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ABSTRACT  
      

Paralyzed muscle fatigues more quickly than intact muscle.  The reason 

for this difference is currently unknown.  This work will bridge this gap in 

knowledge by evaluating the predictive abilities of higher-resolution closed-form 

mathematical models of muscle force and fatigue.  Knowledge garnered from this 

effort will suggest possible mechanisms for the differences in fatiguability of 

muscle in different states of health. 

The hypothesis to be tested is that the concept missing from present 

models, and thus the present understanding of the physiology, is the dynamic 

behavior of divalent calcium (Ca2+) during induced muscle contraction.  If the 

behavior of Ca2+ can be understood as a Riccati-Bass diffusion process, muscle 

force and low-frequency fatigue in paralyzed muscle can be more accurately 

predicted over the time course of response to neuromuscular electrical 

stimulation.   The abilities of existing mathematical models to predict force and 

low-frequency fatigue are compared to the predictive abilities of new models that 

include the Riccati-Bass equation.   

There are several major findings of this study.   First, it was found that the 

structure of the Conaway models better predicts force and low-frequency fatigue 

than do the Ding models.   Second, the cross-bridge friction is the dominant 

process in generating force in fresh muscle at frequencies greater than 5 pps.  

Finally, the calcium leak current is dominant in low-frequency fatigue in paralyzed 

muscle. It is concluded that the process of muscle fatigue occurs as  
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calcium channel remodeling and inactivation of excitation-contraction coupling 

from ionic crowding accelerate with every additional contraction.  
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CHAPTER 1: INTRODUCTION 

 

Chronic spinal cord injury (SCI) elicits deleterious musculoskeletal 

adaptations, such as muscle paralysis and spasticity that adversely affect health 

in those who are injured.  Increasingly, desired rehabilitation outcomes will 

require limb preservation which may be done via electrical stimulation of 

paralyzed muscle.  However, few models predict fatigue in paralyzed muscle.  

The soleus muscle provides an ideal in vivo model of the effects of SCI on 

muscle properties, as it transforms from predominantly slow fiber type to that of 

fast-fatigable (FF) or type IIb fibers (164), which prolongs relaxation in the 

fatigued state. Clinically, this is important since a close association between 

optimal stimulation frequency and contractility exists. (42, 164)  

1.1 Rationale 

Ding and colleagues have tried several approaches to model fatigue in 

nonparalyzed and paralyzed muscle using their version of a Hill-Huxley model. 

(48-56) However, they demonstrated that the parameter relationships found for 

nonparalyzed muscle did not apply to paralyzed muscle. (51) Thus, it is not yet 

clear which permutation of parameters may optimally represent fatigue in 

paralyzed muscle.  Further, it was hypothesized that more complex nonlinear 

models would provide the most accurate predictions of overall force as well as 

specific force properties such as peak force. (66) Furthermore, according to 

Bellinger (11), during exercise, defects in calcium release impair muscle function.  

It has been shown that during exercise in rodents and man, the primary calcium
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channel required for excitation–contraction coupling in skeletal muscle, the 

ryanodine receptor (RyR1), is progressively PKA-hyperphosphorylated and 

undergoes other biochemical degradations. This destabilizes the RyR1 subunit 

calstabin1 (FKBP12) which yields leaky channels that cause decreased exercise 

tolerance in rodents. This suggests a possible mechanism by which calcium leak 

via RyR1 channels depleted of calstabin1 elicits defective signaling, muscle 

damage, and impaired exercise tolerance.  Thus, this study would provide the 

first systematic evaluation of mathematical models of paralyzed muscle fatigue 

by modifying currently available models to incorporate calcium dynamics and 

leakage.   

The long-term goal of this study is to alter the delivery protocol of electrical 

pulses from stimulators to paralyzed limbs, such that muscle fatigue is 

minimized, thus benefiting many with spinal cord injury. The information which is 

to be garnered could be implemented in future designs of electrical muscle 

stimulators.  This information could also be used as the basis of a quantitative 

index of muscle fatigue. Additionally, these modeling efforts will suggest in vitro 

experiments to verify the calcium dynamics in muscle.  With this enhanced 

understanding of the physiology of paralyzed muscle, safer and more appropriate 

therapeutic stress protocols that employ electrical stimulation can be developed 

for persons with spinal cord injury.  Safer protocols will lead to improved health 

care and quality of life for paralyzed people by reducing risk of injury from 

1.2 Long-term goal  
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inadvertent overstimulation of muscle.   Reduced risk of injury will lead to 

decreased health care costs. 

 
1.3 Specific aims 

1.3.1 Developing a theory of force-fatigue in stimulated  
paralyzed muscle 

 
The first specific aim of this work is to develop a theoretical model of force 

generation in stimulated trained and untrained chronically paralyzed human 

muscle.  It is hypothesized that the calcium dynamics of stimulated paralyzed 

muscle behaves as a diffusion process during nonfatigue contraction.  In 

addition, during fatigue, it is hypothesized that the process of sustained force 

decay is accelerated via leaky calcium channels.   The model will be validated by 

comparing simulated force and fatigue profiles to experimental soleus data from 

paralyzed human trained and untrained limbs.  The results of the model will be 

compared with published results. 

1.3.2 Comparing models of muscle force and fatigue 
 to experimental data 

 
The second specific aim is to compare the predictions made by the model 

with data measured from trained and untrained paralyzed human soleus muscle.  

It is hypothesized that a dynamic conceptualization of the calcium flux in 

contracting paralyzed muscle will yield more accurate prediction of fatigue during 

a course of electrotherapeutic stimulation.  It is further hypothesized that 

incorporating the dynamics of calcium leakage during extrinsically induced 

contraction will generate better understanding of paralyzed muscle physiology.  

The new models will be compared and contrasted to existing models by 
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evaluating the level of agreement of simulated force and fatigue profiles to 

experimental soleus data from chronically paralyzed human trained and 

untrained limbs.   

Paralyzed muscle fatigues more quickly than nonparalyzed muscle.  The 

reason for this difference is currently unknown.  This work will bridge this gap in 

knowledge by evaluating the predictive abilities of higher-resolution closed-form 

mathematical models of muscle force and fatigue.  Knowledge garnered from this 

effort will suggest possible mechanisms for the differences in fatigability of 

muscle in different states of health. 

1.4 General approach 

1.4.1. Modification of Ding models of muscle force  
and fatigue 

 
The hypothesis to be tested is that the concept missing from present 

models, and thus the present understanding of the physiology, is the dynamic 

behavior of divalent calcium (Ca2+) during induced muscle contraction.  Current 

models assume that the calcium dynamics in electrically stimulated muscle is 

quasistatic if not constant, in spite of experimental evidence of calcium leakage 

from muscle during prolonged stimulation.  In addition, it is hypothesized that the 

calcium dynamics in paralyzed muscle are different than the calcium dynamics in 

nonparalyzed muscle in fresh and fatigued states.  If the behavior of Ca2+ can be 

understood as a dynamic process with leakage, muscle force and low-frequency 

fatigue can be more accurately predicted over the time course of response to 

neuromuscular electrical stimulation. Eventually, a transition between fresh and 
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fatigued states may be detected and a quantitative index of low-frequency fatigue 

may be developed with this enhanced physiological understanding.  

The abilities of existing mathematical models to predict force and low-

frequency fatigue will be compared to the predictive ability of new models.  These 

new models will be existing models that are modified with a leakage term and the 

contractile dynamics of Ca2+ described by a time-varying nonlinear differential 

equation first articulated by Riccati. y’=P(t)+Q(t)y+R(t)y2, and in particular 

formulated by Bass. (10, 158)  The Riccati differential equation arises 

ubiquitously in diverse fields such as biology, chemistry, physics, engineering, 

medicine, finance, and the social sciences.  (16, 99, 100)  In its myriad variations, 

this equation describes processes of growth, diffusion, and decay on scales that 

are generally exponential.  (9, 57)  Hence, it is presumed to be an excellent 

candidate to model the calcium dynamics of muscle in response to doses of 

external electrical stimulation.  The typical dose-response curves in medical 

science are generated from the logistic equation.  The logistic equation is a 

special case of the Riccati equation when P(t)=0. (179, 180) 

 
 
 
 

 

Figure 1-1.  General Riccati-Bass function.  (10) 
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1.4.1 Validation of models with trained/untrained  
muscle as approximation for nonparalyzed/paralyzed muscle 

With the physiologic approximation of paralyzed trained muscle to 

nonparalyzed muscle, the improved models of force and low-frequency fatigue in 

muscle will enhance the understanding of underlying physiological mechanisms.   

Shields et al (165) found that these approximations are valid and yield reliable 

results in experimental studies of muscle force and fatigue. 
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CHAPTER 2: MUSCLE BIOLOGY  

 

           Neuromuscular physiology is based on the action potential, which is a 

wave of 

2.1 Action potentials and muscle physiology 

electrical discharge that travels along the membrane of a cell. Action 

potentials are an essential feature of animal life.  They rapidly transmit 

information within and between tissues, and are extensively used by the nervous 

system for communication between neurons and muscles as well as other 

organs.  (1, 72-74, 78, 91-93, 95, 97) 

           At baseline, the resting potential is what would be maintained were there 

no action potentials, synaptic potentials, or other changes to the membrane 

potential. In neurons the resting potential is approximately -70 mV. The resting 

potential is mostly determined by the ion concentrations on both sides of the cell 

membrane and the ion transport proteins that are in the cell membrane.  Active 

transport of potassium and sodium ions into and out of the cell, respectively, is 

accomplished by a number of sodium-potassium pumps embedded in the cell 

membrane. Each pump transports two ions of potassium into the cell for every 

three ions of sodium pumped out. In some cases, the electrogenic sodium-

potassium pumps significantly contribute to the resting membrane potential. 

However, in most cells, the dominant modulator of the resting potential is the 

potassium leak channel.   Yet, the resting cell membrane is approximately 75 

times more permeable to potassium than to sodium because potassium leak 

channels are always open. As a result, the resting membrane potential is closer 
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to the equilibrium potential of potassium (EK=−80 mV) than the equilibrium 

potential of sodium (ENa=+70 mV).  (1, 72-74, 78, 91-93, 95, 97, 111)  

Like the resting potential, action potentials depend upon the permeability 

of the cell membrane to sodium and potassium ions. Transient changes in 

conductance for different ions alter the membrane voltage required to initiate, 

sustain, and terminate action potentials.  At resting potential, some potassium 

leak channels are open but the voltage-gated sodium channels are closed. Even 

though zero net current flows, potassium moves across the membrane.  This 

pulls the resting potential close to the equilibrium potential of potassium.  A local 

membrane depolarization from an excitatory stimulus causes some sodium 

channels in the neuronal membrane to open.  Sodium ions diffuse in through the 

channels along their electrochemical gradient, and, being positively charged, 

they begin to reverse the voltage inside the membrane from negative to positive.  

(1, 72-74, 78, 91-93, 95, 97) 

 
 
 
 

 

Figure 2-1.  Electric circuit model of an excitable membrane.  (107) 
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As sodium ions enter and the membrane voltage becomes less negative, 

more sodium channels open.  This causes an even greater influx of sodium ions 

and, in turn, the sodium current overtakes the potassium leak current. Thus, the 

membrane voltage goes positive inside.  When membrane voltage has peaked at 

around +30 mV, voltage-sensitive inactivation gates on the sodium channels 

have already begun closing. This prevents further influx of sodium 

ions. Simultaneously, voltage-sensitive activation gates on the potassium 

channels begin opening.  (1, 67-69, 73, 86-88, 90, 92)  

 
 

 

 

 

Figure 2-2. A. A schematic view of an idealized action potential illustrates its 
various phases as the action potential passes a point on a cell membrane. B. 
Figures A-D give current flow direction in the membrane for each phase. (107) 
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Figure 2-3.  Action potential, schematic and real.   (1, 73) 
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As the potassium channels open, a large amount of potassium ions are 

driven outward by the potassium concentration gradient.  As potassium ions 

diffuse out, this reverses the membrane voltage to negative inside the 

membrane. Thus, the neuron is repolarized. Closure of the potassium channels 

is thus dependent on voltage as well as time. The resulting repolarization of the 

membrane elicits potassium channel closure.  Yet, these channels do not 

instantaneously close due to membrane voltage. Instead, the delayed rectifier 

potassium channels have a lagging response.  As a result, potassium ions 

continue flowing out of the cell even after repolarization.  Hence, the membrane 

voltage falls below the normal baseline value for an instant. This is known as 

undershoot.  (1, 72-74, 78, 91-93, 95, 97, 107) 

         Action potentials are triggered when an initial depolarization reaches the 

threshold voltage. This threshold is approximately 15 millivolts more positive than 

the resting membrane voltage of the cell.  It is reached when the inward sodium 

current is greater than the outward potassium current.  The net influx of positive 

charges depolarizes the membrane.   This causes more sodium channels to 

open and greater inward current to flow in  a positive-feedback loop that highly 

depolarizes the membrane.  (1, 72-74, 78, 91-93, 95, 97, 107) 

Threshold for action potential can be shifted by varying the balance 

between sodium and potassium currents. For example, if some of the sodium 

channels are inactivated, then a given level of depolarization, fewer sodium 

channels will open and larger depolarizations will be needed to elicit action 

potentials. This is known as the refractory period.  (1, 72-74, 78, 91-93, 95, 97) 
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        Nevertheless, the action potential threshold is often confused with the 

"threshold" of sodium channel opening. This is not correct. Since sodium 

channels have no threshold, they open stochastically upon depolarization, which 

does not actually open the channel.  Rather, it increases the probability of a 

channel opening. Even in hyperpolarization, a sodium channel will still 

sometimes open. Moreover, the action potential threshold is not identical to the 

voltage at which sodium current has influence.  The action potential threshold is 

the point where it exceeds the potassium current.  (1, 72-74, 78, 91-93, 95, 97) 

Cell membranes that contain ion channels can be modeled as passive RC 

circuits to better understand the propagation of action potentials in biological 

membranes. In such a circuit, the resistor represents membrane ion channels, 

while the capacitor models the insulating lipid membrane. Variable resistors are 

used for voltage-gated ion channels, as their resistance changes with voltage. A 

fixed resistor represents the potassium leak channels that maintain membrane 

resting potential. The sodium and potassium gradients across the membrane are 

modeled as voltage sources.  (1, 95, 97, 107) 

        Current flow in an axon can be quantitatively represented by cable theory 

and, by extension, the compartmental model. In simple cable theory, the neuron 

is connoted as an electrically passive, coaxial cable.  It is modeled with the 

following partial differential equation known as the cable equation. (1). 

 

                                                     2
tTV V -Vxx= λ                     (2-1) 
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where V(x, t) is the voltage across the membrane at a time t and a position x on 

the axonal longitude, and where λ and t are the characteristic scales of length 

and time on which the voltage decays in response to an input stimulus. Based on 

Figure 2-4, these scales can be calculated from the impedances per unit length. 

 

                      m mT r c=                  (2-2) 

                                                      

1
m 2

l

r
r

( )λ =         (2-3) 

 

           These dimensional metrics explain the relationship between the 

conduction velocity and the diameter of the neuron in unmyelinated fibers. For 

example, the time-scale grows larger with both the membrane resistance rm and 

capacitance cm.  By Q=CV, increase in capacitance requires additional charge be 

transferred to elicit a given voltage across the membrane.  However, increase in 

resistance means that less charge is transferred per unit time.  This retards 

equilibration.   Moreover, if the lengthwise internal resistance rl is less, because 

its radius is larger, in one axon than in another, the spatial decay length λ 

increases and the propagation velocity of an action potential should increase. If 

the resistance across the membrane rm increases, that decreases the mean 

"leakage" transmembrane current.  This, in turn, causes λ to lengthen and 

increases the action potential velocity of conduction.  (1)  Hence, propagating 

action potentials can be modeled by joining several RC circuits, each one 

representing a patch of membrane. 
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Figure 2-4. Schematic overview of the cable theory view of a piece of neuronal 
fiber. When an electrical current is moving along the inside of a fiber the cytosol 
exerts a resistance (rl). Simultaneously current will escape through the 
phospholipid bilayer (with resistance rm) to the outside; and due to electrostatic 
forces a buildup of charge (cm) will take place along the bilayer.  (1) 
 

 
 
In unmyelinated axons, action potentials propagate as an interaction 

between passively spreading membrane depolarization and electrically active 

sodium channels. When one area of membrane is depolarized enough to open 
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its sodium channels, sodium ions go into the cell via facilitated diffusion.  

Positively-charged sodium ions then electrostatically repel adjacent ions down 

the axon and attract negative ions away from the apposing membrane.  The 

process replicates with an action potential regenerated at each segment of 

axonal membrane.  (1, 72-74, 78, 91-93, 95, 97) 

Action potentials propagate faster in larger-diameter axons, with other 

things being equal, at speed of 10-100 m/s. The primary reason for this is that 

the axial resistance of the axon lumen is lower in larger diameters.  This is due to 

an increase in the ratio of cross-sectional area to membrane surface area.  As 

the membrane surface area is the main propagation impedance in an 

unmyelinated axon, increasing this ratio is an efficient way of increasing 

conduction speed.  (1, 72-74, 78, 91-93) 

In myelinated axons, saltatory conduction is how an action potential 

apparently jumps down the axon via the nodes of Ranvier.  Saltatory conduction 

increases nerve conduction velocity while maintaining relatively constant axon 

diameter and has played an important role in the evolution of larger and more 

complex organisms. Examples are humans and other mammals, whose nervous 

systems must rapidly transmit information across relatively great distances. 

Without saltatory conduction, conduction velocity would require substantial 

axonal diameters.  This would result in organisms that have nervous systems 

which are too large for their bodies.  (1, 25, 78, 91-93, 95, 97) 
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Figure 2-5. Continuous propagation of an action potential in an unmyelinated 
axon. (1, 97) 
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Figure 2-6. Model of saltatory conduction in a myelinated axon. (1, 97) 
 
 
 

The main impedance in unmyelinated axons is membrane capacitance. In 

an electric circuit, the impedance of a capacitor can be decreased by decreasing 

the cross-sectional area of its plates, or by increasing the distance between 

plates. The nervous system primarily uses myelin to decrease membrane 

impedance. Myelin is an insulating sheath wrapped around axons by Schwann 

cells and oligodendrocytes. These wrap around the axon and decrease 

impedance by moving the intracellular compartmental fluids farther apart. (1, 25, 

95, 97, 107) 

The resulting insulation allows the essentially instantaneous conduction of 

ions through a myelinated segment of axon, but prevents the regeneration of 

action potentials through those segments. Action potentials are only regenerated 

at the unmyelinated nodes of Ranvier. Myriad sodium channels on these bare 

segments allow action potentials to be efficiently regenerated at those points.  As 

a consequence of myelination, the insulated portion of the axon behaves like a 
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coaxial cable. The axon conducts action potentials rapidly because its membrane 

capacitance is low.  This minimizes action potential degradation because of high 

membrane resistance.  When this passively propagated signal reaches a node of 

Ranvier, it initiates an action potential and repeats the cycle.  (1, 72-74, 78, 91-

93, 95, 97) 

The length of myelinated segments of axon is important to saltatory 

conduction. Axons should be as long as possible to maximize the passive 

conduction speed, but not so long that the decay of the passive signal is too 

great to reach threshold at the next node of Ranvier. In reality, myelinated 

segments are long enough for the passively propagated signal to travel for at 

least two nodes while retaining enough magnitude to fire an action potential at 

the second or third node. Thus, the safety factor of saltatory conduction is high 

by allowing transmission to bypass injured nodes. (1, 25, 73, 88) 

When a membrane has undergone an action potential, a refractory period 

follows. Thus, although the passive transmission of action potentials across 

myelinated segments would suggest that action potentials propagate in either 

direction, most action potentials travel unidirectionally because the node behind 

the propagating action potential is refractory.  This period arises primarily 

because of the voltage-dependent inactivation of sodium channels (73, 87-88).  

In addition to the voltage-dependent opening of sodium channels, these channels 

are also inactivated in a voltage-dependent manner. Immediately after an action 

potential, during the absolute refractory period, virtually all sodium channels are 

inactivated and thus it is impossible to fire another action potential in that 
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segment of membrane. With time, sodium channels are reactivated in a 

stochastic manner. As they become available, it becomes possible to fire an 

action potential, albeit one with a much higher threshold. This is the relative 

refractory period and together with the absolute refractory period, lasts 

approximately five milliseconds.  (1, 78, 92, 93) 

An action potential proceeding along a membrane is prevented from 

reversing its direction by the refractory period, and will eventually depolarize the 

entire cell. When the action potential reaches an area where all the cell 

membrane is already depolarized or still in the refractory period, the action 

potential can no longer propagate. Because an action potential propagates only 

along contiguous membrane, another mechanism is necessary to transmit action 

potentials between cells. Neurons communicate with each other at a chemical 

synapse. Other cell types, such as cardiac muscle cells, can communicate action 

potentials via electrical synapses. (1, 78) 

The synapse is a very small gap between neurons that allows one-way 

communication. As the presynaptic neuron undergoes an action potential, 

voltage-sensitive calcium channels open and cause the release of 

neurotransmitters into the synapse. These chemical transmitters can initiate an 

action potential in the postsynaptic neuron, allowing communication between 

neurons. Some neurotransmitters inhibit action potentials, and the interaction of 

excitatory and inhibitory signals allows complex modulation of signals in the 

nervous system. (1, 72, 78) 



20 
 

 
 

 

Figure 2-7. Schematic of motoneuron and neuromuscular junction.  (64) 
 
 
 

Three important concepts are derived from the description of the action 

potential. First, an ionic current always flows from a region of greater 
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concentration to a region of lesser concentration.  These currents are always 

inward for Na and outward for K. Second, the membrane voltage only varies 

when there is a capacitive current. When the capacitive current is outward, the 

membrane depolarizes. When the capacitive current is inward, the membrane 

hyperpolarizes. Finally, extending Kirchhoff’s current law says that all currents 

flow in complete circuits with the total current across the membrane at any given 

time is equal to zero. (1, 72, 107) In addition, a crucial implication of action 

potential generation lies on the fact that the membrane can only be excited when 

an outward capacitive current is elicited. Clinically, according to Kukulka, “the 

purpose of the electrical stimulus is to induce an outward capacitive current.” 

(107) 

As an electric current is given to a peripheral nerve, the initial 

depolarization occurs at the cathode. This is because an outward capacitive 

current is elicited at this site. If the excitation is of sufficient amplitude, a 

subsequent inward sodium current combined with the outward capacitive current 

generates the action potential. When an action potential arises in a peripheral 

nerve, it will propagate bidirectionally with respect to the spinal cord. (72, 78, 

106) Ionic currents generated at a synapse produce a change in the electric 

potential of the postsynaptic nerve or muscle cell. If this change in potential is of 

large enough to make the resting voltage less negative, an action potential will be 

arise in the postsynaptic neuron or muscle fiber. (1, 72, 78, 92, 93, 102) 

From a clinical point of view, nevertheless, the recruitment of motoneurons 

by electrical stimulation applied cutaneously cannot be predicted in terms of the 
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size of motoneurons and types of motor units excited.  According to Kukulka 

(107), treatment goals can only be defined in general, qualitative terms based on 

observing the quality and quantity of the elicited muscle contraction rather than 

the selective excitation of one fiber type over another. 

 
 
 

 

Figure 2-8.  Schematic of T-tubules with the SR and the contractile machinery.  
(64) 
 
 
 

In skeletal muscle, an action potential propagates down the T-tubule and 

causes a voltage-gated change in the dihydropyridine (DHP) receptor modulates 

the ryanodine (RYA) channel. This releases Ca2+
 
from the sarcoplasmic reticulum 

(SR).  Soluble molecules such as ATP, Ca2+, and reactive oxygen species, as 

well as calmodulin, modulate the SR calcium-releasing ryanodine channel as well 

as the phosphorylation reactions that occur post-translationally.  Finally, the 

enzyme sarco(endo)plasmic calcium-ATPase (SERCA) pumps Ca2+ back into the 

sarcoplasmic reticulum to complete the chemical cycle. (72, 123, 165, 175) 
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It has been found that the frequency of the chemical cycle described 

above varies according to the size of the neuron from which an action potential is 

generated.  Henneman and Olson (76) found that small motoneurons fire more 

readily than motoneurons that are large. Thus, small motoneurons have greater 

firing frequencies than do large cells.  As a result, the small motor units with 

which they connect are more heavily activated with respect to larger units. This 

relationship is generally believed to vary inversely with size.  In their 1965 paper, 

Henneman and Olson (76) discuss usage in the following manner. 

“Usage is the link which connects the apparently unrelated properties of 
size and speed in a meaningful way. Since units of small size are often 
used intensely and for prolonged periods, they must of necessity consist 
of muscle fibers which function economically and are not subject to 
fatigue. They must always be ready to respond despite a preceding period 
of prolonged activity. Rapidly contracting pale fibers cannot meet these 
requirements, as we have shown. Slowly contracting red fibers have the 
appropriate resistance to fatigue. Hence, the small size of a unit, which 
implies heavy usage, necessarily specifies red fibers and these, in turn, 
are slowly contracting.” 
 
 

 Voltage-gated Ca2+ channels modulate calcium diffusion into cells upon 

membrane depolarization. Electrophysiological studies have revealed different 

calcium currents, designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-

activated Ca2+ channels are complexes of a pore-forming S1 subunit of about 

190–250 kDa; a transmembrane disulfide-linked complex of S2 and S3 subunits; 

an intracellular d subunit; and in some cases a transmembrane S4 subunit. The 

Cav1 family of S1 subunits conducts L-type calcium currents. These currents 

initiate muscle contraction, endocrine secretion, and gene transcription. They are 

2.2 Calcium channels and motor unit physiology 
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controlled mainly by phosphorylation pathways that involve second messenger-

activated proteins. Meanwhile, the Cav2 family of subunits conducts N-type, P/Q-

type, and R-type calcium currents. These initiate rapid synaptic transmission and 

are modulated mainly by direct interaction with membrane proteins. Finally, the 

Cav3 family of subunits conducts T-type calcium currents. These currents are 

found in cardiac cells. They are transmitted more rapidly and at more negative 

membrane voltages than other calcium current types.  (32) 

All calcium channels share general structural characteristics. Each domain 

of the principal subunits is composed of six transmembrane helices (S1 through 

S6) and a membrane-bound loop between S5 and S6. The S4 segments function 

as the voltage sensors for activation. These move outward and rotate in the 

presence of the electric field and initiate a steric change that opens the pore. The 

S5 and S6 segments and the membrane-bound loop between them form the 

pore lining of the channels. The narrow outer pore is lined by the loop, which 

contains a pair of glutamate residues in each domain that are necessary for 

divalent calcium selectivity. The S6 segments line the inner pore. Especially for 

the L-type channels, these segments form the receptor sites for the pore-blocking 

Ca2+ antagonist drugs.  (32) 

 
 

 

Figure 2-9. Structure and feedback loop of Cav1 channel. 
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In skeletal muscle, single twitches do not need free calcium and 

excitation-contraction coupling is thought to occur directly by protein-protein 

interactions between the dihydropyridine-dependent voltage-gated Ca2+ channel 

in the transverse tubules and the ryanodine-dependent Ca2+ release channel 

(RyR) in the sarcoplasmic reticulum. Contractile force increases by high-

frequency synaptic transmission from motor nerves as well as by adrenaline and 

calcitonin gene-related peptide (CGRP) via the cAMP signaling pathway. These 

effects do require extracellular calcium and thus are somewhat modulated by 

variations in Ca2+ influx. Phosphorylation by cAMP-dependent protein kinase 

enhances activation of the L-type currents.  Repetitive depolarization dramatically 

enhances Ca2+ currents in the critical membrane voltage range near -20 millivolts 

and is strongly voltage-and kinase-dependent. This may be due to the interaction 

between voltage gating and phosphorylation of the calcium channel itself. It is 

suggested that this regulatory mechanism markedly elevates Ca2+ channel 

activity during tetanic or high-frequency stimulation of skeletal muscle cells. (32) 

In excitation-contraction, conformational coupling is regulated by the 

intracellular loop joining domains II and III of the S1 subunit. Depolarization of the 

transverse tubules by the propagating action potential activates Cav1.1 channels.  

These channels quickly turn on the ryanodine-sensitive calcium release channel 

via protein-protein interactions to commence Ca2+ release and muscle 

contraction. However, the channels slowly initiate their own calcium conductance 

activity which maintains calcium homeostasis by facilitating entry of the ion into 

the cytoplasm. Recent experiments have shown that the ryanodine-sensitive 
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calcium release channel must not only be present but also bind to domains II and 

III for the transverse tubule Cav1.1 channel to function normally.  (32, 123) 

Ryanodine receptors in the SR of skeletal and cardiac muscle are vital in 

excitation-contraction coupling.  However, the channels are also present in the 

endoplasmic reticulum of nervous and immune tissues. In all tissues, three highly 

homologous isoforms of ryanodine receptor have been identified as very large 

homotetrameric proteins of about 2 MDa. These isoforms contain large 

regulatory domains and are always associated with channel modulators such as 

calmodulin and immunophilins. It has been found that the type 1 isoform in 

skeletal muscle is electromechanically coupled to surface membrane voltage 

sensors. However, the other two isoforms have been found to be activated by 

other ligands, including divalent calcium itself, as well as endogenous second 

messengers.  (172) 

          All muscle fibers use calcium for regulation and signaling. As a result, 

contractile characteristics of muscle fibers depend on the different proteins 

involved in that process. The diversity of the main proteins of the calcium cycle 

primarily determines these characteristics. The calcium signaling apparatus is 

comprised of the ryanodine receptor that is the SR calcium release channel, the 

troponin protein complex that modulates the effect of Ca2= to the contractile 

myofibrillar structures, the pump responsible for SR calcium reuptake, and 

calsequestrin, the protein that stores calcium in the SR.  In addition, myriad Ca2+-

binding proteins is present in muscle tissue. Parvalbumin, calmodulin, S100 

proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and 
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calpain may play crucial roles in calcium-modulated muscle contraction under 

specific conditions. Or, they may control other activities such as protein 

metabolism and growth. (12) 

          Regulation of contraction and relaxation by divalent calcium in different 

muscle types occurs by three major mechanisms. The first discovered and best 

described mechanism is the troponin-tropomyosin system attributed to the actin 

filaments, which is restricted to skeletal and cardiac muscles. The second 

mechanism is found in vertebrate smooth muscle in which calcium, in conjunction 

with calmodulin (CaM), activates myosin light-chain kinase. In turn, the 

phosphorylation of the myosin initiates muscle contraction. The third mechanism 

is found in invertebrates and consists of direct calcium-myosin binding. This 

system is regulated by light-chain myosin. In each muscle type, nevertheless, 

velocity of contraction and other physiological parameters very much depend on 

the structure of its specific calcium handling system. (12) 

 
 
 

 

 

 

Figure 2-10. Calcium cycle.  (12) 
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At rest, myofibrillar calcium concentrations in the cytosol are maintained at 

approximately 50 nM.  The calcium cycle begins with a depolarization of the 

surface membrane and t-tubule. This releases Ca2+ from the SR via the RyR and 

elevates cytosolic Ca2+ locally about 100-fold. The electrochemical signal 

transduction at the t-tubule membrane occurs via structural changes of the 

dihydropyridine receptor (DHPR) that are charge-dependent. In turn, Ca2+ binds 

in a fast reaction to one of the troponins on the thin filament and activates muscle 

contraction.  (12, 123) 

It is known that when a muscle is activated and the generated force 

increases, the motor units that comprise the muscle activate in a set sequence.  

The mechanisms that facilitate this phenomenon include motoneuron size, the 

synaptic organization of inputs to the motoneuron, and the physical properties of 

the neuronal membrane.  Orderly recruitment of motoneurons occurs in a 

sequence that progresses from low- to high-threshold units. (76, 77, 157) 

Motor units can be described via a quadripartite classification scheme, 

based on fatigability and unfused tetanus.  The four types of motoneurons are 

slow contracting (S), fast contracting and fatigue resistant (FR), fast contracting 

and intermediate fatigability, (Fint), and fast contracting and fatigable (FF).  Any 

measurement of a motor unit property would show that parameter values would 

distribute along a continuum.  However, when several parameters are considered 

aggregately, motor units cluster into four separate groups.  From the "concept of 

orderly recruitment", S-type motor units are recruited first and FF-type motor 
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units are recruited last.  However, in voluntary muscle activation, there is 

substantial overlap between motor unit types activated. (63, 76, 157) 

When muscle is electrically stimulated, the recruitment of motor units is 

quite distinct from voluntary activation.  Electrically activating a muscle with an 

nonparalyzed nerve supply stimulates the intramuscular branches of the nerve. It 

does not, however, result in direct activation of the muscle fibers.  This is 

because nerve branches are more excitable than muscle fibers.  When nerves 

are stimulated, the elicited action potentials propagate bidirectionally along the 

axon, transmit across neuromuscular junctions, and then propagate along the 

muscle fibers to activate the contractile mechanisms.  Hence, electrical activation 

of a muscle does not bypass an nonparalyzed peripheral nerve supply.  The 

order of motor unit recruitment via electrical stimulation depends on the motor 

axon diameter, the distance from axon to active electrode, and the cutaneous 

afferent inputs to the motoneuron that have been elicited from the artificial signal.  

These three factors induce an order of recruitment during electrical stimulation 

that is vastly different than natural activation of a muscle. (63, 76, 77, 157) 

         Cells of skeletal muscle are activated by acetylcholine, which is a 

neurotransmitter that is released at neuromuscular junctions by motoneurons. 

Upon activation, the sarcoplasmic reticulum release divalent calcium which 

induces muscular contraction by way of the sliding filament mechanism which is 

driven by adenosine triphosphate (ATP). The ATP is produced by metabolizing 

creatine phosphate and glucose within the muscle cells by mitochondria, as well 

2.3 Skeletal muscle contraction 
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as by metabolizing humoral fatty acids. Each motoneuron regulates a group of 

muscle cells, and the grouping is known as a motor unit.  Recruitment of 

additional units occurs when more strength is required than can be garnered 

from a single motor unit and superposes via spatial summation. No further 

increase in contraction strength occurs once all motor units are recruited. To 

increase the contraction strength, the frequency of neuronal firing must be 

increased. This yields tetanic contraction and superposes temporally.  (1, 73) 

          All muscle cells are comprised of myosin and filaments in series. The 

fundamental unit of organization of these filaments in cardiac and skeletal muscle 

cells is the sarcomere. A sarcomere is composed of a central bidirectional 

myosin filament flanked on both sides by two actin filaments which are oriented 

in opposite directions. When each end of the myosin filament ratchets along the 

overlapping actin filament, the two thin filaments move closer together. Thus, the 

sarcomere has its ends drawn in shortens. Sarcomeres are connected to each 

other by 'Z lines'.  These structures fix the ends of thin filaments such that the 

filaments point in opposite directions on each side of the Z line which permits 

sarcomeres to be in series. In muscle fiber contraction, all sarcomeres contract 

together so that summated force is transmitted to the ends of the fiber.  (1, 73) 

          If movement continued indefinitely, all muscles would be in constant 

contraction.  To prevent that, the body must modulate myosin-actin binding which 

is achieved through myoplasmic divalent calcium.  When the muscle is at rest, 

the tropomyosin/troponin complex that is wrapped around the actin filaments 

sterically hinders the myosin from binding to actin. When calcium diffuses into the 
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myoplasm, the divalent ions bind to troponin ad induces a conformational 

change.  The conformational change causes tropomyosin to move as well and 

exposes the binding sites on actin. Then, myosin binds to the exposed binding 

sites and the muscle contracts.  (1, 73) 

 
 
 

 

Figure 2-11. Depiction of the contraction of a muscle through the overlap of thick 
and thin filament fibers.  (1, 73) 
  
 
 

In common usage, the word “fatigue’’ is used to denote reduction in 

mental or physical performance. However, in biology, the word has a more 

specific physiologic meaning.  Muscle fatigue is denoted as the “failure to 

maintain the required or expected force” (62). Central and peripheral motor 

elements may modulate muscle fatigue.  The rate of fatigue depends on the 

2.4 Muscle fatigue: truth and fiction 

http://en.wikipedia.org/�
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muscles employed and the duration of the contractions. Generally, about 50% of 

muscle force can be lost in the first sixty seconds of a maximal contraction. This 

definition of fatigue is adequate to distinguish fatigue from weakness. In 

weakness, there is lack of ability to generate an initial force appropriate to a 

situation.  When needed, the denotation of muscle fatigue can broaden to include 

a lack of capacity to sustain rapidly executed movements such as tapping the 

fingers as fast as possible. In this kind of fatigue, it is possible that the crucial 

component is a decrease in the magnitude of the motor commands generated in 

the supraspinal system. (130) 

         The central nervous system components that may be varied in muscle 

fatigue include the psychoemotional factors that modulate the sense of effort, as 

well as the various descending motor pathways and connections in the medulla, 

pons, midbrain, and spinal cord.  It has long been known that the descending 

motor pathways include the corticospinal, rubrospinal, tectospinal, 

vestibulospinal, and reticulospinal tracts.  In addition, the topographic map of 

movements in M1 is worked out.  However, virtually nothing is known about the 

identities of the neurons that generate the desire to move or assess effort. Yet, 

the peripheral elements of muscle fatigue include impulse conduction in the 

motoneurons and muscle fibers, neuromuscular transmission, excitation-

contraction coupling, and the process of muscle contraction itself. In typical 

individuals, fatigue can arise from interplay between peripheral elements. (128-

130) 
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           Traditionally, muscle fatigue has been explained by production of lactic 

acid and the formation of the salt sodium lactate. It has been reasoned that if the 

rate of lactate production is high enough, the cellular protons are released in 

excess and decreases in cellular pH. This sequence of biochemical events has 

been termed lactic acidosis and has been a classic explanation of the 

biochemistry of muscle acidosis for almost a century. This has yielded the 

inference that lactate production causes acidosis and, in turn, muscle fatigue 

during intense stimulation. Yet, clear evidence shows no biochemical basis for 

lactate production causing acidosis. Instead, it has been shown that lactate 

production retards acidosis and, furthermore, ample evidence shows that 

acidosis is caused by other reactions. Each molecule of ATP hydrolyzes ADP 

and Pi and releases a proton. When the ATP demand of steady-state muscle 

contraction is filled by mitochondrial respiration, protons are used for oxidative 

phosphorylation and to maintain the proton gradient in the intermembranous 

space without accumulation.  However, when the intensity of stimulation 

increases well beyond steady state, there is greater demand ATP regeneration 

from the glycolysis-phosphagen system which increases release of protons and 

causes acidosis. Under these conditions, lactate production is increased to 

prevent accumulation of pyruvate and supply the NAD+ ion required for the 

second phase of glycolysis. Indeed, if lactate was not produced in muscle during 

stimulation, acidosis and fatigue would onset much more rapidly and 

performance would drastically decrease.  (159) 
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One of the early pioneers of the “lactic acidosis” concept was A. V. Hill who in 

1922 who shared a Nobel prize with Otto Meyerhoff for work on the energetics of 

carbohydrate metabolism in skeletal muscle. In particular, Meyerhoff described 

most of the glycolytic pathway and showed lactic acid to be produced as a side 

reaction to anaerobic glycolysis. Meanwhile, Hill worked out the quantitative 

measure of the energy release from conversion of glucose to lactic acid.  From 

that, he proposed that glucose oxidation in times of limited oxygen availability or 

great energetic demands supply a large amount of energy to drive muscle 

contraction very quickly.  (159) 

 
 

 

Figure 2-12. Chemical structures of lactic acid and sodium lactate. (112, 169) 

           
 
 

According to Robargs (159), this pioneering work of Meyerhoff and Hill 

ingrained the idea relating lactic acid production and acidosis into the thinking of 

biochemists and physiologists. Hill elucidated the rationale for muscle to have a 

spontaneous and robust source for energy production to fuel high-frequency and 

high-magnitude muscle contractions. Meanwhile, Meyerhoff described the 

biochemical pathway that led to lactic acid production. There was immature 

contemporary understanding of acid-base chemistry to comprehend the 
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ionization of nontraditional acid molecules and there was also a lack of 

understanding of mitochondrial respiration to see its role in modulating proton 

balance in cells. At that time, the research in animals on the production of lactic 

acid from fermentation established the link between anaerobiosis, lactic acid 

production, and acidosis, which was assumed to be causal.  More recent studies 

also accepted a cause-effect interpretation between decreases in blood or mus-

cle pH with increases in lactate production. In order to bolster the argument for 

calcium current causing muscle fatigue, the lactic acid hypothesis as well as the 

biochemistry of glycolysis and acidosis must be understood.  See Appendix D for 

the detailed biochemical mechanisms and pathways. 

Instead of proton release, metabolic acidosis results from nonequilibration 

of the proton release rate and the proton buffering and removal rate. The 

biochemistry shows that H+ release generates via the lysis of blood glucose and 

the hydrolysis ATP. However, there is no immediate increase in cellular acidity 

due to the capacity and structure of the proton buffering and removal system. 

The buffering system in the cell, including lactate production, binds protons to 

protect intracellular accumulation of H+.  Hydrogen ions are also removed from 

the cytoplasm via mitochondrial and sarcolemmal transport and a bicarbonate-

dependent exchanger.  Yet¸ in skeletal muscle, when the proton production rate 

is greater than the rate of proton buffering and removal, metabolic acidosis 

occurs. Remarkably, lactate production functions as a buffering system by 

consuming protons, as well as an H+ remover by transporting protons across the 

sarcolemmal membrane, to shield the cell from metabolic acidosis. (112, 159) 
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In contrast, it has been found that, during repeated tetanic contraction, 

there was little or no pH decrease. However, failure of calcium release has been 

found to be a major contributor to muscle fatigue. Impaired calcium release from 

the SR has been identified as a factor in muscle fatigue in isolated fibers. Several 

possible mechanisms for impaired calcium release have been suggested. These 

include decreased action potential magnitude which could be caused by 

extracellular potassium accumulation. This may suppress voltage sensor 

activation. Also, decreased SR Ca2+ channel opening occurs due to the drop in 

cytoplasmic ATP and the elevated concentrations of divalent magnesium that 

arise during fatigue. It could be that decreased calcium available for release can 

occur if inorganic phosphate diffuses into the SR and precipitates with calcium 

into a salt.  (2, 3, 4) 

According to the 39th edition of Gray’s Anatomy (173), the soleus is a 

broad flat muscle located immediately anterior to gastrocnemius. It originates 

from the posterior surface of the head and proximal quarter of the fibular shaft, 

the soleal line and the middle third of the medial tibial border, and from a band of 

fibers between the tibia and fibula that arches over neurovascular bundle. This is 

an aponeurotic origin.  The origins of the vast majority of the muscle fibers arise 

from its posterior surface and pass obliquely to the tendon of insertion. Other 

muscle fibers take their origin from the anterior side of the aponeurosis. They are 

short, oblique and bipennate in arrangement.  Convergence of these fibers 

occurs on a narrow tendon in the center of the muscle that merges distally with 

2.5 The human soleus 
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the principal tendon. This principal tendon gradually thickens and narrows, 

joining the tendon of gastrocnemius. The result of the junction is the calcaneal 

tendon. The soleus is covered proximally by gastrocnemius.  Yet, more distally 

the muscle is wider than the tendon of gastrocnemius and is accessible on both 

sides.  Moreover, sometimes the soleus has an extra distal and medial part, with 

possible insertions into the calcaneal tendon, the calcaneus itself, or the fascial 

sheath that envelops the foot flexor muscles. Superficially, the soleal surface 

contacts with the gastrocnemius and the plantaris. Deeply, its surface contacts 

with flexor digitorum longus, flexor hallucis longus, tibialis posterior and the 

posterior tibial neurovascular bundle. The tibial nerves and vessels are separated 

from the muscle via deep transverse fascia of the leg.  This is seen in Figures 2-

13 and 2-14. 

The soleus has two main arteries for its blood supply.  The superior part 

branches from the popliteal artery approximately at the soleal arch. Meanwhile 

the inferior part branches from the proximal common peroneal artery or at times 

from the posterior tibial artery. Additionally, an auxiliary supply comes from the 

lateral sural, peroneal or posterior tibial arteries. Furthermore, an extensive 

venous plexus is located within the muscle belly.  It has physiological importance 

as part of the muscle pump complex. From the aspect of pathology, it commonly 

is the site of origin for deep vein thromboses.  Finally, the nerve supply of the 

soleus muscle comes from the two branches of the tibial nerve as well as S1 and 

S2.  (174, 182) 

Taken together, the gastrocnemius and soleus form a tripartite muscular 
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mass sharing the calcaneal tendon commonly called the triceps surae. These 

muscles are the primary plantarflexors of the foot. In addition, the gastrocnemius 

is also a knee flexor.  The muscles of the triceps surae are typically large and 

powerful.  However, each muscle has a distinct yet complementary function.  The 

muscle that provides the force for propulsion in ambulation at all speeds is the 

gastrocnemius.  Acting from its deep location, the soleus is more involved with 

steadying the leg and foot during standing. This role in posture is also implied by 

its high content of slow, fatigue-resistant muscle fibers. In many adult mammals, 

nevertheless, the soleus is almost exclusively composed of fibers of this type. 

However, such a rigid demarcation of the functions does not seem likely in the 

human. Nevertheless, in upright standing, the ankle joint is loose-packed. Since 

the weight of the body transmits along a vertical line that passes behind the 

ankle, a strong brace is required at that location to sustain joint stability. It has 

been shown by electromyography that these stabilizing forces are supplied 

primarily by the soleus.  During bipedal human standing, soleus shows 

continuous activity.  Meanwhile, gastrocnemius shows only occasional 

recruitment.  (174, 182) 

According to Henneman and Olson (76, 77), the soleus has all the 

properties which the gastrocnemius does not possess. Because the soleus has 

longer fibers arranged nearly parallel with the principal axis of the leg, more 

shortening of the muscle is possible. However, this increased range of shortening 

come at the expense of generated force. Furthermore the degree rubicund color 

of muscle fibers is associated with economy and fatigue resistance. These 
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properties are functionally essential in the soleus since the small diameter of its 

motoneurons results in heavy muscle usage. 

The common assumption is that the segregation of different properties in 

soleus and gastrocnemius came about because of requirements which could not 

be accommodated by a single muscle. The power and speed vital for running 

and jumping demanded one muscle fiber arrangement.  The capacity to shorten 

enough for the fullest possible range of ankle extension called for a very different 

arrangement.  In response to the conflicting needs, separate heads designed for 

different purposes evolved as mutual mechanical complements. (76, 77) 

 

 

Figure 2-13.  Medial view of muscles of the left leg.  (174) 
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Figure 2-14.  Axial section through the left leg approximately 10 cm below the 
knee joint.  (174) 
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CHAPTER 3: CLINICAL ISSUES IN MUSCLE 
ELECTROSTIMULATION  

 

          Injury to the spine may result in a motor nerve being crushed or severed. 

Also, nerves may degenerate or inflame as part of a pathophysiological 

sequence. Whatever the etiology, nerve dysfunction has serious repercussions 

for both muscle fibers and motoneurons and their axons. After nerve transection 

or crush, the distal nerve stump continues to propagate action potentials for 

many hours. In rats, usually 24 hours elapse before electrical activity decrease 

and approximately 80 hours pass before all the axons lose excitability.  In 

humans and other primates, impulse propagation may continue for up to 200 

hours (128-130). When the axon starts to deteriorate, the process is denoted as 

Wallerian degeneration (128-130, 184). The nature of these degenerative 

changes has been confirmed with the electron microscope (189, 190). 

3.1 Physiology of paralyzed muscle 

3.1.1 Biological changes 

Following spinal cord transection, according to Cummings (38), muscles 

undergo a number of physiologic, biochemical, and anatomic alterations. The 

muscle fibers atrophy, neuromuscular junctions degenerate, and membrane 

electrical properties are changed. Other pathologies include an increase in the 

subsarcolemmal nuclei and lysosomes, and a temporary increase in the 

synthesis of sarcoplasm and its reticulum. Also, contraction time is found to 

increase in paralyzed muscle, while the force generated by the contraction 

decreases.  (167, 168) 
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Before injury occurs, the muscle has a constant supply of trophic 

substances from the motoneurons that ensure the physiologic integrity of its 

fibers. However, upper motor neuron lesion discontinues this trophic influence.  

Hence, the muscle fibers experience progressive deterioration until the fibers are 

reinnervated either by collateral axons from surviving motoneurons or by neurons 

regenerating over the lesion site (25, 123). It is widely believed that if 

reinnervation has not happened within two years post injury, then the contractile 

elements of the muscle will have transformed into fibrous connective tissue, thus 

making further recovery of function impossible.  The most striking change 

observed following nerve lesion is the progressive muscular atrophy.  Atrophy 

due to denervation is denoted by a decrease in the diameter of individual muscle 

fibers that leads to a decrease in muscle size.  (25, 38) 

          Although profound muscular atrophy is the first visible change seen after 

spinal cord injury, according to Cummings (38) it is not the first change to occur. 

The first change reported following spinal cord injury is actually the partial gain in 

electric potential of the sarcolemma. As early as three hours following transection 

of a neuromuscular junction, the baseline resting potential of the sarcolemma  

(-80 mV) is found to be reduced by 1 to 2 mV.  Following this, the resting 

potential decreases until approximately 24 hours after injury, it resets at about -

65 mV. (38, 72) 

          The sarcolemmae of vertebrate skeletal muscle further change after spinal 

cord injury in other ways.  One way is to develop sensitivity to acetylcholine 

(ACh) beyond the neuromuscular junction.  Acetycholine sensitivity happens in 
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paralyzed muscle because the receptors for the neurotransmitter that normally 

present only in the motor endplate in intact muscle become incorporated into the 

whole of the sarcolemma after injury.  It has been suggested that elevated 

acetylcholine sensitivity may in fact stimulate reinnervation. (1, 38, 76, 167) 

 According to Shields (171), with the typical homogeneity in fiber type and 

accessibility of its whole nerve to stimulation, the soleus muscle is “an ideal 

model” to increase understanding of the physiology that underlies force 

generation in paralyzed muscle.  In the acute phase of injury, the paralyzed 

soleus muscle resists fatigue and maintains up to 80% of its pre-injury force 

generation after a series of fatigue-inducing contractions.  However, in the 

chronic phase of injury (greater than 2 years), paralyzed soleus muscle an only 

generates about 25% of its pre-injury force after a fatigue series (168-171). 

These alterations in fatigability are thought to demonstrate, the measured 

conversion from a muscle with a predominance of slow Type I fibers (168) to a 

more fatigable muscle with primarily fast Type IIb fibers (30, 168).  This 

transformation happens slowly during the first several years after a spinal cord 

injury. (168) 

           Recent evidence has shown that, at the microscopic levels, paralysis due 

to spinal cord injury yields muscle fiber hybrids that express heterogeneity of fast 

and slow properties (185).  Previously, the common belief was that the soleus 

remains resistant to fatigue after upper motor neuron lesion, independent of other 

cellular conversions. This is because the cat soleus was shown to maintain a 

fatigue index of 0.93 one year after transection of the spinal cord.  However, 
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more current longitudinal studies demonstrated that the spinally isolated cat 

soleus had indices of fatigue that range from 0.67 to 0.87 (190).  In contrast, 

fatigue indices in the rat soleus have been respectively shown to be 0.66 and 

0.50 at 3 and 6 months after transection of the spinal cord (184).  These findings 

in other mammalian species were consistent with those in man (159-169).  Yet, 

time after injury, fatigue-assessment method, techniques to transect the spinal 

cord, and species may play important roles in the dissimilarities that are 

observed in fatigue in paralyzed muscle.  The discrepancies in post-paralysis 

management between wheelchair-using humans and caged quadrupeds use for 

experimentation may cause variations in overall muscle length, stiffness, and 

spasticity. All of these factors may affect plasticity in the neuromuscular system 

(47, 73, 77). 

Post-injury changes in muscle fatigability and speed properties, 

neuromuscular transmission (33, 170), relationship between torque and 

frequency (170), low-frequency fatigue (33, 168, 170), effects of training (169, 

170), and post-fatigue potentiation (171) support the opinion that chronically 

paralyzed soleus muscle in man has the physiology similar to that of a muscle 

composed of fast-fatigable Type IIb fibers.  

Conversion of skeletal muscle from slow to fast leads to long duration 

muscle fatigue. Low-frequency fatigue (LFF), such as the chronically paralyzed 

fast soleus muscle has previously demonstrated (168, 170), occurs via a 

compromise in the excitation-contraction coupling mechanism.  Commonly 

known as “uncoupling”, impaired release of calcium ions by the SR and a change 
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in the sensitivity of the calcium receptor have been suggested as contributors to 

LFF (115, 120, 191). In addition, myosin regulatory light chain (RLC) 

phosphorylation increases when fibers convert from slow to fast due to a 

reduction in use (20, 21).  When activated continuously for a long period of time, 

fast skeletal muscle, becomes “uncoupled”.  This is because fast skeletal muscle 

is specifically designed to act in a phasic manner.  As the concentration of 

calcium ions decreases from repetitive activation, not as much free Ca2+
 
is 

available to phosphorylate myosin light chains. (2, 176) 

3.1.2 Clinical sequelae  

Chronic absence of upper motor neuron input in human muscle, usually 

due to spinal cord injury (SCI), elicits deleterious musculoskeletal adaptations, 

such as muscle paralysis and spasticity that adversely affect health in those who 

are injured.  Increasingly, desired rehabilitation outcomes will require limb 

preservation which may be done via electrical stimulation of paralyzed muscle.  

However, few models predict fatigue in paralyzed muscle.  The soleus muscle 

provides an ideal in vivo model of the effects of SCI on muscle properties, as it 

transforms from predominantly slow fiber type to that of fast-fatigable (FF) or type 

IIb fibers (72, 77, 164), which prolongs relaxation in the fatigued state.  This is 

important since a close association between optimal frequency and contractility 

exists. (164)  

Since spasticity is a major complication of spinal cord injury, giving a 

denotation of it would be prudent for this discussion.  Lesions of premotor 

projections produce this specific form of increased muscle tone.  In spasticity, the 
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leg extensor muscles and arm flexor muscles usually indicate this increase in 

muscle tone.  It is associated with tendon jerks and hyperactivity of the stretch 

reflexes.  Spasticity is commonly defined as measured resistance to the passive 

movement of the limb.  Rapid movements elicit greater resistance than slow 

movements.  Clonus may result from rapidly imposed movements.  The reduced 

threshold of the monosynaptic stretch reflex comes from the increase in 

excitability of the reflex pathway.  The weakness associated with spasticity in 

spinal cord injury results partially from the abnormal motor unit recruitment 

patterns.  In patients with spasticity, measured resistance to passive limb 

movements may abruptly melt away.  Known as the clasp knife phenomenon, the 

sudden decrease in force depends on muscle length and joint angle.  This 

inhibitory process results from afferent nerve activation in the muscle itself, but 

not in the muscle spindle. (47, 73, 97)  

In spastic gait, tension develops differently from that of normal gait and is 

seen to be independent of hyperactive monosynaptic stretch reflexes. Overactive 

stretch reflexes are correlated with an inhibition of polysynaptic reflexes that are 

essential to function. When supraspinal control of spinal reflexes is disrupted, the 

inhibition of monosynaptic reflexes is absent.   Hence, in patients with spasticity, 

the overall muscle activity in the leg is decreased and less regulated. (47) 

3.2 Engineering issues and therapeutic  

 
protocols 

3.2.1 Physiologic constraints  

According to Myklebust (145), constant current stimulators provide a 

current which flows at a constant amplitude, within a specified range of 
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impedance.  As the impedance varies, the voltage varies to maintain the current 

at a constant level.  Meanwhile, constant voltage stimulators provide a constant 

voltage source, within a specific impedance range.  Thus, the current varies 

according to changes in impedance. In the majority of physiologic applications, 

therefore, a constant current source is favored over a constant voltage source. 

The impedance of the electrodes, of the biological material, and of the electrode-

body interface may change during stimulation.   However, with constant current 

stimulation, the changes in impedance do not change the current flowing through 

the biological tissues. It is the level of current which is responsible for the 

resultant physiologic effects. Hence, by using a constant current stimulator, the 

one can maintain better control of the physiologic response of the patient to 

electrical stimulation. 

Furthermore, practical consequences may be deduced from the concepts 

of rheobase and chronaxie (1, 145).  Rheobase is half the current that is required 

for the duration of chronaxie to elicit an action potential or muscle twitch. In 

mathematical neurophysiology, the chronaxie is the minimum time over which an 

electric current twice the strength of the rheobase needs to be applied, in order to 

stimulate a muscle fiber or neuron. (1, 42)  Thus, a stimulus duration longer than 

the chronaxie is not desirable.  This is because current consumption increases 

without decreasing the action potential threshold significantly. Also, smaller 

electrodes are more favorable because the pulse duration they require may be 

decreased without compromising patient safety.  Hence, estimation of the safety 
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margin with decreasing output of the generator is possible if the chronaxie of a 

specific electrode is known. (94) 

The inherent capacitance of living tissue is particularly relevant to the 

therapeutic administration of electricity. When a pulse of constant voltage is 

applied to the body, a large amount of current flows initially and charges the 

tissue capacitance.  As the tissue charges, the current decreases to a steady 

state if the pulse duration is long enough. Because of the large initial current flow 

at the beginning of the pulse, the effective pulse duration may be smaller than 

the duration of the actual voltage pulse.  However, when a pulse of constant 

current is given to the body, the transmitted current to the tissue does not change 

over time. Thus, the resulting voltage at the tissue rises rapidly because of 

current flow through the resistive portion of the electrode-tissue impedance.  As 

the tissue capacitance increases, this results in a slow rise in voltage. (145) 

 
 

 

 
Figure 3-1. Determining rheobase and chronaxie from an asymptotic strength-
duration curve. 1) The rheobase is the minimum input amplitude that will elicit a 
response.  In this example, this value is 0.35 V.  2) Twice the rheobase is 0.7 V. 
3) The chronaxie is the input duration that elicits a response when the input 
amplitude is exactly twice the rheobase.  In this example, the chronaxie is 0.22 
ms.  (145) 
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3.2.2 Therapeutic inputs 

Parameters of electrical stimulation for therapeutic applications are 

defined in terms of the stimulus waveform and its time-, frequency-, and 

amplitude-dependent characteristics.  For therapeutic waveforms, clinicians 

frequently describe waveforms as either direct current, alternating current, or 

pulsed current. In this context, direct current is defined as the continuous 

unidirectional flow of charged particles in which the waveform properties remain 

constant over time. Historically, the term galvanic has been used in the literature 

to describe an uninterrupted DC stimulus.  (145) 

 
 
 

 

Figure 3-2. Galvanic current.  (145) 

 
 
Alternating current is the constant bidirectional flow of charged particles 

and may be symmetrical or asymmetrical with respect to the baseline.  

Traditionally, the term faradic has been employed to describe the unbalanced 

asymmetrical biphasic waveform.  Meanwhile, pulsed current is the unidirectional 

or bidirectional flow of charged particles which periodically stops for a finite 

duration before the next event.  Similarly, a pulse is defined as an isolated 
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electrical event separated by a finite duration from the next event. Finally, the 

interpulse interval is defined as the time between pulses. (145) 

 
 

 

                 

Figure 3-3. Faradic current.  (145) 

 
 
 

Pulsed current is described by special time-dependent characteristics of 

the individual pulse. The phase is the unidirectional current flow for a finite 

duration. A pulsed stimulus may be monophasic or biphasic. In the monophasic 

waveform, the pulse is the phase.   This is because the waveform deviates in one 

direction from the baseline and returns to the baseline after a finite period of time.  

Meanwhile, the biphasic waveform deviates in one direction from the baseline 

and then deviates in the opposite direction from the baseline to make the pulse 

complete. A biphasic pulse may be symmetrical or asymmetrical. In the 

symmetrical biphasic pulse, the waveform characteristics such as amplitude, 

duration, rise time, and decay are the same with reference to the baseline. In the 

asymmetrical biphasic pulse, however, one or more of the waveform 
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characteristics is unequal with reference to the baseline. Asymmetrical biphasic 

pulses can either be balanced or unbalanced.  In a balanced asymmetrical pulse, 

the phase changes are electrically identical.  However, in an unbalanced 

asymmetrical pulse, the phase changes are not electrically identical.  (145) 

 
 
 

 

Figure 3-4.  Pulsed current.  (145) 

 
 
 

In pulsed current, the phase duration is the time that has passed from the 

beginning to the end of a single phase. The interphase or intrapulse interval is 

the amount of time between two successive parts of a pulse when electrical 

activity is absent.  Meanwhile, pulse duration or pulse width is the time that has 

passed from the beginning to the termination of all phases in a single pulse.  

Finally, the interpulse interval is the period of time that has passed between two 

consecutive pulses.  (145) 
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Units of stimulus frequency are either in pulses per second (pps) or cycles 

per second (Hz). A period is the time from a reference point of a waveform to the 

identical point of the next waveform.  In alternating currents, the duration of the 

waveform equals one period.  In pulsed currents, the period is equal to the sum 

pulse duration and the interpulse interval.  Pulsed and alternating currents can be 

varied within a specific period of time.  This is known as modulation.  Modulations 

may be used alone or in combinations.  They may be consecutive or varied with 

reference to pulse per cycle or a series of pulses per cycle. Amplitude 

modulations (AM) are changes in the peak intensity in a series of waveforms.  

Phase duration, pulse duration, and frequency may additionally be varied.  Ramp 

or surge modulations are increases or decreases in the phase changes over 

time.  These may be accomplished by changing either the waveform duration or 

the amplitude of the waveform. The time period of the ramp gives a complete 

description of the input.  (145) 

 
 
 
Train: 

 
Burst: 

 
 ______ 
Average interval 
 
Figure 3-5. Example of train vs. burst. 
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The pattern of a series of pulses may be defined in terms of time-

dependent parameters. A continuous repetitive sequence of pulses or cycles of 

pulsed current denotes a train.  A finite series of pulses or an envelope of pulsed 

current, administered at a specific frequency, amplitude, or duration is a burst.  

Bursts are separated by an interburst interval.  Meanwhile, burst duration is the 

amount of time that has passed between the beginning and the end of a burst. 

Finally, the duty cycle is the ratio of on-time to total-time of trains or bursts of 

pulses. The duty cycle is generally expressed as a percentage. The clinical 

ramifications of the duty cycle are paramount in the area of fatigue induced by 

neuromuscular electrical stimulation (NMES).  (145) 

3.3.1 Intact muscle 

3.3 Electrical stimulation of muscle 

 According to DeVahl (42), Pflueger’s law states that, under normal 

conditions,  less current is required from a negative stimulus to elicit a muscle 

contraction of given strength than from a positive stimulus. Therefore, the 

negative electrode is often used to evoke the muscle contraction and is termed 

the active electrode.  This is because depolarization of the physiologically 

excitable tissue is most easily accomplished at the cathode. Excitable tissue at 

the positive electrode is less able to depolarize. Thus, the positive electrode is 

often termed the inactive or reference electrode. Nevertheless, a current through 

either electrode is capable of eliciting a muscle contraction.  However, the 

positive electrode is not that effective in doing so, unless the stimulus magnitude 

increases 
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.  

Figure 3-6. Electron flow in a conductor.  (42) 
 
 
 

                    

Figure 3-7. Current flow through tissue.  (42) 
 
 
 

Although numerous waveforms are available in electrotherapy devices, 

two waveforms have been used traditionally for NMES.  They are the 

asymmetrical biphasic and the symmetrical biphasic quadrilateral waves. Both 

the square and rectangular waves allow an equal amount of current to flow in 

either phase.   This circumvents undesirable electrochemical effects and possible 

irritation of the skin.  The asymmetrical biphasic square wave permits selective 

recruitment of smaller muscles by allowing the clinician to differentiate between 

electrodes, and select the most effective direction of current flow for 

depolarization.   When the current flows from the positive to the negative poles, 

depolarization occurs under the negative electrode. When current flows in the 

reverse direction, it flows at low magnitude so depolarization generally does not 
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happen at the positive electrode.  The stimulating phase acts much as a 

monophasic current.  The balancing phase merely reduces the probability of 

untoward polar effects. (42) 

          The nature of symmetric biphasic square wave requires that the current 

flows “hard and fast” (42) in both phases. This permits both electrodes to act as 

active electrodes. This particular waveform is favored for stimulating groups of 

large muscle such as the triceps surae.   Several studies suggested that biphasic 

waveforms are preferred to sinusoidal wave forms when applied at intensities 

sufficient to evoke muscle contractions. When both biphasic waveforms were 

compared for comfort, the symmetric biphasic waveform was favored. Tissue 

irritants are known to accumulate under one of the electrodes for unbalanced 

biphasic waveforms without symmetry.  A buildup of charge occurs and causes a 

burning or itching sensation at the electrode site. However, the application of a 

balanced, symmetric biphasic input circumvents this aggregation of charge and 

the associated noxious sensory effects.  However, most devices have a 

maximum current of 100 milliamps. As current amplitude increased, the number 

of recruited motor units increases, which in turn, increases the muscle force 

generated. (42) 

Many devices for NMES have fixed-phase duration of between 0.2 and 0.4 

milliseconds.  If the phase duration is set at 0.3 milliseconds, the generation of 

muscle force can be modulated from the point at which a muscle contraction just 

begins to near maximal force by increasing or decreasing current magnitude.  

During electrically induced muscle contractions, according to DeVahl (42), a 
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phase duration of 0.3 ms is favored for comfort over a narrower (0.05 ms) or 

wider (1.0 ms) one.   However, a stimulus with a phase duration of 0.05 ms 

requires that a larger current be employed for a pulse charge sufficient to elicit a 

muscle contraction. The larger current is also sufficient to recruit small diameter 

afferent fibers that elicit a nociceptive event when excited. (42) 

The rate at which the individual pulses are delivered to the nerve is 

denoted the frequency and is measured in pulses per second (pps) or Hz. Low 

frequencies (1 to 5 pps) generate twitch contractions and permit little sustained 

tension to develop in the muscle. Low frequency stimulation is employed to 

locate motor points since the twitching muscle may be readily ascertained and 

little fatigue or discomfort occurs. Higher frequencies (10 to 20 pps) cause a 

fasciculating contraction of the muscle termed incomplete tetany. In healthy 

muscle at frequencies of approximately 30 pps, the contractions generally fuse or 

tetanize. Thus, a smooth contraction is apparent. This type of contraction allows 

the most force to develop in the muscle.   In paralyzed muscle, however, 

complete tetany may occur at 10 to 20 pps.  (42) 

 
 
 

 

Figure 3-8. Force summation as a function of stimulation frequency.  (42) 
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          Clinically, according to DeVahl (42), it is often better to limit the tetanizing 

frequency, because fatigue at the neuromuscular junction can set in at 30 pps.  

To prevent excess fatigue and to effectively work the target muscle, the electrical 

input may be automatically turned on and off. This simulates the contraction and 

relaxation of the volitional exercise. In most NMES devices, contraction time is 

usually denoted as “on time” and is measured in seconds. Similarly, the 

relaxation time is denoted as “off time” and is also measured in seconds. The 

ratio of contraction to relaxation time is proportional to the duty cycle. The duty 

cycle is calculated as a percentage derived by the following equation:  

 
 
 

Duty cycle = Pulse-train duration X 100%

 

     (3-1)     
               Total cycle time 

 

 

 

Figure 3-9. Example of on time and off time in a stimulation cycle.  (42) 
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Fatigue can critically affect the benefits that may be gained from medium 

frequency (MF) NMES of 10-15 pps. Although it is widely agreed that MF NMES 

can generate stronger contractions than low voltage, low frequency NMES, it has 

been demonstrated that a 25-pps rectangular wave generated a 25 percent 

increase in torque. Meanwhile the medium frequency NMES generated only a 13 

percent increase. (42) 

3.3.2 Denervated muscle 

According to Cummings (38), the microenvironment of denervated muscle 

and the peripheral nervous system has been thought to have characteristics that 

may either enable or inhibit neuromuscular regeneration and reinnervation. The 

reunion of the peripheral nerve stump and restoration of the terminal nervous 

structures, such as muscle, are the combined effect of three factors.  These 

factors are the neurotrophic action of the Schwann cell sheaths and other 

terminal structures, the mechanical direction of the nerve sprouts along the old 

myelin sheaths, and, the overproduction of fibers to guarantee the arrival of some 

of them at the periphery. However, the most essential factor is the trophism of 

the peripheral nerve stump, motor plates and sensory structures. 

An additional factor that may facilitate denervated muscle reinnervation 

and recovery is long-term electrical stimulation. Although the effects of long-term 

electrical stimulation of intact muscle are well documented, the effect of long-

term stimulation of denervated muscle is not well understood.  Chronic, low 

frequency, indirect electrical stimulation of innervated fast-twitch muscle, similar 

to that occurring in nerves of slow-twitch muscle, has been shown to transform 
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the functional properties of a fast-twitch muscle to resemble those of a slow-

twitch muscle.  (38, 77, 168) 

After muscle denervation, the therapeutic activities to restore nerve 

continuity always include concerns for maintenance of the target tissues of nerve 

regeneration in the best possible homeostatic condition until the regeneration 

and reinnervation processes are finished.  Those efforts are limited by the fact 

that there are no universally accepted therapeutic protocols to preserve 

denervated muscle in a functional condition. However, electrical stimulation is 

one therapeutic modality that has been advocated slow atrophy of denervated 

muscle. (38) 

According to Cummings (38), there are several indications for 

electrostimulation of denervated muscle.  First, appropriate electrical stimulation 

can cause contraction in denervated muscle.  Regular contraction of denervated 

muscle may help limit edema and venous stasis, and therefore impede muscle 

fiber transformation.  Furthermore, recovery time after muscle denervation has 

been shown to decrease with therapeutic electrical stimulation.  However, there 

are also several indications against electrostimulation of denervated muscle.  

First, contraction of the muscle may disrupt regenerating neuromuscular 

junctions and subsequently slow reinnervation.  Denervated muscle is more 

susceptible to trauma than innervated muscle.  Hence, electrostimulation may 

further injure the denervated muscle.  In addition, long-term electrical stimulation 

until reinnervation occurs, if at all, is not worth the money and time required.  

Nevertheless, the therapeutic effectiveness of electrostimulation of denervated 
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muscle depends upon numerous factors.  These factors include the type of 

current and its magnitude, stimulus duration and frequency, type of contractions, 

length and frequency of therapy sessions, time between therapy sessions, and 

time that has passed between injury and start of electrotherapy.   

Faradic or faradic-like current having a pulse duration of less than 1.0 

millisecond has been reported as somewhat useful in delaying atrophy during the 

first two weeks following denervation.  After that period, the excitability of the 

muscle becomes so that only interrupted, DC square waves that have a pulse 

duration of more than 10 milliseconds, or alternating current of less than 10 pps 

will cause single-twitch contractions. Furthermore, to ensure the optimal 

response when stimulating denervated muscle, the waveform of the input current 

should have a pulse duration at least equal to the chronaxie of the denervated 

muscle. Thus, ascertaining chronaxie is crucial in setting the stimulus duration.  

In addition, the current magnitude should be large enough to evoke a maximal 

contraction of the denervated muscle fibers, especially when a denervated 

muscle is stimulated transcutaneously.  Fibers within the deeper regions of 

denervated muscles may not receive stimulation if the input magnitude is too 

small.  Finally, the magnitude of the current together with the pulse width of the 

input must be large enough to excite a muscle having a prolonged chronaxie. 

(38) 

Finally, Cummings (38) gives succinct instructions placing electrodes to 

achieve optimal stimulation in denervated muscle.  An alternative is also 

enumerated. 
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“The transcutaneous electrical stimulation of denervated muscle is 
accomplished through surface electrodes. The electrode configuration is 
usually monopolar with the active or treatment electrode positioned over 
the part of the denervated muscle that is most electrically excitable. The 
inactive or dispersive electrode is placed over a distant body part. The 
size of the active electrode is very small (i.e., 1 to 2 cm2), providing for a 
large current density and for a more specific localization at the most 
electrically excitable part of the muscle. The size of the inactive or 
dispersive electrode is large enough that current flow under the inactive 
electrode is not perceived by the patient.” 
 
“An alternate configuration would be bipolar stimulation with the active 
electrode on the most excitable part of the muscle and the dispersive 
electrode over the tendon. The optimal stimulation site is that point along 
the muscle which is most electrically excitable and is not the conventional 
motor point because the nerve is not functioning. This point is the site at 
which a minimal amount of current will elicit a minimally visible contraction 
of the muscle being stimulated. This site of greatest excitability should be 
determined for each denervated muscle at the beginning of each 
stimulating session. Since the muscle being stimulated is denervated, the 
response of the muscle to stimulation will be a sluggish and somewhat 
wormlike contraction instead of the brisk contraction observed when 
stimulating innervated muscle.”  
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CHAPTER 4: MODELS OF MUSCLE FORCE AND FATIGUE 

 

There have been many studies and models of muscle force. Bobet and 

Stein (17) studied the properties of nonparalyzed human soleus muscle via 

systems analysis. Individual pulses and random pulse trains were used as input 

stimuli to a branch of the nerve to soleus.  The resulting variations in muscle 

tension were recorded. With these data, the frequency-response function 

between input pulses and resulting muscle tension conformed to that of a 

second-order, low-pass filter.  It was found that the natural frequency, low 

frequency gain, and damping ratio changed in a systematic way with the angle of 

the ankle joint. As the joint was flexed, the natural frequency decreased, the low 

frequency gain increased, and the damping ratio was unaffected or increased 

slightly. The importance of the work was stated in the following way. 

4.1 Introduction 

“The problems of load compensation and stability of posture are much 
greater in a bipedal animal such as man, but no studies are available to 
compare human soleus to that of the cat. The reasons are the obvious 
difficulties of isolating the soleus muscle in a living human being, but the 
human soleus differs in that a substantial portion of it lies superficially in 
the leg. This has enabled us to stimulate the human soleus muscle 
selectively to study its properties in the time and frequency domains and 
to compare an intact muscle in a normal human subject to a partially 
isolated cat muscle. The study was limited to muscle properties in relaxed, 
normal subjects.”   
 

However, the work serves as a benchmark for comparing the changes in 

muscle properties that result from volitional activation in nonparalyzed subjects 
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and facilitated analysis of changes that arise in various pathological states, such 

as spastic paresis. (74) 

Hannaford developed a phasic excitation-activation (PEXA) model of 

motoneuron excitation and the resulting activation and force development of a 

motor unit. In the model, input is a dose of depolarizing current and the output is 

muscle force.  The model includes dynamics and nonlinearities such as the 

response of motoneurons to doses of depolarizing current and the "catch-like” 

effect produced by overlapping motoneuron action potentials. The parameter 

values used in this model were derived from experimental data.  (70) 

According to Hannaford (70), motoneuron excitation is the mechanism in 

which injected current depolarizes the axon hillock and sends a depolarization 

wave down the axon. Activation dynamics describe how depolarization of the 

neuromuscular junction yields the “active state”. Meanwhile, muscle force 

generation denotes the transition from ‘‘active state’’ to generate muscle force. In 

building the model, Hannaford divided the motor unit system into three anatomic 

subsystems named as the motoneuron, muscle activation, and muscle unit.  

First, the motoneuron was modeled as a transresistance amplifier, a high-pass 

filter, and a spike generator implemented as a voltage-to-pulse rate converter. Its 

output was a series of impulses which decrease in firing rate with an input of 

constant current.  In the “activation dynamics’’ block, the model consisted of a 

pulse rate-to-voltage converter that was piecewise linear, a nonlinear RC circuit, 

and a multiplier. This part produced multiplicative effects of the action potential 

impulses to simulate the nonlinearity. Finally, the muscle was modeled by a 



64 
 

 
 

second-order nonlinear model obtained by removing a single muscle from the 

sixth-order nonlinear full joint model. Hence, the modeled motoneuron was 

designed to approximately replicate responses from current-step to pulse-rate. 

          The Hannaford muscle model contained a block of first-order 

representation of activation-deactivation. As a low-pass version of the input, the 

output of was denoted as the hypothetical tension or “active state’’. This tension 

was termed hypothetical since the velocity-dependent force of the viscous 

subtracts from the tension before generating measurable force. Hence, the 

velocity necessary for the force is of the internal muscle node, which can be 

nonzero without change in muscle length.  Thus, the viscous effect occurs even 

under isometric conditions.  Similar to other studies, Hannaford found that the 

muscle model dynamics could be described by two state equations in which 

scale related the enhanced spike magnitude of the neural input signal to muscle 

force production. (70) 

When modeling muscle force, two very different models which are 

commonly used were developed separately by Hill and Huxley.  Hill models of 

skeletal muscle are based on the work of Archibald Vivian Hill. They are 

phenomenological and describe the force behavior of muscles for specific 

conditions of length and speed. Huxley cross-bridge models are based on the 

work of Andrew Fielding Huxley.  They are structural models based on the 

supposed interaction of actin and myosin filaments via cross-bridges and the 

concept of force production in sarcomeres. (59) 
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Figure 4-1. Schematic of force-velocity relationship in skeletal muscle.  (59) 
 

 

4.2 Hill model 

          In his famous experiments on the heat of shortening of skeletal muscle, Hill 

(75) showed that a muscle produced heat isometrically. When the contracting 

muscle was suddenly released under a load which allowed for shortening, there 

was an increase in the rate of heat production which was proportional to the 

shortening velocity and stopped at the end of a contraction. The total extra heat 

generated during shortening was proportional to the decrease in length.  When 

the muscle size was considered and the stimulation was held supramaximal, the 
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shortening heat (H) could be expressed as H=ax, where x is the decrease in 

length during the contraction, and a represents a constant of proportionality in 

force. The value of a depends on the physiological cross-sectional area of the 

muscle as well as the level of activation. He showed that the value a/P0, P0 being 

the maximal isometric force, is fairly constant. This result can be understood by 

realizing that P0 also depends on the physiological cross-sectional area and the 

level of activation of the muscle. During shortening, a muscle generates extra 

heat. Since the shortening heat is equal to ax and the work is equal to Px, the 

extra energy liberated during isometric contractions becomes (P+a)x. The rate of 

energy liberation becomes (P±a)dx/dt = (P±a)v where v is the shortening velocity. 

He also showed that the rate during shortening was inversely proportional to the 

afterload P applied to muscles.  Thus, the rate of extra energy liberation is zero 

when P = P0.  Therefore, (P+a)(v+b)=(P0-P), where a defines the absolute rate of 

energy liberation.  

Based on the experimental work available in 1938, Hill (75) deduced that 

active skeletal muscle has an undamped elastic element cascaded with a 

damped element. The original idea that viscosity underlies the damping 

characteristics of active skeletal muscles was quickly jettisoned for various 

reasons. First, viscosity was incongruous with the empirical observation on 

stretching muscle. Second, given the differences in active and passive muscle 

characteristics, viscosity would have had to vary markedly upon muscle 

activation.  Third, it had been found that shortenings produced more energy than 

isometric contractions. 



67 
 

 
 

 

 

Figure 4-2. Schematic of the force-velocity relationship predicted by the Hill 
equation. (75) 
 
 
 
 

From the contemporary experiments, it was also concluded that active 

skeletal muscle consists primarily of a contractile element cascaded with a purely 

elastic element.  The contractile element characteristics were governed by 

equation which was derived by Hill (75) based on his empirical observations on 

the shortening heat in frog skeletal muscle.  
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Figure 4-3. Schematic of Hill model with contractile element (CE) with series 
elastic element (SE).  (59) 
 
 
 

To factor in the passive forces observed in lengthened skeletal muscles, 

the basic Hill model is usually appended with an undamped elastic spring in 

parallel with the contractile and series elastic element.  (59) 

 
 

 

 
 
 
Figure 4-4. Schematic of Hill models with contractile element (CE) with parallel 
elastic element (PE) and series elastic element (SE).  (59) 
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         Although Hill type models may be considered purely phenomenological, 

when using these models, the properties of the contractile and elastic elements 

need to be known.  A further limitation of Hill-type models based on the 

characteristic equation is that the equation is valid solely for constrained 

contractile conditions, such as maximal activation around optima! length. The 

force-velocity relationship of submaximally contracting muscle is not known in 

detail.  In addition, the force-velocity relationship at nonoptimal lengths is not 

completely known. One conceptual limitation of Hill-type models is that the 

history of the natural force behavior of muscle cannot be predicted. In particular, 

the characteristic equation of Hill implies that a unique relationship exists 

between force, velocity, and length.  Yet, that is not the case. Nevertheless, Hill 

models describe the approximate muscle dynamics for specific contractile 

conditions without providing insight into the mechanisms of force production. 

Despite these limitations, Hill models continue to be used more frequently in 

biomechanical models of musculoskeletal systems than any other muscle model. 

Such popularity comes from the accessible mathematics of the model as well as 

the qualitatively accurate predictions generated for various states of muscle 

contraction.  (59) 

4.3 Huxley model 

          With respect to the biophysics of force production in muscle as well as 

muscle energetics, the most preferred model for the past four decades has been 

the Huxley or cross bridge model. Cross-bridge models exclusively consider the 
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contractile machinery by synthesizing the known anatomical properties of 

skeletal muscle with the known energetic aspects of contraction. (59) 

The cross-bridge model of muscle force generation was first articulated by 

Andrew Fielding Huxley (80). It is considered the first attempt at a unifying theory 

of muscle contraction.  The reason for that is because it simultaneously 

considered the mechanical, thermal, chemical, and structural changes, which 

were known to happen in a contraction, No other muscle model has been so 

universally accepted. That is because no other model considered all phenomena 

as expansively as the cross-bridge theory did.  Contemporaneously, the cross-

bridge theory is the ‘gold standard’ of muscle force generation models. Although 

the model has been changed in numerous ways, the essential theory first 

articulated in 1957 is still used.   However, in contrast to the phenomenological 

Hill type models, the cross-bridge model allows for the quantitative study of 

energetics during muscle contraction. Thus, using the molecular composition of 

skeletal muscle, the chemistry of contraction was modeled on the laws of 

Newtonian mechanics.  Yet, even though the cross-bridge model is used almost 

universally in muscle biophysics, it is almost never employed in biomechanics. 

The primary reasons for not using the cross-bridge model in biomechanics arise 

from its erudite mathematics, and its consideration of the sarcomere as its 

fundamental unit rather than fiber or whole muscle. (59) 

In its fundamental form, the cross-bridge model may be delineated in the 

following manner.  There are cross-bridges originating from the myosin filaments 

which attach to specific locations on the actin filaments. During attachment, the 
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cross-bridges ratchet the actin past the myosin filaments. This produces force 

and muscle contraction. (64, 80-83) 

 
 
 

 

Figure 4-5. Schematic of Huxley 1957 cross-bridge model. (80) 

 
 
 

In the cross-bridge theory (80) it is assumed that myosin filaments have 

projections which were connected by elastic springs. The projection with its 

connection point M is believed to oscillate about its equilibrium position (O) 

because of thermal agitation. M is thought to attach to specific binding sites (A) 

on the actin filament if M approaches A. The combination of M-sites with A-sites 

is believed to happen spontaneously and asymmetrically only on one side of O 

so that the superposition of the M- and A-sites would generate force and motion 

which shortens the sarcomere.  

It is believed that attachment and detachment are regulated by rate 

functions f and g, respectively. These are modeled as linear functions of the 

distance from the active site on the actin filament, to the equilibrium position of 
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the side piece.  Since the linking of an M- with an A-site is assumed to 

spontaneously occur, breaking the M-A linkage is assumed to require energy 

from an active process by splitting a high-energy phosphate compound. To 

generate force without noise, it is assumed that there are numerous binding sites 

for possible linkage of the myosin and actin filaments. These sites are believed to 

be staggered with respect to one another so that different linking sites can 

contact at different relative motions of both filaments. The linkage sites are also 

assumed to be so distal that events at one linkage do not affect events at another 

linkage.  (80) 

 
 
 

 

Figure 4.6. Schematic for rate functions of bonding, f, and unbonding, g.  (80) 

 

When comparing the theoretical predictions to the properties of forcibly 

stretched muscle, several observations were recorded. Katz (93) found that the 

slope of the force-velocity curve for slow lengthening was about six times that of 

the analogous slope for slow shortening. The Huxley (80) theory also predicted 

the asymmetry, by a factor of 4.33, in the force-velocity curve about the isometric 

point.  Katz (93) also discovered the force during rapid lengthening of a 

stimulated muscle to be about 1.8 that of the isometnc force. From the rate 
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functions given by Huxley (80), the force for increasing speeds of lengthening 

was found to asymptotically converge to 5.33 times the isometric force. This is an 

overprediction. In addition, the cross-bridge theory of Huxley (80) poorly predicts 

the heat production of a forcibly stretched muscle.  The theory predicts that the 

rate of heat liberation linearly increases with the lengthening velocity. This 

prediction grossly overestimates the heat production in lengthening muscle. (59) 

In the 1957 theory (80), a cross-bridge can either be attached or 

detached. When a fully activated muscle rapidly shortens, many cross-bridges 

detach during shortening, and recovery of force depends on the cross-bridge 

attachment rate. However, the attachment rate function is not fast enough to 

account for quick recovery of force.  However, models with substantially faster 

attachment rate functions cannot predict the Hill force-velocity relationship as 

well as the 1957 model of Huxley and cannot account for the thermal data 

observed experimentally during muscle shortening. (59) 

 
 
 
 

 

Figure 4-7. Normalized comparison of Hill model (solid curve) and Huxley model 
(circles) for force-velocity relationship. (80) 
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          Another property of muscle contraction which cannot be predicted 

sufficiently with the Huxley (80) theory is the transient force resulting from a 

stepwise change in length. When a muscle rapidly shortens, the force decreases 

almost simultaneously with the displacement and then quickly recovers. Two 

parameters defined by Huxley and Simmons (81) for describing these fast force 

transients are known as T1 and T2. T1 denotes the minimum force achieved 

during the rapid shortening.  Meanwhile, T2 denotes the force after the quick 

recovery phase.  T1 progressively decreases with increasing release distances. 

The T1 versus length step curve is thought to depict the undamped elasticity in 

the contractile apparatus.  Since T2 is always larger than T1, this denotes a force 

recovery of milliseconds after the displacement. 

 
 
 
 

 

Figure 4-8. Schematic of T1 and T2.  (59) 
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Figure 4-9. T1 and T2 as a function of length step.  (81) 
 
 
 
 
           To account for the transient force after a stepwise change in length 

without losing the predictive power of the 1957 model, Huxley and Simmons (81) 

modified the model by introducing different attachment states for the cross-

bridge. This allows the cross-bridge to perform external work in a finite number of 

steps during attachment. A change is stable state corresponds with a decreasing 

potential energy.  Huxley and Simmons (81) also assumed that each cross-

bridge contains an undamped elastic element which allows the linkage to change 

its stable state of attachment without relative motion of the myofibrils. Hence, the 

transient force generated from a rapid change in length can be explained as 

follows. If a muscle is released suddenly, the cross-bridge head will not rotate. 

Therefore, decreased force during the displacement (T,) corresponds with the 

force-elongation characteristic of the undamped elastic unit in the cross-bridge.  



76 
 

 
 

After the sudden displacement, quick force recovery is admissible since the 

cross-bridge head rotates in its linkage from high to low potential energy. This 

rotation stretches the elastic element in the cross-bridge and increases the cross-

bridge force.          

Huxley and Simmons (81) articulated a cross-bridge model that has three 

stable, attached states and derived differential equations for a stable two-state 

system. Many other extended models with a variety of stable states have been 

described. (64, 78, 79, 182, 183) However, the essentials of all of these models 

originate from the 1971 cross-bridge model. 

 
 
 

 

Figure 4-10. Schematic of event sequence in Huxley 1971 theory. (81) 
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           Zahalak and Ma (190) broadened the basic Huxley model to account for 

the role of calcium in activating the contractile mechanism.  They sought a 

simplified model of calcium activation dynamics that would capture the 

fundamental physical nature of activation as the basic Huxley two-state model 

captures the essential physical nature of contraction.  

4.4 Zahalak models 

They began by assuming that the total number of cross-bridges can be 

divided into two subgroups: aM, “participating” cross-bridges which can interact 

with activated actin, and (1-a)M, “nonparticipating” cross-bridges which cannot 

interact with actin. The amount of participating cross-bridges, a, is defined a 

function of contractile tissue length. The amount may be less than one at long 

muscle lengths because of decreased overlap between actin and myosin, and at 

short muscle lengths due to steric hindrance.  It was further assumed that there 

is a range of muscle lengths where a=I, and that muscle in tetanic contraction 

produces maximal force at these lengths. Next, they assumed that there for all 

time a one-to-one-to-one correspondence between a myosin cross-bridge, its 

nearest actin binding site, and a troponin molecule modulating that site for 

myosin bonding. This allows for focusing on the behavior of the myosin-actin-

troponin (MAT) complex. If (1-a)M cross-bridges are non-participating, then it is 

assumed that an equal number of troponin molecules. Each troponin molecule 

has four sites for calcium binding.  Two are high-affinity and two are low-affinity. 

Only the low-affinity sites are significant in modulating muscle contraction. The 

high-affinity sites bind magnesium ions competitively with calcium. The dynamics 
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of these sites are assumed to be too slow to have a significant role in generating 

muscle force. The two calcium ions are assumed to bind in sequence to a 

troponin molecule. The troponin facilitates access to actin binding sites only upon 

binding two calciums.  Two possible schemes for the kinetics of the myosin-actin-

troponin complex, known as loose coupling and tight coupling, were initially 

proposed.  In loose coupling, calcium binds and unbinds from troponin 

independently from the state of bonding between myofilament proteins. However, 

in tight coupling, troponin can release its bound calciums only after the cross-

bridge it is modulating is free from actin. The four rate constants that vary with 

the concentration of free calcium are assumed to be equal.  (190) 

 
 
 

 

Figure 4-11. Schematic of excitation-contraction coupling.  (190) 
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According to Zahalak and Ma (190), the four states characterizing MAT 

complexes for the subgroup of participating cross-bridges under tight coupling 

can be labeled as follows:  

state 0 - unbonded actin site with its troponin free of calcium,  

state 1 - unbonded actin site with one calcium ion attached to troponin 

state 2 - unbonded actin site with two calcium ions attached to troponin,  

state 3 - bonded actin site with two calcium ions  attached to troponin.  

Zahalak and Ma (190) also considered the alternative hypothesis of loose 

coupling between the dynamics of calcium/troponin and actin/myosin. It was 

assumed that troponin binds to two calcium ions in sequence, and that the 

binding and release of calcium by troponin occurs exclusive of actin/myosin 

interactions. Thus calcium kinetics may be described by the following states. 

(A-M-T) + (AMI) = state 0, 

(A-M-TC2) + (AMTCa) = state 1, 

and (A-M-TCa2) + (AM-TCa2) = state 2 + state 3. 

 
 
 

 

Figure 4-12. Diagram of tight coupling (solid line) and loose coupling (solid plus 
dashed lines). Curved arrows indicate Ca2+-Tr interactions. (190) 
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With explicit expressions for the total concentration of calcium in the 

myofibrilar space, Zahalak and Ma (189) generated a calcium mass balance 

equation. A finite number of pumping sites in the SR implies that the calcium 

pump is saturable. Its performance was modeled as a classic Michaelis-Menten 

enzyme reaction. That gives [Ca]=V[Ca]/([Ca]+K) where V and K are the two 

Michaelis-Menten parameters for the reaction.  They argued that representing 

that process by a Michaelis-Menten equation is congruent with the parallel 

representation of the contraction process by a Huxley model with two states.  

Finally, Zahalak and Ma (190) modeled the rate of passive calcium 

injection from first principles. Calcium injection is thought to be the result of a 

gating mechanism which is driven by a calcium gradient across the sarcoplasmic 

reticulum. While the action potential modulates changes in membrane 

permeability, it has been suggested that the process machinery is unimportant 

for contraction dynamics. Because calcium injection resulting from muscle action 

potential usually happens within ten milliseconds, and calcium diffusion is also 

very rapid, it is believed that only the net flux of calcium ions released by an 

individual muscle action potential is the driving force for the subsequent 

contraction.  Yet, that process is comparatively slow. Therefore, the basic 

assumption that could have been made about calcium injection is that the 

individual muscle action potential releases a specific quantum of calcium ions 

over a set time course.  Hence, this gives [Ca]u=R0x(t) where R0 is the additional 

calcium concentration from one action potential and x(t)defines a sum of 

normalized impulses x(t)=Σx(t-tl) satisfying x(t)=0 for t < 0 and ∫0∞  x(t) dt=1.  To 
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model the nonuniform addition of calcium ions after each muscle action potential, 

they allowed R0 to vary inversely with the extrareticular concentration of free 

calcium. To maintain the injection gradient in the model, the parameter [Ca]t was 

required to have the same order of magnitude as the average calcium 

concentration in muscle.  

For the modified two-state model, two independent kinetic paths between 

the attached and detached states were recognized.  Zahalak and Ma (190) 

formulated the coupled activation-contraction equations as  

                        
0
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                      (4-3) 

for tight coupling, where f, g, f’, and g’ are all functions of the length of the actin-

myosin bond.   

In their quest to derive solvable constitutive relationships to describe 

whole muscle energetics and mechanics, Zahalak and Ma (190) assert that is 

little value to use a complex model for calcium dynamics with many states 

without a congruent multistate model for contraction dynamics.  Their analysis 

clarified many physiologic assumptions, such as those regarding tight versus 

loose coupling.  Such clarifications were argued as necessary to generalize from 

a model of molecular contraction to macroscopic constitutive relationships for 
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whole muscle. In addition, they developed the model for calcium activation 

dynamics under alternating hypotheses of loose coupling or tight coupling 

between the respective dynamics of calcium-troponin and actin-myosin. Of the 

two assumptions, the tight coupling hypothesis was deemed to be more natural 

on the basis of the steric interaction theory of calcium regulation of actin via 

troponin and tropomyosin. However, the assumption of tight coupling greatly 

complicates analysis under the Huxley theory.  However, it was found, with their 

approach, that tight coupling was no more difficult to model than loose coupling.   

They found the resulting generalization of the Huxley two-state model to be 

fourth-order. 

 
 
 

 

Figure 4-13. Three-state kinetic model with ATP energetics. (190) 
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        However, according to Zahalak (191), contemporary muscle physiologists 

thought the two-state cross-bridge paradigm as outdated and unusable as 

models with as many as eighteen states had been proposed.  Even Huxley 

eventually referred to it as a “skeleton theory” (83).  Zahalak (191) asserted, 

however, that the two-state cross-bridge model is still valid for macroscopic 

dynamics of muscle contraction and analyzed in detail the Huxley-Simmons 

three-state model with matched asymptotic expansions. In this analysis, the 

Huxley two-state model was shown to be the “outer” solution of the cross-bridge 

state equations. Meanwhile, the Huxley-Simmons (81) reduced two-state model 

was shown to be the “inner” solution. From the asymptotic analyses, general 

conclusions were drawn by Zahalak, with respect to the role of the two-state 

model and how it relates to higher-order models with more than two states. (191) 

         According to Zahalak (191), the apparent cross-bridge force that is derived 

from the asymptotic analysis is a nonmonotonic function of cross-bridge length. 

The function has a region of negative stiffness where a single cross-bridge 

subjected to such a force would have mechanical instabilty. However, as they 

attach to common myosin filaments, single cross-bridges are forced to move 

together over short time spans. This effectively averages the cross-bridge force, 

F(x), over an interval of the order of h0. If that interval corresponds to the 

negative stiffness interval, then the average cross-bridge force will smooth out. 

Hence, the force in each individual filament and the whole muscle will stabilize 

and be monotonic as the T2 curve shows.  
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Figure 4-14. Fast isometric transient curves.  (191) 

 
 
 
           Mathematically, the assumption of Huxley and Simmons (81) was 

equivalent to defining the cross-bridge distribution in steady state as a set of 

Dirac delta functions. Difficulties of physical interpretation arose nevertheless. 

This is because there is an asymptotically infinitesimal probability that a cross-

bridge will possess at any instant an exact bond length for making attachment 

possible. In the asymptotic theory, Zahalak circumvents this difficulty because 

the bond lengths in steady state are not localized.  Instead, they are uniformly 

distributed over an interval of length h0. An empirically approximate function was 

found to be tanh {(m/2)(y + (1/2))}. As a result, the Huxley-Simmons equation 

was shown to be fairly close to the asymptotic theory if it is assumed that 

x+x0=1/2. With that constraint, the total steady-state amount of attached cross-

bridges in the first state predicted by the Zahalak theory was 0.5. (191)  That 

result agreed with the assumption and analysis of Huxley and Simmons (81).   
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 Hence, Zahalak (191) concluded that the two-state model is still a valid 

approximation of muscle dynamics, excluding fast displacements. However, 

asymptotic analysis demonstrated that the cross-bridge force must be defined as 

a nonlinear function of the cross-bridge length that saturates as stretch 

increases. The nonlinear cross-bridge force is modulated in part by the fast 

equilibrium between the two states of attachment. The typical assumption of 

constant cross-bridge stiffness in two-state models is at best a crude but useful 

approximation.  

4.5 Ding models

4.5.1 Force model 

 

          Ding and colleagues have tried several approaches to model force and 

fatigue in able-bodied muscle using their version of a Hill-Huxley model. (48-55) 

The original Ding model is different from those previously reported because it has 

a simple structure and few parameters (48). At the molecular level, the process 

of muscular contraction is quite complex. Compared with models developed by 

Hannaford (70), Huxley (80), Zahalak and Ma (190), and Zahalak (191), Ding and 

colleagues (48) did not factor in the cross-bridge kinetics. Unlike previous 

models, which has three states of calcium transient, the Ding calcium kinetics 

only contains two simplified states  The predicted Ca2+ transients and Ca2+-

troponin concentrations were similar to those found by Hannaford (70), and fell 

within physiological ranges. 

The force model was developed by decomposing the contractile response 

into distinct physiological steps: calcium release and reabsorption by the 
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sarcoplasmic reticulum (SR), calcium binding and unbinding to troponin, and 

force mechanics including cross-bridge cycling along with the friction and 

elasticity of the muscle fibers. (48) 

2
2 2 2 2 2 2

1 2 1 0 0
[Ca ] 2( [Ca ] )[ a] 2 [ ][Ca ] [Ca ] ( )[Ca ]SP

SP ST SR SP
d k k k k k k

dt

+
+ + + += + Τ − Τ + − +   (4-4) 

                                       
2 2 2 2

1 0 1 2
[ a] [ ][Ca ] ( [Ca ] )[ a]SP SP

d k k k
dt

+ +Τ
= Τ − + Τ                       (4-5) 

         Although the binding process is usually considered to be a two-step 

reaction, Ding et al (48) only considered its overall effect of the forward and 

backward reaction rates. From basic chemical kinetics and membrane transport, 

the two differential equations that describe the calcium transient in the 

sarcoplasm and the calcium-troponin binding processes are in the muscle. In the 

first chemical equation, the first two terms represent the dissociation of Ta and 

binding of Ca to troponin, respectively. The third term is the rate of concentration 

increase due to diffusion from the SR and the fourth term corresponds to 

diffusion and reabsorption of calcium back into the SR.  In the second equation, 

the first term represents the binding of calcium to troponin and the second term 

represents the dissociation of the calcium-troponin complex.  

          Finally, formation of calcium-troponin complex (Ta) causes conformational 

change of actin and consequently results in the exposure of the cross-bridge 

binding sites on actin. Then cross-bridges attach to actin and pull the thin 

filaments toward the center of the thick filaments. The macroscopic result of this 

process is the generation of force which is modeled by a linear spring, a damper, 

and a motor in series. The damper represents the viscous resistance of the 
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contractile and connective tissue.  The force exerted by the damper is given by 

F=b(V-dx/dt).where b is the damping coefficient, x is the length of the spring, and 

V is the contractile velocity of the motor. (48)  

 
 
 

 

Figure 4-15. Schematic of the isometric model of muscle force. (48) 
 
 
 

For simplicity, a linear spring was considered to represent the tendinous 

portion and the series elastic component of the muscle. (48) The force exerted by 

the spring is given by F=Kx, where K is the spring constant. Differentiating 

Hooke’s law with respect to time and the subsequent algebra gives  

dF/dt=KB[Ta](1-F/Fm)-F/b/K. 

The term b/K represents the time constant over which the force decays. 

The model (48) assumes that the friction between actin and myosin fibers is 

higher during cross-bridge recycling due to chemical bonds between the fibers so 

the term b/K=τ1+τ2[Ta]/[T0], where τ1 is the value of the time constant in the 

absence of cross-bridges and is the additional frictional component due to the 

actin-myosin bonds. Making additional substitutions for KB and b/K gives 

dF/dt=A[Ta](1-F/Fm)-F/(τ1+τ2[Ta]/[T0]). 
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Later, Ding and colleagues (49) decomposed the contractile response to 

account for the distinct physiological step of cross-bridge activation. To model 

cross-bridge activation, it was shown that the force-prediction ability of the model 

is relatively insensitive to the specific curvature and amplitude of the calcium and 

calcium-troponin complex transient. This implied that the first two steps in the 

1997 model (48) could be combined into one by the unitless factor, CN.  From the 

following differential equation, the dynamics of CN are modulated by the time 

constant, τc, which describes qualitative the rate-limiting step before the actin and 

myosin mechanically translate across each other and generate force. (49) 

                                     

N N1
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 This solves analytically to: 

                                           

1 1
N

1
expC ( )

n

f c c

t t t t
=

− −
= −

τ τ∑                        (4-7) 

The differential equation describing force-generation with CN is  
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+

= −  
+ τ + τ

                         (4-8) 

        The isometric force dynamics are governed by this equation which describe 

the transient behavior of the two state variables, CN and F, subject to the four 

parameters τc, A, τ1, and τ2.  CN behaves as a Michaelis-Menten process.  (49) 

The model predicted isometric forces for rat gastrocnemius and human 

quadriceps femoris muscles with reasonable accuracy during brief subtetanic 

and tetanic isomeric contractions. It successfully predicted nonfatigued force 
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responses when muscles were held at long or short length and fatigued force 

responses at long length. Subjective and objective evaluations of the force 

response showed that the shape of the predicted force responses closely 

matched the responses that were measured. Comparisons between the 

predicted and measured force-time integrals also suggested excellent agreement 

between the predicted and measured forces. Although significant differences 

between the predicted and measured force-time integrals were observed with 

some stimulation patterns, most differences were small. (49) 

The 1998 model was simpler than previously developed models and had 

fewer parameters.  With just four free parameters, the model allowed robust 

parameter estimation from the force data due to the convergence to identical 

values from different initial estimates. Also, this model was the first to be tested 

on muscles in different physiological states.  One advantage of this model was 

that it could predict muscle fatigue. The 1998 model was also successful with 

human muscles at varying lengths. Different from the initial model, the quality of 

the force predictions did not depend on the twitch contraction times of the 

muscles.  (49) 

Of the four model parameters, A directly modulates the gain of the force. 

Thus, decreased A for fatigued muscle or muscle placed at short length is 

expected.  The relaxation of the force is primarily determined by τ1. That is 

because the role of τ2 decreases quickly with the force-relaxation decline of CN, 

which always precedes the force relaxation.  The parameter τc is the 

characteristic time for Cm to peak and to go to zero, however interpretation of 
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changes across difficult conditions is unclear. Many underlying physiological 

steps, such as Ca2+ binding to and dissociation from troponin, may distort the 

time course of CN.  In the force equation, the sum of τ1 and some fractional 

multiple of τ2 gives the overall rise time of force. When muscles were stimulated 

with constant frequency trains, a decreased rise time of force was observed as 

fatigue onset.  However, no difference in rise time was observed between the 

fatigued and the nonfatigued muscles upon variable frequency train stimulation, 

which was consistent with previous findings.  (49) 

For human muscles under fatigue or at short length, the major limitation of 

the 1998 model is that separate sets of parameter values were needed for CFTs 

and VFTs.  However human muscles held at longer lengths and without fatigue 

required only one set of parameter values.  Yet, the model did not necessarily 

identify the input pattern that generated the maximal force-time integral for this 

condition. Similarly, the 1998 model routinely underestimated the forces with long 

IPIs and overestimated the forces with short IPIs.  These shortcomings were 

attributed to some ignored physiological steps, such as nonuniform amounts of 

divalent calcium that may be released as each pulse of a stimulus train passes. 

(49) 

As the 1998 two-step model of Ding ignored many physiological details, 

such as the nonlinear summation of calcium transients in single muscle fibers 

stimulated with doublets, Ding et al (50) proposed the R model. This was based 

on the work of Duchateau and Hainaut (53). They investigated the force 

summation from human adductor pollicis muscles triggered by paired stimuli at 
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different IPIs ranging from 5 to 200 ms.  Those results showed that the forces 

generated by the doublet trains were greater than the sum of two individual 

twitches.  Furthermore, this force enhancement from the second pulse was 

highest when the IPI was 5 ms and declined exponentially with increases of the 

IPI. The enhanced force of the paired stimuli was suggested to be due to the 

enhanced release of divalent calcium by the second pulse (53). In the R model, a 

factor Ri was introduced to account for the nonlinear summation.  (50) Therefore, 

Ding et al modified the two-step model by adding a factor  

                        
1( )

01 ( 1) c

i it t

iR R e
−
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− −

= + −                                     (4-9)  

where Ri is a scaling term that accounts for the differences in the degree of 

activation by each pulse relative to the first pulse of the train. The analytic 

solution of CN goes to  
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for i=1 and R1=1. The magnitude of the enhancement is characterized by R0, and 

its duration is characterized by τc. 

Below is the complete, R model of muscle force derived by Ding and 

colleagues.  (50) 
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Although the Ding R model accurately predicted isometric force for 

gastrocnemius and soleus muscles during brief trains of stimulation, it failed to 

predict force from long-train stimulations. It was found that when the muscle was 

stimulated with long trains, the model overestimated the higher frequency force 

output for both fast-contracting gastrocnemius and slow-contracting soleus and 

underestimated the lower frequency force response for soleus muscle. One of 

the limitations of this model is that it does not account for parameters that vary 

with time. It was suggested that better curve fitting and predictions of the data 

from long trains may require the model to vary several parameters during the 

contraction. Modeling the forces from the long train stimulation patterns was 

beyond the scope of this particular study. Thus, the changes to the model that 

are necessary to predict the force generated under long train stimulation were 

not explored. Furthermore, the original model cannot predict forces during 

nonisometric contractions because the force-velocity and length-tension 

relationships were not factored into the formulation. Finally, Ding and colleagues 

suggest that the model be modified if it is to predict the response of any muscle 

during fatigue-inducing repetitive activations. (50) However, they demonstrated 

that the parameter relationships found for able-bodied muscle did not apply to 

paralyzed muscle. (51) 
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The investigators further hypothesized that the model would accurately 

predict force response to long-train stimulation for patients with spinal cord injury.  

The hypothesis was test over a wide range of input frequencies and stimulation 

patterns in both fresh and fatigued states using data collected from paralyzed 

human quadriceps femoris muscles.  It was found that the predictions from the 

force model explained more than 90% and 80% of the variance of the collected 

force profiles when the muscles were fresh and fatigued, respectively. Hence, the 

model was shown to have successfully calculated relationships between force 

and frequency for fresh and fatigued muscles to three varieties of input trains. 

(55) 

Subsequent to spinal cord injury, paralyzed muscles typically gradually 

transform from type I to type II fibers, resulting in a predominance of fast fatigable 

muscle fibers. Fast, type II fibers have faster calcium dynamics, resulting from 

both faster calcium release and uptake. (157, 158) This has been shown to be 

consistent with the remarkably decreased τc values for paralyzed than for 

nonparalyzed subjects. Parameter A, the gain, was also significantly smaller for 

paralyzed subjects. This result is physiologically consistent with decreased 

sustained contractile force due to atrophy after denervation of muscle. (55) 

In the Ding model, R0 is denoted as the nonlinear summation of the 

transient current of divalent calcium in single muscle fibers in response to doublet 

stimulation.  Hence, the parameter has been suggested to explain the increase in 

force generated by inputs containing doublets.  Hence, model has shown a 

greater value of R0 for paralyzed subjects.  That conclusion is also supported by 
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previous studies that have shown that the paralyzed human thenar muscles of 

paralyzed subjects have greater force augmentation from doublets than 

nonparalyzed subjects. Despite the marked structural and functional differences 

between nonparalyzed and paralyzed quadriceps femoris muscles the model 

with slight adjustments in the procedure employed in parametric identification, 

predicted force with comparable accuracy for paralyzed subjects. This suggests 

the model to be robust. (55) 

It was found that, even for paralyzed muscle, the model only needed force 

responses to two brief stimulation trains to identify the parameter values and to 

predict force response to inputs over a wide range of frequencies and patterns. 

The robustness and simplicity of this model render favorable for 

electrostimulation applications by facilitating parametric identification for each 

patient rapidly, fast identification of schemes for optimal stimulation, and accurate 

feedforward estimation.  It was, however, recognized that the model only 

successfully predicted the force in quadriceps femoris muscle at one isometric 

length and at one angle of the knee joint. (55) 

However, a relationship was found between R0 and km.  It was determined 

to be linear with R0=km+1.04. Yet, the authors caution that this relationship needs 

to be investigated further before applying it to other muscles, different study 

cohorts, or other physiological conditions.  According to Ding et al (55), there 

seems to be physiologic credence to the R0-km relationship, as it warrants 

examination with respect to the three physiological aspects of muscle fatigue, 

muscle length, and fiber type. Km models the calcium sensitivity of the sigmoidal 
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force-calcium relationship and has a partial contribution from the troponin 

sensitivity.  Hence, a smaller km value transduces to increased sensitivity of force 

to calcium.  R0 models increased calcium release from the SR during fatigue.  As 

a result, km and R0 increase with fatigue from doublet stimulation.  Elevated 

release of calcium with elevated muscle stiffness have been proposed as the 

primary mechanisms behind the nonlinear summation in force by doublets with 

respect to twitches  A greater R0 value translates into greater nonlinear 

summation in force. (55)  

According to Frey-Law and Shields (66) chronically paralyzed human 

soleus force profiles were most accurately predicted by the original Ding R model 

(50).  With that model and a doublet ramp input stimulus, soleus muscle forces 

from chronically paralyzed human muscle were used for parameter optimization.   

The predictive accuracy was assessed relative to a less complex model and a 

linear model for constant, doublet, and dual doublet stimulation trains at 5, 10, 

and 20 pps. However, to make appropriate comparisons between the models, 

one parameterization approach was required.  The doublet ramp, based on the 

work of Bobet and Stein (17), is comprised of a range of frequencies (5, 7.5, 10, 

15, and 20 pps, with 167 pps doublets) over a duration of less than 1500 

milliseconds.  This unique waveform provides on average equal time at all 

stimulation frequencies to ameliorate the bias from any specific frequency.  (66)  

In the findings of Frey Law and Shields (66), it was remarkable that the 

more complex Ding model predicted only two specific force properties, time to 

peak tension (TPT) and half-relaxation time (½RT), better than a second-order 
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nonlinear force model.  This contradicted the assumption that the Ding-type 

model might represent muscle force properties with greater resolution than less 

complex models.  Experimentally, the doublet produced substantially greater 

additional force at 5 pps than at 20 pps.  The Ding model decreased output from 

doublets with increasing frequency.  The second-order nonlinear model predicted 

the hysteretic muscle property better than the Ding model despite the presence 

of Ri,   However, the largest differences between this study and the work of Ding 

et al (50) were for A, τ2, and R0.  However, A is the force gain, which should vary 

with differences in activation amplitude, cross-sectional area of muscle, and joint 

angle. The linear relationship between R0 and km was neither observed nor 

supported by a sensitivity analysis. (66) The values for τ2 previously ranged from 

124 to 1564 ms in nonparalyzed quadriceps muscle (50-56). In paralyzed human 

soleus muscle, the optimal values for τ2 varied from 58 to 78 ms.  This 

discrepancy is likely due to differences in muscle velocity characteristics between 

the quadriceps and soleus, variations in experimental activation of the muscle, 

changes in the characteristics of chronically paralyzed muscle, and/or the 

optimization techniques employed for parameter estimation.  (66)  

Further work with doublet stimulation found that the force-frequency 

relationship shifted leftward after spinal cord injury.  This is indicative of the 

enhancements in the twitch-to-tetanus ratio known to exist in paralyzed muscle. 

Posttetanic potentiation occurred to a greater degree in subjects with paralyzed 

muscle (20%) than in subjects with nonparalyzed muscle (7%).  Upon 

normalization, contractile speeds reflected well-known changes of paralyzed 
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muscle in the direction toward fast fatigable muscle. The doublet stimulation 

strategy provided consistent high-resolution measurements of muscle dynamics 

that showed remarkable differences between paralyzed and nonparalyzed 

muscle without causing fatigue. (172) 

 
 

Table 4-1. List of parameters for Ding muscle force model. 

Symbol  Unit  
 
Definition  

CN  
 

Normalized amount of Ca2+-troponin complex  

F  N  
 
Mechanical force  

ti  ms  
 
Time of the ith stimulation  

N 

 
Total number of stimuli in the train before time ti 

tp  ms  
 
Time of the pth data point  

tq  ms  
 
Time of the qth set of force model parameter set  

τc ms 
 
Time constant controlling the rise and decay of CN  

R0  
 

Mathematical term characterizing the magnitude of enhancement in Cn from the following stimuli  

A  N/ms  
 
Scaling factor  

τ1 ms  
 
Time constant of force decline at the absence of strongly bound cross-bridges 

τ2 ms  

 
 
Time constant of force decline due to the extra friction between actin and myosin resulting from the 
presence of cross-bridges  

h  ms 
 
Integration step  
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4.5.2 Fatigue model 

         Below is an early model of muscle fatigue proposed by Ding and 

colleagues.   It is an extended R model (50, 51). 
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Fatigue is a major limitation to the clinical application of neuromuscular 

electrical stimulation. The electrical stimulation pattern used influences muscle 

force and fatigue. Determining the activation pattern that maximizes force and 
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minimizes fatigue for each individual is clinically vital.  (38) Mathematical models 

that predict muscle forces and fatigue generated by a variety of activation 

patterns would aid the search for optimal patterns. To begin this process, Ding 

and colleagues introduced a four-parameter fatigue model that, as a extension of 

their original force model, that predicts the low-frequency muscle fatigue caused 

by various stimulation patterns on different days during isometric contractions. 

This fatigue model was shown to be robust by accounting for 90% of the 

difference in forces produced by several types of fatigue tests. The model forces 

at the end of fatigue testing were seen to differ from experimental forces by just 

9%. Thus, the Ding model of muscle fatigue demonstrated the potential for 

predicting muscle fatigue in response to a wide range of stimulation patterns.  

(51) 

A fundamental assumption is that τc has the same value for fatigued and 

nonfatigued muscles. Yet, it has been previously observed that there is a 

prolonged Ca2+ transient with fatigued muscles which might result from 

depressed Ca2+ uptake, reduced rate of Ca2+ release, and elevated resting 

intracellular Ca2+ concentration. Conversely, the prolonged relaxation, which is 

controlled by τ1 and τ2 in the force model, could also be modeled by the slower 

Ca2+ dynamics with the fatigued muscle.  For fatigued muscles, nevertheless, 

Ding et al fixed τ1 and τ0 at the values obtained in the non-fatigued condition and 

fit the values of the other three parameters (A, R0, and τi) to the experimental 

forces. (51) 
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The Ding group found substantial changes in the values of A, R0, and τe as 

the muscle transitioned from nonfatigued to fatigued states. Their approach to 

modeling fatigue was to construct a model that could modify the values of the 

parameters during fatigue. It has been previously shown that, during sustained 

isometric contractions, the rate and amount of fatigue are proportional to the 

force-time integral generated by the muscle in response to the fatiguing stimulus. 

Hence, instantaneous force was used as the driving function in the Ding fatigue 

model. (51) 

The major shortcoming of the Ding fatigue model is that it needs two 

different stimulus combinations to parameterize the model for nonfatigued and 

fatigued muscles. This makes it impossible to both model fatigue and to predict 

muscle forces under different fatigue levels  In addition, the Ding fatigue model 

was validated using data from only human quadriceps femoris muscles with 

protocols consisting of trains with a wide range of frequencies (10 to 40 pps) and 

activation patterns (CFT, VFT, and DFT). In general, it was found that the fatigue 

model predicted well the forces generated by the fatigue protocols with different 

input patterns on different days. (51) 

It was also observed that the fatigue model overestimated the force 

response to the first train in a constant-frequency protocol and underestimated 

the responses to the first trains in the variable- and doublet-frequency protocols. 

Because the fatigue model used the nonfatigued force model parameter values 

when the initial forces for that session were calculated, the misestimation 

observed at the onset of the fatigue protocol was due to the inaccuracy of 
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predictions in the original force model. Modification of the force model and a 

more sophisticated modeling of R0 in the fatigue model was recommended.  This 

can include adding another differential equation to enable a shorter time constant 

to capture the changes in R0 at the beginning of fatigue.  Such modifications may 

be necessary, according to Ding et al (51), to obtain better predictive ability in 

inputs of high frequency or those stimuli that contain doublets.  This is consistent 

with the fact that muscle fatigue depends on many factors including extrinsic 

stimulation parameters such as frequency, duty cycle, and activation patterns.  

(38, 51) 

Further fatigue model development showed that simulated km did not 

saturate in a maximal isometric contraction. Hence km was varied because it 

mathematically defines the voltage sensitivity of the strongly bound cross-bridges 

in the presence of the calcium-troponin complex. In addition, a pilot study 

showed that the model produced the best predictions when km ranged between 

1.5 and 4.   Moreover, fatigue in human skeletal muscle is accompanied by 

changes in the contractile apparatus of the muscle, including a slowing of the 

calcium dynamics (τc), changing in sensitivity of force to calcium (km), decreasing 

gain (A), and decreased force relaxation (τ1 and τ2). In addition, enhanced 

calcium sensitivity of muscle fibers stimulated with doublets to force during 

fatigue has been observed. This enhancement R0 decays with the interpulse 

interval when muscles are fatigued.  This ultimately suggests that τ1 plays a far 

greater role in modulating force relaxation than does τ2 during fatigue.  (52)  
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A limitation of the earlier fatigue model was that it did not accurately depict 

the changes in R0 at the onset of fatigue.  Hence, the Equations 4-20 through 4-

22 were inserted: 
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where R0rest
<1> and R0rest

<2> were the nonfatigued values.  In addition, km was 

fixed for nonfatigued muscle but varied for fatigued muscle.   The equation for τc 

was replaced by dτ1/dt=-(τ1-τ1rest)/τfat-ατ1*F where ατ1 was the coefficient for force 

and τ1, and τ1rest was the value for nonfatigued muscle.  Hence, this version of the 

fatigue model was modulated by five free parameters αA, αR0, ατ1, τfat, and τR0. 

(52) 

Furthermore, according to Ding et al (52) overestimation in the model 

resulted from setting km too high.  A dynamic km yielded values less than one.  

This allowed for faster progression of CN than if km=1.  This change improved the 

prediction of fatigue stimulation with higher-frequency trains.  Additionally, to 

remedy the previous error in assuming exponential behavior for R0, the additional 

time constant, τR0, was added to the model to depict the change in R0 at fatigue 

onset.   This addition improved the resolution of R0 and in predicting fatigue 

profiles taken at peak force.  
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Table 4-2. List of parameters for early Ding muscle  
fatigue model for nonparalyzed muscle. 

Symbol  Unit  
 
Definition  

CN  
 

Normalized amount of Ca2+-troponin complex  

F  N  
 
Mechanical force  

ti  ms  
 
Time of the ith stimulation  

N 
 

Total number of stimuli in the train before time ti 

tp  ms  
 
Time of the pth data point  

tq  ms  
 
Time of the qth set of force model parameter set  

τc ms  
 
Time constant controlling the rise and decay of CN 

R0  
 

Mathematical term characterizing the magnitude of enhancement in CN from the subsequent 
stimuli 

A  N/ms  
 
Scaling factor  

τ1 ms  
 
Time constant of force decline at the absence of strongly bound cross-bridges 

τ2  ms  

 
 
Time constant of force decline due to the extra friction between actin and myosin resulting from 
the presence of cross-bridges  

αA  ms-2  
Coefficient for force model parameter A in the fatigue model  

αR0 ms-1 

*N  
Coefficient for force model parameter R0 in the fatigue model  

ατc  N-1 Coefficient for force model parameter τc in the fatigue model  

τfat s  
Time constant controlling the recovery of the three force model parameters (A, R0, and τc) 
during fatigue  

h ms  
Integration step  

 

        
 

Additional work by Ding and colleagues (53) evaluated the effect of resting 
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times on fatigue.  Three resting times, 500, 750, and 1000 ms, were investigated.   

The model predicted that fatigue was a decreasing function of the resting time. At 

a resting time was 750 ms, the model showed that the DFT80 pattern was most 

fatiguing and the VFT80 pattern was least fatiguing and was consistent with the 

experiment. This trend was remarkably different when the resting time was less.  

One major limitation with this fatigue model was that the input stimulus 

trains used to verify the model contained only six pulses.  Hence, the forces 

produced were in the rising generation phase, regardless of the input 

characteristics.  Forces produced by trains longer than six pulses, as in FES, 

showed distinct generation and maintenance phases. It has been shown that the 

force-generation phase is more energy demanding and the more dominant 

contributor to muscle fatigue.   This suggests that the fatigue model may need to 

be modified to predict fatigue elicited by stimulation trains with greater than six 

pulses.  (53)  Further evaluation by Ding et al (54) showed that the structure the 

previous force model was robust enough to predict the forces from stimuli lasting 

about one second. The significance of this work lies in the ability of the model to 

predict force responses to inputs with a wide range of characteristics as long as 

fatigue does not onset.   

For paralyzed muscle, a later version of the Ding force-fatigue model (55) 

investigates km rather than R0 as the varying parameter.  Hence the auxiliary 

equations changed to:  

                                
1 2

m m mk k k< > < >= +                                       (4-23) 
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1 1 1( ) *m m mrest
km

km

dk k k F
dt

< > < > < >− −
= − α

τ                       (4-24) 

                     

2 2 2( ) *m m mrest
km

fat

dk k k F
dt

< > < > < >− −
= − α

τ                   (4-25) 

 

where kmrest
<1> and kmrest

<2> were the nonfatigued values.  In addition, τ1 was fixed 

at the nonfatigued value but varied during fatigue.  Hence the equation for τc was 

replaced by dτ1/dt=-(τ1-τ1rest)/τfat-ατ1*F where ατ1 was the coefficient for force and 

τ1 and τ1rest was the nonfatigued muscle value.  This fatigue model was 

modulated by the five free parameters of αA, αkm, ατ1, τfat, and τkm and was found 

to be robust across stimuli with higher frequencies.  The three force-driving 

coefficients in this fatigue model, αA, αkm, and ατ1, characterize the effect of short-

term fatigue on the force-model parameters A, km, and τ1. No correlation was 

found between any pair of the coefficient set. The lack of correlation suggests 

that contractile properties of muscle vary significantly during fatigue. The findings 

further demonstrate that fatigue is a complex physiological process. (55)   

The best functional electrical stimulation system necessitates a 

quantitative model to provide predictive control of stimulation parameters so that 

they are optimized for different users over a wide range of physiological 

conditions, muscle groups, and activities.  It was hypothesized that the previous 

model would accurately predict force responses to long stimulation trains for 

paralyzed subjects.  According to Ding et al (56), the revised mathematical model 

calculated the force responses from various inputs with different characteristics.  
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The predictions of the model explained greater than 90% and 80% of the 

variance in the recorded data for fresh and fatigued muscles, respectively. The 

calculated force-time integrals and peak forces were well-correlated with the 

experimental correspondents with intraclass coefficients mostly above 0.95.  

Compared to data from nonparalyzed muscle, the revised force-fatigue 

model demonstrated a larger R0 for paralyzed muscle. This contradicts 

experimental observations of greater augmentation by doublet force in cat 

muscle.  Yet, it has been shown that the paralyzed human thenar muscles 

demonstrate increased augmentation of force from doublets than do 

nonparalyzed muscles. This suggests that paralyzed muscle has a larger R0 

value.  Yet, the nonparalyzed muscle data used as control in this study were 

highly potentiated, whereas the paralyzed muscle data was not. Potentiation has 

also been demonstrated to decrease the nonlinear summation of force from 

doublets.  (56)  

Decreased parameter values for km, τ1, and τ2 were expected for 

paralyzed muscle, according to the Ding group (56).  However, the findings 

indicated no difference in these parameter values between the two muscle health 

states. The absence of differences could have resulted from the potentiation of 

nonparalyzed muscle but not paralyzed muscle, a confounding among 

parameters, or both. Potentiation has been demonstrated to elevate the divalent 

calcium sensitivity in muscle.  Hence, potentiated nonparalyzed muscles may 

have similar km values as paralyzed muscle.  This is because the potentiation of 

former has a similar effect on the calcium sensitivity as the greater percentage of 
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type II fibers does in the latter. Because potentiation does not affect muscle 

contractile speed, the primary explanation for similar values for τ1 and τ2 between 

experimental groups was suggested as the compensation or confounding effect 

between τc, τ1, and τ2.  Despite the significant differences between nonparalyzed 

and paralyzed quadriceps femoris muscles, the model with minor modifications in 

parameter estimation performed equally between the two experimental groups.  

This suggests that the model is robust.  For either the fresh or fatigued condition, 

the model only required responses to two brief stimulation trains for parameter 

estimation and force prediction. However, Ding and colleagues (56) recognize 

that the particular model only predicted the force responses for quadriceps 

femoris muscle at one length under isometric conditions at one knee joint angle. 

4.5.3 The nature of the problem with the Ding models 

The Ding models are being modified with a dynamic characterization of 

the divalent calcium current to provide better understanding of the physiology of 

force generation and fatigue in the chronically paralyzed human soleus.  This 

increased understanding will lead to the safer, more effective therapeutic stress 

protocols for paralyzed lower extremities.   

Current models misestimate force and fatigue by assuming that the 

concentration divalent calcium is constant during a muscle contraction.  This 

assumption appears, at best, to be an empirical derivation.  There appears to be 

no theoretical justification for such an assumption.   Hence, it is believed that a 

dynamic characterization of the calcium current in paralyzed muscle, derived 

from first principles of mathematics, chemistry, and physics, will yield information 
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about the underlying physiological mechanisms of fatigue in paralyzed human 

muscle as a process of evolution that is heretofore unknown.   The 

proce4wssses can be represented mathematically by diffusion functions, which 

are discussed in the next chapter.  Moreover, the underlying physicochemical 

principles of relevance are autocatalysis, the Principle of Le Chatelier, 

macromolecular crowding, and fractal power laws of Michaelis-Menten reaction 

kinetics and are discussed in Appendix A as well as Appendix E. 

In the Ding models, the quantity CN is assumed to behave according to 

ideal Michaelis-Menten kinetics in muscle force generation.  This scheme of 

reaction kinetics relies on the law of mass action derived from Fickian diffusion 

and thermodynamically molecular random collision. However, many biologic 

processes significantly diverge from such conditions. For example, cytoplasm 

behaves more like a solid than a Newtonian fluid due to its very high solute 

concentration.  This can severely hinder molecular diffusion or collision.  

(107,191)   Hence, the hindrance of molecular mobility requires modifications to 

the law of mass-action and Michaelis-Menten kinetics to better reflect certain 

physiologic situations such as calcium dynamics in fatiguing paralyzed muscle.  

In the early Ding models (50, 51), the parameters R0 and km are treated as 

scalar parameters.  Yet, they are defined respectively as a quantitative measure 

of the nonlinear summation of the Ca2+ from preceding pulses and the voltage 

sensitivity of the calcium channels in the sarcoplasmic reticulum.  In addition to 

the empirical derivations, the constructs of the definitions are themselves 

mathematically inconsistent at best.  A scalar is a linear element.  There is no 
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nonlinearity or dynamics associated with such an element.  Hence, these 

parameters would yield better prediction of force and fatigue if they were 

modified in such a way that is congruent with the physiological reality of 

equilibrating chemical reactions that occur within a contracting muscle.   

To demonstrate the Ding force and fatigue models in MATLAB, profiles for 

fresh and fatigued muscle were generated using parameters from Frey Law and 

Shields (66) and Ding (56) via code specially written for this study.  In the figures, 

the force curve is included along with the curve for CN.  For the fatigue model, 

plots of A, R0, and τc are also included.  From this, the behavior of the free 

parameters in the Ding models may be seen as a function of time. 

 
 
 

 

 
Figure 4-16. Duplication of force response and CN from a doublet ramp using the 
Ding force model.  This shows that the Ding force model does a reasonable job 
at calculating CN even with a constant R0.  However, the peaks in the CN curve 
are not uniform in magnitude and do not necessarily correspond as shown in the 
literature with each pulse of the doublet ramp stimulus. 
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Figure 4-17.  Duplication of a fatiguing contraction from a 10 CT input using the 
Ding fatigue model.  It is shown that in the Ding fatigue model, the force tetani 
remain unfused. Furthermore, the peaks in the CN curve remain at relatively high 
magnitude. Nevertheless, the original parameters of Ding et al (56) were used in 
this simulation.   This suggests that an adequate accounting of the calcium 
dynamics during fatigue is lacking in this model. 
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Figure 4-18.  Behavior of A, R0, and τc in the Ding fatigue model from a 10 CT 
input.  All parameters remain constant throughout a contraction. 
 
 
 

 In the Ding fatigue model, the parameters remain constant throughout a 

fatiguing contraction after a very short transient period.  This lack of parameter 

dynamics may explain the poor performance of the model in predicting fatigue in 

paralyzed muscle.  Large errors are generated as a result (unpublished 

observations). 
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4.5.4   Criticism of statistical methods  

            In the work of Ding et al (48-56), correlation coefficients were calculated 

to determine goodness-of-fit for the different models.  The correlation coefficient 

by itself may not necessarily be the best way to determine goodness-of-fit.  It is 

not clear in the literature what the Ding models are being correlated with. It may 

be possible to find correlation between model and a particular subset of 

parameters.  Yet, that would imply that a different set of questions are being 

asked.   The key point to remember for data analysis in these types of studies is 

that agreement, whether or not correlation is included in a goodness-of-fit metric, 

between a model and experimental data would be more germane and 

appropriate.    
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CHAPTER 5: A THEORY OF CALCIUM CURRENT IN PARALYZED 
MUSCLE 

 

The goal of this thesis is be test whether the concept missing from present 

models, and thus the present understanding of muscle physiology, is the 

dynamic behavior of divalent calcium during induced muscle contraction.  Current 

models assume that the calcium dynamics in electrically stimulated muscle is 

quasistatic if not constant.  In addition, it is hypothesized that the calcium 

dynamics in denervated muscle are different than the calcium dynamics in intact 

muscle in fresh and fatigued states.  If the behavior of calcium current can be 

understood as a series of growth, diffusion, and decay processes, muscle force 

and low-frequency fatigue can be more accurately predicted over the time course 

of response to neuromuscular electrical stimulation. 

5.1 A mathematical construct of growth, diffusion,  

 
and decay in muscle 

5.1.1 A theory of diffusion 

There may be a twofold purpose of diffusion functions. First they may 

serve as purely mathematical devices which describe the asymptotic approach 

towards saturation throughout the diffusion process. Hence, the model-building 

problem is to determine the growth curve that best fits a series of empirical 

observations over the whole diffusion process.  Yet, there is limited value of 

these models for such purposes since they require a high level of aggregate 

behavior. Hence, they are unable to convey detailed information about the 

characteristics of the underlying diffusion process. (113) 
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The second use of diffusion functions is for making predictions of the 

continuation of an ongoing diffusion process. In this case, the problem is one of 

parameter estimation for a specific growth curve at the beginning of an actual 

process and then making predictions of the continuation by extrapolating the 

estimated function. However, the use of diffusion functions for prediction involves 

subtle complications. First, they have the same deficiencies as all extrapolation 

techniques. They are mechanistic, have minute explanatory power, and are in 

general wholly deterministic. Yet, the more fundamental problem is selecting the 

appropriate model. While the form of the overall growth curve is determined by 

the mathematical function employed, empirical diffusion curves demonstrate a 

plethora of shapes which are not readily categorized. The question then turns to 

how best to determine, the type of diffusion function for a particular case. Without 

basic understanding of underlying assumptions for each model as well as 

knowledge of specific diffusion characteristics, this choice often a matter of an 

educated guess. (113) 

Two major forms of influence on the individual diffusion process may be 

distinguished.  They are external and internal influence. The distinction arises 

from the characteristic of the source of influence.  External influence denotes the 

direct influence on the innovation of an individual which a promoter exerts 

through various activities. It is termed external because it originates outside the 

set of adopters. Meanwhile, internal influence is the influence that the members 

of a system exert on each other due to their interaction.  Examples of this are the 

physician who considers employing a new procedure for the first time may want 
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to first confer on the matter with colleagues and the young woman who wears 

trendy clothes to impress her peers. (108) 

        Another well-known growth/diffusion function is the modified exponential 

function. This model assumes that the instantaneous diffusion rate only varies 

with the remaining gap to the saturation level. Mathematically, this is stated as 

dy/dt=ay(N-y). Solving with respect to y and setting the initial condition equal to 

zero,  the following diffusion function is  y(t)=N(1-e-at).  (9, 113) 

 
 
 
 

 

Figure 5-1. The modified exponential function.  (113) 

 
 
 

In many practical situations, as is demonstrated above, external and 

internal influence will superpose to yield a specific outcome of diffusion. 

However, the respective strengths of these two forces are not likely to be equal in 

all cases. In some situations, the dominant influence may originate from sources 
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outside the system. In other cases the influence that the constituents of a set 

exert on each other may dominate.  In addition, theory supported by empirical 

data suggests that the characteristic of an innovation is a vital factor that 

underlies such differences. For example, a new fertilizer may be subject to 

intense debate among farmers. Thus, this would show high internal influence.  

However, this likely would not happen for a new brand of apple juice or laundry 

soap. (113) 

 
 
 
 

 

Figure 5-2. Diffusion curves for different combinations of external and internal 
influence.  (113) 
 
 
 

          Implicit in many models of diffusion or growth is the assumption that 

diffusion occurs homogeneously, or that the impulse toward adoption remains 

constant throughout the time span. Lekvall and Wahlbin (108) state explicitly:  
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"External and internal influence is assumed to be uniformly distributed…so 
that adopters and non-adopters are contacted in proportion to their current 
numbers in each time period."  
 
 

          Since decreasing or increasing stimulus effects may affect the skew of the 

diffusion curve, models should explicitly incorporate these effects. However, 

skew may arise from other factors. Hernes (78) classifies skew in the following 

way: 1) structural heterogeneity, when some capacity is differentially distributed 

in the population, such as a characteristic which varies among members who are 

successively exposed to a stimulus, 2) dynamic heterogeneity, when the 

population changes as the process goes on such as the change in income level, 

and 3) changing stimulus effect, when the impact of exposure to the stimulus 

varies with time. This can be thought of as a modulating effect of the stimulus 

itself over time. Or it can be considered with dynamic heterogeneity, as when 

non-adopters increase their resistance or susceptibility with repeated stimulation. 

        With respect to the sources of skew mentioned above, a diffusion process 

can be thought of in different ways. If the process is described as one of varying 

stimulus effect, the model can represent exponentially modulated impact. If the 

process is considered with respect to dynamic heterogeneity, the equation can 

represent some exponentially changing property of the adopters and non-

adopters.  However, if the diffusion is considered with respect to structural 

heterogeneity, the question of whether the distribution of a population property 

modulates the quality of interaction between adopters and non-adopters must be 

posed.  Even with a constant distribution, the interaction quality may vary as 

subgroups of different resource levels consume more products. (78) 
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          A general nonsymmetric function can be used to describe an S-shaped 

curve. It resembles the logistic function.  Yet, its point of inflection is not the 

midpoint between zero and the upper asymptote.  If b < 1, the curve has positive 

or right skew.  If b > 1 the curve has negative or left skew.  That models a 

process which is asymptotically faster than the logistic. When b = 1, the function 

is logistic. It was noted that the function can be flexibly used to generate an S-

shaped curve as well as a J-shaped curve. (73) Furthermore, Lekvall and 

Wahlbin (113) summarized the phenomena with their statement:  

"Generally speaking, if the….network is dominated by external sources of 
influence the diffusion curve will approach the modified exponential 
function. If, on the other hand, internal [influence] is the most important 
influential factor, the curve will tend more towards the logistic type." 

  

          In the general case, the two processes described above can be combined 

in a manner similar to that of Lekvall and Wahlbin (113) and Coleman (34) into a 

Riccati equation.  Often, the right skewing in diffusion processes can be assumed 

to be the specific outcome of the superposition of external and internal 

influences.  Mathematically, this means that exponential and logistic processes 

are summed together. The inherent problem in diffusion models is that fitting 

them to aggregate data does not necessarily validate the models. Unless there is 

pre-existing knowledge of the strength of external and internal influences relative 

to each other, there is much difficulty in predicting the shape of a diffusion curve. 

(113)  According to Hernes (78), often the logistic or the modified exponential 

models are not used in modeling due to poor curve-fitting. Nevertheless the 
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alternative functions or processes generate curves of the same general skew to 

the right. 

           There are many phenomena which can be approximately described by a 

first-order difference or differential equation.  Studies of the dynamics of such 

models usually consist of determining static equilibrium solutions, and then 

conducting linearized analyses to ascertain their stability with respect to small 

disturbances.  Explicitly nonlinear characteristics are usually not considered. 

Modern studies have shown that the very simplest nonlinear difference or 

differential equations can possess a variegated spectrum of behavior.  These 

spectra can include stable points, cascades of stable cycles, and behavior that is 

in many ways indistinguishable from sample functions of random processes. 

(127) 

          A specific example is afforded by the “logistic” difference equation: 

Nt+1=Nt(a-bNt). In the limit b=0, it describes a population with purely exponential 

growth for a > 1. For b≠0, the quadratic nonlinearity generates a growth curve 

that contains a hump.  The steepness of the hump is tuned by the parameter a.  

Despite its extreme simplicity, in practical applications the equation has the 

disadvantage that it restricts X to the interval 0<X<1. If X exceeds unity, 

subsequent iterations diverge towards infinity. This means that the population 

becomes extinct. Furthermore, F(X) in the equation attains a maximum value of 

a/4 (at X=0.5). Hence, the equation has significant dynamical behavior only if 

a<4.  However, all trajectories converge to X=0 if a< 1. (127)  
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Figure 5-3. Trajectories of the “logistic” difference equation.  (127) 

 
 

 In many cases of dissymmetrical sigmoids, however, congruence to 

observed data is inadequate.  Some extensions of the formalism of the logistic 

law can be made towards a more general autonomous growth function. Buis (24) 

developed an approach that uses the growth diagram or trajectory. It was 

developed for the graphic description of the state variation of a growing system 

and uses: the instantaneous rate and the instantaneous acceleration as germane 

parameters. The two admissible state representations are derived from either the 

absolute rate V = dy/dt, or on the relative rate R = (1/y)(dy/dt) which has the 

effect of a logarithmic transformation. The trajectory is located in plane (V, Γ) or 

(R, ΓR), respectively. The last parameter, ΓR, is denoted as the relative 

acceleration, dR/dt.  
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Figure 5-4. Variation of the relative rate, R, for different values of n.  The case 
n=1 corresponds to the Verhulst logistic growth law. (24) 
 
 
 
 
 

 

Figure 5-5. Logistic growth diagrams for different values of n. (24) 
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         Buis (24) defines simple logistics as a linear decrease in the instantaneous 

specific rate of growth in relation to growth variable y:  

                                             
(A ) a 1

A
( )yR k y= − = −                 (5-1) 

with k, a and A > 0. A is the maximum value.  Alternatively, the instantaneous 

absolute rate V can be expressed by a Riccati differential equation:  

 

                             2aV (A ) a 1 a
A A

( ) ( )yky y y y y= − = − = −    (5-2) 

 

          Hence, the logistic law is parameterized in the second equation by a 

damping term known as the Verhulst “force retardatrice”. (24, 179, 180) In an 

additive model, V is proportional to y2. However, in a multiplicative model, V is 

the product of the derivatives of the geometric and negative exponential laws 

which approximate logistic behavior. The approximations occur the beginning 

and at the end of growth, respectively. Thus, the absolute rate, V, can be written 

as a Taylor series:  

 

2 3
0 1 2 3( ) ....dy f y c c y c y c y

dt
= = + + + +                                (5-3)  

 

           As f(y)=0 for y=0 and y=A, f(y) has two real, positive roots. The equation 

goes to a quadratic function f(y)=c1y-c2y2 with c1 and c2 nonegative. Hence, the 
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logistic law of growth corresponds to a kind of minimum formalism, as meant by 

Verhulst with the equation for the decrease in R.  (24, 179, 180) 

5.1.2 Riccati-Bass diffusion model 

         The Riccati-Bass diffusion model was developed in the late 1960s by Frank 

Bass (10) and describes the process of how new products get adopted as an 

interaction between users and potential users. The model is widely used in all 

types of forecasting. Mathematically, the basic Bass diffusion equation is a 

Riccati differential equation (158) with constant coefficients. See Appendix A for 

the derivation of the Riccati differential equation. 

          The Bass model is formulated in the following manner: 

 

                                              
( ) ( )

1 ( )
f t p qF t
F t

= +
−

                               (5-4) 

where:  

 is the rate of change of the installed base fraction 

 is the installed base fraction 

 is the ultimate market potential 

 is the coefficient of innovation 

 is the coefficient of imitation 

 Sales is the rate of change of adoption multiplied by the 

ultimate market potential : 
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            ( ) ( )S t mf t=                            (5-5) 

                          

2 ( )

( ) 2

( )( )
(1 )

p q t

p q t

p q eS t m qp e
p

− +

− +

+
=

+
         (5-6) 

The time of peak sales  

          *
( )

qLn
pt

p q
=

+
                        (5-7) 

In the original model (10), the coefficient p denotes the coefficient of 

innovation, external influence, or advertising effect. Meanwhile, the coefficient q 

is defined as the coefficient of imitation, internal influence, or word-of-mouth 

effect. Typical values of p and q have the following range. The mean value of p 

tends to be 0.03, and is often less than 0.01.  Meanwhile, the mean value of q 

tends to be 0.38, with a typical range between 0.3 and 0.5 

         Norton and Bass (142) extended the model for sales of products with 

continuous repeat purchasing. The model formulated for three generations is 

below. 

   1, 1 1 2( ) (1 ( ))tS F t m F t= −                  (5-8) 

       2, 2 2 1 1 3( )( ( ) )(1 ( ))tS F t m F t m F t= + −               (5-9) 

         3, 3 3 2 2 1 1( )( ( )( ( ) ))tS F t m F t m F t m= + +             (5-10) 
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where                    i i im a M=  

    is the incremental number of ultimate adopters of the ith generation       

product 

 is the average (continuous) repeat buying rate among adopters of the ith 

generation product 

 is the time since the introduction of the ith generation product 

 

            

( )

( )

1( )
1

i

i

p q t

i
p q t

eF t q e
p

− +

− +

−
=

+
         (5-11) 

It has been found that the p and q terms are generally the same between 

successive generations.  (142) 

 
 
 
 

 

Figure 5-6.  Graph of total adopters for product cycle. (10, 142) 

http://en.wikipedia.org/wiki/Image:Bass_adopters.gif�
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Figure 5-7. Graphs of innovators, imitators, and new adopters for product cycle. 
(10, 142) 
 

 
 
5.2 The role of calcium in force and fatigue  

 
in denervated muscle 

5.2.1 An early model of calcium current  
in skeletal muscle 

 
There has been work done that indicates the role of calcium in muscle 

force and fatigue.  The calcium has been assumed to behave as a current. 

 
 
 

 

Figure 5-8. Block diagram of calcium mediated activated force generation model. 
(185) 

http://en.wikipedia.org/wiki/Image:Bass_new_adopters.gif�
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          The calcium mediated activation model (c.m.a.m.) describes the changes 

of the calcium concentration intracellularly. At rest the calcium is stored mostly in 

the terminal cisternae of the sarcoplasmic reticulum (SR).  When an action 

potential spreads over the t-tubules, calcium flows into the sarcoplasm and binds 

to troponin. A resulting calcium-troponin complex facilitates force generation. 

Dissociation of the complex occurs via low sarcoplasmic calcium concentration 

by a calcium pump in the longitudinal SR against a calcium gradient. At rest, and 

after an action potential, calcium flows into the sarcoplasm because of the 

calcium gradient.  In the SR, calcium diffuses back to the cisternae passively.  In 

this model, troponin and calcium carriers are treated as separate compartments 

due to their binding capacities.  Also, a uniform calcium concentration is 

assumed inside each compartment.  This implies that all diffusion processes are 

virtually instantaneous in each compartment.  (185) 

The differential equations used to model the calcium concentrations in 

each compartment arise from the differences between the ionic influx and efflux 

of these compartments. Also, the system was assumed to be closed so that the 

amount of calcium, troponin and ATPase would not vary. Biochemically, the 

amount of ATPase in the SR is so great that its buffer action is significant. 

According to the model, the ATPase competed strongly with troponin in calcium 

binding.  It was found that the muscle dynamics after the second action potential 

varies greatly with the degree of calcium occupancy of both the troponin and the 

ATPase.  This model allows for the examination of other parametric influences on 

excitation-contraction coupling.  (185) 
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Figure 5-9. Calcium current flow diagram in c.m.am. (185) 
 

 
 

5.2.2 The relationship of calcium-troponin binding,  
calcium channel activation, and voltage sensitivity to  
force generation in paralyzed muscle 
 

It is hypothesized that the calcium current has a quantal nature.  

According to del Castillo and Stark (27), variations in calcium concentration had 

no significant effect on the end-plate sensitivity to depolarization. However, 

changes in calcium concentration did markedly affect the magnitude of the end-

plate voltage.  Thus, it was concluded that the quantity of acetylcholine liberated 

by an individual maximal motor event is directly proportional to the divalent 

calcium concentration at the neuromuscular junction. (28-31)   Based on the 

above premises, the quantum hypothesis assumes that there is a large number 
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(n) of quanta stored in the nerve terminal. Each quanta has a certain probability 

of being released upon nerve stimulation. If the average probability of released is 

p, the mean number of quanta released per unit of stimulation is defined by m=np   

A reasonably accurate estimate of p may be obtained from two-pulse 

experiments in which the amplitude of the second response is depressed. It has 

been shown that the amplitude of the second response decayed to an initial 

value exponentially as the interval between the two pulses increased. (126) 

However, it has been shown that the depression of the end-plate potential 

produced by low-frequency stimulation over long periods can be accounted for 

entirely by a reduction in quantal content rather than a change in size. (126, 178) 

Repetitive stimulation of muscles elicits contractions that summate 

nonlinearly, especially when tension saturates at the high-frequency tetanic level. 

The force-frequency curve under isometric conditions is generally sigmoidal. This 

indicates an additional nonlinearity at low frequencies. It has also been found that 

the force from two closely spaced stimuli could be significantly larger and more 

prolonged compared to a twitch.  At low frequencies that generate twitches 

without fusion, staircase phenomena in both mathematical directions have been 

observed. This implies a facilitation or depression of the force profiles from 

successive inputs, as well as posttetanic potentiation of twitches.  The length-

tension and force-velocity curves of muscle show other well-known nonlinearities. 

Finally, small magnitude nonlinearities have been recorded that are associated 

with the bending of myofilament bonds until fracture. (175) 
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Figure 5-10.  Evidence of early depression in the cat soleus in response to 
subsequent pulses.  Note that pulses C2-C4 have progressively longer times to 
peak force.  (175) 
 
 
 

Stein and Parmiggiani (175) found two phases of nonlinear summation 

under a wide range of conditions in fast- and slow-twitch mammalian muscles. 

Early depression or less-than-linear summation occurs when a second 

contraction is superimposed on the rising phase of a twitch, and a phase of 

facilitation or more-than-linear summation is seen later in the time-course of the 

twitch.  The two phases could be different aspects of the same basic 

phenomenon since the early depression becomes more prominent with repetitive 

stimulation as the later facilitation becomes less pronounced. (175)  Yet, the 

investigators believed that the two types of nonlinearities arise from distinct 

mechanisms for several reasons.  First, later facilitation was still present with 

time intervals greater than the contraction time of the muscles that were studied. 

Meanwhile, early depression was totally eliminated.   
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Figure 5-11.  Averaged and superimposed twitches in cat soleus.  The response 
of j-1 stimuli was subtracted from j stimuli to document to nonlinear contribution 
of Cj.  (175) 
 
 
 

 It was found that the increasing depression with additional pulses and 

variation of the depression with the twitch-to-tetanus ratio under a variety of test 

conditions were totally consistent with the initial depression due to a saturating 

process in a muscle. From experiments on amphibian muscle at low 

temperatures, it was hypothesized that a muscle is maximally activated for a 

prolonged time period. This is denoted as the “plateau of the active state.” This 

plateau occludes force generation since a later input could not generate any 

extra force unless the active state decreased below its plateau level.  

Nevertheless, it is generally accepted that mammalian muscles at normal 

temperatures are not at maximal activation from a single input.  However, if a 

second pulse is superimposed on the rise of a twitch, a less-than-linear 
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summation of generated force initially occurs. This is known as “depression”. 

(175)  As the twitch peaks, this early depression transitions to a subsequent 

more-than-linear summation. This is known as “facilitation”.  Several possible 

mechanisms have been proposed for the facilitation of force generation from 

subsequent inputs.  (149) 

Parmaggiani and Stein (149) found that the facilitation of the tension 

produced by a subsequent pulse decayed in exponentially as a function of the 

interpulse interval, regardless of how facilitation was measured.  In comparing 

fast- and slow-twitch muscles, the time-course of the facilitation depended on 

muscle contraction time.  Thus, it was concluded that the same processes that 

modulate twitch contraction time also likely modulate tension facilitation due to a 

subsequent pulse.  However, tension facilitation is remarkably different for later 

pulses in a train. While the facilitation due to a second pulse decreases 

exponentially with the interpulse interval, the optimal interval for third-pulse 

facilitation is greater than 100 ms in slow-twitch muscles.  Comparing fast and 

slow muscles, the optimal interpulse interval was found to be closely related to 

the duration of contraction, and was shown to range from 1.26 to 1.5 times the 

duration of the twitch in the fast and slow muscles investigated. Hence, this 

suggested again a relationship between the mechanisms that modulate duration 

of contraction and those that govern tension facilitation. Nevertheless, the 

investigators envisioned a progressive saturation, instead of sudden occlusion, 

as additional divalent calcium released by successive stimuli occupy more and 

more of the sites on troponin. 
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Figure 5-12.  Movement of charge in normal rat e.d.l. (squares) and soleus 
(circles) as a function of voltage.  The dashed curve is the soleus curve scaled to 
maximum and demonstrates the voltage sensitivity differential in the two fiber 
types. (60) 
 
 
 

 

Figure 5-13.  Average movement of charge in paraplegic rat soleus (circles) as a 
function of voltage.  The dashed curve is the solid curve scaled to a maximum 
and demonstrates the change in charge movement in denervated soleus. (60) 
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The above processes have been suggested to be a first-order Michaelis-

Menten reaction. The findings of Dulhunty and Gage (60, 61) also suggest that 

the baseline calcium current changes between pulses in a stimulus train.  As the 

calcium concentration increases, force increases until the troponin is saturated.  

Once the troponin is saturated, no more calcium can be bound and contractile 

force decays.   

The calcium current is hypothesized as a function of either the type or 

quantity of the charge-generating proteins in a membrane.  A change in the 

quality of current likely depends on a turnover of protein subunits in the 

membranes of the t-tubule or the sarcoplasmic reticulum.  It has been observed 

that the time course of the change in the quantity of current in e.d.l. fibers 

following nerve section corresponds to the time course of other morphologic 

adaptations in the sarcotubular membranes following denervation.  The role for 

the indentations in excitation-contraction coupling has been demonstrated by the 

result that the quantity of indentations in denervated e.d.l. fibers were much lower 

than in intact fibers.  However, it was found that there is little or no change in 

current in denervated soleus fibers, even with denervation.  It was thus 

concluded that the normal activity pattern in soleus does not modulate the 

current qualities.  However, the higher activity rates of soleus that follow 

denervation indeed modulate current in the muscle. It was thus shown that 

denervated e.d.l. fibers adopt the current qualities of intact or denervated soleus 

fibers. (61)  These findings may be applied to paralyzed muscle. 
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5.2.3 The roles of inactivation of excitation-contraction  
coupling and voltage sensitivity in decreased force- 
generating ability, and increased fatigability, in  
paralyzed muscle 
 

Inactivation of excitation-contraction (EC) coupling is thought to arise in 

the voltage sensor of the SR because asymmetric current is inactivated during 

depolarization. It has a time course similar to that of tension inactivation. 

Inactivation of EC coupling is not caused by calcium depletion from the SR.  It is 

neither caused by inactivation of the calcium release channel or myofilament 

contractile proteins.  Diffusion delays do not explain the difference in time course.  

If diffusion were rate limiting, force decay would not be depend on voltage and 

maximum ionic contractures would not have magnitudes as great as in tetanic 

force.  Forces in superficial fibers would inactivate before forces in deeper fibers 

would activate. The interpretation of the observations was that there are two 

stages of inactivation in the EC coupling process.  It has been denoted that the 

two states of the voltage sensor in amphibian muscle are ‘refractory’ and 

‘denervated’. The refractory state modulates the decay of ionic contracture 

tension and is rapidly reversed upon repolarization. The denervated state occurs 

with longer periods of depolarization, with deprivation of external calcium in the 

presence of divalent calcium channel antagonists. Recovery from the denervated 

state takes many minutes. (59) 

The two states of inactivation can be realized by a state model which 

extends from previously proposed models. The calcium channel in the terminal 

cisternae is opened when a voltage-sensitive protein in the t-tubules is converted 

from a precursor state, P, to an active state, A. The conversion to A depends on 
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the initial formation of an intermediate state, Q. This followed by rapid 

dissociation of calcium which transforms Q to A. The two-step transition from P to 

A, which is dependent on calcium, explains the effects of low external 

concentrations of calcium on muscle contraction.  However, during prolonged 

depolarization, A is slowly transformed to an inactive state, I, and then to an 

additional inactive state Y.  Based on that reasoning, it was thus proposed that 

the transformation of I to Y involves the dissociation of additional divalent 

calcium.  That is because the denervated state is reached more easily in low 

concentrations of calcium. The formation of A changes the conformation of the 

calcium release channel in the terminal cisternae from a closed to an open state. 

(59, 112-119) 

Dulhunty (59) noted the remarkable morphologic similarities and homology 

between the sodium channel and the dihydropyridine receptor calcium channel 

and suggested that fast and slow inactivation are modulated by similar 

mechanisms. This implied that the possibility that one component of EC coupling 

inactivation happens in the coupling process between the voltage sensor and 

calcium release channel did not exist.  Another remarkable comparison between 

the inactivation of sodium channels and the voltage sensor for EC coupling is 

that, in mammals, both happen at more negative membrane voltages in fast-

twitch fibers than in slow-twitch fibers. This suggested that the voltage sensitivity 

of inactivation in the two different proteins might be modulated by the membrane 

environment.  
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A fundamental property of denervated muscles is the inability to sustain 

force during tetanus contraction. Hence, a voltage-sensitive mechanism may be 

involved in this dysfunction.  It was previously hypothesized that such a 

mechanism involved in tetanic contraction, such as the dihydropyricline (DHP)-

sensitive L-type calcium channels, may adapt upon denervation in mammalian 

fibers.  Delbono and Stefani (40) found that numbers of indentations change in 

parallel to the magnitude of current following denervation. This is because the 

quantities of membrane indentations in denervated muscle fibers were shown to 

remarkably decrease from those in intact muscles. This suggests that calcium 

channels themselves cannot be ruled out and the cause of shifts in membrane 

voltages.  However, the decrease in voltage sensors detected by reduced 

calcium current at various stages of the denervation process was suggested to 

cause the decrease in mechanical force in mammalian skeletal muscle. 

Delbono and Stefani (40) found that the calcium current amplitude 

increased during the first days of denervation and then decreased with respect to 

intact fibers. In the second week post-denervation, the maximum current was 

observed to significantly reduce. This led to the question of whether or not the 

number of voltage sensors actually decreases by observing binding of different 

calcium channel antagonists over time.  Since it was known that the functioning 

channels, based on the probability of open channels, could be much less than 

the channels recorded by assay, this study implied that the number of DHP 

receptors reduces after two weeks of denervation. 
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Figure 5-14.  Changes in the charge-voltage relationship in rat extensor digitorum 
longus at various stages of denervation. (40) 
 
 
 

A significant decrease of the maximum force of tetanic contractions may 

be explained from the fact that fibers with smaller diameter have lower 

membrane capacitance because of the decreased contribution of the 

sarcotubular membrane. The increase in the tubular membrane fraction 

increases the membrane notwithstanding a significant decrease in fiber diameter. 

The volume fraction change of the sarcotubular system may explain the lack of 

celerity of calcium activation in states of denervation. 

Additionally, Delbono and Stefani (41) showed that inactivation of calcium 

current in denervated fibers had faster recovery and a delayed onset. This makes 
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the calcium current harder to inactivate in whole muscle. It was suggested that 

proteolysis during denervation may decrease the function of a typical inactivating 

gate in some calcium channels.  It was noted that denervated skeletal muscle 

contains a higher concentration of calcium than in intact muscle. This was 

suggested to arise from the decrease in Ca2+-ATPase activity which triggers 

proteolysis. (35, 41, 59) It was shown that inactivation of calcium in denervated 

soleus fibers had a faster recovery time course as well as a slower onset of 

inactivation. This renders divalent calcium in denervated muscle harder to 

inactivate. There was only a partial voltage dependence of the calcium 

inactivation and it was shifted leftward. These changes in the voltage 

dependence of calcium current inactivation differ from sodium current inactivation 

in denervated fibers of the rat.  The maximum calcium current recovered with an 

exponential time course during the interpulse interval at -90 mV. Yet, the 

recovery from inactivation was shown to be quicker after denervation than in 

intact fibers. It was hypothesized that, at that voltage, most of the channels are 

closed rather than inactivated however. (41)  

Paralyzed muscle fatigue dynamics can be inferred from those of 

denervated muscle.  Since the calcium current in paralyzed muscle is reduced, 

this implies that the calcium released from each pulse in a stimulus train is also 

reduced. As paralyzed muscle also contains excess calcium from proteolysis of 

fibers, this implies that troponin saturates much more quickly during an elicited 

contraction.  Rapid saturation of troponin would generate maximal force more 

quickly.  Yet, maximal force cannot be sustained due to the morphological 
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degradation of the calcium channels.  Hence, even with the excess calcium in the 

myoplasm, force in paralyzed muscle decays because there is degraded 

contractile machinery in the fibers. (41, 59) Furthermore, inactivation of EC 

coupling likely contributes to muscle fatigue. The rate of inactivation in fast-twitch 

fibers corresponds with the damped tension during high-frequency stimulation. 

(35) 
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CHAPTER 6: METHODS 

 

The goals of this thesis are to ascertain which model structure as  well as 

which parameterized closed-form model is best for predicting force as well as 

predicting fatigue in paralyzed human soleus across different muscle/state 

combinations over time of stimulation.  In doing so, an assessment of the 

predictive value of the information will be performed.  At the completion of the 

work, there will be a more definitive view of the predictive value of different 

models of force and fatigue in paralyzed human soleus as well as an enhanced 

understanding of muscle physiology. 

          Data collection of force and fatigue profiles was performed in the Clinical 

Measurement Laboratory at The University of Iowa Hospitals and Clinics (UIHC).  

Subjects with paralysis qualified for the study if they have had complete paralysis 

at the level of T12 or above for at least two years.  Two of the investigators 

supervising this study (RKS, LFL) work extensively with SCI subjects and have 

assisted in the identification of the subjects from the laboratory.  Subjects of both 

sexes and all races were considered for enrollment. Since spinal cord injury 

occurs primarily in young to middle-aged adults, only subjects greater than 18 

years of age were enrolled. These subjects had no other medical conditions and 

be greater than 18 years of age. 

6.1 Human subjects 

          Subjects with paralysis were recruited by personal contact, telephone or 

mail by physical therapy staff after a review of records to determine their time 
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after injury. Subjects were excluded from the study if they were unable to provide 

informed consent. Subjects who are paralyzed were excluded if they presented 

with medical problems other than spinal cord injury. 

          Informed consent was obtained from each subject.  Each subject was then 

asked to fill out a questionnaire that identifies demographics and injury history. 

Electrical stimulation of the soleus with doublet ramp stimuli then commenced. 

For all stimulation trials, the paralyzed subject remained in his or her wheelchair.  

Rest periods of five minutes occurred between each input train.  A force-fatigue 

profile was retrieved and stored during the duration of each different input.   

Profiles were stored both on hard drive as well as optical disk.  The time for the 

acquisition of these data was approximately 30 minutes per session. 

This protocol was submitted to the Investigational Review Board of The 

University of Iowa for approval.  This study does not involve biohazard materials. 

Subject confidentiality has been strictly honored.  Subjects of either gender have 

not been identified by name in publications or presentations at scientific 

sessions.  The risks of the study were outlined in the consent form. 

6.2 Experimental setup, instrumentation, recording  

 
procedures, and data collection  

          The equipment used to collect the data in this study consists of custom-

designed electronic equipment for collection, recording, and analysis of real-time 

human paralyzed muscle force and fatigue data described in the following 

subsections.  It is located in the Clinical Measurement Laboratory of the 

University of Iowa Hospitals and Clinics (UIHC).  No other equipment was used 

in this protocol. 
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6.2.1 Experimental setup 

The torque measurement system is designed to measure the 

plantarflexion torque with a subject in the seated position with the knee and ankle 

at 90’. Adjustability of the heel cup, force transducer, and axis of rotation allows 

the force transducer (AWU-250, Genisco technology) to be positioned under the 

first metatarsal head. The foot plate axis of rotation is aligned with the anatomic 

axis of the ankle. Stabilization of the heel to the foot plate during torque 

production is provided by a rigid ankle cuff directing three vectors of force 

through the calcaneus via turnbuckles. A double strap secured over the femur 

provides additional stabilization of the heel in the foot plate assembly during 

plantarflexion 

 

 

 
 
 
 
 
 
Figure 6-1.  Torque measurement apparatus including adjustable axis of rotation, 
stabilization cuff, and femoral strap.   (66) 
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. Figure 6-1 shows a schematic of the torque measurement system. 

Calibration of the torque measurement system is to be done with known loads. 

By induction from previous work, the calibration yields a linear regression 

equation with a correlation value (R2 of 0.99. The force transducer is 

electronically coupled to a multichannel recorder.   Various indices of calibration 

are to be calculated for this protocol. 

6.2.2 Instrumentation  

            Two silver-silver chloride electrodes (8 mm in diameter, with an inter-

electrode distance of 20 mm) will record soleus compound muscle action 

potential activity to verify supramaximal activation.  Each electrode will contain an 

on-site pre-amplifier with a gain of 36.  The signal will be further amplified by a 

GCS 67 amplifier (Therapeutics Unlimited, Iowa City, IA, USA) with adjustable 

gain from 500 to 10,000.  The amplifier utilizes a high impedance circuit (greater 

than 15 MΩ at 100 Hz), with a common mode rejection ratio of 87 dB at 60 Hz 

and a bandwidth of 40-4000 pulses per second.  

A custom-designed constant current stimulator and isolation unit has a 

current range from 0 to 200 mA with current variations of less than 5% and total 

voltage capability of 400 V. It will be triggered by digital pulses from a data-

acquisition board (Metrabyte DAS 16F, Keithley Instruments Inc., Cleveland, OH, 

USA) housed in a microcomputer under custom software control.  The 

stimulation intensity will be supramaximal which is about 50% greater the 

intensity required to produce a maximum compound muscle action potential. 

Stimulation inputs are to be delivered via a double-pronged stimulation electrode 
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secured over the tibial nerve with the use of a gel pad that adheres to the back of 

the leg.  

6.2.3 Recording procedures 

          The skin over the soleus muscle was scrubbed with alcohol, and the 

electrode was applied 2 cm lateral to the midline at one-third the distance from 

the lateral malleolus to the fibular head. After visual inspection of the M-waves, 

the electrode may have needed to be slightly repositioned in order to accentuate 

the biphasic waveform. Each subject had the right foot placed in the torque 

measuring device and secured so that the ankle will be at 90º. The wheelchair of 

the subject was rolled forward until the knee is also flexed to 90º. The knee was 

positioned at ninety degrees of flexion and the ankle was secured to the test 

apparatus in the neutral joint position. The tibial nerve was activated using a 

double pronged stimulation electrode that was secured on the calf.  The test 

position minimized the contribution of the gastrocnemius to the plantarflexor 

torque. 

The splinted dual pronged nerve electrode was used to stimulate the tibial 

nerve in the popliteal fossa, using computer driven pulse sequences generated 

by the custom-made constant-current stimulator using 250 μsec pulsewidths.  

The placement of the electrode was optimized to produce the largest soleus M 

wave peak to peak amplitude.  Stimulation intensities were then increased to 

approximately 1.5 times greater than required for a maximum M wave to ensure 

supramaximal stimulation throughout the protocol.   
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All data collected were the force signal profiles for each input, and the 

EMG response for each input. The force, EMG and stimulation trigger signals 

were recorded simultaneously into ASCII text files and later analyzed using 

MATLAB 7.0 software (The Mathworks, Natick, MA).  All data were digitized at 

1000 samples per second. 

6.2.4 Data collection 

          Via the equipment described in Subsection 6.2.1, soleus force-fatigue data 

collected from four paralyzed trained limbs and four paralyzed untrained limbs 

from subjects with chronic, complete SCI was used in this study.  All subjects 

were otherwise healthy.  Written informed consent, as approved by the 

institutional review board, was obtained prior to collection of the force data. 

 
 

 
   

 

 

 

 
 

 
 

 
 
Figure 6-2.  Schematic representation of the stimulation patterns, showing only 
the 10 pps series and the doublet ramp used for parameter determination for 
each model.  (66). 
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Following the work of Frey-Law and Shields (66), and with the assumed 

physiologic approximation of paralyzed trained muscle to nonparalyzed muscle, 

the stimulation protocol begins with a series of 1 pps twitches to determine the 

optimal electrode placement and ensure supramaximal levels of activation.  Five 

warm-up contractions, 7-pulse trains (20 pps trains, 330 msec on: 670 msec off) 

applied at 1 train/sec, were then given to ensure the soleus muscle was in a 

more potentiated state, without inducing fatigue.  Following the warm-up, a pre-

programmed stimulation trains were then performed. The set consists of: a 

doublet ramp of 15 pulses with interpulse intervals (IPIs) of 200, 6, 127, 100, 67, 

67, 50, 50, 67, 67, 6, 94, 133, and 200 ms (1234 ms duration, Figure 6-2).  

Following the method of Shields and Dudley-Javoroski (162), with the 

assumed physiologic approximation of paralyzed trained muscle to nonparalyzed 

muscle, the fatigue protocol uses supramaximal intensity to elicit contractions. 

The stimulator is programmed to deliver a train of 10 pulses (15 pps; 667 ms 

duration) every 2 seconds.  A bout of stimulation consists of 125 trains.  Subjects 

complete four bouts of stimulation during a session.  The bouts of stimulation are 

separated by rest periods of 5 minutes. 

6.3.1 Introduction 

6.3 Validation protocols 

When electric current is applied to any biologic tissue, its physicochemical 

equilibrium is perturbed.  As a result, by the principle of Le Chatelier (8), the 

biologic tissue changes state to minimize the perturbation of its equilibrium.  In 

the case of muscle, regardless of presence or absence of pathology, the 
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equilibrium depends on the increase or decrease of free calcium in the 

sarcoplasmic reticulum.  As a muscle is extrinsically stimulated at low 

frequencies over a prolonged period of time, it contracts until there is insufficient 

free calcium to sustain a contraction at a given level of force.  This decay in 

contractile ability is known as low-frequency fatigue.  Another contraction cannot 

begin until the equilibrium of free divalent calcium the muscle is reestablished at 

sufficient levels.  (1, 73, 130, 163) 

 
 

 

Figure 6-3.  Hypothetical CN curve from a Riccati-Bass diffusion function for R0 
resulting from a doublet ramp input.  It varies with time and accounts for 
nonlinear summation of activation from each pulse. 
 
 
 

To capture the dynamics of the autocatalytic periodic reactions (112-119) 

that modulates muscle force and fatigue in the Ding models (48-56), a Riccati-

Bass R0 and km are respectively hypothesized to account for the gradual 

occlusion of troponin by calcium (149), the macromolecular crowding of CaTr in 

the sarcoplasm (163), and for asymmetrical movement of charge predicted by 
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exponential functions upon electrical stimulation (41, 60).  The contractile 

machinery in muscle can be represented as a stop transducer with reversed 

polarity.  Its behavior can thus be characterized by dynamic R0 or km modeled 

with a decreasing Riccati-Bass diffusion function that maintains constant 

probabilities of actions in its coefficients for each contraction. (10, 142)  As the 

activation curve for R0 flattens between each pulse, the nonlinear summation for 

Ri, as well as the force, in the entire stimulus train also decays.  

 
 
 

’ 

Figure 6-4.  Assumed structure of muscle in Conaway models.  (9) 
 
 
 

6.3.2 Determining differences in force-fatigue  
model structure 

 
Therre os much recent literature that cite the Ding (48-46) work.  Hence, it 

appears that the Ding models can be modoified in myriad ways.  One such way 

is to incorporate the Riccati equation to characterize different physiologic 

processes iin predicting force and low-frequency fatigue in the chronically 

parluzed human soleus.. 
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6.3.2.1 Physiological rationale 

This is the first force-fatigue model structure to incorporate mathematical 

diffusion functions to describe major physiologic processes that occur during a 

muscle contraction. In this study, the problem is one of parameter estimation for 

a specific decay curve at the beginning of an actual process and then making 

predictions of the continuation by optimizing the estimated function. (113)  

Furthermore, two forms of influence on the different diffusion processes are 

distinguished.  They are external and internal sources of influence. (108)  This 

phenomena is reflected by the particular coefficients of the Riccati equation that 

is included in each of the Conaway models.  In each model, the external 

influence comes from the extrinsic calcium applied to the muscle that causes 

calcium to move.  Internal influence is a function of the relevant structures in the 

sarcoplasmic reticulum, specifically calcium channels, to behave according to 

certain aggregate probabilities in different states. 

Furthermore, a nonsymmetric function can generate a sigmoidal curve 

similar to the logistic function.  Yet, its point of inflection is not necessarily the 

midpoint between zero and the upper asymptote.  If b > 1 the curve has negative 

or left skew.  That models a process which is asymptotically faster than 

described by the logistic function. (73)  Even with a constant distribution, the 

interaction quality may vary as muscles of different training states require 

different levels of calcium to contract.  In both Conaway models, the external and 

internal processes described above have been combined into a Riccati equation 

such that the exponential and nonsymmetric sigmoidal processes are 
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superposed.   In addition, the diffusion laws in the models are modulated by a 

damping term.  (24, 179, 180)  Hence, it is hypothesized that R0 and km are both 

products of the derivatives of nonsymmetric sigmoidal and negative exponential 

damping laws which asymptotically approach logistic behavior.  Thus, in the 

Conaway models, the Riccati-Bass diffusion model (10) describes the external 

and internal processes of muscle force and fatigue.  And, since Norton and Bass 

(142) extended the model to predict activity in subsequent cycles, it is 

hypothesized that the Riccati-Bass coefficients are constant for each contraction 

in a bout of stimulation.  Finally, it is inferred that the underlying processes 

involved in the calcium binding or activation of extrinsic stimulation still behave 

according to a power law of Michaelis-Menten kinetics (162) in each contraction 

in fresh and fatigued states in paralyzed muscle. 

Thus, the learning objectives for modifying the Ding model of muscle 

fatigue are as follows.  It is hypothesized that modification of the original Ding 

models via an additional differential equation that more accurately predicts R0 as 

a function of time in fresh muscle, and R0 as a power law function of km in fatigue.  

The proposed additional differential equation will be first-order, ordinary, and 

nonlinear of the Riccati class. With the assumption that R0 and km are time-

varying quantities, this modified model structure is to provide the resolution 

necessary to account for the autocatalytic, periodic process of calcium release in 

the fresh state as well as inactivation of calcium channels and EC coupling in 

fatigue. A more accurate calculation of km and R0 will allow greater resolution in 

predicting force at various stages of the fatigue process. It will be especially 
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interesting to see how it works in the untrained human paralyzed soleus in a 

fatigued state due to its compromised biologic environment.  

6.3.2.2 Closed-form parameterized models 

By including more realistic calcium dynamics described by a Riccati-Bass 

function, it is hypothesized that the structure of the Conaway force-fatigue 

models yields a more robust model of muscle force generation, with respect to 

different inputs, than does the structure of the Ding force-fatigue models. 

The modified force model will be better able to predict force since it is 

assumed that calcium current follows a Riccati-Bass growth/diffusion/decay 

pattern (10) in muscle.  It is furthermore assumed that the excitation-contraction 

machinery acts as a stop transducer between electrical inputs and muscle force.  

With these dynamic assumptions, the differential equation to calculate R0 as a 

time-varying quantity goes to dR0/dt=-(λ 1+λ 2R0)(1-R0), with λ 1 as the calcium-

troponin association affinity and λ 2 as the calcium-troponin dissociation affinity. 

The numerical values of the Riccati-Bass coefficients will be determined via 

parameter estimation.  However, following Norton and Bass (142), they will be 

assumed to be constant over an entire stimulation bout.  

             With the additional Riccati differential equation for the parameter R0, 

below is the complete, modified Ding model of muscle force.  It will hereafter be 

referred to as the Conaway model of muscle force. 
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Table 6-1. List of parameters for the Conaway muscle force model. 

Symbol  Unit  
Definition  

CN  
 

Normalized amount of Ca2+-troponin complex  

F  N  
Mechanical force  

ti  ms  
Time of the ith stimulation  

N 

 
Total number of stimuli in the train before time t 

tp  ms  
Time of the pth data point  

tq  ms  
Time of the qth set of force model parameter set  

τc ms 
Time constant controlling the rise and decay of CN  

A  N/ms  
Scaling factor  

τ1 ms  
Time constant of force decline at the absence of strongly bound cross-bridges 

τ2 ms  
Time constant of force decline due to the extra friction between actin and myosin resulting 
from the presence of cross-bridges  

km  
Sensitivity of strongly bound cross-bridges to the change in calcium current 

h  ms 
Integration step  

λ 1 ms-1 Affinity for calcium and troponin to bind after the first pulse during a stimulated contraction 

λ 2 ms-1 Affinity for calcium and troponin to dissociate after the first pulse during a contraction 

 

 

With the introduction of the Riccati-Bass equation for R0, this will improve 

upon the Ding model of muscle force generation by allowing for nonlinearity in 
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the divalent calcium concentration during stimulation.  The time-dependent 

Riccati-Bass model describes the manner in which extra calcium in muscle from 

applied external stimulation current behaves between pulses.  The differential 

equation must be negative to model the change in calcium-troponin binding from 

subsequent pulses in a stimulus train as a decaying process.  Since the Riccati-

Bass equation is frequently used in forecasting, it is reasoned that it may be used 

to predict force in human muscle.  With the Riccati-Bass equation, nonlinearity to 

the second order may be examined for the autocatalytic process of periodic 

calcium release in fresh muscle contraction, especially when there is no force 

decay from fatigue.  A more exact initial R0 may then be used to calculate Ri and, 

ultimately, rate-limiting CN during later stages of force generation at higher 

stimulate on frequencies and in response to special pulse forms such as 

doublets. 

In addition, with the assumptions of decreasing calcium sensitivity and 

stop transducer behavior of the excitation-contraction machinery for fatigue, the 

differential equation to calculate the variable km goes to dkm/dt=-(µ1+µ2km)(1-km), 

with µ1 as  the probability that calcium channel will activate and µ2 as the 

probability that calcium channel will inactivate. The numerical values of the 

Riccati-Bass coefficients will be determined via parameter estimation.  However, 

they will be assumed to be constant over an entire stimulation bout.  This new 

variable will then be used to calculate R0 as a power law function, and hence Ri 

and CN, in the force prediction algorithm. 
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Therefore, it is proposed that the Ri term will be modeled as a varying 

quantity with an additional time constant that is markedly lesser than τc at initial 

conditions.  In addition, to model fatigue with even more physiologic realism, the 

rate-limiting equation in the Ding model would need to account for leaked calcium 

and hence decreasing CN during stimulation.  In addition, this rate-limiting step 

needs to account for the calcium channel inactivation which results in higher 

concentrations of calcium.  It is thus hypothesized that R0 behaves as a power 

law function of a possibly fractal-like km during paralyzed muscle fatigue. The 

time constant τleak is introduced to account for the exponentially decreasing Ri 

that arises due to calcium leakage during fatigue, such that a combined time 

constant would be τfatigue=1/(τc+τleak).  It is assumed that Ri, due to a decaying km, 

would decrease in fatigue.  Hence, incorporating the novel parameter τleak into Ri 

would give Ri = 1+(R0-1)e-(ti-t[i-1])*1/(τc+τleak) or Ri = 1+(R0-1)e-(ti-t[i-1])*1/(τfatigue). 

The physiologic interpretation of the modification is that as calcium leaks 

out of fatiguing muscle, the differences in the degree of activation would 

decrease as the contractile apparatus is no longer able to sustain maximal force 

due to remodeling of the ryanodine receptors.  Yet, fatigue does not happen 

instantaneously.   Some investigators argue that fatigue begins immediately upon 

initial contraction.  Hence, to be physiologically plausible, τleak should be so large 

such that τfatigue≈τleak for large values of τleak.  Thus, it is hypothesized that the 

voltage sensitivity, as well as the interpulse summation of force, decreases 

markedly in fatigue. 
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With the additional time-dependent Riccati-class differential equation for 

the variable km, and the assumptions of calcium leak, increased inactivation, and 

possible fractal-like kinetics, below is the complete, modified Ding-type model of 

muscle fatigue.  It will hereafter be referred to as the Conaway model of muscle 

fatigue. 
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This fatigue model is governed by eight parameters: A (N/ms), ατ1  (N-1), 

τ1rest (ms), τ2 (ms), τleak (ms), a, b, and c.   The value τ1rest is the value of τ1 when 
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muscles are not fatigued.  F is the isometric force.  Experimental forces will be 

used in Equations 6-7 through 6-10 during parameter identification.  However, 

once the fatigue model is parameterized, forces predicted by Equation 6-5 will be 

used to test the ability of the model to predict fatigue.   Equation 6-11 models the 

decreasing voltage sensitivity during fatigue.    However, the equation must be 

negative to model the decay appropriately.  In addition, the voltage sensitivity 

must be modeled appropriately to account for the differences between the 

probability of activation (µ1) and probability of inactivation (µ2).  Hypothetical 

examples of Riccati-Bass voltage sensitivity at extremum probability ratio points 

are given below. 

 
 

 

 
Figure 6-5. Hypothetical Riccati-Bass voltage sensitivity with µ2/µ1=1.001.  For 
small ratios of µ2 to µ1, the voltage sensitivity changes so rapidly that the muscle 
inactivates quickly.  Hence, fatigue would onset very suddenly. 
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Figure 6-6. Hypothetical Riccati-Bass voltage sensitivity with µ2/µ1=10.01. For 
large ratios, the muscle inactivates at a slower pace.  Fatigue would onset very 
slowly. If that were physiologic reality, however, muscles would easily be 
damaged due to overwork from the lack of a refractory period. 
 
 
 

Furthermore, an analysis was done to investigate the nature of power laws 

(162) of Riccati-Bass functions (10) to determine whether the R0-km relationship 

could be fractal.  Such behavior was previously unknown.  Curiosity arose when 

the value of b in R0=akm
b+c did not change much, if at all, in preliminary 

optimizations of the Conaway fatigue model.  Nevertheless, a working value for b 

has been found to be in the range of 1.0-1.5 in repeated optimizations. 
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b=1 

 

b=1.5 

 
Figure 6-7.  Power law analysis of Riccati-Bass functions for b=1.0, 1.5.  
Increases in b shift the curves rightward and accelerate inflection. 
 

 

The limited power law analysis shows that power law functions of Riccati-

Bass equations are time-shifted sigmoids with increasing decay and accelerated 

inflection.    To apply this finding to the R0-km relationship (56), the optimal value 
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of b must be chosen such that the relationship remains nonlinear and the 

modeled delay in the calcium channels is optimized.   

 
 

Table 6-2. List of parameters for Conaway muscle fatigue model. 

Symbol  Unit  
Definition  

CN  
 

Normalized amount of Ca2+-troponin complex  

F  N  
Mechanical force  

ti  ms  
Time of the ith stimulation  

N 
 

Total number of stimuli in the train before time t  

tp  ms  
Time of the pth data point  

tq  ms  
Time of the qth set of force model parameter set  

τc ms  
Time constant controlling the rise and decay of CN 

A  N/ms  
Scaling factor  

τ1 ms  
Time constant of force decline at the absence of strongly bound cross-bridges 

τ2  ms  
Time constant of force decline due to the extra friction between actin and myosin resulting from the 
presence of cross-bridges  

ατ1  N-1 Coefficient for force model parameter τ1 in the fatigue model  

αA N-1 Coefficient for force model parameter A in the fatigue model  

τfat s  
Time constant controlling the recovery of the parameter τ1 during fatigue  

τleak ms 
Time constant to account for the exponentially decreasing CN that arises due to calcium leakage 
during fatigue 

τfatigue ms 
Superposition of τc and τleak, 1/τfatigue=1/(τc+τleak) 

a  
Coefficient of km 

b  
Exponent of km 

c  
Intercept of R0 

h ms  
Integration step  

µ1 ms-1 Probability that calcium channel will activate 

µ2  ms-1 Probability that calcium channel will inactivate 
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6.3.2.3 Data analysis 

Using unconstrained optimization parameter values, differences in mean 

squared error and correlation with respect to the experimental data will be 

compared between the Conaway and Ding force models for various inputs.  If the 

Conaway models, with unconstrained optimization parameter values, produce on 

average less mean squared error and greater correlation than the Ding models, 

then that would suggest that the structure of the Conaway models is a more 

accurate model structure to explain muscle biophysics than the structure of the 

Ding models.  Specifically, such findings would suggest that calcium dynamics, 

and hence muscle force generation and maintenance, in paralyzed human 

soleus varies as a Riccati-Bass process that maintains constant probabilities of 

actions in its coefficients for each contraction and for various inputs. (10, 142) 

Furthermore, it would mean that the structure of the Conaway models is a more 

accurate and physiologically plausible predictor of force and fatigue than is the 

structure of the Ding models.   

 

Table 6-3. Initial optimal parameter sets for Ding  
and Conaway force-fatigue models. 

 
Muscle state Muscle  model Fixed parameters Free parameters 
Fresh Ding  τc=20 ms  

R0=6.9 
A, km, τ1, τ2 

Fresh Conaway  τc=20 ms 
λ1=0.01, λ2=0.03  
A is scaled 

km, τ1, τ2 

Fatigue Ding τc=20 ms, km=0.06 
τ2=62.7 ms 

A, R0, τ1 

Fatigue Conaway  τc=20 ms, τ1rest=28.3 ms  
τ2=62.7 ms  
µ1=0.38, µ2=0.5 
a=1, b=1.5, c=1 
A is scaled 

ατ1, τleak, τfat 
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Using unconstrained optimization parameter values, differences in mean 

squared error and correlation with respect to the experimental data will be 

compared between the Conaway and Ding force models for inputs with 

frequencies greater than 5 pps.  If the Conaway model, with constrained 

optimization parameter values, produces on average greater correlation to the 

experimental data than does the Ding model, then that would mean that the 

Conaway force model is a more accurate predictor of force at frequencies greater 

than 5 pps than is the Ding force model. 

6.3.3 Muscle force protocol 

The second objective of this thesis involves the comparison of two 

mathematical models to predicting force in fresh paralyzed human soleus. Given 

one closed-form parameterized model and one modified closed-form 

parameterized model, it is to be determined which model best predicts force in 

fresh paralyzed human soleus.  If a given model can be found to accurately 

model and predict force, this could lead to further insight into the calcium 

dynamics of force in stimulated muscle, and ultimately, to design stress protocols 

that prevent fatigue.  In addition, since trained paralyzed muscle behaves like 

nonparalyzed muscle (164), insights about the physiologic differences in force 

generation between nonparalyzed and paralyzed muscle can be garnered 

through this effort.  Statistical tools will be used to compare predicted force 

versus experimentally generated force for each model.  The models will then be 

compared against each other for curve fit and error indices. 
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6.3.3.1 Physiological rationale 

Post-denervation changes that occur in muscle include altered fatigability 

and speed properties, neuromuscular transmission (33, 170), relationship 

between torque and frequency (170), low frequency fatigue (33, 168, 170), 

effects of training (169, 170), and post-fatigue potentiation (171). It is commonly 

though the human chronically paralyzed soleus has similar physiology to a fast-

fatigable Type IIb fiber muscle.  

Ding and colleagues (50) demonstrated the validity of a mathematical 

model that predicts the force generated by rat skeletal muscles during brief fused 

and unfused isometric contractions. The Ding force model consists of three 

coupled differential equations. The first two equations model the calcium 

dynamics and the third equation models force dynamics. The model parameters 

were estimated from brief trains of regularly spaces pulses that produce unfused 

muscle responses. Using these parameters, the model will be able to predict 

isometric forces from a variety of other stimulation patterns. Comparing 

experimental and modeled force indices have suggested a close fit between the 

model and the experiment data. It has since been shown that numerous 

physiological parameters calculated by the model have agreed with values 

obtained independently by other investigators.  

The learning objectives for modifying the Ding force model are as follows. 

It is hypothesized that modification the Ding model of muscle force via an 

additional differential equation more accurately predicts R0 as a function of time.  

Additionally, it is hypothesized that a certain combination of km, τ1, and/or τ2 
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yields the least prediction error while optimizing to realistic physiologic values.  

This would suggest several things. First, the voltage sensitivity of the SR calcium 

channels modulates force generation at low frequencies in paralyzed muscle 

during an extrinsically induced contraction. This would suggest a possible 

pathway to low-frequency fatigue in paralyzed human soleus and would imply 

that there are accelerated degradations of the calcium channels in the 

sarcoplasmic reticulum in paralyzed muscle during extrinsic contraction.  Further, 

improved curve fit and reduced prediction error, by additionally optimizing on τ1 

and/or τ2, would suggest that the lack of strong cross-bridge bonds and/or 

increased force decay due to cross-bridge friction modulate force generation in 

paralyzed muscle as stimulation input frequency increases. 

6.3.3.2 Closed-form parameterized model of muscle force 

To investigate the behavior of the Conaway force model in MATLAB, 

profiles for fresh muscle stimulated with inputs of different frequencies were 

generated using parameters from Frey Law and Shields (66) via code specially 

written for this study.  In the figures, the force curve is included along with the 

curve for CN.  Plots of R0 in fresh muscle are also shown. 

 

 

Figure 6-8. Duplication of force response and CN from a twitch using the 
Conaway force model for one contraction.  Since R0 was found to be constant for 
this input, no plot is given for that curve. 
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Figure 6-9. Duplication of force response and CN from a 5 DDT input using the 
Conaway force model for two contractions. 
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Figure 6-10. Behavior of R0 from a 5 DDT input using the Conaway force model 
for two contractions.  Note its sharp decrease. 
 
 
 

 
Figure 6-11. Duplication of force response and CN from a 10 DDT using the 
Conaway force model for one contraction. 
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Figure 6-12. Behavior of R0 from a 10 DDT input using the Conaway force model 
for one contraction.  Note its increased lag in inflection. 
 
 
 

 

Figure 6-13. Duplication of force response and CN from a doublet ramp using the 
Conaway force model for one contraction. 
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Figure 6-14.  Behavior of R0 from a doublet ramp input using the Conaway force 
model for one contraction.  Note the smoothness of the curve 
 
 

 

Figure 6-15. Duplication of force response and CN from a 20 DDT input using the 
Conaway force model for one contraction. 
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Figure 6-16. Behavior of R0 from a 20 DDT input using the Conaway force model 
for one contraction.  Note its increased lag and earlier inflection. 
 

 

 The preceding analysis confirms that the Conaway model generates 

curves similar to the Ding model for predicting force in fresh muscle from different 

types of inputs.  In addition, the model, with a dynamic R0, calculates the CN 

curve more uniformly. The peaks in the CN
 correspond as demonstrated in the 

literature with each pulse of the doublet ramp stimulus.  Finally, as the frequency 

0 100 200 300 400 500 600 700 800 900 1000 
0 

1 

2 

3 

4 

5 

6 

7 
 

Time (msec) 

R
0 



170 
 

 
 

of stimulation increases, the R0 curve smoothens during the period of contraction.  

This implies that the Riccati-Bass equation for R0 simulates the underlying 

calcium dynamics, and in turn leads to modeled muscle force generation, in a 

way that is physiologically plausible. 

Of particular interest is the behavior of the individual free parameters of 

the simulated fasciculating contractions caused by higher frequencies (10 to 20 

pps). (42)  It is specifically hypothesized that the cross-bridge friction (τ2) is the 

dominant process in generating force at higher frequencies in paralyzed fresh 

muscle.  If τ2 is shown to generally increase as a function of contraction index at 

increasing frequencies, it would demonstrate that it is the dominant free 

parameter in the Conaway force model.  This would mean that cross-bridge 

friction is the dominant process that modulates force generation at higher 

frequencies in muscle.   

6.3.3.3 Data analysis 

Using constrained optimization parameter values, differences in predictive 

errors will be compared between different optimizations of the Conaway force 

model for stimulation inputs of 10 CT, doublet ramp, as well as 20 DDT and 

distinct parameter sets involving combinations of km, τ1, and τ2  The test statistic 

will be the Akaike final prediction error. The parameter set that generates the 

least prediction error and returns parameters within ranges reported elsewhere 

will be judged as optimal. It will be interesting to see if there are any differences 

between trained and untrained muscle, or which parameters, if any, are dominant 

at higher frequencies.    Specifically, positive findings would mean that force 
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summation, and hence muscle force generation and maintenance, in paralyzed 

human soleus change as a function of increasing frequency. 

6.3.4 Muscle fatigue protocol 

The third objective of this thesis involves the comparison of two 

mathematical models to predicting fatigue in paralyzed human soleus. Given one 

closed-form parameterized model and one modified closed-form parameterized 

model, it is to be determined which model best predicts fatigue in paralyzed 

muscle.  If a given model can be found to accurately model and predict fatigue, 

this could aid in the implementation of safe therapeutic limb stress protocols for 

persons with chronic spinal cord injury. In addition, since trained paralyzed 

muscle behaves like nonparalyzed muscle (164), insights about the physiologic 

differences in the process of muscle fatigue between nonparalyzed and 

paralyzed muscle can be garnered through this effort.  Statistical tools will be 

used to compare predicted force versus experimentally generated force for each 

model.  The models will then be compared against each other for curve fit and 

error indices. 

6.3.4.1 Physiological rationale 

            Impeded calcium release from the sarcoplasmic reticulum has been 

identified as a factor in muscle fatigue in isolated fibers. (2, 3, 4)  Transformation 

of skeletal muscle from slow to fast leads to long duration muscle fatigue from 

electrical stimulation at low frequencies.  This has been seen the chronically 

paralyzed soleus muscle.  (163, 165)  Low-frequency fatigue occurs via a 

compromise in the excitation-contraction coupling mechanism which impedes the 
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release of divalent calcium.  This impeded release of calcium ions by the SR has 

been hypothesized to contribute to fatigue from continuous activation at low 

frequencies for long periods of time (115, 120, 192).  Since repetitive activation 

decreases the concentration of calcium ions intramuscularly, the amount of free 

ion available for myosin phosphorylation diminishes. (2, 177) 

 During exercise, however, defects in calcium release have been 

suggested to impair muscle function. It has been shown that during exercise in 

rodents and humans, RyR1 is progressively PKA-hyperphosphorylated, S-

nitrosylated, and depleted of molecules including the RyR1-stabilizing subunit 

calstabin1.  This results in "leaky" calcium channels that lead to a decrease in 

exercise tolerance in rodents. It has been shown that rodents with deleted 

calstabin1 exhibited markedly impaired exercise tolerance. A small molecule that 

prohibits depletion of calstabin1 from the RyR1 increased force generation and 

exercise tolerance.  It also decreased calpain activity and levels of plasma 

creatine kinase. This suggests a possible mechanism by which calcium leaked 

from calstabin1-depleted RyR1 channels leads to impaired signaling, muscle 

damage, and decreased exercise tolerance.  (11)  The RyR is a homotetramer 

and half of all these complexes are proximal to the DHPR.  In addition, it has 

been shown that RyR channels are dense square structures arranged in regular 

rows such that the adjacent channels contact one another at the corners.  Fast 

and slow skeletal muscle fibers predominantly have the RyR1 isoform.  However, 

fast fibers have higher RyR density.  (12, 123, 170) 
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          The calcium dependence of RyR activity is achieved by several different 

mechanisms.  The RyR is activated by low concentration and inhibited at higher 

concentration.  It has been suggested that there are various modes of calcium 

handling in the variety of fiber types that differentially affect the activity of the 

RyR.   When the RyR is depolarized by the t-tubule, the released calcium ions 

may cause a positive feedback release cycle followed by a negative feedback 

release cycle. Direct interaction of the DHPR in the t-tubules of the RyR is 

believed to modulate excitation-contraction coupling. This occurs via a structural 

change in the DHPR that elicits a structural change in the RyR. That is the event 

which finally triggers the opening of calcium release channels. Biochemical 

evidence for a link between the two receptors has been reported. Ryanodine 

receptors interact with a variety of accessory proteins believed to modulate the 

activity of these calcium release channels. These proteins include S100 protein, 

CaM, 60-kDa CaM-dependent protein kinase, calsequestrin, and calstabin. (12, 

123, 173) 

          According to Bellinger et al (11), binding of calstabin1 to RyR1 stabilizes 

the closed state of the calcium channel and facilitates coupled gating between 

neighboring channels that amplifies the transient current. Pharmacologic 

depletion of calstabin1 from RyR1 has been shown to decouple adjacent 

channels and causes leaks.  In nonparalyzed muscle, this can inhibit contraction 

via depolarization. Genetic alteration of calstabin1 binding in RyR1 was shown to 

decrease excitation-contraction coupling and reduces the maximal voltage-gated 

release of divalent calcium with no change to its store content.  It was shown that 
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knockout of calstabin1 specific to skeletal muscle decreased the voltage-gated 

Ca2+ release in the SR.  In murine extensor digitorum longus, decreased maximal 

tetanic contraction and a shift to the right in the relationship between force and 

frequency were recorded.  Yet alteration in SR calcium content or release was 

not indicated. This suggested that calstabin1 modulates gain from excitation-

contraction coupling in fast-twitch skeletal muscle.  Moreover, leakage of SR 

calcium via RyR1 channels was further hypothesized to cause muscle damage 

during intense stimulation by activating calpain which was shown to increase 

after intense stimulation.   

 In addition, as calcium channels inactivate, EC coupling is impaired.  

Delbono and Stefani (40, 41) found that calcium inactivation in paralyzed fibers 

had an increased recovery, and a decreased speed of inactivation. This renders 

inactivation of paralyzed muscle more difficult, since the voltage dependence of 

the calcium channel inactivation was partially shifted leftward due to proteolysis.          

It is also known there is a parallel change in the numbers of indentations and the 

amount of charge movement after denervation. (61)   Furthermore, inactivation of 

EC coupling is not caused by calcium depletion from the sarcoplasmic reticulum 

or inactivation of the calcium release channel or contractile proteins.  The 

resistance to inactivation of tension indicates a characteristic of the voltage-

sensitive molecule. (59) 

6.3.4.2 Closed-form parameterized model of muscle  
fatigue 

 
To investigate the behavior of the Conaway fatigue model in MATLAB, 

profiles for simulated fatigued muscle were generated using parameters from 
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Ding (56) via code specially written for this study.  In the figures, the force curve 

is included along with the curve for CN.  A plot of km in fatigued muscle is shown.  

In addition, plots of variation for A, ατ1, τleak, and τfat are also shown to 

demonstrate the sensitivity that the fatigue force and CN curves have to the free 

parameters.   This will semiquantitatively show which, if any, of the free 

parameters may be dominant in the Conaway fatigue model. 

 
 
 

 

 
Figure 6-17.  Duplication of a fatiguing contraction and CN from a 10 CT input 
using the Conaway fatigue model for one contraction. It is shown that in the 
Conaway fatigue model, the force tetani fuse and decrease in magnitude.   
Furthermore, the CN curve smoothens and goes to an asymptotic limit.  This 
implies that the Conaway fatigue model may account for decaying, autocatalytic 
processes in fatigued paralyzed muscle. 
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Figure 6-18.  Behavior of km in the Conaway fatigue model for one contraction. It 
is shown that, in the Conaway fatigue model, km decays over a period of 
contraction. However, in the Ding model, km is a fixed parameter constant 
throughout a contraction. 
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paralyzed muscle.   This will yield fruitful information on what threads to pursue in 

data analysis.  Extrema of parameter ranges are shown for brevity. 

 
τleak=0:       

 

τleak=100: 

 

Figure 6-19.  Effects of variations in τleak on the curves for force and CN in the 
Conaway fatigue model for one contraction.  The parameter τleak has the most 
effect on the shape of the curves by simulating fasciculations.

0 100 200 300 400 500 600 700 800 900 1000 0 

0.5 

1 

1.5  

Time (msec) 

Fo
rc

e 
(N

) 

0 100 200 300 400 500 600 700 800 900 1000 0 

2000 

4000 

6000 

Time (msec) 

C
N

 

0 100 200 300 400 500 600 700 800 900 1000 0 

0.2 
0.4 

0.6 
0.8  

Time (msec) 

Fo
rc

e 
(N

) 

0 100 200 300 400 500 600 700 800 900 1000 0 

500 

1000 
1500 

2000 

Time (msec) 

C
N

 



178 
 

 
 

 ατ1=0:        

 

ατ1=5: 

 

Figure 6-20.  Effects of variations in ατ1 on the curves for force and CN in the 
Conaway fatigue model for one contraction.  When ατ1 is large, the concavity of 
the CN curve inverts. 
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A=0.05 to 0.20: 

 

Figure 6-21.  Effects of variations in A on the curves for force and CN in the 
Conaway fatigue model for one contraction.    The parameter A has the least 
effect on the shape of the curves. 
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calcium leak.  Nevertheless, ατ1 cannot be excluded from Hill-Huxley type of 

fatigue model.   It is also seen that the parameter A has the least influence on the 

curves for force and CN.  Hence, the overall dominance of τleak on curve shaping 

implies that, consistent with the Principle of Le Chatelier (8), calcium leak current 

(11) has a major influence on fatigue in excessively stimulated paralyzed muscle.   

Hence, by including these changes, as well as a time constant to account for 

calcium leak induced by extrinsic electrical stimulation, the Conaway model will 

predict muscle fatigue better than the original Ding model. 

6.3.4.3 Data analysis 

The Conaway fatigue model will be investigated to understand the 

physiology of the muscle fatigue process.  Fatigue data from Subjects 17 and 18 

will be used in the analysis to test hypotheses.  Optimizing on all model 

parameters without constraints, differences in mean squared error with respect to 

the experimental data will be compared between the Conaway and Ding fatigue 

models for inputs of 15 pps at 667 ms duration.  If the Conaway model produces 

on average less mean squared error than the Ding model, then that would mean 

that the Conaway model is a more accurate predictor of muscle fatigue than the 

Ding model. Specifically, such findings would suggest that low frequency fatigue 

in paralyzed human soleus that arises from extrinsic stimulation is dependent 

upon a decaying muscle activation which is a power law function of time-varying 

voltage sensitivity. 

Using the optimal, constrained parameter set, values will be calculated for 

each contraction in trained and untrained muscle.  Trends of means and 
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standard deviations will be determined to ascertain how each parameter, 

especially τleak, behaves as a function of contraction index during fatigue. 

Specifically, it is hypothesized that calcium leak increases as a function of 

contraction index during fatigue.  If τleak is shown to generally increase as a 

function of contraction index during fatigue, while the other parameters behave 

erratically, it would demonstrate that it is the dominant free parameter in the 

Conaway fatigue model.  This would mean that calcium leak is the dominant 

process that modulates fatigue in muscle.   

6.4 Solution techniques, parameterization  
approach, error calculation, and statistical  

 
methods 

 Solution techniques, parameterization approaches, and calculation of 

error, and statistical techniques for this study are described in this section.  The 

results in the next chapter will show the data analyzed according to statistical 

techniques discussed. 

6.4.1 Solution techniques 

In the general case, nonlinear summation is accomplished by solving a 

differential equation.  For the Riccati equation, solutions have the form of 

y(t)=F(t)/G(t) and have been specifically shown to have the following Taylor 

series expansion. (39) 

    y0=t3/3+t7/63+2t11/2079+...   (6-13) 

 Moreover, the solution of the Riccati equation in a neighborhood of any 

point y00 is: 
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                           0 2 0 00( ) A ( )r
n rt t y y∞

=− = Σ −                   (6-14) 

More specifically, the Levenburg-Marquardt algorithm (LMA) interpolates 

between the Gauss-Newton algorithm and the gradient descent method. (68, 

114, 125) The LMA is more robust than the GNA.  Hence, it converges even with 

a large error in estimation.   Nevertheless, for well-behaved functions and 

reasonable initial parameter values, the LMA tends to converges more slowly 

than the GNA.  The primary use of the LMA is found in the least squares curve 

fitting problem.  The problem is formulated in the following way.  Given a set of 

empirical data pairs (ti, yi), the parameters p of the model curve f(t|p) are to be 

optimized so that the sum of the squares of the deviations from the experimental 

values 

                                    

2

1
( ) [ ( )]

m

i i
i

s p y f t p
=

= − |∑                                     (6-15) 

converges to a minimum. 

Like other numeric schemes of minimization, the Levenburg-Marquardt 

algorithm is an iterative technique. To begin a minimization, an initial guess for 

the parameter vector p must be provided. In many instances, a typical estimate 

like pT=(1,1,...,1) is satisfactory.  However, in other situations, the algorithm 

converges only if the initial estimate is already fairly proximal to the final solution.  

In each step of the iteration, the parameter vector p is overwritten by a new 

estimate p + q. To determine q, the functions fi(p + q) are estimated by 
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linearization such that f(p + q) ≈ f(p) + Jq where J is the Jacobian of f at p.  (68, 

114, 125) 

At a minimum of the sum of squares S, 0qS∇ = . Differentiating the square 

of the right hand side of the equation above and setting to zero leads to 

(JTJ)q = −JTf from which q can be found by taking the inverse of JTJ.  However, 

the crux of Levenburg-Marquardt is to replace this equation by a 'damped 

version' (JTJ + λ.I)q = −JTf.  This non-negative damping factor λ is changed at 

each iterative step. If S decreases rapidly, a smaller damping factor can be used.  

This would bring the algorithm closer to Gauss-Newton.  However, if an iteration 

gives insufficient reduction in the residual, the factor can be increased giving a 

step closer to the gradient descent direction.  Furthermore, if a calculated step 

length or the decrease in the sum of squares to the current-valued parameter 

vector p misses predefined limits, the iteration is terminated and the final 

parameter vector p is taken as the solution. (68, 114, 125) 

A myriad of quasi-heuristic arguments have been suggested for the best 

choice for the damping factor λ. Theory has shown the reasons that guarantee 

local convergence of the algorithm for some of the choices.  However, these 

choices can make the global convergence of the algorithm very slow proximal to 

the optimum.  Hence, the absolute value of any choice depends on the scaling of 

the initial problem. Marquardt recommended initializing with a value λ0 and a 

factor ν>1. Initially setting λ=λ0, the residual sum of squares S(p) is computed 

after one step from the initial point with the damping factor of λ=λ0 and secondly 

with λ/ν. If both of computed residual sums are worse than the starting point, the 
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damping increases by successive multiplication by ν. This continues until a better 

point is determined with a new damping factor of λνk for some k.  However, if the 

damping factor λ/ν results in decreased residual, this is taken as the new value of 

λ and the process continues.  Yet, if using λ/ν gave a larger residual sum but 

using λ resulted in a better residual, the damping factor does not change.  Thus, 

the new optimum becomes the value obtained with λ as damping factor.  (68, 

114, 125) 

In a 2006 paper (6), the matrix Riccati differential equation (MRDE) for the 

linear quadratic singular system was solved via neural networks. The purpose 

was to achieve optimal control with decreased computation by comparing the 

solutions of the MRDE obtained from traditional methods such as Runge-Kutta 

and Runge-Kutta-Butcher, as well as the nontraditional method of neural 

networks. Using the Levenburg–Marquardt algorithm, it was shown that the 

accuracy of neural network solution was qualitatively better than traditional 

methods. The advantage of the network approach is that, once training occurs, 

the solution may be instantaneously calculated at any number of points while 

minimizing computing time and memory with uniform accuracy. Hence, it was 

shown that trained neural networks provide compact expression of the analytical 

solution in the finite domain.  

6.4.2 Parameterization 

All models will be parameterized using a single predetermined stimulation 

pattern, the doublet ramp. (55, 66)  To appropriately compare results between 

models, one parameterization approach is necessary.   The model parameters 
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will be mathematically optimized using the MATLAB optimization toolbox 

function, lsqnonlin, a least squares approach using the Levenberg-Marquardt 

method.  The lsqnonlin function minimizes the sum of the squares of the 

differences between model and experimental forces at each point in time.  In 

addition, the models require a stiff differential equation solution algorithm for 

appropriate convergence of the optimization.  

6.4.3 Error calculation 

 The Akaike Final Prediction Error (FPE) criterion, according to the 

MATLAB 7.x Reference Manual (The MathWorks, Natick, MA), provides a 

measure of model quality by testing the model on different parameter sets. After 

several different models are computed, they can be compared using this 

criterion.  According to theory, the most accurate model has the least FPE. The 

Akaike FPE is thus defined by the following equation: 

                                          

1

1
( )

d
NFPE V d
N

+
=

−
                                         (6-16) 

where V is the squared error loss function, d is the number of optimized 

parameters, and N is the number of points in the data set. The squared error loss 

function V is defined by the following equation: 

                               1

1det ( , )( ( , ))( )
N

T
N NV t t

N
θ θ= ε ε∑                    (6-17) 

where represents the estimated parameters. 

Using the optimal parameter values determined for each subject and 

model, force train predictions from doublet ramps and inputs of varying 
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frequencies with and without doublets, and fatiguing bouts for trained and 

untrained human paralyzed soleus muscle will be produced.  The Akaike Final 

Prediction Error (FPE) criterion provides a measure of model quality by 

simulating the situation where the model is tested on different parameter sets. 

After several different models are computed, they can be compared using this 

criterion.  According to theory, the most accurate model has the least FPE.  The 

reason for that is that agreement, not correlation, between a model and 

experimental data is what is sought.  Actual numerical values of force are not 

important for this study.  The question to be answered is, “How well does a 

model agree with experiment?”  That leads to the question fundamental to this 

study, “Which model agrees best with experiment?” 

The Akaike FPE from the MATLAB 7.0 Optimization Toolbox (The 

Mathworks, Natick, MA) will evaluate the fit of each optimization of each model 

relative to experimental for both limbs in each test state. Therefore, the Akaike 

FPE will be determined for each candidate optimal parameter set against data 

from nonparalyzed and paralyzed muscle in fresh and fatigued states.  In all 

cases, the optimal parameter set will be the one that generates the least Akaike 

FPE while returning the most realistic parameter values. 

6.4.4 Statistical methods 

Statistical techniques including paired t-tests, single factor analysis of 

variance, repeated measure two-way analysis of variance, will be used in this 

study.  By comparing the parameter values between trained and untrained 

muscle in fresh and fatigued states, differences between nonparalyzed and 
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paralyzed muscle can be ascertained.  Using the paired t-tests, differences in 

model structure as well as specific model ability (Ding vs. Conaway) can be 

ascertained.  Using analysis of variance, parametric variation will be calculated 

and compared for frequency (5 pps vs. > 5 pps), training status (trained versus 

untrained) and contraction index in fresh muscle.  In fatigued muscle, analysis of 

variance will be used to examine parametric behavior as a function of contraction 

index and training status (trained and untrained).  All statistics will be done in 

Excel 2007 (Microsoft, Redmond, WA). The level of significance will be set at 

0.05.  
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CHAPTER 7: RESULTS 

 

          In this chapter, the results of this study are given.  First, the Conaway 

models of muscle force and fatigue are validated and tested for robustness with 

data from trained and untrained limbs.  Next, the Ding and Conaway models are 

compared in predictive ability using various statistical metrics.  Then, the role of 

the parameter τ2 in the Conaway force model is investigated.  Finally, the role of 

the parameter τleak in the Conaway fatigue model is investigated.   The findings 

will answer the major hypothesis of the study about whether an adequate 

characterization of the dynamics of divalent calcium during contraction is what is 

missing from models of muscle force and fatigue. 

7.1 Introduction 

7.2 Validation and testing of the Conaway  

 
models 

          The Conaway models of muscle force and fatigue are validated in this 

section.  In addition, the models are shown to be robust using various inputs in 

untrained and trained muscles in different subjects. 

7.2.1 Conaway force model 

With initial values (τc=20, τ1=28.3, τ2=62.7, km=0.06, λ1=0.38, λ2=0.5), the 

Conaway force model is validated using data from a 5 DT with beginning doublet 

in the untrained limb of subject 18.  The model is then shown to be robust by 

using twitch, a10 DT input, and a 20 CT input in the untrained muscle of Subject 

18 as well as with a doublet ramp input in the trained limb of Subject 27.  
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Figure 7-1.  Validation of Conaway force model with 5 pps train with beginning 
doublet in trained muscle in Subject 18.  The model had 77.4% agreement with 
the data. 
 
 

 

Figure 7-2.  Twitch in trained muscle in Subject 18.  The model had 94.48% 
agreement with the data. 
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Figure 7-3.  Doublet ramp in trained muscle in Subject 27.  The model had 
72.78% agreement with the data. 
 
 

 

Figure 7-4.  10 DT stimulation in untrained muscle in Subject 18.  The model had 
80.92% agreement with the data. 
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Figure 7-5.  20 CT in untrained muscle in Subject 18.  The model had 94.06% 
agreement with the data. 
 

 

 It is thus shown that the Conaway force model is robust for different 

inputs.  The curve fits range from 72.78 to 94.48 percent. 

7.2.2. Conaway fatigue model 

With initial values (τc=20, τ1rest=28.3, τ2=62.7, τfat=47.9, km(0)=0.06, 

ατ1=0.003, μ1=0.38, μ2=0.5, a=1, b=1,5, c=1), the Conaway fatigue model is 

validated for both limbs in Subject 18.  The input is set to 10 CT (15 pps, 667 

ms). 
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Table 7-1. Parameter values for Conaway fatigue  
model validation in trained limb in Subject 18. 

 

Parameter Optimized  
value 

Standard  
Deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 

τc   20 0 Fixed [0 ∞] 

a 1 0 Free [0,50] 

B 1.5 0 Free [0,10] 

c 1 0 Free [0,10] 

τ1rest         28.3 0 Fixed [0,10] 

τfat  28.5647 9.95897 Free [0,50] 

ατ1  4.4955 1.78964 Free [0 50] 

µ1          0.38 0 Fixed [0 ∞] 

µ2   0.5 0 Fixed [0 ∞] 

τleak 87.473 7.50893 Free [0, 1000] 

A      0.0347338 0.0052389 Free [0 ∞] 

 

 

 

 
 
Figure 7-6. Fatigue in trained limb of Subject 18.  The agreement of the Conaway 
model with the experimental data is 0.982282. 
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Table 7-2. Parameter values for Conaway fatigue  
model validation in untrained limb in Subject 18. 

 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 

τc   20 0 Fixed [0 ∞] 

a 1 0 Free [0,50] 

b 1.5 0 Free [0,10] 

c 1 0 Free [0,10] 

τ1rest         28.3 0 Fixed [0 ∞] 

τfat  30.5407 7.41266 Free [0,50] 

ατ1  5.14556 1.4505 Free [0 50] 

µ1          0.38 0 Fixed [0 ∞] 

µ2   0.5 0 Fixed [0 ∞] 

τleak 95.7433 7.56264 Free [0, 1000] 

A      0.123803 0.00397493 Free [0 ∞] 

 

 

 

Figure 7-7. Fatigue in untrained limb of Subject 18. The agreement of the 
Conaway model with the experimental data is 0.9990524. 
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Table 7-3. Comparison of error statistics in Conaway fatigue model validation  
for trained and untrained limb. The Conaway fatigue model has very low error,  

in all metrics, for both trained and untrained muscle. 
 

Muscle 
training 
Status 

Mean 
Squared 

Error 

Mean 
Absolute 

Error: 

Correlation 
Coefficient 

95% CI 
 

r2 p-value 

Trained 0.161416 0.0257231 0.982282 (0.980085 
0.98424) 

0.9648 <0.001 

Untrained 0.112667 0.0369234 0.990524 (0.989395 
0.991533) 

0.981137 <0.001 

 
 
 
7.3 Determining differences in force and  

 
fatigue model structures 

7.3.1 Global comparison between Ding  
and Conaway model structures 

 

 

 

Table 7-4. Prediction measures across various inputs, training status, and fatigue 
states from both models in unconstrained optimization. 

 
Model/Subject/Training/Input 
(Unconstrained optimization) 

Mean 
Squared 
Error 

Mean 
Absolute 
Error 

Correlation 
Coefficient 

 95% CI 
 

 r2 p-
value 

Ding 18  
trained 5 DDT 

0.259469  0.0714151 0.709223 (0.681905 
0.734565) 

0.502997 <0.001 

Conaway 18 
trained 5 DDT 

0.271594  0.0710973 0.672219 (0.642153 
0.700221) 

0.451879 <0.001 

Ding 18 
untrained 10 DT 

0.28267   0.138498 0.715163 (0.675599 
0.750619) 

0.511458  <0.001 

Conaway 18 
untrained 10 DT 

0.212569  0.103256 0.849276 (0.826456 
0.86931) 

0.721269  <0.001 

Ding 18 
trained 20 CT 

0.271539 0.155377 0.757612 (0.722992 
0.788436) 

0.573976 <0.001 

Conaway 18 
trained 20 CT 

0.204272  0.120135 0.874776 
 

(0.855515 
0.891619) 

0.765232 
 

<0.001 

Ding 18 
untrained fatigue 

0.761985  0.438124 0.37476 (0.325149 
0.422314) 

0.140445 <0.001 

Conaway 18 
untrained fatigue 

0.045919  0.000529374 0.997035 (0.996681 
0.997352) 

0.99408 <0.001 

5 DDT=5 pps with dual doublet 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
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Using unconstrained optimization parameter values, various statistics 

have been calculated.  Differences in mean squared error and correlation with 

respect to the experimental data have been compared between the Conaway 

and Ding models for various inputs.   

 
Table 7-5. Comparison of average mean square  
error and average correlation coefficient in Ding  

and Conaway model structures under 
 unconstrained optimization. 

 

Model 
Structure 

Average Mean  
Squared Error  
(95% CI) 

Average  
Correlation  
Coefficient 
(95% CI) 

Ding 0.463259 ± 
0.432941 

0.648606 ± 
0.255369 

Conaway 0.178981 ± 
0.138586 

0.874781 ± 
0.214206 

 

 

 

From the 95% confidence intervals of the means for both metrics from 

each model, it is seen that the Conaway model structure has less average mean 

squared error and greater correlation than the Ding model structure of muscle 

force across different inputs and subjects.  Furthermore, a two-sided paired t-test 

with four degrees of freedom for the average mean squared error at α=0.05 

yields t=1.88825.  That is less than the critical value t=2.776445.  For the 

correlation coefficient, a two-sided paired t-test with four degrees of freedom at 
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α=0.05 yields t=-1.94385.  That is considerably less than the critical value 

t=2.776445. Hence, the hypotheses regarding the Conaway model having 

greater correlation to experimental data, and less mean squared error than does 

the Ding model are not rejected. 

7.3.2 Comparison between Ding and  
Conaway force models  

 
 
 

Table 7-6. Prediction measures from the Ding and Conaway force models for 
inputs with frequencies greater than 5 pps in unconstrained optimization in 

trained muscle from Subject 18. 
 

Model/Input Mean 
Squared 
Error 

Mean 
Absolute 
Error 

Correlation 
Coefficient 

 95% CI 
 

 r2 p-value 

Ding 10 CT 0.326737  0.138498 0.538285 (0.496847 
0.577274) 

0.289751  <0.001 

Conaway 10 CT 0.016872  0.01583 0.848331 (0.806825 
0.889838) 

0.719665 <0.001 

Ding 10 DT 0.441139 0.305584 0.450897 (0.408164 
0.491659) 

0.203308 <0.001 

Conaway 10 DT 0.06579 0.017 0.870632 (0.816685 
0.924398) 

0.75800\ <0.001 

Ding 20 CT 0.271539 0.155377 0.757612 (0.722992 
0.788436) 

0.573976 <0.001 

Conaway 20 CT 0.014578 0.016597 0.959027 (0.95243 
0.965624) 

0.919733 <0.001 

Ding 20 DT 0.28267  0.138498 0.715163 (0.675599 
0.750619) 

0.511458  <0.001 

Conaway 20 DT 0.070897 0.03773 0.723194 (0.618077 
0.828311) 

0.52301 <0.001 

 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
20 DT=20 pps with beginning doublet 

 

Using unconstrained optimization parameter values, various statistics 

have been calculated.  Differences in mean squared error and correlation with 
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respect to the experimental data have been compared between the Ding and 

Conaway force models for inputs with frequencies greater than 5 pps in trained 

and untrained muscle. 

A one-sided paired t-test with three degrees of freedom for the average 

mean squared error at α=0.05 yields a p-value of 0.001902907.  For the 

correlation coefficient, a one-sided paired t-test with three degrees of freedom at 

α=0.05 yields a p-value of 0.037650013.  Both p-values are less than 0.05.  

Hence, the hypotheses regarding the Conaway model having greater correlation, 

and less mean squared error, to experimental data in trained muscle than does 

the Ding model are not rejected. 

 
 

Table 7-7. Prediction measures from the Ding and Conaway force models for 
inputs with frequencies greater than 5 pps in unconstrained optimization in 

untrained muscle from Subject 18. 
 
Model/Input 

Mean 
Squared 
Error 

Mean 
Absolute 
Error 

Correlation 
Coefficient 

 95% CI 
 

 r2 p-value 

Ding 10 CT 0.345966 0.208889 0.531295 (0.489438 
0.570709) 

0.282274 <0.001 

Conaway 10 CT 0.386246 0.21118 0.576794 (0.281677 
0.871791) 

0.332622 <0.001 

Ding 10 DT 0.389072  0.239113 0.370379 (0.320528 
0.418183) 

0.13718 
 

<0.001 

Conaway 10 DT 0.018002  0.016788 0.809217 (0.74039 
0.878044) 

0.654833 <0.001 

Ding 20 CT 0.271539 0.155377 0.757612 (0.722992 
0.788436) 

0.573976 <0.001 

Conaway 20 CT 0.01361 0.019836 
 

0.940613 
 

(0.926062 
0.055164) 

0.884753 
 

<0.001 

Ding 20 DT 0.28267   0.138498 0.715163 (0.675599 
0.750619) 

0.511458  <0.001 

Conaway 20 DT 0.212569  0.103256 0.849276 (0.826456 
0.86931) 

0.721269  <0.001 

 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
20 DT=20 pps with beginning double 
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For the correlation coefficient, a one-sided paired t-test with three degrees 

of freedom at α=0.05 yields a p-value of 0.048310047.  Hence, only the 

hypothesis regarding the Conaway model having greater correlation to 

experimental data in untrained muscle than does the Ding model at frequencies 

greater than 5 pps is not rejected.  The statistical significance is weak, however. 

A single factor analysis of variance was performed to test for differences 

between model mean squared errors at a significance of 0.05.  With the p-value 

at 0.000909, it is shown that there is a highly significant difference between the 

predictive abilities between the Ding and unconstrained Conaway force models.  

Remarkably, the training status contributed little to the error variance.  The 

difference of the error generated by the models was the primary source of mean 

squared error variance. 

 
 

Table 7-8. Single factor analysis of variance for mean squared error  
between Ding and Conaway force models. 

 
 

 
Source of 
Variation SS df MS F P-value F crit 

Model 0.289618 1 0.289618 19.11658 0.000909 4.747225 

Training 0.181801 12 0.01515 
   

Total 0.471419 13 
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7.3.3 Comparison between Ding and 
 Conaway fatigue models  
 

Optimizing on all model parameters without constraints, differences in 

mean absolute error and correlation with respect to the experimental data will be 

compared between the Conaway and Ding fatigue models for inputs of 15 pps at 

667 ms duration.  Significance will be set at α=0.05.  Error threshold will be set at 

0.1.  The model with least mean absolute error and greatest correlation across all 

trials in untrained muscle will be judged as best-fitting.  The comparative results 

from the Ding and unconstrained optimized Conaway fatigue models in the 

untrained limb are shown below.  The parameters in the Ding model (56) are set 

to {Arest=11.0, R0rest=0.45, τcrest=20, τ1=28.3, τ2=62.7, km=0.06, αA=-0.004, 

αR0=0.002, ατc=0.003}. 

 
 
 

Table 7-9. Parameter values for Conaway  
fatigue model validation in trained limb in  

Subject 18. 
 
 

Parameter Initial  
value 

Optimized  
value 

Free 
or fixed  

Range 

τ2  20 69.1274 Free [0,1000] 
τc   62.7 20 Free [0,50] 
a 1 1 Free [0,10] 
B 2 2 Free [0,10] 
C 1 1 Free [0,10] 
 τ1rest         28.3 115.928 Free [0,1000] 
τfat  47.9 41.3017 Free [0,50] 
ατ1  0.003 2.6607 Free [0 50] 
µ1          0.38 0.01 Free [0,50] 
µ2   0.5 0.03 Free [0,50] 
τleak 20 75.0349 Free [0, 100] 
A      0.085 0.0347338 Free [0 ∞] 
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              Ding Model              Conaway Model 

 

Figure 7-8. Comparison between Ding and unconstrained Conaway fatigue 
models in Subject 18 untrained limb. 
 

 

Table 7-10. Comparison of error statistics between Ding and unconstrained 
Conaway fatigue models in trained and untrained limbs in Subject 18. 

 

Fatigue 
model/ 
Training 
state 

Mean  
Squared 
Error 

Mean 
Absolute 
Error 

Correlation 
Coefficient  

 95% CI 
 

 r2 p-value 

Ding 
Trained 

0.74072 
  

0.407835 0.686276 (0.653777 
0.716248) 

0.470975 <0.001 

Conaway  
Trained 

0.160551 0.018093 
 

0.980598 (0.978194 
0.98274) 

0.96153 <0.001 

Ding  
Untrained 

0.761985  0.438124 0.37476 (0.325149 
0.422314) 

0.140445 <0.001 

Conaway  
Untrained 

0.045919  0.000529374 0.997035 (0.996681 
0.997352) 

0.99408 <0.001 
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Table 7-11. Single factor analysis of variance for mean squared error  
between Ding and Conaway fatigue models.  The difference in model  

predictive ability is highly significant. 
Source of 
Variation SS Df MS F P-value F crit 

Model 0.419995 1 0.419995 123.6309 0.007992 18.51282 

Training 0.006794 2 0.003397 
   

Total 0.426789 3         
 

 

A single factor analysis of variance was performed to test for differences 

between model mean squared errors at a significance of 0.05.  With the p-value 

at 0.007992, it is shown that there is a highly significant difference between the 

predictive abilities between the Ding and unconstrained Conaway fatigue models.  

Remarkably, the training status contributed little to the error variance.  The 

difference of the error generated by the models was the primary source of mean 

squared error variance. Hence, the hypothesis is not rejected. 

Using constrained optimization parameter values and trained muscle data 

from Subject 18, differences in predictive errors have been compared between 

different optimizations of the Conaway force model for stimulation inputs of 10 

CT, doublet ramp, as well as 20 DDT and parameter sets involving combinations 

of  km, τ1, and τ2  The test statistic is the Akaike final prediction error.. The 

parameter set that generates the least prediction error and returns parameters 

within ranges reported elsewhere will be judged as optimal.  

7.4 The role of τ2 in the Conaway force model 
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7.4.1 10 CT  

 

Table 7-12. Optimized parameter values for Conaway force  
model using {km, τ1, τ2} with 10 CT input 

 
 
Parameter 

Initial 
value 

Optimized  
value 

Standard  
deviation 

Free 
or  
fixed  

Range 

τc 20 20 0 Fixed [-∞,∞] 
A      0.085 0.037987 0.00011458 Free [-∞,50] 
km         0.06 0.00349555 0.94091e-

005 
Free [0.0005, 

0.2] 
τ1             28.3 37.8078 0.468708 Free [10,100] 
τ2  62.7 184.905 1.82687 Free [0,1000] 
λ1         0.38 0.38 0 Fixed [-∞,∞] 
λ2  0.5 0.5 0 Fixed [-∞,∞] 

 

 

 

 
Figure 7-9. 10 CT optimized on {km, τ1, τ2}. The fit of the optimized model is 
95.17%.  However, the value for τ2 is out of the range reported in the literature. 
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  mdata; measured 
nlgr: fit 95.17% 
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Table 7-13. Optimized parameter values for Conaway force model  
using {km, τ1} with 10 CT input. 

Parameter Initial  
value 

Optimized  
value 

Standard  
deviation 

Free or  
fixed  

Range 

τc  20 20 0 Fixed [-∞,∞] 
A      0.085 0.0528972 0.000431944 Free [-∞,50] 
km       0.06 0.00190744 0.000240562 Free [0.0005, 0.2] 
τ1           28.3 60.4474 2.25155 Free [10,100] 
τ2  62.7 62.7 0 Fixed [-∞,∞] 
λ1          0.38 0.38 0 Fixed [-∞,∞] 
λ2  0.5 0.5 0 Fixed [-∞,∞] 

 
 
 
 

Figure 7-10. 10 CT optimized on {km, τ1}.The fit of the optimized model is 
82.65%.  However, the free parameter values are consistent with the literature 
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  mdata; measured 
nlgr; fit: 82.65% 
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Table 7-14. Optimized parameter values for Conaway force model  
using {km} with 10 CT input 

 

Parameter Initial  
value 

Optimized  
value 

Standard  
deviation 

Free or  
fixed  

Range 

τc  20 20 0 Fixed [-∞,∞] 
A      0.085 0.0618124 0.000292747 Free [-∞,50] 
km         0.06 0.00117368 4.96623e-005 Free [0.0005,0.2] 
τ1            28.3 28.3 0 Fixed [-∞,∞] 
τ2  62.7 62.7 0 Fixed [-∞,∞] 
λ1         0.38 0.38 0 Fixed [-∞,∞] 
λ2 0.5 0.5 0 Fixed [-∞,∞] 

 

 

 

Figure 7-11. 10 CT optimized on {km}. The fit is 82.67%.   However, the 
parameter values do not make sense physiologically.  The parameter km 
decreases dramatically in this optimization. 
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  mdata; measured 
nlgr; fit: 82.67% 
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Table 7-15. Loss functions and Akaike FPEs for the  
three optimized Conaway force models for 10 CT  

input.  Note that {km, τ1, τ2} generates the least  
prediction error.  However, {km, τ1} gives the most  

realistic values. 
 

Optimizing  
parameter set 

{km, τ1, τ2} {km, τ1} {km}  

Loss  
Function 

0.0103751 0.168472 0.117346 

Akaike final  
prediction error 

0.0104688 0.169613 0.117926 

 

 

 

7.4.2 Doublet ramp 

 

 

Table 7-16. Optimized parameter values for Conaway force model  
using {km, τ1, τ2} with doublet ramp input 

 

Parameter Initial  
value 

Optimized  
value 

Standard  
deviation 

Free or  
fixed  

Range 

τc   20 0  Fixed [-∞,∞] 
A     0.085 0.326646 0.000280742 Free [-∞,50] 
km         0.06 0.000509338 1.53478e-005 Free [0.0005,0.2] 
τ1            28.3 25.9221 1.00108 Free [10,100] 
τ2 62.7 198.15 2.83668 Free [20,1000] 
λ1        0.38 0.38 0 Fixed [-∞,∞] 
λ2  0.5 0.5 0 Fixed [-∞,∞] 
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Figure 7-12. Doublet ramp optimized on {km, τ1, τ2}. The fit of the model is 
82.99%.  However, the optimized values for km and τ2 are well outside of reported 
ranges. 
 

 

Table 7-17. Optimized parameter values for Conaway force model  
using {km, τ1} with doublet ramp input 

 

Parameter Initial  
value 

Optimized  
value 

Standard 
deviation 

Free or  
fixed  

Range 

τc   20 20 0 Fixed [-∞, ∞] 
A     0.085 0.047387 0.000568711 Free [-∞,50] 
km         0.06 0.000144649 0.000123907 Free [0.0005,0.2] 
τ1            28.3 84.3839 2.76143 Free [10,100] 
τ2 62.7 62.7 0 Fixed [-∞, ∞] 
λ1        0.38 0.38 0 Fixed [-∞, ∞] 
λ2  0.5 0.5 0 Fixed [-∞, ∞] 
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Figure 7-13. Doublet ramp optimized on {km, τ1}. The model fit is 70.41%.  
However, the optimized parameter values are within ranges reported in the 
literature. 
 

 

7.4.3 20 DDT  

 
 

 
Figure 7-14. 20 DDT optimized on {km, τ1, τ2}.  The model fit is 94.77%.  In 
addition, the optimized free parameter values are within reported ranges. 
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Table 7-18. Optimized parameter values for Conaway force  
model using {km, τ1} with 20 DDT input 

 

Parameter Initial  
Value 

Optimized  
value 

Standard  
deviation 

Free or  
fixed  

Range 

τc   20 20 0 Fixed [-∞,∞] 
A     0.085 0.11319 0.00502644 Free [-∞,50] 
km         0.06 0.0891981 0.00972664 Free [0.0005,0.2] 
 τ1            28.3 100 3.33277 Free [10,100] 
τ2 62.7 62.7 0 Fixed [-∞,∞] 
λ1        0.38 0.38 0 Fixed [-∞,∞] 
λ2  0.5 0.5 0 Fixed [-∞,∞] 

 
 
 
 
 
 

 
Figure 7-15. 20 DDT optimized on {km, τ1}.The model fit decreases to 72.31%.  In 
addition, the value for τ1 does not fall within previously reported ranges. 
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Table 7-19. Loss functions and Akaike  
FPEs for the two optimized Conaway  
force models for 20 DDT input.  It is  
shown that for the 20 DDT input, the  

set {km, τ1, τ2} generates the least  
prediction error while returning realistic  

physiologic values. 
 
 

Optimizing  
parameter set 

{km, τ1, τ2} {km, τ1} 

Loss  
Function 

0.01628 0.637144 

Akaike final  
prediction error 

0.0164491 0.6421091 

 

7.4.4. Parametric behavior in modeled  
trained and untrained muscle 
 
 Below is a graphical analysis of the behavior of optimized parameter 

values of the set {km, τ1, τ2} as functions of input frequency and contraction index 

for Subject 18.  This shows how the parameters change in the Conaway model of 

fresh paralyzed trained and untrained human soleus during a bout of stimulation.  

Interpretations of the parametric variations will yield insights into and suggest 

new hypotheses about the physiology of chronically paralyzed human muscle.  

These insights will lead to future in vitro experiments to confirm such hypotheses. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
 
Figure 7-16.  Behavior of km as a function of frequency and contraction in trained 
muscle. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
 

Figure 7-17.  Behavior of τ1 as a function of frequency and contraction in trained 
muscle. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
 

Figure 7-18.  Behavior of τ2 as a function of frequency and contraction in trained 
muscle. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
 

Figure 7-19.  Behavior of km as a function of frequency and contraction in 
untrained muscle. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
 

Figure 7-20.  Behavior of τ1 as a function of frequency and contraction in 
untrained muscle. 
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5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 

 

Figure 7-21.  Behavior of τ2 as a function of frequency and contraction in 
untrained muscle. 
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Table 7-20. Free parameters in Conaway force model found using Subject 18 
trained fresh muscle.  Note how they vary with the frequency-contraction index.  

There are no discernable trends for km and τ1. 
 

Frequency- 
contraction km km σ τ1 τ1 σ τ2 τ2 σ 

TW1 0.056356 0.0030345 92.6698 0.527527 62.7 0 

TW2 0.025194 0.000755089 89.9141 0.70367 62.7 0 

TW3 0.039287 0.000891217 93.8319 0.539341 62.7 0 

5BD1 0.000238 0.00052842 30.4305 2.27201 62.7 0 

5BD2 0.00052 7.42019E-05 24.0571 2.70777 62.7 0 

5CD1 0.001307 0.000110394 63.7291 2.27936 62.7 0 

5CD2 0.002333 0.00054015 58.0519 2.5451 62.7 0 

5DDT1 0.002442 0.000262759 7.0926 2.91389 62.7 0 

5DDT2 0.003508 0.000315385 54.0877 2.34614 62.7 0 

10CT1 0.000759 2.90621E-05 53.0067 0.799308 84.9806 1.19596 

10CT2 0.000207 2.71403E-05 60.9035 1.14939 71.6926 1.40497 

10DT1 0.000981 7.51937E-05 59.387 1.64141 37.2828 1.85178 

10DT2 0.00058 4.21264E-05 60.422 1.55763 33.8664 1.67538 

20CT1 0.001003 1.71797E-05 38.7531 0.403607 79.108 0.536626 

20CT2 0.000772 1.06972E-05 43.15123 0.323722 83.544 0.452029 
 
 

       
 
TW=Twitch 
5BD =5 pps with beginning doublet 
5CD=5 pps with center doublet 
5DDT=5 pps with dual doublet 
10CT=10 pps continuous train 
10DT=10 pps with beginning doublet 
20CT=20 pps continuous train 
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Table 7-21. Free parameters in Conaway force model found using Subject 18 
untrained fresh muscle.  Note how they vary with the frequency-contraction 

index.  There are no discernable trends for km and τ1. 
 

Frequency- 
contraction km km σ    τ1     τ1 σ    τ2    τ2 σ 

TW1 0.000648 2.46696E-05 100.573 0.902726    62.7    0 

TW2 0.007656 2.76542E-05 100.814 0.865475    62.7    0 

TW3 0.007421 0.000220802 87.6133 0.705944    62.7    0 

5BD1 0.001307 0.000110394 63.7291 2.27936    62.7    0 

5BD2 0.002333 0.000234269 58.0519 2.5451    62.7    0 

5CD1 0.00034 3.27406E-05 52.0672 2.4078    62.7    0 

5CD2 0.000301 0.00023277 51.9914  2.03897    62.7    0 

5DDT1 0.001079 0.00008793 67.472    2.5692    62.7    0 

5DDT2 0.001496 0.00011603 77.4633 2.47875    62.7    0 

10CT1 0.000128 3.32747E-05 58.7336 1.63862    62.7 1.62628 

10CT2 0.000104 3.42764E-05 58.7336   1.450544    62.7 1.71819 

10DT1 0.000615 0.000030896 48.6946 1.05463 94.0249 1.60997 

10DT2 0.00089 5.15635E-05 44.259 1.19176 157.46  2.59865 

20CT1 0.002377 7.53411E-05 45.2349 0.577079 107.261    1.008143 

20CT2 0.001809 4.39106E-05 45.7827 0.507517  107.52 0.952346 
 

 
TW=Twitch 
5 BD=5 pps with beginning doublet 
5 CD=5 pps with center doublet 
5 DDT=5 pps with dual doublet 
10 CT=10 pps continuous train 
10 DT=10 pps with beginning doublet 
20 CT=20 pps continuous train 
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7.4.5 Analyses of variance for  
km, τ1, and τ2 

 
Determining a dominant parameter is done via two-way analysis of 

variance with replication for each of the three free parameters in the Conaway 

force model.   

 

 

Table 7-22. Two-way analysis of variance with replication for km.   
No factor is statistically significant. 

 
Source of  
Variation SS Df MS F P-value F crit 
Input frequency 2.03E-06 1 2.03E-06 2.612643 0.12168 4.351243 
Training status 1.46E-07 1 1.46E-07 0.187386 0.669734 4.351243 
Frequency*Training 1.09E-06 1 1.09E-06 1.40183 0.250299 4.351243 
Within 1.55E-05 20 7.77E-07 

   Total 1.88E-05 23         
 
 

 

Table 7-23. Two-way analysis of variance with replication for τ1.   
No factor is statistically significant. 

 
Source of  
Variation SS df MS F P-value F crit 
Input frequency 67.20733 1 67.20733 0.539702 0.471083 4.351243 
Training status 193.4658 1 193.4658 1.55361 0.227005 4.351243 
Frequency*Training 388.0999 1 388.0999 3.116602 0.092763 4.351243 
Within 2490.532 20 124.5266 

   Total 3139.305 23         
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Table 7-24. Two-way analysis of variance with replication for τ2. Neither  
the training status nor the interaction between frequency and training  

status has statistical significance.    However, the factor of input  
frequency is significant statistically. 

 
 

Source of  
Variation SS df MS F P-value F crit 

Input frequency 2180.089 1 2180.089 4.845452 0.039628 4.351243 

Training status 1703.392 1 1703.392 3.785949 0.065875 4.351243 

Frequency*Training 1703.392 1 1703.392 3.785949 0.065875 4.351243 

Within 8998.493 20 449.9247 
   

Total 14585.37 23         
 

 

 It is thus shown that τ2 is the dominant free parameter in the Conaway 

force model at frequencies higher than 5 pulses per second.   

7.5 The role of τleak in the Conaway  

 
fatigue model 

The Conaway fatigue model has been investigated further to understand 

the physiology of the muscle fatigue process.  Fatigue data from Subjects 17 and 

18 were used in the analysis to test hypotheses.   Below are graphical plots of 

optimized parameter values for trained and untrained muscle in fatigue as they 

vary with contraction index.  The goal is to investigate how each parameter 

behaves in both training states as a function of index of contraction in a bout of 

stimulation. 
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7.5.1 Parametric plots for modeled  
trained muscle 
 

 

 

Figure 7-22.  Behavior of τleak as a function of contraction index in trained muscle 
in Subject 17. 
 
 

 

Figure 7-23.  Behavior of ατ1 as a function of contraction index in trained muscle 
in Subject 17. 
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Figure 7-24.  Behavior of τfat as a function of contraction index in trained muscle 
in Subject 17. 
 
 
 
 

 

Figure 7-25.  Behavior of τleak as a function of contraction index in trained muscle 
in Subject 18. 
 
 
 

 

Figure 7-26.  Behavior of ατ1 as a function of contraction index in trained muscle 
in Subject 18. 
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Figure 7-27.  Behavior of τfat as a function of contraction index in trained muscle 
in Subject 18. 
 

 

7.5.2 Parametric plots for modeled  
untrained muscle 
 

 

Figure 7-28.  Behavior of τleak as a function of contraction index in untrained 
muscle in Subject 17. 
 

 

 

Figure 7-29.  Behavior of ατ1 as a function of contraction index in untrained 
muscle in Subject 17. 
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Figure 7-30.  Behavior of τfat as a function of contraction index in untrained 
muscle in Subject 17. 
 

 

 

Figure 7-31.  Behavior of τleak as a function of contraction index in untrained 
muscle in Subject 18. 
 
 
 

 

Figure 7-32.  Behavior of ατ1 as a function of contraction index in untrained 
muscle in Subject 18. 
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Figure 7-33.  Behavior of τfat as a function of contraction index in untrained 
muscle in Subject 18. 
 

 

         It is noted that in the Conaway fatigue model, τleak increases with little 

change in variance as a function of contraction index.  This is seen in both 

trained and untrained muscle.  Contrarily, the variances of the other two free 

parameters fluctuate wildly as a function of contraction index.   

 

Table 7-25. Free parameters in Conaway fatigue model found using Subject 17 
trained fatigued muscle.  Note how they vary with the contraction index.  The 

standard deviations for ατ1 and τfat increase with each contraction.  Hence, those 
parameters have little influence in fatigue.  The parameter τleak is dominant. 

Contraction 
τleak            τleak  σ         ατ1            ατ1 σ         τfat     τfat σ 

1 245.676 4.73417      0.67884      0.102152     82.6344       9.34955 
 
2 248.536 5.13729      1.35213      0.320982     47.9305       8.93 
 
3 258.528 7.38156      2.44676      0.891975     30.5755       9.27007 
 
4 265.454 7.22485      3.84758      1.77835       20.7245       8.35242 
 
5 262.178 8.07727      5.94942      4.86385       14.661         10.8726 
    
6 282.119 9.69667      8.43335      9.68127       10.5671       11.3016 
 

 

y = 4.7257x + 25.235
R² = 0.9567
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Table 7-26. Free parameters in Conaway fatigue model found using Subject 18 
untrained muscle.  Note how they vary with the contraction index.  The standard 

deviations for ατ1 and τfat increase with each contraction.  Hence, those 
parameters have little influence in fatigue.  Again, the parameter τleak is dominant. 
Contraction 

τleak            τleak  σ  ατ1          ατ1 σ  τfat         τfat σ 
1 95.7433  7.56264  5.14556  1.4505          30.5407            7.41266 
2 125.641  2.29066  4.41374  0.5405            33.5256            3.51211 
3 130.561  3.36306  3.66808  0.49578          39.9921            4.48909 

 

 

 

7.5.3 Analyses of variance for  
τleak, ατ1, and τfat 
 

Table 7-27. Two-way analysis of variance with replication for τleak.  

The analysis shows that the interaction term between contraction index  
and training has the greatest contribution to the variance in τleak. All  

factors are statistically significant. 
Source of  
Variation SS df MS F P-value F crit 

Contraction Index 16715.17 1 16715.17 150.3158 1.82E-06 5.317655 

Training 10427.81 1 10427.81 93.76599 1.08E-05 5.317655 

Index*Training 26732.22 1 26732.22 240.3969 2.98E-07 5.317655 

Within 889.6027 8 111.2003 
   

Total 54763.81 11         
           
 
 
            A two-way analysis of variance with replication was performed to 

determine if there are differences in τleak, ατ1, and τfat between the first three 

contractions of a fatiguing bout across trained and untrained limbs.  The reason 

the particular contraction index difference was selected for analysis is due to the 

limited amount of data.  There were six contractions in the trained muscle file and 
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only three contractions in the untrained file.  Hence, a common factor had to be 

selected for any analysis to make sense. 

 
 

Table 7-28. Two-way analysis of variance with replication for ατ1.  The two  
main factors are statistically significant. 

Source of 
Variation SS df MS F P-value F crit 
Contraction Index 10.2121 1 10.2121 23.65861 0.001249 5.317655 
Training 3.444628 1 3.444628 7.98025 0.022324 5.317655 
Index*Training 1.711338 1 1.711338 3.964695 0.081627 5.317655 
Within 3.453153 8 0.431644 

   Total 18.82122 11         
 

 
 

Table 7-29. Two-way analysis of variance with replication for τfat.  No  
factor is statistically significant.  Hence, it has the least influence of  

the three free parameters in the Conaway fatigue model. 
Source of 
Variation SS df MS F P-value F crit 
Contraction Index 149.3073 1 149.3073 0.70685 0.424906 5.317655 
Training 430.0303 1 430.0303 2.035846 0.191469 5.317655 
Index*Training 272.5415 1 272.5415 1.290264 0.28888 5.317655 
Within 1689.834 8 211.2292 

   Total 2541.713 11         
 

 

From the above statistics, it is shown that τleak is the dominant free 

parameter in the Conaway fatigue model.  Remarkably, for τleak, the contraction 

index and the interaction between the contraction index and training status had 

much lesser contributions to the variance.  Moreover, since the interaction factor 

has its p-value less than that of the contraction index by an order of magnitude, 

the interaction is the most significant.   For ατ1, however, the training status and 
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the interaction between the contraction index and training status had much lesser 

contributions.  Furthermore, since the contraction index has its p-value less than 

that of the training status by an order of magnitude, the contraction index is the 

most significant.  These results are totally unexpected! 
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CHAPTER 8: CONCLUSION 

 

8.1.1 Major findings 

8.1 Evaluating the specific aims 

This study provides the first systematic evaluation of models that include 

calcium dynamics for predicting force and low-frequency fatigue in electrically 

stimulated, chronically paralyzed human muscle.  There are three major findings 

of this study.   First, it was  found that, by including a Riccati-Bass diffusion 

function for R0 and km in modeling force and fatigue respectively, the structure of 

the Conaway models predicts force and low-frequency fatigue with less mean 

squared error than do the Ding models.   Second, the cross-bridge friction is the 

most influential factor in generating force in fresh muscle at frequencies greater 

than 5 pps.  Finally, the calcium leak current is the most influential factor in low-

frequency fatigue in paralyzed muscle.  Hence, the specific aims of this study 

have been successfully answered. 

The hypotheses that the structure of the Conaway model produces less 

prediction error, and greater curve fit, than the Ding model structure are not 

rejected.  The findings show that the structure of the Conaway model is more 

robust in predicting force from different inputs in fresh muscle as well as 

predicting force in fatigued muscle. Furthermore, there are certainly noticeable 

differences between trained and untrained muscle as well.  The Conaway force 

model has better predictive ability for frequencies greater than 5 pps.  Similarly, 

the Conaway fatigue model has significantly better ability, with average curve fits 
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to the experimental data around 95%, than the Ding model does to predict 

fatigue.  Remarkably, in fresh and fatigued muscle, the training status generally 

contributed little to the error variance.  The difference of the error generated by 

the force and fatigue models was the primary source of mean squared error 

variance.  The difference in model predictive ability is highly significant 

statistically. 

8.1.2 Interpretations, discoveries, and  
insights 

 
The Conaway force-fatigue model structure is the first to incorporate 

Riccati-Bass diffusion functions (10, 142) to describe underlying physiologic 

processes.  With external and internal components, these processes are 

characterized by λ1 and λ2 in the Conaway force model and µ1 and µ2 in the 

Conaway fatigue model.  The external influence comes from the extrinsic calcium 

applied to the muscle that causes calcium to move.  Internal influence is a 

function of the relevant structures and ions in the sarcoplasmic reticulum, namely 

calcium channels and free calcium, which behave according to specific 

aggregate probabilities in different states. 

However, the respective strengths of these two influences are unequal, 

with the second parameter always being greater than the first. In fresh muscle, 

the affinity for calcium and troponin to dissociate after the first pulse during a 

stimulated contraction was always greater than the affinity for calcium and 

troponin to bind after the first pulse during a stimulated contraction. Meanwhile, in 

fatigued muscle, the probability that calcium channels will inactivate was always 

greater than the probability that calcium channels will activate. It has been shown 
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that the quality of a functional state is a vital factor that underlies such 

differences. (113)   In fact, an implicit assumption of many muscle force-fatigue 

models is the assumption that diffusion occurs homogeneously, or that the 

tendency towards binding or activation remains constant throughout a 

contraction.  (108)  The diffusion processes are functions of time-varying inputs, 

and hence, the models are exponentially modulated.  However, the processes 

must also be considered with respect to the structural heterogeneity of a muscle 

membrane, either with or without pathology.  Hence, the question of whether the 

assumed mathematical distribution of free divalent calcium or activated calcium 

channels properly modulates the modeled force must be posed.  Figures 7-1 

through 7-7 show that the assumed distribution is valid and that the Conaway 

model structure is robust. 

It was hypothesized that the structure of the Conaway force-fatigue 

models yields a more robust model of muscle force generation, with respect to 

different inputs, than does the structure of the Ding force-fatigue models. Using 

the 95% confidence intervals of the means for mean squared error and 

correlation coefficients from each model, Table 7-5 shows that the Conaway 

model structure performs markedly better than the Ding model structure does at 

force prediction.  Indeed, the confidence intervals do not overlap.  Furthermore, 

Tables 7-6 and 7-7 show that single-factor analysis of variance for Ding and 

Conaway force models shows that the difference in model structure accounts for 

over 60% of the variation in the mean squared error in trained and untrained 

muscle.  In addition, according to Table 7-8, single factor analysis of variance for 
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mean squared error between Ding and Conaway fatigue model shows that the 

difference in model structure accounts for over 98% of the variation in the mean 

squared error. Hence, these statistics show that that including the Riccati-Bass 

equation in models of muscle force and fatigue, even under unconstrained 

optimization, makes a vast improvement in the predictive ability of the Hill-Huxley 

nonlinear muscle model because specific biochemical processes that occur 

during a contraction are accounted for in a manner that is more realistic 

physiologically. 

Furthermore, since Norton and Bass (142) extended the model to predict 

activity in subsequent demand cycles, it has been shown that the structure of the 

Conaway models holds for each contraction in a bout of stimulation, for both 

trained and untrained muscle, and that the coefficients are generally the same 

between successive generations.  (See Appendices G and H for complete 

stimulation bouts.)  It is thus shown in Figures 7-1 through 7-5 that, for fresh 

muscle, ascertainment of a physiologically realistic Conaway force model 

optimization for various inputs in fresh paralyzed muscle is facilitated via the 

model stabilization provided by the Riccati-Bass equation for R0.  A variable R0 

accounts for the early depression and facilitation from autocatalytic calcium-

troponin binding, via differences between association and dissociation affinities, 

during an extrinsically induced contraction. (149, 175)  This reflects the net 

release of calcium during prolonged stimuli and includes the formation of cross-

bridges.  (149)  Moreover, for fatigued muscle, Figures 7-6 and 7-7 show that 

determination of a physiologically realistic Conaway fatigue model optimization is 
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facilitated via the model stabilization provided by the Riccati-Bass equation for 

km.  A dynamic km accounts for the change in voltage sensitivity (59-61) via 

differences between calcium channel activation and inactivation probabilities 

during a fatiguing contraction. (40, 41)  This reflects the net current movement 

(59-61) and allows calcium leak from the SR (11) in the fatigue process to be 

modeled in each contraction as well.  Hence, these two different modeled 

processes imply that the assumption of the excitation-contraction mechanism 

acting as a stop transducer (103) is valid.   

 Once a muscle can no longer maintain maximum force, it hysteretically 

returns to equilibrium due to the change in concentration of free calcium in the 

sarcoplasm.  The biophysical interpretation of the mathematics of calcium 

diffusion in muscle is that for every molecule of CaTr, there will be a specific 

instant in time when the state converges to a ‘‘limit of stability“. The amount 

transformed from the aggregate CaTr in a specific time unit depends on the 

characteristic of the species-specific limit, and on the number of perturbations in 

the state of the aggregate. (116-119)  It is known that in a system in which 

consecutive reactions occur in the presence of a product of autocatalysis, 

essential conditions exist that allow oscillating processes with damping, 

especially in the case of two consecutive reaction of equal period in dynamic 

equilibrium such that energy is minimized in the global system. (117-119)   In the 

case of extrinsic contraction of a paralyzed muscle, the autocatalytic calcium-

troponin formation and dissociation reactions lag each other hysteretically in a 

bistable state. (193) Therefore, by the Principle of Le Chatelier (8, 118, 119, 
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193), it is concluded that CaTr formation or dissociation is a function of the free 

calcium available in the sarcoplasm during a contraction.   

Previous work (66) optimized the Ding force model on all free parameters 

for all contractions.  Optimization on all free parameters for each contraction in a 

bout of stimulation is not physiologically realistic and can fail to capture 

dynamics.  Using trained muscle data of Subject 18, the question of what is the 

most realistic free parameter set with which to optimize the Conaway force model 

came to the foreground.  Among the parameter sets {km, τ1, τ2}, {km, τ1}, and {km}, 

it is shown in Figure 7-10 that the second set yielded the most realistic values for 

the doublet ramp and the 10 CT input,  even though the three-parameter set had 

the least prediction error.  However, there is not much difference in the fit of 

curves optimized on {km, τ1} and {km}.  This suggests that the lack of strong 

cross-bridge bonds, in addition to changes in the voltage sensitivity in the 

calcium channels in the SR, modulate force generation in paralyzed muscle at 

low frequencies.  The reason for this is that, functionally and morphologically, 

trained paralyzed muscle has more integrity. (163-165)   The biologic milieu may 

represent a difference in the amount of protein or it may indicate how far the 

protein molecules are embedded into the lipid phase of the membrane. The 

different voltage sensitivities in trained and untrained muscle could be explained 

if the voltage-sensitive protein in the fibers of trained soleus were more deeply 

embedded in the membrane and saw a different part of the electric field.  There 

are fewer indentations in nonparalyzed soleus fibers. Upon denervation, the 

quantity of indentations increases.  Furthermore, the calcium transient is smaller 
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in untrained than trained muscle. This could result from a decreased membrane 

area in the terminal cisternae available for calcium release. Or, it may result from 

decreased calcium capacity per unit volume of sarcoplasmic reticulum in 

untrained muscle. Since the proteins in the contractile machinery of soleus fibers 

require less calcium for activation, this suggests a holistic adaptation of the 

soleus sarcoplasmic reticulum of storing less calcium and releasing decreased 

amounts of calcium upon activation.  (60) 

          However, for a 20 DDT input, according to Table 7-19, the set {km, τ1, τ2} 

yields the least final prediction error with parameter values closest in agreement 

to those reported in the literature (66).  This suggests that with stimulation of 

paralyzed muscle at higher frequencies, cross-bridge friction increases as a 

muscle tries to generate force more rapidly.  Hence, the tetani fasciculate with 

increasing smoothness.  This finding indicates the catch-like property of muscle 

as well as the process of ionic crowding (8) of free calcium in the SR as a 

paralyzed muscle transitions to low-frequency fatigue. 

It was hypothesized that cross-bridge friction changes as a function of 

frequency and index contraction in fresh muscle.  Figures 7-16 through 7-18 

show that, in trained muscle, the voltage sensitivity (km) is generally oscillatory 

after the fourth contraction (first 5 pps with beginning doublet input), the time 

constant of force decay from lack of strong cross-bridge bonds (τ1) generally 

decreases after two twitches and reaches minimum value after the second 20 

pps with doublet input, and the time constant of force decay due to cross-bridge 

friction (τ2) is constant until it increases when inputs of 10 pps with doublets and 
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higher are given.  However, Figures 7-19 through 7-21 show that, in untrained 

muscle, the voltage sensitivity (km) is generally constant after the fifth contraction 

(second 5 pps with beginning doublet input), the time constant of force decay 

from lack of strong cross-bridge bonds (τ1) generally decreases after the twitches 

yet levels out with a 5 pps with center doublet input, and the time constant of 

force decay due to cross-bridge friction (τ2) is constant until it increases when 

inputs of 10 pps without doublet and higher are given.   

Since the calcium current in paralyzed muscle is reduced, this implies that 

the calcium released from each pulse in a stimulus train is also reduced. In 

addition, because paralyzed muscle also contains excess calcium from 

proteolysis of fibers, this implies that troponin saturates much more quickly 

during an elicited contraction.  Rapid saturation of troponin would generate 

maximal force and cause muscle equilibration more quickly.  Yet, maximal force 

cannot be sustained due to the morphological degradation of the calcium 

channels.  Hence, even with the excess calcium in the myoplasm, force in 

paralyzed muscle decays because there is degraded contractile machinery in the 

fibers.  This explains the decay in τ1 as a function of input frequency shown by 

the plots.  Rather than instantaneous occlusion, the results imply that the cross-

bridges form in this way until the troponin is saturated at 20 pps.  (117, 149, 163) 

The behavior of τ2 can be explained from the fact that later inputs at low 

frequencies rose with the same time delay as the twitch.  Hence, this confirms 

the earlier hypothesis of progressive saturation of troponin by additional divalent 

calcium in the myoplasm. In the presence of divalent calcium, this inhibitory 
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domain moves away from actin and tropomyosin displaces.  Activation of myosin 

binding to the actin facilitates additional cross-bridge formation through increased 

calcium binding or by directly altering actin conformation.  Hence, cross-bridge 

friction increases asymptotically as calcium-troponin binding increases 

autocatalytically.  (12, 73, 112, 130)   

Determining a most influential parameter was done via two-way analysis 

of variance with replication for each of the three free parameters in the Conaway 

force model and is shown in Tables 7-22 through 7-24.  For km and τ1, it is shown 

that no one of the factors are statistically significant.  Meanwhile, the analysis for 

τ2 shows that neither the training status nor the interaction between frequency 

and training status has statistical significance.    However, the factor of input 

frequency is very significant statistically.  This confirms what was found in the 

model-fitting optimization analysis.  Yet, the within group factor accounted for 

62% of the variation.  This could be due to experimental error or physiological 

differences between subjects.  It is thus conditionally concluded that the cross-

bridge friction is the most influential physiologic process in force generation in 

paralyzed muscle at frequencies higher than 5 pulses per second. 

As the input frequency of the electrical stimulus increases, the muscle 

contractions progressively become more fused and the muscle generates greater 

torque. (42, 163) Once the muscle tetani are fully fused, any frequency increase 

afterwards elicits infinitesimal changes in force and its underlying generative 

processes. The parameter-frequency curve for muscle will be shifted to the left of 

the parameter-frequency curve for fast muscle. Since previous work has shown 
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that increases in volume fraction of the sarcolemma in soleus fibers following 

denervation release more calcium, this shifts the tension-membrane voltage 

curves of actin and myosin to the left. (149, 163)  Assuming untrained muscle to 

be acute post-paralyzed muscle and trained muscle as an approximation to 

nonparalyzed muscle, this would explain the differences in the parametric points 

of change with respect to frequency-contraction index. Biochemically, myosin 

phosphorylation increases when fibers transform from slow to fast from disuse 

(20, 21).  As the calcium concentration in the SR decreases from repetitive 

activation, decreased free divalent calcium is available to phosphorylate myosin 

light chains. (2, 176)  Hence, the cross-bridge friction increases.  Since untrained 

paralyzed muscle behaves more like fast muscle than does trained paralyzed 

muscle, this explains why the model parameters, and the underlying physiologic 

processes, change at lower frequencies in untrained muscle than they do in 

trained muscle. 

In fatigued muscle, with the Riccati-Bass structure (10, 142) for km, it is 

inferred that the underlying processes involved in the calcium binding or 

activation of extrinsic stimulation still behave according to power laws of 

Michaelis-Menten kinetics in each contraction in fatigued paralyzed muscle. 

Hence, the power law formalism (162) is indeed valid for the Conaway fatigue 

model.  With a value for b around 1.5, it means that, according to the Conaway 

fatigue model, the R0-km relationship could be fractal.  Physiologically, this can be 

interpreted as increased delay in the SR calcium channels sensing strongly 

bound cross-bridges from the calcium current during fatigue in paralyzed muscle.  
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As a result, the more-than-linear enhancement from additional pulses in a 

stimulus train is further decreased.  This implies decreased force-generation in a 

paralyzed muscle because the excess free calcium remains unbound due to 

decreased sarcotubular volume.  (40) 

It was further hypothesized that calcium leak from the SR during an 

extrinsically induced contraction is the primary contributor to fatigue from 

extrinsic stimulation in paralyzed muscle.  Additionally, this process was thought 

to be amplified in untrained paralyzed muscle.  Finally, it was hypothesized that 

calcium leak increases as a function of contraction during fatigue.   It is shown in 

Figures 7-25 and 7-28 that in fatigued trained and untrained muscle, τleak 

increases with not much variance as a function of contraction.  Meanwhile, the 

variances of the other two free parameters fluctuate wildly.  This means that τleak 

is the most influential parameter in the Conaway fatigue model.  This means that 

calcium leak from the sarcoplasmic reticulum is the most influential process in 

muscle fatigue.  Furthermore, in Table 7-27, two-way analysis of variance with 

replication for τleak shows that the interaction term between contraction index and 

training accounts for almost 50% of the variance in τleak.  This means that calcium 

leaks out of the SR increases multiplicatively as a function of training status and 

every additional contraction in fatigue.  Finally, Figure G-7 shows that peak force 

decays with every additional contraction.  That means that there is potentiation 

as described by Shields et al (171) occurring as a paralyzed muscle fatigues. 

Bellinger et al (11) show that remodeling of the RyR1 macromolecular 

complex during exercise, consisting of PKA hyperphosphorylation at Ser-2844, 
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RyR1 S-nitrosylation, PDE4D3 depletion, and calstabin1 depletion, likely plays a 

role in determining exercise capacity. Several biochemical changes have been 

identified in the RyR1 macromolecular complex consistent with leaky RyR1/Ca2+ 

channels. Muscle-specific deficiencies of either calstabin1 or PDE4D3 in exercise 

defects in mice have been shown in the remodeling of the RyR1 complex. This 

remodeling is characterized by depletion of calstabin1 and PDE4D3 from the 

RyR1 complex, and has been linked to impaired exercise performance. This 

explains the differences in parametric variations between muscle training states 

seen in the results. It may be that because trained paralyzed muscle behaves 

like nonparalyzed muscle (163, 164), there is more calcium leak occurring in 

trained muscle than in untrained muscle. This is because trained muscle has a 

greater sarcotubular volume fraction. Therefore, the cross-bridge activity and 

other modulating factors in trained muscle may behave differently than those in 

untrained muscle.   

This is also supported by the fact that kinetics of cytoplasmic reactions 

follow anomalous rate laws with macromolecular crowding as a major factor. 

Reactants are constrained in space in crowded environments microscopically by 

forces such as steric hindrance and electromagnetic interactions which can occur 

intermolecularly. The reaction volume available for a calcium ion is modulated by 

number, size and shape of all other ions in the SR. Regardless of the quantity of 

available troponin, collisions between calcium ions and troponin will be much less 

numerous than collisions between calcium ions. (163)  Hence, due to the excess 
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release from extrinsic stimulation and denervation proteolysis, the calcium ions 

repel each other rendering a muscle unable to sustain maximal force. 

Two-way analysis of variance with replication for ατ1 shows, in Table 7-28, 

that the two main factors of training and contraction are statistically significant for 

the coefficient for force model parameter τ1 in the fatigue model. Together, they 

account for almost 73% of the parameter variance. That means that the change 

in maximally sustained force is a function of contraction index as well as training 

status.  Furthermore, two-way analysis of variance with replication for τfat shows 

that no factor is statistically significant for the time constant controlling the 

recovery of the cross-bridges during fatigue.  Hence, it is concluded that 

maintenance of cross-bridge friction has the least influence of the physiologic 

processes in fatigue in paralyzed muscle. 

This result can be explained be the following process. The affinity of the 

contractile proteins for calcium may increase in paralyzed muscle.  Further 

evidence to support a role for the indentations in excitation-contraction coupling 

is provided by the fact that there is a parallel change in the numbers of 

indentations and the amount of charge movement after denervation. (61)   

Inactivation of EC coupling is not caused by calcium depletion from the 

sarcoplasmic reticulum or inactivation of the calcium release channel or 

contractile proteins.  The resistance to inactivation of tension indicates a 

characteristic of the voltage-sensitive molecule. (59) 

However, Delbono and Stefani (41) found that calcium inactivation in 

paralyzed fibers had an increased recovery, and a decreased speed of 
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inactivation. This renders inactivation of paralyzed muscle more difficult, since 

the voltage dependence of the calcium channel inactivation is partially shifted 

leftward due to proteolysis. Hence it is plausible to suggest that this process may 

degrade the functioning of a typical inactivating gate in some of the calcium 

channels.   As a result, formation of strong cross-bridges necessary to maintain 

maximal force is impeded. Moreover, impaired release of calcium ions by the SR 

and a change in the sensitivity of the calcium receptor have been suggested as 

contributors to low-frequency fatigue. (115, 120, 191)  Hence, as soleus 

transforms, upon denervation, from premost influentially slow fiber type to that of 

fast-fatigable fibers (72, 77, 164), the relaxation phase is prolonged in the 

fatigued state. 

Hence, it is inferred that, as the chronically paralyzed soleus fatigues from 

stimulation, calcium channel remodeling and inactivation of EC coupling from 

ionic crowding accelerate with each subsequent contraction. In turn, this means 

that as more calcium leaks out, further channel remodeling and inactivation occur 

in a positive feedback cycle until maximal sustained force decays.  The calcium 

channel remodeling indicates electromechanical hysteresis.  As the calcium 

channels remodel due to calcium leak, they acquire different conformations as 

energy from the sarcoplasmic reticulum is lost.  Hence, with decreased potential 

energy, the muscle loses the ability to sustain maximal force.  Furthermore, 

inactivation of EC coupling indicates chemical hysteresis.  As the excess calcium 

ions flow around a sarcomere, the voltage-sensitive troponin molecules in the SR 

change conformations and lose the ability to generate force. Thus, relaxation is 
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prolonged.  Clinically, that means that if there is overstimulation, the degrading 

biochemical processes will continue until the muscle is most likely damaged 

beyond repair. 

8.1.3 Problems and weaknesses  
in the study 

One major weakness of this study is that there is no demonstrable 

modeling of the transition between nonfatigued and fatigued states in a muscle.  

In this study, muscle behavior has been inferred solely from differences in 

optimal sets of parameters. The protocol assumes that nonfatigue and fatigue 

are separate discrete states.  It would be more realistic to model muscle behavior 

along a continuum.  If this were done, an index of muscle fatigue could be 

developed for clinical use in therapeutic stimulation protocols. 

There are other deficiencies in this study.  First, the sample size and input 

range are very small.  The Conaway models need to be validated over a much 

larger population of subject and a wide spectrum of inputs to establish their 

generalizability and reliability as well as their clinical applicability.  This would 

require substantial data collection from multiple centers.   

Furthermore, the Conaway models need to be tested for robustness with 

stochastic inputs such as pseudorandom n-ary sequences.  Were this done, 

higher-order information, such as Wiener kernels, about muscle properties could 

be obtained.  This would aid in developing input-output relationships between 

stimuli and generated forces in paralyzed muscle 

8.2 Future work to address  

 
long-term goals 

There are many directions in which this modeling work can be extended.  
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It would be fruitful to apply the Conaway models to human muscle force and 

fatigue data from subjects who have other neurological impairments such as 

Parknson’s disease, stroke, traumatic brain injury, and cerebral palsy.  If such 

investigations were pursued, a more complete picture of muscle physiology may 

be obtained. 

8.2.1 Directions in modeling 

Currently, there is no demonstrable modeling of the transition between 

nonfatigued and fatigued states in a muscle as functions of frequency and index 

of contraction.   It would be more realistic to model muscle behavior along a 

continuum with a generalized force-fatigue model.   To achieve this, the R0-km 

constitutive power law relationship from the Conaway fatigue model can be 

applied to the Conaway force model.  Evidence to support this comes from the 

reverse engineering result that the Conaway fatigue model can be optimized to 

fit, with 95% agreement, a 20 DDT force profile from fresh muscle (unpublished 

observation).  This observation suggests a novel way to investigate the transition 

to fatigue.  If a generalized Conaway force-fatigue fatigue model can be 

constructed, its parameters can be optimized to determine the frequency of 

stimulation at which the relationship between nonlinear enhancement and 

voltage sensitivity, as well as the calcium leak, become influential in maximal 

force maintenance or lack thereof in paralyzed muscle. 

In addition, the relationship between nonlinear summation and calcium 

channel voltage sensitivity (R0-km) needs to be investigated for its possible fractal 

nature in both fresh and fatigue states.  To do this, however, Lyapunov 
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exponents would need to be calculated.   If a fractal relationship is found to exist, 

it would say a great deal about the kinetics in a paralyzed muscle during a 

contraction, as well as its morphology.   In addition, such findings would yield 

further insight on how to characterize the transition between fresh and fatigued 

states in a paralyzed muscle using a closed-form parameterized mathematical 

model that employs nonlinear differential equations in its structure. 

This modeling work may be extended to other neurological impairments 

such as stroke.  To date, it is unknown how a post-stroke paretic muscle behaves 

as it goes into fatigue.  It is assumed that paretic muscle behaves similarly to 

paralyzed muscle, yet with possible differences. Using muscle force-fatigue data 

from paretic human subjects, it is proposed that the abilities of the Ding models 

to predict force and low-frequency fatigue would be compared to the predictive 

ability of the Conaway models.  The results from paretic human subjects would 

be compared to the results from paralyzed human subjects to garner a much 

more comprehensive understanding of muscle physiology in different 

mechanisms and states of neuromuscular pathology.  

8.2.2 Suggested experiments  
in vitro 

 
In paralyzed single crayfish muscle fibers and frog semitendinosus 

immersed in a calcium gradient, force output from sinusoidal length changes in 

the frequency range of 0.25-133 Hz can be studied.  From this, three processes 

can be shown in the interaction of myosin with actin in fully activated 

preparations. They would be a low-frequency phase advance, a middle-

frequency delay, and a high-frequency advance. These processes can be used 
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as probes to study the chemomechanical decoupling of fatigability.  (115, 120, 

183, 191) 

A high resolution method for determining the complex stiffness of 

“fatigued” single muscle fiber can be implemented by immersing them in excess 

calcium and oscillating the fiber length sinusoidally. The resulting force amplitude 

and phase shift are observed and interpreted in terms of chemomechanical 

energy transduction. In “fatigued”, fast skeletal muscle fibers of rabbit, frog, and 

crayfish, reaction rate processes can be discovered.  These would show ATP 

hydrolysis and associated energy transduction since they are not present in fresh 

muscles.  Results of complex stiffness data from different muscles in different 

species would elicit better understanding of fatigue mechanisms across a broad 

spectrum of varying phylogeny. (115, 120, 183, 191) 

8.2.3 Clinical applications 

 It is expected that these results will be used in the design of better neuro-

muscular electrical stimulators.   It is envisioned that future revisions of the model 

will be incorporated into a real-time NMES controller that will predict and prevent 

fatigue that arises from different mobility tasks in individuals with spinal cord 

injury. 

The insights about the physiology of muscle fatigue in chronically 

paralyzed muscle can be used to develop clinical indices to asses muscle 

integrity in the neurologically impaired.   With appropriate validation of the 

Conaway models in paretic muscle, a standard battery of tests based on the 

calcium dynamics in muscle fatigue may be developed.  Such tests may be used 
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to develop therapeutic strategies to preserve muscle integrity for different 

mechanisms and degrees of neurological impairment including cerebral palsy, 

stroke, traumatic brain injury, and spinal cord injury. 

Several conclusions are drawn from this study.  First, it is concluded that 

including the Riccati-Bass equation in models of muscle force and fatigue, makes 

a vast improvement in the predictive ability of the Hill-Huxley nonlinear muscle 

model of Ding because certain biochemical processes are accounted for in a 

manner that is more realistic physiologically.  Such additions stabilize the original 

models and makes them robust.  Physiologically, it is concluded that calcium-

troponin formation or dissociation is a function of the free calcium available in the 

sarcoplasm during a contraction.  Furthermore, the lack of strong cross-bridge 

bonds, in addition to changes in the calcium channel voltage sensitivity in the 

sarcoplasmic reticulum, modulates force generation in paralyzed muscle at low 

frequencies.  However, the cross-bridge friction is the most influential physiologic 

factor in force generation in paralyzed muscle at frequencies higher than 5 

pulses per second.  Furthermore, calcium leak from the sarcoplasmic reticulum is 

the most influential process in paralyzed muscle fatigue.  The process of muscle 

fatigue occurs as calcium channel remodeling and inactivation of excitation-

contraction coupling from ionic crowding accelerate with every additional 

contraction.  

8.3 Summary 

The fundamental question to be considered is whether expansion-

contraction equations can approximate curvilinear motion when the former is far 
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more rapid in one direction or a small angle than in others.  Since the expansion-

contraction equations and their solutions are simple, finding theorems for these 

approximations could simplify the study of physiologic processes. (57)  Because 

the Riccati-Bass equation generates sigmoidal diffusion functions, it is argued 

from the literature that they can be applied to many other physiologic processes.  

Furthermore, it is at best inappropriate to assume that physiologic processes 

behave as scalar functions since biochemical reactions occur in all directions in a 

volume. Thus, including the fundamental construct of the diffusion function in 

physiological systems theory by extending this powerful equation to different 

clinical problems and associated underlying models is of great societal 

importance and urgency.  Better assessments will lead to optimal therapeutics.  

Therapeutics that better enable function will decrease health care costs and 

increase the societal contributions made by individuals with SCI.  In the modern 

economy, every bit of savings is exponentially helpful in a logistic manner. 
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APPENDIX A: THE RICCATI EQUATION 

 

A.1 The Riccati equation and its  

 
extensions 

A.1.1 Introduction  

          At the close of 1720, the Venetian nobleman Count Jacopo Francesco 

Riccati proposed two new differential equations. In modern symbols, these 

equations can be written as follows:  

m' ax+btx =      (A-1)
 

2' ax+bt+ctx =     (A-2) 

where m is a constant and t is the independent variable. (16)  

Originally, Riccati focused on the geometric problem of a pair of 

coordinates (α,β) describing planar motion by a first-order linear differential 

equation such as:  

11 12

21 22

w w
w w

α α     
=     ββ    





    (A-3)
 

The question to be answered was: which equation governs the slope 

x=β/α? It was shown to be  

2' a b cx x x= + +    (A-4) 

where a=-w12, b=w22-w11, c=w21.. (16, 158) 
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A.1.2 The Bernoulli equation 

          In mathematics, an ordinary differential equation of the form 

' ( ) ( ) ny P x y Q x y+ =     (A-5) 

is called a Bernoulli equation when n≠1, 0.  (13) Dividing by yn yields 

1

1

( ) ( )n n

y P x Q x
y y −+ +

     (A-6)
 

A change of variables is made to transform into a linear first-order 

differential equation. 

1

1
nw

y −=
     (A-7)

 

1' 'n
nw y

y
−

=
                   (A-8)

 

' ( ) ( )
1

w P x w Q x
n

+ =
−     (A-9)

 

The substituted equation can be solved using the integrating factor 

(1 ) ( )( ) n P x dxM x e − ∫=     (A-10) 

A.1.3 The general Riccati equation 

          Riccati (158) responded to the challenge posed by Daniel Bernoulli to 

solve his equation by saying: 

“Reductio aequationum differentialum secundi ordinis plerumque est adeo 
perplexa, atque involuta, ut Analystam minus attentum frequentissime 
eludat. Dum syntheticae viae insistimus, & a primis fluxionibus ad altiorem 
gradum ascendimus, cum assumatur tanquam constans vel nota 
differentia, vel nulla, eae difficultates, de quibus sermo erit, vix occurrunt; 

http://en.wikipedia.org/wiki/Ordinary_differential_equation�
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quae tamen evitari nequeunt, si problema aliquod proponatur secunda 
elementa involvens & analytica methodo procedendum sit. Infinitas dari 
formulas differentio-differentiales, ad quas pervenitur, nulla adhibita 
constante, nemo profecto ignorat: totidem quoque exhiberi posse, ad quas 
pervenire non conceditur, nisi constante in subsidium vocata, acutiores 
non latet Analystas: at quomodo ab invicem dignosci queant, & qua 
ratione tractandae sint, non ita compertum neque obvium puto; cum 
tamen sublimioris Geometriae officium sit inspicere, quousque, & quibus 
in circumstantis expressiones istae solutionem admittant.” 

 

           In the translation by Bruce (158), that means: 

“The reduction of differential equations of the second order generally is 
especially involved and complicated, and usually the reduction eludes the 
less attentive analyst.  While we are pursuing the path of synthesis, and 
when we rise from the first fluxion [derivative] to the higher level, since we 
can assume that either there is agreement with a known differential, or 
else nothing is to be agreed upon, then these difficulties for which 
something needs to be said hardy occur.  This cannot be avoided, if some 
problem is proposed involving elements of the second degree, and one 
has to proceed by an analytical method. There are boundless second 
order or differentio-differential equations that can be given, and for which 
there appears to be no solution, and nobody is ignorant of that: likewise, 
there are just as many that can be solved that are only revealed to the 
more acute analysts, and for which we may concede that a solution can 
only be found by calling on their aid.  But how are these differential 
equations to be distinguished from each other, and by what means are 
they to be solved?  I think that the answer to this question is neither known 
nor obvious; for it is still the task of the more sublime mathematicians to 
examine these things at some future time, and to consider in what 
circumstances these expressions admit of a solution.“  

 

Riccati (158) continues his argument with the following proposition. 

“Reductio aequationum differentialum secundi ordinis plerumque est adeo 
perplexa, atque involuta, ut Analystam minus attentum frequentissime 
eludat. Dum syntheticae viae insistimus, & a primis fluxionibus ad altiorem 
gradum ascendimus, cum assumatur tanquam constans vel nota 
differentia, vel nulla, eae difficultates, de quibus sermo erit, vix occurrunt; 
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quae tamen evitari nequeunt, si problema aliquod proponatur secunda 
elementa involvens & analytica methodo procedendum sit. Infinitas dari 
formulas differentio-differentiales, ad quas pervenitur, nulla adhibita 
constante, nemo profecto ignorat : totidem quoque exhiberi posse, ad 
quas pervenire non conceditur, nisi constante in subsidium vocata, 
acutiores non latet Analystas : at quomodo ab invicem dignosci queant, & 
qua ratione tractandae sint, non ita compertum neque obvium puto; cum 
tamen sublimioris Geometriae officium sit inspicere, quousque, & quibus 
in circumstantis expressiones istae solutionem admittant. “ 

 

That is translated as: 

“For example, let there be a curve constructed in which some power m of 
the abscissa x is set out in order along a line in the ratio of the second 
order differentials of the ordinates y and inversely as the similar 
differentials of the same abscissae, by which means the curve is set out 
by a differential equation of the second order.“ (158) 

 

        The analysis starts with the general ordinary differential equation 

( , )dy f x y
dx

=
    (A-11)

 

 Approximating f(x,y) while x is kept constant gives 

 

2( , ) ( ) ( ) ( )f x y P x Q x y R x y= + + +…    (A-12) 

 

Riccati (158) looked at the approximation to the second degree and 

considered equations of the type  

2( ) ( ) ( )dy P x Q x y R x y
dx

= + +
    (A-13)
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He claimed that no curve exists when the transition is made from the first 

derivative to the second derivative, unless some constant is initially given in the 

first order differential equation. Furthermore, Riccati asserted that it is impossible 

for such an equation to be modified except by the addition of equal terms to both 

sides, or by the substitution of other functions. Conversely, transitioning from the 

second derivative to the first derivative, an infinite family of curves exists with a 

specific first-order constant that satisfy the constraints of the original problem. 

(158) 

The above equation is the General Riccati Equation. It is nonlinear and 

does not fall under the category of any of the classical differential equations. In 

order to solve a Riccati equation, it is necessary to have a particular solution.  

Riccati proposed that all second-order differential equations can be reduced to 

first order differential equations with or without a specified constant and in which 

the second derivatives have been determined via quantities of finite magnitudes 

as long as  the proposed equation for each does not diverge from its own 

indefinite integrals.  (19, 39, 90, 154) 

A.1.4 Solution of the general  
Riccati equation 

 
More generally, Riccati (158) examined the equation: xn dq=du+u2dx:q 

with the exponent m given as arbitrary and the quantity q=xn is substituted. At the 

end of the treatise, he posed the question of what ratio should n be so that 

separation of variables will allow solving the equation only by quadratures.  

In his 1733 treatise, Euler (65) responded to the question posed by Riccati 

with the following answer.   The Riccati equation is indeed integrable when n is 
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either 0 or a positive whole number, so the whole thing itself can be integrated. 

For truly this happens whenever n=-4K/(2K+1), with K denoting some positive 

whole number. Hence the equation, if the exponent of x itself is –n/(n+1), can be 

reduced to axn dx = dy+y dx.  That equation is integrable if n=-4K/(2K+1). Thus, 

these are the cases in which separation of variables in the Riccati equation can 

occur. 

        The correspondence between Riccati equations and second-order linear 

ODEs has a number of consequences. If one solution of a second order ODE is 

known, then it is known that another solution can be obtained by a simple 

integration. The same holds true for the Riccati equation. In fact, if one can find 

one particular solution y1, the general solution is obtained as y=y1+u.  (19, 90) 

A.1.5 Growth and diffusion models 

         Via a Riccati equation without a constant term, P represents population size 

and t represents time, this model is given by the differential equation (90): 

1( )dP PrP
dt K

= −
    (A-14)

 

 

where the constant r defines the growth rate and K is the carrying capacity. The 

solution to the equation (with P0 being the initial population) is 

0

0

( )
( 1)

rt

rt

KP eP t
K P e

=
+ −     (A-15)

 

 

where 
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lim ( )
t

P t K
→∞

=
 (A-16)

 

            P(t) is known as a logistic function.  A logistic function models the S-

shaped growth curve of some set of elements P.  Initially, growth is 

approximately exponential. As saturation begins, the growth decreases until 

stopping at maturity. As shown in the graph, the unchecked growth is modeled as 

a percentage rate term +rKP.  As the population grows, some members of P 

interfere with each other in competition for some critical resource which can be 

called the saturation point, modeled by K. This competition decreases the growth 

rate until P ceases to grow at the point of maturity.  (90, 100, 150) 

          A logistic function is defined by the mathematical formula: 

a+me
t
r

t
r

y
a ne

−

−
=

+     (A-17)

 

for real parameters a, b, m, n, and τ.  (85, 94, 145) 

 
 
 

 

Figure A-1. General logistic curve with inflection point at (-ln c/a, b/2c). (150) 
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            A special case of the logistic function that exists with a=1, b=1 m=0, n=1, 

t=1,  

                                                            
1

1 ty
e−=

+                                      (A-18) 
 

is called a sigmoid. The name comes from the sigmoidal shape of its graph. Also 

known as the standard logistic function, it is encountered in a wide variety of 

technical domains, including chemistry, physics, engineering, health science, 

probability, statistics, biomathematics, economics, psychology, and sociology. 

             The sigmoid function solves the first-order non-linear differential equation 

y’=y(1-y) with the boundary condition P(0)=0.5. (90, 100) 

 

 

 

Figure A-2. Sigmoid function.  

 

 

           The sigmoid curve exponentially grows for negative t, slows to linear 

growth of slope 1/4 near t = 0, and approaches y = 1 with exponential decay.  As 

the inverse of the natural logit function, the sigmoid can to convert the logarithm 
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of odds into a probability. Conversion of log-likelihood ratio of two alternatives 

also exhibits sigmoidal behavior. (85)  Furthermore, if y=M/(1+e-t/τ), that gives 

y/2=M(1-e-t/τ)/2(1+e-t/τ)=½M tanh (t/τ). This result is the hyperbolic tangent 

function.  (22) 

 
 
 

 

Figure A-3. Hyperbolic tangent function with τ=1. 

 

 

          One application of the logistic equation is a common model of population 

growth. The model states that the rate of reproduction varies proportionally to the 

existing population as well as to the amount of available resources, all else being 

equal. Thus the second term describes the competition for available resources, 

which tends to limit the population growth.  (9, 99, 100)    

          The physiologist T. Brailsford Robertson published results using the 

sigmoidal curve to describe various cases of individual growth in animals, plants, 

and man.  Robertson denoted his curve as the “autocatalytic” or self-accelerating 

curve.  That was because it was identical to that used to describe chemical 
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reactions in which one of the products had the property of increasing the rate of 

further reaction. (160) Robertson showed that the growth of living matter is 

phenomenologically autocatalytic. The growth of all organisms can be 

represented approximately as the resultant of two monomolecular autocatalytic 

reactions. The rather close similarity in mathematical form and behavior between 

chemical and physiologic processes was surprising. That is because the factors 

which ultimately limit autocatalysis are decreased concentration of the reactants 

and increased concentration of the products. The original theory was later 

extended to cover growth in protozoan and bacterial populations (161).  Actually, 

the term “autocatalytic” referred just to the accelerating growth phase.  However 

it later referred to the whole S-curve.  This repeated loose designation had the 

result that the autocatalytic curve was equated with the logistic curve. (99) 

         Growth of the simplest organism is a complicated phenomenon from the 

different levels of biological consideration.  However, certain aspects have been 

found amenable to quantitative analysis and have generated insight into the 

relationships between growth and metabolism.  The relationship between 

metabolic rate and body size can be investigated either intraspecifically or 

interspecifically.  (14) 

           The relationship between the metabolic rate and body size can be 

articulated in the equation:  

                                                   
aM bW=                                              (A-19) 

where M is the metabolic rate per unit time, W the body weight, and a and b are 

constants. This is a special case of the allometric formula which expresses the 
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dependence on body size for an enormous amount of biological data.  (14) 

Further, this formula can be expressed in an alternative way:  

                                        log U log b a log W= +                                (A-20) 

          With Riccati or logistic characteristics, the Bertalanffy equation, 

dW/dt=aWm-bWn, states that the result of metabolic and catabolic processes in 

organism behaves allometrically. The process rates can be expressed as a 

power function of body mass. This assumption was justified, since first 

approximations of all physiological rates can be expressed in allometric or power 

formulas. In addition, the organism in growth changes at the numerous biological 

levels. The catabolism means, however, the constant loss of building material as 

it occurs in any given living organism. Biochemically, this means the turnover of 

proteins.  (14) 

 

 

Figure A-4. Allometric metabolic (top) and growth curves (bottom). (14) 
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           In contrast, another type of growth curve can be generated in which 

anabolism and catabolism occurs at the same rate.  Hence, growth rates will 

always increase. The larger an animal becomes, it grows faster. In this case, 

growth is exponential and does not reach a steady state.  However, there is one 

organism whose growth curve is unique. Since the Bertalanffy growth formulas 

are applicable to myriad species, the growth curve shapes are identical. Hence, 

the same curve can represent the growth of different species by using different 

scales for body size and time. If, however, the growth curve of man is entered, it 

appears to be unique.   (14)  

 

 

Figure A-5.  Comparative growth curves for fish, mouse, and man. (14) 

 

          Bertalanffy (14) noted that the second part of the growth curve of man, 

starting with puberty, adheres to the general pattern. However, the first part of 

the curve is wholly different. In the early developmental years, the curve is 

greatly elongated. It is as if a new growth cycle is superposed on the typical 

growth pattern. Although this variation is present in the growth cycles of 
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nonhuman mammals, only in humans does it yield a unique curve shape. This 

growth curve is connected with perturbations in the hormonal homeostasis and is 

demonstrated in pathologies, such as pubertas praecox in human pituitary 

dysfunction, when puberty takes place at an early age.  Hence, the singular 

growth curve of humans is a mathematical realization of the delay in human 

development which has been asserted to be a basic factor in not only human 

evolution but also human uniqueness. 

The following analysis investigated power laws of Riccati-Bass functions 

to examine possible fractal behavior (10, 162)  in the Conaway fatigue model.  

Curiosity arose when the value of b in R0=akm
b+c did not change much, if at all, 

in optimizing the Conaway fatigue model.  Increasing functions are presented for 

illustrative purposes. 

 
 
 

 

Figure A-6.  Riccati-Bass diffusion function and associated power law with b=1. 
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Figure A-7.  Riccati-Bass diffusion function and associated power law with b=1.5. 

 

Figure A-8.  Riccati-Bass diffusion function and associated power law with b=2. 
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Figure A-9.  Riccati-Bass diffusion function and associated power law with b=2.5. 

 

 

 

Figure A-10.  Riccati-Bass diffusion function and associated power law with b=3 
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Figure A-11.  Riccati-Bass diffusion function and associated power law with b=π. 

 

 

 

Figure A-12.  Riccati-Bass diffusion function and associated power law with 
b=3.5. 
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Figure A-13.  Riccati-Bass diffusion function and associated power law with b=4. 

 

 

 

Figure A-14.   Riccati-Bass diffusion function and associated power law with 
b=4.5. 
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Figure A-15.  Riccati-Bass diffusion function and associated power law with b=5. 

 

 

 

Figure A-16.  Riccati-Bass diffusion function and associated power law with 
b=5.5. 
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Figure A-17.  Riccati-Bass diffusion function and associated power law with 
b=50. 
 

 

Figure A-18.  Riccati-Bass diffusion function and associated power law with 
b=100. 
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The preceding analysis shows that power laws of Riccati-Bass functions 

are time-shifted sigmoids with increasing delay and inflection.    To apply this 

finding to the R0-km relationship, the optimal value of b had to be chosen such 

that the relationship remains nonlinear and the modeled delay in the calcium 

channels is minimized.  For the Conaway fatigue model using the available data, 

a working value for b has been found to be in the range of 1.5-2 in repeated 

optimizations.   Physiologically, this can be interpreted as increased delay in 

sensing strongly bound cross-bridges from the calcium current during fatigue in 

paralyzed muscle.  As a result, the more-than-linear enhancement from 

additional pulses in a stimulus train is further decreased.  This implies decreased 

force-generation of a muscle because the excess free calcium remains unbound. 

A.2 Applications of the general Riccati  

 
equation 

A.2.1 Biomedical applications of the  
general Riccati equation 
 
 There are many applications of the General Riccati Equation in biology 

and medicine.  As will be seen, different processes behave according to the 

exact same dynamics, yet have different interpretations and implications.  

Various biomedical phenomena are discussed below.   

A.2.1.1 The dose-response relationship 

The dose (or exposure)-response relationship describes the change in 

effect on an organism caused by varying levels of exposure, known as doses, to 

a stressor.  A stressor may be biologic, chemical, economic, electromagnetic, 

mechanical, thermal, or psychosocial.  In individuals, this relationship may play 
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out such that a small amount of stressor has no detectable effect, whereas a 

large amount is fatal. In populations, this dynamic is seen by measuring the 

number of people affected at different stressor levels.  Studying dose response 

dynamics is paramount to establishing "safe" and "hazardous" levels and 

dosages for pharmacologic agents, possible pollutants, and other stimuli to which 

human beings are exposed. The conclusions garnered from these studies are 

often used to set public policy.  (67, 155) 

 

 

 

 

Figure A-19.  Dose-response curves for two different stressors.  Note that the 
potency/efficacy point changes as the curve shifts in the abscissa. (155) 
 
 
 
         A dose-response curve is a Cartesian graph depicting the relationship of 

the magnitude of a stressor, such as the amount of a drug or frequency of 
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electromagnetic stimulation, to the response of the organism.  Usually, the 

measured response is mortality.  However, other endpoints, such as efficacious 

blood concentration of a drug or muscle force from passive electrostimulation can 

be examined.  The logarithm of the measured dose is commonly plotted as the 

abscissa and the response is plotted as the ordinate. As such, the curve is 

typically a sigmoid, with the middle part having the greatest slope.  (67, 155) 

The first nonzero response point on a dose-response curve is denoted as 

the threshold-dose. At increased doses, negative side effects appear and 

intensify.  A stronger stressor makes a steeper curve. In quantitative cases, the 

ordinate is commonly scaled as percentage of users exhibiting a standard 

response, usually mortality. Evaluation of the dose-response relationship is 

central to toxicologists. There is a graded dose-response relationship in an 

individual. Meanwhile, the dose-response relationship in the population is 

quantal. Graded doses of a substance ingested by an individual usually result in 

a magnified response with increased dose. However, when the dose-response 

relationship is quantal, the population fraction affected goes up with increased 

dose. The relationship is quantal because the specified state is either absent or 

present in a given individual.  This quantal dose-response phenomenon is used 

to calculate the median lethal dose (LD50) of all chemicals that humans are 

exposed to.  (101, 122, 144)  As Paracelsus (148), sometimes called the father of 

toxicology, wrote: 

“Alle Ding sind Gift, und nichts ohne Gift; allein die Dosis macht, daß ein 
Ding kein Gift ist.” 
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The maxim translates into English as 

"All things are poison and nothing is without poison, only the dose permits 
something not to be poisonous." 

A.2.1.2 Epidemiologic models 

          In models of epidemics in a large population with many different 

individuals, diversity must be defined by several key qualifiers that are germane 

to the infection under consideration. For most common childhood diseases that 

confer long-lasting immunity, such as measles, mumps, and rubella, it common 

to partition the population into compartments.  Known as the SIR model, 

standard convention defines these three compartments as S for susceptible, I for 

infectious, and R for recovered hence immune.  The letters can also indicate the 

number in each compartment as a function of time. For a particular disease in a 

given population, these functions may be calculated to predict and control 

outbreaks.  (5, 26) 

 
 

 

Figure A-20. SIR epidemic model.  The epidemic stops when the number of 
susceptibles drops. Blue=Susceptible, Green=Infected, and Red=Recovered  
(26) 

http://en.wikipedia.org/w�
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Since the numbers in each compartment may fluctuate over time, the 

model is taken to be dynamic. The quality is most remarkable in an endemic with 

a short infectious phase, such as measles or mumps prior to the availability of 

vaccination. (5)  Such diseases tend to have cyclic patterns as S(t) varies over 

time. In an epidemic, the number of those susceptible decreases rapidly as 

infection transmits. Thus, infectious and recovered compartments fill up. As a 

result, the disease cannot be transmitted again until the babies born into the 

susceptible compartment reach a critical number. (26) 

 An outbreak of an epidemic is usually a far more rapid process than the 

vital population dynamics.  Hence, to study the immediate costs of a single 

epidemic, the birth-death processes may be neglected. (26) Thus the SIR model 

can be expressed by a nonlinear system of differential equations given by: 

      

dS IS
dt

= −β
    (A-21)

 

                                                             
dI IS vI
dt

= β −
              (A-22)

 

               

dR vI
dt

=
                      (A-23)

 

From the linear combination: 

0dS dI dR
dt dt dt

+ + =
    (A-24)

 

it follows that S(t)+I(t)+R(t)=N.  Mathematically this expresses the constancy of 

population N and implies that the equation may be studied for only two of three 

variables.  (26)  Also, infectious disease dynamics depends on the following ratio: 
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0R
v
β

= .     (A-25) 

This is known as the basic reproduction number. (5)  The role of R0 is 

extremely important in modeling epidemics of infection. Rewriting the differential 

equation for infectious individuals gives: 

( )dI S v I
dt

= β − .    (A-26) 

Hence, if 

0
1
(0)

R
S

>
     (A-27)

 

then: 

(0) 0dI
dt

>
     (A-28) 

 
therefore, with a baseline level of susceptibles, R0,  there will be a typical 

epidemic outbreak with an increase in  infections. (5, 26) 

 
 
 

 

Figure A-21.  SIS epidemic model.  Susceptibles and infected equilibrate.  (26) 

http://en.wikipedia.org/�
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         However, some infections, such as the common cold, do not afford long-

lasting immunity. These infections do not have a recovered state. Hence, 

individuals remain susceptible after infection.  This is known as an SIS epidemic 

model.  (5, 26)   This gives the model: 

dS SI I
dt

= −β + γ
    (A-29)

 

 

dI SI I
dt

= β − γ
    (A-30)

 

Denoting N to be the total population leads to:  

0 ( ) ( )dS dI S t I t N
dt dt

+ = ⇒ + = .  (A-31) 

Hence, it follows that: 

2( )dI N I I
dt

= β − γ −β .    (A-32) 

Thus, in an SIS system, the infection dynamics are governed by a Riccati 

(logistic) differential equation (5, 26), so that for all I(0) > 0, 

 

1 lim ( ) 0
t

N I t
→+∞

β
≤ ⇒ =

γ    (A-33)
 

1 lim ( )
t

N NI t
→+∞

β β − γ
> ⇒ =

γ β   (A-34)
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A.2.1.3 Biochemistry, physiology,  
and psychophysics 

 
There are many oxygen-transporting proteins found in various species that 

have logistic dynamics. For example, in the muscle tissue of humans and other 

vertebrates, myoglobin gives muscle its distinct color of red or dark gray. 

However, it is a monomer that lacks the ability for cooperative binding.  As a 

result, myoglobin stores oxygen rather than transports it.  In addition, as the most 

common oxygen-transporting protein behind hemoglobin, hemocyanin is in the 

blood of many arthropods and molluscs. In place of iron heme groups this protein 

uses copper functional groups and is blue upon oxygenation.  Finally, some 

marine invertebrates and annelids employs hemerythrin for oxygen transport.  

This Fe-containing non-heme protein is pink or violet when oxygenated and clear 

when deoxygenated.  (112) 

 
 
 

 

 

Figure A-22.  Heme group.  (73, 112) 

http://en.wikipedia.org/�
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Hemoglobin (Hb) is the iron-containing metalloprotein for oxygen transport 

in the red blood cells of vertebrates, including humans. The protein comprises 

about 97% of the mammalian red blood cell solid mass, and about 35% of the 

total mass. Hemoglobin transports oxygen from the lungs or gills to the body and 

releases the oxygen for cell consumption. (73, 112) 

The typical adult human hemoglobin molecule is a structure of four 

globular protein subunits which are composed of a protein chain tightly 

associated with a heme group. Each protein chain arranges into a connected 

globin fold arrangement, which is the identical folding motif used in similar 

proteins such as myoglobin. This motif contains a heterocyclic ring in which the 

heme group is tightly bound. A heme group consists of an iron ion held in a 

porphyrin. The Fe ion is the site of oxygen binding and coordinates with the four 

coplanar nitrogen atoms in the center of the ring.  In "end-on bent" geometry, one 

oxygen atom binds Fe and the other oxygen atom angles outward. In the 

absence of oxygen, a distorted octahedron is formed via a very weakly bonded 

water molecule which fills the site. The iron ion exists either as Fe2+ or Fe3+. 

However, Fe3+ cannot bind to oxygen. Thus, Fe exists in the +2 oxidation state 

for oxygen binding.  An enzyme reactivates Fe3+-hemoglobin by reducing the iron 

center.Furthermore, in addition to the oxygen ligand which binds hemoglobin 

cooperatively, other ligands include competitive inhibitors such as carbon 

monoxide as well as allosteric ligands such as carbon dioxide. (73, 112) 

In the normal adult tetrameric hemoglobin, oxygen binds in a cooperative 

process. The Hb-O binding affinity increases via the oxygen saturation of the 
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hemoglobin. The first oxygen bound modulating the binding site geometry for the 

next oxygen in a way conducive to binding. This is achieved through steric 

conformational changes of the hemoglobin protein complex. Thus, the oxygen 

binding curve of hemoglobin is sigmoidal, instead of the typical hyperbolic curve 

seen with noncooperative binding.  Hence, the oxygen-binding capacity of Hb 

decreases in the presence of CO since it binds preferentially to the oxygen site.  

In similar fashion, hemoglobin also has competitive binding affinity for cyanide, 

sulfur monoxide, nitrogen dioxide, and hydrogen sulfide without changing the 

oxidation state of heme.  Yet they suppress oxygen binding and cause grave 

toxicity. (73, 112) 

 
 
 

 

Figure A-23.  Hemoglobin oxygen-dissociation curve.   (73) 

http://en.wikipedia.org/wiki/Image:�
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Carbon dioxide binds to a different site than the one for oxygen on the 

hemoglobin and dissolves more readily in deoxygenated blood.  This facilitates 

its removal from the body through metabolism and ventilation via increased CO2 

affinity in venous blood.  This is denoted as the Haldane effect.  (73, 112) The 

enzyme carbonic anhydrase modulates this to give the following series of 

reactions. 

CO2+H2O  H2CO3  HCO3
-+H+ 

 

Thus, blood with more CO2 is more acidic. Hemoglobin binds H+ and 

carbon dioxide and changes protein conformation. This enables the release of 

oxygen. Hydrogen ions bind at various places along the protein. Meanwhile, CO2 

binds at the alpha-amino group of the Hb and forms carbamate. Decreased 

affinity of Hb for O2 by the binding of bicarbonate and acid shifts the oxygen 

saturation curve rightward. Conversely, decreased carbon dioxide in the 

pulmonary capillaries releases CO2 and protons from hemoglobin shifts the 

oxygen saturation curve leftward.  (73, 112) 

Characterization of the input-output properties of sensory neurons and 

their models is commonly done via frequency response functions. The response 

curves are most often sigmoidal and have two special points. The first point is  

the threshold below which the neuron does not respond, rmin.. Meanwhile, the 

second point is the signal level at which the response saturates, rmax. The range 

between threshold and saturation is known as the dynamic range D.  By 
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convention, the dynamic range [rmin, rmax], is logarithmically transformed into the 

interval [0, 1].   (71, 110, 146) 

The concept of “just noticeable difference” has been widely studied in 

psychophysics and is implicitly involved in understanding neuronal signal 

optimality.  (71) From the response function, R(s), and the minimum detectable 

response change, Δs, the just noticeable difference in the signal, can be 

calculated.  If the response curve is sigmoidal, it is seen that the signal varies 

along the dynamic range.  Thus, the just noticeable differences in the signal are 

detected in the steepest part of the response curve. Hence, the optimal signal 

intensity is in that region.  (110) 

 
 
 

 

 

Figure A-24.  A schematic example of a response function. The dynamic range 
D, threshold response rmin and maximal discharge rmax are illustrated. The size of 
the corresponding “just noticeable difference” in the signal, Δs, depends on the 
slope of the response function.  It is smallest where the slope is highest.  (110) 
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A psychometric function depicts the relationship between a parameter of a 

physical stimulus and the responses of a person to a certain quality of that 

stimulus. The psychometric function is usually sigmoidal. The percentage of 

correct responses is displayed on the ordinate with range 0 to 100% and the 

physical parameter on the abscissa. The inflection point of the sigmoid function 

or midpoint between the chance level and 100% is usually taken as sensory 

threshold.  A common psychometric example is a hearing test with tones of 

different intensities and frequencies. 

One vital sensory modality is nociception.  Nociception is defined as "the 

neural processes of encoding and processing noxious stimuli." (1, 73, 97) It is the 

afferent activity elicited in the nervous system by stimuli that could damage 

tissue. This activity is initiated by nociceptors. Also known as pain receptors, 

nociceptors are able to detect changes in mechanical, thermal or chemical 

homeostasis above a physiologic threshold. Upon stimulation, a nociceptor 

transmits a signal along the neuraxis, and in aggregation, elicits a variety of 

autonomic responses may also include the somatosensory experience of pain in 

sentient beings.  Nociceptors require a minimum level of stimuli to generate a 

signal in the spinal cord. In some pathological conditions, excitation of 

nociceptors increases as the noxious stimulus prolongs. This is known classically 

as hyperalgesia. (1, 73, 97) 

Related to nociception is sensitization. Sensitization is an example of non-

associative learning in which the progressive amplification of a response follows 

repeated administrations of a stimulus, such as when a person rubs her arm 
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continuously. After a while, this tonic stimulation will create a warm sensation that 

will eventually turn painful. The pain is the result of the progressively amplified 

synaptic response of the peripheral nerves warning the person that the repetitive 

stimulation is harmful.  Sensitization is thought to facilitate learning, adaptive as 

well as maladaptive, in the organism.  One specific type of sensitization is central 

sensitization. This is a process in which neurons of nociception in the dorsal 

horns of the spinal cord become sensitized by peripheral tissue pathology.  Since 

it involves tissue damage and inflammation, this type of sensitization has been 

postulated as possibly having causality for chronic pain conditions. (1, 73, 97)  

This is represented graphically in Figure A-20 as a leftward shift in the classic 

sigmoidal curve of pain versus stimulus intensity. 

Clinically, allodynia is a painful response to a typically non-painful stimulus 

and can be either static or dynamic. Unlike, referred pain, it is dysesthetic. There 

are different kinds or types of allodynia.  Static mechanical allodynia is pain in 

response to light touch or pressure. Dynamic mechanical allodynia is pain in 

response to rubbing or brushing. Meanwhile, thermal allodynia is pain due to 

typically mild skin temperatures in the affected area.  However, hyperalgesia is 

an increased sensitivity to noxious stimuli, which may be caused by damage to 

nociceptors or peripheral nerves, or temporarily, as a response to infection.  

Hyperalgesia can be experienced either focally or diffusely. However, 

psychophysiological studies of conditioning have established that it is possible to 

acquire a learned hyperalgesia of diffuse form. The focal form is typically 

associated with disease or injury and divided into two subtypes. Primary 



281 
 

 
 

hyperalgesia denotes pain sensitivity directly in the damaged tissues. Meanwhile, 

secondary hyperalgesia denotes pain sensitivity in the surrounding tissues that 

are not damaged. (1, 73, 97) 

 Hyperalgesia and allodynia are often symptoms of disease and may be 

evolutionary adaptations for enhanced protection of vulnerable tissues. Increased 

sensitivity for pain may, nevertheless, continue long after the noxious stimulus 

has disappeared.  When that happens, pain exists as a disease in its own right. 

Changes of neural signal processing may contribute to hyperalgesia and 

allodynia, either solely or in part. However, sensitization of nociceptive nerve 

endings rarely outlasts the initial noxious stimulus.  Rather, the sensitization is 

restricted to the area of injury or inflammation and is considered adaptive. (1, 73, 

97) 

 
 

 

Figure A-25.  Classical definitions of sensitization, hyperalgesia, and allodynia.  
(73, 97) 
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A.2.2 Applications of the general Riccati equation in  
engineering and physical science 

 
As with biomedicine, the General Riccati Equation appears in various 

fields of physical science and engineering.  The applications are diverse.  

However, the fundamental dynamics are identical. Several examples are 

discussed below. 

A.2.2.1 Autocatalysis 

           In a system with time-varying physical conditions, certain constituent 

elements may have a transitory existence.  Each element lasts just so long as its 

local conditions continue within certain limits. Although the ‘‘life period” of each 

individual element may be finite, an aggregate of a number of such elements 

may have a prolonged existence. They may even increase if the changes in the 

system state do not exceed certain limits, and that there is replacement.  (116, 

118, 119) 

        The kinetics of many biochemical and physiological processes may be 

considered as isothermal, isobaric mononuclear chemical reactions.  Often, 

these reactions are autocatalytic (116, 118, 119): 

                                                      A  A’                                                (A-35) 

         Consider a large number n as a time fraction of a total number N of 

molecules, such that all these n molecules have approximately the same age, 

then the differential decrease among these will be the same as for the aggregate. 

Thus, the equation of the reaction kinetics may generally have the form of first-

order ordinary differential equations such as: 
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dP kP
dt

= −
                                                 (A-36)

 

which is a first-order ordinary linear differential equation.  Since the ages of the 

P0’ molecules originally present at time t=0 are generally unknown and can be 

neglected in calculation, equations may be derived which will calculate the 

derivative of aggregate formation asymptotically.  (116, 118, 119) 

         The physical interpretation of these equations rests on the assumption that 

the condition of each molecule at a given instant varies incrementally from the 

mean state of all molecules of the aggregate.  For every molecule of A, there will 

be a specific instant in time when the changes in state converge to a ‘‘limit of 

stability“. At that given instant, a molecule of A no longer exists and changes into 

a molecule of A’. The amount transformed from the aggregate A in a specific time 

unit depends on the characteristic of the “limit of stability” of the molecule A, and 

on the number of perturbations in the state of the aggregate. Variations in either 

of these factors will in turn determine how rapidly molecules are transformed 

from the original aggregate. (116, 118, 119) 

 
 

 

Figure A-26.  Family of autocatalytic curves for different initial concentrations. An 
increase in reactant concentration accelerates the autocatalysis. (119) 
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Figure A-27. Limit of stability for conversion of aggregate A to A’ in an 
autocatalytic reaction. 
 

 

A chemical reaction is said to be autocatalytic if the product of the reaction 

itself is its own catalyst.  A set of chemical reactions are defined as "collectively 

autocatalytic" if several of those reactions produce catalysts for enough of the 

other reactions to be self-sustaining after initial energy input.  (15, 117) 

The second order autocatalytic reaction rate law  is 

. 

The concentrations of A and B vary in time via the following functions: 
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Figure A-28.  Variation of product concentration as a function of time in an 
autocatalytic reaction.  (117, 193) 
 
 
 

The typical dynamics for autocatalytic reactions is sigmoidal. These 

reactions initiate slowly due to little catalyst present. As the reaction rate 

increases, the reaction occurs with increased catalyst. It slows down as the 

reactant amounts decrease. If the concentration of a reagent varies sigmoidally, 

the reaction is generally autocatalytic. (15, 117) In addition to clock reactions 

(117, 193), examples of autocatalytic reactions include the spontaneous 

degradation of aspirin into salicylic acid and acetic acid.   

http://en.wikipedia.org/wiki/Image:Sigmoid_curve_for_an_autoc�
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A.2.2.2 The Kalman filter and recursive  
Bayesian estimation 
 
          Kalman filters are assumed to be Markov chains built on linear operators 

perturbed by white noise. The system state is represented as a real number 

vector. At each discrete time step, a linear operator is applied to generate the 

next state with some noise mixed in.  Information from the controls laws may be 

included if known.  After this, an additional noisy linear operator generates the 

observable outputs from a hidden state. (96) 

To use a Kalman filter for internal state estimation of a process based on a 

sequence of noisy observations, the process must be modeled according to the 

constraints of the filter. Hence, the matrices Fk, Hk, Qk, Rk, and sometimes B[ 

must be specified for each time-step k as shown below.  (96) 

The Kalman filter is unusual in being a pure time domain filter. Most filters, 

such as a low-pass filter, are frequency domain operators which are transformed 

to the time domain to be implemented. In a Kalman filter, the true state is taken 

as an unobservable Markov process.  Hence, the observed states of the hidden 

Markov model are the measurements. (96) 

 

 

 

Figure A-29. Model underlying the Kalman filter. Circles are vectors, squares are 
matrices, and stars represent white noise. (96) 

http://en.wikipedia.org/wiki/Markov_process�
http://en.wikipedia.org/wiki/Image:�
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Figure A-30. Markov process with X as visible measurements and Z as hidden 
state. (91) 
 
 
 
          Because of the Markov assumption, the true state is conditionally 

independent of all earlier states given the immediately previous state.   

0 1 1( ) ( )k k k kp x x x p x x− −| ,…, = | .   (A-39) 

 Likewise the measurement at the kth time step depends only upon the 

current state. It is conditionally independent of all other states. 

0( ) ( )k k k kp z x x p z x| ,…, = | .   (A-40) 

Hence, the probability distribution over all states of the hidden Markov 

model is given by: 

0 1 0 1
1

( , , , , , ) ( ) ( ) ( )
k

k k i i i i
i

p x x z z p x p z x p x x −
=

… … =  ∏ . (A-41) 

This is also known as recursive Bayesian estimation.  (96) 

http://en.wikipedia.org/wiki/Image:HMM_Kalma�
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A.2.2.3 Optimal control 

         Widely used in control theory and control systems engineering, the Kalman 

filter is a recursive estimator that models the state of a dynamic system from a 

set of measurements with noise. It solves the linear-quadratic-Gaussian control 

problem (LQG). Solution is achieved in conjunction with the linear quadratic 

regulator (LQR). These three tools generally solve the most fundamental 

problems in control theory.  An example would be radar or computer vision.  

Such applications provide accurate information about the position and velocity of 

an object, which is continuously updated, from erroneous observations about its 

location. (96) 

Related to Kalman filtering and recursive Bayesian estimation, optimal 

control addresses the problem of determining a control law for a given system 

under certain constraints of optimality. An optimal control problem is comprised 

of a cost functional that depends on state and control variables. As a set of 

differential equations that describe the control variable trajectories that minimize 

the cost functional, the optimal control law can be derived from either the 

necessary condition of the Pontryagin maximum principle, or by solving the 

sufficient-condition Hamilton-Jacobi-Bellman equation.  (23) 

Optimal control problems are solved in the following abstract way. The 

continuous-time cost functional is minimized by 

   
0 0 0

( ( ), , ( ), ) ( ( ), ( ), )
t f

f fJ x t t x t t x t u t t d t= Φ + ∫ 
 (A-42)

 

subject to the first-order differential constraints 
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                                      ( ) a( ( ), ( ), ),x t x t u t t=    (A-43) 

the algebraic path constraints 

( ( ), ( ), ) 0,b x t u t t ≤    (A-44) 

and the boundary conditions 

0 0( ( ), , ( ), )f fx t t x t tφ
   (A-45) 

where is the state, is the control, time t is the independent variable, t0 is 

the initial time, and tf is the terminal time. The terms Φ and are denoted as the 

endpoint cost and Lagrangian, respectively. The path constraints are in general 

inequalities and thus may not be equal to zero at optimal solution. This implies 

that an optimal control problem with the above formulation may have multiple 

solutions.  (23) 

A special case of the general nonlinear optimal control problem solved by 

Kalman is the linear quadratic (LQ) optimal control problem. The LQ problem is 

solved as follows. The quadratic continuous-time cost functional 

0

1 1( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ))
2 2

ftT T T
f f f t

J x t S x t x t Q t x t u t R t u t d t= + +∫
(A-46)

 

 

is minimized subject to the linear first-order differential constraints 

  ( ) ( ) ( ) ( ) ( ),x t A t x t B t u t= +              (A=47) 

and the initial condition 
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  0 0( )x t x= .    (A-48) 

A particular form of the LQ problem that arises in many control system 

problems is that of the linear quadratic regulator (LQR) where matrices are zero, 

t0 is 0, and tf is ∞.  (23) The LQR problem is formulated as follows. The infinite 

horizon quadratic continuous-time cost functional 

0

1 (x ( )Qx( ) u ( )Ru( ))
2

T TJ t t t t dt
∞

= +∫
  (A-49)

 

is minimized subject to the linear time-invariant first-order differential constraints 

( ) Ax( ) Bu( ),x t t t= +    (A-50) 

and the initial condition 

0 0( )x t x= .     (A-51) 

It has been shown in classical optimal control theory that the LQ optimal 

control law has the feedback equation 

u( ) K( )x( )t t t= −    (A-52) 

where is a properly dimensioned matrix, given as 

1K( ) BR B S,Tt −=    (A-53) 

 

and is the solution of the matrix differential Riccati equation.  (23) The matrix 

differential Riccati equation is given as 

1S= SA A S+SBR B S QT T−− − −

.   (A-54) 
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 For the finite horizon LQ problem, the Riccati equation is integrated 

backward in time using the terminal boundary condition .  However, 

in the LQR problem, the differential Riccati equation is replaced with the 

algebraic Riccati equation which is 

10= SA A S+SBR B S QT T−− − − .   (A-55) 

Since the algebraic Riccati equation comes up in infinite horizon problem, 

the matrices , , , and are all constant. The positive definite or positive 

semidefinite solution of the ARE is used to compute the feedback gain. (23) 

          A bang-bang controller switches suddenly between binary states and may 

be realized in any situation with hysteresis, such as a furnace, and arise in 

optimal control problems.  In discrete form, the Heaviside step function is an 

example of bang-bang control. (103) 

 
 
 

 

Figure A-31. Heaviside step function. 

http://en.wikipedia.org/wiki/Image:Dir�
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 A smooth approximation of the Heaviside step function is the logistic 

function: 

2

1 1 1( ) tanh( )
2 2 1 e kxH x kx −≈ + =

+    (A-56) 

 

 

 

Figure A-32.  Smooth approximation to Heaviside step function. 

 

 

 

Figure A-33. Set of trajectories in a costate vector in an optimal control scheme.  
(103) 
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A.2.3 Socioeconomic applications of the  
general Riccati equation 
 
 One of the most popular uses of the Riccati differential equation and its 

subcases is in socioeconomic modeling.  The problems addressed range from 

natural resource demand forecasting to modeling world population growth.  

Several applications are discussed sequentially. 

A.2.3.1 Models of population growth 

         The Malthusian growth model, or the simple exponential growth model, is a 

model exponential growth based on a constant rate of compound interest, 

P=P0ert. The model is named after the Reverend Thomas Malthus.  He wrote An 

Essay on the Principle of Population (124), one of the seminal books on 

population biology.  In the Essay, Malthus bases his entire argument on the 

following mathematical assumptions: 

 

“Assuming then my postulata as granted, I say, that the power of 
population is indefinitely greater than the power in the earth to produce 
subsistence for man.” 

 
“Population, when unchecked, increases in a geometrical ratio.  
Subsistence increases only in an arithmetical ratio. A slight acquaintance 
with numbers will shew the immensity of the first power in comparison of 
the second.” 

 

         This model is often referred to as The Exponential Law and is widely 

considered in population ecology as the first principle of population dynamics.  At 

best, it can be described as an approximate physical law as it is generally known 

that nothing can grow at a constant rate as time goes to infinity (177). 

Philosopher Antony Flew, in his introduction of the Essay, noted a "certain limited 
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resemblance" between Malthus' law of population and Newtonian mechanics 

(119). 

 
 
 

 

Figure A-34.  General curve of population growth. (117, 122, 150) 

 
 
 
          Specifically for biological populations, the variable X tends to increase from 

one generation to the next when it is small.  It tends to decrease when it is large.  

Hence, the nonlinear function F(X) frequently has the following properties. The 

initial value is 0. F(X) is monotonically increasing through the range 0 to A and 

attains its maximum value at X=A and monotonically decreasing as X increases 
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past X=A.  In addition, F(X) will generally contain one or several parameters of 

phenomenological significance that modulate the nonlinear characteristics. (127) 

A.2.3.2 Other economic and social  
behavior   
 
          Socioeconomic applications of the Riccati or logistic equation include 

models for the relationship between quantity and price, for theories of business 

cycles, and for the temporal sequences described by many other economic 

indices.  The general difference or differential equation is also applicable to the 

social sciences. For example, in learning theory, X may be the number of bits of 

information that can be remembered after an interval i. Or, in the spread of 

rumors in societies of varying forms, X can be the count of people who have 

heard the rumor after time t. (127)   

          Another socioeconomic application of the Riccati equation was presented 

when Bass (10) published "A new product growth for model consumer durables" 

in 1969.  Prior work described the different phases of new product adoption. The 

rapid, recent growth in online social networks has led to an increased use of the 

Bass diffusion model, which estimates the size and rate of growth of these social 

networks.  It is also used is forecasting demand for natural resources.  (147) 

From a purely empirical perspective, according to Lekvall and Wahlbin 

(113), most real-world growth curves typically have an asymmetric S-shape with 

a longer upper shank of the "S". As another variant of the logistic equation, the 

Gompertz function generates such a diffusion curve with right skew. This function 

may be written in the following form: y(t)=N(ab)t
. As shown below, the right skew 

arises from inflection point below N/2 on the curve.  (70, 113) 
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Applications of Gompertz curves include annuity projections (70).  These 

are processes where costs are initially high with slow uptake, followed by a 

period of rapid growth, followed by a decreased uptake as saturation occurs. In 

addition, the curves are used to model population in a confined space with limited 

resources. 

 
 
 

 

Figure A-35.  Gompertz curves. (70) 

 

 

 The apparent ubiquity of the Riccati equation in all areas of science has 

many implications about how the Universe works as well as how science and 

technology should be conducted by society.   A few salient points are given for 

contemplation in the section.  By consideration of these arguments a paradigm 

A.3 Implications 
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shift that enables more accurate science and more reliable technology may be 

initiated by many. 

A.3.1 Towards a paradigm based  
on fundamental laws 
 
          After Riccati, the equation was studied by many others such as Euler and 

Liouville. However, the equation did not achieve paramount importance until the 

twentieth century, when the fields of calculus of variations and optimal control 

were being developed.  Calculus of variations traces its origins to Fermat’s 

principle of least time. However, the bellwether problem was the celebrated 

brachistochrone problem of the shortest distance along a curve that was stated 

by Galileo and solved by John Bernoulli.   Upon solution of that problem, many 

other variational problems were studied in succeeding centuries.  The problems 

have spanned from calculating cycloidal motion to determining nautical paths in 

stationary ocean currents. (16) 

 
 
 

 

 

 

Figure A-36.  A brachistochrone is the shortest distance along a curve.  (16) 

http://en.wikipedia.org/wiki/Im�
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 Figure A-37. The cycloid (blue) and its generating circle (red).  (16) 

 

 

As the calculus of variations primarily developed in the first half of the 

twentieth century, optimal filtering and control gained prominence with the work 

of Kalman during the 1960s. The fundamental problem in this field is a functional 

optimization problem as well.  However, the novelty was the presence of 

exogenous variables which affects the dynamics of state-space phenomena. 

Because the model was so generalizing, plants, devices, and processes no 

longer needed conceptual distinction and just became known as “a system”. 

Hence, all the physicality was relegated primarily to the preliminary phases of 

modeling.  It has been noted that the independent variable in variational calculus 

is usually spatial, whereas the independent variable of optimal control is 

temporal.  (16) 

According to Banks (9), the mathematical frameworks that underlie 

growth/diffusion phenomena are based on relatively few concepts.  In addition to 

the models of Malthus and Verhulst, Fick established a principle that the diffusion 

rate of a solute in a liquid depends on the spatial gradient of the concentration of 



299 
 

 
 

the solute.  Nevertheless, the Gompertz (70) and Verhulst (179, 180) equations 

are generalizations of the 1798 Malthus principle.  Hence, there are many 

models of growth, transfer, and diffusion processes that derive from the Riccati 

equation.   According to Banks (9): 

"It is abundantly clear that advances in growth-transfer-diffusion 
phenomena are being made at an increasing pace by a growing number 
of people in many disciplines.  By whatever set of indices we might use to 
measure the growth such activity of progress, it seems safe to say that we 
have not yet arrived at an inflection point of the growth curve of this 
activity."   

 

         The logistic equation, as a special case of the Riccati equation when 

P(x)=0, was first put forth by PF. Verhulst (180) in 1838 upon reading Malthus' 

essay. Verhulst derived the logistic equation to describe the asymptotic growth of 

a biological population based on the work of his mentor, Adolphe Quetelet. (99) 

In 1835, Quetelet proposed that the resistance to the growth of a population 

varied proportionally to the square of the speed of its increase.  With that 

principle, a direct physical analogy could be drawn to the resistance that a 

medium exerts on a body travelling through it (156). Verhulst began by assuming 

that in early stages of growth, a population would increase exponentially until 

crucial resources, such as food, became limiting. He called the population 

existing at that moment the “normal” population.  The excess was called the 

“superabundant” population.  Reasoning that the growth rate was resisted by 

some function linearly proportional to the excess population, Verhulst derived the 

differential equation for a symmetrical sigmoidal growth curve which was denoted 

as “logistic” (178). However, the argument was incongruent to the mathematics 
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of his derivation of the curve.  The logistic curve does not follow from the 

assumption that growth varies discontinuously from an exponential rate to a 

slower one at some critical value.  Yet, Verhulst realized that the logistic was only 

one of many alternatives. (99)  

          Verhulst never explained his choice of the term “logistique” for his curve.  

However, in the nineteenth century, the French word was used to indicate the art 

of calculation distinct from the theory of proportion. The word was generally 

applied to a type of logarithm for astronomical calculations. It is suggested that 

Verhulst meant for this term to convey the idea of a calculating device that could 

determine the saturation level of a population and the time when that value would 

be reached. (94)  

         Well before Verhulst, according to Doctorow (57), Bernoulli and Riccati had 

already noticed together that exponentials played a seminal role in the Bernoulli-

Riccati class of differential equations and in the exponential expansion-decay 

equation and in their applications to mathematical physics and mathematical 

biology.  For reasons unknown, they did not realize it as being a new kind of 

"information/entropy" which is descriptive of growth-expansion-contraction.  The 

most likely reason for this "non-history" of the exponential in the knowledge base 

was the fact that the Bernoulli, Riccati, logistic, and exponential growth equations 

are first-order differential equations. Meanwhile, the exponential function usually 

solves or simplifies higher order linear differential equations. 

        Doctorow (57) argues that expansion-contraction-growth equations differ 

fundamentally from curvilinear motion equations both mathematically and 
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materially. Curvilinear motion is "in one direction at a time," although the direction 

can be time-varying.  Meanwhile, expansion-contraction-growth can involve 

infinitely many simultaneous motions in different directions.  These myriad 

motions frequently occur with varying degrees or magnitudes and at times with 

global control. Thus, the failure to distinguish between two types of "information", 

logarithmic and exponential, was paralleled by a failure to distinguish between 

two types of motion, expansion-contraction and curvilinear.  Most of 

contemporary science and engineering has been concerned with the curvilinear 

motion. 

         The question to be contemplated is whether expansion-contraction can 

approximate curvilinear motion when the former is far more rapid in one direction 

or a small angle than in others.  Since the expansion-contraction equations and 

their solutions are simple, finding theorems for these approximations could 

simplify the study of curvilinear motion.  As a suggested starting point, the Riccati 

equation y’=A+By+Cy2 where A, B, C are functions of t could be compared  with 

a second order linear differential equation with variable coefficients 

A(t)y"+B(t)y'+C(t)y=E(t) for E(t) a function of t.  (57) 

A.3.2 A cursory argument to  
the sublime 

 
It has been observed that the General Riccati Equation is rather 

ubiquitous in all areas of science.  Its apparent ubiquity has many implications for 

the understanding the way the Universe is constructed at the most fundamental 

level. The answers would involve philosophical inquiry as well as scientific 

experimentation. Extending the earlier parallel of the logistic equation with 
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Newtonian mechanics, the Riccati equation may be thought of as a principle that 

belongs to the variational framework of science as established by Lagrange and 

Hamilton.   

Since a special case of the Riccati equation generates the dose-response 

curves, it is argued from the literature that all therapeutic interventions, 

regardless of form or modality, are dose-response phenomena.  Furthermore, it 

is at best inappropriate to assume that physiologic processes behave under 

Newtonian curvilinear constraints since chemical reactions occur 

omnidirectionally in any given space. Thus, considering and elucidating the 

fundamental construct of the dose-response relationship in rehabilitation 

research by extending this powerful equation to different clinical problems and 

associated models is of great societal importance and urgency. Through that 

effort, public health and well-being may be better maintained and protected as 

appropriate and safe doses of any given intervention may be determined. 
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APPENDIX B: SPINAL CORD INJURY 

 

Spinal cord injury (SCI) due to trauma is an uncommon condition. 

However, it has a profound effect on personal functional, medical, financial, and 

psycho- social well-being upon injury. The most common causes of SCI are 

motor vehicle accidents, falls, violence, and sports injuries.  Other causes of SCI 

include vascular disorders, tumors, infections, spondylosis, iatrogenic injuries 

from spinal injections and epidural catheter placement, osteoporotic vertebral 

fractures, and developmental disorders. (43, 44) 

The incidence of traumatic SCI in the United States is 30-60 new cases 

per million population, or 10,000 cases per year in the United States. (43)  

Estimates of prevalence vary from approximately 183,000 to 230,000 cases in 

the United States, the equivalent of 700-900 cases per million population. (43) 

Overall incidence among Caucasians is higher than among African Americans, 

which is higher than among Hispanics. (43, 45, 105)  Current studies indicate 

Caucasians at 66.4%, African Americans at 21.1%, Hispanics at 8.8%, Asians at 

1.6%, Native Americans at 1.1%, and others at 1%. (45, 108) The male-to-female 

ratio of individuals with SCI in the United States is 4:1. (44, 105) More than 50% 

of all cases of SCI occur in persons aged 16-30 years. The median age is 26.4 

years, while the mean age is 31.8 years and the mode age at injury is 19 years. 

(44, 105) Traumatic SCI is more common in persons younger than 40 years, 

while nontraumatic SCI is more common in persons older than 40 years. (45, 

104, 105) Greater mortality is reported in the older patients with SCI. (104, 105) 
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          In a recent study on pediatric SCI using information from the Kids' Inpatient 

Database (KID) and the National Trauma Database (NTDB), significant 

differences in the yearly incidence rate of pediatric SCI were shown between 

patient groups stratified by race and sex. (183)  African Americans show a 

significantly higher rate of pediatric SCI (1.53 cases per 100,000 children) than 

Native Americans (1.0 case per 100,000 children), and Hispanics (0.87 case per 

100,000 children). Meanwhile, Asians show a substantially lower incidence than 

all other racial groups (0.36per 100,000 children). Also, boys (2.79 cases per 

100,000 children) are over twice as likely to sustain SCI as girls (1.15 cases per 

100,000 children). The aggregate incidence of SCI under the age of 18 in the 

United States is 1.99 cases per 100,000 children. It is estimated that 1455 

children are admitted to US hospitals each year for treatment of SCI. 

In the KID/NTDB study (183), the etiology of pediatric SCI was also 

investigated. The major causal factors were identified to be motor vehicle 

accident, accidental fall, firearm injury, and sports injury. Of those children injured 

in a motor vehicle accident, 67.7% were reported as not wearing a seatbelt. 

Alcohol and drugs was found to be involved in 30% of all pediatric SCI cases. 

(175) 

Other injuries are often associated with traumatic SCI.  These include 

bone fractures, coma, and traumatic brain injury affecting psychoemotional 

functioning  From the perspective of the ASIA classification, injuries statistically 

occur according to the following pattern: incomplete quadriplegia - 29.5%, 

complete paraplegia - 27.9%, incomplete paraplegia - 21.3%, and  complete 
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quadriplegia - 18.5% In quadriplegia, the most frequent level of neurologic injury 

is C5. In paraplegia, T12 is the general level of neurologic injury. (104, 105, 108) 

Concomitant injuries are frequent in traumatic spinal cord injury (SCI).  

Brain injury and pulmonary dysfunction are common causes of the acute deaths 

in traumatic SCI.  This is the reason that complete quadriplegia has a remarkable 

ratio of early cases to fatalities.  However, late deaths in SCI primarily result from 

complications associated with neurogenic bladder.  Upon receiving care in 

comprehensive spinal cord injury centers, over eighty percent of patients with 

traumatic SCI will live ten years with an average of almost 18 years. Median 

post-injury life may be almost 14 years for complete quadriplegia, 17 for 

complete paraplegia, 19 for incomplete quadriplegia, and 20 for incomplete 

paraplegia. The prevalence of traumatic SCI is approximately 50 per 100,000 

with complete paralysis seen in approximately 20 per 100,000.  Nevertheless, 

eighty percent of survivors of traumatic SCI live independently and obtain gainful 

employment after rehabilitation.  (108) 
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APPENDIX C: HISTORY OF ELECTRICITY IN MEDICINE 

 

According to DeVahl (42), the earliest known use of electrical stimulation 

in medicine was described by Hippocrates in about 420 B.C. who prescribed use 

of the torpedo fish.  It is a species which has special organs that produce an 

electric discharge to shock its prey.  Hippocrates recommended that it be boiled 

and included as part of breakfast for asthmatics.  Several hundred years later, 

the properties of the torpedo fish were used by Scribonius Largus, a Roman 

physician, in 46 A.D. to treat painful conditions.  Placing the fish over the painful 

body part was recommended for gout and headache. 

          Nevertheless, the torpedo fish was not a practical way to apply electrical 

stimulation. It was only when electricity could be reliably generated and stored 

that this type of treatment could be used on a regular basis. The Leyden jar, 

invented in 1745, is a glass jar that is coated with metal foil on inner and outer 

surfaces and is able to consistently generate and store static electricity. The 

earliest documented therapeutic treatment using this type of machine goes back 

to 1744 in Germany.  C.G. Kratzenstein purported to have restored function to a 

paralyzed small finger of a female patient by applying electricity for less than 

fifteen minutes.  Subsequent claims include Benjamin Franklin using electricity to 

cure a young woman suffering from seizures.  Nevertheless, in the 18th century, 

other electrotherapeutic applications included treatment for kidney stones, 

sciatica, and chest pains. (42, 157) 
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Figure C-1. Duchenne stimulator.  (42) 

 
 

            In the late eighteenth century, Luigi Galvani and Alessandro Volta 

experimented with the effects of electricity on animal muscle and nerve. Galvani 

theorized that muscle had innate “animal electricity” (1, 42, 157).  However, Volta 

credited the origin of electricity to the metal rod used in the experiment, rather 

than the muscle of the animal.  Progress in electricity-generating technology and 

animal experimentation carried forward in the nineteenth century.  In 1831, 

Faraday invented a generator that elicited a current when a metal wire was 

revolved in a magnetic field. This generator was the harbinger of the electric 

motor.  The flow of electrons that was produced in this manner was termed 

faradic current. By the middle of the 1800s, G.B. Duchenne began to publish his 

work.  Generally referred to as the “father of electrotherapy,” Duchenne was 

interested in the physiology of electrical stimulation and is known for identification 

of muscle actions and motor points. In his research, Duchenne preferred biphasic 

current because it circumvented the electrolytic and heating actions of 

monophasic current.  (42, 152)  Nevertheless, the possible benefits of 

electrostimulation of paralyzed muscle were first documented by Reid and 

Brown-Sequard.  The claim was put forth that daily electrical stimulation of the 
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paralyzed limbs of various animals produced a gradual, but complete restoration 

of limb muscle mass.  Although stimulated muscle regained its mass, the limb 

still remained unusable. (38) 

           In the middle of the twentieth century, electrodiagnostic devices were 

introduced for clinical use. Researchers reported that paralyzed muscle 

responded to biphasic but not monophasic current.  The propagation of electric 

current in a muscle was found to be a critical factor in producing a contraction. 

The terms rheobase and chronaxie were originated by LaPicque in 1909 to 

define the relationship between magnitude and duration of current needed to 

excite muscle or nerve. (42)  By 1916, the strength-duration curves for human 

muscle in health and disease demonstrating this relationship were documented 

by Adrian. (42, 157) 

             As soon as the induction coil and the battery were invented and easily 

accessible, the golden age of electrotherapy commenced.  Most clinicians 

employed some form of electrical stimulation in their practices on a routine basis. 

Although greatly improved since the time of the Leyden jar, electrotherapy 

machines in the early 1900s were cumbersome. In a typical apparatus, 

electrodes were comprised of brass and covered with felt or sponge. Water acted 

as the conductor for the transmission of current.  Interventions for peripheral 

nerve injuries flourished during the Second World War with the development of a 

clinical stimulator able to generate input waveforms that were able to excite both 

partially innervated and paralyzed muscles.  (42, 157) 
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Figure C-2. Leyden jar.  (42) 

 
 
 
          The use of neuromuscular electrical stimulation (NMES) to provide 

functional use of limbs was demonstrated in the early 1960s. Using a single input 

channel for stimuli, ankle dorsiflexion was elicited with a foot switch during the 

swing phase of gait. This corrected foot drop in a patient. The stimulator used 

was approximately the size of a cigar box and was fastened on patient clothing.  

Rubber electrodes were attached to the lower limb by straps. In this protocol, a 

transient carryover of function in the tibialis anterior after peroneal nerve 

stimulation in hemiplegic patients was additionally reported.  (42) 

 

 

 

Figure C-3. Neuromuscular electrical stimulation device.  (42) 
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Neuromuscular electrical stimulation (NMES) is a procedure that employs 

electrical currents to activate nerves that innervate extremities that have been 

paralyzed due to spinal cord injury (SCI), head injury, stroke or other neurological 

disorders.  This procedure can be used to restore function in those affected. 

Injuries to the spinal cord interfere with electrical signals between the brain and 

the muscles.  This causes paralysis below the injury level. Restoration of limb 

function as well as regulation of organ function are the primary applications of 

NMES.  Other applications of NMES involve the use of prostheses that allow 

paraplegics to stand, restore hand grasp function in quadriplegics, or restore 

eliminatory and excretory functions. (36, 37, 151-53, 157) 
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APPENDIX D: BIOCHEMISTRY OF LACTIC ACIDOSIS AND 
GLYCOLYSIS 

 

The intracellular creatine phosphate reserve provides a nearly 

spontaneous metabolic mechanism to generate ATP during the initial transient 

phase of muscle contraction. Creatine phosphate is also thought to modulate the 

general transfer of cytosolic phosphate groups. By extension, it   could be vital for 

all skeletal muscle metabolism. However, the creatine kinase lytic reaction 

alkalinizes the cell, since it consumes H+.  The consumed proton replaces the 

phosphate group of creatine phosphate, yielding the second NH2 group of 

creatine. (71, 112, 159) 

 

 

 

Figure D-1. Phosphagen reaction system.  (112, 156) 

 

 

It has been shown that increasing concentration of Pi during intense 

stimulation does not come from the creatine kinase reaction. Instead, 

intramuscular Pi accumulates from conditions in which the ATP demand rate 

exceeds mitochondrial ATP supplied.  In this state, cytosolic ATP turnover 

reliance increases and generates Pi at a rate that is faster than the rate of 
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mitochondrial Pi influx.  This causes Pi to accumulate and leads to acidosis.   (71, 

112, 159) 

          Glycolysis is modulated by glucose-6-phosphate (G6P) production, which 

comes from either glucose in the blood or muscle glycogen. Although glycogen 

provides the majority of carbohydrate for muscle glycolysis during intense 

stimulation, the traditional explanations of glycolysis denote the biochemical 

pathway starting with glucose and progressing through ten reactions that result in 

the end product of pyruvate. Using glycogen as the primary substrate is different 

from glycolysis in that the initial reaction is bypassed but progresses through the 

remaining nine reactions. This distinction about origin of glycolysis is vital. It has 

been shown that the release of H+ from glycolysis differs depending on whether 

glucose or muscle glycogen is the initial substrate.  (112, 131-142, 159) 

 

Table D-1. Summary of reactions in glycolysis.  (159)
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From the above table, it is seen that release of H+ from glycolysis comes 

from ATP hydrolysis in the hexokinase and phosphofructokinase steps, in 

addition to the glyceraldehyde 3-phosphate dehydrogenase reaction. The chemi-

cal structures for these reactions are given in the figures below. (112, 131-142, 

159) 

 

 

 

 

 

Figure D-2. Hexokinase, phosphofructokinase, and G3P dehydrogenase reaction 
steps in glycolysis.  (112, 156) 
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A summary of glycolysis metabolism, starting from glucose or glycogen 

(112, 131-142, 159) follows below:  

glucose+2 ADP+2Pi+2 NAD+   pyruvate+2 ATP+2 NADH+2H2O+2H+ 

glycogenn+3 ADP+3Pi+2 NAD+    
 
glycogenn-1+2 pyruvate+3 ATP+2 NADH+ 

2H2O+H+ 

         Biochemically, production of lactate in skeletal muscle is advantageous for 

various reasons. First, the lactate dehydrogenase (LDH) reaction generates 

cytosplasmic NAD+. This supports the demand for NAD+ substrate in the 

glyceraldehyde 3-phosphate dehydrogenase step. In turn, cytosolic redox 

potential (NAD+/NADH) is better maintained, continued substrate flux through the 

second phase of glycolysis is supported, and thereby allows continued ATP 

regeneration from glycolysis. Another important function of the LDH reaction is 

that for every pyruvate molecule catalyzed to lactate and NAD+, a proton is 

consumed.  Hence, this reaction buffers a muscle cell against the accumulation 

of protons known as acidosis.   (81, 82, 112, 159) 

 

 

 

Figure D-3.  Lactate dehydrogenase (LDH) reaction. (112, 156) 
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In the LDH reaction, one proton and two electrons are removed from 

NADH.  Additionally, a proton is gained is exchanged for the two electron and 

two proton reduction of pyruvate to lactate. As a result, the LDH reaction alka-

linizes, not acidifies, the cell according to the lactic acidosis construct.  Yet, the 

organic chemistry of the LDH reaction shows that production of lactate consumes 

H+. Therefore, these biochemical facts are correctly interpreted physiologically as 

lactate production retards metabolic acidosis and aids proton removal from 

muscle cells.  (112, 156) 

When glycolytic pyruvate is converted to lactate, protons are not gained 

with glucose as substrate.  Moreover, one proton is lost and an additional ATP is 

gained with glycogen as substrate. 

glucose+2 ADP+2Pi    lactate+2 ATP+2H2O 

glycogenn+3 ADP+3Pi+1H+ 
 glycogenn-1+2 lactate+3 ATP+2H2O 

          This coupling is important in many physiological events such as the 

processes in red blood cells. Red blood cells have no mitochondria and depend 

on glycolysis for ATP regeneration using glucose substrate. The gain of two 

protons from glycolysis equilibrates with the loss of two protons from converting 

two pyruvate to two lactate molecules.  Red blood cell cytosolic redox is further 

maintained by the NAD+ generated from the LDH reaction. For the red blood cell, 

production of lactate prevents acidosis and maintains cellular NAD+ levels.  

However, in skeletal muscle, mitochondrial presence and the use of glycogen as 

a substrate for G6P to drive glycolysis changes the stoichiometry between 

glycolytic H+ release and lactate/proton consumption.  Also the high rate of ATP 
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hydrolysis and regeneration during contraction presents specific metabolic 

demands that are not seen in other tissues.  Terminal phosphate is removed 

from ATP to generate ADP and the associated liberation of free energy and Pi 

and requires water as the substrate.  The Pi produced from the ATP hydrolysis 

can buffer the H+ that is released.  As a result, increases in Pi during intense 

stimulation quantify the buffering capacity of Pi by the extent of its accumulation 

when cellular pH goes acidic.  (112, 194) 

 

 

 

Figure D-4.  ATP hydrolysis.  (112, 156) 

 

 

          It is not true that the buffering capacity of Pi negates ATP hydrolysis as a 

vital source of H+ release that leads to acidosis. Actually, increases in cytosolic Pi 

are significantly less than the total free phosphate ion released from ATP 

hydrolysis. During that process, the ADP and Pi both function as substrates for 

glycolytic production of ATP.   This allows free H+ accumulation once the 

systems for cellular proton outflow have been overwhelmed. Free phosphate ion 

also substrates glycogenolysis and is pumped into the mitochondria in oxidative 

phosphorylation.  Hence, the accumulation of phosphate ion does not have a 
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stoichiometric relationship to ATP turnover. Accumulation only occurs if the rate 

of cytosolic ATP turnover is greater than the intracellular ATP supply. (112, 156) 

The hydrolysis of ATP required to fuel muscle contraction is the crux of 

cellular proton equilibrium. This is the primary source of H+ release in contracting 

skeletal muscle. Once NADH and protons from cytoplasmic reactions are 

produced at rates greater than mitochondrial capacity, cytosolic redox is assisted 

by lactate production. It is lactate that accounts for glycolytic H+ release. As the 

ATP hydrolysis rate exceeds all other reaction rates, proton release over time 

becomes greater than metabolic proton buffering by production of lactate and 

protein breakdown. Furthermore, when cellular proton removal capacity is 

exceeded, pH decreases. Indeed, the origin of the accumulating Pi in the muscle 

is the hydrolysis of ATP, not the breakdown of creatine phosphate. This causal 

belief in creatine phosphate breakdown as the origin of intramuscular Pi is still 

erroneously held by many physiologists. (112, 156) 

A schematic of mitochondrial respiration is show below.  Metabolism in 

mitochondria releases electrons and protons from substrates, produces CO2, and 

employs the charged particles to generate ATP. The primary molecules in these 

processes are acetyl CoA, NAD+, FAD+, O2, ADP, Pi, protons, and electrons. The 

ADP, phosphate, and H+ are all actively transported into the mitochondria.  The 

protons are needed to reduce molecular oxygen. ADP and phosphate are 

needed to regenerate ATP.  These mechanisms link cytoplasmic and 

mitochondrial metabolism, especially for transferring phosphates and H+ between 

the cytoplasm and mitochondria. The transport systems for H+ between the 



318 
 

 
 

cytoplasm and the mitochondria reveal the power of mitochondrial respiration in 

controlling the intracellular proton balance when muscle contraction depends on 

mitochondrial respiration for ATP.  (112, 156) 

 

 

 

Figure D-5. Schematic representation of mitochondrial respiration and ATP 
regeneration. (112, 156) 
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APPENDIX E: PHYSICOCHEMICAL PRINCIPLES UNDERLYING 
CALCIUM-TROPONIN BINDING 

 

 

        There are many physical and chemical processes in play during a muscle 

contraction.  These processes have not been adequately considered in previous 

models of muscle force and fatigue.  The fundamental principles that underlie 

these processes are discussed in this section. 

E.1 Periodic reactions

          In the law of mass-action, according to Lotka (117), every isothermal 

reaction approaches its equilibrium asymptotically. In systems with several 

reactions occurring simultaneously, equilibrium or a steady state might be 

reached by other pathways. Consider below a series of consecutive, irreversible 

reactions:  

  

1. a  A 

 2. A  B  

 3. B   C.  

 

It is assumed that the transformation of a into A is slow as compared with 

the establishment of equilibrium between A and B.  Thus, the differential 

equations describing the change of the concentrations of A and B are:  

A
1 A

dc F-k c
dt

=      (E-1) 
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B
1 A 2 B

dc k c k c
dt

= −     (E-2) 

where H, k1, and k2, are constants, and cA, cB, denote concentrations.  Allow B to 

influence autocatalytically its own formation rate, so that k1 can be written as:  

 

1 Bk =kc      (E-3) 

 
 
 

 

 

Figure E-1. Periodic reactions with time-varying concentrations of reactants.  The 
dynamics of [Y] lag the dynamics of [X]. (117-119) 
 

 

 

The differential equations transform to:  

A
A A

dc F kc c
dt

= −     (E-4) 

          B
A B 2 B

dc kc c k c
dt

= −     (E-5) 

After a series of numerous transformations of variables, the following 

equations are obtained:  
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dx xy'+ky+Lx
dT

− =     (E-6) 

dy xy+Lx
dT

= .     (E-7) 

When the reactions equilibrate, x and y become infinitesimal. Hence the 

xy product terms can be neglected. By elimination of y and x from both 

equations, the system transforms to ‘‘damped vibration’’ laws: 

x"+Lx'+KLx=0                        (E-8) 

                                           y"+Ly'+KLy=0                          (E-9) 

The reaction is periodic provided that L < 4K. The solution of the above 

equations are y=y0e-pT cos qT and x=Me-pT sin (φ+qT) where p=L/2, q=½(4KL-

L2)1/2, Lz=(p2+q2)1/2, sin φ=p/(p2+q2)1/2, cos φ=q/(p2+q2)1/2, and y0=y(T=0).  (112) 

 

 

 

Figure E-2. Example of damped periodic reactions for x and y with y0=1, M=0.8, 
φ=π/6, p=0.707, and q=0.707.  The dynamics of y are damped and lag the 
dynamics of x. 
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Lotka (117) further noted that in a system in which consecutive reactions 

occur in the presence of a product of autocatalysis, essential conditions exist that 

allow a “periodic” process to happen.  In the case of two consecutive reactions of 

equal period that behave as “damped vibrations”, one lags behind the other by a 

phase that depends on certain reaction-specific boundary and initial conditions. 

This behavior happens regardless of the initial concentrations of the reactants. 

Typical definitions for equilibrium connote a stationary state with respect to 

the kinetics of chemical reactions. It is defined as a state in which certain 

velocities go to zero.  However, it must be noted that there are numerous 

concepts of equilibrium.  From etymology, the word equilibrium is linked to a 

dynamic idea.  Aequa libra, the poised balance, connotes a state in which the 

total forces on a system are balanced to zero. (118, 119) 

E.2 Concepts of equilibrium  

 A third concept of equilibrium is derived from a consideration of energy 

relationships within a system. A system in dynamic equilibrium is characterized 

by the attainment of a critical point of certain functions having the units of energy.   

This is a state in which the virtual work done in any infinitesimal displacement 

within the constraints goes to zero. For example, a ball in a hemispherical cup is 

in equilibrium when its potential energy is a minimum that is geometrically 

admissible.  From this perspective, equilibrium is defined as a state in which 

certain potential functions have a critical point.  Metabolic equilibrium, population 

equilibrium, and the like, are not true equilibria in the strict sense. However, 

those phenomena are steady states that are maintained only with a constant flux 
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of energy. One of the basic examples of equilibria in systems of that type comes 

from a pair of or opposing chemical reactions.   This is seen in the reaction of 

divalent calcium and the proteins of muscle contraction.  (118, 119) 

 
 

 

Figure E-3. Dynamic equilibrium of a chemical system.  Free energy is required 
to drive a reaction through the intermediate state and past the equilibrium point in 
either direction.  (116) 
 

 

        The simplest type of balanced chemical reaction at constant volume and 

temperature is monomolecular in both directions. A substance S1 transforms into 

S2, and S2 in turn changes into S1. Only one molecule takes part, in each 

transformation. Assume x1 and x2 are the respective concentrations of S1 and S2. 

This gives isothermally, by the law of mass action, the rate of decomposition of 

S1 and S2 respectively.   (118, 119) 

 

                                                   1 1 1(Dx ) k x= −                                              (E-10) 

                                                   2 2 2(Dx ) k x= −                                              (E-11) 
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where k1, k2 are temperature-dependent coefficients characteristic of the 

reaction. The rate of increase of the substance S is the excess of its rate of 

formation divided by its rate of decomposition. This is analogous to birth rates 

and death rates in a human population. Each molecule of S1 that "dies" 

transforms into a molecule of S2.  Every molecule of S2 that "dies" becomes a 

molecule of S1.   (116) 

         All complete reactions consist of three separate stages. Each stage has a 

characteristic energy change.  Generally, molecules in the free state exist in an 

inert phase. In order to induce any reaction it is necessary to render them into a 

reactive phase. This is the first stage of the reaction. It dictates that a specific 

amount of energy be supplied to each molecule.  The amount required is the 

energetic difference between the initial phase and the particular phase necessary 

for the desired reaction to occur.  Meanwhile, the second stage of the reaction is 

the rearrangement of atoms in which new molecules are produced.  It is only this 

stage that is denoted by the reaction equation.  The final stage is the phase 

change of the newly produced molecules. In this stage, the molecules transform 

into their inertial phases. The last two stages of reaction are both concurrent with 

energy dissipation. If the total energy dissipated in the second and third stages is 

greater than the energy taken in during the first stage, the reaction is exothermic. 

An endothermic reaction is one in which the energy required to overcome inertia 

is greater than the total amount dissipated in the second and third stages. As to 

the agencies that provide the necessary energy to carry a transforming molecule 
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"over the crest of the hill," there is the thermal and electromagnetic excitation of 

the molecules and the influence of catalysts which lower the requisite level of 

energy. From the perspective of energy, the initial and final states remain 

unchanged and independent of the path of work.  Final equilibrium must agree 

with the second law of thermodynamics, which may be considered as a law of 

evolution for this type of system. The second law of thermodynamics has a 

plethora of forms. However, analogous to gravitation, the form in which it serves 

this discussion is the one which states that the system evolves toward a state in 

which thermodynamic potentials of the variables defining its condition are at a 

minimum.  Many principles of nature are expressed as minimum or maximum 

laws.  Thus, it is plausible that the law of evolution in physiological systems and 

processes has a similar form. Like the law of chemical evolution, it should be 

expressed in terms of the global system. The reason is that the energy of the 

entire system is what approaches a minimum.   (118, 119) 

          However, there is another special case of the general problem of chemical 

equilibrium which submits relatively easily to analysis.  That special case 

considers only the final state, at equilibrium, of a given total change in a 

parameter. It ignores all issues regarding the path by which the perturbation of 

equilibrium occurs. This is possible by the fact that, in certain rate-independent 

cases, the equilibrium is displaced independently of the path of chemical change. 

It is dependent entirely on the initial and final values of the parameters whose 

variation causes or results from the change.  Thus, in these physicochemical 

E.3  The Principle of Le Chatelier  
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state changes, the Principle of Le Chatelier predicts of the direction of the 

perturbation of equilibrium that results from a change in certain parameters that 

maintain the equilibrium depends   (118, 119) 

 

 

 

Increasing concentration of A 

 

 

Decreasing concentration of A 

Figure E-4.  An example of the Principle of Le Chatelier.  Changing the 
concentration of A drives the reaction in its opposing direction towards 
equilibrium.  (8, 193) 
           

 

          From physical chemistry, the Principle of Le Chatelier describes the nature 

of equilibria in chemical reactions.  The broadest definition of the Principle of Le 

Chatelier is that a system changes in order to minimize an external perturbation 

(8). That means that every external stimulus on a system produces changes in 

the direction that elevates the resistance of the system against the external 

stimulus.  If the equilibrium of a system is disturbed, the system adapts itself to 

the perturbation, in such manner that the perturbation dampens until equilibrium 
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is reestablished. (121) Yet, the Principle of Le Chatelier only indicates the 

direction of changes from stresses on a system.  It does not, however, in any 

way indicate if any particular stress will produce an actual change in the system. 

Furthermore, the Principle makes no indication whatsoever about the conditions 

needed to produce maximal change.  (8) 

         According to Zumdahl (193), for catalytic reactions which exhibit simple 

Michaelis-Menten kinetics and in which product formation is governed by the 

rate-limiting step km≈k-1/k1=kd, where kd is the dissociation constant of the 

enzyme-substrate (ES) complex.  Yet, frequently k2 >> k-1, or k2 and k-1 are 

similar.  Hence the Michaelis constant can be defined as: 

E.4 Michaelis-Menten kinetics 

1 2

1
m

k kK
k

− +
=     (E-12) 

The catalytic reaction is assumed to be irreversible, and the product does 

not bind to the catalyst. 

1 2

1

k k

k
E S ES E P

−

→+ → +←    (E-13) 

 

The rate of production of the product, d[P]/dt is define as the reaction rate, 

V in reaction kinetics. It depends on the catalytic constant, k2, and [ES], the 

concentration of catalyst bound to substrate. As [ES] is usually unmeasurable, it 

must be expressed in terms of the concentration of catalyst and substrate 

originally added. 
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A crucial assumption in the derivation of the Michaelis-Menten equation is 

that the concentration of the catalyst changes much more slowly than those of 

the product and substrate. This is known as the quasi steady-state 

approximation.  The derivation of the equation follows below. 

 

1 1 2
[ ] 0 [ ][ ] [ ]( )d ES k E S ES k k
dt −= = − +    (E-14) 

 

This can be rearranged to: 

 

1

1 2

[ ][ ][ ] k E SES
k k−

=
+      (E-15) 

 

Defining the Michaelis-Menten constant as: 

 

1 2

1
m

k kK
k

− +
=      (E-16) 

yields: 

[ ][ ][ ]
m

E SES
K

=       (E-17) 

 

The total concentration of catalyst [E0] is the sum of the free enzyme in 

solution [E] and that which is bound to the substrate [ES].  This allows the free 

catalyst concentration to be derived from (E-14): 
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0[ ] [ ] [ ]E E ES= +     (E-18) 

0[ ] [ ] [ ]E E ES= −     (E-19) 

Using [E], [ES] can now be written: 

 

0([ ] [ ])[ ][ ]
m

E ES SES
K

−
=     (E-20) 

 

Algebraic manipulation gives: 

0[ ] [ ] [ ]
[ ]

mKES E ES
S

= −     (E-21) 

0[ ] 1 [ ]
[ ]

mKES E
S

 
+ = 

 
     (E-22) 

0
1[ ] [ ]

1
[ ]

m
ES E K

S

=
+

     (E-23) 

The reaction rate is: 

 

2
[ ] [ ]d PV k ES
dt

= =     (E-24) 

 

 

Substitution and more algebra gives  

2 0 max
[ ] [ ] [ ][ ]

[ ] [ ]m m

d P S Sk E V
d t K S K S

= =
+ +   (E-25) 
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If the substrate concentration is large compared to Km, [S]/(Km+[S]) goes 

to 1.  In that case, the rate of product formation equals k2[E0]. (193) 

 

 

Figure E-5.  Traditional Michaelis-Menten kinetics plot. The kinetics are 
asymptotically bound.  (193) 

 

 

Implicit in traditional chemical kinetics is the assumption that the reaction 

occurs in homogeneous solutions that are dilute. However, it has been shown by 

theory, computer simulation, and experiment that traditional chemical kinetics are 

markedly dissimilar when reactions are constrained or occur on fractal surfaces.  

In these cases, a standard reaction rate law shows a specific time-varying 

decrease in the rate constant.  This is equivalent to a rate law with a higher 

kinetic order that does not vary with time. For example, a bimolecular reaction 

has a kinetic order that is no longer equal to the molecularity of the reaction when 

it is constrained dimensionally may has a kinetic order that approaches 49. The 

increased kinetic orders may reflect the fractal dimension of the reaction surface.  
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As a result, the generalized kinetics are sometimes denoted as fractal kinetics 

and may arise in reaction-limited states if the surface of potential energy 

possesses fractal characteristics. (162) 

Power-law formalism exhibits at all organizational levels from molecule to 

organism. (14, 150, 160, 161) This ubiquity of the power law at different 

organizational levels is similar to fractal phenomena.  Both constructs behave in 

similar ways independent with respect to scale. It has been shown for fractals 

that this self-similarity is closely connected to power law expressions as a very 

promising alternative to the traditional Michaelis-Menten construct. (162) 

The power law formalism is a mathematical structure consisting of 

ordinary nonlinear differential equations comprised of multiplicative functions of 

power laws.  The formalism satisfies two crucial specifications for evaluating 

whether a kinetic representation is appropriate for a complex biological system. 

The first requirement is the degree of systematic structure of the formalism and is 

related to mathematical solvability.  The second requirement is the degree of 

system conformity to the formalism.  This is associated with accuracy. Power law 

formalism also includes specific representations such as traditional Michaelis-

Menten reaction rate kinetics.  (162) 

With the more complex mathematics, Savageau (162) applies the power-

law formalism to the Michaelis-Menten rate kinetics. This leads to the following 

mathematical formulation. 

1 1
[ ] [ ] [ ] [ ]d S k S E k C
dt

α β
−= − +     (E-26) 
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1 1 2
[ ] [ ] [ ] ( )[ ]d E k S E k k C
dt

α β
−= − + +    (E-27) 

 

1 1 2
[ ] [ ] [ ] ( )[ ]d C k S E k k C
dt

α β
−= − +    (E-28) 

 

2
[ ] [ ]d P k C
dt

=      (E-29) 

 

where α and β are the real number kinetic orders of the substrate and catalyst, 

respectively. The catalyst-substrate complex is assumed to be constant on the 

basis of monomolecularity.  

Fractal-like kinetics and power law formalism can apparently be applied to 

non-homogeneous reactions, according to Schnell and Turner (163) because 

they include parameters that depend on environment dimensionality. This 

suggests that these modifications may be superior for modeling in vivo reaction 

dynamics to the law of mass action.  However, they do have drawbacks that 

need to be discussed.  Fractal kinetics presents a fundamental difficulty with 

singularity at t=0, which diminishes its feasibility at reaction modeling.  This 

raises the question of whether this problem can be worked around by modifying 

the mathematical form or whether it demonstrates pathology in the approach.  

Yet, estimation by power law has only been validated using computer simulations 

for homodimeric reactions. (162)  The extension of the approach to more 
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complex reaction systems has no supporting evidence currently.  The inference 

is made solely on the reason that power laws are considered as intricate 

constructs of fractal environments. (163)  It therefore remains to be seen how the 

approach compares real physiologic data. 

 
 
 

 

Figure E-6. Fractal rate law plots of reaction velocity as a function of the 
concentration of substrate: (a) Cartesian plot. Sigmoidal behavior increases with 
kinetic order (g). Traditional Michaelis-Menten rate law is top curve with g=1.  (b) 
Hill plot. A slope (gs/ge) greater than 1 indicates non-hyperbolic cooperativity.  
The rate law is governed by asymptotic lines.   The top asymptote is the 
traditional Michaelis-Menten law.  (162) 
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Figure E-7.  A hypothetical depiction of macromolecular crowding.  (163) 

 

According to Schnell and Turner (163), the kinetics of cytoplasmic 

reactions follow anomalous rate laws with macromolecular crowding as a major 

factor. Reactants are constrained in space in crowded environments 

microscopically by forces such as steric hindrance and electromagnetic 

interactions which can occur intermolecularly. The reaction volume available for a 

specific molecule is modulated by number, size and shape of all other molecules 

in a reaction compartment. Diffusion and mixing are also important as a 

substance coefficient of is diffusion is dictated by the molecular mean free path. 

For small solvated molecules, the mean free path between collisions will be 

mostly a function of the average distance between individual molecules. 
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Regardless of macromolecular presence in solution, collisions between small 

molecules and macromolecules will be much less numerous than collisions 

between small molecules.  Hence a macromolecular presence is not likely to 

have significant effect on the diffusion of small molecules.  However, it will affect 

the degree of mixing of small molecules through the solution by decreasing the 

probability of their motions throughout the entire reaction volume.  Furthermore, 

high macromolecular density will impact substantially on the average path of 

each macromolecule.  With the assumption that collisions with many small 

molecules produce no overall effect, the macromolecular mean free path will 

depend most on the mean separation between macromolecules. Therefore, 

macromolecular crowding significantly decreases the macromolecular diffusion 

coefficient. 

Hysteresis is a term that describes systems in which the effects of a 

current input to the system are not felt instantaneously. Such systems may 

exhibit path dependence. Hysteresis phenomena occur in all materials in which a 

lag occurs between the application and the removal of a force or field and its 

subsequent effect. Hysteretic systems are also found in economics and biology, 

where it describes a lagging effect.  (103) 

E.5 Hysteresis 

In a deterministic system with no hysteresis, it is possible to predict 

system output at one instant in time, given only its input at that instant. In a 

system with hysteresis, there is no way to predict the output without knowing the 

current state of the system.  Yet, it is impossible to know the system state without 
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looking at the input history.   Hence, it becomes necessary to know the path that 

the input followed before it attained a present value.  (103) 

The word "lag" above should not necessarily be interpreted as a time lag. 

Even linear systems such as an RC circuit exhibit a time lag between input and 

output.  For most hysteretic systems, there is a very short time scale when its 

dynamics and associated time dependences are recorded.  If observations are 

carried out over very long periods, creep or slow relaxation toward true 

equilibrium can be noticed.  Without either condition, rate-independent 

irreversible behavior is the salient characteristic that distinguishes hysteresis 

from most other dynamic behavior in many systems.  (103) 

 

 

 

Figure E-8.  Idealized elastic hysteresis. The area in the center of the hysteresis 
loop is the energy dissipated.  (103) 
 

 

http://en.wikipedia.org/wiki/File:Elastic_Hysteresis.jp�
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If the displacement of a system with hysteresis is plotted on a graph 

against the applied force, the resulting curve is in the form of a loop. Although the 

hysteresis loop depends on the physical properties of a given material, there is 

no complete theoretical description that explains the phenomenon. The family of 

hysteresis loops, from different inputs, forms a closed three-dimensional space 

called the hysteroid.  (103) 

 

 

 

Figure E-9.   Hypothetical B vs. H magnetization hysteroid.   (103) 

 

 

Hysteresis represents states. The characteristic curve shape is sometimes 

denoted as a bistable state. (103)  Bistability is the property of a system in which 

the system can exist in two states and is a chemical version of supercooling, in 
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which the temperature of a liquid may be decreased below its freezing point 

without it solidification. (193) 

A reaction in which there are two intermediate aggregates X and Y in a 

reactor is considered as an example. If the concentration of Y is high, and X is 

added, then the concentration of Y could decrease as shown by the upper line in 

Figure E-10.  However, if X is high, and Y is added, the reaction could slow the 

increase of Y as indicated by the lower line. However, in each case, a point might 

be reached at which the concentration will jump between the two curves. These 

represent the two stable states of the bistable system. Neither is a 

thermodynamic equilibrium state.  Rather, they occur in steady states that are 

very far from equilibrium. The concentrations of the reactants and products 

indicate the respective effects of constant flow in to and out of the reactor. (193) 

 

 

                               

Figure E-10. Chemical system with bistability and oscillating states of 
concentration surge and depletion. (193) 

 



339 
 

 
 

The hysteresis curve actually contains infinite number of states.  An 

elementary application is to let the threshold regions represent the on and off 

states respectively.  This is seen in the stop transducer state diagram below.  

Hence, the system can be regarded as bistable. Even if no external input is 

applied, the position of the hysteresis curve is not necessarily stationary.  Thus, 

the system might require additional energy transfer to be stationary.  (103) 

 

 

 

Figure E-11.  State diagram of stop transducer.  The limits of action are at x=h 
and x=-h. (103) 
 
 
 

According to Krasnosel'skii and Pokrovskii (103), the transducer 

diagrammed above is denoted as a stop. Most models of electromechanical 

transducers, such as those of muscle, completely describe the states by values 
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of the current u and the force x.  They can be treated as transducers with 

variable current as input and with variable force as output. 
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APPENDIX F: MISCELLANEOUS FREE PARAMETER DATA 

 

Table F-1. Subject 17 trained warmup. 

Contraction        km           km σ         τ1                      τ1 σ            τ2            τ2 σ 
1 0.004397          0.000112422 16.6694 0.523345 88.6592 0.659632 
2 0.003141          8.19221F-05 17.221 0.55684 69.4121 0.567407 
3 0.001341          0.00009494      34.4373 2.3688 50.6807 2.28314 
 

 

Table F-2. Subject 18 untrained warmup. 

Contraction km         km σ   τ1       τ1 σ       τ2         τ2σ 
1 0.003077 0.000112171 26.4797 0.638868 136.478      1.61127 
2 0.003094 0.000112071 25.3839 0.705112 129.24        1.43776 
3 0.002093 0.000063243 28.8787 0.609273 122.266      1.13582 
 

 

 

 

Figure F-1. Behavior of km in trained limb of Subject 17 at warm-up. 
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Figure F-2. Behavior of τ1 in trained limb of Subject 17 at warm-up. 

 

 

 

Figure F-3. Behavior of τ2 in trained limb of Subject 17 at warm-up. 
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Figure F-4. Behavior of km in untrained limb of Subject 18 at warm-up. 

 

 

 

Figure F-5. Behavior of τ1 in untrained limb of Subject 18 at warm-up. 
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Figure F-6. Behavior of τ2 in untrained limb of Subject 18 at warm-up. 

 
 

Table F-3. Behavior of free parameters from doublet ramp inputs in untrained 
muscle optimized on the set {km, τ1}.  The parameters do not change much 

between first and second contractions for all Subjects.  There are no discernable 
trends. 

Subject/ 
contraction  
number                 km                     km σ                τ1              τ1 σ      
17-1 0.005594 0.000334398 8.02345 1.89011 
17-2 0.000969 2.6565F-05 17.2267 0.950537 
18-1 0.001446 0.000123907 84.3839 2.76143 
18-2 0.001827 0.000139804 86.193 2.46818 
27-1 0.001204 9.87511F-05 88.0623 2.64616 
27-2 0.001201 9.83593F-05 88.0096 2.64504 
28-1 0.000868 6.11702F-05 48.9058 2.18009 
28-2 0.000865 0.000060984 48.8702 2.17944 
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Table F-4. Behavior of free parameters from doublet ramp inputs in untrained 
muscle optimized on the set {km, τ1}.  The parameters do not change much 

between first and second contractions for all Subjects.   There are no discernable 
trends. 

 
Subject/  
contraction  
number                km                 km σ                          τ1                  τ1 σ        
17-1 0.005193 0.000466608 92.0709 2.65564 
17-2 0.003543 0.000364893 105.786 3.24478 
18-1 0.003591 0.00034845 81.4703 2.80956 
18-2 0.005236 0.000471061 92.2338 2.65827 
27-1 0.004527 0.000577342 99.8102 3.6713 
27-2 0.002972 0.000229781 110.543 2.87731 
28-1 0.001061 6.55643F-05 76.1982 2.3745 
28-2 0.000116 6.20646F-05 78.5621 2.02025 
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APPENDIX G: A FATIGUING BOUT IN TRAINED MUSCLE 

 

Table G-1.  Parameter values for contraction 1  
in the trained limb of Subject 17. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0,10] 
τfat  82.6344 9.34955 Free [0,50] 
ατ1  0.678847 0.102152 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 245.676 4.73417 Free [0, 1000] 
A [gain]   0.049609 0.0011162 Free [0 ∞] 

 

 

 
Figure G-1. Contraction 1 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.98436. 
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Table G-2.  Parameter values for contraction 2 in  
the trained limb of Subject 17. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0,10] 
τfat  47.9305 8.932 Free [0,50] 
ατ1  1.35213 0.320982 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 248.536 5.13729 Free [0, 1000] 
A   [gain] 0.0434818 0.001232444 Free [0 ∞] 

 

 

 

Figure G-2. Contraction 2 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.985999. 
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Table G-3.  Parameter values for contraction 3 
 in the trained limb of Subject 17. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 

τc   20 0 Fixed [0 ∞] 

a 1 0 Free [0,50] 

b 1.5 0 Free [0,10] 

c 1 0 Free [0,10] 

τ1rest         28.3 0 Fixed [0,10] 

τfat  30.5766 9.27007 Free [0,50] 

ατ1  2.44676 0.891975 Free [0 50] 

µ1          0.38 0 Fixed [0 ∞] 

µ2   0.5 0 Fixed [0 ∞] 

τleak 258.528 6.38156 Free [0, 1000] 

A  [gain] 0.0405142 0.00139022 Free [0 ∞] 

 

 
 

 

Figure G-3. Contraction 3 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.982276. 
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Table G-4.  Parameter values for contraction 4 in  
the trained limb of Subject 17. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0,10] 
τfat  20.7245 8.35242 Free [0,50] 
ατ1  3.84758 1.77835 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 265.434 6.22485 Free [0, 1000] 
A  [gain] 0.0404436 0.00136347 Free [0 ∞] 

 

 
 

 

Figure G-4. Contraction 4 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.9870934. 
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Table G-5.  Parameter values for contraction 5 in  
the trained limb of Subject 17. 

Parameter Optimized  
Value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0,10] 
τfat  14.6612 10.8726 Free [0,50] 
ατ1  5.94942 4.86385 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 262.178 8.07727 Free [0, 1000] 
A  [gain]      0.0374571 0.00162895 Free [0 ∞] 

 

 
 

 

Figure G-5. Contraction 5 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.989389. 
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Table G-6.  Parameter values for contraction 6 in  
the trained limb of Subject 17. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0,10] 
τfat  10.5671 11.3016 Free [0,50] 
ατ1  8.4335 9.68217 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 282.119 9.69667 Free [0, 1000] 
A [gain]      0.0385665 0.00177335 Free [0 ∞] 

 
 
 
 
 

    

 

Figure G-6. Contraction 6 of fatiguing bout in the trained limb of Subject 17.  The 
agreement of the Conaway model with the experimental data is 0.987693. 
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Table G-7. Comparison of error statistics of the Conaway fatigue model 
 for each contraction of the trained limb of Subject 17. The statistics are 

consistent throughout the fatiguing bout. 
 

Index of 
contraction 

Mean 
Squared  
Error 

Mean  
Absolute  
Error 

Correlation  
Coefficient  

 95% CI 
 

 r2 p-value 

1 0.0357964 0.00292124 0.98436 (0.982525 
0.985942 

0.96888 <0.001 

2 0.0358214 0.00347381 0.985999 (0.984434 
0.987408 

0.972194 <0.001 

3 0.0332351 0.000291189 0.982276 (0.980124 
0.984197) 

0.964867 <0.001 

4 0.0305759 0.000861972 0.9870934 (0.98653 
0.98912) 

0.976013 <0.001 

5 0.0033963 0.00667116 0.989389 (0.988244 
0.990422) 

0.97889 <0.001 

6 0.0309711 0.00133888 0.987693 (0.986265 
0.988974) 

0.975538 <0.001 

 
 
 
 

Table G-8. Loss functions and Akaike FPEs for each contraction of the trained 
limb of Subject 17.  The functions are consistently low throughout the fatiguing 

bout. 
 

Index of 
contraction 

1 2 3 4 5 6 

       
Loss  
Function 

0.001281 0.0012831 0.0011045 0.00093488 0.0011534 0.00095920 

       
Akaike final  
prediction 
error 

0.001295 0.0012964 0.0011180 0.00094530 0.0011646 0.00096985 

 



353 
 

 
 

 

 

Figure G-7. Peak forces for each contraction in a fatiguing bout n the trained limb 
of Subject 17.  The peak forces generally decay with each contraction.  This 
shows that potentiation occurs in fatiguing paralyzed muscle. 
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APPENDIX H: A FATIGUING BOUT IN UNTRAINED MUSCLE 

 

Table H-1. Parameter values for contraction 1  
in the untrained limb of Subject 18. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0 ∞] 
τfat  29.8741 6.5412 Free [0,50] 
ατ1  3.044584 0.459981 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 95.1453 2.73726 Free [0, 1000] 
A   [gain] 0.440372 0.0249183 Free [0 ∞] 
     
     

 
 

 

Figure H-1. Contraction 1 of fatiguing bout in the untrained limb of Subject 18. 
The agreement of the Conaway model with the experimental data is 0.975184. 
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Table H-2. Parameter values for contraction 2  

in the untrained limb of Subject 18. 
Parameter Optimized  

value 
Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0 ∞] 
τfat  31.7369 4.88137 Free [0,50] 
ατ1  3.909893 0.451615 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 95.1785 2.48151 Free [0, 1000] 
A  [gain] 0.560193 0.0356424 Free [0 ∞] 

 

 

Figure H-2. Contraction 2 of fatiguing bout in the untrained limb of Subject 18. 
The agreement of the Conaway model with the experimental data is 0.932472. 
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Table H-3. Parameter values for contraction 3 
 in the untrained limb of Subject 18. 

Parameter Optimized  
value 

Standard  
deviation 

Free  
or fixed  

Range 

τ2  62.7 0 Fixed [0 ∞] 
τc   20 0 Fixed [0 ∞] 
a 1 0 Free [0,50] 
b 1.5 0 Free [0,10] 
c 1 0 Free [0,10] 
τ1rest         28.3 0 Fixed [0 ∞] 
τfat  35.01743 5.01294 Free [0,50] 
ατ1  3.003732 0.168069 Free [0 50] 
µ1          0.38 0 Fixed [0 ∞] 
µ2   0.5 0 Fixed [0 ∞] 
τleak 102.3633 3.94424 Free [0, 1000] 
A [gain]      0.517513 0.00993602 Free [0 ∞] 

 

 

Figure H-3. Contraction 3 of fatiguing bout in the untrained limb of Subject 18.  
The agreement of the Conaway model with the experimental data is 0.912205. 
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Table H-4. Comparison of error statistics of the Conaway fatigue model for each 
contraction in the untrained limb of Subject 18. The statistics are consistent 

throughout the fatiguing bout. 
 

Index of 
contraction 

Mean 
Squared 
Error 

Mean  
Absolute 
Error: 

Correlation 
Coefficient  

 95% CI 

 

 r2 p-value 

1 0.119603 0.0244814 0.987514 (0.98239 

0.99154) 

0.975184 <0.001 

2 0.223413 0.0465656 0.965646 (0.956317 
0.97301) 

0.932472 <0.001 

3 0.243065 0.0494019 0.955094 (0.9427766 
0.964815) 

0.912205 <0.001 

 

 

 

Table H-5. Loss functions and Akaike FPEs for 
 each contraction of the untrained limb of  

Subject 18.  The functions are consistently low  
throughout the fatiguing bout. 

Index of  
contraction 

1 2 3 

Loss  
Function 

0.0143049 0.0499135 0.0590804 

Akaike final  
prediction error 

0.0151785 0.0514552 0.0609635 
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