
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2010

Clusters and covers: geometric set cover algorithms
Matthew Richard Gibson
University of Iowa

Copyright 2010 Matthew Richard Gibson

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/502

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Gibson, Matthew Richard. "Clusters and covers: geometric set cover algorithms." PhD (Doctor of Philosophy) thesis, University of
Iowa, 2010.
http://ir.uiowa.edu/etd/502.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages

CLUSTERS AND COVERS:

GEOMETRIC SET COVER ALGORITHMS

by

Matthew Richard Gibson

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

May 2010

Thesis Supervisor: Associate Professor Kasturi Varadarajan

1

ABSTRACT

We consider several geometric special cases of the set cover problem. The

first problem we consider is the decomposing coverings problem. Here, we consider a

combinatorial problem: given a collection of points in the plane and a collection of

objects in the plane such that each point is contained in at least k objects, partition

the objects into as many sets as possible so that each set covers all of the points.

We show that if the objects are translates of a convex polygon, then it is possible to

partition the translates into Ω(k) covers.

The second problem we consider is the planar sensor cover problem. This

problem is a generalization of the decomposing coverings problem. We are given a

collection of points in the plane and a collection of objects in the plane. Each of the

objects can be thought of as a sensor. The sensors have a duration which can be

thought of as the battery life of the sensor. The planar sensor cover problem is to

schedule a start time to each of the sensors so that the points are covered by a sensor

for as long as possible. We give a constant factor approximation for this problem.

The key contribution to this result is a constant factor approximation to a one-

dimensional version of the problem called the restricted strip cover (RSC) problem.

Our result for RSC improves upon the previous best O(log log log n)-approximation,

and our result for the planar sensor cover problem improves upon the previous best

O(log n)-approximation.

The next problem we consider is the metric clustering to minimize the sum

2

of radii problem. Here, we are given an n-point metric (P, d), and an integer k > 0.

We are interested in covering the points in P with at most k balls so that the sum of

the radii of the balls is minimized. We give a randomized algorithm which solves the

problem exactly in nO(log n log ∆) time, where ∆ is the ratio of the maximum interpoint

distance to the minimum interpoint distance. We also show that the problem is NP-

hard, even in metrics induced by weighted planar graphs and when the metric has

constant doubling dimension.

The last problem we consider is the minimum dominating set problem for

disk graphs. In this problem, we are given a set of disks in the plane, and we want

to choose a minimum-cardinality subset of disks such that every disk is either in

the set or intersects a disk in the set. For any ǫ > 0, we show that a simple local

search algorithm is a (1+ ǫ)-approximation for the problem which improves upon the

previous best O(log n)-approximation algorithm.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

CLUSTERS AND COVERS:

GEOMETRIC SET COVER ALGORITHMS

by

Matthew Richard Gibson

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

May 2010

Thesis Supervisor: Associate Professor Kasturi Varadarajan

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Matthew Richard Gibson

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the May 2010 graduation.

Thesis Committee:

Kasturi Varadarajan, Thesis Supervisor

Sriram Pemmaraju

Sukumar Ghosh

Alberto Segre

Jeffrey Ohlmann

ACKNOWLEDGEMENTS

There have been many people who have made a major influence in my ex-

perience doing algorithms research. Firstly, I must thank Kasturi Varadarajan. His

guidance has helped me to read papers well and learn how to break a problem down

in order to understand a problem inside and out. He is a coauthor on all of the work

presented in this document, as well as several other papers that I coauthored. I am

very fortunate for the opportunity to work with him.

I must also thank Gaurav Kanade, Erik Krohn, and Imran Pirwani. Between

the four of us, we have spent many hours reading papers and discussing problems.

The time spent with them was invaluable as I felt like I learned something new every

time we met. Our hard work was rewarded with several publications, with much of

the credit going to those three. They are coauthors of the work in Chapter 6. Also,

Imran Pirwani and Mohammad Salavatipour are coauthors of the work in Chapter 7.

I would also like to thank Sriram Pemmaraju. I took three algorithms-related

classes from Sriram and learned an incredible amount from him. Two of the three

classes were very early in my time here, and Sriram’s ability to clearly communi-

cate sophisticated algorithmic techniques helped me to “grow up” as an algorithms

researcher very quickly.

I would also like to thank Jeffrey Ohlmann. I enjoyed learning about heuristic

techniques from him and had a great time working on our paper. While most of my

time as a graduate student was spent doing algorithms research, I very much enjoy

ii

working on heuristics, and because of my time working with Jeff, I feel confident that

I could develop interesting heuristics in the future.

I finally would like to thank all members of the Algorithms Reading Group,

both past and present. There have been many bright minds researching algorithms at

the University of Iowa within the past five years, and the opportunity to learn from

them has benefited me greatly. Thank you to all who have made the University of

Iowa such a great place to do algorithms research.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Decomposing Multiple Coverings 5
1.1.1 An Example of Cover-Decomposability 6
1.1.2 An Example of a Polygon that is Not

Cover-Decomposable . 7
1.1.3 Previous Work . 11
1.1.4 Our Contribution . 13

1.2 The Planar Sensor Cover Problem 14
1.2.1 Previous Work. 16
1.2.2 Our Contribution. 19

1.3 Metric Clustering to Minimize
the Sum of Radii . 21
1.3.1 Previous Work . 22
1.3.2 Our Contribution . 23

1.4 Minimum Dominating Set
for Disk Graphs . 24
1.4.1 Previous Work on Dominating Set 25
1.4.2 Our Result . 27

2 DECOMPOSING COVERINGS: CENTRALLY-SYMMETRIC POLY-
GONS . 28

2.1 Preliminaries . 28
2.1.1 Simple Algorithm for One Level Curve 32

2.2 Centrally-Symmetric Polygons 34

3 DECOMPOSING COVERINGS: CONVEX POLYGONS 46

3.1 General Convex Polygons . 46

4 RESTRICTED STRIP COVERING 60

4.1 Restricted Strip Covering . 60
4.1.1 The Algorithm . 60
4.1.2 Approximation Ratio . 61

iv

5 THE PLANAR SENSOR COVER PROBLEM 68

5.1 Planar Sensor Cover via RSC . 68
5.1.1 From Polygons to Wedges 69
5.1.2 The Structure of Heavy Wedges 71
5.1.3 Multiple RSC instances 72

6 METRIC CLUSTERING TO MINIMIZE THE SUM OF RADII . . . 88

6.1 Algorithm for General Metrics 88
6.2 NP-hardness of Min-Cost k-Cover 93
6.3 The Doubling Metric Case . 97

7 DOMINATING SET FOR DISK GRAPHS 103

7.1 The Algorithm . 103
7.2 Approximation Ratio . 104

7.2.1 Proof of Lemma 36 . 105
7.2.2 Proof of Theorem 35 . 112

7.3 Conclusion . 113

8 CONCLUSION AND OPEN PROBLEMS 114

8.1 Decomposing Coverings . 114
8.2 The Sensor Cover Problem . 114
8.3 Clustering to Minimize the Sum of Radii 115
8.4 Dominating Set for Disk Graphs 116

REFERENCES . 117

v

LIST OF FIGURES

Figure

1.1 An illustration of the wedges of a polygon. (a) Suppose this is our polygon
with vertices V and W labeled accordingly. (b) The construction will use
translates of a wedge V and of a wedge W 8

1.2 Illustration for P (k, l) with k = 1 and l = 3. 9

1.3 Illustration for P (k, l). 10

1.4 Figure from [12]. The shaded region is a gap. In this example, L = 4 and
OPT = 3 which is realized by shifting sensor G down to cover the shaded
region. 18

1.5 An example of a dominating set. The circled vertices form a dominating
set for this graph. 25

1.6 An illustration of a dominating set for a disk graph. (a) A dominating set
of size 3 for a disk graph. (b) A dominating set of size 2 for the same disk
graph. In the MDS problem, we would prefer the solution with 2 disks. . 26

2.1 An illustration for the wedges of a polygon. (a) Suppose this triangle is
our polygon with vertices indexed accordingly. (b) A 0-wedge, 1-wedge,
and 2-wedge with respect to the polygon. 30

2.2 An example of a level curve Ci(r) for r = 2. Note that any i-wedge with
apex on Ci(2) (e.g. the dotted wedge) contains load at least 2. 31

2.3 Level curve Ci(r) with hi and τi denoted. 32

2.4 An example of an interval I(y) (in bold). Note that the i-wedges with
apex on Ci(k) that contain y are the dotted wedges and all wedges with
apex “in between” the apices of the dotted wedges. 34

2.5 An illustration for the definition of tangent. (a) This line is tangent to the
wedge. (b) This line is not tangent to the wedge. 37

2.6 An illustration of W and Wi(x). (a) The wedge W with apex at x. (b)
Wi(x) and W both have their apex at x. 37

vi

2.7 All of the lines tangent to Wi(x) must lie in the shaded region (e.g. the
dotted line). Every such line is also tangent to W , and the wedges are on
opposite sides of every such line. By definition, W is subantipodal with
respect to an i-wedge. 37

2.8 Illustration for Lemma 8. Note that there cannot be a point in the shaded
region by definition of the tail τi. 40

2.9 Illustration for the nonantipodal case. 41

2.10 Illustration for Case 2(a): the region Rz. 42

2.11 Illustration for Case 2(a): the constructed point z′. 43

2.12 Illustration of the case when W ∩W≤k
i 6= ∅ and the boundaries of W do

not intersect Ci(k). 44

2.13 The first step in constructing W ′. 45

2.14 The second step in constructing W ′. 45

3.1 The triangle used in Figure 3.2. 47

3.2 Algorithm 2.1 would assign all of the points in W2(x) the same color when
coloring points for C0(k). 48

3.3 An example of a set Ai. In this example, A0 = {2} since only the side of
P̄ parallel with p2p3 has the qualifying property. 49

3.4 The wedge W is triangular with respect to an i-wedge because there is a
triangle T with the required property. 52

3.5 The wedge W is not triangular with respect to an i-wedge because the
required triangle does not exist. 52

3.6 Illustration for Lemma 11. Note that there cannot be any points in the
shaded region due to the definition of the head hi. 53

3.7 An illustration for the triangular case. (a) A type 1 intersection. (b) A
type 2 intersection. 54

3.8 An example of the key triangular regions. (a) An illustration of Tvℓ
. (b)

An illustration of T ′
vℓ

. 55

vii

3.9 An illustration for the antipodal case. If we are working with the corre-
sponding i-wedge and j-wedge (part (a)), then we obtain the corresponding
W 1

j (x), W 2
j (x), and W 3

j (x) (part (b)). 57

3.10 An illustration for the antipodal case. If we are working with the cor-
responding i-wedge and j-wedge (part (a)), then W 1

j (x) = Wj(x) and
W 2

j (x) = W 3
j (x) = ∅ (part (b)). 58

4.1 There are 3 sensors covering (x, t). The first scheduled sensor to cover
(x, t) is s0. The next sensor to cover (x, t) is a type 2 sensor s1. Finally,
(x, t) is covered by a type 4 sensor s2. 64

5.1 An illustration for the wedges of a polygon. (a) Suppose this triangle is
our polygon with vertices indexed accordingly. (b) A 0-wedge, 1-wedge,
and 2-wedge with respect to the polygon. 70

5.2 An example of a level curve Ci(r) for r = 5. Note that any i-wedge with
apex on Ci(5) (e.g. the dotted wedge) contains load at least 5. 72

5.3 Level curve Ci(r) with hi and τi denoted. 73

5.4 An example of an interval I(y) (in bold). Note that the i-wedges with
apex on Ci(k) that contain y are the dotted wedges and all wedges with
apex “in between” the apices of the dotted wedges. 74

5.5 An example of a set Ai. In this example, A0 = {2} since only the side of
P̄ parallel with p2p3 has the qualifying property. 74

5.6 Illustration for Case 1. Note that there cannot be a point in the shaded
region by definition of the tail τi. 77

5.7 Illustration for the nonantipodal case. 78

5.8 An illustration for the antipodal case. If we are working with the corre-
sponding i-wedge and j-wedge (part (a)), then we obtain the corresponding
W 1

j (x), W 2
j (x), and W 3

j (x) (part (b)). 79

5.9 An illustration for the antipodal case. If we are working with the cor-
responding i-wedge and j-wedge (part (a)), then W 1

j (x) = Wj(x) and
W 2

j (x) = W 3
j (x) = ∅ (part (b)). 79

viii

5.10 Illustration for Case 2(a): the region Rz. Note that although this figure is
drawn with respect to a scenario as in Figure 5.8, the analysis still holds
for the scenario as in Figure 5.9 (i.e. when the boundaries of an i-wedge
are not parallel with the boundaries of W 1

j (x)). 80

5.11 Illustration for Case 2(a): the constructed point z′. 81

5.12 Illustration of the case when W 1
j (x) ∩ W≤k

i 6= ∅ and the boundaries of
W 1

j (x) do not intersect Ci(k). 82

5.13 The first step in constructing W ′. 83

5.14 The second step in constructing W ′. 83

5.15 Illustration for Case 2(b). Note that there cannot be any points in the
shaded region due to the definition of the head hi. 84

5.16 Illustration for case 2(b): (a) A type 1 intersection. (b) A type 2 intersection. 84

5.17 Illustration for case 2(b): (a) An illustration of Tvℓ
. (b) An illustration of

T ′
vℓ

. 86

6.1 The construction for the planar metric case. (a) The gadget for variable xl

in Φ. (b) A planar embedding for Φ and construction of the corresponding
instance of k-clustering problem. All “clause-literal” edges have weight 2l

for the variable xl. The optimal cover is highlighted with grey “blobs”.
Φ = (¬x0 ∨ x3 ∨ x4) ∧ (x0 ∨ ¬x4 ∨ ¬x5) ∧ (x0 ∨ ¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨
x3). Satisfying assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is
exactly 26 − 1 . 95

6.2 The construction for the doubling metric case. (a) The gadget for the
variable xl in Φ. Each edge between wl

i and wl
i+1 has weight exactly

2l/(l + 1)2 and the number of wl
i’s is 8(l + 1)2 + 1. (b) A representation

of an instance of k-clustering on a doubling metric constructed from an
instance of Φ. All “clause-literal” edges have weight 2l for variable xl. The
optimal cover is highlighted with grey“blobs”. Φ = (¬x0∨x3 ∨x4)∧ (x0 ∨
¬x4 ∨ ¬x5) ∧ (x0 ∨ ¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3). Satisfying assignment
X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1 98

7.1 An example of a Voronoi diagram. 106

7.2 An illustration for the distances used in our WVD. (a) d(x, u) when x is
not in u. (b) d(x, u) when x is in u. 107

ix

7.3 Proof of Lemma 38. The dotted disk is u with center cu and radius ru.
The two red disks r and r′ are shown as dashed disks with centers cr and
cr′ , respectively. The only blue disk b is shown as a solid disk with center cb.111

x

1

CHAPTER 1
INTRODUCTION

In this document are several pieces of work on different variants of the geomet-

ric set cover problem. The general set cover problem is well studied, see for example

[27, 17, 39, 46]. Here, we are given a set of elements X and a set F of subsets of X.

The goal is to pick some subset of F that satisfies some constraints and optimizes

some objective value. For example, one might want to find the smallest subset of F

that covers (contains) all of the elements in X. Or perhaps there is a weight assigned

to each element in F , and the goal is to find a subset of F that covers everything in

X such that the sum of the weights of the elements in the subset is minimized.

In 1974, Johnson showed that a greedy algorithm for set cover gives an O(log n)

approximation [39], where n = |X|. That is, the algorithm will return a solution which

is at most an O(log n) factor worse than an optimal solution. In 1993, Lund and

Yannakakis [47] and Bellare, Goldwasser, Lund, and Russell [9] showed that there is

a positive constant c such that the general set cover problem cannot be approximated

in polynomial time within a c log n factor unless NP ⊆ DTIME(nO(log log n)). In

1997, Raz and Safra [58] showed that the problem cannot be approximated within

a c log n factor for some constant c unless NP = P . In 1998, Feige [27] showed

that the problem cannot be approximated to within a (1 − o(1)) log n factor unless

NP ⊆ DTIME(nO(log log n)). Note that the lower bounds and upper bounds are the

same up to a constant factor, and thus the computational complexity for this problem

is settled.

2

Suppose now that instead of dealing with the general problem, the set X is a

collection of points in some geometric space and the sets F are subsets of X induced

by the intersection of X with some geometric object. For example, X might be a

collection of points in the plane, and each set in F might be the subset of points in X

contained within some disk or triangle in the plane. For simplicity, we will call such

a problem the set cover problem with disks, the set cover problem with triangles, and

so on. Since we cannot hope to do better than an O(logn) approximation for general

set cover, it would be interesting if the additional structure of the geometry can lead

to better approximation algorithms, e.g. a constant factor approximation algorithm.

How well a geometric set cover problem can be approximated depends largely

upon the problem at hand. For many problems, the best known approximation

algorithm is the O(log n) approximation algorithm for general set cover, e.g. the

set cover problem with axis-aligned rectangles. There are problems in which there

are known approximation algorithms with approximation ratios better than O(log n)

yet are still superconstant. For example, Varadarajan [61] and Aronov, Ezra, and

Sharir [6] give an O(log log log n) approximation for set cover with “fat” triangles. As

we will see in Section 1.2, Aloupis et al. [2] give an O(1) approximation for a sensor

cover problem when each sensor is a translate of a special type of convex polygon.

Gibson, Kanade, Krohn, and Varadarajan showed that the problem of guarding an

x-monotone polygonal chain has a polynomial time approximation scheme (PTAS)

[34]. That is, for any ǫ > 0, their algorithm returns a solution in polynomial time

whose size is at most a factor of 1+ǫ worse than the size of an optimal solution. Some

3

geometric set cover problems can be solved exactly. For example, Gibson, Kanade,

Krohn, Pirwani, and Varadarajan showed that the geometric clustering to minimize

the sum of radii problem is polynomial time solvable [33]. Very few hardness of

approximation results are known. One recent hardness result due to Har-Peled [35] is

that there is no PTAS for set cover with fat triangles. Compare this to the best known

O(log log log n) algorithm, and it is easy to see that there is much left to understand

about this problem specifically, and many variants of set cover in general.

In this document, we will describe some algorithms for some variants of the set

cover problem. The first being the decomposing multiple coverings problem. Here, we

are given a collection of points X in the plane and a collection of translates of some

object P such that each point in X is contained in at least k of the translates. We

would like to partition the translates into as many sets as possible so that each set

covers all of the points in X. We show that if P is any convex polygon, then we can

partition the translates of P into Ω(k) covers. This can be contrasted with the case

when P is a concave polygon. We will see in Section 1.1.2 that there are examples for

any k > 0 that it is not possible to partition the translates into 2 sets so that both

sets cover all of the points.

Next, we will look at two variants of the sensor cover problem. Here, we are

given a collection of points (in the plane, on a line, etc.) and a collection of objects,

each of which has a duration and covers some geometric subset of the points. We

think of the duration as being the battery life of some sensor, i.e. the maximum

amount of time that the sensor can cover the points that it contains. We would like

4

for the points to be monitored by the sensors for as long as possible. We could turn

all of the sensors on initially, but in doing so we may be redundantly covering the

points. It may be advantageous to turn on only a subset of the sensors initially, and

then activate more later after some of the first sensors durations have been depleted.

We will give constant factor approximation algorithms for both of the variants that

we consider.

Then, we will look at the metric clustering problem to minimize the sum of

radii. This is a generalization of the geometric version mentioned earlier. In this

problem, we are given a positive integer k and a set of points with interpoint distances

that satisfy the condition of being a “metric.” We want to cover all of the points using

at most k balls, each of which is centered at one of the input points, so that the sum

of the radii of the balls is minimized. When the input points lie in a geometric

space and interpoint distances are the corresponding geometric distances, there is an

exact polynomial time algorithm for the problem. We will show that in the general

metric case, we can get a nO(log n log ∆) time exact algorithm where ∆ is the aspect

ratio of the problem (the ratio of the longest interpoint distance to the shortest

interpoint distance). This is a quasipolynomial time algorithm when ∆ is bounded

by a polynomial in n. However, when ∆ is exponential in n, we will show that the

problem is NP-hard, even when the metric is induced by a planar graph and when

the metric has the so called property “constant doubling dimension.”

Finally, we will consider the minimum dominating set problem for disk graphs.

Here, we are given a collection of disks D in the Euclidean plane. We say that two

5

disks are neighbors if and only if they intersect. A subset of the disks D′ ⊆ D is a

dominating set if for every disk d ∈ D, either d ∈ D′ or d has a neighbor in D′. The

minimum dominating set problem (MDS) is to compute the minimum cardinality

dominating set. We show that a local search algorithm is a PTAS for this problem

for disk graphs, improving upon the previous best O(log n) approximation.

1.1 Decomposing Multiple Coverings

Given a collection of objects (sets) in the plane that cover every point in the

plane, we say that the objects are cover-decomposable if they can be partitioned into

two covers. Let us call an object (set) P in the plane cover-decomposable if there there

exists a constant c > 0 (which may depend on P) such that any collection of translates

of P , with the property that every point in the plane has c or more translates covering

it, can be partitioned into two covers. Pach conjectured in the 1980s that every convex

object is cover decomposable [51, 52], and this remains open. Let us focus on a finite

version of this definition. Given a set of points and a collection of objects in the

plane, we say that the objects are cover-decomposable if they can be partitioned into

two sets so that both sets cover all of the points. Given a set of points, we call a

covering of the points with a collection of objects a c-fold covering if every point is

contained within at least c of the objects. We say that P is cover-decomposable if

there exists a constant c > 0 such that any c-fold covering of a point set X by a finite

collection of translates of P can be partitioned into two sub-collections, so that each

sub-collection covers every point in X. That is, if whenever a collection of translates

6

of P form a c-fold covering of a point set X the translates can be partitioned into

two 1-fold covers of X, then we say that P is cover-decomposable.

1.1.1 An Example of Cover-Decomposability

To see an example of cover-decomposability, consider the following one dimen-

sional problem. Suppose we are given a collection of points that all lie on a horizontal

line ℓ, and suppose we are also given a collection of intervals I of ℓ. We will show

that if every point is contained in at least 3 intervals, then we can partition the set of

intervals into two sub-collections such that each sub-collection covers all of the points.

For a collection of intervals I ′, we say an interval v ∈ I ′ is redundant if the

intervals in I ′ \ v covers the exact same subset of ℓ as do the intervals in I ′. Consider

Algorithm 1.1.

Algorithm 1.1

1: I ′ ← I

2: while there exists a redundant interval v ∈ I ′ do

3: I ′ ← I ′ \ {v}

4: end while

5: C1 ← I ′

6: C2 ← I \ I ′

Consider the intervals in C1. Clearly, C1 is a cover of the input points. Note

7

that no interval in C1 is redundant, i.e. every interval in C1 uniquely covers some

point of ℓ. We will show that for any point l ∈ ℓ, l is covered by at most two intervals

in C1. Note that if we are able to show this, then we will be done because every point

is covered by at least 3 intervals in I, and thus there must be an interval in C2 that

also covers l.

Suppose there is some point l ∈ ℓ that is covered by 3 intervals in C1. Since

we are thinking of ℓ as being a horizontal line, we will use the natural notion of a left

(resp. right) endpoint of an interval. Let v1, v2, and v3 be any three distinct intervals

that cover l. Assume without loss of generality that the left endpoint of v1 is at least

as far to the left as the left endpoints of v2 and v3. If the right endpoint of v1 is at

least as far to the right as the right endpoints of v2 and v3, then clearly both v2 and

v3 are redundant. Otherwise, assume that the right endpoint of v2 extends at least

as far to the right as the right endpoints of v1 and v3. Clearly v3 must be a subset of

v1 ∪ v2, and thus v3 is redundant, a contradiction.

1.1.2 An Example of a Polygon that is Not

Cover-Decomposable

To contrast the notion of an object being cover-decomposable, we will now

give the high level ideas of a recent result of Pálvölgyi [53] that shows that there exist

concave polygons which are not cover-decomposable. That is, for any c > 0, we can

construct a point set and a c-fold covering using translates of a concave polygon P

such that for every partition of the translates into two sets C1 and C2, one of the two

8

sets does not cover some point that needs to be covered.

Using standard techniques (which will be formally stated in Chapter 2), we

reduce the problem to coloring points inside of wedges which correspond to the wedges

of the polygon P . In this setting, we have a point set and a set of translates of wedges

such that each wedge contains at least c points. To show cover decomposability, we

would need to show that we can color the points either red or blue so that every wedge

contains at least one point of each color (we think of the points as covering the wedges,

and the points colored red correspond to C1 and the points colored blue correspond

to C2). However Pálvölgyi shows that it is possible to construct an example using

translates of a wedge V and a wedge W (which correspond with the wedges of a

concave polygon, see Figure 1.1) so that no matter how you color the points, there

either exists a translate of V which contains all red points or there is a translate of

W which contains all blue points.

W

V

W

V

(a) (b)

Figure 1.1: An illustration of the wedges of a polygon. (a) Suppose this is our polygon
with vertices V and W labeled accordingly. (b) The construction will use translates
of a wedge V and of a wedge W .

9

Figure 1.2: Illustration for P (k, l) with k = 1 and l = 3.

We will construct a gadget P (k, l) which consists of points plus translates of

V and W . The gadget will have the property that no matter which red-blue coloring

of the points we choose, there is a translate of V containing k red points and no blue

points or there is a translate of W containing l blue points and no red points. When

k = 1, place l points and l translates of V so that each translate contains exactly

one of the points and each of the points lies within exactly one translate of V . We

then add one translate of W that contains all of the l points. See Figure 1.2 for an

example. Clearly either the translate of W contains l blue points and no red points,

or one of the translates of V contains k = 1 red point and no blue points. A similar

construction holds for the case when l = 1.

Now suppose that we want to construct P (k, l) for k > 1 and l > 1. Assume

that we already have P (k′, l′) for all k′ + l′ < k + l. We will show how to construct

P (k, l) using P (k−1, l) and P (k, l−1). Place a point p, then place a copy of P (k−1, l)

so that all translates of V from P (k− 1, l) contain p and none of the translates of W

from P (k−1, l) contain p. Similarly, place a copy of P (k, l−1) so that all translates of

W from P (k, l−1) contain p and none of the translates of V from P (k, l−1) contain

10

P (k − 1, l)

p

P (k, l − 1)

Figure 1.3: Illustration for P (k, l).

p. See Figure 1.3. We will now show that this construction satisfies the requirements

for P (k, l).

Suppose p is colored red. One of the following two cases must occur:

1. There is a translate of V from the copy of P (k − 1, l) which contains k − 1 red

points and no blue points. This wedge now contains p, which gives it k red

points and no blue points.

2. There is a translate of W from the copy of P (k − 1, l) which contains l blue

points and no red points. Since this translate does not contain p, then it still

holds that it contains l blue points and no red points.

We can argue in a similar fashion for the wedges of P (k, l− 1) in the case when p is

11

colored blue. Thus we have that there is either a translate of V which contains k red

points and no blue points or there is a translate of W which contains l blue points

and no red points.

Now for any c > 0, we can construct P (c, c). Thus for any coloring of the

points, there will either be a translate of V which contains c red points and no blue

points, or there will be a translate of W which contains c blue points and no red

points. Note that all wedges necessarily must contain at least c points. This then

implies that there is a c-fold covering of a point set by translates of a concave polygon

that cannot be partitioned into two covers.

1.1.3 Previous Work

In the 1980’s, Mani and Pach [48] showed in an unpublished manuscript that

the unit disk is cover decomposable (with the constant c being 33.) Also in the 1980’s,

Pach [51] showed that any centrally symmetric convex polygon is cover-decomposable.

Tardos and Tóth [60] showed somewhat more recently that any triangle is cover-

decomposable. Finally, a very recent result due to Pálvölgyi and Tóth [54] shows

that any convex polygon is cover-decomposable. The constant c in the results of

[51] and [54] depends on the convex polygon, in particular the number of its sides,

and that is why these results say nothing about the original conjecture of Pach.

Examples of non-convex polygons that are not cover-decomposable are known [53]

(as was described in Section 1.1.2).

Motivated partly by questions in scheduling sensors [11], an extension of the

12

cover-decomposability question has recently attracted a lot of attention: Given a

collection of translates of P and any integer k, partition the collection into as many

sub-collections as possible so that each sub-collection covers every point covered by

k or more of the original translates. That is, we would like to be able to decompose

a k-fold cover into as many disjoint covers as possible. While the original results on

cover-decomposability do yield non-trivial bounds for this question, these are usually

far from optimal. For instance, Tardos and Tóth [60] implies that a k-fold cover with

translates of a triangle can be partitioned into Ω(log k) covers.

In this line of work, Pach and Tóth [52] showed that a k-fold cover with a

centrally symmetric convex polygon P can be decomposed into Ω(
√

k) covers, where

the constant as before depends on P . Aloupis et al. [2] improved this result and

obtained an optimal bound, showing that one can obtain Ω(k) covers. Both of these

results have corresponding efficient algorithms that compute the desired decomposi-

tions. Aloupis et al. [3] consider other related problems.

The problem of decomposing multiple coverings seems to be harder if instead

of a convex polygon we have a unit disk. Pandit, Pemmaraju and Varadarajan [55]

consider a special case where the universe that needs to be covered is the same as the

centers of the covering disks. For this version of the problem, better known as the

domatic partition problem for unit disk graphs [56], they show that it is possible to

compute Ω(k) disjoint covers in polynomial time.

13

1.1.4 Our Contribution

We obtain an optimal result for translates of an arbitrary convex polygon:

Theorem 1. For any convex polygon P in the plane, there exists a constant α ≥ 1

so that for any k ≥ 1 and any finite collection of translates of P , we can partition the

collection into k/α sub-collections, each of which covers any point in the plane that

is covered by k or more translates in the original collection. Such a partition can be

computed by an efficient algorithm.

Our techniques build upon the recent work of Aloupis et al. [2] for centrally

symmetric convex polygons. A polygon is centrally symmetric if there is a point

o ∈ ℜ2 such that whenever the polygon contains point o + p it also contains o − p.

A key idea of theirs is to focus on the level curves corresponding to the wedges at

the vertices of P . The interaction of these level curves can be complex, but they

show that is sufficient to work within a region where the interaction is much more

controlled. It is only for centrally symmetric convex polygons that they establish

such nice properties of the interaction. The notion of level curves is also central to

our work, but the main point of departure is the simplicity of the new way in which

we handle the level curve interactions.

In Chapter 2, we give some preliminaries and an algorithm for centrally sym-

metric convex polygons which will serve as a foundation for proving Theorem 1 in

Chapter 3.

14

1.2 The Planar Sensor Cover Problem

Suppose we have a universe, which is simply some collection of points, and

a set of sensors such that each sensor covers some subset of the universe. Further

suppose that each sensor is powered by a battery and thus can only be turned on

for some amount of time. We refer to this amount of time as the sensor’s duration.

We are interested in scheduling a start time to each of the sensors such that the

entire universe is covered for as long as possible. This problem was introduced by

Buchsbaum et al. [11] as the sensor cover problem. We only consider the non-

preemptive case in which once a sensor has been turned on, it will remain on until

its duration has been depleted. In the preemptive case, research has shown that

partitioning the sensors into covers and iterating through the covers helps to increase

the lifetime of a sensor network [1, 19, 57, 59, 21].

We now formally define the general sensor cover problem, followed by the

geometric instances that are the subject of Chapters 4 and 5. We are given a finite

universe U that we wish to cover, and a set S of n sensors. For each sensor s ∈ S,

we let R(s) ⊆ U denote the region that s covers. We call this region the range of s.

For each x ∈ R(s), we say that s is live at x. Each sensor s also has a duration d(s)

which is some positive integer.

A schedule of the set S of sensors is an assignment of a positive integer, called

the start time, to each sensor in some subset S ′ ⊆ S. We will denote by t(s) the start

time of sensor s. The sensors in S \ S ′ are said to be unassigned. A sensor s that is

assigned a start time t(s) is said to be active at times {t(s), t(s)+1, ..., t(s)+d(s)−1}.

15

Let S be some schedule of S. A point x ∈ U is said to be covered at time

t > 0 if there is a sensor s such that x ∈ R(s) and s is active at time t. For each

x ∈ U , define the duration of x in the schedule to be M(S, x) = max{j : ∀j ′ ≤ j, ∃s ∈

S, s covers x at time j′}. (If no sensor covers x at time 1, then define M(S, x) = 0.)

The duration of the schedule S is defined to be M(S) = minxM(S, x). The goal of

the problem is to compute a schedule of maximum duration.

The load at a point x ∈ U is L(x) =
∑

s∈S:x∈R(s) d(s). The load of the problem

instance is L = minxL(x). Let OPT denote the duration of an optimal schedule.

Clearly, OPT ≤ L, and thus any approximation ratio that is with respect to L is also

with respect to OPT .

We are particularly interested in two geometric instances of the sensor cover

problem:

• Restricted Strip Cover. Here, the universe U is a set of points on the real

line, and the range R(s) of each sensor s is equivalent to the intersection of U

with an interval on the real line.

• Planar Sensor Cover for Convex Polygons. Here, the universe U is a set of

points in ℜ2, and the range R(s) of each sensor is equivalent to the intersection

of U with a translate of a fixed convex polygon. In the remainder of this paper,

we will refer to this problem as simply the planar sensor cover problem.

16

1.2.1 Previous Work.

The General Sensor Cover. A closely related problem to the sensor cover prob-

lem is the domatic partition problem. In this problem, we are given a graph with the

goal of finding the maximum number of disjoint dominating sets. A dominating set

is a subset of the vertices such that for each vertex in the graph, either it is in the

set or it has a neighbor in the set. Domatic partition can be viewed as a special case

of the sensor cover problem where the universe is the vertex set, each vertex of the

graph is a sensor, the range of each sensor is its corresponding vertex’s closed neigh-

borhood, and each sensor has unit duration. Feige et al. [28] show that it is NP-hard

to approximate this problem to within a log n-factor and give a simple randomized

algorithm that achieves an O(log n)-approximation, where n is the number of vertices

in the graph.

As pointed by Buchsbaum et al. [11], the lower bound above given by Feige et

al. implies that general sensor cover cannot be approximated to better than a log n

factor. On the positive side, Buchsbaum et al. [11] present a poly-time algorithm for

the sensor cover problem that returns an O(log |U |) approximation. This algorithm

extends an algorithm for the set cover packing problem [28], which is the special

case of the sensor cover problem with the duration of all sensors being 1. In many

applications, the sensors do not cover arbitrary subsets of the universe, but rather

the points in the universe lie in some geometric space and the sensors cover some

geometric subset of the universe. In such cases, we will see that it is possible to do

better than the log n lower bound for general sensor cover.

17

Restricted Strip Cover. The Restricted Strip Cover problem (RSC) was intro-

duced and studied by Buchsbaum et al. [11]. Here, we think of the universe as being

points on a horizontal line, and each sensor covers some sub-interval of the line. If

there are m points to be monitored, then we number them from left-to-right, i.e.

the leftmost point is 1 and the rightmost point is m. Buchsbaum et al. showed

that if each of the sensors have unit duration, then a greedy algorithm will achieve

a schedule of duration L. The algorithm proceeds left-to-right computing a schedule

S and maintains two invariants: (a) no sensors overlap at any point ≥ i, and (b)

M(S, i) = L.

The algorithm starts at point i = 1. Select any L sensors which are live at 1

and schedule them so that they do not overlap, i.e. the point 1 will be covered at all

times ≤ L. Note that after this initial step, the two invariants are satisfied. Now, for

point i + 1, if M(S, i + 1) = L, then we are done, and can go on to i + 2. If not, then

there are k > 0 unit-duration gaps at i + 1. The invariants imply that there must be

at least k sensors which are live at i + 1 which have not yet been scheduled, and so

we will be able to fill these gaps in without violating the invariants.

The problem becomes much more difficult if the sensors have arbitrary du-

rations. As Buchsbaum et al. pointed out [12], there are instances of RSC where

OPT < L. See Figure 1.4 for an illustration of this which appeared in [12].

Buchsbaum et al. [11] showed that RSC is NP-hard and give a polynomial-time

O(log log log n)-approximation algorithm, where n is the number of sensors. They

show that their algorithm does better for special cases of RSC. In particular, they

18

A

B

D

C

E

F

H

G

1 2 3 4 50

0

1

2

3

4

5

Figure 1.4: Figure from [12]. The shaded region is a gap. In this example, L = 4 and
OPT = 3 which is realized by shifting sensor G down to cover the shaded region.

show that their algorithm is a (2 + ǫ)-approximation for any ǫ > 0 when the sensors

are non-nested; this includes the case where the ranges of all the sensors have the

same size.

The RSC bears some resemblance to the well studied dynamic storage alloca-

tion [32, 12]. The RSC problem can be viewed in the following way. We are given

a set of rectangles, and we are allowed to slide each rectangle vertically; the goal is

to find a placement of the rectangles so that we cover a horizontal strip that is as

tall as possible. In the dynamic storage allocation problem, we are also given a set

of rectangles, each of which we are allowed to slide vertically; the goal is to find a

placement of the rectangles such that no two of them overlap and the rectangles are

contained in a horizontal strip that is as short as possible. The dynamic storage allo-

cation problem admits constant factor approximation algorithms [32, 12], and these

are with respect to the load, where now the load is the maximum of the pointwise

loads. We refer the reader to [11] for a review of the similarities of the RSC to other

19

problems [1, 19, 21, 30, 41, 57, 59] studied in the literature.

Planar Sensor Cover. The special case of the planar sensor cover problem where

each sensor has unit duration has received a lot of attention recently. Consider an

instance with universe U , sensors S, and load L. We know that each x ∈ U is covered

by at least L sensors (convex polygons). One may ask a combinatorial question: Is

it possible to partition S into Ω(L) sets each of which is a cover for U? As seen

in Subsection 1.1.3, Aloupis et al. [2] showed that the answer is “yes”, and in fact

they give a polynomial time algorithm to construct Ω(L) covers. Thus they obtain

a poly-time algorithm for computing a constant factor approximation to the planar

sensor problem when each sensor has unit duration.

For the planar sensor cover problem with the durations of the sensors not being

the same, the best known result is the logarithmic approximation inherited from the

combinatorial sensor cover problem.

1.2.2 Our Contribution.

We have two main results: firstly, we give a constant factor approximation

algorithm for RSC, and secondly, we use it to give a constant factor approximation

for the planar sensor cover problem.

Restricted Strip Cover. We improve upon the O(log log log n) approximation of

[11] and give the first constant factor approximation (a ratio of 5) for RSC. The work

of [11] starts off with the observation that if all the sensors have unit duration then it

20

is possible to compute a schedule whose duration is equal to the load of the instance.

The case of non-uniform duration is handled by reduction to several instances of the

uniform duration case. The tool used for this is a technique called grouping where

several sensors of small duration are combined to form one sensor of large duration.

The question of how the groups are to be formed is addressed in a clever way, but

the reduction entails a non-constant loss in the load and hence the O(log log log n)

approximation factor.

We take a different and conceptually simpler approach here. Our algorithm is

greedy and schedules sensors one by one. The scheduling rule manages to ensure that

we do not have more than 5 sensors overlapping any particular point at one time.

Hence we obtain a schedule whose duration is at least a fifth of the load. One idea

that the scheduling rule uses is that if there are two sensors s and s′ such that R(s)

is strictly contained in R(s′), we schedule s′ before we schedule s. Another idea is

to consider the duration of the sensors in an indirect way – for the next sensor to

be scheduled, the durations of the unscheduled sensors is irrelevant but only their

ranges; however the durations of the already scheduled sensors does play a crucial

rule. Since our algorithm is greedy it has a simple implementation with a reasonable

running time. We have not attempted to optimize the factor of 5 that our analysis

guarantees.

The algorithm and its analysis can be found in Chapter 4.

21

Planar Sensor Cover. We give a constant factor approximation for the planar

sensor cover problem, where the range of each sensor is a translate of a convex polygon,

improving upon the previous best logarithmic factor. Our work on this problem is

inspired by the approach taken by Aloupis et al. [2] and generalizes their results to

the case where each of the sensors has varying duration. Essentially, we show that

we can obtain a constant factor approximation for a convex polygon with µ vertices

by invoking µ instances of the RSC which we solve using our 5-approximation. The

simplicity of our greedy algorithm for RSC and some of its properties play a crucial

role here.

This work can be found in Chapter 5.

1.3 Metric Clustering to Minimize

the Sum of Radii

A metric d is a function on a set of points P , such that each of the following

holds:

1. d(u, u) = 0 for each u ∈ P .

2. d(u, v) = d(v, u) for each u, v ∈ P .

3. d(u, v) ≤ d(u, z) + d(z, v) for each u, v, z ∈ P .

Given a metric d defined on a set P of n points, we define the ball B(v, r)

centered at v ∈ P and having radius r ≥ 0 to be the set {q ∈ P |d(v, q) ≤ r}. In

Chapter 6, we consider the problem of computing a minimum cost k-cover for the

given point set P , where k > 0 is some given integer which is also part of the input.

22

For κ > 0, a κ-cover for subset Q ⊆ P is a set of at most κ balls, each centered at a

point in P , whose union covers (contains) Q. The cost of a set D of balls, denoted

cost(D), is the sum of the radii of those balls.

1.3.1 Previous Work

This problem and its variants have been well examined, motivated by appli-

cations in clustering and base-station coverage [23, 15, 44, 10, 4].

Doddi et al. [23] consider the metric min-cost k-cover problem and the closely

related problem of partitioning P into a set of k clusters so as to minimize the sum

of the cluster diameters. Following their terminology, we will call the latter prob-

lem clustering to minimize the sum of diameters. They present a bicriteria poly-

time algorithm that returns O(k) clusters whose cost is within a multiplicative factor

O(log(n/k)) of the optimal. For clustering to minimize the sum of diameters, they

also show that the existence of a polynomial time algorithm that returns k clusters

whose cost is strictly within 2 of the optimal would imply that P = NP . Notice

that this hardness result does not imply the NP-hardness of the k-cover problem.

Charikar and Panigrahy [15] give a poly-time algorithm based on the primal-dual

method that gives a constant factor approximation – around 3.504 – for the k-cover

problem, and thus also a constant factor approximation for clustering to minimize

the sum of diameters.

The well known k-center problem is a variant of the k-cover problem where

the cost of a set of balls is defined to be the maximum radius of any ball in the

23

set. The problem is NP-hard and admits a polynomial time algorithm that yields a

2-approximation [37]. Several other formulations of clustering such as k-median and

min-sum k-clustering are NP-hard as well [40, 20].

Gibson et al. [33] consider the geometric version of the k-cover problem where

P ⊂ ℜl for some constant l. When the L1 or L∞ norm is used to define the metric,

they obtain a polynomial time algorithm for the k-cover problem. With the L2 norm,

they give an algorithm that runs in time polynomial in n, the number of points, and

in log(1/ǫ) and returns a k-cover whose cost is within (1 + ǫ) of the optimal, for any

0 < ǫ < 1.

1.3.2 Our Contribution

Our first result generalizes the algorithmic approach of Gibson et al. [33] to

the metric case. For the k-cover problem in the general metric setting, we obtain an

exact algorithm whose running time is nO(log n·log∆), where ∆ is the aspect ratio of the

metric space, the ratio between the maximum interpoint distance and the minimum

interpoint distance. The algorithm is randomized and succeeds with high probability.

Thus when ∆ is bounded by a polynomial in n, the running time of the algorithm

is quasi-polynomial. This result for the k-cover problem should be contrasted with

the NP-hardness results for problems such as k-center, k-median, and min-sum k-

clustering, which hold when the aspect ratio is bounded by a polynomial in n.

The main idea that underlies this result is that if we probabilistically partition

the metric into sets with at most half the original diameter [8, 26], then with high

24

probability only O(log n) balls in the optimal k-cover of P are “cut” by the partition.

A recursive approach is then used to compute the optimal k-cover.

This algorithmic result raises the question of whether an algorithm whose

running time is quasi-polynomial in n is possible even when the aspect ratio is not

polynomially bounded. Our second result shows that this is unlikely by establishing

the NP-hardness of the k-cover problem. The aspect ratio in the NP-hardness con-

struction is about 2n. The metrics obtained are induced by weighted planar graphs,

thus establishing the NP-hardness of the k-cover problem for this special case.

Our final result is that the k-cover problem is NP-hard in metrics of constant

doubling dimension for a large enough constant. This result is somewhat surprising

given the positive results of [33] for fixed dimensional geometric spaces.

This work can be found in Chapter 6.

1.4 Minimum Dominating Set

for Disk Graphs

Given a graph G = (V, E), a dominating set is a subset of the vertices V ′ ⊆ V

such that for every vertex v ∈ V , either v ∈ V ′ or v has a neighbor in V ′. The

minimum dominating set (MDS) problem is to find a minimum cardinality dominating

set. See Figure 1.5 for an illustration.

MDS is motivated by applications in sensor networks in which the vertices of

the graph represent sensors and an edge connecting vertices u and v represents the

fact that u and v are able to communicate with each other. If a dominating set is

25

Figure 1.5: An example of a dominating set. The circled vertices form a dominating
set for this graph.

computed, each sensor in the dominating set can monitor all of its neighbors, and by

the definition of dominating set, every sensor in the network will be monitored. One

might be interested in monitoring the network as cheaply as possible, and finding a

MDS might be a good solution for doing so.

In Chapter 7, we will focus on the MDS problem on disk graphs. A disk graph

of a given set D of n disks in the Euclidean plane is simply the intersection graph of

the disks. That is, the vertices of the graph are the disks, and two disks are neighbors

if and only if they intersect. We are interested in the MDS problem for disk graphs.

That is, we want to find a smallest cardinality set of disks D′ ⊆ D such that for every

d ∈ D, either d ∈ D′ or d intersects a disk in D′. See Figure 1.6 for an illustration.

1.4.1 Previous Work on Dominating Set

On general graphs, the problem is (1 − ǫ) ln n hard to approximate for any

ǫ > 0 [27, 16], while a greedy algorithm yields an O(log n) approximation [62] due to

its connection to the set cover problem.

Nevertheless, better approximations are possible for restricted domains. For

26

(a) (b)

Figure 1.6: An illustration of a dominating set for a disk graph. (a) A dominating
set of size 3 for a disk graph. (b) A dominating set of size 2 for the same disk graph.
In the MDS problem, we would prefer the solution with 2 disks.

example, the problem admits a polynomial-time approximation scheme (PTAS) for

unit disk graphs and growth-bounded graphs [38, 50]. The problem is NP-hard on

these domains [18]. However, for the disk graph case, o(log n) approximations have

remained elusive – perhaps, in part, because known techniques for unit disk graphs

and solutions to other problems on disk graphs have either relied on packing prop-

erties [38, 50, 24, 13], or when packing properties do not hold, as in the minimum

weighted dominating set on unit disk graphs, the fact that disk radii are uniform

[5, 55]. Erlebach and van Leeuwen recently studied the dominating set problem on

fat objects, e.g., disk graphs, [25]. They note that existing techniques for disk graphs

do not seem sufficient to solve MDS [25]; they also give an O(1)-approximation for

fat objects of bounded ply.

27

1.4.2 Our Result

We give a PTAS for MDS on disk graphs, improving upon the algorithm

for general graphs. Our result is inspired by two recent results given by Chan and

Har-Peled [14] and Mustafa and Ray [49]. Both papers (independently) show how

a simple local search algorithm on certain geometric graphs yields a PTAS for some

problems; Chan and Har-Peled [14] show local search yields a PTAS for maximum

independent set problem on admissible objects, while Mustafa and Ray [49] show

local search yields a PTAS for the minimum hitting set problem given a collection of

points and half-spaces in R
3, and also for points and admissible regions in R

2. They

both use the planar separator theorem to relate the cost of the local search solution

with the optimum solution. In the framework, at the crux lies an argument proving

the existence of an appropriate planar bi-partite graph whose vertices are objects

found by local search and ones that belong to an optimum solution, and the edges

are only between the two kinds of vertices. Mustafa and Ray [49] refer to this as the

locality condition.

Our main contribution is to show that the appropriate planar graph does

indeed exist for the MDS problem on disk graphs. We then can use the planar

separator theorem to show that a local search algorithm is a PTAS for this problem.

This work can be found in Chapter 7.

28

CHAPTER 2
DECOMPOSING COVERINGS: CENTRALLY-SYMMETRIC

POLYGONS

In this Chapter, we will consider the decomposing coverings problem for cen-

trally symmetric convex polygons. Here, we are given a set of points Q and a set of

translates of a centrally-symmetric convex polygon P . We will show that it is possible

to partition the translates into Ω(k) sets such that each point in Q that is contained

within at least k of the translates is contained within a translate from each of the

sets.

In Section 2.1, we recall crucial tools from previous work on the problem of

decomposing multiple coverings. In Section 2.2, we describe a simple algorithm to

decompose a k-fold covering with translates of a centrally-symmetric polygon into

Ω(k) covers.

2.1 Preliminaries

It is convenient to prove Theorem 1 in its dual form as done in [60, 2]. Suppose

we are given a polygon P . Fix O, the centroid of P , as the origin in the plane. For

a planar set T and a point x in the plane, let T (x) denote the translate of T with

centroid x. Let P̄ be the reflection through O of the polygon P . For points p and x

in the plane, p ∈ P (x) if and only if x ∈ P̄ (p).

Because of this transformation, it is sufficient for us to show that there exists

a constant α ≥ 1 so that for any k ≥ 1 and any collection Q of points in the plane, it

29

is possible to assign each point in Q a color from {1, 2, . . . , k
α
}, so that any translate

of P̄ with |P̄ ∩Q| ≥ k contains a point colored i, for each 1 ≤ i ≤ k
α
.

Polygons to Wedges. Denote the vertices of P̄ to be p0, p1, p2, . . . , pµ−1 in coun-

terclockwise order. Addition and subtraction of indices of these vertices will be taken

modulo µ throughout the paper. The set of indices between index i and index j in

counterclockwise order are denoted [i, j]. We now transform the problem further, so

that instead of dealing with translates of P̄ , we can deal with translates of the µ

wedges corresponding to the vertices of P̄ [52, 60, 2].

Let c be equal to half the minimum distance between two points on non-

consecutive edges of P̄ . We lay a square grid of side c on the plane; any translate of

P̄ intersects β ∈ O(1) grid cells, and each grid cell intersects at most two sides of a

translate; moreover, if a grid cell does intersect two sides of a translate, then these

sides must be adjacent in P̄ .

For a subset (region) R of the plane and for a finite subset X of points, denote

loadX(R) to be the number of points in X that lie in R. We call this value the load

of region R with respect to X. Since each translate P̄ (u) intersects at most β grid

cells, P̄ (u) must contain load at least k/β within some grid cell if its load with respect

to Q is at least k. We can therefore make the points of Q within such a grid cell

“responsible” for P̄ (u).

Since each grid cell intersects at most two edges of P̄ (u), it must be that the

intersection of a grid cell with P̄ (u) is the same as the intersection of the grid cell

30

with a wedge whose boundaries are parallel to two adjacent edges of P̄ (u). If one

boundary of the wedge is parallel to the edge pi−1pi of P̄ and the other is parallel

with pipi+1 of P̄ , then we call the wedge an i-wedge. For a point q in the plane, we

denote Wi(q) to be the i-wedge with apex q. See Figure 2.1 for an illustration.

0 1

2 x1

W2(x2)

W1(x1)

x3

W0(x3)x2

(a) (b)

Figure 2.1: An illustration for the wedges of a polygon. (a) Suppose this triangle is
our polygon with vertices indexed accordingly. (b) A 0-wedge, 1-wedge, and 2-wedge
with respect to the polygon.

Because of these observations, Theorem 1 is established by applying the fol-

lowing theorem to the points Y within each grid cell G.

Theorem 2. There exists a constant α′ ≥ 1 so that for any k ≥ 1 and any collec-

tion Y of points in the plane, it is possible to assign each point in Y a color from

{1, 2, . . . , k
α′}, so that any i-wedge that contains k or more points from Y contains a

point colored j, for each 1 ≤ j ≤ k
α
.

We prove Theorem 2 for wedges of a centrally-symmetric convex polygon in

this chapter, and we prove the same theorem for wedges of a general convex polygon

in Chapter 3. We assume that the point set Y is in general position – a line parallel

31

Ci(2)

Figure 2.2: An example of a level curve Ci(r) for r = 2. Note that any i-wedge with
apex on Ci(2) (e.g. the dotted wedge) contains load at least 2.

to a side of P̄ contains at most one point in Y . It is straightforward to perturb the

input to the original problem so that this assumption holds for Y .

Level Curves. We will now define a boundary for an i ∈ {0, 1, . . . µ−1} and positive

integer r. This boundary has the property that any i-wedge placed on or “inside” the

boundary has load at least r with respect to Y , and any i-wedge placed “outside”

the boundary has load less than r. That is, the number of points in Wi(x) ∩ Y for

any x inside the boundary or on the boundary is at least r and is less than r for any

x outside the boundary. This boundary is called a level curve [2] and extends the

definition of boundary points [51, 52]. Let Wj
i be the set of apices of all i-wedges W

such that loadY (W) = j. For each i = 0, 1, . . . µ − 1, let the level curve Ci(r) be the

boundary of the region W≥r
i =

⋃

j≥rWj
i for each i = 0, 1, . . . µ− 1.

Note that Ci(r) is a monotone staircase polygonal path with edges that are

parallel to the edges of an i-wedge. See Figure 2.2. We have the following observations:

Observation 3. For any x ∈ Ci(r), r ≤ loadY (Wi(x)) ≤ r + 1.

Observation 4. Any i-wedge W such that loadY (W) ≥ r contains an i-wedge whose

32

Ci(r)τi

hi

Figure 2.3: Level curve Ci(r) with hi and τi denoted.

apex belongs to Ci(r).

Observe that one of the two extreme edges of the level curve Ci(r) is a semi-

infinite ray parallel to edge pi−1pi. Let hi denote the origin of this ray. We call hi the

head of Ci(r). Note that for all points y on the ray, Wi(y)∩Y = Wi(hi)∩Y . The other

extreme edge of Ci(r) is parallel to edge pipi+1. Let τi denote the origin of this ray. We

call τi the tail of Ci(r). Note that for all points y on the ray, Wi(y)∩ Y = Wi(τi)∩ Y .

See Figure 2.3.

2.1.1 Simple Algorithm for One Level Curve

Observation 4 implies that is sufficient to prove Theorem 2 for the i-wedges

with apex on Ci(k), for each 0 ≤ i ≤ µ − 1. In order to do this, we will need a

procedure that takes as input one level curve Ci(k), a positive integer t, and a subset

Q ⊆ Y . The input to the procedure has the guarantee that for any i-wedge W with

apex on Ci(k), we have |W ∩Q| ≥ 2t. The goal is to output a partial coloring of the

points of Q with colors {1, 2, . . . , t} so that any i-wedge W with apex on Ci(k) (a)

contains a point colored j, for 1 ≤ j ≤ t, and (b) contains at most 2t colored points.

It is known [2] that such a procedure exists. The reason is that for any q ∈ Q,

the set I(q) = {u ∈ Ci(k)|q ∈ Wi(u)} of apexes of i-wedges containing q is an

33

“interval” of Ci(k). See Figure 2.4 for an illustration. We consider these intervals in

an order such that if interval I properly contains interval I ′, then we consider I before

I ′. Considering intervals in such an order, we add an interval into our working set

if it covers a point of Ci(k) that is not covered by previous intervals in the working

set. Notice that after all intervals have been considered, the working set forms a

cover of Ci(k). Now, we repeatedly throw out intervals from the working set that are

redundant – an interval is redundant if throwing it out of the current working set

does not affect coverage of Ci(k).

The final non-redundant working set covers Ci(k), but also has no more than

two intervals covering any point of Ci(k). We give the color 1 to the points in Q

that give rise to the intervals in our working set. We repeat this process t− 1 more

times after removing the colored points from Q. It is easy to verify that the overall

procedure, which we call computeCover(i, Q, t), successfully achieves properties (a)

and (b). We have the following observation whose second claim easily follows from

the manner in which we pick our non-redundant working set.

Observation 5. The partial cover computed by computeCover(i, Q, t) has the property

that any i-wedge with apex on Ci(k) has at most 2t colored points. Furthermore, if

q and q′ are points in Q such that q ∈ Wi(q
′) (that is, I(q) properly contains I(q′)),

then q′ is colored only if q is colored.

34

y

Ci(k)

Figure 2.4: An example of an interval I(y) (in bold). Note that the i-wedges with
apex on Ci(k) that contain y are the dotted wedges and all wedges with apex “in
between” the apices of the dotted wedges.

2.2 Centrally-Symmetric Polygons

In this section, we give an algorithm which will construct Ω(k) covers when

P is a centrally-symmetric polygon. Such an algorithm was given by Aloupis et al.

[2]. The algorithm in this section is slightly different, and some key ideas from the

analysis of this algorithm will play a crucial part in the analysis of the algorithm for

general convex polygons.

Algorithm 2.1 calls computeCover(i, Xi, t) for each 0 ≤ i ≤ µ− 1. The set Xi

in the i-th iteration consists of all the points in Y ∩ W≤k
i not colored in iterations

0, 1, . . . , i−1. At the beginning of the i-th iteration, let L denote, as in the algorithm,

the smallest number of uncolored points in a j-wedge with apex on Cj(k), for i ≤ j ≤

µ−1. The parameter t is chosen to be L
64µ

. After the call to computeCover(i, Xi,
L

64µ
),

any i-wedge with apex on Ci(k) contains points colored 1, 2, . . . , L/64µ. This is Ω(k)

colors provided L ∈ Ω(k). This is established in the remainder of the section.

35

Algorithm 2.1

1: Y ′ ← Y

2: for i← 0 to µ− 1 do

3: L← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . , µ− 1}

4: Xi ← Y ′ ∩W≤k
i

5: Run computeCover(i, Xi,
L

64µ
). Let Yi ⊆ Xi be the points assigned a color

during this call.

6: Let Y ′ denote the uncolored points (i.e. Y ′ ← Y ′ \ Yi).

7: end for

We will show that L, which equals k before the 0-th iteration, drops by at

most a constant factor (i.e. O(µ)) with each iteration. More specifically, we will show

that L drops by at most a constant factor during iteration i for all j > i.

We use the following terminology for iteration i: for two distinct points q and

q′, if Wi(q) ⊆ Wi(q
′), we say that q dominates q′. Notice that if q and q′ are both

uncolored before iteration i, then q′ is colored in iteration i only if q is already colored.

(This is Observation 5.) For the rest of this chapter, let Y ′ denote the points that

are not colored just before iteration i, let Xi denote set of candidate points that are

eligible to be colored in iteration i (as constructed in the algorithm), and let Yi denote

the points that are actually colored in iteration i.

The analysis will rely heavily upon the following observation, which follows

directly from Observation 5 and the fact that in Step 5 of the algorithm, we invoke

36

computeCover(i, Xi, t) with t = L
64µ

.

Observation 6. For any z ∈ Ci(k), we have that loadYi
(Wi(z)) ≤ L

32µ
.

A line through a vertex of P̄ is tangent to P̄ if it intersects P̄ only at the

vertex. Similarly, a line through the apex of a wedge is tangent to the wedge if it

intersects the wedge only at the apex. See Figure 2.5. We will consider the following

two cases:

• pi and pj are antipodal vertices of P̄ – that is, there are parallel lines through

pi and pj such that both of the lines are tangent to P̄ .

• pi and pj are not antipodal vertices of P̄ .

Suppose we have a j-wedge W . If pi and pj are not antipodal vertices of P̄ ,

then we say that W is nonantipodal with respect to an i-wedge. Now suppose that

W is a wedge of any type, i.e. not necessarily a type corresponding to a vertex of P̄ .

Suppose the apex of W is the point x, and consider the i-wedge Wi(x). See Figure

2.6. We say that W is subantipodal with respect to an i-wedge if (1) every line that is

tangent to Wi(x) is also tangent to W , and (2) W and Wi(x) are on “opposite sides”

of each of these tangent lines. See Figure 2.7.

We will argue that each wedge W (of type other than i) will have at most

a constant factor of its uncolored points assigned a color during iteration i of the

algorithm. Lemma 8 handles the case when W is nonantipodal with respect to an

i-wedge, and Lemma 9 handles the case when W is subantipodal with respect to an i-

wedge. The lemmas are written in this general form as they will be referred to multiple

37

(a) (b)

Figure 2.5: An illustration for the definition of tangent. (a) This line is tangent to
the wedge. (b) This line is not tangent to the wedge.

W

x

W

x
Wi(x)

(a) (b)

Figure 2.6: An illustration of W and Wi(x). (a) The wedge W with apex at x. (b)
Wi(x) and W both have their apex at x.

x

W

Wi(x)

Figure 2.7: All of the lines tangent to Wi(x) must lie in the shaded region (e.g. the
dotted line). Every such line is also tangent to W , and the wedges are on opposite
sides of every such line. By definition, W is subantipodal with respect to an i-wedge.

38

times in the paper; however, note that every wedge of a centrally-symmetric convex

polygon of type other than i is either nonantipodal or subantipodal with respect to

i. Assuming Lemmas 8 and 9 are true, the following theorem easily follows.

Theorem 7. Let P̄ be any centrally-symmetric convex polygon with µ vertices. Let

k ≥ 1000µ · (5µ)µ be a parameter. For any input Y ⊂ ℜ2, Algorithm 2.1 colors the

points in Y with Ω(k) colors in a way such that for any j-wedge W corresponding to

P̄ such that |W ∩ Y | ≥ k, W contains a point of each color.

Proof. In iteration i, we color points in Xi so that each i-wedge contains points of

t = L
64µ

different colors, where L is as defined in the algorithm. This is Ω(k) different

colors as long as L (which is k prior to iteration 0 of the algorithm) is Ω(k) prior to

iteration i of the algorithm. Lemma 8 and Lemma 9 ensure this by showing that L

falls by at most a constant factor in each iteration of the algorithm for all j-wedges

such that j > i.

Let W be any wedge of type j such that j > i. Note that if loadXi
(W) < L

6
,

then clearly W will contain at least L − L
6

uncolored points after iteration i (only

points from Xi will be assigned a color). Therefore we only need to handle the case

when loadXi
(W) ≥ L

6
. Also note that in the case of centrally-symmetric convex

polygons, every j-wedge with j 6= i is either nonantipodal with respect to an i-wedge

or is subantipodal with respect to an i-wedge. If W is nonantipodal with respect to

an i-wedge then we can invoke Lemma 8. If W is subantipodal with respect to an

i-wedge then we can invoke Lemma 9. In both cases, the number of uncolored points

in W falls by a factor of at most 5µ in iteration i. Therefore, when we reach iteration

39

j of the algorithm, W will still contain Ω(k) points which have not yet received a

color.

The following lemma handles the case for wedges which are nonantipodal with

respect to an i-wedge.

Lemma 8. Suppose that W is a wedge that is nonantipodal with respect to an i-wedge

and loadXi
(W) ≥ L

6
. Further suppose that at the beginning of iteration i, all i-wedges

with apex on Ci(k) have load at least L
2

from points in Xi. After the i-th iteration of

the algorithm, W has load at least L
5µ

from points in Y ′. (Note that Y ′ always denotes

the uncolored points in the algorithm.)

Proof. Let x denote the apex of W . The argument is trivial if W ∩W≤k
i = ∅. Suppose

that W ∩W≤k
i 6= ∅ and W ∩Ci(k) = ∅. For this to be the case, one of the boundaries

of W must be parallel with a boundary of an i-wedge. We will focus on the case when

W has a boundary parallel to the side pipi+1 as the other case is symmetric. See

Figure 2.8. In this case, we have that W ∩Xi ⊆ Wi(τi) by the definition of the tail

τi. We thus have loadYi
(W) ≤ loadYi

(Wi(τi)) ≤ L
32µ

where the last inequality comes

from Observation 6. Therefore, the load of uncolored points in W after iteration i is

at least L
6
− L

32µ
> L

5µ
.

So let us assume that W ∩ Ci(k) 6= ∅. Recall that since W is nonantipodal

with respect to an i-wedge, it is of type j where j corresponds to a vertex pj of P̄ .

There are two cases to cases to consider – in the first, we encounter pj after pi and

before the vertices antipodal to pi when walking counter-clockwise around P̄ , and in

40

Ci(k)

W

x

τi

Wi(τi)

Figure 2.8: Illustration for Lemma 8. Note that there cannot be a point in the shaded
region by definition of the tail τi.

the second, we encounter pj after the vertices antipodal to pi and before pi. We will

focus on the first case, since the other is symmetric. Let z be the intersection point

of the boundary of W and Ci(k) (to be precise, let z be the last point on W ∩ Ci(k)

as one walks “clockwise” around the boundary of W). If W does not contain in

its interior the tail τi of the level curve Ci(k), then W ∩ Yi ⊆ Wi(z) ∩ Yi, and so

loadYi
(W) ≤ loadYi

(Wi(z)) ≤ L
32µ

. It follows that the load of uncolored points in W

after iteration i is at least

L

6
− L

32µ
>

L

5µ
.

Let us therefore assume that W does contain in its interior the tail τi of Ci(k).

See Figure 2.9. Let a denote the point where the boundaries of the wedges Wi(z) and

Wi(τi) intersect. If loadXi
(Wi(a)) ≥ L

8µ
, then since loadYi

(Wi(a)) ≤ loadYi
(Wi(τi)) ≤

L
32µ

, there are uncolored points in Wi(a) after iteration i. Since any point in Wi(a)

dominates points in W ∩ Yi that are not contained in Wi(z) ∪Wi(τi), we conclude

41

a τi

z

Wi(τi)

Ci(k)
x

Wi(z)

W

Figure 2.9: Illustration for the nonantipodal case.

that W ∩ Yi ⊆ (Wi(z) ∪Wi(τi)) ∩ Yi. Thus,

loadYi
(W) ≤ loadYi

(Wi(z)) + loadYi
(Wi(τi)) ≤

L

16µ
.

Therefore there must be at least L
6
− L

16µ
> L

5µ
uncolored points left in W .

Let us therefore consider the case where loadXi
(Wi(a)) < L

8µ
. This means that

loadXi
(Wi(τi)\Wi(a)) > L

2
− L

8µ
> L

3
. Again, loadYi

(Wi(τi)\Wi(a)) ≤ loadYi
(Wi(τi)) ≤

L
32µ

, and this means the load of the points in Wi(τi) \Wi(a) that are uncolored after

iteration i is at least L
3
− L

32µ
> L

5µ
. But Wi(τi) \Wi(a) ⊆W , and this means that the

load of the uncolored points in W after iteration i is at least L
5µ

.

The following lemma handles wedges which are subantipodal with respect to

an i-wedge.

Lemma 9. Suppose that W is a wedge that is subantipodal with respect to an i-wedge

and loadXi
(W) ≥ L

6
. Further suppose that at the beginning of iteration i, all i-wedges

with apex on Ci(k) have load at least L
2

from points in Xi. After the i-th iteration of

the algorithm, W has load at least L
5µ

from points in Y ′. (Note that Y ′ always denotes

the uncolored points in the algorithm.)

42

az

bz

x

Wi(z)

z

Rz

W

Figure 2.10: Illustration for Case 2(a): the region Rz.

Proof. Let x denote the apex of W . Again, the argument is trivial if W ∩ W≤k
i =

∅. So let us assume that W ∩ W≤k
i 6= ∅. We first consider the case when both

boundaries of W intersect Ci(k). Consider any point z ∈ W ∩ Ci(k). Let az denote

the “leftmost” point where the boundaries of W and Wi(z) intersect, and let bz denote

the “rightmost” point where the boundaries of W and Wi(z) intersect. Let Rz be the

quadrilateral with vertices az, x, bz, and z. That is, Rz = W ∩Wi(z) 1. Suppose that

loadXi
(Rz) ≥ L

5µ
+ L

32µ
. By Observation 6, loadYi

(Wi(z)) ≤ L
32µ

, and since all points

in Rz are in Wi(z), Rz contains (uncolored) load at least L
5µ

after iteration i. Since

Rz ⊆ W , W contains (uncolored) load at least L
5µ

after iteration i, and we are done.

See Figure 2.10 for an illustration.

So we now assume that loadXi
(Rz) ≤ L

5µ
+ L

32µ
for each z ∈ W ∩ Ci(k). Since

loadXi
(Wi(z)) ≥ L

2
, we must have loadXi

(Wi(az) ∪Wi(bz)) ≥ L
2
− (L

5µ
+ L

32µ
) > L

8
.

Let z1 be the “leftmost” point on Ci(k) ∩W , and let z2 be the “rightmost” point on

Ci(k) ∩W . Notice that az1 is just z1 itself, and so loadXi
(Wi(az1)) ≥ L

2
. Similarly,

loadXi
(Wi(bz2)) ≥ L

2
. Let z′ be the last point on Ci(k), while walking from z1 to z2,

1To be more precise, az is encountered after x and before z while traversing the boundary
of Rz clockwise. Then bz is encountered after z and before x.

43

x

z1

z′az′

bz′ z2

Wi(z
′)

W

Figure 2.11: Illustration for Case 2(a): the constructed point z′.

such that loadXi
(Wi(az′)) ≥ L

16
. Thus

loadXi
(Wi(bz′)) ≥ loadXi

(Wi(az′) ∪Wi(bz′))−
L

16
≥ L

8
− L

16
=

L

16
.

See Figure 2.11 for an illustration.

Now consider any point z′′ ∈W \Wi(z
′). It must be that Wi(z

′′) either contains

Wi(az′) or contains Wi(bz′) which both have load in Xi of at least L
16

. Suppose that

Wi(z
′′) contains Wi(az′); the other case is similar. The points in Wi(az′) dominate z′′

and we will not color z′′ in iteration i until we have colored all points in Wi(az′)∩Xi.

But since loadYi
(Wi(az′)) ≤ L

32µ
< L

16
≤ loadXi

(Wi(az′)), this means we will not color

z′′.

It follows that W ∩ Yi ⊆ Wi(z
′) ∩ Yi, and thus loadYi

(W) ≤ loadYi
(Wi(z

′)) ≤

L
16µ

. And so the load of uncolored points in W after iteration i is at least L
2
− L

32µ
≥ L

5µ
.

We now consider the case when one or both boundaries of W do not intersect

with Ci(k). See Figure 2.12. We will show that we can find a wedge W ′ such that

both boundaries of W ′ intersect Ci(k), W ′∩Y = W ∩Y , and W ′ is subantipodal with

respect to an i-wedge. Given that W ′ exists, we can use the previous arguments to

show that W ′ contains Ω(k) uncolored points after iteration i. It then follows that

44

hi

τi
Ci(k)

x W

Figure 2.12: Illustration of the case when W ∩W≤k
i 6= ∅ and the boundaries of W do

not intersect Ci(k).

W contains Ω(k) uncolored points after iteration i because W ′ ∩ Y = W ∩ Y .

We will now describe how to find the wedge W ′. We begin by placing a wedge

identical to W “just behind” W so that the new wedge contains exactly the same

points of Y that W contains. See Figure 2.13. We then “bend in” the boundaries

of the wedge just enough so that the wedge still contains the same points as W and

the boundaries are no longer parallel with the edges of Ci(k). This is our wedge W ′.

See Figure 2.14. Both boundaries now intersect Ci(k) and W ′ is subantipodal with

respect to an i-wedge. By our previous analysis, W ′ contains at least L
5µ

uncolored

points after iteration i. Since W and W ′ contain the same points in Y , it follows that

W contains L
5µ

uncolored points after iteration i.

The previous two lemmas complete the proof of Theorem 7, which then in turn

completes the proof of Theorem 2 for the wedges of a centrally-symmetric convex

polygon.

45

hi

τi
Ci(k)

x W

Figure 2.13: The first step in constructing W ′.

τi
Ci(k)

x W

W ′

hi

Figure 2.14: The second step in constructing W ′.

46

CHAPTER 3
DECOMPOSING COVERINGS: CONVEX POLYGONS

In Section 3.1, we show that the algorithm for centrally-symmetric polygons

does not work in the case of triangles, a polygon which is not centrally-symmetric.

We then show how the algorithm can be modified to handle all convex polygons.

3.1 General Convex Polygons

In this section, we will show that Algorithm 2.1 does not work when P̄ is not a

centrally-symmetric polygon. More specifically, we will show that the algorithm does

not work when P̄ is a triangle. We will then give an algorithm that does indeed work

for general convex polygons, thus proving Theorem 2.

A bad example for Algorithm 2.1. The reason that Algorithm 2.1 works for

centrally-symmetric polygons but does not work for triangles is because of the ways

that wedges from a triangle can intersect. Using the definitions from the previous

chapter, a triangle could have a wedge that is not nonantipodal or subantipodal

with respect to an i-wedge. Because of this, it could be possible that when running

computeCover() for Ci(k) that all of the points inside of some j-wedge could be eligible

to be colored in iteration i, and it could be possible that they are all assigned the

same color.

For an example of this, see Figures 3.1 and 3.2. Suppose we are working

with the triangle in Figure 3.1. In Figure 3.2, each of the small yi dots correspond

47

0

1

2

Figure 3.1: The triangle used in Figure 3.2.

to a single point in Y , and the larger Yi dots correspond with k − 1 points in Y .

The level curve C0(k) is drawn with dotted lines, and a 2-wedge W2(x) is drawn

with solid lines. W2(x) contains only the points yi for i = 1, 2, . . . , k. We want to run

computeCover() for C0(k) up through time Ω(k) while leaving Ω(k) points from W2(x)

uncolored. However computeCover() could pick all of the yi points in its first iteration

and assign all of these points the same color. W2(x) contains at least k points from

Y , but all of the points it contains have the same color. Thus, the algorithm fails.

The Algorithm for General Convex Polygons. Recall that computeCover()

takes as input a set of points Xi ⊆ Y . Only points from Xi are eligible to be assigned

a color during iteration i. The way we modify the algorithm to work for all convex

polygons is by more carefully choosing our set Xi. For centrally-symmetric polygons,

it suffices to let Xi consist of all uncolored points in W≤k
i . In the case of triangles,

we want to choose a subset of the uncolored points in W≤k
i . Intuitively, we want to

only color the points which are the “furthest away” from Ci(k). By doing this, we

can show that if we assign a color to a point within some j-wedge, then there must

48

y1

x

y4

y5

y3

C0(k)

W2(x)

Y1

Y2

Y3

Y4

Y5

y2

Yk

yk

Figure 3.2: Algorithm 2.1 would assign all of the points in W2(x) the same color when
coloring points for C0(k).

49

4

3

1
0

2

Figure 3.3: An example of a set Ai. In this example, A0 = {2} since only the side of
P̄ parallel with p2p3 has the qualifying property.

be “a lot” of points remaining within the j-wedge.

Now we will introduce a notion which will be crucial in determining which

points are “far away” from Ci(k). Consider the natural linear ordering of the lines

parallel to side pjpj+1 of P̄ with the line through vertices pj and pj+1 being smaller

than the line through any of the other vertices of P̄ . For x, y ∈ ℜ2, we define the

partial order <j such that x <j y if the pjpj+1 parallel line through x is less than the

pjpj+1 parallel line through y. A similar notion was used in [60].

For a vertex pi, let Ai denote the set of all indices j such that the intersection

of P̄ with the line parallel to pjpj+1 and through pi is only the point pi. See Figure

3.3 for an example.

The algorithm is Algorithm 3.1. Note that the only difference between this

algorithm and Algorithm 2.1 is in how Xi is chosen.

We will first analyze the algorithm in the case when P̄ is a triangle. We will

then show that we can use the ideas from the triangle case as well as the centerally-

symmetric case to analyze the algorithm when P̄ is an arbitrary convex polygon.

Analysis for Triangles. First, we will elaborate on how Algorithm 3.1 chooses the

set Xi for a triangle. Recall the definition of the set Ai. For triangles, Ai = {i + 1}

50

Algorithm 3.1

1: Y ′ ← Y

2: for each i ∈ {0, 1, 2, . . . , µ− 1} do

3: L← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . , µ− 1}

4: for each c ∈ Ci(k) do

5: for each j ∈ Ai do

6: Let Xj(c) be the first L
2µ

points in Wi(c) ∩ Y ′ in decreasing order with

respect to the ordering <j .

7: end for

8: X(c)← {Wi(c) ∩ Y ′} \⋃

j∈Ai
Xj(c)

9: end for

10: Xi ←
⋃

c∈Ci(k) X(c)

11: Run computeCover(i, Xi,
L

64µ
). Let Yi ⊆ Xi be the points assigned a color

during this call.

12: Let Y ′ denote the uncolored points (i.e. Y ′ ← Y ′ \ Yi).

13: end for

since only the line parallel with pi+1pi+2 has the qualifying property. Note that this

line is parallel with the side of the triangle opposite of pi.

So when we get to the loop in Step 5 of the algorithm in iteration i, we will

only compute the set X i+1(c) in Step 6. This set will consist of the first L
6

points

in Wi(c) ∩ Y ′ in decreasing order with respect to the ordering <i+1. The sorting is

51

thus done with respect to the side of the triangle opposite of pi. Thus in Step 7, the

set X(c) is the last 5L
6

points in Wi(c) ∩ Y ′ in decreasing order with respect to the

ordering <i+1. Then finally in Step 8, Xi is simply the union of X(c) for all c ∈ Ci(k).

The analysis for this algorithm has the same flavor as the analysis of Algorithm

2.1. In iteration i of the algorithm, we will assign colors to some of the points in Xi so

that any i-wedge with apex on Ci(k) contains points colored with Ω(L) colors where

L is as defined in the algorithm. This is Ω(k) different colors as long as L, which

is k before the 0th iteration, is Ω(k) before the ith iteration. This is ensured in the

remainder of this section.

The analysis will again rely upon Observation 6 and the following observation.

Observation 10. For any z ∈ Ci(k), loadXi
(Wi(z)) ≥ L

2
.

To see Observation 10, note that for each c ∈ Ci(k), we have:

loadXi
(Wi(c)) ≥ loadX(c)(Wi(c)) ≥

L

2

Suppose we have a wedge W of any type other than i. We say that W is

triangular with respect to an i-wedge if there exists a triangle T with vertices t1 and

t2 such that the boundaries of T adjacent to t1 are parallel with the boundaries of W

and the boundaries of T adjacent to t2 are parallel with the boundaries of an i-wedge.

Note that for this to be possible, W must have a boundary that is parallel with a

boundary of an i-wedge. Also note that by the definition, a wedge of a triangle is

triangular with respect to every other type of wedge of the same triangle. See Figures

3.4 and 3.5.

52

TW

t2

t1i-wedge

Figure 3.4: The wedge W is triangular with respect to an i-wedge because there is a
triangle T with the required property.

W i-wedge

Figure 3.5: The wedge W is not triangular with respect to an i-wedge because the
required triangle does not exist.

We will argue that each wedge W (of type other than i) will have at most

a constant factor of its uncolored points assigned a color during iteration i of the

algorithm. Again, we write the lemma in a general form as we will use it again in a

later section.

Lemma 11. Suppose that W is a wedge that is triangular with respect to an i-wedge

and loadXi
(W) ≥ L

6
. Further suppose that at the beginning of iteration i, all i-wedges

with apex on Ci(k) have load at least L ≥ L
2

from points in Xi. After the i-th iteration

of the algorithm, W has load at least L
5µ

from points in Y ′. (Note that Y ′ always

denotes the uncolored points in the algorithm.)

Proof. Let x denote the apex of W . If W ∩W≤k
i = ∅, then the lemma trivially holds.

So for now on, we will assume W ∩W≤k
i 6= ∅. First suppose that W ∩Ci(k) = ∅. Note

53

x

W

Wi(hi)

Ci(k)

hi

Figure 3.6: Illustration for Lemma 11. Note that there cannot be any points in the
shaded region due to the definition of the head hi.

that one of the boundaries of W is parallel with one of the boundaries of an i-wedge.

We will assume that W has a boundary parallel with the side pi−1pi. The other case

is symmetric. See Figure 3.6. In this case, we have that W ∩Xi ⊆Wi(hi)∩Xi by the

definition of the head hi. Since W ∩Xi ⊆Wi(hi)∩Xi, we have that loadYi
(W) ≤ L

32µ
.

Therefore there is (uncolored) load at least L
6
− L

32µ
> L

5µ
after iteration i.

Now we will assume that W ∩ Ci(k) 6= ∅. Let z ∈ Ci(k) be a point such that

Wi(z) ∩W 6= ∅. Since we know that W has a boundary that is parallel with one

of the boundaries of Wi(z), we know that there are only two types of intersections

between these two wedges:

1. z ∈W , one boundary of W intersects both boundaries of Wi(z), and the other

boundary of W does not intersect with Wi(z).

2. x ∈ Wi(z), one boundary of Wi(z) intersects both boundaries of W , and the

other boundary of Wi(z) does not intersect with W .

See Figure 3.7 for an illustration.

54

z

Wi(z)

W

x x

Wi(z)

z

W

(a) (b)

Figure 3.7: An illustration for the triangular case. (a) A type 1 intersection. (b) A
type 2 intersection.

Let {v1, v2, v3, . . .} denote the points in Xi∩W in decreasing order according to

the partial order <i. Let ℓ = max{t|vt ∈ Yi}. If ℓ ≤ L
10

then loadY ′(W) ≥ L
6
− L

10
≥ L

5µ

after iteration i, so assume that ℓ > L
10

. For t ∈ {0, 1, . . . , µ − 1} and for a point

s ∈ ℜ2, let Ht(s) denote the halfplane consisting of all points y such that y ≤t s.

Since vℓ ∈ Xi there is a u ∈ Ci(k) so that vℓ ∈ X(u) in iteration i of the algo-

rithm. Suppose that the intersection between Wi(u) and W is a type 1 intersection.

Let Tvℓ
= Wi(u) \ Hi+1(vℓ). Since vℓ ∈ X(u), we know that vℓ is one of the last L

points in Wi(u) ∩ Y ′ with respect to the ordering <i+1. (See Algorithm 3.1 for the

notation.) Because we chose the points for X(u) with respect to this ordering, we

know that the first L
2µ

points with respect to the ordering <i+1 from Wi(u)∩Y ′ must

be in Tvℓ
. Since, loadYi

(Wi(u)) ≤ L
32µ

, there must be at least L
2µ
− L

32µ
> L

5µ
uncolored

points left in Tvℓ
after iteration i. Since we are dealing with a type 1 intersection,

Tvℓ
⊂ W , and thus W will contain at least L

5µ
uncolored points after iteration i and

the lemma holds. See Figure 3.8(a) for an illustration.

Now suppose that the intersection between Wi(u) and W is a type 2 intersec-

tion. Consider the region T ′
vℓ

= W \Hi(vℓ). Since we are assuming ℓ > L
10

and since

55

vℓ ∈ Wi(u), it must be that loadY ′(T ′
vℓ

) ≥ L
10

. Since we are dealing with a type 2

intersection, it must be that T ′
vℓ
⊂ Wi(u). Since loadYi

(Wi(u)) ≤ L
16µ

, we have that

loadYi
(T ′

vℓ
) ≤ L

16µ
and thus there will be at least L

10
− L

16µ
> L

5µ
uncolored points left

in T ′
vℓ

after iteration i. Since T ′
vℓ
⊆ W , there must be (uncolored) load at least L

5µ
in

W after iteration i. See Figure 3.8(b) for an illustration.

x

Wi(u)

W

u

vℓ

u

W

vℓ

Wi(u)
x

(a) (b)

Figure 3.8: An example of the key triangular regions. (a) An illustration of Tvℓ
. (b)

An illustration of T ′
vℓ

.

At this point, we could prove a theorem similar to Theorem 7 to show that

Theorem 2 holds for the wedges of a triangle.

Analysis for Convex Polygons. In this section, we will analyze Algorithm 3.1 in

the case when P̄ is an arbitrary convex polygon, thus proving Theorem 2. We will

show that any j-wedge that contains Ω(k) uncolored points prior to coloring points

for Ci(k) will still contain Ω(k) uncolored points after doing the coloring. We will use

Lemma 8, Lemma 9, and Lemma 11 in the analysis. If pi and pj are not antipodal

vertices of P̄ , then we can use the analysis of Lemma 8. If pi and pj are antipodal

56

vertices of P̄ , then we show that we can partition the j-wedge into at most 3 wedges.

One of these wedges can be analyzed with Lemma 9 (antipodal wedges of centrally

symmetric polygons), and the other two wedges (if they exist) can be analyzed with

the same arguments from Lemma 11 (the triangle case).

Lemma 12. Suppose at the beginning of iteration i, all j-wedges with apex on Cj(k)

have load at least L from points in Y ′ for j ≥ i, where L is larger than some absolute

constant. (Note that Y ′ always denotes the uncolored points in the algorithm.) After

the i-th iteration of the algorithm, any j-wedge Wj(x), for j > i, and with apex x on

Cj(k) has load at least L
5µ

from points in Y ′.

Proof. There are two main cases to consider:

• pi and pj are antipodal vertices of P̄ – that is, there are parallel lines through

pi and pj such that both of the lines are tangent to P̄ .

• pi and pj are not antipodal vertices of P̄ .

Case 1: pi and pj are not antipodal vertices of P̄ .

In this case, we can invoke Lemma 8 for each j-wedge Wj(x) with apex

x ∈ Cj(k) such that loadXi
(Wj(x)) ≥ L

6
(Lemma 12 trivially holds for Wj(x) if

loadXi
(Wj(x)) < L

6
). We simply use the arguments from Lemma 8 with W := Wj(x).

Case 2: pi and pj are antipodal vertices of P̄ .

Since loadY ′(Wj(x)) ≥ L, if loadXi
(Wj(x)) ≤ L

2
then Wj(x) will clearly have

load at least L
5µ

after iteration i. So assume that loadXi
(Wj(x)) > L

2
.

57

Consider the line parallel with pi−1pi through x and the line parallel with

pipi+1 through x. Note these lines are parallel with the boundaries of an i-wedge.

Let Ht(x) denote the halfplane consisting of all points y such that y ≤t x. Let

W 1
j (x) = Hi−1(x) ∩ Hi(x) ∩ Wj(x). Let W 2

j (x) = (Hi(x) ∩ Wj(x)) \ W 1
j (x). Let

W 3
j (x) = (Hi−1(x)∩Wj(x))\W 1

j (x). See Figure 3.9 and Figure 3.10 for an illustration.

Note that W 1
j (x), W 2

j (x), and W 3
j (x) form a partition of Wj(x). Also note that W 1

j (x)

cannot be empty but W 2
j (x) or W 3

j (x) could be empty. Since these three sets form a

partition of Wj(x) and loadXi
(Wj(x)) > L

2
, it must be that one of the three sets has

load at least L
6

from Xi.

i-wedge j-wedge

W1

j (x)

x W3

j (x)

W2

j (x)

(a) (b)

Figure 3.9: An illustration for the antipodal case. If we are working with the corre-
sponding i-wedge and j-wedge (part (a)), then we obtain the corresponding W 1

j (x),
W 2

j (x), and W 3
j (x) (part (b)).

Note that W 1
j (x) is subantipodal with respect to an i-wedge. We thus handle

the case when loadXi
(W 1

j (x)) ≥ L
6

by invoking Lemma 9 with W := W 1
j (x).

Note that W 2
j (x) and W 3

j (x) (assuming they are nonempty) are triangular with

respect to an i-wedge. Thus we can handle the cases when loadXi
(W 2

j (x)) ≥ L
6

and

loadXi
(W 3

j (x)) ≥ L
6

with Lemma 11 with W := W 2
j (x) or W := W 3

j (x), completing

the proof.

58

i-wedge j-wedge

W1

j (x)

x

(a) (b)

Figure 3.10: An illustration for the antipodal case. If we are working with the cor-
responding i-wedge and j-wedge (part (a)), then W 1

j (x) = Wj(x) and W 2
j (x) =

W 3
j (x) = ∅ (part (b)).

We will now show that Theorem 2 holds for the wedges of any convex polygon.

Theorem 13. Let P̄ be any convex polygon with µ vertices. Let k ≥ 1000µ · (5µ)µ

be a parameter. For any input Y ⊂ ℜ2, Algorithm 3.1 colors the points in Y with

Ω(k) colors in a way such that for any j-wedge W corresponding to P̄ such that

|W ∩ Y | ≥ k, W contains a point of each color.

Proof. Algorithm 3.1 calls computeCover(i, Xi, t) for each 0 ≤ i ≤ µ − 1. The set

Xi in the i-th iteration is an appropriately chosen subset of the points in Y not

colored in iterations 0, 1, . . . , i − 1. At the beginning of the i-th iteration, let L

denote, as in the algorithm, the smallest number of uncolored points in a j-wedge

with apex on Cj(k), for i ≤ j ≤ µ − 1. The parameter t is chosen to be L
64µ

, and

we have minc∈Ci(k) |Wi(c) ∩ Xi| ≥ L
2

(due to the manner in which Xi is chosen in

the algorithm, see Observation 10). After the call to computeCover(i, Xi,
L

64µ
), any i-

wedge with apex on Ci(k) contains points colored 1, 2, . . . , L/64µ. Thus, the algorithm

produces a coloring as required in Theorem 2, provided L ∈ Ω(k). This is established

by Lemma 12. It states that L, which equals k before the 0-th iteration, drops by a

factor of at most 5µ with each iteration.

59

This completes the proof of Theorem 1.

60

CHAPTER 4
RESTRICTED STRIP COVERING

In this chapter, we consider the Restricted Strip Cover problem (RSC). Here,

we are given a universe U of m points which can be thought of as points on a horizontal

line. We are also given a set S of n sensors, each of which covers some interval of the

line and has a duration. The RSC problem is the problem of assigning a start time

to each of the sensors so that all of the points in U are “covered” by an active sensor

for as long as possible. We give a simple, greedy algorithm for RSC and show that

the algorithm is a 5-approximation.

4.1 Restricted Strip Covering

In the Restricted Strip Covering problem, the universe U is an ordered set

of m points or coordinates, {1, 2, . . . , m}. We may assume without loss of generality

that m ≤ 2n. For each s ∈ S, R(s) is a range {ℓ(s), ℓ(s) + 1, . . . , r(s)} where

1 ≤ ℓ(s) ≤ r(s) ≤ m and ℓ(s), r(s) ∈ U . We can think of the coordinates as lying on

a horizontal line, and we use the natural notion of some coordinate being to the left

or right of another coordinate.

4.1.1 The Algorithm

We now describe our algorithm which takes an instance of RSC consisting

of sensors S and universe U and returns a schedule S of the sensors. We will later

show that the schedule produced by the algorithm has duration at least L/5. The

61

algorithm starts with the empty schedule where no sensor is assigned, and assigns a

start time to one sensor in each iteration. We will also denote the current schedule

of the algorithm at any stage of its execution by S.

With respect to a schedule S, we say the sensor s dominates coordinate x to the

right if s extends as far to the right as possible (maximizes r(s)) among all sensors

that have not been assigned and are live at x. In the event of a tie, we take the

sensor that extends as far to the left as possible. Further ties are broken arbitrarily.

The sensor that dominates coordinate x to the left is defined similarly. For ease of

description, define M(S, 0) = M(S, m + 1) =∞ (recall that M(S, i) is the duration of

schedule S at coordinate i).

Consider Algorithm 4.1. Let us denote by tf the duration of the final schedule

produced by the algorithm. At termination, there is a point x ∈ U so that M(S, x) =

tf and there is no unassigned sensor that is live at x.

Running Time. We will iterate through the while loop at most n times because

we schedule a sensor in each iteration of the while loop. Each iteration of the while

is readily implemented in O(m + n) = O(n) time. Thus the algorithm runs in O(n2)

time. It may be possible to improve the running time by using data structures such

as segment trees.

4.1.2 Approximation Ratio

For an instance S of RSC, let OPT denote the duration of the optimal solution

for S. In this section we will prove the following theorem.

62

Algorithm 4.1
1: t← 0

2: S ← ∅

3: while TRUE do

4: t← M(S) + 1

5: Let i be the first uncovered coordinate at time t and let j be max {x ∈ U |

[i, x] is completely uncovered at time t}.

6: Let s′ be the sensor that dominates i to the right. If s′ does not exist, go to

step 9.

7: If s′ is not live at j, t(s′)← t and S ← S ∪ {s′}.

8: If s′ is live at j, let s′′ be the sensor that dominates j to the left. If M(S, i−1) ≥

M(S, j+1), t(s′)← t and S ← S∪{s′}. Otherwise, t(s′′)← t and S ← S∪{s′′}.

9: end while

10: Return S.

Theorem 14. Given any instance S of Restricted Strip Cover, our algorithm returns

a schedule S such that M(S) ≥ OPT/5.

Lemma 15. Given some instance of Restricted Strip Cover S, let S be the schedule

returned by our algorithm. Let u, v ∈ S be any two, distinct sensors. If R(u) is

strictly contained in R(v), then u is scheduled after v and in fact t(u) ≥ t(v) + d(v).

Proof. Suppose that u and v are two unscheduled sensors such that R(u) is strictly

contained in R(v). Sensors are only scheduled when they dominate some coordinate

63

to the left or to the right. Suppose we want to find the sensor that dominates some

coordinate i ∈ [ℓ(u), r(u)]. We will consider both u and v, but will always prefer v to

u from the definition of domination. Therefore, we will schedule v before u and will

not consider another sensor to dominate a coordinate in [ℓ(u), r(u)] until after time

t(v) + d(v).

For x ∈ U and t > 0, we define coverage(x, t) to be the number of sensors that

cover x at time t in the schedule output by our algorithm.

We need the following observation.

Lemma 16. If coverage(x, t) ≤ c for each x ∈ U and t > 0, then the duration tf of

the schedule we output is at least L/c.

Proof. At termination, there is a point x ∈ U so that M(S, x) = tf and there is no

unassigned sensor that is live at x. Thus, ctf ≥ L(x) ≥ L, and so tf ≥ L/c.

We will now show that coverage(x, t) ≤ 5 for each x ∈ U and t > 0. Theorem

14 then follows immediately from this and Lemma 16.

In each iteration the algorithm schedules (assigns) a sensor s which is either s′

or s′′. Let us call the corresponding interval [i, j] the interval for which s is scheduled.

(Please refer to the algorithm for what i and j stand for.) If s = s′, we call s a right

going sensor to remember that it was chosen to dominate i to the right. In this case,

i was not covered at time t(s) before s was scheduled, but i was covered at time t(s)

after s was scheduled. We say that s = s′ closes i at time t(s). Similarly, if s = s′′

we call s a left going sensor and say that it closes j at time t(s).

64

Figure 4.1: There are 3 sensors covering (x, t). The first scheduled sensor to cover
(x, t) is s0. The next sensor to cover (x, t) is a type 2 sensor s1. Finally, (x, t) is
covered by a type 4 sensor s2.

Lemma 17. For any x ∈ U and t > 0, coverage(x, t) ≤ 5.

Proof. Fix an x ∈ U and t > 0. If no sensor in the output schedule covers (x, t), then

coverage(x, t) is 0. Let us therefore suppose that some sensor covers (x, t), and let s0

denote the first scheduled sensor that covers (x, t). Let us classify any other sensor s

that covers (x, t) into exactly one of the following four types: (1) s closes some i < x

and is left going; (2) s closes some i < x and is right going; (3) s closes some i > x

and is left going; (4) s closes some i > x and is right going. We show that there are

at most two sensors of types 1 and 2 put together. A symmetric argument shows that

there are at most two sensors of types 3 and 4 put together.

Suppose that at some point the algorithm adds a sensor l of type 1. We claim

that after l is added no more sensors of types 1 or 2 are added. Suppose l closed i < x

at time t(l). Consider some sensor l′ that is live at x and that closes some i′ < x

when it is later added by the algorithm. Since l was chosen because it dominated

65

i to the left, we can conclude that ℓ(l′) ≥ ℓ(l). (If this were not the case, then l′

would necessarily be live at i and would have been preferred to l.) Observe that the

interval [ℓ(l), x] is covered by l for all times between t(l) and t(l) + d(l) − 1. Since

i′ ∈ [ℓ(l′), x] ⊆ [ℓ(l), x], we must have t(l′) > t(l) + d(l) − 1 ≥ t. Thus l′ will not

cover x at time t. We conclude that once we schedule a sensor of type 1, we do not

schedule any more sensors of types 1 or 2.

We will therefore consider the case where the first sensor of type 1 or 2 is a

type 2 sensor which we denote r1. We need the following claim.

Claim 18. Let v be a sensor scheduled after r1 such that (a) v is live at x, (b)

t(v) ≤ t, and (c) v closes some z < x at time t(v). Let [x′, y′] be the interval for

which v is scheduled. Then y′ + 1 = ℓ(r1).

We prove the claim after completing the rest of the proof of the lemma. If

the next sensor of type 1 or 2 that we schedule after r1 is a type 1 sensor, we do not

schedule any more sensors of types 1 and 2. So let us assume that the next sensor of

types 1 or 2 that we schedule after r1 is a type 2 sensor r2. Since t ≥ t(r2) ≥ t(r1), and

r2 closes some i′ < x at time t(r2), we must have i′ < ℓ(r1), and thus ℓ(r2) < ℓ(r1).

Now assume for the sake of a contradiction that there is some sensor r3 of type 1 or 2

that is scheduled after l2. Reasoning as above, the interval [x′′, y′′] that it is scheduled

for has y′′ < ℓ(r2). Thus y′′ + 1 ≤ ℓ(r2) < ℓ(r1), a contradiction to Claim 18.

Thus we have completed the proof of the lemma and we now prove Claim 18.

Proof of Claim 18. First, we clarify to the reader that in the statement of

the claim condition (a) does not require v to cover (x, t), but only requires v to be live

66

at x. Let v1, . . . , vk be the sensors satisfying the hypothesis of the claim, ordered in

the sequence in which they were chosen by the algorithm. Let [xj , yj] be the interval

for which vj is scheduled. Since t(r1) ≤ t(vj) ≤ t and vj closes some point strictly less

than x, we must have yj < ℓ(r1). We have argued that yj ≤ ℓ(r1)− 1, and we want

to show yj = ℓ(r1)− 1. Suppose for the sake of contradiction that yj < ℓ(r1)− 1 for

some j, and consider the first j for which this happens.

When vj was being scheduled, yj + 1 is covered at time t(vj) by a sensor w.

Clearly, it must be that yj + 1 = ℓ(w). So we have ℓ(vj) < ℓ(w) < ℓ(r1).

If w was scheduled before r1, then r(w) < i′ < x where i′ is the point that r1

closes. Thus R(vj) properly contains R(w) but vj is scheduled after w, a contradiction

to Lemma 15.

If w was scheduled after r1, then w must be live at x, for otherwise R(vj)

properly contains R(w) and we derive a contradiction as above. Also, we must have

r(w) < r(r1) for otherwise R(w) properly contains R(r1) and we reach a contradiction.

Since r(w) < r(r1), w closes some i < ℓ(r1). Thus w is scheduled after r1, t(w) ≤

t(vj) ≤ t, w is live at x, and w closes some point strictly to the left of x. Thus w = vj′

for some j′ < j. If j = 1, we have reached a contradiction. We therefore assume j > 1.

We observe that w cannot be a left going sensor, because vj is also live at the point i

that w closes, and would have been preferred to w otherwise since ℓ(vj) < ℓ(w). Since

j′ < j, we have yj′ + 1 = ℓ(r1). Thus M(S, yj′ + 1) ≥ t at the time w = vj′ is being

scheduled. Since w is right going, we must have M(S, xj′ − 1) ≥ M(S, yj′ + 1) ≥ t at

the time w is being scheduled. Let s denote the sensor that covers xj′ − 1 at times

67

t(w), t(w) + 1, . . . , t when w is being scheduled. We have r(s) = xj′ − 1 < xj′ < x ≤

r(vj). Now vj closes some point i′′ ∈ [xj , yj] at time t(vj), and since t ≥ t(vj) ≥ t(w),

i′′ cannot be in R(s). Since i′′ ≤ yj = ℓ(w) − 1 ≤ xj′ − 1 = r(s), it must be that

i′′ < ℓ(s). So ℓ(vj) ≤ i′′ < ℓ(s) and we have already argued that r(vj) > r(s). So

R(vj) properly contains R(s) but vj is scheduled after s, a contradiction to Lemma

15.

The following observation about our algorithm for RSC is evident from the

analysis.

Observation 19. Suppose that we stop our algorithm once the duration of the sched-

ule becomes greater than equal to t. Then the total load of all the scheduled sensors

that are live at some point x of the universe is at most 5(t + dmax), where dmax is the

maximum duration of any input sensor.

68

CHAPTER 5
THE PLANAR SENSOR COVER PROBLEM

In this chapter, we consider the planar sensor cover problem. Here, we are

given a universe U which is a set of m points in the plane. We are also given a set

of n sensors S, each of which is a translate of a convex polygon and has a duration.

We want to assign a start time to each of the sensors so that all of the points in U

are monitored for as long as possible. We use the RSC algorithm to give a constant

factor approximation for the planar sensor cover problem.

5.1 Planar Sensor Cover via RSC

We now describe a polynomial time algorithm for the planar sensor cover

problem. Recall that the input here is a universe U which is a set of m points in the

plane and a set of n sensors S; each sensor s ∈ S has a integer duration d(s), and a

range R(s) which is a translate of a convex polygon P . If the load of the problem

instance is L, our algorithm computes a schedule of S of duration at least L/α for

some constant α ≥ 1, where the constant α depends on P .

It is convenient to think of the problem in its dual form as done in [60, 2]. Fix

O, the centroid of P , as the origin in the plane. For a planar set T and a point x in

the plane, let T (x) denote the translate of T with centroid x. Let P̄ be the reflection

through O of the polygon P . For points p and x in the plane, p ∈ P (x) if and only if

x ∈ P̄ (p).

We now view this problem in a slightly different sense. We can map each

69

sensor s to the point which is the centroid of the polygon R(s); abusing notation, we

denote by S the point set thus obtained. We can map each x ∈ U to a translate P̄ (x)

of P̄ centered at x. From this point of view, we are given a set of n points in the

plane, each of which has a duration, and we are given a set of convex polygons such

that the sum of the durations of the points that lie within each polygon is at least

L. We would like to schedule a start time to each of the points so that each polygon

contains an active point for all times t ≤ L/α.

5.1.1 From Polygons to Wedges

Denote the vertices of P̄ to be p0, p1, p2, . . . , pµ−1 in counterclockwise order.

Addition and subtraction of indices of these vertices will be taken modulo µ through-

out the paper. The set of indices between index i and index j in counterclockwise

order are denoted [i, j]. We now transform the problem further, so that instead of

dealing with translates of P̄ , we can deal with translates of the µ wedges corresponding

to the vertices of P̄ [52, 60, 2].

Let c be equal to half the minimum distance between two points on non-

consecutive edges of P̄ . We lay a square grid of side c on the plane; any translate of

P̄ intersects β ∈ O(1) grid cells, and each grid cell intersects at most two sides of a

translate; moreover, if a grid cell does intersect two sides of a translate, then these

sides must be adjacent in P̄ .

Since each grid cell intersects at most two edges of P̄ (u), it must be that the

intersection of a grid cell with P̄ (u) is the same as the intersection of the grid cell

70

with a wedge whose boundaries are parallel to two adjacent edges of P̄ (u). If one

boundary of the wedge is parallel to the edge pi−1pi of P̄ and the other is parallel

with pipi+1 of P̄ , then we call the wedge an i-wedge. For a point q in the plane, we

denote Wi(q) to be the i-wedge with apex q. See Figure 5.1 for an illustration.

0 1

2 x1

W2(x2)

W1(x1)

x3

W0(x3)x2

(a) (b)

Figure 5.1: An illustration for the wedges of a polygon. (a) Suppose this triangle is
our polygon with vertices indexed accordingly. (b) A 0-wedge, 1-wedge, and 2-wedge
with respect to the polygon.

Given a subset R of the plane and a subset X of the point set S, let us denote

by loadX(R) the load
∑

s∈X∩R d(s) of region R with respect to X. The number of

squares that some P̄ (u) intersects is bounded by a constant β. Since for each u ∈ U ,

we have loadS(P̄ (u)) ≥ L, some square that P̄ (u) intersects must have load at least

L/β. We can therefore make the points within such a grid cell “responsible” for P̄ (u).

It therefore suffices to solve the following problem separately for each square in the

tiling:

Let Y ⊆ S be the subset of the sensors (viewed as points) that fall inside

this square. Assign a start time to each s ∈ Y such that for any 0 ≤ i ≤

71

µ − 1 and for any i-wedge W with loadY (W) ≥ k ≡ L/β and any time t

with 1 ≤ t ≤ k/α′, there is a point in Y ∩W that is active at time t. Here

α′ ≥ 1 is a constant that depends only on µ.

In the rest of this section, we describe an efficient algorithm for this problem.

Some of the ideas are adopted from [2]. We assume that the point set Y is in general

position – a line parallel to a side of P̄ contains at most one point in Y . It is

straightforward to perturb the input to the original problem so that this assumption

holds for Y .

5.1.2 The Structure of Heavy Wedges

We will now define a boundary for an i ∈ {0, 1, . . . µ − 1} and a positive

integer r. This boundary has the property that any i-wedge placed on or “inside”

the boundary has load at least r, and any i-wedge placed “outside” the boundary as

load less than r. That is, the sum of the durations of Wi(x) ∩ Y for any x inside the

boundary or on the boundary is at least r and is less than r for any x outside the

boundary. This boundary is called a level curve and is a generalization of level curves

used in [2] which extends the definition of boundary points [51, 52]. Let Wj
i be the

set of apices of all i-wedges W such that loadY (W) = j. For each i = 0, 1, . . . µ − 1,

let the level curve Ci(r) be the boundary of the region W≥r
i =

⋃

j≥rWj
i for each

i = 0, 1, . . . µ− 1.

Note that Ci(r) is a monotone staircase polygonal path with edges that are

parallel to the edges of an i-wedge. See Figure 5.2. Let dmax denote the maximum

72

2

2

2
1

1

22
32

2

1

1

3

1

Ci(5)

Figure 5.2: An example of a level curve Ci(r) for r = 5. Note that any i-wedge with
apex on Ci(5) (e.g. the dotted wedge) contains load at least 5.

duration of any sensor in Y . We have the following observations:

Observation 20. For any x ∈ Ci(r), r ≤ loadY (Wi(x)) ≤ r + dmax.

Observation 21. Any i-wedge W such that loadY (W) ≥ r contains an i-wedge whose

apex belongs to Ci(r).

Observe that one of the two extreme edges of the level curve Ci(r) is a semi-

infinite ray parallel to edge qi−1qi. Let hi denote the first point along this ray such

that for all points y on the ray that lie after hi, Wi(y) ∩ Y = Wi(hi) ∩ Y . We call hi

the head of Ci(r). The other extreme edge of Ci(r) is parallel to edge qiqi+1. Let τi

denote the first point along this ray such that for all points y on the ray that lie after

τi, Wi(y) ∩ Y = Wi(hi) ∩ Y . We call τi the tail of Ci(r). See Figure 5.3.

5.1.3 Multiple RSC instances

Suppose that we are given a subset Y ′ ⊆ Y , and we want to assign start times

to some of the points in Y ′ so that for any x ∈ Ci(k), the i-wedge Wi(x) has an active

point for a sufficiently long duration. Note that because of Observation 21, such a

schedule would satisfy all i-wedges which have load at least k with respect to Y .

73

hi

τi

Ci(r)

Figure 5.3: Level curve Ci(r) with hi and τi denoted.

This can be mapped to an instance of RSC where the universe is the one-

dimensional level curve Ci(k); each point p ∈ Y ′ maps to the set I(p) = {x ∈ Ci(r) |

p ∈ Wi(x)}. Each I(p) is an “interval” in this one-dimensional universe, see Figure

5.4, and we associate with it the duration d(p). Finding a partial schedule with

duration L′ for this RSC problem is equivalent to assigning start times for some of

the sensors in Y ′ so that for each Wi(x) for x ∈ Ci(k) and each time t ≤ L′, some

point in Wi(x) ∩ Y ′ is active at time t. This equivalence is used by the algorithm for

the planar sensor cover problem.

Before we describe the algorithm, we need to define two notions. Consider the

natural linear ordering of the lines parallel to side pipi+1 of P̄ with the line through

vertices pi and pi+1 being smaller than the line through any of the other vertices of

P̄ . For x, y ∈ ℜ2, we define the partial order <i such that x <i y if the pipi+1 parallel

line through x is less than the pipi+1 parallel line through y.

For a vertex pi, let Ai denote the set of all indices j such that the intersection

of P̄ with the line parallel to pjpj+1 and through pi is only the point pi. See Figure

74

y

Ci(k)

Figure 5.4: An example of an interval I(y) (in bold). Note that the i-wedges with
apex on Ci(k) that contain y are the dotted wedges and all wedges with apex “in
between” the apices of the dotted wedges.

4

3

1
0

2

Figure 5.5: An example of a set Ai. In this example, A0 = {2} since only the side of
P̄ parallel with p2p3 has the qualifying property.

5.5 for an example.

Algorithm 5.1 calls the RSC algorithm for each 0 ≤ i ≤ µ− 1. The set Xi in

the i-th iteration is an appropriately chosen subset of the points in Y not scheduled

in iterations 0, 1, . . . , i− 1. At the beginning of the i-th iteration, let L denote, as in

the algorithm, the smallest load of a j-wedge with apex on Cj(k) with respect to Y ′,

for i ≤ j ≤ µ − 1. The RSC algorithm will schedule sensors up until time L
100µ

, and

we have minc∈Ci(k) loadXi
(Wi(c)) ≥ L

2
(due to the manner in which Xi is chosen in

the algorithm, see Observation 24 below). After the execution of the RSC algorithm,

any i-wedge with apex on Ci(k) contains an active point for all times 1, 2, . . . , L
100µ

.

75

Thus, the algorithm produces a schedule as required, provided L ∈ Ω(k). This is

established by the following key Lemma. It states that L, which equals k before the

0-th iteration, drops by a factor of at most 5µ with each iteration. In the proof of the

lemma, we will assume dmax ≤ L
100µ

. If some sensor has duration greater than L
100µ

,

then we can set its start time to 1, and all wedges that contain this sensor will be

actively covered up through time L
100µ

.

Lemma 22. Suppose at the beginning of iteration i, all j-wedges with apex on Cj(k)

have load at least L from points in Y ′ for j ≥ i, where L is larger than some absolute

constant. (Note that Y ′ always denotes the unscheduled points in the algorithm.)

After the i-th iteration of the algorithm, any j-wedge Wj(x), for j > i, and with apex

x on Cj(k) has load at least L
5µ

from points in Y ′.

Proof. There are two main cases to consider:

• pi and pj are antipodal vertices of P̄ – that is, there are parallel lines through

pi and pj with the convex polygon sandwiched between them.

• pi and pj are not antipodal vertices of P̄ .

We use the following terminology for iteration i: for two distinct points q and

q′, if Wi(q) ⊆ Wi(q
′), we say that q dominates q′. Notice that in this case, we have

I(q′) ⊆ I(q). Thus by Lemma 15, if q and q′ are both unscheduled before iteration

i then q′ is scheduled in iteration i only if q is already scheduled. For the rest of

this proof, let Y ′ denote the points that are not scheduled just before iteration i, let

Xi denote the set of candidate points that are eligible to be scheduled in iteration

76

i (as constructed in the algorithm), and let Yi denote the points that are actually

scheduled in iteration i.

The analysis will rely heavily upon the following two observations.

Observation 23. For any z ∈ Ci(k), we have that loadYi
(Wi(z)) ≤ 5(L

100µ
+ L

100µ
) ≤

L
10µ

.

Observation 24. For any z ∈ Ci(k), loadXi
(Wi(z)) ≥ L

2
.

Observation 23 is a consequence of Observation 19. To see Observation 24,

note that for each c ∈ Ci(k), loadXi
(Wi(c)) ≥ loadX(c)(Wi(c)) ≥ L− µ · L

2µ
= L

2
.

Case 1: pi and pj are not antipodal vertices of P .

The argument is trivial if Wj(x) ∩W≤k
i = ∅. Suppose that Wj(x) ∩W≤k

i 6= ∅

and Wj(x) ∩ Ci(k) = ∅. For this to be the case, one of the boundaries of a j-wedge

must be parallel with a boundary of an i-wedge. We will focus on the case when the

j-wedge has a boundary parallel to the side pipi+1 as the other case is symmetric. See

Figure 5.6. In this case, we have that Wj(x) ∩ X ′
i ⊆ Wi(τi) by the definition of the

tail τi. We thus have loadYi
(Wj(x)) ≤ loadYi

(Wi(τi)) ≤ L
10µ

where the last inequality

comes from Observation 23. Therefore, the load of unscheduled points in Wj(x) after

iteration i is at least L− L
10µ

> L
5µ

.

So let us assume that Wj(x)∩Ci(k) 6= ∅. There are two cases – in the first, we

encounter pj after pi and before the vertices antipodal to pi when walking counter-

clockwise around P̄ , and in the second, we encounter pj after the vertices antipodal

to pi and before pi. We will focus on the first case, since the other is symmetric. Let

77

Ci(k)

Wj(x)

x

τi

Wi(τi)

Figure 5.6: Illustration for Case 1. Note that there cannot be a point in the shaded
region by definition of the tail τi.

z be the intersection point of the boundary of Wj(x) and Ci(k). If Wj(x) does not

contain in its interior the tail τi of the level curve Ci(k), then Wj(x)∩Yi ⊆Wi(z)∩Yi,

and so loadYi
(Wj(x)) ≤ loadYi

(Wi(z)) ≤ L
10µ

. It follows that the load of unscheduled

points in Wj(x) after iteration i is at least

L− L

10µ
>

L

5µ
.

Let us therefore assume that Wj(x) does contain in its interior the tail τi of

Ci(k). See Figure 5.7. Let a denote the point where the boundaries of the wedges

Wi(z) and Wi(τi) intersect. If loadXi
(Wi(a)) ≥ L

5µ
, then since loadYi

(Wi(a)) ≤

loadYi
(Wi(τi)) ≤ L

10µ
, there are unscheduled points in Wi(a) after iteration i. Since any

point in Wi(a) dominates points in Wj(x)∩Yi that are not contained in Wi(z)∪Wi(τi),

we conclude that Wj(x) ∩ Yi ⊆ (Wi(z) ∪Wi(τi)) ∩ Yi. Thus,

loadYi
(Wj(x)) ≤ loadYi

(Wi(z)) + loadYi
(Wi(τi)) ≤

L

5µ
.

Therefore there must be at least L− L
5µ

> L
5µ

unscheduled points left in Wj(x).

78

a τi

z

Wi(τi)

Ci(k)
x

Wi(z)

Wj(x)

Figure 5.7: Illustration for the nonantipodal case.

Let us therefore consider the case where loadXi
(Wi(a)) < L

5µ
. This means that

loadXi
(Wi(τi)\Wi(a)) > L

2
− L

5µ
> L

3
. Again, loadYi

(Wi(τi)\Wi(a)) ≤ loadYi
(Wi(τi)) ≤

L
10µ

, and this means the load of the points in Wi(τi)\Wi(a) that are unscheduled after

iteration i is at least L
3
− L

10µ
> L

5µ
. But Wi(τi) \Wi(a) ⊆ Wj(x), and this means that

the load of the unscheduled points in Wj(x) after iteration i is at least L
5µ

.

Case 2: pi and pj are antipodal vertices of P̄ .

Again, the argument is trivial if Wj(x) ∩ W≤k
i = ∅. So let us assume that

Wj(x) ∩W≤k
i 6= ∅. Since loadY ′(Wj(x)) ≥ L, if loadXi

(Wj(x)) ≤ L
2

then Wj(x) will

clearly have load at least L
5µ

after iteration i. So assume that loadXi
(Wj(x)) > L

2
.

Consider the line parallel with pi−1pi through x and the line parallel with

pipi+1 through x. Note these lines are parallel with the boundaries of an i-wedge.

Let Ht(x) denote the halfplane consisting of all points y such that y ≤t x. Let

W 1
j (x) = Hi−1(x) ∩ Hi(x) ∩ Wj(x). Let W 2

j (x) = (Hi(x) ∩ Wj(x)) \ W 1
j (x). Let

W 3
j (x) = (Hi−1(x)∩Wj(x))\W 1

j (x). See Figure 5.8 and Figure 5.9 for an illustration.

Note that W 1
j (x), W 2

j (x), and W 3
j (x) form a partition of Wj(x). Also note that W 1

j (x)

79

cannot be empty but W 2
j (x) or W 3

j (x) could be empty. Since these three sets form

a partition of Wj(x) and loadXi
(Wj(x)) > L

2
, it must be that one of the three sets

has load at least L
6

from Xi. We first handle the case when loadXi
(W 1

j (x)) ≥ L
6

and

then conclude the proof with the case when loadXi
(W 2

j (x)) ≥ L
6
. The case when

loadXi
(W 3

j (x)) ≥ L
6

has a symmetric proof with the W 2
j (x) case.

i-wedge j-wedge

W1

j (x)

x W3

j (x)

W2

j (x)

(a) (b)

Figure 5.8: An illustration for the antipodal case. If we are working with the corre-
sponding i-wedge and j-wedge (part (a)), then we obtain the corresponding W 1

j (x),
W 2

j (x), and W 3
j (x) (part (b)).

i-wedge j-wedge

W1

j (x)

x

(a) (b)

Figure 5.9: An illustration for the antipodal case. If we are working with the cor-
responding i-wedge and j-wedge (part (a)), then W 1

j (x) = Wj(x) and W 2
j (x) =

W 3
j (x) = ∅ (part (b)).

Case 2(a): loadXi
(W 1

j (x)) ≥ L
6
.

We first consider the case when both boundaries of W 1
j (x) intersect with Ci(k).

80

az

bz

x

Wi(z)

z

Rz

W 1
j (x)

Figure 5.10: Illustration for Case 2(a): the region Rz. Note that although this figure
is drawn with respect to a scenario as in Figure 5.8, the analysis still holds for the
scenario as in Figure 5.9 (i.e. when the boundaries of an i-wedge are not parallel with
the boundaries of W 1

j (x)).

Consider any point z ∈W 1
j (x) ∩ Ci(k). Let az denote the “leftmost” point where the

boundaries of W 1
j (x) and Wi(z) intersect, and let bz denote the “rightmost” point

where the boundaries of W 1
j (x) and Wi(z) intersect. Let Rz be the quadrilateral with

vertices az, x, bz, and z. That is, Rz = W 1
j (x) ∩Wi(z). Suppose that loadXi

(Rz) ≥

L
5µ

+ L
10µ

. Again, since loadYi
(Wi(z)) ≤ L

10µ
, and all points in Rz are in Wi(z), Rz

contains (unscheduled) load at least L
5µ

after iteration i. Since Rz ⊆ W 1
j (x), W 1

j (x)

contains (unscheduled) load at least L
5µ

after iteration i, and we are done. See Figure

5.10 for an illustration.

So we now assume that loadXi
(Rz) ≤ L

5µ
+ L

10µ
for each z ∈W 1

j (x)∩Ci(k). Since

loadXi
(Wi(z)) ≥ L

2
, we must have loadXi

(Wi(az)∪Wi(bz)) ≥ L
2
− (L

5µ
+ L

10µ
) > L

8
. Let

z1 be the “leftmost” point on Ci(k) ∩W 1
j (x), and let z2 be the “rightmost” point on

Ci(k)∩W 1
j (x). Notice that az1 is just z1 itself, and so loadXi

(Wi(az1)) ≥ L
2
. Similarly,

loadXi
(Wi(bz2)) ≥ L

2
. Let z′ be the last point on Ci(k), while walking from z1 to z2,

81

x

z1

z′az′

bz′ z2

Wi(z
′)

W 1
j (x)

Figure 5.11: Illustration for Case 2(a): the constructed point z′.

such that loadXi
(Wi(az′)) ≥ L

30
(if it exists). Thus

loadXi
(Wi(bz′)) ≥ loadXi

(Wi(az′)∪Wi(bz′))− (
L

30
+ dmax) ≥

L

8
− (

L

30
+

L

100µ
) ≥ L

30
.

See Figure 5.11 for an illustration.

Now consider any point z′′ ∈ W 1
j (x) \Wi(z

′). It must be that Wi(z
′′) either

contains Wi(az′) or contains Wi(bz′) which both have load in Xi of at least L
30

. Suppose

that Wi(z
′′) contains Wi(az′); the other case is similar. The points in Wi(az′) dominate

z′′ and we will not schedule z′′ in iteration i until we have scheduled all points in

Wi(az′) ∩Xi. But since loadYi
(Wi(az′)) ≤ L

10µ
≤ L

30
≤ loadXi

(Wi(az′)), this means we

will not schedule z′′.

It follows that W 1
j (x) ∩ Yi ⊆Wi(z

′) ∩ Yi, and thus

loadYi
(W 1

j (x)) ≤ loadYi
(Wi(z

′)) ≤ L

10µ

. And so the load of unscheduled points in W 1
j (x) after iteration i is at least L

6
− L

10µ
>

L
5µ

.

We now consider the case when one or both boundaries of W 1
j (x) do not

intersect with Ci(k). See Figure 5.12. We will show that we can find a wedge W ′ such

82

hi

τi
Ci(k)

x W 1
j (x)

Figure 5.12: Illustration of the case when W 1
j (x) ∩ W≤k

i 6= ∅ and the boundaries of
W 1

j (x) do not intersect Ci(k).

that both boundaries of W ′ intersect Ci(k), W ′∩Y = W 1
j (x)∩Y , and W ′ is antipodal

with respect to an i-wedge. Given that W ′ exists, we can use the previous arguments

to show that W ′ contains Ω(k) uncolored points after iteration i. It then follows that

Wj(x) contains Ω(k) uncolored points after iteration i because W ′ ∩ Y = W 1
j (x)∩ Y .

We will now describe how to find the wedge W ′. We begin by placing a wedge

identical to W 1
j (x) “just behind” W 1

j (x) so that the new wedge contains exactly the

same points of Y that W 1
j (x) contains. See Figure 5.13. We then “bend in” the

boundaries of the wedge just enough so that the wedge still contains the same points

as W 1
j (x) and the boundaries are no longer parallel with the edges of Ci(k). This

is our wedge W ′. See Figure 5.14. Both boundaries now intersect Ci(k) and W ′ is

antipodal with respect to an i-wedge. By our previous analysis, W ′ contains at least

L
5µ

uncolored points after iteration i. Since W 1
j (x) and W ′ contain the same points

in Y , it follows that W 1
j (x) contains L

5µ
uncolored points after iteration i.

Case 2(b): loadXi
(W 2

j (x)) ≥ L
6
.

We first consider the case when W 2
j (x) ∩ Ci(k) = ∅. Note that one of the

83

hi

τi
Ci(k)

x W 1
j (x)

Figure 5.13: The first step in constructing W ′.

τi
Ci(k)

x W 1
j (x)

W ′

hi

Figure 5.14: The second step in constructing W ′.

boundaries of W 2
j (x) is parallel with one of the boundaries of an i-wedge. We will

assume that the j-wedge has a boundary parallel with the side pi−1pi. The other case

is symmetric. See Figure 5.15. In this case, we have that W 2
j (x)∩Xi ⊆ Wi(hi)∩Xi by

the definition of the head hi. We know that loadYi
(Wi(hi)) ≤ L

10µ
. Since W 2

j (x)∩Xi ⊆

Wi(hi)∩Xi, we have that loadYi
(W 2

j (x)) ≤ L
10µ

. Therefore there is (unscheduled) load

at least L
6
− L

10µ
> L

5µ
after iteration i.

Now we will assume W 2
i (x) ∩ Ci(k) 6= ∅. Let z ∈ Ci(k) be a point such that

Wi(z) ∩W 2
j (x) 6= ∅. Note that both W 2

j (x) and Wi(z) have a boundary parallel with

the side pi−1pi. There are only two types of intersections between these two wedges:

84

x

W 2
j (x)

Wi(hi)

Ci(k)

hi

Figure 5.15: Illustration for Case 2(b). Note that there cannot be any points in the
shaded region due to the definition of the head hi.

1. z ∈W 2
j (x), the boundary of W 2

j (x) parallel with the side pj−1pj intersects both

boundaries of Wi(z), and the boundary of W 2
j (x) parallel with the side pi−1pi

does not intersect with Wi(z).

2. x ∈ Wi(z), the boundary of Wi(z) parallel with the side pipi+1 intersects both

boundaries of W 2
j (x), and the boundary of Wi(z) parallel with the side pi−1pi

does not intersect with W 2
j (x).

See Figure 5.16 for an illustration.

z

Wi(z)

W 2
j (x)

x x

Wi(z)

z

W 2
j (x)

(a) (b)

Figure 5.16: Illustration for case 2(b): (a) A type 1 intersection. (b) A type 2
intersection.

85

Let {v1, v2, v3, . . .} denote the points in Xi ∩ W 2
j (x) in decreasing order ac-

cording to the partial order <i. Let ℓ = max{t|vt ∈ Yi}. Consider the value

bℓ =
∑ℓ

l=1 d(vl). If bℓ ≤ L
10

then loadY ′(W 2
j (x)) ≥ L

6
− L

10
≥ L

5µ
after iteration i,

so assume that bℓ > L
10

.

Since vℓ ∈ Xi there is a u ∈ Ci(k) so that vℓ ∈ X(u) in iteration i of the

algorithm. Suppose that the intersection between Wi(u) and W 2
j (x) is a type 1

intersection. Let Tvℓ
= Wi(u) \ Hj−1(vℓ). Note that since W 2

j (x) 6= ∅, it must

be that j − 1 ∈ Ai. Combining this with the fact that vℓ ∈ X(u), we know that

Xj−1(u) ⊂ Tvℓ
⊂ Wi(u). (See Algorithm 5.1 for the notation.) Thus loadY ′(Tvℓ

) ≥

loadY ′(Xj−1(u)) ≥ L
2µ

. Since, loadYi
(Wi(u)) ≤ L

10µ
, there must be at least L

2µ
− L

10µ
> L

5µ

unscheduled points left in Tvℓ
after iteration i. Since we are dealing with a type 1

intersection, Tvℓ
⊂W 2

j (x), and thus W 2
j (x) will contain at least L

5µ
unscheduled points

after iteration i and the lemma holds. See Figure 5.17 for an illustration.

Now suppose that the intersection between Wi(u) and W 2
j (x) is a type 2 inter-

section. Consider the region T ′
vℓ

= W 2
j (x) \Hi(vℓ). Since we are assuming bℓ > L

10
, it

must be that loadY ′(T ′
vℓ

) ≥ L
10

. Since we are dealing with a type 2 intersection, it must

be that T ′
vℓ
⊂ Wi(u). Since loadYi

(Wi(u)) ≤ L
10µ

, we have that loadYi
(T ′

vℓ
) ≤ L

10µ
and

thus there will be at least L
10
− L

10µ
≥ L

5µ
unscheduled points left in T ′

vℓ
after iteration

i. Since T ′
vℓ
⊆ W 2

j (x), there must be (unscheduled) load at least L
5µ

in W 2
j (x) after

iteration i. See Figure 5.17 for an illustration.

Theorem 25. There is a polynomial time algorithm that, given an instance of the

86

x

Wi(u)

W 2
j (x)

u

vℓ

u

W 2
j (x)

vℓ

Wi(u)
x

(a) (b)

Figure 5.17: Illustration for case 2(b): (a) An illustration of Tvℓ
. (b) An illustration

of T ′
vℓ

.

planar sensor problem where the range of each sensor is a translate of a convex,

centrally symmetric 2k-gon Q, returns a schedule of duration at least L/α; here L is

the load of the input instance and α ≥ 1 is a constant that depends only on Q.

Remark 26. Notice that the constant α in the theorem above is proportional to βk ·k.

We can improve the constant α to be proportional to just βk by using ideas in the proof

of Lemma 22 together with a generalization of a more involved construction of Aloupis

et al. [2].

87

Algorithm 5.1

1: Y ′ ← Y

2: for each i ∈ {0, 1, 2, . . . , µ− 1} do

3: L← min{loadY ′(Wz(x)) : x ∈ Cz(k) and z = i, i + 1, . . . , µ− 1}

4: for each c ∈ Ci(k) do

5: for each j ∈ Ai do

6: Order the points in Wi(c) ∩ Y ′ in decreasing order with respect to the

ordering <j. Let Xj(c) be the smallest subset of these points taken in

order such that loadXj(c)(Wi(c)) ≥ L
2µ

.

7: end for

8: X(c)← {Wi(c) ∩ Y ′} \⋃

j∈Ai
Xj(c)

9: end for

10: Xi ←
⋃

c∈Ci(k) X(c)

11: Run the RSC algorithm with universe Ci(k) and sensors with intervals and

durations corresponding to Xi until the duration of the schedule becomes L
100µ

.

Let Yi denote the sensors that are assigned a start time during this call to the

algorithm.

12: Let Y ′ denote the unscheduled points (that is, Y ′ ← Y ′ \ Yi).

13: end for

88

CHAPTER 6
METRIC CLUSTERING TO MINIMIZE THE SUM OF RADII

In this chapter, we consider the metric clustering to minimize the sum of radii

problem. Here, we are given a metric (P, d) and a positive integer k, and we want to

find a set of at most k balls, each of which must be centered at a point in P , that

cover all of the points in P such that the sum of the radii of the balls is minimized. In

Section 6.1, we present our algorithm for this problem. In Section 6.2, we establish the

NP-hardness of the k-cover problem for metrics induced by weighted planar graphs.

In Section 6.3, we establish NP-hardness for metrics of constant doubling dimension.

6.1 Algorithm for General Metrics

We consider the k-cover problem whose input is a metric (P, d), where P is a

set of n points and d is a function giving the interpoint distances, and an integer k > 0.

We assume without loss of generality that the minimum interpoint distance is 1. Let

∆ denote diam(P), the maximum interpoint distance. We present a randomized

algorithm that runs in nO(log n log ∆) time and with high probability returns the best

k-cover for P . We will assume below that k ≤ n.

The main idea for handling the metric case is that probabilistic partitions

[8, 26] can play a role analogous to the line separators were used in the geometric

case [33]. To formalize this, let Q denote some subset of P such that diam(Q) ≥ 50,

and consider the following randomized algorithm (taken from [26]) that partitions Q

into sets of diameter at most diam(Q)/2:

89

Algorithm 6.1 Partition(Q)

1: Let π denote a random permutation of the points in Q.

2: Let β denote a random number in the range [diam(Q)/8, diam(Q)/4].

3: Let R← Q.

4: for all i← 1 to |Q| do

5: Let Qi ← {p ∈ R|d(p, π(i)) ≤ β}.

6: Let R← R \Qi.

7: end for

Since each Qi is contained in a ball of radius at most diam(Q)/4, we have

that diam(Qi) ≤ diam(Q)/2. Clearly, the Qi also partition Q. Let us say that a ball

B ⊆ P is cut by this partition of Q if there are two distinct indices i and j such that

(B ∩ Q) ∩ Qi 6= ∅ and (B ∩ Q) ∩ Qj 6= ∅. The main property that the probabilistic

partition enjoys is encapsulated by the following lemma, whose proof follows via the

methods of Fakcharoenphol et al. [26].

Lemma 27. Let B ⊆ P be some ball of radius r. The probability that B is cut by the

partition of Q output by Partition(Q) is at most r

diam(Q)
O(log |Q|).

Proof. Let q1, . . . q|Q| denote the ordering of the points in Q according to increasing

order of distance from B′ = B∩Q, with ties broken arbitrarily. We may assume that

B′ 6= ∅ for otherwise the lemma trivially holds. For each qj let aj (resp. bj) denote

the distance to the closest (resp. furthest) point in B′. By the triangle inequality it

follows that bj − aj ≤ 2r. We say that π(i) settles B if i is the first index for which

90

some point in B′ belongs to Qi. Note that exactly one point in Q settles B. We say

that π(i) cuts B if π(i) settles B and at least one point in B′ is not assigned to Qi.

The probability that B is cut by the partition equals

∑

i

Pr[π(i) cuts B] =
∑

j

Pr[qj cuts B].

The event that qj cuts B requires the occurrence of two events: E1, the

event that β lands in the interval [aj , bj), and E2, the event that qj appears before

q1, . . . , qj−1 in the ordering π. Using independence,

Pr[qj cuts B] ≤ Pr[E1] ∗ Pr[E2|E1] = Pr[E1] ∗ Pr[E2]

≤ 2r

diam(Q)/8
· 1
j

=
16r

diam(Q)
· 1
j
.

So the probability that B is cut by the partition is bounded above by

16r

diam(Q)

∑

j

1

j
=

r

diam(Q)
O(log |Q|).

Let S denote the optimal κ-cover for Q some κ > 0. The following states the

main structural property that S enjoys.

Lemma 28. The expected number of balls in S that are cut by Partition(Q) is

O(log |Q|). Consequently, the probability is at least 1/2 that the number of balls in S

that are cut by Partition(Q) is at most c log n, where c > 0 is some constant.

Proof. The expected number of balls in S cut is equal to

∑

B∈S

Pr[B is cut] = O(log |Q|)
∑

B∈S

radius(B)

diam(Q)
= O(log |Q|) cost(S)

diam(Q)
.

91

The Lemma follows by observing that cost(S) ≤ diam(Q) since Q can be covered by

a single ball of radius diam(Q).

The Randomized Algorithm

We describe a recursive algorithm BC-Compute that takes as arguments a set

Q ⊆ P and an integer 0 ≤ κ ≤ n and returns with high probability an optimal κ-cover

for Q. We begin by noting that we may restrict our attention to balls B(x, r) whose

radius r equals d(x, q) for some q ∈ P . Henceforth in this section we only refer to

this set of balls. For easing the description of the algorithm, it is convenient to add

to this set of balls an element I whose cost is ∞. Any subset of this enlarged set of

balls that includes I will also have a cost of ∞.

Running time. To solve an instance (Q, κ) with diam(Q) ≥ 50, the algorithm

makes nO(log n) recursive calls to instances with diameter at most diam(Q)/2. The

additional book keeping takes nO(log n) time. It follows that the running time of the

algorithm invoked on the original instance (P, k) is nO(log n·log∆).

Correctness. We will show that BC-Compute(P, k) computes an optimal k-cover

for P with high probability. We begin by noting that the base case instances (Q, κ)

are solved correctly with a probability of 1. We will show by induction on |Q| that

any instance (Q, κ) with |Q| ≥ 2 is optimally solved with a probability of at least

1− |Q|−1
n2 .

92

If the (Q, κ) instance happens to fit in one of the base cases, we are done.

Otherwise, consider an optimal κ-cover OPT for Q. It is enough to show that

BC-Compute(Q, κ) returns a κ-cover of cost at most cost(OPT) with a probability

of at least 1− |Q|−1
n2 .

By Lemma 28, the probability is at least 1− 1
n2 that one of the 2 log2 n calls to

Partition(Q) returns a partition (Q1, . . . , Qτ) of Q into τ ≥ 2 sets such that no more

than c log n balls in OPT are cut by the partition. Assuming this good event happens,

fix such a partition (Q1, . . . , Qτ) of Q and consider the choice of C that exactly equals

the balls in OPT that are cut by the partition. The balls in OPT \ C are not cut by

the partition and can be partitioned into subsets (OPT1, . . . , OPTτ) (some of these

can be empty) such that for any ball B ∈ OPTi, we have B ∩Q ⊆ Qi. It is easy to

see that OPTi must be an optimal |OPTi|-cover for Q′
i. By the induction hypothesis,

BC-Compute(Q′
i, |OPTi|) returns an |OPTi|-cover for Q′

i with a probability of at least

1 − |Q′
i|−1

n2 if |Q′
i| ≥ 2 and with a probability of 1 otherwise. The probability that

BC-Compute(Q′
i, |OPTi|) returns an |OPTi|-cover for Q′

i for every i is at least

∏

i:|Q′
i|≥2

1− |Q
′
i| − 1

n2
≥

∏

i

1− |Qi| − 1

n2
≥ 1− |Q| − 2

n2
.

Assuming this second good event also happens, it follows from an easy back-

wards induction on i that best(Ri,
∑

j>i |OPTj|) is a (
∑

j>i |OPT|j)-cover for Ri with

cost at most
∑

j>i cost(OPTj). Thus best(R0, κ − |C|) is an (κ − |C|)-cover for

R0 =
∑τ

i=1 Q′
i with cost at most

∑τ
i=1 cost(OPTi). Thus best(R0, κ − |C|) ∪ C is a

κ-cover of Q with cost at most cost(OPT). The probability of this happening is at

least the product of the probabilities of the two good events we assumed, which is

93

at least (1 − |Q|−1
n2). This completes the inductive step, because BC-Compute(Q, κ)

returns the lowest cost κ-cover among the 2 log2 n κ-covers that it sees.

Theorem 29. There is a randomized algorithm that, given a set P of n points in a

metric space and an integer k, runs in nO(log n·log ∆) time and returns, with probability

at least 1/2, an optimal k-cover for P . Here ∆ is an upper bound on the ratio between

the maximum and minimum interpoint distances within P .

6.2 NP-hardness of Min-Cost k-Cover

A natural question is whether there is a quasipolynomial time algorithm in n

for the case where the input metric has unbounded aspect ratio. This is unlikely to

be the case because, as we show in this section, the general problem is NP-hard even

in case of a planar metric. We give a reduction from a version of the planar 3-SAT

problem - the pn-planar 3-SAT problem. This problem was shown to be NP-complete

in [45]. Planar 3-SAT is defined as follows: Let Φ = (X, C) be an instance of 3SAT,

with variable set X = {x0, . . . , xn−1} and clauses C = {c1, . . . , cm} such that each

clause consists of exactly 3 literals. Define a formula graph GΦ = (V, E) with vertex

set V = X
⋃

C and edges E = E1

⋃

E2 where E1 = {(xi, xi+1)|0 ≤ i ≤ n − 1}1

and E2 = {(xi, cj)|cj contains xi or xi}. A 3SAT formula Φ is called planar if the

corresponding formula graph GΦ is planar. The edge set E1 defines a cycle on the

vertices X, and thus divides the plane into exactly 2 faces. Each node cj ∈ C lies in

exactly one of those two faces. In the pn-planar 3SAT problem, we have the additional

1Here we assume that the arithmetic wraps around i.e. (n− 1) + 1 = 0

94

restriction that there exists a planar drawing of GΦ such that if cj and cj′ contain

opposite occurrences of the same variable xi, then they lie in opposite faces. In other

words, all clauses with the literals xi lie in one of the two faces and all clauses with

xi lie in the other face. We have to determine whether there exists an assignment of

truth values to the variables in X that satisfies all the clauses in C.

We describe a simple transformation, easily seen to be effected by a polynomial

time algorithm, from such a pn-planar 3SAT instance to an instance of finding an

optimal k-cover in a metric induced by a weighted planar graph G = (V, E). The

transformation has the property that there is a k-cover in the metric of cost at most

2k − 1 if and only if the original pn-planar 3SAT instance is satisfiable.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a) a

set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of variables of the

pn-planar 3SAT instance with each variable occurring twice - once as a positive literal

and once as a negative literal, (b) a set C = {c1, . . . , cm} that can be identified with

the set of clauses of the pn-planar 3SAT instance, and (c) sets W 0, . . . , W k−1, where

each W l consists of k +1 vertices. To obtain the edge set E, we add an edge between

each vertex xl and xl in X with weight 2l for 0 ≤ l ≤ k − 1. For each vertex xl ∈ X

we add an edge between xl and every vertex in W l of weight 2l for 0 ≤ l ≤ k − 1.

Analogously, we add an edge between each vertex xl and every vertex in W l again of

weight 2l. In addition we add edges between every vertex ci ∈ C and every variable

vertex xl or its negation xl whichever appears in it of weight 2l. Note that this graph

G is planar – this follows from the pn-planarity of the 3SAT instance. See Figure 6.1

95

for an illustration.

l
x

2
l

1

l
w

2

l
w

3

l
w

1

l

k
w

+

lx

2
l

2
l

2
l

2
l

2
l

2
l

2
l

2
l

0x 0
x

2
x

2x

4x 4
x

3x 3
x

1
x

1x

5
x

5x

1
C

0
x

3
x

1
x

4
C

2
C

3
C

1
C

2
C

3
C

4
C

0
2

0
2

0
2

1
2

1
2

2
2

3
2

3
2

3
2

4
2

4
25

2

5
x

4
x

2
x

(a) (b)

Figure 6.1: The construction for the planar metric case. (a) The gadget for variable
xl in Φ. (b) A planar embedding for Φ and construction of the corresponding instance
of k-clustering problem. All “clause-literal” edges have weight 2l for the variable xl.
The optimal cover is highlighted with grey “blobs”. Φ = (¬x0∨x3∨x4)∧ (x0∨¬x4∨
¬x5)∧ (x0 ∨¬x1 ∨¬x3)∧ (x1 ∨¬x2 ∨ x3). Satisfying assignment X = (0, 1, 1, 0, 0, 1).
Weight of the covering is exactly 26 − 1

Claim 30. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤

k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there is no

ball in the k-cover centered at either xt or xt and having radius at least 2t. So for

each t +1 ≤ l ≤ k− 1, there is a ball Bl in the k-cover centered at either xl or xl and

having radius at least 2l. Since W t has k + 1 points in it, there is point a ∈W t that

is not the center of any ball in the k-cover. Let B be some ball in the k-cover that

covers a. If B = Bl for some t + 1 ≤ l ≤ k − 1, then Bl has radius at least 2l + 2 · 2t.

96

In this case the k-cover has cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k. If B 6= Bl

for any t + 1 ≤ l ≤ k − 1, then the radius of B is at least 2 · 2t, since the distance

of a from any point other than xt and xt is at least 2 · 2t. Thus in this case too the

k-cover has cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k.

Now suppose the original pn-planar 3SAT instance is a yes instance. So there

is an assignment of truth values to x0, · · · , xk−1 such that all clauses in C are satisfied.

Consider the set of k balls B0, . . . , Bk−1, where Bl is centered at xl or xl (whichever

is satisfied by the assignment) and has radius 2l. It is easily checked that these balls

form a k-cover of V of cost 20 + 21 + · · · 2k−1 = 2k − 1.

Now suppose the original pn-planar 3SAT instance is a no instance. We claim

that any k-cover of V has cost strictly greater than 2k − 1 in this case. Suppose this

is not the case and consider a k-cover of cost at most 2k − 1. As a consequence of

the claim, such a k-cover must consist of balls B0, . . . , Bk−1 where Bl is centered at

either xl or xl and has radius precisely 2l. Since these balls must cover each vertex in

C, it follows that the assignment of truth values to variables in X which comprises

of xl being true if the ball Bl is centered at xl and false if it is centered at xl satisfies

all clauses in C. This contradicts the supposition that the original pn-planar 3SAT

instance is a no instance.

Theorem 31. The (decision version of the) problem of computing an optimal k-cover

for an n-point planar metric (P, d) is NP-hard.

97

6.3 The Doubling Metric Case

We now consider the k-cover problem when the input metric (P, d) has dou-

bling dimension bounded by some constant ρ ≥ 0. The doubling dimension of the

metric (P, d) is said to be bounded by ρ if any ball B(x, r) in (P, d) can be covered by

2ρ balls of radius r/2 [42]. In this section, we show that for a large enough constant

ρ, the k-cover problem for metrics of doubling dimension at most ρ is NP-hard.

The proof is by a reduction from a restricted version of 3SAT where each

variable appears in at most 5 clauses [31]. Let Φ be such a 3-CNF formula with

variables x0, . . . , xn−1 and clauses c1, . . . , cm. We describe a simple transformation,

easily seen to be effected by a polynomial time algorithm, from such a 3SAT instance

Φ to an instance of finding an optimal k-cover in a metric induced by a weighted graph

G = (V, E). The metric will have doubling dimension bounded by some constant.

The transformation has the property that there is a k-cover in the metric of cost at

most 2k − 1 if and only if the original 3SAT instance is satisfiable.

The transformation is similar to the one in the previous section with some

modifications to ensure the doubling dimension property.

We set k = n. The vertex set V of the graph is a union of k + 2 sets: (a)

a set X = {x0, x0, . . . , xk−1, xk−1} that can be identified with the set of literals in

Φ, (b) a set C = {c1, . . . , cm} that can be identified with the set of clauses of Φ,

and (c) sets W 0, . . . , W k−1, where each W l consists of nl = 8(l + 1)2 + 1 vertices

wl
1, . . . , w

l
nl

. To obtain the edge set E, we add an edge between xl and xl with weight

2l for 0 ≤ l ≤ k − 1. We add an edge between xl and every vertex in W l of weight 2l

98

for 0 ≤ l ≤ k − 1. Analogously, we add an edge between xl and every vertex in W l

again of weight 2l. In addition we add edges between every vertex ci ∈ C and every

literal that appears in the clause ci. If the literal is either xl or xl, the weight of the

corresponding edge is 2l. Finally for each 0 ≤ l ≤ n − 1 and each 1 ≤ i ≤ nl − 1,

we add an edge of weight 2l/(l + 1)2 between wl
i and wl

i+1. See Figure 6.2 for an

illustration of the transformation.

l
x2

l

1
l

l

n
w

−

l
x

2
l

2
l

2
l

2
l

2
l

2
l

2
l

2
l

l

l

n
w

1

l
w

2

l
w

2

2

(1)

l

l +

2

2

(1)

l

l +

0x 0
x

2
x

2x

4x 4
x

3x 3
x

1
x

1x

5
x

5x

1
C

2
C

3
C

4
C

0
2

0
2

0
2

1
2

1
2

2
2

3
2

3
2

3
2

4
2

4
25

2

(a) (b)

Figure 6.2: The construction for the doubling metric case. (a) The gadget for the
variable xl in Φ. Each edge between wl

i and wl
i+1 has weight exactly 2l/(l + 1)2 and

the number of wl
i’s is 8(l+1)2 +1. (b) A representation of an instance of k-clustering

on a doubling metric constructed from an instance of Φ. All “clause-literal” edges
have weight 2l for variable xl. The optimal cover is highlighted with grey“blobs”.
Φ = (¬x0∨x3 ∨x4)∧ (x0 ∨¬x4 ∨¬x5)∧ (x0 ∨¬x1 ∨¬x3)∧ (x1 ∨¬x2 ∨x3). Satisfying
assignment X = (0, 1, 1, 0, 0, 1). Weight of the covering is exactly 26 − 1

Lemma 32. There is a constant ρ ≥ 0 so that the doubling dimension of the metric

induced by the graph G = (V, E) is bounded by ρ.

99

Proof. Let B(x, r) be some ball in the metric. If r < 1, then either (a) the ball

consists of a singleton vertex, or (b) B(x, r) ⊆ W l for some l and the subgraph of

G induced by B(x, r) is a path. In either case, it is easily verified that O(1) balls

centered within B(x, r) and having radius r/2 cover B(x, r).

We therefore consider the case r ≥ 1. Let t be the largest integer that is at

most n − 1 such that 2t ≤ r. For each s ∈ {t − 3, t − 2, t − 1, t}, we place balls of

radius r/2 centered at (i) {xs, xs} ∩ B(x, r), (ii) clause vertices incident to xs or xs

that are in B(x, r), and (iii) O(1) points of B(x, r) ∩W s so that these balls cover

B(x, r) ∩W s (this is possible because B(x, r) ∩W s induces a path of length at most

2s+3.) In addition, if x ∈ W l for some l, we place O(1) balls of radius r/2 at points

of B(x, r) ∩W l so that these balls cover B(x, r) ∩W l. Finally, we place a ball of

radius r/2 at x. Clearly, we have placed O(1) balls and we will show that these cover

B(x, r). Let C denote the set of centers at which we have placed balls.

Let y ∈ B(x, r) be a point that is not in C or in W s for s ∈ {t−3, t−2, t−1, t}

or in W l (if x ∈ W l). Fix a shortest path from x to y and let x′ be the last vertex

on this path that is in C. We first observe that none of the internal vertices on the

path from x to y is in W q for any q. Furthermore, if x ∈ W l for some l, then by

assumption y 6∈ W l. Thus all edges of the subpath from x′ to y have weight 2q for

some 0 ≤ q ≤ n− 1. No such edge can have weight 2t+1 or greater because 2t+1 > r

if t ≤ n − 2. No such edge can have weight 2s for s ∈ {t− 3, t− 2, t− 1, t} because

otherwise the endpoint of the edge closer to y would be in C. Thus every edge on

the subpath from x′ to y has weight at most 2t−4. It is easy to see that the subpath

100

contains at most 3 edges of weight 2q for any q ≤ t − 4. Thus the weight of the

subpath from x′ to y is at most

3(2t−4 + 2t−5 + · · ·+ 20) < 3 · 2t−3 < 2t−1 < r/2.

So y is in the ball of radius r/2 centered at x′.

Claim 33. Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤

k − 1, a ball centered at either xl or xl with radius at least 2l.

Proof. Consider any k-cover of V and let t be the largest index such that there is no

ball in the k-cover centered at either xt or xt and having radius at least 2t. So for

each t +1 ≤ l ≤ k− 1, there is a ball Bl in the k-cover centered at either xl or xl and

having radius at least 2l.

If some point in W t is covered by some Bl for t + 1 ≤ l ≤ k − 1, then Bl has

radius at least 2l +2 ·2t. In this case the k-cover has cost at least 2k−1+2k−2 · · · 2t+1 +

2 · 2t = 2k. If some point in W t is covered by a ball B different from the Bl’s and not

centered at any of the points in W t, then the radius of B is at least 2 · 2t. (Note that

by assumption B can’t be centered at xt or xt.) Thus in this case too the k-cover has

cost at least 2k−1 + 2k−2 · · · 2t+1 + 2 · 2t = 2k.

The only remaining case is when each point in W t is covered by some ball

centered at a point in W t. Since there can be at most t + 1 balls in the k-cover

centered within W t, the sum of the radii of these balls is at least

1

2

(

(nt − 1)
2t

(t + 1)2
− (t + 1)

2t

(t + 1)2

)

> 2 · 2t.

The k-cover has cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 · 2t = 2k.

101

We now argue that the transformation has the property that there is a k-cover

in the metric of cost at most 2k − 1 if and only if the original 3SAT instance Φ is

satisfiable.

Suppose that Φ is satisfiable. Then we can choose for each 0 ≤ l ≤ k − 1

exactly one of xl or xl such that within each clause of Φ there is a chosen literal.

Consider the set of k balls B0, . . . , Bk−1 where Bl has radius 2l and is centered at xl

or xl, whichever was chosen. These balls form a k-cover of V with cost 2k − 1.

For the reverse direction, consider a k-cover of the target metric space of cost

at most 2k − 1. It follows from Claim 33 that the k-cover must consist of balls

B0, . . . , Bk−1, where Bl is centered at either xl or xl and has radius precisely 2l. Let

us choose the literals corresponding to the centers of these balls. For each l, we clearly

choose exactly one of xl of xl. Consider any clause vertex c. It must be covered by

at least one of the balls Bl. Given the radii of the balls, the only balls that can cover

c are the ones centered at literals contained in the clause. It follows that our set of

chosen literals contains, for each clause in Φ, at least one of the literals contained in

the clause. Thus Φ is satisfiable.

Theorem 34. For a large enough constant ρ ≥ 0, the (decision version of the)

k-cover problem for metrics of doubling dimension at most ρ is NP-hard.

102

Algorithm 6.2 BC-Compute(Q, κ)

1: If |Q| = 0, return the empty set.

2: Otherwise, if κ = 0, return {I} (not possible to cover).

3: Otherwise, if diam(Q) ≤ 50, directly compute the optimal solution in polynomial

time.

4: for all 2 log2 n iterations do

5: Call Partition(Q) to obtain a partition of Q into two or more sets. Let

Q1, . . . , Qτ denote the nonempty sets in this collection.

6: for all sets C of at most c log n balls, where c is the constant in Lemma 28 do

7: Let Q′
i be the points in Qi not covered by C. For each 1 ≤ i ≤ τ and

0 ≤ κ1 ≤ κ, recursively call BC-Compute(Q′
i, κ1) and store the set returned

in the local variable best(Q′
i, κ1).

8: For 0 ≤ i ≤ τ − 1, let Ri = ∪τ
j=i+1Q

′
j . Note that Rτ−1 = Q′

τ and Ri =

Q′
i+1 ∪Ri+1 for 0 ≤ i ≤ τ − 2.

9: for all i← τ − 2 down to 0 and 0 ≤ κ1 ≤ κ, do

10: set local variable best(Ri, κ1) to be the lowest cost solution among

{best(Q′
i+1, κ

′) ∪ best(Ri+1, κ1 − κ′)|0 ≤ κ′ ≤ κ1}.

11: Let S denote the lowest cost solution best(R0, κ−|C|)∪C over all choices

of C tried above with |C| ≤ κ.

12: end for

13: end for

14: end for

15: Return the lowest cost solution S obtained over the Θ(log n) trials.

103

CHAPTER 7
DOMINATING SET FOR DISK GRAPHS

In this chapter, we give our PTAS for minimum dominating set for disk graphs.

Here, we are given a disk graph with a set D of n disks in the Euclidean plane, and we

are interested in computing a minimum cardinality dominating set of the disk graph.

The algorithm is given in Section 7.1 and the analysis of the approximation ratio is

given in Section 7.2.

7.1 The Algorithm

Local Search. Call a subset of disks, B ⊆ D, b-locally optimal if one cannot obtain

a smaller dominating set by removing a subset X ⊆ B of size at most b from B and

replacing that with a subset of size at most |X| − 1 from D \B. Our algorithm will

compute a b-locally optimal set of disks for b = c
ǫ2

where c > 0 is a large enough

constant. Our algorithm simply begins with an arbitrary feasible set of disks (e.g.

every disk in D), and proceeds by making small local exchanges of size b = O(1
ǫ2

), for

a given ǫ > 0. We stop when no further local improvements are possible.

Suppose that the solution returned is B. Finally, for reasons apparent in the

analysis, we check to see if for any disk u ∈ B there is a disk v ∈ D such that u is

completely contained in v ∈ D \ B. If such a disk exists, then simply replace u with

v. We return this as our final solution and call it B.

104

Running Time. We will now show that the running time can be bounded by a

polynomial in n. The number of swaps that the local search algorithm will make is

at most n, because there are n disks and each swap strictly decreases the number of

disks in the solution. For each swap, we need to check every subset of disks of size

at most b which can be done in time O(nb). Recall that b is only a function of ǫ, and

thus we can have the exponential dependence on b in the running time.

So we will make at most n swaps, each of which takes time O(nb). Clearly, the

last step (where we check to see if a disk is contained within another) can be done

in time polynomial in n, and therefore the entire running time of the algorithm is

efficient with respect to n.

7.2 Approximation Ratio

In this section, we will show that our algorithm is a PTAS, thus proving the

following theorem:

Theorem 35. For any ǫ > 0, there exists a polynomial time algorithm for the mini-

mum dominating set problem on disk graphs that returns a solution whose cost is at

most (1 + ǫ)OPT where OPT is the cost of an optimal solution.

Let R be the disks in an optimal solution such that no disk in R is contained

by any other disk in D (clearly such an R must exist), and let B be the disks returned

by our local search algorithm. Note that by the definition of PTAS, we need to show

that |B| ≤ (1 + ǫ) · |R|. We will refer to R as the set of red disks and B as the set

of blue disks. Without loss of generality, we will assume that R ∩ B = ∅, i.e. there

105

is no disk that is both red and blue. For a disk u ∈ D, we say a disk v ∈ R ∪ B is a

dominator of u if u and v intersect. Similarly, we also say that v dominates u.

We must show the existence of an appropriate planar graph which relates the

disks in R with the disks in B. The following lemma is the key contribution of this

work:

Lemma 36. There exists a planar graph with vertex set R ∪ B, such that for every

d ∈ D, there is a disk u from amongst the red dominators of d and a disk v amongst

the blue dominators of d such that {u, v} is an edge in the graph.

Because we only need to show the existence of the graph and do not actually

need to construct it, we do not need to know which disks are in R. Section 7.2.1 is

devoted to a proof of Lemma 36. In Section 7.2.2, we describe the argument (from

[49]) that uses the lemma to show that |B| < (1 + ǫ)|R|.

7.2.1 Proof of Lemma 36

In this subsection, we will show the existence of the appropriate planar graph

and prove Lemma 36.

We first introduce a diagram which is commonly used in computational ge-

ometry called the Voronoi diagram. Given a set S of input points in the plane, the

Voronoi diagram is a partitioning of the plane into cells with the following properties:

• There is exactly one s ∈ S inside of each cell. We call such a cell cell(s).

• For each x ∈ cell(s), x is closer to s than it is to any other s′ ∈ S.

106

An exception occurs if a point x lies on the boundary of two or more cells. In

such a case, x is equidistant to all points in S whose cells share the boundary that x

lies on. See Figure 7.1 for an illustration.

Figure 7.1: An example of a Voronoi diagram.

Weighted Voronoi Diagram. We will be using a generalization of Voronoi di-

agrams called a weighted Voronoi Diagram (WVD). Instead of defining cells with

respect to a set of points, we will be defining cells with respect to red and blue disks.

Recall that for Voronoi diagrams, all of the points in cell(s) were closer to s than to

any other s′. In order to do this generalization for disks, we must define the distance

between a point in the plane and a disk. Once these distances are defined, then defin-

ing the cells for the disks is similar to how they were formed in unweighted Voronoi

diagrams.

These distances can be viewed as a special case as WVD’s with respect to

points [7] where the points are the centers of the disks and the weight of a point is

the radius of the corresponding disk. And so the distance between a point and a disk

107

is the distance to the center of the disk minus the radius of the disk.

Let u be a disk and let x be a point in the plane. We define d(x, u) = d(x, cu)−

ru where cu is the center of u, ru is the radius of u, and d(x, cu) is the Euclidean

distance between x and cu. Intuitively, for a point x, d(x, u) is the Euclidean distance

from x to the boundary of u; the distance to a disk is negative for points that are

strictly inside the disk. Alternatively, if x 6∈ u, then d(x, u) is the amount we would

need to increase the radius of u so that x lies on the boundary of u; if x ∈ u, then

d(x, u) is the negative of the amount we would need to decrease the radius of u so

that x lies on the boundary of u. See Figure 7.2 for an illustration.

2

u

x

d(x, u) = 2

1

u

x

d(x, u) = −1

(a) (b)

Figure 7.2: An illustration for the distances used in our WVD. (a) d(x, u) when x is
not in u. (b) d(x, u) when x is in u.

For a disk u in any collection of disks, let cell(u) be the set of points x in the

plane such that d(x, u) ≤ d(x, v), u 6= v. The resulting partition of the plane is the

WVD. The cells in a WVD are star-shaped. That is, there is a point x ∈ cell(u) such

that for every point y ∈ cell(u), xy is completely contained within cell(u) (the point

108

x is the center of the disk u).

The Graph. Consider the WVD using disks in R∪B. Our graph is simply the dual

of the this diagram. That is, for each cell in the WVD there is a vertex, and there is

an edge between two vertices if and only if their corresponding cells share a boundary

in the diagram. The graph is clearly planar; the edges can easily be drawn in a way

where no two edges intersect [7]. Therefore, all that remains to prove Lemma 36 is

to show that for every d ∈ D, there is a disk u from amongst the red dominators of d

and a disk v amongst the blue dominators of d such that cell(u) and cell(v) share a

boundary in the WVD (and hence their corresponding vertices in the graph have an

edge connecting them).

First, we will show that for every u ∈ R ∪ B, u has a non-empty cell in the

WVD. That is, we will show that there is some point in the plane that is closer to u

than it is to any other red or blue disk.

Lemma 37. In the weighted Voronoi diagram of the union of red and blue disks,

the cell of every disk u is nonempty. Moreover, cu (the center of u) belongs only to

cell(u).

Proof. We first will show that cu is in cell(u). Suppose for the sake of contradiction

that cu ∈ cell(v) such that u 6= v. This means that d(cu, v) < d(cu, u) = d(cu, cu) −

ru = −ru. So, −ru > d(cu, v) = d(cu, cv)− rv ⇒ rv > d(cu, cv)+ ru. This implies that

v completely contains u, but we can show that for any two disks in R ∪ B, it is not

possible for one disk to contain the other.

109

First note that for two disks u, v ∈ R, it cannot be the case that u contains v

or that v contains u. This would contradict the fact that R is an optimal solution,

because the contained disk could be eliminated without leaving any other disks un-

covered. Likewise, for two disks u, v ∈ B, it cannot be the case that u contains v or

that v contains u. The local search algorithm would drop the disk that is contained

within the other disk. Finally, no disk in R can contain a disk in B and vice versa

because of the final replacement step of the algorithm and the fact that no disk in R

is contained in any other disk in D.

Since it is not possible for two disks to contain each other, it must be the case

that cu ∈ cell(u) for each u ∈ R ∪ B, and therefore each disk u has a nonempty cell

in the WVD.

Now we will show that cu is only in cell(u). Since we already know cu ∈ cell(u),

it suffices to show that cu is not on the boundary of cell(u). Suppose for the sake of

contradiction that cu is on the boundary of cell(u) and cell(v). We have d(cu, v) =

d(cu, u) = −ru. So, −ru = d(cu, cv) − rv which gives us that rv = d(cu, cv) + ru and

thus v completely contains u. Again, this is a contradiction, and therefore it must be

that cu is only in cell(u).

Because every red and blue disk has a nonempty cell in the WVD, every such

disk will also have a corresponding vertex in our planar graph. We are now ready to

show that for each d ∈ D, there is a disk u from amongst the red dominators of d

and a disk v amongst the blue dominators of d such that cell(u) and cell(v) share a

boundary in the WVD. This would then imply that their corresponding vertices in

110

the graph share an edge, completing the proof of Lemma 36. For simplicity, if there is

an edge connecting the vertex corresponding to cell(u) and the vertex corresponding

to cell(v), then we will simply say there is an edge connecting u and v.

Lemma 38. In the dual graph of the weighted Voronoi diagram for R ∪ B, for an

arbitrary input disk u ∈ D, there is an edge between some red dominator of u and

some blue dominator of u.

Proof. Consider the WVD of R ∪ B. Without loss of generality, assume cu ∈ cell(r)

for some r ∈ R. It must be the case that r is a dominator of u, because r is the

closest disk in R∪B to cu. If r does not dominate u, u is not dominated by any disk

in R ∪ B which contradicts the fact that both R and B are dominating sets.

Let b denote a closest blue disk to cu, that is d(cu, b) ≤ d(cu, b
′) for all other

blue disks b′. Note that b must dominate u, because if it did not, then no blue disks

would dominate u. This would contradict the fact that B is a dominating set. Also,

note that for any disk d ∈ D such that d(cu, d) ≤ d(cu, b), d must intersect with u.

We will walk from cu to cb along the straight line segment cucb. The proof

strategy is that during this walk, we will be crossing red cells and at some point

before reaching cb we will enter a blue cell, in particular, cell(b). We must have

entered this cell from a red cell cell(r′) which shares a boundary with cell(b), and

thus {r′, b} is an edge in our planar graph. Moreover, we will argue that r′ necessarily

dominates u, completing the proof.

As seen in the proof of Lemma 37, cb ∈ cell(b), and thus we will enter cell(b)

at some point in time along our walk from cu to cb. Let x be the point at which

111

we first enter cell(b). Then x is on the boundary of cell(b) and cell(r′) for some

r′ ∈ R ∪ B. If cr′ is on the line through cu and cb, then it must be that either r′

contains b or b contains r′, a contradiction. So now assume that cr′ is not on the line

through cu and cb. Then we have

d(cu, r
′) < d(cu, x) + d(x, r′) = d(cu, x) + d(x, b) = d(cu, b)

Note that it must be the case that r′ ∈ R because d(cu, r
′) < d(cu, b) and b is the

closest blue disk to cu. This also implies that r′ must dominate u. See Figure 7.3 for

an illustration.

x cucb

cr′

cr

ru

Figure 7.3: Proof of Lemma 38. The dotted disk is u with center cu and radius
ru. The two red disks r and r′ are shown as dashed disks with centers cr and cr′,
respectively. The only blue disk b is shown as a solid disk with center cb.

Therefore cell(b) and cell(r′) share a boundary implying that the edge {b, r′}

is in our graph. Moreover, b is blue, r′ is red, and both dominate u, which completes

the proof.

112

So we have a planar graph such that for every d ∈ D, there is a disk u from

amongst the red dominators of d and a disk v amongst the blue dominators of d such

that {u, v} is an edge in the graph, completing the proof of Lemma 36.

7.2.2 Proof of Theorem 35

To show |B| ≤ (1+ǫ) · |R|, we make use of the planar graph separator theorem

of Frederickson [29]. This argument is similar to the work in [14, 49] and is only given

here for completeness. Given a graph G = (V, E), we denote N(V ′) for subset of the

vertices V ′ to be the set of all vertices in V that share an edge with a vertex in V ′.

Theorem 39 (Frederickson [29]). There are constants c1, c2, c3 > 0, such that for

any planar graph G = (V, E) with n vertices and a parameter r ≥ 1, there is a set

X ⊆ V of size at most c1n/
√

r, and a partition of V \X into n/r sets V1, V2, . . . , Vn/r,

satisfying: (i) |Vi| ≤ c2r, (ii) N(Vi)∩Vj = ∅, for i 6= j, and (iii) |N(Vi)∩X| ≤ c3

√
r.

We will now show that |B| ≤ (1 + ǫ)|R|; this is similar to [14, 49, 34]. Let

r ≡ b/(c2 + c3) (where b is the parameter from the local search algorithm). From

Theorem 39(i),(iii), we get |Vi ∪ N(Vi)| ≤ c2r + c3

√
r ≤ b. Let Ri = R ∩ Vi and

Bi = B∩Vi. Due to the optimality of local search, we must have |Bi| ≤ |Ri|+ |N(Vi)|,

otherwise local search can replace Bi with Ri ∪N(Vi) to obtain a smaller dominating

set, contradicting the local optimality of local search. This is why we require that for

each d ∈ D, there is a red dominator of d and a blue dominator of d with an edge

in the graph. If there were no such edge, then making this swap could possibly leave

113

some disks without a dominator. So now we have,

|B| ≤ |X|+
∑

i

|Bi| ≤ |X|+
∑

i

|Ri|+
∑

i

|N(Vi)| ≤ |R|+ c
|R|+ |B|√

r

≤ |R|+ c′
|R|+ |B|√

b
,

where c and c′ are positive constants. With b a large enough constant times 1/ǫ2, it

follows that |B| ≤ (1 + ǫ)|R|.

7.3 Conclusion

We show that a local search algorithm is a PTAS for the minimum dominating

set problem for disk graphs by proving that the dual of a weighted Voronoi diagram

appropriately relates the optimal solution with a locally optimal solution. This is

not the first instance in which the dual of a Voronoi diagram has led to improved

algorithms. The construction of our graph is similar to the graph that Mustafa and

Ray use for the hitting set problem for disks. In this problem, we are given a set of

disks and a set of points in the plane such that each disk contains at least one of the

points. The problem is to compute a minimum cardinality subset of the points so

that each disk contains a point from the subset. The graph that they use to relate

the optimal solution with a locally optimal solution is the Delaunay triangulation of

the point set. The Delaunay triangulation of a point set is simply the dual of the

Voronoi diagram of the point set.

114

CHAPTER 8
CONCLUSION AND OPEN PROBLEMS

In this document, we have presented several algorithms for geometric special

cases of the set cover problem. Each problem has is unique in what makes it difficult

and how geometry can be used to overcome these difficulties. That being said, there

is much work that is left to be done in this area. We conclude the document with a

discussion of open problems related to our work.

8.1 Decomposing Coverings

Our result for convex polygons and the work of Pálvölgyi [53] for concave

polygons settles the problem for translates of polygons. The major open problem is

to obtain results for disks, even in the case when all of the disks have unit radius. The

techniques for obtaining Ω(k) covers for convex polygons involve reducing the problem

to coloring points inside of wedges. We are able to understand the complications

involving the interactions of the wedges, and we are able to color the points in a

clever way to obtain our result. This largely has to do with the fact that there are

only a constant number of “types” of wedges; however, we do not seem to have the

tools to handle the interactions of the disks.

8.2 The Sensor Cover Problem

We give the first constant factor approximations for the Restricted Strip Cover

problem and for the Planar Sensor Cover problem. Recall that our algorithm com-

115

putes a schedule of duration at least L
5

where L is the load of the problem and thus

is also at least OPT
5

where OPT is the duration of an optimal schedule. Buchsbaum

et al. showed that RSC is NP-hard; however, a PTAS has not been ruled out. That

being said, the example in Figure 1.4 rules out the possibility of computing a schedule

of duration L
1+ǫ

, and thus any PTAS for RSC must be with respect to OPT .

The status of the Planar Sensor Cover problem is essentially identical to the

Restricted Strip Cover problem. We give a constant factor approximation, the prob-

lem is NP-hard, and the possibility of a PTAS has not been ruled out. The example

for RSC in Figure 1.4 can easily be extended into an example in the plane to show

that any PTAS for Planar Sensor Cover cannot be with respect to L.

8.3 Clustering to Minimize the Sum of Radii

Our work on metric clustering to minimize the sum of radii and the work of

Gibson et al. [33] for the geometric version of the problem are very interesting from

a theoretical perspective. The problem seems to be extremely similar to many other

variants of clustering which are NP-hard, yet the geometric version can be solved

exactly in polynomial time and the metric version can be solved exactly in quasi-

polynomial time when the aspect ratio is a polynomial in the number of input points.

While these results have great theoretical impact, the running times are too large to

be of practical interest. It would be interesting to see if the separability properties of

the problem that provide the structure to develop interesting theoretical algorithms

can lead to the possibility of exact algorithms with practical running times.

116

8.4 Dominating Set for Disk Graphs

We show that a simple local search algorithm is a PTAS for the minimum

dominating set problem for disk graphs. It would be interesting to get sublogarithmic

factor approximation algorithms for minimum dominating set for ball graphs in three

dimensions. Our planar result is influenced by the results of Chan and Har-Peled

[14] and Mustafa and Ray [49] who use separator theorems for planar graphs to

show that local search is a PTAS for certain problems if there exists a planar graph

which appropriately relates the optimal solution with a locally optimal solution. The

requirement that the graph must be planar is fairly restrictive, so it would be very

interesting to see if similar results could be obtained for a less-restrictive class of

graphs.

117

REFERENCES

[1] Zoë Abrams, Ashish Goel, and Serge Plotkin. Set k-cover algorithms for energy
efficient monitoring in wireless sensor networks. In IPSN ’04: Proceedings of the
third international symposium on Information processing in sensor networks,
pages 424–432, New York, NY, USA, 2004. ACM.

[2] Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Or-
den, and Pedro Ramos. Decomposition of multiple coverings into more parts. In
SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on
Discrete Algorithms, pages 302–310, Philadelphia, PA, USA, 2009. Society for
Industrial and Applied Mathematics.

[3] Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, and Shakhar
Smorodinsky. Coloring geometric range spaces. Discrete Comput. Geom.,
41(2):348–362, 2009.

[4] Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P.
Fekete, Christian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim
Whittlesey. Minimum-cost coverage of point sets by disks. In Nina Amenta and
Otfried Cheong, editors, Symposium on Computational Geometry, pages 449–
458. ACM, 2006.

[5] Christoph Ambühl, Thomas Erlebach, Matús Mihalák, and Marc Nunkesser.
Constant-factor approximation for minimum-weight (connected) dominating sets
in unit disk graphs. In Josep Dı́az, Klaus Jansen, José D. P. Rolim, and Uri
Zwick, editors, APPROX-RANDOM, volume 4110 of Lecture Notes in Computer
Science, pages 3–14. Springer, 2006.

[6] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size epsilon-nets for axis-
parallel rectangles and boxes. In Michael Mitzenmacher, editor, STOC, pages
639–648. ACM, 2009.

[7] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Comput. Surv., 23(3):345–405, 1991.

[8] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic
applications. In FOCS, pages 184–193, 1996.

[9] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russeli. Efficient
probabilistically checkable proofs and applications to approximations. In STOC,
pages 294–304, 1993.

118

[10] Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanel-
lopoulos. Geometric clustering to minimize the sum of cluster sizes. In
Gerth Stølting Brodal and Stefano Leonardi, editors, ESA, volume 3669 of Lec-
ture Notes in Computer Science, pages 460–471. Springer, 2005.

[11] Adam L. Buchsbaum, Alon Efrat, Shaili Jain, Suresh Venkatasubramanian, and
Ke Yi. Restricted strip covering and the sensor cover problem. In SODA ’07:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1056–1063, Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[12] Adam L. Buchsbaum, Howard J. Karloff, Claire Kenyon, Nick Reingold, and
Mikkel Thorup. Opt versus load in dynamic storage allocation. SIAM J. Com-
put., 33(3):632–646, 2004.

[13] Timothy M. Chan. Polynomial-time approximation schemes for packing and
piercing fat objects. J. Algorithms, 46(2):178–189, 2003.

[14] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum
independent set of pseudo-disks. In Hershberger and Fogel [36], pages 333–340.

[15] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster
diameters. J. Comput. Syst. Sci., 68(2):417–441, 2004.

[16] Miroslav Chleb́ık and Janka Chleb́ıková. Approximation hardness of dominating
set problems. In Susanne Albers and Tomasz Radzik, editors, ESA, volume 3221
of Lecture Notes in Computer Science, pages 192–203. Springer, 2004.

[17] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

[18] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.
Discrete Mathematics, 86(1-3):165–177, 1990.

[19] Sridhar Dasika, Sarma Vrudhula, Kaviraj Chopra, and R. Srinivasan. A frame-
work for battery-aware sensor management. In DATE ’04: Proceedings of the
conference on Design, automation and test in Europe, page 20962, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] Wenceslas Fernandez de la Vega and Claire Kenyon. A randomized approxima-
tion scheme for metric max-cut. J. Comput. Syst. Sci., 63(4):531–541, 2001.

119

[21] Amol Deshpande, Samir Khuller, Azarakhsh Malekian, and Mohammed Toossi.
Energy efficient monitoring in sensor networks. In Laber et al. [43], pages 436–
448.

[22] Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors. Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 12th International Workshop, APPROX 2009, and 13th Interna-
tional Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009.
Proceedings, volume 5687 of Lecture Notes in Computer Science. Springer, 2009.

[23] Srinivas Doddi, Madhav V. Marathe, S. S. Ravi, David Scot Taylor, and Peter
Widmayer. Approximation algorithms for clustering to minimize the sum of
diameters. Nord. J. Comput., 7(3):185–203, 2000.

[24] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approxima-
tion schemes for geometric intersection graphs. SIAM J. Comput., 34(6):1302–
1323, 2005.

[25] Thomas Erlebach and Erik Jan van Leeuwen. Domination in geometric intersec-
tion graphs. In Laber et al. [43], pages 747–758.

[26] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on ap-
proximating arbitrary metrics by tree metrics. In STOC, pages 448–455. ACM,
2003.

[27] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–
652, 1998.

[28] Uriel Feige, Magnús M. Halldórsson, Guy Kortsarz, and Aravind Srinivasan.
Approximating the domatic number. SIAM J. Comput., 32(1):172–195, 2003.

[29] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput., 16(6):1004–1022, 1987.

[30] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

[31] M.R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

120

[32] Jordan Gergov. Algorithms for compile-time memory optimization. In SODA
’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 907–908, Philadelphia, PA, USA, 1999. Society for Industrial and
Applied Mathematics.

[33] Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R.
Varadarajan. On clustering to minimize the sum of radii. In Shang-Teng Huang,
editor, SODA, pages 819–825. SIAM, 2008.

[34] Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi R. Varadarajan. An
approximation scheme for terrain guarding. In Dinur et al. [22], pages 140–148.

[35] Sariel Har-Peled. Being fat and friendly is not enough. CoRR, abs/0908.2369,
2009.

[36] John Hershberger and Efi Fogel, editors. Proceedings of the 25th ACM Sympo-
sium on Computational Geometry, Aarhus, Denmark, June 8-10, 2009. ACM,
2009.

[37] Dorit S. Hochbaum and David B. Shmoys. A best possible approximation algo-
rithm for the k-center problem. Math. Oper. Res., 10:180–184, 1985.

[38] Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi,
Daniel J. Rosenkrantz, and Richard Edwin Stearns. Nc-approximation schemes
for np- and pspace-hard problems for geometric graphs. J. Algorithms, 26(2):238–
274, 1998.

[39] David S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. Syst. Sci., 9(3):256–278, 1974.

[40] O. Kariv and S. L. Hakimi. An algorithmic approach to network location prob-
lems. part II: The p-medians. SIAM J. Appl. Math., 37:539–560, 1982.

[41] Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Math. Oper. Res., 25(4):645–656, 2000.

[42] Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for
proximity search. In J. Ian Munro, editor, SODA, pages 798–807. SIAM, 2004.

[43] Eduardo Sany Laber, Claudson F. Bornstein, Loana Tito Nogueira, and Luerbio
Faria, editors. LATIN 2008: Theoretical Informatics, 8th Latin American Sym-
posium, Búzios, Brazil, April 7-11, 2008, Proceedings, volume 4957 of Lecture
Notes in Computer Science. Springer, 2008.

121

[44] Nissan Lev-Tov and David Peleg. Polynomial time approximation schemes for
base station coverage with minimum total radii. Computer Networks, 47(4):489–
501, 2005.

[45] David Lichtenstein. Planar formulae and their uses. SIAM Journal on Comput-
ing, 11(2):329–343, 1982.

[46] László Lovász. On the ratio of the optimal integeral and fractional covers. Disc.
Math., 13:383–390, 1975.

[47] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating min-
imization problems. J. ACM, 41(5):960–981, 1994.

[48] P. Mani and János Pach. Decomposition problems for multiple coverings with
unit balls. Manuscript, 1986.

[49] Nabil H. Mustafa and Saurabh Ray. Ptas for geometric hitting set problems via
local search. In Hershberger and Fogel [36], pages 17–22.

[50] Tim Nieberg, Johann Hurink, and Walter Kern. Approximation schemes for
wireless networks. ACM Transactions on Algorithms, 4(4), 2008.

[51] János Pach. Covering the plane with convex polygons. Discrete & Computational
Geometry, 1:73–81, 1986.

[52] János Pach and Géza Tóth. Decomposition of multiple coverings into many
parts. Comput. Geom., 42(2):127–133, 2009.

[53] Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete
and Computational Geometry, 2009.

[54] Dömötör Pálvölgyi and Géza Tóth. Convex polygons are cover-decomposable.
Discrete and Computational Geometry, 2008.

[55] Saurav Pandit, Sriram V. Pemmaraju, and Kasturi R. Varadarajan. Approxima-
tion algorithms for domatic partitions of unit disk graphs. In Dinur et al. [22],
pages 312–325.

[56] Sriram V. Pemmaraju and Imran A. Pirwani. Energy conservation via domatic
partitions. In MobiHoc ’06: Proceedings of the 7th ACM international symposium
on Mobile ad hoc networking and computing, pages 143–154, New York, NY,
USA, 2006. ACM.

122

[57] Mark A. Perillo and Wendi B. Heinzelman. Optimal sensor management under
energy and reliability constraints. Wireless Communications and Networking,
2003. WCNC 2003. 2003 IEEE, 3:1621–1626 vol.3, 16-20 March 2003.

[58] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test,
and a sub-constant error-probability pcp characterization of np. In STOC, pages
475–484, 1997.

[59] Sasha Slijepcevic and Miodrag Potkonjak. Power efficient organization of wire-
less sensor networks. Communications, 2001. ICC 2001. IEEE International
Conference on, 2:472–476 vol.2, 2001.

[60] Gábor Tardos and Géza Tóth. Multiple coverings of the plane with triangles.
Discrete & Computational Geometry, 38(2):443–450, 2007.

[61] Kasturi R. Varadarajan. Epsilon nets and union complexity. In Hershberger and
Fogel [36], pages 11–16.

[62] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

	University of Iowa
	Iowa Research Online
	Spring 2010

	Clusters and covers: geometric set cover algorithms
	Matthew Richard Gibson
	Recommended Citation

	tmp.1280950922.pdf.1J38x

