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Mikhail Khovanov developed a bi-graded homology theory for links in S3.

Khovanov’s theory came from a Topological quantum field theory (TQFT) and as

such has a geometric interpretation, explored by Dror Bar-Natan. Marta Asaeda,

Jozef Przytycki and Adam Sikora extended Khovanov’s theory to I-bundles using

decorated diagrams. Their theory did not suggest an obvious geometric version since

it was not associated to a TQFT. In this thesis we develop a geometric version of

Asaeda, Przytycki and Sikora’s theory for links in thickened surfaces. This version

leads to two other distinct theories that we also explore.
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New knowledge is the most valuable commodity on earth. The more truth we have
to work with, the richer we become.

Kurt Vonnegut, Breakfast of Champions
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CHAPTER 1

INTRODUCTION

A knot in Mathematics is very similar to a knot in everyday life. It is a

1-dimensional object (like a string) lying in 3-dimensional space, perhaps wrapping

around itself in any number of ways. The one distinction is that Mathematical knots

do not have any loose ends. That way if something is knotted, it must stay knotted,

no matter how much you move it around (as long as you don’t cut it.)

Mathematicians realized knots were objects that could be studied rigorously.

The most obvious direction of study was to name all of the simplest knots, starting

at the "smallest" and working your way up. Soon it became obvious that the pro-

cess of distinguishing one knot from another was far from trivial. For this purpose,

Knot theorists developed knot invariants. Some invariants can prove quite useful in

distinguishing knots from one another.

In my view there are two kinds of invariants. Ones that are easy to define, but

hard to determine and ones that are hard to define but relatively easy to determine

(assuming enough time and computing power). The easy to define ones are often the

result of associating a number to a diagram and then minimizing over all diagrams

of the knot. The difficult to define ones are often difficult because they must be

invariant under the Reidemeister moves. However to compute them one can look at

any diagram of that knot.

The link polynomials, for instance the Jones and Alexander polynomials, have

algorithms to determine them and so are relatively easy to compute. In addition, they
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can sometimes tell you something about the easy to define invariants. For example,

the Jones polynomial determines a bound on crossing number and the Alexander

polynomial determines a bound on genus.

1.1 Link homologies

Recently these polynomials have been taken one step further with the intro-

duction of link homologies, specifically Heegaard Floer and Khovanov homology. The

graded Euler characteristics of these theories yield the Alexander and Jones polyno-

mials, respectively.

Initially all of these quantities are defined for links existing in S3. It is natural

to attempt to extend them to links embedded in other 3-manifolds. The simplest

3-manifolds that are not S3 or R3 are probably thickened surfaces, so that is what we

concern ourselves with here.
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CHAPTER 2

PRELIMINARIES

It will be assumed that the reader has a strong general mathematical back-

ground including homological algebra but little or no knowledge of knot theory. In

this chapter we will formally introduce knots, links and link diagrams. Then the

Kauffman bracket and the Jones polynomial will be defined.

2.1 Knots and diagrams

Definition 2.1. A knot is a smooth embedding of S1 into S3. An n-component link

is n copies of S1 smoothly embedded into S3. A knot is a 1-component link.

Two knots are equivalent if there is an orientation preserving diffeomorphism

from S3 to itself such that one knot is taken to the other knot.

Links are 1-dimensional objects living in 3-dimensional space. To view links

in 2-dimensions we use link diagrams. A link diagram is a projection of a link to a

2-dimensional plane with additional markings to indicate over and under crossings.

Figure 2.1 shows this process.

2.2 Reidemeister moves

To deal with link diagrams Kurt Reidemeister developed three moves shown

in Figure 2.2.

Theorem 2.1 (Reidemeister). Any two diagrams of the same link are related by some

sequence of the three Reidemeister moves.
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Figure 2.1: Projecting a link to a diagram.

Project→

3-dimensional space 2-dimensional space

2.3 Kauffman bracket

Let D be a link diagram. The Kauffman bracket of D, denoted < D >, is an

element of Z[A,A−1] and is determined by the following three rules:

1.

〈 〉
= A

〈 〉
+ A−1

〈 〉

2.

〈
D t

〉
= (−A2 − A−2) < D >

3.

〈 〉
= 1

After examining the Kauffman bracket rules one can notice that an algorithm

for computing the bracket polynomial is to examine every possible smoothing (Kauff-

man state) and count the number of circles in each state. This procedure is utilized

in the Kauffman bracket state sum formula:

< D >=
∑
S

Aσ(S)(−A2 − A−2)#S−1, (2.1)
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Figure 2.2: The Reidemeister moves.

• ∼ Reidemeister One

• ∼ Reidemeister Two

• ∼ Reidemeister Three

where S is a Kauffman state, σ(S) = (number of A smoothings) − (number

of A−1) smoothings, and #S is the number of components of S.

Example 2.1. The Kauffman bracket of the standard diagram of the Hopf link is

shown in Figure 2.3.

2.4 Jones polynomial

The Kauffman bracket is not an invariant of links as it does not respect the

Reidemeister one move. However, one can adjust it accordingly to make it into the

Jones polynomial, which is a link invariant.

Definition 2.2. The writhe of a crossing is either +1 or −1 as seen in Figure 2.4.

The writhe of an oriented link diagram, D, is the sum of the writhes of the crossings
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Figure 2.3: Computing the Kauffman bracket of the Hopf link.

〈 〉
= A2

〈 〉
+

〈 〉
+

〈 〉

+A−2

〈 〉
= A2(−A2 − A−2) + 1 + 1 + A−2(−A2 − A−2)

= −A4 − 1 + 2− 1− A−4 = −A4 − A−4

and is denoted w(D).

Figure 2.4: The writhe of a crossing.

+1 −1

Example 2.2. Consider the oriented diagram of the Hopf link in Figure 2.5. Note

this diagram has writhe of 2.

Theorem 2.2 (Kauffman). Let L be an oriented link and D a diagram of L. Then

VL(t) = (−A)−3w(D) < D >t−1/2=A2 is an invariant of L.
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Figure 2.5: An oriented Hopf link.

VL(t) is the Jones polynomial of L.

Example 2.3. The Jones polynomial of the Hopf link with the orientation in Figure

2.5 is

VHopf link(t) = (−A)
−3w

 !〈 〉
= (−A)−3∗2(−A4 − A−4)

= (−A)6(−A4 − A−4) = A6(−A4 − A−4) = −A10− A2

= −t−5/2 − t−1/2

2.5 3-manifold definitions

In the subsequent chapters it will be necessary to know a few basic definitions

concerning 3-manifolds.

Definition 2.3. Let S be a surface embedded in three-manifoldM . S is compressible

if S contains an essential curve that bounds a disk, D, in M such that S ∩D = ∂D.

If no such curves exist and S is not a two-sphere, then S is incompressible.
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Definition 2.4. A surface is orientable if it is two-sided. Otherwise it is said to

be non-orientable. Equivalently, a surface is non-orientable if it has an embedded

Möbius band.
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CHAPTER 3

TQFTS AND KHOVANOV HOMOLOGY

3.1 Frobenius algebras and TQFTs

Definition 3.1. A Frobenius algebra is a finite dimensional, unital, associative al-

gebra, A, over a field k equipped with a linear functional ε : A → k, such that the

kernel of ε contains no nonzero left ideal of A.

Definition 3.2. A (1+1) dimensional Topological Quantum Field Theory (TQFT)

is a functor from the category 2Cob to the category of algebras over a field k.

Remark 3.1. It can be shown that the algebra that a circle is sent to under a TQFT

is necessarily a Frobenius algebra. Therefore there is a 1-1 correspondence between

Frobenius algebras and (1+1) dimensional TQFTs.

3.2 Khovavov homology

In [4] Mikhail Khovanov introduced a homology theory for links in S3. In order

to construct his link homology, Khovanov used the Frobenius extension (Z, A, ε, µ),

where A = Z[x]/(x2) and ε(x) = 1, ε(1) = 0. He assigned each circle in a Kauffman

state either a 1 or an x. Borrowing the terminology from [7], we will call these

decorated Kauffman states enhanced Kauffman states.

Khovanov’s boundary operator on enhanced Kauffman states consists of chang-

ing a positive smoothing to a negative smoothing. When two circles combine as the

result of changing a smoothing, the multiplication operation of A is used. When one

circle splits into two circles the co-multiplication operation is used.
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Table 3.1: The operations in A.

m(x⊗ x) = 0 ∆(1) = 1⊗ x+ x⊗ 1

m(x⊗ 1) = x ∆(x) = x⊗ x

m(1⊗ 1) = 1

The multiplication and co-multiplication of A is shown in Figure 3.1.

We also have the following grading coming from [7]:

Definition 3.3. Enhanced Kauffman states in Khovavov homology are bi-graded. If

D is a link diagram and S is an enhanced Kauffman states then we have,

i(S) =
w(D)− σ(S)

2
, j(S) = −σ(S) + 2τ(S)− 3w(D)

2
,

where w(D) is the writhe of the diagram D, τ(S) is the number of xs - the

number of 1s in S.

What is remarkable about Khovanov’s homology theory is that the graded

Euler characteristic of the homology is the Jones polynomial of the link.

Example 3.1. We will compute the Khovanov homology of the Hopf link. Let

D = . Note w(D) = 2. The complex of Kauffman states and chain group

generators is outlined in Figure 3.1

We will now compute the homology of the Khovanov chain complex of the

Hopf link. The computations are shown in Figure 3.2.
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Figure 3.1: The complex of Kauffman states of the Hopf link.

→
m →−∆

→m →
∆

σ = 2 σ = 0 σ = −2

i = 0 i = 1 i = 2

1⊗ 1 ∈ C0,4(D) 1⊕ 0 ∈ C1,4(D) 1⊗ 1 ∈ C2,6(D)

1⊗ x ∈ C0,2(D) 0⊕ 1 ∈ C1,4(D) 1⊗ x ∈ C2,4(D)

x⊗ 1 ∈ C0,2(D) x⊕ 0 ∈ C1,2(D) x⊗ 1 ∈ C2,4(D)

x⊗ x ∈ C0,0(D) 0⊕ x ∈ C1,2(D) x⊗ x ∈ C2,2(D)
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Table 3.2: The boundary map of the Hopf link.

d0(1⊗ 1) = m(1⊗ 1)⊕m(1⊗ 1) = 1⊕ 1

d0(1⊗ x) = m(1⊗ x)⊕m(1⊗ x) = x⊕ x

d0(x⊗ 1) = m(x⊗ 1)⊕m(x⊗ 1) = x⊕ x

d0(x⊗ x) = m(x⊗ x)⊕m(x⊗ x) = 0

d1(1⊕ 0) = −∆(1)⊕∆(0) = −1⊗ x− x⊗ 1

d1(0⊕ 1) = −∆(0)⊕∆(1) = 1⊗ x+ x⊗ 1

d1(x⊕ 0) = −∆(x)⊕∆(0) = −x⊗ x

d1(0⊕ x) = −∆(0)⊕∆(x) = x⊗ x
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Figure 3.2: Khovanov homology of the Hopf link computations.

H0(L) = ker(d0)/im(d−1) =< x⊗ x, 1⊗ x− x⊗ 1 >

H1(L) = ker(d1)/im(d0) =< x⊕ 0 + 0⊕ x, 1⊕ 0 + 0⊕ 1 > / < 1⊕ 1, x⊕ x >

∼=< 0 >

H2(L) = ker(d2)/im(d1) =< 1⊗ 1, 1⊗ x, x⊗ 1, x⊗ x > / < −1⊗ x− x⊗ 1, x⊗ x >

=< 1⊗ 1, 1⊗ x >

In light of these computations the Khovanov homology of the Hopf link is

shown in Figure 3.3.

Figure 3.3: The Khovanov homology of the Hopf link.

Hi,j =


Z if (i, j) = (0, 0), (0, 2), (2, 4), (2, 6)

0 otherwise

Now let’s verify that the graded Euler characteristic is actually the Jones poly-

nomial. Khovanov uses a different variable than the one used in the Jones polynomial.

He uses q and q is related to t by q = t1/2.
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Note the graded Euler characteristic of the Hopf link homology is shown in

Figure 3.4.

Figure 3.4: The graded Euler characteristic of the Hopf link.

χ(H(L)) = (−1)0q0rk(H0,0(L)) + (−1)0q2rk(H0,2(L)) + (−1)2q6rk(H2,6(L))

+(−1)2q4rk(H2,4(L))

= 1 + q2 + q6 + q4

Converting this to t yields 1 + q2 + q4 + q6 = 1 + t+ t2 + t3.

In addition, Khovanov’s Jones polynomial is normalized so that the unknot

has a value of (−t− t−1) instead of 1, thus if we multiply the Jones polynomial of the

Hopf link by (−t − t−1), we should arrive at the graded Euler characteristic of the

chain complex. This is verified in Equation 3.1.

V (t) ∗ (−t− t−1) = (−t−5/2 − t−1/2)(−t1/2 − t−1/2) = t2 + t3 + 1 + t (3.1)

3.3 Viro’s version

After Khovanov introduced his link homology, Oleg Viro modified it slightly

in [7] to produce a theory for framed links. In this theory the x was replaced by a +,

the 1 by a − and the gradings were I(S) = σ(S) and J(S) = σ(S) + 2τ(S). In his
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Figure 3.5: Multiplication, co-multiplication, 1 and x in Bar-Natan’s theory.

m = , ∆ =

1 = , x =

definition of the theory Viro did away with any direct reference to the algebra A.

3.4 Bar-Natan’s cobordism theory

In [2] Bar-Natan developed a more geometric version of the link homology

Khovanov had defined. Bar-Natan defined the surfaces corresponding to a state of

the diagram to be all of the marked cobordisms from the empty diagram to that

state. Bar-Natan subjected these surfaces to the relations coming from the TQFT

associated to A. By the neck-cutting relation, these surfaces are spanned by disks

with at most one dot, where a dot represents multiplication by x. The multiplication,

co-multiplication, 1 and x in Bar-Natan’s theory can be seen in Figure 3.5.

Note how this formulation corresponds to using the Frobenius extension A in

Figure 3.6. As one can see, Bar-Natan’s geometric definition yields the same homology

as the algebraic approach.
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Figure 3.6: An example of co-multiplication and multiplication in Bar-Natan’s theory.

∆

  = = +

= +

m

  = =
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CHAPTER 4

KHOVANOV HOMOLOGY IN I-BUNDLES

After Khovanov developed his homology theory for links in S3, Asaeda, Przy-

tycki and Sikora extended Khovanov’s theory to I-bundles over a surface. Their theory

will be presented in this chapter. Their approach is by way of Viro’s construction of

Khovanov homology of framed links. We can recover Khovanov’s original construction

if the base space of the I-bundle is a disk.

Let M be an I-bundles over a surface F . Therefore, M is either F × I if F is

orientable, or M is the twisted I-bundle over F . We assume that F is not RP2.

Definition 4.1. Let D be a link diagram. A Kauffman state of D is an assignment

of a + or − smoothing to each crossing of the diagram. The smoothings can be

seen in Figure 4.1. An Enhanced Kauffman state is a Kauffman state of D with an

assignment of a + or − to each component of the Kauffman state.

Figure 4.1: + and − smoothings of a crossing.

← →

+ smoothing − smoothing
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Definition 4.2. A circle is trivial if it bounds a disk in the surface. A circle is

bounding if it bounds either a disk or a Möbius band.

4.1 Grading of Enhanced Kauffman states and the chain groups

Let S be an enhanced Kauffman state of a diagram D. We define

I(S) = # of positive smoothings − # of negative smoothings

J(S) = I(S) + 2τ(S)

τ(S) = # of positive trivial components − # of negative trivial components.

Let C(F ) be the set of all unoriented, unbounding simple closed curves in F,

up to homotopy. If the unbounding components of S are γ1, . . . , γn and marked by

ε1, . . . , εn ∈ {+1,−1}, then

Ψ(S) =
∑
i

εiγi ∈ ZC(F ).

Let Cijs(D) be the free abelian group spanned by enhanced states S, such that

i(S) = i, j(S) = j and Ψ(S) = s.

4.2 The differential

Let v be a crossing of D. We define the incidence number, [S : S ′]v, to be 1 if

the following four conditions are satisfied:

1. the crossing v is marked by + in S and by − in S ′,

2. S and S ′ assign the same markers to all the other crossing,

3. the labels of the common circles in S and S ′ are unchanged,
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4. J(S) = J(S ′),Ψ(S) = Ψ(S ′).

Otherwise [S : S ′]v = 0.

Let t(S, v) denote the number of negative crossings in S coming before v in

the ordering.

Then the differential d : Ci,j,s → Ci−2,j,s is defined by

d(S) =
∑
v

∑
S′

[S : S ′]vS
′ (4.1)

Table 4.1 shows how the differential behaves near a crossing. S is the enhanced

state smoothed positively at the crossing and S ′ is an enhanced state incident to S.

A 0 indicates that the component is non-trivial and ε can be either + or −.

Theorem 4.1 (Asaeda-Przytycki-Sikora). The homology theory constructed in this

chapter is an invariant of band links in I-bundles.



20

Table 4.1: The differential near a crossing.

S S ′ S S ′

−+ + ε0− ε0

−− − ε0−ε0 +

− ε

−ε

ε0 ε0

+

+ +

+

− ε0

−ε0

− ε0 ε0 +
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CHAPTER 5

FOAMS

As discussed in Chapter 3, Khovavov homology came from a Frobenius exten-

sion. Bar-Natan developed a geometric version of the theory by using relations on

surfaces coming from the TQFT associated to the Frobenius algebra. Asaeda, Przy-

tycki and Sikora’s theory does not have a Frobenius algebra or TQFT associated to

it, so it was a natural question as to whether or not it could be realized geometrically.

In the next chapter we accomplish that by using Bar-Natan’s relations, in addition

to some new ones.

After the geometric version of the APS theory is presented, there are two

generalizations that are also explored. One that is quite complex, and one that may

be a simpler alternative to the APS theory.

All three of these homology theories make use of surfaces embedded in the

thickened surfaces, called foams. This chapter will introduce the foams and a few

useful results. The subsequent chapters will build on this chapter in different ways

to realize the different theories.

5.1 Definitions

Definition 5.1. Let S be a surface properly embedded in a 3-manifold N . A bound-

ary circle of S is said to be inessential if it bounds a disk in N , otherwise it is said

to be essential.

Definition 5.2. If S is an oriented surface and c is an oriented boundary component



22

of S then the orientation of S is compatible with the orientation of c if the boundary

orientation of c from S agrees with the orientation of c. Two oriented boundary curves

of an orientable connected surface are compatible if both curves are compatible with

the same orientation on the surface.

Remark 5.1. If S is a connected unoriented orientable surface and c is an oriented

boundary component of S then there is exactly one orientation for the other boundary

curves to be oriented compatibly with c. This is shown in Figure 5.1.

Figure 5.1: Compatible orientation of boundary curves.

Boundary is oriented Compatible orientation Rest of boundary is
on surface oriented compatibly

Definition 5.3. A surface link diagram is an orientable surface together with a link

diagram in the surface. The orientable surface will be referred to as the underlying

surface.

Definition 5.4. A state of a surface link diagram D is a choice of smoothing at each
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crossing. Therefore a state is represented by a collection of disjoint simple closed

curves in the underlying surface of D.

Definition 5.5. Let D be a surface link diagram with underlying surface F whose

crossings are ordered. A pre-foam with respect to D has the following properties:

• A pre-foam is a compact surface properly embedded in F × I.

• A pre-foam has a state of D as its boundary in the top (F×{0}) and essential

circles as its boundary in the bottom (F x {1}). There are no other boundary

components.

• Pre-foams may be marked with dots.

Two pre-foams are equivalent if they are isotopic relative to the boundary. The

dots on pre-foams are allowed to move freely within components but dots may not

switch components.

Definition 5.6. A pre-foam is oriented if every essential curve on every component

with boundary in the bottom is oriented compatibly. Inessential curves are not ori-

ented and essential curves on components with no boundary in the bottom are not

oriented.

Definition 5.7. Let MD, (MO
D ) be the free Z-module generated by pre-foams (ori-

ented pre-foams) with respect to the surface link diagram D.
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Remark 5.2. In order to continue, local relations need to be defined on MD and MO
D .

The manner that this is done is to define a submodule of MD, B, in order that the

relations hold in MD/B. Thus if we want C = D, then we have C−D as a generator

of B, so then inMD/B, C is equivalent to D. These are skein relations, so if a relation

is P = P ′ it means that S = S ′ in MD/B if there is a 3-ball, A, in the manifold such

that S and S ′ agree outside of A while S ∩ A = P and S ′ ∩ A = P ′.

Also if z ∈ Z, then the relation P = z means if a surface has P as a subsurface,

then the original surface is equal to z times the surface where P is removed in M/B.

Definition 5.8. Let B be the submodule of MD (MO
D ) generated by the following

relations:

1. The neck-cutting relation as seen in Figure 5.2. (NC)

Figure 5.2: The NC relation.

= +

2. An unmarked sphere bounding a ball equals zero. (SB)

3. A sphere with a dot bounding a ball equals one. (SD)

4. A component with two dots equals zero. (TD)
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5. A surface with a non-disk, non-sphere incompressible component, that has a

dot on that component equals zero. (NDD)

6. An incompressible non-orientable surface equals zero. (NOS)

Remark 5.3. Note that the first four relations are from Bar-Natan’s version of Kho-

vanov homology. Thus these relations come from the TQFT associated to the Frobe-

nius extension Z[x]/(x2).

Example 5.1. The local relations can be confusing at first so we will illustrate the

effects of the NC and SB relation. Note the NC Relation implies the equality in

Figure 5.3 and the SB implies Figure 5.4.

Figure 5.3: The effect of the NC relation.

=

= +

Definition 5.9. Elements of MD/B (MO
D/B) are called foams (oriented foams) with

respect to the diagram D.
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Figure 5.4: The effect of the SB relation.

= 0 ∗ = 0

5.2 Gradings

We will define three gradings on foams. The first two are similar to the two

gradings from the original Khovanov homology and are defined below.

Definition 5.10. Let S be a state surface.

I(S) = {# of positive smoothings in the state corresponding to the top bound-

ary of S} − {# of negative smoothings in the state corresponding to the top boundary

of S}

J(S) = I(S) + 2(2d− χ(S)) where d is the number of dots on S.

The third index corresponds to the oriented essential disjoint simple closed

curves in the bottom of F x I. Note that given two parallel oriented simple closed

curves on a surface it is not difficult to determine if their orientations agree or disagree.

To define the third index it is necessary to specify that one of the orientations possible
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is the positive one and the opposite orientation is the negative one. Thus for each

homotopy class of simple closed curve we have chosen a positive orientation and a

negative orientation.

Remark 5.4. If F is planar it is often convenient to consider the counter-clockwise

orientation to be positive and the clockwise orientation to be negative.

Definition 5.11. Let γ1, . . . , γn be a family of disjoint simple closed curves in the

bottom of a state surface S. If γi and γj are parallel then γi = γj. Then

K(S) =
∑n

i=1 kiγi, where

ki =


1, if γi is oriented in the positive direction

−1, if γi is oriented in the negative direction

Theorem 5.5. The gradings respect the relations that generate B.

Proof. Consider the fact that any relation that sets something equal to zero respects

the grading, since the zero element can have any grading. This means we only need

to consider the NC and SD relations.

Note that neither of these relations affect the state of the foam, so the index

I(S) is not affected by these relations. Also, neither of these relations affect the curves

in the bottom of the foam, so the K index is also not affected by the relations.

To consider the NC relation, first note that when a neck is cut the Euler

characteristic goes up by two. Also, each summand adds a dot, thus 2d − χ(S)

remains the same.
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A sphere has Euler characteristic two, and note if the sphere has a dot, then

2d − χ(S) = 2 − 2 = 0, so removing a sphere with a dot does not affect the J(S)

index.

Lemma 5.6. I(S)− 2 = I(bp(S)), J(S) = J(bp(S)) and K(S) = K(bp(S)).

Proof. I(S) has one more positive smoothing and one less negative smoothing than

I(bp(S)), so I(S)− 2 = I(bp(S)).

Also, J(S) = I(S) + 2(2d− χ(S)) = I(bp(S)) + 2 + 2(2d− (χ((bp(S)) + 1)) =

I(bp(S)) + 2(2d− (χ((bp(S)))) = J(bp(S)).

The K grading is not affected by placing a bridge, so K(S) = K(bp(S)).

5.3 Observations about foams

We will now make some observations about foams that will be useful later.

Lemma 5.7. A foam with a dotted component that has an essential boundary com-

ponent is trivial in the quotient.

Proof. If the dotted component is incompressible we are done by the NDD relation.

If not, then apply the NC relation to this component. If the compressing disk was

non-separating, then the result of compressing is a component with two dots, thus it

is trivial in the quotient by the TD relation.

If the compressing disk is separating the result of the NC relation is two

components. One of them has an essential boundary curve since the NC relation does
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not affect boundary components. Therefore one of the components is not a disk, but

they both have dots.

We are now left with two components, each with dots, and one of them has

an essential boundary component.

Note the component that has an essential boundary curve and a dot satisfies

the assumptions of the Lemma. Thus we may continue in this manner. Note that

each time the NC relation is applied the Euler characteristic goes up by two. Since

we are dealing with compact surfaces the Euler characteristic is bounded above, thus

the NC relation can only be applied a finite number of times. When the NC relation

can no longer be applied there is an incompressible component with a dot that is not

a disk or a sphere.

Figure 5.5: Process of compressing to a trivial element.

= = = · · · = ...

Incompressible, non-disk and non-sphere →

It can be seen in Figure 5.5 that the original surface is equal to a foam that

has an incompressible non-disk and non-sphere component with a dot, which is trivial
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in the quotient by the NDD relation.

Lemma 5.8. Foams with closed dotted non-sphere components are trivial.

Proof. If the closed component is incompressible and it has a dot then it is trivial in

the quotient, by the NDD relation.

If the closed component is compressible, then the NC relation can be applied.

If the compressing disk is non-separating then after the NC relation is applied the

new closed component has two dots and is thus trivial in the quotient.

If the compressing disk is separating then we are left with a sum of closed non-

sphere surfaces, one of which has a dot in each summand. Note that each summand

satisfies the assumptions of this Lemma. Since we are dealing with compact foams

and the Euler characteristic is bounded above the process will eventually terminate,

as in Lemma 5.7 .

Corollary 5.9. If a foam has a component that is compressible with no inessential

boundary curves then it is trivial in the quotient.

Proof. Since the component is compressible the NC relation can be applied. After the

NC relation is applied the only surfaces present are closed surfaces of non-zero genus

or surfaces with essential boundary curves. One of these has a dot in each summand

and thus the surface is trivial in the quotient by Lemma 5.7.
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5.4 An operation on foams

Here we define an operation on foams that will lead to the boundary operator

in the following chapters. The operation is called placing a bridge at a crossing and is

shown in Figure 5.6. When a bridge is placed on a foam with oriented boundary the

orientation may be affected and we address that below. In fact, orientation sometimes

prevents a bridge from being placed. This is called EO and is outlined in Definition

5.12. Notationally, bp(S) will be the foam S, with a bridge placed at the pth crossing.

Figure 5.6: Placing a bridge at the pth crossing.

7→

S at pth crossing After bridge is placed

Remark 5.10. Note that the operation of placing a bridge changes the smoothing of

one crossing of the associated Kauffman state of the diagram.

Definition 5.12. When a bridge is placed at the pth crossing of a foam S and connects

two oriented components, the orientation from one side of the bridge can be slid along

the bridge to the other side of the bridge. If the orientation that is slid across the

bridge disagrees with existing orientation, then EO is said to occur at the pth crossing
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at S. An example of where EO occurs is shown in Figure 5.7.

Figure 5.7: This is an example of when EO occurs.

Remark 5.11. If EO does not occur at the pth crossing, then the components are

oriented compatibly. Note that bp(S) is oriented so that all essential curves are

oriented compatibly with the existing orientation on the components and inessential

components are unoriented.

Lemma 5.12. If placing a bridge does not affect the number of boundary curves then

the resulting foam is trivial in the quotient.

Proof. Assume placing a bridge turns one boundary curve into one boundary curve.

The only way this can happen is if the curves are as they are in Figure 5.8. This is

due to the fact that if the upper left connected to the upper right placing a bridge

results in two curves, and if the upper left connects to the lower left then we are

starting with two curves.

Now note the boundary curve is a circle, so we can place an orientation on it
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Figure 5.8: A crossing where the number of boundary curves doesn’t change when a
bridge is placed.

→

from the boundary orientation of the surface. Since the original surface is orientable

we can color the side to the left of the circle (if we face the direction the arrow is

pointing) and leave the other side blank as in Figure 5.9. Thus each side of the

component is determined to be dark or blank by the orientation of the curve.

Figure 5.9: The same crossing with one side of the surface shaded.

Surface is shaded A non-orientable surface
based on orientation of curve is created



34

Now note when a bridge is placed it must connect a dark side to a blank side,

thus resulting in a non-orientable surface.

The new surface may or may not be compressible. However, after compressing

the component with the boundary curve we are looking at, the surface will still have

a Möbius band embedded in it.

Theorem 5.13. bp is a well-defined map on foams.

Proof. Note the boundary operator is defined on the original module but it actually

operates on a quotient of that module. Thus it needs to be verified that two repre-

sentations of the same class go to the same class under the boundary operator. Thus

assume [S] = [S ′] in our quotient. Therefore S − S ′ ∈ B. So we must show that

d(S)− d(S ′) ∈ B. Since d is linear this is equivalent to showing d(S − S ′) ∈ B. Thus

it is sufficient to show that given b ∈ B, that d(b) ∈ B.

We treat each relation generating B below.

• SB, SD and TD

Note that if a foam has satisfies any of these conditions before placing a bridge

it will satisfy them after as well as spheres and dots are not affected by placing

a bridge.

• NC

It must be shown that if foams are related by the neck-cutting relation before

applying the boundary operator they are related after applying the boundary
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operator as well. Placing a bridge does not remove any compressing disks, so the

only issue is how orientations are affected. Lemma 5.14 shows if the orientations

agree before applying the boundary operator, they agree after applying it as

well.

• NDD

Assume the boundary operator is applied to an incompressible non-disk dotted

component (thus this component has Euler characteristic less than or equal

to zero). After placing the bridge the new connected component has Euler

characteristic less than or equal to negative one and it has a dot. If this new

component has an essential boundary component then it is trivial in the quotient

by Lemma 5.7.

Otherwise this component has no essential boundary components and so all

boundary components must be inessential. Since it was originally incompress-

ible it must have only one inessential boundary component after placing a

bridge. There is a compressing disk present since this component is not a disk,

but has an inessential boundary curve. This compressing disk is separating and

compressing upon it yields a disk and a closed surface with a dot. This closed

surface is not a sphere since there was a compressing disk. The entire foam is

now trivial in the quotient by Lemma 5.8.

• NOS

Assume the boundary operator is applied to a k-foam that has an incompressible
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non-orientable component. After placing the bridge the component is still non-

orientable because a bridge will not change the fact that the component is one-

sided. If inessential curves are created, the neck-cutting relation can be applied

to separate them from the rest of the component. Notice that this operation

still leaves the component non-orientable. If the non-orientable component is

compressible the the entire foam is zero by Corollary 5.9, since there are no

remaining inessential curves. If the component is now incompressible, then the

foam is zero by the NOS relation.

Since we have shown that elements of B remain in B after placing a bridge,

we can conclude that bp is well-defined on foams.

Lemma 5.14. Placing a bridge together with the NC relation is well-defined with

regard to orientations of foams, i.e. the operation of placing a bridge and cutting a

neck commute.

Proof. Note that on the left side of the NC relation boundary orientation from essen-

tial boundary circles are forced on other essential boundary circles through the neck.

However, on the right side of the relation all essential boundary curves do not need to

be compatible with one another since they may no longer lie on the same connected

component.

Orientation can only be forced in the left side of the NC relation if each

component has an essential boundary component on the right-hand side. Note one
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component has a dot in each summand, so by Lemma 5.7 both sides are trivial in the

quotient. Thus orientations may differ, but the foams are trivial, and therefore equal

in the quotient.

Definition 5.13. Two boundary curves are said to be connected if they are connected

by a former crossing smoothed positively as in Figure 5.10.

Figure 5.10: The two curves on the right are said to be connected.

→

Lemma 5.15. Let S be an oriented foam and a and b are crossings in the associated

diagram. Then ba(bb(S)) has the same orientation on boundary curves as bb(ba(S)).

Proof. The lemma is immediate if the affected components have more than two es-

sential curves. This is due to the fact that at most two essential curves can become

inessential when a bridge is placed. On the other hand, if all essential curves are

eliminated, then no curves are oriented, so the orientations necessarily agree.

We can then conclude that one of the orderings of crossings has no essential

curves on the affected components after one crossing is changed. Without loss of gen-
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erality assume ba(S) has no essential curves. Thus ba(S) has one boundary curve and

it is inessential. Applying the NC relation to a curve parallel to the inessential curve

yields a disk and a closed surface in a sum with the dots distributed appropriately.

Note the closed surface with a dot is not a sphere and thus is trivial in the quotient by

Lemma 5.8. Thus the only surface left is a closed surface and a disk with a dot. The

boundary curve on the disk cannot become essential, since then the foam would be

trivial as it has a dot, by Lemma 5.7. Since only essential curves can be oriented, the

boundary curve cannot become oriented either. Therefore bb(ba(S)) is either trivial

or unoriented, and in either case the orientation agrees with that of ba(bb(S)).

Lemma 5.16. Let a and b be two crossings of a given diagram and let S be an

oriented foam. If ba(bb(S)) = 0 because of EO, then bb(ba(S)) is a trivial foam.

Proof. Assume ba(bb(S)) = 0 because of EO. This means at least two oriented bound-

ary curves must be present in the foam and these oriented curves can be, at most,

two components away from one another (i.e. both connected to the same boundary

component.)

First assume the oriented curves are connected. Then assume EO occurs at

b. If a bridge is placed at a then the curves connected by b can either continue to

have conflicting orientation, or one of them may become a curve on a component

with a dot (after applying NC). This is due to the fact that by the orientation rules

of bp, oriented curves can only lose their orientation, not reverse their orientation,

and losing orientation only happens when a curve becomes inessential. In either case
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placing a bridge at b after a results in something trivial in the quotient.

Now assume the oriented curves are both connected to an intermediate curve.

Assume without loss of generality this curve is unoriented as in Figure 5.11. (If it is

oriented, it cannot be compatible with both curves, since then EO would not occur,

so we can reduce to the previous case.) Placing a bridge at either of the crossings

orients the previously unoriented curve in such a way that it is not compatible with

the other curve. Thus when the second bridge is placed in either order there is EO,

so bb(ba(S)) is a trivial k-foam.

Figure 5.11: Two oriented curves connected to the same unoriented curve.

Remark 5.17. Here are two observations that will be helpful later:

1. Bridging an essential boundary curve to itself can produce at most one inessen-

tial boundary curve at a time. This is due to the fact that if two inessential

boundary curves are created from one curve, then the original curve was also

inessential.

2. If a component has an inessential boundary component then either this compo-
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nent is a disk or it is compressible. (Just push the disk the curve bounds into

F × I to obtain a compressing disk.)
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CHAPTER 6

A GEOMETRIC INTERPRETATION

6.1 New Relations

In order to realize the APS theory using foams we need to add in four more

relations.

Let A ⊂MO
D be the submodule generated by the following relations:

• A surface with an incompressible component with negative Euler characteristic

equals zero. (NEC)

• If the annulus in Figure 6.1 on the left side of the equation is incompressible

then we have the relation in Figure 6.1. (UTA)

Figure 6.1: The UTA relation.

Incompressible

= +

• An annulus with its boundary completely in the bottom equals one. (BDA)

• An Incompressible torus equals zero. (IT)

Elements of MO
D/(B ∪ A) are called A-foams with respect to the diagram D.
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We need to check that the gradings are well-defined in the quotient. This is

addressed in Lemma 6.1.

Lemma 6.1. The indices I(S), J(S) and K(S) are well-defined for A-foams.

Proof. By Theorem 5.5, we only need to show that the indices are well-defined for

the four additional relations, UTA, BDA, NEC and IT. As before we only need to

consider relations that do not send something to zero. Thus we only need to address

the UTA and BDA relations.

When considering the UTA relation, note that both sides of the equality have

annuli without dots which do not contribute dots or Euler characteristic, thus the

J(S) grading on each side of the equality is the same.

We may also remove an annulus without a dot, since an annulus has Euler

characteristic zero, so then 2d− χ(S) = 0. Thus the BDA relation is well-defined.

Note that a bottom annulus has two essential homotopic curves. Since these

curves are in the bottom they must be oriented and they must be oriented in a way

that is compatible with each other. Thus they must be oriented in the opposite

direction of one other. Therefore in the K(S) index, these curves cancel out in the

sum, so the annulus does not contribute to the K(S) index, so we may remove the

annulus without affecting the K grading.

For the UTA relation the left side of the equation has no curves in the bottom

and in each summand on the right side there are homotopic curves oriented in the

opposite direction. Since these curves have opposite orientation, they cancel out in

the sum that determines K(S), so neither side of the equality contributes to the K(S)
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grading.

Definition 6.1. Let CA
i,j,s(D) be the submodule of P generated by all A-foams, S,

such that I(S) = i, J(S) = j and K(S) = s.

Theorem 6.2. The collection of A-foams is generated by foams whose components

are vertical annuli and disks.

Proof. For the purpose of this proof, let g(S) be the genus of S and b(S) be the

number of boundary components of S.

By the NC relation, A-foams are generated by incompressible foams. By the

NEC relation, all components have non-negative Euler characteristic. Since we are

restricted to orientable surfaces and by the fact that χ(S) = 2− 2g(S)− b(S), we can

conclude that each component must satisfy the condition that 2− 2g(S)− b(S) ≥ 0.

Thus, 2 ≥ 2g(S) + b(S). So if g(S) = 1, b(S) = 0, so S is a torus. If S is an

incompressible torus, then it is zero by the IT relation.

If g(S) = 0, then b(S) = 0 , 1 or 2. Thus S is either a sphere, disk or annulus.

Thickened surfaces are irreducible, so sphere can be addressed by relations. Annuli

with their boundary in the top are replaced by vertical annuli using the UTA relation.

Annuli with their boundary completely in the bottom zero if they have a dot and 1

without a dot, by the BDA relation.
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6.2 The Boundary Operator

We define

dAp (S) =


0, if pth crossing of S is smoothed negatively

0, if EO occurs

bp(S), otherwise

Then we have the differential dA : CA
i,j,s(D)→ CA

i−2,j,s(D), defined by

dA(S) =
∑

p a crossing of D

(−1)t(S,p)dAp (S), (6.1)

where t(S, p) = |{ j a crossing of D : j is after p in the ordering of crossings and j is

smoothed negatively in boundary state of S}|

We need the following two lemmas in order to show that dA is well-defined on

A-foams.

Lemma 6.3. Let S be a foam. If placing a bridge on S turns two essential boundary

curves into one essential boundary curve, or the placing of a bridge on S turns one

essential boundary curve into two essential curves then the result of placing this bridge

on S is a foam that is trivial in the quotient.

Proof. By the relations we may assume we are starting with vertical annuli. Thus if

two essential boundary curves are turned into one essential boundary curve, we are

left with a component with three essential curves and Euler characteristic of negative

one. Note a surface that has three boundary components and Euler characteristic

negative one is a disk with two holes. Since all of the boundary components are
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essential, this twice-punctured disk is incompressible. Then since it has negative

Euler characteristic it is trivial in the quotient.

Lemma 6.4. If two non-homotopic essential curves are bridged together, then the

new foam is trivial in the quotient.

Proof. If two non-homotopic essential boundary curves are bridged together, then the

result is one essential boundary curve since it could only be inessential if the original

curves were homotopic. Thus by Lemma 6.3, this new foam is trivial in the quotient.

Theorem 6.5. dA is well-defined on A-foams.

Proof. We must address the four additional relations on A-foams.

1. BDA

A bridge can’t be placed in the bottom, thus the annulus will not affect the

boundary operator. Therefore the resulting foams will still be equivalent in

the quotient as everything else will be affected in the same manner under the

boundary operator.

2. NEC

Assume the boundary operator is applied to a A-foam that has an incompress-

ible component with negative Euler characteristic. When the bridge is placed

the new component has Euler characteristic less than or equal to −2. Note that
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at most one inessential boundary curve can be created when a bridge is placed

since we are starting with no inessential curves as the surface is incompressible.

If no inessential curves are created, then all curves are essential. If the compo-

nent is incompressible, we are done by NEC. If the component is compressible

then we are done by Corollary 5.9.

If an inessential curve is created, then apply the NC relation to yield a disk. The

total Euler characteristic increases by two as a result, but since one component

is disk, the other component has Euler characteristic at most −1. The summand

where the non-disk surface has a dot is trivial by Lemma 5.7. Thus we only

need to consider the other summand

If the non-disk surface is incompressible, the A-foam is trivial. If the non-disk

is compressible then the foam is trivial by Corollary 5.9.

3. UTA

Based on the fact that placing a bridge is well-defined on foams we may as-

sume we are bridging between incompressible components. We do not need to

consider if we bridge to an incompressible component with negative Euler char-

acteristic or anything that isn’t a disk, but has a dot, as these cases have already

been addressed. Thus we may consider that to begin with all components are

incompressible annuli without dots or disks with one or no dots.

We will begin by looking at all the bridges we can place on the top annulus on

the left side of the UTA relation. First look at all the bridges we can place on
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the outside curve. We can connect to the inside curve or itself. We can also

connect to another essential or inessential curve. The essential curve could be

part of a vertical or top annulus. The annulus could be next to it, or these

annuli could be nested. However, there is only one way they could be nested

such that the UTA relation would apply.

It is also necessary to consider all ways to place bridges on the inside curve but

this is symmetric to what we are already considering.

(a) The annulus is bridged to itself.

The result of placing a bridge on the left side of the UTA relation in this

case is shown in Figure 6.2 and the right side of the UTA relation is shown

in Figure 6.3. Both sides results in 2 times a disk with a dot.

Figure 6.2: Annulus bridging to itself, left side.

bp


 = = 2

(b) Nested annuli

The results of placing a bridge on both sides of the UTA relation in this

case are shown in Figures 6.4 and 6.5.

(c) Next door annuli
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Figure 6.3: Annulus bridging to itself, right side.

bp

 +

 = + =

2

 +

 = 2

Figure 6.4: Nested annuli, left side.

=

+ =

The results of placing a bridge on both sides of the UTA relation in this

case are shown in Figures 6.6 and 6.7.

(d) The annulus on the left side of the UTA relation is bridged to disk.

This case is immediate since bridging an annulus to a disk results in an

annulus isotopic to the original annulus.

(e) The annulus is bridged to an oriented vertical annulus.

If the annuli are not nested, we get zero on both sides again by Lemma
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Figure 6.5: Nested annuli, right side.

bp


+


=

+ = +

+ + =

+

6.4.

Thus, assume annuli are nested. The left side of the UTA relation is shown

in Figure 6.8 and the right side of the UTA relation is shown in Figure 6.9.

Upon inspection, it can be seen that the two sides coincide.
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Figure 6.6: Next door annuli, left side.

bp


 = =

+ =

4. IT

After a bridge is placed on a foam that has an incompressible torus component

it still has an incompressible torus component, so after placing a bridge the

foam is still in B.

Thus when the boundary operator is applied to elements of B, they remain

in B, so by the remarks at the beginning of this proof, the boundary operator is

well-defined on the quotient.

6.3 dA ◦ dA = 0

Theorem 6.6. dA ◦ dA = 0

Proof. Note that by how the negative signs are distributed in the definition of the

boundary operator all that needs to be shown is that given two crossings a and b and

a foam S, that dAa (dAb (S)) = dAb (dAa (S)). This is the case if EO does not occur since

the resulting foams are isotopic and by Lemma 5.15 we know the orientations agree.
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Figure 6.7: Next door annuli, right side.

bp


+


=

+ = +

By Lemma 5.16 we know that if EO occurs for one order of a and b, then

dAa (dAb (S)) and dAb (dAa (S)) are both trivial in the quotient.

Thus the partials always commute, so after adding in the appropriate negative

signs, dA ◦ dA = 0.

6.4 Equating the Homology Theories

Let p be a crossing of the diagram D. Consider the skein triple in F in Figure

6.10.

Now define:

α0 : CA
i,j,s(D∞) → CA

i−1,j−1,s(Dp) is the the natural embedding as depicted in

Figure 6.11.

β : CA
i,j,s(Dp) → CA

i−1,j−1,s(D0) is the natural projection where foams with a
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Figure 6.8: Bridge to vertical annulus, left side.

bp




= =

Figure 6.9: Bridge to vertical annulus, right side.

bp


+


= =

negative smoothing at p are sent to 0 and foams with a positive smoothing are affected

as in Figure 6.12.

Let α : CA
i,j,s(D∞)→ CA

i−1,j−1,s(Dp) be defined by α(S) = (−1)t
′(S)α0(S) where

t′(S) = |{ j a crossing of D : j is before p in the ordering of the crossings of D and j

is smoothed negatively in boundary state of S}|

Theorem 6.7 ([7]). α and β are chain maps and the sequence

0→ CA
i+1,j+1,s(D∞)

α−→ CA
i,j,s(Dp)

β−→ CA
i−1,j−1,s(D0)→ 0

is exact.
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Figure 6.10: The skein triple.

D∞ Dp D0

Figure 6.11: The α chain map.

Proof. This proof is adapted from the proof in [1]. First note that dAp (α(S)) = 0 since

α(S) has a negative smoothing at the p-th crossing, so the boundary operator in the

p direction is always 0.

Let d̂q = (−1)t(S,q)dAq .

Let Sq = dAq (S). Note that if q 6= p then dAq (S) is topologically the same in

Figure 6.12: The β chain map.
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CA
i,j,s(D∞) and CA

i,j,s(Dp), thus α0 and dAq commute.

Also note that either t′(S) + 1 = t′(Sq) or t′(S) = t′(Sq) depending on whether

p or q comes first in the ordering of crossings. Consider that if t′(S) + 1 = t′(Sq) then

t(α0(S), q) + 1 = t(S, q) and if t′(S) = t′(Sq), then t(α0(S), q) = t(S, q). So, in either

case t(α0(S), q) + t′(S) = t′(Sq) + t(S, q) mod 2.

Then note

d̂q(α(S)) = d̂q((−1)t
′(S)α0(S)) = (−1)t

′(S)d̂q(α0(S))

= (−1)t
′(S)(−1)t(α0(S),q)dAq(α0(S)) = (−1)t

′(S)+t(α0(S),q)dAq(α0(S))

= (−1)t
′(Sq)+t(S,q)α0(d

A
q(S)) = (−1)t

′(Sq)α0((−1)t(S,q)dAq(S)) = α(d̂q(S))

Then we have dA(α(S)) =
∑

q 6=p d̂q(α(S)) = α(
∑

q 6=p d̂q(S)) = α(dA(S)), so α

is a chain map.

Now consider β. Note β(dAp (S)) = 0 since dAp (S) is smoothed negatively at p

and β sends foams with the negative smoothing at p to 0. Also, for q 6= p dAq (β(S)) =

β(dAq (S)) since the bridge is placed away from p, so the result is the same. Also, β

doesn’t change the number or placement of negative crossings, so we have d̂qβ = βd̂q.

Then dA(β(S)) = β(dA(S)) and thus β is a chain map.

Now the exactness of the sequence is addressed. Since α is an embedding it is

1-1. The image of α is all foams in CA
i,j,s(Dp) that have a state as the top boundary
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smoothed negatively at p. The kernel of β is precisely these foams. Since β is a

projection, it is onto CA
i−1,j−1,s(D0). Thus the sequence is exact.

Let C̄i,j,s(D) be the chain groups defined in [1] and H̄i,j,s(D) be the homology

groups defined in [1].

In [1] a circle in F is said to be trivial if it bounds a disk in F and non-trivial

otherwise. Thus when referring to circles of an enhanced state coming from [1] these

terms will be used. Also note that trivial circles correspond to inessential boundary

curves in the top and non-trivial circles correspond to essential circles in the top.

Definition 6.2. Φ : C̄i,j,s → CA
i,j,s is defined by taking an enhanced state in C̄ and

changing each circle as determined in Table 6.1 to get a foam with the same state in

CA.

Table 6.1: The Φ map.

Trivial circle marked with a + → disk with a dot

Trivial circle marked with a − → disk without a dot

Nontrivial circle marked with a +0 → vertical annulus with the pos. orient.

Nontrivial circle marked with a −0 → vertical annulus with the neg. orient.

Example 6.1. Figure 6.13 shows an example of how the Φ map affects an enhanced

state from [1].
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Figure 6.13: The Φ map.

−0

+0

+

→

Lemma 6.8. Φ : C̄i,j,s → CA
i,j,s is a chain map ∀i, j, s.

Proof. To show Φ is a chain map, we need to show Φd̃A = dΦ. Where d̃ is the

boundary operator coming from [1]. First it will be shown that Φd̃i = dAi Φ ∀i.

This is treated by cases. In the [1] theory a trivial circle may have a + or a

− and a non-trivial circle may have a +0 or a −0. Thus a + will refer to a trivial

circle marked with a + and a +0 will refer to a non-trivial circle marked with a +0.

The notation is similar for − and −0. If the marking on a circle is not specified then

T refers to a trivial circle and N refers to a non-trival circle. Based on how trivial

and non-trivial curves may change when a smoothing changes the possible cases are

outlined in Table 6.2.

The boundary operator from [1] is determined by how circles change (with

respect to being trivial and nontrivial) when a smoothing is switched. Tables 6.3 and

6.4 shows what the partial boundary operator for the theory coming from [1] does in
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Table 6.2: The cases that need to be checked.

How curves Possible initial markings Possible Number of

may change outcomes possibilities

T → TT or NN 2 choices, + or − 2 results 2 ∗ 2 = 4

N → NT or NN 2 choices, +0 or −0 2 results 2 ∗ 2 = 4

TT → T 2 + 1 = 3 choices, ++, +−, or −− 1 result 3

NN → T or N 2 + 1 = 3 choices, +0+0, +0−0, 2 results 3 ∗ 2 = 6

or −0−0

TN → N 2 ∗ 2 = 4 choices, ++0, +−0, 1 result 4

−+0 or −−0

Total 21 cases
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Table 6.3: Checking all the cases.

Circle change Φd̃i

1. T → TT Φ(d̃i(+)) = Φ(++) =

2. T → NN Φ(d̃i(+)) = Φ(0) = 0

3. T → TT Φ(d̃i(−)) = Φ((+−) + (−+)) = +

4. T → NN Φ(d̃i(−)) = Φ((+0− 0) + (−0 + 0)) = +

5. N → NT Φ(d̃i(+0)) = Φ(+0+) =

6. N → NN Φ(d̃i(+0)) = Φ(0) = 0

7. N → NT Φ(d̃i(−0)) = Φ(−0+) =

8. N → NN Φ(d̃i(−0)) = Φ(0) = 0

9. TT → T Φ(d̃i(++)) = Φ(0) = 0

10. TT → T Φ(d̃i(+−)) = Φ(+) =

all of the above cases when one crossing is switched and then Φ is applied.

Note that under Φ the associated state isn’t affected, thus for example if

T → TT by changing a smoothing before applying Φ, then after applying Φ the

boundary circles behave the same way, and an inessential boundary circle turns into

two inessential boundary circles by placing a bridge.

The following 21 items show what dAi Φ is in each of the cases when the bound-
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Table 6.4: Checking all the cases, continued.

Circle change Φd̃i

11. TT → T Φ(d̃i(−−)) = Φ(−) =

12. NN → T Φ(d̃i(+0 + 0)) = Φ(0) = 0

13. NN → N Φ(d̃i(+0 + 0)) = Φ(0) = 0

14. NN → T Φ(d̃i(+0− 0)) = Φ(+) =

15. NN→ N Φ(d̃i(+0− 0)) = Φ(0) = 0

16. NN → T Φ(d̃i(−0− 0)) = Φ(0) = 0

17. NN → N Φ(d̃i(−0− 0)) = Φ(0) = 0

18. TN → N Φ(d̃i(+ + 0)) = Φ(0) = 0

19. TN → N Φ(d̃i(+− 0)) = Φ(0) = 0

20. TN → N Φ(d̃i(−− 0)) = Φ(−0) =

21. TN → N Φ(d̃i(−+ 0)) = Φ(+0) =
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ary circles are affected as in the previous tables.

1. Note Φ(+) = . After a bridge is placed there are two trivial boundary curves

in the top. This has Euler characteristic equal to 0, and thus it is a compressible

annulus. Compress the annulus to get two disks, each with a dot.

2. Φ(+) = . When a bridge is placed there are two non-trivial boundary

components in the top. This is an incompressible annulus with a dot, so it is

trivial in the quotient.

3. Φ(−) = . After a bridge is placed there are two trivial boundary curves in

the top. This is a compressible annulus. Compress the annulus to get disk with

dot, disk + disk, disk with dot.

4. Φ(−) = . After a bridge is placed there are two non-trivial boundary curves

in the top. This is an incompressible annulus, so have unoriented annulus =

average of oriented annuli.

5. Φ(+0) = . After a bridge is placed there is a non-trivial boundary curve in

the top and a trivial boundary curve in the top. Compress the neck that is near

the trivial boundary curve to get an annulus, oriented same way as the original

annulus and a disk with a dot.

6. Φ(+0) = . After a bridge is placed there are two non-trivial boundary curves

on the top. One can only compress and separate boundary curves if we have at

least 4 non-trivial and we only have three, so we have a surface that is trivial
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in the quotient by Lemma 6.3

7. Refer to 5.

8. Refer to 6.

9. Φ(++) = . After a bridge is placed there is one trivial boundary

component. Now we have two dots on the same component, so it is trivial in

the quotient.

10. Φ(+−) = . After a bridge is placed there is one trivial component.

These two disks combined to make a disk with a dot.

11. Φ(−−) = . After a bridge is placed there is one trivial boundary

component. This leaves us with a disk.

12. Φ(+0 + 0) = . Placing a bridge would result in a trivial boundary com-

ponent in the top. Thus the original boundary components must have been

parallel. Therefore the bridge falls into the category of (EO) since they are

oriented the same way. Thus the result is trivial in the quotient.

13. Φ(+0 + 0) = . Placing a bridge results in one non-trivial boundary curve

on the top. Thus we have an incompressible pair of pants which is trivial in the

quotient.

14. Φ(+0− 0) = . After placing a bridge there is one trivial boundary compo-

nent. Thus the original non-trivial curves were homotopic. Compress upon the

disk that is present near the trivial curve on top. This results in a disk on top
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with a dot and an annulus on the bottom + disk on top with an annulus with

a dot on the bottom which is equivalent to just having a disk with a dot in the

quotient.

15. Φ(+0 − 0) = . After a bridge is placed there is one non-trivial boundary

component. As in 13, we have an incompressible pair of pants which is trivial

in the quotient.

16. Refer to 12.

17. Refer to 13.

18. Φ(+ + 0) = . After a bridge is placed there is one non-trivial boundary

curve on the top. Note bridging to a disk doesn’t change the annulus, except it

adds a dot, which makes the foam trivial in the quotient.

19. Refer to 18.

20. Φ(− − 0) = . After a bridge is placed there is a non-trivial boundary

component on top. Absorbing a disk doesn’t change annulus, so we get the

same annulus with the same orientation.

21. Refer to 20.

By examining the list and the table, we can see that diΦ = Φd̃i in each case.

Thus note

Φ(d̃(S)) = Φ(
∑
i

(−1)t
′(S,i)d̃i(S)) =

∑
i

(−1)t
′(S,i)Φ(d̃i(S))
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=
∑
i

(−1)t
′(S,i)dAi (Φ(S)) = dA(Φ(S)).

Therefore Φ is a chain map, as desired.

Theorem 6.9. Given a link diagram D, H̄i,j,s(D) ∼= Hi,j,s(D) ∀i, j, s by Φ∗.

Proof. Let Ī, J̄ , K̄ be the indices coming from the [1] theory and let S̄ be an enhanced

Kauffman state from [1].

Then note clearly Ī(S̄) = I(Φ(S̄)) since the smoothings stay the same under

Φ.

In the calculations below it is shown that J̄(S̄) = J(Φ(S̄)).

J̄(+) = Ī(+) + 2(#positive trivial circles−#negative trivial circles)

= I(Φ(+)) + 2(1− 0) = I(S) + 2(2− 1)

= I(a disk with a dot) + 2(2d− χ(a disk)) = J(a disk with a dot)

J̄(−) = Ī(−) + 2(#positive trivial circles−#negative trivial circles)

= I(Φ(−)) + 2(0− 1) = I(a disk without a dot) + 2(2d− χ(a disk))

= J(a disk without a dot)
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J̄(+0) = Ī(+0) + 2(#positive trivial circles−#negative trivial circles)

= I(Φ(+0)) + 2(0− 0) = I(an annulus) = I(Φ(+0)) + 2(2d− χ(an annulus))

= J(an annulus with bottom curve oriented in the positive direction)

J̄(−0) = Ī(−0) + 2(#positive trivial circles−#negative trivial circles)

= I(Φ(−0)) + 2(0− 0) = I(an annulus) = I(Φ(−0)) + 2(2d− χ(an annulus))

= J(an annulus with bottom curve oriented in the negative direction)

Then note all non-trivial circles that are present in a smoothing of the diagram

appear in the bottom of the foam, so the K̄-grading is also preserved under Φ.

The proof will proceed by induction on the number of crossings in the diagram.

Assume D has zero crossings. Therefore the boundary maps are all the zero map.

Thus the chain groups are also the homology groups. Note Φ is an isomorphism on

the chain groups since it takes generators to generators, so it is also an isomorphism

on homology in this case.

Let D be a diagram in F , with n crossings and inductively assume Φ∗ is an

isomorphism for all diagrams with less than n crossings.

Note we have a relation between the short exact sequences coming from the

two theories. The diagram commutes since α and ᾱ are defined identically and the

same is true for β and β̄.
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Figure 6.14: The short exact sequences.

0 - C̄i+1,j+1,s(D∞)
ᾱ
- C̄i,j,s(Dp)

β̄
- C̄i−1,j−1,s(D0) - 0

� �

0 - CA
i+1,j+1,s(D∞)

Φ

? α
- CA

i,j,s(Dp)

Φ

? β
- CA

i−1,j−1,s(D0)

Φ

?
- 0

The short exact sequence induces the long exact sequence shown in Figure

6.15.

Figure 6.15: The long exact sequences.

. . .H̄i+1,j−1,s(D0)
∂
- H̄i+1,j+1,s(D∞)

ᾱ∗- H̄i,j,s(Dp)
β̄∗- H̄i−1,j−1,s(D0)

∂
- H̄i−1,j+1,s(D∞) - . . .

� � � �

. . .Hi+1,j−1,s(D0)

Φ∗

? ∂
- Hi+1,j+1,s(D∞)

Φ∗

? α∗- Hi,j,s(Dp)

Φ∗

? β∗- Hi−1,j−1,s(D0)

Φ∗

? ∂
- Hi−1,j+1,s(D∞)

Φ∗

?
- . . .

All Φ∗, except the middle one, are isomorphisms by the inductive assumption.

Also, the diagram commutes since Φ is a chain map.

Note by the five lemma the middle Φ is an isomorphism. Thus by induction

given a link diagram D, H̄i,j,s(D) ∼= Hi,j,s(D) ∀i, j, s by Φ∗.



66

Since Asaeda, Przytycki and Sikora proved invariance for the H̄(D) homology

and H̄(D) ∼= H(D) by the previous theorem we obtain,

Corollary 6.10. H(D) is an invariant under Reidemeister moves 2 and 3 and a

Reidemeister 1 move shifts the indices in a predictable way.
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CHAPTER 7

K-HOMOLOGY

After constructing the APS theory geometrically there were two directions to

pursue. The APS theory allowed disks to become annuli, but not annuli to become

twice-punctured disks. One direction would be to allow annuli to become twice-

punctured disks and the other direction would be to not let annuli become disks. We

will explore both of these directions, starting with the less restrictive one.

The next homology theory presented is actually an infinite family of homology

theories. There is one theory for each choice of k ∈ N∪{∞}. We need one additional

relation for these theories.

7.1 New relations

Definition 7.1. Bk is a submodule of MO
D generated by the relation:

1. If k 6=∞ then an incompressible component with Euler characteristic less than

or equal to −k is zero. (KEC)

Definition 7.2. k-foams with respect to the surface link diagram D are elements of

MO
D/(B ∪Bk).

Remark 7.1. Note that the KEC relation sets some foams equivalent to zero, so k-

foams respect the grading on foams.

Definition 7.3. Let Ck
i,j,s(D) be the free module generated by all k-foams with re-

spect to the diagram D, S, such that I(S) = i, J(S) = j and K(S) = s.
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7.2 The Boundary Operator

In this section we define the boundary operator of the chain complex and show

it is well-defined with respect to k-foams.

Definition 7.4. Let p be a crossing of the link diagram D.

dkp(S) =


0, if pth crossing of S is smoothed negatively

0, if (EO) occurs

dkp(S), else

Then we define the boundary operator dk : Ck
i,j,s(D)→ Ck

i−2,j,s(D), by

dk(S) =
∑

p a crossing of D

(−1)t(S,p)dkp(S), (7.1)

where t(S, p) = |{ j a crossing of D : j is after p in the ordering of crossings and j is

smoothed negatively in boundary state of S}|

Theorem 7.2. The boundary operator, dk, is well-defined on k-foams.

Proof. In order to show that dk is well-defined we need to look at the relations that

define k-foams and see how dk affects them. Note the only new relation to consider

is KEC.

Assume the boundary operator is applied to a k-foam that has an incompress-

ible component with Euler characteristic less than or equal to −k. When the bridge is

placed the new component has Euler characteristic less than or equal to −k−1. Note

that at most one inessential boundary curve can be created when a bridge is placed

since we are starting with no inessential curves as the surface is incompressible.
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If no inessential curves are created, then all curves are essential. If the compo-

nent is incompressible, we are done by KEC. If the component is compressible then

we are done by Corollary 5.9.

If an inessential curve is created, then apply the NC relation to yield a disk

with a dot and a surface of Euler characteristic less than or equal to −k.

If the non-disk surface is incompressible, the k-foam is trivial. If the non-disk

is compressible then the foam is trivial by Corollary 5.9.

When the boundary operator is applied to elements of B ∪Bk, they remain in

B ∪ Bk, so by the remarks at the beginning of this proof, the boundary operator is

well-defined on the quotient.

7.3 dk ◦ dk = 0

Theorem 7.3. dk ◦ dk = 0

Proof. In order to show dk ◦ dk = 0, we need to show that dkp ◦ dkq = dkq ◦ dkp ∀p, q

crossings.

Note that by the definition of the boundary operator all that needs to be shown

is that given two crossings a and b and a foam S, that dka(dkb (S)) = dkb (d
k
a(S)). This

is clearly the case if EO does not occur and if we disregard orientation.

If EO does occur we have shown by Lemma 5.4 that if it occurs for one order

of a and b, then dka(dkb (S)) and dkb (dka(S)) are both trivial in the quotient. By Lemma

5.15, dka(dkb (S)) and dkb (dka(S)) are oriented identically.
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Thus the partials always commute, so after adding in the appropriate negative

signs, dk ◦ dk = 0.
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CHAPTER 8

SIMPLE HOMOLOGY

We will describe a simpler method to obtain a homology theory that deter-

mines the Kauffman bracket than the one from [1]. It is simpler in the sense that

surfaces are not oriented. In addition, the graded Euler characteristic of the chain

complex is exactly the Kauffman bracket.

8.1 New relations

Definition 8.1. Let BS be the submodule ofMD generated by the following relations:

1. An incompressible annulus with both boundary components in the top or bot-

tom equals zero. (TT)

2. A surface with an incompressible component with negative Euler characteristic

equals zero. (NEC)

3. An incompressible torus is zero. (IT)

Definition 8.2. The elements of MD/(B ∪BS) are called simple foams with respect

to the link diagram D.

8.2 Grading

Remark 8.1. Since all of the new relations on simple foams set something equal to

zero, simple foams continue to respect the I and J gradings of foams. However, since

simple foams are not oriented the K grading no longer applies.
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Figure 8.1: The simple foam is in the thickened twice punctured disk, where the
vertical lines represent the punctures.

Definition 8.3. Let S be a simple foam. K̄(S) is the diagram of the essential curves

in the bottom of the foam.

Example 8.1. If S is the simple foam in figure 8.1 then K̄(S) =

Definition 8.4. Let CS
i,j,s(D) be the chain group generated by simple foams with

respect to the diagram D, with the appropriate I, J and K̄ grading.

Theorem 8.2. Simple foams are spanned by simple foams whose components are

incompressible vertical annuli or disks.

Proof. We will proceed similarly to the analogous theorem for A-foams. Therefore

we again let g(S) be the genus of S and b(S) be the number of boundary components

of S.

By the NC relation, A-foams are generated by incompressible foams. By the

NEC relation, all components have non-negative Euler characteristic. Since we are

restricted to orientable surfaces and by the fact that χ(S) = 2− 2g(S)− b(S), we can

conclude that each component must satisfy the condition that 2− 2g(S)− b(S) ≥ 0.
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Thus, 2 ≥ 2g(S) + b(S). So if g(S) = 1, b(S) = 0, so S is a torus. If S is an

incompressible torus, then it is zero by the IT relation.

If g(S) = 0, then b(S) = 0 , 1 or 2. Thus S is either a sphere, disk or annulus.

Thickened surfaces are irreducible, so sphere can be addressed by relations. Annuli

with their boundary in the top or bottom are zero by the TT relation.

8.3 The Boundary operator

We will now define the boundary operator for simple foams.

Definition 8.5. If two distinct essential curves are connected by the crossing p, then

EC is said to occur at the pth crossing.

Definition 8.6. dSp : Ci,j,s(D)→ Ci−2,j,s(D)

dSp (S) =


0, if p-th crossing of S is smoothed negatively

0, if EC occurs at the p-th crossing of S

dSp (S), else

Then dS : CS
i,j,s(D)→ CS

i−2,j,s(D) is defined by

dS(S) =
∑

p a crossing of D

(−1)t(S,p)dSp (S), (8.1)

where t(S, p) = |{ j a crossing of D : j is after p in the ordering of crossings and j is

smoothed negatively in boundary state of S}|



74

Theorem 8.3. The boundary operator, dS, is well-defined with respect to simple

foams.

Proof. We must show that trivial simple foams remain trivial under the boundary

operator. This proof closely follows the proof of Theorem 7.2. In that proof the NC

and NDD relation were addressed. This only leaves the TT, NEC and IT relations.

We will address these by cases.

• NEC

Assume the boundary operator is applied to a simple foam with an incompress-

ible negative Euler characteristic component. An incompressible negative Euler

characteristic component has only essential boundary curves. EC occurs unless

the same essential curve bridges to itself. If the component surface is incom-

pressible the foam is trivial by the NEC relation. If the surface is compressible

with no inessential curves, then the foam is trivial by Lemma 5.9.

If an inessential curve is created then we can remove it from the rest of the

component by the NC relation. This leaves a disk and a surface of negative

Euler characteristic. If the non-disk component is compressible the foam is

trivial by Lemma 5.9. If the non-disk component is incompressible, then the

foam is trivial by the NEC relation.

• TT

Assume the boundary operator is applied to a simple foam with an incompress-

ible top annulus. As before we can assume that the bridge placed on a top
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annulus bridges the same boundary curve to itself, since if it bridged to another

boundary curve, the result would be zero by EC.

If the bridge connects a curve to itself, then there is now either a compressing

disk or the surface is incompressible with negative Euler characteristic. The

incompressible surface is trivial in the quotient, so we may assume it is com-

pressible. The surface has either one inessential curve or no inessential curves.

By Corollary 5.9 we can assume one of the boundary components is inessential.

Thus after compression there is a disk and the the rest of the surface. By not-

ing the Euler characteristic what is left is a top annulus which is trivial in the

quotient.

• IT

If a simple foam has an incompressible torus component, then after applying the

boundary operator it will continue to have an incompressible torus component,

so it remains trivial in the quiotient.

8.4 dS ◦ dS = 0

Lemma 8.4. If dSa (dSb (S)) = 0 by EC, then dSb (dSa (S)) is trivial in the quotient.

Proof. If dSa (dSb (S)) = 0 by EC then there must be at least two essential boundary

curves in the top of the foam and they must either be connected, or both are connected

to the same curve.
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If they are both connected to the same curve we may assume the intermediate

curve is inessential otherwise we are in the other case. When an essential and an

inessential curve combine we are left with an essential curve, thus in either order, the

result is zero.

If two essential curves are connected to each other we can assume one crossing

connects them, while another crossing connects one of the curves to itself. Otherwise,

if it connects anywhere else the other crossing still connects two essential curves or

an essential and inessential. Either of which results in an essential curve. When a

bridge is placed at the self-connecting crossing an inessential curve may be produced

along with an essential curve. After applying the NC relation the other crossing either

connects an essential curve to an essential or an essential to an inessential on a dotted

disk. In either case the result is trivial in the quotient.

Theorem 8.5. dS ◦ dS = 0

Proof. The partial boundary operators commute if EC does not occur since the re-

sulting foams are isotopic. Lemma 8.4 shows that if EC occurs, the partials commute

then too. Thus with the appropriate negative signs, the partial boundary operators

anti-commute, and since dS is a sum of the partial boundary operators with the

negative signs, we have dS ◦ dS = 0.

Remark 8.6. Constructing these homology theories via embedded surfaces instead of
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decorated diagrams seems to lead to simpler proofs of showing that we have a chain

complex. Instead, much of the work is shifted to proving that the boundary operator

is well-defined.

8.5 Graded Euler characteristic

Definition 8.7. The graded Euler characteristic of a chain complex is

χ(C∗,∗,s(D)) =
∑
i,j

Aj(−1)
j−i
2 rkCi,j,s(D).

Theorem 8.7. The graded Euler characteristic of the chain complex for simple ho-

mology is the Kauffman bracket of the link in the surface.

Proof. We will show that the graded Euler characteristic satisfies the three skein

conditions of the Kauffman bracket.

1. χ(CS
∗,∗,s(D ∪©)) =

∑
i,j A

j(−1)
j−i
2 rkCS

i,j,s(D ∪©)

=
∑

i,j A
j(−1)

j−i
2 (rkCS

i,j−2,s(D) + rkCS
i,j+2,s(D))

=
∑

i,j A
2Aj−2(−1)

j−2−i+2
2 (rkCS

i,j−2,s(D))

+
∑

i,j A
−2Aj+2(−1)

j+2−i−2
2 rkCS

i,j+2,s(D))

=
∑

i,j A
2Aj−2(−1)

j−2−i
2

+1(rkCS
i,j−2,s(D)

+
∑

i,j A
−2Aj+2(−1)

j+2−i
2
−1rkCS

i,j+2,s(D))

= −A2
∑

i,j A
j−2(−1)

j−2−i
2 (rkCS

i,j−2,s(D)

−A−2
∑

i,j A
j+2(−1)

j+2−i
2 rkCS

i,j+2,s(D))

= (−A2 − A−2)χ(CS
∗,∗,s(D))
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2. χ(CS
∗,∗,s(D)) =

∑
i,j A

j(−1)
j−i
2 rkCS

i,j,s(D)

=
∑

i,j A
j(−1)

j−i
2 (rkCS

i−1,j−1,s(D+) + rkCS
i+1,j+1,s(D−))

=
∑

i,j A
j(−1)

j−i
2 (rkCS

i−1,j−1,s(D+)

+
∑

i,j A
j(−1)

j−i
2 rkCS

i+1,j+1,s(D−))

=
∑

i,j A ∗ Aj−1(−1)
j−1−(i−1)

2 (rkCS
i−1,j−1,s(D+)

+
∑

i,j A
−1Aj+1(−1)

j+1−(i+1)
2 rkCS

i+1,j+1,s(D−))

= A
∑

i,j A
j−1(−1)

j−1−(i−1)
2 (rkCS

i−1,j−1,s(D+)

+A−1
∑

i,j A
j+1(−1)

j+1−(i+1)
2 rkCS

i+1,j+1,s(D−))

= Aχ(CS
∗,∗,s(D+)) + A−1χ(CS

∗,∗,s(D−))

3. Consider D, a diagram of a link with no crossings. After removing all inessen-

tial curve, the only possible non-trivial foams are ones with essential curves

connected to essential curves in the bottom by vertical annuli. Note the graded

Euler characteristic is the representation of the link in the Kauffman bracket

for surfaces.

8.6 Decorated diagram version of simple theory

In this section we will realize this theory via decorated diagrams instead of

foams to make it simpler to compute. The symbol a will denote a non-trivial curve

and trivial curves will be marked with either a + or −. The multiplication and

co-multiplication for this theory is shown in Table 8.1.
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Table 8.1: Multiplication table for simple homology.

m(+⊗+) = 0 ∆(−) =


−⊗+ +⊗− two inessential

0 two essential

m(a⊗ a) = 0

m(a⊗+) = 0 ∆(+) =


+⊗+ two inessential

0 two essential

m(a⊗−) = a

m(+⊗−) = + ∆(a) =


a⊗+ one inessential

0 two essential

m(−⊗−) = −

Definition 8.8. If we use decorated diagrams instead of embedded surfaces, Euler

characteristic doesn’t apply, so here is a revised definition of the J grading.

J(S) = I(S) + 2(2(number of +s)− number of trivials)

= I(S) + 2(2(number of +s)− (number of +s + number of −s))

= I(S) + 2(number of +s − number of −s)

Example 8.2. Now we will compute the simple homology of the link L in the twice-

punctured disk. First we compute the Kauffman bracket of L, in Figure 8.2. The
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complex of smoothings is shown in Figure 8.5.

Figure 8.2: Kauffman bracket of L.

=A2 +

+ + A−2

= A2(−A2 − A−2) +

+ + A−2

= (−A4 − 1) + + + A−2

= −A4 + + A−2

The elements of the chain groups are named in Figure 8.3. Note the mul-

tiplication can be done without examining the diagram, but when doing the co-
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Figure 8.3: Elements of the chain groups.

A = a⊗− =

−
∈ CS

2,0,

(D)

B = a⊗+ =

+

∈ CS

2,4,

(D)

C = a = ∈ CS

0,0,

(D)

D = a⊗ a⊗ a = ∈ CS

0,0,

(D)

E = a⊗ a = ∈ CS

−2,−2,

(D)

multiplication one has to examine the diagram.

d(A) = m(a⊗−)⊕ a⊗∆(−) = a⊕ 0, so d(A) = C

d(B) = m(a⊗+)⊕ a⊗∆(−) = 0⊕ 0

d(C) = ∆(a) = 0, since this a curve splits into two a curves.

d(D) = m(a ⊗ a) ⊗ a = 0 ⊗ a = 0, since this a curve also splits into two a

curves.
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Figure 8.4: Homology computations.

d(A) = C, d(B) = d(C) = d(D) = d(E) = 0

HS

2,0,

(L) = ker(d
2,0,

)/im(d
(0,0,

) = 0

HS

2,4,

(L) = ker(d
2,4,

)/im(d
(0,4,2,0,

) =< B > /{0} ∼= Z

HS

0,0,

(L) = ker(d
0,0,

)/im(d
(−2,0,

) =< C > / < C >∼= {0}

HS

0,0,

(L) = ker(d
0,0,

)/im(d
(−2,0,

) =< D > /{0} ∼= Z

HS

−2,−2,

(L) = ker(d
−2,−2,

)/im(d
(0,−2,

) =< E > /{0} ∼= Z

χ(H(L)) = A4 (−1)
4−2
2 + A0 (−1)

0−0
2 + A−2 (−1)

−2−−2
2

= −A4 + + A−2
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CHAPTER 9

INVARIANCE

We will prove that k-homology and simple homology are invariants of framed

links in thickened surfaces simultaneously. Note that all theorems and statements in

this section can be applied to either theory. The strategy to prove invariance will be

the one employed by Bar-Natan in [3] involving acyclic sub-complexes and will follow

his proof closely. Thus we shall use Theorem 9.1.

Theorem 9.1. [3] If C ′ is acyclic, then H(C/C ′) ∼= H(C), that is C and C/C’

produce the same homology.

Remark 9.2. The disk without a dot acts like a unit as does the circle marked with a

v− in [3].

9.1 Reidemeister I

Note the complexes C/C ′ and D are identical apart from a shift in degrees.

Then by Theorem 9.1, we have that C and D produce the same homology, up to

degree.

To see how the degrees differ note that foams in C/C ′ have an extra disk with

a dot and an extra crossing that is smoothed positively. Thus if S is a foam in D and

S ′ is the corresponding foam in C/C ′ then I(S) + 1 = I(S ′), d(S) + 1 = d(S ′) and

χ(S)+1 = χ(S ′), thus J(S ′) = I(S ′)+2(2d(S ′)−χ(S ′)) = I(S)+1+2(2(d(S)+1)−

(χ(S) + 1)) = I(S) + 1 + 2(2d(S) + 2− 1− χ(S)) = I(S) + 2(2d(S)− χ(S)) + 3. So

I(S) + 1 = I(S ′) and J(S) + 3 = J(S ′). Thus we know exactly how a positive twist
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Figure 9.1: The complexes associated with the Reidemeister one move.

C =
[[ ]]

→
[[ ]]

(a) The complex of complexes,
C, coming from a positive

twist.

C ′ =
[[ ]]

/
→
[[ ]]

(b) The acyclic complex C ′, where
the disk never has a dot.

C/C ′ =
[[ ]]

→ 0

(c) The complex C/C ′, where the
disk always has a dot.

D =
[[ ]]

(d) The complex D, where the
positive twist has been

removed.

affects the homology.

9.2 Reidemeister II

Let C be the complex in Figure 9.2 coming from one side of the Reidemeister

two move. Note C has a subcomplex C ′, depicted in Figure 9.3, where the disk never

has a dot. C ′ is acyclic since the only non-trivial map has no kernel and is onto. Now

consider the complex C/C ′ which is shown in Figure 9.4.

Now we define τ :

[[ ]]
→

[[ ]]
on C/C ′ as in Figure

9.5. Note τ = m ◦∆−1.

C/C ′ has a subcomplex C ′′, which is shown in Figure 9.6. The second term in

the complex C ′′ consists of elements of the form (β, τ(β)).

C ′′ is acyclic since the non-zero map is onto the first factor and by construction

of τ (since ∆ is a bijection) is onto the second factor as well.
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Figure 9.2: The complex coming from one side of the Reidemeister two move.[[ ]]
→

[[ ]]
↓ C ↓



 →

[[ ]]

Figure 9.3: The acyclic subcomplex C ′.

0 →

[[ ]]
/

↓ C ′ ↓

0 →

[[ ]]

Modding out by C ′′ results in the complex with the disk being identified with

elements in the complex without the disk, so we have

(C/C ′)/C ′′ is 0 →
[[ ]]

→ 0.

Note this is the same complex that appears if a Reidemeister II move was

performed on the original diagram. By Theorem 9.1, the homology of the original

complex is equivalent to the homology produced by (C/C ′)/C ′′ and thus it is un-
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Figure 9.4: The complex C/C ′.[[ ]]
→∆

[[ ]]
↓ m C/C ′ ↓[[ ]]

→ 0

Figure 9.5: The definition of τ .

τ

( )
=

changed by a Reidemeister II move.

9.3 Reidemeister III

Consider the two cubes that come from the Reidemeister three move, CA and

CB, as shown in figure 9.7.

Notice the two subcomplexes, C ′A and C ′B in Figure 9.8, where the disk never

has a dot, are acyclic as in the Reidemeister two case. Now consider the complexes

CA/C
′
A and CB/C ′B in Figure 9.9, where the disk always has a dot.

Let τ be the same map as defined in the Reidemeister two case. Then we

can consider the acyclic subcomplexes of the previous cubes, C ′′A ⊂ CA/C
′
A and C ′′B ⊂
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Figure 9.6: The complex C ′′

.

C ′′ :

[[ ]]
→

[[ ]]
⊕ τ

([[ ]])
→ 0

Figure 9.7: The complexes coming from the Reidemeister three move.

CA CB

CB/C
′
B as shown in Figure 9.10. The complexes are acylic because ∆ is an isomophism

in this complex so the only non-zero map is one-to-one and onto.

Finally we arrive at (CA/C
′
A)/C ′′A and (CB/C

′
B)/C ′′B in Figure 9.11. Note that

when we mod out by C ′′A and C ′′B we essentially set β = τ(β).

We will define Υ as in [3], Υ sends the bottom layer of (CA/C
′
A)/C ′′A to the

bottom layer of (CB/C
′
B)/C ′′B. Υ does almost the same to the top of the cubes, except
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Figure 9.8: The acyclic subcomplexes C ′A and C ′B.

0

0

0 0

0

0

/

0

0

0

0

0

0

/

C ′A C ′B

that the top layers are reversed so that the foams with the closed component locally

are mapped to each other. We must now verify that d◦Υ = Υ◦d so that Υ is a chain

map. Since the tops and bottoms are immediately isomorphic, the only thing left to

show is that τA ◦ dA1,0,∗ = dB1,0,∗ and τB ◦ dB0,1,∗ = dA0,1,∗. The fact that τA ◦ dA1,0,∗ = dB1,0,∗

is shown in Figure 9.12.

Thus we have τA ◦ dA1,0,∗ = dB1,0,∗. Showing that τB ◦ dB0,1,∗ = dA0,1,∗ is done in

the exact same manner, thus we have that Υ is a chain map.

Since the diagram commutes and both maps are isomorphisms the chain com-

plexes are isomorphic. These chain complexes produce the same homology as CA and

CB respectively since they are quotients of CA and CB by acyclic complexes. Thus

CA and CB produce the same homology and the theory is invariant under the third

Reidemeister move. This proves Theorem 9.3.
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Figure 9.9: The complexes CA/C ′A and CB/C ′B.
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.
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Figure 9.10: The complexes C ′′A and C ′′B.
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Figure 9.11: The complexes (CA/C
′
A)/C ′′A and (CB/C

′
B)/C ′′B.
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Figure 9.12: Showing τA ◦ dA1,0,∗ = dB1,0,∗.

τA ◦ dA1,0,∗

( )
= τA

( )
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Figure 9.13: Υ is a chain map.

BottomA → TopA

↓∼=↑ � ↓∼=↑

BottomB → TopB

Υ Υ
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