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ABSTRACT 

In urban areas, vibrations generated by pile driving often affect the neighboring 

properties vulnerable to ground shaking.  These vibrations may cause damage to 

surrounding structures either by shaking the ground or by causing settlement of the soil 

beneath foundations in the proximity of pile driving.  It is important to distinguish 

between the conditions under which the vibrations will cause damage and those under 

which vibrations are tolerable.  The numerical studies on the analysis of pile driving have 

mostly focused on assessing the driving efficiency and the bearing capacity of 

dynamically loaded piles.  A limited number of studies included the study of ground 

vibrations due to pile driving and its effects on adjacent structures.  However, the factors 

affecting the ground vibrations in soils such as the nonlinear constitutive behavior of soil, 

soil-pile interaction and penetration depth of the pile have not been clearly identified. 

The objective of this research is to implement a numerical method to simulate 

dynamic loading of a single pile, and study the factors influencing the stress wave 

propagation in the soil surrounding the pile.  The thesis is comprised of two main 

analyses: (1) the static analysis of a pile in which the phenomenon of static consolidation 

is studied, and (2) the dynamic analysis of a pile in which pile driving and ground 

vibrations are studied.  

In the static analysis, the load capacity of a single pile is investigated.  The results 

from the finite element method are compared with widely recognized theoretical 

methods.  The theoretical methods that are used to estimate the end bearing capacities 

are: (1) General Formula, (2) Vesic’s Method, (3) Janbu’s Method, (4) Meyerhof’s 

Method, and (5) Coyle & Castello’s Method.  The estimation of skin friction resistance 

(shaft capacity) of single piles is performed using the (1) Alpha method, (2) Beta method, 

and (3) Lambda method. Two numerical applications are performed to predict the load 

capacity of single piles in normally consolidated clays.  It is observed that the model with 
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no slippage at the interface predicts almost twice as much load capacity as the model with 

interface.  In regards with the end bearing capacities, Coyle & Castello’s method is found 

to be most conservative followed by the finite element method, the Janbu’s method, the 

Meyerhof’s method, and finally the Vesic’s method.  In respect to skin friction resistance, 

the finite element is found to be the most conservative method, followed by the Beta, the 

Lambda, and the Alpha method. 

In the dynamic analysis, the amplitudes of ground vibrations are investigated 

based on the variation of: (1) the soil type, (2) the pile embedment length and (3) the 

released hammer energy.  In the first analysis, five types of soils – loose and dense sands 

and, soft, medium stiff, and stiff clays – are modeled.  The highest vibration amplitude is 

calculated for the loose sand with a peak particle velocity (PPV) of 10.0 mm/s followed 

by the dense sand with a PPV of around 4.0 mm/s.  Among the clay types, the vibrations 

are higher for the stiffer clay in the near field, which is 9 m (half a pile length) or less 

away from the pile.  In the second analysis, three different embedment lengths – full, 

half, and quarter pile length – are modeled.  It is found that the quarter embedded piles 

produce greater vibration amplitudes as compared to the half and fully embedded piles.  

Larger amplitudes of vibrations are encountered on the ground surface for shorter pile 

embedment lengths.  In the third analysis, three different impact forces consisting of 

2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F) are applied on the pile head.  It is 

concluded that increase in hammer energy causes increase in the peak particle velocities.  
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ABSTRACT 

In urban areas, vibrations generated by pile driving often affect the neighboring 

properties vulnerable to ground shaking.  These vibrations may cause damage to 

surrounding structures either by shaking the ground or by causing settlement of the soil 

beneath foundations in the proximity of pile driving.  It is important to distinguish 

between the conditions under which the vibrations will cause damage and those under 

which vibrations are tolerable.  The numerical studies on the analysis of pile driving have 

mostly focused on assessing the driving efficiency and the bearing capacity of 

dynamically loaded piles.  A limited number of studies included the study of ground 

vibrations due to pile driving and its effects on adjacent structures.  However, the factors 

affecting the ground vibrations in soils such as the nonlinear constitutive behavior of soil, 

soil-pile interaction and penetration depth of the pile have not been clearly identified. 

The objective of this research is to implement a numerical method to simulate 

dynamic loading of a single pile, and study the factors influencing the stress wave 

propagation in the soil surrounding the pile.  The thesis is comprised of two main 

analyses: (1) the static analysis of a pile in which the phenomenon of static consolidation 

is studied, and (2) the dynamic analysis of a pile in which pile driving and ground 

vibrations are studied.  

In the static analysis, the load capacity of a single pile is investigated.  The results 

from the finite element method are compared with widely recognized theoretical 

methods.  The theoretical methods that are used to estimate the end bearing capacities 

are: (1) General Formula, (2) Vesic’s Method, (3) Janbu’s Method, (4) Meyerhof’s 

Method, and (5) Coyle & Castello’s Method.  The estimation of skin friction resistance 

(shaft capacity) of single piles is performed using the (1) Alpha method, (2) Beta method, 

and (3) Lambda method. Two numerical applications are performed to predict the load 

capacity of single piles in normally consolidated clays.  It is observed that the model with 
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no slippage at the interface predicts almost twice as much load capacity as the model with 

interface.  In regards with the end bearing capacities, Coyle & Castello’s method is found 

to be most conservative followed by the finite element method, the Janbu’s method, the 

Meyerhof’s method, and finally the Vesic’s method.  In respect to skin friction resistance, 

the finite element is found to be the most conservative method, followed by the Beta, the 

Lambda, and the Alpha method. 

In the dynamic analysis, the amplitudes of ground vibrations are investigated 

based on the variation of: (1) the soil type, (2) the pile embedment length and (3) the 

released hammer energy.  In the first analysis, five types of soils – loose and dense sands 

and, soft, medium stiff, and stiff clays – are modeled.  The highest vibration amplitude is 

calculated for the loose sand with a peak particle velocity (PPV) of 10.0 mm/s followed 

by the dense sand with a PPV of around 4.0 mm/s.  Among the clay types, the vibrations 

are higher for the stiffer clay in the near field, which is 9 m (half a pile length) or less 

away from the pile.  In the second analysis, three different embedment lengths – full, 

half, and quarter pile length – are modeled.  It is found that the quarter-embedded piles 

produce greater vibration amplitudes as compared to the half and fully embedded piles.  

Larger amplitudes of vibrations are encountered on the ground surface for shorter pile 

embedment lengths.  In the third analysis, three different impact forces consisting of 

2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F) are applied on the pile head.  It is 

concluded that increase in hammer energy causes increase in the peak particle velocities.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivation 

Piles are used to support the foundations of buildings, bridges, and other 

structures where the use of shallow foundations would be risky due to excessive 

settlement, potential scour effects or future environmental conditions (Poulos, et al., 

1980).  Piles are installed with either an impact or a vibratory hammer.  Impact pile 

driving is an effective method of installing piles into the ground.  When implementing 

this method, a hammer is dropped on the pile head advancing the pile into the ground by 

repetitive blows until the pile toe reaches the desired depth.  The installation of a precast 

concrete pile with an impact pile driver is shown in Figure 1.1. 

The use of piles is a common practice, because of numerous reasons, most 

importantly: (1) recently developed powerful hammers have the capability of installing 

piles in a short period; (2) highly efficient hammers significantly increase the bearing 

capacity of driven piles; and (3) dynamic testing methods are reliable for the estimation 

of pile capacities.  Although these advantages make pile driving a widely accepted 

practice, the vibrations generated by pile driving cause disturbance in the neighborhood. 

Pile driving generates vibrations in the ground, and occasionally these vibrations 

can damage structures or disturb people in the proximity of pile driving.  It is necessary 

to take pre-cautionary measures prior to pile installation to avoid physical damage from 

vibrations.  The availability of reliable and accurate vibration records prior to the pile 

driving operation would give a significant advantage to the designer to choose an 

appropriate type of pile and hammer.  The prediction of pile driving vibrations with high 

precision is thus critical to prevent damage to the adjacent structures. 
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Figure 1.1 Installation of a precast concrete pile by an air hammer. 

1.2 Problem Statement 

The pile driving vibrations in the ground create issues particularly in urban areas 

such as unwanted noise, environmental disturbance, and potential hazard for the 

neighboring properties due to the vibrations generated by pile driving.  Many case studies 

have shown that ground vibrations due to pile driving often cause damage to the adjacent 

structures that are vulnerable to ground shaking (Skipp, 1998; Dowding, 1999; Woods, et 

al., 2004 and; Kim, et al., 2000).  The damage due to pile driving occurs either directly or 

via settlement of soil beneath foundations in the proximity of pile driving operations.   

The potential damage to the adjacent structures can be prevented by conducting 

pre-construction surveys, monitoring and controlling the vibrations on site, and predicting 

the anticipated vibrations prior to pile driving (Dowding, 1999).  Understanding the 

conditions under which those vibrations will cause damage is important to avoid 



3 
 

 

excessive vibrations and damage claims.  Thus, development of numerical methods that 

predict ground vibrations prior to pile driving becomes essential. 

Previous studies on the analysis of pile driving have mostly focused on assessing 

the drivability, the bearing capacity, and driving efficiency of piles (Smith, 1960; 

Mabsout, et al., 1995 and; Liyanapathirana, et al., 2001).  Only a limited number of 

research studies have focused on ground vibrations due to pile driving and their effects on 

adjacent structures (Ramshaw et al., 1996 and; Masoumi et al., 2007 & 2008).  Although 

the numerical models predicted ground vibrations consistent with the experimental data, 

they have not taken into account the essential soil and source parameters such as the 

nonlinear constitutive behavior of soil, friction between the pile and the soil, variation of 

pile penetration depth. 

 

Figure 1.2 Generation of surface waves due to impact pile driving. 
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1.3 Objectives and Scope 

The scope of this thesis is divided into three major areas as follows: (1) The 

development of coupled soil displacement- pore pressure equations using the finite 

element method that includes the derivation of finite element equations for static and 

dynamic analysis of soils using the u/p formulation; (2) the analysis of static pile capacity 

using the finite element method.  The commercial finite element package ABAQUS is 

used for this analysis.  The effect of soil-pile friction is investigated.  The analysis is 

conducted with one layered and three layered homogenous cohesive soils; (3) the analysis 

of dynamically loaded single pile and stress wave propagation in cohesive soils.  This 

part of the research includes simulation of pile driving with a single hammer blow and 

ground vibrations generated by pile driving.  A finite element model with special 

boundary conditions is particularly developed for this research.  The variation of 

important design parameters such as soil strength, pile penetration depth and the applied 

hammer energy are investigated using this model.   

There are two main objectives in this study.  The first objective of this research is 

to evaluate the static pile capacity formulas for end bearing and skin friction resistance 

using the finite method.  The conventional pile capacity formulas are compared with the 

finite element method to determine the limitations of the formulas for cohesive soils.  The 

second objective of this research is to study the effect of soil and vibration source 

parameters on the stress wave propagation in soils due to impact pile driving to gain a 

deeper understanding of how pile driving induces ground vibrations.  The soil and 

vibration source parameters studied in this thesis are: (1) soil strength, (2) pile penetration 

depth and (3) the applied hammer energy. 

A comprehensive finite element (FE) method is developed to simulate dynamic 

loading of a single pile and stress wave propagation in cohesive soils.  A coupled pore 

pressure/displacement formulation is used to model cohesive soils.  The Coulomb’s 

contact algorithm is used to include friction between the pile and the soil.  The peak 
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particle velocities on the ground surface are computed with varying soil and pile 

parameters.  The amplitude of the surface waves are compared with varying soil 

properties, pile penetration depths and hammer energies.  Finally, the finite element 

results are compared with empirical methods.   

1.4 Thesis Organization 

This thesis consists of eight chapters.  In the first chapter, the use of piles and the 

ground vibrations due to pile driving are introduced followed by the objectives and scope, 

and the organization of this thesis.  In the second chapter, the studies consisting pile 

driving induced ground vibrations, mechanics of wave propagation in soils, and damage 

criteria due to pile driving are reviewed.  In the third chapter, a coupled pore-

pressure/displacement finite element formulation based on Biot’s poroelasticity theory is 

derived followed by the implementation of this model on a steady-state soil consolidation 

problem.  In the fourth chapter, transient analysis of soil consolidation problem is 

discussed with numerical applications.  In the fifth chapter, soil constitutive models that 

are used in this study are explained.  In the sixth chapter, static loading of a single pile is 

modeled using linear elastic and elastoplastic behavior of soils.  The results are compared 

with the results of the empirical methods.  In the seventh chapter, dynamic loading of a 

single pile is simulated using the finite element method.  The amplitudes of ground 

vibrations from pile driving are computed in the near and far fields.  A parametric study 

is conducted based on varying soil properties, pile penetration depth and hammer energy. 

Finally, in the eighth chapter, the results of this study are discussed along with the 

recommendations for future work. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the literature for wave propagation in soils due to impact 

pile driving and vibration induced settlements of the cohesionless soils.  It consists of 

three main sections followed by a summary section.  The first section describes the 

fundamentals of ground vibrations and their propagation in soils, followed by the 

vibration acceptance levels for human perception and nearby structures.  The literature is 

then reviewed for the empirical relations which estimate the amplitudes of the vibrations, 

and the most widely used empirical relations are presented.  In the second section, five 

case histories that reveal the vibration induced settlements from impact pile driving are 

described.  In the third section, recent numerical studies within the last decade that are 

conducted on the finite element analysis of pile driving and wave propagation are 

described.  Finally, the chapter is summarized and the conclusions are presented. 

2.2 Fundamentals of Ground Vibrations 

2.2.1 Ground Vibrations Due to Pile Driving 

When a pile hammer hits the pile, energy travels down the pile losing some 

energy due to friction along the soil-pile interface and some due to compression by 

penetration at the pile tip while the remaining energy of the blow on the pile causes a 

stress wave to propagate in the surrounding ground.  The amplitude of this energy 

depends on many factors such as type of hammer, type of pile and soil classification.  As 

the bearing capacity of piles is composed of skin friction and end bearing, the wave 

generation in pile is similar such that the waves are generated by two mechanisms: shear 

waves (S-waves) along the shaft and compressive waves or primary waves (P-waves) at 

the pile tip as shown in Figure 2.1.  Shear waves are generated along the pile skin by 
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relative motion between the pile and the surrounding soil.  As the compressive waves in 

the pile travels down the pile, the shear waves propagate out from the pile on a conical 

wave front as shown in Figure 2.1. 

 

Figure 2.1 Generation of compressive and shear waves during impact pile driving. 
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where λ, µ are Lamé’s constants, ρ is the mass density of ground, E is the Young’s 

modulus and ν is the Poisson’s ratio.   

The compression wave velocity in the pile is usually ten or more times the shear 

wave velocity in the soil, thus the conical wave front emanating from the pile can be 

assumed cylindrical.  The surface of the cone is known as the wave front.  It is the 

leading edge of increase in stress caused by the interaction between the skin of the pile 

and the soil.  The transmission of compression and shear-waves in the soil are 

schematically shown in Figure 2.2. 

 

Figure 2.2 Emanating of stress waves from a driven pile at the pile tip. 
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When the P-wave and S-wave encounter the ground surface, part of their energy 

is converted to surface waves namely Rayleigh waves, and part is reflected back as 

reflected P-and S-waves.  The deformation pattern of the basic body waves and the 

Rayleigh wave traveling to the right are shown in Figure 2.3.  In the top body, the motion 

of the primary wave (P-wave) is shown where a minute particle of the material is in the 

direction of wave travel.  In the middle body, the travel of the secondary wave (S-wave) 

is shown where the particle motion is in the plane perpendicular to the direction of wave 

travel.  In the bottom body, travel of the Rayleigh wave (surface wave) is shown.  The 

Rayleigh wave shown in Figure 2.3 is a complex combination of vertical and horizontal 

motion depending on the depth of below the ground surface and Poisson’s ratio. 

 

Figure 2.3 Three types of body waves traveling in a continuum media: (a) Primary wave; 
(b) Secondary wave and; (c) Rayleigh wave. 
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The newly created Rayleigh waves then travel along the ground surface.  Thus, 

some locations on the ground surface will experience three different types of waves: P-

waves, S-waves and Rayleigh waves.  These waves transmit energy to the ground 

surrounding a pile that are potentially damaging to the neighboring structures.   The 

amplitude of this energy associated with each wave depends on many factors, including 

the pile penetration depth, energy delivered on the pile head, uniformity of the ground 

and hardness of the ground. 

2.2.2 Vibration Damage Criteria 

The vibration damage criteria and standards were originally set by the U.S. 

Bureau of Mines based on the studies of numerous researchers including Nichols et al. 

(1971), Langefors et al. (1973) and, Edwards et al. (1980).  These researchers have 

correlated the peak particle velocities (PPV) of the ground vibrations with the 

vibration/blast damage criteria.  The amplitudes of these ground vibrations could either 

be as low as barely noticeable to persons or as high as damaging the neighboring 

structures and/or equipment.  The vibration acceptance levels were set based on (1) 

human perception; (2) structural damage and; (3) equipment sensitivity. 

Pile driving induced ground vibrations can disturb persons and the animals such 

as birds and fish that live near vibration sources.  The human response to transient 

vibration is summarized in Table 2.1 after Wiss (1974).  Ground vibrations can cause 

damage to the surrounding structures and substructures such as pipelines depending on 

the maximum amplitude of the vibrations.  There are several vibration damage criteria in 

the literature.  Chae (1978) has proposed building vibration criteria for the residential 

structures based on age and condition as shown in Table 2.2.  The impact of construction 

vibrations induced by different type of sources is also assessed by Dowding (1996).  The 

vibration criteria addressing structural damage based on the type of the structure is shown 

in Table 2.3.  The American Association of State Highway and Transportation Officials 
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(AASHTO, 1990) also specify the maximum vibration levels for preventing damage to 

structures from construction or maintenance activities. Table 2.4 summarizes the 

AASHTO maximum levels. 

Table 2.1 Human response to transient vibration 

Peak particle velocity, mm/s (in/s) Human Response  

51(2.0) Severe 

23 (0.9) Strongly perceptible 

6 (0.24) Distinctly perceptible 

0.9 (0.035) Barely perceptible 

Table 2.2 Chae building vibration criteria 

Category  PPV (Single Blast) 
mm/s (in/s) 

PPV (Repeated Blast) 
mm/s (in/s) 

Buildings of Substantial Construction 100 (4) 50 (2) 

Residential, New construction 50 (2) 25 (1) 

Residential, Poor Condition 25 (1) 12.5 (0.5) 

Residential, Very Poor Condition 12.5 (0.5) - 

Table 2.3 Dowding vibration criteria for structures 

Category  Limiting Peak Particle Velocity 
mm/s (in/s) 

Industrial Buildings 50 (2) 

Residential 12.5 (0.5) 

Residential, New construction 25 (1) 

Historic Buildings 12.5 (0.5) 

Bridges 50 (2) 
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Table 2.4 Maximum vibration levels for preventing damage 

Category  Particle Velocity 
mm/s (in/s) 

Historic sites or other critical locations 2.5 (0.1) 

Residential buildings, plastered walls 5.0-7.5 (0.2-0.3) 

Residential buildings in good repair with gypsum board walls 10-12.5 (0.4-0.5) 

Engineered structures, without plaster 25-37.5 (1.0-1.5) 

 

The operation of equipment for research, microelectronics manufacturing, 

medical diagnostics, and vibration sensitive high-tech devices can be adversely affected 

by vibration. The criteria for designing facilities to house vibration sensitive equipment 

have been developed by the Institute of Environmental Services.  The bandwidth 

associated with these criteria is the one-third octave band, for which the bandwidth is 23 

percent of the center frequency of each band.  The generic vibration criteria that relate the 

one-third-octave root mean square (rms) velocities with the criterion curves developed by 

Gordon (1991) are given in Table 2.5. 

Table 2.5 Generic vibration criteria for vibration-sensitive facilities 

Criterion Curve RMS velocity (f =1 -100Hz) 
µm/s (µin/s) 

Vibration Sensitivity 

VC-A 50 (2000) General laboratory sensitivity 

VC-B 25 (1000) General laboratory sensitivity 

VC-C 12.5 (500) General laboratory sensitivity 

VC-D 6 (250) The most sensitive 

VC-E 3 (125) Semiconductor & research 
facilities 
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2.2.3 Empirical Relations for Estimating Vibrations 

As the ground waves travel away from the source of vibration, the amplitude of 

their particle motion attenuates.  A portion of this attenuation is caused by the distribution 

of the generated vibration energy on the area of the continuous wave fronts.  This type of 

attenuation is called radiation or geometric damping and is usually described by the 

following equation: 

  (2.3) 

Where A2 is the amplitude of vibration at distance r2 from the source, A1 the amplitude of 

vibration at distance r1 from the source and γ the attenuation rate due to radiation 

damping. The values of γ for different combinations of source location and size are 

presented by Kim, et al., (2000) as shown in Table 2.6. 

Table 2.6 Values of attenuation coefficient due to radiation damping for various 
combinations of source location and type 

Source location Source type Induced wave γ 

Surface Point Body wave 2.0 

  Surface wave 0.5 

 Infinite line Body wave 1.0 

  Surface wave 0.0 

In-depth Point Body wave 1.0 

 Infinite line Surface wave 0.5 

 

In addition to geometric damping, the ground waves attenuate due to the material 

damping of the soil in which they propagate.  The material damping is described by the 

damping ratio, D.  The effects of combined geometric and material damping are defined 

by the following wave equation after Bornitz (1931) as follows: 

2
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  (2.4) 

 

where α is the attenuation coefficient due to material damping.  The attenuation 

coefficient α for soil materials is reported by Woods and Jedele (1985) based on the 

results of measurements of man-made ground vibrations. 

The attenuation coefficient due to material damping, α, depends on the type of 

soil and the frequency of vibration.  This type of material damping is called frequency-

dependent damping.  Woods & Jedele (1985) recommended the values of the attenuation 

coefficients based on vibration data they collected on sites including blasting, dynamic 

compaction, pile driving and other sources of vibrations.  The recommended values of the 

attenuation coefficients for different types of soils are given for vibration frequencies of 5 

and 50 Hz in Table 2.7. 

A simplified analysis of the mechanics of wave propagation in the ground was 

also studied by Massarsch, et al. (1995) which leads to the following equation for 

estimating the values of the attenuation coefficient, α: 

  (2.5) 

where CR is the propagation velocity of R-waves,  is the damping ratio of the soil and f 

the frequency of vibration. It is clear in Eq. (2.6) that the value of attenuation coefficient, 

a, increases linearly with the frequency of vibration and with the damping ratio of the soil 

material whereas it decreases with the value of CR (i.e. the stiffer soils have low 

attenuation rates).  The attenuation coefficient α can also be computed for any other 

frequency, if the value of α is known for one frequency from the following equation: 

  (2.6) 

where α1 is a known value at frequency f1 and α2 is an unknown value at frequency f2. 
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Table 2.7 Classification of earth materials by attenuation coefficients 

Soil Class Attenuation Coefficient(α), 1/m (1/ft) Description of Material 

5 Hz 50 Hz 

I 0.009 – 0.033 
(0.003 – 0.010) 
 

0.009 – 0.033 
(0.003 – 0.010) 
 

Weak or soft soils (shovel penetrates 
easily); loose soils, dry or partially 
saturated peat and muck, mud, loose 
beach or dune sand, recently plowed 
ground, soft spongy forest or jungle 
floor, organic soils, topsoil 
 

II 0.003 – 0.009 
(0.001 – 0.003) 
 

0.033 – 0.098 
(0.010 – 0.030) 
 

Competent Soils (can dig with shovel): 
most sands, sandy clays, silty clays, 
gravel, silts, weathered rock 
 

III 0.0003– 0.003 
(0.0001 – 0.001) 
 

0.003 – 0.033 
(0.001 – 0.010) 
 

Hard soils (cannot dig with shovel, 
must use pick to break up): dense 
compacted sand, dry consolidated clay, 
consolidated glacial till, some exposed 
rock 
 

IV <0.0003 
(<0.0001) 

<0.003 
(<0.001) 

Hard, competent rock (difficult to 
break with hammer); bedrock, freshly 
exposed hard rock 
 

 

The attenuation coefficient, α, can also be defined as frequency-independent as 

noted by Yang (1995).   This new attenuation coefficient, α0, can be defined by writing 

Eq. (1.6) in the form of: 

  (2.7) 

where α0 is defined in seconds per meter (s/m).  Yang (1995) has reported the values of 

the frequency-independent attenuation rates for soils ranging from loose sands and soft 

clays to rocks as shown in Table 2.8. 
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Table 2.8 Values of the frequency-independent attenuation coefficient, α0, for various soil 
groups 

Soil Group  α0× 10-3 (s/m) 

Rocks (covering layer within 1.5 to 
2.0 m) 

Shale, limestone 0.385–0.485 

 Sandstone 0.580–0.775 

Hard plastic clays  0.385–0.525 

Broke stones of medium density 
Cobbles 

 0.850–1.100 

Plastic clays, Coarse sands and 
gravels of medium density 

 0.965–1.200 

Soft plastic clays, Silts, Slightly 
dense, Medium or coarse sands 

 1.255–1.450 

Silty clays, Silts and saturated fine 
sands 

 1.200–1.300 

Recently deposited clays and 
unsaturated loose sands 

 1.800–2.050 

 

Another model for representing the attenuation of ground waves, known as 

pseudo-attenuation model, is presented by Wiss (1981).  In his paper, Wiss (1981) 

obtained a best fit of field data in equation of the following form: 

  (2.8) 

Where v is the peak particle velocity of wave, d is the distance from source to monitoring 

location (ft), k is the intercept at d=1 ft (in/s) and n is the slope (log units), or the pseudo-

attenuation rate.  To include the effect of the hammer’s rated energy, Wiss (1981) also 

developed an equation so called scaled-distance equation as follows: 

  (2.9) 

where En is the energy of source in consistent units. 

Woods and Jedele (1985) gathered field data from construction projects and 

developed energy-attenuation curves for each vibration energy source at each case.  To 
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plot the peak particle velocity versus the scaled distance, they predicted the attenuation 

rates based on the ground class given in Table 2.4.  Based on this empirical study, the n-

term is defined as n=1.5 representing Class II soils and n=1.1 representing Class III 

soils.  Class I and Class IV type of soils are not included in the study, because the soil 

types on site was neither in very poor condition nor in very good condition. The energy-

attenuation relationship presented by Woods and Jedele (1985) is plotted in Figure 2.4. 

 

Figure 2.4 The peak velocity versus scaled distance. 
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2.3 Case Histories 

In the last a few decades, many reports have included the results of ground 

vibration studies due to pile driving. Construction related vibration surveys and studies 

are being conducted frequently, however not all of them are available in the literature. 

This section is limited to the review of case histories that exhibit the vibration induced 

settlement due to impact pile driving.  

Lacy and Gould (1985) reported the differential settlements of aeration tanks due 

to pile driving at a southern Brooklyn site in New York City, NY.  The tanks were 5 m 

high and 80 m wide and were supported by timber piles.  The surcharge load on the 

ground surface due to the weight of the tanks was 100 kPa.  The closed-end pipe piles, 

which had diameters of 273.1 mm, were driven to depths of about 40 m in the close 

proximity to the existing tanks.  A Vulcan 08 impact hammer was used to drive the piles.  

The soil profile on the site consists of organic fill from the ground surface to a depth of 

10 m, followed by fine to coarse, medium dense sand reaching the end of the boring 

depth of 50 m.  After about 100 piles were driven, settlement had already exceeded 25 

mm (2 in).  To prevent further settlement, the aeration tanks were emptied to reduce the 

surcharge load, however, the settlement during pile driving reached 70 mm.  As a result, 

the installation of piles was halted.  The remaining piles were replaced with augered cast-

in-place piles.  Vibrations were also monitored using a seismograph on the site.  It was 

observed that the vibration amplitudes on the ground surface ranged from 2.5 to 23 mm/s 

at all times during pile driving.  The attenuation coefficients were estimated from surface 

measurements as 0.02 – 0.05 mm-1 for the upper organic soil layer.   

Leathers et al. (1994) reported the densification of sand layers during pile driving 

at a project located in Boston, MA.  The site was in the middle of a block of existing 

buildings.  Two buildings were located immediately adjacent to the pile driving area.  

The primary soil profile at the site consists of 4 m of granular fill from the ground 

surface, followed by 8 m of silty clay layered on top of a 24 m of medium dense sand and 
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gravelly sand followed by a rock layer.  A total number of 180 precast 360 × 360 mm 

concrete piles with lengths ranging from 29 to 39 m were driven on the site.  A diesel 

hammer with a rated energy of 54 kJ was used for installing the piles.  The measured 

peak particle velocities (PPV) on the ground surface ranged from 6.4 to 15 mm/s.  The 

settlements observed after pile driving varied between 18 and 54 mm (0.7 and 2.1 in).  It 

was observed that the settlements measured on the ground surface were almost identical 

to the ones measured on top of the sand layer.  It was also noticed that the settlement 

occurred only during driving, and did not continue once the driving was complete.  

Consequently, the in situ measurements of settlements strongly indicated that the 

vibration induced settlements only occurred in the sand layer, and most likely, it 

happened due to the densification of the granular particles. 

Hope and Hiller (2000) performed an extensive study of vibrations due to impact 

pile driving. They compared a number of existing prediction models. They then applied 

these results to a site where vibrations were carefully monitored during driving of an H-

section driven by a Banut 700 piling rig, which has a hydraulic hammer with a ram 

weighing 11 kips. The rated energy of this hammer is nominally 29,000 ft-lbs. They 

recorded the peak particle velocities while also keeping careful track of the depth of 

penetration of the pile.  They concluded that, while the predictions made by previous 

studies did give a reasonable upper bound prediction, that did not help to explain the wide 

range of vibration measurements observed as pile driving proceeded. They also noted that 

vibrations tended to increase as the stiffness of the soil increased. 

Ashraf et al. (2002) drove 42 close-ended steel pipe piles that were 14 inches in 

diameter through fine to medium sands. Vibration mitigation measures included pre-

augering the top 20 feet, as well as encasing the top 8 feet in a larger diameter steel shell 

filled with sand. The piles were driven with a Vulcan 01 hammer, which has a rated 

energy of 15,000 ft-lbs.  The results showed that the measured PPVs are scattered out of 

the envelopes based on the Bornitz Equation.   
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In addition to the discussed cases above, many sites have been investigated for 

settlements caused by pile driving vibrations in the last few decades.  Among those are 

sites are Leningrad (Dalmatov, et al., 1967), Embarcadero (Clough & Chameau, 1980), 

Lesaka (Picornell & del Monte, 1985), Cedar Creek (Lacy et al., 1986) and Tri-beca 

(Lacy et al., 1994).  Settlements at the nearby foundation soils are recorded from as low 

as 6.0 mm to as high as 250 mm.  Table 2.9 (modified after Kim et al., 1996) summarizes 

the measured settlements and pile driving vibration amplitudes recorded at different sites. 

Table 2.9 Case histories of vibration-induced settlement 

Investigated Sites  Measured Vibration 
Amplitudes 
(mm/s)  

Measured Settlement  
(mm) 

Leningrad (Dalmatov, et al., 1967) 2.8  6 – 11  

Embarcadero (Clough & Chameau, 1980) 1 – 5  8 – 51  

Brooklyn, West (Lacy et al., 1985) 2.5 – 15.2 61 

Brooklyn, South (Lacy et al., 1994) 17.5 70 

Back Bay (Leathers, 1994) 6.4 – 15  18 – 54  

Lesaka (Picornell & del Monte, 1985) 17.5 250 

Cedar Creek (Lacy et al., 1986) 5 – 10 13 – 19  

Tri-beca (Lacy et al., 1994) 2.5 – 18  38 – 69  

2.4 Numerical Studies 

Mabsout et al. (1995) studied the analysis of impact pile driving using the finite 

element method.  An axisymmetric finite element model is developed for this study, 

which takes into account the nonlinear behavior of the soil.  The model consists of a 

cylindrical closed end concrete pile, which has a diameter of 0.25 m.  It was driven into 

undrained, normally consolidated clayey soils with varying pre-bored depths of 6, 12 and 

18 m.  A linear elastic dynamic formulation was used for the pile.  The soil was modeled 

using the bounding-surface plasticity model for cohesive soils after Kaliakin and Dafalias 
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(1989).  A single blow, which was represented by a periodic forcing function with a peak 

force of 2000 kN, is applied on top of the pile. 

First, the effect of pre-bored depths of the driven pile was investigated.  Top 

displacements, velocities and accelerations were compared at pre-bored levels of 6, 12 

and 18 m.  The displacements varying from 0.05 m to 0.60 m were computed.  Next, the 

change in the soil resistance with varying pre-bored depths was presented.  While the tip 

resistance changed between 80 kN and 100 kN, the shaft resistance increased with the 

pre-bored depths varying from 50 kN to 400 kN.  Then, the evolution of the state of 

deformation and stress in soil during the course of driving was investigated.  Substantial 

increase in pore-water pressure, as much as six times of the vertical effective stress, was 

observed near the pile tip.  The pore pressures remained almost same along the pile shaft.  

Finally, the permanent settlement of the pile tip and the shaft and tip resistances were 

compared with analytical methods.  The study was only limited to the dynamic response 

of the pile and did not consider the wave propagation in the surrounding soil.   

Ramshaw et al. (1998) conducted a finite and infinite element study using the 

finite element package ABAQUS.  They modeled a 30-inch diameter, 70-foot long cast-

in-place concrete pile that was dynamically load tested using a 4.8 kip drop hammer with 

a 1.2 m drop height.  The pile was instrumented with a load cell to measure the force 

versus time.  Vibrations were recorded at 18 and 54 ft from the pile.  To predict the 

vibration records, Ramshaw et al. (1998) used a triangular impact force pulse of 5 

seconds in duration.  The finite element model was assumed to have two layers with 

purely elastic properties.  The model generated compressive, shear and Rayleigh waves, 

and produced an expected ground movement in the radial direction of motion. The 

authors reported the match between measured and predicted values was satisfactory.  

However, the peak magnitude of the vibration at 54 feet from the pile was over predicted 

by a factor of 6 and the signal at 18 ft appeared to be overly damped. 
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Masoumi et al. (2006) presented a new numerical model for the prediction of free 

field vibrations due to vibratory and impact pile driving. The free field vibrations were 

calculated using a coupled finite element-boundary element (FE-BE) method based on a 

subdomain formulation.  While the pile was modeled as the bounded domain using the 

FE method, the soil was modeled as unbounded domain using the BE method.  The soil 

medium was assumed linear elastic with frequency independent material damping.  The 

small deformation theory was employed for the model.  The pile was embedded in a 

horizontally layered soil.  Ground vibrations due to impact pile driving were studied 

using a concrete pile with a circular cross-section.  The impact of the hammer was 

represented by a force function.   

The peak particle velocities (PPV) versus the distance from the pile were 

computed for impact energy of 19.2 kJ at a penetration depth of 2 m, and impact energy 

of 3.4 kJ at a penetration depth of 10 m.  The predicted vibrations are compared with the 

results of field measurements reported by Wiss (1981).  The PPVs were overestimated 

compared with the results of the field measurements.  It was concluded that during 

impact pile driving ground vibrations in the near field were controlled by the shear 

waves, whereas the ground vibrations on the far field were controlled by the Rayleigh 

(surface) waves.  Although, this study focused on the dynamic response of a pile and free 

field vibrations, it has several shortcomings such as the lack of soil-pile friction and the 

lack of soil plasticity in the model.  In a following study published by Masoumi et al. 

(2008), the results of in situ measurements dynamic pile testing from a construction site 

in Louvain-la-Neuve, Belgium were compared with the results from the coupled FE-BE 

model.  Two piles with diameters of 0.46 m and embedment lengths of 8.55 m and 6.02 

m were selected for dynamic testing on this site.  The response of these piles and the 

resulting free field vibrations during dynamic loading were studied with two different 

material damping ratios.  The vertical velocities at different distances from the pile head 

were computed and compared with the site results.  Although the range of the velocities 
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had a good agreement, the dissipation of the stress waves was not represented accurately.  

It was concluded that at high frequencies and at long distances from the pile, results 

depend on the material damping ratio of the soil. 

2.5 Summary and Discussion 

In this chapter, the literature is reviewed for the studies conducted on pile driving 

and wave propagation in the ground.  In the first section, the organization of this chapter 

is presented.  In the second section, the generation of ground vibrations due to impact pile 

driving is explained, and the mechanics of wave propagation in soils is described.  Then, 

vibration acceptance levels for human perception and threshold damage are discussed.  

Next, the empirical relations that are widely used to predict the peak particle velocities of 

ground vibrations are presented.  In the third section, five case histories regarding the 

settlement of granular soils due to pile driving are presented.  These case studies have 

shown that vibration amplitudes as low as 6.4 mm/s (0.25 in/s) can cause settlement of 

adjacent foundation soils due to the densification of the granular soils.  In the fourth 

section, recent numerical studies that focus on simulating impact pile driving and wave 

propagation are presented.  The first study (Mabsout, 1996) has only focused on dynamic 

response of a single pile under a single hammer blow.  Wave propagation in soils was not 

covered by that study.  The second study has covered the dynamic loading of a pile and 

wave propagation in soils.  However, since the material damping coefficients were not 

introduced and explained clearly, the free field vibrations were computed five times the 

magnitude of the measured amplitudes in the far field.  In the third study, the proposed 

model has simulated a single blow and predicted the ground vibrations in the far field.  

Although the model predicted the peak particle velocities within a reasonable accuracy in 

the close proximity of the pile, it did not predict the vibrations in the far field accurately. 
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CHAPTER 3  

COUPLED ANALYSIS OF CONSOLIDATION 

PROBLEMS USING THE FINITE ELEMENT METHOD 

3.1 Introduction 

Soils are porous materials with a complex structure consisting of a solid skeleton 

of grains in contact with each other and voids filled with air and/or water or other fluid.  

Soil consolidation is the change in the volume of a porous medium with low permeability 

due to the drainage of water filling the pores as it responds to the increase in the total 

stress.  Consolidation settlement occurs during dissipation of excess pore water pressure, 

and it is controlled by the gradual expulsion of water from voids in the soil leading to the 

associated compression of the soil skeleton.  The aim of this chapter is to get a deeper 

understanding of the soil consolidation from an engineering point of view.  It describes 

the theory of soil consolidation and the derivation of coupled solution numerical scheme 

using the finite element method in four sections.  The first section overviews the 

literature and gives a comprehensive background on the numerical studies focusing on 

the theory of soil consolidation.  Second section presents the derivation of governing 

equations for the consolidation of saturated porous medium for the analysis of saturated 

two-phase flow problems in deforming medium.  For the full analysis, this section 

explains the averaging process, kinematic equations, balance equations and constitutive 

equations in details.  Third section outlines the framework for the finite element 

formulation of the consolidation problem using the coupled displacement/pore pressure 

elements.  The final section illustrates numerical examples for one-dimensional and two-

dimensional consolidation problems. 

3.2 Background 

The theory of soil consolidation was first introduced by Terzaghi based on the 

assumption that the soil skeleton is elastic, the solid particles or grains constituting the 
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soil are bounded together by certain molecular forces and the voids are filled with water 

(Terzaghi, 1925).  Terzaghi’s consolidation theory is based on the principle of effective 

stress, which assumes that the portions of the material stress carried by the porous soil 

skeleton and by water filling the voids.  The effective stress is the portion of the material 

stress that is transmitted through the solid phase of the porous skeleton. The pore fluid 

pressure or pore pressure is the portion of the material stress transmitted through the pore 

fluids.  Although Terzaghi’s consolidation theory is a powerful technique for the solution 

of a various number of different consolidation problems, it is restricted to only one-

dimensional problems and ignore the dynamic behavior of soils.   

Biot (1941) was first to extend Terzaghi’s consolidation theory for the analysis of 

three-dimensional consolidation problem.  He proposed a multi-phase continuum 

formulation for saturated porous media where the fluid flow through the solid phase 

obeys Darcy’s law.  He introduced a solution for consolidation problems, which is based 

on the principle of coupling the equations of pore water pressure with the equations of 

deformation of the porous solids.  In his widely known theory, the following assumptions 

are made: (1) the material is isotropic and linear elastic; (2) the small strains theory is 

valid; (3) the pore water is incompressible; (4) the water may contain air bubbles and; (5) 

the water flows through the porous skeleton obeying Darcy’s law (Biot 1941).  Based on 

these assumptions, Biot proposed a solution for time-dependent displacements, pore fluid 

pressures, effective stresses and strains for problems of consolidation and the settlement 

of foundations.   He then extended his consolidation theory to the analysis of porous 

anisotropic solids and porous viscoelastic anisotropic solids (Biot, 1955; 1956).   

Although the consolidation theory of Biot did not take into account many 

important characteristics of soil such as material and geometrical nonlinearities, and path-

dependency of stress-strain relationship, modern numerical analysis of soil consolidation 

is widely founded on Biot’s Theory.  Many researchers in geophysics, soil and rock 
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mechanics have made significant contributions toextend Biot’s coupled equations for 

developing more realistic soil models.   

Sandhu and Wilson (1969) used the finite element method to solve Biot’s Theory 

as initial boundary value problems.  In their work, they applied variational principles to 

the field equations of fluid flow treating the porous media as a fully saturated elastic 

continuum.  Then, they used the finite element method to derive the weak form of the 

governing equations and solved the resulting coupled equations.  

Ghaboussi and Wilson (1973) then presented a multi-dimensional finite element 

numerical scheme to solve Biot's dynamic field equations for saturated porous elastic 

solids.  They also incorporated the pore fluid compressibility in Biot’s formulation.  Their 

solution was applicable for the analysis of dynamic soil-structure interaction and wave 

propagation problems in saturated porous media. 

Zienkiewicz et al. have made significant contributions in extending Biot’s theory 

of consolidation to include liquefaction of granular materials and wave propagation in 

saturated porous media (Zienkiewicz et al., 1976;Zienkiewicz 1980; Zienkiewicz, Wood, 

et al. 1984; and Simon, et al. 1986).  They have incorporated several different nonlinear 

constitutive models into their numerical models such as elastoplastic and hyperbolic 

models.  They included fluid and solid compressibility, creep, and void ratio dependent 

permeability in their studies (Lewis, Roberts and Zienkiewicz 1976). Zienkiewicz et al. 

have also solved dynamic soil-structure interaction problems such as analysis of the 

Lower San Fernando dam under earthquake (Zienkiewicz and Simon, 1984). 

Lewis and Schrefler (1987) carried out a comprehensive study to extend and 

modify Biot’s coupled formulation using the volume fraction concept of the Modern 

Porous Media Theory.  They developed field equations for solid, fluid and air phases for 

saturated and partially saturated flow in a deforming porous media.  They discussed the 

application of the finite element method to the consolidation problems using linear and 

non-linear constitutive models. 
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3.3 Formulation of Coupled Consolidation Equations 

The modern macroscopic porous media theory is a combination of the volume 

fraction concept and elements of the mixture theory, which was introduced by Green and 

Naghdi (1965), and Eringen and Ingram (1965 and 1967).  Within the framework of the 

modern porous media theory, a saturated porous medium is viewed as an immiscible 

mixture of all constituents, so that it can be treated with the methods of continuum 

mechanics.  The volume fraction concept contains the introduction of volume fractions, 

which relate the volume elements of the individual constituents such as solid, fluid or air 

to the bulk volume element.  In accordance with the volume fraction concept, all 

geometric and physical quantities, such as motion, deformation, and stress are defined in 

a total control space, which is formed by the porous solid.  Thus, the geometric and 

physical quantities can be interpreted as the statistical average values of the real 

quantities.   

In this section, a simplified version of Biot’s Theory is described combined with 

the modern macroscopic porous media theory based the modern volume fraction concept.  

The aim is to develop a numerical scheme for linear consolidation problems employing 

the finite element method.  The consolidation problem is governed by macroscopic 

balance equations, which are: 

(1) Mass balance equation, and 

(2) Linear momentum balance equation. 

The following assumptions are made for the model presented in this chapter: 

� The porous medium is saturated.  It is composed of only two phases, solid 

and water. Air and other gases are not present in the pores. 

� The porous medium is composed of incompressible solid and water phases 

at the microscopic level.  The averaged density of each phase is constant.  

The average density of the mixture can vary due to the volume fraction. 



28 
 

 

� Small strains and rotations are considered for the deformation of the 

porous medium.  Geometric non-linearity is neglected.  

� Quasi-static conditions are considered for the deformation of the porous 

medium and the flow of the pore fluid.  The solid and fluid accelerations 

are neglected. 

� Consolidation occurs under isothermal conditions.  This means that energy 

balance equation is no longer necessary. 

In the following subsections, the principle of averaging quantities is discussed 

first along with the kinematic equations of a multi-phase medium.  The mass balance and 

linear momentum balance equations are derived next.  Then, the governing equations for 

the analysis of a saturated two-phase (solid and fluid) porous medium are described.  

Next, the constitutive framework with an assumption of small strain elasticity theory 

under isothermal and isotropic conditions is discussed.  Finally, the principle of effective 

stress in porous media is explained. 

3.3.1 Averaging Principles 

The non-homogeneous configuration of soil particles makes it difficult to model 

the soil heterogeneity rigorously at the microscopic level.  Thus, in continuum 

mechanics, it is preferred to replace the micro-heterogeneous medium with a macro-

homogeneous one, which macroscopically behaves in the same manner.  This approach 

can be accomplished by averaging the geometric and physical quantities, such as motion, 

deformation and stress defined in a total control space.  The averaging procedure exhibits 

how to link the equations describing the motion of all phases constituting the porous 

medium at the microscopic behavior (R.W. Lewis, 1998). 

A multiphase medium can be defined by a total volume Ω and bounded by a 

surface Γ with the constituent α and a partial volume Vα.  A representative elementary 

volume (REV) which is an averaged volume element can be defined as ��.  The REV is 



29 
 

 

considered small enough to be treated as a point of the heterogeneous medium (K.Z. 

Markov, 2000).  The position of the center of the REV is defined by a position vector x.  

The position of the microscopic volume element ��� is considered as �.  The volume of 

the phase (constituent) α within a REV, which is called the average volume element, ��� 

is defined as 

  (3.1) 

where γα is the phase distribution function. The volume of a REV for phase-α is defined 

as     

  (3.2) 

in which ��� is the microscopic volume element and the phase α and position vector r  

are defined as 

  

The area of a REV for phase-α is 

  (3.3) 

where ��� is the microscopic area element. 
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Figure 3.1 A representative elementary volume of a porous medium. 

The volume fractions �� relate the volume elements of the individual phases to 

the bulk volume element, where α denotes the individual phases (i.e.  α=s: Solid, α=w: 

Water).  The volume fraction is defined as follows: 

  (3.4) 

with 

  (3.5) 

In this thesis, only two phases, solid and water, will be considered for the physical 

description of the soil skeleton.  The solid mass and water are denoted by the superscripts 
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  (3.6) 

in which n is the porosity of the soil skeleton and Sw is the degree of saturation.  The 

porosity can also be defined in terms of void ratio, e as n=e/(1+e).  The averaged 

quantities are obtained by integrating (averaging) a microscopic quantity over the volume 

dv, mass density ρdv or the area da of a REV.  The following averaging operators may be 

used to average a microscopic field variable .  The volume average operator at 

phase-α is defined as 

  (3.7) 

The mass average operator at phase-α is 

  (3.8) 

The area average operator at phase-α is 

  (3.9) 

The volume averaged density of each phase-α, can be defined using the 

volume average operator as: 

  (3.10) 

where 

  

From this definition, the volume averaged density of a two-phase mixture consisting of 
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  (3.11) 

where ρs and ρw are intrinsic (microscopic) densities meaning densities at individual 

phases, and ρs and ρw are the partial densities (averaged over the volume) of the phases. 

The area averaged Cauchy’s stress tensor for an individual phase-α is defined as: 

  (3.12) 

where  

  

For a two-phase material averaged Cauchy stress can be defined as: 

  (3.13) 

where σs and σw denote Cauchy’s stress tensors of the individual phases, and σs and σw 

are the stresses averaged over the surface of the REV. 

3.3.2 Kinematic Equations 

The kinematics of a multiphase medium i.e. solid-fluid phase, can be described 

either by a spatial or Eulerian coordinate system denoted by	, or by a Lagrangian or 

material coordinate system denoted by 
.  Assuming the soil skeleton as a material 

reference volume, the motion function is defined as 

  (3.14) 

In which �� is the position of each spatial point at time � and a function of its replacement 

in a chosen reference configuration � at the current time, t.  The deformation gradient 

tensor, Fα can be defined as 
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  (3.16) 

The velocity and acceleration fields in spatial coordinate system are as follows  

  (3.17) 

  (3.18) 

The material time derivative of any differentiable function , can be written in 

terms of its spatial description where α denotes the phase of the moving particles as 

follows   

  (3.19) 

Furthermore, if the material derivative operator is in another phase, presuming a 

prescribed phase β, then the above equation can be rewritten as 

  (3.20) 

Subtracting Eq. (3.20) from Eq. (3.21) yields 

  (3.21) 

where 

  (3.22) 

is the velocity of the β phase with respect to α phase. 

3.3.3 Balance Equations 

The balance equation for a continuum at the microscopic level for a quantity � at 

any phase α can be written as 
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in which ��� is the divergence operator, ��  is the local value of the velocity field of the α-

phase, �is the flux vector, � is the external supply of � and,G is the net production of �. 

A general average macroscopic balance equation is obtained from the microscopic 

balance equation by multiplying it with the distribution function ��(�, �) and by 

integrating this product over the volume element �� and over the total volume � by using 

the previously defined volume averaging operator as follows: 

  (3.24) 

Continuing the averaging process and applying the divergence theorem by 

(Eringen, et al., 1964) allows us to write the macroscopic balance equation in more 

concise form as: 

  (3.25) 

where �� is the volume averaged value of mass density of α-phase, �� is any conserved 

generic quantity,�� is the flux vector associated with  ��, �� is the external supply of ��, 

�� is the net production of ��,  is the mass averaged velocity defined as 

  (3.26) 

��(��) is the mass exchange between different constituents defined as: 

  (3.27) 

and �� is the exchange of �� due to mechanical interactions between the constituents, 

which can be written as 
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The averaged macroscopic mass balance equation of a constituent α is obtained 

from Eq. (3.25) by specifying the following variables 

  (3.29) 

  (3.30) 

with 

  (3.31) 

where �� is the phase-averaged density, is the mass-averaged velocity and ����(�) is 

the mass exchange term of the constituent α.   

For solid phase, considering that the mass exchange term on the right hand side of 

Eq. (3.30) is zero, the mass balance equation becomes 

  (3.32) 

The material derivative of phase-averaged solid mass density ρs can be written using Eq. 

(3.20) as follows 

  (3.33) 

Introducing Eq. (3.33) into Eq. (3.32) and considering that the relation between the 

gradient operator and divergence operator defined as 
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The averaged macroscopic mass balance equation for solid phase becomes 

  (3.35) 

For fluid phase, the macroscopic mass balance equation is written from Eq. (3.30) 
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  (3.36) 

The material form of the mass balance equation for fluid is written in a similar way to the 

solid phase as 

  (3.37) 

The material derivative of Eq. (3.37) in the solid phase can be written using Eq. (3.21) 

and Eq. (3.22) as, 

  (3.38) 

 Eq. (3.38) can be expanded as follows 

  (3.39) 

To eliminate the Dsn/Dt term in the above equation, the mass balance equations for solids 

and fluids can be combined.  The combination of Eq. (3.35) and Eq. (3.39) yields 

  (3.40) 

The Darcy’s law for fluids can be expressed in the following form 

  (3.41) 
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is the relative velocity defined as  
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k is the permeability tensor defined as 
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is the hydrostatic pressure and is the dynamic viscosity defined as 

  (3.44) 

g is the body force related to the gravity forces defined as 

  (3.45) 

Introducing Darcy’s law to Eq. (3.40) and assuming that Sw=1 (fully saturated case) 

yields   

  (3.46) 

Furthermore, under isothermal conditions, the material derivatives can be defined in 

terms of hydrostatic pressure and Biot’s constant α as 

  (3.47) 

  (3.48) 

where Ks is the bulk modulus of the grain material and Kw is the bulk modulus of the 

fluid.  Assuming that the porous media is fully saturated (Sw=1), substituting Eq. (3.47) 

and Eq. (3.48), into Eq. (3.46) yields 

  (3.49) 

Eq. (3.43) is also known as the continuity equation.  It should be noted that for 

incompressible grain material 1/Ks=0 and α=1. 

 The continuity equation can be rewritten for “incompressible grain material” 

(1/Ks=0) and “compressible fluid” (α=1). Assuming that the porous medium is fully 

saturated (Sw=1), the continuity equation takes the final form of:  

  (3.50) 
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The linear momentum balance equations at the macroscopic level are derived 

using the general macroscopic balance equation.  The variables used in Eq. (3.23) are 

defined as follows: 

  (3.51) 

where $� is the averaged velocity, %& is the partial stress tensor, '� is external 

momentum supply related to gravitational effects and ()�is the exchange of momentum 

due to mechanical interaction between different constituents.  Substituting the variables 

into Eq. (3.51), the averaged linear momentum equation for constituent α can be written 

as follows: 

  (3.52) 

with 

  (3.53) 

For solid phase, Eq. (3.52) can be written as follows 

  (3.54) 

For fluid phase, the linear momentum balance equation becomes 

  (3.55) 

The linear momentum balance equation for a two-phase medium is written as follows 

 

  (3.56) 

in which are the averaged stress tensor and mass density defined by Eq. (3.11) 

and Eq. (3.13), respectively. 

Under quasi-static conditions, the sum of momentum exchange terms of all 

constituents is defined as 
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  (3.57) 

It is also given as a condition of linear momentum balance equations that, the sum 

of interaction forces between the constituent α and the other constituents with respect the 

volume of the REV is 

  (3.58) 

Thus, neglecting the acceleration terms, the final form of linear momentum 

balance equation at the macroscopic level is 

  (3.59) 

 

3.3.4 Constitutive Framework 

Hooke’s law of linear isotropic elasticity is used as the stress-strain (constitutive) 

relationship for the elastic porous case between the stress, σ and strain, ε as follows 

  (3.60) 

where 

  (3.61) 

  (3.62) 

are the vector of stress components, and the vector of strain components, respectively.  De 

is the elastic constitutive matrix defined as 

 (3.63) 

where E is the Young’s modulus and ν is the Poisson’s ratio. 
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3.3.5 Principle of Effective Stress 

 The effective stress principle, which was proposed by Terzaghi, is based on the 

assumption that the effective stress is equal to the total stress minus the pore water 

pressure (Terzaghi, 1943).  According to this theory, the effective stress controls the 

compressibility and the strength of the soil skeleton.  The consolidation of soil associated 

with its void ratio depends on effective stress of the soil. 

 

Figure 3.2 Total and effective stresses in saturated media. 

The principle of effective stress was extensively studied by numerous researchers 

to extend Terzaghi’s principle for unsaturated soils.  The most noticeable modification 

was made by Bishop for saturated and unsaturated soils as follows: 

  (3.64) 

in which is the effective stress, σ is the total stress, σw is the hydrostatic stress, σa is the 

air pressure and χ is a parameter that depends on the degree of saturation, stress path, soil 

type, etc. (Bishop, 1959).  In this thesis, fully saturated soils are studied and the air 

pressure is neglected in the pores.  Therefore, the Bishop’s expression for the principle 

stress tensor can be modified as  
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  (3.65) 

where m={1, 1, 1, 0, 0, 0}
T 

and Sw is the degree of saturation. 

In this study, the pore water pressure is treated as positive and compressive 

stresses are treated as negative. The effective stresses can also be expressed for fluid and 

solid phases separately.  The stress tensor in the fluid phase is 

  (3.66) 

where  is the volume fraction.  The stress tensor in the solid phase is  

  (3.67) 

with the pressure in the solid phase and the effective stress tensor defined as 

  (3.68) 

Substituting Eq. (3.68) into Eq. (3.67), the effective stress for the solid phase yields 

  (3.69) 

The total stress % acting on a unit area of a two-phase (solid and fluid) medium defined 

by Eq. (3.13) can be verified adding up the stress definitions for fluid and solid phases 

given by Equations (3.66) and (3.67) as follows 

  (3.70) 

3.4 Finite Element Framework 

The linear momentum and mass flow balance equations are presented in this 

section under the assumptions of quasi-static conditions and small-strain theory.  Then, 

the initial and boundary conditions for the governing equations are prescribed.  Following 

that, the spatial discretization of the governing equations is carried out by defining the 

weak form of the governing equations using weighted residual-Galerkin approximations 
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procedure.  Finally, the discretization in time domain is performed using θ-method and a 

solution for the linear elastic case is presented. 

3.4.1 Governing Equations 

The small strains theory, which assumes the small displacements and small strains 

in a prescribed domain, is adopted for developing the governing equations of the 

consolidation problem.  The strains, ε of the soil skeleton are defined in terms of 

displacements as follows: 

  (3.71) 

where 

  (3.72) 

  (3.73) 

are the displacement field and the gradient operator, respectively. 

The balance equations of a two-phase (solid and fluid) deforming porous medium 

are derived in the previous section under quasi-static and isothermal conditions.  The 

balance equations are defined as follows. 

(1) Linear momentum balance equation: 

  (3.74) 

(2) Mass balance equation: 

  (3.75) 

in which 
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  (3.78) 

are the phase-averaged Cauchy’s stress tensor; the phase-averaged mass density of the 

mixture and; a vector of applied body forces, respectively. is the differential operator 

defined as 

  (3.79) 

Based on the small strains theory, the last term of the mass balance equation can 

be defined as 
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 (3.80) 

where is the strain rate defined by  

  (3.81) 

and m is a vector defined as 

  (3.82) 

Thus, the continuity equation becomes 

  (3.83) 

3.4.2 Initial and Boundary Conditions 

It is necessary to define the initial and boundary conditions for a boundary value 

problem.  The initial conditions specify the full field of displacements and water 

pressures at time t=0 as follows 

  (3.84) 
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where Ω is the domain of interest and Γ is its boundary.  The imposed boundary 

conditions displacements and water pressures are as follows: 

  (3.85) 

 

The traction boundary condition for stresses is  

  (3.86) 

where the matrix I is related to the unit normal vector n = {nx,ny,nz}
T by 

  (3.87) 

Finally, the flux boundary condition for water from Eq. (3.41) is 

  (3.88) 

where q is the imposed mass flux normal to the boundary.  Equations (3.85) and (3.86) 

are natural boundary conditions for the corresponding balance equations. 

3.4.3 Weak Form and Galerkin Approximations 

The weak form of the governing equations can be formed by multiplying the mass 

balance and linear momentum equations by weighting functions and integrate the 

combined equation over its defined domain.  The linear momentum balance equations 

can be written in an explicit form as follows: 
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  (3.89) 

Similarly, the mass balance equation is expressed in the form of 

  (3.90) 

Since there are four equations, four weighting functions are needed to construct the weak 

form of the governing equations.  Denoting the weighting functions by and , 

multiplying each equation by its weighting function, integrating over its domain, and 

adding all four terms gives us the weighted residual as follows: 

  (3.91) 

Using the Green-Gauss theorem on each of the stress derivative, pressure derivative and 

body force derivative terms, the following expression is obtained. 
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 (3.92) 

Incorporating the boundary conditions defined by Eq. (3.86) and Eq. (3.88) into Eq. 

(3.92), the final weak form becomes 

  (3.93) 

where the applied surface tractions are 

  (3.94) 

and the outward flow per unit area is 
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  (3.95) 

If the weighting functions are interpreted as virtual displacements and their derivatives as 

virtual strain: 

  (3.96) 

Substituting these in the weak form and rearranging the terms yields 

  (3.97) 

The matrix form of the virtual terms used in the above equations are written as 

  (3.98) 

Thus, the final weak form becomes: 
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  (3.100) 

is the surface traction vector, and 

  (3.101) 

is the prescribed outward flow per unit area and is a vector of direction 

cosines for the unit normal to Γ.  

3.4.4 Finite Element Equations 

A finite element solution to Eq. 3.99 can be obtained using shape functions to 

describe the variation of the displacements and pore water pressures for each element.  

For an element with n nodes, the displacement field at any internal point is assumed to be 

of the form  

  (3.102) 

with an explicit form  

  (3.103) 

where Nu is a matrix of shape functions and are the nodal degrees of 

freedom.  Similarly, the field of pore pressures for an element with pore pressure 

freedoms at m nodes is assumed to be of the form 
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with an explicit form  

  (3.105) 

where  is a matrix of shape functions and p is a vector of nodal pore pressures.  Thus, 

the complete set of assumed solution is written as 

  (3.106) 
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  (3.108) 

The total stress tensor is split into effective stress and pore pressure parts using the 

principle of effective stresses as , and defined in integral form as 

  (3.109) 

The effective stress can be expressed using the constitutive relationship as 

  (3.110) 

Similarly, the strain rate can be defined as  

  (3.111) 

Substituting the assumed solutions above into the weak form yields 

  (3.112) 

The sets of weighting functions are the columns of the matrix of the assumed solution 

functions defined as follows: 

  (3.113) 

Substituting the weighting functions into the assumed solution as expressed by Eq. 

(3.113) yields 
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  (3.115) 

These equations express the linear momentum balance and continuity equations for each 

element.  They can be written in the compact forms as follows: 

  (3.116) 

  (3.117) 

in which 

  (3.118) 

  (3.119) 

  (3.120) 

  (3.121) 

  (3.122) 

  (3.123) 

The final form of coupled set of equations can be defined in matrix form as 

  (3.124) 

where Km is the elemental elastic stiffness matrix, Q is the coupling matrix, S is the 

compressibility matrix, K c is the permeability (flow) matrix, fu is the elemental vector of 

external forces, and fp is the fluid supply vector. 
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It is apparent that the final form of coupled equations is not symmetric.  To make 

Eq. (3.124) symmetric, the first set of equations is differentiated with respect to time and 

multiplied by -1 in the following form: 

  (3.125) 

3.4.5 Discretization in Time Domain 

To solve the initial value problem defined by Eq. (3.125) for elastic solids with 

constant permeability, the finite differences method is used to constitute a system of linear 

first order differential equations of the form 

  (3.126) 

where 

  (3.127) 

are matrices of constants, F(t) is a time dependent forcing function defined by 

  (3.128) 

and  with 	� = �	/��.  The discretization in time domain for solving Eq. 

(3.126) is carried out by the θ-scheme which approximates the mean value of x at two 

consecutive time steps �, and �,-. by the weighted average of 	� .  The scheme is defined 

by 

  (3.129) 

where ∆� = �,-. − �,, and the suffix n represents the value of the quantity at time �,.  

The weight θ refers to some well-known schemes, which are 
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  (3.130) 

The θ-method is at least first order accurate and, provided θ ≥ 0.5, is 

unconditionally stable.  The unconditional stability is an essential characteristic for an 

efficient consolidation scheme since it is often necessary to integrate over long periods 

using large time steps.  When θ is set zero, it is called the forward difference or “explicit” 

scheme.  Although the “explicit” scheme is simple, it requires excessive number of steps 

because it is only stable when ∆� is small.  Choosing a value of θ = 1 gives the well-

known backward Euler “fully implicit” scheme.  This scheme is first order accurate; 

unconditionally stable and oscillation free (Wood, 1990).  For the special case of θ = 0.5, 

the θ-method is second order accurate and corresponds to the ubiquitous Crank-Nicolson 

scheme.  This scheme can lead to oscillatory results, however the oscillations can be 

smoothed out by using the fully implicit version with θ = 1.  In this thesis, the Crank-

Nicolson scheme will be used in the solution of the coupled transient problems.  For the 

nth time step, Eq. (3.126) may be expressed in two consecutive time steps as follows 

  (3.131) 

  (3.132) 

Using the θ-scheme, the sum of Equations (3.131) and (3.132) can be expressed as 

  (3.133) 

The process assumes that 	1at time �2is known. For the case of an elastic soil with 

constant permeability, the matrices B and Care independent of x and Eq. (3.133) defines 

a system of linear equations which can be solved for xn.  Assuming the application of θ-

method to the set of coupled consolidation equations defined by Eq. (3.125) yields the 

final form of the complete set of equations as follows: 

0,         Forward difference "explicit" scheme,

1,          Backward difference "implicit" scheme,

1/ 2,     Crank-Nicholson scheme.

θ
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  (3.134) 

3.4.6 Solution of Elastic Consolidation Problems 

It is convenient to apply the external loads incrementally to a given system to allow 

plastic stress redistribution to equilibrate at each step.  This method is especially desirable 

for the solution of non-linear systems that will be dealt in the next chapters.  For the 

linear-elastic case, the same approach may be adopted.  The total force {45} applied on 

the system in the incremental form using the θ-method can be defined as 

  (3.135) 

Substituting Eq. (3.135) into Eq. (3.134) and neglecting the compressibility matrix and 

the fluid supply vector, so that S= 0 and 7( = 1 results in 

  (3.136) 

Eq. (3.136) can be expressed using the incremental form of the applied external forces 

defined by Eq. (3.135) as follows 

  (3.137) 

with the resulting changes in displacement, ∆u and excess pore pressures, ∆p in the 

incremental form defined as  

  (3.138) 

  (3.139) 

The Eq. (3.137) is the incremental recurrence form of the coupled set of consolidation 

equations as derived by (Sandhu, et al., 1969) and (Griffiths, 1994).  The left hand side 

element matrix of Eq. (3.137) is formed by its constituent matrices and is symmetric.  
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The right hand side vector consists of load increments {Δ4} and fluid loads are given by 

Δ�9:(, .  The fluid term is computed without any need for assembly using an element by 

element product approach.  At each time step, dependent variables are updated using Eqs. 

(3.138) and (3.139) as follows  

  (3.140) 

The assembly approach is chosen for the solution of the coupled equations.  This 

approach involves the setting up the coupled global stiffness matrix on the left hand side 

of these equations, followed by an update of the variables from Eq. (3.140).  Considering 

the constant element properties and the time step ∆t, the left hand side needs to be 

factorized only once.  The remainder of the solution, which involves the vector 

multiplication on the right hand side, is followed by forward and backward substitution.  

A numerical example using the linear-elastic form of coupled equations is illustrated in 

the next section.  

3.5 Numerical Applications 

3.5.1 One-Dimensional Consolidation Problem 

This example illustrates the one-dimensional plane strain consolidation analysis 

of a soil column using 8/4-u/p quadrilateral elements as shown in Figure 3.3.  The 

elements are comprised of rectangular quadrilaterals for displacements coupled to 4-node 

rectangular quadrilaterals for pressures.  Degrees of freedom are numbered in the order u 

and p, denoting displacements and excess pore pressure, respectively.  The material 

chosen for the example is a plain strain odometer specimen.  The finite element model 

consists of four 8-node poro-elastic solid elements as shown in Figure 3.3.  The material 

is elastic and homogeneous.  The material properties that include the isotropic 

permeability coefficient ;, modulus of elasticity E, and the Poisson’s ratio ν are given in 

Table 3.1.   
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Figure 3.3 Eight-node quadrilateral master and actual elements. 

The boundary conditions for the model are as follows: the bottom is fixed and the 

sides are bounded by smooth rollers.  No drainage is allowed through the base and the 

sides.  The top of the specimen is drained and subjected to a ramp loading of the form as 

shown in Figure 3.4.  The initial time value is t0=0.5 seconds where the ramp load 

reaches its maximum at . The finite element computations including 

complete the spatial and time discretization are carried out by the commercial computer 

program named Mathematica®.  The element equations are developed using the 

interpolation functions with the plane strain formulation as follows 

  (3.141) 

The finite element formulation for the eight-node displacement/pore pressure 

element is derived using the interpolation functions.  The interpolation functions for 

displacements are as follows: 
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  (3.142) 

The interpolation functions for pressure are as follows: 

  (3.143) 

The element strain vector is defined as follows: 
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 (3.144) 

The assumed solution is as follows: 

  (3.145) 

The derivatives of the interpolation functions with respect to x and y are computed using 

the mapping as follows 

  (3.146) 

where xi and yi are the nodal coordinates.  The Jacobian matrix of the mapping and its 

determinant are as follows: 
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  (3.147) 

The derivatives of the interpolation functions with respect to x and y are computed as 

follows: 

  (3.148) 

The constitutive relationship, in the state of plane strain, for the elastic case is 

written as (Timoshenko, et al., 1982) 

  (3.149) 

where  are the stress components, E is the modulus of elasticity, ν is 

Poisson’s ratio, and are the small strain components. 

The incremental solution method is adopted for the solution of this example.  

Hence, Eq. (3.137) that was derived at Section 3.3.6 can be rewritten as follows 

  (3.150) 

The left hand side of Eq. (3.150) that is interpreted as the equivalent stiffness 

matrix, Ke, is computed using a three point Gauss quadrature formula as described below.  

The element equations are obtained by using the numerical integration method.  The 

thickness of the element, h is chosen constant; therefore, the volume integral is reduced to 
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area integration and the surface integration to line integrals.  The 16 × 16 element 

stiffness matrix, Kme is: 

  (3.151) 

where D is the constitutive matrix for the elastic case defined as 

  (3.152) 

The 16 × 4 element coupling matrix, Qe is: 

  (3.153) 

The 4 × 4 element permeability matrix, K ce is: 

  (3.154) 

The 4 × 4 element compressibility matrix, Se is: 

  (3.155) 

The element load vector due to body forces is: 
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  (3.156) 

The equivalent load vector due to distributed loads is: 

  (3.157) 

where cu subscript denotes that the interpolation functions must be written in terms of a 

coordinate along a prescribed side. 

Using the procedure described above, the finite element equations for each 

element are developed.  The element equations are then assembled in the global matrix.  

After incorporating the essential boundary conditions and applying the prescribed loads 

on the specified surface, the global matrices are solved for the unknowns -displacements 

and pressures- using the incremental load method. 

The unknowns of the one-dimensional consolidation problem are displacements 

(settlements) and excess pore pressures at the nodes.  Time histories of the pore pressures 

and degrees of consolidation in the middle of the soil column are plotted in Figures 3.6 to 

3.9.  In Figure 3.6, the excess pore pressure is plotted versus time factor for two different 

ramp rise times, and seconds.  The time factor, T (Terzaghi, 1943) is the 

dimensionless number. 

  (3.158) 

where D=1 m is the maximum drainage path within the specimen, cv is the coefficient of 

consolidation defined as 
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  (3.159) 

in which  

  (3.160) 

k is the soil permeability and γw is the unit weight of water.  Substituting and 

into Eq. (3.160) yields @A = 1  Similarly, in the example, so that the time 

factor is equal to step time as . For t0=0.1 s, the pore pressure at the middle of the 

model (0.5 m. from the top) is approximately 0.9 kN/m2.  For t0=0.5 s, the pore pressure 

in the middle is computed as about 0.5 kN/m2.  When the loading takes place in a shorter 

period, dissipation of pore water pressure takes longer period of time, because under 

rapid loading greater excess pore water pressure builds up in the pores.  Same results 

were computed by Smith in his related work (Smith, et al., 1976).   

In Figure 3.7, the change of degree of consolidation with the time factor is shown.  

The degree of consolidation is the fraction of the excess pore water pressure that has 

dissipated.  It is expressed in percentage and defined as follows: 

  (3.161) 

where is the initial settlement and is the increment of the settlement at every 

time step, t.  A load placed on the soil specimen is first carried by water trapped in pores 

which causes excess pore water pressure.  Then, water gradually escapes from the pores 

during loading and load is carried by soil particles which creates effective stress in the 

specimen.  While the effective stress increases during loading, excess pore water 

dissipates until the equilibrium is reached.  When the equilibrium is reached, the average 

degree of consolidation, Uavg, is 1.0 which indicates that the soil specimen used for the 

consolidation test is 100% consolidated.   
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In Figure 3.7, for t0=0.1 s, the soil specimen is 10% consolidated at the end of the 

ramp loading, the total consolidation is then completed in 3 s.  For t0=0.5 s, the initial 

consolidation is around 45%, the total consolidation is completed in 3 s.  During rapid 

loading (t0=0.1 s), the soil specimen consolidates approximately 5 times less than the soil 

specimen under slow loading (t0=0.5 s).  In both Figures 3.6 and 3.7, the results are in 

good agreement with the work of Smith et al. (Smith, et al., 1976). 

Figures 3.8 and 3.9 illustrate the variation of pore pressures and degrees of 

consolidation with time in the middle of the soil specimen. The results computed by the 

finite element method are compared with the results obtained from Terzaghi’s effective 

stress and consolidation theories.  In Figure 3.8, the pore pressures that are calculated by 

Terzaghi’s method are closer to the results of rapid loading (t0=0.1 s) of the soil 

specimen.  This is because Terzaghi’s principle of effective stress describes the pore 

pressures as independent of loading rate (viz. Section 3.2.7). Thus, it does not capture the 

pore pressure change of a slowly loaded soil specimen.  In Figure 3.9, degrees of 

consolidation that are calculated using Terzaghi’s consolidation theory are closer to the 

rapid loading of the soil specimen that is calculated using the finite element method, 

because Terzaghi’s method is independent of loading rate. 

Figures 3.10 and 3.11 show the contour plots for pore pressures and effective 

stresses in the soil column at t0=0.1 s and t0=0.1 s, respectively.  Approximately 99% of 

the applied load is carried by pore water during rapid loading (Figure 3.10).  On the other 

hand, during slow loading (Figure 3.11), approximately 99% of the load is carried by the 

soil particles. 
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Figure 3.4 The finite element mesh consisting of four 8-noded elements. 
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Table 3.1 Material parameters of the odometer specimen in Example 3.1 

Material Parameter Notation Value Units 

 General   

Unit weight of water γw 9.81 kN/m3 

Permeability kx 9.81 m/sec 

 ky 9.81 m/sec 

 Elastic   

Modulus of elasticity E 1.0 MPa 

Poisson’s ratio ν 0.0 - 

 

 

Figure 3.5 Ramp load versus time. 
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Figure 3.6 Pore pressure vs. time for t0=0.1 s and t0=0.5 s computed using FEM (present 
work) compared with the published data. 

0.01 0.1 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
or

e 
P

re
ss

ur
e 

(k
N

/m
2 )

Present work 
- t0=0.1 s
Present work 
- t0=0.5 s
Smith et al. -
t0=0.1 s
Smith et al. -
t0=0.1 s



67 
 

 

 

Figure 3.7 Degree of consolidation vs. time factor for t0=0.1 s and t0=0.5 s computed 
using the FEM (present work) and the published data. 
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Figure 3.8 Pore pressure vs. time for t0=0.1 s and t0=0.5 s computed using FEM (present 
work) compared with the Terzaghi’s method. 
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Figure 3.9 Degree of consolidation vs. time factor for t0=0.1 s and t0=0.5 s computed 
using FEM (present work) compared with the Terzaghi’s method. 
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Figure 3.10 Contour plots of pore pressure and effective stresses at t=0.1 sec for the 
t0=0.1 initial loading. 



71 
 

 

 

 

Figure 3.11 Contour plots of pore pressure and effective stresses at t=0.5 sec for the 
t0=0.5 initial loading. 
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3.5.2 Two Dimensional Consolidation Problem 

Two-dimensional plane strain consolidation analysis of a Biot poro-elastic solid is 

considered in this example.  A finite strip of soil is loaded over its central portion.  For 

the sake of simplicity, only half portion of the soil strip is modeled.  The ratio of the 

loaded part to the half portion of the geometry is chosen as 1:5 with a half-width of 60 m.  

The example is modeled and solved using the finite element software ABAQUS®. 8-node 

biquadratic displacement, bilinear pore pressure, reduced integration elements (CPE8R) 

are used in the model.  The geometry of the mesh is given in Figure 3.12.  The material is 

chosen as elastic with a Young’s modulus of 6.895 MPa and a Poisson’s ratio of 0.0. The 

initial void ratio is chosen as 1.5.  Coefficients of permeability vary with the void ratios 

and are chosen as 5.08×10-7 m/s at the void ratio of 1.5 and 5.08×10-8 m/s at void ratio of 

1.0. The material properties are given in Table 3.2.  The strip of soil is assumed to lie on 

rigid, impermeable and smooth base.  The applied pressure on the soil strip is 500 kPa.  

Neither horizontal displacement nor pore fluid flow is permitted along the vertical sides 

of the model.  Free drainage is only allowed on the top surface of the model. 

The analysis is performed using two steps.  In the first step, the full load is applied 

over two equal fixed time increments.  The load remains constant in the subsequent step 

during which the soil undergoes consolidation.  The analysis considers finite-strain 

effects, and the soil permeability varies with the void ratio.  The reason for employing the 

finite-strain method is to simulate the soil consolidation assuming that the permeability of 

the soil decreases as it is compressed which is physically realistic in soil mechanics.   

The deformed shape of the soil model is shown in Figure 3.13.  The contour plot 

of the model for von Mises stresses is shown in Figure 3.14.  As seen in Figure 3.14, the 

maximum stress is 484 kPa, and it occurs where the distributed load is applied.  The 

stresses underneath the foundation gradually decrease with depth.  The pattern of the 

stress distribution is circular (spherical for a three dimensional model).  The pore water 

pressure distribution in the model is shown in Figure 3.15.  The pore pressures are 
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approximately zero at the end of the analysis, because the drainage is allowed on the top 

surface. 

Table 3.2 Material properties of the specimen in Example 3.2 

Material Parameter Notation Value Units 

 General   

Initial void ratio e0 1.5 - 

Permeability    

at void ratio, e=1.5 k1.5 5.08 ×10-7 m/sec 

at void ratio, e=1.0 k1.0 5.08 ×10-8 m/sec 

 Elastic   

Modulus of elasticity E 6.895 MPa 

Poisson’s ratio Ν 0.0 - 
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Figure 3.12 The undeformed meshed geometry of the 2-D consolidation problem. 
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Figure 3.13 The deformed shape after loading. 

  



 

 

Figure 3.14 Contour plot of von Mises stresses on the deformed body

Figure 3.15 The c

Contour plot of von Mises stresses on the deformed body

The contour plot of pore pressures on the deformed body
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Contour plot of von Mises stresses on the deformed body 

 

on the deformed body. 
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3.6 Summary and Discussion 

In this chapter, the finite element formulation of a coupled pore pressure and 

displacement problem is described.  First, a consolidation problem is considered.  Using 

the principal of averages, the balance equations are derived followed by the principle of 

effective stress.  Next, the finite element framework for the coupled problem is explained 

and the finite element equations are derived for the solution of consolidation problems.  

Then, the finite element equations are verified solving two steady-state consolidation 

problems using the commercial software Mathematica®.  The elastic behavior of porous 

media was analyzed.  The change in the state of the stress, deviatoric stress and pore 

pressure, was observed with a great accuracy.  The results were in good agreement with 

the related references. 
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CHAPTER 4  

COUPLED DYNAMIC ANALYSIS OF POROUS 

MEDIA USING THE FINITE ELEMENT METHOD 

4.1 Introduction 

The coupled dynamic analysis of soil-pore fluid interaction problems is of 

tremendous interest in geotechnical engineering and geotechnical earthquake engineering 

due to its application from pile driving to earthquake response of soil structures.  The 

dynamic behavior of fully saturated porous media was first investigated by Biot (Biot, 

1956).  In his study, Biot expanded his original work on coupled systems (Biot, 1941) to 

dynamic problems using the displacement of the solid skeleton u and relative fluid 

displacement w as variables.  Ghaboussi and Wilson (1972) proposed the first multi-

dimensional finite-element formulation to solve the linear coupled governing equations. 

Zienkiewicz et al. then introduced a simple formulation coupling the 

displacement of the soil skeleton u and pore fluid pressure p (Zienkiewicz, et al., 1980).  

The non-linear behavior of soils including large deformations and non-linear material 

behavior was also taken into account by Zienkiewicz et al.  The incremental form of 

dynamic equations was derived in their studies (Zienkiewicz, 1982; and Zienkiewicz and 

Shiomi, 1984). 

The objective of this chapter is to develop the finite element framework for the 

solution of the couple dynamic pore pressure/displacement equations to have a better 

understanding of dynamic soil-pore pressure problems.  The organization of this chapter 

is as follows: First, the finite element framework is developed using the Mathematica 

software to solve the fully coupled Biot (1941) dynamic equations using the u-p 

formulation.  Then, numerical examples are carried out for the transient analyses of soils.  

Next, the results are compared with commercial finite element package ABAQUS.  

Finally, the chapter is summarized and conclusions are presented. 
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4.2 Governing Equations 

The governing equations for the dynamic behavior of soils are similar to those 

derived for the quasi-static case explained in the previous section.  The mass balance 

equation for the dynamic case is equivalent to the equation used for the static case with 

the assumption of the grains are incompressible, pore fluid is compressible and the soil is 

saturated.  The dynamic formulation for the linear momentum balance equation for a two-

phase medium can be expressed assuming that the interaction forces and the acceleration 

of the fluid term in Eq. (3.75) are neglected.  The final form of mass balance and linear 

momentum balance equations are defined as follows: 

 ( )  0w s
w

w

n p
div grad p div

K t
ρ

µ
 ∂ + − + + = ∂  

k
g ɺu  (4.1) 

  (4.2) 

4.3 Initial and Boundary Conditions 

It is necessary to define the initial and boundary conditions for a boundary value 

problem.  The initial conditions specify the full field of displacements and water 

pressures at time t=0 as follows 

  (4.3) 

where Ω is the domain of interest and Γ is its boundary.  The imposed boundary 

conditions displacements and water pressures are as follows: 

  (4.4) 

The traction boundary condition for stresses is  

  (4.5) 
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Finally, the flux boundary condition for water from Eq. (3.28) is 

  (4.6) 

where q is the imposed mass flux normal to the boundary.  Equations (4.4) and (4.5) are 

natural boundary conditions for the corresponding balance equations. 

4.4 Finite Element Implementation 

4.4.1 Weak Form 

  (4.7) 

where the virtual displacements, virtual strains and virtual pore pressure derivatives are 

  (4.8) 

4.4.2 Finite Element Equations 

The displacements and the pore pressures are approximated using the 

weighted residuals method (Galerkin approximations) described in Section 3.3 in the 

following form: 
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  (4.10) 

where u and pare nodal parameters of each field and Nu and Np are the appropriate shape 

functions.  Substituting the assumed solutions into the weak form yields 

  (4.11) 

The sets of weighting functions are the columns of the matrix of the assumed solution 

functions defined as follows: 

  (4.12) 

Incorporating the shape functions and their derivatives into the weak form, the following 

sets of equations are obtained. 

  (4.13) 

  (4.14) 

The final form of the spatially discretized linear momentum and mass balance equations 

are then written in the compact forms as follows: 
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  (4.15) 

  (4.16) 

in which 

  (4.17) 

  (4.18) 

  (4.19) 

  (4.20) 

  (4.21) 

  (4.22) 

  (4.23) 

where M s is the mass matrix for the solid phase, Km is the elemental elastic stiffness 

matrix, Q is the coupling matrix, S is the compressibility matrix, K c is the permeability 

(flow) matrix, fu is the elemental vector of external forces, and fp is the fluid supply 

vector.  The final matrix form of the coupled dynamic equations for consolidation is 

expressed as 

  (4.24) 

4.5 Discretization in Time using the Newmark Algorithm 

The total discrete equilibrium equations for the soil-fluid mixture were developed 

using the finite element method in the previous section.  In this section, the discretization 
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process will be carried out in the time domain to present a solution for the transient 

problems including linear and non-linear cases.  To perform the step-by-step time 

discretization, the Newmark algorithm (Newmark, 1959) which is a widely applicable 

finite difference approximation will be used for the solution of the dynamic coupled 

equations in the time domain (Zienkiewicz, et al., 1985).  Assuming that the nodal 

displacement vector B, and the nodal velocity vector B� , at time C, are known, the 

approximations for B,-. and B� ,-. at time C,-.can be written as follows: 

  (4.25) 

where 

  (4.26) 

For the approximation of the pore pressure variable pn+1 at �,-., the approximation of 

is written as follows: 

  (4.27) 
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The variables with superscript ‘p’ in the above equations such as , etc. denote the 

values that can be ‘predicted’ from the known parameters at time tn. 

The finite element discrete approximations for the dynamic coupled governing 

equations (Equations 4.15 and 4.16) were already derived in the previous section.  To 

perform the discretization in time domain, the approximations for the nodal displacement, 

pore pressure and their derivatives with respect to time are substituted in the governing 

equations as follows: 

  (4.30) 

Substituting the approximated description of and in the first governing equation 

above yields 

  (4.31) 

Substituting the predictable values into Eq. (4.32) yields 

  (4.32) 
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  (4.35) 

The terms can then be rearranged as follows: 

  (4.36) 

The governing equations in terms of approximated variables can be coupled and 

presented in a matrix form as follows: 

  (4.37) 
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The solution procedure for the final form of the equation system is as follows:  

1. Select the Newmark parameters and .  The selection of the Newmark 

parameters and is very important, because the solution can be unstable if 

these parameters are not selected correctly.  The Newmark algorithm is 

unconditionally stable and thus fully implicit when the following conditions are 

satisfied (Zienkiewicz, et al., 1985): 

  (4.41) 

2. Enter the prescribed initial conditions at tn in the final form of the dynamic 

governing equation system. 

3. Solve the equation system, Eq. (4.40), at time tn+1 for the incremental nodal 

acceleration and nodal rate form of pore pressures  and . 

4. Update the solution to find the nodal accelerations at the rate form of pore 

pressures at time . 

5. Repeat steps 1 through 4 at each time step with an increment of until the 

solution is complete. 

4.6 Numerical Applications 

4.6.1 Transient Analysis of a Soil Column 

An elastic soil column, which is shown in Figure 4.1, is subjected to a surface step 

loading of 1.0 kN/m2.  The step loading is applied with an initial time of 0.1 second as 

shown in Figure 4.2.  The soil column has a width of 3 m and a height of 30 m.  It is 

modeled using ten 8/4-u/p elements where 8-node displacements coupled to 4-node pore 

pressures.  The porous medium is considered as fully saturated with water.  The material 

is considered as isotropic and elastic.  The material properties are given in Table 4.1.  The 

boundary conditions are shown in Figure 4.1.  Drainage is not allowed in the first 0.1 s.  

,  γ β θ

,  γ β θ

1 1 1
,       ,        

2 4 2
γ β θ≥ ≥ ≥

1n+∆uɺɺ 1n+∆pɺ

1nt +

t∆



87 
 

 

The drainage is allowed only on the top surface after the initial loading is complete 

remaining constant until the end of the analysis.  The other sides are kept undrained 

during the analysis.  A direct implicit algorithm is adopted for the solution of the 

problem.  Time-stepping parameters are chosen as β=0.3025, θ=0.6 and γ=0.6.   

The solution for the analysis of consolidation in the soil column is obtained for 

two time intervals with different time steps.  The first analysis is run within a total time of 

tf=20 s with a time step of ∆t=0.05 s.  The second analysis is run within a total time of tf 

=200 s with a time step of ∆t=0.2 s.  The reason for choosing two different time steps is 

to show the effect of loading rate on the change of pore pressures.  Three nodes namely 

Node 1, Node 26 and Node 46 are selected to show the pore pressure change in the soil 

column.  Node 1 is located at the bottom, Node 26 is located in the middle and Node 46 

is located at the top of the soil column.  Time history of pore pressures for tf=20 s and 

tf=200 s are plotted for Nodes 1, 26 and 46 as shown in Figures 4.3 and 4.4, respectively. 

In Figure 4.3, the pore pressures vs. time are plotted at Nodes 1, 26 and 46 for a 

total loading time of tf=20 s with a time step of s.  The pore water pressures at 

Nodes 1 and 26 are constant throughout the analysis and have a value of 1 kN/m2.  The 

pore water pressure at Node 46 has a value of 1.2 kN/m2 at time t=0.1 s and gradually 

decreases to a value of approximately 0.6 kN/m2 at the end of the analysis as shown in 

Figure 4.3.  The initial excessive pore pressure of 0.2 kN/m2 occurs at Node 46, because 

the load is applied rapidly on the top surface.  Since the load is applied within a very 

short period of time, the trapped water in the pores creates excessive pressure before it 

leaves the pores. 

Figure 4.4 shows the pore pressures at Nodes 1, 26 and 46 for an analysis period 

of tf=200 s with a time step of s.  The pore pressure at the bottom of the soil 

column remains constant throughout the analysis and has a value of 1.0 kN/m2.  The pore 

pressure in the middle decreases gradually from 1.0 kN/m2to 0.8 kN/m2.  The pore 

pressure on the top surface decreases from 1.2 kN/m2 to 0.2 kN/m2 during the analysis.  

0.05t∆ =

0.2t∆ =
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The top surface is drained, thus the pore pressures close to the top surface dissipate with a 

faster rate compared to the pore pressures in the bottom of the soil column.  That is the 

reason the pore pressures at the bottom remain constant throughout the analysis.  All of 

the results are in good agreement with the published data (Huang, et al., 1998). 

In Figure 4.5, the pore pressures for the same example obtained from the finite 

element package ABAQUS are plotted. The results shown in Figure 4.5 match perfectly 

with the present work which is conducted using the finite element code implemented in 

Mathematica software.  The contour plots of the pore pressure distribution in the soil 

column for tf=20 s and tf=200s are shown in Figure 4.6.  The first plot shows pore water 

pressure decreases from 0.0 kN/m2on the top surface to 0.9 kN/m2 to a depth of 

approximately 6 m from top.  The second plot shows that pore water pressure changes 

from 1.0 kN/m2 to0.9 kN/m2within a depth of approximately 21 m from the top surface. 

This comparison shows the effect of time that is required for dissipation of pore water 

pressure.  The longer the analysis time, the greater the dissipation occurs in the soil 

column. 
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Figure 4.1 Finite element mesh of the one-dimensional elastic soil column. 
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Table 4.1 Material properties of the soil column 

Material Parameter Notation Value Units 

 General   

Density of solid ρs 2.0×103 kg/m3 

Density of water ρw 1.0×104 kg/m3 

Permeability k 1.0×10-4 m/sec 

Porosity n 0.3 - 

 Elastic   

Modulus of elasticity E 3.0×104 kN/m2 

Poisson’s ratio ν 0.2 - 
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Figure 4.2 Ramp load versus time. 
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Figure 4.3 Pore pressure vs. time at nodes 1, 26 and 46 at tf=20 sec with ∆t=0.05 s. 
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Figure 4.4 Pore pressure vs. time at nodes 1, 26 and 46 at tf=200 sec with ∆t=0.2 s 
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Figure 4.5 Pore pressure vs. time at tf=20 sec using the ABAQUS software. 
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Figure 4.6 Contour plot of pore pressure distribution in the soil column at (a) tf=20 s and 
(b) tf=200 s. 

  

                      (a)                                                               (b) 
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4.6.2 Transient Analysis of a Soil Foundation 

An elastic soil foundation is subjected to a surface step loading is analyzed in this 

numerical application. The finite element mesh of the model and the boundary condition 

are shown in Figure 4.7. The commercial finite element package ABAQUS is used for 

this analysis. Eight-noded, continuum, biquadratic, coupled displacement/pore pressure 

element elements are used in this analysis. The element type CPE8P which is available in 

the ABAQUS element library is shown in Figure 4.8. 

The material properties are identical to those used in Example 4.6.1 as shown in 

Table 4.1.  The elastic soil foundation is considered fully saturated.  A surface step 

loading of 350 kN/m2 is applied at an initial time of 0.1 s.  The drainage is not allowed 

during initial loading.  After t=0.1 s, drainage is allowed only on the top surface until the 

end of the analysis.  The soil consolidation is analyzed until tf= 50 s with fixed time steps 

of ∆t = 0.05 s. 

Three nodes are selected to analyze the pore water pressure change in the finite 

element model. Nodes A, B and C are located at 6 m, 12 m and 15 m below the 

foundation level respectively (Figure 4.7).  The pore water pressures versus time are 

plotted at Nodes A, B and C as shown in Figure 4.9.  The pore pressure at Node A starts 

from approximately 110kN/m2and increases to 120kN/m2, and decrease gradually to a 

level of 60kN/m2.  The initial increase occurs within the first six seconds.  This can be 

explained by the rapid loading of the foundation.  The pore pressure at Node B starts 

from approximately 65 kN/m2and increases to 67 kN/m2within the first 25 seconds and 

then decreases to 65kN/m2.  At Node C, the pore pressure remains almost constant at the 

level of 58 kN/m2 during the analysis.  As the depth increases, the effect of the applied 

load on the pore pressures becomes less significant.  This can also be explained by 

evaluating the contour plot of pore pressures as shown in Figure 4.10.  In this Figure, the 

pore pressure distribution at tf= 50 s is plotted.  The pore pressure is0kN/m2 on the top 

surface and gradually increases to 68 kN/m2 at a depth of approximately 15 m below the 
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ground surface, then decreases to 50kN/m2 at the level of 30 m below the ground surface.  

The pore pressures dissipate further away from the foundation as shown in Figure 4.10.  

The Von Mises stresses in the finite element model are shown in Figure 4.11.  The 

stresses start from 245kN/m2at the ground level and decrease to 0kN/m2 at 30 m below 

the ground surface.  As shown in Figure 4.11, the stress distribution follows a circular 

pattern underneath the foundation.  The results are consistent with those of Huang, et al. 

(1998). 
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Figure 4.7 Finite element mesh of an elastic soil foundation. 
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Figure 4.8 Representation of eight-noded, continuum, biquadratic, coupled 
displacement/pore pressure element in ABAQUS/Standard. 
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Figure 4.9 Pore pressure vs. time at nodes A, B and C. 
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Figure 4.10 Pore pressure distribution at tf = 50 s in the soil foundation. 

 

Figure 4.11 Von Mises stress distribution at tf = 50 s in the soil foundation. 
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4.7 Summary and Discussion 

Transient analysis of porous medium is formulated using the finite element 

method based on the works of Zienkiewicz and his colleagues (1980, 1982, and 1984). 

The governing equations for the dynamic behavior of soils are derived using the mass 

balance and linear momentum balance equations. The soil is considered as comprised of 

soil skeleton and pore water. It is assumed that the soil grains are incompressible and the 

pore water is compressible. The soil is assumed to be fully saturated. The interaction 

forces and the acceleration terms are neglected in the governing equations. 

Finite element equations are developed by discretization the governing equations 

in spatial and time domains.  The discretization in spatial domain is carried out and the 

final forms of governing equations are described.  The discretization in time domain is 

performed using the Newmark algorithm (Newmark, 1959).Based on the final form the 

coupled dynamic equations, a finite element code is developed using Mathematica 

software. 

Numerical applications are exhibited for validating the finite element code.  In the 

first application, a soil column is analyzed under dynamic loading.  The change of pore 

water pressure over time is illustrated under drained conditions.  In the second 

application, a strip foundation is analyzed under dynamic loading.  The effects of pore 

pressure changes caused by rapid loading are investigated. It is found that the rate of 

loading has a significant impact on the magnitude of excessive pore water pressures.  

These applications are also carried out by ABAQUS software.  The finite element code 

has been beneficial for interpreting the results obtained from ABAQUS.  The results are 

found to be consistent with the published data. 
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CHAPTER 5  

ELASTO-PLASTIC CONSTITUTIVE MODELS 

Constitutive modeling of soil behavior under general loading and variable site 

conditions plays a key role in obtaining accurate numerical results.  A linear elastic 

constitutive relationship has been widely used to represent soils in early numerical 

studies; however soil behavior is highly nonlinear in most cases.  The choice of an 

appropriate stress-strain relationship and idealization of the soil material behavior with the 

assumptions of continuum mechanics become essential.  In this chapter, first the stress-strain 

relations in continuum mechanics are reviewed followed by the equations of stress 

equilibrium.  Next, the generalized theory of plasticity is explained.  Then, the extended 

version of the Mohr-Coulomb plasticity model is described in detail.  Subsequently, the 

Drucker-Prager plasticity model is explained.  Finally, the summary of these constitutive 

models is presented. 

5.1 State of Stress 

5.1.1 Stress Tensor 

The state of stress for three-dimensional point is defined by a matrix containing 

nine stress components as shown in Figure 5.1.  The nine components of the stress at any 

point form a second order tensor, known as the stress tensor which can be defined as: 

  (5.1) 

The shear stresses in the stress tensor have the following relationships due to the moment 

equilibrium as follows: 

  (5.2) 
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As a result the stress tensor is compose

components are called normal stresses 
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and . The principle stresses are related to the components of the stress tensor by 
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As a result the stress tensor is composed of six independent components.  These 

components are called normal stresses and shear stresses

 

Figure 5.1 Stress state for three-dimensional elements 
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point can also be defined in terms of principle stresses

principle stresses are related to the components of the stress tensor by 

(5.3) 

are known as the first, second and third stress invariant, respectively.  

 (5.4) 

( , , )xy yz xzσ σ σ
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The stress invariants can also be expressed in terms of principal stresses in the form of: 

  (5.5) 

5.1.3 Mean Stress and Deviatoric Stresses 

The state of stress at a point tensor can be expressed as the sum of two other 

stresses: the mean stress (volumetric stress), p, which tends to change the volume of the 

stressed body; and the deviatoric stress which tends to distort it.  The mean stress of a 

stressed point is defined as the average of normal stresses in three directions as: 

  (5.6) 

The deviatoric components of the stress are defined by 

  (5.7) 

where is the Kronecker delta function defined as: 
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The three invariants of deviatoric stress are 
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mechanics (Roscoe and Burland, 1968; Muir Wood, 1990), the mean stress p is often 

used in pair with a generalized shear stress q defined as: 

  (5.10) 

 

The stress invariants can also be interpreted geometrically in the principal stress 

space.  The state of stress at material point A in the principal stress coordinate system is 

shown in Figure 5.2.  The angle θ is called the Lode angle which is defined as: 

 

  (5.11) 

In terms of the mean stress p and the shear stress q, the principal stresses can be 
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Figure 5.2 Lode angle on a deviatoric plane. 
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5.2 Generalized Theory of Plasticity 

Soil deformation contains elastic (recoverable) and plastic (irrecoverable) strains 

upon loading and unloading paths. Elastic strains account for small fractions of the total soil 

deformation (Koolen and Kuiper, 1983 and Shen and Kushwaha, 1998). The reversible 

behavior of elastic strains upon removal of loading could be of linear or non-linear forms 

(Chen and Mizuno, 1990). Incremental theory of plasticity has been used successfully in 

describing the deformation of a wide range of materials including soils. In this theory, there 

are three components of the constitutive model that need to be defined:  

� the yield criterion, which defines the transition of elastic to plastic 

deformation;  

� the plastic flow potential, which dictates the relative amounts of each 

component of the plastic flow; and  

� the evolution of the microstructure, which in turn defines the resistance to 

further deformation.  

For an elastoplastic material with isotropic hardening, the yield surface is 

described by a yield function of the form f (σ, κ), where σ is a vector of the current 

stresses and κ is some hardening parameter. If f (σ, κ) < 0, the stress point lies within the 

yield surface and the material behaves elastically according to  

  (5.13) 

where De is the elastic stress-strain matrix, is a vector of 

stress components, and is a vector of strain components.  

Once yielding takes place,  and the stresses remain on the yield 

surface as plastic deformation occurs. When yielding begins, the rate form of the yield 

function which is also known as the consistency condition can be expressed as follows: 
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where is a vector of stress rates, is a hardening rate, and  

  (5.15) 

is the gradient to the yield surface. At this stage, plasticity theory makes two key 

assumptions. The first is that the total strain rate, , can be expressed as the sum of an 

elastic strain rate, , and a plastic strain rate, , according to  

  (5.16) 

The second is that the direction of the plastic strain rates is normal to a surface called the 

plastic potential. This assumption is called the flow rule, and it can be expressed as  

  (5.17) 

where g is the plastic potential, is a positive constant known as the plastic strain rate 

multiplier, and  

  (5.18) 

is the gradient to the plastic potential. For convenience, the plastic potential is usually 

assumed to have a form similar to that of the yield criterion. When the gradients to the 

plastic potential and the yield criterion are coincident, plastic flow takes place in a 

direction which is normal to the yield surface and the flow rule is said to be associated. 

Any other type of flow rule is said to be nonassociated. Associated flow rules are often 

used in metal plasticity studies and a number of important uniqueness theorems can be 

derived for them (Hill, 1950).  

Differentiating Eq. (5.12) with respect to time and substituting Equations 5.15 and 
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Inserting Eq. (5.18) in Eq. (5.13), the consistency condition, the plastic multiplier may be 

written as  

  (5.20) 

where the parameter His given by  

  (5.21) 

Substituting the expression for from Eq. (5.19)  into Eq. (5.18) yields 

  (5.22) 

which can also be expressed as  

  (5.23) 

The final form of the standard elastoplastic stress-strain relations is defined as 

  (5.24) 
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  (5.25) 

is known as the elastoplastic stress-strain matrix. Given that the strain rate is known, 

Eq. 5.23 describes a small system of ordinary differential equations which can be 

integrated over a specified time interval to obtain the unknown stresses and hardening 

parameter. The initial conditions for this system are the known stresses and hardening 

parameter at the start of the time interval.  
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expressed in terms of shear stress  and normal stress  acting on a plane.  The model 

suggests that the yielding begins as long as the shear stress and the normal stress satisfy 

the following equation: 

  (5.26) 

where c is the cohesion and is the friction angle.  The Mohr-Coulomb model is based 

on plotting Mohr's circle for states of stress at failure in the plane of the maximum and 

minimum principal stresses. The failure line is the best straight line that touches these 

Mohr's circles as shown in Figure 5.3. 

5.3.1 Yield Criterion 

The Mohr-Coulomb model can also be expressed in terms of principal stresses.  

The yield criterion is defined as: 

  (5.27) 

for where and are the maximum and minimum principal stresses 

(positive in tension).  The Mohr-Coulomb yield surface on deviatoric plane is shown in 

Figure 5.4.In terms of stress invariants and Lode’s angle, the Mohr-coulomb yield 

criterion takes the following form: 

  (5.28) 
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5.3.2 Plastic Potential 

In the Mohr-Coulomb model, the plastic potential takes a very similar form of the 

yield function.  In the plastic potential, instead of the friction angle, the dilation angle 
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  (5.30) 

where 

  (5.31) 

If the flow rule is associated, then the yield criterion and the plastic potential 

coincides which yields: .  In the non-associated flow case, the plastic potential and 

the yield criterion must be linked by a stress-dilatancy equation.  The most widely used 

relationship between the angles of friction and dilation is developed by Rowe (1962) and 

further simplified by Bolton (1986) is as follows: 
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Figure 5.3 The Mohr-Coulomb failure envelope on σ-τ plane. 
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Figure 5.4 The Mohr-Coulomb yield criterion on a deviatoric plane. 
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5.3.3 Mohr-Coulomb Model in ABAQUS 

The Mohr-Coulomb model in ABAQUS is an extension of the classical Mohr-

Coulomb failure criterion.  ABAQUS offers a Mohr-Coulomb model which uses the 

classical Mohr-Coulomb yield criterion: a straight line in the meridional plane and a six-

sided polygon in the deviatoric plane. However, the ABAQUS Mohr-Coulomb model has 

a completely smooth flow potential instead of the classical hexagonal pyramid: the flow 

potential is a hyperbola in the meridional plane, and it uses the smooth deviatoric section 

proposed by Menétrey and William(1995).The yield function, f, is defined based on the 

classical Mohr-Coulomb constitutive model with isotropic hardening or softening..  The 

flow potential, g, however, which is defined after the work of Menétrey and William 

(1995), is a hyperbolic function in the meridional stress plane and has no 

corners in the deviatoric stress. The yield function, f, for the Mohr-Coulomb model in 

ABAQUS is defined as: 

  (5.33) 

in which 
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where is a measure of the shape of the yield surface in the π-plane; p is the pressure 

stress; q is the von Mises equivalent stress; r is the third invariant; S is the deviatoric 

stress tensor; σ is the total stress (negative in compression); I  is the unit tensor;  is the 

angle of internal friction of the material and; θ is the deviatoric polar angle defined after 

Chen and Han (1988). 

 The flow potential, g, which was proposed by Menétrey and William (1995) is in 

hyperbolic shape in the p-Rmcq plane (meridional plane) and in smooth elliptic shape in 

the π-plane (deviatoric stress plane).  It is defined as follows: 

  (5.40) 

in which 

  (5.41) 

where ε is the meridional eccentricity; c is the cohesion of the material; ψ is the angle of 

dilation and; e is the deviatoric eccentricity. The family of Menétrey-William hyperbolic 

flow potentials in the meridional plane is shown in Figure 5.5.  The comparison of 

Menétrey-William flow potentials in the deviatoric plane with the Rankine and von Mises 

theories are shown in Figure 5.6. 
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Figure 5.6 Menétrey-William flow potential in the deviatoric plane. 
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5.4 Drucker-Prager Plasticity Model 

The Drucker-Prager plasticity model was proposed by Drucker and Prager (1952) for 

frictional soils including the effect of mean stress as observed in soil experiments.  The yield 

criterion and the plastic potential of the plasticity model are explained in the following 

subsections. 

5.4.1 Yield Criterion 

The yield criterion for the Drucker-Prager plasticity model is defined as follows: 

  (5.42) 

where  is the generalized shear stress,  is the mean stress, β is the 

friction angle of the material and, d is the cohesion of the material.  The parameters β and 

d can be matched with the Mohr-Coulomb material parameters c (cohesion) and φ (angle 

of internal friction) for two different flow cases using a certain criterion as summarized in 

Table 5.1.  The Drucker-Prager yield surface is compared with the Mohr-Coulomb yield 

surface in Figure 5.6.  While the Mohr-Coulomb yield surface is a hexagonal on the 

deviatoric plane, the Drucker-Prager yield surface is a circular shape.  The three-

dimensional yield surface which is a cone is illustrated in Figure 5.7. 

Table 5.1 The relationship between Drucker-Prager material constants and the Mohr-
Coulomb material parameters 

Flow rule  Drucker-Prager Material Constants 

Associated flow,  
  

Non-associative flow,    
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5.4.2 Plastic Potential 

To complete the formulation of the Drucker-Prager plasticity model, a plastic 

potential should be defined.  Similar to the Mohr-Coulomb plasticity, a plastic potential 

can be adopted which coincides with the yield surface as follows: 

  (5.43) 

where the angle of friction is replaced by the angle of dilation ψ. 

 

Figure 5.7 Mohr-Coulomb and Drucker-Prager yield surfaces on a deviatoric plane. 
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Figure 5.8 The Drucker-Prager failure surface on a deviatoric plane. 
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5.5 Summary and Discussion 

The general plasticity and two soil constitutive models available in ABAQUS 

have been reviewed in this chapter.  The theory of the Mohr-Coulomb plasticity model 

and the Drucker-Prager model are presented.  The advantages and limitations of these 

two constitutive models are given in Table 5.2. 

Table 5.2 The advantages and limitations of soil models 

Constitutive Model Advantages  Limitations  

Mohr-Coulomb   

 Simple Yield surface has corners 

 Valid for many soil types Neglect the effects of intermediate 
principal stress 

 Model parameters can be 
obtained easily from soil 
experiments 

- 

Drucker-Prager Simple to use Excessive plastic dilatancy at 
yielding 

 Can be matched with Mohr-
Coulomb model 

Cannot reproduce the hysteretic 
behavior within the failure surface 

 Analysis techniques can be 
implemented 

Cannot predict the pre pressure 
build-up during an undrained 
cyclic shear loading 

 Satisfy the associated flow rule  - 
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CHAPTER 6  

LOAD CAPACITY ANALYSIS OF SINGLE PILES 

6.1 Introduction 

A number of numerical and analytical methods have been developed for 

analyzing axially loaded piles. These methods are (1) the simplified analytical approach 

(Randolph, et al., 1978; Randolph, et al., 1979); (2) the load transfer methods (Seed, et 

al., 1957; Coyle, et al., 1966); (3) the subgrade reaction method (Chow, 1986); (4) the 

integral equation or the boundary element method (Poulos, 1968; Poulos, et al., 1968; 

Butterfield, et al., 1971; Banerjee, et al., 1978; Poulos, 1979; Poulos, et al., 1980) and; (5) 

the finite element method(Ellison, et al., 1971; Desai, et al., 1974; Ottaviani, 1975; 

Poulos, et al., 1986; Cheung, et al., 1991; De Nicola, et al., 1993;  Wakai, et al., 1999 and 

Zhang, et al., 2002).   

The finite element method is a general and direct approach for investigating the 

fundamental behavior and response of single piles.  In this method, soil medium is treated 

as continuum based on the elastic continuum theory.  The major advantages of modeling 

the pile-soil interaction using the finite element method are: (1) The displacement and the 

pore water pressure can be coupled in the analysis so that the pile, surrounding soil and 

the pile-soil interface can be represented by finite elements using only one model; (2) the 

deformation patterns in the pile-soil model can be analyzed at the element level which 

gives us a tremendous opportunity to analyze the local stresses and strains at the locations 

where the intensity of the stress is high and; (3) the soil-pile interface can be modeled 

with interface elements so that the friction between the pile and the surrounding soil can 

be represented with a high level of accuracy. 

This chapter focuses on the load capacity analysis of single piles using the finite 

element (FE) method along with the theoretical methods that are used to estimate the 

ultimate pile load capacity.  Dynamic analysis of a single pile will be discussed in the 
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next chapter.  The organization of this chapter is as follows.  The first section briefly 

discusses the numerical and analytical methods that have been developed for analyzing 

load capacity of single piles.  The second section includes the major analytical methods 

for determining the pile load capacity.  The estimation of end bearing capacity and skin 

friction resistance of piles are explained in details.  The next section explains the finite 

element formulation that is used in this chapter to determine the stresses and strains in the 

pile and soil.  Numerical applications that illustrate estimation of pile load capacity using 

the finite element method and the analytical methods are presented next.  A single pile 

which is embedded in normally consolidated clay is modeled with and without interface 

element to investigate the effect of soil-pile interaction.  The factors affecting the pile 

capacity such as the frictional properties of the soil-pile interface are also investigated in 

this section.  Finally, the analytical methods that are used to estimate the pile capacities 

are compared with the results of the finite element analyses.  In the last section, the 

results obtained from the analytical methods and the finite element analyses are 

compared.  The limitations of the analytical methods and the effects of the interface 

elements are discussed. 

6.2 Ultimate Bearing Capacity of Single Piles 

A single pile subjected to axial loading is shown in Figure 5.1.  When an axial 

load is applied on the pile head, the load is supported by two mechanisms: the end 

bearing at the tip of the pile, and the skin friction along the shaft. The ultimate axial 

capacity, Qult, of a single pile is, therefore, equal to the sum of the end bearing, Qe, and 

the skin fiction, Qs as follows:  

  (6.1) 

where is the unit end bearing, is the area of the tip, is the unit skin friction, and 

is the area of the pile shaft. 
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Figure 6.1 Axial loading of a single pile 
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6.3 End Bearing Capacity 

6.3.1 General End Bearing Capacity Formula 

The general end bearing capacity formula is presented by Meyerhof (1951) which 

can be applied to both rough shallow and deep foundations.  The formula is expressed as 

follows: 

  (6.2) 

where is the ultimate end bearing capacity,  are bearing capacity factors, c is 

the cohesion intercept, is the effective overburden pressure at the base level of the pile,

is the effective unit weight of the bearing soil at the base level, and B is the width or 

diameter of the shaft at the base level.  The bearing capacity factors are dependent on the 

internal friction angle of the soil.  These parameters have been interpreted from pile load 

tests and published by several researchers including Terzaghi (1943), Meyerhof (1963), 

Berezantsev (1961) and Vesic (1963 and 1972).  Table 6.3 illustrates the bearing capacity 

factors vs. internal friction angles proposed by different researchers.  

For cohesive soils, the cohesive intercept may be interpreted as the undrained 

shear strength of the soil (c=Su).  Also, the term  can be neglected because the 

width of the pile is relatively smaller than conventional foundations.  Therefore, the 

general end bearing capacity formulation takes the final form of: 

  (6.3) 

6.3.2 Vesic’s Method 

Vesic (1970) proposed the end bearing capacity formula based on the expansion 

of cavities theory which is related to the earth pressure and effective stresses in soil.  The 

end bearing capacity of Vesic is as follows: 

  (6.4) 

* * *1

2e c q eQ cN q N BN Aγγ ′ ′= + +  

eQ * * *, ,c qN N Nγ

q′

γ ′

*1/ 2 BNγγ ′

( )9e u eQ S A=

* *
0e c eQ cN N Aσσ ′= +
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where is the ultimate end bearing capacity, is the average normal effective stress at 

the base level of the pile, are the bearing capacity factors given in Table 6.3.The 

parameters  and K0 are defined as: 

  (6.5) 

  (6.6) 

where is the effective vertical stress at the base level, is the coefficient of earth 

pressure, and is the internal angle of friction.  The bearing capacity factors are defined 

as follows: 

  (6.7) 

  (6.8) 

in which is the bearing capacity factor presented by Vesic.  The values of based 

on the internal angle of friction are given in Table 6.3. 

6.3.3 Janbu’s Method 

Janbu (1976) proposed an end bearing capacity formula based on the internal 

friction angle  and the parameter  which is expressed in the form of: 

 ( )* *
0e c q eQ cN q N A′= +  (6.9) 

where is the ultimate end bearing capacity, is the effective vertical stress at the base 

level, and are the bearing capacity factors given in Table 6.3.The bearing capacity 

factors are estimated by Janbu as: 

  (6.10) 

 ( ) ( )
21/2* 2tan 1 tan exp 2 tanqN φ φ ψ φ = + +  

 (6.11) 
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in which ψ is an angle defining the shear surface around the pile tip.  The angle ψ ranges 

from 60º for soft clays to 105ºdegrees for dense sands. 

6.3.4 Meyerhof’s Method 

Meyerhof’s method to estimate the end bearing capacity includes two formulae 

which are used to calculate the bearing capacities for cohesionless and cohesive soils.  

These equations are shown below. 

For cohesionless soils 

 ( ) ( )* *
0 50 tane q e q eQ q N A N Aφ′= ≤  (6.12) 

For cohesive soils 

 ( )*
e u c eQ c N A=  (6.13) 

with 

 ( )* * 1 cotc qN N φ= −  (6.14) 

where uc is the undrained cohesion.  The values of the bearing capacity factor *
qN are 

plotted in Figure 6.1. 
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Figure 6.2 Variation of *
qN with internal friction angle, φ . 
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6.3.5 Coyle & Castello’s Method 

The end bearing capacity formulation proposed by Coyle and Castello (1981) 

which is only used for cohesionless soils is defined as follows: 

 ( )*
0e q eQ q N A′=  (6.15) 

where eQ is the ultimate bearing capacity,0q ′  is the effective vertical stress at the base 

level, and *
qN is the bearing capacity factor given in Table 6.1. 

Table 6.1 The bearing capacity factors for piles in cohesionless soils 

Theories Approximate values of Nq for Various Friction 
Angles, φφφφ  (degrees) 

 25 30 35 40 45 

Terzaghi (1943)      

     General shear 12.7 22.5 41.4 81.3 173.3 

     Localized shear 5.6 8.3 12.6 20.5 35.1 

Meyerhof (1953) 
     Driven Piles 

38 89 255 880 4000 

Vesic (1972),Ir= 60 20 27 40 59 85 

Coyle & Castello (1981) 
(Driven piles) 

12 25 53 120 230 
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Figure 6.3 Variation of *
qN with internal friction angle, ϕ. 
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6.4 Skin Friction Resistance 

6.4.1 Alpha Method 

The alpha method (α-method) of Randolph and Murphy (Randolph and Murphy, 

1963) relates the maximum skin friction to the degree of over-consolidation of the soil, 

reducing the influence of the measurement of the shear resistance on the calculation of 

the bearing capacity.  This method is based on the total-stress concept and, is only valid 

for cohesive soils.  It is also known as the American Petroleum Institute (API) 1991 

method, because the API method directly derived the calculation of the skin friction in 

cohesive soils from the α-method. The ultimate skin resistance based on the α-method is 

defined as: 

 ( )s u sQ S Aα=
 (6.16) 

whereα  is the adhesion factor, uS is the undrained shear strength of soil along the shaft, 

and sA is the skin area of the shaft.  Randolph and Murphy (Randolph, et al., 1985) 

defined the α-function that varies with the normalized shear strength /u vS σ ′  as shown in 

Figure 6.4.  
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Figure 6.4 Variations of α with the normalized shear strength,/u vS σ ′ . 
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6.4.2 Beta Method 

In the Beta method (β-method), Burland (1973) proposed a calculation method for 

the skin friction resistance along a shaft for both cohesive and cohesionless soils.  This 

method is based on the total-stress concept and uses the coefficient β as a primary 

parameter which is calculated from lateral earth pressure and the friction angle of soil.   

The skin friction capacity of a shaft based on the β-method is calculated as 

follows: 

 ( )u v sQ Aβσ ′=  (6.17) 

where uQ  is the ultimate skin friction capacity,vσ ′ is the vertical effective stress at 

measured point, andsA is the total skin area of the shaft.  The β coefficient can be 

estimated for cohesive and cohesionless soils using different methods.  For cohesive 

soils, the formulation for estimating the β-coefficient is as follows: 

 0 tanKβ δ=  (6.18) 

in which 

 0 1 sinK φ= − (for normally consolidated clays) 

and 

 ( )0 1 sinK OCRφ= − (for over consolidated clays)   

where 0K is the coefficient of lateral earth pressure,δ is the friction angle between soil and 

pile,φ  is the internal friction angle of soil, and OCR is the over consolidation ratio of the 

clay.  The friction angle between pile and soil, δ, is dependent on the type of pile and the 

internal friction angle of soil,φ .  For different pile types, it is suggested to use the values 

of δ given in Table 6.2 (U.S. Navy 1986). 

For Cohesionless soils, different values of β were suggested by different 

researchers based on the pile load test data.  McClellend (1974) suggested values of β 
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ranging from 0.15 to 0.35.  Meyerhof (1976) suggested β values ranging from 0.44 to 1.2 

as shown in Table 6.3. 

Table 6.2 The friction angle between a pile and soil based on the pile type 

Pile Type Friction angle, δ (degrees) 

Steel 20 degrees 

Concrete ¾ ϕ 

Timber ¾ ϕ 

Table 6.3 The β-coefficient for cohesionless soils based on the internal friction angle 

β-coefficient Internal friction angle, ϕ (degrees) 

0.44 28 

0.75 35 

1.2 37 
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6.4.3 Lambda Method 

The lambda method (λ-method) which is used for the calculation of skin friction 

resistance in cohesive soils was first presented by Vijayvergiya and Focht (1972).  This 

method is founded on the effective stress concept.  Based on the available pile load test 

data in cohesive soils, the lambda concept expresses the average skin friction as a 

percentage of the average undrained shear strength and the effective overburden stress.  

The skin friction capacity based on the λ-method is as follows: 

 ( )2s v u sQ S Aλ σ ′= +  (6.19) 

where uQ  is the ultimate skin friction capacity,λ is the friction capacity coefficient,vσ is 

the average effective vertical stress for depth of pile embedment,uS is the average 

undrained shear strength for depth of pile embedment.  The empirical factor λ can be 

obtained from Figure 6.5. 
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Figure 6.5 Variations of λ with the pile penetration length, L. 
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6.5 Limitations of Analytical Methods 

The formulas for estimating the end bearing capacity and skin resistance of single 

piles may not be used for all types of soils.  The limitations for the calculation methods 

for the end bearing capacity of piles are shown in Table 6.4.  The limitations for the 

calculation of skin resistance of single piles are shown in Table 6.5. 

Table 6.4 The end bearing capacity calculation methods 

Calculation Method for End Bearing Capacity Cohesionless Soil Cohesive Soil 

General formula Yes Yes 

Vesic’s method Yes Yes 

Janbu’s method Yes Yes 

Coyle & Castello’s method No Yes 

Meyerhof’s method Yes Yes 

Table 6.5 The skin friction resistance calculation methods 

Calculation Method for Skin Friction Resistance Cohesionless Soil Cohesive Soil 

α-Method No Yes 

β-Method Yes Yes 

λ-Method No Yes 
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6.6 Finite Element Analysis of Single Piles 

This section outlines the procedure for analyzing the load capacity of single piles 

using the finite element package ABAQUS. Two examples are chosen for the static 

analysis of piles embedded in clay.  In the first example, the pile is installed in a single 

layer of stiff clay whereas in the second example, it is embedded in three layers of clay 

that is ranging from soft to stiff.  The analyses are performed with and without elements.  

The objectives of these examples are (1) to find the axial load capacity of single piles in 

clays under undrained conditions and; (2) to investigate the effect of the soil-pile 

interface on the load capacity of the pile. 

The pile elements are modeled using solid continuum elements.  The soil 

elements are modeled using the coupled displacement and pore water pressure elements 

as explained in Chapter 4.  The constitutive behavior of the pile is assumed elastic.  The 

soil is modeled using an appropriate elasto-plastic constitutive model which is discussed 

in Chapter 5.  The interface between the soil and pile elements is modeled based on the 

master-slave contact algorithm that is described in the following section. 

The solution procedure is as follows: (1) The geometry of the model is created; 

(2) the material properties are entered; (3) the finite element mesh is generated; (4) the 

interaction surfaces are selected; (5) the boundary conditions are applied; (6) the initial 

conditions are entered; (7) the loading and time stepping are entered and; (8) the model is 

solved.  The results obtained from the analyses are discussed at the end of each numerical 

application. 
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6.7 Soil-Pile Interface Model 

The use of continuum elements in a finite element analysis prohibits the relative 

movement of a pile element with respect to the adjacent soil element at the soil-pile 

interface.  Due to the compatibility of displacements at the nodes, the soil and adjacent 

pile element are forced to move together.  On the other hand, the restriction of the relative 

movement at the interface creates very large shear strains.  Hence, the appropriate finite 

element modeling of the soil-pile interface becomes extremely important.   

To fully represent the pile behavior at the interface, the interface elements are 

often used in finite element analysis to model the soil-pile boundary. The major 

advantages of using interface elements are (1) the frictional behavior at the soil-pile 

interface is fully represented in the model and; (2) the differential movement of the soil 

and the pile (i.e., slippage) is allowed. 

In the soil-pile interaction problem, the pile elements are assumed to be rigid and 

the surrounding soil is deformable.  The surface of the pile elements which are in contact 

with the soil elements at the interface are selected as the “master surface”.  The surfaces 

of the soil elements at the interface are selected as “slave surface”.  These surfaces are 

called the contact pair in ABAQUS.  The contact pair representing the soil-pile interface 

is shown in Figure 6.6. 
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Figure 6.6 The representation of pile-soil interface in ABAQUS. 
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The shear behavior between two surfaces is defined by the Coulomb frictional 

law.  The Coulomb friction model relates the maximum allowable frictional (shear) stress 

across an interface to the contact pressure between the contacting bodies.  The model 

specifies the shear behavior in terms of normal and tangential components as follows: 

 crit pτ µ=  (6.20) 

where critτ  is the critical shear stress at contact surface,µ is the coefficient of friction and,

p  is the contact pressure between two surfaces. 

The Coulomb friction model states that two contacting surfaces can carry shear 

stresses up to a certain magnitude across their interface before they start sliding relative 

to one another.  This state is known as sticking. The Coulomb friction model defines this 

critical shear stress, critτ , at which sliding of the surfaces starts as a fraction of the contact 

pressure, p , between the surfaces.  In other words, the contacting surfaces will not slip 

until the shear stress across their interface equals the critical frictional shear stress, critτ . 

The solid line in Figure 6.7 summarizes the behavior of the Coulomb friction model.  

There is zero relative motion (slip) of the surfaces when they are sticking. 



143 
 

 

Figure 6.7 Contact frictional behavior for slipping and sticking. 

The contact algorithm employed in ABAQUS is described in a flow chart as 

shown in Figure 6.8.  The algorithm can be summarized as follows: 

1. Determine the state of all contact interactions by checking whether each 

slave node is open (clearance is greater than zero) or closed(clearance is 

equal to zero) at the beginning of each increment.   

2. Apply a constraint for each closed slave node if it is still closed or remove 

the constraint if the contact status of that node is changed from closed to 

open.  Determine whether the closed node is sticking or sliding. 

3. Perform an iteration to calculate the contact conditions at each slave node 

after constraint checks.  After updating the contact state, check the 

equilibrium of forces and/or moments for that increment. 

4. Check the state of contact pressure, p, and the clearance, h, at each slave 

node.  If the contact pressure becomes negative after the iteration, then the 
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status of contact at that slave node is changed from “closed to open”.  On 

the other hand, if the clearance becomes negative or zero after the 

iteration, then the status of contact at each node is changed from “open to 

closed”.  In either case, the status is defined as “severe discontinuity 

iteration” and the equilibrium is not checked. 

5. Update the contact constraints after the first iteration followed by the 

second iteration.  Repeat the iteration procedure until there are no changes 

in the contact status. 

6. The last iteration is called the “first equilibrium iteration”.  After this 

iteration is completed, check the normal equilibrium for convergence. 

7. Repeat the entire process until the convergence is achieved. 
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Figure 6.8 The master-slave contact algorithm. 
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6.8 Numerical Applications 

6.8.1 Load Capacity Analysis in Stiff Clays 

A cylindrical pipe pile with a diameter of 1 m and a length of 20 m is installed in 

a clayey deposit as shown in Figure 6.9.  The pile is vertically loaded under undrained 

conditions.  The pile is assumed to be very stiff with an elastic material behavior.  The 

clay is considered to have an elasto-plastic material behavior represented by the Mohr-

Coulomb model.  The pile is modeled using a Young’s Modulus E=20 × 106 kN/m2 and a 

Poisson’s ratio ν = 0.15.  The soil is modeled using an elastic-ideal-plastic constitutive 

model with the Mohr-Coulomb yield criterion.  The elastic properties of the normally 

consolidated (NC) clay is represented by a Young’s modulus E=1.0 × 105 kN/m2 and a 

Poisson’s ratio ν = 0.49.  The Mohr-Coulomb parameters of the clay are: c = 100 kN/m2 

and 26φ = ° , where c is the cohesion and φ  is the internal angle of friction.  The 

unconfined compressive strength of the stiff clay is Su=100 kN/m2.  The saturated unit 

weight of the clay is γsat= 18 kN/m3.  The coefficient of earth pressure at rest is Ko= 1.  

The initial void ratio is defined as eo = 1.0.  The coefficient of friction between the 

concrete pile and the soil is calculated as fc = 0.35 using the β-method.  The material 

properties of the NC clay and the pile are summarized in Tables 6.6 and 6.7, respectively.   

The finite element mesh shown in Figure 6.9 is generated by the commercial 

finite element package ABAQUS/Standard.  A two-dimensional axisymmetric finite 

element model consisting of 1131 eight-noded elements is used for the analysis of the 

problem.  The pile has a diameter of 1 m and a length of 20 m.  The whole model has a 

width of 100 m and a height of 55 m.  One half of the model is analyzed due to 

axisymmetry.  The pile is modeled with eight-node axisymmetric, quadratic displacement 

elements (CAX8) whereas the soil is modeled with axisymmetric, eight-node biquadratic 

displacement and bilinear pore pressure elements(CAX8P) elements.  These elements are 

available in the ABAQUS/Standard element library.  The CAX8P element is similar to the 
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CPE8P element which is defined in Chapter 4.  The contact pairs for the soil-pile 

interface are represented by a master-slave algorithm.  

The boundary conditions consist of restricting both vertical and horizontal 

movements on the base of the mesh and horizontal movements on the right hand side of 

the mesh and along the axis of symmetry.  The loading of the pile is modeled by applying 

increments of vertical displacements on its top.  A total vertical displacement of 0.04 m 

on the pile top is applied with an increment of 0.001 m/s. 

The initial stresses are calculated using the saturated unit weight of clay 

318 kN/msatγ = and the initial void ratio0 1.0e = .  The initial effective stress in terms of 

the depth of the clay layer, z, can be defined as 

 [ ]( )0z sat w z zσ γ γ′ = − −  (6.21) 

in which wγ is the unit weight of water and the reference depth z0.Knowing that the depth 

of the model is z = 55 m, the initial effective stress in the clay layer is calculated as: 

 

[ ]( )
( )

0

3 3

2

     18 (kN/m ) 10 (kN/m ) 55 m 0

      440 kN/m

z sat w z zσ γ γ′ = − −

 = − − 

=

 

The initial pore water pressure can be expressed as: 

 ( )w op z zγ= −  (6.22) 

where wγ is the unit weight of water, z is the given depth and 0z is the reference depth.  

Substituting the depth and the unit weight of water in the formulation yields 

 

( )
( )3

2

  10 (kN/m ) 55 m 0

  550 kN/m

w op z zγ= −

= ⋅ −

=

 

The initial effective stress and the pore water pressure in the finite element model are 

plotted in Figure 6.5. 



148 
 

 

The problem is run in two steps: (1) the geostatic step, and (2) the static analysis 

step.  In the first step, the geostatic state of the problem is defined. A geostatic state is a 

steady-state equilibrium configuration of the undisturbed soil or rock body under 

geostatic loading.  In this step, the in situ loads are defined (i.e., the surcharge, earth’s 

gravity).  The only in situ load in this example is the earth’s gravity acting on the soil 

layer.  Under the GEOSTATIC option in ABAQUS, the gravitational acceleration is 

defined as 9.81 N/kg in the downward direction.  In the second step, the transient coupled 

pore pressure/effective stress analysis is carried out using the SOILS, 

CONSOLIDATION option with an automatic time stepping.  The UTOL parameter 

which controls the accuracy of the time integration is chosen as 5.0 × 1012 kN/m2.  This 

parameter specifies the allowable pore pressure change per time step.  If the pore pressure 

change per time step is greater than the defined UTOL parameter, the program will quit 

the analysis, otherwise it will complete the analysis at the end of the final time step.  In 

this example, a relatively large UTOL parameter is selected to avoid any interruptions 

due to sudden pore pressure changes during the analysis. The initial time step is selected 

as ti= 1.0 × 10-2 s. The total time is defined as tf = 25 s.  The minimum and maximum 

values of time steps are chosen as 1.0 × 10-7 sec and 2.0 s, respectively. 

In the first analysis, it is assumed that there is no contact between the pile and soil 

elements along the shaft of the pile.  In other words, the pile elements are perfectly 

bonded to soil elements along the pile-soil interface.  In this analysis, the displacement is 

applied gradually on the pile top and the reaction forces at the nodes on the pile head are 

calculated. Figure 6.11 shows the load-displacement curves for the total, shaft and end 

bearing capacities at the pile top.  These curves are obtained from the finite element 

analysis and from the work of Potts (2001).  It is clear that the present work is consistent 

with the published data (Potts, et al., 2001).  The total capacity of the pile is calculated as 

7,100 kN.  The ultimate shaft capacity is predicted as 6,391 which is close to the capacity 
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obtained from the simple calculation in which the shaft area (62.83 m2) times the 

undrained shear strength of clay (100 kPa) resulting in 6,283 kN. 

In the second analysis, the soil-pile interface is defined by master-slave contact 

algorithm with the Coulomb frictional law.  The details of this contact algorithm are 

explained in Section 6.5.  The coefficients of friction (fc) between the pile and soil are 

selected as 0.35 and 0.50 for two different cases.  Figure 6.12 illustrates the load 

displacement curves for the cases in which there is no friction at the interface, fc=0.5 at 

the interface, and fc=0.35 at the interface.  The total load capacities for these cases are 

calculated as 7,100 kN, 5,560 kN and 3,780 kN, respectively.  The differences between 

these capacities occur because if the decrease in the skin friction resistance.  As seen in 

Figure 6.12, the total capacity decreases 22% for the case with fc=0.50, and 47% for the 

case with fc=0.35.  Figure 6.13 shows the total, end bearing and skin friction capacities 

for the case with fc=0.35.  While the ratio of shaft capacity to the total capacity is 0.90 in 

the case with no friction at the interface, this ratio is 0.53 for the case with fc=0.35.  In 

other terms, the skin friction resistance is 53% of the total capacity as shown in Figure 

6.13.  The inclusion of friction between the pile and soil yields more conservative shaft 

capacity estimation which is consistent with the theoretical methods that are explained in 

Section 6.3.The comparison of the theoretical methods and the finite element method for 

shaft capacity estimation is given in the following section. 

The end bearing capacities of the pile in this problem are re-calculated using the 

theoretical methods that are introduced in Section 6.3.  These methods are: General 

Method, Vesic’s Method, Janbu’s Method, Meyerhof’s Method and Coyle & Castello’s 

method. The theoretical methods are compared with the finite element results.  The 

objective of this comparison is to investigate the reliability of these methods and to 

determine where the finite element method stands among those methods.  The parameters 

that are used to calculate the end bearing capacities with the theoretical methods are 

given in Table 6.10.  The calculations based on these methods are shown in Table 6.11. 
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The end bearing capacities calculated from each method are compared with the finite 

element method results as shown in Figure 6.15. The end bearing capacity calculated by 

the finite element method is 2,003 kN.  The closest value to that is estimated by Coyle & 

Castello’s and Janbu’s methods which results in 1,760 kN and 2,472 kN, respectively.  

The Vesic’s and Meyerhof’s methods predict the end bearing capacities as 5,860 kN and 

3,864 kN, respectively, which can be interpreted as overestimation.  On the other hand, 

the general formula which predicts a capacity of 707 kN underestimates the end bearing 

capacity.   

The skin friction resistance is recalculated by three theoretical methods namely 

Alpha, Beta and Lambda methods which are described in Section 6.3. The parameters 

and calculation methods are shown in Tables 6.12 and 6.13.  The results from these 

methods are compared with the finite element results in Figure 6.16.  The calculations 

show that Beta method predicts the skin friction resistance as 1,709 kN which is close to 

the result obtained from the finite element method, 1,777 kN.  However, the Lambda and 

the Alpha methods overestimate the skin friction resistance as 2,777 kN and 4,084 kN, 

respectively. 
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Table 6.6 Material properties of the normally consolidated clay 

Material Parameter Notation Value Units 

 General   

Saturated unit weight γsat 17.0 kN/m3 

Initial void ratio eo 1.5 - 

Permeability k 1.0×10-8 m/sec 

Coefficient of 
earth pressure at rest 

Ko 1.0 - 

 Elastic-Plastic   

Modul 
 

E 1.0 ×105 kN/m2 

Poisson’s ratio ν 0.49 - 

Undrained shear strength Su 100.0 kN/m2 

Cohesion c 100.0 kN/m2 

Angle of internal friction φ  26 Degree (º) 

 

Table 6.7 Material properties of the concrete pile 

Material Parameter Notation Value Units 

 General   

Bulk unit weight γbulk 24.0 kN/m3 

 Elastic   

Modulus of elasticity E 2.0×107 kN/m2 

Poisson’s ratio Ν 0.15 - 
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Figure 6.9 Axisymmetric finite element mesh of a single pile in clay deposit. 

  

55 m 

50 m 

Undrained 
side, 

∂p/∂n=0 

Undrained 
sides, 
∂p/∂n=0 

Concrete Pile 
γbulk=24 kN/m3 

Dpile=1.0m 

NC Clay 
γsat=18 kN/m3 

eo=1.0 
c=5 kPa 
φ =26º 

20 m 

Drained 
side 

Axis of 
Symmetry 



153 
 

 

 

Figure 6.10 The initial stresses in the soil model. 
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Figure 6.11 The load-displacement curve for the model with no slippage. 
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Figure 6.12 The comparison of load-displacement curves with no slippage and with 
coefficients of frictions 0.35 and 0.5 at the interface. 
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Figure 6.13 The end bearing, skin resistance and total capacities of a pile with coefficient 
of friction 0.35 at the soil-pile interface. 
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Table 6.8 The parameters used for the end bearing capacities of piles 

Theoretical Methods Parameters 

 Nq* Nc* Nσ* K0 ψ 

General Formula 9.0 - - - - 

Vesic’s Method 21.0 41.0 29.7 0.56 - 

Janbu’s Method 9.18 16.78 - - 75.0 

Meyerhof’s Method 24.0 49.20 - - - 

Coyle & Castello’s Method 14.0 - - - - 

Table 6.9 The calculation of end bearing capacities 

Calculation 
Method 

Depth(m) Effective 
stress, 
q0' (kPa) 

Average 
effective 
stress, σo' 
(kPa) 

Unit end 
bearing 
(kPa) 

Tip area 
(m2) 

Ultimate end 
bearing 
capacity (kN) 

General 0.0 - - 0.00 0.00 0.00 

20.0 - - 900.00 0.79 706.86 

Vesic’s 0.0 0.00 0.00 0.00 0.00 0.00 

20.0 160.00 113.24 7460.61 0.79 5859.55 

Janbu’s 0.0 0.00 - 0.00 0.00 0.00 

20.0 160.00 - 3146.88 0.79 2471.56 

Meyerhof’s 0.0 - - 0.00 0.00 0.00 

20.0 - - 4920.00 0.79 3864.16 

Coyle and 
Castello’s 

0.0 0.00 - 0.00 0.00 0.00 

20.0 160.00 - 2240.00 0.79 1759.29 
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Figure 6.14 The comparison of end bearing capacities. 
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Table 6.10 The parameters used for the theoretical methods 

Theoretical Methods Parameters 

 α β λ K0 tanδ 

Alpha Method 0.65 - - - - 

Beta Method - 0.20 - 0.56 0.35 

Lambda Method - - 0.17 - - 

 

Table 6.11 The calculation of skin friction resistance 

Calculation 
Method 

Depth 
(m) 

Effective 
Vertical 
Stress,  
σv' (kPa) 

Unit Skin 
Resistance, 
qs (kPa) 

Skin 
Area, 
As (m

2) 

Ultimate Skin 
Resistance,  
Qs (kN) 

Alpha 0.0 - 0.00 0.00 0.00 

20.0 - 65.00 62.83 4084.1 

Beta 0.0 0.00 0.00 0.00 0.00 

20.0 160.00 31.82 62.83 1999.4 

Lambda 0.0 0.00 0.00 0.00 0.00 

20.0 160.00 61.20 62.83 2777.1 
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Figure 6.15 The comparison of skin friction resistance. 
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6.8.2 Load Capacity Analysis in Layered Clays 

This example considers the finite element analysis of a single vertical pile under 

axial loading in layered clay.  A 1-m in diameter cylindrical pile with an embedded 

length of 20.0 m is considered.  The surrounding clay is considered as 50.0 m in width 

and 55.0 m in height with three different layers.  The symmetry permits to model half of 

the cylindrical pile and the surrounding soil.  A two-dimensional axisymmetric model is 

chosen for the finite element analysis.  The finite element mesh is shown in Figure 6.17.  

The normally consolidated clay is modeled using the Drucker-Prager (DP) 

constitutive model. The clay deposit is considered consisting of three layers. The 

undrained shear strength of the clay is Su = 20 kPa on the top surface and increases at a 

rate of 4 kN/m2 per meter from the top layer.  The modulus of elasticity of the clay is E = 

30 × 103kPa on the top surface and increases 1.0 × 103kPa per meter with depth.  The 

angle of internal friction is constant, φ =12º.  The DP constitutive model parameters are: 

tan 0.36β =  and 1.69d c= where c is the cohesion of the clay for each layer.  The 

Poisson’s ratio is ν=0.4.  The material behavior of the single pile is assumed to be linear 

elastic with a modulus of elasticity E = 30 × 106 kN/m2and a Poisson’s ratio ν=0.20.  The 

coefficient of friction between pile and soil is fc=0.15.  The material properties of the clay 

layers and the concrete pile are summarized in Tables 6.8 and 6.9. 

The soil strip is assumed to have a rigid, impermeable and smooth base.  Neither 

horizontal displacements nor pore water flow is allowed on the vertical sides.  Free 

drainage is only allowed along the top surface.  The pile loading is represented by 

applying displacements on the pile head.  The nodes of the pile head are connected so 

that a uniform displacement can be applied on the pile head.  A total of 0.005 m of 

displacement is applied on the pile head nodes using an automatic time stepping.  The 

initial stresses are applied on the model is shown in Figure 6.18. 

The analysis is performed using a GEOSTATIC step followed by the SOILS, 

CONSOLIDATION step.  In the geostatic step, a gravitational acceleration of g = 9.81 
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kN/m2 is applied on all elements in the model.  In the following step, a total displacement 

of 0.030 m is applied on the pile head in the downwards direction using an automatic 

time stepping scheme under small-strain conditions.  The displacements are applied using 

an initial time step of ti=1.0 × 10-2 sec for a total duration of t=30 seconds.  The automatic 

time stepping is used during the analysis where the time steps are allowed to be between 

∆tmin=1.0 × 10-7 sec and ∆tmax=2.0 s.  The tolerance on the pore pressure change in any 

increment is set using the UTOL option.  The UTOL option is set to 5.0 × 1012 kN/m2.  If 

the maximum change in pore pressure at any node is greater than UTOL, the increment is 

repeated with proportionally reduced time step, otherwise the time step is increased. 

Two analyses are run for the load capacity analysis of the pile.  The first analysis 

takes into account the coefficient of friction between pile and soil as fc=0.15.  The 

ultimate pile capacity obtained from the load-displacement curve is2,090 kN as shown in 

Figure 6.18.  The shaft capacity is 941 kN, and the end bearing capacity is 1,149 kN.  The 

second analysis which is shown in Figure 6.19 is run based on the coefficient of friction 

fc=0.50.  The total, shaft and end bearing capacities are calculated as 4,047 kN, 2,847 kN 

and 1,173 kN, respectively.  It is clear that while the end bearing capacities in both cases 

are close to each other, in the second analysis the skin friction resistance is almost three 

times higher than the one in the first analysis.  This is due to the increase in the 

coefficient of friction.  Increasing the coefficient of friction three times yields three times 

higher shaft capacity.  Thus, modeling the interface and choosing the right frictional 

parameters is the key in the load capacity analysis of piles.  Figure 6.20 compares the 

total capacities for both cases reveals that the total capacity in the second case is two 

times of higher than the capacity in the first case.   

For the comparison of finite element results, the load capacity calculations are 

performed using the theoretical methods.  The parameters used for the calculations are 

given in Table 6.14.  The results for each theoretical method are given in Table 6.15.  The 

end bearing capacities calculated from each method are plotted in Figure 6.22.  The 
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calculations show that Janbu’s method and Coyle & Castello’s method predict the end 

bearing capacity close to the finite element method results.  Meyerhof’s and Vesic’s 

methods overestimate the end bearing capacity by a factor of 2.5 and 4.5, respectively. 

The general formula underestimates the end bearing almost 30% less than the finite 

element results. 

The skin friction resistance is calculated using three theoretical methods.  The 

results from these methods are compared with the finite element results.  The parameters 

used in these five methods are given in Table 6.16.  The results are given in Table 6.23 

for each theoretical method.  The skin friction resistances calculated from each method 

are plotted in Figure 6.23.  The calculations show that the Beta method predicts the skin 

friction resistance close to the finite element method.  However, the Alpha and Lambda 

methods overestimate the skin friction resistance by a factor of 2.0 and 3.0, respectively. 
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Figure 6.16 The finite element mesh of the soil-pile model. 
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Table 6.12 Material properties of the normally consolidated clay 

Material Parameter Notation Value Units 

 General   

Saturated unit weight γsat 17.0 kN/m3 

Initial void ratio eo 1.5 - 

Permeability k 1.0×10-8 m/sec 

Coefficient of 
earth pressure at rest 

Ko 1.0 - 

 Elastic-Plastic   

Layer 1    

Modulus of elasticity E 35.0 ×103 kN/m2 

Poisson’s ratio ν 0.20 - 

Undrained shear strength Su 40.0 kN/m2 

Friction angle ϕ 12 Degree (º) 

Layer 2    

Modulus of elasticity E 40.0 ×103 kN/m2 

Poisson’s ratio ν 0.20 - 

Undrained shear strength Su 80.0 kN/m2 

Friction angle ϕ 12 Degree (º) 

Layer3    

Modulus of elasticity E 45.0 ×103 kN/m2 

Poisson’s ratio ν 0.20 - 

Undrained shear strength Su 100.0 kN/m2 

Friction angle ϕ 12 Degree (º) 
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Table 6.13 Material properties of the concrete pile 

Material Parameter Notation Value Units 

 General   

Bulk unit weight γbulk 24.0 kN/m3 

 Elastic   

Modulus of elasticity E 3.0×107 kN/m2 

Poisson’s ratio Ν 0.40 - 

 

 

Figure 6.17 The initial stresses defined in ABAQUS. 
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Figure 6.18 The load-displacement curve for fc=0.15 at the interface. 
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Figure 6.19 The load-displacement curve for fc= 0.50 at the interface. 
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Figure 6.20 The load-displacement curve using interface elements with coefficients of 
frictions 0.15 and 0.5 at the interface. 
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Figure 6.21 The contour plot of (a) von Mises stresses, (b) pore water pressure. 
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Table 6.14 The parameters used for the theoretical methods 

Theoretical Methods Parameters 

 Nq* Nc* Nσ* K0 ψ 

General Formula 9.0 - - - - 

Vesic’s Method 10.0 42.3 11.6 0.79 - 

Janbu’s Method 2.66 7.81 - - 75.0 

Meyerhof’s Method 8.0 32.93 - - - 

Coyle & Castello’s Method 8.0 - - - - 

 

Table 6.15 The calculation of end bearing capacities 

Calculation 
Method 

Depth(m) Effective 
stress, 
q0' (kPa) 

Average 
effective 
stress,       
σo' (kPa) 

Unit end 
bearing 
(kPa) 

Tip area 
(m2) 

Ultimate end 
bearing 
capacity (kN) 

General 0.0 - - 0.00 0.00 0.00 

20.0 - - 900.00 0.79 706.86 

Vesic’s 0.0 0.00 0.00 0.00 0.00 0.00 

20.0 140.00 120.59 5634.17 0.79 4425.06 

Janbu’s 0.0 0.00 - 0.00 0.00 0.00 

20.0 140.00 - 1153.57 0.79 906.01 

Meyerhof’s 0.0 - - 0.00 0.00 0.00 

20.0 - - 3293.24 0.79 2586.51 

Coyle and 
Castello’s 

0.0 0.00 - 0.00 0.00 0.00 

20.0 140.00 - 1120.00 0.79 879.65 
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Figure 6.22 The comparison of end bearing capacities. 
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Table 6.16 The parameters used for the theoretical methods 

Theoretical Methods Parameters 

 α β λ K0 tanδ 

Alpha Method 0.65 - - - - 

Beta Method - 0.13 - 0.79 0.16 

Lambda Method - - 0.17 - - 

Table 6.17 The calculation of the skin friction resistance 

Calculation 
Method 

Depth 
(m) 

Effective 
Vertical  
Stress, σv' 
(kPa) 

Unit Skin 
Resistance, 
qs (kPa) 

Skin 
Area, 
As (m

2) 

Ultimate Skin 
Resistance, Qs 
(kN) 

Alpha 0.0 - 0.00 0.00 0.00 

10.0 - 26.00 31.42 816.8 

20.0 - 80.00 31.42 2513.3 

    3330.09 

Beta 0.0 0.00 0.00 0.00 0.00 

10.0 70.00 8.78 31.42 275.92 

20.0 140.00 18.20 31.42 571.84 

    847.77 

Lambda 0.0 0.00 0.00 0.00 0.00 

10.0 35.00 19.55 31.42 614.26 

20.0 105.00 45.05 31.42 1415.47 

    2029.73 
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Figure 6.23 The comparison of skin friction resistance. 
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6.9 Summary and Discussion 

Load capacity analysis of a single pile is investigated in this chapter using the 

finite element method.  The efficiency of the finite element method is supported by 

widely recognized theoretical methods. These methods are employed to estimate load 

capacities of single piles.  The theoretical methods that are used to estimate the end 

bearing capacities are: (1) General Formula, (2) Vesic’s Method, (3) Janbu’s Method, (4) 

Meyerhof’s Method, and (5) Coyle& Castello’s Method.  The estimation of skin friction 

resistance (shaft capacity) of single piles is performed using the (1) Alpha method, (2) 

Beta method, and (3) Lambda method.  

A non-linear static axisymmetric model which assumes small deformations is 

developed for the finite element analysis. This model simulates an axially loaded pile 

which is embedded in a normally consolidated clay deposit. The Mohr-Coulomb 

plasticity model is used to represent the inelastic behavior of clay.  The soil pile interface 

is modeled using contact pairs which complies with the master-slave contact algorithm 

defined in ABAQUS/Standard.  The frictional interaction between soil and pile is defined 

by the Coulomb frictional law.  A transient coupled pore pressure/effective stress analysis 

is performed using an automatic time stepping scheme.  Small increments of 

displacements are applied on the pile top under undrained conditions until the pile is fully 

mobilized.   

Two numerical applications are carried out to estimate the load capacity of single 

piles in normally consolidated clays.  The first numerical application consists of a solid 

cylindrical concrete pile with a diameter D = 1.0 m and length L= 20 m embedded in a 

thick homogenous stiff clay layer.  The load capacity analysis is performed with and 

without interface elements.  The analysis that considers no interface elements predicts an 

ultimate end bearing capacity of 710 kN, shaft capacity of 6,391 kN, and a total capacity 

of 7,101 kN which is consistent with the published data.  The analysis shows that the 

shaft capacity mobilizes first followed by the end bearing capacity. This is due to the load 
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bearing mechanism of piles which proves that the applied load is carried first by the shaft 

then the tip of the pile.  The analysis with interface elements is modeled using two 

different coefficients (fc = 0.35 and fc = 0.50) of friction at the soil pile interface.  The 

total capacities are calculated as 5,559 kN for fc = 0.50 and 3,779 kN for fc = 0.35. The 

decrease in the load capacities can be explained by the decrease in friction at the soil pile 

interface. It is examined that the model with no interface predicts almost twice as much 

load capacity as the model with interface.  The finite element results are also compared 

with theoretical methods that are used to estimate the pile load capacities.  In regards with 

the end bearing capacities, Coyle & Castello’s method is found to be most conservative 

followed by the finite element method, then Janbu’s method, then Meyerhof’s method, 

and finally Vesic’s method.  In respect to skin friction resistance, the finite element is 

found to be the most conservative method, followed by Beta, then Lambda, and then 

Alpha.  These comparisons confirm that modeling of soil pile interface is essential to 

obtaining reliable results for the load capacities of piles.  The second numerical 

application is carried out using a three layer clay deposit for the load capacity analysis of 

a single pile.  The layers are modeled from soft to stiff starting at the ground surface.  The 

end bearing capacity, skin friction resistance, and the total capacity are calculated as 

1,150 kN, 941kN, and 2,091 kN, respectively. Although the strength of the soil at the pile 

tip remains the same, the end bearing capacity decreases almost 50 percent compared to 

the first application.  This outcome is obtained because the stiffness of the clay at the pile 

tip is almost 50 percent less than in the first numerical application.  The skin friction 

resistance is also found to be almost 50 percent less.  This result is attained because the 

coefficient of friction is lower due to the lower internal angle of the clay.  

In conclusion, modeling of the soil pile interface is critical to accurately compute 

the shaft capacity of a pile.  The results show that use of frictional contact between soil 

and pile makes a significant difference in estimating the load capacity of piles.  The 

theoretical methods support the results obtained in the numerical applications.   
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CHAPTER 7  

DYNAMIC ANALYSIS OF PILE DRIVING AND WAVE 

PROPAGATION IN UNDRAINED SOILS 

7.1 Introduction 

The finite element method is a powerful tool to investigate the generation of 

ground vibrations due to pile driving.  It is because the stress waves generated by pile 

driving are usually complex, and recorded signals exhibit a combination of body and 

surface waves (Attewell and Farmer, 1973) as shown in Figure 7.1.  When a hammer 

strikes the head of a pile during pile driving, the impact energy is transmitted from the 

hammer to the pile.  This energy travels along the pile in the form of compressive waves, 

called the primary body waves or P-waves (Goble et al., 1976).  A large portion of this 

energy is used for advancing the pile, while the rest of the energy is transmitted to the soil 

by means of two ways: (1) through the pile shaft in the form of shear waves or S-wave 

propagating on a cylindrical wave front; and (2) at the pile toe in the form of P-waves 

propagating on a spherical wave front.  Another type of wave is generated on the ground 

surface which is called the surface or the Rayleigh wave that propagates outwards from 

the pile shaft around a circumferentially expanding wave front.   

Generation of ground motion depends on many factors including (a) source 

parameters (method of pile driving, energy, and pile depth), (b) the interaction between 

the pile and the soil, and (c) the propagation of the waves through the geological structure 

at the site (Masoumi et al., 2008).  Although simple numerical models may contain 

valuable data on general tendencies of wave propagation at a site, they cannot take into 

account spatial variations of soil properties.  Thus, these models may not produce 

accurate and complete ground vibration records at a point of interest.  Hence, when 

modeling pile driving and wave propagation in soils, all of these factors should be taken 

into account carefully to increase the precision of the outcome.  
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Figure 7.1 The mechanics of wave propagation due to impact pile driving. 
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In this chapter, a complete finite element model is proposed to simulate the 

dynamic loading of a single pile and generated wave propagation in soils.  The proposed 

model includes (a) geostatic stresses prior to the dynamic analysis; (b) elasto-plastic 

behavior of soil and; (c) shear slip at the pile-soil interface. The aim of this study is to 

investigate the effect of major factors such as soil plasticity, pile penetration length and 

hammer energy on the transmission of pile driving induced ground vibrations.  The 

organization of this chapter is as follows: first, the governing equations and the finite 

element equations used for the quasi-static analysis of porous media are summarized.  

Then, the finite element modeling procedure including the special boundary conditions, 

the constitutive law and the solution procedure of the finite element equations are 

explained.  Next, the finite element model developed to simulate pile driving induced 

ground vibrations is implemented in two numerical applications.  Then, the effect of soil 

properties, pile penetration length and the variation of hammer energy are investigated.  

Finally, the ground vibrations at different depths are studied followed by the summary 

and conclusions. 
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7.2 Governing Equations 

7.2.1 Balance Equations 

The balance equations consisting of mass balance and linear momentum balance 

equations are explained in Chapter 3.  In this chapter, these equations are revisited, and 

they are combined with an elasto-plastic constitutive law.  The balance laws for a fully 

saturated two-phase mixture can be written in general form as 

(1) Mass balance equation: 

  ( )            ( ,  )
D

div e s w
Dt

α
α αα

α α
ρ ρ ρ ρ α+ = =v  (7.1) 

(2) Linear momentum balance equation: 

 ( ) ˆ ( )          ( ,  )div e s wα α α α α
α α αρ ρ ρ α + − + + = = a 0σ g v p  (7.2) 

where α is the indicator of the phase (α=s, w) where s and w refer to solid and fluid 

respectively; /D Dtα  is the material derivative following the motion of α-phase; 

α α
αρ η ρ= is the macroscopic mass density where /dV dVα αη = is the fraction of the 

representative element volume dV occupied by the α-phase subjected to 

,

(1 ) 1s w

s w

n nα

α
η η η

=
= + = − + =∑  where n is the porosity;  and α αv a are the spatial 

velocity and acceleration vectors, respectively; αg is the gravitational force per body 

mass; α α
α η=σ σσ σσ σσ σ is the partial (Cauchy) stress tensor;  ˆαp is the exchange of momentum 

between two phases and; ( )eα ρ is the exchange of mass between two phases. 

7.2.2 Field Equations 

For the computation of mass balance equations, it is assumed that the sum of mass 

exchange is zero as follows: 

 
,

( ) 0
s w

e vα α
α

α
ρ ρ

=
=∑  (7.3) 
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Based on this assumption, the mass balance equation for each phase can be 

defined after the general form (Eq. 7.1) in terms of macroscopic quantities.  For the solid 

phase, the mass balance equation is: 

  0
s

ss
s

D
div

Dt

ρ ρ+ =v  (7.4) 

For the fluid phase, the mass balance equation is: 

  0
w

ww
w

D
div

Dt

ρ ρ+ =v  (7.5) 

 

In Chapter 3, under the “Kinematics Equations” section, the derivation of 

quantities in the material and spatial coordinate system are described in detail.  Recalling 

the material derivative of one phase with respect to other phase, the following relation 

can be defined as follows: 

  
D f f

grad f
Dt t

β α α
α β∂= + ⋅

∂
v  (7.6) 

where ( , )f tα x is any differentiable function in the α-phase and /D Dtβ  is the material 

time derivative operator for a prescribed phase β. The solid and fluid phases can then 

be combined and simplified using the above relationship as follows: 

 
1 1

 ( )  0
s s s w

w ws s
w w

s

n D n D
div n div

Dt Dt

ρ ρ ρ
ρ ρ ρ
− + =+ v + v  (7.7) 

where ws w s= −v v v is the relative velocity. 

The fluid flow in the porous media can be explained by Darcy’s Law which 

relates the seepage velocity to the porosity of the mixture, permeability of the material, 

viscosity of the fluid, pore-fluid pressure and mass of the flowing fluid.  For a two-phase 

mixture, Darcy’s law can be defined as follows: 

 ( ) (  )w s w
w

n grad p ρ
µ

− = − + g
k

v v  (7.8) 
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where k is the permeability tensor, wµ is the dynamic viscosity, and p is the pore-water 

pressure. 

For the derivation of the linear momentum balance equations it is assumed that (a) 

the mass exchange between each phase is not allowed and; (b) the sum of interaction 

forces between each phase is zero as defined in the following: 

 
,

( ) 0
s w

e vα α
α

α
ρ ρ

=
=∑  (7.9) 

 
,

ˆ ˆ ˆs w
s w

s w

α
α

α
ρ ρ ρ

=
= + =∑ 0p p p  (7.10) 

Based on the general form of the linear momentum balance equation, Eq. (7.2), 

the balance equations in terms of macroscopic quantities can be defined for each phase.  

For the solid phase, the linear momentum balance equation is: 

  ( )s s
s sdiv ρ+ − =a 0σ g  (7.11) 

For the fluid phase, the linear momentum balance equation is: 

  ( )w w
w wdiv ρ+ − =a 0σ g  (7.12) 

The principle of effective stress of Terzaghi states that the total stress in a porous 

medium consists of effective stresses which are associated with the solid skeleton and the 

pore-water pressure which is associated with the pore fluid.  In this study, a modified 

version of this principle is used after Bishop (1959).  Under fully saturated conditions, the 

principle of effective stress can then be defined as: 

 p′ =σ σ + m  (7.13) 

where ′σ is the effective stress (positive in tension); σ is the total stress; p is the pore-

fluid pressure and; m is a vector defined as m={1, 1, 1, 0, 0, 0}T.  

For the derivation of the mass balance equation, it is assumed that (a) the motion 

occurs under isothermal conditions; (b) the porous medium is fully saturated and; (c) the 

grain material is incompressible and the fluid is compressible.  To get the final form of 
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mass balance equation, the mass balance equations in the solid and fluid phases are 

combined with Darcy’s Law and the quantities are simplified as follows:  

 ( )  0w s
w

w

n p
div grad p div

K t
ρ

µ
 ∂ + − + + = ∂  

g
k

v  (7.14) 

where Kw is the bulk modulus of pore fluid.  

To obtain the final form of the linear momentum balance law, the equations for 

solid and fluid phases, Eqs (7.8) and (7.9), are combined as follows: 

   div ρ+ =g 0σ  (7.15) 

where g is the body force and; σ  and ρ are the averaged total stress and mass density, 

respectively, which can be defined as 

 (1 ) s wn n− +σ = σ σ  (7.16) 

 (1 ) s wn nρ ρ ρ= − +  (7.17) 

Furthermore, introducing the principle of effective stress, the above equation can 

be reduced to the following form: 

 ( )  div p ρ′ + + =g 0σ m  (7.18) 

7.2.3 Weak Form and Finite Element Equations 

The non-linear behavior of a material can be defined by an incremental 

constitutive form with a tangential modulus DT dependent on the effective stress, ′σσσσ , and 

strain, ε , as follows: 

 Td d′ =σ D εεεε  (7.19) 

in which  

 T= ∇ε u  (7.20) 

where T∇ is the differential operator defined as: 
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 (7.21) 

The initial conditions specify the full field of displacements and water pressures at 

time t=0 as follows: 

 0 0,    in Ω and on Γp p= =u u  (7.22) 

where Ω is the domain of interest and Γ is its boundary.  The imposed boundary 

displacements and water pressures are as follows: 

 
ˆ    on 

ˆ   on 
u

pp p

= Γ
= Γ

u u
 (7.23) 

   on uΓTI σ = t  (7.24) 

 

 ( )   on 
T

w
pw

grad p qρ
µ
 

− + ⋅ Γ 
 

k
g n====  (7.25) 

 

where the matrix I is related to the unit normal vector n = {nx,ny,nz}
T by 
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The weak form is recalled from Chapter 3 and written as: 

 
{ } ( )T T   

    
u p

T T w
u p

w w

T
w

n
p p grad p p d

K

q
d p d

ρ ρ
µ

ρ

Ω

Γ Γ

  
− + + − + Ω  

   

= Γ + Γ

∫

∫ ∫

k
σ g ε

t

ɺ ɺε u g ε + m

u

 (7.27) 

where 

 { , , } T
x y zt t t=t  (7.28) 

is the surface traction vector,  

 ( ) w

w

q grad pρ ρ
µ

Τ
Τ 

= − ⋅ = ⋅ 
 

k
g n v n  (7.29) 

is the prescribed outward flow per unit area and { }T zyx  ,n ,nn=n is a vector of direction 

cosines for the unit normal to Γ.  

For an element with n displacement degrees of freedom and m pore pressure 

degrees of freedom, the spatial approximation can be defined in the form of: 

 ˆ
n

ui i u
i

= =∑u N u N u  (7.30) 

 ˆ
m

pi i p
i

p p= =∑N N p  (7.31) 

Applying the Galerkin method to the final form of balance equations, the 

following finite element discrete form is obtained: 

 T
s sd

Ω

′+ Ω − =∫M u B Qɺɺ σσσσ p f  (7.32) 

 T
c p+ + =Q u K p Spɺɺ f  (7.33) 

in which 

 T  ds u uρ
Ω

= Ω∫M N N  (7.34) 
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 T du pΩ
= Ω∫Q B mN  (7.35) 

 T  dp p
w

n

KΩ
= Ω∫S N N  (7.36) 

 T  d
µΩ

= Ω∫ p p
w

c

k
K B B  (7.37) 

 T T d  du
u uρ

Ω Γ
= Ω + Γ∫ ∫f N g N t  (7.38) 

 T T d  d
w

p w
p p w

w

qρ
µ ρΩ Γ

= Ω + Γ∫ ∫
k

f B g N  (7.39) 

where M s is the mass matrix for the solid phase; Q is the coupling matrix; S is the 

compressibility matrix; K c is the permeability (flow) matrix; fu is the elemental vector of 

external forces, and fp is the fluid supply vector. 

7.3 Finite Element Modeling Procedure 

7.3.1 Finite Element Mesh and Element Size 

The dynamic loading of a single pile is simulated for the analysis of pile driving 

and wave propagation in soils using the finite element method.  A precast concrete pile 

with a circular cross-section is chosen for this simulation.  The pile is considered to be 

fully embedded in soil.  Four-node axisymmetric quadratic displacement elements are 

used to represent the pile; whereas four-node, axisymmetric, biquadratic displacement 

and bilinear pore pressure elements are selected to represent the soil elements.   

The element sizes are chosen very carefully, because in vibration analysis, 

choosing the right element size for the finite elements is essential to capture the motion of 

waves accurately.  The common practice is to choose an element with a minimum length 

of / 6sλ , where sλ  is the shear wavelength.  The shear wavelength can be defined in 

terms of shear wave speed and time as follows: 
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 s sc tλ = ∆  (7.40) 

with 

 S
w

G
c

nρ ρ
=

−
 (7.41) 

where cs is the shear wave velocity, t∆ is the time step, G is the Lamé’s constant, n is the 

porosity, ρ and ρw are the densities of saturated soil and water, respectively.  The element 

sizes are selected based on the material properties in the numerical applications.  The 

finite element model used for this study is shown in Figure 7.3.  The detail views of the 

axis of symmetry and the pile tip are shown in Figure 7.4. 

7.3.2 Analytical Rigid Surface 

In an axisymmetric finite element model, to allow the penetration of the pile into 

the soil, the defined nodes on the axis of symmetry should be set free of constraints.  To 

remove those constraints and allow the soil nodes at the contact to slide on the surface of 

the pile elements, it is suggested to define an analytical rigid surface 1 mm away from the 

axis of symmetry as shown in Figure 7.7.  This modeling technique allows is introduced 

as a rigid tube in an earlier study (Hügel, et al., 2008).  The rigid analytical surface that is 

available in ABAQUS, is in frictionless contact with the pile and soil elements.  This 

technique allows the pile to slide over the rigid surface, and the soil elements to separate 

from this surface during the penetration of the pile.   

7.3.3 Artificial Non-Reflecting Boundary 

In the analysis of stress wave propagation in soils due to pile driving, the 

reflection of waves from the far boundary causes significant problems.  When these 

waves bounce back from the boundary, they mix with the progressing waves.  Thus, the 

magnitudes of the waves calculated by the FE package become inaccurate.  To minimize 

the effect of reflecting waves on the results, one of the options is to define a sufficiently 
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long finite element mesh.  A longer mesh will be time consuming and it is difficult to 

determine whether the mesh is sufficiently long. 

Another option would be the use of infinite elements as boundary elements to 

minimize or prevent the reflection of stress waves in the finite elements.  A finite element 

mesh of finite end infinite elements representing soil, pile and the far field is shown in 

Figure 7.1.  However, the use of infinite elements brings significant difficulties by itself 

when defining the geostatic step in the dynamic soil analysis.  It is because static forces 

such as the self-weight of soil cannot be applied on infinite elements, because the 

formulation of the damper is based on the resistance to velocity, not displacement.  When 

static forces are applied to establish an equilibrium state, the relative displacement of 

finite elements with respect to infinite elements becomes excessive resulting in inaccurate 

results as shown in Figure 7.2. 
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Figure 7.2 The finite element mesh of soil and pile combined with infinite element. 
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Figure 7.3 The excessive relative displacement of finite elements after geostatic loading. 
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Another alternative to damp out the excessive vibrations in a finite element model 

is to define an artificial boundary which damps out the entering waves and acts like a 

dashpot systems.  Such an artificial boundary which was previously introduced in the 

literature (Liu, et al., 2003) aims to minimize the reflection of stress waves from the far 

boundary.  A modified version of this technique is implemented in our finite element 

model to avoid the wave-reflection problem.  For the implementation, a region in 50 m 

width is added to the far end of the model.  This region is divided into five sections with 

varying damping ratios as shown in Figure 7.8.  The damping ratios are defined as 

gradually increasing from the first section to the last one.  The procedure to determine the 

damping parameters is as follows: 

1. Run the analysis without any artificial boundary condition. 

2. Obtain time history of the vertical velocity magnitudes for the furthest 

node on the surface of the model before entering the artificial boundary. 

3. Find velocity magnitudes in the frequency domain using the Fast Fourier 

Transform (FFT) algorithm.  Obtain two frequency values for the motion. 

4. Set the damping ratio, ζ=0.7 and ζ=0.8.  Find Rayleigh damping factors α 

and β, substituting the frequency values found in Step 3 into the equation 

below: 

 
1

 with 2
2

f
αζ βω ω π
ω
 = + =  

 

where ζ is the damping ratio, α is the mass-proportional Rayleigh damping 

factor, β is the stiffness-proportional Rayleigh damping factor, ω is the 

cyclic frequency and f is the frequency of the motion. 

5. Define gradually increasing α and β values for each section using the 

linear interpolation method.  

Using this procedure, α and β are chosen for different sections as shown in Table 

7.3.  To test the artificial boundary, the contour plots of the vertical velocities are plotted 
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at different times with and without the artificial boundary in Figure 7.4.  It is observed 

that the waves bounce back from the boundary in the regular model.  However, in the 

model with the artificial boundary, the waves dissipate gradually and only a very small 

portion of waves reflect. 

Table 7.1 The Rayleigh damping factors α and β for different sections 

Section Name α (1/s) 
 

β (s) 

S1 0.5 5.0×10-4 

S2 1.0 
 

5.0×10-3 

S3 5.0 5.0×10-3 

S4 15 10×10-3 

S5 20 20×10-3 
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Figure 7.4 Schematics of the finite element model. 
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Figure 7.5 The detailed views of (a) the analytical rigid surface and (b) the round pile tip. 
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Figure 7.6 The contour plots of vertical velocities in (a) the original model and (b) the 
model with artificial non-reflecting boundary. 
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7.3.4 Constitutive Law 

A modified version of the Mohr-Coulomb elasto-plastic constitutive model, which 

is available in ABAQUS is assumed to describe the behavior of soils in this chapter.  The 

Mohr-Coulomb model in ABAQUS is an extension of the classical Mohr-Coulomb 

failure criterion based on the work of Menétrey and Williams (1995).  The detailed 

description of this model is explained in Chapter 5.  

7.3.5 Solution Procedure 

The finite element software ABAQUS offers two direct integration methods for 

the solution of non-linear dynamic problems. These are the implicit and the explicit 

methods that are used for linear and nonlinear problems.  In this study, the implicit time 

integration method is chosen because the solution of transient analysis of soils in 

ABAQUS can only be obtained using the implicit method (ABAQUS Manual, 2008).  

The implicit method uses a fixed or automatic time increment based on the Newton-

Raphson iteration scheme for the solution of non-linear problems.  The internal element 

forces before and after each time increment are computed using the dynamic equilibrium.  

The solution for the nodal accelerations is determined with iteration as opposed to 

advancing the kinematic state from the previous one in the explicit method.   

The general direct-integration method provided in Abaqus/Standard, called the 

Hilber-Hughes-Taylor operator, is an extension of the trapezoidal rule. The Hilber-

Hughes-Taylor operator is implicit which means the integration operator matrix must be 

inverted, and a set of simultaneous nonlinear dynamic equilibrium equations must be 

solved at each time increment. This solution is done iteratively using Newton's method.  

The principal advantage of the Hilber-Hughes-Taylor operator is that it is unconditionally 

stable for linear systems; there is no mathematical limit on the size of the time increment 

that can be used to integrate a linear system.  An unconditionally stable integration 

operator is of great value when studying structural systems because a conditionally stable 
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integration operator can lead to impractically small time steps and, therefore, a 

computationally expensive analysis. 

The implicit time integration procedure uses an automatic increment strategy 

based on the success rate of a full Newton iterative solution method as follows: 

 1
1 ( )n n t n n

−
+∆ = ∆ + ⋅ −u u K F I  (7.50) 

where tK  is the current tangent stiffness matrix, F is the applied load vector, I  is the 

internal force vector, and ∆u is the increment of displacement.  The subscripts n and n+1 

indicate the step orders at time steps tn and tn+1.  For an implicit dynamic procedure, the 

algorithm is defined as: 

 ( )1 1 11n n n nα α+ + ++ + − =Mu Ku Ku Fɺɺ  (7.51) 

where M is the mass matrix, K is the stiffness matrix, F is the vector of applied loads and 

u is the displacement vector.  The approximations for the displacement and velocity 

vectors can be written as follows: 

 2
1 1

1

2n n n n nt t β β+ +
  = + ∆ + ∆ − +  
  

u u u u uɺ ɺɺ ɺɺ  (7.52) 

and 

 ( )1 11n n n nt γ γ+ += + ∆ − +  u u u uɺ ɺ ɺɺ ɺɺ  (7.53) 

with the parameters 

 ( )21 1 1
1 ,    ,   0

4 2 3
β α γ α α= − = − − ≤ ≤  (7.54) 

where α=-0.05 is chosen by default in ABAQUS as a small damping term to quickly 

remove the high frequency noise without having a significant effect on the meaningful, 

lower frequency response. 

An automatic incrementing scheme is provided for use with the general implicit 

dynamic integration method. The scheme uses a half-step residual control to ensure an 

accurate dynamic solution. The half-step residual is the equilibrium residual error (out-of-
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balance forces) halfway through a time increment.  This half-step residual check is the 

basis of the adaptive time incrementing scheme. If the half-step residual is small, it 

indicates that the accuracy of the solution is high and that the time step can be increased 

safely.  On the other hand, if the half-step residual is large, the time step used in the 

solution should be reduced. 

7.4 Numerical Applications 

7.4.1 Pile Driving Problem of Ramshaw et al. 

This problem consists of finite element analysis of a dynamically loaded bored-in-

situ pile which was tested on a site near Manchester, UK.  The original problem has been 

studied earlier by Ramshaw and her colleagues (1998).  The length of the pile is 21 m and 

diameter is 750 mm.  A 2.2 ton hammer was dropped on to the built up instrument head 

of the piles from a height of 1.2 m.  The soil is modeled with pore pressure elements and 

considered as linear elastic.  The subsurface soil consists of two layers.  The top soil layer 

(depth<10.5 m) consists of firm to stiff silty clay.  The modulus of elasticity E, Poisson’s 

ratio ν and mass density ρ of soil in this layer are 26×106 Pa, 0.35 and 1,970 kg/m3, 

respectively.  The modulus of elasticity E, Poisson’s ratio ν and mass density ρ of soil in 

the second layer (depth>10.5 m) are 50×106 Pa, 0.35 and 2,100 kg/m3, respectively.  The 

pile is modeled with solid elements and considered as linear elastic with a modulus of 

elasticity E=30×109Pa, Poisson’s ratio υ=0.20 and a bulk unit density of 2,500 kg/m3.  

The material properties of the soil layers and the pile are given in Table 7.1. 

The finite element mesh shown in Figure 7.5 is generated using 

ABAQUS/Standard.  A two-dimensional axisymmetric finite element model consisting of 

four-noded elements is used for the analysis of the problem.  Four-node axisymmetric, 

quadratic displacement elements (CAX4) are used to model the pile.  Four-node 

axisymmetric biquadratic displacement and bilinear pore pressure elements (CAX4P) 

elements are used to model the soil.  The dimensions of the whole model are selected as a 
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width of 50 times D and a height of 55 times D.  The boundary conditions consist of 

restricting both horizontal and vertical movement at the bottom of the mesh, and the 

horizontal movement at the right side of the mesh.  A rigid analytical surface is defined 

1.0 mm away from the axis of symmetry.  The horizontal and vertical movement of this 

surface is restricted.  Non-reflecting boundary elements consisting of high material 

damping characteristics are defined for the last five columns of elements at the right hand 

side of the mesh.  The contact pairs for the soil-pile interface are represented by a master-

slave algorithm.  The impact load which is applied on the top of the pile is defined by a 

forcing function representing a single hammer blow (Ramshaw, et al., 1998).  The 

forcing function applied on the pile head is shown in Figure 7.6. 

The initial stresses are specified for particular nodes or elements, as appropriate.  

The only initial condition defined in this problem is the initial values of the void ratio, eo, 

at the nodes of the soil skeleton. The initial void ratio eo = 0.5 is defined for all nodes.  

The equilibrium of the initial state requires establishment of the initial stresses. It is 

important to establish the initial stresses correctly. The applied loads and initial stresses 

should exactly equilibrate and produce zero deformations.  The initial stresses defined for 

this problem are: (1) the initial pore pressure, p, and (2) the initial effective stresses,σ ′ .  

The variation of pore pressure and initial effective stress are shown in Figure 7.7. 

The reason for choosing this numerical application is to validate the proposed 

finite element model with published data.  Figure 7.8 shows the variation of radial 

velocity with time at a distance of 5.5 m from the source of vibration.  The peak 

magnitude is calculated as 6.29 mm/s at 0.10 s, whereas the measured peak velocity is 

approximately 8.0 mm/s.  The published data (Ramshaw, et al., 1998) showed a peak 

radial velocity of approximately 12.0 mm/s. This model did not include the friction 

between the pile and the soil, and the self-weight of the soil.  The difference between the 

present and the published results can be explained by use of soil-pile interface modeling.  

Published data shows that at about 0.3 s, the radial velocities almost dissipate, however, 
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after 0.4 s, the radial velocities increase again.  This is not monitored in the measured 

data.  The present work agrees with the measured data.  The use of non-reflecting 

boundary conditions enabled to model the soil elements with high damping ratios in the 

far field.  Hence, the present work shows that the ground vibrations dissipate after 0.4 s 

agreeing with the measured data.  The radial velocities obtained on the ground surface at 

16.5 m from the pile are shown in Figure 7.9.  The peak radial velocity is computed as 

2.3 mm/s at about 0.3 s.  The measured data shows that the peak velocity is around 2.0 

mm/s which is consistent with the result of the present work.  However, the published 

data computed the peak radial velocities at about 5.0 mm/s.  This is due to the use of 

special non-reflecting artificial boundary conditions in the present model which takes into 

account the material damping in the soil in the far field.  In conclusion, the use of soil-

pile interface model and non-reflecting boundary conditions enabled (1) to avoid 

overestimating the peak radial velocities, (2) to model the ground vibrations with a high 

precision in the far field. 
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Figure 7.7 The finite element mesh of the model. 
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Table 7.2 Material properties of the soil and the pile 

Material Parameter Notation Value Units 

Soil    

Medium Stiff Clay Layer    

Modulus of elasticity E 26.0 ×103 kN/m2 

Poisson’s ratio ν 0.35 - 

Dry Density ρdry 1970 kg/m3 

    

Dense Sand Layer    

Modulus of elasticity E 50.0 ×103 kN/m2 

Poisson’s ratio ν 0.30 - 

Dry Density ρdry 2100 kg/m3 

    

Pile    

Modulus of elasticity E 30.0 ×106 kN/m2 

Poisson’s ratio ν 0.20 - 

Dry Density ρdry 2500 kg/m3 
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Figure 7.8 The forcing function applied on the pile head. 

 

Figure 7.9 The effective stress and pore pressure distribution in soil at initial state. 
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Figure 7.10 Radial v
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from the source. 
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Figure 7.11 Radial velocity at a distance of 16.5 m from the source
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7.4.2 Pile Driving Problem of Mabsout et al. 

This problem involves finite element analysis of a pre-bored pile based on the 

work of from the work of Mabsout et al (1995).  The pile is considered as close-end, 

round, and concrete with a canonical tip.  It is driven through undrained, nearly 

incompressible, normally consolidated clayey soil.  The pile is 20 m in length and 0.25 m 

in diameter.  The pre-bored pile is installed at penetration depth of 18 m.  The finite 

element method is used to discretize the pile-soil interaction problem.  The mesh consists 

of four-node axisymmetric bilinear displacement elements with reduced integration 

(CAX4R) for modeling the pile, and 4-node axisymmetric bilinear displacement/pore-

pressure elements with reduced integration (CAX4RP) for modeling the soil.  The finite 

element mesh is shown in Figure 7.10.  The tip of the pile is designed as a parabolic 

shape with the radius to tip height ratio of ½.  The modulus of elasticity of the concrete 

pile is 624.8 10cE = × kPa with a Poisson’s ratio of ν=0.2.  The density of the concrete is

32400 kg/mcρ = .  The soil parameters are chosen to represent normally consolidated 

clay.  The modulus of elasticity of the clay is ( )1060  kPasE Z= where Z is the depth in 

meters.  The Poisson’s ratio is ν=0.2.  The dry density of the clay is 1595sρ = kg/m3.  The 

soil and pile parameters are listed on Table 7.2. A forcing function representing a single 

hammer blow is applied on top of the pile.  Figure 7.11 shows the force function applied 

on the pile head with time. 

The boundary conditions consist of restricting the horizontal and vertical 

movements at the base of the mesh and horizontal movements at the right side of the 

mesh.  An analytical rigid surface is defined 1 mm away from the axis of symmetry to 

avoid over constraints on the soil elements along the axis of symmetry.  The soil-pile 

interface is modeled using the master-slave algorithm.  The initial void ratio is defined as 

eo = 0.63 for all nodes.  The initial stresses defined for this problem are the initial pore 

pressure, p, and the initial effective stresses, σ ′ .  The variation of pore pressure and 

initial effective stress are shown in Figure 7.12. 
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Figure 7.17 shows the displacement at the pile head during a period of 0.10 s.  

The displacement at the pile top computed as 40 mm which is consistent with the 

published data (Mabsout, et al., 1995).  The variation of vertical velocity at the pile top is 

shown in Figure 7.18.  The peak velocity is calculated as 1900 mm/s.  The published data 

presented a velocity of around 1800 mm/s. The time history of acceleration at the pile top 

is shown in Figure 7.19.  The peak acceleration is calculated as 600 × 103 mm/s2.  The 

published data showed a peak acceleration of around 600 × 103 mm/s2.  The patterns of 

the velocity and acceleration graphs are found to be consistent with the present work.  

This numerical application enabled to validate the proposed nonlinear finite element 

model, which leads to study ground vibrations with a higher level of confidence in the 

next sections.  
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Figure 7.12 The finite element mesh. 
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Figure 7.13 The detail view of the pile tip. 
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Table 7.3 Material properties of the clay and the pile 

Material Parameters Notation Value Units 

Normally consolidated clay    

Modulus of elasticity E 1.07×103 Z kN/m2 

Poisson’s ratio ν 0.30 - 

Dry Density ρdry 1600 kg/m3 

Undrained cohesion cu 2.87 Z kN/m2 

Angle of internal friction φ  6 º 

Coefficient of friction µ 0.10 º 

Pile    

Modulus of elasticity E 24.8×106 kN/m2 

Poisson’s ratio ν 0.20 - 

Dry Density ρdry 2400 kg/m3 
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Figure 7.14 The forcing function applied on the pile head. 

 

Figure 7.15 The effective stress and pore pressure distribution in soil at initial state. 
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Figure 7.16 Displacement at pile top. 
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Figure 7.17 Velocity at pile top. 
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Figure 7.18 Acceleration at pile top. 
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7.5 Analysis of Ground Vibrations in Soils 

The amplitudes of ground vibrations during pile driving are dependent on the soil 

and source (pile and hammer) parameters.  More specifically,(1) the soil type, (2) the pile 

embedment length and (3) the released hammer energy have significant effects on the 

transmission of ground vibrations in the soil.  The selection of these parameters is the key 

to the success of a numerical model to predict accurate and reliable vibration records.  In 

this section, the characteristics of the ground vibrations are discussed with numerical 

applications.  The effects of three parameters are explained in the following subsections. 

The ground vibrations generated by pile driving are analyzed using the data in the 

second numerical application (Section 7.4.1).  The contour plot of the radial, vertical and 

resultant velocities in the soil is shown in Figure 7.18.  The contour plot for the radial 

velocities shows spherical wave fronts that are originated from the pile toe.  These waves 

are characterized as P-waves.  In the vertical velocities plot, it is noticed that cylindrical 

wave fronts are transmitted along the pile shaft.  These types of waves are characterized 

as S-waves.  The surface waves are also shown in the contour plots. 

Following results can be drawn from the finite element results shown by the 

contour plots: (1) body waves dominate around the pile toe and propagate on a spherical 

wave front; (2) vertically polarized shear waves dominate around the pile and propagate 

in a radial path on a cylindrically wave front; and (3) Rayleigh waves propagate on the 

top surface less rapidly than the shear waves. 
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Figure 7.19 The contour plot of radial, vertical and resultant velocities in clay at time 
steps (a) t = 10 ms, (b) 50 ms, and (c) 100 ms. 
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7.5.1 Effect of Soil Properties 

Five different soil types consisting of loose sand, dense sand, soft clay, medium 

stiff clay and stiff clay are defined in the finite element model to assess the effect of soil 

strength on the ground vibrations.  The dimensions and pile parameters remain same as in 

the second numerical example.  The modulus of elasticity and the cohesion of the clays 

defined as increasing with the depth of the soil.  The material parameters for different 

types of sands and clays are shown in Tables 7.4 and 7.5, respectively. 

The peak particle velocities (PPVs) versus distance from the pile are plotted for 

different types of sands –loose and dense- and clays –soft, medium dense and stiff- as 

shown in Figure 7.20.  The loose sand has the greatest PPV with a magnitude of around 

11.0 mm/s followed by the dense sand with a PPV of 4.0 mm/s.  It can be monitored in 

Figure 7.20 that the PPVs after 18 m are highest in soft clay, then medium stiff clay and 

then the stiff clay.  In soft clay, the maximum PPV is monitored at a distance of 9 m from 

the pile as 2.70 mm/s.  In medium stiff clay, the maximum PPV is 2.26 mm/s at a 

distance of 9 m from the pile.  In stiff clay, the maximum PPV is 2.73 mm/s at 9 m from 

the pile. 

The radial velocities are higher in the stiff clay compared to the soft clay as 

shown in Figure 7.21.  Although, the stress waves travel faster in the stiff clay, vibrations 

generated on the ground surface have the highest amplitudes in the soft clay.  The reason 

is in the stiff clay the compression waves, P-waves, encounter the ground surface within a 

shorter period of time compared to the P-waves in the soft clay.  This conclusion can be 

drawn by analyzing the time history of the radial velocities at 9 m from the pile for soft 

and stiff clays as shown in Figures 7.22 and 7.23, respectively.  In soft clay, the first two 

peak points represent the shear wave, S-wave, traveling from the shaft, and the third peak 

point represents the P-wave.  In stiff clay, the first peak point represents the S-wave, then 

the P-wave, which is shown by the following peak points encounter the surface. 
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The contour plots of radial velocities at t=0.88 s for soft and stiff clays are shown 

in Figure 7.24.  The contour plots clearly show that while P-waves are on the surface in 

the stiff clay, they are still traveling underground in the soft clay.  The S-waves encounter 

the surface first in the soft clay, and then the P-wave arrives.  

The peak particle velocities are compared with the empirical method of Wiss and 

Jedele (Woods, et al., 1985).  In Figure 7.25, the peak particle velocities at 4.5 m, 9 m, 18 

m, 27 m, 36 m, 45 m and 54 m are plotted for different types of clays on a scaled distance 

graph.  The red line on the graph shows the envelope for Class II soils that are competent 

soils as described in Chapter 2.  Figure 7.25 illustrates the ground vibrations below the 

red envelope within first 18 m, which verifies that they are within the safe limits.  

However, after 18 m, ground vibrations particularly in soft clays considered troublesome 

to some people. 
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Table 7.4 Soil parameters for different types of sands 

Material Parameters Notation Value Units 

Loose sand    

Modulus of elasticity E 12.0 ×103  kN/m2 

Poisson’s ratio ν 0.25 - 

Dry Density ρdry 1440 kg/m3 

Undrained cohesion cu 0.0 kN/m2 

Angle of internal friction φ  30 º 

Dense sand    

Modulus of elasticity E 26.0 ×103  kN/m2 

Poisson’s ratio ν 0.40 - 

Dry Density ρdry 1770 kg/m3 

Undrained cohesion cu 0.0 kN/m2 

Angle of internal friction φ  40 º 
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Table 7.5 Soil parameters for different types of clays 

Material Parameters Notation Value Units 

Soft clay    

Modulus of elasticity E 1.06 ×103 Z(m) kN/m2 

Poisson’s ratio ν 0.30 - 

Dry Density ρdry 1600 kg/m3 

Undrained cohesion cu 2.87 Z(m) kN/m2 

Angle of internal friction φ  6 º 

Medium stiff clay    

Modulus of elasticity E 2.0 ×103 Z(m) kN/m2 

Poisson’s ratio ν 0.30 - 

Dry Density ρdry 1600 kg/m3 

Undrained cohesion cu 6.0 Z(m) kN/m2 

Angle of internal friction φ  6 º 

Stiff clay    

Modulus of elasticity E 4.0 ×103 Z(m) kN/m2 

Poisson’s ratio ν 0.30 - 

Dry Density ρdry 1600 kg/m3 

Undrained cohesion cu 12.0 Z(m) kN/m2 

Angle of internal friction φ  6 º 
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Figure 7.20 Peak particle velocity vs. distance for different types of soils. 

 

Figure 7.21 Peak radial velocity vs. distance from pile. 
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Figure 7.22 Radial velocity vs. time at 9 m from pile for soft clay. 

 

Figure 7.23 Radial velocity vs. time at 9 m from pile for stiff clay. 
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Figure 7.24 Contour plot of radial velocity at t=0.88 s for (a) soft clay, and (b) stiff clay. 
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Figure 7.25 Peak particle velocity vs. distance from vibration source for different type of 
soils. 
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7.5.2 Effect of Pile Embedment Length 

Three different pile embedment lengths are considered for the simulation of pile 

driving and propagation of ground vibrations.  Each simulation has a different pile 

embedment length consisting of: (1) one pile length, L, embedded, (2) half a pile length, 

L/2, embedded and (3) quarter of a pile length, L/4, embedded. 

As shown in Figure 7.25, the shorter the embedment is the greater the PPVs are 

on the ground surface.  The maximum recorded PPVs for the fully, half, and quarterly 

embedded piles are 10.5 mm/s, 6.5 mm/s, and 2.5 mm/s, respectively.  Although the 

energy transmitted to the ground is the same for the three different models, the 

dissipation of the stress waves due to the material damping in the ground causes 

significant differences in the magnitudes of the vibrations on the ground surface.  Less 

energy is dissipated in the ground as the piles are less embedded.  When the pile is 

quarter-embedded, the PPV at 4.5 m from the pile is two times greater than the PPV at 

the same point for the half-embedded pile. In addition, when the pile is quarterly 

embedded, the PPV at 4.5 m from the pile is five times greater than the PPV at the same 

point for the fully embedded pile.  This can be explained by the difference of the arrival 

times of the P-waves to the ground surface.  The P-waves reach the ground surface in a 

relatively shorter time than the quarterly and half-embedded piles with respect to the 

arrival time for the fully embedded pile.  The contour plots of the resultant velocities are 

shown in Figure 7.26. 

The PPVs for the three cases are plot on the scale distance graph of Woods and 

Jedele (1985) as shown in Figure 7.27.  The PPVs for half and quarterly embedded piles 

at 18 m and 27 m are found to be troublesome to persons whereas the PPVs for fully 

embedded piles are found to be barely noticeable to persons.  
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Figure 7.26 Peak particle velocity vs. scaled distance from the pile for different pile 
embedment lengths. 

  

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 9 18 27 36 45 54

P
ea

k 
P

ar
tic

al
 V

el
oc

ity
 (

m
m

/s
)

Distance from the pile (m)

Fully embedded pile

Half embedded pile

Quarterly embedded 
pile



227 
 

 

 

 

                (a)                                                (b)                                     (c) 

Figure 7.27 Contour plots of resultant velocities in clayey soil for fully, half and quarter 
embedded piles at time steps (a) t = 20 ms, (b) 50 ms, and (c) 100 ms. 



228 
 

 

 

Figure 7.28 Peak particle velocity vs. scaled distance from vibration source for different 
pile embedment lengths 
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7.5.3 Effect of Released Hammer Energy 

The hammer energies transmitted from the hammer to the pile are compared for 

three different models.  The original forcing function that is shown in Figure 7.13 is used 

for the analysis.  Hammer energies are represented by the peck forces applied on the pile 

head as F, 3F and 5F.  These peak forces are calculated as 2,000 kN, 6,000 kN and 

10,000 kN, respectively.  The maximum PPVs are computed as 2.0 mm/s, 4.0 mm/s and 

7.0 mm/s for peak impact forces of F, 3F and 5F, respectively, as shown in Figure 7.28.  

The radial (v1), vertical (v2) and resultant (vnorm) velocities are plotted for 3F and 5F cases 

as shown in Figures 7.29 and 7.30, respectively.  In Figure 7.29, the radial velocities 

increase up to 9 m then gradually decreases toward the far field.  The reason for that is 

the shear waves dominate in the first 9.0 meters.  In Figure 7.30, both radial and vertical 

velocities gradually decrease in the near and far field. This is because the compression 

waves dominate on the ground surface.  The conclusion can be drawn that the more 

energy transmitted to the ground the higher the PPVs are on the ground surface. 

The results are compared with the empirical method of Woods and Jedele (1985) 

as shown in Figure 7.31.  The PPVs for 3F and 5F are found to be troublesome to persons 

after a distance of 27 m from the pile.  
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Figure 7.29 Peak particle velocity vs. distance for different hammer energies. 

 

Figure 7.30 Peak particle velocity vs. distance for the peak force of 6,000 kN. 
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Figure 7.31 Peak particle velocity vs. distance for the peak force of 10,000 kN. 
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Figure 7.32 Peak particle velocity vs. scaled distance from vibration source for different 
hammer energies. 
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7.6 Ground Vibrations at Foundation Levels 

Structural damage caused by pile driving induced vibrations are not only caused 

by stress waves traveling on the ground surface but also caused by the waves below the 

ground surface.  If there are substructures such as subways, pipelines or deep foundations 

in the near vicinity of a pile driving operation, damage to those substructures can be 

caused by underground waves.  Thus, the damage criterion based on the measurements of 

the peak particle velocities recorded on the ground surface would be less beneficial.  

The radial, vertical and vector sum velocities at the ground surface (Z=0.0) and 

below the ground surface (Z=4.5 m, Z=9.0 m, Z=18.0 m) are computed for varying 

distances from the center of the pile as shown in Figures 7.32, 7.33, and 7.34.  It can be 

seen in the figures that the vertical peak velocities are up to 4 times higher than the radial 

peak velocities on the ground surface.  Thus, vertical velocities dominate in the entire 

field.  In Figure 7.34, the resultant peak particle velocities (PPVs) are shown for different 

depths and distances from the pile.  At 18 m below the ground, the PPVs are 10 times, 7.5 

times and 3.5 times greater than the PPVs on the ground surface at 2.5 m, 4.5 m and 9 m 

away from the pile, respectively.  This is because the energy transmitted from the pile toe 

into the ground dissipates when traveling to the ground surface.  Thus, the PPVs have a 

greater magnitude at the depth of the pile toe.   

In Figure 7.35, it is shown that the PPVs are between 5 mm/s and 20 mm/s at the 

depth of the pile toe within 18 m distance from the pile.  Hence, the measurement of 

ground vibrations would be pointless if there are any substructures at the depth of 18 m 

below the ground surface.  The substructures could be adversely affected by the pile 

driving vibrations from the ground surface to a depth of 18 m.  
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Figure 7.33 Peak radial velocity vs. distance from the pile at different depths. 

 

Figure 7.34 Peak vertical velocity vs. distance from the pile at different depths. 
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Figure 7.35 Peak resultant velocity vs. distance from the pile at different depths. 

 

Figure 7.36 Peak particle velocities at different depths vs. distance from the pile. 
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7.7 Summary and Discussion 

This chapter consists of a parametric study on the finite element modeling of 

ground vibrations caused by impact pile driving.  The parameters considered for the 

assessment if ground vibrations are: (1) the soil strength, (2) the pile embedment length, 

and (3) the released hammer energy.  In addition, the ground vibrations at various depths 

and distances from pile driving are investigated to illustrate the effect of ground 

vibrations to buried structures in the vicinity of pile driving. 

The first parameter considered is the soil strength.  The finite element analysis is 

run for three different types of soils: (1) soft clay, (2) medium stiff clay, and (3) stiff clay.  

These soil types are represented by different values of elastic modulus and unconfined 

compressive strengths.  The modules of elasticity are varied from 1.06 MPa to 4 MPa.  

The unconfined compressive strengths are varied from 2.87 KPa to 12 KPa.  The 

variation of the peak particle velocities (PPVs) on the ground surface is monitored.  The 

following conclusions are drawn from the analyses: (1) the PPVs are higher in stiff clay 

in the near field, which is 9 m or less away from the pile; (2) the PPVs are higher in soft 

clay in the far field, which is more than 9 m away from the pile; (3) the shear waves 

dominate in the soft clay whereas the primary waves dominate in the stiff clay.  

The next parameter studied is the pile embedment depth. The analysis is 

performed for three cases consisting of fully, half, and quarterly embedded piles.  The 

peak particle velocities at different distances from the pile on the ground surface are 

plotted.  The quarterly embedded pile yields greater vibration amplitudes with respect to 

the half and fully embedded piles.  Although the applied energy from the pile hammer 

remains constant, the magnitude stress waves encountering the ground surface are greater 

for the less embedded piles. 

In the last case, the effect of hammer energy is studied for three cases.  In these 

cases, peak forces of 2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F) are considered to 

be applied on top of the pile.  The time histories of the peak particle velocities at different 
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depths are plotted. It is concluded that increase in hammer energy causes increase in the 

peak particle velocities. 

The ground vibrations at various depths are analyzed to investigate the effect of 

vibrations to the substructures in the vicinity of the pile driving.  The vibration 

amplitudes are recorded at 4.5 m, 9 m, and 18 m below the ground surface.  It is shown 

that the maximum PPV is monitored at a depth of 18 m where the pile toe is located.  The 

PPVs between 0 to 18 m below the ground surface range from four to ten times the 

magnitude with respect to the PPVs on the ground surface. 
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CHAPTER 8  

SUMMARY AND CONCLUSIONS 

This thesis consists of static and dynamic analysis of piles using the finite element 

method.  For the analysis of soil-pile interaction, a coupled displacement/pore pressure 

element formulation was employed.  The governing equations were developed for the 

transient analysis of soils under static and dynamic loading conditions.  These equations 

are implemented within the finite element framework using the Mathematica software.  

The ABAQUS/Standard finite element package was used to solve the non-linear 

axisymmetric static and dynamic equations. The soil was assumed to be normally 

consolidated.  The undrained soil conditions were assumed.  The master-slave contact 

algorithm in ABAQUS was used to model the interaction between the pile and soil. An 

analytical rigid surface is defined along the axis of symmetry to remove the additional 

constraints on the soil elements adjacent to the symmetry line to allow slippage of the soil 

elements.  In addition, a non-reflecting artificial boundary is defined to prevent the 

bounce back of stress waves from the far end of the model.  This boundary consisted of 

soil elements with high damping ratios that are designed to absorb the vibrations.  

Two types of problems were solved in this thesis: (1) the static analysis of a pile 

in which the phenomenon of static consolidation was studied, and (2) the dynamic 

analysis of a pile in which pile driving and ground vibrations were studied. The results 

were compared with published data to validate the numerical model.  

In the static analysis, the load capacity of a single pile is investigated.  The results 

from the finite element method are compared with and supported by widely recognized 

theoretical methods.  The theoretical methods that are used to estimate the end bearing 

capacities are as follows: (1) General Formula, (2) Vesic’s Method, (3) Janbu’s Method, 

(4) Meyerhof’s Method, and (5) Coyle & Castello’s Method.  The estimation of skin 

friction resistance, shaft capacity, of single piles is performed using the (1) Alpha 
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method, (2) Beta method, and (3) Lambda method. Two numerical applications are 

carried out to estimate the load capacity of single piles in normally consolidated clays.  

The first numerical application consists of a solid cylindrical concrete pile with a 

diameter D = 1.0 m and length L= 20 m embedded in a thick homogenous stiff clay layer.  

It is examined that the model with no slippage at the interface predicts almost twice as 

much load capacity as the model with interface.  In regards with the end bearing 

capacities, Coyle & Castello’s method is found to be most conservative followed by the 

finite element method, then Janbu’s method, then Meyerhof’s method, and finally Vesic’s 

method.  In respect to skin friction resistance, the finite element is found to be the most 

conservative method, followed by Beta, then Lambda, and then Alpha.  It is concluded 

that modeling the interaction between the soil and pile (soil pile interface) is vital to 

obtain accurate pile load capacities. 

In the dynamic analysis, the amplitudes of ground vibrations are investigated 

based on the variation of: (1) the soil type, (2) the pile embedment length and (3) the 

released hammer energy, all of which have significant effects on the transmission of 

ground vibrations in the soil.   

In the first analysis, five types of soils, loose and dense sands and, soft, medium 

stiff, and stiff clays, are modeled.   It is found that the vibration amplitudes are highest for 

the loose sand with a PPV of 10.0 mm/s followed by the dense sand with a PPV of 

around 4.0 mm/s.  Among the clay types, the vibrations are higher for the stiffer clay in 

the near field, which is 9 m, half a pile length, or less away from the pile.  In the soft clay, 

vibration amplitudes are higher in the far field, which is more than 9 m away from the 

pile.  It is concluded that the shear waves dominate in the softer clay whereas the 

compression waves dominate in the stiff clay.   

In the second analysis, three different embedment lengths, full, half, and quarter 

pile lengths, are modeled.  It is found that the quarterly embedded pile produces greater 

vibration amplitudes with respect to the half and fully embedded piles.  The greater 
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amplitudes of vibrations are encountered on the ground surface for shorter pile 

embedment lengths.  This is due to less energy dissipation in the ground during the 

transmission of ground vibrations from the pile toe to the ground surface.   

In the third analysis, three different impact forces are applied on top of the pile.  

The peak forces are selected as 2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F).  It is 

observed that although the increase in hammer energy causes increase in the peak particle 

velocities, these increments are not linearly proportional with the magnitude of the 

applied impact force. 

The effect of vibrations to the substructures in the proximity of the pile driving 

was also investigated analyzing the ground vibrations at various depths.  The vibration 

amplitudes were recorded at 4.5 m, 9 m, and 18 m below the ground surface.  This 

analysis showed that the maximum vibrations are monitored at a depth of 18 m where the 

pile toe is located.  The recorded vibrations from the pile toe to the ground surface have 

shown significant discrepancies with the variation of depths.  The vibration amplitudes 

recorded at the depth of the pile toe where ten times greater than the recorded vibration 

on the ground surface.  It is concluded that to avoid damage to substructures, the ground 

vibrations must be recorded at various depths in the proximity of the pile driving.  

In conclusion, this research was valuable for studying ground vibrations caused 

by pile driving.  The quality of the finite element model was significantly improved by 

(1) taking into account the friction between pile and soil, (2) considering non-linear 

behavior of soils, and (3) defining an artificial boundary that minimizes reflection of the 

waves in the far field.  Proper consideration of these factors would be beneficial for 

developing a safe pile driving strategy to avoid potential structural damage and 

disturbance in the vicinity of pile driving.   

Future work is reserved to develop and implement a suitable constitutive model 

within the finite element framework to study the settlement of foundation soils in the 

proximity of repetitive impact pile driving or vibratory pile driving. 
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