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ABSTRACT

In the context of moment maps and diffeomorphisms of Kähler manifolds,

Donaldson introduced a fully nonlinear Monge-Ampère type equation. Among the

conjectures he made about this equation is that the existence of solutions is equivalent

to a positivity condition on the initial data. Weinkove later affirmed Donaldson’s

conjecture using a gradient flow for the equation in the space of Kähler potentials of

the initial data. The topic of this thesis is the case when the initial data is merely

semipositive and the domain is a closed Kähler surface. Regularity techniques for

degenerate Monge-Ampère equations, specifically those coming from pluripotential

theory, are used to prove the existence of a bounded, unique, weak solution. With

the aid of a Nakai criterion, due to Lamari and Buchdahl, it is shown that this solution

is smooth away from some curves of negative self-intersection.
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CHAPTER 1
INTRODUCTION

1.1 The Problem

Let (M,ω) be a closed Kähler manifold. Suppose that χ ∈ H2(M ;R) is another

positive (1, 1)-form. In the context of moment maps and diffeomorphisms Donaldson

[12] suggested the study of

ω ∧
(
χ+

√
−1

2π
∂∂̄ϕ

)n−1

= c

(
χ+

√
−1

2π
∂∂̄ϕ

)n
. (1.1)

Equation (1.1) is a fully nonlinear elliptic PDE of Monge-Ampère type. In local

coordinates,

ω =

√
−1

2π
gij̄dz

i ∧ dz j̄ and χ =

√
−1

2π
hij̄dz

i ∧ dz j̄.

Suppose χ̃ = χ+
√
−1

2π
∂∂̄ϕ solves (1.1), then in normal coordinates at a point equation

(1.1) has the form

nc =
n∑
j=1

1

λj
; (1.2)

where {λj} are eigenvalues of [hij̄ + ϕij̄]. Dropping all but one of the terms in (1.2)

yields

ncλj − 1 > 0 for each j = 1, . . . , n. (1.3)

Inequality (1.3) is equivalent to the class condition [ncχ̃ − ω] > 0. In the interior

of the cone determined by this class condition, Weinkove [32] proved the so-called
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J -flow of (1.1) converges to a smooth solution. Not long after, Song and Weinkove

[30] proved the same result when there is a χ′ ∼ χ for which

ncχ′
n−1 − (n− 1)χ′

n−2 ∧ ω > 0; (1.4)

essentially they showed that the J -flow converges to a smooth metric in a larger

cone of admissible metrics. When n = 2 class conditions (1.3) and (1.4) coincide. It

is worth noting that Fang, Lai, and Ma [16] have used a flow in a cone of positive

(1, 1)-forms to obtain smooth metrics χ̃ that satisfy

ωk ∧ χ̃n−k = ckχ̃
n where k = 1, . . . , n

if and only if the initial data, χ and ω, satisfies a certain class condition. Furthermore,

this class of fully nonlinear equations includes equation (1.1) and, in fact, both the

J -flow and condition (1.4) are identical to the k = 1 flow and class condition which

appear in [16].

Song and Weinkove [30] also proved that on Kähler surfaces the J -flow blows

up over some curves of negative self-intersection, as conjectured by Donaldson [12].

The purpose of this thesis is to prove equation (1.1), with degenerate initial data, has

weak solutions on Kähler surfaces which admit curves of negative self-intersection, and

to investigate the regularity properties of these solutions. Specifically, the following

is proved.



3

Theorem 1.1.1. Let M2 be a closed Kähler surface with two Kähler classes [ω] and

[χ].

c =
[χ] · [ω]

[χ]2

is a constant of integration. If [2cχ− ω] is semipositive and not Kähler, then

ω ∧
(
χ+

√
−1

2π
∂∂̄u

)
= c
(
χ+

√
−1

2π
∂∂̄u

)2

(1.5)

has a unique bounded solution, u, in the sense of currents that is smooth away from

E (M , a finite union of irreducible curves of negative self-intersection.

E =
m⋃
j=0

Ej and Ej · Ej = −1 for j = 1 . . .m.

The conditions imposed on [2cχ − ω] by theorem (1.1.1) guarantee that it is

numerical effective and not Kähler–meaning that it lies in the boundary of the Kähler

cone. On Kähler manifolds Nef(M), the numerically effective cone (nef cone), is the

closure of K(M) ⊆ H1,1(M ;R), the Kähler cone: Nef(M) = K(M), see [27] and

[11]. Requiring [2cχ − ω] /∈ K(M) is necessary because, as stated earlier, Wienkove

[32] has already proved that (1.5) has a smooth solution when [2cχ − ω] is Kähler.

Due to Lamari [26] and Buchdahl [6] there is a more geometric characterization for

semipositive classes in ∂K(M) ⊆ H1,1(M ;R) on compact complex surfaces. Namely,

[χ− ω] must vanish on some effective divisor. A slightly more detailed discussion of

this appears in lemma (.0.4) of the appendix.
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1.2 Overview

Nondegenerate Monge-Ampère equations serve as a prototype for the kind of

degenerate Monge-Ampère equations studied in this thesis. The C2 estimate for equa-

tion (1.5) is essentially the C2 estimate that appears in the nondegenerate setting.

Existence and regularity of solutions for nondegenerate complex Monge-Ampère equa-

tions is the content of chapter 2. The Calabi conjecture, a now classical application for

nondegenerate Monge-Ampère equations, asserts that Kähler-Einstein metrics exist

for manifolds with definite first Chern class; and it is also covered in chapter 2.

Theorem (1.1.1) is proved in chapter 3. By converting (1.5) into a degenerate

Monge-Ampère equation we have access to the pluripotential techniques which are

used to obtain L∞ estimates for such equations. On Kähler manifolds, Ko lodziej [24]

used pluripotential theory to prove L∞ estimates and solve the Dirichlet problem

on domains in Cn for Monge-Ampère equations with non-negative and Lp bounded

right-hand-side. Later Demailly, Eyssidieux, Guedj, Pali, Zeriahi, and others adapted

Ko lodziej’s ideas for Monge-Ampère equations with semipositive initial data. In chap-

ter 3 relevant concepts from pluripotential theory are reviewed and used to obtain

L∞ estimates for equations of the later type.
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CHAPTER 2
NONDEGENERATE MONGE-AMPÈRE EQUATIONS

Consider the class of Monge-Ampère equations

(
α +

√
−1

2π
∂∂̄u

)n
= F (u,∇u)Ω, (2.1)

on (M,ω), a closed Kähler manifold. Ω is a smooth volume form and [α] ∈ H1,1(M ;R).

The initial data is the class [α] and function F . An equation in the class of equations

(2.1) for which [α] is Kähler, meaning it can be represented by a Kähler form, and F

is positive and at least C3, is called a nondegenerate Monge-Ampère equation.

A necessary condition for there to be solutions to (2.1) is

∫
M

(ω +

√
−1

2π
∂∂̄u)n =

∫
M

F (u,∇u)Ω. (2.2)

So we assume that the initial data, F and ω together satisfy (2.2). Suppose that u

solves (2.1). It is not necessary for ω +
√
−1

2π
∂∂̄u to be positive definite; if n is even,

a negative definite metric would also solve. Nevertheless we seek a positive solution

metric because the linearization of the Monge-Ampère equation at ω +
√
−1

2π
∂∂̄u > 0

is elliptic. In fact this is true everywhere in the open set of positive metrics that are

cohomolgous to ω. Together these positive metrics form the cone of Kähler metrics

in [ω],

Ka([ω]) :=
{
ω +

√
−1

2π
∂∂̄u

∣∣∣ ω +

√
−1

2π
∂∂̄u > 0 and

∫
M

u Ω = 0
}
,
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which is an open and convex set within [ω]. The normalization condition
∫
M
u Ω = 0

is included to ensure uniqueness–more on this in section (2.2). Modulo constants the

space of Kähler potentials,

H :=
{
ϕ ∈ C4(M)

∣∣∣ ω +

√
−1

2π
∂∂̄ϕ > 0

}
,

is in one-to-one correspondence with the Kähler cone. A quick calculation shows that

the linearization of (2.1) is elliptic in Ka([ω]). Let ϕ(s) : (−ε, ε) −→ Ka([ω]) be a

C1 curve so that ϕ(0) = u and v = ϕ̇(0), then

1

ωnu

d

ds

{(
ω +

√
−1

2π
∂∂̄ϕ(s)

)n}∣∣∣
s=0

=
1

ωnu
· nωn−1

u ∧
√
−1

2π
∂∂̄v

= ∆uv.

In this chapter the following theorem is proved.

Theorem 2.0.1. (Yau) Suppose F ∈ Ck(M) (k ≥ 3) is positive and Ω is a smooth

volume form on M . Then

(ω +

√
−1

2π
∂∂̄u)n = exp{F + cu}Ω, c ≥ 0 is a constant, (2.3)

has a unique solution u ∈ Ck+1,α(M) for any α ∈ [0, 1).

Equation (2.3) is perturbed in order to prove existence of solutions, this is the

method of continuity, and it is described in section (2.5). To make the argument work

a priori estimates up to the second order are derived, section (2.3). The bootstrap-

ping technique, section (2.5.2), provides the higher regularity needed to show that
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the perturbed solutions are compact in Ck+1(M). Various applications of theorem

(2.0.1) are presented in section (2.6); in particular, existence of Kähler-Einstein met-

rics for Kähler manifolds with nonpositive Ricci curvature is proved. The following

presentation is based primarily on material from Yau [33] and Siu [29].

2.1 Preliminaries

(Mn, ω) is a compact Kähler manifold of complex dimension n. ω is a positive

(1,1)-form and given locally as

ω =

√
−1

2π
gij̄ dz

i ∧ dz j̄.

Here and throughout repetition of indices denotes summation. Both ω̃ and ωu are

defined to be

ω̃ = ωu := ω +

√
−1

2π
∂∂̄u.

Locally, they have the following form

ω̃ =

√
−1

2π
g̃ij̄ dz

i ∧ dz j̄ and ω =

√
−1

2π
gij̄ dz

i ∧ dz j̄.

Metrics that solve the Monge-Ampère equation will be in the Kähler cone of [ω]. Its

definition is repeated below.

Ka([ω]) :=
{
ωu

∣∣∣ ωu > 0 and

∫
M

u Ω = 0
}
.

The Riemann curvature tensor and its traces (Ricci curvature tensor and scalar

curvature) when written in local coordinates with respect to ω are

Rij̄kl̄ (resp. Rij̄ and R). Anything different is dependent on ω̃. Again suppose v ∈ H.

Metric Laplacians associated to ω and ωv act on C2(M) functions and are denoted
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∆ := gij̄∇i∇j̄ and ∆v := gij̄v ∇i∇j̄,

respectively. The Laplacian associated to ωu, where u is a solution to equation (2.3),

is denoted

∆̃ := g̃ij̄∇i∇j̄.

2.2 Uniqueness

Solutions to equation (2.3) are unique up to constants. To see this suppose

u, v ∈ C2(M) and ωnu = ωnv .

0 = ωnu − ωnv =

∫ 1

0

d

dt

(
tωu + (1− t)ωv

)n
dt

=

{
n

∫ 1

0

(
tωu + (1− t)ωv

)n−1

dt

}
∧
√
−1

2π
∂∂̄(u− v). (2.4)

Since ωu and ωv are known and positive definite,
(
tωu+(1−t)ωv

)n−1

is positive

as a (n − 1, n − 1)-form ∀ t ∈ [0, 1]. Furthermore, (2.4) is a linear elliptic equation.

By the maximum principle for linear elliptic equations, supM u − v = sup∂M u − v,

otherwise it achieves its maximum in the interior which implies u − v is constant.

∂M = ∅ so u − v is constant. If u and v are mean zero, then the integral of u − v

over M is zero, so necessarily u = v. Therefore, a mean zero potential which solves

(2.3) is unique.
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2.3 C2 Estimates

To prove the existence of a solution, u, to (2.3), a priori estimates up to C2,α

are needed. The uniform C2,α estimates of Evans and Krylov require uniform esti-

mates of the real second partials of u. Instead of directly estimating all n2 mixed

second partials, {uij̄}, it will suffice to bound the eigenvalues of ω +
√
−1

2π
∂∂̄u, the

solution Kähler form. Essentially, this is a consequence of the Cauchy-Schwarz in-

equality.

Lemma 2.3.1. Suppose A = [aij̄] ∈ GL(n,C) is Hermitian and positive. Also,

there is a positive constant Λ > 1, so that Λ−1 < tr{A} < Λ. Then |aij̄| < Λ2 for

i, j = 1, . . . , n.

Proof. Suppose that {e1, · · · , en} is an orthonormal frame of T ′p(M). Let g(ei, ej̄) =

aij̄. Because A is Hermitian, positive, and bounded, g(v, w) := [w]∗A[v] is a nondegen-

erate inner product on T ′p(M). If v, w ∈ T ′p(M) are unit vectors, the Cauchy-Schwarz

inequality and bounds on A imply that

0 ≤ |g(v, w)|2 ≤ g(v, v) · g(w,w) ≤ Λ2.

In particular,

0 ≤ |aij̄|2 ≤ aīi · ajj̄ ≤ Λ2.
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2.3.1 C2 Lower Bound

The right-hand-side of (2.3) is smooth and M is compact so by the extreme

value theorem ∃ε > 0 so that ω̃n = n! · det(g̃ij̄) > ε ∀p ∈ M . Letting {λi} denote

the eigenvalues of g̃ and the statement becomes:

n!
n∏
i=1

λi > ε.

Suppose there is a global constant C > 0 so that C > λi for i = 1, . . . , n. Then

λi >
ε

n!Cn−1
for i = 1 . . . n.

So, a uniform C2 lower bound would follow naturally from a uniform C2 upper

bound.

2.3.2 C2 Upper Bound

So far the task of estimating the mixed second partials of the solution to (2.3),

u, has been reduced to estimating the supremum norm of the largest eigenvalue of

∂∂̄u. Equivalently, we can uniformly bound tr{g−1g̃} = n + ∆u. Before proceeding

the method is briefly outlined.

∆̃f(n+ ∆u), where f ∈ C∞(M) is

∆̃f(n+∆u) = 1st Order in u + 2nd Order in u + 3rd Order in u + 4th Order in u .

(2.5)

Application of a suitable Laplacian to equation (2.3) yields an expression with
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a fourth order term identical to the one which appears in (2.5). Then subtracting this

second expression from ∆̃f(n + ∆u) eliminates the fourth order terms. A Schwarz

inequality is used to handle the third order term of (2.5) and the maximum principle

for Laplacians finishes the estimate.

To simplify the ensuing calculations normal coordinates at an arbitrary point

p ∈ M are taken so that ∂g = ∂̄g = 0 at p ∈ M . This property of Kähler of metrics

is proven in lemma (.0.3) of the appendix. Two derivatives of the logarithm of the

Monge-Ampère equation (2.3) are taken.

∂∂̄
{

log det(g̃)− F − cu− log det(g)
}

= ∂tr
{
g−1
u ∂̄gu

}
− ∂∂̄F − c∂∂̄u− ∂tr

{
g−1∂̄g

}
= tr

{
∂g−1

u ∧ ∂̄gu
}

+ tr
{
g−1
u ∂∂̄gu

}︸ ︷︷ ︸
A

−∂∂̄F

− c∂∂̄u− tr

∂g−1 ∧ ∂g︸ ︷︷ ︸
=0

− tr
{
g−1∂∂̄g

}
.

∂∂̄tr
{
g−1gu

}
= tr

{
gu∂∂̄g

−1 − ∂̄g−1 ∧ ∂gu + ∂g−1 ∧ ∂̄gu + g−1∂∂̄gu
}

= tr
{
∂∂̄g−1gu

}
+ tr

{
g−1∂∂̄gu

}︸ ︷︷ ︸
B

.

A and B are fourth order terms. Note
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g̃kl̄Bkl̄ = gkl̄Bkl̄trkl̄Akl̄.

Then,

trkl̄

{
g−1
u ∂∂̄tr

{
g−1gu

}}
= trkl̄

{
g−1
u tr

{
gu∂∂̄g

−1
}}

+ trkl̄
{
g−1
u B

}
= trkl̄

{
g−1
u tr

{
gu∂∂̄g

−1
}}

+ ∆F + c∆u

+ trkl̄

{
g−1tr

{
g−1∂∂̄g

}}
− trkl̄

{
g−1

{
∂g−1

u ∧ ∂̄gu
}}

.

In local coordinates the above formula becomes

∆̃ (n+ ∆u) = g̃kl̄g̃ij̄R
ij̄

kl̄
+ ∆F + c∆u− gkl̄∂kg̃ij̄∂l̄g̃ij̄ + gij̄gkl̄Rij̄kl̄

= g̃kl̄g̃ij̄R
ij̄

kl̄
+ ∆F + c∆u+ gkl̄g̃iāg̃bj̄∂kg̃ab̄∂l̄g̃ij̄ +R. (2.6)

Since there are no fourth order terms in (2.6), the only thing left to do is handle the

third order term; this is facilitated by the following lemma.

Lemma 2.3.2.

gkl̄g̃iāg̃bj̄∂kg̃ab̄∂l̄g̃ij̄ ≥
|∇̃∆u|2

n+ ∆u
. (2.7)

Proof. The following proof is contained in chapter 2 of Siu [29]. In normal coordinates

for g so that g̃ is diagonal at p ∈ M (see lemma (.0.3)), the right-hand-side of (2.7)

can be rewritten so the Cauchy-Schwarz inequality can be applied.
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|∇̃∆u|2 = g̃ij̄∂itr
(
g−1g̃

)
∂j̄tr

(
g−1g̃

)
= g̃ij̄tr

(
g−1∂ig̃

)
tr
(
g−1∂j̄ g̃

)
, because ∂cgab̄ = ∂c̄gab̄ = 0,

= gab̄gcd̄g̃ij̄∂ig̃cd̄∂j̄ g̃ab̄

≤ gcd̄
(
g̃ij̄∂ig̃cd̄∂j̄ g̃cd̄

) 1
2 · gab̄

(
g̃kl̄∂kg̃ab̄∂l̄g̃ab̄

) 1
2
, by Cauchy-Schwarz inequality,

=
(
gab̄
(
g̃ij̄∂ig̃ab̄∂j̄ g̃ab̄

) 1
2
)2

=
(∑

a

√
g̃aā

(∑
i

g̃aāg̃īi∂ig̃aā∂īg̃aā

) 1
2
)2

, because g̃ is diagonal,

=
(∑

a

√
g̃aā

(
g̃aā|∂g̃aā|2ω̃

) 1
2
)2

≤
(∑

a

g̃aā

)
·
(∑

a

g̃aā|∂g̃aā|2ω̃
)
, by Cauchy-Schwarz inequality ,

≤
(
n+ ∆u

)
gab̄g̃kl̄g̃ij̄∂ag̃il̄∂b̄g̃kj̄.

In the last step a property of the Kähler metric ω̃ is used:

dω̃ = 0 =⇒ ∂ag̃bc̄ = ∂bg̃ac̄ and ∂āg̃bc̄ = ∂c̄g̃bā.

Now, Lemma (2.3.2) is used to compare third order terms which appear in the right
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hand side of (2.6).

∆̃ log(n+ ∆u) =
∆̃(n+ ∆u)

n+ ∆u
− |∇̃(n+ ∆u)|2

(n+ ∆u)2

=
1

n+ ∆u

(
g̃kl̄g̃ij̄R

ij̄

kl̄
+ ∆F + c∆u

+ gkl̄g̃iāg̃bj̄∂kg̃ab̄∂l̄g̃ij̄ −
|∇̃(n+ ∆u)|2

n+ ∆u︸ ︷︷ ︸
≥0

+R

)

≥ 1

n+ ∆u

(
g̃kl̄g̃ij̄R

ij̄

kl̄
+ ∆F − nc+R

)
.

The curvature term Rij̄

kl̄
is bounded so ∃C > 0 so that Rij̄

kl̄
≥ −Cgij̄gkl̄.

Also, the extreme value theorem and smoothness of f and R imply that they are

both bounded. All constants used in this section are dependent on ω and M .

∆̃ log(n+ ∆u) ≥ 1

n+ ∆u

(
− C · (n+ ∆u) · g̃kl̄gkl̄ + inf ∆F − nc+R

)

= −Cg̃kl̄gkl̄︸ ︷︷ ︸
D

+
inf{∆F − nc+R}

n+ ∆u
(2.8)

= −(C + 1)n+ (C + 1)∆̃u+ g̃kl̄gkl̄ +
inf{∆F − nc+R}

n+ ∆u
.

(2.9)

In the last step the formula

g̃kl̄gkl̄ + ∆̃u = n

is used to rewrite term D of equation (2.8). At p ∈M , gij̄ = δij̄ and g̃ij̄ =
(
1+uīi

)
δij̄.
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So,

∆̃ log(n+ ∆u) = −(C + 1)n+ (C + 1)∆̃u+
n∑
i=1

1

1 + uīi
+

inf{∆F − nc+R}
n+ ∆u

.

After using (
n∑
i=1

1

1 + uīi

)n−1

≥
∑n

i=1 1 + uīi
Πn
i=11 + uīi

,

∆̃ log(n+ ∆u) ≥ −(C + 1)n+ (C + 1)∆̃u+

(∑n
i=1 1 + uīi

Πn
i=11 + uīi

) 1
n−1

+
inf{∆F − nc+R}

n+ ∆u

≥ −(C + 1)n+ (C + 1)∆̃u+
(
n+ ∆u

) 1
n−1 · exp

(
− F + cu

n− 1

)
+

inf{∆F − nc+R}
n+ ∆u

.

The Monge-Ampère equation (2.3) is used in the last line. At the maximum point of

log(n+ ∆u)− (C + 1)u we have

(C + 1)n− inf{∆F − nc+R}
n+ ∆u

≥
(
n+ ∆u

) 1
n−1 · exp

(
− F + cu

n− 1

)
=⇒

2 ·max{(C + 1)n,
| inf{∆F − nc+R}|

n+ ∆u
} ≥

(
n+ ∆u

) 1
n−1 · exp

(
− F + cu

n− 1

)
.

(2.10)

This implies that either

2(C+1)n ·exp
(F + cu

n− 1

)
≥
(
n+∆u

) 1
n−1

or 2
| inf{∆F − nc+R}|

n+ ∆u
≥
(
n+∆u

) 1
n−1

.
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The left-hand-side of the first inequality is a priori bounded because potential func-

tions of metrics in Ka([ω]) have a priori supremum bounds, this fact is proved in

section (2.4). Both inequalities are upper bounds for (n + ∆u)(p). Suppose the

maximum of log(n+ ∆u)− (C + 1)u occurs at p ∈M . Then,

(n+ ∆u) exp
{
− (C + 1)u

}
(q) ≤ C1 · exp

{
− (C + 1) inf

x∈M
u
}
∀q ∈M. (2.11)

And

0 < n+ ∆u ≤ C1 exp
{

(C + 1)
(
u− inf

x∈M
u
)}
.

Therefore, the eigenvalues of g̃ are uniformly bounded above in terms of known

constants and infM u and supM u. To complete the C2 estimate for (2.3), supM |u| is

estimated.

2.4 L∞ Estimate

The C2 estimates derived in the previous section are incomplete without uni-

form estimates of the supremum norm of solutions to (2.3). In this section L∞ esti-

mates for solutions are derived. The strategy employed is a Moser-iteration argument

due to Aubin [2], Bourguignon [1], and Kazdan [20]. An a priori L1 estimate of u

is needed for the iteration to work, so we’ll first calculate this estimate. Let G(p, q)

denote the Green’s function of ∆. Since M is compact there is a constant K > 0 so

that G(p, q) ≥ −K. For more information about Green’s functions on Riemannian

manifolds see Aubin [3]. u is mean zero so we have
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u(p) = −
∫
M

G(p, q)∆u(q) ωn(q) = −
∫
M

(G(p, q) +K)∆u(q) ωn(q)

≤
∫
M

(G(p, q) +K) · n ωn(q) , because n+ ∆u > 0.

Therefore,

sup
p∈M

u(p) ≤ n · sup
p∈M

∫
M

(G(p, q) +K) ωn(q). (2.12)

By using (2.12), ‖u‖1 can be estimated. Note that u mean zero implies

0 =

∫
M

u =

∫
M

u+ − u− =⇒
∫
M

u+ =

∫
M

u−.

Then,

∫
M

|u| ωn =

∫
M

(
u+ + u−

)
ωn = 2

∫
M

u+ ωn

≤ 2[ω]n sup
x∈M

u

≤ 2n[ω]n · sup
p∈M

∫
M

(G(p, q) +K) ωn(q).

So, there is a constant C = C(M,ω) for which ‖u‖1 ≤ C.

Lemma 2.4.1. Suppose that u ∈ C4 is a solution of
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

(
ω +

√
−1

2π
∂∂̄u

)n
= f(x, u)Ω

df
dt
≥ 0, f > 0, and f ∈ Ck(M × R)

∃C > 0 so that ‖f(x, u)‖∞ ≤ C.

(2.13)

Then there is a constant C = C(Vol(M), ω, supy∈M×R f) so that

‖u‖∞ ≤ C.

Proof. Equation (2.3) fits into the class of equations defined by (2.13). Suppose

h : R −→ R is an increasing function, to be defined later. Then by Stokes’ theorem

we derive,

0 =

∫
M

∂
(
hωn−1

su ∧ ∂̄u
)

=

∫
M

∂h ∧ ωn−1
su ∧ ∂̄u+

∫
M

h ωn−1
su ∧ ∂∂̄u =⇒∫

M

h ωn−1
su ∧ ∂∂̄u = −

∫
M

∂h ∧ ωn−1
su ∧ ∂̄u. (2.14)

Furthermore,

∫
M

h(u)
{
ωnu − ωn

}
=

∫ 1

0

∫
M

h(u)
d

ds

{
(ω + s

√
−1

2π
∂∂̄u)n

}
ds

= n

∫ 1

0

∫
M

h(u)(ω + s

√
−1

2π
∂∂̄u)n−1 ∧

√
−1

2π
∂∂̄u ds

= −n
∫ 1

0

∫
M

h′(u)
(
sω̃ + (1− s)ω

)n−1

∧ ∂u ∧
√
−1

2π
∂̄u ds,

by (2.14),

= n

∫ 1

0

∫
M

h′(u)
(
sω + (1− s)ω̃

)n−1

∧ ∂u ∧
√
−1

2π
∂̄u ds.
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Because the Kähler cone is convex,
(
sω + (1 − s)ω̃

)n−1

is positive as a (n −

1, n− 1)-form ∀s ∈ [0, 1].

0 <
(
sω + (1− s)ω̃

)n−1

=
n−1∑
j=0

(
n− 1

j

)
(1− s)jsn−j−1ω̃j ∧ ωn−j−1. (2.15)

Each term in the left-hand-side of (2.15) is positive because s ∈ [0, 1], and ω and ω̃

are positive. Moreover,

(
sω + (1− s)ω̃

)n−1

∧ η ∧ η̄ ≥ sn−1ωn−1 ∧ η ∧ η̄.

Then,

∫
M

h(u)
{
ωnu − ωn

}
≥ n

∫ 1

0

∫
M

h′(u)sn−1ωn−1 ∧ ∂u ∧
√
−1

2π
∂̄u ds

=

∫
M

h′(u)ωn−1 ∧ ∂u ∧
√
−1

2π
∂̄u, after integrating in s,

=
1

n

∫
M

h′(u)|∇u|2ωn.

(2.16)

Define h := u|u|α. By the hypothesis of lemma (2.4.1), the left-hand-side of (2.16) is

bounded above and

∫
M

h(u)
{
ωnu − ωn

}
≤
∣∣∣ ∫

M

h(u)(f − 1) ωn
∣∣∣ ≤ sup

M
{|f − 1|} ·

∫
M

|u|α+1 ωn. (2.17)

Differentiating h yields
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∫
M

h′(u)|∇u|2ωn = (α + 1)

∫
M

|u|α|∇u|2ωn = 4
α + 1

(α + 2)2

∫
M

∣∣∇u|u|α2 ∣∣2 ωn. (2.18)

By combining equation (2.17) and equation (2.18) with inequality (2.16),

4
α + 1

(α + 2)2
‖∇u|u|

α
2 ‖2

2 ≤ n · sup
M
{|f − 1|} · ‖u‖α+1

α+1. (2.19)

Now, we proceed with the iteration part of the argument. The Sobolev em-

bedding theorem for k = p = 2 states

W 2,2(M) ↪→ L
2n
n−1 (M).

When written as an inequality it is

‖v‖ 2n
n−1
≤ C

(
‖∇v‖2 + ‖v‖2

)
where C = C(n) > 0.

Set v = u|u|α2 in the Sobolev inequality above. When the Cauchy inequality is applied,

see [14],

‖u|u|
α
2 ‖2

2n
n−1
≤ 2C2

(
‖∇u|u|

α
2 ‖2

2 + ‖u‖2(α+2)
α+2

)

≤ 2C2

(
n · sup

M
{|f − 1|} · (α + 2)2

4(α + 1)
‖u‖2

α+1 +

∫
M

|u|α+2Ω

)
, by (2.19),

≤ 2C2

(
n · sup

M
{|f − 1|} · (α + 2)Vol(M)

1
α+2 ·

(∫
M

|u|α+2Ω
)α+1
α+2

(2.20)

+

∫
M

|u|α+2Ω

)
.
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Hölder’s inequality is used in the last line. To simplify expression (2.20) define

C̃(f,Vol(M)) = n · supM{|f − 1|}Vol(M)
1

α+2 . It is assumed that C̃ ≥ max{4C2, 1}.

Also, set β = n
n−1

and p := α+ 2 ≥ 2. After noticing that xε ≤ x+ 1 ∀x ≥ 0 and for

each ε ≤ 1, we get

‖u|u|
α
2 ‖2

2n
n−1

= ‖u‖ppβ ≤ C̃p

(
1 +

∫
M

|u|pΩ

)

≤ 2C̃pmax{1,
∫
M

|u|pΩ}. (2.21)

When u is replaced by uβ
k−1

in inequality (2.21), for each k ∈ Z+

‖upβk−1‖β ≤ 2C̃pmax{1,
∫
M

|u|pβk−1

Ω}. (2.22)

After the logarithm of the pβk−1th root of each side of (2.22) is taken, for each k ∈ Z+

log max{1, ‖u‖pβk} ≤
1

pβk−1
log 2C̃ +

1

pβk−1
log p+ log max{1, ‖u‖pβk−1}. (2.23)

By inductively applying inequality (2.23) and summing,

log max{1, ‖u‖pβk} ≤
1

p

( k−1∑
j=0

β−j
)

log 2C̃ +
1

p

( k−1∑
j=0

β−j
)

log p+ log max{1, ‖u‖p};

the limit as k −→∞ and p = 2 is

log max{1, ‖u‖∞} ≤
n

p
log C̃p+ log max{1, ‖u‖2}.

So, it suffices to find a uniform upper bound for ‖u‖2. Because u is mean zero,
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u is not in the kernel of −∆. Let λ1 > 0 be the smallest non-zero eigenvalue of −∆.

Then integration-by-parts yields

(∇u,∇u) = −(∆u, u) ≥ λ1(u, u) =⇒
∫
M

|∇u|2 ≥ λ1

∫
M

|u|2. (2.24)

For α = 0, equation (2.19) is

∫
M

|∇u|2 ≤ n · sup
M
{|f − 1|} · ‖u‖1. (2.25)

After combining (2.24) with (2.25) and using Hölder inequality (with p = q = 1
2
),

∫
M

|u|2 ≤ n · supM{|f − 1|}
λ1

·
∫
M

|u| Ω ≤ n · Vol(M)
1
2

supM{|f − 1|}
λ1

(∫
M

|u|2
) 1

2
.

Finally,

‖u‖2 ≤ n · Vol(M)
1
2

supM{|f − 1|}
λ1

,

and ‖u‖∞ is uniformly bounded.

2.5 Existence of a Solution to Equation (2.3)

With the C2 estimate for solutions to (2.3) in hand we can now describe

the continuity approach used to prove the existence of a solution. The method of

continuity associates a family of Monge-Ampère equations,

(
ω +

√
−1

2π
∂∂̄ut

)n
= A(t)etF+cuωn for c ≥ 0 and t ∈ [0, 1] , (?t)
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to equation (2.3). Where

A(t) = Vol(M) ·
(∫

M

etF+cu ωn
)−1

is a compatibility constant for each t. It will eventually be shown that (?t) is solvable

∀t, so it is necessary that integrals over M of both sides of (?t) be equal for each

t ∈ [0, 1]. Note the equation at t = 1 is (2.3), the equation we want to solve. By

showing S =
{
t ∈ [0, 1] | (?t) has a solution

}
is nonempty, open, and closed the

existence of a solution is established. S 6= ∅ because u0 ∈ R a constant solves the

equation at t = 0.

2.5.1 S is Open

Suppose t0 ∈ S; then ut0 solves equation ?t0 . Let Bk =
{
v ∈ Ck+1,α(M) |∫

M
v ωn = 0 and ωv > 0

}
and Dk =

{
f ∈ Ck−1,α(M) |

∫
M
f ωn = Vol(M)

}
. Define

MA : Bk −→ Dk to be

MA(u) := log det(gij̄ + uij̄)− log det(gij̄)− cu.

MA is a map of Banach spaces and it has a differential. We will show that its

differential at ut0 , the solution to ?t0 , is an isomorphism of Tut0 (Bk) with TMA(ut0 )(Dk).

To compute the differential of MA at ut0 consider a C1 curve in Bk,

φ(s) : (−ε, ε) −→ Bk so that φ(0) = ut0 and φ̇(0) = v ∈ Tut0 (Bk).

It is not important to completely characterize the tangent space of Bk, but we will
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need one fact; namely, φ̇(s) is in Bk for each s. By the definition of Bk

0 =

∫
M

φ(s) ωn.

Then taking the derivative of both sides shows that

0 =

∫
M

φ̇(s)
∣∣∣
s=0

ωn =

∫
M

v ωn,

and v ∈ Tut0 (Bk) is mean zero. By a similar argument w ∈ Tut0 (Dk) is mean zero:

Let β(s) : (−ε, ε) −→ Dk be a C1 curve so that β̇(0) = w. Then by differentiating

Vol(M) =

∫
M

β(s) ωn,

0 =

∫
M

β̇(s)
∣∣∣
t=0

ωn =

∫
M

w ωn.

With our minimal characterization of the tangent spaces of Bk and Dk we can

proceed. The linearization of MA is:

Dut0
MA(v) =

d

ds

{
log

n∧
j=1

(
gij̄ + φ(s)ij̄

)
− log det(gij̄)− cφ(s)

}∣∣∣
s=0

=
n

det(gij̄ + ut0
ij̄

)
·
( n−1∧
j=1

(
gij̄ + φ(s)ij̄

))
∧ φ̇(s)ij̄

∣∣∣
s=0
− cφ̇(s)|s=0

=
n

det(gij̄ + ut0
ij̄

)
·
( n−1∧
j=1

gij̄ + ut0
ij̄

)
∧ vij̄ − cv

= ∆ut0v − cv
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The ωut0 -Laplacian has negative spectrum and c is positive, so the spectrum

of ∆ut0 − c is negative; moreover it is a bijection on mean zero functions. Then

the linearization of MA, as claimed, is an isomorphism and we can use the implicit

function theorem for Fréchet differentiable maps, see [17], to show that S is open.

When this implicit function theorem is applied to MA at ut0 we get an open set

U ⊂ Bk with ut0 ∈ U , and another open set V ⊂ Dk with logA(t0) + t0F ∈ V ,

for which MA : U −→ V is a bijection. Furthermore, there exists a δ > 0 so that

logA(t) + tF ∈ V ∀t ∈ (t0 − δ, t0 + δ). Using the just established fact that MA is

invertible on U , we see that

MA−1(logA(t) + tF ) = ut

solves (?t) for t ∈ (t0 − δ, t0 + δ). Therefore, S is open.

2.5.2 S is Closed

Uniform ellipticity and convexity of (2.3), and uniform C2 estimates for so-

lutions imply uniform C2,α estimates for solutions {ut}, see Evans [13]. Therefore,

S ⊂ C2,α(M) is a bounded set. Repeated applications of Schauder estimates show

that S is uniformly bounded in Ck+1,α(M). Take a sequence of solutions {ut} ⊆ S.

Around a point in M there is an open set U ⊂ M for which ω =
√
−1

2π
∂∂̄v and

v ∈ C∞(U). On U the logarithm of equation (?t) is

0 = log det

(
vij̄ +

∂2ut
∂zi∂z j̄

)
− log det(vij̄)− cut − tF − logA(t). (2.26)
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Differentiating (2.26) in the zl (or z̄l) direction (this is okay because we have assumed

that ut ∈ C4(M)) yields

0 = ∆̃
∂(v + ut)

∂zl
−c∂ut

∂zl
−∆

∂v

∂zl
−tFl =⇒ ∆̃

∂(v + ut)

∂zl
−c∂(v + ut)

∂zl
= ∆vl−cvl+tFl.

This calculation is very similar to the linearization of the Monge-Ampère op-

erator in section (2.5.1). The regularity assumption made in theorem (2.0.1) for the

right-hand-side of equation (2.3) implies that Fl ∈ Ck−1(M). Also, the linear oper-

ator ∆̃ − c has uniformly bounded coefficients in C0,α(M), because ut is uniformly

bounded in C2,α(M). Then by Schauder interior estimates, theorem 6.2 of [17], we

have the following C2,α-norm estimate of ∂lut:

‖∂lut‖C2,α(U) ≤ C
(
‖∂lut‖L∞(M) + ‖tFl + ∆vl − cvl‖Cα(M)

)
, (2.27)

where C = C(ω, U,M, α). Furthermore, (2.27) is a C3,α(U) estimate of ut, and the

coefficients of ∆̃− c lie in C1,α(U), which is one derivative higher than its previously

established regularity. k−2 more applications of Schauder interior estimates to (2.27)

show that ‖ut‖Ck+1,α(U) ≤ C(‖F‖Ck(M), ω, U). M is compact, so it can be covered by a

finite number of open sets on which Schauder estimates are valid. Therefore, the local

estimates derived above can be made global; ut is uniformly bounded in Ck+1,α(M).

Suppose C > 0 is the Ck+1,α(M) bound for S, then for any f ∈ S

|Dβf(x)−Dβf(y)| ≤ C · d(x, y)α where β ⊂ {1, . . . , n} and |β| = k + 1.
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Consequently, for each ε > 0 there is a δ =
(
ε
C

)α
for which |Dβf(x)−Dβf(y)| ≤ ε for

every f ∈ S and d(x, y) ≤ δ. This is precisely the definition of equicontinuity. Then

by Arzelá-Ascoli S ⊂ Ck+1(M) is sequentially compact, and thus compact and closed.

Suppose u = limt→1 ut ∈ Ck+1(M) ∩ S solves equation (2.3). Another application of

Schauder estimates shows that u is uniformly bounded in Ck+1,α(M).

2.6 Kähler-Einstein Metrics

In this section theorem (2.0.1) is applied to prove the Calabi conjecture when

c1(M) is negative definite and c1(M) is cohomologous to zero.

Theorem 2.6.1. Let (M,ω) be a compact Kähler manifold. If Γ ∈ H1,1(M,C) rep-

resents c1(M), then there exists a unique Kähler metric ω̃ ∈ [ω] so that Ric(ω̃) = Γ.

Proof. [Ric(ω)] = c1(M) , see Griffiths and Harris [18]. Suppose there is a metric ω̃

for which Ric(ω̃) = Γ. Then,

Γ ∈ c1(M) ⇐⇒ Ric(ω)− Ric(ω̃) ∼ 0.

By the ∂∂̄-lemma, Griffiths and Harris [18], there is a function F ∈ C∞(M) so that

∂∂̄F = Ric(ω)− Ric(ω̃) = −∂∂̄ log det(gij̄) + ∂∂̄ log det(g̃ij̄).

In the last line, the local representation of Ricci curvature is used, see

Kobayashi and Nomizu [23].
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∂∂̄

{
F + log det(gij̄)− log det(g̃ij̄)

}
= 0

⇐⇒ ωn−1 ∧
√
−1

2π
∂∂̄

{
F + log det(gij̄)− log det(g̃ij̄)

}
= 0

⇐⇒ ∆
{
F + logωn − log ω̃n

}
= 0.

M is compact so by the maximum principle F + logωn− log ω̃n, a harmonic function,

must be a constant, say b ∈ R. Therefore, finding a Kähler metric, ω̃ ∈ [ω] so that

Γ = Ric(ω̃) is equivalent to solving a Monge-Ampère equation:


ω̃n = eF−bωn

ω̃ = ω +
√
−1

2π
∂∂̄u > 0 and

∫
M
eFωn = Vol(M).

(2.28)

The normalization
∫
M
eFωn = Vol(M) and Stokes’ theorem implies that b = 0:

Vol(M) =

∫
M

eF−bωn = eb
∫
M

eFωn = ebVol(M) =⇒ b = 0.

By Theorem (2.0.1) with c = 0, equation (2.28) has a unique mean zero

solution u ∈ C∞(M).

If c1(M) is positive definite, then it has positive representative Γ ∈ c1(M).

By theorem (2.6.1) there is a metric ω̃ ∈ [ω] for which Ric(ω̃) = Γ > 0; so ω can

be deformed in its class to ω̃, a metric of positive Ricci curvature. A theorem due

to Kobayashi [22] states that Ricci positive compact Kähler manifolds are simply

connected. Composing theorem (2.6.1) with Kobayashi’s theorem we get:
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Theorem 2.6.2. If (M,ω) is a closed Kähler manifold with positive first Chern class,

then M is simply connected.

Another application of theorem (2.6.1) is the following result.

Theorem 2.6.3. (Calabi’s Conjecture) (M,ω) is a closed Kähler manifold. If c1(M)

is cohomologous to zero or negative definite, then M is a Kähler-Einstein manifold.

Proof. Suppose c1(M) < 0 (resp. ∼ 0) then there is a (1, 1)-form Γ > 0 so that

c1(M) = c · [Γ] where c = −1 (resp. c = 0). Γ is a positive (1, 1)-form. Moreover,

(M,Γ) is a Kähler manifold with c1(M) = c · [Γ]. So it can be assumed that c1(M) =

c · [ω]. By theorem (2.6.1) there is a positive form, ω̃ = ω +
√
−1

2π
∂∂̄u > 0, so that

Ric(ω̃) = cω. In the case c = 0, Ric(ω̃) = 0 and ω̃ is a flat Kähler-Einstein metric.

To understand the c = −1 case start by deriving the associated Monge-Ampère

equation from the curvature relation Ric(ω̃) = cω̃.

Ric(ω)− Ric(ω̃) = Ric(ω)− cω̃

= Ric(ω)− cω − c
√
−1

2π
∂∂̄u

= ∂∂̄
(
F − cu

)
.

(2.29)

The assumption that cω ∈ c1(M) is used in the second line of (2.29). From the local

formulas of Ric(ω̃) and Ric(ω) we get the following Monge-Ampère equation:
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
ω̃n = eF−cuωn

ω̃ = ω +
√
−1

2π
∂∂̄u > 0 and

∫
M
eF−cuωn = Vol(M).

(2.30)

By Theorem (2.0.1), equation (2.30) has a unique mean zero solution u ∈ C∞(M)

when c = −1.

Remark. In addition to formulating the conjecture, Calabi also proved that solutions

to the associated Monge-Ampère equation are unique. Little progress was made until

Aubin [2] and Yau [33] c1(M) independently proved the negative definite case. Yau

proved the c1(M) ∼ 0 case [33]. In both instances there is an alternative proof due to

Cao [7], that uses Ricci flow to deform the initial metric, ω, to a solution metric ω∞.

When c1(M) is positive the Calabi conjecture is false, because there are known

examples of Kähler surfaces with positive first Chern class that do not admit Kähler-

Einstein metrics (e.g. CP2#CP2). In fact, the continuity method and a priori es-

timates derived in the previous sections fail in this case. When c1(M) > 0 the

Monge-Ampère equation is

ω̃n = ef−uωn and it is assumed that

∫
M

ω̃n =

∫
M

ef−uωn. (2.31)

A uniform supremum bound for

∫
M

ω̃n − ωn =

∫
M

(
ef−u − 1

)
ωn (2.32)
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is a required element of the Moser iteration technique used in section (2.4). Since

there is no a priori infimum estimate for u, ef−u does not have an a priori supremum

bound–without which there is no upper bound for the right-hand-side of (2.31). Also

there is no bound on the right-hand-side of (2.32), so the Moser iteration technique

fails. Since the C2 estimates obtained in section (2.3) require a priori estimates for

‖u‖∞, the regularity and existence arguments described in this chapter do not work.

Though, the failure of the continuity method when c1(M) > 0 does not necessarily

preclude the existence of Kähler-Einstein metrics for certain subclasses of Kähler

manifolds with positive first Chern class.
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CHAPTER 3
DEGENERATE MONGE-AMPÈRE EQUATIONS

Let (M,ω) be a Kähler manifold. Again consider the class of Monge-Ampère

equations:

(
α +

√
−1

2π
∂∂̄u

)n
= F (u,∇u)Ω. (3.1)

Equations of the type (3.1) for which [α] is merely non-negative and F ∈ Lp(M),

for p > 1, will be called degenerate. Lately there has been much interest in such

equations, especially in connection with finding canonical metrics; for instance, con-

structing singular Kähler-Einstein metrics via Kähler-Ricci flow. The main focus of

this chapter will be to apply known regularity and existence techniques for degenerate

Monge-Ampère equations to find a singular canonical metric determined by

ω ∧
(
χ+

√
−1

2π
∂∂̄u

)
= c
(
χ+

√
−1

2π
∂∂̄u

)2

and [2cχ− ω] ≥ 0. (3.2)

Our analysis begins by converting (3.2) into a Monge-Ampère equation. Set

χ̃ := χ+
√
−1

2π
∂∂̄u. In terms of χ̃, (3.2) is

0 = cχ̃2 − ω ∧ χ̃ = c
(
χ̃− ω

2c

)2

− ω2

4c

after completing the square. Scale ω by 1
2c

so the new ω is ω
2c

and we arrive at

(
χ− ω +

√
−1

2π
∂∂̄u

)2

= ω2 where [χ− ω] ≥ 0. (3.3)
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Equation (3.3) is a degenerate Monge-Ampère equation, because the initial data,

χ−ω, is semipositive. Put another way, the eigenvalues of χ−ω lie in the boundary

of the cone of ellipticity of equation (3.3). In this chapter the following result is

proved.

Theorem 3.0.4. Let M2 be a closed Kähler surface with two Kähler classes [ω] and

[χ].

c =
[χ] · [ω]

[χ]2

is a constant of integration. If [2cχ− ω] ≥ 0 is semipositive and not Kähler, then

ω ∧
(
χ+

√
−1

2π
∂∂̄u

)
= c
(
χ+

√
−1

2π
∂∂̄u

)2

(3.4)

has a unique bounded solution, u, in the sense of currents that is smooth away from

E (M , a finite union of irreducible curves of negative self-intersection.

E =
m⋃
j=0

Ej and Ej · Ej = −1 for j = 1 . . .m.

As stated in the introduction much of the proof rests on techniques from

pluripotential theory, which were originally used to study degenerate Monge-Ampère

equations. These newer ideas are used to prove existence and uniqueness of weak

solutions. In chapter (2) a compactness result, Arzelá-Ascoli, was used to prove ex-

istence. By contrast, something like the Perron method ( see [21] or [17]) is used
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to prove existence for degenerate equations of the type studied in this chapter. Es-

sentially the unique solution will be constructed by taking the upper envelope of a

set of plurisubharmonic functions. Also, in this chapter a very different L∞ estimate

is proved; it facilitates the proof of existence for weak solutions and is used later to

obtain higher regularity. All of these ideas are the content of sections (3.1) and (3.2).

The same strategy employed in chapter (2) to obtain higher regularity for

solutions, C2 estimates plus Evans-Krylov and Schauder estimates (the bootstrap

technique) is used here; and this is covered in section (3.3). As was the case for non-

degenerate Monge-Ampére equations the C2 estimates require a priori L∞ estimates.

Therefore, sections (3.1) and (3.2), and section (3.3) are highly dependent.

3.1 L∞ Estimates

In this section we review the known methods for estimating the L∞ norm of

solutions to Monge-Ampère equations with semipositive initial data. The following

material has been drawn from Demailly and Pali [10], Eyssidieux et al. [15], and

Ko lodziej [24]. Suppose γ is a smooth, semipositive, and big (1, 1)-form and Ω is a

smooth volume form on M . Instead of working directly with (3.3), we will consider

degenerate Monge-Ampère equations of the type:

(
γ +

√
−1

2π
∂∂̄u

)n
= Ω. (3.5)

Equation (3.3) falls into this class of equations. Here the initial data, γ, lies in the

boundary of the cone of positive (1, 1)-forms. Instead of assuming that u ∈ C4(M),
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as was the case in chapter 2 we consider weak solutions. Equation (3.5) is perturbed

with ω, a positive (1, 1)-form. The resulting family of equations is


(
γ + tω +

√
−1

2π
∂∂̄ut

)n
= FtΩ

Ft :=
∫
M

(γ + tω)n
/∫

M
Ω.

(?t)

By Yau [33], these equations admit smooth solutions, which are denoted ut. As

pluripotential theory plays a necessary role in the derivation of L∞ bounds for so-

lutions to (?t), the relevant concepts and theorems from this theory are reviewed

below.

Definition 3.1.1 (Currents). A continuous linear functional on A(n−p,n−p)
c (M), the

space of smooth and compactly supported (n− p, n− p)-forms, is a current of type

(p, p) or bidegree (n − p, n − p). T , a current, is real if T (ϕ) = T (ϕ) for all ϕ ∈

A(n−p,n−p)
c (M). A real current is positive (resp. non-negative) if

(√
−1

2π

)p
T (η ∧ η̄) > 0 (resp. ≥ 0) ∀η ∈ A(p,0)

c .

Let I, J ⊂ {1, 2, . . . , n}. Ic and J c are complements of I and J , respectively.

T , a current, has the following local representation.

T =
∑
I,J

TIJdz
I ∧ dz̄J .

Each coefficient

TIJ(ϕ) := T (ϕdzI
c ∧ dz̄Jc), where ϕ ∈ C∞c (M),
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is a distribution. The space of (p, p)-currents is equipped with the weak* star topology.

So, limj Tj = T iff limj Tj(ϕ) = T (ϕ) for each ϕ ∈ A(n−p,n−p)
c (M).

Examples.

1. Any smooth form on M is a current. In particular, ωn−p is a smooth current of

bidegree (p, p).

2. On Cn,
√
−1

2π
∂∂̄ log|z|2 is a (1, 1)-current.

3. V ⊆M is subvariety of dimension k ≤ n.

A(k,k)
c (M) 3 ϕ 7−→

∫
V

ϕ

is a current of integration, and it is sometimes denoted by [V ].

4.

PSH(γ) :=

{
u : M → [−∞,∞) u.s.c. | γ +

√
−1

2π
∂∂̄u ≥ 0 as a current

}

is the set of γ-plurisubharmonic functions.

Remark. Currents can be approximated by smooth forms. This is done by mollifying

the coefficients of T . Suppose that ρ ∈ C∞c (Br(0)) is a radially symmetric function

and
∫
Br
ρ = 1. Define ρε(z) := ε2nρ( z

ε
) and Tε(z) := T (ρε(z − w)). The smoothed

coefficients of T , {T εIJ}, are decreasing sequences and Tε → T in the sense of currents.

The value of smoothing T is that many times statements about currents can be proved

by working with sequences of smooth forms and taking limits.
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The next lemma establishes two important a priori estimates for plurisubhar-

monic functions which will be used later.

Lemma 3.1.1.

1. There are constants α > 0 and C = C(M,ω) so that

∫
M

exp{−α(ϕ− sup
x∈M

ϕ)}ωn ≤ C ∀ϕ ∈ PSH(ω). (3.6)

2. Suppose that γ, ω ∈ H1,1
DR(M) and γ is semipositive and ω is strictly positive.

Then all γ-plurisubharmonic functions are uniformly bounded above.

Proof. The first estimate is due to Tian, lemma 2.1 of [31], which is an extension of

lemma 4.4 in Hörmander [19]. The statement in [31] is for C2, ω-plurisubharmonic

functions. To show that (3.6) holds for all functions in PSH(ω) take a sequence of

smooth functions {ϕε} ⊂ PSH(ω) so that ϕε ↘ ϕ as ε → 0, see [5]. Then by Tian’s

L1 estimate for C2, ω-plurisubharmonic functions,

∫
M

exp{−α(ϕε − sup
x∈M

ϕε)}ωn ≤ C ∀ε > 0.

The Lebesgue monotone convergence theorem (see [28]) implies

lim
ε→0

∫
M

exp{−α(ϕε − sup
x∈M

ϕε)}ωn =

∫
M

exp{−α(ϕ− sup
x∈M

ϕ)}ωn ≤ C.

Proof of #2: Again consider the smooth sequence ϕε ↘ ϕ with the added

property that each ϕε is mean zero. By the hypothesis γ, ω ∈ H1,1
DR(M) and γ is
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semipositive and ω > 0 is strictly positive. Then ϕε ∈ PSH(γ) implies ∆ωϕε ≥

− supx∈M tr{ω−1γ} = −C ′. G(p, q) is the Green’s function of ∆ω. Since M is compact

G(p, q) has a minimum: there is a constant K > 0 for which G(p, q) ≥ −K for all

(p, q) ∈M ×M .

ϕε(p) = −
∫
M

G(p, q)∆ωϕε(q) dV (q) = −
∫
M

(G(p, q) +K)∆ωϕε(q) dV (q)

≤ C ′
∫
M

(G(p, q) +K) dV (q) because −∆ωϕε ≤ C ′.

Since ϕε ↘ ϕ pointwise,

ϕ(p) = lim
ε→0

ϕε(p) ≤ C ′ · sup
p∈M

∫
M

(G(p, q) +K) dV (q).

The right-hand-side of the inequality above is a uniform supremum estimate for func-

tions in PSH(γ).

Comparison Principle. If γ ∈ H1,1
DR(M) is big and semipositive, and ϕ, ψ ∈

PSH(γ) on M , then

∫
{ϕ<ψ}

(
γ +

√
−1

2π
∂∂̄ψ

)n
≤
∫
{ϕ<ψ}

(
γ +

√
−1

2π
∂∂̄ϕ

)n
.

Proof. For a proof of the comparison principle see Demailly and Pali [10].

Currents have an intrinsic (local) norm. Suppose E is a Borel set in a chart

(U, z), where z = (z1, . . . , zn) are local coordinates on U . Then
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‖T‖E :=
∑
I,J

|TIJ |,

where |TIJ | is the total variation of TIJ as a measure.

Lemma 3.1.2. Let T be a positive (p, p)-current and K ⊂⊂ (U, z) be a compact set.

Then

‖T‖K ≤ C

∫
K

T ∧ βn−p where β = ∂∂̄|z|2,

and C = C(n, p).

Proof. The Riesz representation theorem associates a measure, µIJ , to TIJ . The

measure of compact sets, such as K, by µIJ is

µIJ(K) := inf
{
T (fdzI

c ∧ dz̄Jc) | f ∈ C∞(U) and supp(f) ⊆ K and 0 ≤ f ≤ 1
}
,

see the proof of the Riesz representation theorem in Rudin [28]. χK is the indicator

function for K.

‖TIJ‖ =
∑
I,J

µIJ(K) ≤
∑
I,J

T (χK dzI
c ∧ dz̄Jc)

=

((
n

n− p

))−1

T (χKβ
n−p)

≤
∫
K

T ∧ βn−p.

Here, T ∧ βn−p is interpreted to be its associated measure given by the Riesz repre-

sentation theorem.
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Chern-Levine-Nirenberg. Suppose K ⊂⊂ (U, z) is compact and U is a bounded

domain with compact closure. Also, u0, . . . , up ∈ PSH(γ)
⋂
L∞(M) for p ≤ n, and T

is a closed and positive current and γ ≥ 0. Then the following inequalities are valid

for some constant C = C(K,U).

(a)

‖(
√
−1

2π
)p∂∂̄u1 ∧ ∂∂̄u2 ∧ . . . ∧ ∂∂̄up ∧ T‖K

≤ C‖u1‖L∞(U)‖u2‖L∞(U) · · · ‖up‖L∞(U)‖T‖U

(b)

‖u0(

√
−1

2π
)p∂∂̄u1 ∧ ∂∂̄u2 ∧ . . . ∧ ∂∂̄up ∧ T‖K

≤ C‖u0‖L1(U)‖u2‖L∞(U) · · · ‖up‖L∞(U)‖T‖U

Proof. Choose ρ ∈ C∞0 (U) so that 0 ≤ ρ ≤ 1 and K ⊆ supp(ρ) ⊆ U . Also choose

an increasing sequence of compact sets K = K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ U . Again,

β = ∂∂̄|z|2.

‖
√
−1

2π
∂∂̄u1 ∧ T‖K ≤

∫
K

ρ

√
−1

2π
∂∂̄u1 ∧ T ∧ βn−p−1, by lemma (3.1.2),

≤
∫
U

u1

√
−1

2π
∂∂̄ρ ∧ T ∧ βn−p−1, by Stokes’ Theorem for currents,

≤ C‖u1‖L∞(U)‖T‖U .

Here C is dependent on the second derivatives of ρ. Repeating the above argu-

ment p times yields inequality (a). CoverK with a finite number of balls {BRj(aj)}j≤N
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contained in coordinate patch (U, z). For notational convenience set Bj = BRj(aj)

for j ≤ N . An exhaustion function of Bj is a plurisubharmonic function h with

the property limx→∂BJ h = +∞. For example, h = − log{R2
j − |z − aj|2} is of an

exhaustion function for Bj. In general, any domain in Cn that admits an exhaustion

function is called pseudoconvex. Let h ∈ C∞(Bj) be an exhaustion function for Bj.

The functions u1, . . . , up are bounded, so after subtracting a suitably large constant

from each function it is assumed that each ui is non-positive. Since h blows up near

the boundary, h restricted to BεRj(aj) ( Bj for some ε < 1, will take its maximum on

∂BεRj(aj). h is known, so a suitably large constant subtracted from h ensures that

h ≤ ui ∀i ≤ p on BεRj(aj) ( Bj. After setting ui = max{h, ui}, h = ui near the

boundary of Bj, because h blows-up at the boundary.

‖u0

√
−1

2π
∂∂̄u1 ∧ T‖Bj ⋂K ≤ −

∫
Bj

u0

√
−1

2π
∂∂̄u1 ∧ T ∧ βn−p−1, by lemma (3.1.2),

≤ −
∫
Bj

u0

√
−1

2π
∂∂̄(u1 − h) ∧ T ∧ βn−p−1

−
∫
Bj

u0

√
−1

2π
∂∂̄h ∧ T ∧ βn−p−1

≤ −
∫
Bj

(u1 − h)

√
−1

2π
∂∂̄u0 ∧ T ∧ βn−p−1

−
∫
Bj

u0

√
−1

2π
∂∂̄h ∧ T ∧ βn−p−1

≤ −
∫
Bj

u0

√
−1

2π
∂∂̄h ∧ T ∧ βn−q−1.

In the last line we used the fact that 0 < γ ≤ −
√
−1∂∂̄u and ui − h ≥ 0 on
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Bi. Successive applications of the above inequality give

−
∫
Bj

u0(

√
−1

2π
)p∂∂̄u1 ∧ · · · ∧ ∂∂̄up ∧ T ∧ βn−p−q

≤ −
∫
U

u0(

√
−1

2π
)p(

√
−1

2π
∂∂̄h)p ∧ T ∧ βn−q−1 ≤ C · ‖T‖U

∫
U

|u0|βn.

Here C is dependent on the second derivatives of h and the supremum norms of ui

for each i ≤ p. After summing over j, inequality (b) is obtained.

Definition 3.1.2. The Monge-Ampére capacity of a Borel set K ⊂ M with respect

to γ, a semipositive and big (1, 1)-form, is

Capγ (K) := sup

{∫
K

(γ +

√
−1

2π
∂∂̄u)n | u ∈ PSH(γ) and 0 ≤ u ≤ 1

}
.

The next proposition collects some facts about this capacity.

Proposition 3.1.1.

Suppose A and B are Borel sets in M .

(a) If A ⊆ B, then Capγ(A) ≤ Capγ(B).

(b) Capγ(A ∪B) ≤ Capγ(A) + Capγ(B).

(c) Suppose {Ej} is an increasing sequence of Borel sets and E =
⋃∞
i=1 Ej, then

Capγ(E) = lim
j→∞

Capγ(Ej).
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Proof. Let v ∈ PSH(γ) and 0 ≤ v ≤ 1. By the definition of capacity and A ⊆ B,

∫
A

(
γ +

√
−1

2π
∂∂̄v

)n
≤
∫
B

(
γ +

√
−1

2π
∂∂̄v

)n
=⇒ Capγ(A) ≤ Capγ(B).

Similar reasoning proves (b).

∫
A∪B

(
γ +

√
−1

2π
∂∂̄v

)n
≤
∫
A

(
γ +

√
−1

2π
∂∂̄v

)n
+

∫
B

(
γ +

√
−1

2π
∂∂̄v

)n
implies,

Capγ(A ∪B) = sup
v

∫
A
⋃
B

(
γ +

√
−1

2π
∂∂̄v

)n
≤ Capγ(A) + Capγ(B).

The following proves (c):

Capγ(E) = sup
v

∫
E

(γ +

√
−1

2π
∂∂̄v)n = sup

j , v

∫
Ej

(γ +

√
−1

2π
∂∂̄v)n = lim

j→∞
Capγ(Ej).

Proposition 3.1.2. If ϕ ∈ PSH(γ) is normalized so that supMϕ ≤ 0, then there is

a constant C = C(n, γ,M) for which

Capγ ({ϕ < −s}) ≤ C

s
where s ∈ R+.

Proof. M has a finite pseudoconvex cover: M is covered by coordinate charts

{(Up, zp)}p∈M for which zp(p) = 0. Assume that B1(0) ⊂ Img(zp) for every p ∈ M .

The preimage of B1(0) under zp, hereafter denoted Vp, is pseudoconvex. To see this

compose a plurisubharmonic exhaustion function for B1(0) (i.e. h = − log{1− |z|2})
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with zp; then hp := h ◦ zp is an exhaustion function for Vp. Under biholomorphic

changes of coordinates hp remains plurisubharmonic, because positivity of currents is

invariant under bi-holomorphic coordinate changes. By compactness of M there is a

finite subcover {Vα} of {Vp}. We may further stipulate that γ =
√
−1

2π
∂∂̄uα and uα = 0

on ∂Vα, for some uα ∈ C∞(Vα). Let v ∈ PSH(γ) and 0 ≤ v ≤ 1, and normalize ϕ so

that supM ϕ = 0. Further suppose K ⊂ {ϕ < −s} is compact and {V ′α} is another

cover of M , subordinate to {Vα} for which V ′α ⊂ Vα, then

∫
K

⋂
{ϕ<−s}

(
γ +

√
−1

2π
∂∂̄v

)n
≤
∑
α

(√
−1

2π

)n ∫
K

⋂
V ′α

(
∂∂̄ (uα + v)

)n
.

K
⋂
V ′α ⊆ {ϕ < −s} implies

∫
K

⋂
V ′α

(√
−1

2π

)n (
∂∂̄ (uα + v)

)n ≤ 1

s

(√
−1

2π

)n ∫
K

⋂
V ′α

−ϕ
(
∂∂̄ (uα + v)

)n
≤ C1 ·

‖ϕ‖L1(M)

s
‖uα + v‖nL∞(Vα).

The proof of part (b) of the Chern-Levine-Nirenberg inequalities justifies the

last inequality. Summing over α gives

∫
K

⋂
{ϕ<−s}

(
γ +

√
−1

2π
∂∂̄v

)n
≤ C1

‖ϕ‖1

s
.

Here C is dependent on γ and the cover {Vα}. Monge-Ampére capacity is

inner-regular [8], so
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Capγ ({ϕ < −s}) = sup
K⊂{ϕ<−s}

Capγ (K ∩ {ϕ < −s}) .

Because the constant C1 is independent of K, we immediately get

Capγ ({ϕ < −s}) ≤ C1
‖ϕ‖1

s
.

The proof is completed by an application of Jensen’s inequality to (3.6),

logC ≥ log

(∫
M

exp

{
−α
(
ϕ− sup

x∈M
ϕ

)}
γn
)
≥
∫
M

−α
(
ϕ− sup

x∈M
ϕ

)
.

When combined with the hypothesis supx∈M ϕ ≤ 0 we get an a priori L1

bound,

1

α
logC2 ≥

∫
M

−ϕ ωn = ‖ϕ‖1.

Proposition 3.1.3. Let ϕ ∈ PSH(γ)
⋂
L∞(M), then for all s > 0 and 0 ≤ r ≤ 1

rnCapγ({ϕ < −s− r}) ≤
∫
{ϕ<−s}

(
γ +

√
−1

2π
∂∂̄ϕ

)n
.

Proof. Suppose v ∈ PSH(γ) and 0 ≤ v ≤ 1.

rn
∫
{ϕ<−s−r}

(
γ +

√
−1

2π
∂∂̄v

)n
=

∫
{ϕ<−s−r}

(
rγ +

√
−1

2π
∂∂̄rv

)n
≤
∫
{ϕ<−s−r}

(
γ +

√
−1

2π
∂∂̄rv

)n
,
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because rγ ≤ γ. Since {ϕ < −s− r} ⊆ {ϕ < −s− r + rv},

∫
{ϕ<−s−r}

(
γ +

√
−1

2π
∂∂̄rv

)n
≤
∫
{ϕ<−s−r+rv}

(
γ +

√
−1

2π
∂∂̄(rv − s− r)

)n
.

By the comparison principle,

∫
{ϕ<−s−r+rv}

(
γ +

√
−1

2π
∂∂̄(rv − s− r)

)n
≤
∫
{ϕ<−s−r+rv}

(
γ +

√
−1

2π
∂∂̄ϕ

)n
.

Finally, {ϕ < −s− r + rv} ⊆ {ϕ < −s} implies

∫
{ϕ<−s−r+rv}

(
γ +

√
−1

2π
∂∂̄ϕ

)n
≤
∫
{ϕ<−s}

(
γ +

√
−1

2π
∂∂̄ϕ

)n
.

Proposition 3.1.4. Suppose U ⊆M is an open set and Ω is a smooth volume form.

Then ∫
U

Ω ≤ C · exp

{
−α
[

[γ]n

Capγ(U)

] 1
n

}
.

Here α = α(M) is the α invariant of M and C = C(α,PSH(γ),M).

Proof. Consider the following extremal function:

ΨU(x) := sup {ϕ(x) | ϕ ∈ PSH(γ) and ϕ|U ≤ 0} .

ΨU ≥ 0 everywhere on M and ΨU ≡ 0 on U , because 0 ∈ PSH(γ). The supremum

of a collection of plurisubharmonic functions is plurisubharmonic, so ΨU ∈ PSH(γ).

By lemma (3.1.1) ΨU is bounded, so ΨU ∈ L∞(M). However, ΨU may not be upper

semicontinuous. Instead consider the upper semicontinuous regularization of ΨU ,

which is defined Ψ∗U := lim supy→x ΨU(y). Ψ∗U is non-negative and Ψ∗U ∈ L∞(M).



47

Also, Ψ∗U is a γ-plurisubharmonic function, because it satisfies a maximum

principle. Let v be a smooth potential function for γ in some open set V ⊂ M and

h+ v is harmonic with respect to the metric Laplacian. ΨU is a γ-plurisubharmonic

function iff for every compact set K ⊂⊂ V and every harmonic function v + h, the

following is true:

v + ΨU ≤ h+ v on ∂K =⇒ v + ΨU ≤ h+ v on K. (3.7)

The usually maximum principle for C2(M)
⋂

PSH(γ) is equivalent to condition (3.7),

see Klimek [21]. By the definition of Ψ∗U ,

v(a) + Ψ∗U(a) = lim sup
x→a

(v(x) + ΨU(x)) ≤ v(a) + lim sup
x→a

h(x) = v(a) + h(a)

=⇒ v + Ψ∗U ≤ h+ v.

So, the inequalities stated in (3.7) are preserved by lim sup, and Ψ∗U ∈ PSH(γ).

For a more detailed discussion of ΨU and its upper semicontinuous regularization see

Klimek [21]. A well known corollary to a theorem of Bedford and Taylor [4] shows

that Ψ∗U is the homogeneous solution to:
(
γ +

√
−1

2π
∂∂̄u

)n
= 0 on M − Ū . We may

now proceed with the proof of the proposition. By equation(3.6) of lemma (3.1.1)

there are two positive constants C and α so that
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∫
U

Ω =

∫
U

exp {−αΨ∗U} Ω, because Ψ∗U ≡ 0 on U,

≤ exp

{
−α sup

x∈M
Ψ∗U

}
·
∫
M

exp

{
−α
(

Ψ∗U − sup
x∈M

Ψ∗U

)}
Ω

≤ C · exp

{
−α sup

x∈M
Ψ∗U

}
. (3.8)

Set A := supx∈M Ψ∗U . If A > 1, the definition of Monge-Ampère capacity and

the identity
(
γ +

√
−1

2π
∂∂̄Ψ∗U

)n
= 0 on M − Ū lead to

Capγ
(
Ū
)
≥
∫
Ū

(
γ +

√
−1

2π
∂∂̄

Ψ∗U
A

)n
=

(
1

A

)n
·
∫
Ū

(
Aγ +

√
−1

2π
∂∂̄Ψ∗U

)n
≥
(

1

A

)n
·
∫
Ū

(
γ +

√
−1

2π
∂∂̄Ψ∗U

)n
+

(
1

A

)n
·
∫
M−Ū

(
γ +

√
−1

2π
∂∂̄Ψ∗U

)n
=

(
1

A

)n
·
∫
M

(
γ +

√
−1

2π
∂∂̄Ψ∗U

)n
≥ [γ]n

An
.

Then

A = sup
x∈M

Ψ∗U ≥

(
[γ]n

Capγ
(
Ū
)) 1

n

,

which implies

exp

{
−α sup

x∈M
Ψ∗U

}
≤ eα · exp

{
−α
[

[γ]n

Capγ(Ū)

] 1
n

}
;

which, when combined with (3.8), proves the lemma. Consider the other case, A ≤ 1.

By Stokes’ theorem [γ]−nCapγ(Ū) ≤ 1. Again, using the definition of capacity we

have
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[γ]−n · Capγ
(
Ū
)
≥ [γ]−n

∫
Ū

(
γ +

√
−1

2π
∂∂̄Ψ∗U

)n
= 1 =⇒ [γ]n

Capγ
(
Ū
) = 1.

Furthermore, e−αA ≤ 1 implies

exp

{
−α sup

x∈M
Ψ∗U

}
≤ eα · exp

{
−α
[

[γ]n

Capγ(Ū)

] 1
n

}
,

which, when combined with (3.8), gives the proposition.

We now have the tools to uniformly bound {ut}, the solutions to (?t). The

following lemma is crucial.

Lemma 3.1.3. f : R+ −→ R+ is a decreasing right-continuous function with the

following properties:

1. lims→∞ f(s) = 0.

2. ∃α,A > 0 so that rf(s+ r) ≤ Af(s)1+α ∀s > 0 and 0 ≤ r < 1.

Then there exists a constant S∞ = S∞(α,A, r) so that f(s) = 0 for all s ≥ S∞.

Proof. After taking the logarithm of the inequality in #2 of the hypothesis,

log f(s+ r) ≤ logA− log r + (1 + α) log f(s). (3.9)
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Fix r < 1 and iterate inequality (3.9) to get

log f(s+
k∑
j=1

rj) ≤ logA− k log r + (1 + α) log f(s+
k−1∑
j=1

rj)

≤ [1 + (1 + α)] logA− [k + (k − 1)(1 + α)] log r

+ (1 + α) log f(s+
k−2∑
j=1

rj)

...

≤
k−1∑
j=0

(1 + α)j logA− [(1 + α)
k−1∑
j=0

(k − j)(1 + α)j−1] log r

+ (1 + α)k log f(s).

The final inequality is the one of interest, so it is repeated below.

log f(s+
k∑
j=1

rj) ≤
k−1∑
j=0

(1 + α)j logA

− [(1 + α)
k∑
j=0

(k − j)(1 + α)j−1] log r + (1 + α)k log f(s).

(3.10)

The summations in the first two terms of equation (3.10) have closed form

expressions. Recall the following formula.

l∑
j=0

xj =
xl+1 − 1

x− 1
. (3.11)
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Also,

d

dx

( l∑
j=0

xj
)

=
l∑

j=0

jxj−1

has the same form as the coefficient of log r in inequality (3.10). By differentiating

the left-hand-side of (3.11),

l∑
j=1

jxj−1 =
d

dx

(xl+1 − 1

x− 1

)
=

(l + 1)xl(x− 1)− (xl+1 − 1)

(x− 1)2

=
lxl+1 − (l + 1)xl + 1

(x− 1)2
.

Letting x = 1 + α we get

k−1∑
j=0

(1+α)j =
(1 + α)k − 1

α
and

k−1∑
j=0

j(1+α)j−1 =
(k − 1)(1 + α)k − k(1 + α)k−1 + 1

α2
,

from which we calculate

k−1∑
j=0

(k − j)(1 + α)j = k
k−1∑
j=0

(1 + α)j − (1 + α)
k−1∑
j=1

j(1 + α)j−1

= k
(1 + α)k − 1

α
− (k − 1)(1 + α)k+1 − k(1 + α)k + α + 1

α2
.

Then (3.10) becomes

log f(s+
k∑
j=1

rj) ≤ (1 + α)k − 1

α
logA

+

{
(k − 1)(1 + α)k+1 − k(1 + α)k + α + 1

α2
− k (1 + α)k − 1

α

}
log r

+ (1 + α)k log f(s).
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Finally,

log f(s+
k∑
j=1

rj) ≤ (1 + α)k

α

{
logA+ α log f(s)− 1 + α

α
log r

}

+
k + 1 + α

α
log r − 1

α
logA.

(3.12)

α,A, and r are constant, so by #1 of the hypothesis there is a s0 ∈ R+ so that

{
logA+ α log f(s0)− 1 + α

α
log r

}
< 0.

By (3.12),

lim
k→∞

f(s0 +
k∑
j=1

rj) = f(s0 +
r

1− r
) < 0.

Therefore, f(s) = 0 for all s > S∞ = s0 + r
1−r .

Lemma 3.1.4. {ut} are solutions to (?t). There is a constant C = C(ω, γ,M, n) so

that ‖ut − supx∈Mut‖∞ ≤ C independent of t.

Proof. Set γt := γ + tω. If

ft(s) :=
[
Capγt ({ut < −s})

] 1
n

satisfies the hypothesis of lemma (3.1.3) uniformly in t, then the lemma is proved.

Right continuity of ft follows from (c) of proposition (3.1.1). Note PSH(γt) ⊆ PSH(γ+

ω) implies Capγt(K) ≤ Capγ+ω(K) on any Borel set, which in turn shows that ft(s) ≤
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f1(s) for each t ∈ [0, 1]. Since ut ∈ PSH(ω + γ) for all t ∈ [0, 1] and supx∈M ut is

uniformly bounded independent of t, by lemma (3.1.1), proposition (3.1.2) implies

ft(s) ≤ f1(s) ≤ C

s
,

where C = C(γ, ω,M). Therefore, lims→∞ ft(s) = 0 uniformly in t, and ft satisfies

#1 of lemma (3.1.3) uniformly.

Now, property #2 of lemma (3.1.3) for ft(s) is verified. Let 0 ≤ r ≤ 1 and

s ≥ 0, then

[rft(s+ r)]n = rnCapγt ({ut < −s− r})

≤
∫
{ut<−s}

(
γt +

√
−1

2π
∂∂̄ut

)n
, by proposition (3.1.3),

=

∫
{ut<−s}

FtΩ, because ut solves (?t),

≤
∫
{ut<−s}

Ω,

because Ft ≤ 1 for each t ∈ [0, 1]. Proposition (3.1.4) implies

[rft(s+ r)]n ≤ C · exp

{
−α
[

[γt]
n

Capγt ({ut < −s})

] 1
n

}
. (3.13)

The constant which appears in (3.13) is independent of t. Also, the right-hand-side

of (3.13) looks like exp{− 1
x
} where x ∼ Capγt({ut < −s}). There is a constant B for

which Bxm ≥ exp{− 1
x
} and m > 0, for a proof see lemma (.0.2). Note that B has no

relation to t. With this fact, inequality (3.13) becomes

rft(s+ r) ≤ C̃ · ft(s)1+α ∀s > 0 .
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C̃ is independent of t. The hypothesis of proposition (3.1.2) is verified, therefore the

set of solutions to (?t) is uniformly bounded in L∞(M).

With uniform L∞ estimates it is now possible to prove existence of solutions,

in the sense of current for equation (3.5). We close this section with an existence

argument which is based on Ko lodziej [25], and a proof of uniqueness.

Lemma 3.1.5. (Existence) Set γj := γ + 1
j
ω. By Yau [33] there are functions uj ∈

PSH(γj)
⋂
C∞(M), which solve the equations

(
γj +

√
−1

2π
∂∂̄uj

)n
= GjΩ

Gj = [γj]
n
/∫

M
Ω and [γ]n =

∫
M

Ω.

(3.14)

The sequence {Gj} is bounded below by 1 and limj→∞Gj = 1.

Then u =
(
lim supj→∞ uj

)∗
is a bounded solution of

(
γ +

√
−1

2π
∂∂̄u

)n
= Ω.

Proof. Define a new set of functions, ψk :=
(
supk≤j uj

)∗
. If l ≥ k then 1

k
≥ 1

l
. So,

ul ∈ PSH(γk) for each l ≥ k. It follows that ψk ∈ PSH(γk) and ψk → u uniformly as

k →∞. Moreover,

(
γk +

√
−1

2π
∂∂̄ul

)n
≥
(
γl +

√
−1

2π
∂∂̄ul

)n
= GlΩ ∀l ≥ k . (3.15)

Given γ-plurisubharmonic functions f and g, their associated Monge-Ampère mea-

sures satisfy
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(
γk +

√
−1

2π
∂∂̄max{uk, uk+1}

)n
≥ χ{uk≥uk+1}

(
γk +

√
−1

2π
∂∂̄uk

)n
+ χ{uk+1≥uk}

(
γk + ∂∂̄uk+1

)n ≥ Gk+1Ω,

by theorem 1.8 of [25]. The later inequality follows from (3.15). Using induction it

can be shown that

(
γk +

√
−1

2π
∂∂̄ψk

)n
≥ Ω. (3.16)

By lemma (3.1.4) the set {ψk}k∈Z+ is uniformly bounded. It suffices to show

that u is a local solution. Locally a decreasing sequence of potential functions {vj} can

be produced from the potential functions of γ so that γj = ∂∂̄vj. Furthermore, these

potential functions are uniformly bounded and the sequence {vk + ψk} is uniformly

bounded and decreasing. Then the Bedford-Taylor [4] monotone convergence theorem

combined with the measure inequality (3.16) yields

Ω ≤ lim
k→∞

(√−1

2π
∂∂̄ (vk + ψk)

)n
=
(√−1

2π
∂∂̄ (v∞ + u)

)n
.

And the notion of convergence used here is weak convergence. The integral compati-

bility condition and Stokes’ theorem imply Ω =
(
γ +

√
−1

2π
∂∂̄u

)n
.

3.2 Uniqueness

Lemma 3.2.1. If u, v ∈ PSH(γ)
⋂
L∞(M) both solve (3.5) for n = 2, then u and v

differ by a constant.
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Proof. Set θ := u− v. Recall

αk − βk = (α− β) ∧
k−1∑
j=1

αj ∧ βk−j−1. (3.17)

In the case k = 2, Stokes’ theorem for currents implies

0 =

∫
M

θ
(
γ2
u − γ2

v

)
=

∫
M

θ

√
−1

2π
∂∂̄θ ∧ (γu + γv) , by (3.17),

=

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γu +

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γv.

Both γu and γv are semipositive, so each term in the second equality is zero,

0 =

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γu and 0 =

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γv. (3.18)

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γ =

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γu −

∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ ∂∂̄u

= −
∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ ∂∂̄θ

=

∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ ∂∂̄v −

∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ ∂∂̄u

=

∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ γv −

∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ γu.

In the last line
∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ γ is added and subtracted. Let f be u or v. Then

the Schwarz inequality [25] implies

∫
M

√
−1

2π
∂θ ∧ ∂̄u ∧ γf ≤

(∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γf

)
·
(∫

M

√
−1

2π
∂u ∧ ∂̄u ∧ γf

)
= 0.

Identity (3.18) is used to get the later equality. Therefore,
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∫
M

√
−1

2π
∂θ ∧ ∂̄θ ∧ γf = 0.

γf is semipositive so
√
−1

2π
∂θ∧∂̄θ∧γf = 0. However, γf may be zero on a set of nonzero

measure. By lemma 4.1 of Demailly [10], we can assume that γf is a Kähler metric

away from Z, a complex analytic set (codimension ≥ 1). Z is necessarily pluripolar

and measure zero. Plurisubharmonic functions have unique extensions over pluripolar

sets [9], so θ is constant everywhere on M .

3.3 C2 Estimates & Higher Regularity

To begin, perturb (3.3) by adding tω to χ− ω,

(
χ+ (t− 1)ω +

√
−1

2π
∂∂̄ut

)2

= Ct ω
2. (3.19)

Determine Ct by integrating both sides of (3.19),

∫
M

(
χ+ (t− 1)ω +

√
−1

2π
∂∂̄u

)2

=

∫
M

(
χ− ω +

√
−1

2π
∂∂̄u

)2

+

∫
M

2
(
χ− ω +

√
−1

2π
∂∂̄u

)
∧ tω + t2ω2

=

∫
M

(1 + t2)ω2 +

∫
M

2
(
χ− ω +

√
−1

2π
∂∂̄u

)
∧ tω ,

by (3.3),

=

∫
M

(1 + t2)ω2 + 2t

∫
M

(
χ− ω

)
∧ ω ,

by Stokes’ Theorem.
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Then,

Ct = (1 + t2) + 2t
[χ− ω] · [ω]

[ω]2

= (t− 1)2 + t
[χ]2

[ω]2
, because c =

1

2
.

And the perturbed equations are


(
χ+ (t− 1)ω +

√
−1

2π
∂∂̄ut

)2

= Ct ω
2

Ct are constants which are uniformly bounded in t ∈ [0, 1].

(?t)

On Kähler surfaces Donaldson [12] remarked that [2cχ − ω] ≥ 0 (since c = 1
2

was

chosen earlier, [χ − ω] ≥ 0) is equivalent to the existence of curves of negative self-

intersection. It is due to Lamari [26] and Buchdahl [6] that there must exist curves

of negative self-intersection when the initial data is semipositive and not Kähler.

Furthermore, they also prove that there exists a finite number of irreducible curves

of negative self-intersection, E, for which the difference of the first Chern class of

E and [2cχ − ω] is a Kähler class, see also Song and Weinkove [30]. Moreover, the

proposition which appears in [30] facilitates the estimation of the second derivatives

of weak solutions to (3.4), away from E.

Proposition 3.3.1. (Buchdahl-Larmari) Let M2 be a Kähler surface with a Kähler

class β ∈ H1,1(M,R). If α ∈ H1,1(M,R) satisfies

α2 > 0 and α · β > 0,
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then either α is a Kähler class or there exists a positive integer m and curves of

negative self-intersection E1, . . . , Em and positive real numbers a1, . . . , am so that

α−
m∑
j=1

aj · PD[Ej] > 0

is a Kähler class. PD[Ej] represents the Poincaré dual of Ej.

Equations (?t) for t 6= 0 are nondegenerate Monge-Ampère equations, so by

Yau [33] each has a unique solution ut ∈ C∞(M) ∀t > 0. The calculation below

shows that α = [χ − ω] satisfies the hypothesis of proposition (3.3.1) with β = [χ].

As stated earlier [χ− ω] is big, so α2 > 0.

α · β = [χ]2 − [ω] · [χ]

= 2
[χ] · [ω]

[χ]2
[χ]2 − [ω] · [χ], by the definition of c =

1

2
,

= [ω] · [χ] > 0.

Also,

α · β = [χ]2 − [ω] · [χ] and α2 = [χ]2 − 2[ω] · [χ] + [ω]2.

Then by proposition (3.3.1),

Fact 1. There is a m ∈ Z+ and irreducible curves of negative self-intersection

E1, . . . , Em and positive real numbers a1, . . . , am so that

[χ− ω]−
m∑
j=1

ajPD[Ej] > 0.
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is Kähler. For notational convenience let D and E be

D =
m∑
j=1

ajEj and E =
m⋃
j=1

Ej.

c1(Ej) = PD[Ej], for a proof see proposition 1 of chapter 1 in Griffiths and

Harris [18]. In particular, there are sections σj ∈ [Ej], each necessarily vanishing on

Ej with Hermitian metrics hj, so that

ajc1(Ej) =

√
−1

2π
∂∂̄ log|σj|2hj

as smooth (1, 1)-forms on M − E and currents everywhere on M . By fact (1) there

is a Kähler form κ > 0 so that

κ ∈ [χ− ω]−
m∑
j=1

ajc1(Ej) > 0.

Moreover, the ∂∂̄-lemma implies that there is a unique f ∈ C∞(M), which is

only dependant on κ, χ, ω, and E so that

κ = χ− ω −
m∑
j=1

√
−1

2π
∂∂̄ log|σj|2hj +

√
−1

2π
∂∂̄f

= χ− ω −
m∑
j=2

√
−1

2π
∂∂̄ log|σj|2hj +

√
−1

2π
∂∂̄ log|σ1|2h1 +

√
−1

2π
∂∂̄ log ef

= χ− ω −
m∑
j=2

√
−1

2π
∂∂̄ log|σj|2hj +

√
−1

2π
∂∂̄ log ef |σ1|2h1 .

Set h1 := efh1 to be the Hermitian metric on E1, therefore
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χ− ω = κ+
m∑
j=1

√
−1

2π
∂∂̄ log|σj|2hj

as smooth (1, 1)-forms on M −E and currents everywhere on M . Equations (?t) can

be rewritten with κ:


(
κ+ tω +

√
−1

2π
∂∂̄{ut +

∑m
j=1 log|σj|2hj}

)2

= Ft

(
κ+ tω

)2

Ft = Ctω
2
/(

κ+ tω
)2

uniformly bounded in t ∈ [0, 1].

(3.20)

Here equality is as smooth forms on M−E and currents everywhere on M . Be-

fore the required estimates are stated and proved, the notation to be used is codified.

Let

κt = κ+ tω and κ̃t = κ+ tω +

√
−1

2π
∂∂̄{ut + log

m∏
j=1

|σj|2hj},

then there are real constants Λ, λ > 0 so that

λ ≤ κt ≤ Λ ∀t ∈ [0, 1].

Locally, κt and κ̃t are

κt =

√
−1

2π
gtij̄dz

i ∧ dz j̄ and κ̃t =

√
−1

2π
g̃tij̄dz

i ∧ dz j̄.

The Laplacians that we will encounter are

∆tf := gij̄t ∇t
i∇t

j̄f and ∆̃tf := g̃ij̄t ∇t
i∇t

j̄f.

In normal coordinates at q ∈ M , ∇t
iu = ∂iu := ui and uij̄ = ∂i∂j̄u = ∇t

i∇t
j̄u.

All covariant derivatives are taken with respect to ∇t, the unique connection on TM ,

which is compatible with the Hermitian metric gtij̄dz
i
⊗

dz j̄.
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Rt, Rt
ij̄, and Rt

ij̄kl̄
denote the scalar curvature, Ricci curvature, and Rie-

mannian curvature tensors determined by κt, respectively. The κt-curvatures are

completely dependent on κt up to its second partials and continuously dependent on

t ∈ [0, 1]. Furthermore, the {κt} are known and have positive eigenvalues which are

uniformly bounded for all t ∈ [0, 1]. It follows that Rt, Rt
ij̄, and Rt

ij̄kl̄
are uniformly

bounded, which is collected as a fact to be used later.

Fact 2. (Curvature Bounds) There is a constant C0 = C(λ,Λ), for which

sup
M
|Rt

ij̄kl̄|, sup
M
|Rt

ij̄|, sup
M
|Rt| ≤ C0 ∀t ∈ [0, 1].

Lemma 3.3.1. Suppose that ut is a weak solution to
(
κt +

√
−1

2π
∂∂̄{ut + log

∏m
j=1|σj|2hj}

)2

= Ftκ
2
t

Ft = ftω
2
/
κ2
t is uniformly bounded in t ∈ [0, 1].

Then on a compact set K ⊂M − E, there is a constant

C = C(K,λ,Λ, supM×[0,1] Ft, supM×[0,1]∇2Ft), independent of t, such that

2+∆t

(
ut+log

m∏
j=1

|σj|2hj
)
≤ C exp{sup

M
ut−inf

M
ut} sup

K

∣∣∣ m∏
j=1

|σj|2hj
∣∣∣C/ inf

K

( m∏
j=1

|σj|2hj
)C
.

Proof. For notational convenience ut will simultaneously denote itself and

ut+log
∏m

j=1|σj|2hj . Also, t subscripts and superscripts are suppressed with the under-

standing that t is fixed. By lemma (.0.3) there are normal coordinates for g at q ∈ K

for which g̃ij̄ = (1 + uij̄)δij̄ and 0 = ∂kgij̄ and 0 = ∂k̄gij̄. We begin by differentiating
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the term to be estimated,

∂i∂j̄tr{g−1g̃} = tr{∂i∂j̄(g−1)g̃ + g−1∂i∂j̄ g̃} = Rkl̄
ij̄ g̃kl̄ − g

kl̄R̃kl̄ij̄.

Differentiating the Monge-Ampère equation twice gives

∂i∂j̄ log(Ft) = ∂i∂j̄ log det(g̃)− ∂i∂j̄ log det(g)

= ∂itr{g̃−1∂j̄ g̃} − tr{g−1∂i∂j̄(g)}

= tr{−g̃−1∂i(g̃)g̃−1∂j̄(g̃) + g̃−1∂i∂j̄(g̃)} − tr{g−1∂i∂j̄(g)}

= −g̃aq̄g̃ps̄∂i(g̃pq̄)∂j̄(g̃as̄) + g̃pq̄∂i∂j̄(g̃pq̄) +Rij̄

= −g̃aq̄g̃ps̄∂i(g̃pq̄)∂j̄(g̃as̄)− g̃pq̄R̃pq̄ij̄ +Rij̄.

After setting i = k, j = l, p = i, q = j, and taking the trace of ∇2 log(Ft)

and ∇2tr{g−1g̃}, we have

∆ log(Ft) = −gkl̄g̃aj̄ g̃ks̄∂k(g̃ij̄)∂l̄(g̃as̄)− gkl̄g̃ij̄R̃ij̄kl̄ + gkl̄Rkl̄

and

∆̃tr{g−1g̃} = g̃ij̄Rkl̄
ij̄ g̃kl̄ − g̃

ij̄gkl̄R̃kl̄ij̄.

Summing the previous two formulas eliminates the fourth order terms and we get

∆̃tr{g−1g̃} = g̃ij̄Rkl̄
ij̄ g̃kl̄ + ∆ log(Ft) + gkl̄g̃aj̄ g̃ks̄∂k(g̃ij̄)∂l̄(g̃as̄)−R.

The curvature term Rkl̄
ij̄ is bounded, so Rkl̄

ij̄ ≥ −C0g
kl̄gij̄ for some C0 > 0.

Similarly, the extreme value theorem and smoothness of Ft and R imply that they

too are bounded. Applying lemma (2.3.2) to the 3rd order term of ∆̃ log tr{g−1g̃}

gives
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∆̃ log tr{g−1g̃} ≥ 1

tr{g−1g̃}

{
g̃ij̄Rkl̄

ij̄ g̃kl̄ + ∆ log(Ft)−R
}

≥ 1

tr{g−1g̃}

{
− C0g̃

ij̄gkl̄gij̄ g̃kl̄ + ∆ log(Ft)−R
}
, by fact(2),

≥ −C0g̃
ij̄gij̄ +

1

tr{g−1g̃}

{
∆ log(Ft)−R

}
= −(C0 + 1)n+ (C0 + 1)∆̃{ut + log

m∏
j=1

|σj|2hj}+ g̃kl̄gkl̄

+
infM

{
∆ log(Ft)−R

}
tr{g−1g̃}

.

In the last step the formula below is used.

g̃kl̄gkl̄ + ∆̃{ut + log
m∏
j=1

|σj|2hj} = n.

g̃ = µjδij̄ and g = δij̄ at q ∈ K. Also,

g̃kl̄gkl̄ =
µ1 + µ2

µ1µ2

=
tr{g−1g̃}

det(g̃)

=
tr{g−1g̃}
Ft det(g)

, by (3.20),

=
tr{g−1g̃}

Ft
, because det(g) = 1 at q ∈ K.

Then we arrive at

∆̃
{

log tr{g−1g̃} − (C0 + 1){ut + log
m∏
j=1

|σj|2hj}
}
≥ −(C0 + 1)n

+
tr{g−1g̃}

Ft
+

infx∈M

{
∆ log(Ft)−R

}
tr{g−1g̃}

.
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Suppose that the maximum point of the term on which ∆̃ acts occurs at q ∈ K, then

we have

n(C0 + 1)−
infx∈M

{
∆ log(Ft)−R

}
tr{g−1g̃}

≥ tr{g−1g̃}
Ft

=⇒

2Ft ·max

{
n(C0 + 1),

supx∈M

∣∣∣∆ log(Ft)−R
∣∣∣

tr{g−1g̃}

}
≥ tr{g−1g̃}. (3.21)

Because Ft is uniformly bounded in t and fact (2), there is a constant

C1 = max

{
1, sup

y∈M×[0,1]

Ft, sup
x∈M

∣∣∣∆ log(Ft)−R
∣∣∣},

independent of t, so that either

2nC1(C0 + 1) ≥ tr{g−1g̃},

or

2C2
1

1

tr{g−1g̃}
≥ 2Ft ·

supM

∣∣∣∆ log(Ft)−R
∣∣∣

tr{g−1g̃}
≥ tr{g−1g̃}.

In either case tr{g−1g̃}(q) has an upper bound C > 0, where

C = C(n, λ,Λ, K, supFt,∇2Ft) that is independent of t ∈ [0, 1]. Also for convenience

assume that C > C0 + 1. At q ∈ K we have

tr{g−1g̃}eCut
( m∏
j=1

|σj|2hj
)C
≤ CeCut

( m∏
j=1

|σj|2hj
)C
.

Hence, everywhere on K
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tr{g−1g̃}eC infM ut inf
x∈K

( m∏
j=1

|σj|2hj
)C
≤ CeCut

( m∏
j=1

|σj|2hj
)C

=⇒ tr{g−1g̃} ≤ CeC{supM ut−infM ut} sup
x∈K

( m∏
j=1

|σj|2hj
)C/

inf
x∈K

( m∏
j=1

|σj|2hj
)C
.

Then,

tr{g−1g̃} ≤ C exp
{

sup
x∈M

ut − inf
x∈M

ut

}
· sup
x∈K

( m∏
j=1

|σj|2hj
)C/

inf
x∈K

( m∏
j=1

|σj|2hj
)C
. (3.22)

The L∞ estimate of lemma (3.1.4) uniformly bounds the term supx∈M ut −

infx∈M ut; therefore, the eigenvalues of κ̃t are uniformly bounded uniformly in t by

lemma (3.3.1). These uniform C2(K) estimates for solutions imply uniform C2,α(K)

estimates via Evans-Krylov [13]. The bootstrap technique described in chapter (2)

provides uniform Ck,α(K) estimates for all k > 0. By Arzelá-Ascoli there is a sub-

sequence of {ut} which converges to u in Ck(K) for every k ∈ Z+. Therefore, u is a

smooth function on K.
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APPENDIX
KÄHLER COORDINATES

In chapter 2 the following inequality was used in the proof of lemma (3.1.4).

Lemma .0.2. There is a constant B > 0 so that

Bxm ≥ e−
1
x for m > 0. (23)

Proof. We will show that f = e−
1
x

xm
has a maximum on R+.

f ′ =
−m
xm+1

e−
1
x +

1

xm+2
e−

1
x

= e−
1
x

(
1−mx
xm+2

)
.

f is increasing on (0, 1
m

) and decreasing on ( 1
m
,+∞). Therefore, f( 1

m
) = mme−m is a

maximum for f on R+. Any B ≥ mme−m would make inequality (23) true.

In this thesis Kähler coordinates are used to simplify calculations for C2 esti-

mates of nondegenerate and degenerate Monge-Ampère equations. Below is a proof

of their existence.

Lemma .0.3. Let (M,ω) be a Kähler manifold. In local coordinates ω =
√
−1

2π
gij̄dz

i∧

dz j̄. Then at a point p ∈M coordinates can be found so that

(a) gij̄(p) = δij̄.
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(b) ∂kgij̄(p) = ∂k̄gij̄(p) = 0 for k = 1 . . . n.

(c) g̃ij̄(p) = (1 + uīi)δij̄.

Proof. Let z = (z1, . . . , zn) be holomorphic coordinates around some point p ∈M for

which z(p) = (0, . . . , 0). We can always change coordinates linearly at a point so that

gij̄(0) = δij̄, these are called normal coordinates. Hermitian form g̃ij̄ = gij̄ + uij̄ can

be diagonalized, because Hermitian matrices are unitarily diagonalizable. Suppose

O ∈ U(n) diagonalizes ∂∂̄u at a point, then the new coordinates are z̃j = Oijzi and

g̃
(
OX,OY

)
(0) = (OY )∗(I + [uij̄])OX = Y ∗(O∗O+O∗[uij̄]O)X = δij̄(1 + uīi)X

iY j.

To prove (b) consider a linear change of coordinates z = F (w1, . . . , wn) defined

by

F l(w) = wl +
1

2
Alijw

iwj.

Here the coefficients Alij are constant and Alij = Alji. The derivatives of this change

of coordinates are

F l
k =

∂F l

∂wk
= δlk + Alkjw

j and F l
km = Alkm.

Define vector fields

Wi :=
∂

∂wi
and Zi :=

∂

∂zi
.
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These vector fields are related by Wi = F l
iZl.

g
(
Wi,W j

)
= g

(
F l
iZl, F

s
j Zs

)
=
(
δli + Alibw

b
) (
δsj + Asjcw

c
)
g
(
Zl, Zs

)
= g

(
Zi, Zj

)
+ Asjcw

cg
(
Zi, Zs

)
+ Alibw

bg
(
Zl, Zj

)
+ AlibA

s
jcw

bwcg
(
Zl, Zs

)
.

In particular, g
(
Wi,W j

)
(0) = g

(
Zi, Zj

)
(0).

∂

∂wk
g
(
Wi,W j

)
= F l

k

∂

∂zl
g
(
Zi, Zj

)
+ Asjcw

cF l
k

∂

∂zl
g
(
Zi, Zs

)
+ Alikg

(
Zl, Zj

)
+ Alibw

bF l
k

∂

∂zl
g
(
Zl, Zj

)
+ AlikA

s
jcw

cg
(
Zl, Zs

)
+ AlibA

s
jcw

bwcF l
k

∂

∂zl
g
(
Zl, Zs

)
.

At z = 0 the first derivatives of the metric in the w−coordinates are

∂

∂wk
g
(
Wi,W j

)
(0) = δlk

∂

∂zl
g
(
Zi, Zj

)
(0) + Alikδ

j
l

=
∂

∂zk
g
(
Zi, Zj

)
(0) + Ajik.

If Ajik = − ∂
∂zk
g
(
Zi, Zj

)
(0), then the first derivatives of g in the w− coordinates

vanish at z = 0. A similar conclusion is reached for the anti-holomorphic derivatives

of g. Note the condition Alij = Alji is natural because dω = 0 implies that ∂kgij̄ = ∂igkj̄

and ∂k̄gij̄ = ∂j̄gik̄.

Lemma .0.4. Suppose (M,ω) is a closed Kähler surface and χ is a positive and

(1, 1)-form. Further suppose [χ−ω] is semipositive and [χ−ω]2 = [ω]2. Then [χ−ω]

is not Kähler if and only if it there is an effective divisor, D, for which [χ−ω] ·D = 0.
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Proof. The product on cohomology classes which appears in the hypothesis is called

the intersection product. It is defined α · β =
∫
M
α ∧ β if α, β ∈ H2(M ;R)–so it is

well-defined. This product is symmetric, bilinear, and nondegenerate (α · β = 0 ∀β

implies α is exact). By Poincaré duality it is possible to define the intersection of

divisors and line bundles. For instance, if L ∈ Pic(M) is a line bundle and D is a

divisor then α · L =
∫
M
α ∧ c1(L), α · C =

∫
C
α, and D · L :=

∫
D
c1(L).

The lemma follows directly from a Nakai criterion proved independently by

Buchdahl [6] and Lamari [26].

Theorem .0.1. Let (M2, ω) be a closed Kähler surface and ρ ∈ H1,1(M ;R) satisfies

the following conditions:

(a) ρ · ρ > 0.

(b) ρ · [η] > 0, for η a closed positive (1, 1)-form.

(c) ρ · [D] > 0 for every effective divisor D ⊂M .

Then ρ can be represented by a closed positive (1, 1)−form.

Integrating both sides of (3.3) shows that [χ − ω]2 > 0. By the hypothesis

of theorem (1.1.1) [χ − ω] · [χ] = [ω] · [χ] > 0 when c = 1
2
. Since [χ − ω] is at most

semipositive and it satisfies (a) and (b) of theorem (.0.1), there is a curve D for which

[χ − ω] · D = 0. Implicit in this statement is that every representative of [χ − ω]

vanishes on D. To see this suppose that χ′ ∼ (χ− ω) and χ− ω is semipositive. By
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the ∂∂̄-lemma there is a smooth function f so that χ′ − (χ− ω) =
√
−1

2π
∂∂̄f . Stokes’

theorem and compact support of f imply

∫
D

χ′ =

∫
D

χ− ω +

√
−1

2π
∂∂̄f =

∫
D

χ− ω = 0.

So, χ′ is a most semipositive, and every representative of [χ− ω] must vanish

on some divisor. The class conditions [χ−ω] ≥ 0 and not Kähler, imposed by theorem

(1.1.1), are equivalent to the more geometric restriction: [χ− ω] is semipositive and

it vanishes on some effective divisor D.
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[2] Thierry Aubin. Équations du type Monge-Ampère sur les variétés kählériennes
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