
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2010

Approximation algorithms for distributed systems
Saurav Pandit
University of Iowa

Copyright 2010 Saurav Pandit

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/870

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Pandit, Saurav. "Approximation algorithms for distributed systems." PhD (Doctor of Philosophy) thesis, University of Iowa, 2010.
http://ir.uiowa.edu/etd/870.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages

APPROXIMATION ALGORITHMS

FOR DISTRIBUTED SYSTEMS

by

Saurav Pandit

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of
The University of Iowa

December 2010

Thesis Supervisor: Associate Professor Sriram Pemmaraju

1

ABSTRACT

Distributed Approximation is a new and rapidly developing discipline that lies

at the crossroads of various well-established areas of Computer Science - Distributed

Computing, Approximation Algorithms, Graph Theory and often, Computational

Geometry. This thesis focuses on the design and analysis of distributed algorithms

to solve optimization problems that usually arise in large-scale, heavily dynamic,

resource constrained networks, e.g. wireless ad-hoc and sensor networks, P2P systems,

mobile networks etc. These problems can often be abstracted by variations of well-

known combinatorial optimization problems, such as topology control, clustering etc.

Many of these problems are known to be hard (NP-complete). But we need fast

and light-weight distributed algorithms for these problems, that yield near-optimal

solutions.

The results presented in this thesis can be broadly divided in two parts. The

first part contains a set of results that obtain improved solutions to the classic problem

of computing a sparse “backbone” for Wireless Sensor Networks (WSNs). In graph-

theoretic terms, the goal is to compute a spanning subgraph of the input graph, that

is sparse, lightweight and has low stretch. The term “low stretch” indicates that in

spite of dropping many edges, the distance between any two nodes in the graph is not

increased by much. We model WSNs as geometric graphs - unit ball graphs, quasi-

unit ball graphs etc. in Euclidean spaces, as well as in more general metric spaces of

low doubling dimension. We identify and exploit a variety of geometric features of

2

those models to obtain our results.

In the second part of the thesis we focus on distributed algorithms for cluster-

ing problems. We present several distributed approximation algorithms for clustering

problems (e.g., minimum dominating set, facility location problems) that improve on

best known results so far. The main contribution here is the design of distributed

algorithms where the running time is a “tunable” parameter. The advent of dis-

tributed systems of unprecedented scale and complexity motivates the question of

whether it is possible to design algorithms that can provide non-trivial approxima-

tion guarantees even after very few rounds of computation and message exchanges.

We call these algorithms “k-round algorithms”. We design k-round algorithms for

various clustering problems that yield non-trivial approximation factors even if k is

a constant. Additionally, if k assumes poly-logarithmic values, our algorithms match

or improve on the best-known approximation factors for these problems.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

APPROXIMATION ALGORITHMS

FOR DISTRIBUTED SYSTEMS

by

Saurav Pandit

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of
The University of Iowa

December 2010

Thesis Supervisor: Associate Professor Sriram Pemmaraju

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Saurav Pandit

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the December 2010 graduation.

Thesis Committee:

Sriram Pemmaraju, Thesis Supervisor

Kasturi Varadarajan

Sukumar Ghosh

James Cremer

Eunjin Jung

Jeffrey Ohlmann

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Sriram Pemmaraju for

investing so much time in me and guiding me through my thesis. Not only that he

helped me understand new concepts, investigate problems and obtain solutions, but

he made me acquainted with the customs of academic life and research. For the

academic year 2009-2010, he has supported my studies with a research assistantship

(NSF Grant CCF 0915543). It has been a tremendous pleasure working so closely

with him and I am proud to be able to say that I am his student.

I would also like to thank Sukumar Ghosh; it was his Distributed Systems and

Algorithms class that first sparked my interest in the subject. He has always provided

valuable guidance, both in and outside of academics. My thanks to Mirela Damian

for working with us on our topology control results. I also thank Kasturi Varadarajan

for his general guidance and introducing me to several geometric techniques I found

valuable in my research. I want to thank my past and present colleagues, Rajiv

Raman, Kevin Lillis, Imran Pirwani, Benton McCune, Erik Krohn, Matt Gibson,

Gaurav Kanade and members of the Algorithms Reading Group, for many stimulating

exchange of ideas. My sincere thanks to EJ Jung, Jim Cremer and Jeff Ohlmann for

agreeing to be in my defense committee.

I thank the Department of Computer Science for supporting me with several

teaching assistantships. It was a privilege being part of this department. My heartiest

thanks to its faculty, staff and students.

ii

Finally, many thanks to my parents, my family and Swagata, a special some-

one, for all the support and encouragement. And a big shout out to all my friends

in Iowa City who has helped make this town my home for the last six years. This

experience would not have been complete without you.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Background . 1
1.1.1 Overview of Our Approach 4

1.2 Results . 12
1.2.1 Topology Control . 13
1.2.2 Clustering Problems . 15

2 LOCAL APPROXIMATION SCHEMES FOR TOPOLOGY CONTROL 20

2.1 Introduction . 20
2.1.1 Network model . 20
2.1.2 Our result . 22
2.1.3 Topology control . 22
2.1.4 Spanners in computational geometry 24
2.1.5 Summary of our contributions 26
2.1.6 Extensions to our main result 27

2.2 Sequential Relaxed Greedy Algorithm 28
2.2.1 Processing Edges in E0 29
2.2.2 Processing Long Edges 30
2.2.3 The Three Desired Properties 39

2.3 Distributed Relaxed Greedy Algorithm 49
2.3.1 Distributed Processing of Short Edges 49
2.3.2 Distributed Processing of Long Edges 50

2.4 Conclusion . 54

3 DISTRIBUTED SPANNER CONSTRUCTION IN DOUBLING MET-
RIC SPACES . 56

3.1 Introduction . 56
3.1.1 Topology Control In Doubling Metric 57
3.1.2 Net Trees . 58

3.2 Spanners for Doubling UBGs . 62
3.2.1 Properties of H . 63
3.2.2 Altering H for Bounded Degree 69
3.2.3 Eliminating Virtual Edges 74

iv

3.3 Leapfrog Property . 78
3.4 Distributed Implementation . 87
3.5 Extension to Quasi-Unit Ball Graphs 93
3.6 Conclusion . 94

4 FACILITY LOCATION IN UNIT DISK GRAPHS 95

4.1 Introduction . 95
4.1.1 Related work . 99
4.1.2 Main results . 102

4.2 Sequential Algorithm . 104
4.2.1 Analysis . 105

4.3 Distributed Algorithm . 112
4.4 Conclusion . 114

5 A PRIMAL-DUAL APPROACH FOR METRIC FACILITY LOCATION116

5.1 Introduction . 116
5.2 Logarithmic-round Algorithm . 122

5.2.1 Overview of Algorithm 122
5.2.2 Initialization Phase . 123
5.2.3 The Primal-Dual Phase 125
5.2.4 The Sparsification Phase 129
5.2.5 Analysis . 132

5.3 k-round Algorithm . 136
5.3.1 The Sparsification Phase 140
5.3.2 Wrapping Things Up . 145

5.4 Conclusion . 147

6 DISTRIBUTED APPROXIMABILITY OF NONMETRIC FACILITY
LOCATION . 149

6.1 Introduction . 149
6.1.1 The Pruning Process . 151
6.1.2 Related Work . 155
6.1.3 Main Results . 156

6.2 Rapid Randomized Pruning . 156
6.2.1 Analysis . 158

6.3 Facility Location . 163
6.3.1 Distributed Facility Location 166
6.3.2 Metric Facility Location 174
6.3.3 Minimum Dominating Set 177

6.4 Conclusion . 179

v

7 FUTURE WORK . 180

7.1 k-round Algorithms for Other Covering-Packing Problems 180
7.2 Capacitated Facility Location on UDGs 181

REFERENCES . 184

vi

LIST OF FIGURES

1.1 Integer Program for FacLoc and the dual of its LP-relaxation 11

2.1 u, v, z are three points in Rd with ∠vuz ≤ θ(a) Edge {u, v} is covered:
{u, z} followed by a t-spanner zv-path is a t-spanner uv-path. 32

2.2 Edges interior to disks are intra-cluster edges. Edge {a, b} is an inter-
cluster edge because spG′

i−1
(a, b) ≤ Wi−1, and {b, c} is an inter-cluster

edge because {u, v} is in G′
i−1. An st-path in G′

i−1, shown by the dashed
curve may be approximated by the path s, a, b, t in Hi−1. 35

2.3 If {y, z} is a query edge, then by the argument above we have that G′

contains a t-spanner yz-path p. Otherwise, if {y, z} is not a query edge,
since its length is less than the length of {x, y}, by the inductive hypothesis
we get that there is a t-spanner yz-path p. (a) {x, y} is a covered edge
(b) {u, v} is a query edge: if Gi contains a t-spanner uv-path, then Gi

contains a t-spanner xy-path. 40

2.4 Leapfrog Property. (a) Region χ contains two neighbors v and z of u. (b)
Definition of the t-leapfrog property with S = {{u1, v1}, {u2, v2}, {u3, v3}}. 43

3.1 A net tree with six levels. 60

3.2 Illustrated proofs of Lemmas. (a) Proof of Lemma 26: in V0, dH(u, u) =
0 < α

α−1
· r0; in V1, dH(u, a) ≤ r1 < α

α−1
· r1; in V2, dH(u, b) ≤ dH(u, a) +

dH(a, b) ≤ α
α−1
· r2; and in V3, dH(u, c) ≤ dH(u, b) + dH(b, c) ≤ α

α−1
· r3 (b)

Proof of Lemma 27: The uv-path via x and y. 65

3.3 An example to demonstrate the tightness result. (a) Graph H with total
weight wt(H) = Ω(log∆) · wt(MST) (b) Net tree for the vertex set V of
H ; V0 = V1 = V , and Vk = {u1+i·2k , i = 0, 1, 2, . . .}, for k ≥ 2. 69

3.4 A short ab-path passes through virtual edge {u, v}. After replacing virtual
edge {u, v} by real edge {x, y}, there is a short ab-path through {x, y}. . 76

3.5 Definition of the t-leapfrog property with S = {{u1, v1}, {u2, v2}, {u3, v3}}. 78

3.6 dΓ satisfies the triangle inequality: (a) Nodes a, b, c in Γ corresponding to
edges {ua, ub}, {ub, uc}, {ua, uc} inH . (b) dΓ(a, c) = dH(ua, uc)+dH(va, vc)
(c) dΓ(a, c) = dH(ua, vc) + dH(va, uc). 91

vii

3.7 The metric space defined by dΓ has doubling dimension. 92

4.1 A UDG with eight vertices. Opening costs are integers shown next to the
vertex names and connection costs of edges are assumed to be Euclidean
lengths. Vertices b, g, and e have been opened as facilities. The solid
lines indicate the assignments of vertices (clients) to open facilities and
the dotted lines indicate edges in the UDG that are not being used for any
facility-client connection. Only the disks around the three open facilities
are shown in the figure. The cost of this solution is 4 units (for opening
facilities) plus |fg|+ |ab|+ |cb|+ |de|+ |he|. 96

4.2 Client j is connected to temporarily open facility i at the end of Phase
1. Client j′ contributes positively to the opening cost of both i and i′.
Facility i′ is closed at the beginning of Phase 2 and facility i becomes a
candidate for connecting j to. 108

5.1 An instance of standard FacLoc. The table shows the pairwise connection
costs between clients and facilities. OPT consists of open facilities 2 and
3 with clients a, b and c connected to facility 2 and client d to facility 3.
Total cost of OPT is 11. Note that any solution with a single open facility
or with all the facilities open, will have cost more than 11. So is the case
for any solution that opens facility 1. 118

5.2 Suppose that a temporarily open facility i is positively paid for by Clients
1, 2 and 3 (i.e., βi1, βi2, βi3 > 0). Further suppose that client 1 positively
pays for 6 temporarily open facilities, client 2 pays for 4, and client 3 for 5
temporarily open facilities. This leads to 3 cliques in H of sizes 6, 4, and
5 respectively. If each facility i thinks of itself as belonging to the clique
of the client with lowest ID, then Clique 1 will have size 6, Clique 2 will
have size 2, and Clique 3 will have size 2. This allows i to figure out that
its degree is 6 + 2 + 2 = 10. 131

5.3 Client j is indirectly connected to i because i′ was closed after the MIS
computation. 133

5.4 Shows the partition of the nodes of a graph into interior, boundary, and
exterior nodes with degree threshold τ set to 2. 142

5.5 Client j was initially connected to facility i′ that was closed during spar-
sification. In that case, j will find a facility i to connect to so that
distance(i, i′) ≤ 2k2. 146

viii

6.1 Example execution of one iteration of the pruning process. Fig. (a) shows
the original graph H with S (square vertices) and B (round vertices).
Suppose p = 1. Fig. (b) shows two vertices, 1 and 3 of S, being opened.
These two open vertices cover 4 vertices in B. Then the two open vertices
and the four covered vertices are deleted from H . Fig. (c) shows the
resulting graph. Vertex 4 in S is no longer being paid for and is also
deleted. This renders vertices 6 and 7 (in B) isolated and so these are also
deleted. Fig. (d) shows the graph at the end of the iteration. 154

ix

1

CHAPTER 1
INTRODUCTION

1.1 Background

Distributed approximation is a new and emerging area that bridges two well-

studied areas of computer science: approximation algorithms for discrete optimiza-

tion problems and distributed systems. A distributed system is generally a network

of nodes without a centralized decision making mechanism. These nodes could be

connected by physical wires or they could be wireless devices communicating via ra-

dio communication. The proliferation of large-scale, complex, dynamic and highly

decentralized networks (e.g. the Internet, P2P systems, sensor networks etc.) is giv-

ing rise to a large variety of challenges. Although, many of these challenges can be

abstracted by traditional and well-studied algorithmic problems, the lack of central-

ized control and the limitation to local knowledge renders most of the traditional

network algorithms unusable in these environments. A common example, one that

we will study later in detail, is minimum weight spanner construction. It is often nec-

essary in a distributed system to keep only a small number of communication links

functional at a time, yet not to disconnect any node from the network at any point

of time. This problem roughly reduces to the problem of constructing a low weight

spanning subgraph. However, most traditional sequential algorithms for this problem

are greedy and require a strict ordering of edges (according to their weight). Such

global ordering cannot be implemented efficiently in a distributed environment. More

2

generally, many algorithms that provide guaranteed approximation factors are greedy

and perform tasks in an inherently sequential manner. The fundamental challenge

for distributed approximation algorithms is to relax the need for a global ordering on

tasks and yet provide a guarantee on the quality of the solution.

1.1.0.1 Challenges in Distributed Computing

In most distributed systems, gathering information about the whole network

topology is either too resource consuming or simply impossible due to mobility, dy-

namics, or churn. Hence, no node is typically able to collect or maintain a global

state about the network and ideally each node should base its decision on local in-

formation only. This is the first and foremost challenge in distributed computing

and provokes the question of what can and cannot be computed locally [66, 50, 55].

Furthermore, the integration of handheld mini devices into the Internet and advent

of wireless ad hoc and sensor networks pose many additional and fundamentally new

challenges. Firstly, most of these devices/nodes are battery powered. Hence energy

conservation is a key issue. One approach of dealing with energy conservation is to

ensure that only the necessary nodes are awake at any time and the remaining nodes

are in some type of a sleep mode. This gives rise to various clustering and scheduling

problems. Additionally many of the real life ad hoc and sensor networks are made of

radio sensors that are built using off-the-shelf components. Not only do they have

very limited bandwidth and working memory, often their communication capabilities

are unreliable due to hardware issues, as well as due to interference of radio signals.

3

Due to these difficulties and due to the dynamic nature of such networks, we need

algorithms that are not only local, but also fast so that they can be run repeatedly.

Technically speaking, the (worst-case) number of rounds of communication is the

most commonly used measure of efficiency of distributed algorithms. This measure

is often also regarded as the time complexity of such algorithms.

1.1.0.2 Need for Approximation Algorithms

The study of approximation algorithms for combinatorial optimization prob-

lems (e.g. set cover, facility location etc.) is an extremely active area of research in

mainstream theoretical computer science. A seminal O(logn)-approximation for set

cover [11] in 1979, a O(1)-approximation for metric facility location [36] in 2001, a

O(1)-approximation for weighted minimum dominating set in unit disk graphs [2] in

2006 - these are just few of the many examples that demonstrate the attention re-

searchers have been paying to approximation algorithms for decades. In the quest for

better approximation algorithms researchers developed a great variety of elegant and

sophisticated mathematical techniques, such as randomized rounding, the primal-dual

method, semi-definite programming, metric embeddings etc.

Since most combinatorial optimization problems are NP-complete, usually

there is very little hope for achieving optimal results. Hence, approximation al-

gorithms seem to be a natural fit for this scenario. With the emergence of more

and more complex distributed environments every day, distributed approximation has

emerged as a rapidly developing field. For example, let us look at minimum domi-

4

nating set1 (MDS), which has been studied for decades. It is an NP-complete problem.

However it has been shown that it can be approximated well by a natural greedy

algorithm which repeatedly adds the node that covers the most number of uncovered

nodes. The greedy algorithm achieves an Θ(log∆)-approximation where ∆ equals

the maximum degree of a node plus one [38, 62]. In the distributed setting, Jia et

al. [37] then relax this greedy algorithm that, in each step, picks several good nodes

instead of picking the single best choice. This speeds up the process, but hurts the

quality of the solution by selecting more nodes than necessary. To compensate for

that they use a randomized pruning process to guarantee a O(logn)-approximation.

1.1.1 Overview of Our Approach

In spite of all the aforementioned challenges, there are some aspects of dis-

tributed systems and computing that allow us to design fast and near-optimal al-

gorithms. The first set of results in my thesis utilize the geometric nature of some

distributed systems, especially those that arise in wireless radio networks. Another

trademark of some of the problems we explore in this thesis seems to be an inherent

“local” nature of the problem. This issue is usually not important in a sequential

setting, but is critical in a distributed setting and we try to exploit it to obtain our

second set of results. Next, we elaborate on these aspects.

1A dominating set of a graph G = (V,E) is a subset of nodes D ⊆ V , such that each
node in V are either in D or has an edge to some node in D. The MDS problem looks for a
dominating set with minimum cardinality.

5

1.1.1.1 Underlying Geometry

Unlike the Internet, P2P systems etc., the nodes in a wireless network reside

in Euclidean space. Also in such networks, each node can only communicate with a

restricted set of other nodes. Given a node u, let Γ(u) (also known as the neighborhood

of u) be the set of nodes it is capable of exchanging messages with. In wireless

networks, Γ(u) depends on u’s communication range. These communication ranges

are generally shaped likes disks, polygons or more generally, geometric fat objects.

Researchers have utilized the geometric structure of the network graphs to come up

with better approximation algorithms than in general graphs.

If we start with the assumption that each node has a transmission range that

is disk-like, we obtain several different models for wireless networks. The simplest of

these is known as the unit disk graph [64] or UDG2. A natural 3-dimensional extension

is a unit ball graph (UBG). These models are useful due to their simplicity, but one

could argue they are not a very realistic representation of wireless networks. Some of

the criticisms of the UDG (or UBG) model can be deflected by a further improved

model called α-quasi unit ball graph [15, 40] or α-qUBG3. The α-UBG model goes

beyond the unrealistic “flat world” assumption of UDGs and also takes into account

transmission errors, fading signal strength, and physical obstructions. We also study

2In an UDG, the nodes lie on an Euclidean plane. Two nodes have an edge between
them if they are at most unit distance away.

3In an α-qUBG (α < 1), a node is guaranteed to have an edge between other nodes
within distance α, and not to have an edge beyond unit distance. No guarantees in the
annulus in between.

6

these problems without the assumption of an Euclidean metric. A more general

assumption is metric spaces with constant doubling dimension4(commonly known as

doubling metric). Doubling metrics are robust under distortions in distance measures

and its bounded growth property seem to be the characteristics of large-scale wireless

networks.

Many combinatorial optimization problems are much more approximable in

UDGs than in general graphs. The problems considered include maximum indepen-

dent set, minimum vertex cover, minimum coloring, minimum dominating set etc.

Marathe et al. [64] present a series of heuristics for these problems is UDGs and

use the geometric properties to establish good approximation factors. Most topology

control problems become easier in UDGs (or other geometric graphs) as well.

Beyond the modeling of the network, we identify various assumptions (geo-

metric or otherwise) whose presence or absence have significant implications on the

complexity and hardness of the problems arising in these networks. Some of these

assumptions are: whether nodes know the coordinates of their neighbors, or just

the distance information; whether the nodes know the total number of nodes in the

network, or at least have an estimate.

1.1.1.2 Approximability vs Efficiency: A Trade-off

Our next set of results can be credited to a the inherent “local” nature of some

of the problems we consider. For example, MDS, facility location, coloring problems

4The doubling dimension of a metric space is the smallest ρ such that any ball in this
metric space can be covered by 2ρ balls of half the radius.

7

etc. are local in nature, i.e. near-optimal distributed algorithms could be constructed

for the problem where nodes do not need information about the whole network. In

a distributed setting, we are able to obtain an optimal solution in poly-logarithmic

rounds for most of these problems. But the more interesting fact is that the approx-

imation factor degrades gracefully with decreasing number of rounds.

These problems exhibit a delicate “trade-off” between available resources (e.g.

number of communication rounds, message size etc.) and the quality of the algorithm

(i.e. the approximation factor). Such trade-offs are not very common in sequential

algorithms. In the sequential setting, often the best known or best possible ap-

proximation factors is achieved via fairly sophisticated and efficient algorithms. For

example, Jain and Vazirani present a 3-approximation [36] for metric, uncapacitated

facility location. But it is not possible to run this algorithm for more number of

rounds, exchange more information and obtain a better solution. But, in the dis-

tributed setting, there seems to be a more visible (negative) correlation between the

approximability and the number of rounds or message size. Researchers have provided

approximation guarantees for various problems with algorithms that run in polyno-

mial, or poly-logarithmic, or even O(logn) rounds. But we seek algorithms that

provide non-trivial approximation guarantees for even smaller number of rounds, e.g.

what is the best we can do in k rounds, even if k is a constant? We utilize this

inherent trade-off between the approximability and running time in seeking answers

to such questions.

A resource that play key role in the above mentioned trade-off is the amount

8

of information available and the locality of that information. One common measure

for the amount of available information is the message size. We describe our message

passing models based on a classification by David Peleg [71]. In the LOCAL model,

each node can send one message per round to its neighbors. But there is no bound on

the message size. This is a crucial point in distributed computing as, with unlimited

message size, a node can send out the whole neighborhood information in one round.

By abstracting away the nuances of information exchange, the LOCAL provides an

ideal abstraction layer for analyzing the effects of locality on distributed computation.

Even if, all the neighborhood data can simply be made available with one round of

message transactions, some problems (e.g. k-median, minimum spanning tree) still

remain hard. This indicates that to solve those problem we need more than just local

information. Naturally, these problems are referred to as non-local. On the other

hand, the algorithm by Jia et al. [37] demonstrates a O(logn)-approximation for MDS

needs the nodes to know information only from their O(logn)-neighborhood. The

importance of the LOCAL model also stems from the fact that it provides a one-to-

one correspondence between the notion of time complexity of distributed algorithms

and the graph theoretic notion of neighborhood information. In particular, having a

distributed algorithm perform k communication rounds is equivalent to a scenario in

which distributed decision makers at the nodes of a graph must base their decision on

(complete) knowledge about their k-hop neighborhood. To see this, note that because

messages are unbounded, every node can collect the identifiers and interconnections

of all nodes in its k-hop neighborhood in k communication rounds. Collecting the

9

complete k-neighborhood can be achieved if all nodes send their complete states to all

their neighbors in every round. After round i, all nodes know their i-neighborhood.

Learning the i-neighborhoods of all neighbors in round (i + 1) suffices to know the

(i+1)-neighborhood. On the other hand, a node cannot obtain any information from

a node at distance (k + 1) or more, because sending information over (k + 1) hops

requires at least as many communication rounds. Therefore, in the LOCAL model,

knowing ones k-hop neighborhood is exactly as powerful as employing a distributed

algorithm with running time k.

However, it is impractical for most distributed systems to allow large messages.

Such systems are modeled by the CONGEST model, where each node can send one

message per round to each neighbor, where message size in bounded by O(logn) bits.

The significance of O(logn) bits is that we need only logn bits to represent n unique

node IDs. Also, the input constants are assumed to be representable using logn bits.

The network diameter itself is not of much concern in this model, but the amount

of information in the neighborhood itself could be high. For example, consider the

facility location problem on a complete bipartite graph with m facilities and n clients.

It is only a diameter 2 graph. But there are mn pieces of information just to define

all the connection costs. A successful algorithm in the CONGEST model will have to

make a smart and careful decision about which of these pieces of information need to

be exchanged. In summary, The understanding of the concept of locality has helped

us successfully utilize the trade-off and design better approximation algorithms, even

when message size is bounded and only small number of rounds are available.

10

1.1.1.3 The Primal-Dual Scheme

At the core of several of our results, especially those in the later half of this

dissertation, is the primal-dual technique. This is known to be a powerful technique

in obtaining good approximation factors for combinatorial optimization problems,

e.g. vertex cover, facility location etc. Say, we are given a minimization problem. In

a primal-dual scheme, we start with an integer program (IP) formulation of the given

problem. We call this the primal. Then we consider its LP-relaxation (LP). However,

we do not bother solving the LP, instead we obtain the dual of the LP-relaxation.

The goal is to obtain an integral, feasible solution (say L) of the LP and a feasible

solution D of the DP and show that cost(L) is within a factor c of cost(D). By the

Weak Duality Theorem, this implies a c approximation to the original minimization

problem. In a sequential setting, we start with a small but feasible dual solution and

continuously increase the dual variables until their corresponding dual constraints

become tight. Every time that happens we (integrally) add to the primal solution

and freeze the dual variables involved. We found the primal-dual technique is an

attractive choice in distributed computing. In this subsection we elaborate on that.

Firstly, for many problems the tightness of the dual constraints can be checked

locally in O(1) rounds of message transactions, even in the CONGEST model.

Secondly, this technique is easily customizable for k-round distributed algo-

rithms. In a distributed setting, we need a fast and discrete increase of the dual

variables. First we find an upper bound (say, D∗) on the value of the dual objective

function. Then we need to find an initial dual feasible solution (say, D) that is not

11

IP:

minimize
∑

i∈F,j∈C

c(i, j) · xij +
∑

i∈F

f(i) · yi

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

DP:

maximize
∑

j∈C

αj

subject to αj − βij ≤ c(i, j), i ∈ F, j ∈ C

∑

j∈C

βij ≤ f(i), i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F, j ∈ C

Figure 1.1: Integer Program for FacLoc and the dual of its LP-relaxation

too small. Starting from D we increase the dual variables by a certain factor in every

round. For example, in our algorithm for metric FacLoc (see Chapter 5), the gap

between D∗ and D is n2 (n being the number of clients). It is easy to see that if

we increase the dual variables geometrically (say, by a constant b), we can finish the

algorithm in log2b n rounds. We also show that this geometric increase only introduces

an factor b to the approximation factor. In case of the k-round algorithm, our increase

in n
1
r in the rth round. Note that, this technique underlines the trade-off between

the running time and approximation factor. For example, if we want to finish the

algorithm in smaller number of rounds, our increase in dual variables per round will

have to be coarser, resulting in a higher approximation factor. On the other hand, a

finer increase in dual variables will result in a better approximation factor at the cost

of increased running time.

However, this discrete increase can be seen as a relaxation and makes a pruning

procedure an integral part of any distributed primal-dual algorithm. We have been

able to successfully use randomized sparsification techniques to satisfy our pruning

12

requirements, even for small number of rounds.

1.2 Results

Now, let us give a more technical overview of our results. In my thesis, we study

two types of problems. The first set of problems fall under the category of topology

control problems. These problems arise in wireless networks where each pair of nodes

may or may not have an open communication link between them. Maintaining many

communication links in wireless networks can be expensive, as the event of message

passing itself is considered to have a high overhead in terms of resources (e.g. battery

power). Hence, given a network graph, we try to find a spanning subgraph (or

spanner) by selecting only a few of the given communication links, represented here

by edges. However, dropping too many edges can increase (stretch) the shortest-path-

distance between two nodes, and in turn increase communication overhead, e.g. more

dependence on routing. We need to choose a sparse set of edges that spans the graph,

while keeping the stretch factor low.

The second set of problems are examples of clustering problems, where we

select certain nodes in the network to be leaders and every other node is assigned

to a leader. The goal is to find a backbone of the network, so that at any point of

time, the nodes in the backbone can effectively represent the whole network. The MDS

problem, as well as its weighted version, WMDS) are standard examples of clustering

problems. However, we pay close attention to the communication costs as well, i.e.

we intend not to select too many leaders, but if we select too few the other nodes

13

may have to incur high costs trying to communicate with their cluster leader. This

problem can be abstracted by variations of the classic facility location problem. All

these problems are studied within the geometric or the resource trade-off context (or

both).

Each of the following chapters represents a result (or a set of results) motivated

by one of the two (or both) factors mentioned earlier, i.e., utilizing the geometric

nature of the network to obtain better approximation guarantees and/or studying

the trade-off between various resources and their effect on the quality of the output.

Also, each problem encountered in these chapters can fall under the category of either

topology control or clustering problems.

1.2.1 Topology Control

The next two chapters contain algorithms and analysis from the domain of

topology control in wireless networks. For an overview of topology control, see the

survey by Rajaraman [73]. Since an ad-hoc network does not come with fixed in-

frastructure, there is no topology to start with and informally speaking, the topology

control problem is one of selecting neighbors for each node so that the resulting topol-

ogy has a number of useful properties such as sparseness, small weight, or maximum

vertex degree bounded above by a constant. Next we describe these properties in

technical terms.

Let G = (V,E) be the underlying network graph with edge weights w : E →

R
+. Naturally V represents the nodes and E represents the set of edges, i.e. the set

14

of communication links. An edge weight is a measure for the cost of unit message

transaction using that particular link. For t ≥ 1, a t-spanner of G is a spanning

subgraph G′ of G such that for all pairs of vertices u, v ∈ V , the length of a shortest

uv-path in G′ is at most t times the length of a shortest uv-path in G. The problem of

constructing a sparse t-spanner, for small t, of a given graph G has been extensively

studied by researchers in distributed computing and computational geometry and

more recently by researchers in ad-hoc wireless networks. Let us briefly discuss the

results in these chapters.

Chapter 2 presents a distributed algorithm for wireless networks that runs

in poly-logarithmic number of rounds in the size of the network and constructs a

lightweight, linear size, (1 + ε)-spanner for any given ε > 0. The wireless network is

modeled by a d-dimensional α-UBG. The main result in this chapter is the following:

for any fixed ε > 0, 0 < α ≤ 1, and d ≥ 2 there is a distributed algorithm running in

O(logn · log∗ n) communication rounds on an n-node, d-dimensional α-UBG G that

computes a (1 + ε)-spanner G′ of G with maximum degree ∆(G′) = O(1) and total

weight w(G′) = O(w(MST (G)). The technical contributions in this chapter include a

new, sequential, greedy algorithm with relaxed edge ordering and lazy updating, and

clustering techniques for filtering out unnecessary edges. This result, as mentioned

earlier, is motivated by the topology control problem in wireless ad-hoc networks

and improves on existing topology control algorithms along several dimensions. The

results in this chapter were published [15] in the 25th Annual ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing (PODC 2006).

15

Chapter 3 essentially improves the results in Chapter 2. More precisely, this

chapter subsumes the results in Chapter 2 that apply to Euclidean metric spaces, and

extends these results to doubling metrics. Given a quasi unit ball graph G residing

in a metric space of constant doubling dimension, our algorithm constructs, for any

ε > 0, a (1+ ε)-spanner H of G with maximum degree bounded above by a constant.

In addition, we show that H is “lightweight”, in the following sense. Let ∆ denote the

aspect ratio of G, that is, the ratio of the length of a longest edge in G to the length of

a shortest edge in G. The total weight of H is bounded above by O(log∆)·wt(MST),

where MST denotes a minimum spanning tree of the metric space. Finally, we show

that H satisfies the so called leapfrog property, an immediate implication being that,

for the special case of Euclidean metric spaces with fixed dimension, the weight of

H is bounded above by O(wt(MST)). We employ the idea of net trees to obtain a

hierarchical decomposition of the metric space. This decomposition plays a crucial

role in determining which edges to keep and which to drop. As mentioned before,

UBGs in doubling metric spaces are robust models of wireless networks and this

paper is motivated by topology control for wireless networks. These results were

published [14] in the 10th International Conference On Principles Of Distributed

Systems (OPODIS 2006).

1.2.2 Clustering Problems

Our second set of results deal with efficiently partitioning the network in small

clusters, so that one node from each cluster can collectively represent the whole

16

network. Clustering can play a critical role in increasing the performance and lifetime

of wireless networks. Each cluster will have a cluster leader and we need to pay a

cost for opening a node as the cluster leader. The cluster leaders stay awake at

one time and the non-leader nodes can go into sleep mode and stay in touch with

their respective cluster leaders time to time. As mentioned before, these scenario

can be abstracted by various classic problems, e.g. minimum dominating set problem

(MDS), domatic partition problem, facility location problem etc. Most of our results

in this area deal with the facility location problems. Unlike many other clustering

problems, the facility location problem pay attention to the connection costs and this

lead to better clustering. Formally, the facility location problem takes as input a

graph G = (V,E), opening costs f : V → R
+ associated with nodes, and connection

costs c : E → R
+ associated with the edges. The problem is to find a subset I ⊆ V

of nodes to open (as “facilities”) and a function φ : V → I that assigns every node

(“client”) to an open facility in such a way that the total cost of opening the facilities

and connecting clients to open facilities is minimized.

Like the previous two chapters, the result in Chapter 4 is also motivated by

the geometry of wireless networks. In this chapter, we present the first constant-

factor approximation algorithm for the facility location problem on UDGs. In this

version of the problem, connection costs are not metric, i.e., they do not satisfy

the triangle inequality, because the cost of connecting to any non-neighbor can be

seen as ∞. In non-metric settings the best approximation algorithms guarantee an

O(logn)-factor approximation, but we are able to use structural properties of UDGs

17

to obtain a constant-factor approximation. Our approach combines ideas from the

primal-dual algorithm for facility location due to Jain and Vazirani [36] with recent

results on the weighted MDS problem for UDGs [2, 34]. We then show that the

facility location problem on UDGs is inherently local and one can solve local sub-

problems independently and combine the solutions in a simple way to obtain a good

solution to the overall problem. This leads to a distributed version of our algorithm

in the LOCAL model that runs in constant rounds and still yields a constant-factor

approximation. Even if the UDG is specified without geometry, we are able to combine

recent results onmaximal independent sets and clique partitioning of UDGs, to obtain

an O(logn)-approximation that runs in O(log∗ n) rounds. This paper [68] won the

Best Paper award in the 10th International Conference on Distributed Computing

and Networking (ICDCN 2009).

In Chapter 5, we present our first result motivated by the trade-off of run-

ning time and approximation factor. We present fast, distributed approximation

algorithms for the metric facility location problem in the CONGEST model, where

message sizes are bounded by O(logN) bits, N being the network size. We first

show how to obtain a 7-approximation in O(logm+logn) rounds via the primal-dual

method; here m is the number of facilities and n is the number of clients. Subse-

quently, we generalize this to a k-round algorithm, that for every constant k, yields

an approximation factor of O(m2/
√
k · n2/

√
k). These results answer a question posed

by Moscibroda and Wattenhofer (PODC 2005). Our techniques are based on the

same primal-dual algorithm due to Jain and Vazirani [36] and a recent rapid random-

18

ized sparsification technique due to Gfeller and Vicari [24]. These results complement

the results of Moscibroda and Wattenhofer [65] for non-metric facility location and

extend the results of Gehweiler et al. [23] for uniform metric facility location. This

paper was published [69] in the 28th Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing (PODC 2009).

In Chapter 6 we present our most recent work. This chapter provides further

insight into how a rapid pruning mechanism can be fit into our primal-dual framework

to design k-round algorithms. This chapter also explores the equivalence of primal-

dual and greedy approaches. We start by defining a pruning process involving sellers

on one side and buyers on the other. The goal is to quickly select a subset of the sellers

so that the products that these sellers bring to the market has small cost ratio, i.e.,

the ratio of the total cost of the selected sellers’ products to amount that interested

buyers are willing to pay. As modeled here, the pruning process can be used to speed

up distributed implementations of greedy algorithms (e.g., for MDS, facility location,

etc). We present a randomized instance of the pruning process that, for any positive

k, runs in O(k) communication rounds in the CONGEST model, yielding a cost ratio

of O(N c/k). Here N is the product of the number of sellers and number of buyers

and c is a small constant. Using this O(k)-round pruning algorithm as the basis, we

derive several simple, greedy, O(k)-round distributed approximation algorithms for

MDS and facility location (both metric and non-metric versions). Our algorithms

achieve optimal approximation ratios in polylogarithmic rounds and in some cases

shave a “logarithmic factor” off the best, known, approximation factor, typically

19

achieved using LP-rounding techniques. This paper has recently been accepted [70]

in the 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing (PODC 2010).

Finally, in Chapter 7, we discuss our plans to extend our current results, as

well as to approach new problems that we hope can be solved with smart applications

of the primal-dual/pruning mechanism.

20

CHAPTER 2
LOCAL APPROXIMATION SCHEMES FOR TOPOLOGY CONTROL

2.1 Introduction

Let G = (V,E) be a graph with edge weights w : E → R+. For t ≥ 1, a

t-spanner of G is a spanning subgraph G′ of G such that for all pairs of vertices

u, v ∈ V , the length of a shortest uv-path in G′ is at most t times the length of a

shortest uv-path in G. The problem of constructing a sparse t-spanner, for small t, of

a given graph G has been extensively studied by researchers in distributed computing

and computational geometry and more recently by researchers in ad-hoc wireless

networks. In this chapter we present a fast distributed algorithm for constructing a

linear size, lightweight t-spanner of bounded degree for any given t > 1, on wireless

networks. Below, we describe our result more precisely.

2.1.1 Network model

We model wireless networks using d-dimensional quasi unit ball graphs. For

any fixed α, 0 < α ≤ 1 and integer d ≥ 2, a d-dimensional α-quasi unit ball graph

(α-UBG, in short) is a graph G = (V,E) whose vertex set V can be placed in one-one

correspondence with a set of points in the d-dimensional Euclidean space and whose

edge set E satisfies the constraint: if |uv| ≤ α then {u, v} ∈ E and if |uv| > 1 then

{u, v} 6∈ E. Here we use |uv| to denote the Euclidean distance between the points

corresponding to vertices u and v. The α-UBG model does not prescribe whether a

pair of vertices whose distance is in the range (α, 1] are to be connected by an edge or

21

not. Specifically, if |uv| ∈ (α, 1], then it is assumed that an adversary determines if

{u, v} ∈ E or not. This is an attempt to take into account transmission errors, fading

signal strength, and physical obstructions. Our algorithm does not need to know the

locations of nodes of the α-UBG in d-dimensional Euclidean space; just the pairwise

Euclidean distances.

The α-UBG model is a higher dimensional generalization of the somewhat sim-

plistic unit disk graph (UDG) model of wireless networks that is popular in literature.

Specifically, when α = 1 and d = 2, a d-dimensional α-UBG is just a UDG. UDGs are

attractive due to their mathematical simplicity, but have been deservedly criticized

for being unrealistic models of wireless networks [45]. In our view, d-dimensional

α-UBGs are a significant step towards a more realistic model of wireless networks.

Two-dimensional α-UBGs were proposed in [4] as a model of wireless ad-hoc net-

works with unstable transmission ranges and the difficulty of doing geometric routing

in such networks was shown.

Our communication model is the standard synchronous message passing model

that does not account for channel access and collision issues. Time is divided into

rounds and in each round, each node can send a different message to each of its neigh-

bors, receive different messages from all neighbors and perform arbitrary (polynomial)

local computation. The length of messages exchanged between nodes is logarithmic in

the number of nodes. We measure the cost of our algorithm in terms of the number of

communication rounds. Although this model is somewhat idealized, it is nevertheless

interesting because it demonstrates the locality of computations.

22

2.1.2 Our result

For any edge weighted graph J , we use w(J) to denote the sum of the weights

of all the edges in J and MST (J) to denote a minimum weight spanning tree of J .

For any fixed ε > 0, 0 < α ≤ 1, and d ≥ 2 our algorithm runs in O(logn · log∗ n)

communication rounds on an n-node, d-dimensional α-UBG and computes a (1 + ε)-

spanner G′ of G whose maximum degree ∆(G′) = O(1) and whose total weight

w(G′) = O(w(MST (G)). Since any spanner of G has weight bounded below by

w(MST (G)), the weight of the output produced by the algorithm is within a constant

times the optimal weight. As far as we know, our result significantly improves all

known results of a similar kind along several dimensions. More on this further below.

2.1.3 Topology control

Our result is motivated by the topology control problem in wireless ad-hoc

networks. In Chapter 1 we have already provided an intuition for the topology control

problems. Let us look into further technical details. Let V be a set of nodes that can

communicate via wireless radios and for each v ∈ V , let N(v) denote the set of all

nodes that v can reach when transmitting at maximum power. The induced digraph

G = (V,E), where E = {(u, v) | v ∈ N(u)}, represents the network in which every

node has chosen to transmit at maximum power and has designated every node it can

reach as its neighbor. The topology control problem is the problem of devising an

efficient and local protocol P for selecting a set of neighbors NP (v) ⊆ N(v) for each

node v ∈ V . The induced digraph GP = (V,EP), where EP = {(u, v) | v ∈ NP (u)}

23

is typically required the satisfy properties such as symmetry (if v ∈ NP (u) then

u ∈ NP (v)), sparseness (|EP | = O(|V |)) or bounded degree (|NP (v)| ≤ c for all nodes

v and some constant c), and the spanner property. Sometimes stronger versions of

connectivity such as k-vertex connectivity or k-edge connectivity (for k > 1) are

desired, both for providing fault-tolerance and for improving throughput [28, 29]. If

the input graph consists of nodes in the plane, it is quite common to require that

the output graph be planar [57, 58, 59, 79, 81]. This requirement is motivated by

the existence of simple, memory-less, geometric routing algorithms that guarantee

message delivery only when the underlying graph is planar [41].

Though the topology control problem is recent, there is already an extensive

body of literature on the problem to which the above sample of citations do not do

justice. However, many of the topology control protocols that provide worst case

guarantees on the quality of the topology, assume that the network is modeled by a

UDG. A recent example [59] presents a distributed algorithm that requires a linear

number of communication rounds in the worst case to compute a planar t-spanner

of a given UDG with t ≈ 6.2 and in which each node has degree at most 25. These

two constants can be slightly tuned – t can be brought down to about 3.8 with a

significant increase in the degree bound. We improve on the result in [59] along several

dimensions. As is generally known among practitioners in ad-hoc wireless networks,

the “flat world” assumption and the identical transmission range assumption of UDGs

are unrealistic [45]. By using an α-UBG we generalize our model of wireless networks,

hopefully moving much closer to reality. For any ε > 0, our algorithm returns a (1+ε)-

24

spanner; as far as we know, this is the first distributed algorithm that produces an

arbitrarily good spanner for an α-UBG model of wireless networks. We also guarantee

that the total weight of the output is within constant times optimal – a guarantee

that is not provided in [59]. Finally, using algorithmic techniques and distributed data

structures that might be of independent interest, we ensure that our protocol runs

in O(logn · log∗ n) communication rounds. We are not aware of any topology control

algorithm that runs in poly-logarithmic number of rounds and provides anywhere

close to the guarantees provided by our algorithm.

2.1.4 Spanners in computational geometry

Starting in the early 1990’s, researchers in computational geometry have at-

tempted to find sparse, lightweight spanners for complete Euclidean graphs. Given

a set P of n points in Rd, the tuple (P,E), where E is the set of line segments

{{p, p′} | p, p′ ∈ P}, is called the complete Euclidean graph on P . For any subset

E ′ ⊆ E, (P,E ′) is called a Euclidean graph on P . The specific problem that re-

searchers in computational geometry have considered, is this. Given a set P of n

points in Rd and t > 1, compute a Euclidean graph on P that is a t-spanner of

the complete Euclidean graph on P , whose maximum degree is bounded by O(1)

and whose weight is bounded by the weight of a minimum spanning tree on P . For

an early example, see [56] in which the authors show that there are “planar graphs

almost as good as the complete graphs and almost as cheap as minimum spanning

trees.” This was followed by a series of improvements [13, 16, 17, 25], with the most

25

recent paper [13] presenting algorithms for constructing Euclidean subgraphs that

provide the additional property of k-fault tolerance. Most of the papers mentioned

above start with the following simple, greedy algorithm.

width 4.7in

Algorithm Overview SEQ-GREEDY (G = (V,E), t)
1. Order the edges in E in non-decreasing order of length.

2. E ′ ← φ, G′ ← (V,E ′)

3. For each edge e = {u, v} ∈ E if there is no uv-path in G′ of length at most t · |uv|

(a) E ′ ← E ′ ∪ {e}

(b) G′ ← (V,E ′)

Output G′.

It is well-known [17] that if the input graph G = (V,E) is the complete Eu-

clidean graph, then the output graph G′ = (V,E ′) produced by SEQ-GREEDY has the

following useful properties: (i) G′ is a t-spanner of G, (ii) ∆(G′) = O(1), and (iii)

w(G′) = O(w(MST (G))). A naive implementation of SEQ-GREEDY takes O(n3 log n)

time because a quadratic number of shortest path queries need to be answered on a

dynamic graph with O(n) edges. Consequentially, papers in this area [17, 25] focus

on trying to implement SEQ-GREEDY efficiently. For example, Das and Narasimhan

[17] show how to use certain kind of graph clustering to answer shortest path queries

efficiently, thereby reducing the running time of SEQ-GREEDY to O(n log2 n). One of

our main contributions presented in this chapter is to show how a variant of the Das-

26

Narasimhan clustering scheme can be implemented and maintained efficiently, in a

distributed setting.

2.1.5 Summary of our contributions

In obtaining the main result, our technical contributions are the following:

1. We first show that sparse, lightweight t-spanners for arbitrarily small t > 1, not

only exist for d-dimensional α-UBGs, but can be computed using SEQ-GREEDY.

Note that sparse t-spanners for arbitrarily small values of t ≥ 1 do not exist

for general graphs. For example, there is a classical graph-theoretic result that

shows that for any t ≥ 1, there exist (infinitely many) unweighted n-vertex

graphs for which every t-spanner needs Ω(n1+1/(t+2)) edges (see Page 179 in

[71]).

2. We then consider a version of SEQ-GREEDY in which the requirement that edges

be considered in increasing order of length is relaxed. More precisely, the

edges are distributed into O(logn) bins B0, B1, B2, . . . such that edges in Bi

are all shorter than edges in Bi+1. It is then shown that any ordering of the

edges in which edges in B0 come first, followed by edges in B1, followed by

the edges in B2, etc., is good enough for the correctness of SEQ-GREEDY, even

for d-dimensional α-UBGs. More importantly, we show that the update step

in SEQ-GREEDY (Step 3(a)) need not be performed after each edge is queried.

Instead, a more lazy update may be performed, after each bin is completely

processed. Being able to perform a lazy update is critical for a distributed im-

27

plementation; roughly speaking, we want the nodes to query all edges in a bin

in parallel and not to have to wait on answers to queries on other edges in a

bin.

3. We also use a clustering technique as a way to reduce the number of edges to be

queried per node. Reducing the number of query edges per node, is critical to

being able to guarantee that the output of our distributed version of SEQ-GREEDY

does not have too many edges incident on a node.

4. We then show that this relaxed version of SEQ-GREEDY can be implemented in

a distributed setting in O(logn) phases — one phase corresponding to each bin

— such that each phase requires O(log∗ n) rounds. Each phase requires the

computation of maximal independent sets (MIS) on some derived graphs. We

show that the derived graphs are unit ball graphs of constant doubling dimension

[51] and use the O(log∗ n)-round MIS algorithm of Kuhn et al. [51].

2.1.6 Extensions to our main result

Here we briefly report on extensions to our main result that we have obtained.

1. Let G = (V,E) be an edge-weighted graph. For any t > 1 and positive integer

k, a k-vertex fault-tolerant t-spanner of G is a spanning subgraph G′ if for each

subset S of vertices of size at most k, G′[V \ S] is a t-spanner of G[V \ S].

A k-edge fault-tolerant t-spanner is defined in a similar manner. Using ideas

from [13] we can extend our algorithm to produce a k-vertex (or a k-edge)

fault-tolerant t-spanner in polylogarithmic number of communication rounds.

28

2. So far we have used Euclidean distances as weights for the edges of the input

graph G. However, if the metric c · |uv|γ, for positive constant c and γ ≥ 1, is

used in place of Euclidean distances |uv|, we can show that our algorithm still

produces a spanner with all three desired properties. Relatives of Euclidean

distances, such as the function mentioned above, may be used to produce energy

spanners.

3. Let G = (V,E) be an edge-weighted graph. The power cost of a vertex u ∈ V

is power(u) = max{w(u, v) | v is a neighbor of u}. In other words, the power

cost of a vertex u is proportional to the cost of u transmitting to a farthest

neighbor. The power cost of G is
∑

u∈V power(u) [30]. We can show that the

output of our algorithm is not only lightweight with respect to the usual weight

measure (sum of the weights of all edges) but also with respect to the power

cost measure.

2.2 Sequential Relaxed Greedy Algorithm

Now we show that a relaxed version of SEQ-GREEDY produces an output G′

with all three desired properties, even when the input is not a complete Euclidean

graph, but is a d-dimensional, α-UBG for fixed d and α. Relaxing the requirement in

SEQ-GREEDY that the edges be totally ordered by length and allowing for the output

to be updated lazily are critical to obtaining a distributed algorithm that runs in

polylogarithmic number of rounds.

Let r > 1 be a constant to be fixed later and let Wi = riα/n for each i =

29

0, 1, 2, Let I0 = (0, α/n] and for each i = 1, 2, . . . let Ii = (Wi−1,Wi]. Let

m = ⌈logr n
α
⌉. Then, since no edge has length greater than 1, the length of any edge

in E lies in one of the intervals I0, I1, . . . , Im. Let Ei = {{u, v} ∈ E : |uv| ∈ Ii}.

We now eliminate the restriction that edges within a set Ei be processed in

increasing order by length. We run SEQ-GREEDY in m + 1 phases: in phase i, the

algorithm processes edges in Ei in arbitrary order and adds a subset of edges in Ei

to the spanner. For 0 ≤ i ≤ m, we use Gi to denote the spanning subgraph of G

consisting of edges E0 ∪E1 ∪ · · · ∪Ei. Thus Gi is the portion of the input graph that

the algorithm has processed in phase i and earlier. We use G′
i to denote the output of

the algorithm at the end of phase i. In other words, G′
i is the spanning subgraph of G

consisting of edges of G that the algorithm has decided to retain in phases 0, 1, . . . , i.

The final output of the algorithm is G′ = G′
m.

The way E0 is processed is different from the way Ei, i > 0 is processed. We

now separately describe these two parts.

2.2.1 Processing Edges in E0

We start by stating a property of G0 that follows easily from the fact that all

edges in G0 are small.

Lemma 1. Every connected component of G0 induces a clique in G.

The algorithm PROCESS-SHORT-EDGES for processing edges in E0 consists of

three steps (i) determine the connected components of G0, (ii) use SEQ-GREEDY to

compute a t-spanner for each connected component (that is, a clique), and (iii) let G′
0

30

be the union of the t-spanners computed in Step (ii) and output G′
0. The following

theorem states the correctness of the PROCESS-SHORT-EDGES algorithm. Its proof

follows easily from the correctness of SEQ-GREEDY.

Theorem 2. G′
0 satisfies the following properties. (i) For every edge {u, v} ∈ E0, G

′
0

contains a uv-path of length at most t · |uv|, (ii) ∆(G′
0) = O(1), and (iii) w(G′

0) =

O(w(MST (G))).

2.2.2 Processing Long Edges

We now describe how edges in Ei are processed, for i > 0. The algorithm

PROCESS-LONG-EDGES has five steps: (i) computing a cluster cover for G′
i−1, (ii) se-

lecting query edges in Ei, (iii) computing a cluster graph Hi−1 for G
′
i−1, (iv) answering

shortest path queries for the query edges selected in Step (ii), and (v) adding edges

to G′
i−1 to obtain G′

i and then removing redundant edges from G′
i. These steps are

described in the next five subsections.

For any graph J , let V (J) denote the vertex set for J . For any pair of vertices

u, v ∈ V (J) let spJ(u, v) denote the length of a shortest uv-path in J . Define a cluster

of J with center u ∈ V (J) and radius r to be a set of vertices Cu ⊆ V (J) such that,

for each v ∈ Cu, spJ(u, v) ≤ r. A set of clusters {Cu1 , Cu2, . . .} of J is a cluster cover

of J of radius r if every cluster in the set has radius r, every vertex in V (J) belongs

to at least one cluster, and for any pair of cluster centers ui and uj, spJ(ui, uj) > r.

31

2.2.2.1 Computing a Cluster Cover for G′
i−1

At the beginning of phase i we compute a cluster cover of radius δWi−1, where

δ < 1 is a constant that will be fixed later. We start with an arbitrary vertex u ∈ V

and run Dijkstra’s shortest path algorithm with source u on G′
i−1, in order to identify

nodes v ∈ V with the property that spG′
i−1

(u, v) ≤ δWi−1; each such node v gets

included in the cluster Cu. Once Cu has been identified, recurse on V \ Cu until all

nodes belong to some cluster and we have a cluster cover of G′
i−1 of radius δWi−1.

2.2.2.2 Selecting Query Edges in Ei

As defined earlier, edges in Ei have weights in the interval Ii = (Wi−1,Wi],

while the cluster cover for G′
i−1 has radius δWi−1, with δ < 1. This implies that each

edge in Ei has endpoints in different clusters. Our goal is to select a unique query

edge per pair of clusters. This will guarantee that there are a constant number of

query edges incident on any node (see Lemma 4) and this fact will be critically used

by the distributed version of our algorithm to guarantee the degree bound on the

spanner that is constructed.

Let θ be a quantity that satisfies 0 < θ < π
4
and t ≥ 1/(cos θ − sin θ). Note

that for any value t > 1, no matter how small, there always exists a θ that satisfies

these restrictions and as t→ 1, we have that θ → 0. Define an edge e = {u, v} ∈ Ei

to be a covered edge if there is a z ∈ V such that (i) {u, z} ∈ G′
i−1, |vz| ≤ α and

∠vuz ≤ θ or (ii) {v, z} ∈ G′
i−1, |uz| ≤ α and ∠uvz ≤ θ. Any edge in Ei that is

not covered is a candidate query edge. The motivation for these definitions is the

32

following geometric lemma, due to Czumaj and Zhao [13].

Lemma 3 (Czumaj and Zhao [13]). Let 0 < θ < π
4
and t ≥ 1

cos θ−sin θ
. Let u, v, z be

three points in Rd with ∠vuz ≤ θ. Suppose further that |uz| ≤ |uv|. Then the edge

{u, z} followed by a t-spanner path from z to v is a t-spanner path from u to v (see

Figure 2.1).

u

v

z

θ

Figure 2.1: u, v, z are three points in Rd with ∠vuz ≤ θ(a) Edge {u, v} is covered:
{u, z} followed by a t-spanner zv-path is a t-spanner uv-path.

Now note that for each covered edge {u, v} ∈ Ei, there exists z that satisfies

the preconditions of Lemma 3 (by definition), and using this lemma we can show that

G′
i−1 already contains a uv-path of length at most t · |uv|. This suggests that covered

edges need not be queried and therefore we can start with the complement of the set

of covered edges as candidate query edges.

Now we show that the set of candidate query edges can be further pared down.

For each pair of clusters Ca and Cb, let Ei[Ca, Cb] denote the subset of candidate query

edges in Ei with one endpoint in Ca and the other endpoint in Cb. Our algorithm

33

selects a unique query edge {x, y} from each nonempty subset Ei[Ca, Cb]. Assuming

that x ∈ Ca and y ∈ Cb, the edge {x, y} is selected so as to minimize

t · |xy| − spG′
i−1

(a, x)− spG′
i−1

(b, y) (2.1)

The quantity in (2.1) is carefully chosen to guarantee that, if a t-spanner path between

the endpoints of an edge {x, y} that minimizes (2.1) exists in G′
i, then t-spanner paths

between the endpoints of all edges in Ei[Ca, Cb] exist in G′
i (this property will later

be shown in the proof of Theorem 10). This implies that, for each pair of clusters Ca

and Cb, it is sufficient to query just the edge {x, y} in Ei[Ca, Cb] that minimizes (2.1).

The following lemma shows that selecting query edges as described above

filters all but a constant number of edges per cluster. The proof follows from two

observations: (i) if a pair of cluster centers are connected by an edge in Ei, then the

clusters are not too far from each other in Euclidean space (in particular, no farther

than (4δ+r)Wi−1), and (ii) the Euclidean distance between any pair of cluster centers

is bounded from below by δWi−1/t, because they would otherwise be part of the same

cluster.

Lemma 4. The number of query edges in Ei that are incident on any cluster is a

constant (O(td(4δ+r
δ

)d), at most).

2.2.2.3 Computing a Cluster Graph

For each selected query edge {x, y} ∈ Ei, we need to know if G′
i−1 contains an

xy-path of length at most t · |xy|. In general, the number of hops in a shortest xy-

path in G′
i−1 can be quite large and having to traverse such a path would mean that

34

the shortest path query corresponding to edge {x, y} could not be answered quickly

enough. To get around this problem, we use an idea from [17] in which the authors

construct an approximation to G′
i−1, called a cluster graph, and show that for any

edge {x, y} ∈ Ei, the shortest path query for {x, y} can be answered approximately

on Hi−1 in a constant number of steps. The goal of Das and Narasimhan [17] was

to improve the running time of SEQ-GREEDY on complete Euclidean graphs, but we

show that the Das-Narasimhan data structure can be constructed and maintained in a

distributed fashion for efficiently answering shortest path queries for edges belonging

to a α-UBG. In the following, we describe a sequential algorithm that starts with a

cluster cover of G′
i−1 of radius δWi−1, and builds a cluster graph Hi−1 of G′

i−1. This

algorithm is identical to the one in Das and Narasimhan [17] and is included mainly

for completeness.

The vertex set of Hi−1 is V and the edge set of Hi−1 contains two types of

edges: intra-cluster edges and inter-cluster edges. An edge {a, x} is an intra-cluster

edge if a is a cluster center and x is node in Ca. Inter-cluster edges are between

cluster centers. An edge {a, b} is an inter-cluster edge if a and b are cluster centers,

and at least one of the following two conditions holds: (i) spG′
i−1

(a, b) ≤Wi−1, or (ii)

there is an edge in G′
i−1 with one endpoint in Ca and the other endpoint in Cb. See

Figure 2.2.

Regardless of the type of a cluster edge e = {a, b} (inter- or intra-), the weight

of e is the value of spG′
i−1

(a, b). The following lemma follows easily from the definition

of inter-cluster edges.

35

a
b

s
t

bC

cC

c

u

aC

v

Figure 2.2: Edges interior to disks are intra-cluster edges. Edge {a, b} is an inter-
cluster edge because spG′

i−1
(a, b) ≤ Wi−1, and {b, c} is an inter-cluster edge because

{u, v} is inG′
i−1. An st-path inG′

i−1, shown by the dashed curve may be approximated
by the path s, a, b, t in Hi−1.

Lemma 5. For any inter-cluster edge {a, b} in Hi−1, we have that spG′
i−1

(a, b) ≤

(2δ + 1)Wi−1.

The above upper bound also implies that |ab| ≤ (2δ + 1)Wi−1. Using this and

arguments similar to those used for Lemma 4, we can show that the number of inter-

cluster edges incident to a cluster center is O((5 + 1/δ)d), so we have the following

lemma.

Lemma 6. The number of inter-cluster edges in Hi−1 incident to a cluster center is

O((5 + 1/δ)d), a constant.

The main reason for constructing the cluster graph Hi−1 is that lengths of

paths in Hi−1 are close to lengths of corresponding paths in G′
i−1 and shortest path

queries for edges in Ei can be answered quickly in Hi−1. The following lemma (whose

proof appears in Das and Narasimhan [17]) shows that we can construct Hi−1 such

that path lengths in Hi−1 approximate path lengths in G′
i−1 to any desired extent,

depending on the choice of δ.

36

Lemma 7. For any edge {x, y} ∈ Ei, if there is a path between x and y in G′
i−1

of length L1, then there is a path between x and y in Hi−1 of length L2 such that

L1 ≤ L2 ≤ 1+6δ
1−2δ

L1.

2.2.2.4 Answering Shortest Path Queries

For query edges {x, y} ∈ Ei, we are interested in knowing whether G′
i−1 has

an xy-path of length at most t · |xy|. We ask this question on the cluster graph Hi−1.

If Hi−1 contains an xy-path of length at most t · |xy|, we do not add {x, y} to G′
i;

otherwise we do. If Hi−1 contains an xy-path of length at most t · |xy|, then so does

G′
i−1 (by Lemma 7, since L1 ≤ L2). Therefore, not adding {x, y} to the spanner is

not a dangerous choice. On the other hand, even if Hi−1 does not contain an xy-path

of length at most t · |xy|, G′
i−1 might contain such a path and in this case adding

edge {x, y} is unnecessary. Adding extra edges is of course not problematic for the t-

spanner property. It will turn out that this is not a problem even for the requirement

that the spanner should have bounded degree and small weight, given that paths in

Hi−1 can approximate paths in G′
i−1 to an arbitrary degree.

Given the structure of the cluster graph, all but at most 2 edges in any simple

xy-path are inter-cluster edges. Since the radius of each cluster is δWi−1, each inter-

cluster edge has weight greater than δWi−1. We are looking for a path of length at

most t · |xy|. Since |xy| ∈ (Wi−1,Wi], we are looking for a path of length at most

t ·Wi = t · r ·Wi−1. Any simple path in Hi−1 of length at most t · r ·Wi−1 has at most

2 + ⌈tr/δ⌉ hops, which is a constant. This yields the following lemma.

37

Lemma 8. For any edge {x, y} ∈ Ei, if spHi−1
(x, y) ≤ t · |xy|, then Hi−1 contains a

shortest xy-path with O(1) hops (no more than 2 + ⌈tr/δ⌉).

One issue we need to deal with, especially when attempting to construct and

answer queries in Hi−1 in a distributed setting, is that edges in Hi−1 need not be

present in the underlying network G. Specifically, for an intra-cluster edge {u, a},

where Ca is a cluster and u ∈ Ca, it may be the case that |ua| > α and {u, a} may

be absent from G. Similarly, an inter-cluster edge {a, b} in Hi−1 may be absent in

G. However, for any edge {x, y} in Hi−1 (intra- or inter-cluster edge), we have the

bound spG′
i−1

(x, y) ≤ (2δ + 1)Wi−1. This follows from Lemma 5 and the fact that

the radius of each cluster is δWi−1. Thus a shortest xy-path in G′
i−1 lies entirely

in a ball of radius (2δ + 1)Wi−1 centered at x. Since G′
i−1 is a spanning subgraph

of G, this implies that there is a shortest xy-path P in G that lies entirely in the

d-dimensional ball of radius (2δ + 1)Wi−1 centered at x. Since any two vertices in P

that are two hops away from each other are at least α apart (in the d-dimensional

Euclidean space), P contains at most ⌈2(2δ+1)Wi−1/α⌉ < ⌈2(2δ+1)/α⌉ hops. This

argument yields the following theorem.

Theorem 9. For any edge {x, y} ∈ Ei, if spHi−1
(x, y) ≤ t · |xy|, then G contains a

shortest xy-path with O(1) hops (no more than ⌈2(2δ + 1)/α⌉).

This theorem implies that brute force search initiated from one of the end-

points, say x, will be able to answer the shortest path query on edge {x, y} in O(1)

rounds in a distributed setting.

38

2.2.2.5 Removing Redundant Edges

Recall that shortest path queries for edges in Ei are answered on Hi−1, and so

updates to G′
i in phase i do not influence subsequent shortest path queries in phase

i. Thus it is possible that in phase i two edges {u, v} and {u′, v′} get added to G′
i−1,

yet both of the following hold:

(i) spHi−1
(v, u′) + |u′v′|+ spHi−1

(v′, u) ≤ t · |uv|

(ii) spHi−1
(v′, u) + |uv|+ spHi−1

(v, u′) ≤ t · |u′v′|

Note that, since spG′
i−1

(x, y) ≤ spHi−1
(x, y) holds for any pair of nodes x and y,

conditions (i) and (ii) above imply that G′
i − {u, v} contains a t-spanner path from

u to v and G′
i − {u′, v′} contains a t-spanner path from u′ to v′. We call two edges

{u, v} and {u′, v′} satisfying conditions (i) and (ii) above mutually redundant: one of

them could potentially be eliminated from Gi, without compromising the t-spanner

property of Gi. In fact, such mutually redundant pairs of edges need to be eliminated

from G′
i because our proof that G′ has small weight (Theorem 13) depends on the

absence of such pairs of edges.

To do this, we build a graph J that has a node for each edge in a mutually

redundant pair and an edge between every pair of nodes that correspond to a mutually

redundant pair of edges in G′
i. We construct an MIS I of J and eliminate from G′

i all

edges associated with nodes in J that do not appear in I.

39

2.2.3 The Three Desired Properties

Recall that G′ = G′
m is the spanner at the end of phase m. We now prove

that G′ satisfies the three properties that the output of SEQ-GREEDY was guaranteed

to have. The proofs of these theorems form the technical core of this chapter and are

presented next in this section.

Theorem 10. For any t > 1, 0 < δ ≤ t−1
4
, the output G′ is a t-spanner.

Proof. We first prove that the theorem holds for all query edges in E, then we extend

the argument to non-query edges as well. Let {x, y} be an arbitrary query edge and

let i ≥ 1 be such that {x, y} ∈ Ei. Then either (i) {x, y} is added to the spanner

in phase i, or (ii) spHi−1
(x, y) ≤ t · |xy|. If the former is true and {x, y} is not a

redundant edge, then the theorem holds. If {x, y} is a redundant edge but does not

get removed from G′
i, then again the theorem holds. If {x, y} is a redundant edge that

gets removed from Gi, then at least one mutually redundant counterpart edge must

remain in G′
i (since removed edges form a maximal independent set), ensuring a t-

spanner xy-path in Gi. If (ii) is true, then from Lemma 7, spG′
i−1

(x, y) ≤ spHi−1
(x, y)

(first part of the inequality) and therefore spG′
i−1

(x, y) ≤ t · |xy|.

For non-query edges, the proof is by induction on the length of edges in G.

The base case corresponds to edges in E0, for which SEQ-GREEDY ensures that the

theorem holds.

Assume that the theorem is true for any edge in E of length no greater than

some value q, and consider a smallest non-query edge {x, y} in G of length greater

than q. We prove that spG′(x, y) ≤ t · |xy|. Let i be such that {x, y} ∈ Ei. We now

40

consider two cases, depending on whether {x, y} is a candidate query edge in phase

i or not.

If {x, y} is not a candidate query edge, then it is a covered edge. That is, there

exists an edge {x, z} in G′
i−1 such that |yz| ≤ α and ∠yxz ≤ θ, or an edge {y, z} in

G′
i−1 such that |xz| ≤ α and ∠xyz ≤ θ. The two cases are symmetric and so without

loss of generality, assume that the former is true. Here θ satisfies the hypothesis of

the Czumaj-Zhao lemma (Lemma 3), that is, 0 < θ < π
4
and t ≥ 1

cos θ−sin θ
. Since

|yz| ≤ α and G is an α-UBG, this implies that {y, z} is an edge is E. Furthermore,

since 0 < θ < π
4
, we have |yz| < |xy|. Refer to Figure 2.3(a). If {y, z} is a query

edge, then by the argument above we have that G′ contains a t-spanner yz-path p.

Otherwise, if {y, z} is not a query edge, since its length is less than the length of

{x, y}, by the inductive hypothesis we get that there is a t-spanner yz-path p. In

either case, Lemma 3 tells us that {x, z} followed by p is a t-spanner path from x to

y, completing this case.

x

y

z< θ

a

u
b

v

x

y

(a) (b)

Figure 2.3: If {y, z} is a query edge, then by the argument above we have that G′

contains a t-spanner yz-path p. Otherwise, if {y, z} is not a query edge, since its
length is less than the length of {x, y}, by the inductive hypothesis we get that there
is a t-spanner yz-path p. (a) {x, y} is a covered edge (b) {u, v} is a query edge: if Gi

contains a t-spanner uv-path, then Gi contains a t-spanner xy-path.

41

We now consider the case when {x, y} is a candidate query edge in phase i,

but not a query edge. Let a and b be such that x ∈ Ca and y ∈ Cb, and let {u, v}

be the query edge selected in phase i, with u ∈ Ca and v ∈ Cb. Refer to Figure 2.3b.

Due to the criteria for selecting {u, v}, we have

t · |uv| − spG′
i−1

(a, u)− spG′
i−1

(b, v) ≤

t · |xy| − spG′
i−1

(a, x)− spG′
i−1

(b, y). (2.2)

Recall that G′
i is the partial spanner at the end of phase i. We show that

spG′
i
(x, y) ≤ t · |xy|. We discuss two cases, depending on whether {u, v} was added

to G′
i or not.

Assume first that {u, v} was not added to G′
i. This means that spHi−1

(u, v) ≤

t · |uv|. Note however that

spHi−1
(u, v) = spG′

i−1
(u, a) + spHi−1

(a, b) + spG′
i−1

(b, v)

≤ t · |uv|. (2.3)

We now evaluate

spG′
i−1

(x, y) ≤ spG′
i−1

(x, a) + spG′
i−1

(a, b) + spG′
i−1

(b, y)

≤ spG′
i−1

(x, a) + spHi−1
(a, b) + spG′

i−1
(b, y)

≤ t · |xy|.

This latter inequality involves simple substitutions that use inequalities (2.2) and (2.3),

and completes this case.

42

Now assume that {u, v} was added to G′
i. Since u ∈ Ca and Ca has radius

δWi−1, we have that spG′
i−1

(a, u) ≤ δWi−1. Similarly, spG′
i−1

(b, v) ≤ δWi−1. These

together with (2.2) yield

t · |uv| − 2δWi−1 ≤ t · |xy| − spG′
i−1

(a, x)− spG′
i−1

(b, y). (2.4)

The existence of {u, v} in G′
i enables us to construct in G′

i a path from a to b of

weight

spG′
i
(a, b) ≤ spG′

i
(a, u) + |uv|+ spG′

i
(v, b)

≤ 2δWi−1 + |uv|, (2.5)

since spG′
i
(a, u) ≤ spG′

i−1
(a, u) ≤ δWi−1, and same for spG′

i
(v, b). We can now con-

struct a path in G′
i from x to y of weight

spG′
i
(x, y) ≤ spG′

i
(a, x) + spG′

i
(b, y) + spG′

i
(a, b)

≤ t · |xy|+ 2δWi−1 − t · |uv|+ spG′
i
(a, b)

≤ t · |xy|+ 4δWi−1 − (t− 1) · |uv|

< t · |xy|+ 4δWi−1 − (t− 1)Wi−1

In deriving this chain of inequalities, we have used (2.4), (2.5) and the fact that

|uv| > Wi−1. Note that for any δ ≤ t−1
4
, the quantity 4δWi−1 − (t − 1) ·Wi−1 above

is negative, yielding spGi
(x, y) < t · |xy|. This completes the proof.

Theorem 11. G′ has O(1) degree.

43

2

α

2

α

χ

u

v

z

θ

u
1

v
1

u
2

v
2

u
3

v
3

Figure 2.4: Leapfrog Property. (a) Region χ contains two neighbors v and z of u. (b)
Definition of the t-leapfrog property with S = {{u1, v1}, {u2, v2}, {u3, v3}}.

Proof. Let θ be a quantity satisfying the conditions of Lemma 3. Fix a vertex u and

consider the d-dimensional unit radius ball centered at u. For some T that depends

only on θ and d, this ball can be partitioned into T cones, each with apex u, such that

for any x, y in a cone, ∠xuy ≤ θ. Yao [83] shows how to construct such a partition

with T = O(d3/2 · sin−d(θ/2) · log(d sin−1(θ/2))) cones. Place an infinite axis-parallel

grid of d-dimensional cubes, each of dimension α√
d
× α√

d
× · · · × α√

d
, on the plane.

See Figure 2.4(c) for a 2-dimensional version of this picture. There are O(1/αd) cells

that intersect the unit ball centered at u, and therefore there are O(1/αd) cells that

intersect each cone in the cone partition of this unit ball. Thus the cones and the

square cells together partition the unit ball centered at u into O(T/αd) regions. We

show that in G′, u has O(t
d(4δ+r)d

δd
) neighbors in each region, which is a constant.

Let v1, v2, . . . , vk be neighbors of u in G′ that lie in a region χ. Without loss

of generality, assume that |uv1| ≥ |uvj|, for j = 2, . . . , k, and let i be such that

{u, v1} ∈ Ei. Since |uvj| ≤ |uv1|, we have that for all j = 2, . . . , k, {u, vj} ∈ Eℓ, with

ℓ ≤ i.

44

We now prove that {u, vj} is in fact in Ei for all j. To derive a contradiction,

assume that there is a j > 1 such that {u, vj} ∈ Eℓ, with ℓ < i. This means that just

before edge {u, v1} is processed, G′ contains edge {u, vj}. Also note that since v1 and

vj lie in the same region, |v1vj | ≤ α. But, this means that {u, v1} is a covered edge in

phase i and will not be queried. This contradicts the presence of edge {u, v1} in G′.

We have shown that {u, vj} ∈ Ei for all j. Recall that our algorithm picks a

unique query edge per pair of clusters. This along with Lemma 4 proves that k is

constant.

In the next theorem, we show that the spanner produced by the algorithm

has small weight. The proof relies on the line segments in the spanner satisfying

a property known as the leapfrog property [13, 25]. For any t ≥ t′ > 1, a set of

line segments, denoted F , has the (t′, t)-leapfrog property if for every subset S =

{{u1, v1}, {u2, v2}, . . . , {us, vs}} of F

t′ · |u1v1| <
s∑

i=2

|uivi|+ t ·
(s−1∑

i=1

|viui+1|+ |vsu1|
)
. (2.6)

Informally, this definition says that if there exists an edge between u1 and v1, then any

path not including {u1, v1} must have length greater than t′|u1v1| (see Figure 2.4(c)

for an illustration of this definition). The following implication of the (t′, t)-leapfrog

property was shown by Das and Narasimhan [17].

Lemma 12. Let t ≥ t′ > 1. If the line segments F in d-dimensional space satisfy

the (t′, t)-leapfrog property, then wt(F) = O(wt(MST)), where MST is a minimum

spanning tree connecting the endpoints of line segments in F . The constant in the

45

asymptotic notation depends on t, t′ and d.

Theorem 13. Let 0 < δ < (t− 1)/(6 + 2t). Let tδ denote t · (1 − 2δ)/(1 + 6δ). Let

1 < r < (tδ + 1)/2. When the relaxed greedy algorithm is run with these values of δ

and r, the output G′ satisfies w(G′) = O(wt(MST (G))).

Proof. Let β > 1 be a constant picked as follows. When tα < 1, pick β satisfying

1 < β < min{2, 1/(1 − tα)}. Otherwise, pick β satisfying 1 < β < 2. Partition the

edges of G′ into subsets F0, F1, . . . such that F0 = {{u, v} ∈ G′ | |uv| ≤ α} and for

each j > 0, Fj = {{u, v} ∈ G′ | αβj−1 < |uv| ≤ αβj}. Let ℓ = ⌈logβ 1
α
⌉. Then every

edge in G′ is in some subset Fj , 0 ≤ j ≤ ℓ. We will now show that each Fj satisfies

the (t′, t)-leapfrog property, for any t′ satisfying:

1 ≤ t′ < min{tδ + 1

r
− 1,

2

r
,
t

r
,
2

β
, tα +

1

β
}. (2.7)

It is easy to check that our choice for δ, r, and β guarantee that each quantity inside

the min operator is strictly greater than 1. Showing the (t′, t)-leapfrog property for Fj

would imply that w(Fj) = O(w(MST (G))), and since the edges of G′ are partitioned

into a constant number of subsets Fj , w(G
′) = O(w(MST (G))).

Consider an arbitrary subset S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} ⊆ F0 . To

prove inequality (2.6) for S, it suffices to consider the case when {u1, v1} is a longest

edge in S. We consider F0 separately from Fj , j > 0.

The F0 case. If for any 1 ≤ k < s, |vkuk+1| > |u1v1| or |vsu1| > |u1v1|, then

the leapfrog property holds. So we assume that for all 1 ≤ k < s, |vkuk+1| ≤ |u1v1| and

|vsu1| ≤ |u1v1|. Let i be the phase in which {u1, v1} gets processed, i.e., {u1, v1} ∈ Ei.

46

Since |u1v1| ≤ α, it is the case that for all 1 ≤ k < s, |vkuk+1| ≤ α and |vsu1| ≤ α.

Hence, {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} is a subset of edges of G and each edge

in this set gets processed in phase i or earlier.

Assume first that at least one edge in the set {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤

k < s} gets processed in phase i. Then the right hand side of inequality (2.6) is at

least tWi−1, since edges in Ei have weights in the interval Ii = (Wi−1, rWi−1]. Also

since t′|u1v1| ≤ t′rWi−1, and since the inequality t′rWi−1 < tWi−1 is guaranteed by

the values of r and t′ in (2.7), the leapfrog property holds for this case.

Assume now that all edges in {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} have

been processed in phase i− 1 or earlier, meaning that t-spanner paths between their

endpoints exist in G′
i−1 at the time {u1, v1} gets processed. For 1 ≤ k < s, let Pk be

a shortest vkuk+1-path in G′
i−1, and let Ps be a shortest vsu1-path in G′

i−1. Let P be

the following u1v1-path in G′
i: P = P1 ⊕ {u2, v2} ⊕ P2⊕ {u3, v3} ⊕ · · · ⊕ Ps. Here, we

use ⊕ to denote concatenation. We distinguish three cases, depending on the size of

the subset S ∩ Ei.

(i) |S ∩ Ei| > 2. Then, w(P) ≥ 2Wi−1. We also have that |u1v1| ≤ rWi−1, since

{u1, v1} ∈ Ei. It follows that w(P) > t′|u1, v1| for any t′ < 2
r
. Furthermore,

w(P) is no greater than the right hand side of the (t′, t)-leapfrog inequality (2.6),

so lemma holds for this case as well.

(ii) |S ∩ Ei| = 2. In addition to {u1, v1}, assume that {uk, vk} ∈ Ei for some k,

1 < k ≤ s. It the (t′, t)-leapfrog inequality (2.6) holds, we are done and so let

47

us assume the opposite of that:

t′ · |u1v1| ≥
s∑

i=2

|uivi|+ t ·
(s−1∑

i=1

|viui+1|+ |vsu1|
)
. (2.8)

Since all edges {uj, vj}, 1 ≤ j ≤ s, except for {u1, v1} and {uk, vk} are in G′
i−1,

and since G′
i−1 contains t-spanner vjuj+1-paths for all j, 1 ≤ j < s, and a

t-spannner vsu1-path, the above inequality yields

t′ · |u1v1| ≥ spG′
i−1

(v1, uk) + |ukvk|+ spG′
i−1

(vk, u1).

Multiplying both sides by (1 + 6δ)/(1− 2δ) and using t′ < tδ (which is implied

by our choice of t′) and Lemma 7, we get

t · |u1v1| ≥ spHi−1
(v1, uk) + |ukvk|+ spHi−1

(vk, u1). (2.9)

Let ∆ =
∑s−1

i=1 |viui+1|+ |vsu1|. We now observe that

tδ · |ukvk| <
k−1∑

i=1

|uivi|+
s∑

i=k+1

|uivi|+ t ·∆ (2.10)

implies the (t′, t)-leapfrog property. To see this use the fact that both {u1, v1}

and {uk, vk} belong to Ei and therefore |u1v1| < r · |ukvk|, which substituted

in (2.10) yields:

tδ · |ukvk| − (r − 1) · |ukvk| <
s∑

i=2

|uivi|+ t ·∆.

We get the lower bound t′ · |u1v1| on the left hand side of the above inequality

by using |ukvk| > |u1v1|/r again and our choice of t′ < (tδ+1)/r−1. This yields

the (t′, t)-leapfrog property. So we assume that inequality (2.10) does not hold,

48

that is,

tδ · |ukvk| ≥
k−1∑

i=1

|uivi|+
s∑

i=k+1

|uivi|+ t ·∆.

Since all edges {uj, vj}, 1 ≤ j ≤ s, except for {u1, v1} and {uk, vk} are in G′
i−1,

and since G′
i−1 contains t-spanner vjuj+1-paths for all j, 1 ≤ j < s, and a

t-spannner vsu1-path, the above inequality yields

tδ · |ukvk| ≥ spG′
i−1

(v1, uk) + |u1v1|+ spG′
i−1

(vk, u1).

Multiplying both sides by (1 + 6δ)/(1− 2δ) and using Lemma 7, we get

t · |ukvk| ≥ spHi−1
(v1, uk) + |u1v1|+ spHi−1

(vk, u1). (2.11)

Inequalities (2.9) and (2.11) imply that edges {u1, v1} and {u2, v2} are mutually

redundant and therefore cannot both exist in the spanner — a contradiction.

(iii) |S∩Ei| = 1. This means that P exists in G′
i−1 at the time {u1, v1} is processed.

Furthermore, w(P) > t · |u1v1| > t′ · |u1v1|, otherwise {u1, v1} would not have

been added to the spanner, a contradiction.

The Fj case, j > 0. In this case, |ukvk| > |u1v1|/β for all k = 2, 3, . . . , s. If

|S| ≥ 3, then the right hand side of the (t′, t)-leapfrog inequality (2.6) is at least 2 ·

|u1v1|/β and therefore the (t′, t)-leapfrog inequality goes through for any 1 < t′ < 2/β.

Otherwise, if |S| = 2, then we need to show that t′ · |u1v1| < |u2v2|+t ·(|u1v2|+ |u2v1|).

If each of |u1v2| and |u2v1| is at most α, then using the same argument as in the F0-

case with |S∩Ei| = 2, we can show that {u1, v1} and {u2, v2} are mutually redundant

and will not both exist in the spanner. Otherwise, if one of |u1v2| or |u2v1| is greater

49

than α, then the right hand side of the (t′, t)-leapfrog inequality (2.6) is greater

than |u1v1|/β + tα. To ensure that the inequality goes through, we require that

t′ · |u1v1| ≤ |u1v1|
β

+ tα. Since |u1v1| ≤ 1, the above inequality is satisfied for any

1 < t′ ≤ tα + 1
β
, which holds true cf. (2.7).

2.3 Distributed Relaxed Greedy Algorithm

We now describe a distributed version of the relaxed greedy algorithm from

Section 2.2. Like the sequential relaxed greedy algorithm, this algorithm also runs in

O(logn) phases — with edges in Ei being processed in phase i. We will show that

edges in E0 can be processed in O(1) rounds. Recall that each subsequent phase

consists of the following five steps: (i) computing a cluster cover of G′
i−1, (ii) selecting

query edges in Ei, (iii) computing a cluster graphHi−1 of G
′
i−1, (iv) answering shortest

path queries for selected query edges, and (v) deleting some redundant edges. We

will show that Steps (ii), (iii), and (iv) can be completed in O(1) rounds and Steps (i)

and (v) take O(log∗ n) rounds. Step (i) and Step (v) will each involve computing an

MIS in a certain derived graph and in both cases, we will show that the derived graph

is a UBG that resides in a metric space of constant doubling dimension. Putting this

all together, we will show that the algorithm runs in O(logn · log∗ n) communication

rounds.

2.3.1 Distributed Processing of Short Edges

Lemma 1 implies that vertices in the same component of G0 = G[E0] induce a

clique and therefore can communicate in one hop with each other. In the distributed

50

version of the algorithm, each vertex u obtains the topology of its closed neighborhood

along with pairwise distances between neighbors in one hop. Using this information,

u determines the connected component C of G0 that it belongs to. Then u simply

runs SEQ-GREEDY on C and computes a t-spanner of C. Finally, u identifies the edges

of the t-spanner incident on itself and informs all its neighbors of this.

Theorem 14. The edges in E0 can be processed in O(1) rounds of communication.

2.3.2 Distributed Processing of Long Edges

In this section, we show how long edges, that is, edges in Ei, i > 0, can be

processed in a distributed setting. The first step of this process is the computation

of a cluster cover for the spanner G′
i−1 updated at the end of the previous phase.

2.3.2.1 Distributed Cluster Cover for G′
i−1

Recall that in this step our goal is to compute a cluster cover {Cu1 , Cu2, . . .} of

G′
i−1 of radius δWi−1. To do this, each node u first identifies all nodes v in G satisfying

spG′
i−1

(u, v) ≤ δWi−1. Using arguments similar to those in Section 2.2.2.4, we can

show that any node v satisfying spG′
i−1

(u, v) ≤ δWi−1 must be at most 2δWi−1/α

hops from u. So each node u constructs the subgraph of G′
i−1 induced by nodes that

are at most 2δWi−1/α hops away from it in G. Node u then runs a (sequential) single

source shortest path algorithm with source u on the local view of G′
i−1 it has obtained

and identifies all nodes v satisfying spG′
i
(u, v) ≤ δWi−1.

At the end of the above process, every node u in the network is a cluster center.

We now force some nodes to cease being cluster centers, so that all pairs of cluster

51

centers are far enough from each other. Let J be the graph with vertex set V and

whose edges {x, y} are such that x ∈ Cy (and by symmetry, y ∈ Cx). If {x, y} is an

edge in J , it is the case that spG′
i−1

(x, y) ≤ δWi−1. Now assign to every pair of nodes

{x, y} in V a weight w(x, y) = spG′
i−1

(x, y). The weights w form a metric simply

because shortest path distances in any graph form a metric. Thus J is a graph whose

nodes reside in a metric space and whose edges connect pairs of nodes separated by

distance of at most δWi−1 (in the metric space). By scaling the quantity δWi−1 up

to one, we see that J is a UBG in the underlying metric space defined by the weights

w. Recall from [51] that the doubling dimension of a metric space is the smallest ρ

such that every ball can be covered by at most 2ρ balls of half the radius. To see that

the metric space induced by the weights w has constant doubling dimension, start

with a ball of radius R centered at an arbitrary vertex u. Every vertex v in this ball

satisfies spJ(u, v) ≤ R. Now cover the vertices in this ball using balls of radius R/2

as follows: repeatedly pick an uncovered vertex v in the radius-R ball and grow a

radius R/2 ball centered at v. It is easy to see that the number of radius R/2 balls

is bounded because any pair of centers of these balls are far apart.

Lemma 15. J is a UBG that resides in a metric space of constant doubling dimen-

sion.

Let I be an MIS of J constructed using the MIS algorithm in [51]. This

algorithm runs in O(log∗ n) communication rounds on a UBG that resides in a metric

space of constant doubling dimension. Then each node in V \ I has one or more

neighbors in I. Each node u ∈ I is declared a cluster center, and each node v ∈ V \ I

52

attaches itself to the neighbor in I with the highest identifier. This gives us the

desired cluster cover of radius δWi−1.

Theorem 16. A cluster cover of G′
i−1 of radius δWi−1 can be computed in O(log∗n)

rounds of communication.

2.3.2.2 Distributed Query Edge Selection

Only nodes that are cluster heads need to participate in the process of selecting

query edges. Each cluster head a seeks to gather information on all edges in Ei

between the cluster Ca and any other cluster Cb. Using the argument in Section

2.2.2.4, we know that every node in Ca is at most 2δWi−1/α hops away from a in

G. Therefore, if there is an edge {u, v} ∈ Ei, u ∈ Ca and v ∈ Cb, then v is at most

1 + 2δWi−1/α hops away from a. So a gets information from nodes that are at most

1 + 2δWi−1/α hops away from it and it identifies all edges in Ei[Ca, Cb]. Recall that

this is the set of edges in Ei which connect a node in Ca and a node in Cb. Node a

then discards all covered edges from Ei[Ca, Cb], leaving only candidate query edges

in Ei between Ca and Cb. Finally, from among the candidate query edges, node a

selects an edge {u, v} that minimizes t · |uv| − spG′
i−1

(a, u)− spG′
i−1

(b, v).

Theorem 17. Query edges from Ei can be selected in O(1) rounds of communication.

2.3.2.3 Distributed Construction of the Cluster Graph

As in the query edge selection step, only the cluster heads need to perform

actions to compute the cluster graph. Any member u of a cluster Ca lies at most

53

2δWi−1/α hops away from a in G. Thus a can identify intra-cluster edges incident

on it by gathering information from at most 2δWi−1/α hops away. If Cb is a cluster

with spG′
i−1

(a, b) ≤ Wi−1, then node a can identify the inter-cluster edge {a, b} by

gathering information from at most 2Wi−1/α hops away. If Cb is a cluster such that

there is an edge {u, v} in G′
i−1 with u ∈ Ca and v ∈ Cb, then node a can identify

the inter-cluster edge {a, b} by gathering information from at most 2(2δ + 1)Wi−1/α

hops away. Note that the information that a gathers contains a local view of G′
i−1

along with all pairwise distances. Using this information, node a is able to run a

single source shortest path algorithm with source a and determine the weights of all

inter-cluster and intra-cluster edges incident on a.

Theorem 18. Computing the cluster graph Hi−1 of G′
i−1 takes O(1) communication

rounds.

2.3.2.4 Answering Shortest Path Queries

Each node u knows all the query edges incident on it. As proved in Section

2.2.2.4, node u only needs to gather information from nodes that are at most a

constant number of hops away, to be able to determine locally, for all incident query

edges {u, v} ∈ Ei, whether spHi−1
(u, v) ≤ t · |uv|. Thus, after constant number of

communication rounds, u knows the subset of incident query edges {u, v} for which

spHi−1
(u, v) > t · |uv| and u identifies these as the incident edges to be added to G′

i.

Theorem 19. Answering shortest path queries takes O(1) communication rounds.

54

2.3.2.5 Distributed Removal of Redundant Edges

Two edges {u, v} and {u′, v′} in G′
i are mutually redundant if (i) spHi−1

(v, u′)+

|u′v′| + spHi−1
(v′, u) ≤ t · |uv| and (ii) spHi−1

(v′, u) + |uv| + spHi−1
(v, u′) ≤ t · |u′v′|.

Each node u takes charge of all edges {u, v} added to Gi in phase i and for which the

identifier of u is higher than the identifier of v. For each such edge {u, v} that u is in

charge of, u determines all edges {u′, v′} such that {u, v} and {u′, v′} form a mutually

redundant pair. Note that the nodes u and v′ are a constant number of hops away

from each other in G, and similarly for nodes v and u′. Node u then contributes to

the construction of the graph J by adding to V (J) a vertex for each redundant edge

u is in charge of, and to E(J) an edge connecting nodes in V (J) that correspond

to mutually redundant edges in Gi. Using an argument similar to the one used in

Lemma 15, we can show the following:

Lemma 20. J is a UBG that resides in a metric space of constant doubling dimen-

sion.

Let I be an MIS of J constructed using the MIS algorithm in [51] that takes

O(log∗ n) communication rounds on a UBG that resides in a metric space of constant

doubling dimension. Each node u then removes from Gi all incident edges in V (J)\I.

Theorem 21. Removing redundant edges takes O(log∗ n) communication rounds.

2.4 Conclusion

The results presented in this chapter apply to α-UDGs embedded in constant-

dimension Euclidean spaces, and do not directly generalize to doubling metric spaces.

55

However, the techniques presented in this paper use a key property (the leapfrog

property) that does not seem to generalize to metrics of low doubling dimension.

Hence we looked for new techniques, with the goal of constructing an O(log∗ n)-round

distributed algorithm that, for low dimensional doubling metric spaces, produces a

(1 + ε)-spanner with constant maximum degree. Our findings are described in the

next chapter.

56

CHAPTER 3
DISTRIBUTED SPANNER CONSTRUCTION IN DOUBLING

METRIC SPACES

3.1 Introduction

Before we start, let us revisit the concept of doubling metric spaces. The

doubling dimension of a metric space is the smallest ρ such that any ball in this

metric space can be covered by 2ρ balls of half the radius. It is easy to verify that

the d-dimensional Euclidean space, equipped with any of the Lp norms, has doubling

dimension Θ(d). If ρ is a fixed constant, then we call the metric a doubling metric. For

convenience, let us call an UBG on a doubling metric a doubling UBG. In this chapter

we present a distributed algorithm for constructing a low-weight (1 + ε)-spanner of

bounded degree for doubling UBGs.

Precisely stated, our result is this: for any fixed ε > 0, our algorithm runs

in O(log∗ n) communication rounds on an n-node UBG G that resides in a doubling

metric space, to construct a (1 + ε)-spanner H of G with maximum degree bounded

above by a constant. This constant depends on ε and ρ, the doubling dimension of

the metric space in which G resides. Recall that log∗ n = min{t | log(t) n ≤ 2}, where

log(0) n = n and log(i) n = log(log(i−1) n) for any positive integer i. In addition, we

show that H is “lightweight,” in the following sense. Let ∆ denote the aspect ratio of

G, that is, the ratio of the length of a longest edge in G to the length of a shortest edge

in G. We show that the total weight of H is bounded above by O(log∆) ·wt(MST),

where MST denotes a minimum spanning tree of G (Section 3.2). Thus we obtain

57

a spanner that provides an O(log∆)-approximation to a spanner of G of minimum

weight. We also show that H satisfies the so called leapfrog property [17] described

in the previous chapter, which informally says that any uv-path in H (not including

{u, v}) must have length greater than {u, v} by a constant factor. An immediate

implication of this property is that, for the special case of Euclidean metric spaces

with fixed dimension, the weight of H is bounded above by O(wt(MST)) [16]. Thus,

our current result subsumes the results in [15] that apply to Euclidean metric spaces,

and extends these results to metric spaces with constant doubling dimension. Finally,

we show that the result of this chapter extends to the more general qUBG network

model.

3.1.1 Topology Control In Doubling Metric

Like the results in Chapter 2, the results in this chapter are also motivated

by the topology control problem in wireless ad-hoc networks. Most topology control

protocols that provide worst case guarantees on the quality of the topology assume

that the network is modeled by a unit disk graph (UDG) (see [59] for a recent exam-

ple). The results in this chapter apply to the more general model of doubling unit

ball graphs (UBG). Doubling metric spaces have received a great deal of attention

recently [6, 46, 47, 51, 77], partly because they are thought to capture real-world

phenomena such as latencies in peer-to-peer networks and in the Internet. Also, dou-

bling metrics are robust in the sense that the doubling dimension is roughly preserved

under distortion (see Proposition 3 in [77]). Thus distorted versions of low dimen-

58

sional Euclidean space also have small doubling dimension. Consequently, doubling

UBGs can model wireless networks in which nodes have non-uniform transmission

ranges or have erroneous perception of distances to other nodes. Finally, doubling

metrics imply the following “bounded growth” phenomenon that seems to be charac-

teristic of large scale wireless ad-hoc and sensor networks: the number of nodes that

are far away from each other and yet are all in the vicinity of a particular node, is

small. In other words, no node can have an arbitrarily large independent set in its

neighborhood.

3.1.2 Net Trees

Let (V, d) be a metric space with |V | = n and doubling dimension ρ. In

a recent paper, Chan, Gupta, Maggs, and Zhou [7] show how to construct, via a

sequential, polynomial-time algorithm, a (1 + ε)-spanner of (V, d) with maximum

degree bounded above by
(
1
ε

)O(ρ)
. We will refer to this algorithm as the CGMZ

algorithm. The problem of constructing a spanner for a metric space can be thought

of as a special case of our problem, in which the given UBG is a complete graph.

Underlying the result in [7] is the notion of net trees, independently proposed by

Har-Peled and Mendel [31]. Let B(u, r) denote the ball of radius r centered at point

u. A subset U ⊆ V is an r-net of V if it satisfies two properties:

r-packing: For every u and v in U , d(u, v) > r.

r-covering: The union ∪u∈UB(u, r) covers V .

Such nets always exist for any r > 0, and can be easily computed using a greedy

algorithm. Assume without loss of generality that the largest pairwise distance in V

59

is exactly 1 (this can be achieved by appropriate scaling). Pick constant α such that

3
√
1 + ε ≤ α <

√
1 + ε (3.1)

These constraints on α are necessary to ensure that our spanner satisfies various

properties and will become clear later. Let γ = 2α
α−1

(
1 + 4α

ε

)
. Let h be the smallest

positive integer such every pairwise distance is greater than 1
αh . Let r0 =

1
αh and let

ri = α · ri−1, for i > 0. A net tree is a sequence of subsets 〈V0, V1, V2, . . . , Vh〉, such

that V0 = V and Vi is an ri-net of Vi−1, for i > 0. Note that every Vi, including

V0, is an ri-packing. Also note that Vh, which is a 1-net of Vh−1, is a singleton,

since the maximum separation between any pair of points is 1. To view the sequence

〈V0, V1, V2, . . . , Vh〉 as a tree, let i(v) = max{i | v ∈ Vi} for each v ∈ V . Then, for

each v ∈ V , i(v) + 1 copies of v appear as nodes in the tree. These are denoted

(0, v), (1, v), . . . , (i(v), v), where (i, v) represents the occurrence of v in Vi. For each

0 ≤ i < i(v), the parent of node (i, v) is (i + 1, v). Node (i(v), v) has no parent and

is the root of the net tree, if i(v) = h; otherwise, vertex v 6∈ Vi(v)+1 and there is some

vertex u ∈ Vi(v)+1 such that B(u, ri(v)+1) contains v. Arbitrarily pick one such u and

let (i(v)+1, u) be the parent of (i(v), v). Informally speaking, higher levels in the net

tree (leaves are at level 0) represent the structure of V at lower resolution. Figure 3.1

shows an example of a net tree with 6 levels. Below we present the CGMZ algorithm

[7]. For any two points u, v ∈ V , we use d(u, v) to denote the distance between u and

v in the underlying metric space.

The CGMZ Algorithm.

60

V0

V1

V2

V3

V4

V5

Figure 3.1: A net tree with six levels.

1. Build a net tree 〈V0, V1, . . . , Vh〉 of V .

2. Let γ = 2α
α−1

(
1 + 4α

ε

)
. Construct the edge sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},

and

Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri},

for each i = 1, . . . , h and let Ê = ∪iEi.

3. Replace some edges in Ê by other edges to obtain a new edge set Ẽ.

Chan and coauthors [7] work with the version of the algorithm for α = 2. They

show that the graph H = (V, Ê) obtained after Step (2) is a (1 + ε)-spanner of

the metric space and has linear number of edges, but may not satisfy the bounded

degree requirement. Short paths in H can be obtained from the net tree in a natural

manner. A uv-path in H whose length is at most (1 + ε) · d(u, v) can be obtained

by traveling up the net tree from the leaf u and from the leaf v until some level i is

reached, such that the ancestors of u and v at level i are connected by an edge in

61

H . In Step (3), a subset of the edges in Ê is considered and each edge in this subset

is replaced by at most one new edge. This step, which will be described in detail in

Section 3.2.2, redistributes the edges so that all vertex-degrees are bounded above by

a constant. The techniques used by Chan and coauthors for bounding vertex degrees

play a critical role in our results as well. In [15] (refer to Chapter 2) we also describe

an algorithm for constructing a bounded-degree (1+ ε)-spanner for Euclidean UBGs,

but our results rely on purely geometric arguments to bound the vertex degree of the

constructed spanner. Chan and coauthors [7] obtain the following theorem.

Theorem 22. [Chan, Gupta, Maggs, Zhou] Let (V, d) be a finite metric with

doubling dimension bounded by ρ. For any ε > 0, there is a (1+ε)-spanner for (V, d),

with maximum degree bounded above by
(
1
ε

)O(ρ)
.

Our algorithm is a modification of the CGMZ algorithm [7] that takes into

account the fact that pairs of points separated by a distance greater than 1 are not

connected by an edge and therefore such edges cannot be used in the spanner. A

high-level view of our algorithm is as follows. Using a slightly modified version of the

CGMZ algorithm, we construct a graph H that may contain some virtual edges, that

is, edges of length more than 1. H has all the desired properties with respect to the

input UBG G. Subsequently, we show how to replace each virtual edge in H by at

most one real edge, that is, an edge of length at most 1. The resulting graph is a

(1 + ε)-spanner of G with degree bounded above by a constant.

To obtain a distributed implementation of the above idea in O(log∗ n) rounds,

we use an algorithm due to Kuhn, Moscibroda, and Wattenhofer [51]. For a given

62

n-node UBG G in a doubling metric space, the algorithm in [51] deterministically

computes a (1, O(1))-network decomposition, that is, a partition of G into clusters

such that each cluster has diameter 1 and the resulting cluster graph has chromatic

number O(1). We use the same algorithm to compute a net tree. After computing the

net tree, we require a constant number of additional rounds to construct the spanner.

3.2 Spanners for Doubling UBGs

Let (V, d) be a metric space with doubling dimension ρ. Let G = (V,E) be the

UBG induced by this metric space. Thus, for all u, v ∈ V , u 6= v, {u, v} ∈ E if and

only if d(u, v) ≤ 1. For a fixed ε > 0, let the quantities h, ri, α and γ be defined as

in Section 3.1.2. Run Steps (1) and (2) of the CGMZ Algorithm to construct a set of

edges Ê. Let H = (V, Ê). Note that Vh may not be a singleton since V may contain

points whose pairwise distance is more than 1. So the sequence 〈V0, V1, . . . , Vh〉 should

be viewed as a forest of net trees, rooted at points in Vh. Recall that Ê = ∪hi=0Ei

and further recall that for i > 0, Ei consists of edges connecting all pairs of points

u, v ∈ V such that d(u, v) ∈ (γ · ri−1, γ · ri]. Note that there are values of i for which

the right endpoint of the interval (γ · ri−1, γ · ri] may be greater than 1 and for such

values of i, Ei may contain edges that are not in E. Thus H is not necessarily a

subgraph of G. Let δ = ⌈logα γ⌉. It is easy to verify that for 0 ≤ i ≤ h− δ, Ei ⊆ E;

for i = h− δ + 1, the edge-set Ei may contain some edges in E and some edges not

in E; and for i > h − δ + 1, all edges in Ei are outside E. We call edges in H that

also belong to E, real edges. Any edge in H that is not real is a virtual edge. Clearly,

63

a spanner for G may not contain virtual edges, however virtual edges in H do carry

important proximity information that will provide clues on how to replace them with

real edges.

3.2.1 Properties of H

We will now prove some important properties of H . Let dH be the distance

metric induced by shortest paths in H . Specifically, we will show that H satisfies the

following three properties:

1. Spanner Property. For every {u, v} ∈ E, dH(u, v) ≤ (1+ε)·d(u, v) (Lemma 27).

2. Degree Property. Edges of H can be oriented in such a way that the out-

degree of H is bounded by
(
1
ε

)O(ρ)
(Lemma 28).

3. Weight Property. The weight of H is wt(H) = O(log∆) ·
(
1
ε

)O(ρ) ·wt(MST)

(Lemma 29).

Property 1 implies that H is connected, since G is assumed to be connected. Property

2 implies that H has a linear number of edges, though it does not imply that H has

bounded maximum degree. In Section 3.2.2 we describe a method to alter H so as to

bound the in-degree of H as well, while maintaining all the properties listed above.

The proofs of these properties are based on some intermediate results, that we now

establish. Proofs of Lemma 27 and Lemma 28 are similar to those in [8]. The next

observation follows immediately from the definition of the doubling dimension of a

metric space.

Proposition 23. If (X, d) is a metric with doubling dimension ρ and Y ⊆ X is a

64

subset of points with aspect ratio ∆, then |Y | ≤ 2ρ·⌈log2 ∆⌉.

For any point u ∈ Vi, let Ni(u) = {v ∈ Vi | {u, v} ∈ Ei} denote the set of

points connected to u by edges in Ei. We now show an upper bound on the size of

Ni(u).

Lemma 24. For each u ∈ Vi, |Ni(u)| ≤
(
1
ε

)O(ρ)
.

Proof. That the aspect ratio of Ni(u) is bounded by 2γ follows from two observations:

(1) any two points in Ni(u) are more than distance ri apart, and (2) any point in

Ni(u) is at distance at most γ ·ri from u and therefore, by using the triangle inequality,

any two points in Ni(u) are at most 2γ · ri apart. Then Proposition 23 implies the

lemma.

Lemma 25. Suppose u, v ∈ Vi and d(u, v) ≤ γ · ri. Then {u, v} ∈ Ej ⊂ Ê, for some

j ≤ i.

Proof. If i > 0 and γ · ri−1 < d(u, v) ≤ γ · ri, then by definition of Ei, {u, v} ∈ Ei.

Otherwise, (a) d(u, v) ≤ γ · r0 or (b) for some j < i, γ · rj−1 < d(u, v) ≤ γ · rj . Since

Vi ⊆ Vj for all 0 ≤ j ≤ i, in case (a), {u, v} ∈ E0 and in case (b), {u, v} ∈ Ej.

Lemma 26. For each u ∈ V and for each i, there exists v ∈ Vi such that dH(u, v) ≤

α
α−1
· ri.

Proof. The proof is by induction on i. For i = 0, u ∈ V0 = V and dH(u, u) = 0 <

α
α−1
· r0, proving this case true. For i > 0, apply the inductive hypothesis to infer that

there exists w ∈ Vi−1 such that dH(u, w) ≤ α
α−1
· ri−1. Furthermore, since Vi is an

65

V0

V1

V2

V3

u

a

c

c

c

c

b

b

ba

..
.

...

...

...

...

..
.

...

...

...

...

Vs

u v

x y

(a) (b)

Figure 3.2: Illustrated proofs of Lemmas. (a) Proof of Lemma 26: in V0, dH(u, u) =
0 < α

α−1
· r0; in V1, dH(u, a) ≤ r1 < α

α−1
· r1; in V2, dH(u, b) ≤ dH(u, a) + dH(a, b) ≤

α
α−1
· r2; and in V3, dH(u, c) ≤ dH(u, b) + dH(b, c) ≤ α

α−1
· r3 (b) Proof of Lemma 27:

The uv-path via x and y.

ri-net of Vi−1, there exists v ∈ Vi ⊆ Vi−1 such that d(w, v) ≤ ri ≤ γ · ri−1. This along

with Lemma 25 shows that {w, v} ∈ Ê and therefore dH(w, v) = d(w, v) ≤ ri. By the

triangle inequality we have that dH(u, v) ≤ dH(u, w) + dH(w, v) ≤ α
α−1
· ri−1 + ri =

α
α−1
· ri. See Figure 3.2a for an example.

In addition to proving the existence of a vertex v at each level i, Lemma 26

implies a certain path from vertex u to v ∈ Vi. Start from node (0, u) in the tree (that

is, the copy of u corresponding to a leaf) and follow the path through a sequence of

parents, until a level-i node (i, v) is reached. Lemma 26 shows that the distance in

H along this path is at most α
α−1
· ri.

Lemma 27. [Spanner Property] For each edge {u, v} ∈ E, dH(u, v) ≤ (1 + ε) ·

d(u, v).

Proof. For ease of presentation, let λ = α
α−1

. Let q be the smallest integer such that

66

4λ
αq ≤ ε < 8λ

αq . Thus q = ⌈logα 4λ
ε
⌉. Let k be such that rk ≤ d(u, v) < rk+1, and assume

first that k ≤ q−1. Then d(u, v) < αq ·r0 ≤ 8λ
ε
·r0 ≤ γr0, since γ = 2λ

(
1 + 4α

ε

)
> 8λ

ε
.

Also since both u and v belong to V0, by Lemma 25, we have that {u, v} ∈ Ê. This

implies that dH(u, v) = d(u, v), proving the lemma true for this case. Assume now

that k ≥ q and let s = k − q ≥ 0. Note that rk = αq · rs. By Lemma 26, there exist

x, y ∈ Vs such that dH(u, x) ≤ λ · rs and dH(v, y) ≤ λ · rs. By the triangle inequality,

d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)

≤ λ · rs + d(u, v) + λ · rs (d(x, u) ≤ dH(x, u), d(v, y) ≤ dH(v, y))

< λ · rs + α · rk + λ · rs (since d(u, v) < rk+1)

= rs(2λ+ α · αq) (since rk = αq · rs)

≤ rs(2λ+ α 8λ
ε
)

= γ · rs

Hence, by Lemma 25, {x, y} ∈ Ê and therefore dH(x, y) = d(x, y). Using the triangle

inequality again, we get

dH(u, v) ≤ dH(u, x) + dH(x, y) + dH(y, v)

≤ 2λ · rs + d(x, y)

≤ 4λ · rs + d(u, v) (from the upper bound derivation of d(x, y))

≤ (1 + 4λ
αq) · d(u, v) (since ri = αq · rs ≤ d(u, v))

≤ (1 + ε) · d(u, v)

This completes the proof.

67

Lemma 27 also identifies a uv-path in H of length at most (1 + ε) · d(u, v).

Simply follow the sequence of parents, starting at the node (0, u) in the tree and

similarly, starting at the node (0, v). At a certain level (denoted s in the proof), the

ancestor x of u and the ancestor y of v at that level are connected by an edge in H

(see Figure 3.2b.

We now prove that H has degree bounded above by a constant. Recall the

notation: for each point u, i(v) = max{i | v ∈ Vi}. For each edge {u, v} ∈ Ê, direct

{u, v} from u to v, if i(u) < i(v). If i(u) = i(v), pick an arbitrary orientation. This

edge orientation is identical to the one used in [7]. Call the resulting digraph
−→
H .

Lemma 28. [Degree Property] The out-degree of
−→
H is bounded above by (1

ε
)O(ρ).

Proof. Let {u, v} ∈ Ê be an arbitrary edge directed from u to v, and let i be such

that {u, v} ∈ Ei. Then d(u, v) ≤ γ · ri. Now note that ri+δ = αδ · ri ≥ γ · ri (recall

that δ = ⌈logα γ⌉). This, along with the fact that Vi+δ is an ri+δ-net, implies that it is

not possible for both u and v to exist in Vi+δ. Since i(u) ≤ i(v) (by our assumption),

it follows that i(u) ≤ i+ δ. On the other hand, u ∈ Vi and so i(u) ≥ i.

Summarizing, we have that i(u)− δ ≤ i ≤ i(u). This tells us that there are at

most δ + 1 = O(logα γ) values of i for which Ei may contain an edge outgoing from

u. For each such i, by Lemma 24 there are at most |Ni(u)| ≤
(
1
ε

)O(ρ)
edges in Ei

outgoing from u. It follows that the total number of edges in Ê outgoing from u is

(
1
ε

)O(ρ) · O(logα γ) =
(
1
ε

)O(ρ)
.

We now show that H has bounded weight.

68

Lemma 29. [Weight Property] The total weight of H is wt(H) = O(log∆) ·
(
1
ε

)O(ρ) · wt(MST), where MST is a minimum spanning tree of V , and ∆ is the

aspect ratio of G.

Proof. We show that, for each i, wt(Ei) =
(
1
ε

)O(ρ) · wt(MST). This along with the

fact that there are h + 1 = logα
1
r0

+ 1 = O(logα∆) levels i, proves the claim of the

lemma.

Let Ui ⊆ Vi be the points in Vi incident to edges in Ei, and let t = |Ui|.

Recall that any edge {u, v} ∈ Ei satisfies ri < d(u, v) ≤ γ · ri. Thus, any spanning

tree of a set of points containing Ui has weight at least (t − 1) · ri, implying that

wt(MST) ≥ (t− 1) · ri. Also note that the weight of Ei is bounded by Σu∈Ui
|Ni(u)| ·

γ · ri ≤
(
1
ε

)O(ρ) · t · γ · ri, using the upper bound on |Ni(u)| given by Lemma 24. Using

the lower bound on wt(MST), we see that the weight of Ei is bounded above by

(
1
ε

)O(ρ) · γ · (wt(MST) + ri). Summing this expression over all Ei, yields the upper

bound claimed in the lemma.

The graph example from Figure 3.3 shows that the bound of Lemma 29 is

tight. Vertices of the graph are placed at equal distance slightly larger than r0 along

a line segment (recall that the Euclidean space is a doubling metric space). The

value of α in this example is 2, and satisfies the lower bound from inequality (3.1);

the upper bound from (3.1) is only used in Theorem 38, which applies to an altered

version of H and needs not hold for our example. Since d(ui, ui+1) ≈ r0 < γr0, all

edges {ui, ui+1}, for i = 1, 2, . . ., are in H (cf. Lemma 25). Note that these are

69

...

...

u
1

u
2

u
3

u
4

u
5

r
0

r
0

r
0

r
0 r

0

r
1

r
1

r
1

r
2

r
2

...

...

...

...

...

...

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

u
1 u

3
u

5
u

7

u
1 u

5

u
1

V0

V1

V2

V3

..
.

(a) (b)

Figure 3.3: An example to demonstrate the tightness result. (a) Graph H with
total weight wt(H) = Ω(log∆) · wt(MST) (b) Net tree for the vertex set V of H ;
V0 = V1 = V , and Vk = {u1+i·2k , i = 0, 1, 2, . . .}, for k ≥ 2.

precisely the edges that constitute a MST. Consider now all pairs of points in Vk, for

some k ≥ 2, at distance ≈ rk. Since rk < γrk, edges connecting such pairs of points

are all in H (cf. Lemma 25). For a fixed k, these edges span the entire line segment

(see Figure 3.3b), therefore the total weight of these edges is equal to the length of

the segment, which is precisely wt(MST). Since there are Ω(log∆) levels k, we have

that wt(H) = Ω(log∆) · wt(MST), proving the bound of Lemma 29 tight.

3.2.2 Altering H for Bounded Degree

In this section we show how to modify H so as to bound the degree of each

vertex by a constant. Lemma 28 shows that an oriented version of H , namely
−→
H ,

has bounded out-degree. Next we describe a method that carefully replaces some

directed edges in
−→
H by others so as to guarantee constant bound on the in-degree

as well, without increasing the out-degree. The replacement procedure is similar to

the one used in [7], slightly adjusted to work with UBGs. Assume without loss of

generality that ε ≤ 1
2
; otherwise, if ε > 1

2
, we proceed with ε = 1

2
. We use the fact

70

that ε ≤ 1
2
in the proof of Lemma 32. Let ℓ be the smallest positive integer such that

1
αℓ−1 ≤ ε. Thus ℓ = O(logα

1
ε
).

Edge Replacement Procedure. Let u be an arbitrary point in V and let M(u, i)

be the set of all vertices v ∈ Vi such that {v, u} is an edge in Ei directed from v

to u in
−→
H . Let I(u) = 〈i1, i2, . . .〉 be the increasing sequence of all indices ik for

which M(u, ik) is nonempty. For 1 ≤ k ≤ ℓ, we do not disturb any of the edges from

points in M(u, ik) to u. For each k > ℓ such that ik ≤ h − δ − 3, real edges {v, u}

connecting v ∈M(u, ik) to u are replaced by other edges. Specifically, an edge {v, u},

with v ∈ M(u, ik), is replaced by an edge {v, w}, where w is an arbitrary vertex in

M(u, ik−ℓ). The replacement can be equivalently viewed as happening in either H or

its oriented version
−→
H . In

−→
H , we replace the directed edge (v, u) by the directed edge

(v, w). In the next two lemmas, our arguments will use
−→
H or H , as convenient.

Let Ẽ be the resulting set of edges. By our construction, |Ẽ| ≤ |Ê|. An

important observation here is that the replacement procedure above is carried out

only for real edges in Ei, with i ≤ h− δ − 3 (that is, only edges of length no greater

than 1/α3). This is to ensure that only real edges get replaced and no virtual edges

get added, a guarantee that is shown in the following lemma.

Lemma 30. Ẽ \ Ê contains no virtual edges.

Proof. Let {v, u} be an edge that gets replaced by {v, w}, with v ∈ M(u, ik) and

w ∈M(u, ik−ℓ). Recall that k > ℓ and ik ≤ h−δ−3. Using the definitions of Eik and

Eik−ℓ
and the fact that 1

αℓ−1 ≤ ε, it follows that d(w, u) ≤ ε · d(v, u). By the triangle

71

inequality, d(v, w) ≤ d(v, u)+d(w, u) ≤ (1+ ε)d(v, u). Now note that d(v, u) ≤ 1/α3.

This is because edges in Eik have length no greater than γ · rik ≤ 1/α3, for any

ik ≤ h− δ − 3. Therefore d(v, w) ≤ (1 + ε)/α3 ≤ 1, for any α3 ≥ (1 + ε).

Let J = (V, Ẽ). First we show that J indeed has bounded degree (Lemma 31).

Second we show that the metric distance dJ induced by shortest paths in J is a good

approximation of dH (Lemma 32). A consequence of this is that J remains connected,

and maintains spanner paths between endpoints of real edges.

Lemma 31. Every vertex in J = (V, Ẽ) has degree bounded by (1
ε
)O(ρ).

Proof. Let A be the maximum out-degree of a vertex of
−→
H . By Lemma 28, A ≤

(1
ε
)O(ρ). Let B be the largest of |Ni(u)|, for all i and all u. By Lemma 24, B ≤ (1

ε
)O(ρ).

The edge-replacement procedure replaces a directed edge (v, u) by a directed edge

(v, w). So the out-degrees of vertices remain unchanged by the edge-replacement

procedure, and continue to be bounded above by (1
ε
)O(ρ). Thus, we can simply focus

on the in-degrees of vertices. We bound these by accounting for the in-degree of an

arbitrary vertex x with respect to old edges (in Ẽ∩ Ê) and with respect to new edges

(in Ẽ \ Ê); we show that both in-degrees are bounded above by (1
ε
)O(ρ).

In-degree of x with respect to Ẽ ∩ Ê. Out of the edges in
−→
H that come into

x, at most B(ℓ + δ + 3) remain in Ẽ. More specifically, at most B edges at each

of the first ℓ levels i1, i2, . . . , iℓ in I(x), plus at most B edges in each of Ei, i =

h−δ−2, h−δ−1, . . . , h, remain in Ẽ. Any other real edge directed into x gets replaced

by an edge not incident to x. We end this case by noting that B(ℓ+ δ+3) = (1
ε
)O(ρ).

72

In-degree of x with respect to Ẽ \ Ê. Vertex x has a new in-coming edge

whenever it plays the role of w in the edge-replacement procedure. Recall that in

the edge-replacement procedure, w and v are both in-neighbors of u. For each edge

(w, u), there are at most B edges (v, u) directed into u that may get replaced by

(v, w). Furthermore, there are A edges (w, u) outgoing from w. This gives an upper

bound of AB = (1
ε
)O(ρ) on the in-degree of x.

It remains to show that dJ is a good approximation of dH . Intuition for this

is provided by the proof of Lemma 30. In that proof, it is shown that when {v, w}

replaces {v, u}, d(w, u) ≤ ε · d(v, u) and d(v, w) ≤ (1 + ε) · d(v, u). Thus, if the

path 〈v, w, u〉 existed in Ẽ, this path would have length at most (1 + 2ε) · d(v, u).

However, edge {w, u} may not exist in Ẽ, since it may itself have been replaced.

Thus a shortest path from w to u in Ẽ may be longer than d(w, u). However, since

d(w, u) ≤ ε · d(v, u), the extra cost of replacing {w, u} is marginal and the eventual

sum of all of these lengths is still bounded above by (1 + 2ε) · d(v, u). Thus we have

the following lemma:

Lemma 32. dJ ≤ (1 + 2ε)dH.

Proof. It suffices to show that, for each edge {v, u} ∈ Ê that gets replaced, dJ(v, u) ≤

(1 + 2ε) · dH(v, u). Assume without loss of generality that edge {v, u} directs into u,

and let k be such that v ∈ M(u, ik). Then it must be that k > ℓ and ik ≤ h− δ − 3,

otherwise {v, u} would not get replaced.

Let w0 = v, and assume that {w0, u} gets replaced by {w0, w1}. By construc-

73

tion, w1 ∈ M(u, ik−ℓ). We now show that d(w1, u) ≤ ε · d(w0, u) and d(w0, w1) ≤

(1 + ε) · d(w0, u). This claim follows from the following observations:

1. ik−ℓ ≤ ik − ℓ (since increasing indices in I(u) are not necessarily incremental).

This implies that rik−ℓ
≤ rik−ℓ, which in turn implies that d(w1, u) ≤ γ · rik−ℓ =

γ · rik/αℓ.

2. d(w0, u) ≥ γ · rik−1 = γ · rik/α (by definition). This along with the first obser-

vation implies that d(w1, u) ≤ d(w0, u)/α
ℓ−1 = ε · d(w0, u).

3. By the triangle inequality, d(w0, w1) ≤ d(w1, u) + d(w0, u) ≤ (1 + ε) · d(w0, u).

So if {w1, u} ∈ Ẽ, then the claim of the lemma follows immediately from the ob-

servations above and the triangle inequality: dJ(w0, u) ≤ dJ(w0, w1) + dJ(w1, u) =

d(w0, w1)+d(w1, u) ≤ (1+2ε) ·d(w0, u). Otherwise, {w1, u} ∈ Ê in turn gets replaced

by {w1, w2} ∈ Ẽ, and the process repeats itself. Let w0, w1, . . . , wr be a shortest path

in J that leads to an edge {wr, u} ∈ Ẽ ∩ Ê. The replacement procedure ensures that

such a path always exists. This means that {w0, w1}, {w1, w2}, . . . , {wr−1, wr} are all

new edges in Ẽ ∩ Ê. The three observations above translated to lower levels yield,

for each j = 1, 2, . . . , r, the following two inequalities: (i) d(wj, u) ≤ ε · d(wj−1, u),

and (ii) d(wj−1, wj) ≤ (1+ ε) · d(wj−1, u). Repeated application of the first inequality

yields d(wj, u) ≤ εj · d(w0, u). Finally, we have:

74

dJ(v, u) ≤
r∑

j=1

d(wj−1, wj) + d(wr, u)

≤ (1 + ε)
r∑

j=1

εj−1d(w0, u) + εrd(w0, u)

≤ d(w0, u) · (1 + ε)/(1− ε)

≤ (1 + 2ε) · d(v, u)

This latter inequality follows from the fact that, for 0 < ε < 1/2, (1+ε)(1−ε) ≤

1 + 2ε.

3.2.3 Eliminating Virtual Edges

The only impediment in having J = (V, Ẽ) serve as a spanner for the input

UBG G is the presence of virtual edges in J . Recall that these are edges of length

greater than 1 and clearly do not exist in G. In this section we show that there exist

real edges that can take over the role of virtual edges in J , without violating the

properties J is expected to have.

Let {u, v} ∈ E be an arbitrary (real) edge and let k be such that rk ≤ d(u, v) <

rk+1. Let q be as in the proof of Lemma 27: the smallest integer such that α
α−1
· 4
αq ≤

ε < α
α−1
· 8
αq . As mentioned in Section 3.2.1, the proof of Lemma 27 implies a certain

uv-path of length at most (1+ε) ·d(u, v) in H = (V, Ê). If k ≤ q−1, this path is just

the edge {u, v}, because {u, v} is guaranteed to exist in Ê (see proof of Lemma 27).

The Edge Replacement Procedure (Section 3.2.2) ensures that only real edges are

replaced, and each real edge is replaced by a path consisting only of real edges. This

along with Lemma 32 ensures that even in Ẽ there is a uv-path of length at most

(1 + 2ε) · d(u, v), consisting of real edges only. If k ≥ q, the uv-path in H implied

75

by Lemma 27 may have more than one edge. Let s = k − q and (s, u∗) (respectively,

(s, v∗)) be the level-s ancestor of the leaf (0, u) (respectively, the leaf (0, v)) in the

net tree 〈V0, V1, . . . , Vh〉. Then the edge {u∗, v∗} is guaranteed to be present in Ê and

the uv-path implied by Lemma 27 starts at (0, u), goes up the net tree via parents to

(s, u∗), then to (s, v∗), and then follows the unique path down the tree from (s, v∗) to

(0, v). It is easy to check that of all the edges in this path, only {u∗, v∗} may be virtual

– specifically, when the edge {u, v} is long enough to guarantee that k ≥ h−δ+1+q,

then s = k − q ≥ h− δ + 1 and the edge {u∗, v∗} may belong to Es. Recall that for

i ≥ h− δ+1, edges in Ei may not be real and in particular {u∗, v∗} may be a virtual

edge. Since the uv-path implied by Lemma 27 passes through edge {u∗, v∗}, one

has to be careful in replacing {u∗, v∗} by a real edge. Our virtual edge replacement

procedure is given below.

For any node (i, v) in the net tree, let T (i, v) denote the set of all vertices

u ∈ V , such that the subtree of the net tree rooted at (i, v) contains a copy of u. In

other words, T (i, v) = {u ∈ V | (i, v) is an ancestor of (j, u) for some j ≤ i}.

Virtual Edge Replacement Procedure. For a virtual edge {u, v} ∈ Ei, if there

is a real edge {x, y} already in the spanner H , with x ∈ T (i, u) and y ∈ T (i, v), then

simply delete {u, v}. Similarly, if there is no such real edge {x, y} in the input graph

G with x ∈ T (i, u) and y ∈ T (i, v) then simply delete {u, v}. Otherwise, find a real

edge {x, y} ∈ E, x ∈ T (i, u) and y ∈ T (i, v), and replace {u, v} by {x, y}.

The reason why this replacement procedure works can be intuitively explained

76

x y

a
b

u v

T(i, u) T(i, v)

real edge

virtual edge

Figure 3.4: A short ab-path passes through virtual edge {u, v}. After replacing virtual
edge {u, v} by real edge {x, y}, there is a short ab-path through {x, y}.

as follows. A virtual edge {u, v} ∈ Ei is important for pairs of vertices {a, b}, with

a ∈ T (i, u) and b ∈ T (i, v), for which all ab-paths of length at most (1+ε) ·d(a, b) pass

through {u, v}. Replacing {u, v} by {x, y} provides the following alternate ab-path

that is short enough: starting at the leaf a, go up the tree rooted at (i, u) via parents

until an ancestor common to a and x is reached, then come down to x, take edge

{x, y}, go up the tree rooted at (i, v) until an ancestor common to b and y is reached,

and finally go down to b. Figure 3.4 illustrates this alternate path. Note that this

entire path consists only of real edges.

We finally state our main result. Let G′ be the graph obtained from J by

replacing virtual edges using the Virtual Edge Replacement Procedure.

Theorem 33. G′ = (V,E ′) is a (1 + ε)-spanner of G with degree bounded above by

(1
ε
)O(ρ) and weight bounded above by O(log∆) · (1

ε
)O(ρ) · wt(MST).

A proof similar to that of Lemma 27 can be used to show the spanner property

of G′. The fact that G′ is lightweight simply follows from the fact that a virtual edge

of length greater than 1 in J , either gets eliminated, or gets replaced by at most one

77

real edge of length at most 1 in G′. The constant degree bound follows from the

observation that, for a vertex x to acquire a new incident edge, there is an ancestor

of x in the net tree at level h − δ + 1 or higher, that loses an incident edge at that

level. There are a constant number of such ancestors and from Lemma 24, we know

that any vertex has a constant number of incident edges at any particular level.

We conclude this section with a summary of our algorithm.

Algorithm Overview Spanner((V, d), ε)

Let 3
√
1 + ε < α <

√
1 + ε be a constant, γ = 2α

α−1

(
1 + 4α

ε

)
, and δ = ⌈logα γ⌉.

Let h be the smallest such that 1
αh is smaller than the minimum inter-point distance.

Let r0 =
1
αh and let ri = α · ri−1, for all i > 0.

Constructing a linear size (1 + ε)-spanner H = (V, Ê).
1. Construct the net tree 〈V0, V1, . . . , Vh〉.

[Let i(u) = max{i | u ∈ Vi}.]
2. Construct the sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},
Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri}, for 1 ≤ i ≤ h.

[Let Ê = ∪iEi and H = (V, Ê).]

Replacing edges to obtain a constant degree bound.

3. Orient each edge {u, v} ∈ Ê from u to v if i(u) ≤ i(v), breaking ties arbitrarily.

[Let M(u, i) denote the set of vertices v ∈ Vi, with {v, u} ∈ Ê.
4. For each u ∈ V , construct the increasing sequence I(u) = 〈i1, i2, . . . , 〉 of all ik

with M(u, ik) 6= ∅. [Let ℓ be the smallest integer with 1
αℓ−1 ≤ ε.]

5. For each u ∈ V and each ik ∈ I(u), with k > ℓ and ik ≤ h− δ − 3, do
6. Replace directed edge (v, u), v ∈M(u, ik) by edge (v,w),

for arbitrary w ∈M(u, ik−ℓ).

[Let J = (V, Ẽ) be the resulting graph, with distance metric dJ .]

Replacing virtual edges by real ones.

[Let T (i, v) = {x ∈ V | (i, v) is an ancestor of (j, x) for some j ≤ i}.]
7. For each i ≥ h− δ + 1 and each virtual edge {u, v} ∈ Ei do

8. If there is a real edge {x, y} ∈ Ẽ, x ∈ T (i, u) and y ∈ T (i, v), then do nothing.
9. Otherwise, if there is a real edge {x, y} ∈ E, with x ∈ T (i, u) and y ∈ T (i, v),

replace {u, v} by {x, y}.
[Let E′ be the set of resulting edges. Output is G′ = (V,E′).]

78

3.3 Leapfrog Property

In Lemma 29, we showed that H = (V, Ê) has total weight bounded above by

O(log∆) ·
(
1
ε

)O(ρ) ·wt(MST), where ∆ is the aspect ratio of G. Thus, for fixed ε and

constant doubling dimension ρ, the upper bound is within O(log∆) times the optimal

value. In an attempt to show a bound that is within O(1) times the optimal value, we

use a tool that is widely used in the computational geometry literature [17, 13, 26].

In the context of building lightweight (1 + ε)-spanners for Euclidean spaces, Das and

Narasimhan [17] have shown that, if the set of edges in the spanner satisfy a property

known as the leapfrog property, then the total weight of the spanner is bounded above

by O(wt(MST)). Refer to Chapter 2 (Equation 2.6) for a detailed definition of the

leapfrog property.

u
1

v
1

u
2

v
2

u
3

v
3

Figure 3.5: Definition of the t-leapfrog property with S = {{u1, v1}, {u2, v2}, {u3, v3}}.

Das and Narasimhan [17] show the following connection between the leapfrog

property and the weight of the spanner.

Lemma 34. Let t ≥ t′ > 1. If the line segments F in d-dimensional space satisfy

the (t′, t)-leapfrog property, then wt(F) = O(wt(MST)), where MST is a minimum

79

spanning tree connecting the endpoints of line segments in F . The constant in the

asymptotic notation depends on t, t′ and d.

It is well known that, if a spanner is built “greedily”, then the set of edges in

the spanner satisfies the leapfrog property [17, 13, 26]. In [15] we showed that even a

“relaxed” version of the greedy algorithm would ensure that the spanner edges have

the leapfrog property. This was critical to showing that the spanner constructed in a

distributed manner for UBGs in Euclidean spaces [15] had total weight bounded above

by O(wt(MST)). Here we ask if it is possible to do the same for UBGs in metric spaces

with constant doubling dimension. In an attempt to answer this question we show

that, using a variant of the Spanner algorithm (outlined at the end of Section 3.2),

we can build, for a given UBG G in a doubling metric space, a (1 + ε)-spanner with

degree bounded above by a constant and with the (t, t′)-leapfrog property, for some

constants t ≥ t′ > 1. Note that this does not give us the desired O(wt(MST)) bound

on the weight of the constructed spanner because we do not know if the equivalent

of Lemma 34 holds for non-Euclidean metric spaces. The proof of Lemma 34 in [17]

is quite geometric and does not suggest an approach to its generalization to metric

spaces of constant doubling dimension.

To guarantee that the output spanner satisfies the (t′, t)-leapfrog property, we

need to make two modifications to the Spanner algorithm as follows. First, in step

2 of the algorithm, we add an edge {u, v} to Ei only if the partial spanner Hi−1

contains no uv-path of length at most (1 + ε) · d(u, v). Second, we eliminate from H

(the graph induced by E0 ∪ E1 ∪ . . . ∪ Eh) edges that are “redundant”. For each i,

80

call two edges {u1, v1} and {u2, v2} in Ei mutually redundant if both of the following

conditions hold:

(a) dH(v1, u2) + d(u2, v2) + dH(v2, u1) ≤ (1 + ε) · d(u1, v1)

(b) dH(v2, u1) + d(u2, v2) + dH(v1, u2) ≤ (1 + ε) · d(u2, v2)

These two conditions imply that (i) H \ {u1, v1} contains a u1v1-path of length at

most (1 + ε) · d(u1, v1), and (ii) H \ {u2, v2} contains a u2v2-path of length at most

(1 + ε) · d(u2, v2). Thus, one of the edges {u1, v1} and {u2, v2} can potentially be

eliminated from H , without compromising the (1 + ε)-spanner property of H . In

fact, it is necessary to eliminate such pairs of edges in order to ensure the leapfrog

property for H (and ultimately for the output spanner). To this end, we construct

a redundancy graph Γ such that nodes in Γ correspond to edges in H , and edges in

Γ correspond to mutually redundant edges in H . Note that Γ contains at least h

connected components, one for each i (since mutually redundant edges belong to a

same set Ei by definition). We determine a Maximal Independent Set (MIS) I of Γ

and eliminate from H all edges associated with nodes in Γ that are not in I. The

modified algorithm, called Leapfrog-Spanner, is outlined below.

Algorithm Overview Leapfrog-Spanner((V, d), ε)

Let α, γ, h and ri be defined as in the Spanner algorithm.

Constructing a linear size (1 + ε)-spanner H = (V, Ê).
1. Construct the net tree 〈V0, V1, . . . , Vh〉.
2. Construct

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0} and H0 = (V,E0).
Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri, and there is no uv-path

of length at most (1 + ε) · d(u, v) in Hi−1}, and Hi = (V,Ei)

81

for 1 ≤ i ≤ h.

[Let H = (V,EH) be the resulted graph.]

3. Eliminate Redundant Edges:
3.1 Construct the redundancy graph Γ of H.
3.2 Determine a Maximal Independent Set I of Γ (over all connected components of Γ).
3.3 Eliminate from EH all edges associates with nodes not in I.

[Let H = (V, Ê) be the resulted graph.]

Replacing edges to obtain a constant degree bound.

As in the Spanner algorithm.

Replacing virtual edges by real ones.

As in the Spanner algorithm.
[Let Eℓ be the set of resulting edges.]

Output is Gℓ = (V,Eℓ).]

In the rest of this section we show that output of the Leapfrog-Spanner algorithm

is indeed a spanner that satisfies the leapfrog property. Let H = (V, Ê) be the graph

obtained after Step (3) of the Leapfrog-Spanner algorithm, in which all redundant

edges have been removed.

Lemma 35. Let u, v ∈ Vi such that d(u, v) ≤ γ · ri. Then dHi
(u, v) ≤ (1 + ε) · d(u, v)

and dH(u, v) ≤ (1 + ε) · d(u, v).

Proof. This is the analogous of Lemma 25. We first show that the lemma is true for

i = 0. Since {u, v} is added to E0 in Step (2) of the Leapfrog-Spanner algorithm,

we have that dH0(u, v) = d(u, v). If {u, v} is not eliminated from Γ in Step (3) of

the algorithm, then dH(u, v) = d(u, v). Otherwise, there exists in Γ an edge {x, y}

mutually redundant with respect to {u, v}; such an edge would correspond to a node

in I (determined in Step (3.2) of the algorithm). The redundancy condition ensures

that H contains a uv-path passing through {x, y} of length dH(u, v) ≤ (1+ε) ·d(u, v).

82

Assume now that i > 0 and let j ≤ i be such that γ · rj−1 < d(u, v) ≤ γ · rj .

Since Vi ⊆ Vj , we have that u, v ∈ Vj and therefore {u, v} is added to Ej in Step (2)

of the algorithm, unless Hj−1 already contains a uv-path of length no greater than

(1 + ε) · d(u, v). Arguments similar to the ones used for the case i = 0 proves the

lemma true for this case as well.

Lemma 36. [Spanner Property] For each edge {u, v} ∈ E, dH(u, v) ≤ (1 + 3ε) ·

d(u, v).

Proof. This is the analogous of Lemma 27. Let λ, k, q and s be as in the proof of

Lemma 27: λ = α
α−1

; q = ⌈logα 4λ
ε
⌉; k is such that rk ≤ d(u, v) < rk+1; and s =

min(0, k− q). As shown in that proof, there exist x, y ∈ Vs such that d(x, y) ≤ γ · rs.

By Lemma 35 we have that dH(x, y) ≤ (1+ ε) ·d(x, y). Following the same proof idea

as in Lemma 27, we get

dH(u, v) ≤ dH(u, x) + dH(x, y) + dH(y, v)

≤ 2λ · rs + dH(x, y)

≤ 2λ · rs + (1 + ε)d(x, y)

≤ [2λ
αq (2 + ε) + (1 + ε)] · d(u, v) (since d(x, y) ≤ 2λ · rs + d(u, v) and rs ≤ d(u, v)/αq)

< (1 + 3ε) · d(u, v) (since 4λ
αq ≤ ε)

This completes the proof.

The following lemma shows a similar result, but this time restricted to partial

spanner Hi, for each i ≥ 1. This result will be used in proving the leapfrog property

of H in Theorem 38.

83

Lemma 37. Let i > 0 and let u, v be such that d(u, v) ≤ γ · ri−1. Then dHi
(u, v) ≤

(1 + 3ε) · d(u, v).

Proof. Let λ, q, and k be as in the proof of Lemma 27: : λ = α
α−1

; q = ⌈logα 4λ
ε
⌉;

and k is such that rk ≤ d(u, v) < rk+1. Since we restrict our attention to Hi only, we

choose s = min(i, k − q). We show that there exist x, y ∈ Vs such that dHi
(x, y) ≤

(1+ε) ·d(x, y). This enables us to use the proof of Lemma 36 to show that dHi
(u, v) ≤

(1 + 3ε) · d(u, v). We discuss two cases, depending on the value of s.

1. s = k−q ≤ i. Then rk = αq · rs, and we can use the proof of Lemma 27 to show

that there exist x, y ∈ Vs such that d(x, y) ≤ γ · rs. Cf. Lemma 37 we have that

dHs
(x, y) ≤ (1 + ε) · d(x, y) and since Hs is a subgraph of Hi, it follows that

dHi
(x, y) ≤ (1 + ε) · d(x, y).

2. s = i > k − q. In this case rk > αq · rs and therefore we cannot use the proof

of Lemma 27 to show a similar result. Note however that, cf. Lemma 26, there

exist x, y ∈ Vi such that dHi
(u, x) ≤ λ · ri and dHi

(v, y) ≤ λ · ri. Using the

triangle inequality,

d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)

≤ λ · ri + d(u, v) + λ · ri since d(x, u) ≤ dHi
(x, u), d(v, y) ≤ dHi

(v, y))

≤ 2λ · ri + γri−1 (since d(u, v) ≤ γri−1)

= (2λ+ γ
α
) · ri (since ri = α · ri−1)

≤ γri for any α ≥ 3
√
1 + ε > 1+

√
1+ε
2

84

Thus we can apply the result of Lemma 35 to show that dHi
(x, y) ≤ (1 + ε) ·

d(x, y).

This completes the proof.

Theorem 38. [Leapfrog Property] The edge set Ê constructed in Step (2) of the

Leapfrog-Spanner algorithm satisfies the (t′, t)-leapfrog property, for any 1 < t′ <

t
α2 and any 3

√
1 + ε < α <

√
1 + 3ε. Here t = 1 + 3ε.

Proof. Consider an arbitrary subset S = {{u1, v1}, {u2, v2}, . . . , {um, vm}} of Ê. To

prove inequality (2.6) for S, it suffices to consider the case when {u1, v1} is a longest

edge in S. First observe that, if either d(vm, u1) > d(u1, v1) or d(vk, uk+1) > d(u1, v1)

for any k, 1 ≤ k < s, then inequality (2.6) holds. Thus it suffices to discuss the case

when d(vm, u1) ≤ d(u1, v1) and d(vk, uk+1) ≤ d(u1, v1) for each k, 1 ≤ k < s.

Let i be such that {u1, v1} ∈ Ei. Consider first the case in which at least one

of the edges in the set S ′ = {{vm, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} has length greater

than γri−2. Then the right hand side of the inequality (2.6) is at least t · γ · ri−2. We

also have that t′ ·d(u1, v1) ≤ t′ ·γ · ri = t′ ·γ ·α2 · ri−2 < t ·γ · ri−2 for any 1 < t′ < t/α2,

and so the leapfrog property holds for this case, for any α <
√
t =
√
1 + 3ε.

Consider now the case in which each edge in the set S ′ has length no greater

than γri−2. Cf. Lemma 35, the partial spanner Hi−1 induced by the edge set E0 ∪

E1∪ . . .∪Ei−1 contains spanner paths between the endpoints of each edge in S ′. More

precisely, for each edge {v, u} ∈ S ′, dHi−1
(v, u) ≤ (1 + 3ε) · d(v, u) = t · d(v, u).

85

For 1 ≤ k < s, let Pk be a shortest vkuk+1-path in Hi−1, and let Pm be a

shortest vmu1-path. From the discussion above it follows that wt(Pk) ≤ t · d(vk, uk+1)

and wt(Pm) ≤ t ·d(vm, u1). We discuss three cases, depending on the number of edges

in Ei that belong to S.

Case 1: |S ∩ Ei| = 1. In other words, S ∩ Ei = {u1, v1}. In this case

P = P1⊕{u2, v2}⊕P2⊕{u3, v3}⊕ . . .⊕Pm is a path from u1 to v1 in Hi−1, and wt(P)

is no greater than the right hand side of the leapfrog inequality (2.6). Furthermore,

wt(P) > t · d(u1, v1) > t′ · d(u1, v1), otherwise the edge {u1, v1} would not have been

added to Ei in Step (2.1) of the Leapfrog-Spanner algorithm. This shows that

the leapfrog property holds for this case.

Case 2: |S ∩ Ei| > 2. We use the fact that d(u, v) > d(u1,v1)
α

for each edge

{u, v} ∈ |S ∩ Ei|, to show that the right hand side of the leapfrog inequality (2.6) is

greater than 2·d(u1,v1)
α

. Thus the leapfrog property holds for any t′ < 2
α
.

Case 3: |S ∩ Ei| = 2. Let k > 1 be such that {uk, vk} ∈ Ei ∩ S. Thus

S ∩ Ei = {{u1, v1}, {uk, vk}}. Our proof that the leapfrog inequality holds for this

case is by contradiction. Assume to the contrary that the leapfrog inequality (2.6)

does not hold:

t′ · d(u1, v1) ≥
m∑

i=2

d(ui, vi) + t ·
(m−1∑

i=1

d(vi, ui+1) + d(vm, u1)
)
. (3.2)

This along with the fact that Hi−1 contains t-spanner paths P1, P2, . . . , Pm, yields

t · d(u1, v1) ≥ t′ · d(u1, v1) ≥ dHi−1
(v1, uk) + d(uk, vk) + dHi−1

(vk, u1). (3.3)

86

Next we consider the path from uk to vk induced by edges in P ∪ {u1, v1}. Suppose

first that

t · d(uk, vk) ≥
k−1∑

i=1

d(ui, vi) +

m∑

i=k+1

d(ui, vi) + t ·
(m−1∑

i=1

d(vi, ui+1) + d(vm, u1)
)
.

This implies that

t · d(uk, vk) ≥ dHi−1
(v1, uk) + d(u1, v1) + dHi−1

(vk, u1) (3.4)

However, inequalities (3.3) and (3.4) tell us that the edges {u1, v1}, {uk, vk} ∈ Ei are

mutually redundant and therefore they cannot coexist in the spanner after Step (3.3)

of the Leapfrog-Spanner algorithm. Thus we have reached a contradiction.

So it must be that

t · d(uk, vk) <

k−1∑

i=1

d(ui, vi) +

m∑

i=k+1

d(ui, vi) + t ·
(m−1∑

i=1

d(vi, ui+1) + d(vm, u1)
)
.

Adding d(uk, vk) and subtracting d(u1, v1) from both sides of this inequality yields

t·d(uk, vk)+d(uk, vk)−d(u1, v1) ≤
m∑

i=2

d(ui, vi)+t·
(m−1∑

i=1

d(vi, ui+1)+d(vm, u1)
)
. (3.5)

Now note that, since d(uk, vk) >
d(u1,v1)

α
, the quantity (t+1

α
−1) ·d(u1, v1) is no greater

than the left side of the inequality (3.5). Thus we have that

t′ · d(u1, v1) ≤
m∑

i=2

d(ui, vi) + t ·
(m−1∑

i=1

d(vi, ui+1) + d(vm, u1)
)
.

for any 1 < t′ < t
α2 < t+1

α
− 1. Thus the leapfrog property holds for this case as

well.

An immediate consequence of Theorem 38 is that, if the input graph G resides

in an Euclidean metric space of fixed dimension, then wt(H) = O(wt(MST (G))) (cf.

87

Lemma 34). Arguments similar to the ones used in proving Theorem 33 show that

wt(Gℓ) = O(wt(H)). Furthermore, it can be verified that the other properties listed

in Theorem 33 hold for Gℓ as well. Thus we have the following result.

Theorem 39. The Leapfrog-Spanner algorithm produces a (1 + ε)-spanner Gℓ

of G of degree bounded above by (1
ε
)O(ρ) and weight bounded above by O(log∆) ·

(1
ε
)O(ρ) · wt(MST). If G resides in an Euclidean metric space of fixed dimension,

then wt(Gℓ) = O(wt(MST (G)).

3.4 Distributed Implementation

In this section, we show that both the Spanner algorithm (Section 3.2) and

the Leapfrog-Spanner algorithm (Section 3.3) have distributed implementations

that run in O(log∗ n) rounds of communication.

Spanner Algorithm. It turns out that Step (1) of this algorithm takes O(log∗ n)

rounds, whereas the remaining steps take O(1) additional rounds. We first examine

Steps (2)-(9) of the algorithm.

It is easy to verify that in Steps (2)-(9), a node u needs to communicate only

with other nodes that are either neighbors of u in G, or to which u is connected

by a virtual edge. The main difficulty here is that the endpoints of a virtual edge

{u, v} may not be neighbors in the network. Consider a virtual edge {u, v} ∈ Ei.

By definition of Ei, d(u, v) ≤ γ · ri ≤ γ. Even though the distance between u and

v in the underlying metric space is bounded above by a constant, it is not necessary

that the hop distance between u and v in G be similarly bounded above. Let us call

88

a virtual edge {u, v} ∈ Ei, useful , if there exist x ∈ T (i, u) and y ∈ T (i, v) such

that {x, y} ∈ E. Notice that only useful virtual edges need to be considered by our

algorithm. If a virtual edge {u, v} is not useful, then even though it is added in Step

(2), it is eliminated in Steps (7)-(9). In the following lemma we show that the hop

distance between endpoints of useful virtual edges is small.

Lemma 40. The hop distance in G between the endpoints of any useful virtual edge

{u, v} ∈ Ei is at most 2(2α
α−1

+ 1).

Proof. By definition of a useful virtual edge, there are points x ∈ T (i, u) and y ∈

T (i, v) such that {x, y} is an edge in G. Thus a path in G between u and v is the

following: start at node (i, u) in the net tree and travel down to a copy of x, follow

the edge {x, y}, and then travel up to node (i, v). Note that the edge {x, y} ∈ E,

but it may not belong to Ẽ. The length of this path is at most 2(1 + 1
α
+ 1

α2 + . . .) +

1, implying that dG(u, v) ≤ 2α
α−1

+ 1. Now consider a shortest uv-path in G, say

〈w0 = u, w1, . . . , wk+1 = v〉. Because G is a UBG and due to the triangle inequality,

d(wi, wi+2) > 1 for all 0 ≤ i ≤ k − 1 (otherwise wi+1 could be eliminated from the

uv-path to obtain an even shorter uv-path in G). This yields a lower bound of k/2

on d(u, v), and since dG(u, v) ≥ d(u, v), we have that dG(u, v) ≥ k/2. Combining this

with the upper bound of 2α
α−1

+ 1, we obtain that k ≤ 2(2α
α−1

+ 1).

Thus, in Steps (2)-(9) of the Spanner algorithm, a node only needs to com-

municate with nodes that are at most O(1
α−1

) hops away. This suggests a simple way

of implementing Steps (2)-(9): after Step (1) is completed, each node u gathers neigh-

89

borhood information and the values of i(v) from all nodes v that are O(1
α−1

) hops

away. After this, node u can do all of its computation with no further communication.

The fact that Step (1) can be implemented in O(log∗ n) rounds of communica-

tion follows from a clever argument in [51]. Suppose that we have computed the set

Vi−1. The computation of the set Vi, which is an ri-net of Vi−1, reduces to a maximal

independent set (MIS) computation on a degree-bounded graph. To see this, create a

graph, say Gi, whose vertex set is Vi−1 and whose edges connect any pair of vertices

u, v ∈ Vi−1, if d(u, v) ≤ ri. Then it is easy to see that an MIS in Gi is an ri-net of

Vi−1. Furthermore, the fact that Gi has bounded degree follows from the fact that the

underlying metric space has bounded doubling dimension. There is a well-known de-

terministic algorithm due to Linial [61] for computing an MIS, that runs in O(log∗ n)

communication rounds on graphs with bounded degree. Using this algorithm, one can

compute the ri-net Vi of Vi−1 in O(log∗ n) rounds. Since there are h + 1 = O(log∆)

such sets to compute, it seems like this approach will take O(log∆ · log∗ n) rounds.

However, in [51] it is shown that in this algorithm, each node uses information only

from nodes that are at most O(log∗ n) hops away in G. Therefore, this algorithm

has a O(log∗ n)-round implementation in which each node u first gathers information

from nodes that are at most O(log∗ n) hops away and then performs all steps of the

Spanner algorithm locally, using the collected information.

Leapfrog-Spanner Algorithm. It is only Steps (2) and (3) of this algorithm

that may incur communication cost in addition to the communication cost of the

90

Spanner algorithm. We show that the construction of each set Ei in Step (2) of

the algorithm takes a constant number of communication rounds. We also show that

Step (3) of the algorithm can be implemented in O(log∗ n) rounds of communication.

As mentioned before, by collecting information from nodes that are O(log∗ n) hops

away, each node can run Step (3) of the Leapfrog-Spanner algorithm locally.

In Step (2) of the Leapfrog-Spanner algorithm, a node u considers a subset

of (real or useful virtual) edges and determines, for each such edge {u, v}, whether

Hi−1 contains a path from u to v of length no greater than (1 + ε) · d(u, v). Cf.

Lemma 40, node u needs to gather neighborhood information that is O(2(1+ε)(2α
α−1

+

1)) hops away and compute this information locally.

In Step (3) of the Leapfrog-Spanner algorithm, each node must contribute

to the construction of the redundancy graph Γ. To this end, each node u takes charge

of all edges {u, v} for which the identifier of u is higher than the identifier of v.

For each such edge {u, v} ∈ Ei, u determines its mutually redundant correspondents

{u′, v′} ∈ Ei, and adds this information to Γ. Arguments similar to the ones above

show that the nodes u, u′, v and v′ are a constant number of hops away from one

another in G. We now show the following:

Lemma 41. Γ is a quasi-UBG that resides in a metric space of constant doubling

dimension.

Proof. Let a and b be vertices in Γ corresponding to edges {ua, va} and {ub, vb} in H .

Assign to the vertex pair (a, b) a weight equal to

dΓ(a, b) = min(dH(ua, ub) + dH(va, vb), dH(ua, vb) + dH(va, ub)).

91

First we show that the weights defined by dΓ form a metric. Clearly dΓ(a, a) = 0 and

dΓ(a, b) = dΓ(b, a). To prove the triangle inequality, consider three vertices a, b and c

in Γ. Assume w.l.o.g. that

dΓ(a, b) = dH(ua, ub) + dH(va, vb)

dΓ(b, c) = dH(ub, uc) + dH(vb, vc)

ua
va

u
b

vb

uc vc

ua
va

u
b

vb

uc vcc

a

b

(a) (b) (c)

Figure 3.6: dΓ satisfies the triangle inequality: (a) Nodes a, b, c in Γ corresponding
to edges {ua, ub}, {ub, uc}, {ua, uc} in H . (b) dΓ(a, c) = dH(ua, uc) + dH(va, vc) (c)
dΓ(a, c) = dH(ua, vc) + dH(va, uc).

We identify two possible scenarios:

(1) dΓ(a, c) = dH(ua, uc) + dH(va, vc) (see Fig. 3.6b). Since dH is itself a metric, it

follows immediately that dΓ(a, c) ≤ dΓ(a, b) + dΓ(b, c).

(2) dΓ(a, c) = dH(ua, vc)+dH(va, uc) (see Fig. 3.6c). Then it must be that dΓ(a, c) ≤

dH(ua, uc) + dH(va, vc) ≤ dΓ(a, b) + dΓ(b, c), cf. scenario (1).

We have shown that dΓ defines a metric space. We now show that Γ is a quasi-UBG

residing in the metric space defined by dΓ. For each edge {a, b} in Γ, the following

redundancy conditions hold:

92

(a) dH(ua, ub) + dH(vb, va) ≤ (1 + ε) · d(ua, va)− d(ub, vb)

(b) dH(ub, ua) + dH(va, vb) ≤ (1 + ε) · d(ub, vb)− d(ua, va)

Recall that {ua, va} and {ub, vb} are edges that belong to a same set Ei, for some

i ≥ 0. This implies that their lengths differ by a factor of α at the most: γ ·

ri−1 < d(ua, va) ≤ γ · α · ri−1 and γ · ri−1 < d(ub, vb) ≤ γ · α · ri−1. Thus the right

hand side of the inequalities (a) and (b) above is a quantity that lies in the interval

((1+ ε)−α)ri−1, ((1+ ε)α−1)ri−1). By scaling ((1+ ε)α−1)ri−1 to unit distance we

can say that Γ is an (1+ε)−α
(1+ε)α−1

- qUBG in the underlying metric space defined by dΓ.

It remains to show that the metric space defined by dΓ has constant doubling

dimension. Throughout the rest of the proof we use BΓ (BH) to denote a ball in the

metric space defined by dΓ (dH).

Consider a ball BΓ(x,R) of radius R centered at an arbitrary vertex x ∈ Γ.

To cover all vertices in BΓ(x,R), do the following repeatedly: (i) pick an uncovered

vertex a ∈ Γ, (ii) grow a ball BΓ(a, R/2), and (iii) grow two balls BH(ua, R/4) and

BH(va, R/4) in H (recall that node a ∈ Γ corresponds to edge {ua, va} ∈ H).

R

R/4

ux vx

u
a

va

x

a

R

R/2

R

u
b v

b

b

R/2

H Γ

Figure 3.7: The metric space defined by dΓ has doubling dimension.

93

Let a, b ∈ Γ be be such that dΓ(a, b) > R/2 (see Fig. 3.7). Assume w.l.o.g. that

dΓ(a, b) = dH(ua, ub)+dH(va, vb). Then either dH(ua, ub) > R/4, or dH(va, vb) > R/4,

or both. Assume w.l.o.g. that dH(ua, ub) > R/4. If d(ua, ub) ≤ 1, then there

exists i ≥ 0 such that d(ua, ub) ≤ γri and for which Lemma 35 guarantees that

d(ua, ub) ≥ dH(ua, ub)/(1 + ε). This implies that d(ua, ub) ≥ min{1, R
4(1+ε)

} and

therefore ua and ub cannot be too close to each other in the metric space defined by

d. This along with the fact that the metric space defined by d has constant doubling

dimension implies that only a constant number of such pairs (ua, ub) (and therefore

quadruples (ua, ub, va, vb)) exist in BH(ux, R) ∪ BH(vx, R). This further implies that

only a constant number of balls of radii R/2 are used to cover BΓ(x,R), proving that

the metric space defined by dΓ has constant doubling dimension.

Lemma 41 implies that a Maximal Independent Set I of Γ can be constructed in

O(log∗ n) communication rounds in Step (2.3) of the Leapfrog-Spanner algorithm,

using the MIS algorithm in [51]. In Step (2.4), each node u removes from Ei all

incident edges corresponding to nodes not in I. This completes the proof that Step

(3) of the Leapfrog-Spanner algorithm takes O(log∗ n) communication rounds.

3.5 Extension to Quasi-Unit Ball Graphs

It can be verified that the Spanner algorithm described at the end of Sec-

tion 3.2.3 works for β-QUBG as well, for fixed 0 < β ≤ 1. Let δ = ⌈logα γ
β
⌉ be the

new value of δ to be used by these methods (in place of the value ⌈logα γ⌉ defined

in Section 3.2). Then all properties of H listed in Section 3.2.1 hold unaltered: δ is

94

used only in the proof of Lemma 28, but since δ = logα
γ
β
> logα γ, the lemma holds

for the new δ value as well. The Edge Replacement Procedure from Section 3.2.2 is

carried out only for edges in Ei, with i ≤ h− δ − 3; these are all real edges of length

no greater than β/α3 < β. It follows from the proof of Lemma 30 that such edges

get replaced by real edges as well (if edge {v, u} gets replaced by edge {v, w}, then

d(v, w) ≤ β). Other proofs in Section 3.2.2 use δ as a constant only and therefore

they hold for the new δ value as well. The Virtual Edge Replacement Procedure from

Section 3.2.3 is carried out for each edge in J that is not in the input β-QUBG (which

may include edges of length in the interval (β, 1]), producing the spanner G′ with the

properties listed in Theorem 33.

3.6 Conclusion

The question of whether the leapfrog property for the edge set of a spanner

H implies that the total weight of H is bounded above by O(wt(MST)) for doubling

metric spaces, remains open. Were this question to be positively resolved, the (1+ε)-

spanner constructed in this chapter would have not only degree bounded above by

a constant, but also low weight bounded above by O(wt(MST)). Alternately, con-

structing a (1 + ε)-spanner of bounded degree and O(wt(MST)) weight for doubling

metric spaces, without relying on the leapfrog property, is an interesting open prob-

lem.

95

CHAPTER 4
FACILITY LOCATION IN UNIT DISK GRAPHS

4.1 Introduction

The widespread use of wireless multi-hop networks such as ad hoc and sensor

networks pose numerous algorithmic challenges. In the previous chapters we saw

examples of topology control problems. Another such challenge is posed by the need

for efficient clustering algorithms. Clustering can play a critical role in increasing

the performance and lifetime of wireless networks and has been proposed as a way

to improve MAC layer protocols (e.g., [32, 82]), higher level routing protocols (e.g.,

[78, 79, 80]), and energy saving protocols (e.g., [18, 39]). Clustering problems can

be modeled as combinatorial or geometric optimization problems of various kinds;

the minimum dominating set (MDS) problem, the k-median problem, etc. are some

popular abstractions of the clustering problem. Since wireless networks reside in

physical space and since transmission ranges of nodes can be modeled as geometric

objects (e.g., disks, spheres, fat objects, etc.), wireless networks can be modeled

as geometric graphs, especially as intersection graphs of geometric objects. This has

motivated researchers to consider a variety of clustering problems for geometric graphs

[77, 5, 10, 2, 20] and attempt to develop efficient distributed algorithms for these. Most

of these clustering problems are NP-hard even for fairly simple geometric graphs and

this has motivated attempts to design fast distributed approximation algorithms.

In this chapter, we present the first constant-factor approximation algorithm for the

96

f(5)

e(2)

g(1)

h(2)

a(1)

b(1)

c(1)

d(3)

open

not open

Figure 4.1: A UDG with eight vertices. Opening costs are integers shown next
to the vertex names and connection costs of edges are assumed to be Euclidean
lengths. Vertices b, g, and e have been opened as facilities. The solid lines indicate
the assignments of vertices (clients) to open facilities and the dotted lines indicate
edges in the UDG that are not being used for any facility-client connection. Only
the disks around the three open facilities are shown in the figure. The cost of this
solution is 4 units (for opening facilities) plus |fg|+ |ab|+ |cb|+ |de|+ |he|.

facility location problem on unit disk graphs (UDGs). For points u and v in Euclidean

space we use |uv| to denote the Euclidean distance in L2 norm between u and v.

A graph G = (V,E) is a unit disk graph (UDG) if there is an embedding of the

vertices of G in R
2 (the 2-dimensional Euclidean space) such that {u, v} ∈ E iff

|uv| ≤ 1. The facility location problem on UDGs (in short, UDG-FacLoc) takes as

input a UDG G = (V,E), opening costs f : V → R
+ associated with vertices,

and connection costs c : E → R
+ associated with the edges. The problem is to

find a subset I ⊆ V of vertices to open (as “facilities”) and a function φ : V → I

that assigns every vertex (“client”) to an open facility in its neighborhood in such

a way that the total cost of opening the facilities and connecting clients to open

facilities is minimized. In other words, the problem seeks to minimize the objective

function
∑

i∈I f(i) +
∑

j∈V c(j, φ(j)). See Fig. 4.1 for an illustration. The opening

97

cost f(i) reflects the available battery power at node i; less the battery power, greater

the cost f(i). The connection cost c(j, φ(j)) represents the power needed for j to

communicate with φ(j). Hence it is safe to assume that the connection costs of

edges are determined by their Euclidean lengths via a fairly general function. More

precisely, let g : [0, 1] → R
+ be a monotonically increasing function with bounded

growth, i.e., for some constant B ≥ 1, g(x) ≤ B · g(x/3) for all x ∈ [0, 1]. We assume

that each edge {i, j} ∈ E get assigned a connection cost c(i, j) = g(|ij|). Note that

the restriction that g has bounded growth still permits cost functions that are quite

general from the point of view of wireless networks. For example, if g(x) = β · xγ for

constants β and γ (as might be the case if connection costs represent power usage),

then B = 3γ. It should be noted that every vertex in G is a “client” and every vertex

has the potential to be a “facility.” Furthermore, a vertex (“client”) can only be

connected to (i.e., “serviced” by) another vertex (“facility”) in its neighborhood and

thus the set of open facilities forms a dominating set.

Note that UDG-FacLoc is inherently non-metric, i.e., connection costs of edges

do not satisfy the triangle inequality. This is because a vertex cannot be connected

to a non-neighbor, implying that the connection cost of a vertex to a non-neighbor

is ∞. There are no known constant-factor approximation algorithms for the non-

metric version of facility location, even for UDGs. In one sense, this is not surprising

because UDG-FacLoc is a generalization of the weighted minimum dominating set

(WMDS) problem on UDGs. This can be seen by noting that an instance of WMDS,

namely G = (V,E), w : V → R
+, can be interpreted as a UDG-FacLoc instance in

98

which the connection costs (of edges) are set to 0 and each opening cost f(i) is set to

the vertex weight w(i). Unlike the WMDS problem that ignores the cost of connecting

to dominators, the facility location problem explicitly models connection costs. As

a result, solutions to WMDS may lead to clustering that is quite poor. There have

been no constant-factor approximation algorithms for WMDS on UDGs until recently,

with the result of Ambühl et al. [2] being the first constant-factor approximation for

WMDS on UDGs. Subsequently, Huang et al. [34] have improved the approximation

ratio significantly. Our technique combines the well known primal-dual algorithm of

Jain and Vazirani [36] with these recent constant-factor approximation algorithms for

WMDS on UDGs, to obtain a constant-factor approximation for UDG-FacLoc. Appli-

cability of our technique to more general models of wireless networks, for example,

unit ball graphs in higher dimensional spaces or doubling metric spaces, disk graphs,

growth-bounded graphs etc. is only limited by the availability of good approxima-

tion algorithms for the WMDS problem on these graph classes. Using our technique, a

constant-factor approximation algorithm for WMDS on any of these graph classes would

immediately imply a constant-factor approximation for facility location on that graph

class.

UDGs are simple and popular models of wireless networks and the facility

location problem on UDGs is a general abstraction of the clustering problem on wire-

less networks. To be more specific consider one common application of dominating

sets in wireless networks, which is to save energy by sending all dominatees into a

low power sleep mode and having the network be serviced exclusively by the domi-

99

nators. While it makes sense to keep the size or weight of the dominating set small

so that most nodes are in the sleep mode, ignoring the connection costs could yield

a dominating set in which each dominator has to spend a lot of energy in order to

reach its dominatees. By using an objective function that takes opening costs as well

as connection costs into account, UDG-FacLoc yields a set of cluster heads that can

service the network with smaller overall cost and for a longer duration. For more

background see the recent survey by Frank [21] on the facility location problem as it

arises in the context of wireless and sensor networks.

4.1.1 Related work

Facility location is an old and well studied problem in operations research

([48, 76, 3, 43, 12]), that arises in contexts such as locating hospitals in a city or

locating distribution centers in a region. A standard instance of the facility location

problem takes as input a complete bipartite graph G = (F,C,E), where F is the set

of facilities and C is the set of cities, opening costs f : F → R
+, and connection

costs c : E → R
+. The goal, as mentioned before, is to find a set of facilities I ⊆ F

to open and a function φ : C → I that assigns every city to an open facility so as

to minimize
∑

i∈I f(i) +
∑

j∈C c(j, φ(j)). In this context, the connection costs are

said to satisfy the triangle inequality if for any i, i′ ∈ F and j, j′ ∈ C, c(i, j) ≤

c(i, j′)+ c(i′, j′)+ c(i′, j). In the metric facility location problem the connection costs

satisfy the triangle inequality; when they don’t we have the more general non-metric

facility location problem. UDG-FacLoc can be seen as an instance of the non-metric

100

facility location problem by setting F = V , C = V , setting connection costs between

a facility and a city that correspond to non-adjacent vertices to ∞, setting c(i, i) = 0

for all i ∈ V , and inheriting the remaining connection costs and opening costs in the

natural way. O(logn)-approximation algorithms for the non-metric facility location

problem are well known [33, 60]. Starting with an algorithm due to Shmoys, Tardos

and Aardal [75] the metric facility location problem has had a series of constant-

factor approximation algorithms, each improving on the approximation factor of the

previous. We make use of an elegant primal-dual schema algorithm due to Jain and

Vazirani [36] that provides a 3-approximation to the metric facility location problem.

Since UDG-FacLoc is not a metric version of the facility location problem, we cannot

use the Jain-Vazirani algorithm directly. We use the Jain-Vazirani algorithm to get

a “low cost,” but infeasible solution to UDG-FacLoc and then “repair” this solution

via the use of a “low weight” dominating set and show that the resulting solution is

within a constant-factor of OPT.

Several researchers have attempted to devise distributed algorithms for the

facility location problem; these attempts differ in the restrictions placed on the facility

location problem and in the network and distributed computing models. For example,

Moscibroda and Wattenhofer [65] present a distributed algorithm for the standard

non-metric facility location problem. The network on which their algorithm runs is the

complete bipartite graph on F , the set of facilities and C, the set of cities. Since this

network has diameter 2, one way to solve the problem would be for a node to gather

information about the entire network in constant number of communication rounds

101

and just run a known sequential algorithm locally. Thus this problem is uninteresting

in the LOCAL model [71] of distributed computation. The problem becomes more

interesting in the CONGEST model, where a reasonable bound, such as O(logn)

bits, is imposed on each message size. The message size of O(logn) bits allows each

message to contain at most a constant number of node identifiers and constants that

are polynomial in n. In such a model, exchanging a lot of information costs a lot of

rounds and Moscibroda and Wattenhofer [65] present an approximation algorithm for

non-metric facility location that, for every k, achieves an O(
√
k(mρ)1/

√
k log(m+n))-

approximation in O(k) communication rounds. Here m is the number of facilities,

n is the number of clients, and ρ is a coefficient that depends on the numbers (i.e.,

opening costs and connection costs) that are part of the input. The main thrust of

this result is that even with a constant number of communication rounds, a non-trivial

approximation factor can be achieved. However, it should be noted that no matter

how large k is (e.g., k = polylog(n)), the approximation factor of this algorithm is

Ω(log(m+ n)).

Frank and Römer [22] consider facility location on multi-hop networks (like

we do), but assume that given edge weights, the connection cost c(i, j) for any pair of

vertices i and j is simply the shortest path distance between i and j. This turns their

problem into a metric problem and thus they can use known sequential algorithms;

in particular, they use the 1.61-approximation due to Jain et al. [35]. Frank and

Römer [22] show how to implement the sequential algorithm of Jain et al. [35] in a

distributed setting without any degradation in the approximation factor, but they do

102

not provide any non-trivial running time guarantees. These authors [22] do mention

the version of the problem in which connection costs between non-neighboring vertices

is ∞, but they just observe that since this is a non-metric problem, constant-factor

approximation algorithms are not known.

Gehweiler et al. [23] present a constant-approximation, constant-round dis-

tributed algorithm using only O(logn)-bits per message, for the uniform facility lo-

cation problem. In this problem, all opening costs are identical and the underlying

network is a clique. The authors make critical use of the fact that all facility open-

ing costs are identical in order to obtain the constant-approximation. The uniform

opening costs assumption is restrictive for certain settings. For example, if we want

opening costs to reflect the amount of battery power that nodes have available – more

the available power at a node, cheaper it is to open that node, then this assumption

requires the battery power at all nodes to remain identical through the life of the net-

work. This may be untenable because nodes will tend to expend different amounts

of power as they perform different activities. The interesting aspect of the Gehweiler

et al. [23] algorithm is that all message sizes are bounded above by O(logn).

4.1.2 Main results

We assume that we are given a UDG along with its geometric representation.

Let g : [0, 1] → R
+ be a monotonically increasing function with bounded growth,

i.e., there exists a constant B such that g(x) ≤ B · g(x/3) for all x ∈ [0, 1]. Each

edge {i, j} ∈ E gets assigned a connection cost c(i, j) = g(|ij|), representing the

103

dependence of the connection cost on the Euclidean distance between the involved

vertices. For any ε > 0, we present a (6 + B + ε)-approximation algorithm for

UDG-FacLoc. To put this result in context, observe that if connection costs are exactly

Euclidean distances, i.e., g(x) = x, then B = 3 and we have a (9 + ε)-approximation.

If the connection costs are meant to represent energy usage, then a function such as

g(x) = β · xγ for constants β and 2 ≤ γ ≤ 4 may be reasonable. In this case, B = 3γ

and we get a (3γ + 6 + ε)-approximation, still a constant-factor approximation. We

then present a distributed implementation of our algorithm that runs in just O(1)

rounds and yields an O(B)-approximation.

In the LOCAL model, every node v ∈ V can send an arbitrarily large message

to ever neighbor u in each round of communication. This model abstracts away all

the restricting factors (e.g. congestion and asynchronicity) and focus on the impact of

locality on distributed computation. To obtain this result we show that UDG-FacLoc

can be solved “locally” with only a constant-factor degradation in the quality of the

solution. One aspect of our result, namely the constant approximation factor, depends

crucially on the availability of a geometric representation of the input UDG. If we

are given only a combinatorial representation of the input n-vertex UDG, then our

algorithm runs in O(log∗ n) rounds yielding an O(logn)-approximation. This result

depends on two recent results: (i) an O(log∗ n)-round algorithm for computing a

maximal independent set (MIS) in growth-bounded graphs [74] and (ii) an algorithm

that partitions a UDG, given without geometry, into relatively small number of cliques

[72]. Overall, our results indicate that UDG-FacLoc is as “local” a problem as MIS is,

104

provided one is willing to tolerate a constant-factor approximation. Our techniques

extend in a straightforward manner to the connected UDG-FacLoc problem, where it

is required that the facilities induce a connected subgraph; we obtain an O(1)-round,

O(B)-approximation for this problem also.

4.2 Sequential Algorithm

Now we present a high level three step description of our algorithm for finding

a constant-factor approximation for UDG-FacLoc. Let G = (V,E) be the given UDG

with an opening cost f(i) for each vertex i ∈ V and connection cost c(i, j) for each

edge {i, j} ∈ E. We assume that there is a monotonically increasing function g :

[0, 1] → R
+ satisfying g(x) ≤ B · g(x/3) for all x ∈ [0, 1] for some B ≥ 1, such that

c(i, j) = g(|ij|).

Step 1. Convert the given instance of UDG-FacLoc into a standard non-metric in-

stance of facility location. This transformation is as described in the previous

section. Run the primal-dual algorithm of Jain and Vazirani [36] on this in-

stance to obtain a solution S. The solution S may contain connections that are

infeasible for UDG-FacLoc; these connections have connection cost ∞ and they

connect pairs of non-adjacent vertices in G.

Step 2. Assign to each vertex i of G a weight equal to f(i). Compute a dominating

set of G with small weight. For this we can use the (6 + ε)-approximation

algorithm due to Huang et al. [34]. Let D∗ denote the resulting solution.

Step 3. For each vertex i ∈ V that is connected to a facility by an edge of cost ∞,

105

reconnect i to an arbitrarily chosen neighbor d ∈ D∗. Think of the vertices d ∈

D∗ as facilities and declare them all open. Let the new solution to UDG-FacLoc

be called S∗.

We will prove the following theorem in the next subsection.

Theorem 42. Let OPT denote the cost of an optimal solution to a given instance of

UDG-FacLoc. Then cost(S∗) ≤ (6 +B + ε) ·OPT .

4.2.1 Analysis

To analyze our algorithm we need some details of the Jain-Vazirani primal-

dual algorithm used in Step 1. For a more complete description see [36]. The starting

point of this algorithm is the following Integer Program (IP) representation of facility

location. Here yi indicates whether facility i is open and xij indicates if city j is

connected to facility i. The first set of constraints ensure that every city is connected

to a facility and the second set of constraints guarantee that each city is connected

to an open facility.

minimize
∑

i∈F,j∈C
c(i, j) · xij +

∑

i∈F
f(i) · yi

subject to
∑

i∈F
xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

106

As is standard, we work with the LP-relaxation of the above IP obtained by

replacing the integrality constraints by xij ≥ 0 for all i ∈ F and j ∈ C and yi ≥ 0 for

all i ∈ F . The dual of this LP-relaxation is the following:

maximize
∑

j∈C
αj

subject to αj − βij ≤ c(i, j), i ∈ F , j ∈ C

∑

j∈C
βij ≤ f(i), i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F , j ∈ C

The dual variable αj can be interpreted as the amount that city j is willing to

pay in order to connect to a facility. Of this amount, c(i, j) goes towards paying for

connecting to facility i, whereas the “extra,” namely βij, is seen as the contribution

of city j towards opening facility i. Initially all the αj and βij values are 0. The

Jain-Vazirani algorithm initially raises all of the αj values in sync. When αj reaches

c(i, j) for some edge {i, j}, then the connection cost c(i, j) has been paid for by j

and any subsequent increase in αj is accompanied by a corresponding increase in βij

so that the first dual constraint is not violated. The quantity βij is j’s contribution

towards opening facility i and when there is enough contribution, i.e.,
∑

j βij = f(i),

then the facility i is declared temporarily open. Furthermore, all unconnected cities j

that make positive contribution towards f(i), i.e., βij > 0, are declared connected to

i. Also, any unconnected city j that has completely paid its connection cost c(i, j),

but has not yet started paying towards βij , i.e., βij = 0, is also declared connected

107

to j. The opening of a facility i corresponds to setting yi = 1 and declaring a city

j connected to i corresponds to setting xij = 1. Once a facility i is open and cities

connected to it, then the dual variables of these cities are no longer raised; otherwise

the dual constraint
∑

j∈C βij ≤ f(i) would be violated. The algorithm proceeds in

this way until every city has been connected to some open facility. This is the end of

Phase 1 of the algorithm.

It is easy to check that at the end of Phase 1, {αj , βij} define a feasible dual

solution and {yi, xij} define a feasible integral solution. If the cost of the primal

solution is not too large compared to the cost of the dual solution, then by the Weak

Duality Theorem, we would have a solution to facility location that is not too far

from a lower bound on OPT . However, the gap between the costs of the dual and the

primal solutions can be quite high because a single city may be contributing towards

the connection costs and opening costs of many facilities. To fix this problem, Phase

2 of the algorithm is run. Let Ft be the set of temporarily open facilities. Define a

graph H on this set of vertices with edges {i, i′} whenever there is a city j such that

βij > 0 and βi′j > 0; in other words, city j is contributing a positive amount towards

the opening of both facilities i and i′. Compute a maximal independent set (MIS) I

of H and declare all facilities in I open (permanently) and close down all facilities in

Ft \ I, i.e., set yi = 0 for all i ∈ Ft \ I. Due to the shutting down of some facilities,

some cities may be connected to closed facilities implying that the primal solution

may be infeasible, due to violation of the yi − xij ≥ 0 constraints. Call a city j a

Class I city if it is connected to an open facility. Denote the set of Class I cities by

108

C1. We will call cities outside of C1, Class II cities. At this point in the algorithm

the primal and the dual solution satisfy the following properties.

Lemma 43. [Jain-Vazirani [36]] The dual solution {αj, βij} is feasible. The

primal solution {yi, xij} is integral, but may not be feasible. Furthermore,

∑

j∈C1

αj =
∑

j∈C1

c(j, φ(j)) +
∑

i∈I
f(i).

jj’

i’i

(open) (closed)

Figure 4.2: Client j is connected to temporarily open facility i at the end of Phase
1. Client j′ contributes positively to the opening cost of both i and i′. Facility i′ is
closed at the beginning of Phase 2 and facility i becomes a candidate for connecting
j to.

The above Lemma is essentially saying that the Class I cities completely pay

for connections to and the opening of facilities in I. The goal now is to fix the

infeasibility of the primal solution, i.e., find connections for cities outside C1, without

increasing the cost of the primal solution too much relative to the cost of the dual.

Let j be a city that is connected to a closed facility. If there is a open city i to which

j has already paid connection cost, i.e., αj ≥ c(i, j), then simply connect j to one

109

such city. Since αj ≥ c(i, j), the connection cost is paid for by αj and furthermore the

opening cost of i has been paid for by other cities. This leaves a set C ′ of cities such

that for each j ∈ C ′, αj < c(i, j) for all open cities i. This may happen, for example,

if none of j’s neighbors in G have been opened as facilities and therefore for every

open facility i, c(i, j) =∞. Note that at the end of Phase 1, there was a temporarily

open facility, say i, to which j was connected and in Phase 2, i was shut down. This

implies that (i) αj ≥ c(i, j) and (ii) there exists a city j′ that is paying a positive

amount towards the opening of two facilities i and i′ and this “double payment” is

responsible for i being shut down. See Fig. 4.2 for an illustration. In such a case,

the Jain-Vazirani algorithm simply connects j to i′. In the metric facility location

case, Jain and Vazirani are able to show that the connection cost c(j, i′) is not too big

relative to c(i, j) (they show, c(j, i′) ≤ 3 · c(i, j)). In our case, i′ may be outside the

neighborhood of j and therefore c(j, i′) = ∞ and therefore connecting j to i′ is too

costly. This possible mistake is fixed in the subsequent two steps of our algorithm,

via the use of a WMDS solution. We now include the last two steps of our algorithm

in the analysis to show that we are able to find a facility that is not too costly for

i to connect to. More precisely, if j′ is in the neighborhood of i, then c(i, j′) < ∞

and we are able to show that connecting i to j′ is a good idea. On the other hand,

if j′ is not a neighbor of i, then we show that connecting i to some neighbor in the

WMDS solution D∗ will not increase the cost of the solution too much. We make use

of the following inequalities that Jain and Vazirani prove. The first inequality was

mentioned earlier in this paragraph, but the remaining two inequalities take a little

110

bit of work to prove and we refer the reader to the Jain-Vazirani paper [36].

Lemma 44. [Jain-Vazirani [36]] αj ≥ c(i, j), αj ≥ c(i, j′) and αj ≥ c(i′, j′).

Lemma 45. Let B satisfy g(x) ≤ B · g(x/3) for all x ∈ [0, 1]. If j′ is a neighbor of

i, then i is connected to j′ in Step 1 and c(i, j′) ≤ B · αj. If j′ is not a neighbor of i,

then i is connected to some neighbor j∗ ∈ D∗ in Step 3 and c(i, j∗) ≤ B · αj.

Proof. Since Euclidean distances satisfy triangle inequality, we have

|ij|+ |i′j|+ |i′j′| ≥ |ij′|.

Let y denote the largest of the three terms on the left hand side above. Then y ≥

|ij′|/3. Suppose that j′ is a neighbor of i. Then |ij′| ≤ 1 and c(i, j′) = g(|ij′|) <∞.

Then,

c(i, j′) = g(|ij′|) ≤ B · g
(|ij′|

3

)
(due to bounded growth of g)

≤ B · g(y) (due to monotonicity of g)

≤ B · αj (due to Lemma 44).

Now suppose that j′ is not a neighbor of i. Then |ij′| > 1 and for any neighbor

j∗ of i, |ij′| > |ij∗|. Since y ≥ |i′j|/3, it follows that y > |ij∗|/3. Then, by the same

reasoning as above, we get

c(i, j∗) = g(|ij∗|) ≤ B · g
(|ij∗|

3

)

≤ B · g(y)

≤ B · αj .

111

Lemma 46. Let S∗ be the solution produced by our algorithm. Then, cost(S∗) ≤

(6 +B + ε) · OPT , where OPT is the cost of an optimal solution to UDG-FacLoc.

Proof. The cost of the entire solution can be expressed as

(
∑

i∈I
f(i) +

∑

j∈C1

c(φ(j), j)

)
+

(
∑

i∈D∗

f(i) +
∑

j∈C2

c(φ(j), j)

)
.

By Lemma 43, the first term in the above sum equals
∑

j∈C1
αj . Let OPTDOM denote

the weight of an optimal dominating set when each vertex i of G is assigned weight

f(i). Then,

∑

i∈D∗

f(i) ≤ (6 + ε) · OPTDOM ≤ (6 + ε) ·OPT (4.1)

because we use the (6+ ε)-approximation algorithms of Huang et al. [34] to compute

a dominating set of small weight. Also, by Lemma 45,

∑

j∈C2

c(φ(j), j) ≤ B ·
∑

j∈C2

αj. (4.2)

Together the above inequalities yield

cost(S∗) =

(
∑

i∈I
f(i) +

∑

j∈C1

c(φ(j), j)

)
+

(
∑

i∈D∗

f(i) +
∑

j∈C2

c(φ(j), j)

)

≤
∑

j∈C1

αj + (6 + ε) · OPT +B ·
∑

j∈C2

αj

≤ B ·
∑

j∈C
αj + (6 + ε) · OPT (since B ≥ 1)

≤ (B + 6 + ε) · OPT (by Weak Duality Theorem).

By making simple modifications to an example due to Jain and Vazirani ([36]),

we can show that the above analysis is tight in the sense that there exists a UDG

112

along with an assignment of opening and connection costs for which our algorithm

produces a solution with cost at least B · OPT , independent of the quality of the

WMDS used.

4.3 Distributed Algorithm

In this section, we present an O(1)-round distributed implementation of the

above algorithm in the LOCAL model [71]. In this model there is no upper bound

placed on the message size and due to this, a node can collect all possible information

(i.e., node IDs, topology, interactions) about its k-neighborhood in k communication

rounds. We show in this section that UDG-FacLoc is inherently a “local” problem

provided we are willing to tolerate a constant-factor approximation in the cost of the

solution. This property of UDG-FacLoc allows us to solve a version of the problem

independently on small squares and combine the solutions in a simple way to get the

overall solution. We partition the plane into squares by placing on the plane an infinite

grid of 1/
√
2 × 1/

√
2 squares. This is a standard and simple way of partitioning a

UDG with geometric representation into cliques. The square Sij for i, j ∈ Z, contains

all the points (x, y) with i√
2
≤ x < i+1√

2
and j√

2
≤ y < j+1√

2
. Let G = (V,E) be the

given UDG. For a square Sij that has at least one node in V , let Vij ⊆ V be the

set of vertices whose centers lie in Sij . Let N(Vij) denote the set of all vertices in

V \Vij that are adjacent to some vertex in Vij. Now consider the subproblem, denoted

UDG-FacLocij, in which we are allowed to open facilities from the set Vij∪N(Vij) with

the aim of connecting all the nodes in Vij as clients to these facilities. The objective

113

function of the problem remains the same: minimize the cost of opening facilities plus

the connection costs.

Let {Fij, φij} denote a solution to UDG-FacLocij, where Fij ⊆ Vij∪N(Vij) is the

set of open facilities and φij : Vij → Fij is the assignment of clients to open facilities.

Let ∪ij{Fij, φij} denote a solution to UDG-FacLoc in which the set of open facilities is

∪ijFij and the assignment φ : V → ∪ijFij is defined by φ(v) = φij(v) if v ∈ Vij . Thus

∪ij{Fij, φij} defines a simple way of combining solutions of UDG-FacLocij to obtain a

solution of UDG-FacLoc. The following Lemma shows that if the small square solutions

∪ij{Fij, φij} are good then combining them in this simple way yields a solution to

UDG-FacLoc that is also quite good. This Lemma is a generalization of a result due

to Ambühl et al. [2] that was proved in the context of the WMDS problem for UDGs.

The proof of this Lemma is omitted due to space constraints, but it appears in [67].

Lemma 47. For each i, j ∈ Z, let OPTij denote the cost of an optimal solution to

UDG-FacLocij and let {Fij , φij} be a solution to UDG-FacLocij such that for some c,

cost({Fij, φij}) ≤ c ·OPTij. Then cost(∪ij{Fij, φij}) ≤ 16c ·OPT . Here OPT is the

cost of an optimal solution to UDG-FacLoc.

The above Lemma implies the following simple distributed algorithm.

Step 1. Each node v gathers information (i.e., coordinates of nodes, opening costs

of nodes, and connection costs of edges) about the subgraph induced by its

2-neighborhood.

Step 2. Each node v in Sij then identifies Vij and N(Vij). Recall that Vij ⊆ V is the

114

set of nodes that belong to square Sij and N(Vij) ⊆ V \ Vij is the set of nodes

outside of Vij that have at least one neighbor in Vij.

Step 3. Each node v locally computes the solution of UDG-FacLocij, thereby deter-

mining whether it should be opened as a facility and if not which neighboring

facility it should connect to.

Based on the above description, it is easily verified that the algorithm takes

2 rounds of communication. Note that the instance of UDG-FacLocij solved in Step

3 is slightly different from UDG-FacLoc, in that only certain vertices (namely, the

vertices in Vij) need to connect to open facilities, whereas every vertex (both in Vij

and in N(Vij)) is a potential client. This difference is minor and the (6 + B + ε)-

approximation algorithm described in the previous section, can be essentially used

without any changes, to solve UDG-FacLocij. Lemma 47 then implies that the dis-

tributed algorithm above would yield a 16 · (6 + B + ε)-approximation algorithm.

We can do better by making use of an intermediate result due to Ambühl et al. [2]

that presents a 2-approximation algorithm for the WMDS problem on each square Sij .

Using arguments from the previous section, we can use this to obtain a (B + 2)-

approximation for UDG-FacLocij and a 16 · (B + 2)-approximation for UDG-FacLoc.

4.4 Conclusion

One open question implied by this work is whether we can obtain a constant-

factor approximation algorithm for facility location on more general classes of wireless

network models. We believe that a first step towards solving this problem would

115

be to obtain a constant-factor approximation algorithm for UDG-FacLoc when the

input UDG is given without any geometry. The only obstacle to obtaining such an

approximation, using our techniques, is the lack of a constant-factor approximation

to WMDS on UDGs given without geometry. Without geometry, the best algorithm we

could design is one that, in O(log∗ n) rounds, outputs an O(logn)-approximation to

the UDG-FacLoc problem. That algorithm appears in the full version of the ICDCN

paper [67].

Furthermore, the distributed algorithm we present runs in O(1) rounds in the

LOCAL model, which assumes that message sizes are unbounded. We wanted to

extend our distributed algorithm to the CONGEST model where only messages of

size O(logn) are allowed. The results in the next chapter describes our findings in

that area.

116

CHAPTER 5
A PRIMAL-DUAL APPROACH FOR METRIC FACILITY LOCATION

5.1 Introduction

Recent research in the area of distributed approximation algorithms [19, 44, 49,

50, 54, 55, 65, 23] has led to interesting and sometimes optimal trade-offs between the

amount of resources used (e.g., number of communication rounds, size of messages,

etc.) and the quality of solution (i.e., approximation factor) obtained. In recent

years, such trade-offs have been especially well-studied for the minimum spanning

tree problem [44] and the dominating set problem [50, 54, 55]. One theme in this

research is motivated by the question: can one design distributed approximation

algorithms that provide non-trivial approximation guarantees even when run for very

few (e.g., constant) number of rounds? The earliest example of such an algorithm, as

far as we know, is the dominating set algorithm due to Kuhn and Wattenhofer [54]

that runs in k2 rounds, for any k, and outputs a dominating set whose expected size

is within O(k2∆2/k log∆) of OPT. Here ∆ is the maximum degree of the network. In

this paper, we investigate this question for the metric facility location problem. For

instances with m facilities and n clients, we first present a 7-approximation algorithm

running in O(logm + logn) rounds and then generalize this algorithm to a k-round

algorithm that yields an O(m2/
√
k · n2/

√
k)-approximation, for any constant k. In

fact, the k-round algorithm yields this approximation factor for all k = O((logm
log logm

)2).

A key constraint of our model of distributed computation is that message sizes are

117

bounded above by O(log(m+ n)) bits.

Although we have already defined the facility location problem (from the UDG

point of view) in previous chapters, it is worth revisiting the traditional version of

the problem for this chapter. The traditional facility location problem takes as input

a complete bipartite graph G = (F,C,E), where F is the set of facilities and C is

the set of clients (or cities), facility opening costs f : F → R
+, and connection costs

c : E → R
+. As usual, the goal is to find a set of facilities I ⊆ F to open and a

function φ : C → I that assigns every client to an open facility so as to minimize

∑
i∈I f(i) +

∑
j∈C c(j, φ(j)). In other words, the goal is to minimize the total cost of

opening facilities and connecting clients to open facilities. This version of the problem

is old and well studied in operations research [12], that arises in contexts such as

locating hospitals in a city or locating distribution centers in a region. However, this

problem has also been recently used as an abstraction for the problem of locating

resources in wireless networks [21, 68]. The facility location problem comes in two

main versions: the non-metric version and the metric version. In Chapter 4 we

have seen the metric facility location problem. In the metric version, the connection

costs satisfy the triangle inequality; when they don’t, we have the more general non-

metric facility location problem. See Figure 5.1 for an illustration. This distinction

is important from an approximation point of view because there are a number of

sequential constant-factor approximation algorithms for the metric facility location

problem ([9, 36, 75] are some examples), whereas for the non-metric facility location

problem, the best known approximation factor is O(logn) and this is optimal [33, 60].

118

f(1) = 10

f(2) = 5

f(3) = 2

d

a

b

c

1 2

14

7

5

1

1

4 6

7

6

9

3

1

c(i,x) values

Figure 5.1: An instance of standard FacLoc. The table shows the pairwise connection
costs between clients and facilities. OPT consists of open facilities 2 and 3 with clients
a, b and c connected to facility 2 and client d to facility 3. Total cost of OPT is 11.
Note that any solution with a single open facility or with all the facilities open, will
have cost more than 11. So is the case for any solution that opens facility 1.

This work is partly motivated by the results of Moscibroda and Wattenhofer

[65] who consider the non-metric facility location problem and design an approxi-

mation algorithm that in O(k) rounds, for any constant k, yields a non-trivial ap-

proximation factor that depends on k and the input size. The underlying network

on which this algorithm runs is the complete bipartite graph G = (F,C,E), induced

by the facilities and the clients. Given that the network has diameter 2, the prob-

lem is trivial (i.e., simply reduces to the sequential setting) if arbitrary amounts of

information are allowed to be exchanged between neighbors in each round. Placing

a reasonable bound, such as O(log(m+ n)), on the message sizes makes the problem

challenging and allows Moscibroda and Wattenhofer [65] to highlight an interesting

trade-off between the number of communication rounds of the algorithm and the ap-

proximation factor achieved. Specifically, they present an algorithm that runs in O(k)

rounds and yields an approximation of O(
√
k(mρ)1/

√
k log(m + n)), where m is the

119

number of facilities, n is the number of clients, and ρ is a coefficient that depends on

the numbers in the given instance (i.e., the opening costs and the connection costs).

To focus more clearly on the growth of this approximation factor as a function of k,

let us assume that ρ = m = n. Assuming that ρ is equal to m or n is reasonable

since Moscibroda and Wattenhofer [65] assume that ρ can be stored in a message of

size O(logn) bits, implying that the value of ρ is bounded above by a polynomial in

n. With this simplification we see that the Moscibroda-Wattenhofer algorithm runs

in O(k) rounds yielding an approximation factor of O(
√
kn2/

√
k log(n)). Since the

metric facility location problem is a special case of the non-metric problem, this leads

to question of whether it is possible to design k-round algorithms for metric problem

that give a better approximation factor.

This question is motivated by the expectation that in a distributed setting

such as this, in which network diameter is not a concern (since it is just a constant),

one should be able to obtain, in polylogarithmic number of rounds, approximation

factors that are as good as the best approximation factors possible in a sequential

setting. Since the metric facility location problem has a sequential constant-factor

approximation, ideally we should be able to obtain an approximation factor f(m,n, k)

that tends to a constant as k tends to some polylogarithmic quantity in m and

n. The Moscibroda-Wattenhofer [65] falls short in this regard because no matter

how large we make k, the smallest value achieved by their approximation factor of

O(
√
kn2/

√
k log(n)) is just O(log2 n). At a high level, the reason for this is that the

Moscibroda-Wattenhofer algorithm [65] uses a 2-step approach that involves solving

120

an LP-relaxation in the first step and doing an independent randomized rounding of

the fractional solution, in the second step; unfortunately, in both of these steps there

is a logarithmic “overhead” in the approximation factor. These overheads seem fairly

fundamental to their approach and to do better, it seems that different techniques

are needed.

Our results. Our algorithms use a model of distributed computing that

is similar to the Moscibroda-Wattenhofer model [65]. Specifically, we assume that

the underlying network is the complete bipartite graph G = (F,C,E) induced by

facilities and clients. Also, the network executes algorithms synchronously and in

each round nodes receive messages from neighbors, perform polynomial-time local

computations, and send O(log(m + n))-sized messages to neighbors. This message

passing model with a logarithmic bound (in the network size) on the message size has

been called the CONGEST model by Peleg [71]. The CONGEST model is a “point-

to-point” communication model and allows a node to send a different O(logn)-bit

message to each of its neighbors, but in our algorithm it suffices for each node to send

the same O(logn)-sized message to all of its neighbors. This is the local broadcast

model that is commonly used in distributed algorithms on wireless networks. To

focus more clearly of the challenges of using the CONGEST model, we assume that

each piece of information that a node possesses (IDs, fi’s, cij’s, etc.) can fit into an

O(log(m + n))-bit message. We consider the metric facility location problem in this

model and present two results: (i) a 7-approximation running in O(logm + log n)

rounds and (ii) a k-round algorithm that yields an O(m2/
√
k · n2/

√
k)-approximation.

121

These results answer a question on fast distributed approximation algorithms for the

metric facility location problem, posed by Moscibroda and Wattenhofer [65]. Our

techniques are based on the Jain-Vazirani primal-dual algorithm [36] and a rapid,

distributed, randomized algorithm for sparsification of graphs due to Gfeller and

Vicari [24]. In fact the success of the primal-dual approach in this setting contradicts

the claim by Moscibroda and Wattenhofer [65] that the Jain-Vazirani primal-dual

approach works in the distributed setting only if “either message-size is unbounded,

or the algorithm’s time-complexity depends on the size of the problem instance.”

Another motivation for our work comes from the elegant constant-round, constant-

factor approximation algorithm for the uniform metric facility location problem by

Gehweiler et al. [23]. The adjective “uniform” in the title refers to the assumption

that all facility opening costs are identical. The Gehweiler et al. [23] algorithm also

assumes the CONGEST model and further assumes that the underlying network is

a clique, with each node being a client as well as a possible location for a facility.

The results in this paper are partly motivated by the desire to extend the Gehweiler

et al. algorithm [23] to instances that allow arbitrary facility opening costs. While

we describe our algorithm for a bipartite network, the algorithm works more or less

unchanged, in the clique setting of Gehweiler et al. [23].

Organization. The rest of the chapter is organized in three sections. Section 5.2 is

devoted to our constant-factor Logarithmic-round algorithm, Section 5.3 is devoted

to our k-round algorithm, and Section 5.4 contains a brief discussion of related open

122

problems and future work.

5.2 Logarithmic-round Algorithm

For the remainder of this chapter, let m = |F |, n = |C|, and N = m+n. This

section is devoted to our O(logn + logm)-round, 7-approximation algorithm. This

algorithm will set the stage for the more complicated k-round approximation algo-

rithm described in the next section. We assume that each message can be O(logN)

bits long and that all node IDs can be represented in logN bits. Note that in a com-

plete bipartite graph, every node can learn the total number of facilities and clients

in two rounds of communication. So for all algorithms described in this paper, we

assume that all nodes know m and n. As the formulation of the primal and dual

programs and their relaxations, as well as the idea behind the primal-dual approach

have already been described in Chapter 4, we move on to the algorithm. Unless oth-

erwise mentioned, the related notations (primal and dual variables, constants etc.)

are identical to Chapter 4.

5.2.1 Overview of Algorithm

The algorithm consists of the three phases, each of which is overviewed in

Algorithm 5.1.

At a high level this algorithm is quite similar to the Jain-Vazirani algorithm,

but several challenges have to be dealt with in order for the algorithm to run in

logarithmic number of rounds in the CONGEST model. For example, we have to

quickly find an initial feasible solution to the DP that is not too far away from the

123

Algorithm 5.1 Algorithm overview

1: Initialization phase. Runs in constant rounds. We identify the low-paying
clients and cheap facilities. Cheap facilities are opened and low-paying clients are
connected to cheap facilities. Initial αj-values for the remaining (i.e., non-low-
paying) clients are computed.

2: Primal-Dual phase. Runs in O(logn) rounds. Each client j increments its dual
variable (i.e., αj) geometrically in each round until a facility i is found such that
the connection cost cij is “paid for” by αj and the facility opening cost fi is paid
for by the payments of some clients. Such facilities are declared temporarily open.
an j is connected to i.

3: Sparsification phase. Runs in O(logm) rounds. We use Luby’s MIS algorithm
[63] to shut down many of the temporarily open facilities and declare the rest
permanently opened. Some clients are reconnected as the result of the partial
shut down.

“final” feasible solution so that the Primal-Dual Phase can terminate in O(logn)

rounds.

5.2.2 Initialization Phase

Set αj := 1
n
min

i
(fi + cij) for all j ∈ C. For each j ∈ C, if i∗ is such that

fi∗ + ci∗j = mini(fi + cij), then set φ(j) := i∗. For each i ∈ F , j ∈ C, set βij :=

max{αj − cij, 0}.

Algorithm 5.2 Initialization Phase

1: Each facility i broadcasts fi
2: Each client j, knowing fi and cij for all i and knowing n sets αj ← 1

n
min

i
(fi+ cij)

and computes φ(j). Each client j then broadcasts αj

3: Each facility i then calculate α∗ ← max
j

αj and broadcasts α∗

4: Each client j checks if αj ≤ α∗/n and determines if it is low-paying. Each client
j that is low-paying sets color(j)← grey and broadcasts ID(j) and φ(j)

5: For each facility i ∈ F |i = φ(j) for some j hears this and sets status(i)← open

124

Lemma 48. The set of αj-values and βij-values defined above constitute a feasible

solution to the DP.

Proof. It is easy to verify the constraints αj−βij ≤ cij ∀i ∈ F , ∀j ∈ C, αj ≥ 0 ∀j ∈ F

and βij ≥ 0 ∀i ∈ F, ∀j ∈ C. Hence, we will focus on the constraints
∑

j∈C
βij ≤ fi,

∀i ∈ F . Let us fix an i ∈ F and examine βij for each j ∈ C. If βij = 0, it is clear

that βij − fi ≤ 0 and more to the point,

βij ≤
fi
n

(5.1)

On the other hand, if βij > 0, then it must be the case that βij = αj − cij . For this

j, suppose that φ(j) = i∗, i.e.,

αj =
1

n

(
min

i
(fi + cij)

)
=

1

n
(fi∗ + ci∗j) .

Hence, βij =
1
n
(fi∗ + ci∗j − ncij). By choice of i∗,

βij−
fi
n

=
1

n

(
fi∗+ci∗j−ncij−fi

)
=

1

n

(
(fi∗+ci∗j)−(fi+cij)−(n−1)cij

)
≤ 0. (5.2)

Summing over all j, using inequalities (5.1) and (5.2), we get
∑

j∈C
βij − fi ≤ 0.

Now, let us define α∗ = maxj αj and let j∗ = argmaxαj . Any j ∈ C with

αj ≤ α∗/n will be called a low-paying client and the facility φ(j) (for low-paying j)

will be called a cheap facility. The reason for identifying these low-paying clients and

cheap facilities is that their overall opening and connection cost is so low that they

can be dealt with much further ado (so shown in the next lemma). Furthermore,

eliminating these clients is critical in guaranteeing that the next phase (i.e., the

125

primal-dual phase) runs in O(logn) rounds. In preparation for the next lemma, let

L be the set of low-paying clients and OPT be the cost of an optimal solution to the

facility location problem.

Lemma 49. The total cost of opening all cheap facilities and connecting each low-

paying client j to facility φ(j) is at most OPT .

Proof. The total cost of opening the cheap facilities and connecting each low-paying

client j to cheap facility φ(j) is bounded above by

∑

j∈L

(
cφ(j)j + fφ(j)

)
=
∑

j∈L
αj ≤

∑

j∈L

α∗

n
.

Since the total number of clients is n, the right hand side above is bounded above by

α∗. Note that there is a client j∗ is such that αj∗ = α∗ and furthermore the αj ’s are

all part of a feasible solution to the DP. Therefore, by weak duality α∗ ≤∑j∈C αj ≤

OPT .

The aforementioned process (Algorithm 5.2) of identifying the low-paying

clients and cheap facilities can be accomplished quite easily in just O(1) rounds of

communication with messages of size O(logn).

5.2.3 The Primal-Dual Phase

Here we describe the primal-dual phase of the algorithm in which αj’s are

geometrically raised in a synchronous manner and a set of facilities are “temporarily”

opened. To prevent low-paying clients and cheap facilities from getting in the way

of the primal-dual phase, for each low-paying client j, we set color(j) := grey and

126

status(φ(j)) := open. The color of a client j will indicate to the primal-dual phase

whether j is still active or not; the color grey will denote inactivity (i.e., αj is not

raised any more). The status of a facility can be one of {closed, temporarily-open, open}

and the cheap facilities are all declared open and do not participate in the primal-dual

phase.

Recalling that L denotes the set of low-paying facilities, let αmin := minj /∈L αj .

Thus αmin is the smallest αj value, excluding the “very small” αj values belonging to

the low-paying clients. Also, note that α∗/n < αmin ≤ α∗.

Algorithm 5.3 Primal-Dual Client j Algorithm

1: Init: If j is not a low-paying client: αj ← αmin; color(j)← white.

2: {Activity in iteration s:}
3: if (color(j) = white) then
4: Send[αj]
5: ∀i: γij ← αj − cij
6: ∀i: Receive[status(i)]
7: if (∃i such that (status(i) ∈ {temporarily-open, open} ∧ γij ≥ 0)) then
8: color(j)← grey
9: φ(j)← i
10: Send[color(j)]
11: αj ← 2 · αj

We next describe a typical iteration (say, iteration s) of Client j’s Primal-

Dual Algorithm (see Algorithm 5.3). Initially, every client j (that is not low-paying)

sets its αj-value to αmin and sets its color to white indicating that it is ready to be

active. The clients increase their αj-values synchronously, in every iteration, by a

127

constant multiplicative factor. These αj-values should be viewed as “payments” and

the payment αj of client j first goes towards paying off the connection costs cij for

all i ∈ F . The sign of γij (Line 5) indicates whether j has paid for a connection

cost cij or not. If, during an iteration , j discovers that it has paid enough towards

a connection cost cij, then there are two possibilities: (i) i is already open, in which

case the client j is connected to i, by setting φ(j) to i (Line 9) and (ii) i is not open

and in this case j’s payments will go towards opening the facility i, i.e., towards βij .

The color of a client denotes whether it has been connected or not. Initially

all active clients are white. Each client changes its own color to grey as soon as they

get connected.

All facilities that are not cheap, are initialized to have a closed status. During

the course of a typical iteration (say, iteration s) of facility i’s algorithm (shown

in Algorithm 5.4), the facility receives payments αj from clients, determines their

residual payments βij (after accounting for payment towards connection costs), and

checks if the residual payments βij , for all j ∈ C are sufficient to pay for the cost of

opening fi (in Line 6). When the opening cost of a facility is completely paid for, it

sets its status to temporarily-open.

Note that, corresponding to the three message transactions (Send-Receive-Send)

in a typical iteration of a client’s algorithm, there are three message transactions

(Receive-Send-Receive) in a facility’s algorithm. We assume that these transactions

take place in a synchronous manner. All activities in the primal-dual algorithm cease

when all clients become grey. This is because when clients become grey they no

128

Algorithm 5.4 Primal-Dual Facility i Algorithm

1: Init: status(i)← closed if i is not a cheap facility

2: {Activity in iteration s:}
3: if (status(j) = closed) then
4: ∀j : Receive[αj]
5: ∀j such that color(j) = white: βij ← max{αj − cij , 0}
6: if (

∑

j∈C
βij ≥ fi) then

7: status(i)← temporarily-open
8: Send[status(i)]
9: ∀j: Receive[color(j)]

longer increase their αj-values and without any change in the αj-values no new fa-

cilities will be paid for. We now prove two important properties of the Primal-Dual

Algorithm.

Lemma 50. The Primal-Dual Algorithm runs for at most 6 logn communication

rounds.

Proof. For client j, let αj
(s) denote the value of αj after iteration s. We know αj

(0) =

αmin and also αmin > α∗/n. Since αj’s double in each iteration, α
(t)
j > n · α∗ for

t := 2 logn. Now recall from the initialization phase that α∗ = maxj mini(fi +

cij)/n. Therefore, α
(t)
j will exceed mini(fi + cij), which means that client j, all by

itself, is paying for more than the amount needed to open facility i∗, where i∗ is

argmini(fi + cij). Therefore client j, for all j ∈ C, turns grey in round t = 2 logn or

earlier. Each iteration of the primal-dual algorithms corresponds to 3 communication

rounds, yielding the result.

129

Lemma 51. After the Primal-Dual Algorithm has terminated,
∑

j /∈L
αj ≤ 2 · OPT .

Proof. Set αj = 0 for all j ∈ L and αj = αj/2 for all j 6∈ L. Set βij := max{cij−αj , 0}

for all i ∈ F, j ∈ C. It is easy to check that this is a feasible solution to the DP and

therefore by weak duality
∑

j∈C αj ≤ OPT . This yields the claim.

5.2.4 The Sparsification Phase

At the end of the Primal-Dual Phase we have a solution (albeit, a costly one,

possibly) to the facility location problem, given by the open and temporarily open

facilities and each client connecting to an open or temporarily open facility. The goal

of the sparsification phase is to obtain a cheaper solution that can be “charged” to

the dual variables and since the sum of the dual variables is within a constant times

OPT (Lemma 51), we will get a constant-factor approximation. This is similar to

the last phase in the Jain-Vazirani algorithm [36]; our contribution here is to show

that it can be implemented in O(logm) rounds in the CONGEST model.

Let Ft be the set of temporarily open facilities at the end of the Primal-Dual

Phase. Define a graph H = (Ft, Et), where Et consists of edges connecting pairs of

temporarily open facilities i and i′ for which there is a client j such that βij > 0 and

βi′j > 0; in other words, j makes a positive payment towards the opening of both i

and i′. The high level algorithm for the sparsification phase is shown in Algorithm

5.5.

Note that since M is an MIS of H , for every client j that finds out that the

facility φ(j) is now closed, there is another facility i′ ∈ M , that is a neighbor of

130

Algorithm 5.5 Sparsification Phase

1: Compute a maximal independent set (MIS) M of H
2: Permanently open each facility in M , i.e., ∀i ∈M : status(i)← open
3: Close each facility in Ft \M , i.e., ∀i ∈ Ft \M : status(i)← closed
4: for all clients j ∈ C do
5: if (status(φ(j)) = closed) then
6: φ(j)← i′, where i′ ∈M and is a neighbor in H of φ(j)

φ(j) in H , to which j can be “reconnected.” If a client j retains its connection from

the Primal-Dual Phase, we say that j is directly connected to φ(j); otherwise, if j is

reconnected in the Sparsification Phase, we say that j is indirectly connected to φ(j).

In the Sparsification Phase, Steps 2 and beyond are all easy to implement in

constant number of communication rounds in the CONGEST model. So we focus on

Step 1. The difficulty with using Luby’s algorithm [1, 63] “as is” is to compute the

MIS ofH is that nodes inH do not have edges to each other in the underlying network

and will have to communicate via clients. Given the restriction on the message sizes,

this may be hard to do in constant rounds. For example, it is impossible for a node

i ∈ Ft to quickly (i.e., in constant or even polylogarithmic number of rounds) find

out the IDs of all its neighbors in H since all this information may have to arrive at

i via a single client. Consider a typical stage of Luby’s algorithm:

1. Each, as yet undecided node i ∈ Ft marks itself with probability 1/degree(i).

Here degree(i) refers to the degree of i in the subgraph of H induced by the

undecided vertices.

2. Each node i that is marked in Step 1 unmarks itself if it finds a neighbor j with

131

Clique 1
Clique 2

Clique 3

i

Figure 5.2: Suppose that a temporarily open facility i is positively paid for by Clients
1, 2 and 3 (i.e., βi1, βi2, βi3 > 0). Further suppose that client 1 positively pays for 6
temporarily open facilities, client 2 pays for 4, and client 3 for 5 temporarily open
facilities. This leads to 3 cliques in H of sizes 6, 4, and 5 respectively. If each facility
i thinks of itself as belonging to the clique of the client with lowest ID, then Clique 1
will have size 6, Clique 2 will have size 2, and Clique 3 will have size 2. This allows i
to figure out that its degree is 6 + 2 + 2 = 10.

lower degree that has marked itself. Ties can be resolved via the use of IDs.

The nodes that mark themselves in a stage of Luby’s algorithm have “decided”

to join the MIS and neighbors of such nodes have “decided” not to join the MIS; the

undecided nodes continue to the next phase. For Step 1, node i ∈ Ft needs to know

its degree in the subgraph of H induced by currently undecided nodes and for Step 2

node i needs to know the lexicographically smallest tuple (ID(i′), degree(i′)) over all

marked nodes i′ in its neighborhood. Both pieces of information can be computed in

constant number of rounds in the CONGEST model and to do this we take advantage

of the fact that H is essentially composed of a number of interacting cliques, with

each clique being “controlled” by a client (see Figure 5.2).

In Algorithm 5.6, we present in details how each undecided node i ∈ Ft to

compute degree(i) in a constant number of rounds. The information needed for Step

132

2 can similarly be computed in constant rounds.

Algorithm 5.6 Calculating Degrees

1: {This algorithm is illustrated by Figure 5.2}
2: Each client j broadcasts its ID.
3: Each undecided i ∈ Ft computes c(i)← min

j:βij>0
(IDj). Node i broadcasts c(i).

4: Each client j computes d(j), which is the total number of facilities with c(i) =
IDj. Node j broadcasts d(j).

5: Each undecided i ∈ Ft computes degree(i)←
∑

j:βij>0

d(j).

5.2.5 Analysis

We now we analyze the quality of the computed solution as well as the number

of rounds it takes to compute the solution in the CONGEST model. We start off

with a lemma showing that the cost of reconnecting j to an open facility in the

Sparsification Phase can be charged to αj. A proof such as this appears in Jain

and Vazirani’s analysis [36] as well; our proof is slightly different since events in our

algorithm happen in discrete rounds whereas the Jain-Vazirani algorithm grows dual

variables continuously.

Lemma 52. If j is indirectly connected to i, then cij ≤ 3αj.

Proof. Consider a facility i′ that is responsible for j turning grey. That is, client j

finds, in some round that status(i′) is either open or temporarily-open and γi′j =

αj − ci′j ≥ 0. This implies that αj ≥ ci′j. Since j is indirectly connected to i, it must

be the case that i′ was shut down during the Sparsification Phase and facilities i and

133

i′ are neighbors in H . Hence, there exists a client j′ such that βij′ > 0 and βi′j′ > 0

(refer to Fig. 5.3). We will show αj ≥ ci′j′ and αj ≥ cij′. The rest will follow from

triangle inequality.

Suppose that facility i and i′ we temporarily opened in rounds t1 and t2 re-

spectively. Note that at the beginning of these rounds all white clients’ α-values were

α(t1) and α(t2) respectively. We have also argued before that j become grey either in

round t2 or after. Hence αj ≥ α(t2). As βij′ > 0 and βi′j′ > 0, αj′ > ci′j′ and αj′ > cij′.

Note that αj′ cannot be growing after round min{t1, t2}. Hence

αj′ ≤ min{α(t1), α(t2)} ≤ α(t2) ≤ αj

Therefore, αj ≥ ci′j′ and αj ≥ cij′ as well.

jj’

i’i

(open) (closed)

Figure 5.3: Client j is indirectly connected to i because i′ was closed after the MIS
computation.

The following lemma can be proved by routine accounting and we skip its

proof.

134

Lemma 53. The algorithm presented above terminates in O(logm + log n) rounds

and uses messages of size O(logN) bits.

Proof. We can assign unique IDs to all clients and facilities using log2N bits. We

also assume that the constants involved (fi and cij values) and αj and βij values can

also be represented by O(logN) bits. We show that the bounds on total number of

rounds and message size are respected in every stage of the algorithm.

Initialization phase. We have already shown that the “low-paying” facilities can

be identified in O(1) rounds. The messages sent contain fi values, αj values and node

IDs. Hence the maximum message size is O(logN).

Primal-dual phase. Lemma 50 shows it is enough to let the facility process and

the client process run for O(logn) rounds. The messages involved contain αj values,

status values (2 bits) and color values (1 bit).

Sparsification phase. First compute the degree of a temporarily-open facility i in

H in O(1) rounds. The messages involved are client IDs, c(i) values and d(j) values.

All these values are at most N and can be represented in O(logN) bits. Finally,

we use Luby’s MIS algorithm that runs in O(logm) rounds using messages of size

O(logm).

Our final lemma shows that our solution is a 7-approximation.

135

Lemma 54. Let I be the set of facilities opened by our algorithm. Then,

∑

i∈I
fi +

∑

j∈C
cφ(j)j ≤ 7 · OPT.

Proof. Let I ′ ⊆ I denote the facilities that are not cheap and were therefore opened

in the Primal-Dual Phase. Let COST denote the total cost of opening facilities in

I ′ and the connection cost of clients that are not low-paying. Clients that are not

low-paying can be partitioned into sets, A, consisting of clients that directly connect

to a facility and B, consisting of clients that indirectly connect to a facility. Note

that for each i ∈ I ′, fi ≤
∑

j∈A βij . Therefore,

COST =
∑

i∈I′
fi +

∑

j∈A
cφ(j)j +

∑

j∈B
cφ(j)j

≤
∑

i∈I′

∑

j∈A
βij +

∑

j∈A
(αj − βφ(j)j) + 3 ·

∑

j∈B
αj (5.3)

≤
∑

j∈A
βφ(j)j +

∑

j∈A
(αj − βφ(j)j) + 3 ·

∑

j∈B
αj (5.4)

≤
∑

j∈A
αj + 3 ·

∑

j∈B
αj

≤ 3 ·
∑

j 6∈L
αj ≤ 6 · OPT (5.5)

Inequality (5.3) is obtained by using the upper bound on fi, i ∈ I ′, mentioned ear-

lier and the fact that if client j is directly connected to φ(j), then αj ≥ cφ(j)j and

so βφ(j)j = αj − cφ(j)j. Inequality (5.4 is obtained by rewriting
∑

i∈I′
∑

j∈A βij as

∑
j∈A
∑

i∈I′ βij and then noting that for each j ∈ A, βij > 0 for exactly one i, namely

i = φ(j). This is the result of the Sparsification Phase. The first part of Inequality

(5.5) follows from the fact that A ∪ B is the set of clients that are not low-paying.

Earlier we had used L to denote the set of low-paying clients. The second part of this

inequality follows from Lemma 51.

136

The total cost of the solution, including opening cost of cheap facilities and

connection cost of low-paying clients, is 7 · OPT .

5.3 k-round Algorithm

Motivated by the goal of achieving a non-trivial approximation ratio even while

using a very small (e.g., a constant) number of rounds, we present in this section a

generalization of the Logarithmic-round algorithm. For two tunable, positive, integer

parameters k1 and k2, we run the algorithm for k := k1 · k2 rounds to obtain an

O(n2/k1 ·m2/k2)-approximation algorithm. Recall thatm is the number of facilities and

n is the number of clients. Here k1 can take any value whereas k2 can take any value

bounded by O(logm
log logm

). The bound on k2 comes from our randomized Sparsification

Algorithm, which does not exhibit the desired behavior for larger values of k2. This is

because for larger k2 the degree of the graph being sparsified falls below logm and at

that point it is no longer possible to prove properties of the Sparsification Algorithm

with high probability.

The high-level structure of the k-round algorithm is shown in Algorithm 5.7.

The Initialization Phase is identical to the one used in the Logarithmic-round

algorithm. However, the other two phases (especially the Sparsification Phase) are

quite different and furthermore, how the Primal-Dual Phase and the Sparsification

Phase interact is also quite different. Rather than running the Sparsification Phase

after the Primal-Dual Phase is completed, we now interleave the iterations of the two

137

Algorithm 5.7 k-round Algorithm

1: Initialization Phase.
2: for p← 1 to k1 do
3: Run an iteration of the Primal-Dual Algorithm (for each client and each facility)
4: if (∃ facility i that is temporarily opened in iteration p) ∧

(∃ facility i′ that is temporarily opened in iteration p− 1 or earlier) ∧
(∃ client j: βij > 0 ∧ βi′j > 0) then

5: status(i)← closed
6: for q ← 1 to k2 do
7: Run an iteration of the Sparsification Algorithm
8: {for each facility temporarily opened in this Primal-Dual iteration}

phases, running k2 iterations of a Sparsification Algorithm after each iteration of the

Primal-Dual Algorithm.

To have the Primal-Dual Algorithm make sufficient progress in each iteration,

client j raises the αj-value by a multiplicative factor of n2/k1 . Recall from Section 5.2.3

that each αj for j 6∈ L is initialized to αmin, where αmin ·n2 > mini(fi + cij) for every

client j. Therefore, if client j were to run k1 iterations of the Primal-Dual Algorithm,

then its αj value would grow from αmin to αmin · (n2/k1)k1 = αmin ·n2 > mini(fi+ cij).

At this point the αj-value is more than sufficient to pay for the opening cost of a

facility all by itself and therefore client j would have turned grey and been connected

to some facility i = φ(j) that is temporarily open. This discussion is encapsulated in

the following lemma.

Lemma 55. Every client that enters the Primal-Dual Phase colored white turns grey

during one of the k1 iterations of the Primal-Dual Phase and gets connected to some

temporarily open facility.

Also, similar to Lemma 51, we can show that the αj-values, when scaled down

138

by a factor of n2/k1 and the corresponding βij values form a feasible solution to the

DP, yielding the following lemma; the proof is similar to the proof of Lemma 51 and

is skipped.

Lemma 56. After the k-round Algorithm has terminated,
∑

j /∈L
αj ≤ n2/k1 · OPT .

The Sparsification Phase is the fundamental challenge for the k-round algo-

rithm. Recall from the analysis of the Logarithmic-round algorithm that the goal of

the Sparsification Phase is to bound, for each client j, the size of Kj = {i ∈ F | βij >

0 and i is open}. If we permanently open all the nodes in Ft (the set of temporarily

open facilities), Kj can become arbitrarily large. This motivated the definition of the

graph H = (Ft, Et), where Et contains all edges connecting pairs of facilities i, i′ ∈ Ft

such that there is a client j with βij > 0 and βi′j > 0. Then an MIS M on H is

computed and only nodes in M are permanently opened. As a result, |Kj| ≤ 1 for

all j. Furthermore, it is guaranteed that if for a client j, facility i = φ(j) is shut

down (due to not being in M) then some neighbor i′ of i in H is open and j can be

reconnected to i′ without the cost of the reconnection being too high relative to αj.

Given that we now have a very small number of rounds in which to do sparsi-

fication, we can no longer use a Luby-like algorithm because it does not sparsify the

graph rapidly enough to make adequate progress in a small number of rounds. Since

the goal of the k-round algorithm is not to achieve a constant-factor approximation,

we can relax the requirement that we need to shut down enough temporarily open

facilities to ensure that |Kj| = O(1) for all clients j. Instead, we would like to use

k2 rounds to sparsify H and select a set of nodes M that induces a sparse subgraph

139

with maximum degree O(m1/k2). M needs to satisfy the additional “maximality” re-

quirement that each node in H has a neighbor in M . This maximality property will

guarantee that if for a client j, facility i = φ(j) is shut down (due to not being in M)

then some neighbor i′ of i in H is open and j can be reconnected to i′ without the cost

of the reconnection being too high relative to αj. Unfortunately, we do not know how

to rapidly sparsify in a controlled manner so as to satisfy both requirements. In the

next subsection we present an algorithm that runs for k2 rounds and selects a node

subset M of H and guarantees, with high probability, the following two properties:

1. ∆(H [M]) ≤ 6 ·m2/k2 .

2. distance(i,M) ≤ 2 · k2 for all nodes i in H .

Here ∆(·) refers to the maximum degree of a given graph and distance(i,M) is the

shortest number of hops in H between a facility i and the set of selected vertices M .

Note that our algorithm only satisfies a relaxed version of the maximality requirement

— a node in H may not find a node in M in its neighborhood, but will find a node in

M within 2 · k2 hops. This means that there may be a client j for which the facility

i = φ(j) is shut down (due to not being in M) and now client j has to be reconnected

to a facility i′ that is relatively far away. Given this, we are no longer able to ensure

that the cost of reconnecting j to i′ is small enough. However, if all the αj-values are

identical, then we can guarantee that the cost of reconnecting j to i′ is O(αj ·k2). This

bound on the reconnection cost suffices for our analysis and in order to ensure that

all of the αj-values are identical, we run the Sparsification Algorithm repeatedly and

140

separately, on just the facilities that were temporarily opened in each Primal-Dual

Algorithm iteration (Lines 7-10). This modification by itself would still allow Kj to

be quite large because a client j could be making positive payments to facilities that

were temporarily opened in different iterations. To ensure that |Kj| is bounded, we

also additionally shut down (in Lines 4-6) each facility i that was temporarily opened

in an iteration p but which has a facility i′ “nearby” that was temporarily opened in

a previous iteration.

Our Sparsification Phase is inspired by a recent randomized MIS algorithm

due to Gfeller and Vicari [24]. These authors are interested in quickly computing an

MIS on growth-bounded graphs. While our graphs are not growth-bounded, the first

phase of the Gfeller-Vicari algorithm runs on arbitrary graphs and here we essentially

show that even a few iterations of a variant of this algorithm guarantees enough

progress.

5.3.1 The Sparsification Phase

We will describe the Sparsification Phase with respect to an arbitrary input

graph G = (V,E). It is worth noting that in the context of Algorithm 5.7, the

Sparsification Phase is run on a graph H = (Ft, Et) where Ft is the set of facilities

temporarily opened in an iteration p of the Primal-Dual Phase (Line 3) and not

immediately shut down in Line 5; as usual Et is the set of edges connecting pairs of

facilities i, i′ in Ft for which there is a client j with βij > 0 and βi′j > 0.

Let M0 := V and G0 := G. For s ≥ 1, let Ms be the set of nodes selected

141

Algorithm 5.8 Sparsification Algorithm

1: Input: G = (V,E), | V |= m

2: {Activity for node u in iteration s:}
3: τ ← m

2
r

4: ρ← 1

m
1
r

5: if (du ≤ τ) ∧ (∆u ≤ τ) then
6: type(u)← interior
7: u joins Ms

8: if (du ≤ τ) ∧ (∆u > τ) then
9: type(u)← boundary
10: if (du > τ) then
11: type(u)← exterior
12: if type(u) ∈ {boundary, exterior} then
13: u independently joins Ms with probability ρ

in iteration s of the Sparsification Phase when run on graph Gs−1 and let Gs :=

G[Ms]. We now describe a typical iteration s of the Sparsification Phase. For ease

of presentation, set r = s + 2. The goal of iteration s is to select a set Ms of nodes

so that the maximum degree in G[Ms] is at most m2/r. Let τ := m2/r. Any node in

Gs−1 with degree no greater that τ is called a small degree node. Any small degree

node, all of whose neighbors are also small degree nodes, is called an interior node; all

other small degree nodes are called boundary nodes. Nodes that are not small degree

nodes are called exterior nodes. See Figure 5.4 for an illustration of these definitions.

The Sparsification Algorithm is shown in Algorithm 5.8. Given the goal of

ensuring that all node degrees are bounded by m2/r, the interior vertices are not

of concern because of their small degrees and their neighbors’ small degrees and

they can simply be included in the output. The boundary vertices and the exterior

vertices probabilistically include themselves in the output. Since boundary vertices

142

Interior node

Boundary node

Exterior node

Small−degree components

Figure 5.4: Shows the partition of the nodes of a graph into interior, boundary, and
exterior nodes with degree threshold τ set to 2.

also have small degrees, we do have to worry about their degrees. We can inductively

upper bound the degree of exterior vertices entering iteration s and if we choose the

probability ρ of inclusion in Ms carefully, then we can bound the degrees of exterior

vertices by m2/r also. This is proved in the next two lemmas. Of course, if the goal

was solely to bound the degrees, then we could achieve this trivially by including no

vertices in Ms. An additional an equally important goal in the context of Algorithm

5.7 is to show that after k2 iterations of the executed, the output M := Mk2 satisfies

distance(i,M) ≤ 2 · k2 for all i ∈ V . Here distance(·, ·) refers to hop distance in G.

Lemma 59 shows that in each iteration the selected vertices can get at most 2 hops

farther away from all vertices of G.

Lemma 57. For some constant c1 > 0, for all s ≤ c1 · logm
log logm

, if the maximum degree

in Gs−1 is at most m
3

(s+2) , then with high probability, the maximum degree of Gs is at

most 6 ·m 2
(s+2) .

Proof. Recall that we use r to denote s + 2. For a node u in Gs, if u is either an

interior or a boundary node during iteration s, then the degree of u in Gs−1 is at most

143

m2/r. As vertices are only dropped during the iteration, the degree of u in Gs is also

at most m2/r. Hence we can simply consider the case when u is an exterior node in

iteration s. Let Xu be the random variable denoting the number of neighbors of u in

Gs−1 who joined Ms. Since u has at most m
3
r neighbors in Gs−1 and each of them

can join Ms with probability 1

m
1
r
,

E[Xu] ≤ m
3
r · 1

m
1
r

= m
2
r

Since Xu is the sum of independent binary random variables, using a simple version

of Chernoff bounds, we get that

Prob[Xu ≥ 6m
2
r] ≤ 2−6m

2
r .

Since r ≤ c1 · logm
log logm

− 2,

Prob[X ≥ 6m
2
r] ≤ 2−6m

log logm
c1 logm

.

It is easy to verify that for some constant c1 > 0, the right hand side above is

bounded by 1/m2. This proves that with probability at least 1−1/m2, the maximum

degree of node u in Gs is at most 6m
2
r . Using the union bound, we see that the

probability that all vertices (at most m) have degree at most 6m
2
r in Gs is at least

(1−m · 1
m2) = (1− 1

m
).

The hypothesis of the above lemma required that the maximum degree of Gs−1

be upperbounded by m
3

s+2 . We now inductively show that this is true.

Lemma 58. For some constant c2 > 0, for all s ≤ c2 · logm, the maximum degree in

Gs−1 is at most m
3

s+2 , with high probability.

144

Proof. We show this by induction. The base case of s = 1 is trivial since every

node has degree at most m at all times. For the inductive step, consider iteration

s > 1. Assuming, using the inductive hypothesis, that the maximum degree in Gs−1

is m
3

(s+2) , we get by Lemma 57, that the maximum degree in Gs is at most 6m
2

(s+2) .

It is easy to verify that for large enough m, there exists a constant c2 > 0 such that

for all s ≤ c2 · logm, 6m
2

(s+2) ≤ m
3

(s+3) .

The next lemma shows that with each iteration of the Sparsification algorithm,

the selected set of nodes “move” at most 2 hops further away from the rest of the

graph.

Lemma 59. For some constant c3 and for s ≤ c3 · logm
log logm

, if u ∈ Ms−1, then with

probability at least 1− 1/m2, at least one node in its 2-neighborhood is in Ms.

Proof. Consider a node u in Ms−1. If u is an interior node in iteration s, it is included

in Ms. If u is an exterior node in iteration s, we know that the degree of u in Gs−1

is greater than m2/r. The probability that none of u’s neighbors are selected for Ms

is at most

(1− 1

m
1
r

)m
2
r ≤ e−m

3
r .

It is easy to verify that there exists a constant c3 > 0, such that for all r ≤ c3 ·

logm
log logm

− 2, this probability is at most 1/m2. If u is a boundary node, then it has

at least one exterior node as a neighbor and therefore, using what we have shown for

exterior nodes, we conclude that with probability at least 1 − 1/m2, there is node

from M2 in u’s 2-neighborhood.

145

5.3.2 Wrapping Things Up

Recall that the Sparsification Phase is applied to a graph H = (Ft, Et), where

Ft is the set of facilities temporarily opened in an iteration p of the Primal-Dual

Phase (Line 3) and not immediately shut down in Line 5 and Et is the set of edges

connecting pairs of facilities i, i′ in Ft for which there is a client j with βij > 0 and

βi′j > 0. The following lemma is obtained in a straightforward way by repeatedly

applying Lemma 59.

Lemma 60. There is a constant c > 0 such that for any k2 ≤ c · logm
log logm

, after k2

iterations of the Sparsification Algorithm on input H, the output M := Mk2 satisfies,

with high probability, the property that distance(i,M) ≤ 2k2 for all nodes i in H.

Here, distance(i,M) is the shortest path distance in hops in H from node i to some

node in M .

Proof. Let Ti be the nodes selected in the ith iteration and let us set T0 = V . Due

to Lemma 59, Ti is a 2-ruling set of Ti−1. Note that T0 is a 0-ruling set. Hence the

claim follows by induction over i.

The next lemma shows that our efforts at careful sparsification have paid off

in terms of guaranteeing that when a client j is reconnected, its reconnection cost

can still be charged to αj .

Lemma 61. At the end of the k-round algorithm, each client j, with high probability,

will connect to open facility i, with cij ≤ (4k2 + 1) · αj.

146

. . .

2k hops2

jjj

i’=iiii=i

012q

012q iq−1

j=j

Figure 5.5: Client j was initially connected to facility i′ that was closed during sparsi-
fication. In that case, j will find a facility i to connect to so that distance(i, i′) ≤ 2k2.

Proof. If a client j is directly connected to a facility i, then we simply have cij ≤ αj .

If client j is indirectly connected to facility i, there could be two possible reasons for

it:

(i) j was directly connected to a facility i′ that was shut down in Line 5 of the

k-round algorithm (Algorithm 5.7). Say this happened in the p-th iteration of

the outer loop. Hence i′ just became temporarily open in that iteration. From

the conditions stated in Line 4 of Algorithm 5.7, there must also be another

facility i that became temporarily open at an earlier iteration (say p′, p′ < p)

and a client j′ such that βij′ > 0 and βi′j′ > 0. Hence, cij′ ≤ αj′ and ci′j′ ≤ αj′.

Notice that αj′ cannot increase after the end iteration p′ as client j would have

had a temporarily open facility that it has positively contributed to. Hence,

αj′ < αj . Also, j was directly connected to i′, hence ci′j ≤ αj . Using the

triangle inequality,

cij ≤ ci′j + ci′j′ + cij′ ≤ αj + αj′ + αj′ < 3αj

147

(ii) j was directly connected to a facility i′ that was shut down during an iteration

of the Sparsification Algorithm (Line 8) of the k-round algorithm (Algorithm

5.7). From Lemma 60, it follows that distance(i, i′) ≤ 2k2. See Figure 5.5.

For each pair im and im+1, to be neighbors in H , they must have had a client

jm+1 such that cimjm+1 ≤ αjm+1 and cim+1jm+1 ≤ αjm+1 and also αjm+1 ≤ αj .

Given, j was directly connected to i′, hence ci′j ≤ αj. Again, using the triangle

inequality we get cij ≤ (4k2 + 1) · αj.

Our final lemma proves the approximation guarantee for the solution produced

by the k-round algorithm. The proof is similar to the proof of Lemma 54 and is

skipped.

Lemma 62. For any k = k1 · k2, with k2 = O(logm
log logm

), the k-round algorithm com-

putes a solution that is an O(n2/k1m2/k2)-approximation to the metric facility location

problem.

5.4 Conclusion

Here our main contribution is the demonstration of a trade-off between the

approximation factor and the number of rounds of communication for the metric

facility location problem in the CONGEST model. Specifically, we present an algo-

rithm that runs in k rounds and yields an O(m2/
√
k · n2/

√
k)-approximation. Setting

k = c · log2(m+n) for some constant c, would make this approximation factor reduce

148

to a constant. However, our randomized, rapid Sparsification Algorithm does not

exhibit the desired behavior when k > c′ ·
(

logm
log logm

)2
, for some constant c′. So there

is a small gap at the upper end in the desired range of values that k can take and

plugging this gap is a problem that we intend to tackle.

Gehweiler et al. [23] obtain a constant-factor approximation for the metric

facility location problem with uniform facility opening costs. The Logarithmic-round

Algorithm in this paper solves the non-uniform version of Gehweiler’s problem in

O(logn) rounds. Are O(logn) rounds necessary? Is it possible to obtain non-trivial

lower bounds in this setting? Moscibroda and Wattenhofer [65] call the problem of

finding lower bounds in this model an “outstanding” open problem.

Another question that interested us is whether it is possible to obtain a bet-

ter approximation factor versus communication rounds trade-off for the non-metric

facility location, improving on the approximation factor achieved by Moscibroda and

Wattenhofer [65] for k-round algorithms. This is our most current work and the re-

sults are described in the next chapter. The results in this chapter and the next also

highlight how the primal-dual approach can be a powerful tool in order to obtain a

non-trivial approximation factor, even in small number of rounds.

149

CHAPTER 6
DISTRIBUTED APPROXIMABILITY OF NONMETRIC FACILITY

LOCATION

6.1 Introduction

Simple sequential greedy algorithms provide optimal approximations for a vari-

ety of optimization problems such as minimum dominating set (MDS) and facility lo-

cation. Despite their simplicity, these greedy algorithms are challenging to implement

efficiently in a distributed setting because their success depends on decisions being

made sequentially. In a breakthrough result, Jia et al. [37] showed that it is possible

to implement a “relaxed” version of the greedy MDS algorithm in a distributed setting

to achieve an O(log∆)-approximation (in expectation) in O(logn log∆) rounds (with

high probability), ∆ being the maximum degree of the input graph. This algorithm

balances the need for parallelism with the need to control the size of the dominating

set by first allowing several “good” choices to be picked independently (as opposed

to picking one “best” choice at a time) and then efficiently pruning away some of

these choices. In our view, the key contribution of the Jia et al. paper [37] is showing

that the pruning process can be implemented efficiently, i.e., in O(logn) rounds with

high probability, while pruning enough candidates so that only a constant overhead

is incurred with respect to the approximation factor.

In this paper, we model the pruning process abstractly as involving sellers on

one side and buyers on the other. The goal is to quickly select a subset of the sellers

0This research was partially supported by NSF Grant CCF 0915543.

150

so that the products that these sellers bring to the market has small cost ratio, i.e.,

the ratio of the total cost of the selected sellers’ products to amount that interested

buyers are willing to pay. See Section 6.1.1 for details. As modeled here, the pruning

process applies not just to the MDS greedy algorithm, but to greedy algorithms in

general (e.g., we describe how this pruning process applies to a greedy algorithm for

facility location). We present an instance of the pruning process that, for any positive

k, runs in O(k) communication rounds with O(logN)-sized messages, yielding a cost

ratio of O(N c/k). Here N is the product of the number of sellers and number of buyers

and c is a small constant. The pruning process in the Jia et al. algorithm [37] should

be viewed as a special case (with k = Θ(logN) and cost ratio O(1)) of our algorithm.

Using this k-round pruning algorithm as the basis, we derive several simple, greedy,

k-round approximation algorithms for MDS and facility location. Our approximation

algorithms shave a “logarithmic factor” off the best, known, approximation factor,

typically achieved using LP-rounding techniques.

To place these results in context, we refer to the 2003 result due to Kuhn

and Wattenhofer [53], that described, for any parameter k, an MDS algorithm run-

ning in O(k) rounds and yielding an approximation factor of O(k∆2/
√
k log∆). This

was the first example of an algorithm achieving a non-trivial approximation ratio

for MDS in a constant number of rounds (e.g., k = 16 implies an approximation

factor of O(
√
∆ log∆)). Also note that by setting k = Θ(log2∆), one obtains an

O(log2∆)-approximation algorithm for MDS, running in O(log2∆) communication

rounds. The Kuhn-Wattenhofer algorithm [53] used the technique of first approxi-

151

mately solving the LP relaxation of MDS and then doing (independent) randomized

rounding on the fractional MDS solution. Moscibroda and Wattenhofer [65] use the

same technique to solve the facility location problem in the CONGEST model; they

achieve, for every constant k, an O(
√
k(mn)1/

√
k log(m+ n))-approximation1 in O(k)

communication rounds. The greedy, pruning-based algorithms that we derive in this

paper improve both of the above results by logarithmic-factor and achieve optimal

approximation ratios in polylogarithmic rounds. However we note that [52] presents

a O(∆c/k) for solving LPs of general covering-packing problems (including MDS)

in O(k2) rounds. This, combined with a standard randomized rounding technique

can achieve a O(∆c/k log∆)-approximation. This is asymptotically the same as the

approximation factor achieved by our MDS algorithm. However, in case of Facil-

ity Location, our result is at least a logarithmic factor improvement over previously

known results. Also, our results indicate that the original Jia et al. greedy algorithm

[37] contained all the ingredients of a k-round MDS algorithm.

6.1.1 The Pruning Process

The pruning process works on a bipartite graph H = (S,B,E). Think of S as

the set of sellers, B as the set of buyers, and E as the set of edges representing buyers’

interest in sellers products. We assume that H has no isolated vertices. Vertices in S

have associated costs given by the function f : S → R
+. There is a fixed payment p

1The approximation factor, as stated in Moscibroda and Wattenhofer [65], depends also
on ρ, a quantity that is a function of the numbers in the given instance (i.e., the opening
costs and the connection costs). To focus more clearly on the growth of this approximation
factor as a function of k, we assume that ρ = m = n.

152

that each vertex j ∈ B makes. For any i ∈ S∪B, let N(i) denote the set of neighbors

of vertex i. The costs and the payments satisfy the property that for each i ∈ S,

p · |N(i)| ≥ f(i). In other words, the cost of every vertex i ∈ S is “paid for” by all of

its neighbors. A typical iteration of the pruning process starts with vertices in some

subset S ′ ⊆ S being opened. Each j ∈ B that has a neighbor in S ′ is then said to

be covered. After this, several vertices are deleted from H . First, all vertices in S ′

and all neighbors of vertices in S ′ are deleted. As a result of the deletion of some

vertices in B, the “paid for” condition p · |N(i)| ≥ f(i) may no longer be satisfied for

some i ∈ S. That is, the number of neighbors of i may have fallen below f(i)/p. All

such vertices i ∈ S are now deleted. Finally, all isolated vertices in B are deleted.

This ends one iteration of the pruning process and iterations of the pruning process

continue until H becomes empty. See Figure 6.1 for an illustration.

We evaluate the pruning process along two dimensions: (i) running time, i.e.,

the number of iterations of the process before H becomes empty and (ii) cost ratio,

i.e., the ratio of the total cost of the vertices in S that were opened to the total

payment by the vertices that were covered. For randomized versions of the pruning

process, we defined the cost ratio as ratio of the expected total cost of the open

vertices to the expected total payment by the covered vertices. Assume that Figure

6.1 illustrated the first iteration of the pruning process and in the second iteration

vertex 2 (in S) was opened and as a result, vertex 3 (in B) was covered. The total cost

is 2 + 3 + 1 = 6 and the total payment is 1 · 5 = 5, yielding a cost ratio of 6/5. Note

that the pruning process, as described above, is incompletely specified in the sense

153

that it does not prescribe how vertices in S are picked for opening. We are interested

in designing an instance of the pruning process that minimizes both running time and

cost ratio. It is easy to see how to minimize one of these measures, while ignoring

the other. For example, if in the first iteration all vertices in S are opened then we

have a pruning process that completes in one iteration, but could have cost ratio |S|.

On the other hand, if we opened exactly one vertex in S in each iteration, then the

pruning process would have cost ratio one but could take |S| iterations to terminate.

In this paper we describe a randomized instance of the pruning process that, for every

positive integer k, has running time O(k) (with high probability) and expected cost

ratio O(m2/k · n2/k), where m = |S| and n = |B|.

To see how this abstraction of the pruning process makes sense in the context

of distributed greedy algorithms, the reader might want to consider the primal-dual

interpretation of the greedy algorithms for MDS [11, 62] and facility location [27, 35].

According to this interpretation, the sequential greedy algorithm for MDS (in which

highest degree vertices are selected) is equivalent to the primal-dual algorithm in

which vertices raise their dual variable synchronously and vertices get selected as

dominators in the order in which their dual constraints become tight. Thus a vertex

that gets selected as a dominator is one whose cost of selection has been “paid for”

by the dual variables in its closed neighborhood. Once a vertex v is selected as a

dominator, all vertices u (in the closed neighborhood of v) whose dual variables were

making contributions towards v “recall” their contributions from other vertices. A

standard way to speed up this algorithm by allowing parallelism, is to raise the dual

154

(a)

1 2 3 4

1 2 3 4 5 6 7

f(3) = 3 f(4) = 3f(1) = 2 f(2) = 1

(c)

2

3

f(2) = 1
4

6 7

f(4) = 3

(b)

1 2 3 4

1 2 3 4 5 6 7

f(1) = 2 f(2) = 1 f(3) = 3 f(4) = 3

(d)

2

3

f(2) = 1

Figure 6.1: Example execution of one iteration of the pruning process. Fig. (a) shows
the original graph H with S (square vertices) and B (round vertices). Suppose p = 1.
Fig. (b) shows two vertices, 1 and 3 of S, being opened. These two open vertices
cover 4 vertices in B. Then the two open vertices and the four covered vertices are
deleted from H . Fig. (c) shows the resulting graph. Vertex 4 in S is no longer being
paid for and is also deleted. This renders vertices 6 and 7 (in B) isolated and so these
are also deleted. Fig. (d) shows the graph at the end of the iteration.

155

variables by a big amount in each step. As a result, when the dual variables move from

one value to the next higher value, several vertices may find themselves “paid for”

simultaneously. Selecting all of these vertices as dominators can lead to an arbitrarily

bad dominating set. The pruning process models the problem of selecting a subset

of these “paid for” vertices whose total cost does not exceed the payment made by

the dual variables by too large a factor. More specifically, the vertices i ∈ S that are

opened in the pruning process are exactly the ones that are selected as dominators.

6.1.2 Related Work

As mentioned earlier, our work draws inspiration from the elegant work of

Jia et al. [37]. Our results are most closely comparable to results due to Kuhn and

Wattenhofer [53] on a k-round algorithm for MDS and Moscibroda and Wattenhofer

[65] on a k-round algorithm for non-metric facility location. Our own recent work

(see Chapter 5), presents a k-round primal-dual algorithm for metric facility location.

Since there is a greedy O(1)-approximation for metric facility location [27], even this

result can be obtained via techniques in the current paper.

Greedy algorithms for MDS and non-metric facility location are quite old

[11, 62] and are often discussed in the context of set cover. Lovász [62] and Chvatal

[11] present a dual-fitting-based analysis of the greedy set cover algorithm and this

provides a natural primal-dual framework within which to view the algorithms. The

first constant-factor approximation algorithm for metric facility location via a greedy

algorithm is due to Guha and Khuller [27]. A dual-fitting-based analysis of this

156

algorithm along with a better approximation ratio is due to Jain et al. [35].

6.1.3 Main Results

Our main result is a randomized instance of the pruning process that, for any

positive k, runs in O(k) communication rounds, with high probability, uses messages

of size O(logm) and has cost ratio O((mn)2/k). Here m is the number of sellers and

n is the number of buyers. Using this as a basis, we present simple, O(k)-round

greedy algorithms for MDS and facility location. On a graph with n vertices and

maximum degree ∆, for any positive k, our algorithm for MDS runs in O(k) rounds,

uses messages of size O(logn) and yields a solution of size O(∆3/
√
k log∆) times OPT .

For instances with m facilities and n clients, for any positive k, our algorithm for non-

metric facility location runs in O(k) rounds using messages of size O(logm + log n)

and yields a solution of size O((mn)5/
√
k · log n) times OPT . We also show that this

algorithm produces a solution of size O((mn)5/
√
k) times OPT if the connection costs

of the instance form a metric. All our running times are “with high probability”

and all our approximation ratios are in expectation. Also note that we have not

paid particular attention to minimizing the constants, 3, 5, etc. that appear in the

exponent of our approximation ratios.

6.2 Rapid Randomized Pruning

Here we describe an instance of the pruning process that we call Rapid Ran-

domized Pruning (RRP). Recall that RRP runs on a bipartite graph H = (S,B,E).

Here we let m = |S|, n = |B|, and for a given positive k, we let d = (mn)1/k. As

157

mentioned before, RRP is a generalization of the pruning process described in Jia et

al. [37].

Algorithm 6.1 Rapid Randomized Pruning (one iteration)

Calculate Coverage. For each j ∈ B, define the coverage, c(j) of j as |N(j)|.
Split Coverage. For each i ∈ S, arrange the coverage values of all the neighbors
of i in non-decreasing order. Call this sequence L(i) and call each item in L(i)

an entry. Let r, 1 ≤ r ≤ |L(i)|, be the largest integer such that |L(i)|−r
r−1

≥ d. Let
split(i) denote the item of rank r in L(i) and let Bot(i) denote the “bottom entries,”
i.e., the subsequence of L(i) consisting of all lower ranked elements. Similarly, let
Top(i) denote the “top entries,” i.e., the subsequence of L(i) consisting of all the
entries of rank greater than k.

Open Vertices. For each vertex i ∈ S, we open it independently with probability

Po(i) := min

{
4 ln d

split(i)
, 1

}
.

Let S ′ be the set of vertices just opened. All neighbors of vertices in S ′ are said to
be covered.

Prune Graph. Delete from H all vertices in S ′ and all neighbors of vertices in
S ′. Then delete all vertices i ∈ S that no longer satisfy the “paid for” condition
p · |N(i)| ≥ f(i). Finally, delete all isolated vertices in B.

In order to speed up the Jia et al. algorithm to a k-round algorithm, we make

two key changes to their algorithm.

1. In the Split Coverage step, we choose an item split(i) from L(i) so that there

are roughly d times as many elements in Top(i) as there are in Bot(i). This

generalizes how Jia et al. split L(i); they choose split(i) to be the median of

L(i) (i.e., take d = 1). Choosing to split in the middle provides for them the

right balance between running time and cost ratio. Choosing split(i) so that

158

|Top(i)| ≈ d · |Bot(i)| ensures that for larger values of d, split(i) will be a lower

ranked element and as a result 1/split(i) will tend to be larger. The probability

that vertex i ∈ S is opened grows with 1/split(i) and thus, as d increases, we

get a controlled boost in the probability that i opens and this in turn speeds up

the pruning process, while only incurring a factor d overhead in the cost ratio.

2. In the Open Vertices step, we open each vertex in i ∈ S with probability

4 ln d/split(i). This provides an important additional boost to the probability.

We also note that RRP has a simple distributed implementation in a syn-

chronous message passing model if we assume that the underlying network is H .

In such an implementation, each iteration takes O(1) communication rounds using

messages of size O(logm).

6.2.1 Analysis

We start with a technical lemma (whose easy proof is skipped) that shows that

the choice of split(i) is such that Bot(i) is roughly a fraction 1/(d+1) of N(i) in size.

Lemma 63. The choice of split(i) is such that for any i ∈ S

(d+ 1)|Bot(i)| ≤ |N(i)| ≤ (2d+ 3)|Bot(i)|.

Lemma 64. Let f be the total cost of vertices in S that were opened during RRP

and let c be the number of vertices in B that were covered during RRP. Then E[f] ≤

8(2d+ 3) ln d · p · E[c].

159

Proof. For i ∈ F , let Xi be an indicator variable indicating if i ∈ S is opened. Then,

E[f] = E

[
∑

i∈S
f(i)Xi

]
≤ E


∑

i∈S


 ∑

j∈N(i)

p


 ·Xi


 ≤ E


∑

i∈S


(2d+ 3)

∑

j∈Bot(i)

p


 ·Xi


 .

The last inequality follows from Lemma 63. Now define b(j) to be the set {i ∈ N(j) |

j ∈ Bot(i)}. By changing the order of the summations we obtain

E[f] ≤ (2d+ 3) · p ·E


∑

j∈B

∑

i∈b(j)
Xi


 ≤ (2d+ 3) · p ·

∑

j∈C
E


∑

i∈b(j)
Xi


 .

Now let t(j) denote the sum
∑

i∈b(j)Xi. Then,

E[f] ≤ (2d+ 3) · p ·
∑

j∈B
E [t(j)] = (2d+ 3) · p ·

∑

j∈B
E [t(j) | t(j) > 0] · Prob [t(j) > 0] .

In Lemma 65 below we show an upper bound of 8 ln d on E [t(j) | t(j) > 0]. Using

this we obtain

E[f] ≤ 8(2d+ 3) · ln d · p ·
∑

j∈B
Prob[t(j) > 0] ≤ 8(2d+ 3) · ln d · p · E[c].

The last inequality above follows from the fact that if t(j) > 0 then vertex j is

covered.

Lemma 65. E[t(j) | t(j) > 0] ≤ 8 ln d.

Proof. For j ∈ B being considered in the lemma, let W = {i | j ∈ Bot(i)}. Then,

E[t(j) | t(j) > 0] =
∑

i∈W
Prob [i is opened | t(j) ≥ 1] =

∑

i∈W

Prob[i is opened]

Prob[t(j) ≥ 1]
.

Now recall that a vertex i ∈ S is opened with probability Po(i) = min
{

4 ln d

split(i)
, 1
}
.

Let q(i) = 1

split(i)
. Then q(i) ≤ Po(i) ≤ 4 ln d · q(i). Thus,

E[t(j) | t(j) > 0] =

∑
i∈W Po(i)

1−∏i∈W (1− Po(i))
≤ 4 ln d

∑
i∈W q(i)

1−∏i∈W (1− q(i))
.

160

Using the algebraic inequality
∏

i∈W (1−q(i)) ≤ 1−∑i∈W q(i)+
∑

x,y∈W,x 6=y q(x)q(y),

we get

E[t(j) | t(j) > 0] ≤ 4 ln d

(∑
i∈W q(i)∑

i∈W q(i)−∑x,y∈W,x 6=y q(x)q(y)

)
. (6.1)

Now note that for i ∈ W , since j ∈ Bot(i), we have q(i) = 1

split(i)
≤ 1

|N(j)| ≤ 1
|W | .

Thus
∑

i∈W q(i) ≤ 1 and from this we obtain the inequality
∑

x,y∈W,x 6=y q(x)q(y) ≤
∑

i∈W q(i)/2. Substituting this into (6.1), we obtain E[t(j) | t(j) > 0] ≤ 8 ln d.

Note that E[f]/(p · E[c]) is the cost ratio of RRP. Therefore Lemma 64 leads

to the following.

Corollary 66. The cost ratio of RRP is 8(2d+ 3) ln d = O(d2).

Next we show that RRP terminates in k rounds with high probability. Recall

that for each i ∈ S, each item in the sequence S(i) is called an entry. As vertices get

deleted from H the total number of entries, i.e.,
∑

i∈F |L(i)|, falls. Determining this

rate of decrease is one way of bounding the running time of RRP.

Fix a particular iteration of RRP. For a vertex i ∈ S and a vertex j ∈ B, we

say i is good for j if j ∈ Top(i). Also, we say a vertex j ∈ B is nice if at least |N(j)|
4

facilities in N(j) are good for j. For a vertex j ∈ B, let Pc(j) denote the probability

that j will be covered in this iteration. The following lemma places a lower bound on

the Pc(j) for nice vertices j.

Lemma 67. If j is a nice vertex, then Pc(j) > 1− 1
d
.

161

Proof. Recall that, for a vertex i ∈ S,

Po(i) = min

{
4 ln d

split(i)
, 1

}

Now consider an i ∈ N(j) and suppose that i is good for j. If Po(i) = 1 then

Pc(j) = 1. Otherwise,

Po(i) =
4 ln d

split(i)
≥ 4 ln d

|N(j)|

Thus for a nice vertex j, we have

Pc(j) = 1−
∏

i∈N(j)

(1− Po(i))

≥ 1−
∏

i is good for j

(1− Po(i))

≥ 1−
(
1− 4 ln d

|N(j)|

) |N(j)|
4

> 1−
(
e

−4 ln d
|N(j)|

) |N(j)|
4

= 1− 1

d

For each i ∈ S, entries in L(i) are classified in two ways. An entry j in L(i) is

a top entry if j occurs in Top(i); otherwise j is a bottom entry. An entry j in L(i) is

a nice entry if vertex j is nice; otherwise entry j is a non-nice entry.

Lemma 68. At least (1− 4
3d
)-fraction of the total entries are nice top entries.

Proof. Let x denote the total number of entries, i.e.,
∑

i∈S |L(i)|, and w denote the

number of non-nice top entries. By definition, for a nice entry j, there are at least

|N(j)|
4

vertices in N(j) such that j ∈ Top(i). Hence, there are more than 3w non-nice

162

bottom entries. We know that the total number of bottom entries is x/(d+1). Using

the fact that this is more than 3w, we obtain the inequality w < x/3d. Thus, the

total number of nice top entries is

(1− 1

d
)x− w ≥ (1− 1

d
)x− (

1

3d
)x = (1− 4

3d
)x.

Lemma 69. Let Φ and Φ′ denote the total number of covered entries, respectively

before and after an iteration of RRP. Then,

E[Φ′] ≤ Φ

d/3
.

Proof. Let E denote the set of entries before the iteration. Thus, Φ = |E|. Let E1

be the subset of E consisting of nice top entries; denote E \ E1 by E1. Then,

E[Φ′] =
∑

j∈E
Prob[entry j is deleted] =

∑

j∈E1

Prob[entry j is deleted]+
∑

j∈E1

Prob[entry j is deleted].

The first term on the right hand side is bounded above by Φ · 1
d
, since |E1| ≤ Φ and by

Lemma 67, the probability that a nice top entry is deleted in an iteration is at most

1
d
. The second term is bounded above by Φ · 4

3d
since the size of E1 is at most the

fraction 4
3d

of Φ according to Lemma 68. These bounds yield the claimed probabilistic

recurrence.

We now invoke a result on probabilistic recurrence relations due to Karp [42] to

obtain a bound on the running time of RRP. Let, T (P) denote the number of rounds

remaining when the total number of entries at the beginning of the round is P . Note

163

that, T (P) is a random variable. We have the following probabilistic recurrence for

T (·).

T (P) = 1 + T (P ′),

where, P ′ is the random variable denoting the number of entries at the end of

the round. P can be at most mn at the beginning. Also, T (P) = 0 for P < c for

some positive constant c. Note that the solution to the deterministic counter part

of this probabilistic recurrence relation, τ(P) = 1 + τ(P
d/3

), is αk for some constant

α > 0. Hence, applying Theorem 1.3 of [42] and noting that the maximum number

of entries can be mn, we get the inequality

Prob[T (mn) ≥ αk + w] ≤
(
3

d

)w

.

If we set w = Θ(k), the right hand side of the above inequality is O
(

1

poly(mn)

)
.

Hence the running time RRP is O(k) with high probability. Here, the running time

denotes the number of iterations of RRP before it terminates. Since each iteration

can be implemented in O(1) communication rounds in a synchronous message passing

model, we obtain the following theorem.

Theorem 70. For any positive k, RRP runs in O(k) rounds (with high probability),

yielding a cost ratio of O(m
2
kn

2
k).

6.3 Facility Location

A simple, greedy approximation algorithm for facility location is obtained by

repeatedly picking the most effective stars. For each facility i ∈ F and subset of

164

clients C ′ ⊆ C, we call the ordered pair (i, C ′) a star. The effectiveness of a star

(i, C ′), denoted e(i, C ′), is defined as

e(i, C ′) =
fi +

∑
j∈C′ cij

|C ′| .

The greedy algorithm for facility location simply picks the most effective star itera-

tively. Once a star (i, C ′) is picked, facility i is opened, all clients in C ′ are connected

to i. The clients in C ′ are no longer considered, but facility i still participates in the

algorithm, but with its opening cost reset to 0. This algorithm is just an instance of

the greedy set cover algorithm with C being the ground set and each star (i, C ′) cov-

ering the subset C ′ ⊆ C and having weight fi+
∑

j∈C′ cij. By the well-known analysis

of the greedy set cover algorithm [62, 11] this produces an O(logn)-approximation,

where n is number of clients.

There is a simple way to view this greedy algorithm in the primal-dual frame-

work. To see this consider the following Integer Program (IP) for facility location.

Here yi indicates whether facility i is open and xij indicates if client j is connected to

facility i. The first set of constraints ensure that every client is connected to a facility

and the second set of constraints guarantee that each client is connected to an open

facility. As is standard, we work with the LP-relaxation (LP) of the IP obtained by

replacing the integrality constraints by xij ≥ 0 for all i ∈ F , j ∈ C and yi ≥ 0 for all

i ∈ F . We also construct the dual (DP) of this LP-relaxation. For convenience of the

reader we restate the IP and the DP below:

Facility Location IP

165

minimize
∑

i∈F,j∈C
cij · xij +

∑

i∈F
fi · yi

subject to
∑

i∈F
xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

Dual of Facility Location LP

maximize
∑

j∈C
αj

subject to αj − βij ≤ cij , i ∈ F , j ∈ C

∑

j∈C
βij ≤ fi, i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F , j ∈ C

The dual variable αj can be interpreted as the amount that client j is willing

to pay in order to connect to a facility. Of this amount, cij goes towards paying

for connecting to facility i, whereas the “extra”, namely βij, is seen as the payment

of client j towards opening facility i. Now consider the following procedure that

maintains an integral primal solution (implicitly given by a set F ′ of open facilities)

and an infeasible dual solution (αj, βij).

1. Initialize F ′ ← ∅ (open facilities), C ′ ← C (active clients), for all j ∈ C: αj ← 0

and for all i ∈ F, j ∈ C: βij ← 0.

2. While C ′ 6= 0, uniformly raise the duals αj (∀j ∈ C ′) and βij (∀{i, j} pair such

that j ∈ C ′ and i ∈ F\F ′ and αj ≥ cij) until one of the following happens:

166

• αj = cij for some j ∈ C ′ and i ∈ F ′. In this case, set C ′ ← C ′\j and

βij ← 0 for all iinF . Client j is assigned to already open facility i.

• ∑j βij = fi for some i ∈ F\F ′. In this case, let C(i) = {j ∈ C ′|βij > 0}.

Set βi′j ← 0 for all i′ ∈ F\{i} and j ∈ C(i). Set F ′ ← F ′ ∪ {i} and

C ′ ← C ′\C(i). Clients in C(i) are assigned to newly open facility i.

Note that in the second type of event (where i is a newly opened facility), any

j ∈ C(i) withdraws its payments from any other facility that j may have positively

contributed to. It is easy to check that the outcome of this process are identical to

the outcomes of the greedy algorithm that picks the most effective star. In particular,

the “stars” induced by the primal-dual algorithm and the order in which they arise

is exactly as the aforementioned greedy algorithm.

6.3.1 Distributed Facility Location

Our goal is the same as that of Moscibroda and Wattenhofer [65]: to design

a distributed approximation algorithm for facility location in the CONGEST model

assuming that the underlying network is the complete bipartite graph induced by

facilities and clients. The CONGEST model of distributed computing is a message

passing model, where nodes communicate with each other in synchronous rounds. In

each round, a node is allowed to send a message of O(logn) bits to its neighbors. It

is a realistic bound as logn bits are necessary to assign unique IDs to n nodes. This

bound on message size is also significant in terms of the hardness of the problem.

If nodes were allowed to send messages of unlimited size, they could exchange all

167

the neighborhood information in each round. In that case it would take each node

at most D rounds to have all the knowledge about the whole network, where D is

the diameter of the network graph. And if we were allowed D rounds of message

communication, designing a distributed algorithm would be trivial. Given that in our

case, the diameter of the input graph is 2, this restriction on message size is what

primarily makes the problem much more challenging.

The second challenge is that any fast distributed implementation of a greedy

algorithm needs to pick many “good” choices instead of the one “best” choice at every

step (round). In case of a primal-dual algorithm this translates into increasing the

dual variables faster, for example, in a geometric manner (say, by a factor b). Of

course, the larger b is, the less closely we expect to approximate the behavior of the

sequential algorithm. Recall that in the sequential primal-dual algorithm, each client

pays positively to exactly one open facility as it withdraws its payments from all the

other facilities as soon as it is assigned to some open facility. But in the distributed

algorithm, clients not only can end up paying b times more than what was necessary,

but also may end up positively paying to many facilities. This is where the pruning

process is necessary. We use RRP to “undo” some of the “imperfect” choices that we

have made. During each round some temporarily open facilities can be permanently

opened. Clients that paid positively towards any of these facilities will be connected

to them and withdraw their contribution from all other facilities. Note that the clients

do not get a chance to withdraw their contributions from the facilities that opened

in the same round.

168

6.3.1.1 Algorithm

Our distributed algorithm combines the primal-dual framework with RRP

Algorithm. Refer to Algorithm 6.2 for an overview.

Algorithm 6.2 Facility Location

1: Initialization Stage. (runs in O(1) rounds). This is similar to the description in
Chapter 5. We identify low-paying clients and cheap facilities. Cheap facilities are
opened and low-paying clients are connected to cheap facilities. All the remaining
clients are denoted unassigned and their initial αj-values are computed. See below
for details.

2: Primal-Dual Stage. (runs in k phases, each phase runs in O(k) rounds whp).
Each unassigned client j increases its dual variable (i.e., αj) every phase by a
multiplicative factor b = n3/k until a facility i is found such that αj ≥ cij and
the facility opening cost fi is paid-for by some clients. Note that these payments
are tracked by the βij values. Facility i is declared temporarily open and included
in Ft and each j with αj ≥ cij and βij ≥ 0 is included in C(i). Let Ct be the
set of clients such that j ∈ C(i) for some i ∈ Ft and Et be the set of edges from
each facility i ∈ Ft to each client j ∈ C(i). We run RRP (Algorithm 6.1) on
the bipartite graph H = (Ft, Ct, Et) and decide which facilities in Ft will open
permanently. Any client that is in C(i) for an open facility i will be considered
assigned. The phase ends here and the dual variables of yet-unassigned clients
are increased again to start the next phase. See Algorithms 6.3 and 6.4 for a
distributed implementation of the primal-dual stage.

Initialization. Set αj := 1
n
min

i
(fi + cij) for all j ∈ C. For each j ∈ C, let i∗ be

such that fi∗ + ci∗j = mini(fi + cij), and set φ(j) := i∗. For each i ∈ F , j ∈ C, set

βij := max{αj − cij, 0}. Now, let us define α∗ = maxj αj and let j∗ = argmaxαj .

Any j ∈ C with αj ≤ α∗/n will be called a low-paying client and the facility φ(j)

(for low-paying j) will be called a cheap facility. Let OPT be the cost of an optimal

solution to the facility location problem.

169

Lemma 71. The total cost of opening all cheap facilities and connecting each low-

paying client j to facility φ(j) is at most OPT .

This proof is the same as in the metric case described in Chapter 5.2.2. It can

also be easily verified that the aforementioned process of identifying the low-paying

clients and cheap facilities can be accomplished in just O(1) rounds of communication

with messages of size O(logn).

Primal-Dual. The primal-dual phase is broken up in k phases. Each execution of

the for-loops (p = 1 to k) at the beginning of Algorithms 6.3 and 6.4 describes one

phase. The cheap facilities are already opened in the Initialization phase and the

low-paying clients do not participate in this process. Let b = n
3
k . Every client, that is

not low-paying starts with an initial αj value set at the largest power of b that is less

than or equal to α∗/n2. In each phase the αj values are increased geometrically by

factor b and the set of facilities that are paid for are temporarily open. Then we run

the pruning algorithm described below and a subset of these facilities are permanently

opened.

Let us fix a phase (say, p = t) and let Ft be the set of temporarily open

facilities in that phase. Let, H denote the graph induced by the stars of all facilities

in Ft. Recall that, a client j is said to be in the star C(i) of a facility i, if it has

positively contributed towards that facility. The stars are identified via 3 rounds of

message communication between the facilities and the clients. Note that due to the

geometric increase of dual variables, a client j can belong to multiple stars. Finally,

170

we run the RRP algorithm (Algorithm 6.1) on induced (bipartite) graph H .

Algorithm 6.3 Primal-Dual Stage: Facilities

1: Init: States of all facilities that are not cheap are active, C(i)← φ
2: for (p = 1, 2, . . . , k) do
3: Receive αj from all j|state(j) = unassigned
4: if (state(i) = open) then
5: for (∀j ∈ C) do
6: if (αj ≥ cij and state(j) = unassigned) then
7: C(i)← C(i) ∪ {j}
8: if (state(i) = active) then
9: for (∀j ∈ C) do
10: βij ← 0
11: if (state(j) = unassigned) then
12: βij ← max{0, αj − cij}
13: if (

∑
j βij ≥ fi) then

14: state(i)← paidfor
15: for (∀j|state(j) = unassigned) do
16: if (βij > 0) then
17: C(i)← C(i) ∪ {j}
18: Send state(i) to all j ∈ C(i)
19: if (state(i) = paidfor) then
20: i participates in RRP with neighbors C(i)
21: if (RRP selects i) then
22: state(i)← open
23: Send state(i) to all j ∈ C(i)
24: else
25: state(i)← active

6.3.1.2 Analysis

This section is devoted to the proof of the following theorem. Note that if

we set k = Θ(log(mn)), we obtain an O(logn)-approximation in O(log2(mn)) rounds

whp.

171

Algorithm 6.4 Primal-Dual Stage: Clients

1: Init: States of all clients that are not lowpaying are unassigned, b← n3

k
, αj ←

Largest power of b less than α∗/n2

2: for (p = 1, 2, . . . , k) do
3: if (state(j) = unassigned) then
4: Send αj to all i ∈ F
5: αj ← b · αj

6: Receive state(i) from all possible i
7: {Note: j will only hear all i such that j ∈ C(i)}
8: if (∃i|state(i) = open) then
9: state(j)← assigned
10: else
11: F (j)← {i|state(i) = paidfor}
12: if (state(j) = unassigned) then
13: j participates in RRP with neighbors F (j)
14: {Note: If F (j) = φ, j does not play any role in the outcome of the RRP}
15: Receive state(i) from all possible i
16: if (∃i|state(i) = open) then
17: state(j)← assigned

Theorem 72. For any positive k, our distributed algorithm runs in O(k2) communi-

cation rounds (with high probability) and yields a solution of expected cost O((mn)
5
kHn)·

OPT . All messages are of size O(logm).

Approximation Ratio. Let aj be the final αj value of client j. Note that aj must

be a power of b. In the primal-dual scheme the sum of all the aj values can be seen

as the dual objective function. We show a logarithmic bound on this sum in Lemma

73.

Lemma 73.
∑

j∈C
aj ≤ bHn · OPT .

Proof. Consider a facility i in the optimal OPT and the star (i, C(i)). Recall that, si

denote the total cost of opening the star, i.e. si = fi +
∑

j∈C(i) cij and let l =| C(i) |.

172

We sort all j ∈ C(i) in non-decreasing order of aj values, i.e. in the order they were

assigned. If two or more clients were assigned in the same phase, they will have the

same aj value. Let, j1, j2, . . . , jl be the sequence obtained this way. First, we claim

ajk ≤ b · si
l−k+1

, 1 ≤ k ≤ l. We prove this claim by induction.

We start by considering the base case (j1) and showing that aj1 ≤ bsi
l
. Let,

j1 was assigned in phase p. If aj1 exceeds the value b · si
l
then, at the end of phase

p, the payment from all the remaining l − 1 clients also exceed b · si
l
by the end of

phase p. This means the star (i, C(i)) should have been completely paid for and all

j ∈ C(i) should have been assigned to i by the end of phase p− 1, which presents a

contradiction. Hence aj1 ≤ b · si
l
.

Let our inductive hypothesis be, for some k, 1 ≤ k < l, ajk ≤ b · si
l−k+1

. We

show, ajk+1
≤ b · si

l−k
. By definition, the client jk+1 cannot be connected before jk

is connected. However, they both can be connected in the same round. If they

are connected in the same round, ajk+1
= ajk ≤ b · si

l−k+1
≤ b · si

l−k
. If the client

jk+1 is connected in a round after jk is connected, let us consider the set of clients

C ′(i) = C(i)\{j1∪j2∪· · ·∪jk}. If ajk+1
reach b· si

l−k
in some phase p′, all the remaining

αjr values (k < r ≤ l will also reach b · si
l−k

in that phase. Hence, at the end of phase

p′ the total contribution from these l − k clients is going to be b · si, which will be

enough to open the star (i, C(i)) and hence, enough to open the star (i, C ′(i)). Also,

jk must have paid for its connection cost to i by this phase. Thus, jk+1 will have

to be connected to i before the phase can end and αjk+1
will not be raised further.

Hence, ajk+1
≤ b · si

l−k
. This concludes the inductive proof that ajk ≤ b · si

l−k+1
.

173

Hence we have,

∑

j∈C(i)

aj = b

l∑

k=1

ajk ≤ b(
si
l
+

si
l − 1

+ . . .
si
1
) = bHl · si ≤ bHn · si

Summing over all the stars (i, C(i)) in OPT , we have

∑

j∈C
aj ≤ b

∑

i∈OPT

∑

j∈C(i)

aj ≤ b
∑

i∈OPT

Hn · si = bHn ·OPT

Lemma 74. Let R be the set of stars open in a phase and J be the clients that get

connected in this particular phase. Let sR denote the total cost of the set pf stars R.

Then E[sR] ≤ 8d ln d ·E[
∑

j∈J aj]

Proof. For any facility i ∈ R, d̂(i) ≥ si
b|C(i)| . So we have,

sR =
∑

i∈R
si ≤

∑

i∈R

∑

j∈C(i)

aj

The rest follows from Lemma 64 in Section 6.2.1.

Lemma 74 (adding over all phases) and Lemma 73 yield the expectation results

in Theorem 72. The high-probability results are obtained from this via Chernoff

Bounds. We refer the reader to [37] for the details.

Running Time. Next we will verify that, after the initialization phase, the primal-

dual phase needs at most k phases to connect all the clients. We already know that

the RRP algorithm is executed in each phase, which takes O(k) rounds with high

probability. Also it takes a constant number of O(logn) bit messages per client per

phase. The following theorem summarizes the claims in this section.

174

Theorem 75. Our distributed algorithm in a synchronous message passing model

terminates in O(k2) rounds with high probability with messages of size O(logn).

First, is easy to see that the initialization phase takes only a constant number

of message transactions per facility or client and, assuming the input constants can

be represented by O(logn) bits, each of those messages are at most of size O(logn)

bits. Hence, focus on the primal-dual phase.

Lemma 76. The primal-dual phase contains at most k phases.

Proof. For a client j, let αmin denote the initial value of αj . We know αmin ≥ α∗/n2

and hence αmin · n3 > mini(fi + cij). Therefore, if client j were to run k phases, then

its αj value would grow from αmin to αmin · (n3/k)k = αmin · n3 > mini(fi + cij). At

this point the αj-value is more than sufficient to pay for the opening cost of a facility

i all by itself and therefore if client j is not connected to any other facility, it would

have to connect facility i by the end of this phase.

Lemma 76, along with the fact that RRP terminates in O(k) rounds with high

probability, gives us the proof of Theorem 72.

6.3.2 Metric Facility Location

Based on the nature of the connection costs, the facility location problem has

two main versions: the non-metric version and the metric version. The connection

costs in a facility location instance are said to satisfy the triangle inequality if for

any i, i′ ∈ F and j, j′ ∈ C, c(i, j) ≤ c(i, j′) + c(i′, j′) + c(i′, j). In the metric facil-

ity location problem the connection costs satisfy the triangle inequality; when they

175

don’t, we have the more general non-metric facility location problem. This distinc-

tion is important from an approximation point of view because there are a number of

sequential constant-factor approximation algorithms for the metric facility location

problem ([9, 36, 75] are some examples), whereas for the non-metric facility loca-

tion problem, the best known approximation factor is O(logn) and this is optimal

[33, 60]. In Chapter 5, we presented the first constant factor distributed algorithm

(in the CONGEST model) for the metric case. We claim that, in the metric case,

our hyper-local algorithm achieves a constant-factor approximation in polylogarith-

mic round. More generally, the approximation factor of our hyper-local algorithm

can improved by a factor of O(logn) if the input instance is a metric. This can be

accounted for by Lemma 78, which is the metric version of Lemma 73. But first we

need to prove the following helping lemma.

Lemma 77. For a facility i and clients j, j′ ∈ C such that aj ≥ cij and aj′ ≥ cij′,

aj
b
≤ cij + 2aj′.

Proof. If aj ≤ baj′ , the proof is trivial. Let us assume, aj > baj′. In this case, j was

still unassigned when j′ got assigned in phase p (to some facility i′). However as per

our assumption aj > baj′, j could not have been assigned phase p. Let j was assigned

(to i) at a later phase p′. By the end of the phase p′ − 1, i′ was completely paid for

and the payment of j has reached aj/b. Hence aj/b ≤ ci′j , as otherwise βi′j would be

positive and j would be connected to i′ instead. Using triangle inequality,

ci′j ≤ ci′j′ + cij′ + cij ≤ aj′ + aj′ + cij = 2aj′ + cij.

176

Hence,
aj
b
≤ ci′j ≤ 2aj′ + cij.

Lemma 78. If the connection costs form a metric,
∑

j∈C
aj ≤ 3b · OPT .

Proof. As in Lemma 73, let us start with a facility i ∈ OPT and the star (i, C(i)).

We intend to show that

∑

j∈C(i)

aj ≤ 3bsi.

Again we let j1, j2, . . . , jl be the sequence obtained by sorting all j ∈ C(i)

in non-decreasing order of aj values, i.e. in the order they were assigned to some

facility. Note that aj values will be same for all the clients assigned in the same

phase of the primal-dual stage. Let j1 was assigned in phase p. First we assume that

∑
j∈C(i)max{0, aj1 − cij} ≤ fi. Because otherwise, at the end of phase p, i will have

enough payments from all j ∈ C(i) to be opened and all j ∈ C(i) would be assigned

to i. In that case,
∑

j∈C(i) aj ≤ bsi and the proof is trivial. Hence, we consider the

case where
∑

j∈C(i) max{0, aj1 − cij} ≤ fi.

∑

j∈C(i)

aj ≤ b
∑

j∈C(i)

(2aj1 + cij)

= 3b
∑

j∈C(i)

cij + 2b
∑

j∈C(i)

(aj1 − cij)

≤ 3b
∑

j∈C(i)

cij + 2bfi

≤ 3b
(∑

j∈C(i)

cij + fi
)

This completes the proof. The first inequality is obtained by substituting

j′ = j1 in Lemma 77.

177

As in the non-metric case, Lemma 74 (adding over all phases) and Lemma 78

yield the metric results in Theorem 79.

Theorem 79. If the connection costs form a metric, then the output of our distributed

algorithm has expected cost O((mn)
5
k) times OPT .

6.3.3 Minimum Dominating Set

A dominating set of a graph G = (V,E) is defined to be a set D ⊆ V , such

that each vertex j is either in D, or there exists at least one vertex i ∈ D such that

(i, j) ∈ E. The minimum dominating set problem (MDS) seeks to find the smallest

such D. MDS can be seen as a special case of the facility location problem, where each

vertex is as facility (with unit opening cost), as well as a client and all connection costs

are zero. However let us consider the MDS problem independently and examine how

it can fit into our RRP/Primal-dual framework. Note that the underlying network in

this case is slightly different than the facility location cases. Here each vertex can be

a seller if it is paid for by other vertices in its closed neighborhood. Hence, once it is

reduced to the stage when the RRP routine is called, we can “view” it as a bipartite

graph. Note that unlike the facility location instance, this virtual bipartite graph is

not necessarily a complete bipartite graph. This could pose some challenges for a

distributed implementation. However, as can be seen (both intuitively and from the

IP formulation below) that nodes only need information from their direct neighbors.

We also assume that each node has knowledge of ∆, the maximum closed degree of

any vertex in the graph.

178

To begin with let us describe the integer program (IPMDS) representing MDS.

minimize
∑

i∈V
xi

subject to
∑

i∈N [j]

xi ≥ 1, j ∈ V

xi ∈ {0, 1}, i ∈ V

Here, N [j] denotes the closed neighborhood of j. Note that, any j ∈ V is

capable of dominating itself. The variable xi = 1 indicates vertex i is selected to

be a dominator. Let us consider the natural LP-relaxation (LPMDS) and its dual

(DPMDS). We do not need an initialization phase. Each vertex starts their dual

variable (payment) at 1/∆ and increase it by a factor of b = ∆1/k in every phase,

where ∆ is the maximum degree of the graph. At the beginning of a phase each vertex

checks if the sum payments from its neighbors reach or exceed 1 and temporarily opens

itself if that is the case. Let Ft be the set of temporarily open vertices and Ct be

the yet uncovered neighbors of vertices in Ft. This sets us up for the RRP, which

takes O(k) rounds as discussed earlier. Note that after k phases the payment of each

yet uncovered vertex reaches 1, which is enough to temporarily open itself. Such

vertices will open with probability 1 during RRP. Hence, following the same analysis,

we obtain a O(∆
3
k log∆) · OPT in O(k2) rounds with high probability.

179

6.4 Conclusion

In this paper we introduced the primal-dual approach, aided by the RRP

algorithm, to be a valuable tool for obtaining k-round algorithms for some covering

problems. We believe this opens up the possibility of obtaining such algorithms for

more covering-packing problems. Please see Chapter 7 for more details.

180

CHAPTER 7
FUTURE WORK

For the remainder of the thesis, we intend to focus on two problems. Both of

these problems are related to our current work on facility location and we have some

intuition and ideas on how to effectively approach these problems. We conclude this

report by describing these two problems, the challenges we face and our ideas on how

to overcome them.

7.1 k-round Algorithms for Other Covering-Packing Problems

Our current result is achieved by using a primal-dual algorithm. It is clear

from recent results (by us [69, 70] and others [54, 65]) that the primal-dual scheme is

an effective tool for exposing the inherent trade-off between the approximation factor

and the running-time of distributed algorithms, and as a result, achieving non-trivial

approximation factors even in small number of rounds. We believe this opens up the

possibility of obtaining such algorithms for more covering-packing problems. Usually,

if we have a covering (minimization) problem (e.g. minimum set cover, minimum

vertex cover, minimum edge cover), the dual of it will be a packing (maximization)

problem (e.g. maximum set packing, maximum matching, maximum independent set

respectively). Covering problems can be reduced (after relaxation) to the following

general LP form:

minimize bTx

subject to ATx ≥ c

181

x ≥ 0

such that matrix A and vectors b and c are non-negative. The dual takes the

general form:

maximize cTy

subject to Ay ≤ b

y ≤ 0

In the future, we would like to claim that fast increase of the dual variables

(y), each increase followed by fast pruning of the covering set would yield non-trivial

approximation factors in k rounds. Furthermore, for a polylogarithmic value of k we

expect the approximation factor to reach or improve the best known results so far.

7.2 Capacitated Facility Location on UDGs

We also want to venture into the capacitated versions of facility location prob-

lems. There are two types of capacitated facility location problems. In hard capacitated

facility location problem each facility i, if opened, can serve at most ui clients. The

term ui denotes the capacity of facility i. As usual, F being the set of facilities and

C being the set of clients, the goal is to find a set of facilities I ⊆ F to open and a

function φ : C → I that assigns every client to an open facility, while maintaining the

capacity constraint for each facility, so as to minimize
∑

i∈I f(i) +
∑

j∈C c(j, φ(j)).

However, our intention is to focus on the soft capacitated facility location.

Facilities have limited capacities in this variant as well. But we allow each facility to

182

be opened an unbounded number of times if necessary. If facility i is opened yi times,

it can serve at most uiyi clients. From the primal-dual standpoint, this provision

introduces the following additional constraint to the LP-relaxation:

∀i ∈ F : uiyi −
∑

j∈C
xij ≥ 0.

Jain and Vazirani [36] obtained a 4-approximation for the metric case via

primal-dual method. But we want to obtain a O(1)-approximation for UDGs. To our

knowledge, no constant factor approximation exists for this problem in UDGs, even

in the sequential setting.

We have already obtained a O(1)-approximation for UDG-FacLoc (described in

Chapter 4). The idea behind that result was to run a primal-dual algorithm followed

by pruning of facilities. If, due to pruning, a client looses its connections to all

temporarily open facilities, then we reconnect that client. To ensure a small (constant-

factor) overhead of reconnection, the final step is based on a O(1)-approximation [2]

for UDG-WMDS. Following the same footsteps, we hope to use a primal-dual algorithm

in order to obtain a O(1)-approximation for the soft capacitated facility location

problem in UDGs (UDG-CapFacLoc). The rough idea is as follows:

• Run the primal-dual algorithm for CapFacLoc. We can use an existing algorithm

[36]. Let Fp be the set of open facilities.

• Compute some capacitated version of UDG-MDS and open a facility at each node

belonging to that dominating set (say, Fd).

183

• Connect each client to a facility in Fp that it has positively contributed to. If

a client does not have such a facility in its neighborhood, connect them to any

facility in Fd.

The bottleneck is that, so far, there is no known O(1)-approximation for soft

capacitated MDS in UDGs (UDG-CapMDS). As shown by Kuhn and Moscibroda [49], in

general graphs and even with uniform capacities, CapMDS is inherently non-local i.e.,

every distributed algorithm achieving a non-trivial approximation ratio must have a

time complexity that essentially grows linearly with the network diameter. However,

if for some parameter ǫ > 0, capacities can be violated by a factor of 1 + ǫ, CapMDS

becomes much more local. Additionally we hope to utilize the geometric properties of

unit disks for better approximability. In summary, we intend to study and solve the

UDG-CapFacLoc problem, and in the process, expect to get a clear idea of the locality

of the problem.

184

REFERENCES

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583,
1986.

[2] Christoph Ambühl, Thomas Erlebach, Matús Mihalák, and Marc Nunkesser.
Constant-factor approximation for minimum-weight (connected) dominating sets
in unit disk graphs. In APPROX-RANDOM, pages 3–14, 2006.

[3] M. L. Balinski. On finding integer solutions to linear programs. In Proceedings of
IBM Scientific Computing Symposium on Combinatorial Problems, pages 225–
248, 1966.

[4] L. Barriére, P. Fraigniaud, and L. Narayanan. Robust position-based routing in
wireless ad hoc networks with unstable transmission ranges. In DIALM, pages
19–27, 2001.

[5] Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanel-
lopoulos. Geometric clustering to minimize the sum of cluster sizes. In ESA,
pages 460–471, 2005.

[6] H-T.H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling
metrics. In SODA ’06: Proceedings of the 17th annual ACM-SIAM symposium
on Discrete algorithm, pages 70–78, 2006.

[7] Hubert T-H. Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On
hierarchical routing in doubling metrics. In SODA ’05: Proceedings of the six-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 762–771,
2005.

[8] T-H. Hubert Chan. Personal Communication, 2006.

[9] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the
facility location and k-median problems. In FOCS ’99: Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, page 378, Washington,
DC, USA, 1999. IEEE Computer Society.

[10] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A
polynomial-time approximation scheme for the minimum-connected dominating
set in ad hoc wireless networks. Networks, 42(4):202–208, 2003.

185

[11] Vasek Chvátal. A greedy heuristic for the set cover problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

[12] G. Cornuejols, G. Nemhouser, and L. Wolsey. Discrete Location Theory. Wiley,
1990.

[13] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. Discrete & Compu-
tational Geometry, 32(2):207–230, 2004.

[14] Mirela Damian, Saurav Pandit, and Sriram V. Pemmaraju. Distributed spanner
construction in doubling metric spaces. In OPODIS, pages 157–171, 2006.

[15] Mirela Damian, Saurav Pandit, and Sriram V. Pemmaraju. Local approximation
schemes for topology control. In PODC, pages 208–217, 2006.

[16] G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-
dimensional Euclidean space. In SCG ’93: Proc. of the ninth annual symposium
on Computational geometry, pages 53–62, New York, NY, USA, 1993. ACM
Press.

[17] G. Das and G. Narasimhan. A fast algorithm for constructing sparse euclidean
spanners. Int. J. Comput. Geometry Appl., 7(4):297–315, 1997.

[18] Budhaditya Deb and Badri Nath. On the node-scheduling approach to topology
control in ad hoc networks. In MobiHoc ’05: Proceedings of the 6th ACM inter-
national symposium on Mobile ad hoc networking and computing, pages 14–26,
2005.

[19] Michael Elkin. Distributed approximation: a survey. SIGACT News, 35(4):40–
57, 2004.

[20] Thomas Erlebach and Erik Jan van Leeuwen. Domination in geometric intersec-
tion graphs. Lecture Notes in Computer Science, 4957:747–758, 2008.

[21] Christian Frank. Algorithms for Sensor and Ad Hoc Networks. Springer, 2007.

[22] Christian Frank and Kay Römer. Distributed facility location algorithms for
flexible configuration of wireless sensor networks. In Proceedings of the 3rd IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS
2007), pages 124–141, Santa Fe, NM, USA, jun 2007.

[23] Joachim Gehweiler, Christiane Lammersen, and Christian Sohler. A distributed
o(1)-approximation algorithm for the uniform facility location problem. In SPAA,
pages 237–243, 2006.

186

[24] Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the max-
imal independent set problem in growth-bounded graphs. In PODC ’07: Pro-
ceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, pages 53–60, 2007.

[25] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms
for constructing sparse geometric spanners. SIAM J. Comput., 31(5):1479–1500,
2002.

[26] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms
for constructing sparse geometric spanners. SIAM J. Comput., 31(5):1479–1500,
2002.

[27] Sudipto Guha and Samir Khuller. Improved methods for approximating node
weighted steiner trees and connected dominating sets. Inf. Comput., 150(1):57–
74, 1999.

[28] M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Fault-tolerant and 3-
dimensional distributed topology control algorithms in wireless multi-hop net-
works. In Proc. of the 11th IEEE International Conference on Computer Com-
munications and Networks (IC3N), pages 392–398, 2002.

[29] M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-
tolerant topology control algorithms for wireless multi-hop networks. In Mobi-
Com, pages 300–312, 2003.

[30] M. Hajiaghayi, G. Kortsarz, V.S. Mirrokni, and Z. Nutov. Power optimization
for connectivity problems. In IPCO, pages 349–361, 2005.

[31] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional met-
rics, and their applications. In SCG’05: Proceedings of the 21st annual sympo-
sium on Computational geometry, pages 150–158, 2005.

[32] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor networks. In
HICSS, volume 8, page 8020, 2000.

[33] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical
Programming, 22(1):148–162, 1982.

[34] Yaochun Huang, Xiaofeng Gao, Zhao Zhang, and Weili Wu. A better constant-
factor approximation for weighted dominating set in unit disk graph. Journal of
Combinatorial Optimization, 2008.

187

[35] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vi-
jay V. Vazirani. Greedy facility location algorithms analyzed using dual fitting
with factor-revealing lp. J. ACM, 50(6):795–824, 2003.

[36] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian
relaxation. J. ACM, 48(2):274–296, 2001.

[37] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algo-
rithm for constructing small dominating sets. Distributed Computing, 15(4):193–
205, 2002.

[38] David S. Johnson. Approximation algorithms for combinatorial problems. In
STOC ’73: Proceedings of the fifth annual ACM symposium on Theory of com-
puting, pages 38–49, 1973.

[39] Jaewon Kang, Yanyong Zhang, and Badri Nath. Analysis of resource increase
and decrease algorithm in wireless sensor networks. In ISCC ’06: Proceedings of
the 11th IEEE Symposium on Computers and Communications, pages 585–590,
2006.

[40] Iyad A. Kanj, Ge Xia, and Fenghui Zhang. Local construction of spanners in the
3-d space. In DCOSS ’09: Proceedings of the 5th IEEE International Conference
on Distributed Computing in Sensor Systems, pages 315–328, 2009.

[41] B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless net-
works. In MobiCom, pages 243–254, 2000.

[42] Richard M. Karp. Probabilistic recurrence relations. J. ACM, 41(6):1136–1150,
1994.

[43] Leon Kaufman, Marc Vanden Eede, and Pierre Hansen. A plant and warehouse
location problem. Operational Research Quarterly, 28(3):547–554, 1977.

[44] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for
minimum spanning trees. Distributed Computing, 20(6):391–402, 2008.

[45] David Kotz, Calvin Newport, and Chip Elliot. The mistaken axioms of wireless-
network research. Technical Report TR2003-467, Dartmouth College, Depart-
ment of Computer Science, 2003.

[46] R. Krauthgamer, A. Gupta, and J.R. Lee. Bounded geometries, fractals, and
low-distortion embeddings. In FOCS ’03: Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 534–543, 2003.

188

[47] R. Krauthgamer and J.R. Lee. Navigating nets: simple algorithms for proximity
search. In SODA ’04: Proceedings of the 15th annual ACM-SIAM symposium
on Discrete algorithms, pages 798–807, 2004.

[48] Alfred A. Kuehn and Michael J. Hamburger. A heuristic program for locating
warehouses. Management Science, 9(4):643–666, 1963.

[49] Fabian Kuhn and Thomas Moscibroda. Distributed approximation of capacitated
dominating sets. In SPAA, pages 161–170, 2007.

[50] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be
computed locally! In PODC ’04: Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, pages 300–309, New York,
NY, USA, 2004. ACM.

[51] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On the locality of
bounded growth. In PODC ’05: Proceedings of the twenty-fourth annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, pages 60–
68, 2005.

[52] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In SODA, pages 980–989, 2006.

[53] Fabian Kuhn and RogerWattenhofer. Constant-time distributed dominating set
approximation. Distributed Computing, 17(4):303–310, 2005.

[54] Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set
approximation. In PODC ’03: Proceedings of the twenty-second annual sympo-
sium on Principles of distributed computing, pages 25–32, New York, NY, USA,
2003. ACM.

[55] Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What can be
approximated locally?: case study: dominating sets in planar graphs. In SPAA
’08: Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, pages 46–54, New York, NY, USA, 2008. ACM.

[56] C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the
complete graphs and almost as cheap as minimum spanning trees. Algorithmica,
8:251–256, 1992.

[57] X. Y. Li, G. Calinescu, and P. Wan. Distributed construction of planar spanner
and routing for ad hoc wireless networks. In Proc. of the 21st Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM),
2002.

189

[58] X. Y. Li, G. Calinescu, P. J. Wan, and Y. Wang. Localized delaunay triangulation
with application in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst.,
14(10):1035–1047, 2003.

[59] Xiang-Yang Li and Yu Wang. Efficient construction of low weighted bounded
degree planar spanner. International Journal of Computational Geometry and
Applications, 14(1–2):69–84, 2004.

[60] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum pack-
ing constraint violation (extended abstract). In STOC ’92: Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing, pages 771–782,
1992.

[61] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput.,
21(1):193–201, 1992.

[62] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

[63] M Luby. A simple parallel algorithm for the maximal independent set problem.
In STOC ’85: Proceedings of the seventeenth annual ACM symposium on Theory
of computing, pages 1–10, 1985.

[64] Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, S. S. Ravi, and Daniel J.
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995.

[65] Thomas Moscibroda and Roger Wattenhofer. Facility location: distributed ap-
proximation. In PODC ’05: Proceedings of the twenty-fourth annual ACM sym-
posium on Principles of distributed computing, pages 108–117, 2005.

[66] Moni Naor and Larry Stockmeyer. What can be computed locally? In STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 184–193, 1993.

[67] Saurav Pandit and Sriram Pemmaraju. Finding facilities fast. In Full Paper,
2009. http://cs.uiowa.edu/ spandit/research/icdcn2009.pdf.

[68] Saurav Pandit and Sriram V. Pemmaraju. Finding facilities fast. In ICDCN,
pages 11–24, 2009.

[69] Saurav Pandit and Sriram V. Pemmaraju. Return of the primal-dual: Dis-
tributed metric facility location. In PODC, pages 180–189, 2009.

190

[70] Saurav Pandit and Sriram V. Pemmaraju. Rapid randomized pruning for fast
distributed greedy algorithms. In PODC (to appear), 2010.

[71] David Peleg. Distributed computing: a locality-sensitive approach. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[72] Sriram Pemmaraju and Imran Pirwani. Good quality virtual realizations of unit
ball graphs. In Algorithms - ESA 2007, pages 311–322, 2007.

[73] R. Rajaraman. Topology control and routing in ad hoc networks: A survey.
SIGACT News, 33:60–73, 2002.

[74] Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed Maximal
Independent Set Algorithm for growth-Bounded Graphs. In 27th ACM Sympo-
sium on Principles of Distributed Computing (PODC), Toronto, Canada, August
2008.

[75] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for
facility location problems (extended abstract). In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 265–274,
1997.

[76] John F. Stollsteimer. A working model for plant numbers and locations. Man-
agement Science, 45(3):631–645, 1963.

[77] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional met-
rics. In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 281–290, 2004.

[78] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction
of connected dominating set in wireless ad hoc networks. Mob. Netw. Appl.,
9(2):141–149, 2004.

[79] Yu Wang and Xiang-Yang Li. Localized construction of bounded degree and
planar spanner for wireless ad hoc networks. In DIALM-POMC ’03: Proceedings
of the 2003 joint workshop on Foundations of mobile computing, pages 59–68,
2003.

[80] Yu Wang, Weizhao Wang, and Xiang-Yang Li. Distributed low-cost backbone
formation for wireless ad hoc networks. In MobiHoc, pages 2–13, 2005.

[81] R. Wattenhofer and A. Zollinger. XTC: A practical topology control algorithm
for ad-hoc networks. In 4th International Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks (WMAN), 2004.

191

[82] Tao Wu and Subir Biswas. Minimizing inter-cluster interference by self-
reorganizing mac allocation in sensor networks. Wireless Networks, 13(5):691–
703, 2007.

[83] A.C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

	University of Iowa
	Iowa Research Online
	Fall 2010

	Approximation algorithms for distributed systems
	Saurav Pandit
	Recommended Citation

	thesis.dvi

