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ABSTRACT

My thesis is divided into two parts : (1) improving the knot distance table the-

oretically and computationally and (2) solving tangle equations involving Montesinos

links.

The knot distance between two knots is defined as the minimum number of

crossing changes required to convert one knot to the other. Topoisomerases are en-

zymes involved in changing crossings of DNA knots. Thus the study of knot distances

can be used to study topoisomerase action. Using some mathematical theories, knot

distances have been tabulated for rational knots, composites of rational knots up to

13 crossings and 8 crossing nonrational prime knots. However, there are still unde-

termined distances in the knot distance table. In this thesis, the Jones polynomial

and the signature of knots are used to improve lower bounds of knot distances.

Proteins bind to DNA segments to catalyze several biological processes. Such

protein-DNA complexes can be modeled using tangles. A tangle is a 3-dimensional

ball with strings properly embedded in it. A tangle model assumes that the pro-

tein is a 3-dimensional ball and the DNA segments bound by the protein are strings

embedded inside the ball. Enzyme actions can change the topology of DNA within

an enzyme-DNA complex. Thus enzyme actions can be modeled as tangle equa-

tions. The goal is to determine possible topological configurations of DNA within the

enzyme-DNA complex by solving a system of tangle equations. In this thesis, we solve

systems of tangle equations when substrate DNA and product DNA are assumed to
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be either Montesinos links or rational knots. We assume that at least one of them is

a Montesinos link.
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CHAPTER 1
INTRODUCTION

1.1 Biological background

Biological processes are influenced by DNA topology and can change topolog-

ical properties of DNA. Proteins act on DNA molecules to solve topological problems

which occur during biological processes such as replication, transcription and recom-

bination. There are two main types of enzymes involved in these processes: recom-

binases and topoisomerases. Recombinases bind and cut two DNA segments, and

interchange and reseal the ends in different ways. Thus these enzymes are involved in

the genetic exchange of DNA. Topoisomerases are enzymes which break one or two

strands of DNA, pass another segment of DNA through the break, and rejoin the

break. These enzymes can change the topology of circular DNA by strand passages.

1.2 Knot distances

Stand passages by topoisomerases correspond to crossing changes of knots/links.

The distance between two knots is defined as the minimum number of crossing changes

needed to covert one knot to the other. Thus knot distances can be used to study

topoisomerase action. Isabel K. Darcy calculated knot distances for rational knots and

composites of rational knots up to 13 crossings using computer programming based

on mathematical theories. Eight crossing nonrational prime knots were input by hand

[10, 18]. However, there are still undetermined values in the knot distance table. In

this thesis, lower bounds of knot distances are improved theoretically and compu-
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tationally using the Jones polynomial and the signature. A. Stoimenow introduced

relations between signed unknotting number one knots and the Jones polynomial in

[48]. The unknotting number is a special case of the knot distance. So we generalize

it to the case for signed knot distances which can be used to improve knot distances

whose lower bounds are one. Properties of the Jones polynomial are employed to

check whether lower bounds of knot distances can be changed from 1 to 2. For com-

putational purposes, computer programming involving C/C++ and MATLAB are

utilized to generate a new knot distance table with improved lower bounds.

1.3 Solving tangle equations

During biological processes, proteins (enzymes) bind to DNA to fulfill their

roles. Protein interaction with DNA can change the topology of DNA which results

in knotted or linked DNA. Biologists are interested in identifying the topological

configuration of DNA to study enzyme mechanisms. The topology of DNA can some-

times be determined using biological methods such as cryo-electron microscopy, AFM

(Atomic Force Microscopy) or crystal structures of small proteins. However, it is a

difficult and laborious process which often doesn’t work. Thus tangle analysis was

introduced to study various enzyme actions mathematically. C. Ernst and D. W.

Sumners first used tangles to model protein-DNA complexes [20]. A tangle is a 3-

dimensional ball with strings properly embedded in it. In the tangle model, we assume

the protein complex as a 3-dimensional ball and the DNA segments bound by protein

as strings embedded inside the ball. An enzyme action can be modeled by replac-
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ing one tangle with another. This gives a system of tangle equations. Solving this

system of tangle equations can help determine the pathways of enzyme actions and

possible topological configurations of DNA bound by protein. We solve the system of

tangle equations assuming that the topology of DNA before and after enzyme action

is either Montesinos links or rational links and at least one of them is a Montesinos

link. Relations between rational tangle replacement and surgery on the double branch

cover of a substrate knot are described.

1.4 Organization of thesis

In chapter 2, the necessary mathematical definitions and preliminaries are

provided. Background in biology and mathematics is given in chapter 3. In chapter

4, we develop theories about the signed knot distances and the Jones polynomial.

The methodology and algorithm of how the theories are applied to get new data are

explained in section 4.5 and section 4.6. A new distance table is given in appendix C.

In chapter 5, we solve systems of tangle equations involving Montesinos links. Section

5.4 is devoted to explain how a rational tangle replacement is related to the surgery

on the double branch cover. Conclusion and future direction are stated in chapter 6.

Appendices A and B give README files and some programming codes used for knot

distance calculation.
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CHAPTER 2
DEFINITIONS AND PRELIMINARIES

In this chapter, we describe basic mathematical definitions and preliminaries

which will be used throughout this thesis. We are working in the piecewise linear or

smooth category.

2.1 Knot theory

Definition 2.1. Let X and Y be topological spaces. A function h : X → Y is called

a homeomorphism if h is 1-1, onto, continuous, and h−1 is continuous.

Definition 2.2. A function i : X → Y is an embedding if i : X → i(X) is a

homeomorphism.

Definition 2.3. [43] A subset K of a space X is a knot if K is homeomorphic with

a sphere Sp. More generally K is a link if K is homeomorphic with a disjoint union

Sp1 ∪ · · · ∪ Spr of one or more spheres.

An alternative definition is that a knot is an embedding K : Sp → X. We

take X to be Mp+2, a manifold of dimension p + 2.

Definition 2.4. Let X and Y be two topological spaces. If f1 and f2 are continuous

maps from X to Y , we say that f1 is homotopic to f2 if there exists a continuous map

F : X × [0, 1] → Y such that F (x, 0) = f1(x) and F (x, 1) = f2(x) for each x ∈ X. F

is called a homotopy between f1 and f2.
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Definition 2.5. A homotopy F : X × [0, 1] → X is called an ambient isotopy if

F (x, 0) is the identity and F (x, t) is a homeomorphism from X to X for t ∈ [0, 1].

Definition 2.6. A knot projection is a projection of a knot K ⊂ S3 into a 2-

dimensional plane where under and over strands are not specified. In this projec-

tion, no three points in K correspond to one point on the plane and strands cross

transversely.

Definition 2.7. A knot diagram is a projection where under and over strands are

specified at each crossing as in Figure 2.1 (a).

A knot diagram is minimal if it has the minimum number of crossings needed

to draw the knot. If a diagram is oriented, we can assign +1 or -1 at each crossing

as in Figure2.1 (b).

(a) (b) (c)

Figure 2.1: Partial knot diagram;(a) A crossing of a knot diagram. (b) +1 crossing.
(c) -1 crossing.

Definition 2.8. [43] Two knots/links K, K
′

in X are ambient isotopic if there is an

ambient isotopy Ft : X × [0, 1] → X such that F1(K) = K
′

.
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Two knots/links are equivalent (ambient isotopic) in S3 if and only if two

knot diagrams are equivalent in a 2-dimensional plane. Two knot/link diagrams are

equivalent if they are related by Reidemeister moves (Figure 2.2).

R1 R2 R3

Figure 2.2: Reidemeister moves.

We can compose two knots by removing an arc from each knot and then

connecting the four end points by two new arcs as in Figure 2.3. A knot is called a

composite knot if it can be decomposed into two nontrivial knots. A prime knot is a

knot which cannot be represented as a composition of two nontrivial knots.

# =

31♯31

Figure 2.3: Composition of two knots.
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2.2 Tangles

Definition 2.9. A 2-string tangle is a pair (B3, t), where B3 is a 3 dimensional ball

and t is a pair of arcs properly embedded in B3. Here, the four endpoints of the arcs

are fixed at NW = (e
5πi
4 , 0), NE = (e

πi
4 , 0), SW = (e−

5πi
4 , 0) and SE = (e−

πi
4 , 0).

Examples of 2-string tangles are given in Figure 2.4. A tangle has parity 0 if

the arc that starts at NW ends at NE. A tangle has parity ∞ if the arc that starts

at NW ends at SW . A tangle has parity 1 if the arc that starts at NW ends at SE.

NE

SESW

NW NE

SESW

NW NE

SESW

NWNE

SESW

NW

(0) (0, 0) (1) (-1)

0 tangle ∞ tangle +1 tangle −1 tangle

Figure 2.4: 2-string tangle examples.

Definition 2.10. Two tangles are equivalent if they are ambient isotopic keeping the

boundary of B3 fixed.

Two tangles are equivalent if and only if two tangle diagrams are equivalent

which means that they are related by Reidemeister moves (Figure 2.2).

Definition 2.11. A tangle is rational if it is ambient isotopic to the 0 tangle where

the boundary of B3 need not be fixed. Figure 2.5 (a) shows an example of a rational
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tangle.

There are two types of tangles which are not rational.

Definition 2.12. A tangle is locally knotted if there is a 3-ball in B3 which meets one

of two arcs transversely at two points and the arc inside the 3-ball is locally knotted.

An arc inside a 3-ball is locally knotted if there exists a 2-sphere which meets the arc

at two points and there exists another arc on the 2-sphere which connects two end

points of the knotted arc and makes a knot combined with the knotted arc. Note that

the choice of an arc on a 2-sphere doesn’t matter. any arc connecting See example in

Figure 2.5 (b).

Definition 2.13. A tangle is prime if it is neither rational nor locally knotted. See

example in Figure 2.5 (c).

(a) Rational (b) Locally knotted (c) Prime

Figure 2.5: Tangle types.

A rational tangle can be obtained from the 0 tangle or the ∞ tangle by al-

ternating between horizontal half twists and vertical half twists. Horizontal twists

represent twists of NE and SE endpoints and vertical twists represent twists of SW
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and SE endpoints. The rational tangle obtained in this way can be expressed as a

vector (x1, · · · , xn) where the numbers alternate between horizontal twists and verti-

cal twists with the last number always representing horizontal twists. So if n is even,

we start with vertical twists on the ∞ tangle and if n is odd, we start with horizontal

twists on the 0 tangle. Horizontal twists are right-hand twists (left-hand twists) if the

corresponding number of twists is positive (negative). Vertical twists are left-hand

twists (right-hand twists) if the corresponding number of twists is positive (negative).

See Figure 2.6.

+3 horizontal twists +3 vertical twists

Figure 2.6: Sign convention for horizontal/vertical twists.

A tangle (x1, · · · , xn) is uniquely identified by its continued fraction, xn +

1

xn−1 + · · · 1
x1

[9]. A tangle whose corresponding continued fraction is an integer is

called an integral tangle. Two rational tangles are equivalent if and only if their

continued fractions are the same [9]. For example, the two tangles in Figure 2.7 are

equivalent.

Since there are many vectors that have the same continued fractions, the vector
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2 +
1

1 + 1
4

=
14

5
= 3 +

1

−4 + 1
−1

(4, 1, 2) (−1,−4, 3)

Figure 2.7: Equivalent tangles.

representation for a tangle is not unique. However, every rational tangle, excluding

the four tangles (0), (±1), (0, 0), has a unique canonical form of vector representation

(x1, · · · , xn), where |x1| > 1, xi 6= 0 for 1 ≤ i ≤ n − 1, and all nonzero xi’s have the

same sign [9].

The sum of two tangles A and B, A + B is obtained by connecting NE and

SE endpoints of A to NW and SW endpoints of B, respectively (Figure 2.8).

BA

A + B

Figure 2.8: Tangle sum.
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The numerator closure of a tangle A, N(A) is formed by connecting NW and

NE endpoints and SW and SE endpoints (Figure 2.9). The numerator closure of a

tangle or the sum of tangles forms a knot or link.

A BA

N(A) N(A + B)

Figure 2.9: Numerator closure.

Definition 2.14. [34] A rational knot, N(
a

b
), is a knot or link which can be written

as the numerator closure of a rational tangle whose corresponding continued fraction

is
a

b
.

A rational knot is also called a 4-plat or 2-bridge knot/link. A 4-plat S(a, b) is

written as < x1, · · · , xn > where
a

b
= x1 +

1

x2 + · · · 1
xn

. Note that S(a, b) = N(
a

−b
).

An example of 4-plat notation of a rational knot is given in Figure 2.10.

Theorem 2.1. [46, 6] Two unoriented rational knots N(
a1

b1
) and N(

a2

b2
), ai ≥ 0 are

the same if and only if a1 = a2 and b1b
±1
2

∼= 1(mod a1).
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S(5, 3) =< 1, 1, 2 > N( 5
−3

) = N((−2,−1,−1))

Figure 2.10: 4-plat notation of figure eight knot.
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CHAPTER 3
BACKGROUND

3.1 Topoisomerase and knot distance

Circular DNA molecules combined with the double helical structure of DNA

impose some constraints on biological mechanisms [2]. Unwinding two strands of

double helical DNA whose ends are fixed results in stress that is relieved by super-

coiling like a telephone cord. At the end of DNA replication of circular DNA, the

product DNA molecules are often linked [2]. Topoisomerases solve these topological

problems by cutting one or two DNA strands, passing another DNA strands through

a transient break and rejoining the break. See Figure 3.1.

Figure 3.1: A possible mechanism of a type II topoisomerase. This figure is taken
from [53] by permission.
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There are two types of Topoisomerases, type I and type II [2]: Type I topoi-

somerase cleaves a single strand of DNA whereas type II topoisomerase cleaves both

strands of double stranded DNA. Topoisomerases do not change the chemical struc-

ture of DNA but can change the topology of DNA. Type I topoisomerase can change

the topology of single stranded DNA and Type II topoisomerase can change the

topology of double stranded DNA. Strand passages by topoisomerases can result in

knotting/unknotting and linking/unlinking. They are involved in maintaining the

proper supercoiling of DNA during DNA replication, transcription and recombina-

tion. Topoisomerase are also targets for antibacterial or anticancer drugs [2].

Strand passages by these enzymes correspond to crossing changes of knots (See

Figure 3.2). The minimum number of crossing changes needed to convert one knot to

another knot is called the knot distance between these two knots. Figure 3.3 shows

an example when 51 is obtained from 52 by a single crossing change in a nonminimal

diagram of 52 [17].

Figure 3.2: Strand passage = crossing change.
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52 Nonminimal diagram of 52

51

Figure 3.3: Nonminimal diagram example [18].

3.2 Knot distance tabulation

Isabel K. Darcy calculated knot distances for rational knots, composites of

rational knots up to 13 crossings and 8 crossing non-rational prime knots [10, 16].

The following mathematics were used to calculate knot distances:� d(< c1, · · · , ci, · · · , cn >, < c1, · · · , ci − 2, · · · , cn >) = 1,� Classification of distance one rational knots [16, 49],� Triangle inequality,� d(K1, K2) ≥ |σ(K1) − σ(K2)

2
| where σ(K) is the signature of a knot K [37],� Unknotting number one knots are prime [45, 54],� If d(K, K ′) = 1, then there exist a ∈ H1(MK) and a′ ∈ H1(MK ′) such that

λ(a, a) ≡ n/|H1(MK)| and λ(a′, a′) ≡ m/|H1(MK ′)|(mod 1) where m = n =
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±1
2

(|H1(MK)|−|H1(MK ′)|) if σ(K)−σ(K ′) = 0 or ±2 or −m = n = ±1
2

(|H1(MK)|

+ |H1(MK ′)|) if σ(K) − σ(K ′) = ∓2 or 0 and λ : H1(Mk) × H1(Mk) → Q/Z is

the linking form where MK is the double branched cover of S3 over K [37, 10],� If d(S(a, b), S(uw1, v)♯S(uw2, m)) = 1, then u|a [10],� If d(S(a, b), ♯n
i=1S(uwi, v)) 6= 1 for n > 2, u 6= 1 [10].

c1

c2

c3

cn−1

cn

< c1, · · · , cn >

Figure 3.4: 4-plat notation of a rational knot.

The distances between two knots up to mirror images are tabulated. See

Table 3.1. However, there are still undetermined values in the knot distance table.

An example is given in Figure 3.5.

The unknown values can be obtained using (1) mathematical theories, (2)

tangle tabulation for distance one knots and (3) experimental and computational

data which determine upper bounds of knot distances. One can determine upper

bounds of knot distances between two knots simply by changing crossings of one

knot from a certain knot diagram until one gets to the other knot. Upper bounds

of unknown knot distances also can be determined using computational data. A.
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Table 3.1: Old knot distance table [10, 18].

01 31 41 51 52 61 62 63 31 # 31 31 # 3∗
1 71

31 1 0 2 1 1 2 1 1 1 1 2
3∗

1 1 2 2 3 2 2 2 1 3 1 4
41 1 2 0 2-3 2 1 1 2 2-3 2-3 3-4
51 2 1 2-3 0 1 2-3 2 2 2 2 1
5∗

1 2 3 2-3 4 3 2-3 3 2 4 2 5
52 1 1 2 1 0 2 2 2 2 2 2
5∗

2 1 2 2 3 2 2 2 2 3 2 4
61 1 2 1 2-3 2 0 1 2 2-3 1-3 3-4
6∗

1 1 2 1 2-3 2 1 2 2 2-3 1-3 3-4
62 1 1 1 2 2 1 0 2 2 2 2-3
6∗

2 1 2 1 3 2 2 2 2 3 2 4
63 1 1 2 2 2 2 2 0 2 2 3

31 # 31 2 1 2-3 2 2 2-3 2 2 0 2 2-3
3∗

1 # 3∗
1 2 3 2-3 4 3 2-3 3 2 4 2 5

31 # 3∗
1 2 1 2-3 2 2 1-3 2 2 2 0 3

71 3 2 3-4 1 2 3-4 2-3 3 2-3 3 0
7∗

1 3 4 3-4 5 4 3-4 4 3 5 3 6
72 1 2 2 2 1 2 2 2 2-3 2-3 2
7∗

2 1 2 2 3 2 2 2 2 3 2-3 4
73 2 3 2-3 4 3 2-3 3 2-3 4 2-3 5
7∗

3 2 2 2-3 1 1 2-3 2-3 2-3 2-3 2-3 1
74 2 2-3 2-3 3-4 2-3 2-3 2-3 2 3-4 2 4-5
7∗

4 2 1 2-3 2 1 2-3 2 2 2 2 2
75 2 1 2-3 1 1 2-3 2 2 2 2 1
7∗

5 2 3 2-3 4 3 2-3 3 2 4 2 5
76 1 1 1 2 1 2 2 2 2 2 2-3
7∗

6 1 2 1 3 2 2 2 2 3 2 4
77 1 2 1 2-3 2 2 2 2 2-3 1-2 3-4
7∗

7 1 1 1 2 2 2 2 2 2 1-2 3
31 # 41 2 1 1 1-2 1-2 2 2 2 2 2 2-3
3∗

1 # 41 2 2-3 1 3-4 2-3 2 2 2 3-4 2 4-5
81 1 2 2 2-3 2 1 2 2 2-3 2-3 3-4
8∗

1 1 2 2 2-3 2 2 2 2 2-3 2-3 3-4
82 2 1 2 1 2 2 1 2 2 2 2
8∗

2 2 3 2 4 3 2-3 3 2 4 2 5
83 2 2-3 2 2-4 2-3 1 2 2-3 2-4 2-4 3-5
84 2 2 1 2-3 2-3 2 1 2-3 2-3 2-3 2-4
8∗

4 2 2-3 1 3-4 2-3 1 2 2-3 3-4 2-3 4-5
85 2 3 2 4 3 2-3 3 2-3 4 2-3 5
8∗

5 2 1-2 2 2-3 1-3 2 1 2-3 1 2-3 1-4
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51 31

01 41

d(51, 41) ≤ 3.

d(51, 41) ≥
1

2
|σ(51) − σ(41)| =

1

2
|4 − 0| = 2.

Figure 3.5: Unknown knot distance.

Flammini, A. Maritan and A. Stasiak determined some distances via computational

software modeling biological reactions [23]. Ram K. Medikonduri, Melanie DeVries

and Danielle Washburn have tabulated realizable (drawable) tangles. The pair of

knots N(T + 1) and N(T − 1) has distance one when T is a tangle. Hence such

distance one pairs can be created using a table of tangles. The work on generating

such knot pairs and identifying them by using the HOMFLYPT polynomial is in

progress. We expect to detect new pairs of knots whose distances are one.
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3.3 Recombination

Recombination refers to the process of the genetic rearrangement of DNA.

Enzymes which carry out this process are called recombinases. A recombination

reaction which occurs only at very specific sites on DNA segments is called site-

specific recombination. The specific DNA sequences are called the target sites.

Site specific recombination can result in inversion, deletion or insertion of DNA

sequences depending on how target sites are oriented. If two target sites are oriented

oppositely to each other (inverted repeat) in the same DNA molecule, a DNA sequence

is inverted with respect to the other (Figure 3.6(a)). If two target sites are oriented

in the same direction (direct repeat) in the same DNA molecule, a DNA sequence is

deleted from the rest of DNA (Figure 3.6(b)). If a site-specific recombination takes

place on target sites from two different DNA molecules, one DNA sequence is inserted

into the other.

(a)

(b)

Figure 3.6: Site specific recombination;(a) Inversion. (b) Deletion/Insertion. (This
figure is redrawn from http://www.mun.ca/biochem/courses/3107/Lectures/To
-pics/Site-specific-Recomb.html.)
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Cre recombinase catalyzes site-specific recombination on target site, called

loxP. According to the Cre model in [28], Cre can only act when loxP sites are in

anti-parallel orientation in the Cre-DNA complex (See Figure 3.7(a)). Figure 3.7(b)

shows how Cre acts on target sites locally. Inversion and deletion by Cre on a circular

DNA molecule produces a knot and a link, respectively. See Figure 3.8.

Flp recombination is analogous to Cre recombination. Flp recombinases me-

diate site-specific recombination on target site, called FRT [55].

loxP

(a) (b)

Figure 3.7: Cre recombination on loxP;(a) Antiparallel orientation of loxP. (b) Mech-
anism of Cre recombinase.

(a) (b)

Figure 3.8: Knots and links produced by Cre recombintation; (a) Inversion and (b)
Deletion by Cre on circular DNA [13].
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3.4 Tangle equation

A 2-string tangle is a 3-dimensional ball with two strings properly embedded

in it as in Figure 2.4. Protein-DNA complexes can be modeled using 2-string tangles

[20]. In a tangle model, protein which binds two DNA strands is considered as a 3-

dimensional ball and the two DNA strands bound by the protein as strings inside the

ball. In Figure 3.9 (a), a protein-DNA complex is shown as a blob and two DNA loops

not bound by the protein are coming out of it. Figure 3.9 (b) shows a corresponding

tangle model.

T

(a) (b)

Figure 3.9: Tangle model for recombination;(a) AFM image of a Flp (recombinase)
complex formed with circular DNA [52] and (b) a corresponding tangle model.

Enzymes bind to segments of the starting DNA (substrate DNA). Enzyme

actions can change the topology of DNA within these protein-DNA complexes. Tangle

models assume that topological changes occur locally and thus the topology of the

DNA outside the protein-DNA complex is not affected by enzyme action. If we also

represent the DNA outside the protein-DNA complex as a tangle, we have a tangle
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equation as the topology of the substrate DNA equals the numerator closure of the

sum of the DNA outside the protein-DNA complex and the protein-DNA complex.

Let the tangles B and E represent protein-bound DNA complexes before and

after enzyme action, respectively and tangle U be the DNA not bound by protein.

Then enzyme action can be modeled by replacing the tangle B with the tangle E. U

combined with B and E gives us the topology of the substrate DNA and the product

DNA, respectively. For example, Figure 3.10 formulates topoisomerase action on a

trefoil knot as a system of tangle equations. The red dotted circle with arcs ((-1)

tangle) is an example of B and the purple dotted circle with arcs ((+1) tangle) is an

example of E. By replacing the (-1) tangle with the (+1) tangle, we have the unknot.

Thus we can conclude that topoisomerase action on a trefoil knot can produce the

unknot. Tangle equations modeling topoisomerase action are given in Figure 3.11.

Figure 3.10: A model of a topoisomerase action [13].

Substituting the red dotted circle with the purple dotted circle (or vice versa)

in Figure 3.8(a) and (b) models Cre recombination. Figure 3.12 shows an example of

tangle equations modeling Cre recombination [13]. There are various tangle models

for recombinases using various mechanisms.
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U substrate U product

Figure 3.11: Tangle equations modeling topoisomerase action [13].

U substrate U product

Figure 3.12: Tangle equations modeling Cre recombination.

A general system of tangle equations modeling enzyme action is shown in

Figure 3.13: N(U + B) = K1 and N(U + E) = K2 where K1 is the topology of

the substrate knot and K2 is the topology of the product knot. It is hard to identify

the DNA configuration bound by protein before removing the protein. Solving tangle

equations determines possible topological configurations of DNA bound by protein.

The above tangle equations were analyzed in several cases [12, 11, 19, 5, 51]. Isabel K.

Darcy solved tangle equations when K1 and K2 are 4-plats and B and E are rational

knots [12, 11]. She determined U and E in terms of B.

There are software packages which model enzyme actions using tangles and

solve tangle equations [15, 14, 44]. TopoICE (Topological Interactive Construction
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substrateU B product                                    U E

Figure 3.13: System of tangle equations modeling enzyme action.

Engine)-X [15] models topoisomerase reaction and TopoICE-R [14] and TangleSolve

[44] model recombination. TopoICE-X and -R are part of KnotPlot.
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CHAPTER 4
CALCULATING KNOT DISTANCES

In [48], the Jones polynomial is used to determine in some cases if a knot can

be unknotted by switching a positive crossing to the negative. Since the unknotting

number is a special case of the knot distance, this motivates the use of the Jones

polynomial to improve lower bounds of signed knot distances and thus lower bounds

of knot distances. Combined with the Jones polynomial, the signature of a knot is

used to improve lower bounds of signed knot distances. Starting with mathematical

definitions used in this chapter, mathematical theories and computational algorithms

will be discussed.

4.1 Preliminaries

Definition 4.1. A crossing change at a crossing is the change of overstrand to un-

derstrand or understrand to overstrand.

Figure 4.1: Crossing change.

Definition 4.2. [37] Let K1 and K2 be knots. Then the knot distance between K1

and K2, d(K1, K2) is defined as the minimum number of crossing changes required to
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convert K1 to K2 where the minimum is taken over all diagrams.

Note that the knot distance satisfies all the properties of a metric.

Definition 4.3. Let K be a knot. Then the unknotting number of K is u(K) =

d(K, 01) where 01 is the unknot.

The four link diagrams in Figure 4.2 are identical except at a crossing. The

last two diagrams are vertical and horizontal smoothings of the crossing. Note that

horizontal smoothing does not preserve the orientation of the original link diagram.

(a) L+ (b) L− (c) Lv (d) Lh

Figure 4.2: Partial link diagrams;(a) positive crossing. (b) negative crossing. (c)
vertical smoothing. (d) horizontal smoothing.

Now, we define signed crossing changes and signed knot distances.

Definition 4.4. [50]

1. L+ → L− is called a +− crossing change.

2. L− → L+ is called a −+ crossing change.
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Definition 4.5. [50]

1. d+(K1, K2) is the minimum number of +− crossing changes needed to convert

K1 into K2 where −+ crossing changes are allowed, but not counted. There is

no restriction on the number of −+ crossing changes.

2. d−(K1, K2) is the minimum number of −+ crossing changes needed to convert

K1 into K2 where +− crossing changes are allowed, but not counted. There is

no restriction on the number of +− crossing changes.

3. d++(K1, K2) is the minimum number of +− crossing changes needed to convert

K1 into K2 where only +− crossing changes are allowed.

4. d−−(K1, K2) is the minimum number of −+ crossing changes needed to convert

K1 into K2 where only −+ crossing changes are allowed.

Remark. Note that

1. d++(K1, K2) ≥ 1 and d−−(K1, K2) ≥ 1 for K1 6= K2.

2. If d++(K1, K2) < ∞, then d−(K1, K2) = 0. Similarly, If d−−(K1, K2) < ∞,

then d+(K1, K2) = 0.

3. d+(K1, K2) ≤ d(K1, K2) ≤ d++(K1, K2).

4. d−(K1, K2) ≤ d(K1, K2) ≤ d−−(K1, K2).

5. d+(K1, K2) = d−(K2, K1).

6. d++(K1, K2) = d−−(K2, K1).
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7. None of these distances (d+, d−, d++ and d−−) define a metric on knot/link type.

However, all of these distances satisfy the triangle inequality.

By the above properties of signed knot distances,

d(K1, K2) ≥ Max[d+(K1, K2), d−(K1, K2)]. So d+ and d− can be used to improve

lower bounds of knot distances. d+ has been tabulated for rational knots and com-

posite of rational knots by I.Darcy [10].

Definition 4.6. [43] The signature of a knot K, σ(K) is defined as the signature of

V + V T where V is the Seifert matrix of K.

Definition 4.7. [31, 32] The Jones polynomial of a knot K, VK(t) is a Laurent

polynomial of a variable t which satisfies the following:

1. V01
(t) = 1 where 01 is the unknot.

2. t−1VL+
(t) − tVL−

(t) + (t−
1

2 − t
1

2 )VLv
(t) = 0.

Definition 4.8. [1] The writhe of a link diagram D, w(D) is the sum of the signs of

the crossings of the link diagram D.

Four regions near a crossing are marked with an A or a B by the following

rule: rotate the overstrand counterclockwise until it overlaps the understrand. Then

two regions that the overstrand passed over are marked with an A. The other two

regions are labeled with a B. See Figure 4.3 (a).

Definition 4.9. [1] A type A (respectively B) splitting is obtained by connecting two

regions marked with an A (respectively B). See Figure 4.3 (b) and (c).
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A A

B

B
A A

B

B

(a) marked region (b) type A splitting (c) type B splitting

Figure 4.3: Splitting.

Definition 4.10. [1] A state is a choice of type A or B splitting for all crossings of

a diagram.

Definition 4.11. [1] The bracket polynomial < D > of a link diagram D is a Laurent

polynomial in a variable A obtained by

∑

S

A♯A−♯B(−A2 − A−2)|S|−1.

where ♯A and ♯B denote the number of type A and type B splittings respectively

in a state S and |S| is the number of (disjoint) circles obtained after the choice of

splittings in the state S.

The bracket polynomial satisfies the following four relations:

1. < 01 >= 1 where 01 is the unknot.

2. < > =A < > +A−1 < >

3. < > =A < > +A−1 < >

4. < L ∪ 01 >= (−A2 − A−2) < L >

The third relation is identical with the second if the diagrams are rotated by

90◦. We state it for convenience of calculation.
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Remark. [1] The Jones polynomial of a link L can be calculated from the bracket

polynomial:

VL(t) = (−t−
3

4 )−w(D) < D > |
A=t

− 1
4

where D is a diagram of L, w(D) is the writhe of L and < D > is the bracket

polynomial of L.

4.2 Properties of the Jones polynomial

The following are properties of the Jones polynomial. These can be used to

check whether a given polynomial could be the Jones polynomial of a knot.

1. VK(1) = 1, [32]

2. V ′
K(1) = 0, [31]

3. VK(e
2πi
3 ) = 1, [31, 32]

4. 18|V (3)(1), [22]

5. 36|V (3)(1) + 3V (2)(1), [22]

6. 1 − VK(t) = wK(t)(1 − t)(1 − t3) for some Laurent polynomial wK(t), [31, 32]

7. VK(e±
πi
3 ) = ±(i

√
3)d for d = dimH1(K̃, Z3) where K̃ is the double branch cover

of K [35, 22].

4.3 Improving lower bounds of knot distances

Theorem 3 in [48] is generalized to the knot distance case.
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Theorem 4.1. Let K1 and K2 be 1-component knots. If d++(K1, K2) = 1, then there

exists a knot K ′ with VK ′ = t−
eV ′(1)Ṽ where

Ṽ = VK2
− VK1

− VK2

t − 1

where VK is the Jones polynomial of a knot K. Here, K ′ is obtained by horizontal

smoothing of the positive crossing of K1 where the crossing change occurs.

Proof. Assume that D1 is a diagram of K1 which is converted to a diagram D2 of

K2 by switching a positive crossing of D1 to the negative. W.L.O.G, we can assume

that D1 is a diagram of K1 with w(D1) = 0 since adding or removing a Reidemeister

1 move does not affect the knot type but changes the writhe by ±1. Consider the

bracket polynomial of D1 and D2. Since w(D1) = 0,

< >=< D1 >= [(−t−
3

4 )w(D1)VK1
]
A=t

− 1
4

= VK1
.

Since w(D2) = −2,

< >=< D2 >=[(−t−
3

4 )w(D2)VK2
]t=A−4

=[(−t−
3

4 )−2VK2
]t=A−4 = A−6VK2

.

Using the bracket polynomial relations,




A A−1

A−1 A







< >

< >


 =




VK1

A−6VK2


 .




< >

< >


 =

1

A2 − A−2




A −A−1

−A−1 A







VK1

A−6VK2


 .
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Figure 4.4 shows a partial diagram of D1 with orientation. According to the

orientation of the diagram, the parity of B can be +1 or ∞. If the parity of B is

+1, then D1 is a two component link diagram. Thus the parity of B must be ∞.

Since the parity of B is ∞, horizontal smoothing of the positive crossing in D1 where

the crossing change takes place results in a knot while vertical smoothing results in

a link. Let K be the knot obtained by horizontal smoothing of the positive crossing

in D1 where the crossing change takes place. Moreover, the orientation of K ′ should

be given as in Figure 4.5. This results in reversing orientation of only one of the

two strings of B if B is considered as a tangle. Note that w(B) = P − N + R =

−1 with the original orientation (Figure 4.4) where P and N are the number of

positive and negative crossing respectively between two strings and R is the number

of self-crossing in B. Reversing the orientation of only one string reverses the sign of

crossings between two strings but the sign of self-crossing remains the same. Thus

w(K ′) = N − P + R = 2R + 1.

B

Figure 4.4: A partial diagram of D1 with orientation.
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B B

Figure 4.5: Possible partial diagrams of K ′ with orientation.

< K ′ >=
1

A2 − A−2
(−A−1VK1

+ A−5VK2
)

=
−A−3VK1

+ A−7VK2

1 − A−4

= − A−3(
VK1

− A−4VK2

1 − A−4
)

= − A−3(
VK1

− tVK2

1 − t
)

= − A−3(VK2
− VK1

− VK2

t − 1
) = −t

3

4 Ṽ .

Thus, Ṽ = VK2
− VK1

− VK2

t − 1
and

VK ′ =(−t−
3

4 )−w(K ′) < K ′ >

=(−t−
3

4 )−w(K ′)(−t
3

4 )Ṽ

=(−1)−w(K ′)+1t
3

4
(w(K ′)+1)Ṽ

=t
3

4
(w(K ′)+1)Ṽ since w(K ′) is odd

=tαṼ where α =
3

4
(w(K ′) + 1).



34

Then,

Ṽ = t−αVK ′.

Taking the derivative on both sides and evaluating at 1,

Ṽ ′ = − αt−α−1VK ′ + t−αV ′
K ′.

Thus Ṽ ′(1) = − α since VK ′(1) = 1 and V ′
K ′(1) = 0.

Hence, VK ′ = t−
eV ′(1)Ṽ .

Theorem 4.2. Let K1 and K2 be 1-component knots. If d−−(K1, K2) = 1, then there

exists a knot K ′ with VK ′ = t−
eV ′(1)Ṽ where

Ṽ = VK1
− VK2

− VK1

t − 1
.

where VK is the Jones polynomial of a knot K. Here, K ′ is obtained by horizontal

smoothing of the negative crossing of K1 where the crossing change occurs.

Proof. If we switch K1 and K2 and apply theorem 4.1, we get the result.

4.4 Properties of signature

Suppose the Jones polynomial improves only one of d++(K1, K2) and d−−(K1, K2).

Assume that only d++(K1, K2) is changed from one to two based on the Jones poly-
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nomial. That is, d++(K1, K2) ≥ 2. Then we addressed a possibility that other knot

invariants can be used to determine whether d−−(K1, K2) ≥ 2 which concludes that

d(K1, K2) ≥ 2. Here, we employ the signature of knots for that purpose. See defini-

tion 4.6.

1. σ(K) is an even number.

2. σ(L+) ≤ σ(L−) ≤ σ(L+) + 2. [38, 25]

In other words, a +− crossing change can increase the signature by at most 2.

3. |σ(K1) − σ(K2)| ≤ 2d(K1, K2). [37]

4. −2d++(K1, K2) ≤ σ(K1) − σ(K2) ≤ 0. [10]

5. −2d+(K1, K2) ≤ σ(K1) − σ(K2). [10]

6. 0 ≤ σ(K1) − σ(K2) ≤ 2d−−(K1, K2).[10]

7. σ(K1) − σ(K2) ≤ 2d−−(K1, K2). [10]

Property 2 can be restated as follows in lemmas 4.3 and 4.4.

Lemma 4.3. [38, 25] Let K1 and K2 be knots.

If σ(K2) > σ(K1) + 2, then d++(K1, K2) ≥ 2.

Lemma 4.4. [38, 25] Let K1 and K2 be knots.

If σ(K1) − 2 > σ(K2), then d−−(K1, K2) ≥ 2.
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4.5 Methodology

We summarize how theorems 4.1 and 4.2 and lemmas 4.3 and 4.4 are used.

1. Generate a list of pairs of knots (K1, K2) whose distance has lower bound 1 in

the knot distance table.

2. Calculate Ṽ and VK ′ in theorem 4.1.

3. Check whether VK ′ can be the Jones polynomial of a knot using properties of

the Jones polynomial 1-7 in section 4.2. If VK ′ violates at least one of those

properties, VK ′ is not the Jones polynomial of a knot. So d++(K1, K2) ≥ 2.

4. Determine d++(K1, K2) ≥ 2 by checking the signature condition in lemma 4.3.

5. Repeat the above processes to check whether d−−(K1, K2) ≥ 2 using theorem

4.2 and lemma 4.4.

6. If d++(K1, K2) ≥ 2 and d−−(K1, K2) ≥ 2, then d(K1, K2) ≥ 2

In the next section, we describe how steps 2 and 3 are implemented computa-

tionally. Other steps are obvious and easy to handle.

4.6 Algorithm

First, we calculate the Jones polynomial of rational knots, composites of ra-

tional knots up to 13 crossings and 8 and 9 crossing nonrational prime knots. Then,

given two Jones polynomials whose corresponding knots have lower bound one for

the knot distance between them, polynomials in theorems 4.1 and 4.2 are calculated.
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These polynomials are examined whether they are not the Jones polynomial of a knot

by checking properties of the Jones polynomial.

Bruce Ewing and Kenneth C. Millett developed a computational algorithm

for calculating the HOMFLYPT polynomial [21]. The HOMFLYPT polynomial is

named after its co-discoverers: Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter

[24] plus Przytycki and Traczyk [41]. The HOMFLYPT polynomial, PL(l, m) is a

Laurent polynomial with two variables l and m and integer coefficients defined by the

following relations:

1. P01
(l, m) = 1 where 01 is the unknot.

2. lPL+
(l, m) + l−1PL−

(l, m) + mPL0
(l, m) = 0.

Since the Jones polynomial is a special case of the HOMFLYPT polynomial,

it can be obtained from the HOMFLYPT polynomial by substituting l and m with

it−1 and i(t−
1

2 − t
1

2 ), respectively:

VK(t) = PL(l = it−1, m = i(t−
1

2 − t
1

2 )).

For the computational algorithm for HOMFLYPT polynomial calculation,

Bruce Ewing and Kenneth C. Millett invented a knot code referred to as the Ewing-

Millett code or EM code. The following is an EM code for the trefoil knot:

Trefoil

1-3d3c2b2a
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2-1d1c3b3a

3-2d2c1b1a

The code consists of the knot name in the first row and information about each

crossing in the following rows. The first row does not affect the calculations, and thus

it can be any format. The crossing information for a given crossing is represented

by listing the number assigned to the crossing, the sign of the crossing and four sets

of two symbols which indicate where four endpoints of two strands at the crossing

connect to. Here, the four endpoints represent where a 3-ball around the crossing

meets the knot. The four endpoints at each crossing are marked with a,b,c and d

as in Figure 4.6 (a). Given an orientation of the knot, the outgoing direction on the

overstrand at a crossing is labeled as ’a’ and then the other endpoints are marked

with ’b’,’c’ and ’d’ in the clockwise direction. Figure 4.6 (b) shows a labeling of the

trefoil knot with the number assigned to the crossing, its sign and the letters at each

crossing. In figure 4.6, the crossing number ’1’ is negative and the ’a’ of the crossing

’1’ is connected to the ’d’ of the crossing ’3’ and the ’b’ of the crossing ’1’ is connected

to the ’c’ of the crossing ’3’ etc. This connecting information is encoded in the second

row of the above EM code for trefoil knot: 1-3d3c2b2a.

The Jones polynomials are calculated by using B. Ewing and K. Millett’s algo-

rithm for calculating the HOMFLYPT polynomial. For that purpose, we developed

an algorithm generating EM codes for rational knots. Here, the 4-plat notation is

used for rational knots. A rational knot N(
a

−b
) is equal to the 4-plat S(a, b) or
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a

bc

d
1

2

3
b

c
d

c
d

b

a

a
d c

a

b
−

− −

(a) (b)

Figure 4.6: EM code;(a) Letter assignment. (b)Diagram for coding the trefoil knot.

< x1, · · · , xn > where
a

b
= x1 +

1
1

x2+···+ 1

xn

. Using the Euclidean algorithm, every

rational number can be expanded into a vector of integer entries. If either a or b is

even,
a

b
can always be expanded into a vector whose entries are all even by means

of a modified division algorithm. For example, an expansion of the rational num-

ber
3

2
is 2 +

1

−2
which corresponds to the 4-plat < 2,−2 >. If both a and b are

odd, by theorem 2.1, N(
a

b
) = N(

a

a + b
) since a + b = b mod a. Then

a

a + b
can be

expanded as a vector whose entries are all even. Representing a rational knot with

all even integers has the advantage that keeping track of the orientation of the knot

diagram is easy. An orientation is given and crossing numbers are assigned to the

knot diagram drawn from the corresponding vector of even integers for a knot. Figure

4.7 shows an example of encoding the knot S(11, 4). The partial EM code in Figure

4.7 includes sufficient information to draw the knot but empty places are also filled

out for efficiency of running the Ewing Millett program. The programming code for

generating EM codes for rational knots is provided in Appendix B.

For the EM codes for nonrational 8 and 9 crossing knots, we used Knotscape
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by Jim Hoste and Morwen Thistlethwaite [29]. In Knotscape, an EM code of a knot

is obtained from a diagram of the knot.

To obtain the Jones polynomials using EM code, Ewing-Millett’s code for

calculating the HOMFLYPT polynomial is modified by replacing the variables l and m

with it and i(t−
1

2 −t
1

2 ), respectively [1]. Knowing that the HOMFLYPT polynomial of

a knot has all even powers, l2 is replaced with −t2 and m2 is replaced with −(t−1−2+t)

to make the calculation easier.

With the list of Jones polynomials and the list of pairs of knots whose knot

distances have lower bound one, the next step is to calculate the corresponding poly-

nomials in theorem 4.1 and theorem 4.2 and then check whether those polynomials

violate one of the Jones polynomial’s properties given in section 4.2.

The signatures for rational knots and composites of rational knots up to 13

crossing and nonrational prime 8 crossing knots [10] are used to check the conditions

in lemma 4.3 and lemma 4.4. A code in MATLAB is used to detect pairs of knots

whose distances are improved by the Jones polynomial and the signature. MATLAB

is useful to deal with data import and polynomial manipulation.

4.7 New knot distance table

From more than 50,000 pairs of knots whose knot distances have lower bound 1,

we could detect 6,457 pairs which show improvement on their lower bound from one to

two based only on the Jones polynomial. The signature did not discover any changes

on signed knot distances which the Jones polynomial did not improve. Among those
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improved, some unknotting numbers are already known. For example, the unknotting

number of 818 was improved from one to two using the Jones polynomial and it is

already known as 2 [48]. The new knot distance table confirms that the unknotting

number of 818 is 2. I modified Isabel Darcy’s programs to generate a new knot distance

table. In the new knot distance table given in Appendix C, the updated distances

are colored red.
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1 2

3 4

5 6

7 8

1 2

4

5

7 8

c a

d
b

a

c
a d

b

d
b c d

bc

a
d

d
b b d

6a
c

a
cb

c
a

c d a

1+ 8d 2c

2+ 3d 1c

3− 1b 4c

4− 5c 3c

5− 6d 2b

6− 5d 7d

7− 4d 8c

8− 6c 7c

Figure 4.7: Coding S(11, 4) =< 2, 2,−2, 2 >.
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CHAPTER 5
SOLVING TANGLE EQUATIONS

In many biological applications, the knots/links involved are rational

knots/links. However, Montesinos knots/links are also observed in computer sim-

ulations and they are proposed to be possible configurations of product DNA in some

tangle analysis modeling recombination [4]. In this chapter, the system of unoriented

tangle equations N(U +
0

1
) = K1 and N(U +

x

y
) = K2 is solved for U assuming K1

and K2 are either Montesinos links or rational links,
x

y
is a rational tangle and U is a

generalized Montesinos tangle. The system of tangle equations where K1 and K2 are

rational links is solved in [12]. Thus we solve the system of tangle equations when at

least one of K1 or K2 is a Montesinos link in this chapter.

5.1 Preliminaries

Definition 5.1. The circle product, A◦ (c1, · · · , cn) of two tangles A and (c1, · · · , cn)

is obtained by starting with c1 vertical (horizontal) half twists of SW and SE (NE

and SE) endpoints of A and alternating between horizontal (vertical) half twists and

vertical (horizontal) half twists when n is even (odd) (Figure 5.1).

Definition 5.2. [12] A generalized Montesinos tangle or generalized M-tangle is a

tangle of the form (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , hm) where
ai

bi

’s are rational tangles,

ai

bi

6= 1

0
for 1 ≤ i ≤ n and hj ’s are integers for 1 ≤ j ≤ m. An M-tangle is a tangle of

the form
a1

b1
+ · · · +

an

bn

where
ai

bi

’s are rational tangles and
ai

bi

6= 1

0
for 1 ≤ i ≤ n.
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A

C1

C2

Cn

A

C2

C1

Cn

n:even n:odd

Figure 5.1: Circle product A ◦ (c1, · · · , cn).

Lemma 5.1. [12]

1. A generalized M-tangle is rational if all but at most one of the
ai

bi

’s are integral.

2. The sum of two rational tangles is rational if and only if one of the tangles is

integral. In this case,
a

b
+ x = x +

a

b
=

a + bx

b
.

3.
a

b
+

c

d
=

a

b
− x + x +

c

d
=

a − bx

b
+

c + dx

d
.

As you can see in Figure 5.1, circle product manipulates 4 strings connected

from NW, NE, SW and SE endpoints of A in S2 × I. Actually, NW endpoint of A

is fixed and other three endpoints are manipulated while we do circle product. Thus

(c1, · · · , cn) in A ◦ (c1, · · · , cn) can be considered as a 3-string tangle. A 3-string

tangle is a 3-ball with 3 strings embedded in the ball and 6 endpoints are fixed on

the boundary of the ball (Figure 5.3 (b)). The 3-string tangles used in the circle

product will be related to 3-braids (See definition 5.2) which will be used to classify

generalized M-tangles in theorem 5.15.
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Note that even if two rational tangles A and B are equivalent, it is possible

that U ◦ A 6= U ◦ B for a tangle U . For example, (3,−3) = (−2,−1,−2) but

(2) ◦ (3,−3) 6= (2) ◦ (−2,−1,−2) since (2) ◦ (3,−3) = (2, 3,−3) = −19
7

but (2) ◦

(−2,−1,−2) = (0,−1,−2) = −2. Note that (3,−3) and (−2,−1,−2) are equivalent

as 2-string tangles since they have the same continued fraction
−8

3
but they are not

equivalent as 3-string tangles in (2) ◦ (3,−3) and (2) ◦ (−2,−1,−2) since (2) ◦ (3,−3)

cannot be deformed into (2) ◦ (−2,−1,−2) without moving NW, NE, SW and SE

endpoints of (2) ◦ (3,−3).

Now, we define a 3-braid and discuss circle product in terms of a sum between

a 2 string tangle and a 3-braid.

Definition 5.3. [7, 8] A 3-braid is a set of 3 strings which are attached to vertical

bars at the left and at the right as in Figure 5.3 (a). Each string always heads to the

right as we move along the string from the left vertical bar to the right vertical bar.

We denote a 3-braid by T (a1, · · · , an) as in Figure 5.2 where ai ∈ Z [7, 8]:

ana1
a2

a3
an−1

a1
a2

a3

an

an−1

(a) n odd (b) n even

where
ai

=





if ai is positive(negative) and i is odd(even)

if ai is negative(positive) and i is odd(even)

Figure 5.2: T (a1, · · · , an).
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There is the standard notation for a 3-braid defined as follows [2]: If the first

string crosses over (under) the second, then the crossing is called σ1 ( σ−1
1 ). If the

second string crosses over (under) the third, then the crossing is called σ2 ( σ−1
2 ).

Thus standard notation of the 3-braid in Figure 5.3 (a) is σ3
1σ

−3
2 σ1

1 . For more details

for braid notation, see [2]. Note that a 3-braid notation T (a1, · · · , an) is equal to

σa1

1 σ−a2

2 · · ·σan

1 if n is odd and σa1

1 σ−a2

2 · · ·σ−an

2 if n is even. In this chapter, we use

the notation T (a1, · · · , an) instead of the standard notation to relate a 3-braid to a

3-string tangle in circle product.

A 3-braid can be considered as a special case of a 3-string tangle as in Figure

5.3. The braid sum, A+b B of two 3-braids A and B is defined by connecting r1, r2, r3

of A to l1, l2, l3 of B, respectively [7, 8].

l1

l2

l3

r1

r2

r3

(a) T (3, 3, 1) (b)

Figure 5.3: Converting a 3-braid into a 3-string tangle;(a) A 3-braid and (b) The
corresponding 3-string tangle.

Every braid has a standard diagram as in the following theorem.

Theorem 5.2. [7] If B is a 3-braid, then B ∼= T (g1, · · · , gk) +b tE where gi’s have
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the same sign and E is shown in Figure 5.4 (a).

(a)E = T (1,−1, 1) (b)−E = T (−1, 1,−1)

Figure 5.4: Braids;(a) E and (b) −E.

Since (g1, · · · , gk) in A ◦ (g1, · · · , gk) can be considered as a 3-braid by placing

vertical twists horizontally and moving the SW endpoints of A and A ◦ (g1, · · · , gk)

to the east sides of A and A◦ (g1, · · · , gk) respectively as in Figure 5.5, circle product

can be related to braid sum as follows: denote A ◦ (g1, · · · , gk) = A +tb T (g1, · · · , gk)

where A is a 2-string tangle, (g1, · · · , gk) is a 3-string tangle and T (g1, · · · , gk) is

the corresponding 3-braid. The operation ′+′
tb represents the sum between a 2-string

tangle A and a 3-braid T (g1, · · · , gk) by connecting NE, SE and SW endpoints of A

to l1, l2 and l3 of T (g1, · · · , gk).

The vertical sum, A ∗ B of tangles A and B is defined by connecting SW and

SE endpoints of A with NW and NE endpoints of B, respectively [33].

Theorem 5.3. [7]
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A
A

NE

SE

NE

SW

NW

SE

SW

NW

(a)A ◦ (2, 1, 1) (b)A +tb T (2, 1, 1)

Figure 5.5: Circle product as the sum between a 2 string tangle and a 3-braid; (a)
Circle product and (b) The corresponding sum.

Let T (h1, · · · , hm) = T (g1, · · · , gk) +b tE. Then

(
a1

b1

+· · ·+an

bn

)◦(h1, · · · , hm) =





(
a1

b1
+ · · · +

an

bn

) ◦ (g1, · · · , gk) if t is even

(
−b1

a1
∗ · · · ∗ −bn

an

) ◦ (−g1, · · · ,−gk, 0) if t is odd

Proof. (
a1

b1

+ · · · +
an

bn

) ◦ (h1, · · · , hm) = (
a1

b1

+ · · · +
an

bn

) +tb T (h1, · · · , hm)

= (
a1

b1

+ · · ·+ an

bn

) +tb [T (g1, · · · , gk) +b tE] = [(
a1

b1

+ · · ·+ an

bn

) +tb T (g1, · · · , gk)] +tb tE

= [(
a1

b1
+ · · · +

an

bn

) ◦ (g1, · · · , gk)] ◦ (1,−1, 1) ◦ (1,−1, 1) ◦ · · · ◦ (1,−1, 1).

Let A = (
a1

b1
+ · · ·+ an

bn

)◦(g1, · · · , gk). Let rA(T ) be the rotation of a tangle A by 180◦

about the line from the NW and the SE of A where T = A◦(1,−1, 1)◦(1,−1, 1)◦· · ·◦

(1,−1, 1) and r(T ) be the rotation of a tangle T by 180◦ about the line from the NW

and the SE of T . Note that rA(A◦(1,−1, 1)) = r(A) and r2
A(A◦(1,−1, 1)◦(1,−1, 1)) =

A. Thus by induction, A ◦ (1,−1, 1) ◦ (1,−1, 1) ◦ · · · ◦ (1,−1, 1) is deformed into A if

t is even and r(A) if t is odd. Note that r(A) = r((
a1

b1
+ · · · +

an

bn

) ◦ (g1, · · · , gk)) =

(r(
a1

b1

) ∗ · · · ∗ r(
an

bn

)) ◦ (−g1, · · · ,−gk, 0) = (
−b1

a1

∗ · · · ∗ −bn

an

) ◦ (−g1, · · · ,−gk, 0).

By lemma 5.1 and theorem 5.3, a generalized M-tangle can be represented as

(
a1

b1
+ · · ·+ an

bn

) ◦ (h1, · · · , hm) or (
−b1

a1
∗ · · · ∗ −bn

an

) ◦ (−h1, · · · ,−hm, 0) where ai and
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bi are relatively prime and 0 < ai < bi. Generalized M-tangles will be classified in

theorem 5.15.

Definition 5.4. [3, 6, 56] A Montesinos knot/link has a projection as shown in Figure

5.6 where e is an integral tangle and
ai

bi

is a rational tangle for i = 1, · · · , r and r ≥ 3.

Here, we assume ai and bi are relatively prime and 0 < ai < bi. This implies that

ai

bi

is neither an integral tangle nor the infinity tangle. The above Montesinos link is

written as N(
a1

b1

+ · · · +
ar

br

+ e).

a1/b1 ar/br

e

Figure 5.6: Montesinos link.

Note that Montesinos links do not include rational links/knots according to

the above definition although generalized M-tangles include rational tangles.

Theorem 5.4. (Classification of Montesinos Links) [3, 6, 56] Montesinos links

with r rational tangles, r ≥ 3, are classified by the ordered set of fractions (
a1

b1

, · · · ,
ar

br

),

up to cyclic permutations and reversal of order, together with the integer e where ai

and bi are coprime integers such that 0 < ai < bi for 1 ≤ i ≤ r.

Lemma 5.5. N(A + C) = N(C + A) where A and C are arbitrary tangles.
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Lemma 5.6. [12] N(A ◦ (c1, · · · , cn) + B) = N(A + B ◦ (cn, · · · , c1)) if A or B is

rational and n is odd.

Lemma 5.7. N(A ◦ (c1, · · · , cn) + B) = N(A + B ◦ (cn, · · · , c1)) if n is odd and B is

invariant under 180◦ rotations about x and y axis.

Proof. If n = 1, N(A ◦ (c1) + B) = N(A + B ◦ (c1)) since B is invariant under 180◦

rotation about x axis. Assume that N(A◦ (c1, · · · , cn)+B) = N(A+B ◦ (cn, · · · , c1))

when n = 2k−1 for k ≥ 1. Then N(A◦(c1, · · · , c2k+1)+B) = N(A◦(c1, · · · , c2k, 0)+

B◦(c2k+1)) = N(A◦(c1, · · · , c2k−1)◦(c2k, 0)+B◦(c2k+1)) = N(A◦(c1, · · · , c2k−1)+B◦

(c2k+1)◦(c2k, 0)) = N(A◦(c1, · · · , c2k−1)+B◦(c2k+1, c2k, 0)). Since B is invariant under

180◦ rotations about x and y axis, so are B◦(c2k+1) and then B◦(c2k+1)◦(c2k, 0). Thus

by the induction hypothesis, N(A ◦ (c1, · · · , c2k−1) + B ◦ (c2k+1, c2k, 0)) = N(A + B ◦

(c2k+1, c2k, 0) ◦ (c2k−1, · · · , c1)) = N(A + B ◦ (c2k+1, c2k, c2k−1, · · · , c1)). By induction,

we have the result.

Note that a rational tangle is invariant under 180◦ rotations about x and y

axis. Thus lemma 5.6 is a special case of lemma 5.7.

Lemma 5.8. [12] (d1, · · · , dm) ◦ (c1, · · · , cn) = (d1, · · · , dm + c1, · · · , cn) if n is odd.

Definition 5.5. [42] The Euler bracket function, E[x1, · · · , xn] equals the sum of the

products obtained from the product 1 · x1 · · · · · xn by omitting zero or more disjoint

pairs of consecutive xixi+1 from the product.

The Euler bracket function satisfies the following.
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Proposition 5.9. 1. If n = 0, then E[x1, · · · , xn] = E[] = 1.

2. If n < 0, then E[x1, · · · , xn] = 0.

3. E[x1, · · · , xn] = E[xn, · · · , x1].

4. For n ≥ 1,

(a) E[x1, · · · , xn] = x1E[x2, · · · , xn] + E[x3, · · · , xn]

= xnE[x1, · · · , xn−1] + E[x1, · · · , xn−2].

(b) [xn, · · · , x1] =
E[x1, · · · , xn]

E[x1, · · · , xn−1]
=

E[xn, · · · , x1]

E[xn−1, · · · , x1]

where [xn, · · · , x1] = xn +
1

xn−1 + · · · + 1
x1

.

(c) Let a = E[x1, · · · , xn],b = E[x1, · · · , xn−1]. If y = (−1)n+1E[x2, · · · , xn−1]

and x = (−1)n+1E[x2, · · · , xn], then bx − ay = 1.

Lemma 5.10. [42] [c1, · · · , cn+dm, · · · , d1] = E[c1,··· ,cn]E[d1,··· ,dm−1]+E[c1,··· ,cn−1]E[d1,··· ,dm]
E[c2,··· ,cn]E[d1,··· ,dm−1]+E[c2,··· ,cn−1]E[d1,··· ,dm]

.

Theorem 5.11. [9, 33] Every rational tangle has a unique canonical form (x1, · · · , xn)

where xi ∈ Z − {0} for 1 ≤ i ≤ n − 1, all xi’s have the same sign and n is odd.

Proposition 5.12. Suppose that 0 < ai < bi for 1 ≤ i ≤ n, hj’s have the same sign

for all j, hj 6= 0 for 2 ≤ j ≤ t − 1 and t is odd. For n ≥ 2, (
a1

b1
+ · · · +

an

bn

) ◦

(h1, · · · , ht) = (
c1

d1

+ · · · +
cm

dm

) ◦ (k1, · · · , ks) where 0 < ci < di for 1 ≤ i ≤ m, kj’s

have the same sign for all j, kj 6= 0 for 2 ≤ j ≤ s− 1 and s is odd iff (a) n = m and

ai

bi

=
ci

di

for all i and (b) t = s and hj = kj for all j.

Proof. (⇒) Suppose that (
a1

b1
+ · · ·+ an

bn

)◦(h1, · · · , ht) = (
c1

d1
+ · · ·+ cm

dm

)◦(k1, · · · , ks).

Then (
a1

b1

+ · · · +
an

bn

) = (
c1

d1

+ · · · +
cm

dm

) ◦ (k1, · · · , ks) ◦ (−ht, · · · ,−h1) = (
c1

d1

+
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· · · +
cm

dm

) ◦ (k1, · · · , ks − ht, · · · ,−h1) by lemma 5.8. We can choose a noninte-

gral rational tangle
x

y
such that

x

y
6= 1

0
and

x

y
6= (

ci

di

+ e1) for any i where e1 is

an arbitrary integral tangle. Then N(
a1

b1
+ · · · +

an

bn

+
x

y
) = N((

c1

d1
+ · · · +

cm

dm

) ◦

(k1, · · · , ks−ht, · · · ,−h1) +
x

y
) = N(

c1

d1
+ · · ·+ cm

dm

+
x

y
◦ (−h1, · · · ,−ht +ks, · · · , k1))

by lemma 5.6. Since
x

y
6= 1

0
,
x

y
6= (

ci

di

+e) and
x

y
is not an integral tangle, by theorem

5.4,
x

y
= (

x

y
◦ (−h1, · · · ,−ht + ks, · · · , k1)). Let

x

y
= (l1, · · · , lu) =

E[l1, · · · , lu]

E[l1, · · · , lu−1]
.

Then
x

y
◦ (−h1, · · · ,−ht + ks, · · · , k1) = (l1, · · · , lu) ◦ (−h1, · · · ,−ht + ks, · · · , k1) =

(l1, · · · , lu − h1, · · · ,−ht + ks, · · · , k1) = [k1, · · · , ks − ht, · · · ,−h1 + lu, · · · , l1] =

E[k1, · · · , ks − ht, · · · ,−h1]E[l1, · · · , lu−1] + E[k1, · · · , ks − ht, · · · ,−h2]E[l1, · · · , lu]

E[k2, · · · , ks − ht, · · · ,−h1]E[l1, · · · , lu−1] + E[k2, · · · , ks − ht, · · · ,−h2]E[l1, · · · , lu]

=
E[k1, · · · , ks − ht, · · · ,−h1]y + E[k1, · · · , ks − ht, · · · ,−h2]x

E[k2, · · · , ks − ht, · · · ,−h1]y + E[k2, · · · , ks − ht, · · · ,−h2]x
=

x

y
.

Let E[k1, · · · , ks − ht, · · · ,−h1] = a, E[k1, · · · , ks − ht, · · · ,−h2] = b, E[k2, · · · , ks −

ht, · · · ,−h1] = a′ and E[k2, · · · , ks − ht, · · · ,−h2] = b′. Then
ay + bx

a′y + b′x
=

x

y
where

(a, b) = 1 and (x, y) = 1. This implies that ay+bx = kx for some integer k. Then ay =

(k−b)x. Since (x, y) = 1, x|a. This is true for any x such that
x

y
6= 1

0
and

x

y
6= (

ci

di

+e1)

for any i and any e1. Thus a = E[k1, · · · , ks − ht, · · · ,−h1] = 0 and (−h1, · · · ,−ht +

ks, · · · , k1) =
E[k1, · · · , ks − ht, · · · ,−h1]

E[k2, · · · , ks − ht, · · · ,−h1]
= 0. Since (−h1, · · · ,−ht + ks, · · · , k1) =

[k1, · · · , ks − ht, · · · ,−h1] =

E[k1, · · · , ks]E[−h1, · · · ,−ht−1] + E[k1, · · · , ks−1]E[−h1, · · · ,−ht]

E[k2, · · · , ks]E[−h1, · · · ,−ht−1] + E[k2, · · · , ks−1]E[−h1, · · · ,−ht]

=
E[k1, · · · , ks]E[h1, · · · , ht−1] − E[k1, · · · , ks−1]E[h1, · · · , ht]

E[k2, · · · , ks]E[h1, · · · , ht−1] − E[k2, · · · , ks−1]E[h1, · · · , ht]
=

0

1
by lemma 5.10,

E[k1, · · · , ks]E[h1, · · · , ht−1]−E[k1, · · · , ks−1]E[h1, · · · , ht] = 0. Thus
E[k1, · · · , ks]

E[k1, · · · , ks−1]
=

E[h1, · · · , ht]

E[h1, · · · , ht−1]
which implies (k1, · · · , ks) = (h1, · · · , ht) as 2-string tangles.

(1) Assume that h1 6= 0. If k1 6= 0, then t = s and hj = kj for all j by the-
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orem 5.11 since t and s are odd, all hj’s have the same sign, all kj’s have the

same sign, hj ∈ Z − {0} for 1 ≤ j ≤ t − 1 and kj ∈ Z − {0} for 1 ≤ j ≤

s − 1. If k1 = 0, then (h1, · · · , ht) = (0, k2, k3, · · · , ks) = (k3, · · · , ks). Thus

(
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) = (
c1

d1
+ · · · +

cm

dm

) ◦ (0, k2, h1, · · · , ht) which implies

that (
a1

b1
+ · · · +

an

bn

) = (
c1

d1
+ · · · +

cm

dm

) ◦ (0, k2). Then N(
a1

b1
+ · · · +

an

bn

+
x

y
) =

N((
c1

d1

+ · · · +
cm

dm

) ◦ (0, k2) +
x

y
) = N(

c1

d1

+ · · · +
cm

dm

+
x

y
◦ (0, k2)) for a nonintegral

rational tangle
x

y
such that

x

y
6= 1

0
and

x

y
6= (

ci

di

+ an integral tangle) for any i. By

theorem 5.4,
x

y
= (

x

y
◦ (0, k2)) =

x

k2x + y
. If

x

k2x + y
=

−x

−y
, then k2x+y = −y which

implies k2x = −2y. Since (x, y) = 1, x = ±1,±2. If we choose x such that x ≥ 3,

then k2 = 0. This contradicts the hypothesis.

(2) Assume that h1 = 0. If k1 6= 0, then by the similar argument as in (1), h2 = 0

which contradicts the hypothesis. If k1 = 0, then (h3, · · · , ht) = (k3, · · · , ks) as

2-string tangles. By theorem 5.11, t = s and hj = kj for 3 ≤ j ≤ t. Then

(
a1

b1
+ · · ·+ an

bn

)◦ (0, h2, h3, · · · , ht) = (
c1

d1
+ · · ·+ cm

dm

)◦ (0, k2, h3, · · · , ht) which implies

that (
a1

b1

+ · · · +
an

bn

) = (
c1

d1

+ · · · +
cm

dm

) ◦ (0, k2 − h2). By the same argument as in

(1), k2 = h2.

Since s = t and hj = kj for all j, (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) = (
c1

d1
+ · · · +

cm

dm

) ◦

(k1, · · · , ks) implies that (
a1

b1
+ · · ·+ an

bn

) = (
c1

d1
+ · · ·+ cm

dm

). Now, choose another non-

integral rational tangle
z

w
such that

z

w
6= 1

0
and

z

w
6= (

ci

di

+e2) for any i where e2 is an

arbitrary integral tangle. Then N(
a1

b1
+· · ·+ an

bn

+
x

y
+

z

w
) = N(

c1

d1
+· · ·+ cm

dm

+
x

y
+

z

w
).

Then by theorem 5.4,
ai

bi

=
ci

di

for all i.

(⇐) It is trivial.
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Proposition 5.13. Suppose that 0 < ai < bi for 1 ≤ i ≤ n, hj’s have the same sign

for all j, hj 6= 0 for 2 ≤ j ≤ t − 1 and t is odd. For n ≥ 2, (
−b1

a1

∗ · · · ∗ −bn

an

) ◦

(−h1, · · · ,−ht, 0) = (
−d1

c1
∗ · · · ∗ −dm

cm

) ◦ (−k1, · · · ,−ks, 0) where 0 < ci < di, kj’s

have the same sign for all j, kj 6= 0 for 2 ≤ j ≤ s− 1 and s is odd iff (a) n = m and

ai

bi

=
ci

di

for all i and (b) t = s and hj = kj for all j.

Proof. (⇒) Suppose (
−b1

a1

∗ · · · ∗ −bn

an

) ◦ (−h1, · · · ,−ht, 0) = (
−d1

c1

∗ · · · ∗ −dm

cm

) ◦

(−k1, · · · ,−ks, 0). By rotating both these tangles about the lines connecting NW

and SE endpoints of (
−b1

a1
∗ · · · ∗ −bn

an

) ◦ (−h1, · · · ,−ht, 0) and (
−d1

c1
∗ · · · ∗ −dm

cm

) ◦

(−k1, · · · ,−ks, 0) respectively, we have (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) = (
c1

d1
+ · · · +

cm

dm

) ◦ (k1, · · · , ks). By proposition 5.12, we have the result.

(⇐) It is clear.

Proposition 5.14. Suppose that 0 < ai < bi for 1 ≤ i ≤ n, hj’s have the same sign

for all j, hj 6= 0 for 2 ≤ j ≤ t − 1 and t is odd. If (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) =

(
−d1

c1
∗ · · · ∗ −dm

cm

) ◦ (−k1, · · · ,−ks, 0) where 0 < ci < di, kj’s have the same sign

for all j, kj 6= 0 for 2 ≤ j ≤ s − 1 and s is odd, then n = m = 1. That is,

(
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) is a rational tangle.

Proof. Suppose (
a1

b1
+ · · ·+ an

bn

)◦ (h1, · · · , ht) = (
−d1

c1
∗ · · · ∗ −dm

cm

)◦ (−k1, · · · ,−ks, 0).

Then (
a1

b1
+· · ·+an

bn

)◦(h1, · · · , ht, ks, · · · , k1, 0) = (
−d1

c1
∗· · ·∗−dm

cm

). Taking numerator

closure of both sides, N((
a1

b1

+ · · · +
an

bn

) ◦ (h1, · · · , ht, ks, · · · , k1, 0)) = N(
−d1

c1

∗ · · · ∗
−dm

cm

) = D(
c1

d1

)♯ · · · ♯D(
cm

dm

). Since N((
a1

b1

+ · · · +
an

bn

) ◦ (h1, · · · , ht, ks, · · · , k1, 0)) =

N((
a1

b1
+ · · ·+ an

bn

)+(0, k1, · · · , ks, ht, · · · , h1)) is either a rational link or a Montesinos
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link, m = 1. Then (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) =
−d1

c1
◦ (−k1, · · · ,−ks, 0) which

is a rational tangle. Thus n = 1. That is, (
a1

b1

+ · · · +
an

bn

) ◦ (h1, · · · , ht) =
a1

b1

◦

(h1, · · · , ht).

Theorems 5.2, 5.3, propositions 5.12, 5.13 and 5.14 give the following classifi-

cation of generalized Montesinos tangles which are not rational tangles.

Theorem 5.15. (Classification of Generalized Montesinos Tangles)

A generalized Montesinos tangle which is not rational is uniquely represented as one

of the following:

(1) (
a1

b1
+ · · · +

an

bn

) ◦ (h1, · · · , ht) when n ≥ 2,

(2) (
−b1

a1

∗ · · · ∗ −bn

an

) ◦ (−h1, · · · ,−ht, 0) when n ≥ 2.

where 0 < ai < bi, t is odd, hj’s have the same sign for all j and hj 6= 0 for

2 ≤ j ≤ t − 1

Proof. By theorems 5.2 and 5.3, a generalized Montesinos tangle has the form (
a1

b1
+

· · · +
an

bn

) ◦ (h1, · · · , ht) or (
−b1

a1

∗ · · · ∗ −bn

an

) ◦ (−h1, · · · ,−ht, 0) where 0 < ai < bi, t

is odd, hj ’s have the same sign for all j and hj 6= 0 for 2 ≤ j ≤ t− 1. By proposition

5.12 and 5.13, this is unique.

The sum of two rational tangles need not be rational but the numerator closure

of the sum of two rational tangles is a rational knot.

Lemma 5.16. [20] N(
j

p
+

t

w
) = N(

jw + pt

dw + qt
) where d and q are any integers such

that pd − qj = 1.
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Lemma 5.17. [12] If N(
j

p
+

f

g
) = N(

a

b
), then

f

g
=

da − jb′

pb′ − qa
for some integers d, q,

and b′ such that pd − qj = 1, b′b±1 = 1 mod a.

5.2 Equivalent moves

Definition 5.6. [12] If there is a solution for U such that N(U + B) = K1 and

N(U + E) = K2, then K2 is said to be obtained from K1 by a (B, E)-move.

Definition 5.7. [12] A (B, E)-move is said to be equivalent to a (B′, E ′)-move if

there exists a solution for U such that N(U + B) = K1 and N(U + E) = K2 if and

only if there exists a solution for U ′ such that N(U ′ +B′) = K1 and N(U ′ +E ′) = K2.

The above two systems of tangle equations are said to be equivalent.

Figure 5.7 and Figure 5.8 shows that (+1,−1)-move is equivalent to (0,−2)-

move. Generally, (
f1

g1
,
f2

g2
)-move is equivalent to (0,

x

y
)-move where

f1

g1
= (c1, · · · , cn)

and
x

y
= (

f2

g2

) ◦ (−cn, · · · ,−c1) [12]. Thus it is sufficient to solve N(U +
0

1
) = K1 and

N(U +
x

y
) = K2 instead of solving N(U +

f1

g1

) = K1 and N(U +
f2

g2

) = K2.

(+1) (−1) (0) (−2)

Figure 5.7: Equivalent moves.
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U UK1 K2

(a) N(U + (1)) = K1 N(U + (−1)) = K2

U UK1 K2

(b) N(U ◦ (1) + (0)) = K1 N(U ◦ (1) + (−2)) = K2

Figure 5.8: Equivalent tangle equations.

5.3 Solving tangle equations

First, the system of tangle equations is solved when s ≥ 3 and t ≥ 3. That is,

the righthand side of equations (1) and (2) are both Montesinos links.

Theorem 5.18. Suppose that ai, bi, e1, x, y are integers and 0 < ai < bi for 1 ≤ i ≤ s.

For s, t ≥ 3,

N(U +
0

1
) =N(

a1

b1
+ · · · +

as

bs

+ e1) (1)

and N(U +
x

y
) =N(

z1

v1
+ · · · +

zt

vt

+ e2) (2)

where zj , vj, e2 are integers and 0 < zj < vj for 1 ≤ j ≤ t

and U =(
c1

d1
+ · · · +

cn

dn

) ◦ (h1, · · · , hm) is a generalized M-tangle.

if and only if for s, t ≥ 3 and for some 1 ≤ j1 ≤ s,



58

1. If m = 1, then U = (
aj1

bj1

+
aj1±1

bj1±1

+ · · ·+ aj1∓2

bj1∓2

+
aj1∓1

bj1∓1

) ◦ (e1) and N(
z1

v1

+ · · ·+
zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+ · · ·+ aj1∓2

bj1∓2
+

aj1∓1

bj1∓1
+

x

y
+ e1) where

x

y
= e2 − e1 and

t = s if
x

y
is an integer and

x

y
=

zk

vk

+ e2 − e1 for some k and t = s + 1 if
x

y
is

not an integer.

2. If m = 3 and hm = 0, then U = (
aj1

bj1

+
aj1±1

bj1±1

+· · ·+ aj1∓2

bj1∓2

+
aj1∓1

bj1∓1

)◦(e1, h2, 0) and

N(
z1

v1
+ · · ·+ zt

vt

+e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+ · · ·+ aj1∓2

bj1∓2
+

aj1∓1

bj1∓1
+

x

h2x + y
+e1) where

h2 =
1

e2 − e1
− y

x
and t = s if

x

h2x + y
is an integer and h2 =

vk

zk + (e2 − e1)vk

−
y

x
for some k and t = s + 1 if

x

h2x + y
is not an integer.

3. If m > 3 or if m = 3 and hm 6= 0, then assuming that hi’s have the same sign

and hi 6= 0 for 2 ≤ i ≤ m − 1,

(a) U = (
aj1

bj1

+
aj1±1

bj1±1
+ · · ·+ aj1∓3

bj1∓3
+

aj1∓2

bj1∓2
)◦(h1, · · · , hm) and N(

z1

v1
+ · · ·+ zt

vt

+

e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+· · ·+aj1∓3

bj1∓3
+

aj1∓2

bj1∓2
+

xE[h1, · · · , hm−1] + yE[h1, · · · , hm]

xE[h2, · · · , hm−1] + yE[h2, · · · , hm]
)

where
E[h1, · · · , hm]

E[h2, · · · , hm]
=

aj1∓1

bj1∓1
+ e1 for some j1.

(b) U = (
−bj1

aj1

∗ −bj1±1

aj1±1
∗ · · · ∗ −bj1∓3

aj1∓3
∗ −bj1∓2

aj1∓2
) ◦ (−h1, · · · ,−hm, 0) and

N(
z1

v1
+ · · · +

zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+ · · · +

aj1∓3

bj1∓3
+

aj1∓2

bj1∓2

+
yE[h1, · · · , hm−1] − xE[h1, · · · , hm]

yE[h2, · · · , hm−1] − xE[h2, · · · , hm]
) where h2 6= ±1 and

E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
=

aj1∓1

bj1∓1
+ e1 for some j1.

(c) m = 3 and U = (
−bj1

aj1

∗ −bj1±1

aj1±1

∗ · · · ∗ −bj1∓2

aj1∓2

∗ −bj1∓1

aj1∓1

) ◦ (−h1,∓1,−h3, 0)

and N(
z1

v1
+ · · · +

zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+ · · · +

aj1∓2

bj1∓2
+

aj1∓1

bj1∓1
+

y(1 ± h1) − x(h1 + h3 ± h1h3)

±y − x(1 ± h3)
) where h1 = e1 ∓ 1.
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Note that if h2 = 0 in Case 2, the solution is the same as the solution in Case 1. We

can consider only when m is odd since T ◦ (h1, · · · , h2k) = T ◦ (0, h1, · · · , h2k) for a

tangle T .

Proof. If U is rational, N(U) is a 4-plat but N(
a1

b1
+ · · · +

as

bs

+ e1) is a Montesinos

link/knot by equation (1). It contradicts. So U is not rational. Since U is a generalized

M-tangle which is not rational, it can be written as U = (
c1

d1
+ · · ·+ cn

dn

)◦(h1, · · · , hm)

where ci, di and hj are integers such that 0 < ci < di for 1 ≤ i ≤ n, 1 ≤ j ≤ m and

n ≥ 2. W.L.O.G, we can assume m is odd.

Case 1: If m = 1, from equation (1),

N(U +
0

1
) =N((

c1

d1
+ · · · +

cn

dn

) ◦ (h1) + (0))

=N(
c1

d1
+ · · · +

cn

dn

+ h1)

=N(
a1

b1
+ · · · +

as

bs

+ e1).

Then by theorem 5.4, h1 = e1,
ci

di

=
aj

bj

with n = s where i = 1, · · · , n, j =

j1, j1 + 1, · · · , s, 1, 2, · · · , j1 − 2, j1 − 1 or j = j1, j1 − 1, · · · , 2, 1, s, · · · , j1 + 2, j1 + 1

for some 1 ≤ j1 ≤ s. Here, n ≥ 3 since s ≥ 3.

From equation (2),

N(U +
x

y
) =N((

c1

d1
+ · · · +

cn

dn

) ◦ (h1) +
x

y
)

=N((
c1

d1
+ · · · +

cn

dn

) +
x

y
◦ (h1)) by lemma 5.6

=N(
c1

d1
+ · · · +

cn

dn

+
x

y
+ h1)

=N(
z1

v1
+ · · · +

zt

vt

+ e2).
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Then by the above result, N(
z1

v1

+· · ·+ zt

vt

+e2) = N(
aj1

bj1

+
aj1±1

bj1±1

+· · ·+ aj1∓2

bj1∓2

+
aj1∓1

bj1∓1

+

x

y
+e1). By theorem 5.4, e2 =

x

y
+e1 and t = s if

x

y
is an integer and

zk

vk

+e2 =
x

y
+e1

for some k and t = s + 1 if
x

y
is not an integer.

Case 2: Assume that m = 3 and hm = 0. Then by equation(1),

N(U +
0

1
) =N((

c1

d1

+ · · · +
cn

dn

) ◦ (h1, h2, 0) + (0))

=N((
c1

d1

+ · · · +
cn

dn

) ◦ (h1))

=N(
c1

d1

+ · · · +
cn

dn

+ h1)

=N(
a1

b1

+ · · · +
as

bs

+ e1).

Then by theorem 5.4, h1 = e1,
ci

di

=
aj

bj

with n = s where i = 1, · · · , n, j =

j1, j1 + 1, · · · , s, 1, 2, · · · , j1 − 2, j1 − 1 or j = j1, j1 − 1, · · · , 2, 1, s, · · · , j1 + 2, j1 + 1

for some 1 ≤ j1 ≤ s. Here, n ≥ 3.

From equation (2),

N(U +
x

y
) =N((

c1

d1
+ · · · +

cn

dn

) ◦ (h1, h2, 0) +
x

y
)

=N((
c1

d1

+ · · · +
cn

dn

) + (
x

y
) ◦ (0, h2, h1)) by lemma 5.6

=N((
c1

d1
+ · · · +

cn

dn

) + (
x

y
) ◦ (0, h2, 0) + h1)

=N((
c1

d1

+ · · · +
cn

dn

) +
1

h2 + 1
x
y

+ h1)

=N(
c1

d1

+ · · · +
cn

dn

+
x

h2x + y
+ h1)

=N(
z1

v1
+ · · · +

zt

vt

+ e2).

Then by the above result, N(
z1

v1

+ · · · +
zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1

+ · · · +
aj1∓2

bj1∓2

+
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aj1∓1

bj1∓1

+
x

h2x + y
+ e1). By theorem 5.4,

x

h2x + y
+ e1 = e2 and t = s if

x

h2x + y
is an

integer and
x

h2x + y
+e1 =

zk

vk

+e2 for some k and t = s+1 if
x

h2x + y
is not an integer.

Case 3: Assume that m > 3 or m = 3 and hm 6= 0. If we assume that hj’s

have the same sign and hj 6= 0 for 2 ≤ j ≤ m − 1, then by theorem 5.15, U =

(
c1

d1
+ · · ·+ cn

dn

) ◦ (h1, · · · , hm) or (
−d1

c1
∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, 0). Since N(U)

is a Montesinos link by equation (1), case (3) in theorem 5.15 is ruled out.

(1) If U = (
c1

d1
+ · · · +

cn

dn

) ◦ (h1, · · · , hm) where 0 < ci < di, m is odd, hj ’s have the

same sign, hj 6= 0 for 2 ≤ j ≤ m − 1, then by equation (1),

N(U +
0

1
) =N((

c1

d1
+ · · · +

cn

dn

) ◦ (h1, · · · , hm) + (0))

=N((
c1

d1
+ · · · +

cn

dn

) + (0) ◦ (hm, · · · , h1)) by lemma 5.6

=N((
c1

d1
+ · · · +

cn

dn

) + (hm, · · · , h1))

=N((
c1

d1
+ · · · +

cn

dn

) + h1 +
1

h2 + · · · + 1
hm

)

=N(
c1

d1
+ · · · +

cn

dn

+
E[h1, · · · , hm]

E[h2, · · · , hm]
) by proposition 5.9

=N(
a1

b1
+ · · · +

as

bs

+ e1).

Since hj ’s have the same sign, m is odd, m ≥ 3 and hm 6= 0 if m = 3,
E[h1, · · · , hm]

E[h2, · · · , hm]

cannot be an integer. Then by theorem 5.4,
ci

di

=
aj

bj

with n = s − 1 where i =

1, · · · , n, j = j1, j1 + 1, · · · , s, 1, 2, · · · , j1 − 2 or j = j1, j1 − 1, · · · , 2, 1, s, · · · , j1 + 2

and
E[h1, · · · , hm]

E[h2, · · · , hm]
=

aj1∓1

bj1∓1
+ e1 for some 1 ≤ j1 ≤ s. Here, n ≥ 2.
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From equation (2),

N(U +
x

y
) =N((

c1

d1

+ · · · +
cn

dn

) ◦ (h1, · · · , hm) + (l1, · · · , lk))

where
x

y
= (l1, · · · , lk).

=N((
c1

d1

+ · · · +
cn

dn

) + (l1, · · · , lk) ◦ (hm, · · · , h1)) by lemma 5.6

=N(
c1

d1

+ · · · +
cn

dn

+ (l1, · · · , lk + hm, · · · , h1)) by lemma 5.8

=N(
c1

d1

+ · · · +
cn

dn

+ [h1, h2, · · · , hm + lk, · · · , l2, l1])

=N(
c1

d1

+ · · · +
cn

dn

+
xE[h1, · · · , hm−1] + yE[h1, · · · , hm]

xE[h2, · · · , hm−1] + yE[h2, · · · , hm]
)

by proposition 5.9 and lemma 5.10

=N(
z1

v1
+ · · · +

zt

vt

+ e2).

Then by the above result, N(
z1

v1
+ · · · +

zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1
+ · · · +

aj1∓3

bj1∓3
+

aj1∓2

bj1∓2

+
xE[h1, · · · , hm−1] + yE[h1, · · · , hm]

xE[h2, · · · , hm−1] + yE[h2, · · · , hm]
) where

E[h1, · · · , hm]

E[h2, · · · , hm]
=

aj1∓1

bj1∓1

+ e1 for

some 1 ≤ j1 ≤ s.

(2) If U = (
−d1

c1
∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, 0) where 0 < ci < di, m is odd, hj’s

have the same sign, hj 6= 0 for 2 ≤ j ≤ m − 1, then by equation (1),

N(U +
0

1
) =N((

−d1

c1

∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, 0))

=D((
c1

d1

+ · · · +
cn

dn

) ◦ (h1, · · · , hm))

=N((
c1

d1
+ · · · +

cn

dn

) ◦ (h1, · · · , hm) + (0, 0))

=N(
c1

d1
+ · · · +

cn

dn

+ (0, 0) ◦ (hm, · · · , h1)) by lemma 5.6
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=N(
c1

d1
+ · · · +

cn

dn

+ (hm−1, · · · , h1))

=N(
c1

d1
+ · · · +

cn

dn

+ h1 +
1

h2 + · · · + 1
hm−1

)

=N(
c1

d1

+ · · · +
cn

dn

+
E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
) by proposition 5.9

=N(
a1

b1

+ · · · +
as

bs

+ e1).

If m > 3 or m = 3 and h2 6= ±1,
E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
cannot be an integer since

hj ’s have the same sign. Then by theorem 5.4,
ci

di

=
aj

bj

with n = s − 1 where i =

1, · · · , n, j = j1, j1+1, · · · , s, 1, 2, · · · , j1−2 or j = j1, j1−1, · · · , 2, 1, s, · · · , j1+2 and

E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
=

aj1∓1

bj1∓1
+ e1 for some 1 ≤ j1 ≤ s. Here, n ≥ 2. If m = 3 and h2 =

±1, then
E[h1, h2]

E[h2]
=

h1h2 + 1

h2
= h1 ± 1. By theorem 5.4,

ci

di

=
aj

bj

with n = s where

i = 1, · · · , n, j = j1, j1 +1, · · · , s, 1, 2, · · · , j1−1 or j = j1, j1−1, · · · , 2, 1, s, · · · , j1 +1

and h1 ± 1 = e1.

From equation (2),

N(U +
x

y
) = N((

−d1

c1

∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, 0) + (l1, · · · , lk))

where
x

y
= (l1, · · · , lk) and k is odd,

=N((
−d1

c1

∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, 0) ◦ (lk, · · · , l1)) by lemma 5.6

=N((
−d1

c1

∗ · · · ∗ −dn

cn

) ◦ (−h1, · · · ,−hm, lk, · · · , l1)) by lemma 5.8

=D((
c1

d1

+ · · · +
cn

dn

) ◦ (h1, · · · , hm,−lk, · · · ,−l1, 0))
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=N((
c1

d1
+ · · · +

cn

dn

) ◦ (h1, · · · , hm,−lk, · · · ,−l1, 0) + (0, 0))

=N(
c1

d1
+ · · · +

cn

dn

+ (0, 0) ◦ (0,−l1, · · · ,−lk, hm, · · · , h1)) by lemma 5.6

=N(
c1

d1
+ · · · +

cn

dn

+ (−l1, · · · ,−lk, hm, · · · , h1))

=N(
c1

d1
+ · +

cn

dn

+
E[h1, · · · , hm, 0]E[−l1, · · · ,−lk−1] + E[h1, · · · , hm]E[−l1, · · · ,−lk]

E[h2, · · · , hm, 0]E[−l1, · · · ,−lk−1] + E[h2, · · · , hm]E[−l1, · · · ,−lk]
)

=N(
c1

d1
+ · · · +

cn

dn

+
yE[h1, · · · , hm, 0] − xE[h1, · · · , hm]

yE[h2, · · · , hm, 0] − xE[h2, · · · , hm]
)

=N(
c1

d1
+ · · · +

cn

dn

+
yE[h1, · · · , hm−1] − xE[h1, · · · , hm]

yE[h2, · · · , hm−1] − xE[h2, · · · , hm]
)

by proposition 5.9 and lemma 5.10

=N(
z1

v1
+ · · · +

zt

vt

+ e2).

By the above result, if m > 3 or m = 3 and h2 6= ±1, then N(
z1

v1
+ · · · +

zt

vt

+ e2) =

N(
aj1

bj1

+
aj1±1

bj1±1
+ · · · +

aj1∓3

bj1∓3
+

aj1∓2

bj1∓2
+

yE[h1, · · · , hm−1] − xE[h1, · · · , hm]

yE[h2, · · · , hm−1] − xE[h2, · · · , hm]
) where

E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
=

aj1∓1

bj1∓1
+e1 for some 1 ≤ j1 ≤ s. If m = 3 and h2 = ±1, then N(

z1

v1
+

· · ·+ zt

vt

+ e2) = N(
aj1

bj1

+
aj1±1

bj1±1

+ · · ·+ aj1∓2

bj1∓2

+
aj1∓1

bj1∓1

+
y(1 ± h1) − x(h1 + h3 ± h1h3)

±y − x(1 ± h3)
)

where h1 = e1 ∓ 1.

Next, the system of tangle equations is solved when s ≤ 2 and t ≥ 3. If s ≤ 2,

then the righthand side of equation (1) in theorem 5.18 is a rational link. So it can

be written as N(
a

b
).
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Theorem 5.19. Suppose that a, b, x, y are integers. For t ≥ 3,

N(U +
0

1
) =N(

a

b
) (1)

and N(U +
x

y
) =N(

z1

v1
+ · · · +

zt

vt

+ e2) (2)

where zj, vj , e2 are integers and 0 < zj < vj for 1 ≤ j ≤ t

and U is a generalized M-tangle.

if and only if t = 3,

U = (
c1

d1
+

pa − c1b

d1b − qa
) ◦ (h, 0) and (

pa − c1b

d1b − qa
+

c1

d1
) ◦ (h, 0) for all integers c1, d1, p

and q such that d1p − qc1 = 1 and 0 < c1 < d1 where (
c1

d1
,
pa − c1b

d1b − qa
,

x

hx + y
) =

(
zi1

vi1

,
zi2

vi2

+ k,
zi3

vi3

+ e2 − k) for some integer k where {i1, i2, i3} is cyclic permutations

of (1, 2, 3) and reversal of order.

Note that the choice of c1 and p such that d1p − qc1 = 1 has no effect on U .

Proof. If U is rational, N(U +
x

y
) is a rational link but N(

z1

v1
+ · · · +

zt

vt

+ e2) is a

Montesinos link/knot by the equation (2). It contradicts. So U should be a generalized

M-tangle which is not rational. Since N(U) = N(
a

b
) is rational by equation (1),

U = (
c1

d1
+

c2

d2
) ◦ (h, 0) where 0 < ci < di for i = 1, 2. From the proof of theorem

3 in [12], U = (
c1

d1
+

pa − c1b

d1b − qa
) ◦ (h, 0) and (

pa − c1b

d1b − qa
+

c1

d1
) ◦ (h, 0) for integers

c1, d1, p and q such that d1p − qc1 = 1. Note that if d1 and q are specified, then the

choice of c1 and p such that d1p − qc1 = 1 has no effect on U since
c1

d1

+
pa − c1b

d1b − qa
=

c1 + d1i

d1
+

pa − c1b − (d1b − qa)i

d1b − qa
=

c1 + d1i

d1
+

(p + qi)a − (c1 + d1i)b

d1b − qa
and d1(p+qi)−

q(c1 + d1i) = 1 if and only if d1p − qc1 = 1 [12].
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From equation (2),

N(U +
x

y
) =N((

c1

d1
+

c2

d2
) ◦ (h, 0) +

x

y
)

=N((
c1

d1

+
c2

d2

) + (
x

y
) ◦ (h, 0))

=N(
c1

d1
+

c2

d2
+

x

hx + y
)

=N(
z1

v1

+ · · · +
zt

vt

+ e2).

Since t ≥ 3,
x

hx + y
cannot be an integer. Actually, t = 3 and N(

z1

v1
+

z2

v2
+

z3

v3
+

e2) = N(
c1

d1

+
pa − c1b

d1b − qa
+

x

hx + y
). Similarly, for U = (

pa − c1b

d1b − qa
+

c1

d1

) ◦ (h, 0),

N(
z1

v1
+

z2

v2
+

z3

v3
+ e2) = N(

pa − c1b

d1b − qa
+

c1

d1
+

x

hx + y
) by equation (2). Note that

by theorem 5.4, N(
pa − c1b

d1b − qa
+

c1

d1
+

x

hx + y
) = N(

c1

d1
+

pa − c1b

d1b − qa
+

x

hx + y
). Thus

(
c1

d1
,
pa − c1b

d1b − qa
,

x

hx + y
) = (

zi1

vi1

,
zi2

vi2

+k,
zi3

vi3

+e2−k) for some integer k where {i1, i2, i3}

is cyclic permutations of (1, 2, 3) and reversal of order by theorem 5.4.

Next, the system of tangle equations is solved when s ≥ 3 and t ≤ 2. If t ≤ 2,

then the righthand side of equation (2) in theorem 5.18 is a rational link. So it can

be written as N(
z

v
).

Theorem 5.20. Suppose that x, y, z, v are integers. For s ≥ 3,

N(U +
0

1
) =N(

a1

b1

+ · · · +
as

bs

+ e1) (1)

and N(U +
x

y
) =N(

z

v
) (2)

where ai, bi, e1 are integers and 0 < ai < bi for 1 ≤ i ≤ s,

and U is a generalized M-tangle.
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if and only if s = 3,

U = (
c1

d1

+
pz − c1v

d1v − qz
) ◦ (h, 0) ◦ (−x

y
) and (

pz − c1v

d1v − qz
+

c1

d1

) ◦ (h, 0) ◦ (−x

y
) for integers

c1, d1, p and q such that d1p−qc1 = 1 and 0 < c1 < d1 where (
c1

d1
,
pz − c1v

d1v − qz
,

x

hx − y′
) =

(
ai1

bi1

,
ai2

bi2

+ k,
ai3

bi3

+ e1 − k) for some integer k where {i1, i2, i3} is cyclic permutations

of (1, 2, 3) and reversal of order and y′ such that yy′±1 = 1 mod x.

Note that the choice of c1 and p such that d1p − qc1 = 1 has no effect on U .

Proof. If U is rational, then N(U) is a rational link but by equation (1), N(
a1

b1

+

· · ·+ as

bs

+ e1) is a Montesinos knot. It contradicts. So U is a nonrational generalized

M-tangle.

By equation (2),

N(U +
x

y
) =N(U + (l1, · · · , lk)) where

x

y
= (l1, · · · , lk) and k is odd

=N(U ◦ (lk, · · · , l1) + (
0

1
)) by lemma 5.6

=N(
z

v
)

Since U is a nonrational generalized M-tangle, so is U ◦ (lk, · · · , l1). Since N(U ◦

(lk, · · · , l1)) = N(
z

v
) is rational, we can write U ◦ (lk, · · · , l1) = (

c1

d1

+
c2

d2

) ◦ (h, 0)

where 0 < ci < di for i = 1, 2. From the proof of theorem 3 in [12], U ◦ (lk, · · · , l1) =

(
c1

d1
+

pz − c1v

d1v − qz
) ◦ (h, 0) and (

pz − c1v

d1v − qz
+

c1

d1
) ◦ (h, 0) for integers c1, d1, p and q such

that d1p − qc1 = 1. Thus U = (
c1

d1

+
pz − c1v

d1v − qz
) ◦ (h, 0) ◦ (−l1, · · · ,−lk) = (

c1

d1

+

pz − c1v

d1v − qz
) ◦ (h, 0) ◦ (−x

y
) and U = (

pz − c1v

d1v − qz
+

c1

d1

) ◦ (h, 0) ◦ (−x

y
) for integers c1, d1, p

and q satisfying the above. Note that if d1 and q are specified, then the choice of c1

and p such that d1p − qc1 = 1 has no effect on U .
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By equation(1),

N(U +
0

1
) =N((

c1

d1
+

pz − c1v

d1v − qz
) ◦ (h, 0) ◦ (−l1, · · · ,−lk) + (0))

=N((
c1

d1

+
pz − c1v

d1v − qz
) ◦ (h, 0) + (−lk, · · · ,−l1)) by lemma 5.6

=N((
c1

d1
+

pz − c1v

d1v − qz
) ◦ (h, 0) + (− x

y′
)) where yy′±1 = 1 mod x

=N((
c1

d1

+
pz − c1v

d1v − qz
) + (− x

y′
) ◦ (h, 0))

=N(
c1

d1
+

pz − c1v

d1v − qz
+

x

hx − y′
)

=N(
a1

b1

+ · · · +
as

bs

+ e1)

Since s ≥ 3,
x

hx − y′
cannot be an integer. Actually, s = 3 and N(

a1

b1
+

a2

b2
+

a3

b3
+e1) =

N(
c1

d1

+
pz − c1v

d1v − qz
+

x

hx − y′
). Similarly, for U = (

pz − c1v

d1v − qz
+

c1

d1

)◦ (h, 0), N(
a1

b1

+
a2

b2

+

a3

b3

+e1) = N(
pz − c1v

d1v − qz
+

c1

d1

+
x

hx − y′
). Note that by theorem 5.4, N(

pz − c1v

d1v − qz
+

c1

d1

+

x

hx − y′
) = N(

c1

d1
+

pz − c1v

d1v − qz
+

x

hx − y′
). Thus (

c1

d1
,
pz − c1v

d1v − qz
,

x

hx − y′
) = (

ai1

bi1

,
ai2

bi2

+

k,
ai3

bi3

+ e1 − k) for some integer k where {i1, i2, i3} is cyclic permutations of (1, 2, 3)

and reversal of order by theorem 5.4.

Example 5.1. Solve the following tangle equations where U is a generalized M-tangle.

N(U +
0

1
) = N(

1

2
+

2

3
+

2

3
+ (−3))

and N(U +
x

y
) = N(

1

2
+

3

5
+

2

3
+ (−3)).
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By theorem 5.18, if m = 1, then U = (
1

2
+

2

3
+

2

3
) ◦ (−3),(

2

3
+

2

3
+

1

2
) ◦ (−3) or

(
2

3
+

1

2
+

2

3
) ◦ (−3). Moreover, N(

1

2
+

3

5
+

2

3
+ (−3)) = N((

1

2
+

2

3
+

2

3
) +

x

y
+ (−3)),

N((
2

3
+

2

3
+

1

2
) +

x

y
+ (−3)) or N((

2

3
+

1

2
+

2

3
) +

x

y
+ (−3)). By theorem 5.4, there is

no
x

y
satisfying the above.

Similarly, if m = 3 and hm = 0, then by theorem 5.18, U = (
1

2
+

2

3
+

2

3
) ◦

(−3, h2, 0),(
2

3
+

2

3
+

1

2
) ◦ (−3, h2, 0) or (

2

3
+

1

2
+

2

3
) ◦ (−3, h2, 0). Moreover, N(

1

2
+

3

5
+

2

3
+ (−3)) = N((

1

2
+

2

3
+

2

3
) +

x

h2x + y
+ (−3)), N((

2

3
+

2

3
+

1

2
) +

x

h2x + y
+ (−3))

or N((
2

3
+

1

2
+

2

3
) +

x

h2x + y
+ (−3)) which are impossible by theorem 5.4.

Thus m > 3 or m = 3 and hm 6= 0.

(1) By theorem 5.18 (3a), U = (
1

2
+

2

3
) ◦ (h1, · · · , hm) or (

2

3
+

1

2
) ◦ (h1, · · · , hm)where

E[h1, · · · , hm]

E[h2, · · · , hm]
=

2

3
+ (−3) =

−7

3
= −2 +

1

−2 + 1
−1

. This implies that m =

3 and (h1, h2, h3) = (−2,−2,−1). Moreover, N(
1

2
+

3

5
+

2

3
+ (−3)) = N(

1

2
+

2

3
+

xE[−2,−2] + yE[−2,−2,−1]

xE[−2] + yE[−2,−1]
) = N(

1

2
+

2

3
+

5x − 7y

−2x + 3y
). By theorem 5.4,

5x − 7y

−2x + 3y
=

3

5
− 3 =

−12

5
which implies

x

y
= −1. Thus U = (

1

2
+

2

3
) ◦ (−2,−2,−1),

(
2

3
+

1

2
) ◦ (−2,−2,−1) and

x

y
= −1.

(2) By theorem 5.18 (3b), U = (
−2

1
∗ −3

2
) ◦ (−h1, · · · ,−hm, 0) or (

−3

2
∗ −2

1
) ◦

(−h1, · · · ,−hm, 0) where
E[h1, · · · , hm−1]

E[h2, · · · , hm−1]
=

2

3
+(−3) =

−7

3
= −2+

1

−3
= (−3,−2).

Thus (hm−1, · · · , h1) = (−3,−2). This implies that m = 3 and (h1, h2, h3) =

(−2,−3, h3) for h3 ≤ 0. Moreover, N(
1

2
+

3

5
+

2

3
+ (−3)) = N(

1

2
+

2

3

+
yE[h1, h2] − xE[h1, h2, h3]

yE[h2] − xE[h2, h3]
) = N(

1

2
+

2

3
+

7y − x(7h3 − 2)

−3y − x(1 − 3h3)
). By theorem 5.4,

7y − x(7h3 − 2)

−3y − x(1 − 3h3)
=

3

5
−3 =

−12

5
. Then

x

y
=

1

h3 − 2
= (1, h3−3, 0) or (−1, h3−1, 0).
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Hence, U = (
−2

1
∗ −3

2
) ◦ (2, 3,−h3, 0), (

−3

2
∗ −2

1
) ◦ (2, 3,−h3, 0) and

x

y
=

1

h3 − 2
=

(1, h3 − 3, 0) or (−1, h3 − 1, 0) for h3 ≤ 0.

Example 5.2. Solve

N(U +
0

1
) = N(

7

5
)

and N(U +
x

y
) = N(

1

2
+

3

5
+

2

3
− 3).

By theorem 5.19, U = (
c1

d1

+
7p − 5c1

5d1 − 7q
) ◦ (h, 0), (

7p − 5c1

5d1 − 7q
+

c1

d1

) ◦ (h, 0) and N(
c1

d1

+

7p − 5c1

5d1 − 7q
+

x

hx + y
) = N(

1

2
+

3

5
+

2

3
−3) for integers c1, d1, p and q such that d1p−qc1 = 1

and 0 < c1 < d1. By theorem 5.4,
c1

d1
=

1

2
,
3

5
or

2

3
.

(1) If
c1

d1

=
1

2
, then

7p − 5c1

5d1 − 7q
=

7p − 5

10 − 7q
=

2

3
+ k or

3

5
+ k for some integer k where

2p − q = 1. Solving 10 − 7q = ±3 and 2p − q = 1 gives p = q = 1 and k = 0.

However, there is no integers p, q such that
7p − 5

10 − 7q
=

3 + 5k

5
and 2p − q = 1. Thus

U = (
1

2
+

2

3
) ◦ (h, 0) and (

2

3
+

1

2
) ◦ (h, 0) and

x

hx + y
=

3

5
− 3 − k =

−12

5
. Thus

x

y
=

−12

5 + 12h
.

(2) If
c1

d1

=
3

5
, then

7p − 5c1

5d1 − 7q
=

7p − 15

25 − 7q
=

2

3
+ k or

1

2
+ k for some integer k where

5p − 3q = 1. There is no such p and q.

(3) If
c1

d1
=

2

3
, then

7p − 5c1

5d1 − 7q
=

7p − 10

15 − 7q
=

1

2
+ k or

3

5
+ k for some integer k where

3p − 2q = 1. There is no such p and q.

Hence, the solutions for this system of tangle equations are U = (
1

2
+

2

3
) ◦ (h, 0) and

(
2

3
+

1

2
) ◦ (h, 0) and

x

y
=

−12

5 + 12h
= (−2,−2,−2,−h, 0) for any integer h.
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5.4 Double branch covers

In this section, we discuss the correspondence between rational tangle replace-

ment in tangle equations and surgery on a knot in the double branch cover of a

substrate link. We assume a substrate link is either a Montesinos link or a rational

link. The double branch cover of a rational link or a Montesinos link can be repre-

sented as a Seifert fiber space. Using this, theorem 5.23 shows that U is a generalized

M-tangle iff the 0/1 tangle lifts to a fiber in a SFS with base surface S2 for the

double branch cover of M1 in the system of tangle equations N(U +
0

1
) = M1 and

N(U +
x

y
) = M2 where M1 and M2 are either Montesinos links or rational links.

Definition 5.8. [43] Let X and X̃ be path connected topological spaces. Then (X̃, f)

is called a covering space of X if f : X̃ → X is a surjective continuous map with

every x ∈ X having an open neighborhood U such that each component C of f−(U)

is open in X̃ and is homeomorphically mapped onto U by f .

Definition 5.9. [43] Let M and N be compact n-dimensional manifolds. Let A ⊂ M

and B ⊂ N be proper submanifolds with codimension 2. Then a continuous map

f : M → N is said to be a branched covering with branch sets A (upstairs) and B

(downstairs) if

1. components of f−1(Ui) for open sets Ui of N are a basis for the topology of M ,

2. f(A) = B and (M − A, f) is a covering space of N − B.

Each branch point a ∈ A has a branching index k, meaning that f is k-to-one

near a, not necessarily at a, and this number is constant on components of A. A
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standard example of a branched covering is f : D2 → D2 defined by f(z) = z2 where

D2 = {z ∈ C|‖z‖ = 1}. The branch point is the origin with index 2. For every

z ∈ C−0, f−1(z) consists of two points. We say that f is a double branched covering

branched at the origin.

All 3-manifolds and 2-manifolds which will be used in the rest of this chapter

are assumed to be compact, connected and oriented. Dehn surgery on a knot in

a 3-manifold M is a procedure which yields a new manifold by removing a regular

neighborhood of a knot from M and gluing it back in a different way.

Definition 5.10. [43, 26] Let K be a knot in a manifold M , N(K) ∼= K × D2

be a regular neighborhood of K, and EK = M − intN(K) be the exterior of K.

Choose a meridian µ and a longitude λ on ∂N(K) such that i(µ, λ) = ±1. Then a

slope on ∂N(K) is an isotopy class of unoriented essential simple closed curves on

∂N(K), p · µ + q · λ for some coprime integers p and q. α-Dehn surgery on a knot

K is K(α) = K(
p

q
) = EK ∪h V where h : ∂EK → ∂V is the orientation preserving

homeomorphism such that h(α) = h(p · µ + q · λ) = the meridian of the solid torus

V . A simple example is K(1/0) ∼= S3 for all K in S3.

As an extended notion of Dehn surgery, Dehn filling is a procedure which

produces a new manifold from a manifold with a torus boundary component by filling

the torus boundary with a solid torus along their boundaries as above. Thus Dehn

surgery on a knot K corresponds to Dehn filling on EK .

The double branch cover of a tangle T is denoted by T̃ . If T is a rational

tangle, then T̃ is a solid torus [36]. See Figure 5.9.
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Figure 5.9: Double branch cover of a rational tangle.

Let us explain the relationship between rational tangle replacement and surgery

on a knot in the double branch cover of a rational tangle [26]. Let V be a solid

torus and T 2 = ∂V . Let f : T 2 → S2 be the double covering branched over

{NW, NE, SW, SE} on S2. Let hn : B3 → B3 be a homeomorphism which sends

0-tangle to n-tangle and vn : B3 → B3 be a homeomorphism which sends ∞-tangle to

1/n-tangle. Let h̃n and ṽn : T 2 → T 2 be lifts of hn|S2 and vn|S2, respectively. That

is, f ◦ h̃n = (hn|S2) ◦ f and f ◦ ṽn = (vn|S2) ◦ f . Then ṽn(m) = 1 ·m + n · l where m

and l are a meridian and a longitude of ∂(∞̃). Figure 5.10 shows an example when

n = 2. Similarly, h̃n(l) = n · m + 1 · l. A meridian can be chosen uniquely up to

ambient isotopy so that it bounds a disk in V and is essential in T 2. A longitude

can be chosen so that it intersects with a meridian at a single point. There are in-

finitely many ambient isotopy classes of longitudes in T 2 [43]. If M and L are another

choice of a meridian and a longitude in ∂(∞̃), then ±m ∼ M and ±l ∼ L + kM for

some integer k. Thus ṽn(M) = 1 · M + n · (L + kM) = (1 + nk) · M + n · L and

h̃n(L) = n · M + 1 · (L + kM) = (n + k) · M + 1 · L.

The homeomorphism ṽn is represented as the matrix ( 1 0
n 1 ) and h̃n is repre-

sented as the matrix ( 1 n
0 1 ). Every rational tangle can be written as a vector of even
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length [19]. Let p/q = (x1, · · · , x2k) be a rational tangle. Then the corresponding

boundary homeomorphism g : ∂(p̃/q) → ∂(∞̃) is represented as a matrix as follows

[19]:




1 x2k

0 1







1 0

x2k−1 1


 · · ·




1 x2

0 1







1 0

x1 1




=




E[x1, · · · , xn] E[x2, · · · , xn]

E[x1, · · · , xn−1] E[x2, · · · , xn−1]


 =




p p′

q q′


 where pq′ − qp′ = 1.

Thus for a meridian M and a longitude L of ∂(∞̃), replacement of the ∞ tangle

with p/q tangle corresponds to a homeomorphism sending M to p ·M +q ·(L+kM) =

(p + kq) ·M + q ·L for some integer k. That is, replacement of the ∞ tangle with p/q

tangle corresponds to (p + kq)/q surgery on a knot in the double branch cover of the

∞ tangle.

m

l m+2l

h2

h2

NE

SW SE

f f

Figure 5.10: The corresponding homeomorphisms (upstairs) to vertical twists (down-
stairs).
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Definition 5.11. [47] A Seifert fiber space (SFS) is a 3-manifold N which can be

decomposed as the disjoint union of circles (fibers). Each fiber has a fibered solid

torus neighborhood which is obtained from D2 × I by rotating the top D2 × {1} by

r = 2πa/b with the bottom D2 × {0} fixed and identifying the top and the bottom

where b ≥ 1, (a, b) = 1. The central fiber is called an exceptional fiber of multiplicity

b if b > 1. Otherwise, it is called an ordinary fiber. Each fiber of the fibered solid

torus neighborhood except for the central fiber is an ordinary fiber and consists of

the union of b segments x × I, r(x) × I, · · · , rb−1(x) × I for x ∈ D2\(0, 0).

Figure 5.11 shows an example of a fibered solid torus neighborhood when a = 1

and b = 3. Three blue segments are connected to become an ordinary fiber and the

red segment becomes an exceptional fiber of multiplicity 3. The quotient space of a

SFS N obtained by identifying each fiber to a point is called the base (orbit) surface

B of N .

2π

3
-twist

Figure 5.11: Fibered solid torus neighborhood.
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Let N be a SFS with base surface B and n exceptional fibers of multiplicities

q1, · · · , qn. Let Vi be a regular neighborhood of the ith exceptional fiber. Let N0 =

N − int
∐n

i=1 Vi
∼= B0 × S1 where B0 = B − n open disks. Let Qi = B0 ∩ ∂Vi and

Hi = {1}×S1 be a basis for H1(∂Vi). Qi is called a crossing curve and Hi is a fiber in

∂N0. Then N can be constructed as N = N0∪n
i=1 Wi where Wi’s are solid tori and the

meridian Mi of ∂Wi is sent to qiQi + piHi in ∂Vi ⊂ ∂N0 for some pi which is coprime

with qi for 1 ≤ i ≤ n. Then we write N = B(
p1

q1

, · · · ,
pn

qn

) where qi ≥ 0. It is called a

generalized SFS if qi = 0 for some i. Choose a longitude Li of ∂Wi so that {Mi, Li}

is a basis for H1(∂Wi). Then Li = q′iQi + p′iHi for q′i, p
′
i such that det

( qi pi

q′i p′i

)
= 1. If

we solve for Qi and Hi in terms of Mi and Li, then we get Qi = p′iMi − piLi and

Hi = −q′iMi +qiLi. Since Mi is homologically trivial in Wi, Qi = −piLi and Hi = qiLi

in H1(Wi). That is −pi is the number of times Qi wraps around Wi and qi is the

number of times Hi wraps around Wi [30]. That is, Hi has multiplicity qi.

Theorem 5.21. [30] Two Seifert fiber spaces B(
p1

q1
, · · · ,

pn

qn

) and B′(
p′1
q′1

, · · · ,
p′m
q′m

) are

fiber preserving homeomorphic or equivalent iff B = B′ and B′(
p′1
q′1

, · · · ,
p′m
q′m

) can be

obtained from B(
p1

q1
, · · · ,

pn

qn

) by the following collection of operations:

1. Add or delete
0

1
,

2. Replace
±1

0
by

∓1

0
,

3. Replace
pi

qi

by
pi

qi

+ Ki where
∑

Ki = 0.

For example, B(
1

2
,
−3

2
) = B(

1

2
,
−3

2
,

0

1
) = B(

−1

2
,
−1

2
,

0

1
).
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Now, let us explore double branch covers of rational tangles (links) and Mon-

tesinos tangles (links) as Seifert fiber spaces. The double branch cover of a rational

tangle as a SFS has a base surface D2 and 0 or 1 exceptional fiber. There are many

choices of fibrations. Here, we choose a longitude of the solid torus to be a fiber

so that 0̃ is D2(0/1). Similarly, a meridian of the solid torus can be chosen to be

a fiber so that ∞̃ is D2(1/0). In general, D2(p/q) can be chosen to be a SFS for

p̃/q. The double branch cover of the sum of two rational tangles
p1

q1

and
p2

q2

is the

SFS D2(
p1

q1
,
p2

q2
). Considering

p1

q1
as

p1

q1
+

0

1
, replacement of

0

1
with

p2

q2
corresponds to

drilling out a small solid torus from the double branch cover D2(
p1

q1
) of

p1

q1
and gluing

a solid torus by identifying q2Q + p2H to the meridian of the gluing solid torus as-

suming a longitude of ∂(D2(
p1

q1

) − the small sold torus removed) is the fiber H . This

results in the SFS D2(
p1

q1
,
p2

q2
). See Figure 5.12. Generally, the double branch cover

of
p1

q1
+ · · · +

pn

qn

is the SFS D2(
p1

q1
, · · · ,

pn

qn

).

D2(
p1

q1

) −→ D2(
p1

q1

,
p2

q2

)

p1/q1 p2/q2p1/q1

Figure 5.12: Seifert fiber space of sum of two tangles.
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The numerator closure of a tangle
p

q
, N(

p

q
) can be considered as the union of

the tangle
p

q
and the 0-tangle glued along their boundaries by identity map id∂ on the

boundary. That is, N(
p

q
) =

p

q
∪id∂

0

1
. Thus the double branch cover of N(

p

q
), Ñ(

p

q
)

is
p̃

q
∪id∂

0̃

1
= D2(

p

q
) ∪id∂

D2(
0

1
) which is the SFS with base surface D2 ∪id∂

D2 with

one exceptional fiber. Thus a Seifert fibration of the double branch cover of N(
p

q
)

is S2(
p

q
). Generally, the numerator closure N(

p1

q1
+ · · · +

pn

qn

) has the double branch

cover S2(
p1

q1
, · · · ,

pn

qn

).

SFS is not unique for a lens space which is the double branch cover of a rational

link [30].

Theorem 5.22. [30] The double branch cover of a Montesinos link has a unique SFS

up to fiber preserving homeomorphism except for the following two cases:

1. RP 2(
β

α
) ∼= S2(

1

2
,
−1

2
,

α

−β
) where RP 2 is the real projective plane.

2. RP 2♯RP 2(
0

1
) ∼= S2(

1

2
,

1

2
,
−1

2
,
−1

2
).

Note that two SFS in 1 and 2 are homeomorphic up to orientation preserving, but

not fiber preserving, homeomorphism.

Theorem 5.23. Let N(U +
0

1
) = N(

a1

b1
+ · · · +

as

bs

+ e1) and N(U +
x

y
) = N(

z1

v1
+

· · ·+ zt

vt

+ e2). Then U is a generalized M-tangle iff there exists a generalized SFS for

the double branch cover of the substrate link such that the generalized SFS has base

surface S2 and the 0/1 tangle lifts to a neighborhood of a fiber and Ũ is a SFS.

Proof. N(U +
0

1
) = U ∪id∂

0

1
where id∂ : ∂(U) → ∂(

0

1
) is the identity map.
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(⇒) If U is a generalized M-tangle, then Ũ can be chosen to be a SFS with

base surface D2. Then the fibration of Ũ can extend to
0̃

1
to get a generalized SFS

for the double branch cover of the substrate link. Thus
0̃

1
is a SFS with base surface

D2 and 0/1 lifts to a neighborhood of a fiber in the generalized SFS with base surface

S2.

(⇐) Suppose that 0/1 lifts to a neighborhood of a fiber in a generalized SFS

with base surface S2 for the double branch cover of the substrate knot. Since Ũ ∪fid∂

0̃

1

where ĩd∂ is the lift of id∂ , is a generalized SFS with base surface S2 and
0̃

1
is a

neighborhood of a fiber, Ũ = (Ũ ∪fid∂

0̃

1
) − 0̃

1
is a SFS with base surface D2. By

theorem 8 in [19], U is a generalized M-tangle.
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CHAPTER 6
CONCLUSION AND FUTURE DIRECTION

Completing a knot distance table for knots up to 10 crossings is a long-term

goal. Knot distances can be calculated using mathematical theories and computer

simulations. Knot distances are related to the study of topoisomerase action and the

study of knot theory such as conjectures on unknotting numbers. Thus calculation

of knot distances is interesting both biologically and mathematically. Knot distances

were calculated using some mathematical theories by Isabel K. Darcy [10, 18]. In my

thesis, undetermined knot distances in the old knot distance table by Isabel K. Darcy

are improved based on the Jones polynomial.

We generalized A. Stoimenow’s theory about the unknotting number in [48]

to the signed knot distance cases in theorems 4.1 and 4.2. Theorems 4.1 and 4.2 show

that if a signed knot distance, d++(K1, K2) or d−−(K1, K2), between two knots K1

and K2 is equal to one, then there exists a knot K ′ obtained by horizontal smoothing

of the crossing of K1 where the crossing change occurs such that the Jones polynomial

of K ′ is obtained using the Jones polynomials of K1 and K2. If we consider L′ in

theorems 4.1 and 4.2 obtained via the vertical smoothing of the crossing of K1 where

the crossing change occurs, then L′ is a two component link. Thus we expect to

discover more new lower bounds of signed knot distances if the Jones polynomial of

links and its properties are involved.

In my thesis, we improve knot distances by combining two signed knot dis-

tances, d++(K1, K2) and d−−(K1, K2). That is, if d++(K1, K2) ≥ 2 and d−−(K1, K2) ≥
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2, then d(K1, K2) ≥ 2. The data obtained from our algorithm calculating knot dis-

tances can be directly used to improve signed knot distances. We also addressed

the possibility that d++ and d−− can be improved to 2 by separately using different

theories. For this purpose, the signature of knots is employed in section 4.4 to im-

prove signed knot distances which were not improved based on the Jones polynomial.

Even though we did not detect any improvement by checking the signature condi-

tions in lemmas 4.3 and 4.3 after utilizing the Jones polynomial, this idea gives us

a future direction to improve knot distances based on signed knot distances which

can be more efficient than improving knot distances themselves. In addition, theories

about unknotting numbers can be generalized to calculate knot distances since the

unknotting number is a special case of the knot distance. There are many theories

which determine some unknotting numbers [27, 40, 39].

There are also other types of distances between knots. For example, a (0, 2)-

move in section 5.2 corresponds to a crossing change and a (±1,∞)-move corresponds

to smoothing a crossing. Since these moves are related to the study of various enzyme

mechanisms, calculating other types of distances is also interesting biologically as well

as mathematically. Theorems 4.1 and 4.2 suggest that the Jones polynomial can be

used to improve lower bounds of smoothing distances which are related to smoothing

a crossing.

We are also interested in improving upper bounds as well as lower bounds of

knot distances. Shorter pathways between two knots via crossing changes may be

found if at least one of them is a Montesinos link by using theorems 5.18, 5.19 and
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5.20. In section 5.3, systems of tangle equations N(U +
0

1
) = K1 and N(U +

x

y
) = K2

are solved for U where
x

y
is a rational tangle, U is a generalized Montesinos tangle

and K1 and K2 are either Montesinos links or rational links. We assume that at least

one of K1 and K2 is a Montesinos link. Thus solving these system of tangle equations

involving Montesinos links when
x

y
is the 2-tangle can improve upper bounds of the

crossing change knot distance. Solving tangle equations involving Montesinos links

can also be utilized in studying other types of knot distances and thus various enzyme

mechanisms.

We also plan to implement solutions of tangle equations in section 5.3 to

’Topoice’ which is a software modeling enzyme actions in ’KnotPlot’. Tangle equa-

tions when K1 and K2 are both rational knots were solved by Isabel K. Darcy and

the solutions were implemented in ’Topoice’. By implementing solutions of tangle

equations involving Montesinos links, we can solve more tangle equations modeling

enzyme actions.



83

APPENDIX A
REAME FILE

This is the README file of programs for 1)generating the Jones polynomials

of rational knots based on the program for calculating HOMFLYPT polynomial by

Bruce Ewing and Ken Millett, 2)checking the properties of the Jones polynomial in

section 4.2 to determine whether a given polynomial could be the Jones polynomial

of a knot and 3)generating a knot distance table. Two programs written by me are

included in appendix B: EM.c and Jones 2.m. The other programs for generating

the Jones polynomials were modified from Bruce Ewing and Ken Millett’s program

and the programs for generating a knot distance table were modified from Isabel K.

Darcy’s programs. They are not included in my thesis. All programs run on Linux.

A.1 Generating the Jones polynomial

The following programs are used to generate the Jones polynomial of ratio-

nal knots up to 13 crossings: EM.c, lmpoly02.c, and convsym Jones2.c. EM.c is a

C++ code which expands a rational number into a vector whose entries are all even

integers based on a modified division algorithm and creates EM codes for rational

knots. EM.c is included in appendix B. The program lmpoly02.c generates a matrix

form of HOMFLYPT polynomial using an EM code. This matrix form of HOM-

FLYPT polynomial is converted to the Jones polynomial by convsym Jones2.c. The

program lmpoly02.c is B. Ewing and K. Millett’s code and their program ’convsym.c’

is modified to ’convsym Jones2.c’ by substituting two variables l and m with it and
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i(t−
1

2 − t
1

2 ), respectively.

A.1.1 EM.c

EM.c has ’main’ followed by two subroutines, ’FractionExpand 2’ and ’Ew-

ingMillett’. In main, the integers α and β are initialized for rational knots up to 13

crossings by knots 1.c where S(α, β) represents a rational knot. They are used to

print out the knot name corresponding to S(α, β) into a file using KnotOrder.c and

KnotOrder2.c and obtain the corresponding continued fraction expansion whose en-

tries are all even integers using EM.c. ’FractionExpand 2’ expands a rational number

into a vector of all even integers and ’EwingMillett’ generates an EM code based on

a vector obtained by ’FractionExpand 2.’

To compile EM.c, type ’g++ -c EM.c knots 1.c KnotOrder.c KnotOrder2.c’

and then type ’g++ -o em EM.o knots 1.o KnotOrder.o KnotOrder2.o’. This pro-

duces an executable file ’em’. To run it, type ’./em’. This creates an output file

’EMTable’ which has the list of EM codes for rational knots up to 13 crossings. The

programs knots 1.c, KnotOrder.c and KnotOrder2.c are based on Isabel K. Darcy’s

knot distance programs. The programs knots 1.c and KnotOrder2.c were modified to

re-index knot orders to include nonrational prime 9 crossing knots.

A.1.2 lmpoly02.c

The program lmpoly02.c is Bruce Ewing and Ken Millett’s program for gen-

erating a matrix form of HOMFLYPT polynomial using EM code. This readme file

is written based on their readme file. To compile, type ’gcc lmpoly02.c -o lmpoly02’
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where lmpoly02 is an executable file. To run it, type ’./lmpoly02 EMTable’ where

EMTable is a file containing the list of EM codes. The output is written in ’lm-

knot.out’. This file is overwritten whenever it runs with a file containing EM codes.

In this file, a HOMFLYPT polynomial is represented as a two dimensional matrix of

coefficients for the powers of the two variables l and m. An example below is the

matrix form of the HOMFLYPT polynomial of the trefoil knot:

trefoil

[[0] 0 − 2 0 − 1]

[0]

[0] 0 1

The powers of l are written horizontally with a pair of square brackets surrounding

the zero power and with negative powers written to the left of the zero power. The

powers of m are written vertically with a pair of square brackets surrounding the row

containing the zero power of m and the most negative power is written at the top.

The above matrix can be converted into the HOMFLYPT polynomial:

(0 · l0 + 0 · l1 − 2 · l2 + 0 · l3 − 1 · l4) · m0 + (0 · l0)m1 + (0 · l0 + 0 · l1 + 1 · l2)m2

= −2l2 − l4 + l2m2.

A.1.3 convsym Jones2.c

The program convsym Jones2.c was modified from Bruce Ewing and Ken Mil-

lett’s program for converting a matrix form of HOMFLYPT polynomial to a HOM-
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FLYPT polynomial by substituting two variables l and m with it and i(t−
1

2 − t
1

2 ), re-

spectively. To compile, type ’gcc convsym Jones2.c -o convsym J2’ where convsym J2

is an executable file. To run it, type ’./convsym J2 lmknot.out JonesP’ where lm-

knot.out is where matrix HOMFLYPT polynomials are stored and JonesP is the file

where the Jones polynomials are written. The Jones polynomials in the output file

are not simplified. They can be simplified using other programs such as Matlab or

Mathematica.

A.2 Checking the properties of the Jones polynomial

Jones 2.m is code written in MATLAB to check the properties of the Jones

polynomial in section 4.2 for the polynomials in theorems 4.1 and 4.2 which are

calculated based on pairs of knots whose distance have lower bound one. It also

checks the signature conditions in lemmas 4.3 and 4.4. The list of pairs of knots with

lower bound one (pair.txt), the list of the Jones polynomial of rational knots up to

13 crossings and nonrational prime 8 and 9 crossing knots (JonePoly13 new.txt) and

the list of signatures for rational knots up to 13 crossings and nonrational 8 crossing

knots (Signature.txt) are imported.

A.3 Generating a knot distance table

The programs for calculating and tabulating knot distances by Isabel K. Darcy

were revised to generate a new knot distance table. The knot distance program

’knotdistance.tar.gz’ is available upon request. It includes the following files:� Makefile, Change Sign.c, NewSign2.c, knots 1.c, knot9.c, KnotOrder.c, Kno-
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tOrder2.c, DistanceoneNon4plats.c, Mathematics2.c, Distanceone.c, Theorem1a.c,

Mirror.c, ConnectedSum.c,Lowerbounds.c, DistTriangle2.c, SignTriangle2.c, Tablf.c,

metric4.c

The knot distance program is compiled by typing ’make -f Makefile’. It creates

an executable file ’general2’. New data obtained by the Jones polynomial and infor-

mation such as alpha and beta for nonrational prime 9 crossing knots are included to

generate a new knot distance table. Alpha for a nonrational prime knot is assigned

to be -3 and beta is the determinant of the knot. We also re-indexed knot orders to

add nonrational prime 9 crossing knots. New knot distances are colored red in the

new knot distance table.

Change Sign.c and NewSign2.c are used to implement the new data obtained

by the Jones polynomial. The program knot9.c assigns information such as alpha an

beta for nonrational prime 9 crossing knots. In programs knot 1.c, KnotOrder2.c and

metric4.c, knot numbering was re-indexed to include nonrational prime 9 crossing

knots into a knot distance table.
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APPENDIX B
PROGRAM FILES

B.1 EM.c

/ * This program generates EM codes for rational knots.
It calls the programs knots 1.c, KnotOrder.c and KnotOrder2.c.
The program knots 1.c initializes knot information such as
alpha and beta. KnotOrder.c and KnotOrder2.c assign Rolfse n
knot names based on alpha and beta for rational knots and
based on the knot numbering for nonrational prime 8 and
9 crossing knots, respectively. * /

/ * This program has two subroutines in addition to 'main':
'FractionExpand 2' expands a rational number into a vector of
all even integers and 'EwingMillett' generates an EM code
based on a vector obtained by 'FractionExpand 2.' * /

#include <stdlib.h >

#include <stdio.h >

#include <assert.h >

#include <math.h >

#include <errno.h >

#include "var.h"
#include "knot.h" / * used for assigning alpha and beta * /
#include "KnotOrder.h" / * used for assigning knot names * /

int FractionExpand 2(int, int, int []);

void EwingMillett(int [], int, FILE * );

int main()
{

int alpha1,beta1,alpha2,beta2,alpha3,beta3,k1,k2,k3, i;
int c1[100]= {0};
int c3[100]= {0};
int c4[100]= {0};
int s1, s2, s3;

int * a;
int * b;
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int * c;
int * c2;
int * g;

a = (int * ) calloc (MAX, sizeof (int));
b = (int * ) calloc (MAX, sizeof (int));
c = (int * ) calloc (MAX, sizeof (int));
c2 = (int * ) calloc (MAX, sizeof (int));
g = (int * ) calloc (MAX, sizeof (int));

/ * initialize the knot information in knots 1.c * /
init globals 1();

FILE * tabl;
tabl = fopen("EMTable","w");

for(i=0;i <MAX;i++)
{

if(alpha[i] >0)
{

/ * assign the knot name * /
fprintf(tabl,"#%d ( * ",i);
KnotOrder(tabl,beta[i], alpha[i],i);
KnotOrder2(tabl,i);
fprintf(tabl," * )");
fprintf(tabl," \n");

/ * print out the EM code into a file * /
alpha1=beta[i];
beta1=alpha[i];
k1= FractionExpand 2(alpha1,beta1,c1);
EwingMillett(c1,k1,tabl);
fprintf(tabl," \n");

}
}
fprintf(tabl,"%end \n");
fclose(tabl);
return 0;

} / * end of main * /

/ * FractionExpand: Given alpha and beta, finds the continued
fraction expansion < c[0], ..., c[k −1] > = s(alpha,beta)
where all c[i] are nonzero even integers and also returns
k = length * /

int FractionExpand 2( int alpha, int beta, int c[] )
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{
int k;
int r[20];

if(beta%2==1 | | beta%2== −1)
{

if(alpha%2==1 | | alpha%2== −1)
beta = beta+alpha;

}
if ( beta < 0 && alpha < 0 )
{

beta = −beta;
alpha = − alpha;

}
k = 1;
if ( alpha == 0 )

c[0] = 0;
else if ( beta == 0 )

{
c[0] = 2;
c[1] = 0;

k = 2;
}

else
{

c[0] = alpha/beta;
if(c[0]%2==1)
{

c[0]=c[0]+1;
r[1]=(alpha%beta) −beta;
r[0]=beta;

}
else if(c[0]%2== −1)
{

c[0]=c[0] −1;
r[1]=(alpha%beta)+beta;
r[0]=beta;

}
else
{

r[1] = alpha%beta;
r[0] = beta;

}
while ( r[k] != 0 )

{
c[k] = r[k −1]/r[k];
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if(c[k]%2==1)
{

c[k]=c[k]+1;
r[k+1]=(r[k −1]%r[k]) −r[k];

}
else if(c[k]%2== −1)
{

c[k]=c[k] −1;
r[k+1]=(r[k −1]%r[k])+r[k];

}
else
{

r[k+1] = r[k −1]%r[k];
}

k = k + 1;
}

}

/ * remove all zeros in the continued fraction <c[0],..,c[k −1] >* /

int i,j;
int d[20];

for(i=1;i <k−1;i++)
{

if(c[i]==0)
{

k=k−2;
d[i −1]=c[i −1]+c[i+1];
for(j=i;j <k;j++)
{
d[j]=c[j+2];

}
for(j=i −1;j <k;j++)
{
c[j]=d[j];

}
}

}

if(c[0]==0)
{

if(k >2)
{
k=k−2;
for(j=0;j <k;j++)



92

{
c[j]=c[j+2];

}
}

else if(k==2) / * unknot * /
{

c[1]=2;
}

}

if(c[k −1]==0)
{

if(k >2)
{
k=k−2;

}
else if(k==2) / * unknot * /
{

c[0]=2;
}

}
return (int) k;
/ * length = k * /
}

/ * print out the Ewing Millett code for a rational knot with
continued fraction <c[0],...,c[k −1] > of all even integers * /

void EwingMillett(int c[], int k, FILE * f)
{

int i,j;
int l=0;
int ca[k]; / * ca[k]== |c[k] |* /

for(i=0;i <k;i++)
{

if(c[i] ≥0)
{
ca[i]=c[i];
}
else if(c[i] ≤0)
{
ca[i]= −c[i];
}

}
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for(i=0;i <k;i++)
l += ca[i]; / * l = crossing # * /

int a[5 * l];
char b[5 * l+1];
b[5 * l+1]=' \0';

int * ap;
char * bp;
ap=a;
bp=b;

/ * assign numbers and signs to each crossing
in <c[0],c[1],...,c[k −2],c[k −1] >* /

for(i=0;i <l;i++)
{

* ap=i+1;
ap += 5;

}
ap −= 5* l;

for(j=0;j <k;j++)
{

for(i=0;i <ca[j];i++)
{
if(c[j] >0)
{

if(j%2==0)

* bp='+';
else

* bp=' −';
}
else if(c[j] <0)
{

if(j%2==0)

* bp=' −';
else

* bp='+';
}
else
{

printf("mistake \n");
}
bp += 5;
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}
}
bp −= 5* l;

/ * 1) −keep track of codes from C[0] to c[k −1]
in <c[0],c[1],...,c[k −2],c[k −1] >* /

int d=1;
if(c[0] >0)
{

ap += 4;
bp += 4;

* ap = ++d;

* bp = 'c';
ap += 2;
bp +=2;
while(ca[0] >d)
{

* ap = ++d;

* bp = 'b';
ap += 8;
bp += 8;

* ap = ++d;

* bp = 'c';
ap += 2;
bp +=2;

}
}
else if(c[0] <0)
{

ap += 1;
bp += 1;

* ap = ++d;

* bp = 'd';
ap += 6;
bp += 6;
while(ca[0] >d)
{

* ap = ++d;

* bp = 'c';
ap += 4;
bp += 4;

* ap = ++d;

* bp = 'd';
ap += 6;
bp += 6;
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}
}

int s=ca[0];
for(i=1;i <k;i++)
{

s += ca[i];
/ * case 1 * /
if(c[i] >0 && i%2==1)
{

* ap = ++d;

* bp = 'd';
if(c[i −1] >0)
{
ap +=6;
bp +=6;

}
else if(c[i −1] <0)
{
ap +=5;
bp +=5;

}
* ap = ++d;

* bp = 'c';
ap += 4;
bp += 4;

while(s >d)
{
* ap = ++d;

* bp ='d';
ap +=6;
bp +=6;

* ap = ++d;

* bp ='c';
ap +=4;
bp +=4;

}
}
/ * case 2 * /
else if(c[i] <0 && i%2==1)
{

* ap = ++d;

* bp = 'c';
if(c[i −1] >0)
{

ap +=5;
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bp +=5;
}
else if(c[i −1] <0)
{

ap +=4;
bp +=4;

}
* ap = ++d;

* bp = 'b';
ap += 8;
bp += 8;

while(s >d)
{
* ap = ++d;

* bp ='c';
ap +=2;
bp +=2;

* ap = ++d;

* bp ='b';
ap +=8;
bp +=8;

}
}
/ * case 3 * /
else if(c[i] >0 && i%2==0)
{

* ap = ++d;

* bp = 'b';
if(c[i −1] >0)
{

ap +=8;
bp +=8;

}
else if(c[i −1] <0)
{
ap +=5;
bp +=5;

}
* ap = ++d;

* bp = 'c';
ap += 2;
bp += 2;

while(s >d)
{
* ap = ++d;

* bp ='b';
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ap +=8;
bp +=8;

* ap = ++d;

* bp ='c';
ap +=2;
bp +=2;

}
}
/ * case 4 * /
else if(c[i] <0 && i%2==0)
{

* ap = ++d;

* bp = 'c';
if(c[i −1] >0)
{
ap +=5;
bp +=5;

}
else if(c[i −1] <0)
{
ap +=2;
bp +=2;

}
* ap = ++d;

* bp = 'd';
ap += 6;
bp += 6;

while(s >d)
{
* ap = ++d;

* bp ='c';
ap +=4;
bp +=4;

* ap = ++d;

* bp ='d';
ap +=6;
bp +=6;

}
}

} / * for * /

/ * 2) keep track of c[k −1] to c[k −2]
in <c[0],c[1],...,c[k −2],c[k −1] >* /
s = l −ca[k −1] −ca[k −2]+1;
if(c[k −2] >0)
{
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d −= ca[k −1];

* ap = d;

* bp = 'b';
if(c[k −1] >0)
{

ap −= 2+5* (ca[k −1] −1);
bp −= 2+5* (ca[k −1] −1);

}
else if(c[k −1] <0)
{

ap −= 5* ca[k −1];
bp −= 5* ca[k −1];

}
* ap = −−d;

* bp = 'c';
ap −= 8;
bp −= 8;

while(s <d)
{

* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

* ap = −−d;

* bp = 'c';
ap −= 8;
bp −= 8;

}
} / * if * /

else if(c[k −2] <0)
{

d −= ca[k −1];

* ap = d;

* bp = 'c';
if(c[k −1] >0)
{

ap −= 5* ca[k −1];
bp −= 5* ca[k −1];

}
else if(c[k −1] <0)
{

ap −= 8+5* (ca[k −1] −1);
bp −= 8+5* (ca[k −1] −1);

}
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* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

while(s <d)
{

* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

}
}

/ * 3) c[k −2] −−>c[k −4] −−>... −−>c[2] −−>c[0]
in <c[0],c[1],...,c[k −2],c[k −1] >* /
i = k −2;
s = l −ca[k −1] −ca[k −2];
while(i >0)
{

s −= ca[i −1]+ca[i −2];
if(c[i −2] >0)
{

d −= ca[i −1]+1;

* ap = d;

* bp = 'b';
if(c[i] >0)
{

ap −= 2+5* ca[i −1];
bp −= 2+5* ca[i −1];

}
else if(c[i] <0)
{

ap −= 3+5* ca[i −1];
bp −= 3+5* ca[i −1];

}
* ap = −−d;

* bp = 'c';
ap −= 8;
bp −= 8;

while(s <d−1)
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{
* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

* ap = −−d;

* bp = 'c';
ap −= 8;
bp −= 8;

}
} / * if * /

else if(c[i −2] <0)
{

d −= ca[i −1]+1;

* ap = d;

* bp = 'c';
if(c[i] >0)
{

ap −= 5+5* ca[i −1];
bp −= 5+5* ca[i −1];

}
else if(c[i] <0)
{

ap −= 6+5* ca[i −1];
bp −= 6+5* ca[i −1];

}
* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

while(s <d−1)
{

* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

}
}/ * else if * /
i −= 2;

} / * while * /
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/ * 4) keep track of c[0] to c[k −1]
in <c[0],c[1],...,c[k −2],c[k −1] >* /
s=l −ca[k −1]+1;
if(c[k −1] >0)
{

d += l −1;

* ap = d;

* bp = 'd';
if(c[0] >0)
{

ap += 1+5 * (l −1);
bp += 1+5 * (l −1);

}
else if(c[0] <0)
{

ap += 5 * (l −1);
bp += 5 * (l −1);

}
* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

while(s <d)
{

* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

}
} / * if * /

else if(c[k −1] <0)
{

d += l −1;

* ap = d;

* bp = 'c';
if(c[0] >0)
{

ap += 5 * (l −1);
bp += 5 * (l −1);
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}
else if(c[0] <0)
{

ap += −1+5* (l −1);
bp += −1+5* (l −1);

}
* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

while(s <d)
{

* ap = −−d;

* bp = 'c';
ap −= 8;
bp −= 8;

* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

}
} / * else if * /

/ * 5) keep track of c[k −1] −−>c[k −3] −−>...c[3] −−>c[1]
in <c[0],c[1],...,c[k −2],c[k −1] >* /
i=k −1;
s=0;
while(i >1)
{

for(j=0;j <i −2;j++)
{

s += ca[j];
}
s += 1;
if(c[i −2] >0)
{

d −= ca[i −1]+1;

* ap = d;

* bp = 'd';
if(c[i] >0)
{

ap −= 4+5* ca[i −1];
bp −= 4+5* ca[i −1];

}
else if(c[i] <0)
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{
ap −= 7+5* ca[i −1];
bp −= 7+5* ca[i −1];

}
* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

while(s <d)
{

* ap = −−d;

* bp = 'd';
ap −= 4;
bp −= 4;

* ap = −−d;

* bp = 'c';
ap −= 6;
bp −= 6;

}
} / * if * /

else if(c[i −2] <0)
{

d −= ca[i −1]+1;

* ap = d;

* bp = 'c';
if(c[i] >0)
{

ap −= 5+5* ca[i −1];
bp −= 5+5* ca[i −1];

}
else if(c[i] <0)
{

ap −= 8+5* ca[i −1];
bp −= 8+5* ca[i −1];

}
* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

while(s <d)
{

* ap = −−d;

* bp = 'c';
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ap −= 8;
bp −= 8;

* ap = −−d;

* bp = 'b';
ap −= 2;
bp −= 2;

}
}/ * else if * /
i −= 2;
s=0;

} / * while * /

/ * 6) c[1] −−>c[0] in <c[0],c[1],...,c[k −2],c[k −1] >* /
if(c[0] >0)
{

d −= ca[0];

* ap = d;

* bp = 'b';
if(c[1] >0)
{

ap += 1−5* ca[0];
bp += 1−5* ca[0];

}
else if(c[1] <0)
{

ap −= 2+5* ca[0];
bp −= 2+5* ca[0];

}
}

else if(c[0] <0)
{

d −= ca[0];

* ap = d;

* bp = 'c';
if(c[1] >0)
{

ap += 2−5* ca[0];
bp += 2−5* ca[0];

}
else if(c[1] <0)
{

ap −= 1+5* ca[0];
bp −= 1+5* ca[0];

}
}
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/ **** reverse the orientation and track the codes *** /

/ * 6') c[0] −−>c[1] in <c[0],c[1],...,c[k −2],c[k −1] >* /
s = ca[0]+ca[1];
if(c[1] >0)
{

d += ca[0];

* ap = d;

* bp = 'a';
if(c[0] >0)
{

ap += 1+5 * ca[0];
bp += 1+5 * ca[0];

}
else if(c[0] <0)
{

ap +=5 * ca[0];
bp +=5 * ca[0];

}
* ap = ++d;

* bp = 'b';
ap += 6;
bp += 6;
while(s >d)
{

* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;

* ap =++d;

* bp ='b';
ap += 6;
bp += 6;

}
} / * if * /

else if(c[1] <0)
{

d += ca[0];

* ap = d;

* bp = 'd';
if(c[0] >0)
{

ap +=5 * ca[0];
bp +=5 * ca[0];
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}
else if(c[0] <0)
{

ap += −1+5* ca[0];
bp += −1+5* ca[0];

}
* ap = ++d;

* bp ='a';
ap +=6;
bp +=6;
while(s >d)
{

* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;

* ap =++d;

* bp ='a';
ap += 6;
bp += 6;

}

}/ * else if * /

/ * 5') c[1] −>c[3] −>... −>c[k −1] in <c[0],c[1],...,c[k −2],c[k −1] >* /
i=1;
s=0;
while(i <k−2)
{

for(j=0;j <i+3;j++)
{

s += ca[j];
}
if(c[i+2] >0)
{

d += ca[i+1]+1;

* ap = d;

* bp = 'a';
if(c[i] >0)
{

ap += 4+5 * ca[i+1];
bp += 4+5 * ca[i+1];

}
else if(c[i] <0)
{

ap += 5+5 * ca[i+1];
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bp += 5+5 * ca[i+1];
}
* ap = ++d;

* bp = 'b';
ap += 6;
bp += 6;
while(s >d)
{

* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;

* ap =++d;

* bp ='b';
ap += 6;
bp += 6;

}
} / * if * /

else if(c[i+2] <0)
{

d += ca[i+1]+1;

* ap = d;

* bp = 'd';
if(c[i] >0)
{

ap += 3+5 * ca[i+1];
bp += 3+5 * ca[i+1];

}
else if(c[i] <0)
{

ap += 4+5 * ca[i+1];
bp += 4+5 * ca[i+1];

}
* ap = ++d;

* bp ='a';
ap +=6;
bp +=6;
while(s >d)
{

* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;

* ap =++d;

* bp ='a';
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ap += 6;
bp += 6;

}
}/ * else if * /
i += 2;
s=0;

} / * while * /

/ * 4') c[k −1] −−>c[0] in <c[0],c[1],...,c[k −2],c[k −1] >* /
s=ca[0];
if(c[0] >0)
{

d = 1;

* ap = d;

* bp = 'a';
if(c[k −1] >0)
{

ap −= 1+5* (l −1);
bp −= 1+5* (l −1);

}
else if(c[k −1] <0)
{

ap −= 5* (l −1);
bp −= 5* (l −1);

}
* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;
while(s >d)
{

* ap = ++d;

* bp = 'a';
ap += 6;
bp += 6;

* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;

}
} / * if * /

else if(c[0] <0)
{

d = 1;

* ap = d;
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* bp = 'b';
if(c[k −1] >0)
{

ap −= 5* (l −1);
bp −= 5* (l −1);

}
else if(c[k −1] <0)
{

ap −= −1+5* (l −1);
bp −= −1+5* (l −1);

}
* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;
while(s >d)
{

* ap = ++d;

* bp = 'b';
ap += 6;
bp += 6;

* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;

}
} / * else if * /

/ * 3') c[0] −>c[2] −>.. −>c[k −2] in <c[0],c[1],...,c[k −2],c[k −1] >* /
i = 0;
s=0;
while(i <k−2)
{

for(j=0;j <i+3;j++)
{

s += ca[j];
}
if(c[i+2] >0)
{

d += ca[i+1]+1;

* ap = d;

* bp = 'a';
if(c[i] >0)
{

ap += 1+5 * (ca[i+1]+1);
bp += 1+5 * (ca[i+1]+1);
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}
else if(c[i] <0)
{

ap += 5 * (ca[i+1]+1);
bp += 5 * (ca[i+1]+1);

}
* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;

while(s >d)
{

* ap = ++d;

* bp = 'a';
ap += 6;
bp += 6;

* ap = ++d;

* bp = 'd';
ap += 4;
bp += 4;

}
} / * if * /

else if(c[i+2] <0)
{

d += ca[i+1]+1;

* ap = d;

* bp = 'b';
if(c[i] >0)
{

ap += 2+5 * (ca[i+1]+1);
bp += 2+5 * (ca[i+1]+1);

}
else if(c[i] <0)
{

ap += 1+5 * (ca[i+1]+1);
bp += 1+5 * (ca[i+1]+1);

}
* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;

while(s >d)
{

* ap = ++d;

* bp = 'b';
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ap += 6;
bp += 6;

* ap = ++d;

* bp = 'a';
ap += 4;
bp += 4;

}

}/ * else if * /
i += 2;
s=0;

} / * while * /

/ * 2') c[k −2] −−>c[k −1] in <c[0],c[1],...,c[k −2],c[k −1] >* /
s = l −ca[k −1]+1;
if(c[k −1] >0)
{

d += ca[k −1];

* ap = d;

* bp = 'a';
if(c[k −2] >0)
{

ap += 1+5 * ca[k −1];
bp += 1+5 * ca[k −1];

}
else if(c[k −2] <0)
{

ap += 5 * ca[k −1];
bp += 5 * ca[k −1];

}
* ap = −−d;

* bp = 'b';
ap −= 4;
bp −= 4;

while(s <d)
{

* ap = −−d;

* bp = 'a';
ap −= 6;
bp −= 6;

* ap = −−d;

* bp = 'b';
ap −= 4;
bp −= 4;

}
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} / * if * /

else if(c[k −1] <0)
{

d += ca[k −1];

* ap = d;

* bp = 'd';
if(c[k −2] >0)
{

ap += 5 * ca[k −1];
bp += 5 * ca[k −1];

}
else if(c[k −2] <0)
{

ap += −1+5* ca[k −1];
bp += −1+5* ca[k −1];

}
* ap = −−d;

* bp = 'a';
ap −= 4;
bp −= 4;

while(s <d)
{

* ap = −−d;

* bp = 'd';
ap −= 6;
bp −= 6;

* ap = −−d;

* bp = 'a';
ap −= 4;
bp −= 4;

}
}

/ * 1') c[k −1] −−>c[k −2] −−>... −−>c[1]
in <c[0],c[1],...,c[k −2],c[k −1] >* /
s=l −ca[k −1]+1;
for(i=k −1;i >0;i −−)
{

s −= ca[i −1];
/ * case 1 * /
if(c[i −1] >0 && (i −1)%2==1)
{

* ap = −−d;

* bp = 'a';
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if(c[i] >0)
{

ap −=4;
bp −=4;

}
else if(c[i] <0)
{

ap −=5;
bp −=5;

}
* ap = −−d;

* bp = 'b';
ap −= 4;
bp −= 4;

while(s <d)
{

* ap = −−d;

* bp ='a';
ap −=6;
bp −=6;

* ap = −−d;

* bp ='b';
ap −=4;
bp −=4;

}
}

/ * case 2 * /
else if(c[i −1] <0 && (i −1)%2==1)
{

* ap = −−d;

* bp = 'd';
if(c[i] >0)
{

ap −=5;
bp −=5;

}
else if(c[i] <0)
{

ap −=6;
bp −=6;

}
* ap = −−d;

* bp = 'a';
ap −= 4;
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bp −= 4;

while(s <d)
{

* ap = −−d;

* bp ='d';
ap −=6;
bp −=6;

* ap = −−d;

* bp ='a';
ap −=4;
bp −=4;

}
}

/ * case 3 * /
else if(c[i −1] >0 && (i −1)%2==0)
{

* ap = −−d;

* bp = 'a';
if(c[i] >0)
{

ap −=6;
bp −=6;

}
else if(c[i] <0)
{

ap −=5;
bp −=5;

}
* ap = −−d;

* bp = 'd';
ap −= 6;
bp −= 6;

while(s <d)
{

* ap = −−d;

* bp ='a';
ap −=4;
bp −=4;

* ap = −−d;

* bp ='d';
ap −=6;
bp −=6;

}
}
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/ * case 4 * /
else if(c[i −1] <0 && (i −1)%2==0)
{

* ap = −−d;

* bp = 'b';
if(c[i] >0)
{

ap −=5;
bp −=5;

}
else if(c[i] <0)
{

ap −=4;
bp −=4;

}
* ap = −−d;

* bp = 'a';
ap −= 6;
bp −= 6;

while(s <d)
{

* ap = −−d;

* bp ='b';
ap −=4;
bp −=4;

* ap = −−d;

* bp ='a';
ap −=6;
bp −=6;

}
}

} / * for * /

/ * EM code for unknot * /

if(k==2)
{

if(c[0]==0 | | c[1]==0)
{

int aa[]= {1,2,2,1,1,2,1,1,2,2 };
char bb[]="+badc+badc";
for(i=0;i <5* l+1;i++)
{

printf("aa[%d]=%d \n",i,aa[i]);
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}
for(i=0;i <5* l+1;i++)
{

printf("bb[%d]=%c \n",i,bb[i]);
}

for(i=0;i <5* l+1;i++)
{
a[i]=aa[i];
b[i]=bb[i];

}
}

}

for(i=0;i <l * 5;i++)
{

fprintf(f,"%d%c",a[i],b[i]);
if(i%5==4)

fprintf(f," \n");
}
}/ * end* /

B.2 Jones 2.m

%This program checks whether polynomials satisfy
%the seven properties of the Jones polynomial in section 4.2
%and signature conditions in lemma 4.3 and lemma 4.4 or not.

%This is used to determine whether vkp1 and vkp2 in theorem 4. 1
%and theorem 4.2 could be the Jones polynomial of knots.
%The polynomials vkp1 and vkp2 are calculated using
%the Jones polynomial vk1 and vk2 of two knots k1 and k2
%whose knot distance has lower bound 1.

clear all;

poly = importdata('JonesPoly13 new.txt',';',1552);
sig = importdata('Signature.txt');
p = importdata('pair.txt');

syms t;
[row col] = size(p);

fid= fopen('result.txt', 'w');
NewSign = fopen('NewSign.txt', 'w');
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Change = fopen('Changed.txt', 'w');
fvkp1 = fopen('vkp1.txt','w');
fvkp2 = fopen('vkp2.txt','w');
fw = fopen('wk.txt','w');
f1 = fopen('con7.txt','w');
f7rc = fopen('con7rc.txt', 'w');
f3 = fopen('con3.txt', 'w');

for n =1:row
k1=0; %track whether vkp1 violates one of the properties
k2=0; %track whether vkp2 violates one of the properties
vk1 = sym(poly(p(n,1)));
vk2 = sym(poly(p(n,2)));

%vkp1 = vk' in theorem 4.1
vt1 = vk2 − (factor((vk1 −vk2)/(t −1)));
vt1d 1 = subs(diff(vt1), t, 1);
vkp1 = expand(t̂ −vt1d 1 * vt1);
vkp1 str=char(vkp1);
fprintf(fvk1,'%d ,%d \n', p(n,1) −1, p(n,2) −1);
fprintf(fvk1,'%s \n',vkp1 str);
vkp1 1d=subs(diff(vkp1),t,1);
vkp1 2d=subs(diff(vkp1,2),t,1);
vkp1 3d=subs(diff(vkp1,3),t,1);

%vkp2 = vk' in theorem 4.2
vt2 = vk1 − (factor((vk2 −vk1)/(t −1)));
vt2d 1 = subs(diff(vt2), t, 1);
vkp2 = expand(t̂ −vt2d 1 * vt2);
vkp2 str=char(vkp2);
fprintf(fvk2,'%d ,%d \n', p(n,1) −1, p(n,2) −1);
fprintf(fvk2,'%s \n',vkp2 str);
vkp2 1d=subs(diff(vkp2),t,1);
vkp2 2d=subs(diff(vkp2,2),t,1);
vkp2 3d=subs(diff(vkp2,3),t,1);

%check property (1) in section 4.2
if(subs(vkp1, t, 1) 6= 1 && k1==0)

fprintf(fid, '(1) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k1=k1+1;
if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
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contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;
end

end

if(subs(vkp2, t, 1) 6= 1 && k2==0)
fprintf(fid, '(1) −2 %d, %d (%d) \n', p(n,1) −1, p(n,2) −1,n);
k2=k2+1;
if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;
end

end

%check property (2) in section 4.2
if(vkp1 1d 6= 0 && k1==0)

fprintf(fid, '(2) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k1=k1+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end

if(vkp2 1d 6= 0 && k2==0)
fprintf(fid, '(2) −2 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
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fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end

%check property (3) in section 4.2
p3 1= subs(vkp1, t, exp(2 * pi * 1i/3));
p3 2= subs(vkp2, t, exp(2 * pi * 1i/3));

if(k1==0)
if(round(imag(p3 1)) 6=0 | | round(real(p3 1)) 6=1)

fprintf(fid, '(3) −1 %d,%d (%d) \n',p(n,1) −1,p(n,2) −1,n);
fprintf(f3, '(3) −1 %d,%d (%d) == %g+%gi \n',p(n,1) −1,
p(n,2) −1,n,real(p3 1),imag(p3 1));
k1=k1+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end
end

if(k2==0)
if(round(imag(p3 2)) 6=0 | | round(real(p3 2)) 6=1)

fprintf(fid, '(3) −2 %d,%d (%d) \n',p(n,1) −1,p(n,2) −1,n);
fprintf(f3, '(3) −2 %d,%d (%d) == %g+%gi \n',p(n,1) −1,
p(n,2) −1,n,real(p3 2),imag(p3 2));
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end
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end

%check property (4) in section 4.2
if(k1==0)

if(rem(vkp1 3d,18) 6=0)
fprintf(fid, '(4) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k1=k1+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end

end

if(k2==0)
if(rem(vkp2 3d,18) 6=0)

fprintf(fid, '(4) −2 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end

end

%check property (5) in section 4.2
if(k1==0)

if(rem(vkp1 3d+3 * vkp1 2d,36) 6=0 )
fprintf(fid, '(5) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k1=k1+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
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fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change,'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end
end

if(k2==0)
if(rem(vkp2 3d+3 * vkp2 2d,36) 6=0)

fprintf(fid, '(5) −2 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign,'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign,'else \n');
fprintf(NewSign,'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change, 'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end
end

%check property (6) in section 4.2
f6=expand(factor((1 −vkp1)/((1 −t) * (1 −tˆ3))));
f6 str=char(f6);

f7=expand(factor((1 −vkp2)/((1 −t) * (1 −tˆ3))));
f7 str=char(f7);

fprintf(fw,'%d ,%d (%d) \n', p(n,1) −1, p(n,2) −1,n);
fprintf(fw,'%s \n',f6 str);
fprintf(fw,'%s \n',f7 str);

%check property (7) in section 4.2
c7 1=subs(vkp1, exp(pi * 1i/3));
c7 2=subs(vkp2, exp(pi * 1i/3));

if(k1==0)
if(round(real(c7 1)) 6=0 && round(imag(c7 1)) 6=0)

fprintf(fid, '(7) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
fprintf(f1, '(7) −1 (%d,%d)=%g+%gi \n',p(n,1) −1,

p(n,2) −1, real(c7 1),imag(c7 1));
k1=k1+1;
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if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign, 'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'else \n');
fprintf(NewSign, 'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change, 'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;
end
else

fprintf(f7rc,'(7) −1 (%d,%d)=%g+%gi \n',p(n,1) −1,
p(n,2) −1, real(c7 1),imag(c7 1));

end
end

if(k2==0)
if(round(real(c7 2)) 6=0 && round(imag(c7 2)) 6=0)

fprintf(fid, '(7) −2 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
fprintf(f1,'(7) −2 (%d,%d)=%g+%gi \n',p(n,1) −1,

p(n,2) −1, real(c7 2),imag(c7 2));
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign, 'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'else \n');
fprintf(NewSign, 'fprintf(mistake,Sign[%d][%d]=2 cont radicts
to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change, 'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
else

fprintf(f7rc,'(7) −2 (%d,%d)=%g+%gi \n',p(n,1) −1,
p(n,2) −1, real(c7 1),imag(c7 1));

end
end

% check signature
s1 = sig(p(n,1));
s2 = sig(p(n,2));
s3= fopen('NewbySignature.txt', 'w');

if(s1 6= −100 && s2 6= −100)
if(s2 −s1>2)

fprintf(s3,'(1) %d,%d \n', p(n,1) −1, p(n,2) −1);
if(k1==0)
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fprintf(fid, '(s) −1 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k1=k1+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign, 'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'else \n');
fprintf(NewSign, 'fprintf(mistake,Sign[%d][%d]=2 cont radicts
to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change, 'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;
end
end

end
if(s2 −s1>2)

fprintf(s3,'(2) %d,%d \n', p(n,1) −1, p(n,2) −1);
if(k2==0)

fprintf(fid, '(s) −2 %d, %d (%d) \n', p(n,1) −1,p(n,2) −1,n);
k2=k2+1;

if(k1==1 && k2==1)
fprintf(fid,' \n');
fprintf(NewSign, 'if(Sign[%d][%d]==1) \n',p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'Sign[%d][%d]=2; \n', p(n,1) −1,p(n,2) −1);
fprintf(NewSign, 'else \n');
fprintf(NewSign, 'fprintf(mistake,Sign[%d][%d]=2
contradicts to existing value) \n\n', p(n,1) −1, p(n,2) −1);
fprintf(Change, 'Changed[%d][%d]=1; \n', p(n,1) −1,p(n,2) −1);
continue;

end
end
end
end
fprintf(fid,' \n');

end %for%

fclose(fid);
fclose(fvkp1);
fclose(fvkp2);
fclose(fw);
fclose(NewSign);
fclose(Change);
fclose(f1);
fclose(f7rc);
fclose(f3);
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APPENDIX C

NEW KNOT DISTANCE TABLE
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Table C.1: New knot distance table.
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Table C.1: Continued.
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Table C.1: Continued.
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Table C.1: Continued.
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Table C.1: Continued.
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Table C.1: Continued.
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Table C.1: Continued.



132

Table C.1: Continued.
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Table C.1: Continued.



134

Table C.1: Continued.
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Table C.1: Continued.
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