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ABSTRACT

W 1,p estimate for the solutions of elliptic equations whose coefficient matrix

can have large jump along the boundary of subdomains is obtained. The principal

coefficients are supposed to be in the John-Nirenberg space with small BMO semi-

norms. The domain and subdomains are Reifenberg flat domains and moreover, it

has been shown that the estimates are uniform with respect to the distance between

the subdomains.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

We consider the following Dirichlet problem for the divergence form elliptic

equation





−(aijuxj
)xi

= −div(A(x)∇u(x)) = divf = (f i)xi
in Ω

u = 0 on ∂Ω

(1.1)

where Ω is an open and bounded subset of Rn. Throughout this thesis we assume

that the n× n matrix A =
∑i=K

i=0 AiχΩi is defined on Rn where Ω1, . . . , ΩK are open

subsets of Ω with flat boundary (see definition 1.1.2), Ω0 := Ω \ ∪i=K
i=1 Ωi and Ai’s for

i = 0, . . . , K are in the John-Nirenberg space BMO [17] of the functions of bounded

mean oscillation with small BMO seminorms.

This problem arises from the underground water flow through composite media

with closely spaced interfacial boundaries, by which the coefficient matrix A has

discontinuity across the boundaries of subdomains. There have been many results to

prove C1,α regularity for a weak solution in [28], [27] and [2] by Y. Li, L. Nirenberg,

M. Vogelius, F. Almgren and L. Wang. In this thesis, I proved W 1,p regularity for

Elliptic Dirichlet problem with singular coefficient matrix A under some necessary

conditions.

Definition 1.1.1. (Small BMO seminorm Assumption) We say that the matrix A of
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coefficients is (δ, R)− vanishing in Ω if

sup
0<r≤R

sup
x∈Rn

√
1

|Br|
∫

Br(x)∩Ω

|A(y)− ĀBr(x)∩Ω|2dy ≤ δ.

Definition 1.1.2. (Reifenberg Flat Domain Assumption) We say that a domain Ω is

(δ, R)-Reifenberg flat if for every x ∈ ∂Ω and every r ∈ (0, R], there exists orthonormal

coordinate system (y1, . . . , yn) with origin at x so that in that coordinate system

Br(0) ∩ {yn > rδ} ⊂ Ω,

Br(0) ∩ {yn < −rδ} ⊂ Ωc.

From this definition, we can see that if a domain Ω is (δ, R)−Reifenberg flat,

then for any x ∈ ∂Ω and every r ∈ (0, R], there exists an (n − 1)-dimensional plane

P(x, r) such that

1

r
D[∂Ω ∩Br(x),P(x, r) ∩Br(x)] ≤ δ,

where D denotes the Hausdorff distance; namely,

D[A,B] = sup{dist(a,B) : a ∈ A}+ sup{dist(b, A) : b ∈ B}.

We will get W 1,p estimate for the classical weak solution of a divergence form

elliptic equation (1.1). The following is the definition for a weak solution.

Definition 1.1.3. Let 1 < p, q < ∞, 1
p

+ 1
q

= 1. Then a weak solution of (1.1) is a

function u ∈ W 1,p
0 (Ω) such that

∫

Ω

A∇u∇ϕdx = −
∫

Ω

f∇ϕdx ∀ϕ ∈ W 1,q
0 (Ω).
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The following is the main result of this thesis.

Theorem 1.1.4. Let p be a real number 1 < p < ∞. Then there is a small

δ = δ(Λ, p, n, R) > 0 so that for all Ω = ∪i=K
i=0 Ωi where Ω0 := Ω \ ∪i=k

i=1Ω
i and

Ω and disjoint subdomains Ωi’s for i = 1, . . . , K are (δ, R)-Reifenberg flat, for all

A =
∑i=K

i=0 AiχΩi where Ai’s are (δ, R)-vanishing in Ωi and uniformly elliptic for

i = 0, . . . , K, and for all f with f ∈ Lp(Ω,Rn), the Dirichlet problem (1.1) has a

unique weak solution with the estimate

∫

Ω

|∇u|pdx ≤ C

∫

Ω

|f |pdx, (1.2)

where the constant C is independent of u and f .

Let us just mention here that the constant C above does not depend on the

distance between the subdomains, which allows the domains to touch each other.

Before our work, in the parabolic case, Fred Almgren and Lihe Wang proved

the C1,α estimates for heat flows across an interface under reasonable further assump-

tion on A in [2]. If u is a weak solution of





B(x)ut = div(A(x)∇u) + divF in Ω

u = 0 on ∂Ω

(1.3)

where B(x) and A(x) have singularity along the Hölder continuous boundaries of sub-

domains, they proved |∇u(x, s)−∇u(y, s)| ≤ C|x− y|α and |∇u(y, s)−∇u(y, t)| ≤

C|s− t|α2 .
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In the elliptic case, in [28], Y. Li and M. Vogelius considered an elliptic equation

div(A∇u) = h + div(g) (1.4)

on a bounded domain D which has a finite number of disjoint subdomains Dm with

C1,α boundary and allowed the matrix A to have discontinuity across the boundaries.

They proved a C1,α regularity for the solution under reasonable Hölder continuity

assumptions on A, h and gi. Later in [27], Y. Li and L. Nirenberg extended the result

in [28] to general second order elliptic systems with piecewise smooth coefficients,

which arises in elasticity. They established stronger C1,α estimates.

1.2 Organization of thesis

In chapter 2, we state preliminary notations and assumptions throughout this

thesis. Mathematical background and main tools are given in chapter 3. In the first

section of chapter 4, we discuss the interior W 1,p regularity and in the second section

of chapter4, a global W 1,p regularity is derived for a weak solution of (1.1). Finally

some future directions of this research are mentioned in chapter 5.
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CHAPTER 2
DEFINITIONS AND NOTATIONS

2.1 Geometric Notation

(1) A typical point in Rn is x = (x′, xn). A typical point in Rn × R is (x, t) =

(x′, xn, t).

(2) Rn
+ = {x ∈ Rn; xn > 0} and Rn

− = {x ∈ Rn; xn < 0}.

(3) Br = {x ∈ Rn : |x| < r} is an open ball in Rn centered at 0 and radius r > 0,

Br(x) = Br + x, B+
r = Br ∩ {xn > 0}, B+

r (x) = B+
r + x, Tr = Br ∩ {xn = 0},

and Tr(x) = Tr + x.

(4) Ωr = Ω ∩Br, Ωr(x) = Ω ∩Br(x).

(5) ∂Ωr is the boundary of Ωr, ∂wΩr = ∂Ω ∩ Br is the wiggled part of ∂Ωr, and

∂cΩr = ∂Ωr\∂wΩr is the curved part of ∂Ωr.

(6) Pδ
i (y) is the (n−1) dimensional plane which is translated hyperplane at y ∈ ∂Ωi

by δ along the normal direction toward Ωi.
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2.2 Matrix of Coefficients

Definition 2.2.1. We say that A is uniformly elliptic if there exists a positive

constant Λ such that

Λ−1|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 a.e. x ∈ Rn,∀ξ ∈ Rn.

(1) We write A = (aij) to mean an n× n matrix with the (i, j)-th entry aij.

(2) |A| =
√

(A : A) =
√∑n

i,j=1 a2
ij and ‖A‖∞ = supy |A(y)|.

(3)

ĀΩ =
1

|Ω|
∫

Ω

A(x)dx

is the average of A over Ω.

(4) A is supposed to be A =
∑K

i=0 AiχΩi where Ai’s are assumed to be uniformly

elliptic and (δ, R)− vanishing on Ωi for any i = 0, . . . , K.

(5) ÃBr
:=

∑K
i=0 Āi

Ωi
r
χΩi

r
.

2.3 Notation for Derivatives

(1) ∇u = (ux1 , . . . , uxn) is the gradient of u.

(2) Multiindex Notation:

(a) A vector of the form α = (α1, . . . , αn), where each component αi is a

nonnegative integer, is called a multiindex of order

|α| = α1 + · · ·+ αn.
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(b) Given a multiindex α = (α1, . . . , αn), define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n

= ∂α1
x1
· · · ∂αn

xn
u.

(3)

div(f) =
n∑

i=1

(f i(x))xi

is the divergence of f = (f 1, . . . , fn).

2.4 Notation for estimates

We employ the letter C to denote a universal constant usually depending on

the dimension, ellipticity and the geometric quantities of Ω.

2.5 Notation for Function and Function Spaces

(1) If f : Ω → Rn, we write f(x) = (f 1(x), . . . , fn(x)) for x ∈ Ω.

(2)

f̄Ω =
1

|Ω|
∫

Ω

|f(x)|dx

is the average of f over Ω.

(3) C∞
0 (Ω) = {u ∈ C∞(Ω) : u has compact support in Ω}.

(4) Lp(Ω) = {u : ‖u‖Lp(Ω) < ∞}, where ‖u‖Lp(Ω) =

(∫

Ω

|u|pdx

) 1
p

for any 1 ≤ p <

∞.

(5) L∞(Ω) = {u : ‖u‖L∞(Ω) < ∞}, where ‖u‖L∞(Ω) = ess supΩ |u|.
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(6) Let u and v be two locally integrable functions. Then we say that v is the ith

weak derivative of u if for any ϕ ∈ C∞
0 (Ω),

∫

Ω

u
∂ϕ

∂xi

dx = −
∫

Ω

vϕdx.

We denote by ∂u
∂xi

the ith weak derivative of u. Then we say that u is in the

space W 1,p(Ω) if u has weak derivatives ∂u
∂xi

∈ Lp(Ω) and u ∈ Lp(Ω). W 1,p is a

Banach space equiped with the norm

(
‖u‖p

Lp(Ω) +
∑

i

‖ ∂u

∂xi

‖p
Lp(Ω)

) 1
p

.

In the case p = 2, H1 = W 1,2 is a Hilbert space. We say u ∈ W 1,p
0 (Ω) if

Eu ∈ W 1,p(Rn), where Eu is the 0-extension of u to Rn.
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CHAPTER 3
PRELIMINARY TOOLS AND MATHEMATICAL BACKGROUND

In this chapter we recall standard facts from measure theory and functional

analysis which will be needed in the sequel. We will present the proof for less familiar

facts.

3.1 The Hardy-Littlewood Maximal Function and Related

Mathematical Background

Lemma 3.1.1. [4] Suppose that f is a nonnegative measurable function in a bounded

domain Ω. Let θ > 0 and m > 1 be constants. Then for 0 < p < ∞,

f ∈ Lp(Ω) iff S =
∑

k≥1

mkp|{x ∈ Ω : f(x) > θmk}| < ∞

and

1

C
S ≤ ‖f‖p

Lp(Ω) ≤ C(|Ω|+ S),

where C > 0 is a constant depending only on θ,m and p.

One of our main tools will be the Hardy-Littlewood maximal function. The

maximal function controls the local behavior of a function in an analytical way.

Definition 3.1.2. For a locally integrable function f on Rn. Let

(Mf)(x) = sup
r>0

1

|Br(x)|
∫

Br(x)

|f(y)|dy

be the Hardy-Littlewood maximal function of f . We also define

MΩf = M(χΩf)



10

if f is not defined outside Ω.

The basic theorem for the Hardy-Littlewood maximal function is the following:

Theorem 3.1.3. [25] We have

(a) If f ∈ Lp(Rn) with p > 1, then Mf ∈ Lp(Rn). Moreover,

‖Mf‖Lp(Rn) ≤ C‖f‖Lp(Rn).

(b) If f ∈ L1(Rn), then

|{x ∈ Rn : (Mf)(x) > λ}| ≤ C

λ
‖f‖L1(Rn).

Here C depends only on p and the dimension n. (a) is called a strong p-p estimate

and (b) is called a weak 1-1 estimate. This theorem says that the measure of {x :

|Mf(x)| > δ} decays roughly as the measure of {x : |f(x)| > δ} does. Since the

value of Lp function at a particular point does not make good sense in a qualitative

way even though the point is a Lebesgue point, we will employ the Hardy-Littlewood

maximal function, which makes sense at a certain point. Let us also remark that the

maximal funciton is invariant with respect to scaling. Hence |{x : |Mf(x)| > δ}| is

more stable and geometric object.

3.2 Vitali Covering Lemma

Another main tool is the Vitali covering lemma:

Lemma 3.2.1. [25] Let E be a measurable set. Suppose that a class of balls Bα covers

E:

E ⊂
⋃
α

Bα.
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Suppose the radius of Bα is bounded from above. Then there exist disjoint {Bαi
}∞i=1 ⊂

{Bα}α such that

E ⊂
⋃
i

5Bαi
,

where 5Bαi
is the ball with five times the radius of Bαi

and the same center. Conse-

quently, we have

|E| ≤ 5n
∑

i

|Bαi
|.

For the discussion of interior W 1,p regularity, we will use the modified version

of the Vitali covering lemma:

Lemma 3.2.2. [26] Assume that C and D are measurable sets, C ⊂ D ⊂ B1, and

that there exists an ε > 0, such that

|C| < ε|B1|,

and for all x ∈ B1 and for all r ∈ (0, 1] with |C ∩Br(x)| ≥ ε|Br(x)|,

Br(x) ∩B1 ⊂ D.

Then

|C| ≤ 10nε|D|.

We will use another version of the Vitali covering lemma for the global estimate

on a (δ, 1)− Reinfenberg flat domain.

Lemma 3.2.3. [3] Assume that C and D are measurable sets. C ⊂ D ⊂ Ω with Ω

(δ, 1)- Reifenberg flat, and that there exists an ε > 0 such that

|C| < ε|B1| (3.1)
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and for all x ∈ B1 and for all r ∈ (0, 1] with |C ∩Br(x)| ≥ ε|Br(x)|,

Br(x) ∩ Ω ⊂ D. (3.2)

Then

|C| ≤ (
10

1− δ
)nε|D|.

Proof. From (3.1), there exists a small rx > 0 such that

|C ∩Brx(x)| = ε|Brx(x)|, |C ∩Br(x)| ≤ ε|Br(x)|, ∀r ∈ (rx, 1]. (3.3)

Since {C ∩ Brx(x) : x ∈ C} is a covering of C with rx ≤ 1, by the Vitali covering

lemma, there exists a disjoint {C ∩Bri
(xi) : xi ∈ C}∞i=1 such that

C ⊂
⋃
i

B5ri
(xi), |C| ≤ 5n

∑
i

|Bri
(xi)|. (3.4)

Then, by (3.3), we see that

|C ∩B5ri
(xi)| < ε|B5ri

(xi)| = 5nε|Bri
(xi)| = 5n|C ∩Bri

(xi)|. (3.5)

Now we claim that

sup
0<r≤1

sup
x∈Ω

|Br(x)|
|Br(x) ∩ Ω| ≤ (

2

1− δ
)n. (3.6)

To do this, choose any r ∈ (0, 1] and any x ∈ Ω. The case dist(x, ∂Ω) ≥ r follows form

the fact Br(x) ⊂ Ω. So suppose that dist(x, ∂Ω) < r. Then there exists a y ∈ ∂Ω so

that

dist(x, ∂Ω) = dist(x, y) < r. (3.7)
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Since ∂Ω is (δ, 1)-Reifenberg flat, without loss of generality we may assume

Br(x) ∩ {xn > δ} ⊂ Br(x) ∩ Ω ⊂ Br(x) ∩ {xn > −δ}

in some appropriate coordinate system in which y = 0. then from the geometry and

an easy computation, we see that

|Br(x)|
|Br(x) ∩ Ω| ≤

|Br(x)|
|Br(x) ∩ {xn > δ}| ≤ (

2

1− δ
)n,

which shows (3.6).

Finally, by (3.2), (3.5), and (3.6), we get

|C| = |
⋃
i

(B5ri
(xi) ∩ C)|

≤
∑

i

|B5ri
(xi) ∩ C|

< ε
∑

i

|B5ri
(xi)|

= 5nε
∑

i

|Bri
(xi)|

≤ 5nε(
2

1− δ
)n

∑
i

|Bri
(xi) ∩ Ω|

= ε(
10

1− δ
)n|

⋃
i

(Bri
(xi) ∩ Ω)|

≤ ε(
10

1− δ
)n|D|,

which completes the proof.
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CHAPTER 4
REGULARITY FOR ELLIPTIC EQUATIONS

4.1 Interior Estimates

In this section we investigate the interior W 1,p estimates for a solution of

−div(A(x)∇u) = divf in Ω. (4.1)

Our assumption is that Ω is bounded open set in Rn and the coefficient matrix

A =
∑i=K

i=0 AiχΩi is defined on Rn where Ω1, . . . , ΩK are open subsets of Ω with

flat boundary (see definition 1.1.2), Ω0 := Ω \ ∪i=K
i=1 Ωi and Ai’s for i = 0, . . . , K are

uniformly elliptic and also (δ, R)-vanishing on Ωi with small BMO seminorms for

i = 0, . . . , K.

W 1,p estimate without discontinuity in A was done by S. Byun and L. Wang

in [3]. Here we consider the case that A has discontinuity along the boundary of

subdomains Ωi’s in Ω for i = 1, . . . , K.

The main result of this section is the following:

Theorem 4.1.1. There is a constant N1 so that for any ε > 0, there exists a small

δ = δ(ε) > 0 such that for all f ∈ L2(B4;Rn) and for all A =
∑i=K

i=0 AiχΩi where Ai’s

are uniformly elliptic and (δ, 4)-vanishing for i = 0, . . . , Kand Ωi’s for i = 1, . . . , K

and Ω are (δ, 9)-flat, if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4 and if

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| ≥ ε|Br| for all r ∈ (0, 1],

then

Br ⊂ {x ∈ Ω : M(|∇u|2)(x) > 1} ∪ {x ∈ Ω : M(|f |2)(x) > δ2}.
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Definition 4.1.2. We say that u ∈ H1(BR) (R > 0) is a weak solution of (4.1) if

∫

BR

A∇u∇ϕdx = −
∫

BR

f∇ϕdx for ∀ϕ ∈ H1
0 (BR).

Lemma 4.1.3. [3] Assume that u is a weak solution of (4.1) in B2. Then

∫

B2

ϕ2|∇u|2dx ≤ C(

∫

B2

ϕ2|f |2dx +

∫

B2

|∇ϕ|2|u|2dx) for any ϕ ∈ C∞
0 (B2). (4.2)

Proof. First note that ϕ2u ∈ H1
0 (B2). Then by the Definition 4.1.2, we have

∫

B2

A∇u∇(ϕ2u)dx = −
∫

B2

f∇(ϕ2u)dx,

and write the resulting expression as

I1 = I2 + I3,

where

I1 =

∫

B2

ϕ2A∇u∇udx,

I2 = −
∫

B2

(2ϕuf∇ϕ + ϕ2f∇u)dx,

I3 = −
∫

B2

2ϕuA∇u∇ϕdx.

Estimate of I1: The uniform ellipticity condition implies

I1 =

∫

B2

ϕ2A∇u∇udx ≥ Λ−1

∫

B2

ϕ2|∇u|2dx.
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Estimate of I2: The Cauchy inequality with τ implies

I2 = −
∫

B2

(2ϕuf∇ϕ + ϕ2f∇u)dx

≤
∫

B2

(2|ϕf ||u∇ϕ|+ ϕ2|f ||∇u|)dx

≤
∫

B2

(ϕ2|f |2|+ |u|2|∇ϕ|2 + τϕ2|∇u|2 +
1

4τ
ϕ2|f |2)dx

≤ (1 +
1

4τ
)

∫

B2

ϕ2|f |2dx +

∫

B2

|u|2|∇ϕ|2dx + τ

∫

B2

ϕ2|∇u|2dx.

Estimate of I3: The condition A ∈ L∞ and the Cauchy inequality with τ imply

I3 = −
∫

B2

2ϕuA∇u∇ϕdx

≤ 2‖A‖L∞

∫

B2

|ϕ∇u||u∇ϕ|dx

≤ Cτ

∫

B2

ϕ2|∇u|2dx +
C

τ

∫

B2

u2|∇ϕ|2dx.

Now we combine the estimate Ii, (i = 1, 2, 3) to discover

Λ−1

∫

B2

ϕ2|∇u|2dx = I1 = I2 + I3

≤ (1 +
1

4τ
)

∫

B2

ϕ2|f |2dx +

∫

B2

|u|2|∇ϕ|2dx + τ

∫

B2

ϕ2|∇u|2dx

+ Cτ

∫

B2

ϕ2|∇u|2dx +
C

τ

∫

B2

u2|∇ϕ|2dx

≤ Cτ

∫

B2

ϕ2|∇u|2dx + (1 +
1

4τ
)

∫

B2

ϕ2|f |2dx + (1 +
1

4τ
)

∫

B2

u2|∇ϕ|2dx.

We finally choose τ = 1
2CΛ

to deduce

∫

B2

ϕ2|∇u|2dx ≤ C(

∫

B2

ϕ2|f |2dx +

∫

B2

|∇ϕ|2|u|2dx) for any ϕ ∈ C∞
0 (B2). (4.3)
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We want to control the gradient of the weak solution of (4.1) using the gradient

of the weak solution of the related homogenous equation. The following lemma shows

that one can bound the gradient of homogenous solution by L2-norm.

Lemma 4.1.4. If v is a weak solution of div(Ā∇v(x)) = 0 in B1 for a piecewise

constant matrix Ā = Ā1χB1∩{xn>a} + Ā0χB1∩{xn<a} for any a ∈ (−1, 1), then

‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B1).

Proof. First assume a = 0. Let Dh
i v(x) = v(x+hei)−v(x)

h
, for h > 0, i = 1, . . . , n − 1.

Since the jump of the coefficient matrix Ā occurs across {xn = 0},

div(Ā∇Dh
i v(x)) = 0

for sufficiently small h > 0. Also

∫

B 1
2+1

4

|∇Dh
i v(x)|2dx ≤ C

∫

B 1
2+1

4+1
8

|Dh
i v(x)|2dx (4.4)

≤ C

∫

B 1
2+1

4+1
8+ 1

16

|∇v(x)|2dx (4.5)

≤ C

∫

B1

|v(x)|2dx (4.6)

for 0 < h < 1
16

. Here we used the Lemma 4.1.3 for the first and the third inequality.

So vxi
∈ H1(B 3

4
) for i = 1, . . . , n− 1. Similarly, we can apply this method to vxi

, i.e.

using Dh
j vxi

(x) for i, j = 1, . . . , n− 1. So vxixj
∈ H1(B 1

2
+ 1

8
) for i = 1, . . . , n− 1. Let

S = [n
2
] + 3. For any tangential vector α = (α1, . . . , αn−1, 0) such that |α| ≤ S, we

can iterate |α| times and get

Dαv(x) ∈ H1(B 1
2
+ 1

2S+1
).
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Since div(Ā∇Dαv(x)) = 0, we can use the De Giorgi-Nash theorem to say that Dαv

is Hölder continuous. So there is a constant C such that

‖Dαv‖L∞(B 1
2+ 1

2S+2
) ≤ C‖Dαv‖L2(B 1

2+ 1
2S+1

) (4.7)

≤ C‖v‖L2(B1). (4.8)

Now consider the vertical direction. Define

g(x1, x2, . . . , xn) := v(x1, . . . , xn−1, 0) in B+
1
2
+ 1

2S+1

.

We can see that gxn = 0 and also by (4.7),





Dαg = Dαv ∈ H1(B+
1
2
+ 1

2S+1

)

‖Dαg‖L∞(B 1
2+ 1

2S+2
) = ‖Dαv‖L∞(B 1

2+ 1
2S+2

) ≤ C‖v‖L2(B1)

for α = (α1, . . . , αn−1, 0) such that |α| ≤ S. Let

ṽ(x1, . . . , xn) := v(x1, . . . , xn)− g(x1, . . . , xn).

Note that ṽ ∈ H1(B+
1
2
+ 1

2S+1

) and ṽ|xn=0 = 0. Since div(Ā∇(ṽ + g)) = 0,

div(Ā∇ṽ) = −div(Ā∇g)

= −
n∑

i=1

(
n∑

j=1

āijgxi
)xj

= −
n−1∑
i=1

(
n−1∑
j=1

āijgxi
)xj

∈ HS−1(B+
1
2

) = H [n
2
]+1(B+

1
2

)

Furthermore, by Theorem 5 in Section 6.3 and the Trace Theorem, see Section 5.5 in

[11], also by Lemma 4.1.3,

‖ṽ‖HS−1(B+
1
2

) ≤ C(‖v‖L2(B1) + ‖ṽ‖L2(B 1
2
)) ≤ C‖v‖L2(B1), (4.9)
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We can combine (4.9) and Sobolev inequality to get

‖ṽ‖
CS−[ n

2 ]−2,γ(B+
1
2

)
≤ C‖ṽ‖HS−1(B+

1
2

) ≤ C‖v‖L2(B1).

Thus ṽ is C1,γ Hölder continuous. Finally we can say that |∇ṽ| is bounded in B+
1
2

.

Similarly |∇ṽ| is also bounded in B−
1
2

. So |∇ṽ| = |∇v −∇g̃| is bounded in B 1
2
. Thus

‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B1). (4.10)

Assume |a| > 3
4
. Then Ā has no discontinuity in B 3

4
. So there is a constant C

such that

‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B 3

4
) ≤ C‖v‖L2(B1). (4.11)

Assume 0 < |a| < 3
4
. Say L := {x ∈ Rn : xn = a}.

Figure 4.1: Covering methods for the case a 6= 0

For any x ∈ B 3
4
∩L, B 1

4
(x) ⊂ B1. By above case for a = 0, there exists a constant C
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such that

‖∇v‖L∞({x∈B 1
2
:dist(x,L)< 1

8
}) ≤ sup

x∈B 3
4
∩L
‖∇v‖L∞(B 1

8
(x)) (4.12)

≤ C‖v‖L2(B 1
4
(x)) ≤ C‖v‖L2(B1). (4.13)

For any x ∈ {x ∈ B 1
2

: dist(x, L) ≥ 1
8
}, B 1

8
(x) ⊂ B1 and Ā has no discontinuity in

B 1
8
(x). So there exists a constant C such that

sup
{x∈B 1

2
:dist(x,L)≥ 1

8
}
‖∇v‖L∞(B 1

16
(x)) ≤ C‖v‖L2(B 1

8
(x)) ≤ C‖v‖L2(B1). (4.14)

By taking the maximum C in (4.10), (4.11), (4.12) and (4.14), we are done.

Lemma 4.1.5. For any ε > 0, there is a small δ = δ(ε) > 0 such that for any weak

solution u of (4.1) in B2 where for any l,m = 0 . . . K and any |a| < 2 ,

B2 ∩ {xn > a + δ} ⊂ Ωl
2 ⊂ B2 ∩ {xn > a− δ} (4.15)

B2 ∩ {xn < a− δ} ⊂ Ωm
2 ⊂ B2 ∩ {xn < a + δ} (4.16)

and

1

|B2|
∫

B2

|∇u|2dx ≤ 1, (4.17)

1

|B2|
∫

B2

(|f |2 + |A− ÃB2|2)dx ≤ δ2, (4.18)

where ÃB2 =
∑

i A
i
Ωi

2
χΩi

2
, there exists a piecewise constant matrix Ãb

B2 as Ãb
B2 =

Al
Ωl

2
χB2∩{xn>a} + Am

Ωm
2
χB2∩{xn<a} and for a corresponding weak solution v of

− div(Ãb
B2∇v) = 0 in B2 (4.19)

such that
∫

B2

|u− v|2dx ≤ ε2.
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Proof. If not, there exists ε0 > 0, {Ak} = {∑K
i=0 Ai

kχΩi,k}, {uk}, {fk}, {Ωl,k
2 } and

{(Ωm,k)2} for some l,m = 0 . . . K and some |a| < 2 such that uk is a weak solu-

tion of

− div(Ak∇uk) = divfk in B2 (4.20)

with

B2 ∩ {xn > a +
1

k
} ⊂ (Ωl,k)2 ⊂ B2 ∩ {xn > a− 1

k
}

B2 ∩ {xn < a− 1

k
} ⊂ (Ωm,k)2 ⊂ B2 ∩ {xn < a +

1

k
}

but
∫

B2

|uk − vk|2dx > ε2
0 (4.21)

for any weak solution vk of

− div(Ãb
kB2
∇vk) = 0 in B2 (4.22)

where Ãb
kB2

= Al
k(Ωl,k)2

χB2∩{xn>a} + Am
k (Ωm,k)2

χB2∩{xn<a}.

By (4.17), {uk − ukB2
}∞k=1 is bounded in H1(B2), and so {uk − ukB2

} has a

subsequence, which we denote as {uk − uk}, such that

uk − uk ⇀ u0 in H1(B2), uk − uk → u0 in L2(B2). (4.23)

Since Ãb
kB2

is bounded in L∞, there is a subsequence {Ãb
k} such that

‖Ãb
k − A0‖∞ → 0 as k →∞, (4.24)

for some piecewise constant matrix A0. Since Ãb
k − ÃkB2

→ 0 in L2(B2) and ÃkB2
−

Ak → 0 in L2(B2). Thus Ak → A0 in L2(B2).
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Next we will show that u0 is a weak solution of

− div(A0∇u0) = 0 in B2 (4.25)

To do this, fix any ϕ ∈ H1
0 (B2). Then by (4.20),

∫

B2

Ak∇uk∇ϕdx = −
∫

B2

fk∇ϕdx. (4.26)

Since ∇uk ⇀ ∇u0 and Ak → A0 in L2(B2), Ak∇uk ⇀ A0∇u0 in L2(B2). Then by

letting k →∞,
∫

B2

A0∇u0∇ϕdx = 0. (4.27)

This shows (4.25). Note that

−div(Ãb
k∇u0) = −div((Ãb

k − A0)∇u0)− div(A0∇u0)

= −div((Ãb
k − A0)∇u0)

in B2. Let hk be the weak solution of





−div(Ãb
k∇hk) = div((Ãb

k − A0)∇u0) in B2

hk = 0 on ∂B2

(4.28)

Then u0 − hk is a weak solution of

div((Ãb
k∇(u0 − hk)) = 0 in B2. (4.29)

Furthermore, by (4.28),
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‖hk‖L2(B2) ≤ C‖∇hk‖L2(B2) ≤ C‖(Ãb
k − A0)∇u0‖L2(B2)

≤ C‖(Ãb
k − A0)‖L∞‖∇u0‖L2(B2)

≤ C‖(Ãb
k − A0)‖L∞(B2).

So now

‖uk − (u0 + ūk − hk)‖L2(B2) ≤ ‖uk − ūk − u0‖L2(B2) + ‖hk‖L2(B2)

≤ ‖uk − ūk − u0‖L2(B2) + C‖(Ãb
k − A0)‖L∞(B2).

This estimate, (4.23) and (4.24) imply that

‖uk − (u0 + ūk − hk)‖L2(B2) → 0 as k →∞.

But this is a contradiction to (4.21) by (4.28).

Corollary 4.1.6. For any ε > 0, there is a small δ = δ(ε) > 0 such that for any

weak solution u of (4.1) in B2 where for any l, m = 0 . . . K and any |a| < 2 ,

B2 ∩ {xn > a + δ} ⊂ Ωl
2 ⊂ B2 ∩ {xn > a− δ} (4.30)

B2 ∩ {xn < a− δ} ⊂ Ωm
2 ⊂ B2 ∩ {xn < a + δ} (4.31)

and

1

|B2|
∫

B2

|∇u|2dx ≤ 1, (4.32)

1

|B2|
∫

B2

(|f |2 + |A− ÃB2|2)dx ≤ δ2, (4.33)
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where ÃB2 =
∑

i A
i
Ωi

2
χΩi

2
, there exists a piecewise constant matrix Ãb

B2 as Ãb
B2 =

Al
Ωl

2
χB2∩{xn>a} + Am

Ωm
2
χB2∩{xn<a} and for a corresponding weak solution v of

− div(Ãb
B2∇v) = 0 in B2 (4.34)

such that
∫

B 4
3

|∇(u− v)|2dx ≤ ε2.

Proof. By the Lemma 4.1.5, for any η > 0, there exists δ = δ(η) > 0, a piecewise

constant matrix Ãb
B2 = Al

Ωl
2
χB2∩{xn>a}+Am

Ωm
2
χB2∩{xn<a} and a corresponding weak

solution v of −div(Ãb
B2∇v) = 0 in B2 such that

∫

B2

|u− v|2dx ≤ η2.

First we see that u− v ∈ H1(B2) is a weak solution of

− div(A∇(u− v)) = div(f + (A− Ãb
B2)∇v) in B2 (4.35)

Now, by (4.2),

∫

B 4
3

|∇(u− v)|2 ≤ C(

∫

B 3
2

|f + (A− Ãb
B2)∇v|2 + |u− v|2dx) (4.36)

≤ C(

∫

B 3
2

|f |2dx +

∫

B 3
2

|(A− Ãb
B2)∇v|2dx +

∫

B 3
2

|u− v|2dx) (4.37)

≤ C(

∫

B2

|f |2 +

∫

B2

|A− Ãb
B2|2dx +

∫

B2

|u− v|2dx) (4.38)

Here we used the fact that v is lipschitz, which we showed in Lemma 4.1.4, and (4.32).
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Also,

∫

B2

|f |2 + |A− Ãb
B2|2dx ≤ 2

∫

B2

(|f |2 + |A− ÃB2|2) + |ÃB2 − Ãb
B2|2 (4.39)

≤ 2(|B2|δ2 + C(Λ)δ) (4.40)

≤ Cδ for a small δ. (4.41)

So ‖∇(u − v)‖2
L2(B2) ≤ C(δ + η2) = ε2 by taking η and δ satisfying the last identity.

This completes our proof.

We can control the measure of the set where |∇u| is quite big as the following

lemma.

Lemma 4.1.7. (cf. [3]) There is a constant N1 > 0 so that for any ε > 0, there

exists a small δ = δ(ε) > 0 such that for all A with A =
∑K

i=0 AiχΩi, where Ai’s are

uniformly elliptic and (δ, 4)-vanishing on Ωi for i = 0 . . . K and for any l, m = 0 . . . K

and any |a| < 4 in appropriate coordinate system

B4 ∩ {xn > a + δ} ⊂ Ωl
4 ⊂ B4 ∩ {xn > a− δ} (4.42)

B4 ∩ {xn < a− δ} ⊂ Ωm
4 ⊂ B4 ∩ {xn < a + δ}, (4.43)

and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4 and if

{x ∈ B1 : M(|∇u|2) ≤ 1} ∩ {x ∈ B1 : M(|f |2) ≤ δ2} 6= ∅, (4.44)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B1| < ε|B1|. (4.45)
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Proof. By (4.44), there is a point x0 ∈ B1 such that for all r > 0,

1

|Br|
∫

Br(x0)∩Ω

|∇u|2dx ≤ 1,
1

|Br|
∫

Br(x0)∩Ω

|f |2dx ≤ δ2. (4.46)

Since B2(0) ⊂ B3(x0), we have by (4.46),

1

|B2|
∫

B2

|f |2dx ≤ |B3|
|B2|

1

|B3|
∫

B3(x0)

|f |2dx ≤ (
3

2
)nδ2. (4.47)

Similarly, we see that

1

|B2|
∫

B2

|∇u|2dx ≤ (
3

2
)n. (4.48)

In view of (4.47) and (4.48), and from the assumption on A, we can apply Corollary

4.1.6 with u replaced by (2
3
)nu and f replaced by (2

3
)nf , respectively, to find that for

any η > 0, there exists a small δ(η) and a corresponding weak solution v of

−div(Ãb
B2∇v) = 0 (4.49)

in B2 such that
∫

B 4
3

|∇(u− v)|2dx ≤ η2, (4.50)

provided that

1

|B2|
∫

B2

(|f |2 + |A− ÃB2|2)dx ≤ δ2. (4.51)

By the interior W 1,∞ regularity that we proved in Lemma 4.1.4, we can find a constant

N0 such that

‖∇v‖L∞(B 3
2
) ≤ N0. (4.52)

Now we will show that

{x ∈ B1 : M|∇u|2 > N2
1} ⊂ {x ∈ B1 : MB2|∇(u− v)|2 > N2

0} (4.53)
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for N2
1 := max{5n, 4N2

0}. To do this, suppose that

x1 ∈ {x ∈ B1 : MB2(|∇(u− v)|)2(x) ≤ N2
0}. (4.54)

For r ≤ 1
2
, Br(x1) ⊂ B 3

2
, and by (4.52) and (4.54), we have

1

|Br|
∫

Br(x1)

|∇u|2dx ≤ 2

|Br|
∫

B 3
2

(|∇(u− v)|2 + |∇v|2) ≤ 4N2
0 . (4.55)

For r > 1
2
, Br(x1) ⊂ B5r(x0), and by (4.46), we have

1

|Br|
∫

Br(x1)

|∇u|2dx ≤ 5n

|B5r|
∫

B5r(x0)∩Ω

|∇u|2dx ≤ 5n. (4.56)

Then (4.55) and (4.56) show

x1 ∈ {x ∈ B1 : M(|∇u|)2 ≤ N2
1}. (4.57)

Thus assertion (4.53) follows from (4.54) and (4.57).

By (4.53), weak 1-1 estimates and (4.50), we obtain

|{x ∈ B1 : M(|∇u|)2 > N2
1}| ≤ |{x ∈ B1 : MB2(|∇(u− v)|)2 > N2

0}|

≤ C

N2
0

∫

B 4
3

|∇(u− v)|2dx

≤ C

N2
0

η2 = ε|B1|,

by taking small η satisfying the last identity above. Now Corollary 4.1.6 gives the

desired δ.

Corollary 4.1.8. There is a constant N1 > 0 so that for any ε, r ∈ (0, 1], there

exists a small δ = δ(ε) > 0 such that for all A with A =
∑K

i=0 AiχΩi, where Ai’s are
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uniformly elliptic and (δ, 4)-vanishing on Ωi for i = 0 . . . K and for any l, m = 0 . . . K

and any |a| < 4r in appropriate coordinate system

B4r ∩ {xn > a + δr} ⊂ Ωl
4r ⊂ B4r ∩ {xn > a− δr} (4.58)

B4r ∩ {xn < a− δr} ⊂ Ωm
4r ⊂ B4r ∩ {xn < a + δr} (4.59)

and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4r and if

{x ∈ Br : M(|∇u|2) ≤ 1} ∩ {x ∈ Br : M(|f |2) ≤ δ2} 6= ∅, (4.60)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| < ε|Br|. (4.61)

Proof. The proof is given by Lemma 4.1.7 and a scaling argument.

To use the modified vitali covering lemma, we need to show Theorem 4.1.1

holds for any ball Br(x) for r ∈ (0, 1] and x ∈ Ω. If Br(x) intersects with only one

subdomain Ωl then the proof of Theorem 4.1.1 comes directly from Lemma 4.1.8 for

l = m. If Br(x) intersects with two subdomains Ωl and Ω0, then the proof of Theorem

4.1.1 also comes directly from Lemma 4.1.8 for m = 0.

Then next natural question would be how many subdomains can intersect with

Br(x) for r ∈ (0, 1] and x ∈ Ω when ∂Ωi’s are flat enough. Next lemma will be used

to show that a ball can intersect with at most three subdomains.

Lemma 4.1.9. Hi’s for i = 1, . . . , K are half spaces. If {Hi∩B2}i are disjoint. Then

at most two half spaces can intersect with B1.
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Proof. Assume there are three half spaces, say H1, H2 and H3 such that B2∩Hi’s are

disjoint and Hi ∩ B1 6= ∅ for i = 1, 2, 3. Let pi ∈ Hi ∩ B1 for i = 1, 2, 3.. Note that

since half spaces are disjoint in B2 these points are not collinear. Let T be the two

dimensional plane containing p1, p2, p3. For j = 1, 2 let Dj = T ∩Bj which are indeed

two dimensional balls. Let rj = radius of Dj for j = 1, 2. Note that r2 ≥ 2r1.

Let hi := T ∩Hi and li := T ∩ ∂Hi = ∂hi. We have

(1) pi ∈ li ∩ D1 for i = 1, 2, 3

(2) hi ∩ D2’s are disjoint for i = 1, 2, 3.

Pushing li’s into hi by δi > 0, we may assume that li’s are tangent to the D1 and

pi ∈ ∂D1 for i = 1, 2, 3. Let also Ai and Bi be the points where li intersects ∂D2 for

i = 1, 2, 3. Let hi ∩ ∂D2 =
_

AiBi.

O

A_i

r_2

B_i

r_1

p_i

Figure 4.2: Hi ∩ T on T
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Note that
_

AiBi for i = 1, 2, 3. are disjoint on ∂D2. Since r2 ≥ 2r1 and li’s are

tangent to D1,

length of
_

AiBi

length of ∂D2

≥ 1

3
, for i = 1, 2, 3. (4.62)

The above is a strict inequality if r2 > 2r1, which is a contradiction to the fact that

_

AiBi’s are disjoint on ∂D2. If r2 = 2r1, (4.62) is an equality. In this case li’s end

points meet each other. So we cannot push li outward from hi which means δi = 0

for i = 1, 2, 3.

So now we consider the case that a ball intersect with three subdomains Ωl,

Ω0 and Ωm for any l, m = 1 . . . K. To prove Theorem 4.1.1 for this case, our goal is

to show Lemma 4.1.7 holds for this case as well. Roughly there can be two different

cases; The first case is when Ωl and Ωm are quite close and the second case is when

Ωl and Ωm are not so close.

Lemma 4.1.10. There exists a constant N1 > 0 so that for any ε > 0, there exists

a small δ = δ(ε) > 0 and for all Ω ⊃ B4 and subdomain Ωi for all i = 1, . . . , K and

Ω are (δ, 9)-flat and for all A where Ai’s are uniformly elliptic and (δ, 9) vanishing

on Ωi, and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4 and if

{x ∈ B1 : M(|∇u|2) ≤ 1} ∩ {x ∈ B1 : M(|f |2) ≤ δ2} 6= ∅, (4.63)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B1| < ε|B1|. (4.64)

Proof. If B4 intersects with two subdomains, then we are done by Lemma 4.1.7.
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Suppose B4 intersects with three subdomains, say Ωl, Ω0 and Ωm. First assume

that dist(Ωl, Ωm) < γ in B1 for some small γ > 0. Since dist(Ωl, Ωm) < γ in B1, there

exist pl ∈ ∂Ωl ∩B1 and pm ∈ ∂Ωm ∩B1 such that dist(pl, pm) < γ. Also assume that

Ωl, Ωm are (δ, 9)-Reifenberg flat for a δ with γ < δ << 1. So for each pi, i = l,m,

there exist (n− 1) dimensional hyper plane Pi such that

D[∂Ωi ∩B9(pi),Pi ∩B9(pi)] ≤ 9δ, for i = l, m (4.65)

where D denotes the Hausdorff distance. In other words, the boundary of Ωi is

squeezed between Pi and P9δ
i which is the translation of Pi by 9δ in the normal

direction of Pi inward Ωi for i = l,m. We can choose a coordinate system such

that the normal direction of P9δ
l is the xn axis. Let us say yi is the intersection point

between P9δ
i and vertical line of P9δ

i passing through pi for i = l,m. Then the distance

between ym and P9δ
l is less than γ + 18δ < 19δ by (4.65). Since P9δ

l ∩ P9δ
m ∩ B4 = ∅,

on P9δ
m

|∂xn

∂xi

| < γ + 18δ

3− γ − 18δ
<

19δ

3− 19δ
< 7δ for any γ < δ << 1, and i = 1, . . . n− 1.

So maxy∈P9δ
m ∩B4

dist(y,P9δ
l ∩B4) < Cδ + γ where C depends on the dimension n.

The above is nothing but harnack inequality. Since distance function between P9δ
l

and P9δ
m in B4 is nonnegative harmonic, we can apply Harnack Inequality.

max
y∈P9δ

m ∩B1

dist(P9δ
l , y) < C1 min

y∈P9δ
m ∩B1

dist(P9δ
l , y) < Cdist(yl, ym) = C(19δ + γ) (4.66)

where C depends on the dimension n.

Since the Hausdorff distance between P9δ
l ,P9δ

m is less than C(δ + γ), we can
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choose small δ0 and γ0 such that C(δ0 +γ0) is less than δ in Lemma 4.1.7. By Lemma

4.1.7, we can conclude.

Now suppose dist(∂Ωl, ∂Ωm) > γ0 in B1 for above γ0. If y ∈ S1 = {x ∈ B1| x ∈

∂Ωl∩∂Ωm }, then Bγ0(y) has only two subdomains. From (4.63), there exists x0 ∈ B1

such that

M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2.

For any y ∈ S1, by weak 1-1 estimate in Theorem 3.1.3,

|{x ∈ B γ0
4
(y) : M(|∇u|2)(x) > λ1}| ≤ C

λ1

∫

B2(x0)

|∇u|2dx

≤ C

λ1

|B2(x0)| < 1

2
|B γ0

4
(y)|

when λ1 > C23n+1

γn
0

. Similarly for this λ1,

|{x ∈ B γ0
4
(y) : M(|f |2)(x) > δ2λ1}| ≤ C

δ2λ1

∫

B2(x0)

|f |2dx

≤ C

δ2λ1

|B2(x0)| < 1

2
|B γ0

4
(y)|.

From above two inequalities, one can find a xy ∈ B γ0
4
(y) such that

M(|∇u|2)(xy) ≤ λ1 and M(|f |2)(xy) ≤ δ2λ1.

By Lemma 4.1.8, there is a constant N1 so that for any ε > 0

|{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1} ∩B γ0

4
(y)| < ε|B γ0

4
(y)|. (4.67)
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If y ∈ S2 = {x ∈ B1| mini=l,m dist(x, ∂Ωi) > γ0

4×5
}, B γ0

20
(y) ⊂ Ωi for i = 0, l, m.

Similarly as above, there is a xy ∈ B γ0
80

(y) such that

M(|∇u|2)(xy) ≤ λ2 and M(|f |2)(xy) ≤ δ2λ2.

when λ2 > C25n+15n

γn
0

. By Lemma 4.1.8, there is a constant N1 so that for any ε > 0

|{x ∈ Ω : M(|∇u|2)(x) > λ2N
2
1} ∩B γ0

80
(y)| < ε|B γ0

80
(y)|. (4.68)

So U = {Br(y)| r = γ0

4×5
, y ∈ S1 } ∪ {Br(y)| r = γ0

80×5
, y ∈ S2 } covers B1. Then by

Vitali Covering Lemma, there exist disjoint balls {Bri
(yi)}∞i=1 ⊂ U ⊂ B2 such that

B1 ⊂ ∪iB5ri
(yi). Let N1 to be max(

√
λ1N1,

√
λ2N1). Then by (4.67) and (4.68),

|{x ∈ Ω :M(|∇u|2)(x) > N2
1} ∩B1|

<
∑

i

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B5ri

(yi)|

< ε
∑

i

|B5ri
(yi)| < ε5n

∑
i

|Bri
(yi)|

< ε5n|B2| < ε(10)n|B1|.

Since Ωi’s for i = 0, . . . , n are (δ, 9)-flat, B4 does not intersect more than three

subdomains. To see that, assume that B4 intersects with Ω0, Ω1, Ω2, Ω3. For any

pi ∈ ∂Ωi ∩ B4, for i = 1, 2, 3, there exists a hyperplane Pi such that ∂Ωi ∩ B9 is

between Pi and P9δ
i where P9δ

i is translation of Pi into Ωi in the normal direction

by 9δ since Ωi’s for i = 0, . . . , n are (δ, 9)-flat. Then for any δ < 1
18

, on the plane T
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containing p1, p2, p3, Hi for i = 1, 2, 3 intersect with B 9
2

but they are disjoint in B9,

which is a contradiction to Lemma 4.1.9.

The proof of Theorem 4.1.1 The proof follows from Lemma 4.1.10 and

scaling argument.

The following is an interior regularity theorem.

Theorem 4.1.11. Let p be a real number with 1 < p < ∞. There is a small

δ = δ(λ, p, n, R) so that for all Ω = ∪K
i=0Ω

i where Ω0 := Ω \ ∪K
i=1Ω

i and Ωi’s for

i = 1, . . . , K and Ω are (δ, 9)-flat and A =
∑i=K

i=0 AiχΩi where Ai’s are uniformly

elliptic and (δ, 9)-vanishing on Ωi and for all f ∈ Lp(B4;Rn) , if u is a weak solution

of the elliptic PDE (1.1) in B4, then u belong to W 1,p(B1) with the estimate

‖∇u‖Lp(B1) ≤ C(‖u‖Lp(B4) + ‖f‖Lp(B4)),

where the constant C is independent of u and f .

Proof. The proof follows from the global regularity theory in the next section with u

replaced by φu for an appropriately chosen cutoff function φ.

Remark 4.1.12. We can change the ball B4 in Theorem 4.1.11 to any ball BR for

R > 1.

4.2 Global Estimates

Definition 4.2.1. We say that u ∈ H1
0 (Ω) is a weak solution of (1.1) if

−
∫

Ω

A∇u∇ϕdx =

∫

Ω

f∇ϕdx ∀ϕ ∈ H1
0 (Ω). (4.69)
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In this section our interest is the following case.

ΩR ⊃ TR with D(ΩR, TR) small,

where D denotes the Hausdorff distance. We consider weak solution of





−div(A(x)∇u(x)) = divf in ΩR

u = 0 on ∂wΩR

(4.70)

Here the n×n coefficient matrix A is A =
∑i=K

i=0 AiχΩi where Ω0 := Ω \ ∪i=k
i=1Ω

i

and Ai’s for i = 0, · · · , K are in the John-Nirenberg space BMO [17] of the functions of

bounded mean oscillation with small BMO seminorms and Ω and Ωi’s are Reifenberg

flat domains for i = 1 . . . K.

Definition 4.2.2. u ∈ H1(ΩR) is a weak solution of (4.70) in ΩR if

∫

ΩR

A∇u∇ϕdx = −
∫

ΩR

f∇ϕdx for any ϕ ∈ H1
0 (ΩR)

and u’s 0-extension is in H1(BR).

In ([3]), the following Lemmas were proven for A without discontinuity.

Lemma 4.2.3. [3] There is a constant N1 > 0 so that for any ε > 0, there exists a

small δ = δ(ε) > 0 with A uniformly elliptic and (δ, 4)-vanishing, and if u ∈ H1
0 (Ω)

is a weak solution of (4.70) with B+
4 ⊂ Ω4 ⊂ B4 ∩ {xn > −δ} and

{x ∈ Ω1 : M(|∇u|2) ≤ 1} ∩ {x ∈ Ω1 : M(|f |2) ≤ δ2} 6= ∅, (4.71)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B1| < ε|B1|. (4.72)



36

Corollary 4.2.4. [3] There is a constant N1 > 0 so that for any ε, r > 0, there exists

a small δ = δ(ε) > 0 with A uniformly elliptic and (δ, 4r)-vanishing, and if u ∈ H1
0 (Ω)

is a weak solution of (4.70) with B+
4r ⊂ Ω4r ⊂ B4r ∩ {xn > −δr} and

{x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅, (4.73)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| < ε|Br|. (4.74)

Now we consider how to control the measure of the set where |∇u| is big for

the case that A has big discontinuity along the subdomains.

Lemma 4.2.5. There is a constant N1 > 0 so that for any ε > 0, there exists a

small δ = δ(ε) > 0 with Ai’s are uniformly elliptic and (δ, 9)-vanishing on Ωi for

i = 0 . . . K and Ω and Ωi’s are (δ, 9)-flat for i = 1 . . . K, and if u ∈ H1
0 (Ω) is a weak

solution of (4.70) with B+
4 ⊂ Ω4 ⊂ B4 ∩ {xn > −4δ} and

{x ∈ Ω1 : M(|∇u|2) ≤ 1} ∩ {x ∈ Ω1 : M(|f |2) ≤ δ2} 6= ∅, (4.75)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B1| < ε|B1|. (4.76)

Proof. If B4 intersects with only Ω0, then this lemma is nothing but what Lemma

4.2.3 says. Note that B4 cannot intersect with more than two subdomains by the

same argument in the proof of Lemma 4.1.10. (considering Ωc as (δ, 9)-flat for any

sufficiently small δ). Assume that B4 intersects with Ω0 and Ωl for any l = 1 . . . K.
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First suppose dist(∂Ωl, ∂Ω) < γ in B4 for some γ > 0. Then there exist

pl ∈ ∂Ωl ∩ B4 and p ∈ ∂Ω ∩ B4 such that dist(p, pl) < γ. Since Ωl are (δ, 9)-flat,

P9δ
l (pl) ∩ B4 ⊂ Ωl where Pδ

l (pl) is the (n− 1) dimensional plane which is translated

hyperplane at pl by δ along the normal direction toward Ωl. Let us say yl is the

intersection point between P9δ
l and vertical line of P9δ

l passing through pl. Then the

dist(yl, {x ∈ B4 : xn = −4δ}) < 9δ + γ + 4δ = 13δ + γ. Note that P9δ
l ∩ B4 ⊂ Ωl.

Since distance function between P9δ
l ∩ B4 and {x ∈ B4 : xn = −4δ} is nonnegative

harmonic, we can apply Harnack Inequality.

max
y∈P9δ

l ∩B4

dist(y, {x ∈ B4 : xn = −4δ})

≤ C min
y∈P9δ

l ∩B4

dist(y, {x ∈ B4 : xn = −4δ})

≤ Cdist(yl, {x ∈ B4 : xn = −4δ})

= C(13δ + γ)

where C depends on the dimension n. One can choose small γ0 and δ0 so that

C(13δ0 + γ0) < δ for δ in Lemma 4.2.3. We conclude by Lemma 4.2.3.

Now suppose dist(∂Ωl, ∂Ω) ≥ γ0 in B4 for the γ0 above. For any y ∈ S1 =

{x ∈ B1| x ∈ ∂Ωl }, Bγ0(y) has two subdomains and Bγ0(y) ∩ ∂Ω = ∅. From (4.75),

there exists x0 ∈ Ω1 such that

M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2.

As we showed in the proof of Lemma 4.1.10, there is a constant N1 so that for any

ε > 0, there exists δ > 0 so that
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|{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1} ∩B γ0

4
(y)| < ε|B γ0

4
(y)|. (4.77)

where λ1 > C23n+1

γn
0

. Also for any y ∈ S2 = {x ∈ B1| x ∈ ∂Ω }, B+
γ0
⊂ Ω0 ⊂

Bγ0 ∩ {xn > −γ0δ} in appropriate coordinate system. By applying Corollary 4.2.4,

there is a constant N1 so that for any ε > 0, there exists δ > 0 so that

|{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1} ∩B γ0

4
(y)| < ε|B γ0

4
(y)|. (4.78)

For any y ∈ T = {x ∈ B1| min(dist(x, ∂Ωl), dist(x, ∂Ω)) > γ0

4×5
}, B γ0

20
(y) ⊂ Ωi for

i = 0, l. Then by Lemma 4.1.7 there is a constant N1 so that for any ε > 0, there

exists δ > 0 so that

|{x ∈ Ω : M(|∇u|2)(x) > λ2N
2
1} ∩B γ0

20×4
(y)| < ε|B γ0

80
(y)| (4.79)

where λ2 > C25n+15n

γn
0

.

Since B ⊂ U := {Br(y)| r < γ0

4×5
, y ∈ S1 ∪ S2 } ∪ {Br(y)| r < γ0

80×5
, y ∈ T }, by Vitali

Covering Lemma, there are disjoint set {Bri
(yi)}∞i=1 ⊂ U ⊂ B2 s.t. B1 ⊂ ∪iB5ri

(yi)

|{x ∈ Ω :M(|∇u|2)(x) > N2
1} ∩B1|

<
∑

i

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩B5ri

(yi)|

< ε
∑

i

|B5ri
(yi)| < ε5n

∑
i

|Bri
(yi)|

< ε5n|B2| < ε(10)n|B1|.

Here we used (4.77), (4.78) and (4.79).
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Corollary 4.2.6. There is a constant N1 > 0 so that for any ε > 0, there exists

a small δ = δ(ε) > 0 with Ai’s are uniformly elliptic and (δ, 9)-vanishing on Ωi for

i = 0 . . . K and Ω and Ωi’s are (δ, 9)-flat for i = 1 . . . K, and if u ∈ H1
0 (Ω) is a weak

solution of (4.70) with B+
4r ⊂ Ω4r ⊂ B4r ∩ {xn > −4δr} and

{x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅, (4.80)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| < ε|Br|. (4.81)

Proof. Then proof is given by Lemma 4.2.5 and scaling argument.

The following lemma shows that same result of Lemma 4.2.5 holds for any ball

intersecting with Ω.

Lemma 4.2.7. There is a constant N1 > 0 so that for any ε > 0 and 0 < r < 1, there

exists a small δ = δ(ε) > 0 for all Ω = ∪K
i=0Ω

i where Ω0 := Ω \ ∪K
i=1Ω

i and Ω and

disjoint subdomains Ωi’s for i = 1, . . . , K are (δ, 45)-flat and for any A =
∑i=K

i=0 AiχΩi

where Ai’s are uniformly elliptic and (δ, 45)-vanishing on Ωi, and if u ∈ H1
0 (Ω) is the

weak solution of −div(A∇u) = divf in Ω ⊃ B4r and if the following property holds:

{x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅, (4.82)

then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| < ε|Br|. (4.83)

Proof. If B4r ∩ ∂Ω = ∅, then by an interior estimate 4.1.1 we can conclude. Assume

that B4r ∩ ∂Ω 6= ∅. Note that Br ⊂ B5r(y) for some y ∈ ∂Ω. By (4.82), there exists
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x0 ∈ Br ⊂ B5r(y) such that M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2. Since Ω is

(δ, 45)-Reifenberg flat, we have, in appropriate coordinate system,

B+
20r ⊂ Ω20r ⊂ B20r ∩ {xn > −20δr}.

Here we use the corollary 4.2.6 to the ball B5r(y) with ε replaced by ε
5n . Then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1} ∩Br| < |{x ∈ Ω : M(|∇u|2)(x) > N2

1} ∩B5r(y)|

<
ε

5n
|B5r| = ε|Br|.

Corollary 4.2.8. (cf.[3]) Suppose that u ∈ H1
0 (Ω) is the weak solution of −div(A∇u) =

divf in Ω. Assume Ω = ∪K
i=0Ω

i where Ω0 := Ω \ ∪K
i=1Ω

i and Ωi’s for i = 1, . . . , K

and Ω are (δ, 45)-flat and A =
∑i=K

i=0 AiχΩi where Ai’s are uniformly elliptic and

(δ, 45)-vanishing in Ωi. Assume that

|{x ∈ Ω : M(|∇u|2) > N2
1}| < ε|B1|. (4.84)

Let k be a positive integer and set ε1 = ( 10
1−δ

)nε. Then we have

|{x ∈ Ω : M(|∇u|2) > N2k
1 }| (4.85)

≤
k∑

i=1

εi
1|{x ∈ Ω : M(|f |2) > δ2N

2(k−i)
1 |+ εk

i |{x ∈ Ω : M(|∇u|)2(x) > 1}|.

(4.86)

Proof. We prove by induction on k. For the case k = 1, set

C = {x ∈ Ω : M(|∇u|2)(x) > N2
1}
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and

D = {x ∈ Ω : M(|f |2)(x) > δ2} ∪ {x ∈ Ω : M(|∇u|2)(x) > 1}.

Since Ω is (δ, 45)-Reifenberg flat, Ω is (δ, 1)-Reifenberg flat. Then in view of (4.84),

Lemma 4.2.7 and Theorem 3.2.3, we see |C| ≤ ε1|D|, and so our conclusion is valid

for k = 1.

Assume that the conclusion is valid for some positive integer k ≥ 2. Set u1 =

u/N1 and corresponding f1 = f/N1. Then u1 is the weak solution of




−div(A∇u1) = divf1 in Ω

u1 = 0 on ∂Ω

(4.87)

and the following inequality holds:

|{x ∈ Ω : M(|∇u1|2)(x) > N2
1}| < ε|B1|.

By the induction assumption and from a simple calculation, we deduce the

following estimates:

|{x ∈ Ω : M(|∇u|2)(x) > N
2(k+1)
1 }|

= |{x ∈ Ω : M(|∇u1|2)(x) > N2k
1 }|

≤
k∑

i=1

εi
1|{x ∈ Ω : M(|f1|2)(x) > δ2N

2(k−i)
1 }|

+ εk
1|{x ∈ Ω : M(|∇u1|2)(x) > 1}|

≤
k+1∑
i=1

εi
1|{x ∈ Ω : M(|f |2)(x) > δ2N

2(k+1−i)
1 }|

+ εk+1
1 |{x ∈ Ω : M(|∇u|2)(x) > 1}|.

This estimate in turn completes the induction on k.
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Finally we are ready to prove the main theorem.

Theorem 4.2.9. Let p be a real number 1 < p < ∞. Then there is a small δ =

δ(Λ, p, n, R) > 0 so that for all Ω = ∪i=K
i=0 Ωi where Ω0 := Ω \ ∪i=k

i=1Ω
i and Ω and

disjoint subdomains Ωi’s for i = 1, . . . , K are (δ, R)-Reifenberg flat, for all A =

∑i=K
i=0 AiχΩi where Ai’s are (δ, R)-vanishing in Ωi and uniformly elliptic for i =

0, . . . , K, and for all f with f ∈ Lp(Ω,Rn), the Dirichlet problem (1.1) has a unique

weak solution with the estimate

∫

Ω

|∇u|pdx ≤ C

∫

Ω

|f |pdx, (4.88)

where the constant C is independent of u and f .

Proof. First we will consider the case p > 2. The case p = 2 is classical and the case

1 < p < 2 will be proved using duality. Without loss of generality, we assume that

‖f‖Lp(Ω) is small enough (4.89)

and

|{x ∈ Ω : M(|∇u|2) > N2
1}| < ε|B1|

by multiplying the PDE (1.1) by a small constant depending on ‖f‖L2(Ω) and ‖∇u‖L2(Ω).

Since f ∈ Lp(Ω),M(|f |2) ∈ Lp/2(Ω) by strong p-p estimates. In view of Lemma 3.1.1,

there is a constant C depending only on δ, p, and N1 such that

∞∑

k=0

Npk
1 |{x ∈ Ω : M(|f |2)(x) > δ2N2k

1 } ≤ C‖M(|f |2)‖p/2

Lp/2(Ω)
. (4.90)
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Then this esitmate, strong p-p estimates, and (4.89) imply

∞∑

k=0

Npk
1 |{x ∈ Ω : M(|f |2)(x) > δ2N2k

1 } ≤ 1. (4.91)

Now we will claim that M(|∇u|2) ∈ Lp/2 by using Lemma 3.1.1 when f =

M(|∇u|2) and m = N2
1 . Let us compute

∞∑

k=0

Npk
1 |{x ∈ Ω : M(|∇u|2)(x) > N2k

1 }|

≤
∞∑

k=1

Npk
1

(
k∑

i=1

εi
1|{x ∈ Ω : M(|f |2)(x) > δ2N

2(k−i)
1 }|+ εk

1|{x ∈ Ω : M(|∇u|2)(x) > 1}|
)

=
∞∑
i=1

(Np
1 ε1)

i

( ∞∑

k=i

N
p(k−i)
1 |{x ∈ Ω : M(|f |2)(x) > δ2N

2(k−i)
1 }|

)

+
∞∑

k=1

(Np
1 ε1)

k|{x ∈ Ω : M(|∇u|2)(x) > 1}|

≤ C

∞∑

k=1

(Np
1 ε1)

k < +∞,

where we used Corollary 4.2.8 and (4.91). Also we can choose ε1 so that Np
1 ε1 < 1

since N1 is a universal constant depending on the dimension and ellipticity. So we

can take ε, and find the corresponding δ > 0, also ε1. By this estimate and Lemma

3.1.1, M(|∇u|2) ∈ Lp/2(Ω). Thus ∇u ∈ Lp(Ω).

Now suppose that 1 < p < 2. For any g ∈ Lq(Ω,Rn) and AT , a transpose

matrix of A, consider the following equation.





−div(AT (x)∇v(x)) = divf in Ω

u = 0 on ∂Ω

(4.92)
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Then

∫

Ω

f∇vdx = −
∫

Ω

divfvdx =

∫

Ω

div(A∇u)vdx

=

∫

Ω

(A∇u)(∇v)dx = −
∫

Ω

∇u(AT∇v)dx

=

∫

Ω

udiv(AT∇v)dx =

∫

Ω

u(−divg)dx =

∫

Ω

∇ugdx.

By above, note that ‖∇v‖Lq ≤ C‖f‖Lq ,

‖∇u‖Lp(Ω) = sup
0 6=g∈Lq(Ω)

|
∫

Ω

∇ug|
‖g‖Lq(Ω)

≤
|
∫

Ω

∇vf |
‖g‖Lq(Ω)

≤ ‖∇v‖Lq‖f‖Lp

‖g‖Lq

≤ C‖f‖Lp ,

which completes the proof.
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CHAPTER 5
FUTURE DIRECTIONS OF THIS RESEARCH

Finding Lp estimates is indeed one of the fundamental problems in analysis. Our

intermediate goal is to generalize our estimates into more general settings.

1. It is the subject of an upcoming paper to extend the methods and techniques

developed here to the parabolic case. If this is done, one should be able to obtain

similar results for parabolic systems as well.

2. It is very interesting to see whether these lines of ideas can be applied to obtain

some of the regularity theory under Reifenberg flat condition of the free boundary.

3. It seems plausible to utilize our methods and also use Kelvin transformation to

obtain weighted W 1,p estimate for the case of bounded domain.

4. It is interesting to see whether the idea developed above can be applied to obtain

W 1,p estimate for a weak solution of degenerate equation like p-Laplacian equation

and non-local operators, which plays an important role in financial mathematics and

other fields.

5. The conditions in Theorem A seem to be optimal. It is interesting to verify this.

6. The method that was applied to prove theorem A above can be pushed further in

order to obtain Lp estimate for elliptic system.
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