim=c(0,48), ylim=c(-
5,4),pch=15) 

lines(ISCIENCEOBS,type="o",lty=1,pch=1) 

lines(ISCIENCEUAOBS,type="o",lty=1,pch=2) 

lines(ISCIENCEFULL,type="o",lty=1,pch=3) 

lines(ISCIENCETRUE,type="o",lty=1,pch=5) 

lines(ISCIENCEUATRUE,type="o",lty=1,pch=6) 

lines(ISCIENCEBELOWSMOOTH,lty=2) 

lines(ISCIENCEABOVESMOOTH,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 

 

plot(SOCIALRAW,ISOCIALEQUISMOOTH,type="o",main="Social Studies", xlab="Raw 
Score Form A",ylab="Form B Equivalent Minus Form A Raw Score", xlim=c(0,50),ylim=c(-
5,4),pch=15) 

lines(ISOCIALOBS,type="o",lty=1,pch=1) 

lines(ISOCIALUAOBS,type="o",lty=1,pch=2) 
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Figure B-2—continued 

lines(ISOCIALFULL,type="o",lty=1,pch=3) 

lines(ISOCIALTRUE,type="o",lty=1,pch=5) 

lines(ISOCIALUATRUE,type="o",lty=1,pch=6) 

lines(ISOCIALBELOWSMOOTH,lty=2) 

lines(ISOCIALABOVESMOOTH,lty=2) 

legend(6.8, 4.2, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0,lty=2) 

 

#UNSMOOTHED EQUIPERCENTILE DIFFERENCE PLOTS 

 

plot(MATHRAW,MATHZERO,type="o",main="Math",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent",xlim=c(0,40),ylim=c(-
2,3),pch=15) 

lines(EMATHOBS,type="o",lty=1,pch=1) 

lines(EMATHUAOBS,type="o",lty=1,pch=2) 

lines(EMATHFULL,type="o",lty=1,pch=3) 

lines(EMATHTRUE,type="o",lty=1,pch=5) 

lines(EMATHUATRUE,type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(MATHRAW,MATHZERO,type="o",main="Math",xlab="Raw Score Form A", 
ylab="Absolute Value of Form B Equivalent Minus Equipercentile Equivalent", 
xlim=c(0,40),ylim=c(0,3),pch=15) 

lines(abs(EMATHOBS),type="o",lty=1,pch=1) 

lines(abs(EMATHUAOBS),type="o",lty=1,pch=2) 

lines(abs(EMATHFULL),type="o",lty=1,pch=3) 

lines(abs(EMATHTRUE),type="o",lty=1,pch=5) 

lines(abs(EMATHUATRUE),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 
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Figure B-2—continued 

yline(0.5,lty=2) 

 

plot(SCIENCERAW,SCIENCEZERO,type="o",main="Science",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent",xlim=c(0,48),ylim=c(-
2,3),pch=15) 

lines(ESCIENCEOBS,type="o",lty=1,pch=1) 

lines(ESCIENCEUAOBS,type="o",lty=1,pch=2) 

lines(ESCIENCEFULL,type="o",lty=1,pch=3) 

lines(ESCIENCETRUE,type="o",lty=1,pch=5) 

lines(ESCIENCEUATRUE,type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(SCIENCERAW,SCIENCEZERO,type="o",main="Science",xlab="Raw Score Form 
A",ylab="Absolute Value of Form B Equivalent Minus Equipercentile 
Equivalent",xlim=c(0,48),ylim=c(0,3),pch=15) 

lines(abs(ESCIENCEOBS),type="o",lty=1,pch=1) 

lines(abs(ESCIENCEUAOBS),type="o",lty=1,pch=2) 

lines(abs(ESCIENCEFULL),type="o",lty=1,pch=3) 

lines(abs(ESCIENCETRUE),type="o",lty=1,pch=5) 

lines(abs(ESCIENCEUATRUE),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0.5,lty=2) 

 

plot(SOCIALRAW,SOCIALZERO,type="o",main="Social Studies",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent",xlim=c(0,50),ylim=c(-
2,3),pch=15) 

lines(ESOCIALOBS,type="o",lty=1,pch=1) 

lines(ESOCIALUAOBS,type="o",lty=1,pch=2) 

lines(ESOCIALFULL,type="o",lty=1,pch=3) 

lines(ESOCIALTRUE,type="o",lty=1,pch=5) 

lines(ESOCIALUATRUE,type="o",lty=1,pch=6) 
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Figure B-2—continued 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(SOCIALRAW,SOCIALZERO,type="o",main="Social Studies",xlab="Raw Score Form 
A",ylab="Absolute Value of Form B Equivalent Minus Equipercentile Equivalent", 
xlim=c(0,50),ylim=c(0,3),pch=15) 

lines(abs(ESOCIALOBS),type="o",lty=1,pch=1) 

lines(abs(ESOCIALUAOBS),type="o",lty=1,pch=2) 

lines(abs(ESOCIALFULL),type="o",lty=1,pch=3) 

lines(abs(ESOCIALTRUE),type="o",lty=1,pch=5) 

lines(abs(ESOCIALUATRUE),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0.5,lty=2) 

 

#SMOOTHED EQUIPERCENTILE DIFFERENCE PLOTS 

 

plot(MATHRAW,MATHZERO,type="o",main="Math",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent",xlim=c(0,40),ylim=c(-
2,3),pch=15) 

lines(EMATHOBSSMOOTH,type="o",lty=1,pch=1) 

lines(EMATHUAOBSSMOOTH,type="o",lty=1,pch=2) 

lines(EMATHFULLSMOOTH,type="o",lty=1,pch=3) 

lines(EMATHTRUESMOOTH,type="o",lty=1,pch=5) 

lines(EMATHUATRUESMOOTH,type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(MATHRAW,MATHZERO,type="o",main="Math",xlab="Raw Score Form 
A",ylab="Absolute Value of Form B Equivalent Minus Equipercentile Equivalent", 
xlim=c(0,41),ylim=c(0,3),pch=15) 

lines(abs(EMATHOBSSMOOTH),type="o",lty=1,pch=1) 
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Figure B-2—continued 

lines(abs(EMATHUAOBSSMOOTH),type="o",lty=1,pch=2) 

lines(abs(EMATHFULLSMOOTH),type="o",lty=1,pch=3) 

lines(abs(EMATHTRUESMOOTH),type="o",lty=1,pch=5) 

lines(abs(EMATHUATRUESMOOTH),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0.5,lty=2) 

 

plot(SCIENCERAW,SCIENCEZERO,type="o",main="Science",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent",xlim=c(0,48),ylim=c(-
2,3),pch=15) 

lines(ESCIENCEOBSSMOOTH,type="o",lty=1,pch=1) 

lines(ESCIENCEUAOBSSMOOTH,type="o",lty=1,pch=2) 

lines(ESCIENCEFULLSMOOTH,type="o",lty=1,pch=3) 

lines(ESCIENCETRUESMOOTH,type="o",lty=1,pch=5) 

lines(ESCIENCEUATRUESMOOTH,type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(SCIENCERAW,SCIENCEZERO,type="o",main="Science",xlab="Raw Score Form 
A",ylab="Absolute Value of Form B Equivalent Minus Equipercentile 
Equivalent",xlim=c(0,48),ylim=c(0,3),pch=15) 

lines(abs(ESCIENCEOBSSMOOTH),type="o",lty=1,pch=1) 

lines(abs(ESCIENCEUAOBSSMOOTH),type="o",lty=1,pch=2) 

lines(abs(ESCIENCEFULLSMOOTH),type="o",lty=1,pch=3) 

lines(abs(ESCIENCETRUESMOOTH),type="o",lty=1,pch=5) 

lines(abs(ESCIENCEUATRUESMOOTH),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0.5,lty=2) 
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Figure B-2—continued 

plot(SOCIALRAW,SOCIALZERO,type="o",main="Social Studies",xlab="Raw Score Form 
A",ylab="Form B Equivalent Minus Equipercentile Equivalent", xlim=c(0,50),ylim=c(-
2,3),pch=15) 

lines(ESOCIALOBSSMOOTH,type="o",lty=1,pch=1) 

lines(ESOCIALUAOBSSMOOTH,type="o",lty=1,pch=2) 

lines(ESOCIALFULLSMOOTH,type="o",lty=1,pch=3) 

lines(ESOCIALTRUESMOOTH,type="o",lty=1,pch=5) 

lines(ESOCIALUATRUESMOOTH,type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(c(-0.5,0.5),lty=2) 

 

plot(SOCIALRAW,SOCIALZERO,type="o",main="Social Studies",xlab="Raw Score Form 
A",ylab="Absolute Value of Form B Equivalent Minus Equipercentile Equivalent", 
xlim=c(0,50),ylim=c(0,3),pch=15) 

lines(abs(ESOCIALOBSSMOOTH),type="o",lty=1,pch=1) 

lines(abs(ESOCIALUAOBSSMOOTH),type="o",lty=1,pch=2) 

lines(abs(ESOCIALFULLSMOOTH),type="o",lty=1,pch=3) 

lines(abs(ESOCIALTRUESMOOTH),type="o",lty=1,pch=5) 

lines(abs(ESOCIALUATRUESMOOTH),type="o",lty=1,pch=6) 

legend(5, 3.0, c("Equipercentile","IRT Observed Score","Unidimensional Approximation of 
MIRT Observed Score","Full MIRT Observed Score","IRT True Score","Unidimensional 
Approximation of MIRT True Score"), cex=0.8, pch=c(15,1,2,3,5,6)); 

yline(0.5,lty=2) 

 

#HISTOGRAMS 

 

par(mfrow=c(2,1))  

barplot(data$AMFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWM,main=
"Math Form A",xlab=" ",ylab="Relative Frequency") 

box() 

barplot(data$BMFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWM,main=
"Math Form B",xlab=" ",ylab="Relative Frequency") 

box() 
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Figure B-2—continued 

par(mfrow=c(2,1))  

barplot(data$ASCIFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWSCI,ma
in="Science Form A",xlab=" ",ylab="Relative Frequency") 

box() 

barplot(data$BSCIFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWSCI,mai
n="Science Form B",xlab=" ",ylab="Relative Frequency") 

box() 

 

par(mfrow=c(2,1)) 
barplot(data$ASSFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWSS,main
="Social Studies Form A",xlab=" ",ylab="Relative Frequency") 

box() 

barplot(data$BSSFREQ,ylim=c(0,0.08),density=c(rep(100,50)),names.arg=data$RAWSS,main
="Social Studies Form B",xlab=" ",ylab="Relative Frequency") 

box() 

 

#QUADRATURE PLOTS 

 

#install.packages("fields") 

 

data <- read.csv(file="E:\\IOWA\\1DIS.Equating Results.csv", header=TRUE) 

 

attach(data) 

library(fields) 

 

par(mfrow=c(1,2))  

plot(UMATHPT,UMATHWT,type="o",main="Unidimensional Math Ability 
Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.10),pch=1) 

yline(0,lty=1) 

plot(MMATHPT,MMATHWT,type="o",main="Unidimensional Approximation Math Ability 
Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.10),pch=1) 

yline(0,lty=1) 

 

par(mfrow=c(1,2))  
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Figure B-2—continued 

plot(USCIENCEPT,USCIENCEWT,type="o",main="Unidimensional Science Ability 
Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.25),pch=1) 

yline(0,lty=1) 

plot(MSCIENCEPT,MSCIENCEWT,type="o",main="Unidimensional Approximation Science 
Ability Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.25),pch=1) 

yline(0,lty=1) 

 

par(mfrow=c(1,2))  

plot(USOCIALPT,USOCIALWT,type="o",main="Unidimensional Social Studies Ability 
Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.10),pch=1) 

yline(0,lty=1) 

plot(MSOCIALPT,MSOCIALWT,type="o",main="Unidimensional Approximation Social 
Studies Ability Distribution",xlab="Theta",ylab="Density",xlim=c(-6,6),ylim=c(0,0.10),pch=1) 

yline(0,lty=1) 
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APPENDIX C.  MULTIDIMENSIONAL EQUATING EXAMPLE 

The procedures below provide a step-by-step example of how the unidimensional 
approximation equating procedures were conducted.  The example below uses the first 
five items for each Science exam. 

STEP I: Estimate Multidimensional Item Parameters using TESTFACT 
 
Form A Parameters: 
 
                  1a          2a            d  
Item 1    0.318     1.126      0.391 
Item 2    0.404     0.562     -0.350 
Item 3    0.990     0.230      0.304 
Item 4    0.427     0.233     -0.134 
Item 5    0.765     0.370      0.126 
 
Form B Parameters: 
 
                  1a          2a            d  
Item 1    0.415     0.305     -0.704 
Item 2    0.952     0.333      0.418 
Item 3    1.174     0.115      0.475 
Item 4    0.351     0.301     -0.353 
Item 5    0.241     1.317     -0.663 
 
STEP II: Estimate Test-Level Direction of Best Measurement for Form A and Form B 
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   
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

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
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
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370.0233.0230.0562.0126.1

370.0...126.1765.0...318.0

765.0427.0990.0404.0318.0

22

22

A  

   

   
















































603.0

797.0

317.1...305.0241.0...415.0

317.1301.0115.0333.0305.0

317.1...305.0241.0...415.0

241.0351.0174.1952.0415.0

22

22

B  
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STEP III: Estimate Unidimensional Item Parameters 
 
Sigma-Squared Values: 
 

   

    049.0
656.0

755.0

10

01
370.0765.0

370.0

765.0

10

01
370.0765.0ˆ

411.0
656.0

755.0

10

01
126.1318.0

126.1

318.0

10

01
126.1318.0ˆ

2

2
5

2

2
1























































































A

A







 
 

   

    820.0
603.0

797.0

10

01
317.1241.0

317.1

241.0

10

01
317.1241.0ˆ

000.0
603.0

797.0

10

01
305.0415.0

305.0

415.0

10

01
305.0415.0ˆ

2

2
5

2

2
1























































































B

B





  

 
Unidimensional Discrimination Parameters: 
 

   

    801.0
656.0

755.0

10

01
370.0765.0049.01ˆ

824.0
656.0

755.0

10

01
126.1318.0411.01ˆ

2

1

5

2

1

1









































A

A

a

a

  

 

   

    731.0
603.0

797.0

10

01
317.1241.0820.01ˆ

515.0
603.0

797.0

10

01
305.0415.0000.01ˆ

2

1

5

2

1

1









































B

B

a

a

  

 
Unidimensional Difficulty-“Related” Parameters: 
 

 

  123.0126.0)049.01(

329.0391.0)411.01(

2

1

5

2

1

1









A

A

d

d

  
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 

  491.0663.0)820.01(

704.0704.0)000.01(

2

1

5

2

1

1









B

B

d

d

  

 
Unidimensional Difficulty Parameters: 
 

154.0
801.0

123.0

399.0
824.0

329.0

5

1











A

A

b

b

  

 

672.0
731.0

491.0

367.1
515.0

704.0

5

1





B

B

b

b

  

 
STEP IV: Convert Normal Ogive Parameters to Logistic Parameters 
(Note: this step may differ depending on whether the logistic model incorporates that 
constant 1.7 to make the logistic function similar to the normal ogive). 
 
STEP V: Conduct Observed Score or True Score Equating Given Unidimensional 
Approximation Item Parameters 
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