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ABSTRACT

Bragg spaced quantum wells represent a unique class of resonant photonic

materials, wherein a photonic bandgap is created by the periodic spacing of

quantum wells and the associated variation in the complex susceptibility (index

and absorption) of the material. Interest in BSQWs has grown in the past decade

due to their large ultrafast nonlinearities and the corresponding large ultrafast

reflectivity changes and transmissivity. These nonlinearities are of particular

interest in areas of communication technology, where ultrafast all-optical logic

components have become increasingly in demand. This research will further

investigate BSQWs and the for the first time effects of spin-dependent nonlinear

excitation on their photonic band structures. It will also investigate how these

effects can be used in all-optical polarization switching and tunable optical buffer

(slow light) applications.
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Å Angstrom, 10−10 m

℘ Oscillator strength of an exciton

~ Plank’s constant / 2π

ı Imaginary unit,
√
−1

α Absorption coefficient

αTotal Total absorption of a structure

αj Absorption of the jth quantum well

αon/off
x/y Absorption coefficient of a x or y polarized component

of light in the on/off state of a switch

αx/y Absorption coefficient for x and y polarized light

α
pump/no pump
+/- Absorption coefficient for right (+) and left (-)

circularly polarized light with and without the pump
present

∆α Difference in absorption coefficient for right and left
circular polarized light, δα+ − δα-

∆αx/y Change in absorption coefficient for x and y polarized
light during switching, αon

x/y −α
off
x/y

δα+/- Difference in absorption coefficient for right (+) and
left (-) circularly polarized light with and without the
pump present, αpump

+/- −αno pump
+/-

β Resonant component included in transfer matrix

ε0 Dielectric constant

ε Ellipticity angle

εon/off Ellipticity of light in the on/off state of a switch

Φ Wave function for a particle

φa,b Wave function for a particle in the a or b state

φ̃(~r) Wave function for an exciton with electron/hole
wavefunction separation given by ~r

xiv



∣∣∣φa,b

〉
State vector for a particle in state a or b

γ Polarization non-radiative dephasing rate

γ0 Linear (in carrier density) component of the non-
radiative polarization dephasing rate

Γ Radiative decay rate of an excited electron

λ Wavelength of light

λB Wavelength of Bragg-resonance

λASFP Design wavelength of an ASFP

µ Effective mass of a system

µ0 Permeability of free space〈
µ
〉

Expectation value of the dipole moment

η Extinction ratio of a polarizer

ρ Density matrix

ρ(n) nth order component of the density matrix

ρfree Free charges in a material

ρij Element at the ith row and jth column of the density
matrix

σ+ Right-circularly polarized light

σ̂+ Right-circular unit vector, x̂ − ıŷ
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CHAPTER 1
INTRODUCTION

Incoming wave

Reflected Waves

π/2
 phase

shift

λ/4
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Figure 1.1: Schematic of a 1 layer anti-reflection coating. Reflections from the two
interfaces interfere destructively, and the net reflection is decreased. Note that this
only shows the first order reflections from the surfaces.

Photonic materials first attracted attention in the late 1800’s [5] when

researchers noticed that the thin coatings formed on lenses affected their reflective

and transmissive properties [6]. It was quickly determined that the changes in

reflection were due to constructive and destructive interference between waves

reflecting off the front and back interfaces of the film (see a simplified model in

Fig. 1.1). When the optical path length of the film is such that the reflected waves

are exactly π/2 out of phase, the net reflected light is zero. The idea was quickly

put to use, and by the early 1900’s [7] both fabricated and natural anti-reflection

coatings were being used and encouraged in telescopes and other optical devices.

Fabricated films were initially created by a chemical etching process [8, 9]

where material was etched away until only a small amount was left on the

substrate. During WWII the need for better quality, more reproducible coatings

to be used in gun sights and other military apparatus grew. A gun sight with 40%
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more light passing through it could allow a soldier to use it for an extra 30-45

minutes at both dawn and dusk. To improve the quality of the films made and to

allow more complex multilayered structures, vacuum deposition techniques were

developed where a heated material would be evaporated and deposited directly

onto the surface of a substrate [10, 11]. These techniques became the precursors

to modern techniques such as molecular beam epitaxy (MBE), chemical vapor

deposition, and sputtering techniques [12].

Along with the enhanced technology for creating films, research in new

types of films also grew. This included better anti-reflection coatings capable of

removing almost all reflection over a wide range of wavelengths [9], and films

which enhance the reflectivity of a material (dielectric mirrors). Such dielectric

mirrors can have very high reflectivity (99.999%), and have proven useful in many

applications. For instance, dielectric mirrors are used almost exclusively in laser

cavities where the high tunability (both in terms of total fraction reflected and in

terms of the bandwidth) allows for optimization of the losses in the cavity. They

can also be fabricated along with the resonant materials to form things such as

small vertical-cavity surface-emitting lasers [13].

Figure 1.2: Schematic of a 3D photonic crystal. The periodicity in this case extends
in three dimensions rather than one.

Since their discovery, photonic materials have been noted in many areas of
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biology [14, 15] including butterfly wings [16] and peacock feathers [17]. Some

of these structures are capable of changing the way light interacts with them

from all directions (see Fig. 1.2). While these 2D and 3D photonic crystals

differ from 1D thin film coatings, the principles of their operation remain the

same. Light encounters periodic structures in all directions, and the interference

between waves causes the structures to reflect or transmit light differently than the

individual components normally would.

Artificially produced 2D and 3D photonic crystals1 first gained attention

in the late 1980’s when Yablonovich [19] and John [20] proposed that the lack

of photonic modes in such a crystal could prohibit spontaneous emission in all

directions. In devices such as laser cavities, this could significantly reduce losses

from a system. This drove interest in photonic crystals, and still today there is

a lot of research in both generic photonic materials, and in 2D and 3D photonic

crystals [21].

Along with this came an interest in the resonant photonic materials discussed

here. Resonant photonic materials may be constructed similarly to the dielectric

mirrors or anti-reflection coatings talked about earlier, and give rise to similar

reflection spectrum, but contain a resonance in the system near the same frequency

as the index variation (see Fig. 1.3). Periodic micro-ring cavities [22] and the

multiple quantum well structures discussed here have both been used to produce

resonant photonic materials. The ability to use them to control the propagation

of light promises to provide exciting new capabilities in areas of communications

and optics.

1There has been some debate about what qualifies a structure as a “photonic crystal”. For the
most part this label is only appropriate for 2D or 3D structures where the word crystal is more apt,
and where the index contrast between materials in the structure is large [18].
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Resonant Material

Non-resonant Material

...n1 n2

Figure 1.3: Schematic of an resonant photonic material. Rather than varying just
the index of the materials, materials with a resonance at the same frequency as the
periodicity are used.
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CHAPTER 2
BACKGROUND

This research focuses on resonant photonic materials composed of a large

number of periodically spaced quantum wells in III-V semiconductor material,

also known as Bragg-spaced quantum wells (BSQWs). In order to establish a

language and background for talking about BSQWs, it is important to begin by

describing quantum wells and the semiconductors materials used to compose

them.

2.1 Basics of semiconductor materials

III-V semiconductors are materials composed of elements from group 13

and group 15 of the periodic table. Only the eight outer level electrons (three

from the anion and five from the cation) contribute to the chemical bonds in the

structure. The rest are tightly bound to the nucleus. Two of the electrons form

deeply bound s-bands which are always occupied, while the remaining six form

bound p-like orbitals [23].

Figure 2.1: Schematic of III-V semiconductor unit cell. The cell consists of two
face-centered cubic lattices displaced by one fourth of one of the cube’s main
diagonals.

When crystallized, these materials form a zinc-blend structure, consisting of

two face-centered cubic lattices, displaced by one fourth of one of the cube’s main
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Figure 2.2: On the left is a schematic electronic band structure for a III-V
semiconductor. This is an one particle picture showing allowed levels for electrons
in the hh, lh, and so valence bands, as well as the lowest lying conduction band. On
the right is the two particle, excitonic band structure. Since excitons do not exist
until a particle has been excited, there is no “ground” state.

diagonals (see Fig. 2.1). Because the structures are periodic, the energy levels of

the molecules expand to form energy bands in the structure. At 0K the conduction

band is defined as the lowest energy band containing no electrons, and the valence

bands as those completely filled in insulators and semiconductors or partially

filled in metals. In some semiconductors such as GaAs, a direct bandgap forms

where the top of the valence band and the bottom of the lowest lying conduction

band occur at the same symmetry point, known as the Γ -point of the Brillouin

zone (see left in Fig. 2.2). Two of the binding orbitals are split off due to spin orbit

coupling, and are known as the split off (so) bands. The other four electrons lie in

the light hole (lh) and heavy hole (hh) bands, which are degenerate at the Γ -point.

A schematic figure of the band structure in a parabolic approximation is

shown on the left in Fig. 2.2 where the peak of the hh-band has been designated

as Ehh = 0, and the energetic difference between this peak and lowest conduction

band energy has been designated Eg , the energy bandgap. The lh- and so-bands

are also shown.
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When an electron is excited into the conduction band, the Coulomb inter-

action between it and the hole (absence of charge) left in the valence band can

result in the formation of a bound state. The resulting quasi-particle is referred

to as an exciton. For situations where the electron and hole are tightly bound

to a particular lattice site or unit cell (for instance in ionic crystals), the binding

is strong and the exciton is typically small and confined to a single lattice site.

However, in semiconductors electron and hole may be at different lattice sites and

the attraction screened by valence electrons at nearest neighbor cells. In these

cases the bond is weaker and the excitons (known as Wannier-Mott excitons) are

often much larger and can move in the structure [24, 25].

The interaction between the two particles can be written in terms of the

center-of-mass coordinates of both the electron and hole, and reduces into two

parts. One part resembles a free particle with mass M = m∗e +m∗h (where m∗e and

m∗h are the effective masses of both the electron and hole respectively) and wave

vector K = ke + kh. The second is a relative-motion term resembling a Hydrogen

atom and labeled by three quantum numbers, nml. Assuming the effective mass

of the quasi-particle is isotropic, only the n quantum number is important to the

total energy of the exciton which can then be approximated:

EnX = Eg +
~

2K2

2M
−

µq4
e

2~2ε2
0n

2
(2.1)

where 1/µ = 1/m∗e + 1/m∗h is the effective mass of the system, qe is the fundamental

charge, ~ is Plank’s constant, and ε0 is the permittivity of free space [24, 26], and

n is an integer number the excitonic energy bands. The band structure of the

exciton in this model appears as a series of parabolas centered below the electronic

bandgap by a distance Eb = R∗

n2 where R∗ = µq4
e

2~2ε2
0
. Because these are two particle

states they are shown separately (on the right) from the one particle band structure

(on the left) in Fig. 2.2. For semiconductors such as GaAs, this binding energy can

be significant (≈ 5 meV).
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2.2 Fabrication of layered semiconductor structures
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Figure 2.3: Schematic of quantum well band structure versus position in the z-
direction. Conduction band energies and valence band energies are shown. (a)
represents type-I quantum wells. (b) represents type-II quantum wells. EB and
EW represent the bandgap of the semiconductor materials inside the barrier and
well layers respectively.

Semiconductor structures have been fabricated by layering materials with

different electronic bandgaps, resulting in a bandgap that changes as a function of

the perpendicular direction to the layers (referred to here as the z-direction, see

Fig. 2.3).

One technique used to create these structures is molecular beam epitaxy

(MBE). This type of semiconductor fabrication involves evaporating or sublimat-

ing materials and allowing them to attach to the surface of a substrate. This

process is kept slow (approximately 0.5 monolayers (ml) of material are grown per

second) to maintain good precision in the growth rate (≈ 1 ml precision). Because

this is a slow process and the distances required for materials to travel are often

large, it is performed under high vacuum (≈ 10−10 torr) in order to inhibit the

attachment of impurities and to provide a longer mean free path for the materials

(i.e. typically over long distances many scattering events would occur. At high
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vacuum, the mean-free path of particles increases and scattering events become

less common).

2.3 Quantum well basics

Quantum well materials are a subset of layered semiconductor materials.

In quantum wells, thin well layers with some bandgap (EW ) are placed between

thicker barrier layers with a different bandgap (EB). Two main types of quantum

wells are shown in Fig. 2.3. Type-I wells (shown in Fig. 2.3(a)) require that 1.) the

conduction band of the well material extends below the conduction band of the

barrier material, and 2.) the valence band of the well extends above that of the

barrier. In type-II wells [shown in Fig. 2.3(b)] only one of these conditions is met.

Electrons (and holes) inside these wells are effectively confined in the z-

direction. This confinement changes their energy, and as such they display yet

another subset of energy levels. The simple case of infinitely high barriers (EB =∞)

has been presented in detail many times [23, 27], but the primary results are

reviewed here. For electrons in the conduction band, an infinite number of

subbands appear. The altered energy of electrons in these subbands can be written:

Em2D,c = EW +
~

2(k2
x + k2

y )

2m∗e
+Emc (2.2)

where EW is the bandgap of the well, m∗e is the effective mass of the conduction

band electrons, and Emc represents the mth energy level of the electrons due to

their confinement, and is given by known energy levels for particles in an infinite

well:

Emc =
~

2π2

2m∗el2W
m2 (2.3)

where lW is the width of the well, and m denotes integers greater than zero.

Similarly the hh and lh valence bands are also split, although an accurate

picture of the two at kx and ky , 0 requires a more advanced formalism [28] due

to mixing between the two bands. However, since excitons are unlikely to form at

larger k values, it is sufficient here to note that at kx = ky = 0, the bands are lowered
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by amounts:

Em2D,hh =
−~2π2

2m∗hhl
2
W

m2 (2.4)

Em2D,lh =
−~2π2

2m∗lhl
2
W

m2 (2.5)

Due to the difference in effective masses of the hh and lh valence bands, con-

finement in the z-direction has removed the degeneracy between the two. When

quantum wells with finite barrier heights are considered, the situation changes

slightly as evanescent waves from the particles are allowed to penetrate into the

barriers, and there is a cap on the number of energy levels present in the well

material before the top of the barrier is reached. Exact solutions of this situation

are not possible, although they can be found numerically.

The confinement of electrons and holes within the quantum well increases

the overlap between electron and hole wave functions by forcing the two into the

same plane. As a result, the Coulomb interaction between the two is enhanced [28].

This has profound effects on the binding strength of the exciton, and as such on

both the absorption and reflection from such quantum wells. The resulting exciton

resonance is often visible even at room temperature [27, 29].

In addition to the many splittings and shifts of energies that have been

discussed so far, electrons (and excitons) observe strict selection rules for optical

transitions between the structure’s energy levels [27]. These can be summarized by

looking at the angular momentum changes between the hh (J = 3
2 , Jz = ±3

2 ) and lh

(J = 3
2 Jz = ±1

2 ) states, and excited conduction band states (J = 1
2 and Jz = ±1

2 ). Here

J is the total angular momentum of the electron, and Jz represents the projection

of the angular momentum onto the z-axis (where units of ~ have been left out for

convenience). Circularly polarized light (with angular momentum ±1) can only

excite transitions which satisfy angular momentum conservation. For instance,

circularly polarized light with angular momentum −1 can excite a transition from

the +3
2 hh to the +1

2 conduction band but not a transition from the +3
2 hh to the −1

2



11

conduction band. The selection rules for the hh and lh levels are summarized in

Fig. 2.4. Also shown are many body effects which can couple the two resonances,

and are discussed in more detail in Sec. 2.4.

J = 12z +J = 12z -

J = 32z - J = 32z +

J = 12z +J = 12z -

Many body

effects

Figure 2.4: Optical selection rules coupling left (σ+) and right (σ−) circularly
polarized light between the hh and lh valence band electrons and excited
conduction band electrons. Many body effects which can allow the two systems
to interact are indicated in red.

Finally, multiple quantum well (MQW) structures have also been constructed

that are composed of more than one quantum well stacked together (as shown

previously in Fig. 2.3). In a simple model, the effect of stacking wells is additive.

Electrons in each well absorb a small amount of light creating a total absorption,

αTotallTotal =
∑
j αj lj where αj (lj) is the absorption (width) of the jth well and lTotal

the combined width of all the wells. In real situations reflections at the interfaces,

as well as slight differences between adjacent wells and surface roughness along

the walls of the well can lead to changes in the exact line shape.

A unique structure, known as a super-lattice, occurs when the barriers are

thin and the bandgap difference between barriers and wells are small enough

for the wave functions of the electrons and holes to extend significantly into the

adjacent wells. In this case the usual discrete energy levels of the wells broaden
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Figure 2.5: Schematic of Pauli-blocking (a) and Hartree-Fock (b) effects.

into mini-bands.

2.4 Nonlinear effects in semiconductor quantum wells

The nonlinear response of MQW materials has been described in several

different models including a few-level system [30], ”microscopic” models in

which the semiconductor dynamics are modeled in terms of individual interacting

electrons and holes [31], and bosonic models where the exciton interactions are

modeled via a bosonic Hamiltonian [32]. A brief review of a few-level model

(using only 2-levels) is given in Appendix A.4. The nonlinearities appearing in

these models can be separated into a few distinct effects. In particular, some of

these effects can couple excitons of different spin, as shown in red in Fig. 2.4,

while others will only affect systems having the same spin. In the limit that effects

coupling spin systems, and higher lying transitions such as the lh-conduction band

transition, can be ignored, the four-level system shown in Fig. 2.4 reduces to two,

uncoupled, two-level systems. Using these two weakly coupled systems to induce

circular dichroisms and circular anisotropies to construct a polarization switch is

one of the main subjects of this research detailed in Sec. 3.1.

The many body effects of interest here can separated into a few categories,

including:

Pauli-blocking effects [Fig. 2.5(a)] prohibit two electrons from inhabiting the



13

same state simultaneously. Since electrons of opposite spin won’t occupy

the same states, Pauli-blocking effects will not couple the two spin systems

shown in Fig. 2.4.

Hartree-Fock effects, also known as local field corrections [Fig. 2.5(b)], arise due

to fields created by arrays of aligned dipoles inside the system. Because these

fields have the same polarization as the exciting fields, they will not couple

the separate spin systems. In a simple two-level system model, Hartree-Fock

effects can be included via an ad hoc method where a new field is introduced

inside the material, such that [33, 30]:

~E(ω)→ ~E(ω) + ~ELF(ω) = ~E(ω) +LLF~P (2.6)

where ~ELF(ω) denotes the local field created inside the structure by the

dipoles, LLF is a constant known as the local field parameter, and ~P is the

polarization of the material.

Excitation induced dephasing (EID) is brought about by exciton-exciton colli-

sions, and only depends on the total density of particles, not their spin. As

such, it can couple spin-up and spin-down systems. EID can be inserted into

a few-level model phenomenologically by expanding the dephasing rate of

the polarization (γ) in a power series in carrier density, such that:

γ(Ne) = γ0 +Ne
∂γ

∂Ne
+ . . . ≈ γ0 +NT (ρbb − ρaa)

∂γ

∂Ne
(2.7)

where Ne = NT (ρbb − ρaa) is the total exciton density, NT is the total number

of excited oscillators, ρbb/aa are the diagonal-density matrix elements, giving

the probability of a particle being in state a or b, and γ0 is the initial

dephasing rate of the system.

Biexciton effects include both exciton exciton scattering [see Fig. 2.6(b)] and

bound biexcitons [see Fig. 2.6(a)]. Excitons of opposite spin can form bound

biexcitons, while scattering states are independent of spin. As such these
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Figure 2.6: Schematic of bound (a) and unbound (b) biexciton states.

effects can couple both spin-systems. Biexciton effects are included in a few-

level model through inclusion of additional levels in the system (beyond the

simple two-level system described in Appendix A.4). For an example, see

Ref. [30].

In the absence of these later two effects (biexciton effects or EID), and if higher

lying transitions like the light hole can be ignored, the two independent two-level

system model is accurate.

These many body effects influence the absorption and index of the materials,

and depend nonlinearly on the incident light fields. When the multiple fields are

incident on the material, the interference of fields inside the structure can give

rise to gratings in index and absorption inside the material, known as four-wave-

mixing effects. To briefly look at these four-wave-mixing effects, it is helpful to

write the field incident on the material as:

E = E1e
ı(ω1t−k1z) + c.c.+E2e

ı(ω2t−k2z) + c.c. (2.8)

where E1,2 is the amplitude of field one or two respectively, traveling with

wavevector k1,2 and frequency ω1,2, and c.c is the complex conjugate of the
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preceding term. The intensity of the field, I , then has the form

I ∝ |E|2 = |E1|2 + |E2|2 + |E∗1|2 + |E∗2|2

+E1E
∗
1e
ı[2ω1t−2k1z] + c.c.

+E2E
∗
2e
ı[2ω2t−2k2z] + c.c.

+E1E
∗
2e
ı[(ω1−ω2)t−(k1−k2)z] + c.c.

+E1E2e
ı[(ω1+ω2)t−(k1+k2)z] + c.c.

(2.9)

To incorporate this into Maxwell’s equations, it is useful to write the complex

nonlinear index of refraction, n, such that n → n0 + nNL, where n0 is the linear

component, and nNL the nonlinear component. nNL may arise from the terms

described above such as Hartree-Fock effects of Pauli-blocking. Approximating

nNL as nNL = n2I , intensity gratings in the material lead to gratings in refractive

index and absorption:

n = n0 +n2(E1(z, t)E∗2(z, t)eı[(ω1−ω2)t−(k1−k2)z] + . . .) (2.10)

In χ(3) processes, a field can scatter off this grating sending energy in new

directions, or the grating can introduce a phase shift, redistributing energy within

a pulse.

2.5 Fabrication of Bragg-spaced quantum wells

BSQWs are MQW structures in which a periodic spacing has been introduced

such that the inter-well spacing, a ≈ cπ/nbωB = λB/2nb (see Fig. 2.7), where c is

the speed of light in a vacuum, nb is the background index of refraction in the

material and ωB (in wavelength space, λB) is the Bragg frequency which describes

the periodicity of the wells. In the Bragg reflectors or anti-reflection coatings

discussed earlier the index contrast between the bulk materials is responsible for

the photonic band structure. By contrast, in BSQWs the index contrast is brought

about by the presence of the hh-exciton in the quantum wells. The photonic band

structure of the material is due to the periodic array of exciton resonances, and as

such, changes to the resonance change the fundamental photonic structure of the
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Figure 2.7: Schematic of a BSQWs. The light shaded (blue) areas represent barriers
made of GaAs, and the dark shaded (red) ones In0.04Ga0.96As layers. The spacing
between the wells, a, determines the Bragg resonance, ωB. Electric fields used in
calculating the transfer matrix (see Section 2.6) between individual layers are also
shown.

material.

Fabricating BSQWs using MBE presents several unique difficulties. First,

the structures are extremely sensitive to detuning of the exciton resonance (ωX)

from the Bragg resonance (ωB) [34]. As an example, in the InGaAs quantum wells

being discussed here, a distortion in barrier width of only 0.5% (enough to distort

the photonic band structure significantly) corresponds to two monolayers of the

1060Å wide barriers. While MBE can be precise (the degree to which a particular

layer thickness can be repeated) to a single monolayer, the accuracy (difference

from the desired layer thickness) can deviate by a few percent. This can be due to

deviations in growth rates over time, strain which can cause a particular monolayer

to have a different width than expected, and other factors.

To account for this lack of accuracy, it is simplest to introduce some tunability

into the structure so that it can be adjusted to meet Bragg periodicity (ωB = ωX).

Two techniques for introducing this are temperature tuning and growth of wedged

structures. Exciton energies shift with temperature because the fundamental
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bandgaps of semiconductors change with temperature. These changes come about

mostly through electron-phonon interactions which can have profound effects on

the bonding of electrons between different lattice sites [35]. Temperature tuning

of the quantum well resonance involves the creation of more phonons in the

structures, and as such it is not always desirable.

In contrast, wedged structures provide tunability by varying the amount of

material deposited across the surface of the structure. This can be accomplished

by holding the substrate material stationary during growth. Substrates are usually

rotated during growth to even out variations in material flux on the substrate. By

not rotating, barrier and well widths can differ across the surface of the sample by

as much as 10%, resulting in a slight wedge [34]. While both the well materials and

barrier materials will experience some difference in thickness, the Bragg resonance

depends on the thickness of the barrier to first order. By contrast, the majority of

the exciton energy comes from the bandgap of the well material (≈ 1.505eV in

this example), while the confinement energy contributes only to the total energy

of the exciton in second order (≈ 5meV in this example). Since the thickness of

the well layer only affects this confinement energy, variations in thickness have

a smaller affect on the exciton resonance than they do on the Bragg resonance.

As an example, a 10% variation in barrier and well thickness for a structure with

a quantum well resonance at 1.5eV, and in a background index nb = 3.5 leads

to a range of barrier thicknesses ranging from 104nm to 115nm and subsequent

energies (~ωB) ranging from 1.43eV to 1.58eV. The same 10% variation in well

thickness (8.075nm to 8.925nm) results in exciton energies ranging from 1.4995eV

to 1.5006eV. Similar tuning methods have been previously reported when looking

at the normal modes of resonances confined in an optical cavity [36].

A second problem with the fabrication of BSQWs is that the growths can

be extremely long. At a typical growth rate of ≈ 0.5 ml/sec, the growth of an
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N=200 quantum well Bragg structure can take nearly 48 hours. During this time

period, instabilities in the system can cause small but significant deviations in

the deposition rates of materials. To decrease growth time, the simplest solution

is to grow structures at faster rates. Instead of the typical ≈ 0.5 ml/sec, growth

rates may be increased (by increasing the material’s sublimation rate) to around 1

ml/sec, bringing the total growth time down to approximately one day.

System instabilities can be corrected for using recalibration during growth.

Reflection high energy electron diffraction (RHEED) measurements provide one

means of doing this. In RHEED a beam of high energy electrons is reflected off

the top monolayer of the structure and imaged onto a 2D camera. A series of

diffraction spots are detected whose intensity is a maximum when the monolayer

is complete, and a minimum when it is half formed. By measuring the frequency

with which the intensity changes over the growth of several monolayers, an

accurate determination of the growth rate can be determined and corrected for

through cell temperature adjustments.

These techniques along with others listed in Ref. [34] can be used to speed up

and improve the quality of BSQWs being grown by MBE. Even with this enhanced

stability, growth times are still on the order of a day. While it’s possible to extend

such growth to a two day period, longer growth periods run further the risk of

mechanical failures or instabilities in the system.

2.6 Using a transfer matrix to model optical properties of
layered structures

The optical properties of a layered structure such as BSQWs can be theo-

retically modeled using the transfer matrix method, which has been outlined in

detail in many publications (see Refs. [37, 38, 39], and [40] for more details).

A brief derivation of a transfer matrix formalism using both linear indices of

refraction and including a resonant contributions to the susceptibility is given in
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Appendix A.

To begin with, we consider only phenomenon in non-resonant material. Max-

well’s equations then relate the plane waves on each side of a single unit cell and

traveling in each direction (see Appendix A.2). Matching boundary conditions in

each layer of the material, the transfer matrix for propagation across a layer of

thickness aj and index nj into a second layer of index nj+1 is given by: E
−
j+1

E+
j+1

 =


nj+nj+1

2nj+1

nj−nj+1
2nj+1

nj−nj+1
2nj+1

nj+nj+1
2nj+1

︸                  ︷︷                  ︸
Boundary

 e
−ıkjaj 0

0 eıkjaj

︸              ︷︷              ︸
Layer

 E
−
j

E+
j

 (2.11)

Here the j subscripts are integers numbering the layers in the material, and

we have assumed normal incidence. E±j represents the waves traveling in both

the left (+) and right (-) directions at the left edge of the jth layer. The rightmost

matrix arises from propagation across a layer, and hence imparts a phase shift of

kjaj upon the beam where kj = njω/c is the wave vector of the field in the layer,

and ω is the frequency of the light. The leftmost matrix arises from propagation

across the interface into the next layer, and depends on the index contrast between

the two layers. Writing this total transfer matrix for one unit cell as:

Mj =


nj+nj+1

2nj+1

nj−nj+1
2nj+1

nj−nj+1
2nj+1

nj+nj+1
2nj+1


 e
−ıkjaj 0

0 eıkjaj

 (2.12)

propagation across another boundary and through a second layer is then ac-

counted for by second matrix. The electric fields on the right and left sides of

a complex layered structure can then be written as the product of a series of such

matrices: E
−
N+1

E+
N+1

 =

 1∏
j=N

Mj



n0+n1

2n1

n0−n1
2n1

n0−n1
2n1

n0+n1
2n1

︸              ︷︷              ︸
Initial Boundary

 E
−
0

E+
0

 =M

 E
−
0

E+
0

 =

 m11 m12

m21 m22


 E
−
0

E+
0


(2.13)

where the total transfer matrix across the entire structure has now been rewritten
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as a matrixM with components m11, m12, m21, and m22, and an additional matrix

to take into account the initial boundary. Assuming there are no fields traveling to

the left after the sample, this reduces to two equations and three unknowns:

0 = m11E
−
0 +m12E

+
0

E+
N+1 = m21E

−
0 +m22E

+
0

(2.14)

After a bit of algebra, this gives the reflection, and transmission:

R =
∣∣∣∣E−0E+

0

∣∣∣∣2 =
∣∣∣∣−m12
m11

∣∣∣∣2
T =

∣∣∣∣E+
N+1
E+

0

∣∣∣∣2 =
∣∣∣∣m22 −

m21m12
m11

∣∣∣∣2
A = 1−R− T

(2.15)

As an example, imagine a continuous wave beam normally incident on an

interface from air (nair = 1) into an infinite slab of glass (nglass = 1.5), with a single

layer anti-reflection (AR) coating on its surface (as described in Sec. 1). In this case,

the transfer matrix must take into account propagation across the interface from

the incident medium into the coating (Air/AR boundary), propagation through

the coating layer (AR layer), and then propagation across another interface into

the substrate (AR/Glass boundary): 0

E+
glass

 =


nglass+n1

2nglass

nglass−n1
2nglass

nglass−n1
2nglass

nglass+n1
2nglass

︸                    ︷︷                    ︸
AR/Glass Boundary

 e
−ıka 0

0 eıka

︸           ︷︷           ︸
AR Layer


n1+nair

2n1

n1−nair
2n1

n1−nair
2n1

n1+nair
2n1

︸                 ︷︷                 ︸
Air/AR Boundary

 E
−
air

E+
air

 (2.16)

Multiplying these matrices and solving for the reflection from the material, one

finds:

R =
(nglassn1 −nairn1)2 cos2(ka) + (n2

1 −nairnglass)2 sin2(ka)

(nglassn1 +nairn1)2 cos2(ka) + (n2
1 +nairnglass)2 sin2(ka)

(2.17)

The cosine terms in this equation reach a maximum when ka = ωnja/c = nπ. At

these wavevectors the sine terms are similarly equal to zero, and the reflection

from the structure is equal to the bare reflection of the glass/air interface (i.e. it

has not changed from the value it would have if no AR coating was present). When

ka = (2n+ 1)π/2, the cosine terms drop to zero, while the sine terms determine the

reflection from the structure. The reflection at this value of k (ω) can be tuned
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by changing the index of refraction of the AR-Coating material (however, large

values can require materials with indices of refraction approaching infinity). For

a particular RGoal value, the index should be equal to:

n1 =

√
nglassnair

1 +R2
Goal

1−R2
Goal

(2.18)

For the simple case of bringing the reflection from the structure near to zero, a

value for n1 = √nairnglass is required. The reflection will oscillate between the

maximum and minimum values gives above, producing an effect known as Fabry

Perot fringing. Shown in Fig. 2.8 is the reflection from an infinite glass slab
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Figure 2.8: Reflection from glass with (solid) and without (dotted) an anti-
reflection coating. The anti-reflection coating has a width is equal to λ/4n1 where
λ = 1.5 eV and n1 (the refractive index of the layer) is 1.225.

with (solid lines) and without (dotted lines) an anti-reflection coating on its surface

of index n1 = √nairnglass = 1.225. At the design energy (≈ 1.5 eV) the reflection

decreases to nearly zero.

2.7 Linear properties of Bragg-spaced quantum wells

To model the linear properties of quantum wells, and specifically BSQWs, the

transfer matrix must take into account changes to the complex index of refraction

due to the quantum well exciton resonance. This involves introducing a resonance
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polarization component, Pres to Maxwell’s Equations.

For the structures used here (and all BSQWs that have been fabricated to

date) low-x InxGa1−xAs/GaAs quantum wells are used. They were chosen for

the increased hh/lh splitting brought about by the strain between the In and

GaAs [41, 42, 43], and because the index contrast between low-x InxGa1−xAs

and GaAs is negligible. In addition, because these are type-I quantum wells, the

exciton resonance is below the fundamental bandgap of the GaAs barrier layers,

and as such, the barriers and GaAs substrate the quantum wells were grown on

are (for the most part) transparent to light at these wavelengths. Because the

wells are thin with respect to the envelope of the field, propagation through

the quantum well can be ignored and instead accounted for entirely by the

polarization introduced by the well. In this case, the transfer matrix of a single

barrier-well unit cell in the system can be rewritten in terms of the susceptibility

of the well (see Appendix A.3):

M =

 e
ıqa(1 + β) e−ıqaβ

eıqaβ e−ıqa(1− β)

 (2.19)

where q = nbω/c is the wave vector of the photon (assumed here to be in the z-

direction), a is the width of a single quantum well/barrier unit (this contains the

Bragg frequency a = cπ/nbωB), and β = ıωχ2D(ω)/2nbc, χ2D(ω) = |φ̃
2D(0)|2℘2

ε0~
1

ω−ωX−ıγ

is the 2D-susceptibility of the exciton. In this expression for the susceptibility,

φ̃2D(~r = 0) is the 2D-exciton wavefunction, where ~r designates the separation

between electrons and hole wave functions, ε0 is the permittivity of free space, ℘ is

the component of the dipole moment of the exciton along ~E, nb is the background

refractive index of the system, and γ is the polarization non-radiative dephasing

rate of the system. Note that this can also be written using a complex, frequency

dependent index of refraction in Eq. 2.11.

As is described in Appendix A and Sec. 2.6, the total transfer matrix for

a complex system can be written in terms of a product of individual transfer
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matrices for each layer in the system. Since all the unit cells in the crystal are

the same (a thick barrier followed by a thin, resonant quantum well layer), they

all share the same transfer matrix for transfer across a layer. As such, for a system

with N identical quantum wells and barriers, the total transfer matrix is: E
+
N

E−N

 =MN


n0+nb

2nb
n0−nb

2nb
n0−nb

2nb
n0+nb

2nb

︸              ︷︷              ︸
Initial Boundary

 E
+
0

E−0

 (2.20)

where n0 represents the index of the incident medium, and nb the index of the

barrier material.

When light is inside the material it can become coupled to the exciton dipoles

inside resulting in a coupled state of the exciton and photon, known as an exciton-

polariton. Solving Eq. 2.19 for eigenvalues (see Appendix B) a polariton dispersion

relation for the material can be written:

cos(ka) = cos(qa) +
Γ

(ω+ ıγ)−ωX

(
ω
ωX

)
sin(qa) (2.21)

where Γ = |φ̃2D(0)|2|℘|2ωX
2ε0nb~c

is the radiative decay rate of the resonance and k is the

polariton wavevector for light traveling inside the structure.

Finding the reflectivity and transmission coefficients requires calculating

MN . This can be done using these eigenvalues and the associated eigenvectors of

the transfer matrix (see Appendix B). An early analysis of this system [44] found

that at Bragg periodicity (ωB =ωX) the reflection could be written in the following

form:

rN (ω) =
−ıN Γ

~(ωX −ω − ı(γ +N Γ ))
(2.22)

where N is the number of quantum wells in the sample. The presence of the

N Γ term here originally led to the conclusion that compared with non-Bragg-

spaced MQWs these materials demonstrated an enhanced decay rate. While this

enhanced decay rate has been observed [45], this description of the reflection

becomes inaccurate when the number of quantum wells is large [46, 47].



24

-10

-5

0

5

10

0.99 0.995 1.0 1.005 1.01
Re(k) ( π/a )E

ne
rg

y 
( 

m
eV

 )
 (

 ħ
[ω

 -
 ω

 ] 
)

x

(a)

-10 -5 0 5 10
0.0

0.5

1.0

R
ef

le
ct

io
n

Energy ( meV ) ( ħ[ω-ω ] )x

(b)

Figure 2.9: Photonic bandstructure of Bragg-spaced quantum wells. (a) Calculated
photonic band structure using Eq. 2.21. Solid blue lines show the band structure
when ωB = ωX and the dotted red lines show the band structure when 1.001ωB =
ωX . (b) A calculation of the reflection from BSQWs when ωB = ωX (blue, solid)
and ωB ,ωX (red, dashed).

The real part of k in Eq. 2.21 is plotted in Fig. 2.9(a) for a range of energies

near the Bragg resonance, and for two detunings of ωB and ωX . Fig. 2.9(b) shows

the reflection from a simulated BSQW structure using similar material properties.

Note, this photonic band structure looks similar to the electronic band structure

talked about earlier in semiconductor materials (Fig. 2.2), except in this case rather

than describing electron energy versus wave vector it describes polariton energy

versus wave vector. For energies far from ωB or ωX , the sine term in the right

hand of Eq. 2.21 is small and the dispersion relation is linear (qa = ka). When

ω ≈ ωB ≈ ωX the second term blows up forcing q to take on imaginary values.

Because there are no states available for polaritons at these wavelengths, they are

not able to exist in the structure. As a result the structure efficiently reflects light

with frequencies in this bandgap.

In contrast to the electronic bandgaps described earlier, a nearly flat interme-

diate band with width ωB−ωx lies halfway between the two band edges. Shown as

the solid, blue lines in Fig. 2.9(a) and Fig. 2.9(b) is the situation when ωB = ωX . In
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this case the intermediate band is flat and pulses with energies resonant with the

band can not propagate through the structure (i.e. pulses at these energies have

zero velocity inside the material). When ωB and ωX are slightly detuned from

one another [red, dashed line in Fig. 2.9(a) and Fig. 2.9(b)] the intermediate band

broadens to cover the area between the two resonances, and appears as a window

in the simulated reflection stopgap.

2.8 History of studying nonlinearities in photonic
crystals

As mentioned, resonant photonic bandgap structures (RPBGs) differ from

non- resonant ones in that the imaginary part of the materials susceptibility is

modulated along with the real part. The presence of an absorption resonance

means excitation of carriers is resonantly enhanced, and can be achieved with

relatively weak electro-magnetic fields. These real or virtual excited carriers can

change the index and absorption of the resonance, and as such alter the photonic

band structure of the material.

Much of the research on nonlinearities in Bragg structures to date has been

focused on inducing nonlinearities in fiber Bragg gratings. They have been used

to demonstrate optical pulse generation from continuous wave beams [48], pulse

compression [49, 50], and slow light [51, 52, 53]. Specifically, there has been

some interest in creating temporal solitons inside photonic bandgap structures.

Solitons in bulk media are formed when nonlinearities generate a dispersion that

exactly counteracts the linear dispersion [54], and provide an interesting medium

for storing and trapping optical pulses [55, 56]. While there has been work

done looking for gap solitons in BSQWs, it is only mentioned here because of its

historical significance.

Many of these experiments in Bragg-fibers have focused on using Kerr

nonlinearities (nonlinearities written generally in the form n = n0 + 2n2|E(ω)|2
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where n0 is the linear index of the material, n2 is the second order change in the

index). The resonances present in fiber Bragg gratings are typically far from the

wavelengths of light propagating through the fibers [57, 49]. Quantum well Bragg

structures provide an interesting alternative, as the proximity of the resonance to

the frequency of the light allows nonlinearities to be excited with lower fluences

per unit length: MW/cm2 in a material that is µm in length as opposed to 10s of

GW/cm2 in fiber gratings that are 10s of cm long [51, 58]. These size and power

advantages make RPBGs appealing for applications such as slowing and switching

optical signals in high speed communications networks.

2.9 Applications of Bragg-spaced quantum wells in
modern communication systems

To see how optical logic devices such as all-optical switches or optical

buffers could be useful, some background on modern communications systems

is necessary. Modern communication networks have come to rely on large optical

transport layers (i.e. optical fibers working in conjunction with the old electronic

network) to send signals from one switching station to another. Optical fibers are

advantageous for this because of their large optical bandwidth (around 1 Terabyte

per second). This amounts to around 1/2 billion telephone calls or 300,000 high

definition television stations being supported by a single fiber simultaneously [59].

Unfortunately because electronic components typically rely on the transport

of electrons they are not able to process data at these rates. Starting with the first

‘web boom’ in the late 1990’s the need for devices capable of fast processing has

risen. Though some solutions have been implemented (i.e. slow optical switching

solutions are in place to route signals, and perform wavelength conversion),

components with the ability to control individual bits at these rates are still not

commercially available [60, 61]. The desired optical logic components include AND,

OR, XOR, NOT, NOR, etc. gates, with the goal being to perform logic on individual bits
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within a signal or header stream.

For instance, to check if two headers match, one would want to cross correlate

two pulse streams and look for matches between the two (stream 1 ≡ stream 2).

Because the time to resend signals that are read incorrectly can pose a major

bottleneck in system performance, it is desirable to have large signal to noise ratios

(low bit error rates) [62], and have them work fast enough to resolve an optical

stream at the same rate that it is encoded (i.e. on picoseconds time scales)1.

Individual bits within a header signal can contain information about the

payload behind it. For instance, it is common in synchronous networks (i.e.

networks where packets arrive at set intervals, and where every packet is encoded

at the same bit rate) to have single bits in the header which describe the payload.

Fast optical switching techniques could be used to read these with single bit

granularity without imposing any slowdown in the network.

Optical buffers capable of storing a train of pulses are also needed. This

can include situations where a signal needs to synchronize with a network,

situations where a header cannot be processed quickly enough, or situations where

a switching fabric cannot be reconfigured fast enough. Optical buffers are used

to store the payload while other processes happen, and then release it when the

system is ready.

Fast optical switches can also be used to help manage different of optical

networks. As an example, imagine a stream of information from some electronic

source. Because most of the signals traveling across communications networks

originate from electronic devices, this signal may be at a fairly low bit rate (100

ps/bit or 1 Gb/sec). An optical switch can be used to temporally filter this signal

down to a set of bits that are temporally shorter for temporal multiplexing. By

1While optical pulses can be created that are much shorter than 1ps, the desire for wavelength
division multiplexing in many optical communication systems limits the spectral bandwidth
available to each signal. As such, time-bandwidth products force pulses to a minimum temporal
width.
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Figure 2.10: Applications of Bragg-spaced quantum wells. (a) An example of using
an optical switch to temporally filter a long signal. (b) Using optical delay lines to
synchronize and time division multiplex several signals.

switching the signal with a series of short control pulses, a cross correlation of

the two is performed, and a copy of the signal stream (with the same bit rate, but

shorter individual bits) can be made (see Fig. 2.10(a)).

A large number of these signals can then be brought together and temporally

multiplexed on a single fiber optic cable, however it is important that no two

pulses travel through the fiber at the same time and wavelength. If a temporal

or wavelength node on a fiber is unavailable when the signal arrives, the network

is said to be “blocked”, and signals often have to be discarded and resent later.

Tunable delay lines allow storing a pulse until the network is available, or to keep

a signal in sync with the network clock (see Fig 2.10(b)).

Similar techniques can be used to demultiplex the signal when it reaches its

destination. In addition other potential applications exist in areas such as optical

header processing [63, 64], avionics [65], and chip-to-chip communications [66,

67]. The desire to find small yet reliable components has grown significantly in

the past 10 years, and will continue to grow as bandwidth demands increase.
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2.10 All-optical switching

The desire for increasing bandwidth has driven interest in ultra-fast all-

optical switches to perform logic with, and modulation of optical signals. All-

optical switching is a general term describing any process whereby the amplitude

of an optical signal pulse is modulated by a second optical control pulse through

the nonlinear optical response of a material [68]. In the off state many optical

switches, a signal pulse is incident on the sample, and the reflected or transmitted

beam is detected. A stronger control pulse induces changes to the reflectivity

(or transmissivity in transmission switches) of the device through nonlinear

absorption or refractive index changes. These changes modulate the intensity of

the signal pulse, and that change is detected as a switching signal (see Fig. 2.11).
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Figure 2.11: Setup of an amplitude optical switching experiment. The pump pulse
(red solid) induces a nonlinearity in the structure, the changes the reflection of a
signal pulse (blue dashed). Those changes are detected as switching signals.

Switch performance can be characterized by several figures of merit includ-

ing:

Contrast ratio (CR) (or modulation ratio), defined by:

CR =
T on

T off or
Ron

Roff (2.23)

where T on/off and Ron/off are the fraction of light transmitted or reflected in

the on and off states of the switch. Frequently contrast ratio is written in
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units of decibels (dB), given by:

CRdB = 10log(CR) (2.24)

Throughput (TP) (or insertion loss) defines the percent of incident light that

reflects from or transmits through the material in its on state. Typically this

is the same as the numerator in contrast ratio expressions (T on and Ron).

Similarly to CR, TP is often expressed in units of dB:

TPdB = 10log(T on) or 10log(Ron) (2.25)

Because contrast ratio is a ratio of on and off-state throughput (Roff and T off),

high contrast ratio switching can be achieved in low throughput devices by

decreasing the switch’s off-state.

Switching time can include both the rate at which the switch turns on (turn-on or

risetime), the rate at which it turns off (turn-off or fall-time). Ideally, turn-on

and turn-off times are limited by the temporal characteristics of the control

pulses used for switching. Material parameters often come into play and

ultimately limit the rate at which a switch can turn on or off.

Recovery time (a.k.a. data transfer rate) is the maximum rate at which the

material can recover from a switching operation, and as such the time

until a second switching event can occur. Again, this would ideally be

infinitely fast. In practice, materials often can not recover at the rate of all-

optical communications systems operate (THz or ps), ultimately limiting the

information throughput of the switch.

Bandwidth is the range of frequencies over which the switch operates. Ideally,

switches will operate over a large bandwidth, because that allows control

both of pulses with different frequencies, as well as pulses that are tempo-

rally short (spectrally broad). However, it is often easiest to generate large

changes in reflection or transmission (and as such large changes in CR and
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TP) in very narrow wavelength regions (i.e. shifting a sharp resonance a

small amount generates a large change in absorption and index over a very

narrow range of wavelengths).

Size generally indicates the width or length of the device. Smaller size devices

generally cost less to produce and provide more convenient methods of

integration than large scale devices.

Switching fluence is the fluence required to switch the signal. Low switching

power is desirable for efficiency, scalability, and cost.

Wavelength of operation includes the general input wavelengths at which the

device operates. For integration into today’s optical communication net-

works this would ideally fall into the 1.53-1.57µm range, with the hope

of extending that to 1.30-1.65µm in the next decade. Most of the devices

discussed in this dissertation are built on GaAs/AlGaAs or GaAs/InGaAs

platforms, and operate near 830nm, although a few MQW switches have

been demonstrated in InGaAs(P)/InGaAsP providing resonances nearer to

communications wavelengths [69, 70].

2.10.1 Amplitude switching

Some of the first examples of optical switching were amplitude switches. An

enormous body of research exists studying different types of amplitude switches

implemented via a variety of techniques. In general though, such switches operate

by modulating the amplitude of the electric field transmitted or reflected from a

material. MQW materials, in particular, are useful for such switches because the

1s-hh exciton resonance allows the excitation of large nonlinearities with fairly

weak control pulses when compared to bulk semiconductor materials.

Many of the earliest examples of optoelectronic amplitude switches using
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MQW materials were based on the quantum-confined Stark effect (QCSE). A MQW

material is placed in an electric field oriented perpendicular to the quantum

well layers. When an exciton is excited in the well layers, the electron and hole

comprising the exciton are pulled apart due to the applied field. However, the

presence of the quantum well walls inhibits the total ionization of the exciton (i.e.

neither electron nor hole has enough energy to escape into the barrier layers), and

as a result the exciton absorption resonance is shifted to lower energies rather than

destroyed entirely. A similar effect known as Wannier-Stark localization can occur

in semiconductor superlattice structures, where electron and hole wavefunctions

can become localized in individual sets of wells due to the imposition of an electric

field [71, 72]. This shift of the absorption resonance in the material can then

be used to construct an amplitude switch. Several examples of these types of

optoelectronic switches have been demonstrated to date [73, 74], with typical

contrast ratios of around 10:1 (10dB), and switching times in the range of 100s of

ps to ns. Faster (≈33ps) switching is attainable by use of narrower barrier widths

in these materials, effectively reducing the RC time constant of the material [75].

All-optical counterparts of these electro-optic switches have also been inves-

tigated, using optically generated carriers to screen the static electric field placed

across the wells [76, 77]. In this case, the turn-on rate for switching is generally

controlled by the rate that carriers can escape the wells and travel time to the

p/n nodes of the device, and in general can take from 1-100 ps. Turn-off time is

enhanced in these materials due to ”giant ambipolar diffusion” (i.e. the spatially

separated electrons and holes experience an enhanced Coulomb repulsion) [78].

Switches of this type have demonstrated contrast ratios of 2:1 and insertion losses

of 2dB, for switching energy of ≈ 0.5µJ/cm2 and over an optical bandwidth of 16

meV [79] .

One alternative method for further improving these switches involves the use
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of asymmetric Fabre-Perot etalon structures. In such structures, a resonant cavity

is created with a resonance placed inside. By tailoring the cavity and resonance,

structures with very low off-state reflectivity can be designed. For example, using

the simple transfer matrix techniques described in Sec. 2.6, a cavity with front

and back reflectors can be modeled. If the reflection from the front Rf and back

Rb reflectors are tailored such that Rf = Rbe
−2αd where α is the absorption of the

cavity material, and d = λASFPj/2n where n is the index of the cavity material,

λASFP is the wavelength of interest and j is an integer denoting the mode index,

the reflection coefficient in the off state of the switch can be set (theoretically) to

exactly zero. If the resonance is shifted somewhat via the QCSE [80] or many-body

interactions [81, 82, 83, 84, 85], only a small amount of light may be reflected

(i.e. low throughput), but the overall contrast ratio of the device (Ron/Roff) may

be infinite. Material parameters have limited this technique, however modulators

with contrast ratios of > 60 : 1 and throughputs of≈ 4.6dB have been demonstrated

over a fairly narrow bandwidth [80].

BSQWs are interesting all-optical switching materials because the high

reflectivity allows the pump to be near to the exciton resonance without experienc-

ing significant absorption, thereby exciting large nonlinearities with fast recovery

times. In addition, at the steep edges of the reflectivity stop band small shifts of

that bandgap can result in large reflectivity changes, which in turn result in large

contrast ratios for the switch. In BSQWs the first examples of all-optical amplitude

switches were shown by Prineas et. al. in 2002 [86].

2.10.2 Polarization switching

Polarization switches operate by changing the overall polarization state

of a pulse, rather than its amplitude. Such switches have previously been

demonstrated in semiconductor materials based on uniaxial strain of quantum
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well samples [87], quantum well etalons [88], and the photo-refractive effect [89].

The devices are constructed in the same manner as an amplitude switch, except the

sample is placed between a crossed polarizer-analyzer pair (see Fig. 2.12). When

no control pulse is present the signal pulse reflects from or transmits through the

material and is blocked by the analyzer, so no signal is detected. When a control

pulse is present, it interacts with the signal inside the material, and the transmitted

(or reflected) signal’s polarization state is changed. This allows some of it to pass

the analyzer and be detected as the on-state for the switch.

Detector

Pump

Probe

B
S
Q
W

Analyzer

Polarizer

Figure 2.12: Setup of an all-optical polarization switching experiment. The
circularly polarized pump pulse (red, solid) induces a nonlinearity in the structure
for one circular polarization, creating a circular-dichroism and/or circular-
birefringence. These cause the linearly polarized probe pulse’s (blue, dashed)
polarization to be rotated, and the changes are detected as switching signals.

The contrast ratio of such a switch can be written in terms of the properties

of the polarization optics, and the response of the material. To begin, we consider

a signal pulse of the form:

~E(z, t) = ~Eeı(kz−ωt) + c.c. (2.26)

where k is the wavevector of the pulse, ω its frequency, and ~E the field amplitude.

For a general elliptically polarized pulse, this field amplitude can be written in the

form [90]:

~E(ω) =A

 cos(θsig(ω))cos(ε(ω))− ısin(θsig(ω))sin(ε(ω))

sin(θsig(ω))cos(ε(ω))− ıcos(θsig(ω))sin(ε(ω))


T  x̂ŷ

 (2.27)
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where A is defined in terms of the half-lengths of the major (a) and minor (b) axis

of a polarization ellipse (A =
√
a2 + b2), T represents the transpose of a matrix

or vector, θsig(ω) represents the fields orientation, and ε(ω) its ellipticity. In

general, ultrafast pulses can have spectral widths over which θsig and ε can vary

dramatically, and as such the orientation and ellipticity have been written as a

function of ω, and the orientation and ellipticity of each individual wavelength

kept track of as they propagate through the switch.

In this coordinate system, the Jones matrices for a polarizer aligned along the

y-axis can be written in the form:

J
y
pol =

 η 0

0 1

 (2.28)

where η represents the extinction ratio of the polarizer. When the transmitted

(or reflected) field from the switch passes through the analyzer, the resulting field

(~ET(ω)) has a form:

~ET(z, t) = Jpol~E(z, t) (2.29)

and the reflected/transmitted intensity:

IT(ω) ∝ |~ET(ω)|2 = |A|2 t
2

(1− η)
[
1− cos(2θsig(ω))cos(2ε(ω))

]
+ ηt|A|2 (2.30)

where t (although r could be used for a reflection geometry) is a real constant

modifying the amplitude of the transmitted (reflected) field. Assuming the

incident field is perfectly linearly polarized (θsig ≈ ε ≈ 0, and normalizing out

the incident field strength, |A|2, we find the throughput:

TPon
T (ω) =

[1
2

(1− η)
(
1− cos(2θsig(ω))cos(2ε(ω))

)
+ η

]
ton (2.31)

where the on/off superscripts denote the on/off state of the switch. The contrast

ratio can also be written:

CRT(ω) =
TPon

T (ω)

TPoff
T (ω)

(2.32)

If, in the off-state of the switch, no polarization state changes occur(εoff = θoff
sig =

0, the off-state throughput reduces to TPoff
T = toff η, and the contrast ratio can be
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written by definition as:

CRT(t) =
[

1
2η

(1− η)
(
1− cos(2θsig(ω))cos(2ε(ω))

)
+ 1

]
ton

toff (2.33)

High quality polarizers commercially available today can block nearly 100%

of off-axis light passing through them, allowing the off state of such switches to be

extremely low. As an example, if amplitude modulations in the material are small

(i.e. Ton

Toff ≈ 1), and only a small modulation of the pulse orientation occurs (i.e.

θon
sig ≈ 6◦ and εon = 0), a polarizer with an extinction ratio η ≈ 10−5 can achieve a

contrast ratio of over 1000:1. The caveat is that system throughput is typically very

small. In this example, sample absorption has been ignored and the throughput is

still a relatively weak ≈ 1%.

MQW all-optical polarization switches typically operate with control and

signal pulses tuned near the exciton resonance or above the fundamental band-

edge. This allows the switch to utilize the nonlinearities associated with carrier

generation in these structures. These ”resonant polarization switches” have

been previously demonstrated in a number of materials. For example, the

photorefractive effect has been used to generate energy transfer from a pump

beam into a probe beam [89]. Exciting the sample with multiple pulses results

in the formation of index gratings in the material. Light incident on this grating is

scattered into new directions. The crossed analyzer after the sample blocks much

of the light transmitted in the switches off state, and as such large contrast ratios

have been recorded (< 10,000 : 1). However, the gratings produced live for a long

time in the structure, resulting in slow turn off times (100s of ps) and slow recovery

of the sample.

Anisotropic materials have also been used to demonstrate polarization

switching. In these materials, a difference in absorption and index occurs naturally

for x- and y-polarized light, given by αx/y . A control pulse can excite changes in

these absorption coefficients such that αon
x/y = αoff

x/y +∆αx/y , and the resulting signal
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pulses experience a change in their orientation (θsig). Since III-V semiconductor

MQW materials grown in the [001] direction do not posses an intrinsic in-

plane anisotropy, demonstrations of polarization switching in these materials have

typically relied on uniaxial strain to induce an anisotropy [87] or unconventional

growth and excitation conditions [91]. Both bleaching of the absorption resonance

due to many-body effects, and shifts of the resonance due to the QCSE have been

used to demonstrate all-optical polarization switches in these types of materials.

Resonant spin switches operate by generating an anisotropy in a material

via the injection of spin-polarized populations of carriers. The introduction of

a spin-polarized population induces a circular dichroism and birefringence in

the material (i.e., a difference in absorption coefficient and index of refraction,

respectively, for right and left circularly polarized light). In III-V semiconductor

quantum wells (and hence BSQWs) this dichroism/birefringence can be induced

via the circular selection rules for the hh-exciton mentioned earlier (Sec. 2.3) [92].

A pump excites nonlinearities in the spin-up system but not the spin-down system,

causing the right and left circular components of a linearly polarized signal pulse

be reflected differently. This circular anisotropy changes the polarization state of

a linearly polarized signal pulse. The change in the signal polarization is subse-

quently converted to a modulation of the signal amplitude by using additional

polarization sensitive elements. The circular dichroism and birefringence induced

by the control pulse will persist as long as the spin-polarized carrier population is

present.

All-optical polarization switches that make use of spin-polarized carriers

in semiconductor multiple quantum wells have demonstrated high contrast (i.e.,

large on-off ratios) [88, 69, 70, 84, 93] and have the potential for high-speed

performance. [84, 94]. In ultrafast resonant spin polarization switching using

MQW structures, switch turn off time is limited by the spin-relaxation time of the
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sample, and switch recovery time by the time it takes for carriers to recombine or

be swept out. For resonant excitation, the carrier lifetime is often longer than the

spin relaxation time. Even though the turn-off time of the switch is determined by

the carrier spin relaxation time, the sample will not fully recover until the carriers

recombine or are swept out of the active region. Thus, the repetition rate of the

device can ultimately be limited by carrier accumulation.

More recently, polarization switches have been reported [95, 94, 96] in which

nonlinearities are excited by non-resonant excitation of a material. These carriers

exist only while the pump is present, resulting in an enhanced turn-on, turn-off,

and recovery times of the material. This comes at the cost of large pump energies

required to excite nonlinearities with below resonance excitation.

In MQW samples, spin-polarized populations of virtual carriers can also

be created by tuning the a circularly polarized control below resonance. In

the absence of any real carrier generation or dephasing (i.e. collisions between

carriers which remove their coherence with the applied field), the virtual carrier

population follows the control pulse envelope, and both switching and recovery

times are control pulse width limited. Non-resonance MQW switches utilizing

bleaching [97], the QCSE [98], and coherent-many-body effects [94] have demon-

strated contrast ratios of≈ 300 : 1 (≈ 25dB) and switching times of≈ 350 fs (control

pulse width limited) over bandwidths near ≈ 1 THz (≈ 5 meV); however, these

results still required large switching energies ≈ 350 MW/cm2, and demonstrated

large insertion losses ≈ 21 dB corresponding to a throughput (i.e., transmission in

the on state) of ≈ 1%.
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CHAPTER 3
RESEARCH

This research shall describe the unique linear and nonlinear optical proper-

ties of BSQWs [86], along with applications of those nonlinearities in an all-optical

polarization switch [1, 3] and as a medium for slow light [2, 38, 99, 4]. In addition,

the underlying nonlinear processes in BSQW are looked at, and the underlying

physical mechanisms responsible for these nonlinearities examined.

The switches take advantage of the properties of a BSQW structure that is

grown such that its fundamental Bragg frequency ωB (ωB = πc/nBωB, where nB is

the background index and ωB the spacing of the quantum wells) is approximately

equal to the heavy hole (hh) exciton frequencyωx of the quantum well. When these

two frequencies are approximately equal, the photonic bandstructure includes

a forbidden gap (and an associated reflection stopgap) with both resonance

frequencies located within the gap [2, 38, 99]. Incident frequencies within

this stopgap are efficiently reflected by the sample. Such BSQWs have been

shown [86, 1] to exhibit large optical nonlinearities and sub-ps recovery times

at 10K when a spectrally narrow control (or pump) pulse is tuned within the

forbidden gap.

3.1 All-optical polarization switching in Bragg-spaced
quantum wells1

As was mentioned in Sec. 2.10.2, spin-based polarization switches using

circular, optically-induced anisotropies in semiconductor multiple quantum wells

have been previously shown to exhibit large contrast ratios, usually at the expense

of throughput [94, 93, 100, 101]. Here a polarization switch is demonstrated

that exhibits a dramatically improved throughput (≈ 40% or 3dB), an increased

contrast ratio (≈ 10,000 : 1 or ≈ 40 dB), and a reduced switching energy (≈ 14

1Much of this section is reproduced with permission from Ref. [95] and Ref. [96].
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Figure 3.1: All-optical switching in Bragg-spaced quantum wells. (a) Setup for
switching experiments with the probe pulse spectrally resolved after the switching
material. (b) Contrast ratio (solid circles) as a function of control-signal delay (τ)
for a 14 µJ/cm2, 1 ps control pulse, and a 650 fs signal pulse spectrally positioned
as shown in Fig 3.2. The temporally resolved control pulse (solid line) is shown for
comparison.

Reproduced with permission from Ref. [1].

µJ/cm2), while maintaining ≈ 1 ps switching time and exhibiting no apparent

carrier accumulation.

This switch takes advantage of the properties of a BSQW structure grown via

an MBE process similar to the once described in Sec. 2.5. Previous investigations of

the same sample have shown large optical nonlinearities and sub-ps recovery times

when a spectrally narrow control pulse is tuned within the forbidden gap [86, 102].

Here, we use these properties to construct polarization switch that is based on the

spin-dependent selection rules for the BSQW photonic band gap.

3.1.1 10K All-optical polarization switch

The sample consists of 200 periods of 8.5 nm wide In.04Ga.96As quantum

wells separated by GaAs barriers such that the period, a, is equal to one-half the

excitonic wavelength in the material (a = c/ωxnb, where nb is the background

index of GaAs at ωx). The switch is constructed by placing the sample between
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crossed polarizers in a reflection geometry (see Fig. 3.1(a)). A 14 µJ/cm2, spectrally

narrowed [1 ps, 1.3 meV full width at half maximum (FWHM)] circularly

polarized control pulse, and (for these initial low-temperature measurements) a

spectrally broadband (650 fs, 2.5 meV, FWHM) linearly polarized signal pulse are

both generated by external shaping of 80 fs pulses from a mode-locked Ti:Sapphire

laser and are tuned near the low-energy edge of the reflectivity stop band of the

BSQW, as indicated in Fig. 3.2. The sample was mounted in a cryostat that was

cooled to 10 K.

The contrast ratio of the switch as a function of time delay (τ) between the

signal and control is shown in Fig. 3.1(b). The time-resolved control pulse is shown

for comparison. A maximum contrast ratio of ≈ 11100 : 1 (40.4 dB), a throughput

of ≈ 40% (3 dB), and a control-pulse-width-limited switching time (≈ 1 ps) are

observed.
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Figure 3.2: The reflectivity stop band of the 200 period BSQW when excited by
a right circularly polarized σ+, 14 µJ/cm2, 1 ps control pulse (spectrum of the
control pulse indicated by the shaded dark gray area) as measured by a broadband
signal pulse (21 meV, spectrally centered at the position of the arrow) having
the same circular polarization, σ+, (solid red line) and the opposite circular
polarization, σ−, (dashed blue line). The measured reflectivity stop bands without
the control for both σ+ and σ− polarizations are indicated by the light gray shaded
area.

Reproduced with permission from Ref. [1]
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The basic switch operation can be understood in terms of a circular dichroism

and birefringence that is induced in the BSQW sample by the circularly polarized

control pulse as illustrated in Fig. 3.2. For these measurements, the analyzer

shown in Fig. 3.1(b) is removed, and the polarizer replaced by the quarter wave

plate. The change in the reflection stop band that is induced by the right

circularly polarized (σ+) control pulse is spectrally resolved after the switch using

a broadband probe pulse that has either the same (σ+) or opposite (σ−) circular

polarization. As 0ps signal-control delay (τ = 0), the change in reflectivity over the

spectral range of the signal pulse (centered on the arrow in Fig. 3.2) is clearly much

larger for a σ+ polarized pulse than for a σ− polarized pulse. Consequently, the

σ+ component of the linearly polarized signal pulse used in Fig. 3.1(b) is reflected

with a different amplitude and phase than the σ− component. As a result, the

polarization state of the reflected light changes (i.e. the orientation and ellipticity

of the pulse may change as was shown in Sec. 2.10.2), and some of it is transmitted

by the polarizer (i.e., the switch is turned on).

The origin of the circular dichroism and birefringence in the reflectivity of

the stop band illustrated in Fig. 3.2 can be understood heuristically in terms of the

circular selection rules for the 1s-hh excitonic transition in III-V semiconductor

quantum wells, as described in Sec. 2.3. Right (left) circularly polarized light

σ+(σ−) couples to the “spin-down” (“spin-up”) transition. When the frequency

spectrum is restricted sufficiently close to the hh resonance, transitions to other

excited states can be ignored.

The photonic band structure in BSQW (and, therefore, the reflectivity stop

band) can be attributed to the periodically spaced hh excitonic resonances. As

such, the band structures for the two circular polarization components (σ±) are

effectively decoupled (in the absence of many-body effects), and in this regime,

the σ− polarized control pulse would be expected to couple to (and to distort) the
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spin-down stop band, but not the spin-up band. This simplified description seems

to work well for excitation frequencies below the hh resonance; however, for the

frequencies above ωx, the data shows coupling between the two bands.
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Figure 3.3: The differential reflectivity for control and signal pulses with same (a)
and opposite (b) circular polarizations, for signal-control time delays of τ = 0 ps
(solid, black squares), τ = +10 ps (solid, red line), and τ = −10 ps, (dashed, blue
line). All energies are plotted relative to the hh exciton resonance, Ex = 1.4994 eV.

Reproduced with permission from Ref. [1]

The complete recovery of the reflectivity stop band (and, therefore, of the

switch) is illustrated by the differential reflection spectra at τ = ±10 ps in Fig. 3.3.

The differential reflectivity for both σ+ and σ− is zero for both τ = ±10 ps,

indicating the complete recovery of the reflectivity stop band on these timescales.

It is tempting to reach this conclusion from an inspection of the pulse-width-

limited switching speed shown in Fig. 3.1(b); however, the complete recovery

of the contrast ratio does not necessarily imply complete recovery of the stop

band. For example, the decay of the induced circular birefringence and dichroism

adiabatically could follow the control pulse, but leave identical, but significant,

reflectivity changes for both σ+ and σ− induced by real carriers induced by either

virtual carriers scattered into real states through exciton-phonon processes or real

carriers generated through two photon processes. Such a scenario would result in

a pulse-width-limited switching time, but a persistent reflectivity change for each
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circular polarization. The data in Fig. 3.3 demonstrate that this is not the case.
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Figure 3.4: Spectrally resolved contrast ratio (solid blue line) and throughput
(dashed red line) for the 14 µJ/cm2 1 ps control pulse used in Fig. 3.1(b) and 3.3
and shown in Fig. 3.2 at τ = 0ps. Spectra were taken using the experimental
geometry shown in the inset to Fig. 3.1(b)(inset) and a spectrally broad signal pulse
(21 meV). The linear reflectivity stop band is shown for reference (shaded area).

Reproduced with permission from Ref. [1]

Finally, an optical bandwidth of ≈ 2.5 meV (FWHM of the throughput) is

measured for the switch shown in Fig. 3.4 by spectrally resolving the contrast ratio

and throughput using a spectrally broad (21 meV) signal pulse.

3.1.2 80K All-optical polarization switch

While all-optical switching performance in BSQWs at 10K is impressive,

technological applications are ultimately limited by its low temperature opera-

tion. Ideally this temperature would be raised to room temperature operation.

However, absorption in the substrate materials used for these BSQWs at room
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temperature makes such experiments difficult. As such, these experiments have

been performed to investigate changes to switch performance that occur when

raising the BSQW sample temperature from 0K to 80K.

0.0

0.5

1.0

Energy (eV)

R
/T

/A

Figure 3.5: Simulated reflection (black), absorption (blue), and transmission (red)
from a BSQW with two different exciton dephasing rates (0.1 meV solid, 0.5 meV
dashed) (see Ref. [2])).

Reproduced with permission from Ref. [3]

Raising the temperature of the structure from 10 K [1]) to 80 K should result

in increased dephasing due to exciton-phonon interactions, which will round the

photonic bandgap and increases the absorption near its edges (compare solid

to dashed lines in Figs. 3.5). [34] This behavior is a consequence of increased

homogeneous broadening of the underlying exciton resonance with increased

temperature, extending the exciton absorption tail outside the photonic bandgap.

Here, polarization switching is demonstrated using the same 200-period

In0.04Ga0.96As/GaAs sample used to display switching at 10 K, [1] this time

cooled to 80 K in a closed cycle cryostat. In addition, whereas the previous

switching measurements used broadband signal pulses spectrally resolved after

the sample, in these experiments the signal pulse is spectrally shaped to ≈ 1ps

bandwidth before the sample (see Fig. 3.6(a)), and an integrating detector was

used to determine the contrast ratio and throughput after the sample. This
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Figure 3.6: Setup for all-optical switching in Bragg-spaced quantum wells at 80K.
(a) Linear reflection (light gray shading) of the reflection stopgap. Dark gray
shading shows the spectral position of the control used for high temperature
switching measurements. Spectral shape of the signal is shown by the blue dashed
line. Inset shows the temporally resolved signal (blue dashed line) and control
(dark gray shaded) pulses with an 80 fs gating pulse. (b) Experimental setup for
high temperature switching.

Reproduced with permission from Ref. [3]
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should produce results that simulate more accurately the actual environment of

a switching device.

The control [8 µJ/cm2, 1.3 meV, 1.2 ps (full-width at half maximum,

FWHM)] and signal [15 nJ/cm2, 2.3 meV, 1.2 ps (FWHM)] pulses are obtained

by splitting and separately shaping pulses [80 fs (FWHM)] from a mode-locked

Ti:Sapphire laser (see Fig 3.6(a)). The two pulses are spatially overlapped on the

sample’s surface and a controllable time delay (τ) is introduced between them (see

Fig.3.6(b)).

Prior to investigating the switch performance, the spectral position of the

control pulse is optimized by measuring the distortion of the reflection stopgap

as a pump pulse is tuned across the band, as shown in Fig. 3.7. For these

measurements, an unshaped, broadband probe pulse [88 nJ/cm2, 27 meV, 80

fs (FWHM)] with the same circular polarization (σ+) as the pump is spectrally

resolved after the sample to investigate changes seen in the reflection direction (i.e.

the pulse shaper, polarizer, and analyzer in Fig. 3.6(b) were removed). The results

for selected pump-probe delays (τ = −10,0,+10 ps) are shown in Fig. 3.7. The

distortions of the bandgap (i.e., the nonlinearities) are smallest when the control

is tuned below the stop band, and become larger as it is tuned higher in the band.

However, as the control is moved to higher energies, the sample recovery becomes

slower and/or less complete (as shown by comparison of the reflection at ±10

ps). Consequently, Fig. 3.7 suggests that contrast ratio can be traded for sample

recovery, and vice versa. In addition, control pulses placed further within the

bandgap, but not above it, seem to produce smaller nonlinearities. This is mostly

likely due to high reflectivity of the structure reducing the coupling of the pump

pulse into the structure. For the switching measurements, we choose the pump

position as shown in Fig. 3.7(c). This detuning produces a large distortion of the

stop band, but also allows a high degree of sample recovery.
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Figure 3.7: Reflection of a broadband, σ+ polarized probe pulse (27 meV, 80 fs)
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Reproduced with permission from Ref. [3]
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Figure 3.8: Performance of all-optical switching in Bragg-spaced quantum wells
at 80K. (a) Maximum recorded contrast ratio (solid circles) and throughput (red
squares) as a function of center signal frequency. Linear reflection from the BSQW
is shown in light shading. (b) Measured contrast ratio vs. control-signal time delay
(blue, solid) and control fluence (c) at the spectral position showing maximum
contrast ratio in (a). The dotted line in (b) indicates a contrast ratio of 1 (switch
off). Control-signal cross correlation is shown in (b) for reference (black, dashed).
Inset in (b) shows the contrast ratio plotted on a logarithmic scale. (c) also lists the
corresponding throughput for each control fluence.

Reproduced with permission from Ref. [3].

The switch performance is summarized in Fig. 3.8. Figure 3.8(a) shows

the contrast ratio and throughput of the switch as the signal pulse is spectrally

stepped across the low energy edge of the bandgap. A maximum contrast ratio

of 2200 : 1 (33 dB) is measured, with a corresponding throughput of ≈ 4%, and

an optical bandwidth of 0.6 THz. As shown in Fig. 3.8(b), the switch signal

closely follows the signal-control cross correlation, indicating a control-pulse-

width-limited response; however, a small residual circular anisotropy remains

after the control pulse exits the sample, as shown in the inset. The fluence

dependence of the contrast ratio and throughput are plotted in Fig. 3.8(c). No

saturation is observed, and the quadratic increase in throughput and contrast ratio

with increasing control fluence is consistent with the quadratic dependency one

expects for a χ(3) response.

To investigate the recovery of the switch, the analyzer and polarizer in
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Figure 3.9: Differential reflection vs. pump-probe time delay for the spectrally
narrow probe pulse shown in Fig. 3.7. Probe with the opposite (same) circular
polarization as the pump is shown in part (a) (part (b)).

Reproduced with permission from Ref. [3]

Fig. 3.2 are removed, and time-resolved differential reflection measurements are

performed using probe pulses with the same (σ+) and opposite (σ−) circular

polarizations as the pump pulse (σ+). The spectral characteristics of the pump and

probe (bandwidth and central frequency) are the same as used for peak switching

in Fig. 3.8. The results are shown in Fig. 3.9. As expected, during the pump pulse,

the reflection changes induced in the spin-down band (which are interrogated by

σ+) are much larger than those induced in the spin-up band (interrogated by

σ−). At positive delays, the sample recovers substantially, but not completely,

due to residual carriers that remain. While residual carriers have lost interband

coherence, they typically retain spin coherence for tens of picoseconds in these

materials [103]. As a result, a small circular anisotropy also persists which results

in incomplete switch turn off[93], as we also observe in the inset to Fig. 3.8(b).

Summarizing, we have constructed a spin-based polarization switch from a

degenerate BSQW structure in which the Bragg resonance is approximately equal

to the excitonic resonance, and investigated two temperature regimes. At 10K the

switch demonstrates a high contrast ratio (40 dB or higher), pulse width-limited
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switching times (into the ps regime) and complete pulse width-limited sample

recovery, while dramatically increasing throughput (from 1% to 40% in one case,

to 7.5% in the other), significantly reducing switching energies (from 100 µJ/cm2

to 14 µJ/cm2) over previous switching materials.

At 80K, switch performance is decreased [1], but still exhibits the same large

optical bandwidth, large contrast ratio, modest throughput, and fast switching

times with relatively low control fluences. The contrast ratio shows no indication

of having saturated. Control intensity could be raised to further improve the

contrast ratio and throughput, but at the cost of increased carrier generation. In

addition, complete recovery of the sample is possible at 80K if the control is moved

below the band edge, although with decreased contrast ratio and throughput.

Ideally this temperature would be raised to room temperature operation.

While both of these demonstrations point the way towards a room tempera-

ture switch, the degradation in performance seen at 80K will likely be more

pronounced. Additional issues with creating room temperature structures are

discussed in Sec. 4.2.

3.2 Slow light and optical buffers using Bragg-spaced
quantum wells2

Materials engineered to have small, tunable group velocities (vg = ∂ω
∂k =

c
ngroup

, ngroup = n + ω0
∂n
∂ω ) are attractive for applications that require pulses or

pulse packets to be spatially compressed and stored for a continuously variable

time (e.g., optical buffers). In this section, passive tuning of slow light is

demonstrated in In0.025Ga0.975As/GaAs BSQWs. BSQWs are attractive for slow

light applications because they can be fabricated from technologically important

semiconductor materials [34], making them compact and potentially integrable

with optoelectronic systems. In addition, schemes have been proposed for

2Much of this section is reproduced with permission from Ref. [99].
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stopping, storing and releasing light pulses using BSQWs [38, 2].

As was previously discussed in Sec. 2.7, the presence of two characteristic

frequencies that are approximately equal to one another in BSQWs breaks the

photonic bandstructure into three bands, as illustrated in Fig. 3.10. The photonic

band structure (shown in Fig. 2.9(a) and in Fig. 3.10(b)) was previously shown to

have the analytic form (Eq. 3.1 [38]):

cos(ka) = cos(qa) +
Γ

(ω+ ıγ)−ωX

(
ω
ωX

)
sin(qa) (3.1)

where Γ = |φ̃(0)|2|℘|2ωX
2ε0nb~c

is the radiative decay rate of the transition, φ̃(~r = 0) is

the exciton wavefunction, with electron and hole separation given by ~r, ℘ the

dipole moment, nb the background index of the BSQW material, ω (k) is the

polariton angular frequency (wavevector), q = nbω/c is the wave vector of the

photon (assumed here to be in the z-direction), and γ the dephasing decay

rate. The simulation in Fig. 3.10 uses material parameters appropriate for an

In0.025Ga0.975As/GaAs BSQW [34]: ~ωB = 1.491 eV, ~ωx = 1.494 eV, Γ = 30µeV,

γ = 0.15 meV, and nb = 3.61.

The width of the intermediate band (IB), ∆ωIB, and the vg associated with

it are each proportional to the relative detuning |ωB − ωx| [2, 38]. Thus, the

speed of light in a BSQW can be varied and controlled either by engineering the

photonic bandstructure (e.g., controlling the well width or spacing during growth)

to produce a given |ωB − ωx| or by shifting ωB and/or ωx externally following

growth.

Expanding Eq. 3.1 forωB ≈ωx, an expression forω(k) and the group velocity,

vg , can be written [4]:

ω −ωB =
1 + cos(ka)

1 + cos(ka) +πΓ /ωX
[ωx − ıγ −ωB] (3.2)

vg =
∂ω
∂k

=
∣∣∣∣∣ πΓωX sin(ka)
(1 + cos(ka) +πΓ /ωX)2 (ωx −ωB)a

∣∣∣∣∣ (3.3)

In addition, using values of k = 0 and π in Eq. 3.2, one finds the width of the
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Figure 3.10: Simulations of slow light in Bragg-spaced quantum wells.
(a) Simulated bandstructure of a detuned (∆ω = ωB − ωx = −3.0 meV),
Bragg-spaced quantum well structure with unit cell parameters chosen to
match those of In0.025Ga0.975As/GaAs quantum wells: ωB = 1.491 eV, ωx =
1.494 eV, Γ = 30µ eV the radiative damping rate, γ = 0.15 meV the
dephasing rate, and nb = 3.61. (b) Simulated group velocity of a Bragg-
spaced quantum well structure at two detunings, ∆ω = ωB − ωx = −3.0
meV (red, solid) and ∆ω = −1.25 meV (blue, dashed). By varying the
detuning ∆ω, the group velocity of the pulse is continuously tunable (inset).

Reproduced with permission from Ref. [4].
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intermediate band:

∆ωIB =
2

2 +πΓωX
(ωx − ıγ −ωB) (3.4)

In the limit of small ℘ and γ then, this reduces to ∆ωIB = |ωB − ωx|, and

vg ∝ ∆ωIB. Figure 3.10 shows vg as a function of photon energy for two ∆ωIB: −3.0

meV (corresponding to the IB in Fig. 3.10) and −1.25 meV. The inset shows the

variation of the maximum vg versus ∆ωIB.

Clearly, the group velocity can be made arbitrarily small by narrowing the

IB. In fact, when ∆ωIB = 0 and γ = 0, the IB is flat, vg = 0 and no propagation

is allowed. Of course, if the IB is narrowed to a bandwidth less than that of the

incident pulse, spectral narrowing (temporal broadening) of the transmitted pulse

will occur. The time delay τdelay that is possible without spectrally narrowing the

input pulse can be readily estimated using the approximate expression given for

the maximum vg in Ref. [38]:

τbit ≡ τdelay/δt �
8N
9

√
3Γ

2πωx
(3.5)

whereN is the number of quantum wells in the BSQW and where we have assumed

that the full width half maximum (FWHM) temporal width δt of the input pulse

is inversely proportional to the intermediate bandwidth (1/∆ωIB = δt/2π). The

bit delay depends only on the oscillator strength and number of wells. Using

parameters appropriate for GaAs (Γ /ωX ≈ 2 × 10−5) and the number of wells in

the samples described below (N = 210), one would expect τbit = 0.6.

To illustrate slowing of light in BSQWs, we use an N = 210 In0.025Ga0.975As/

GaAs BSQW grown by MBE. The layer thicknesses were systematically wedged by

not spinning the sample during growth as described in Sec. 2.5.

Figures 3.11(a) and 3.11(b) show, respectively, the simulated and measured

reflection (R), transmission (T ), and absorption (A = 1 − R − T ) of the BSQW

for a detuning ∆ω = −3.3 meV. Experimentally, detuning is determined by

mapping layer thicknesses, measured directly by x-ray diffraction, as a function
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Figure 3.11: Spectrally resolved slow light in Bragg-spaced quantum
wells. (a) Simulated reflection (black, solid) from, transmission (red,
dashed) through, and absorption (blue, dotted) by an N = 210 Bragg-
spaced In0.025Ga0.975As/GaAs quantum well structure. (b) Low temperature
measurements (10K) on the corresponding experimental structure. (c)
Measured relative delay (black, square) and pulse broadening (blue, triangle)
of a 0.67 meV (3.5 ps) pulse, shown for reference in black/gray fill.

Reproduced with permission from Ref. [4].
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of position on the sample surface, and confirmed with numerical simulations

of the spectra. Measurements are performed with the sample mounted in a

cryostat cooled to 10K . Simulations are performed using a transfer matrix method.

Good quantitative agreement can be seen between simulations in Fig. 3.11(a)

and experiment in Fig. 3.11(b). Deviations can be explained by disorder in the

quantum well periodicity [4].

Both experiment (Fig. 3.11(b)) and simulation (Fig. 3.11(a)) show an≈ 8 meV-

wide high reflectivity stop band associated with the forbidden photonic bandgap.

The IB is visible in the middle of the stop band and has a bandwidth approximately

equal to the detuning ∆ω = −3.3 meV. However, the reflectivity (transmission)

decrease (increase) is small, and oscillations in the reflectivity appear within the

IB. These non-ideal features are caused by Fresnel reflections at the front surface

associated with the effective index of the BSQWs, resulting in poor coupling

efficiency of the light into the IB and an incomplete reduction in the reflectivity,

rather than a well-defined allowed transmission window. In addition, Fresnel

reflections at the air/BSQW and BSQW/substrate interfaces lead to Fabry-Perot

fringing, and account for the reflectivity oscillations seen within the IB.

The group velocity and group velocity dispersion of pulses propagating

through the BSQW shown in Figs. 3.11(a) and 3.11(b) are investigated by mea-

suring the delay and broadening of a weak (88 nJ/cm2) 3.5 ps pulse transmitted

through the sample. The incident pulses are obtained by using a pulse shaper

to spectrally narrow (to 0.67 meV) pulses from a mode locked Ti:Sapphire laser,

and attenuating the pulse intensity to ensure linear transmission through the

material. The time delay and width of each transmitted pulse are measured by

cross correlating the transmitted pulse with an 80 fs reference pulse using second

harmonic generation in a β-barium borate (BBO) crystal. This measurement is

repeated as the frequency is tuned across the entire photonic band structure.
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Figure 3.12: Measured temporally-resolved 0.67 meV, 3.5 ps pulses transmitted
through the experimental structure of Fig. 3.11. Pulses were centered on photon
energies E − Ex = −0.79 meV, −1.08 meV, −2.26 meV, −11.51 meV for the blue
dash-dot line, the dark yellow dotted line, the red dashed line, and the black
solid line, respectively. Delays are relative to the transmitted pulse at −11.51 meV.

Reproduced with permission from Ref. [4].

The relative delay (compared to the delay of a pulse with center frequency

below the reflectivity stop band) and broadening of each transmitted pulse are

shown in Fig. 3.11(c). Near the low energy edge of the IB, time delays dramatically

and continuously increase to≈ 0.4 bits (1 bit=3.5 ps), corresponding to vg ≈ 0.067c,

with little pulse broadening and ≈ 10% transmission. In this regime, the pulse

delay can be continuously tuned either by tuning the wavelength of the incident

pulse or actively shifting the position or width of the IB (not shown). From

measurements in this region, we estimate the pulse time delay-bandwidth product

to be ≈ 0.2. This time delay-bandwidth product compares favorably with slow

light reports in semiconductors based on other mechanisms such as coherent

population oscillations (≈ 0.04) [104, 105].

As the pulse is tuned closer to the excitonic resonance, the group velocity is

further reduced, the transmission goes to zero, and the pulse broadening sharply
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Figure 3.13: Simulation of a Bragg-spaced quantum well sample identical to
Fig. 3.11 except with antireflection coatings on the front and exit interfaces
designed for (a) ∆ω = −3.3 meV and (b) ∆ω = 22 meV, including reflection
(black, solid), transmission (red, dashed), and absorption (blue, dotted). (c)
Measured reflection, transmission, and absorption of an experimental sample
with target structure of (a), but actual structure closer to (b). The
percentage error in antireflection coating layer thicknesses equals 1.5%. (d)
Measured relative delay (black, square) and pulse broadening (blue, triangle)
of a 0.67 meV (3.5 ps) pulse, shown for reference in black/gray fill.

Reproduced with permission from Ref. [4].

increases. A maximum 0.7 bit delay, corresponding to a group velocity ≈ 0.038c,

is observed in the region near the upper edge of the IB band, but the pulse is

broadened by ≈ 0.5 bit. The continuous tuning of the delay near the band edge and

the onset of broadening as the excitonic resonance is approached are illustrated in

Fig. 3.12, which shows selected temporally-resolved transmitted pulses centered

at different photon energies in the IB.

The less than ideal performance of the BSQW used for the measurements

shown in Fig. 3.11(b) can be attributed to the Fresnel reflections and Fabry-Perot
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fringing discussed earlier, and in Refs. [38] and [106]. In an attempt to reduce

these adverse effects, we grew an identical sample, except that an antireflection

(AR) coating was grown on both incident and exit sides. The AR coating consists

of 7.5 periods of quarter wave layers (lDesign/4nb thick) of GaAs/Al0.33Ga0.67As,

two available (but non-optimal) materials, grown both between the air/BSQW

interface and the BSQW/substrate interface. The design wavelength (lDesign) was

chosen to be close to λB (= 2πnbc/ωB), where the group velocity (and group index)

is fairly flat (e.g., see Fig. 3.10). Figure 3.13(a) shows simulations of R, T, and A

of the target BSQW detuned to ∆ω = ωB −ωx = −3.3meV . The simulation shows

reduced Fabry-Perot fringing and improved coupling to the IB, i.e. less reflection

across the IB.

Figure 3.13(c) (solid lines) shows measurements of R, T, and A of the

corresponding experimental structure performed at low temperature (10K). The

coupling of light clearly is improved in the AR coated BSQW compared to the non-

AR coated structure (Fig. 3.11(b)), with minimum reflection close to zero; however,

Fabry-Perot fringing is more pronounced than in the simulated target structure in

Fig. 3.13(a). We speculate that the difference between the simulated and grown

AR coated BSQW may be due to small errors in the thicknesses of the layers in

the AR coating. This sensitivity to errors in the layer thickness is illustrated by

the simulation shown in Fig. 3.13(b), where an error in the layer thicknesses of

1.5% has been assumed and which produces significantly better agreement with

the experimental result. Improved designs that are less sensitive to small errors in

the layer thicknesses can be constructed from materials with more optimal indices

of refraction.

The delay and broadening of a 3.5 ps pulse transmitted through the AR

coated BSQW using the same procedure as that used to obtain Fig. 3.11(c) are

shown in Fig. 3.13(d). While the AR coating improved the coupling and reduced
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the fringing of the BSQW, it did not improve the slow light performance. Near the

lower edge of the IB, there is a spectral region where the delay is significant (≈ 0.25

bits) and broadening is negligible. Closer to the excitonic resonance, a maximum

bit delay of 0.5 is observed, but at the expense of increased broadening of the pulse

width (≈ 0.2 bit) and greatly reduced transmission (≈ 1%).

Slow light features are observed in the AR coated BSQW that are not present

in the uncoated sample. Below the reflectivity stop band, the AR coating acts

like an ordinary Fabry-Perot cavity, i.e., two mirrors separated by the thickness

of BSQW structure. Regularly spaced modes of the cavity can be seen to the low

energy side of the high reflectivity photonic stop band in Fig. 3.13(c). As expected,

the laser pulses are also slowed and broadened by the dispersion associated with

the bare cavity modes.

The negative changes in pulse width shown in Fig. 3.13(d) suggest that the

pulse is temporally compressed at some photon energies (e.g., midway between

cavity modes). This compression of the nearly transform-limited pulses is repro-

duced by linear transfer matrix calculations, which show that the compression is

due to a spectral reshaping of the pulse. When positioned midway between cavity

modes, the spectral tails of the pulse are enhanced, while the center of the pulse is

attenuated, resulting in a pulse with a spectrally broader and temporally narrower

width.

Optimization of the AR coating used in these experiments was not attempted.

In particular, Ref. [106] discusses an optimization scheme. In an ideal case of

bulk material, AR coatings can be designed using the simple methods described

in Sec. 2.6. For a general AR coating consisting of N layers of width λ/(2nj) where

λ is a particular wavelength of interest, and nj is the index of refraction of the jth
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layer, reflection is minimized at λ if [106]:

n0n
−1N+1

f

N∑
j=1

n−2j
j = 1 (3.6)

where n0 (nf ) is the index of the incident (substrate) medium.

For BSQW materials, nf for the material is not well defined. However, the

transfer matrix for light propagation into the wells can be rewritten into a form

similar to the transmittance of light into a bulk material (i.e Eq. A.8) [106]:

 E
+
j

E−j

 =


nBSQW(ω)+nin

2nin

n∗BSQW(ω)−nin

2nin

nBSQW(ω)−nin
2nin

n∗BSQW(ω)+nin

2nin


 E

+
j+1

E−j+1

 (3.7)

where nin is the index of the incident medium, and nBSQW(ω) is the effective index

of the BSQW system. Using appropriate values for the Bloch function, an effective

index for the BSQW material can be found. Far away from the photonic bandgap

in these structures, this produces an index neff/nb ≈ 1. However, near to the

bandedge, this index begins to blow up and at both the low and high bandedge

neff→∞. Inside the intermediate bandgap, q takes on imaginary values, and there

is no effective index describing the material. However, along the intermediate

band, real values of neff are small but finite. Using appropriate values for these

structures, Yang et. al. predicted neff/nb ≈ 0.04.

In summary, we have measured the slowing and broadening by group veloc-

ity dispersion of picosecond pulses propagating in the IB of two In0.025Ga0.975As/

GaAs BSQWs: one non-AR coated and the other AR coated. Continuously tunable

delays from 0 to ≈ 0.4 bit were measured with negligible broadening for the non-

AR BSQW. Unoptimized AR coatings were shown to improve the coupling of light

into the structure. AR coatings fabricated from GaAs and AlGaAs were also found

to be sensitive to small errors (1.5%) in the AR coating layer thicknesses. Improved

AR coatings using materials with larger differences in their indices of refraction

should allow the production of samples with performance nearer the theoretical
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limit.

3.3 Nonlinearities in Bragg-spaced quantum wells

The potential switching applications of BSQWs presented in Sec. 3.1 rely on

the nonlinear optical response of BSQWs, as do the tuning techniques proposed

for slow light in BSQWs presented in Ref. [38]. As such, an understanding of the

physical processes behind these nonlinearities should be helpful in understanding

and optimizing the operation of these devices, as well as providing information

about the nonlinear optical response of photonic materials in general. While some

research has been done using orthogonal linear pulses to study nonlinearities in

BSQWs [86, 102], here pulses with both the same and opposite circular polariza-

tions are used to study the spin-dependent nonlinearities which in particular have

been used to demonstrate polarization switching.

3.3.1 Broadband measurements of the nonlinear response

The same N= 200 In0.03Ga0.97As/GaAs BSQW sample used for experiments

in Sec. 3.1 is again used here, tuned such that ωB ≈ ωx, as shown in the linear

reflection spectrum in Fig. 3.14(a), and mounted in a closed-cycle He cryostat

cooled to 10 K. Pulses from a mode-locked Ti:Sapphire laser were split into

pump and probe pulses. The pump pulse was spectrally shaped [1.3 meV, 1

ps, dark shaded area in Fig. 3.14(a)], right-circularly polarized (σ+) and focused

near normal incidence onto the sample. Initially, a spectrally broadband probe

pulse was used for these experiments [although similar measurements with a

narrowband probe (i.e. spectrally resolved before the sample) will be shown

in Sec. 3.3.2]. The weak (140 nJ/cm2) broadband (27 meV FWHM, 80 fs

FWHM, spanning the entire reflection bandgap) probe pulse [black dotted line

Fig. 3.14(a)] was arranged to be incident at a small angle (≈ 10◦) with respect to

the surface normal of the sample. A quarter wave plate before the sample allowed
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measurements to be performed with probe pulses having either the same (σ+,

++ configuration) or opposite (σ−, +− configuration) circular polarization as the

pump. The time delay (τ) between the pump and probe pulses was varied, and the

signals in the reflection direction [see Fig. 3.14(b)] were spectrally resolved at each

pump-probe delay.
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Figure 3.14: Setup for nonlinear measurements. (a) Reflection spectrum of a
σ+ (blue, solid) and σ− (red, dashed) polarized probe at τ = 0 ps pump-probe
delay for a σ+ polarized pump. The linear reflection from the structure is shown
in the light shaded area. The pump (dark shaded) and incident probe (black,
dotted) spectrums are shown for reference. (b) Schematic experimental setup
for nonlinear measurements. A strong σ+ polarized spectrally shaped pump
(red solid), and weak σ+ or σ− polarized probe (black dashed) are incident on
the BSQW structure. Signals in both the reflected (R, black dashed line); the
backwards probe, background-free four-wave mixing (FWM, blue dotted line); and
in the transmission direction (T, green solid line) directions are detected.

Fig. 3.14(a) shows typical reflection measured for both the ++ (blue solid),

and +− configurations (red, dashed) at τ = 0 ps. While the ++ configuration shows

a significant distortion of the reflection stopband by the co-polarized pump, the

+− reflection shows almost no change.

These results have been explained in terms of a simplified model based

on the circular selection rules for the hh-exciton, consisting of two independent
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stop bands coupled to σ+ and to σ− polarized light, respectively (see Sec. 2.3

or Ref. [1]). Namely, a two independent two-level systems model is only valid if

higher lying transitions (such as the light hole), and many body effects that couple

the systems can be ignored. Many body effects (discussed in Sec. 2.4) can include

Hartree-Fock local field corrections and Pauli-blocking, neither of which will

couple the two independent spin systems, as well as excitation induced dephasing

and biexciton effects, which can couple the two spins. On the low energy edge of

the bandgap, because very few changes are seen for the +− configuration, and large

changes occur for the ++ configuration (Fig. 3.14(a)), the independent spin-up and

spin-down bandgap model seems to hold. On the high energy edge of the bandgap,

changes do occur to the spin-down bandgap, and higher lying transitions (such as

the light hole) or many body effects (such as bound biexcitons or exciton-exciton

scattering) couple the systems.

An expanded view of the reflection vs. pump-probe delay around τ = 0

is shown as a contour plot in Fig. 3.15 (++ configuration) and Fig. 3.16 (+−

configuration). At negative delays, data taken in the ++ configuration in the

reflection direction [bottom in Fig. 3.15] shows transient spectral gain [red areas

in Fig. 3.15], i.e. reflection > 1. The gain initially appears on the low energy edge

of the photonic bandgap, giving a peak reflection of R ≈ 1.5 at τ ≈ −1.2 ps. At the

same time, distortions appear in the bandgap, eating out holes in reflection along

both its low and high energy edges. As the time delay between the pump and

probe decreases, the peak of the gain sweeps toward the middle of the photonic

bandgap until it mostly disappears at τ = 0 ps.

In the +− configuration (Fig. 3.16), very few changes are seen in reflection.

Some small distortions do occur along the high energy edge. These distortions,

as mentioned earlier, can be attributed to higher order many body effects, such as

bound or unbound biexciton states, and higher lying transitions such as the light
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Figure 3.15: Spectrally resolved reflection, transmission and background free
signals of a σ+ polarized probe at time delays ranging from −3ps to +3ps.
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Figure 3.16: Spectrally resolved reflection, transmission and background free
signals of a σ− polarized probe as a function of time delay (−3 ps to +3 ps) with
respect to a σ+ pump. Background-free signals are plotted in the same arbitrary
units as the background-free signals in Fig. 3.15.
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hole, which can weakly couple the spin-up and spin-down excitons.

Also shown in Figs. 3.15 and 3.16 are the spectrally resolved transmitted

light as a function of pump-probe delay. In the transmission direction, for the

++ configuration, an increase in energy is seen inside the low energy edge of the

bandgap following the temporal shape of the pump pulse. More surprisingly, some

slight transient gain appears outside the gap (yellow area), on its low energy edge

at positive delays. In the +− configuration, little change is seen in transmission,

except along the high energy edge of the bandgap, where higher lying states and

higher-order many body effects that couple the spin-up and spin-down transitions

are expected to appear.

In addition, some four-wave-mixing (FWM) signals were also spectrally

resolved. Recall from Sec. 2.4 that some third-order grating terms travel in the

backwards probe, FWM direction, i.e., the induced polarization is proportional to

|E|3, and has terms of the form:

|E|3 ∝ E∗probeEpumpE
∗
pumpe

−ı[(ωpump−ωprobe+ωprobe)t+(kpump−kpump+kprobe)z] + ... (3.8)

= E∗probeEpumpE
∗
pumpe

−ı(ωprobet+kprobez) + ... (3.9)

Because fields traveling in this direction only begin to appear in third order, they

provide a simpler view of third order processes than, for instance, the reflection

direction, where both first order and third order terms interfere. To investigate

fields traveling in this direction, a beam splitter was inserted into the probe

before the sample (see Fig. 3.14(b)), and the fields were both spectrally integrated

(Fig. 3.17) and spectrally resolved (top in Fig. 3.15 and 3.16) as a function of pump-

probe delay.

In the ++ configuration, a signal is seen in the FWM direction centered at τ =

0ps pump-probe delay. This FWM is centered on the pump spectral position used

for these experiments, likely because that is the position where gratings formed

between the pump and probe pulses are moving their slowest (i.e. ωpump−ωprobe ≈
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0), and the material response can most closely follow them. The fringing shown

in Fig. 3.15 is due to the beam splitter used to pick off the background signal. No

signals are seen traveling in the FWM direction in the +− configuration.

The presence of transient spectral gain raises questions as to the processes

responsible for its appearance. It has been recently proposed that BSQWs could

act as amplifiers under some conditions due to polariton interactions beyond third

order [107].
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Figure 3.17: Intensity of the background-free four-wave-mixing (FWM) signal
versus pump intensity (round, hollow), and probe intensity (square, solid). Fit
lines (red, quadratic for the pump and blue, linear for the probe) are shown for
reference.

Integrated FWM in Fig. 3.17 shows the dependence of the signal traveling

in this background-free direction on both pump and probe fluence. The FWM

signal shows a quadratic dependence on pump fluence (open circles) and a linear

dependence on probe fluence (closed squares), indicating a nonlinear regime third

order in the optical field as opposed to the (beyond third order) mechanism
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proposed in Ref. [107]. The origin of the transient gain seen here is then likely a

four-wave mixing process, and not due to polariton interactions beyond 3rd order.

To further investigate the transient gain, which appears in both reflection and

transmission, it is helpful to examine what is being measured in these experiments.

It is common to describe the linear properties of a material in terms of its reflection

(R, fraction of the incident energy that is reflected from the material), transmission

(T, fraction of the incident energy that is transmitted through the material), and

absorption (A, fraction of the incident energy stored inside the material). Energy

conservation requires that (in the absence of extreme scattering effects at the

materials surface) the sum of these contributions account for all the incident

energy (i.e. R+ T +A = 1).

In nonlinear interactions, this may not be the case. Energy conservation

should still hold, but must now include the sum of all the optical energy traveling

in:

1. the probe’s reflection (ER,probe) and transmission (ET,probe) directions,

2. the pump’s reflection (ER,pump) and transmission (ET,pump) directions,

3. four-wave mixing directions (EFWM, typically small when compared to

energy traveling in the reflection or transmission directions), and

4. any energy absorbed by the material (EA).

The total energy traveling in just (1) (the probe’s reflection and transmission

directions) may increase if energy is scattered from the pump beam into these

directions.

When spectrally resolving the reflected and transmitted pulses, additional

complications arise in this model. Namely, light scattered by the grating may

have time dependent phase shift and thus see spectral redistribution. This will
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result in more energy at a given wavelength than was present in the incident

pulse. Spectrally integrated measurements avoid the complication of probe

redistribution and thus provide a cleaner picture of the occurrence of transient

energy transfer.

Numerically integrated differential reflection (blue, hollow circles) and

differential transmission (red, solid squares) are shown in Fig. 3.18. These

numerical integrations were calculated using an integral of the signals seen in the

reflection/transmission direction divided by the integrated signal incident on the

materials, and subtracting the normalized incident linear response (approximated

by the material response to the probe 3 ps before the arrival of the pump).

∆Rprobe(τ) = R(τ)with pump −R(τ)without pump (3.10)

=

T
IR(ω,τ)dωT
I0(ω)dω

−

T
IR(ω,τ = −3ps)dωT

I0(ω)dω
(3.11)

∆Tprobe(τ) = T (τ)with pump − T (τ)without pump (3.12)

=

T
IT (ω,τ)dωT
I0(ω)dω

−

T
IT (ω,τ = −3ps)dωT

I0(ω)dω
(3.13)

The numerical integrations were performed over the range of measured wave-

lengths spanning ≈ 1.495eV to ≈ 1.505eV.

The integrated signals show changes to the total energy traveling in the re-

flected and transmitted probe directions at different pump-probe delays, peaking

at ≈ +15% change in transmission and ≈ -10% change in reflection near τ = 0ps

delay. Interestingly, at τ ≈ −1ps, where transient gain in the reflection direction

is at its peak, the total change in ∆R is near a maximum. The sum of these

contributions, ∆Sprobe gives the total change in normalized energy traveling in

probe directions:

∆Sprobe = ∆Rprobe +∆Tprobe +∆Aprobe (3.14)

and is shown in black, hollow triangles in Fig 3.18). The result is small but positive

and peaks at +7% at a slightly negative delay, near to when the transient gain in

reflection also peaked. The appearance of this net change in energy traveling in
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Figure 3.18: Numerically integrated differential reflection (blue, hollow circles)
and transmission (red, filled squares) at different time delays. Also included is
∆S −∆A = ∆R+∆T at each time delay (black, hollow triangles).

both transmitted and reflected probe directions, and its temporal correlation to

the appearance of transient gain in reflection seems to hint that the transient gain

is due to energy transfer from the pump into the probe direction. However, it

could also indicate a change in absorption (linear absorption is ≈ 13% for this

probe spectral position and width) inside the structure (i.e. less probe energy

absorbed would result in more probe energy traveling in the transmitted/reflected

directions). As such, this data shows either that the increase in ∆Sprobe −∆Aprobe

is due either to energy transfer from the pump, or suppressed absorption of the

probe. In either case, however, it is still possible that the transient spectral gain

observed is due to redistribution of probe energy.

To further investigate this transient gain, measurements have been per-

formed using narrowband co-circularly polarized pump and probe pulses. Use

of narrowband pulses simplifies the experiment in the sense that it precludes

nonlinear mixing of very different probe frequencies and the pump. For example,

if the transient gain at the low energy band edge is due to transfer from the
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high energy photonic band edge, then the transient gain should disappear for the

narrowband data.

3.3.2 Measurement of nonlinearities in BSQWs using narrowband probe pulses

An additional pulse shaper was introduced into the probe arm before the

sample (Fig. 3.19), and the resulting signal in the reflected direction was both

spectrally integrated (Fig. 3.20) and spectrally resolved (Fig. 3.21). A probe with

temporal and spectral width close to the pump’s spectral/temporal width (1.5 meV

spectral FWHM, 1.3ps temporal FWHM) was chosen to maximize the temporal

overlap between the two.
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Figure 3.19: Experimental setup for narrowband measurements.

Spectrally integrated ++ pump-probe results of the narrowband probe were

taken and are shown on the left in Fig. 3.20 and contrasted with measurements

done using a broadband probe spectrally resolved after the sample on the right.

No significant gain is seen by the narrowband probe. This appears to show

that the transient gain seen in the broadband probe data has disappeared in the

narrowband probe case, which is a somewhat surprising result. If the transient
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Figure 3.20: Spectrally resolved reflection as a function of pump-probe time delay.
(left) Integrated measurements of the narrowband probe vs. pump-probe delay.
Note that the x-axis in this case is the energy at the center of the probe pulse.
(right) Similar results taken with a broadband probe. The x-axis in this case is the
absolute energy being spectrally resolved.

gain is due to energy transfer from the pump, one might have expected the

spectrally sharp transient gain seen in the broadband data (Fig. 3.15) to appear

here as a convolution with the narrowband probe spectrum, i.e., washed out but

still present.

To dig a little deeper, spectrally resolved measurements of the narrowband

probe were taken and are shown in Fig. 3.21. Here, the linear reflection from the

Bragg structure is shown in the light shaded area, and the pump in the dark shaded

area for reference. Time delays ranging from −2.5ps to +2ps are shown from top

to bottom.

The red dots in Fig. 3.21 show the normalized reflection for a probe pulse

centered at each wavelength. At negative delays, large spectral gain is again seen,

with reflection values well above 2, in agreement with what was previously seen in

the broadband measurements. As the delay between the pump and probe pulses

is brought towards τ = 0ps the gain disappears. While only one set of these
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Figure 3.21: Spectrally resolved reflection (red filled squares) and differential
intensity (blue open diamonds) of a narrowband probe (black solid line) co-
circularly polarized with the pump vs. pump-probe delay. Rows show different
time delays ranging from τ = −2.5ps (top) to τ = +2ps (bottom). The pump
spectrum (dark shaded area) and linear reflection from the structure (light shaded
area) are shown for reference.

measurements is shown here, for probe energies near to the pump, these results

are fairly robust.

When the incident probe energy (black line) drops below the detection limit,
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it is impossible to determine a reflection coefficient for light (i.e. the spectrally

resolved reflection goes to infinity here since we are dividing by zero). To further

examine these results then, it is helpful to look at the change in intensity ∆I =

I(τ) − I(τ = −5ps) of the reflected probe (blue diamonds in Fig. 3.21), in order to

remove these normalization problems. The intensity seen at τ = −5ps is used as a

base reference here rather than the intensity when no pump is present in order to

remove possible changes due to shot to shot carrier accumulation in the sample. At

negative delays, ∆I shows probe energy in the range outside of the incident probe,

where (as mentioned) the reflection can’t be meaningfully normalized.

The narrowband measurements suggest the spectral gain is due to probe

redistribution. First, integrating the energy traveling in the reflected probe

direction after the sample shows no increase in the total energy present, suggesting

that pump energy is transferred. When the signals are spectrally resolved after

the sample, transient gain appears on the low energy edge of the bandgap and at

negative pump-probe delays, as was seen in the broadband data. Furthermore,

at negative pump-probe delays, the probe spectrum appears to be shifted, with

energy depleted on the low energy side, and energy increasing on the high energy

side.

3.3.3 Time delay dependence of the nonlinear response

In addition, some questions also remain regarding the pump-probe delay

dependence of these features. The transient gain seen in the reflection direction

appears at negative time delays and sweeps towards the middle of the bandgap

as the delay is brought towards zero. At positive delays, only distortions of the

bandgap are seen. Conversely, signals traveling in the transmitted probe direction

show transient gain at only positive time delays. The maximum intensity scattered

in the FWM direction is seen near τ = 0ps pump-probe delay.
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The transient gain appearing at negative delays, (i.e. the probe arrives before

the pump) in the reflection direction is not surprising. Nonlinear responses that

are skewed towards negative delays have previously been seen and explained in

terms gratings formed in the materials. Maximum scattering can occur when the

pump and probe overlap enough to form a strong grating in the structure, but

where there is also significant time after this interaction for the stronger pump

to interact with those gratings, as is the case at slight negative delays [89]. The

transient gain appearing in transmission at positive delays is more surprising.

In this case, the probe arrives after the pump pulse, and hence the pump-probe

interaction is weak, as well as the amount of time the pump can interact with any

gratings formed.

The origin of this difference is likely due to the wavelength dependent dis-

persion inside the structure. The wavelength dependent dispersion was discussed

in some detail in Sec. 3.2, and can vary drastically across the bandgap. As such, it

is possible that different pulse wavelengths that are transmitted/reflected from

the structure experience varying interaction times in the structure, leading to

variability in the magnitude of the gratings formed, and the amount of time

available for the pump to interact with those gratings based on the spectral portion

of the probe being investigated.

As an example, pulse wavelengths outside the low energy edge of the

bandgap encounter almost no index difference between the barrier and well

materials, and pass through the material with the speed given by the background

index of GaAs. Probe wavelengths spectrally below the bandgap transmit through

without significant slowing by the material, and encounter very little interaction

with the pump itself. Hence, very few changes occur at negative pump-probe

delays. When the probe enters at the same time or after the pump pulse,

interaction time increases due to slowing of the pump on the low energy edge
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of the BSQW bandgap.

Finally, looking at Fig. 3.16, the maximum distortion to the stopgap in

reflection and transmission appears close to zero delay, as does the FWM signal,

when temporal overlap of the pump and probe are at a maximum.

3.3.4 Preliminary theoretical analysis of the nonlinear response of BSQWs

To further examine these polarization-dependent optical nonlinearities, sim-

ulations have been started using a comprehensive microscopic theory based on a

dynamics-controlled truncation scheme (DCT) capable of looking at nonlinearities

to all order in the incident fields, and up to third order in the material polarization

(i.e. susceptibility). The theory consists of a self-consistent time-dependent

transfer matrix solution of Maxwell’s equations for inter-well light propagation

coupled to equations of the interband polarization induced in each quantum

well [108]. The interband polarization is solved for using a microscopic treatment

of spin-dependent exciton-exciton interactions. For (++) configurations, the

interaction leads to an instantaneous Hartree-Fock repulsion, Pauli blocking,

and retarded scattering correlations between pump and probe-induced excitons.

For (+−) configurations, only retarded correlations including both scattering and

(bound) biexciton correlations are obtained. In the DCT model, only coherent

effects are considered. These assumptions lead to some interesting results,

reviewed below, but the lack of non-radiative dephasing in the model, and the

inclusions of terms higher order in the incident fields (Fig. 3.17 shows a distinct

quadratic dependence in pump fluence for signals traveling in the FWM direction)

leads to questions about the validity of comparisons between these theoretical

results and the experimental ones presented in Sec. 3.3.1.

Results from a typical calculation of the reflectivity in the (++) configuration

are shown in Fig. 3.22(b) and are compared with corresponding experimental
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Figure 3.22: (a) Experimentally measured reflection at pump-probe delays
of −1.5ps (black, solid), −1.0ps (blue, dashed) and −0.5ps (red, dotted).
(b) Theoretically simulated reflection at −2.0 ps (black, solid), −1.0ps (blue,
dashed) and −0.6ps (red, dotted). The pump (dark gray shaded area) and linear
reflection (light gray shaded area) spectrum are shown for reference.
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Figure 3.23: Simulated signals traveling in the backwards probe, background free
direction, at τ = 0ps pump-probe delay ((a)), and in the transmission direction at
τ = +1ps pump-probe delay ((b)). The pump (dark gray shaded area) and linear
reflection (light gray shaded area) spectrum are shown for reference.

data in Fig. 3.22(a). The theory shows reflection > 1 on the low energy edge of

the bandgap that shifts to higher energies with time delay, in good qualitative

agreement with experiment.

In addition, simulations have been done to examine the fields produced in
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Figure 3.24: Theoretically modeled reflection with all many body effects (solid,
blue) included to beyond third order, and only the Hartree-Fock interaction to
third order (dashed, red) at a pump-probe delay of -1ps. In all figures the linear
reflection is shown in the light shaded area, and the pump in the dark shaded area.

both the backwards probe direction, and in the transmission direction. These,

again, show good qualitative agreement with the previously shown experimental

data (Fig. 3.15). Light with frequencies near the pump, and on the low energy

bandedge is scattered in the FWM direction [shown in Fig. 3.23(a)] at τ = 0ps

in good agreement with the experimental data (top in Fig. 3.15). Similarly,

simulations of the transmitted light at τ = +1ps are shown in Fig. 3.23(b).

Transient gain is again seen on the low energy edge of the bandgap, slightly outside

the band region, again similar to what is shown in the middle plot of Fig. 3.15.

By turning terms on and off in the theoretical model, the physical mech-

anisms driving the observed nonlinearities can be identified. Fig. 3.24 shows

another full calculation of the reflection from the structure at τ = −1ps and a

separate calculation done only with a third-order Hartree-Fock term included (no

exciton-exciton interactions or phase space filling effects). The results show the

Hartree-Fock repulsion dominates at the lower band edge, yielding the transient

gain and distortions seen there. Around the upper band edge and in the +−
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channel (not shown), biexciton effects and Pauli blocking terms are necessary for

agreement with experiment.

The simulations produce good qualitative agreement with the experimental

results shown earlier. However, as was also mentioned earlier, the simulations also

include terms beyond third order in the optical field as a form of feedback in the

nonlinear interaction, created by the interaction of the pump beams and the FWM

fields introduced into the system [107]. Experimental measurements (Fig. 3.17)

demonstrating the power dependence of the signals traveling in the FWM direc-

tion, showed a χ(3) dependence for the nonlinearities seen experimentally.

In addition, as detailed in Ref. [109], the DCT model used for these

simulations assumes that all of the carriers created by the pulses are coherent (i.e.

the non-radiative dephasing rate of carriers in the system, γ , is equal to or less than

twice the radiative dephasing rate of the carriers). The inclusion of incoherent

carriers in the DCT model through an ad-hoc approach changes the response

of the materials dramatically. These unverified assumptions, and the lack of a

comprehensive set of simulations makes it difficult to draw comparisons between

the experiments and the theory shown here. Further simulations, done with either

a more complete DCT model of the system including incoherent carriers, or using

the discrete-level model detailed in Appendix A.4 or Ref. [109], are necessary.

3.3.5 Preliminary polarization state measurements

To further examine this transient gain, some initial investigations have begun

using ellipsometric measurements. In particular, ellipsometric measurements

provide information about the total electric field reflected from the structure,

and hence more information about the underlying mechanisms behind these

nonlinearities, and responsible for the operation of the all-optical switching

demonstrated in Sec. 3.1.1.
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Figure 3.25: The polarization ellipse used for these measurements. P , θsig and ε
are shown, along with the major (a) and minor (b) axes of the ellipse.

In particular, Gansen et. al. [94] used ellipsometric measurements to

explain the operation of an all-optical polarization switch based on multiple

quantum wells in terms of optical nonlinear changes to the index of refraction and

absorption of the quantum wells. For their analysis, Gansen et. al. [94] measured

the total electric field of the transmitted pulse in terms of a polarization ellipse’s

orientation (θsig) and ellipticity (ε) (see Fig. 3.25). These measurements were then

compared with a model for the transmitted field from the structure in order to

identify changes induced during switching to both the polarization dependent

absorption (∆α = δα−−δα+, where δα+/− = αpump
+/− −α

no pump
+/− represents absorption

change for σ+ and σ− polarized light with and without the pump present) and

index (∆n = δn−−δn+, where δn+/− = npump
+/− −n

no pump
+/− represents index changes for

σ+ and σ− polarized light). A definition for the ellipticity was derived in terms of

changes in the material absorption:

ε = tan−1
(
e(∆α)l − 1
e(∆α)l + 1

)
(3.15)
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and for the orientation of the field in terms of changes to the material’s refractive

index:

θsig =
ω(∆n)l

2c
(3.16)

A similar technique could be used to identify the processes responsible for

all-optical switching in BSQWs. Ellipsometric measurements can be used to

identify the field reflected from the structures, and compared with a theoretical

model of the reflection to identify the changes inside the structure responsible for

switching, as well as the nonlinear effects giving rise to those changes (i.e. Pauli

blocking or Hartree-Fock local field effects). However, this requires modeling

the field reflected from the structure and, the equations used above are not

valid for BSQW (i.e. these measurements were done in reflection rather than

transmission, and even in transmission, Beer-Lambert’s Law does not provide a

perfect description of BSQWs).

In a simple model, the BSQWs could be considered a bulk material with

wavelength dependent complex index, and the Fresnel equations for polarization

dependent reflection of normally incident light used. Some effort has already

been put into such a model in Ref. [106], where a wavelength dependent bulk

effective index of refraction for BSQW is derived. By iteratively modifying the

complex index to produce agreement between the model and the ellipsometric

measurements information about the nonlinear response of the material can be

determined.

A better solution would compare the reflected E-field from the structure with

a full transfer matrix simulation of the nonlinear reflection from BSQWs, and then

investigate how those changes correlate to changes in absorption and index on a

per-well basis in the material.

To perform these measurements, the electric field of the pulse can be

rewritten again in terms of Stokes parameters. To measure these, a quarter wave
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Figure 3.26: Experimental setup for measuring the polarization state of a pulse. A
λ/4 plate, λ/2 plate and a polarizer are placed in the beam path after the sample.
Different orientations of the three allow measuring the linear polarization along
4-axes and both circular polarization components.

plate, and polarizer may be placed after the sample as shown in Fig. 3.26, and the

intensity of light polarized along the x- and y-axes, along with ±45◦ with respect

to those axes, and the σ+ and σ− circularly polarized components of a pulse. With

this information, all four Stokes parameters can be computed [110, 111]:

S0 = IX + IY

S1 = IX − IY

S2 = I+45 − I−45

S3 = Iσ+ − Iσ−

(3.17)

or written in terms of the pulse’s degree of polarization (P ), orientation (θsig), and

ellipticity (ε):

P =
√
S2

1 +S2
2 +S2

3
S0

sin(2θsig) = S2
P S0 cos(2ε)

sin(2ε) = P S3
S0

(3.18)

.

We have already begun some of these measurements. Fig 3.27 show the
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Figure 3.27: Preliminary measurements of the spectrally and temporally
integrated polarization state of the probe pulse. The total polarization state
(black), along with the orientation (red) and ellipticity (blue) of the pulse are
shown at τ = 0ps pump-probe delay.

temporally and spectrally integrated degree of polarization (P, black ), orientation

(θsig, red) and (ε, blue) of a narrowband probe pulse as a function of center probe

frequency at pump-probe a time delay of τ = 0ps. These preliminary results

show large changes to the polarization state (≈ 50% on the low energy edge of

the bandgap) while the pump is present. Almost equal changes occur to both the

orientation and ellipticity of the light (δθsig ≈ 45◦ and δε ≈ −20◦), again at the low

energy edge of the bandgap.

Measurements in MQW polarization switches have shown similar results for

the change in polarization state of the light [94] (although with smaller changes

in both orientation and ellipticity). The lack of a perfectly defined polarization

state here (i.e. P , 1) likely arises because the signals are being integrated both in

frequency and time. Future experiments should repeat these measurements, but

spectrally and temporally resolve the light after the sample.
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3.3.6 Summary of nonlinear measurements of Bragg-spaced quantum wells

To summarize, we have looked at the nonlinear response of Bragg-spaced

quantum well materials when excited by a narrowband pump pulse and probed

with broadband pulses having the same and opposite circular polarizations. Very

few changes were seen in the sample when examined with a probe having the

opposite circular polarization as the pump, while large changes are seen when the

pump and probe are co-circularly polarized. This has been explained using the

spin-selection rules for the 1s-hh exciton. In the limit that higher lying transitions

such as the light-hole and many body effects which couple the spin systems can be

ignored, the system can be thought of as two independent two-level systems, one

coupled to right circularly polarized light, and the other to left circularly polarized

light. These two independent two-level systems give rise to two-independent

reflection bandgaps, one coupled to right circularly polarized light and one to left.

On the low energy edge of the bandgap (below the exciton resonance) this model

appears to work well. The changes seen here are likely due to either Pauli blocking

or Hartree-Fock local field effects, which do not couple the two spin-systems. On

the high energy edge of the bandgap (above the exciton resonance), changes are

seen by probe pulses having both the same and opposite circular polarization as

the pump. This indicates that higher lying transitions or biexciton effects in the

material are visible at these energies.

In addition, transient spectral gain appears in reflection at negative pump-

probe time delays, and in transmission at positive pump-probe time delays. The

origin of this feature was investigated by measuring signals traveling in the

background-free, backwards-probe direction. The signals appear at the low

energy edge of the bandgap, near where the pump pulse was located for these

experiments, and display a quadratic dependence on pump fluence, and a linear

dependence on probe fluence. As such, the nonlinearities investigated in these
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experiments and leading to the transient gain seen in reflection and transmission

are assumed to be due to a χ(3), four-wave-mixing process in the material.

The χ(3) processes can give rise to such gain through two distinct methods,

either transient energy transfer from the pump into the probe directions, or

through redistribution of probe energy. We have begun some investigation into

which is the causing the gain seen in these experiments. Integrating measurements

performed with broadband probe pulses, the total energy traveling in both

transmitted and reflected probe directions was investigated. A net increase was

observed in the integrated sum of change in reflection and transmission. This

seems to indicate that a transfer of energy from the pump direction, or a decrease

in the amount of energy absorbed by the material is occurring, though neither

explanation excludes the possibility of redistribution of probe energy.

Measurements were also performed with narrowband probe pulses in order

to remove any effects that might be caused by broadband spectral redistribution

(i.e. probe energy at the high energy edge of the bandgap moving to the low energy

edge), looking in the reflected probe direction. These narrowband measurements

show no net increase in reflection in the integrated probe measurements. Spectral

resolving the probe shows the presence of spectral gain again, but is suggestive

that it results due to probe redistribution.

Some questions still remain about the differences in time delay for the ap-

pearance of transient gain in the reflection, transmission and FWM directions. To

further investigate these phenomenon, measurements temporally and spectrally

resolving the polarization state of the reflected pulse were begun, along with

time- and wavelength-integrated ellipsometric measurements. In addition, some

preliminary theoretical simulations were also shown. These models seem to

indicate that the transient gain on the low energy edge of the bandgap is due to

Hartree-Fock, local field effects. However, the simulations include some nonlinear
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effects that are beyond third order in the applied fields, and also neglect incoherent

carriers in the materials. Comparison of experimental measurements with further

simulations taking these things into account should provide information about

changes to absorption and index of individual wells, as well as the underlying

processes responsible for these changes.
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CHAPTER 4
FUTURE RESEARCH

Because BSQWs represent such unique photonic structures, there’s a range

of avenues for this research to continue in, from those dealing with applications of

these structures in various optical communications systems, to those focused on

the science of nonlinearities in resonant photonic materials. A few potential areas

for future research are briefly reviewed here.

4.1 Pulse amplification

While some transient gain from BSQWs has been investigated here, theoret-

ical investigations (mentioned previously in Sec. 3.3.6) have predicted even larger

signal amplification (as much as 40 times gain in the reflection direction) [107].

The origin of these nonlinearities in the theoretical model is a feedback loop

produced by signals traveling in the FWM and pump directions. Initially a

temporally long pump pulse and temporally short probe pulse are simultaneously

incident on the material. A polarization grating forms in the material due to the

interference of the beams and light is scattered in different directions, including

the background-free FWM direction discussed in Sec. 3.3.6. After the short

probe pulse leaves the sample, the longer pump continues to interact with the

polarization grating and the FWM fields produced by light scattered from this

grating. This interaction produces new polarization gratings in the structure and

light is again is scattered off of these. The process feeds itself, and the scattered

pump energy in the reflected direction exponentially rises. When the pump is

removed, the polarization gratings decay and the gain disappears.

To experimentally verify these simulations, the reflected probe could be

temporally resolved after the sample. The gain seen in reflection should continue

after the probe pulse leaves the sample, but while the pump pulse is still present.
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While we have produced pump pulses of longer temporal width (narrower spectral

width) using pulse shapers in previous experiments, we do so at the loss of a

significant amount energy, and as such excite smaller nonlinearities.

In addition, the theoretical simulations shown by Schumacher et. al. in

Ref. [107] investigated samples with larger numbers of quantum wells than those

presently available (N = 1000 as opposed to the N=200 well samples used in these

experiments). While some theoretical investigations of this signal amplification in

N = 200 quantum well structures has been done, they predict significantly lower

gain (approximately a factor of 3), nearer to what has already been demonstrated.

4.2 All-optical switching

While ultrafast all-optical polarization switching in BSQWs has been demon-

strated here, its performance is less than idea. One worth investigating is raising

the temperature of operation for the device. While we have investigated switching

at both 10K and 80K in this study, ideally such materials would require no active

cooling and instead operate at room temperature. However, as the temperature of

any quantum well structure is increased, there is a corresponding shift of the band

edge energies, and broadening of line widths due to enhanced phonon-electron

interactions in the materials. When the InGaAs/GaAs samples studied here are

raised to 300K, the bandgaps in both the InGaAs and GaAs layers should shift

by approximately equal amounts, but the broadening of the GaAs exciton line

width will cause it to spectrally overlap with the 1s-hh exciton resonance in the

well layers. As such, the photonic bandgap is difficult to see at room temperature

due to absorption in the barriers. Alternative media where this difficulty may be

overcome are discussed in Sec. 4.4.

In addition, the switch demonstrated here operates at wavelengths outside

of the range typically used in communications applications. Alternative BSQW

materials using InGaAs/InP quantum wells with exciton resonances near 0.85eV
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(≈ 1.5µm) have been recently investigated theoretically by Wang et. al [112]. The

simulations predict a reduced contrast ratio (31dB) and decreased throughput (≈

5%), at theoretical peak switching powers of ≈ 30MW/cm2. InGaAs/InP BSQW

samples for experimental investigation do not exist as of yet.

4.3 Slow light

While slow light in BSQWs has been demonstrated here, the nonlinear

transmission measurements revealed difficulty in opening an optical window in

the bandgap using the AC Stark effect. As such, pulse trapping and releasing has

been difficult to implement.

In order to realize tunable slow light in BSQWs, a different method of

tuning the Bragg and exciton resonances in the wells must be developed. One

potential solution involves tuning the resonances through the quantum confined

Stark effect. Contacts placed on the structure would allow a voltage to be created

perpendicular to the wells. This potential will pull apart the electrons and holes

in the generated excitons. However in quantum wells the confinement due to the

well keeps both particles contained in the well layer, and rather than destroying

the exciton entirely, the electric field reduces the binding energy and shifts the

exciton resonance to higher energies.

The advantage to this type of “nonlinear excitation” is that a pure shift

should occur without the four-wave-mixing contributions seen in these optical

experiments (i.e. no gratings are induced in the structure). As such, a clean

opening and closing of the window within the photonic bandgap may be possible.

While electro-optic switching techniques are often slower than their pure-optical

counterparts, electronic speeds have increased dramatically in recent years. In

addition, electro-optics techniques offer an ease of integration with existing

technologies.

Slow-light in BSQWs is ultimately limited by the coherent decay of polaritons
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Figure 4.1: Schematic of a periodic ring resonator array. In this particular example,
a series of ring resonators are arranged between two waveguides. The rings contain
a resonance based on the radius of the ring and its material parameters (index,
absorption, etc). By arranging them in periodic arrays separated by some distance
(a), the photonic properties of the rings can be altered. These and other photonic
materials are candidates for next generation all-optical computing platforms and
as mediums for tunable slow light.

trapped inside the wells. While one might guess that this decay rate would

be around a factor of 2γ (the polarization dephasing rate of the system, a few

picoseconds in these materials) given in Eq. 3.1, the exact decay time depends on

the spectral position of the pulse within the window (see Ref. [38]). If one looks

at only a single narrow spectral position the decay rate can be many times greater

than 2γ . For applications such as the synchronization of pulses with a network

clock, or the phase matching of pulses in telecom applications, this could provide

enough delay to be useful. However, for applications where longer storage times

are needed (for instance, storing pulses for hundreds of bits while a switching

fabric is reconfigured) other slow light materials are being investigated.

4.4 Alternative materials

Much of the research on slow light and all-optical switching has recently

turned to RPBGs in other types of nano-fabricated materials [113, 114]. Some

examples include microring resonators [115, 116, 117], cylinders arranged in

periodic arrays [22], woodpile stacks [118], and other types of photonic struc-

tures [119, 120].
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Microring resonators in particular have attracted a lot of attention for

their ability to produce interesting nonlinear effects with relatively small pump

fluences. Fig. 4.1 shows an example such structure, constructed by placing ”ring”

waveguides between two linear waveguides. Light traveling through the linear

waveguides couples into the ring structures if a resonance condition is matched.

The second wave guide on the far side of the ring couples light out. By placing a

series of these rings [121] (or other photonic cavities [122]) separated by a spacing

ωB (as shown in Fig. 4.1) the photonic bandstructure of the material becomes

similar to the one seen in the BSQW case, with the ring’s resonance replacing the

exciton resonance.

Nonlinear excitation of such ring structures represents a separate field of

research. Typically the Kerr nonlinearities used to induce changes to the refractive

index of waveguide structures are small. However, in microring structure pulses

are temporally compressed by the photonic band structure of the material and

spend extended amounts of time in the ring. As such changes to the refractive

index of the material can be introduced with much smaller incident energies.

In ring structures, this means that the resonance can be changed dynamically,

and pulses can be selectively coupled or uncoupled to the ring material. As an

example, an add-drop filter is shown in Fig. 4.1. A strong pump pulse can be used

to introduce a shift in the ring resonance and selectively couple light to the drop

port [114].

While some optical switching has been demonstrated in photonic structures

[115, 123], little research has been done looking at polarization switching. For

an all-optical polarization switch to operate, the material needs to demonstrate

a dichroism or birefringence which can be altered through nonlinear excitation.

Chiral photonic materials which contain a birefringence when no control pulse is

present have been produced [118, 124], but at the time of this writing, I am not
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aware of any attempts to induce chirality through nonlinear excitation. It may be

possible to do so using photonic structures with an embedded quantum well or

other optical resonance [125].
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CHAPTER 5
CONCLUSIONS

To summarize, this research has focused on the nonlinear properties of

Bragg-spaced quantum wells with large numbers of quantum wells (≈ 200), along

with applications of those nonlinearities as an all-optical polarization switch, and

as a medium for slow light/optical buffers.

An ultra-fast all-optical polarization switch made from Bragg-spaced quan-

tum wells based on the spin-selection rules for the hh-exciton has been demon-

strated. The switch operates using an induced circular dichroism and birefrin-

gence due to the two nearly independent spin stopgaps in the structure and tied

to the circular selection rules for the hh-exciton. The polarization switch has

high throughput ( > 40%), and large contrast ratios ( > 40dB) over approximately

0.6THz of bandwidth, At higher temperatures the switch performance decreases,

and exhibits reduced switching and recovery times.

In addition, slow light and trapping of optical pulses in these materials

was also investigated. The speed of light passing through these materials was

measured, and a pulse delay of around 0.6 bits was shown for a single detuning

of the bandgap. Dynamically changing this detuning through optical means has

proven difficult and will require further investigation, most likely using non-

optical methods.

Finally, polarization dependent ultrafast optical nonlinearities in BSQWs

were investigated. When excited below resonance in the ++ polarization channel,

BSQWs show large distortions of the σ+ photonic band structure, especially along

the edges of the bandgap, while little change is seen in the σ− photonic bandgap in

the +− polarization channel. This dichroism arises because of the spin-selection

rules for the hh-exciton. In the absence of higher-lying levels or higher order
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many body effects, the system behaves as two independent two-level systems, one

coupled to right circularly polarized light, and the other to left circularly polarized

light. The ultrafast recovery is a result of excitation below resonance. Because

the excitation is done below resonance, only virtual carriers are created in the

materials and the sample recovers its linear reflection and transmission properties

when the pump pulse has left the sample.

At negative delays, transient spectral gain is seen in the ++ polarization

channel in reflection directions, while at positive delays, transient gain appears in

transmission directions. The presence of this transient gain raises questions as to

the nonlinearities responsible for its origin. Signals traveling in the background-

free backwards probe direction were also spectrally resolved and integrated, and

found to have a power dependence consistent with a third-order four-wave-mixing

process. Additional measurements were also performed using narrowband probe

pulses and also show transient gain at negative delays. Integrated measurements

of signals traveling in both the reflection and transmission directions show a net

gain in energy traveling along probe directions. This hints that the transient gain

is due in part to energy transfer from the pump into the probe direction, rather

than a pure redistribution of probe energy.

Additional time-resolved ellipsometric measurements to identify the time

dependence of the four-wave-mixing signals and transient gain signals were also

proposed. Preliminary time- and spectrally-integrated measurements show large

changes to both the orientation and ellipticity of the pulse, as well as a large

unpolarized component (which is expected when the polarization state is changing

quickly in wavelength and time).

Some preliminary theoretical simulations of the nonlinear response from

BSQW were also shown, based on a time dependent transfer matrix solution

for pulse propagation through the material, combined with simulations using
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a microscopic theory for the evolution of the polarization of excitons in the

quantum well. The theory shows a good agreement with experiment, reproducing

the qualitative traits of the reflected, transmitted and four-wave-mixing signals.

Current simulations suggest that distortions seen on the low energy edge of the

bandgap are driven by Hartree-Fock, local field effects arising from arrays of

aligned dipoles in the system. However, the dynamics controlled truncation model

includes effects beyond third order in the applied field, and fails to take into

account incoherent carriers in the system. Further theoretical simulations are

necessary in order to make direct reliable with theory.
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APPENDIX A
TRANSFER MATRIX DERIVATION

A.1 Maxwell’s equations

Beginning with Maxwell’s equations [110]:

∇ · ~B = 0

∇ · ~D = ρfree

∇× ~E = −∂~B∂t
∇× ~H = J + ∂~D

∂t

(A.1)

where ~B is the applied magnetic field, ~H is the magnetizing field containing the

field produced by the medium. Likewise, ~E is the applied electric field, and ~D

is the displacement field containing the field produced by the medium. For this

model, ρfree (free charges in the material) and currents inside the medium (~J) are

considered within ~D, and the magnetic susceptibility is ignored (~B = µ0 ~H). The

displacement electric field ~D of the material is then rewritten in terms of the

polarization of the material:

~D = ε~E = ε0~E(1 +χ) = ε0~E + ~P (A.2)

where we have defined the susceptibility of the material, χ, and ~P = ε0χ~E, the

polarization of the material. Note that this susceptibility is not necessarily linear,

and could be a function of the electronic field, χ(~E). Maxwell’s equations can then

be combined using the vector identity ∇ × (∇ × ~V ) = ∇(∇ · ~V ) − ∇2 ~V to produce a

wave equation for propagation of light:

−∇2~E +
1
c2
∂2~E

∂t2
= −µ0

∂2

∂t2
(~Pres + ~PB) (A.3)

where the polarization, ~P has been separated into a complex resonant component,

~Pres(~r, t) (which for BSQWs depends on the 1s-hh exciton), and a background

component, ~PB(~r, t), and speed of light has been identified c2 = 1
ε0µ0

. This

background component can be rewritten in terms of a background index for

the material by defining a background susceptibility, ~P (~r, t) = ~Pres(~r, t) + ~PB(~r, t) =
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Figure A.1: Transfer matrix across an interface between two materials.

~Pres(~r, t) + ε0χB(~r)E(~r, t), and a background index n2
b(~r) = 1 +χB(~r) of the medium.

If we only consider propagation in the z-direction and ignore any possible

time dependence in the bacground index this simplifies to:(
∂2

∂z2 −
nb(z)2

c2
∂2

∂t2

)
E(z, t) =

1
ε0c2

∂2

∂t2
Pres(z, t) (A.4)

A.2 Transfer matrix for non-resonant media

The waves on each side of a boundary can be related by matching the

tangential component of the electric field and its first derivative [40]. To begin

with, we consider only phenomenon in non-resonant material and ignore the

resonant polarization, Pres = 0.

Inside a bulk material (for instance, within a single barrier or well layer of

a quantum well) the refractive index nb(z), is independent of position, and the

solutions to Maxwell’s equations are well known plane wave functions, E(z, t) =

E0e
−ı(ωt−kz)+c.c., where E0 denotes the electric field amplitude, andω (k = nω/c) are

its frequency (wave vectors). c.c. refers to the complex conjugate of the preceding

term. In this case it is helpful to rewrite the field in layer j as:

Ej(t, z) = E−j (t +
znb
c

) +E+
j (t − znb

c
) (A.5)

where ± denotes the direction the wave is traveling (see Fig. A.1)
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Relating the fields on the left side of the layer (E±left) to the right side (E±right) E
−
right

E+
right

 =

 e
−ıkja 0

0 eıkja


 E
−
left

E+
left

 (A.6)

At the boundary between two layers of different susceptibility, boundary

conditions have to be taken into account. In this case, it is helpful to index fields

by the layer that they are in such that fields at the right edge of the jth layer have

the form E±j,right and fields at the left edge in the (j+1)th layer have the form E±j+1,left

(see Fig. A.1). Using Maxwell’s equations and matching the tangential and first

derivatives of the field as boundary conditions gives:

E−j,right +E+
j,right = E−j+1,left +E+

j+1,left

ıkjE
−
j,right − ıkjE

+
j,right = ıkj+1E

−
j+1,left − ıkj+1E

+
j+1,left

(A.7)

Using kj = njω/c, these two equations can be solved for E+
j and E−j and the

solution written as a second transfer matrix: E
−
j+1,left

E+
j+1,left

 =


nj+nj+1

2nj+1

nj−nj+1
2nj+1

nj−nj+1
2nj+1

nj+nj+1
2nj+1


 E
−
j,right

E+
j,right

 (A.8)

where E±j represents the waves traveling in both the right (+) and left (−) directions

on each side of an interface, and j is an integer numbering the layers in the

material.

The total transfer matrix through a layer and then across a boundary into

another layer can be written as a product of these two matrices. Dropping the left

and right notation since all of these waves are on the left side of a layers now: E
−
j+1

E+
j+1

 =


nj+nj+1

2nj+1

nj−nj+1
2nj+1

nj−nj+1
2nj+1

nj+nj+1
2nj+1

︸                  ︷︷                  ︸
Interface

 e
−ıkja 0

0 eıkja

︸            ︷︷            ︸
Layer

 E
−
j

E+
j

 =Mj

 E
−
j

E+
j

 (A.9)

which is Eq. 2.11 in the text.

A.3 Transfer matrix with quantum well susceptibility

When ~Pres is non-zero, as is the case in BSQWs, boundary conditions must be

reconsidered. This section will follow the treatment set out in Refs. [38] and [126].
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In the bulk material the tangential component of the field has to be continuous.

Thus:

E+
j (t − znb

c
) +E−j (t +

znb
c

) = E+
j+1(t − znb

c
) +E−j+1(t +

znb
c

) (A.10)

remains the same.

Assuming the wells are thin compared to the envelope of the field, they can

be considered as a δ-function in space such that, Pres =
∑N
j δ(z − zj)pj(t) where Pres

is the total polarization of the material, j indexes the quantum wells, zj (pj) is the

position (polarization) of the jth quantum well in the system. Integrating Eq. A.4

from z−ε (the left side of the quantum well) to z+ε (the right side of the quantum

well), and taking the limit as ε→ 0 we find:
∂
∂z

[
E+

j+1(t − znnb
c

) +E−j+1(t +
znnb
c

)−E+
j (t − znnb

c
)−E−j (t −+

znnb
c

)
]

=
1
ε0c2

∂2

∂t2
pj(t)

(A.11)

Combining Eq. A.10 and Eq. A.11, and rewriting the left side in terms of time

derivatives:

E+
j+1(t − znb

c
) = E+

j (t − znb
c

)− 1
2ε0nbc

∂
∂t
pj(t) (A.12)

E−j+1(t +
znb
c

) = E−j (t +
znb
c

)− 1
2ε0nbc

∂
∂t
pj(t) (A.13)

Further solutions of this equation require a model for the polarization of the

well, pj(t). Appendix A.4 details a simple model. Taking just the linear χ(1) term

from it, we can write:
∂
∂t
pm(t) = −ı(ωx − ıγ)pm(t) +

ı|φ̃2D(0)|2|℘|2

~

E(zm, t) (A.14)

and

χ(1,2D)(ω) =
|φ̃2D(0)|2|℘|2

ε0~

1
(ω −ωx)− ıγ

(A.15)

where ωx is the frequency of the resonance, φ̃2D(~r = 0) is the 2D-exciton

wavefunction for electrons and holes separated by ~r, ℘ is the amount of the dipole

aligned with the electric field, and γ is the non-radiating dephasing rate of the

system. Using this expression in Eq. A.13, performing a Fourier transform and

rewriting pj(ω) = ε0χ(ω)E(ω) where E(ω) is defined in Eq. A.10 this can be written
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ħωab

γ

b

a

γ
b

a

Figure A.2: A simple closed two level system with individual level decay rates, γab.

in transfer matrix form: E
−
j+1

E+
j+1

 =

 1 + ıω
2nbc

χ(1,2D)(ω) ıω
2nbc

χ(1,2D)(ω)

− ıω
2nbc

χ(1,2D)(ω) 1− ıω
2nbc

χ(1,2D)(ω)


 E
−
j

E+
j

 (A.16)

Finally, this must be multiplied by the propagation matrix (Eq. A.6) to give

Eq. 2.19.

A.4 Bloch Equations

When ~Pres is non-zero, some method must be implemented to model it. A

simple model is laid out here, while more complex ones are discussed in Ref. [126]

and [127], To begin, we look at the mth quantum well in the material, where,

as earlier, we have written the polarization of the well as pm(t) (the m’s will be

dropped from here on out for conciseness).

Using a simple two level system like the one shown in Fig. A.2, we can write

the evolution of the system in terms of Hamiltonian:

H =H0,aa/bb +Hint +HCoul (A.17)

where H0,aa/bb = Ea/b denotes the atomic Hamiltonian, Hint denotes the interaction

Hamiltonian of particles with electronic fields in the system in this semiclassical

treatment, and HCoul represents Coulomb interactions between particles in the

system. To begin we will set this Coulomb term equal to zero. We can then use the
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electric dipole approximation to describe the interaction part of the Hamiltonian:

Hint = −℘E(t) (A.18)

where E(t) is the incident field, ℘ is expectation value of the dipole moment matrix

element µ = −e
〈
i|x|j

〉
, i and j represent states for the particles in the system, and x

is the position operator.

We also assume that the diagonal parts of the dipole moment operator are

zero so that µaa = µbb = 0 and hence Hint,aa = Hint,bb = 0. If the wave function for a

particle in this system is expanded in terms of its ”pure” states, a and b such that

its wave vector, Φ = caφa + cbφb. The system can then be described by a density

matrix given by:

ρ =

 ρaa ρab

ρba ρbb

 (A.19)

where ρij = cicj and ρab = ρ∗ba. This density matrix has an equation of motion given

by the Von Neuman equation:

ı~
∂ρ

∂t
= [H,ρ] (A.20)

where the right hand term denotes the commutator of the Hamiltonian and the

density matrix. Solving for the equations of motions:

ρ̇ba = −ıωbaρba +
ı
~

℘E(t)(ρbb − ρaa) (A.21)

ρ̇bb =
ı
~

(℘E∗(t)ρab − ρba℘E(t)) (A.22)

ρ̇aa =
ı
~

(℘E(t)ρbb − ρab℘E∗(t)) (A.23)

Adding in the decay terms shown in Fig. A.2 phenomenologically, this becomes:

ρ̇ba = −(ıωba +γ)ρba −
ı
~

℘E(t)(ρbb − ρaa) (A.24)

ρ̇bb = −γbρbb −
ı
~

(℘E∗(t)ρab −℘E(t)ρba) (A.25)

ρ̇aa = γaρaa +
ı
~

(℘E(t)ρba −℘E∗(t)ρab) (A.26)

In general, analytical solutions to Eq. A.24 - Eq. A.26 are not possible.

However, solutions can be derived using conventional time-dependent perturba-

tion theory. If ℘E∗(t) is small, we can expand the density matrix in powers of



103

perturbation such that:

ρba = ρ
(0)
ba + ρ(1)

ba + ρ(2)
ba + . . . (A.27)

ρbb = ρ
(0)
bb + ρ(1)

bb + ρ(2)
bb + . . . (A.28)

ρaa = ρ
(0)
aa + ρ(1)

aa + ρ(2)
aa + . . . (A.29)

where the superscripts terms indicate the power of the incident field multiplying

the term.

ρ̇ba = −(ıωba +γ)ρba −
ı
~

℘E(t)(ρbb − ρaa) (A.30)

ρ̇bb = −γbρbb −
ı
~

(℘E∗(t)ρab −℘E(t)ρba) (A.31)

ρ̇aa = γaρaa +
ı
~

(℘E(t)ρba −℘E∗(t)ρab) (A.32)

To begin, we assume an initially unexcited system such that ρ(0)
aa = 1 , ρ(0)

bb = 0, and

ρ
(0)
ab = 0. Substituting these back into the density matrix equations for terms where

no field is multiplying the incident field, we find:

ρ̇
(1)
ba =

ı
~

℘E(t) (A.33)

ρ̇
(1)
bb = −γbρ

(1)
bb (A.34)

ρ̇
(1)
aa = γaρ

(1)
aa (A.35)

At this point, an expression for the input field is necessary in order to progress.

Although one can use arbitrary fields and numerical integration techniques, we

instead use the simple case of cw-fields propagating in the z-direction to continue

here, such that E(t) = 1
2(ESe

ı(ωSt−kSz) + c.c + ECe
ı(ωCt−kCz)+c.c., where ES and EC

represent the amplitudes of the signal and control fields, and ωS,C and kS,C their

respective amplitudes. Using these fields, the integrals can be formally solved and

the first order solutions to the density matrix equations written:

ρ
(1)
ba =

1
~

℘E(t)
(ωx +ωS) + ıγ

(A.36)

ρ
(1)
bb = 0 (A.37)

ρ
(1)
aa = 0 (A.38)

The (ρbb − ρaa) term in Eq. A.24 leads to the phase-space filling nonlinear
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contributions referred to in the text (i.e. the populations of the levels interact to

produce a nonlinear response).

When Coulomb effects are considered, they give rise to terms from the

interaction of two different dipoles in the system. As such they are, in the exciton

picture, two particles interactions (4 particles if holes and electrons are considered

separately) and difficult to put into such a model. However, in the Hartree-Fock,

local field approximation we can write these interactions in terms of an additional

optical local field added to the system such that E(t)→ Ẽ(t) = E(t) +ELF(t).

The polarization of the individual well can then be found using Eq. A.39 and

the optical fields applied by taking:

p2D
m (t) = |φ̃2D(0)|2(ρab℘

∗ + ρba℘) (A.39)

Using the expression for ρ(1) given in Eq. A.38 in Eq. A.39, and solving for

p
(1,2D)
m (ω) = ε0χ

(1,2D)(ω)E(ω), one finds:

χ(1,2D)(ω) =
|φ̃2D(0)|2|℘|2

ε0~

1
(ω −ωx)− ıγ

(A.40)

for the first order susceptibility of a simple two-level resonance.

Higher order terms can be found by substituting this expression into the

next higher order density matrix equations, and iterating to find the desired

order. Local field effects can also be incorporated into the model by modifying

the incident field such that:

~E(ω)→ ~E(ω) + ~ELF(ω) = ~E(ω) +LLF~P (A.41)

where LLF is a constant known as the local field parameter.

Similarly, EID effects can also be included through an additional EID

parameter. Expanding the dephasing of the system in terms of the density of
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excited excitons:

γ(Ne) = γ0 +Ne
∂γ

∂Ne
+ . . . (A.42)

≈ γ0 + φ̃(0)
∂γ

∂Ne
(ρbb − ρaa) (A.43)

= γ0 +
η

2~
(ρbb − ρaa) (A.44)

where η = 2~φ̃(0)(∂γ/∂Ne) is an adjustable parameter known as EID parameter.

The inclusion of these terms results in a red shift of the exciton resonance, even

at linear excitation levels, as well as additional terms appearing in 2nd and 3rd

order terms, multiplied by the local field parameter. For example, the third order

polarization including these parameters can be written:

ρ
(3)
ab =

ı
~

U t

−∞
℘~E(ρ(2)

b b − ρ
(2)
a a)e(ıω+γ)(t′−t) dt′ (A.45)

− ıξ
~

U t

−∞
ρ

(1)
ab (ρ(2)

b b − ρ
(2)
a a)e(ıω+γ)(t′−t) dt′ (A.46)

−
η

~

U t

−∞
ρ

(1)
ab (ρ(2)

b b+ ρ(2)
a a)e(ıω+γ)(t′−t) dt′ (A.47)

where ξ = 2|℘|2φ̃(0)LLF is a modified version of the local field parameter.

A similar derivation of the Bloch equations for Semiconductor systems

including excitons is given in Ref. [126], but is based on a microscopic formulation

and allows particles with distinct wavevectors.
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APPENDIX B
TRANSFER MATRIX SOLUTIONS FOR THE PHOTONIC BANDSTRUCTURE

AND REFLECTIVITY OF BSQWS

Continuing a review of derivation done by Yang et. al. in Ref. [38], starting with

Eq. 2.19, the transfer matrix for a single quantum well unit cell:

M =

 α(1 + β) 1
αβ

αβ 1
α (1− β)

 (B.48)

where α = eıka, β = ıωχ2D(ω)/2nbc, χ2D(ω) = |φ̃
2D(0)|2℘2

ε0~
1

ω−ωX−ıγ is the susceptibility

of the exciton, k = nbω/c is the wave vector of the photon (assumed here to be in

the z-direction), a is the width of a single quantum well/barrier unit (this contains

the Bragg frequency a = cπ/nbωB), and ωX is (in the case of BSQWs) the frequency

of the exciton resonance. In this expression for the susceptibility, ℘ is the dipole

moment of the exciton, φ̃2D(~r) is the 1s-exciton 2D-wavefunction at an electron-

hole separation given by ~r, nb is the background refractive index of the system,

and γ is the polarization dephasing rate of the system. Eigenvalues of the system

can be solved for:

M

 E
+
N

E−N

 = λ±

 E
+
N

E−N

 . (B.49)

Solving this equation gives:

λ± = eık±a =
α(1 + β) + (1/α(1− β)±

√
[α(1 + β) + (1/α)(1− β)]2 − 4
2

(B.50)

These two eigenvalues can then be combined to describe the dispersion

relation for photons in the crystal:

cos(ka) = cos(qa) +
Γ

(ω+ ıγ)−ωX

(
ω
ωX

)
sin(qa) (B.51)

where Γ = |φ̃(0)2D|2|℘|2ωX
2nbε0~c

is the radiative decay rate of the transition.

Alternatively, expanding the transfer matrix equation in terms of these

eigenvalues and their associated eigenvectors: ET0
 =MN

 E0

ER

 =MN [c+W+ + c−W−] = c+λ
N
+

 v+

u+

+ c−λ
N
−

 v−u−
 (B.52)
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where N is the number of wells present, W± (with components v± and u±) are

the eigenvectors of the matrix, and c± are the coefficients associated with each

eigenvector. Setting E+
N (no light is incident from the right), the coefficient can be

simplified (c−/c+ = −λN− v+/λ
N
− v−).

Eigenvectors can be solved for directly, as was done originally by Kosbukin

[128], or using a slightly more elegant formalism as done by Ivchenko [44]. In

Ivchenko’s solution the transfer matrix was rewritten in terms of Pauli matrices,

and a generating function is used to find each power of M. Solving for the

eigenvalues, one can find an expression forMN . Ivchenko [44] and Yang et. al. [38]

differ slightly in their definition of the transfer matrix, but the two are equivalent

if the substitutions r = β
1−β and t = 1

1−β are used. The reflection can then be written:

rN =
m12

m22
=
−Nβ

1−Nβ
=

−ıN Γ
ω −ωX − ı(γ +N Γ )

(B.53)

where N is the number of quantum wells in the system.

This expression for the reflection of the structure falls apart when the

number of quantum wells grows large [46, 129]. The reasons for this lie further

back in the analysis, when microscopic currents were incorporated into the

susceptibility in Maxwell’s equations. The microscopic quantities in Maxwell’s

equations were essentially averaged over an area that is ”macroscopically small,

but microscopically large” [129, 130]. In a non-local response theory, the currents

and fields created by excited particles in the system are taken into account on a

microscopic scale, and allowed to interact with other charges in the system. The

result is typically a small shift and broadening of the resonance. However, in the

case of BSQWs with large numbers of wells, both the shift and broadening take

on a significant spectral dependence on ω, resulting in the removal of what is

typically called the ”super-radiant” mode of the Bragg-structure, and its spectral

evolution into a top-hat shape.
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