
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2010

Noncommutative Hardy algebras, multipliers, and
quotients
Jonas R. Meyer
University of Iowa

Copyright 2010 Jonas R Meyer

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/712

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mathematics Commons

Recommended Citation
Meyer, Jonas R.. "Noncommutative Hardy algebras, multipliers, and quotients." PhD (Doctor of Philosophy) thesis, University of
Iowa, 2010.
http://ir.uiowa.edu/etd/712.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ir.uiowa.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages


NONCOMMUTATIVE HARDY ALGEBRAS, MULTIPLIERS, AND
QUOTIENTS

by

Jonas R. Meyer

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree

in Mathematics in
the Graduate College of
The University of Iowa

July 2010

Thesis Supervisor: Professor Paul Muhly



1

ABSTRACT

The principal objects of study in this thesis are the noncommutative Hardy

algebras introduced by Muhly and Solel in 2004, also called simply “Hardy alge-

bras,” and their quotients by ultraweakly closed ideals. The Hardy algebras form

a class of nonselfadjoint dual operator algebras that generalize the classical Hardy

algebra, the noncommutative analytic Toeplitz algebras introduced by Popescu in

1991, and other classes of operator algebras studied in the literature.

It is known that a quotient of a noncommutative analytic Toeplitz algebra by

a weakly closed ideal can be represented completely isometrically as the compres-

sion of the algebra to the complement of the range of the ideal, but there is no

known general extension of this result to Hardy algebras. An analogous problem

on representing quotients of Hardy algebras as compressions of images of induced

representations is considered in Chapter 2. Using Muhly and Solel’s generalization

of Beurling’s theorem together with factorizations of weakly continuous linear func-

tionals on infinite multiplicity operator spaces, it is shown that compressing onto

the complement of the range of an ultraweakly closed ideal in the space of an infi-

nite multiplicity induced representation yields a completely isometric isomorphism

of the quotient.

A generalization of Pick’s interpolation theorem for elements of Hardy algebras

evaluated on their spaces of representations was proved by Muhly and Solel. In

Chapter 3, a general theory of reproducing kernel W ∗-correspondences and their

multipliers is developed, generalizing much of the classical theory of reproducing

kernel Hilbert space. As an application, it is shown using the generalization of Pick’s

theorem that the function space representation of a Hardy algebra is isometrically

isomorphic (with its quotient norm) to the multiplier algebra of a reproducing kernel
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W ∗-correspondence constructed from a generalization of the Szegő kernel on the unit

disk. In Chapter 4, properties of polynomial approximation and analyticity of these

functions are studied, with special attention given to the noncommutative analytic

Toeplitz algebras.

In the final chapter, the canonical curvatures for a class of Hermitian holo-

morphic vector bundles associated with a C∗-correspondence are computed. The

Hermitian metrics are closely related to the generalized Szegő kernels, and when

specialized to the disk, the bundle is the Cowen-Douglas bundle associated with the

backward shift operator.
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CHAPTER 1

INTRODUCTION, BACKGROUND, AND PRELIMINARIES

The noncommutative Hardy algebras introduced by Muhly and Solel [31] form

a class of nonselfadjoint dual operator algebras generalizing many other classes in

the literature, including the classical Hardy algebra, the noncommutative analytic

Toeplitz algebras introduced by Popescu [37], analytic crossed products, and oper-

ator path algebras. This thesis is largely concerned with studying the quotients of

these algebras by ultraweakly closed ideals.

In Chapter 2, an analogue of a result obtained independently by Davidson and

Pitts [12] and by Arias and Popescu [2] on realizing quotients of noncommutative

analytic Toeplitz algebras as compressions is derived in the setting of quotients of

Hardy algebras by arbitrary ultraweakly closed ideals. The result relies on repre-

senting the algebra on what is called an induced representation space, such that the

resulting algebra has infinite multiplicity.

In Chapter 3, a theory of reproducing kernel W ∗-modules and W ∗-corre-

spondences is developed, together with an extension of the classical theory of multi-

pliers of reproducing kernel Hilbert spaces. The results are applied to the function

space representations of the Hardy algebras introduced in [31] to realize such spaces

isometrically isomorphically as multiplier algebras of reproducing kernel correspon-

dences associated with generalizations of the Szegő kernel on the unit disk. The

results of Paschke and Rieffel on self-dual modules are key to the development.

Further study of these algebras of functions and the corresponding ideals is

taken up in Chapter 4. A notion of “polynomial approximation” for these ideals is

studied, followed by some discussion of the holomorphic mapping properties of the

functions. It is shown how the theory of polynomial identities in ring theory re-

lates to the function space representations of the noncommutative analytic Toeplitz
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algebras.

Chapter 5 describes a Hermitian holomorphic vector bundle that is associated

with a dual correspondence, and whose Hermitian metric is closely related to the

Szegő kernel. The canonical connection and curvature are given, along with a couple

of simple special cases.

Further introduction and motivation for the problems considered are given

in the individual chapters. In the remainder of this chapter some of the basic

objects are defined and some preliminary notation and results are laid out. Most

of these results can be found in the following works, and often only a citation of a

standard reference is provided. Some basic references for the theory of selfadjoint

operator algebras are [15], [14], [9], and [44]. Some of the nonselfadjoint theory

included in [9] will also be useful. For Hilbert C∗-modules, the basic references are

[24] and [26]. While much of the theory from Paschke’s article [35] can now be

found in [26], on several occasions it will be useful to refer to the original. For the

bimodules considered here, referred to below as “correspondences,” good references

for the basics are [40], [4], and [30]. For background on the Fock modules and the

noncommutative tensor and Hardy algebras of a correspondence, the main references

are [27], [28], and [31].

Much of the theory below is developed for both C∗-algebras and W ∗-algebras,

but it is the W ∗ setting that will be most prevalent in subsequent chapters. A

C∗-algebra is, briefly, a Banach ∗-algebra satisfying the identity ‖x∗x‖ = ‖x‖2.

It is assumed that the reader is familiar with some of the basic properties and

definitions concerning their theory, including the fundamentals of ∗-representations

and positive elements. The terminology used here and throughout is that a W ∗-

algebra is an abstract C∗-algebra with a Banach predual, using Sakai’s abstract

characterization of von Neumann algebras. The term von Neumann algebra is

thus reserved for “concrete” W ∗-algebras. That is, a von Neumann algebra is an
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ultraweakly closed, selfadjoint, nondegenerate subalgebra of the algebra of bounded

operators on a Hilbert space. Sakai’s theorem says that if M is a W ∗-algebra, then

M has a faithful normal representation π : M → B(H) on some Hilbert space

H [44, Theorem 1.16.7]. The adjective “normal” can be taken to mean weak-∗

continuous, and it can also be characterized in terms of preserving least upper

bounds of bounded increasing nets of selfadjoint elements. The image π(M) is a

von Neumann algebra, and π is a homeomorphism from the weak-∗ topology on

M to the ultraweak topology on π(M). The weak-∗ topology on M is also called

its ultraweak topology, and the predual M∗ is isometrically identified as the space

of normal linear functionals on M (where here “normal” again means ultraweakly

continuous). When N and M are W ∗-algebras, B∗(N,M) will denote the space of

bounded linear maps that are continuous with respect to the ultraweak topologies

on N and M . Note that if N is finite dimensional, then B∗(N,M) = B(N,M),

because the weak-∗ and norm topologies on N coincide.

Given a C∗-algebra A, an inner product module over A is first of all a right

A-module E. This means, as usual for modules over algebras, that E is a complex

vector space and the module action E ×A→ E is bilinear in addition to satisfying

the identity (xa)b = x(ab) for all x ∈ E, a, b ∈ A. Secondly, there is an A-valued

inner product 〈·, ·〉 on E ×E, such that the following conditions are satisfied for all

x, y, z ∈ E, λ ∈ C, and a ∈ A.

1. Linearity in the second variable:

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,

〈x, λy〉 = λ〈x, y〉, and

〈x, ya〉 = 〈x, y〉a;

2. Hermitian symmetry: 〈x, y〉 = 〈y, x〉∗;

3. Positivity: 〈x, x〉 ≥ 0; and
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4. Definiteness: 〈x, x〉 = 0 implies x = 0.

If E is an inner product module over A, then a norm on E is defined by ‖x‖ =

‖〈x, x〉‖1/2. If E is complete with respect to this norm, then E is called a Hilbert

C∗-module over A. If E satisfies all of the conditions of an inner product module

except possibly definiteness, then E is called a pre-inner product module over A,

and E is a semi-normed space. Note that the map (x, a) 7→ xa from E ×A to E is

continuous, due to the inequality ‖xa‖ ≤ ‖x‖‖a‖. When several Hilbert C∗-modules

are being considered, the inner product of E will sometimes be denoted 〈·, ·〉E to

remove possible ambiguity.

Lemma 1 (Cauchy-Schwarz inequality). Let E be a pre-inner product module over

A. For all x and y in E, 〈y, x〉〈x, y〉 ≤ ‖x‖2〈y, y〉, and consequently ‖〈x, y〉‖ ≤

‖x‖‖y‖.

Proofs can be found in all of the references on Hilbert C∗-modules mentioned

above, for example [24, Proposition 1.1]. One of the important uses of this inequality

is in constructing a Hilbert C∗-module from a pre-inner product module. It implies

that N = {x ∈ E : 〈x, x〉 = 0} is a submodule of E and that the pre-inner product

of E induces an inner product on the quotient E/N , which can in turn be completed

to a Hilbert C∗-module [24, pages 3-4].

Example 2. The most basic (nontrivial) example of a Hilbert C∗-module over a

C∗-algebra A is A itself, with module action given by ordinary multiplication in A,

and with 〈a, b〉 = a∗b. This module plays a fundamental role in much of theory,

because if E is another inner product module over A, then it is often necessary to

consider A-module maps from E to A. The Hilbert C∗-submodules of A are the

closed right ideals.

The dual module of an inner product module E over A is denoted E ′, and

defined to be the set of all bounded A-module maps from E to A. It is, as the

name indicates, also given a module structure over A. The actions of C and A on
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E ′ are defined by (λf)(x) = λf(x) and (fa)(x) = a∗f(x) for λ ∈ C, f ∈ E ′, a ∈ A,

and x ∈ E. The reason for these choices is that they allow a canonical imbedding

of E into E ′ to be linear rather than conjugate linear, just as in the Hilbert space

setting. Given x ∈ E, define x̃ ∈ E ′ by x̃(y) = 〈x, y〉. If A is a W ∗-algebra, then

E ′ can be given an inner product that extends the inner product of E, and with

which it is a Hilbert C∗-module over A. The operator norm and the norm coming

from the inner product coincide, and with its Banach space structure E ′ is a Banach

dual space. Its weak-∗ topology will be discussed below, but for now it should be

noted that the inner product on E ′ is uniquely determined by its weak-∗ continuity

in each variable together with the condition that it extends the inner product of E,

i.e., 〈x̃, ỹ〉E′ = 〈x, y〉E for all x and y in E. A Hilbert C∗-module is called self-dual

if the map x 7→ x̃ is onto. For more details and proofs of everything mentioned in

this paragraph, see [35] or [26].

Unlike in the Hilbert space case, not all bounded linear maps on a Hilbert C∗-

module are adjointable. The condition that a bounded linear map also be a module

map is still not enough in general. Let E and F be Hilbert C∗-modules over A, and

let T : E → F be a map. Then T is called adjointable if there is a map T ∗ : F → E

such that for all x ∈ E and y ∈ F , 〈y, Tx〉F = 〈T ∗y, x〉E. An adjointable map is

automatically a bounded module map [24, page 8]. The set of all adjointable maps

from E to F is denoted L(E,F ), and the set of all bounded A-module maps from E

to F is denoted BA(E,F ). With the operator norm, BA(E,F ) is a Banach space,

and L(E,F ) is a closed subspace and thus also a Banach space. If E and F are

self-dual modules, then L(E,F ) = BA(E,F ) (and in fact it is enough for E to be

self-dual [35, Proposition 3.4]).

The set of adjointable maps L(E) = L(E,E) on a Hilbert C∗-module E forms

a C∗-algebra [24, page 8]. If E is a self-dual Hilbert C∗-module over a W ∗-algebra

M , L(E) is also a W ∗-algebra. In this case E is called a self-dual W ∗-module.



6

The dual space structure on L(E) is described using the “conjugate Banach space”

Ẽ, which is equal to E as a set and has the same additive structure and norm,

but with scalar multiplication given by λ · x = λx. Each T in L(E) determines a

functional T̃ on the projective Banach space tensor product M∗ ⊗ Ẽ ⊗E satisfying

T̃ (f ⊗ x ⊗ y) = f(〈x, Ty〉) on simple tensors. The map T 7→ T̃ is an isometric

imbedding of L(E) onto a weak-∗ closed subspace of (M∗⊗Ẽ⊗E)∗ [35, Proposition

3.10], thus showing that L(E) is the dual space of a quotient of M∗ ⊗ Ẽ ⊗ E by

standard duality results for Banach spaces [42, Theorems 4.7 and 4.8]. The following

simple consequence will be used in a subsequent chapter.

Lemma 3. Let E be a self-dual W ∗-module over M , and let x and y be elements

of E. Then the map θ : T 7→ 〈x, Ty〉 from L(E) to M is continuous with respect to

the ultraweak topologies on L(E) and M . That is, θ is in B∗(L(E),M).

Proof. From the discussion above of the dual space structure on L(E), it is im-

mediate that for each f ∈ M∗, f ◦ θ is in L(E)∗. Thus if {Ti} is a net in L(E)

that converges ultraweakly to T , then {f(θ(Ti))} converges to f(θ(T )). Since the

ultraweak topology on M is the coarsest topology that makes every element of M∗

continuous, it follows that {θ(Ti)} converges ultraweakly to θ(T ) in M .

While the following result appears to be standard, a precise reference is elusive,

and thus a proof is sketched for convenience.

Lemma 4. Let N and M be W ∗-algebras. Then B∗(N,M) is norm closed in

B(N,M).

Proof. Let {Tk} be a sequence in B∗(N,M) that converges in norm to T ∈ B(N,M).

Then for all f ∈M∗, {f ◦ Tk} converges in norm to f ◦ T . Each f ◦ Tk is in N∗, and

it follows that f ◦ T is in N∗ because N∗ is norm closed in N∗. The rest follows as

in the proof of the preceding lemma.

Let E be a self-dual W ∗-module over M . As mentioned above, E is a dual



7

Banach space. This was proved by Paschke by showing that E can be isometrically

imbedded as a weak-∗ closed subspace of the dual of the projective Banach space

tensor product M∗⊗ Ẽ [35, Proposition 3.8]. Following Baillet et al. [4], the weak-∗

topology on E that comes from this duality is called the σ topology. A net {xi} in

E converges to x ∈ E in the σ topology if and only if for each pair of sequences

{fk} ⊂ M∗ and {yk} ⊂ E such that
∑

k ‖fk‖‖yk‖ < ∞, the net {
∑

k fk(〈yk, xi〉)}

converges to
∑

k fk(〈yk, x〉). In particular, it follows by an argument similar to the

proof of Lemma 3 that for each x ∈ E, 〈x, ·〉 is continuous from the σ topology on

E to the ultraweak topology on M .

If E is an inner product module over a W ∗-algebra M , then E ′ is a self-dual

W ∗-module over M [35, Theorem 3.2]. The canonical imbedding of E into E ′ maps

onto a σ dense subset [4, Lemma 1.5], and E ′ is called the self-dual completion of

E. It follows that a σ closed submodule of a self-dual W ∗-module is self-dual. This

all makes the following lemma straightforward, and it will be useful in subsequent

chapters.

Lemma 5. Let E be a self-dual W ∗-module over M , and let S be a subset of E.

The following are equivalent:

1. The self-dual M-submodule of E generated by S is E.

2. The M-submodule of E generated by S is σ dense in E.

3. If x ∈ E is orthogonal to every element of S, then x = 0.

Proof. Assume 1 and let E0 denote the M -submodule of E generated by S. Let F

denote the σ closure of E0 in E. Then F is a self-dual M -submodule of E containing

S, and by 1 it follows that F = E, proving 2.

Now assume 2. By σ continuity of the maps 〈x, ·〉 on E, if 〈x, y〉 = 0 for all

y ∈ S, then 〈x, y〉 = 0 for all y in the σ closed submodule of E generated by S. By

hypothesis, this means 〈x, y〉 = 0 for all y ∈ E. In particular 〈x, x〉 = 0, and thus
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x = 0, proving 3.

Finally, it is shown that 3 implies 1 by contraposition. Suppose that the self-

dual M -submodule F of E generated by S is not equal to E. By self-duality of F ,

E is the orthogonal direct sum E = F ⊕ F⊥ [26, Proposition 2.5.4]. It follows that

0 6= F⊥ ⊆ S⊥.

Definition 6. A subset S of a self-dual W ∗-module E satisfying the equivalent

conditions of Lemma 5 is called a total subset of E.

It has already been mentioned that bounded module maps on self-dual mod-

ules are automatically adjointable. Fortunately, bounded module maps between

arbitrary inner product modules over a W ∗-algebra behave well with respect to self-

dual completions, as seen in the following result of Paschke [35, Proposition 3.6 and

Corollary 3.7].

Proposition 7. Let E and F be inner-product modules over a W ∗-algebra M , and

let T : E → F be a bounded module map. Then T has a unique extension to a

bounded module map T̃ : E ′ → F ′, and ‖T̃‖ = ‖T‖. If E = F , then the map

T 7→ T̃ , restricted to the algebra of adjointable operators on E, is a (faithful) ∗-

homomorphism from L(E) to L(E ′).

If E is a Hilbert C∗-module over B, and A is another C∗-algebra, then E is

called a C∗-correspondence from A to B if E is also a left A-module such that the

left action is determined by a ∗-homomorphism ϕ : A → L(E). In the case when

A = B, E is called a C∗-correspondence over A. If N and M are W ∗-algebras and E

is a Hilbert C∗-correspondence from N to M , then E is called a W ∗-correspondence

from N to M if in addition E is a self-dual module over M and the left action of

N , ϕ : N → L(E), is normal.

A key feature of C∗ and W ∗-correspondences is the internal tensor product.

If E is a C∗-correspondence from A to B with left action ϕ, and F is a C∗-

correspondence from B to C with left action ψ, then on the algebraic tensor product
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E ⊗alg F one forms a C-valued pre-inner product satisfying 〈x1 ⊗ y1, x2 ⊗ y2〉 =

〈y1, ψ(〈x1, x2〉)y2〉 on simple tensors. The usual completion process yields the inter-

nal Hilbert C∗-module tensor product of E and F , denoted E⊗F or E⊗ψF , which

is a C∗-correspondence from A to C with left action ϕ(·) ⊗ IF . In the case where

A and B are W ∗-algebras, taking the self-dual completion yields the self-dual ten-

sor product, denoted by E ⊗ F or E ⊗ψ F , which is a W ∗-correspondence from A

to C. The subscript ψ is used when it is important to emphasize what action is

being “tensored over,” and the ordinary Hilbert C∗-module tensor product is given

the extra adornment because self-dual tensor products will appear more frequently

below. In the special case when C = C, that is, when F is a Hilbert space together

with a representation ψ of B on F , then E⊗ψF is sometimes called an induced rep-

resentation space, and E is said to “induce” the representation ϕ(·)⊗IF of A on the

Hilbert space E⊗ψ F from the representation ψ of B.1 The induced representation

of L(E) will be denoted ψE, so that ψE ◦ ϕ = ϕ(·)⊗ IF .

The following result, due to Rieffel, is an extension of Paschke’s result on

self-dual completions to accommodate normal left actions [40, Proposition 6.10].

Proposition 8. Let N and M be W ∗-algebras, and let E be a C∗-correspondence

from N to M satisfying the additional condition that for all x and y in E, the map

a 7→ 〈x, a · y〉 is in B∗(N,M). Then the left action of N extends uniquely to a

normal action on the self-dual completion E ′ of E, making E ′ a W ∗-correspondence

from N to M .

Paschke developed a notion of self-dual direct sums of Hilbert C∗-modules over

a W ∗-algebra. Manuilov and Troitsky point out that these sums can be obtained as

self-dual completions of ordinary Hilbert C∗-module direct sums [26, page 63], but

the more explicit description of Paschke will be useful below, and thus it is included

here.

1The terminology comes from Rieffel [39], who used this construction to generalize Mackey’s
theory of induced representations of groups.
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Definition 9. Let {Ei}i∈I be a family of self-dual W ∗-modules over M . Then

the ultraweak direct sum of {Ei}i∈I is the subset X of the Cartesian product of

{Ei}i∈I such that {xi} is in X if and only if there is a uniform bound on the norms

of the finite sums
∑

i∈F 〈xi, xi〉 as F ranges over all finite subsets of I. This is

equivalent to the ultraweak convergence of the sum
∑

i∈I〈xi, xi〉 in the sense of

convergence of the net of finite partial sums. The inner product on X is defined

by 〈{xi}, {yi}〉 =
∑

i〈xi, yi〉, where the sum converges ultraweakly in M . With

coordinatewise operations, X is a self-dual W ∗-module over M [35, pages 457-458].

This direct sum is denoted
⊕uw

i Ei, or simply
⊕

iEi when it is clear from context

that only self-dual modules are being considered.

The Fock module of a correspondence is fundamental to the definition of

the noncommutative Hardy algebra. Let E be a W ∗-correspondence over M with

(normal) left action ϕ : M → L(E). For k ∈ N let E⊗k denote the self-dual

kth internal tensor power of E over M , which is a W ∗-correspondence over M

with left action denoted ϕn. For k greater than 2, E⊗k is defined recursively by

E⊗k = E ⊗ E⊗(k−1). It is sometimes convenient to write E⊗0 = M , considered as

a W ∗-correspondence over M with left action given by left multiplication. Thus,

ϕ0(a) = La is the operator of left multiplication by a on M . The full Fock module

of E, denoted F(E), is defined to be the ultraweak direct sum of W ∗-modules

M ⊕E⊕E⊗2⊕· · · . The module F(E) is also a W ∗-correspondence over M , whose

left action of M is denoted ϕ∞ : M → L(F(E)). When thinking of elements of

L(F(E)) as having matrix decompositions relative to the summands in the definition

of F(E), ϕ∞(a) can be written as diag(La, ϕ(a), ϕ2(a), ϕ3(a), . . .).

The noncommutative tensor and Hardy algebras are constructed as algebras

of operators on F(E). For each ζ ∈ E, first let the operators T
(1)
ζ , T

(2)
ζ , T

(3)
ζ , . . . be

defined as follows. The map T
(1)
ζ : M → E sends a ∈M to ζa. For k > 1, the map

T
(k)
ζ : E⊗(k−1) → E⊗k sends η ∈ E⊗(k−1) to ζ ⊗ η. Straightforward computations
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show that each T
(k)
ζ is adjointable and has norm at most ‖ζ‖. Let Tζ ∈ L(F(E))

denote the operator that sends (a, η1, η2, . . .) to (0, T
(1)
ζ a, T

(2)
ζ η1, T

(3)
ζ η2) = (0, ζa, ζ⊗

η1, ζ ⊗ η2, . . .). Each Tζ is adjointable with ||Tζ || = ||ζ|| (because ‖T (1)
ζ ‖ = ‖ζ‖),

and Tζ is called a left creation operator on F(E). The tensor algebra of E, denoted

by T+(E), is the norm closed subalgebra of L(F(E)) generated by ϕ∞(M) and

{Tζ : ζ ∈ E}. The Hardy algebra of E, denoted by H∞(E), is defined to be the

ultraweak closure of T+(E) [31, pages 358-359].

The reason for the term “Hardy algebra” is that in the case when M = C

and E is a one dimensional Hilbert space, H∞(E) is completely isometrically iso-

morphic to the Hardy algebra H∞ of bounded holomorphic functions on the unit

disk in the complex plane. In fact, in this case H∞(E) is an ultraweakly closed,

unital, concrete operator algebra generated by a unilateral shift of multiplicity one,

which up to unitary equivalence may be thought of as “multiplication by z” on the

Hardy space H2 of holomorphic functions on the disk whose sequences of Taylor

series coefficients at 0 lie in `2. When H∞ is viewed as a concrete operator algebra

in this way, it is often called the analytic Toeplitz algebra. Allowing E to have

dimension greater than one then yields noncommutative “multivariable” analogues

of the Hardy algebra, which were introduced by Popescu [37], and dubbed noncom-

mutative analytic Toeplitz algebras by Davidson and Pitts [11]. Muhly and Solel

thus initiated a wide-ranging generalization by allowing E to be an arbitrary W ∗-

correspondence over an arbitrary W ∗-algebra M . While this generalization allows

for interesting new phenomena and applies to many classes of operator algebras

studied in the literature, it is remarkable that it is not so wide-ranging as to lose

many of the interesting properties of the classical case. Some examples of these

properties will be seen below, and the reader is referred to the work of Muhly and

Solel for more background and examples [31, 32, 33].

The dual correspondences of a W ∗-correspondence E over M , quite separate
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from the notion of dual modules discussed above, are of fundamental importance

in describing the representation theory of H∞(E), among other things. Let E be

a W ∗-correspondence over a W ∗-algebra M with left action given by a normal ∗-

homomorphism ϕ : M → L(E), and let σ : M → B(H) be a nondegenerate normal

∗-representation, making H a W ∗-correspondence from M to C. The σ dual of E is

defined to be the set Eσ of bounded left module maps from H to E ⊗σ H. That is,

Eσ = {T ∈ B(H,E⊗σH) : Tσ(a) = (ϕ(a)⊗ IH)T for all a ∈M}. The commutant

of σ(M), σ(M)′, is a von Neumann algebra, and Eσ is a W ∗-correspondence over

σ(M)′ (see [31, Proposition 3.2] and [40, Theorem 6.5]). The inner product and

module actions are defined as follows for S, T ∈ Eσ and X ∈ σ(M)′: 〈S, T 〉 = S∗T ,

X · S = (IE ⊗ X)S, and S · X = SX. The ∗-homomorphism from σ(M)′ to

L(Eσ) giving the left action will be denoted by ϕσ. If σ is faithful and ι denotes the

identity representation of σ(M)′, then Muhly and Solel showed that E is isomorphic

to the W ∗-correspondence (Eσ)ι over σ(M)′′ = σ(M) ∼= M [31, Theorem 3.6], which

among other things gives a concrete realization of W ∗-correspondences as spaces of

bounded intertwining operators of two normal representations of a W ∗-algebra (see

[40, Proposition 6.12] for another approach).

The set of adjoints of elements of Eσ is denoted Eσ∗. Each element z of the

unit ball2 of Eσ∗, denoted D(Eσ∗), determines an ultraweakly continuous completely

contractive represention of H∞(E) on H, often denoted σ × z. Here it will be

denoted ψz, and it is determined by the following properties. For each ζ ∈ E and

h ∈ H, ψz(Tζ)h = z(ζ ⊗ h), and ψz ◦ ϕ∞ = σ [31, Theorem 2.9 and Corollary

2.14]. By viewing each ψz as a point evaluation at z ∈ D(Eσ∗), a representation

of H∞(E) as a space of functions on D(Eσ∗) is obtained. For each F ∈ H∞(E),

let F̂ : D(Eσ∗) → B(H) be defined by F̂ (z) = ψz(F ). Let H∞(E, σ) be the range

of the map F 7→ F̂ , and let Γσ : H∞(E) → H∞(E, σ) be defined by Γσ(F ) = F̂ .

2The notation D(Eσ∗) is from Muhly and Solel [31] and is intended to be reminiscent of the
notation D for the unit disk in C.
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Thus H∞(E, σ) is an algebra of B(H)-valued functions on D(Eσ∗) with pointwise

operations, and Γσ is a homomorphism. Properties and some examples of these

algebras of functions will be explored in Chapters 3 and 4.

For each t in R there is an ultraweakly continuous completely isometric auto-

morphism γt of H∞(E) uniquely determined by the conditions that γt ◦ φ∞ = φ∞

and for each ζ ∈ E, γt(Tζ) = eitTζ . Thus {γt}t∈R is a (2π-periodic) one param-

eter group of automorphisms of H∞(E), called the gauge group. A subset of

H∞(E) that is invariant under each γt is called gauge invariant. For each non-

negative integer k, let Φk ∈ B(H∞(E)) be defined by the weak-∗ integral for-

mula Φk(F ) =
1

2π

∫ 2π

0

γt(F )e−iktdt. Then Φk is the projection onto the ultra-

weakly closed span of the set {Tζ1Tζ2 . . . Tζk |ζj ∈ E, 1 ≤ j ≤ k}, i.e., Φk is an

idempotent map of norm 1. Every gauge invariant ultraweakly closed subspace of

H∞(E) is also invariant under each Φk. Let Qk ∈ L(F(E)) denote the orthogo-

nal projection onto E⊗k. An alternative description of Φk is given by the formula

Φk(F ) =
∞∑
j=0

Qj+kFQj, F ∈ H∞(E). The element Φk(F ) of H∞(E) can be thought

of as the degree k term in the “Fourier series” of F , and F can be recovered from

the ultraweak Cesàro sum3 of its Fourier series:

F = uw- lim
k→∞

k−1∑
j=0

(
1− j

k

)
Φk(F ).

It will also be convenient to write Fk = Φk(F ). The results mentioned in this

paragraph are from [31, pages 365-366], and will be used in Chapter 4.

The following criteria for positivity of matrices over C∗-algebras are well

known. A proof of the first part can be found in [35, Proposition 6.1], and a

proof of the third part is in [24, Lemma 4.2].

Lemma 10. Let A be a C∗-algebra.

3One could also use Abel summation. To see why ordinary summation will not work in general,
consider the case of the classical Hardy algebra, H∞(D). The sequence of partial sums of the Taylor
series of a bounded analytic function f on the unit disk converges to f in the weak-∗ topology of
H∞(D) if and only if the sequence is bounded in the sup norm. Around a century ago Fejér gave
an example where this doesn’t happen [16],[25, Section 3].
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1. Let (bij) be an element of the C∗-algebra Mn(A). Then (bij) is positive if and

only if for all a1, . . . , an ∈ A, the sum
n∑

i,j=1

a∗i bijaj is positive in A.

2. A matrix P ∈ Mn(A) is positive if and only if P is a finite sum of matrices

of the form (a∗i aj).

3. If E is an inner product module over A and x1, x2, . . . , xn are elements of E,

then the matrix (〈xi, xj〉) is positive in Mn(A).

4. If P is positive in Mn(A), and if X is an n-by-m matrix over A, then X∗PX

is positive in Mm(A)

Proof sketches for 2 and 4. For 2, assume that P is positive, write P = S∗S, and

expand the right-hand side in terms of the rows of S. Conversely, sums of positive

elements are positive, and if R ∈ Mn(A) denotes the matrix that is zero below the

first row and whose first row has jth entry aj, then (a∗i aj) = R∗R

For 4, again write P = S∗S, so that X∗PX = (SX)∗SX. A way to see

that this is positive without working outside of C∗-algebras is by adding enough

zero rows and columns so that all matrices are max(m,n) by max(m,n), and then

compressing to the appropriate m-by-m corner if needed.
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CHAPTER 2

DISTANCE TO IDEALS: QUOTIENTS AS COMPRESSIONS ON
INDUCED REPRESENTATION SPACES

Arias and Popescu [2, Corollary 2.10] and (independently) Davidson and Pitts

[12, Corollary 2.2] showed that a quotient of a noncommutative analytic Toeplitz

algebra (in a finite or countably infinite number of variables) by an ultraweakly

closed ideal is completely isometrically isomorphic to the compression to the or-

thogonal complement of the range of the ideal in the Fock space. Muhly and Solel

[29, Theorem 2.9] proved an analogous result for quotients of tensor algebras by ide-

als satisfying certain hypotheses. Recently, Viselter extended the result of Muhly

and Solel to a larger class of ideals [46, Example 5.2]. Inspired by these results

and a desire to better understand quotients of Hardy algebras, this chapter pro-

vides a representation theorem for quotients of noncommutative Hardy algebras as

compressions on induced representation spaces.

Somewhat more precisely, it is shown that a quotient of a noncommutative

Hardy algebra by an ultraweakly closed ideal is realized completely isometrically as a

compression of the representation induced by an infinite multiplicity faithful normal

representation of the coefficient W ∗-algebra. The assumption of infinite multiplicity

is made because it allows factorization of functionals as vector functionals with good

estimates, which assists in proving the needed distance formula. The proof of the

distance formula is inspired by Davidson and Pitts’s proof cited above. While

writing the proof, I was informed that Maxim Gurevich at Technion had obtained

the same result, using similar methods, at about the same time.

A result of Muhly and Solel [28, Theorem 4.7], generalizing Beurling’s Theo-

rem to the setting of tensor algebras of correspondences, is an essential part of the

proof. The following adaptation of this result to noncommutative Hardy algebras
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is the precise version needed below.

Lemma 11. Let π : M → B(H) be a faithful normal ∗-representation of a W ∗-

algebra M , let E be a W ∗-correspondence over M , and let ρ : H∞(E) → B(F(E)⊗π

H) be the representation given by ρ(T ) = T ⊗ IH . If K ⊂ F(E) ⊗π H is a closed

invariant subspace for ρ(H∞(E)), then there are partial isometries {Vi}i∈I in the

commutant of ρ(H∞(E)) with pairwise orthogonal ranges whose sum is K.

Proof. Let σ : M → B(F(E) ⊗π H) be the (faithful, normal) representation given

by σ(a) = ϕ∞(a)⊗ IH . The map Φ : σ(M) → π(M) given by Φ(σ(a)) = π(a) is an

isomorphism of von Neumann algebras. It follows from the decomposition theorem

for such isomorphisms [14, Corollary 1, I.4.3; Theorem 3, I.4.4] that σ and π are

quasi-equivalent representations of M [15, Proposition 5.3.1]. In other words, π is

quasi-invariant with respect to E in the terminology of [28, Definition 4.4], and the

result follows from Muhly and Solel’s analogue of Beurling’s theorem [28, Theorem

4.7] upon noting that ρ(T+(E)) and ρ(H∞(E)) have the same commutant. This

holds because ρ is an ultraweak homeomorphism onto its range [31, Lemma 2.1]

and thus ρ(T+(E)) is ultraweakly dense in ρ(H∞(E)).

Remark 12. If V is a partial isometry in the commutant of ρ(H∞(E)) as in the

preceding lemma, then the initial projection V ∗V is also in the commutant [28,

Lemma 4.2].

For the remainder of this chapter, π : M → B(H) will denote a fixed faith-

ful, normal, infinite multiplicity representation of M . Let πF(E) : L(F(E)) →

B(F(E)⊗π H) denote the ∗-representation satisfying πF(E)(T )(x⊗ h) = (Tx)⊗ h

for all T in L(F(E)), x in F(E), and h in H. So πF(E)(T ) = T ⊗ IH . This is

an induced representation of L(F(E)) in the sense of Rieffel [39], as mentioned in

Chapter 1. For convenience let ρ denote the restriction of πF(E) to H∞(E). Muhly

and Solel showed1 [31, Lemma 2.1] that πF(E) is an ultraweak homeomorphism

1Muhly and Solel remark that the result is contained in Rieffel’s work [40], but their version is
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onto its range, so in particular ρ(H∞(E)) is ultraweakly closed and ultraweakly

homeomorphic to H∞(E).

Because π has infinite multiplicity, so does πF(E). In a little more detail,

there is a faithful, normal representation π0 of M on a Hilbert space H0 and a

separable infinite dimensional Hilbert space K such that H = H0 ⊗K and π(·) =

π0(·)⊗ IK . This yields a canonical identification of the Hilbert modules F(E)⊗πH

and (F(E) ⊗π0 H0) ⊗K over L(F(E)), so that πF(E) is an infinite multiple of the

induced representation π
F(E)
0 .

Let J be an ultraweakly closed two-sided ideal in H∞(E). Let NJ denote the

orthogonal complement of the range of ρ(J), i.e.,

NJ = (ρ(J)(F(E)⊗π H))⊥.

This notation will be fixed throughout the remainder of the chapter. The main

result of this chapter is as follows.

Theorem 13. Compression by PNJ
yields a completely isometric isomorphism of

H∞(E)/J onto PNJ
ρ(H∞(E))PNJ

. That is, the map T 7→ PNJ
ρ(T )PNJ

is an algebra

homomorphism of H∞(E) onto PNJ
ρ(H∞(E))PNJ

with kernel J , and the resulting

isomorphism Ṫ 7→ PNJ
ρ(T )PNJ

of H∞(E)/J onto PNJ
ρ(H∞(E))PNJ

is a complete

isometry.

The remainder of the chapter will build toward proving this theorem, begin-

ning with a series of remarks on some of its more straightforward aspects.

Remark 14. 1. The matrix norm structure on the quotient is the usual one in-

duced by the identification of Mk(H
∞(E)/J) with Mk(H

∞(E))/Mk(J), while

Mk(H
∞(E)) inherits the norm from the C∗-algebra Mk(L(E))

2. Because J is a left ideal, N⊥
J is an invariant subspace for ρ(H∞(E)). From this

it follows that the compression in the theorem is a homomorphism of H∞(E)

onto PNJ
ρ(H∞(E))PNJ

[9, Lemma 35.6], and that in fact PNJ
ρ(T )PNJ

=

cited because it is precisely the version used here.
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PNJ
ρ(T ) for all T ∈ H∞(E).

3. It is immediate that PNJ
ρ(T ) = 0 for all T ∈ J . This follows from the fact

that ρ(T )(x) is in N⊥
J for all x ∈ F(E) ⊗π H, by the definition of NJ . Thus

J is in the kernel as claimed.

4. The map is completely contractive, because ρ is completely isometric and

compressions are completely contractive.

5. Because ρ : H∞(E) → ρ(H∞(E)) is a completely isometric isomorphism, it

suffices to work exclusively with ρ(H∞(E)) and its ideal ρ(J).

6. All that remains to be shown is that for each m ∈ N and each matrix A ∈

Mm(H∞(E)), the norm of ρm(A) + Mm(ρ(J)) in Mm(ρ(H∞(E)))/Mm(ρ(J))

is no greater than ‖(PNJ
⊗ Im)ρm(A)‖. In particular, this implies that the

kernel of the map is precisely J .

One of the tools to be used in proving the inequality is “factorization” of

ultraweakly continuous linear functionals on ρ(H∞(E)). An ultraweakly closed

space S of operators on a Hilbert space H is said to have property An(1) if for

each ε > 0 and each ultraweakly continuous linear functional φ on Mn(S), there

are elements x and y of H(n), thought of as column vectors, such that ‖x‖‖y‖ <

(1 + ε)‖φ‖ and φ(A) = 〈x,Ay〉 for all A ∈ Mn(S). Thus S has property An(1) if

and only if Mn(S) has property A1(1). The same definition applies when n = ℵ0,

if Mn(S) is taken to mean S ⊗ B(`2). Of course, property Aℵ0(1) implies property

An(1) for all finite n. Further discussion of this topic can be found in [7, Chapter

2] and [9, Chapter 8]. The needed factorization result comes from the following

lemma.

Lemma 15. Let H be a Hilbert space. An infinite multiple of an ultraweakly closed

subspace of B(H) has property Aℵ0(1).
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Proof. Let S be an ultraweakly closed subspace of B(H). The fact that S(∞) has

property A1(1) follows from the fact that B(H)(∞) has property A1(1) [9, Proposi-

tion 59.6] and the fact that the predual of S(∞) is isometrically isomorphic to the

quotient of the predual of B(H)(∞) by the preannihilator of S(∞) [14, page 43]. If

L is a separable Hilbert space, then S(∞) ⊗ B(L) ∼= (S ⊗ B(L))(∞) via a unitarily

implemented isomorphism.2 This shows that S(∞)⊗B(L) is unitarily equivalent to

an infinite multiple of an ultraweakly closed subspace of B(H ⊗ L) and therefore

has property A1(1).

Corollary 16. With the setup as above, ρ(H∞(E)) has property Aℵ0(1).

The following lemma yields the final piece of the puzzle. It should be noted

that its proof does not require that J is a left ideal, a fact which may be useful in

further study of the right ideals of H∞(E).

Lemma 17. For each m ∈ N and each matrix A ∈Mm(ρ(H∞(E))),

‖ dist(A,Mm(ρ(J)))‖ ≤ ‖(PNJ
⊗ Im)A‖.

Proof. Let ε > 0 and suppose that ‖ dist(A,Mm(ρ(J)))‖ = 1. Then there is [19,

Lemma 2.4] an ultraweakly continuous linear functional φ on Mm(ρ(H∞(E))) that

annihilates Mm(ρ(J)) such that

1− ε < |φ(A)| ≤ ‖φ‖ = 1.

By Corollary 16, there are vectors η = (ηi)
m
i=1 and ζ = (ζi)

m
i=1 in (F(E) ⊗π

H)(m) (thought of as column space) such that φ(ρm(T )) = 〈ζ, ρm(T )η〉 for all

T ∈Mm(H∞(E)) and ‖η‖‖ζ‖ < 1 + ε.

Let N and N0 be the subspaces of F(E)⊗π H defined by

N =
m∑
i=1

ρ(H∞(E))ηi

and

N0 =
m∑
i=1

ρ(J)ηi.

2The tensor products here are spacial tensor products.
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Because N is an invariant subspace for ρ(H∞(E)), by Lemma 11 there are partial

isometries {Vi}i∈I in the commutant of ρ(H∞(E)) with pairwise orthogonal ranges

such that N =
∑⊕

i∈I Vi(F(E) ⊗π H). Using the facts that J is a right ideal and

ρ(J) commutes with each Vi,

N0 =
m∑
i=1

ρ(J)ηi =
m∑
i=1

ρ(J)ρ(H∞(E))ηi

= ρ(J)N

= ρ(J)
∑
i∈I

⊕Vi(F(E)⊗π H)

=
∑
i∈I

⊕Viρ(J)(F(E)⊗π H)

=
∑
i∈I

⊕ViN⊥
J .

It follows that N 	N0 =
∑

i⊕(Vi(F(E)⊗πH)	ViN⊥
J ) ⊆ ∩i(ViN⊥

J )⊥, so that3 for

each i ∈ I,

V ∗
i (N 	N0) ⊆ N⊥⊥

J = NJ . (2.1)

Let ζ ′ ∈ N (m) be the orthogonal projection of ζ onto N (m). Because N is

invariant for ρ(H∞(E)) and η is in N (m), for each T ∈ Mm(ρ(H∞(E))) it follows

that

φ(T ) = 〈ζ, Tη〉 = 〈ζ, PN (m)Tη〉 = 〈PN (m)ζ, Tη〉 = 〈ζ ′, T η〉. (2.2)

In particular, if T is in Mm(ρ(J)), then 〈ζ ′, T η〉 = 0, so ζ ′ is in (N 	 N0)
(m). For

each i, define ξi = V
∗(m)
i ζ ′ and νi = V

∗(m)
i η. Because {Vi}i∈I is a set of partial

isometries with pairwise orthogonal ranges that add up to N , and because ζ ′ and

3Observe that V ∗i (N 	N0) ⊆ V ∗i (∩j(VjN⊥
J )⊥) ⊆ ∩jV

∗
i ((VjN⊥

J )⊥) ⊆ V ∗i ((ViN⊥
J )⊥), and gen-

erally if X is an operator on a Hilbert space of which M is a subset, then X∗((XM)⊥) ⊆ M⊥.
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η are in N (m), it follows that

ζ ′ =
∑
i

⊕V (m)
i ξi,

η =
∑
i

⊕V (m)
i νi,

‖ζ ′‖ = (
∑
i

‖ξi‖2)1/2, and

‖η‖ = (
∑
i

‖νi‖2)1/2.

Define ψ to be the normal linear functional on Mm(B(F(E)⊗π H)) given by

ψ(T ) =
∑

i〈ξi, Tνi〉. Then

‖ψ‖ ≤
∑
i

‖ξi‖‖νi‖ ≤ (
∑
i

‖ξi‖2)1/2(
∑
i

‖νi‖2)1/2 = ‖ζ ′‖‖η‖ ≤ ‖ζ‖‖η‖ < 1 + ε,

and for T ∈Mm(ρ(H∞(E))),

φ(T ) = 〈ζ ′, T η〉

=

〈∑
i

⊕V (m)
i ξi, T

∑
j

⊕V (m)
j V

∗(m)
j η

〉
=
∑
i,j

〈ξi, V ∗(m)
i TV

(m)
j V

∗(m)
j η〉

=
∑
i,j

〈ξi, V ∗(m)
i V

(m)
j TV

∗(m)
j η〉

=
∑
i

〈ξi, V ∗(m)
i V

(m)
i TV

∗(m)
i η〉

=
∑
i

〈ξi, TV ∗(m)
i V

(m)
i V

∗(m)
i η〉

=
∑
i

〈ξi, TV ∗(m)
i η〉

=
∑
i

〈ξi, Tνi〉 = ψ(T ),

which shows that φ is the restriction of ψ to Mm(ρ(H∞(E))). The calculation

uses the fact that {V (m)
i }i∈I is a set of partial isometries in the commutant of

Mm(ρ(H∞(E))) with pairwise orthogonal ranges along with Remark 12.

By (2.1), each ξi is in N (m)
J , and therefore for all T , ψ(T ) = ψ(PN (m)

J
T ).

Putting this all together with A from above,

1− ε < |φ(A)| = |ψ(A)| = |ψ(PN (m)
J
A)| ≤ ‖ψ‖‖PN (m)

J
A‖ ≤ (1 + ε)‖PN (m)

J
A‖.
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Therefore ‖PN (m)
J
A‖ ≥ 1, which is what was claimed.
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CHAPTER 3

MULTIPLIERS OF REPRODUCING KERNEL W ∗-MODULES

This chapter concerns the theory of self-dual reproducing kernel W ∗-modules

and their multipliers. A major source of motivation is the Pick-like interpolation

theorem for H∞(E). The complex-valued theory of reproducing kernel Hilbert

spaces provides an operator theoretic framework for stating, proving, and gener-

alizing Pick’s theorem as a statement about multipliers of a reproducing kernel

Hilbert space. However, a general theory of multipliers for reproducing kernel W ∗-

correspondences appropriate for the Muhly and Solel setting is still in its infancy.

In the first section, some of the basic theory is generalized to the case where

the scalars are replaced with a von Neumann algebra M and the Hilbert spaces are

replaced with self-dual Hilbert C∗-modules over M . In the second and final section

of this chapter, the theory is extended to W ∗-correspondences, and connections to

Muhly and Solel’s theory are shown.

3.1 W ∗-algebra-valued kernels

Positive C∗-algebra-valued kernel functions and the corresponding reproduc-

ing kernel Hilbert C∗-modules have been been considered by several authors for

various applications [22, 21, 34, 20, 6, 5]. The kernels considered in [6] and [5] pro-

vide the most direct motivation for the development in this and the next section,

generalizing much of the classical theory of reproducing kernel Hilbert spaces [1].

This section provides what may be seen as the most straightforward generalization

to the C∗-algebra-valued setting, namely self-dual W ∗-modules with W ∗-algebra-

valued kernels, because these correspondences share more in common with Hilbert

spaces than do general Hilbert C∗-modules. More importantly, these are the tools

that will relate more directly to the representation theory of noncommutative Hardy

algebras in the next section.
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There is some overlap with the cited works. Namely, the definition of positive

kernel function and the correspondence between kernels and reproducing kernel

Hilbert C∗-modules goes back at least to Kakihara [22], and can be found in some

of the other references cited above. Among the new results presented in this section

are a generalization of the expression of a kernel in terms of an orthonormal basis,

and of the basic theory of multipliers. Most of the techniques in this section are

similar to those used in the classical setting, and results of Paschke on self-dual

modules are used to effect the generalizations.

Definition 18. Let Z be a set and let M be a W ∗-algebra. A function K : Z×Z →

M is called a positive M -valued kernel if for all n ∈ N and points z1, . . . , zn ∈ Z,

the matrix (K(zi, zj))
n
i,j=1 is positive in Mn(M).

In this section such kernels will be constructed from certain M -modules of

functions on Z, and conversely it will be shown that each positive kernel determines

such an M -module.

Definition 19. Let E be a self-dual W ∗-module over M whose elements are func-

tions from Z to M . Then E is called a reproducing kernel W ∗-module over M (or

reproducing kernel M-module) if each point evaluation on Z is a bounded module

map to M with its standard right module structure.

Remark 20. It should be emphasized that the assumption that elements of E are

functions means that equality of elements of E is the usual equality of functions.

In particular, if all point evaluations of an element f of E yield 0 ∈ M , then f is

the zero element of E. Because E is self-dual in the definition, the condition that

point evaluations are bounded module maps is equivalent to the condition that for

each z ∈ Z there is a kz ∈ E such that for all f ∈ E, f(z) = 〈kz, f〉. Regardless,

the condition that point evaluations are module maps is another way of saying

that the module operations are pointwise. That is, (f + g)(z) = f(z) + g(z) and

(f · a)(z) = f(z)a for all f, g ∈ E, a ∈M , and z ∈ Z.



25

The name “reproducing kernel” is given because to each reproducing kernel

W ∗-module EM on a set Z corresponds a positiveM -valued kernel that “reproduces”

values of functions in E, as will be made precise shortly.

Definition 21. Let E be a reproducing kernel M -module on a set Z, and for each

z ∈ Z let kz be the element of E such that for all f ∈ E, f(z) = 〈kz, f〉. Define

KE : Z × Z → M by KE(w, z) = 〈kw, kz〉. Then KE is called the kernel associated

with E.

Remark 22. 1. The kernel associated with a reproducing kernel M -module is

positive by part 3 of Lemma 10. Furthermore, it is immediate from the def-

inition that KE(·, z) ∈ E for each z ∈ Z, and for each f ∈ E and z ∈ Z,

f(z) = 〈KE(·, z), f〉. Thus the kernel function can be used to “reproduce” the

evaluations of the functions in E.

2. It will be useful in the following proposition to note that {kz : z ∈ Z} is a

total subset of E (see Lemma 5 and the subsequent definition). This follows

from the fact that taking the inner product with kz yields point evaluation

at z, and all point evaluations of an element f of E are 0 only if f is 0 (see

Remark 20).

Proposition 23. Let M be a W ∗-algebra, let Z be a set, and let K : Z × Z → M

be a positive kernel. Then there is a unique reproducing kernel M-module EK on Z

such that K is the kernel associated with EK; i.e., KEK
= K.

Proof. Let E00 be the free right M -module generated by the set {kz : z ∈ Z}. (It

will be seen below that kz represents the function K(·, z), but for now it is a formal

generator.) That is, E00 is the set of formal finite sums of terms of the form kza

with z ∈ Z and a ∈ M . An M -valued pre-inner product can be defined on E00

by
〈∑

i kwi
ai,
∑

j kzj
bj

〉
=
∑

i,j a
∗
iK(wi, zj)bj. By positivity of K, this definition

satisfies all of the properties of an M -valued inner product except perhaps that

〈x, x〉 = 0 may not imply that x = 0. In the usual way [24, pages 3-4], using
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the Cauchy-Schwarz inequality allows us to mod out by the zero length vectors to

obtain an inner product on the quotient and complete to a Hilbert C∗-module E0

over M .

Let E denote the self-dual completion of E0. For each z ∈ Z, the element

of E corresponding to kz after these completions will be denoted the same. Each

x ∈ E determines a function x̂ : Z → M by the formula x̂(z) = 〈kz, x〉, and

k̂w(z) = 〈kz, kw〉 = K(z, w) by construction. If x̂ vanishes on Z, then 〈kz, x〉 = 0

for all z ∈ Z, which by σ density of the M -module span of {kz : z ∈ Z} in E forces

x = 0 by Lemma 5. Thus E can be identified with the set of functions {x̂ : x ∈ E}.

Making this identification, and writing EK = E, it follows that EK is a reproducing

kernel M -module on Z with kernel KEK
= K.

Suppose that F is a reproducing kernel M -module on Z that also has kernel

K. Denoting by F00 the M -submodule of F spanned by {kz : z ∈ Z}, the map

from F00 to E0 defined by
∑

i kzi
ai 7→

∑
i kzi

ai is an isometric module map, and

thus extends to an isometric module map U from the norm closure F0 of F00 to

E0. Because the restriction of U to F00 already has dense range, U is onto, and

therefore adjointable [24, Theorem 3.5]. Given f ∈ F0, the computation (Uf)(z) =

〈kz, Uf〉E0 = 〈U∗kz, f〉F0 = 〈kz, f〉F0 = f(z) shows that U is the identity map on

F0 = E0. The self-dual module generated by F0 is F , and the self-dual module

generated by E0 is EK . Thus the identification F0 = E0 carries over to F = EK ,

including the same point evaluations because F and EK have the same kernel, which

proves the uniqueness.

Remark 24. It follows from the uniqueness in Proposition 23 that if E is a repro-

ducing kernel W ∗-module, then EKE
= E. To be explicit, the map K 7→ EK is

a bijection from the set of positive M -valued kernels on Z × Z onto the set of

reproducing kernel M -modules on Z, and E 7→ KE is its inverse.
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Paschke used analogues of orthonormal bases to give a convenient direct sum

decomposition of each self-dual Hilbert W ∗-module, and this will be used in the next

proposition. A subset {ei : i ∈ I} of a W ∗-module E will be called an orthonormal

basis for E if 〈ei, ei〉 is a nonzero projection for all i, 〈ei, ej〉 = 0 for all i 6= j,

and {ei : i ∈ I} is a maximal set with these properties. Using Zorn’s lemma

and an analogue of polar decomposition [35, Proposition 3.11] Paschke showed that

that every self-dual W ∗ module has an orthonormal basis [35, proof of Theorem

3.12]. The following result shows that the usual representation of a complex-valued

positive kernel function in terms of an orthonormal basis for the corresponding

reproducing kernel Hilbert space [1, Proposition 2.18] has a direct analogue in the

W ∗-algebra-valued setting.

Proposition 25. Let M be a W ∗-algebra, let Z be a set, let K : Z × Z → M be

a positive kernel, and let {ei : i ∈ I} be an orthonormal basis for EK. Then for

each w and z in Z, K(w, z) =
∑

i ei(w)ei(z)
∗, ultraweakly. That is, the net of finite

partial sums converges to K(w, z) in the ultraweak topology of M .

Proof. Set pi = 〈ei, ei〉, so that each pi is a projection in M , and computing 〈eipi−

ei, eipi − ei〉 quickly shows that eipi = ei. By Paschke’s theorem on ultraweak

direct sum decompositions [35, Theorem 3.12] and its proof, EK is isomorphic to

the ultraweak direct sum X =
⊕uw

i piM , with an isometric isomorphism T : EK →

X given by Tf = {〈ei, f〉}, giving an analogue of Parseval’s identity. Note that

pi〈ei, f〉 = 〈eipi, f〉 = 〈ei, f〉, so that 〈ei, f〉 is in fact in piM . For each w and z in

Z, this isomorphism yields

K(w, z) = 〈kw, kz〉EK
= 〈Tkw, Tkz〉X

= 〈{〈ei, kw〉}, {〈ei, kz〉}〉X

= 〈{ei(w)∗}, {ei(z)∗}〉X

=
∑
i

ei(w)ei(z)
∗,
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where the last equality and the ultraweak convergence of the sum follows from the

definition of the ultraweak direct sum (Definition 9).

In the classical setting, this formula is useful in finding the kernel function

when the space and an orthonormal basis are already in sight. For instance, the

Hardy space on the unit disk, H2(D), is a Hilbert space of functions with contin-

uous point evaluations, and therefore is a reproducing kernel Hilbert space, whose

kernel is called the Szegő kernel. Using the fact that the nonnegative powers of the

coordinate function provide an orthonormal basis, one sums the geometric series to

find that the Szegő kernel is KH2(w, z) = 1
1−wz . A similar but slightly more com-

plicated analysis provides the kernel function for the Bergman space, and for many

other “concrete” Hilbert function spaces. One might expect a similar analysis to

be useful in the W ∗-setting, but for the present work the case of spaces constructed

from given kernel functions is of more relevance.

A primary motivation for the development in this chapter is to study certain

quotients of the noncommutative Hardy algebras as multiplier algebras of repro-

ducing kernel W ∗-modules (see Section 3.2 below). In the previous works relating

to reproducing kernel C∗-modules cited above, no general theory of multipliers has

been developed, although there is a notable special case in [5] that will be discussed

in the next section. The remainder of this section lays down some fundamentals on

multipliers appropriate for the present setting.

Definition 26. A function φ : Z → M is called a multiplier of the reproducing

kernel M -module E on Z if for all f ∈ E the function φ(·)f(·) is in E.

Lemma 27. Let φ be a multiplier of E. Then the map Mφ : E → E defined by

Mφf = φ(·)f(·) is in L(E), and for all z ∈ Z, M∗
φkz = kzφ(z)∗.

Proof. The closed graph theorem will be used to show that Mφ is bounded. Suppose

that {fk}k is a sequence in E such that the sequence {(fk,Mφfk)} converges in norm

to a point (f, g) ∈ E × E. Fix z ∈ Z. Because evaluation at z is bounded and
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Mφfk → g, it follows that φ(z)fk(z) → g(z) in M . Similarly, evaluation at z and

left multiplication by φ(z) are bounded, so the convergence of {fk} to f implies

that φ(z)fk(z) → φ(z)f(z). Since z was arbitrary, it follows that g = Mφf , showing

that Mφ is bounded. It is immediate from the definition that Mφ is a module map,

and it follows from the self-duality of E that Mφ is in L(E).

Given w and z in Z, the straightforward computation

(M∗
φkz)(w) = 〈kw,M∗

φkz〉 = 〈Mφkw, kz〉

= 〈kz,Mφkw〉∗ = (φ(z)kw(z))∗

= kw(z)∗φ(z)∗ = 〈kw, kz〉φ(z)∗

= kz(w)φ(z)∗

proves the last part of the lemma.

Remark 28. This lemma says that the functions kz are “eigenvectors” for the ad-

joints of multiplication operators on E, with M -valued “eigenvalues”. Taking ad-

vantage of this fact is an important ingredient in the proof of the next proposition,

which gives a necessary and sufficient positivity criterion for a function to be mul-

tiplier. It would be interesting to see how this notion of eigenvalue relates to other

operator-valued spectra in the literature.

Proposition 29. A function φ : Z → M is a multiplier of the reproducing kernel

M-module E = EK with ‖Mφ‖ ≤ 1 if and only if the map Kφ : Z ×Z →M defined

by Kφ(w, z) = K(w, z)− φ(w)K(w, z)φ(z)∗ is a positive kernel.

Proof. Suppose that φ is a multiplier of E with ‖Mφ‖ ≤ 1. Positivity of Kφ follows

by computation from the fact that IE −MφM
∗
φ is positive. For all w1, . . . , wn ∈ Z

and a1, . . . , an ∈M , compute

0 ≤

〈
n∑
i=1

kwi
ai, (IE −MφM

∗
φ)

(
n∑
j=1

kwj
aj

)〉

=
n∑

i,j=1

a∗i
(
〈kwi

, kwj
〉 − 〈kwi

,MφM
∗
φkwj

〉
)
aj
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=
n∑

i,j=1

a∗i
(
〈kwi

, kwj
〉 − 〈M∗

φkwi
,M∗

φkwj
〉
)
aj

=
n∑

i,j=1

a∗i
(
〈kwi

, kwj
〉 − 〈kwi

φ(wi)
∗, kwj

φ(wj)
∗〉
)
aj

=
n∑

i,j=1

a∗i
(
〈kwi

, kwj
〉 − φ(wi)〈kwi

, kwj
〉φ(wj)

∗) aj
=

n∑
i,j=1

a∗i (K(wi, wj)− φ(wi)K(wi, wj)φ(wj)
∗) aj.

By part 1 of Lemma 10, Kφ is positive.

Conversely, suppose that Kφ is positive. The idea is first to show that there

is a contractive map T ∈ L(E) satisfying T (kz) = kzφ(z)∗ for all z ∈ Z, and then

to show that T ∗ = Mφ. If such a T exists, then it must send a sum
∑n

i=1 kwi
ai to∑n

i=1 kwi
φ(wi)

∗ai. Using positivity of Kφ yields〈
n∑
i=1

kwi
φ(wi)

∗ai,
n∑
j=1

kwj
φ(wj)

∗aj

〉
=

n∑
i,j=1

a∗iφ(wi)K(wi, wj)φ(wj)
∗aj

≤
n∑

i,j=1

a∗iK(wi, wj)aj =

〈
n∑
i=1

kwi
ai,

n∑
j=1

kwj
aj

〉
.

It follows that ∥∥∥∥∥
n∑
i=1

kwi
φ(wi)

∗ai

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

kwi
ai

∥∥∥∥∥ ,
which shows that

∑n
i=1 kwi

ai 7→
∑n

i=1 kwi
φ(wi)

∗ai defines a contractive module map

on the (uncompleted) submodule E0 spanned over M by {kz : z ∈ Z}. Because

E = E ′
0, the self-dual completion of E0, the map has an extension T ∈ L(E) with

‖T‖ ≤ 1 by Proposition 7. For each f ∈ E and z ∈ Z, (T ∗f)(z) = 〈kz, T ∗f〉 =

〈Tkz, f〉 = 〈kzφ(z)∗, f〉 = φ(z)〈kz, f〉 = φ(z)f(z). Thus φ is a multiplier and

‖Mφ‖ = ‖T ∗‖ = ‖T‖ ≤ 1.

3.2 Completely positive kernels and multipliers

The multiplier criterion in the previous section generalizes the well known

Hilbert space case [1, Corollary 2.37], and it is closely related to Pick’s interpola-

tion theorem. An analogue of Proposition 29 for function space representations of
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noncommutative Hardy algebras is already known (cf. [32, Theorems 3.3 and 3.6]).

The proof of Muhly and Solel has an intermediate step involving transfer functions,

and a basic result in this section (see the proof of Theorem 45) gives a more direct

argument from the interpolation theorem [31, Theorem 5.3]. A major distinction

between elements of the Schur class of Muhly and Solel and the multipliers of the

previous section is that there is a priori no reproducing kernel W ∗-module of which

the former are multipliers. One of the main goals of this section is to bridge this

gap by developing the appropriate theory of reproducing kernel W ∗-correspondences

and their multipliers.

It should be noted that a description of the Schur class (Definition 44 below) of

Muhly and Solel as an algebra of multipliers of a certain Hilbert space of functions

was given by Ball et al. [5, Theorems 4.9 and 5.1], and there is some similarity

between their work and some of the work here. However, there are several points

of departure here that should be made clear. Their results on multipliers depend

on first tensoring with a Hilbert space to work in a more classical framework. This

process of tensoring can be seen as inducing representations of the multiplier algebra.

Here, the multiplier criterion is developed for arbitrary reproducing kernel W ∗-

correspondences, as defined below. Furthermore, while some of the basics of the

theory of reproducing kernel C∗-correspondences are given by Ball et al. [5, Section

3], their paper does not address the multipliers of such objects apart from the

theorems mentioned above relating to the noncommutative Hardy algebras. In other

directions their work goes far beyond what is presented here, and it was influential

on the following.

The next order of business is to extend the theory from the previous section

to the case of completely positive kernels and the associated reproducing kernel

W ∗-correspondences, starting with the following definition.

Definition 30. Let Z be a set, and let N and M be W ∗-algebras. A map K :
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Z ×Z → B∗(N,M) is called a normal completely positive kernel from N to M (for

short, cp kernel), if for all n ∈ N and points z1, . . . , zn ∈ Z, the matrix (K(zi, zj))
n
i,j=1

represents a (normal) completely positive map from Mn(N) to Mn(M).

Remark 31. This definition, without the assumption of normality (i.e., without the

assumption of ultraweak continuity of the values of K) was introduced by Barreto et

al. [6, Definition 3.2.2], and the following lemma providing alternative descriptions

of cp kernels is subordinate to a lemma of theirs [6, Lemma 3.2.1].

Lemma 32. Let Z be a set, let N and M be W ∗-algebras, and let K : Z × Z →

B∗(N,M) be a function. The following are equivalent.

1. K is a cp kernel.

2. For all n ∈ N and points z1, . . . , zn ∈ Z, the matrix (K(zi, zj))
n
i,j=1 represents

a positive map from Mn(N) to Mn(M).

3. The map K ′ : (N × Z) × (N × Z) → M defined by K ′((a1, z1), (a2, z2)) =

K(z1, z2)(a1a
∗
2) is a positive kernel.

Part of the usefulness of cp kernels comes from the fact that they are closed

under pointwise composition, also called Schur products [6]. If K1 is a cp kernel

from N to M on Z, and K2 is a cp kernel from L to N on Z, then then map

K : Z × Z → B∗(L,M) defined by K(w, z) = K1(w, z) ◦ K2(w, z) is a cp kernel

from L toM [6, Theorem 3.4.2], called the Schur product of K1 and K2, and denoted

by K = K1 ∗K2.

Although Barreto et al. also discuss positive C∗-algebra-valued kernels in

the sense of the previous section, they do not appear to have made explicit how

they are a special case of cp kernels between two C∗-algebras. Namely, under

the identification of a W ∗-algebra M with B∗(C,M), a positive M -valued kernel

becomes a cp kernel from C to M , as shown in the following simple proposition.
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Proposition 33. Let Z be a set, let M be a W ∗-algebra, and let K : Z × Z → M

be a function. Then K is a positive kernel if and only if the function K : Z × Z →

B∗(C,M) defined by K(z1, z2)(λ) = λK(z1, z2) is a cp kernel.

Proof. Suppose K is a cp kernel, and for each positive integer n let En denote

the matrix in Mn(C) each of whose entries is 1. Given points z1, . . . , zn ∈ Z, the

definition of K immediately yields (K(zi, zj))
n
i,j=1 = (K(zi, zj))

n
i,j=1(En). Since En

is positive, it follows that K is a positive kernel.

To prove the converse, a little juggling will be used to reduce the problem to

the complete positivity of a Schur product map on complex matrices. By Lemma

32, to show that complete positivity of K follows from positivity of K, it will

suffice to observe that if n is a positive integer and A = (aij)
n
i,j=1 is a positive

element of Mn(M), then the “Schur product” map SA : Mn(C) → Mn(M) defined

by SA((λij)
n
i,j=1) = (λi,jai,j)

n
i,j=1 is a positive map. This in turn is equivalent to

showing the positivity of the Schur product map SΛ : (aij)
n
i,j=1 7→ (λi,jai,j)

n
i,j=1 on

Mn(M) corresponding to a fixed positive element Λ = (λij)
n
i,j=1 of Mn(C). For this,

denote by S̃Λ : Mn(C) → Mn(C) the usual Schur product map corresponding to

Λ. It is a standard result that S̃Λ is completely positive [36, Theorem 3.7], and

identifying Mn(M) with M ⊗Mn(C) yields SΛ = IM ⊗ S̃Λ. It follows that SΛ is

completely positive,1 and in particular positive.

One can always obtain an example of an M -valued positive kernel by evaluat-

ing each value of a cp kernel from N to M at the identity element of N . An example

of such a kernel specialized to the diagonal arises in Chapter 5. This observation is

also the point of the easier direction in the preceding proposition. The following is

the main motivating class of examples of cp kernels in this chapter.

Example 34. Let E be a W ∗-correspondence over M , let σ : M → B(H) be

1For instance, a Stinespring representation of S̃Λ lifts to one for SΛ.
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a normal representation of M , and let Eσ be the σ dual of E, which is a W ∗-

correspondence over σ(M)′. For each w and z in D(Eσ∗), let θw∗,z∗ : σ(M)′ →

σ(M)′ be defined by θw∗,z∗(a) = 〈w∗, a · z∗〉Eσ . By ultraweak continuity of the

left action ϕσ of σ(M)′ and Lemma 3, θw∗,z∗ is in B∗(σ(M)′). Because ‖θw∗,z∗‖ ≤

‖w‖‖z‖ < 1, it is possible to define an analogue of the Szegő kernel on D(Eσ∗),

KS : D(Eσ∗)×D(Eσ∗) → B∗(σ(M)′), byKS(w, z) = id +θw∗,z∗+θ
2
w∗,z∗+θ

3
w∗,z∗+· · · =

(id−θw∗,z∗)−1, where id denotes the identity operator on σ(M)′. The values of KS

are ultraweakly continuous by Lemma 4, and complete positivity of KS will be

shown below.

Lemma 35. Let E be an inner product module over a C∗-algebra A, let n be a posi-

tive integer, and let x1, x2, . . . , xn be elements of E. Then the map Θ : Mn(L(E)) →

Mn(A) defined by Θ((Tij)) = (〈xi, Tijxj〉) is positive.

Proof. Using part 2 of Lemma 10, it is enough to see that if T1, T2, . . . , Tn are in

L(E), then Θ((T ∗i Tj)) is positive. Observe that Θ((T ∗i Tj)) = (〈Tixi, Tjxj〉), so the

result follows from part 3 of Lemma 10.

Proposition 36. The kernel KS of example 34 is a cp kernel.

Proof. It was already observed that the values of KS are normal, so it only remains

to show that KS satisfies the positivity condition. Define K1 : Z ×Z → B∗(σ(M)′)

by K1(w, z) = θw∗,z∗ . Then given z1, z2, . . . , zn ∈ D(Eσ∗), positivity of (K1(zi, zj))

follows from Lemma 35 and complete positivity of ϕσ. By Lemma 32, K1 is a cp

kernel. For each integer m > 1, let Km be defined recursively by Km = K1 ∗Km−1,

and define K0 to be the constant cp kernel from σ(M)′ to itself with value id. Each

Km is a cp kernel because it is a Schur product of cp kernels. Since positivity of

maps between C∗-algebras is closed under addition and norm limits, it follows from

Lemma 32 that KS = K0 +K1 +K2 + · · · is a cp kernel.

Remark 37. Proposition 36 is not new, but this proof is. A proof using the criterion
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of “Kolmogorov factorizations” from [6] was provided by Muhly and Solel [33, page

229].

The extension of the material from the last section to the setting of cp kernels

requires the notion of a reproducing kernel W ∗-correspondence from N to M . The

third part of Lemma 32 indicates that the appropriate notion might involve repro-

ducing kernel M -modules of functions defined on N × Z. The following definition

is an adaptation and consolidation of the one found in [5, Definition 3.3].

Definition 38. Let Z be a set, and let N and M be W ∗-algebras. A reproducing

kernel M -module E of M -valued functions on N × Z is called a reproducing kernel

W ∗-correspondence from N to M if E has a normal left action of N that satisfies

(a · f)(b, z) = f(ba, z) for all a, b ∈ N , f ∈ E, and z ∈ Z.

Remark 39. Similarly to the convention of the previous section, ka,z will denote the

element of E that induces point evaluation at (a, z) ∈ N × Z. That is, f(a, z) =

〈ka,z, f〉 for all f ∈ E, a ∈ N , and z ∈ Z. The kernel function associated with E

is denoted by KE : (N × Z) × (N × Z) → M , and defined by KE((a, w), (b, z)) =

〈ka,w, kb,z〉.

Lemma 40. Let E be a reproducing kernel correspondence from N to M , and let

{ka,z : a ∈ N, z ∈ Z} be the elements of E that induce the point evaluations.

1. The action of b ∈ N on ka,z is given by b · ka,z = kab∗,z.

2. Each element f of E is linear in its first variable. Furthermore, if f ∈ E and

z ∈ Z are fixed, then the map a 7→ f(a, z) is in B∗(N,M).

3. Let K̃E be the function on Z × Z with values mapping from N to M defined

by K̃E(w, z)(a) = KE((a, w), (1, z)). Then K̃E takes values in B∗(N,M), and

K̃E is a cp kernel from N to M .
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Proof. Part 1 follows by a computation. For each c ∈ N and w ∈ Z, note that

(b · ka,z)(c, w) = 〈kc,w, b · ka,z〉 = 〈b∗ · kc,w, ka,z〉

= 〈ka,z, b∗ · kc,w〉∗ = ((b∗ · kc,w)(a, z))∗

= (kc,w(ab∗, z))∗ = 〈kab∗,z, kc,w〉∗

= 〈kc,w, kab∗,z〉 = kab∗,z(c, w).

To prove 2, let f and z be fixed as in the statement, and define ψ : N → M

by ψ(a) = f(a, z). Then by 1, ψ(a) = 〈k1,z, a · f〉, so ψ is in B∗(N,M) by Lemma

3 and ultraweak continuity of the left action of N .

This leaves only 3. Given w, z ∈ Z and a ∈ N , the evaluation K̃E(w, z)(a) =

KE((a, w), (1, z)) = 〈ka,w, k1,z〉 = k1,z(a, w) shows that K̃E takes values in B∗(N,M)

by 2. For all a, b ∈ N and w, z ∈ Z, it follows from 1 that

KE((a, w), (b, z)) = 〈ka,w, kb,z〉 = 〈ka,w, b∗ · k1,z〉

= 〈b · ka,w, k1,z〉 = 〈kab∗,w, k1,z〉

= K̃E(w, z)(ab∗),

so that KE = K̃ ′
E, and the complete positivity now follows from Lemma 32.

A reproducing kernel W ∗-correspondence can be constructed from a cp kernel

in a unique way. This is of particular interest in the motivating class of examples

in Example 34, where a cp kernel KS is given, and the resulting space and its

multipliers are to be studied.

Proposition 41. Let Z be a set, let N and M be W ∗-algebras, and let K : Z×Z →

B∗(N,M) be a cp kernel from N to M . Then there is a unique reproducing kernel

W ∗-correspondence EK from N to M on N ×Z whose M-valued kernel function is

K ′ : (N × Z)× (N × Z) →M , defined by K ′((a, w), (b, z)) = K(w, z)(ab∗).

Proof. Let K ′ be as in the statement. By Lemma 32, K ′ is a positive M -valued

kernel. Thus by Proposition 23, there is a unique reproducing kernel M -module EK
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of functions on N × Z such that KEK
= K ′. From the definition of reproducing

kernel correspondence, there is only one way to define the action of N . Namely, for

a ∈ N and f ∈ EK , a · f should be defined by (a · f)(b, z) = f(ba, z). Thus the

uniqueness is already proven, but for existence there remains some work to show

that the candidate action of N exists.

Let E0 denote the M -submodule of EK generated by {ka,z : (a, z) ∈ N × Z},

and fix
∑n

j=1 kaj ,zj
xj ∈ E0. Looking at Part 1 of Lemma 40, if the left action of N

exists, a ∈ N must send
∑n

j=1 kaj ,zj
xj to

∑n
j=1 kaja∗,zj

xj. Let (a∗a)ni,j=1 ∈ Mn(N)

denote the matrix each of whose elements is a∗a, let En ∈Mn(N) denote the matrix

each of whose elements is 1 ∈ N , let A ∈ Mn(N) denote the matrix that is zero

outside the first column and whose first column has jth entry aj, and let X denote

the column matrix over M whose jth entry is xj. A computation ensues:〈
n∑
i=1

kaia∗,zi
xi,

n∑
j=1

kaja∗,zj
xj

〉
=

n∑
i,j=1

x∗iK
′((aia

∗, zi), (aja
∗, zj))xj

= X∗(K ′((aia
∗, zi), (aja

∗, zj)))
n
i,j=1X

= X∗(K(zi, zj)(aia
∗aa∗j))

n
i,j=1X

= X∗(K(zi, zj))
n
i,j=1((aia

∗aa∗j)
n
i,j=1)X

= X∗(K(zi, zj))
n
i,j=1(A(a∗a)ni,j=1A

∗)X

≤ X∗(K(zi, zj))
n
i,j=1(A‖a‖2EnA

∗)X

= ‖a‖2X∗(K(zi, zj))
n
i,j=1(AEnA

∗)X

= ‖a‖2

〈
n∑
i=1

kai,zi
xi,

n∑
j=1

kaj ,zj
xj

〉
.

The inequality follows from two applications of part 4 of Lemma 10, positivity of

the map (K(zi, zj))
n
i,j=1, and the fact that (a∗a)ni,j=1 ≤ ‖a‖2En. The last equality

is just working backwards through the computation with 1 in place of a. Taking

norms shows that ∥∥∥∥∥
n∑
i=1

kaia∗,zi
xi

∥∥∥∥∥ ≤ ‖a‖

∥∥∥∥∥
n∑
i=1

kai,zi
xi

∥∥∥∥∥ .
Thus each a determines a bounded module map on E0 that sends kb,z to kba∗,z,
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which by Proposition 7 extends to a map ϕ(a) ∈ L(E). To check that ϕ is a

∗-homomorphism, it is enough to restrict the image of ϕ to the generating set

{ka,z : (a, z) ∈ N×Z}. Multiplicativity is immediate. To see that ϕ is ∗-preserving,

note that

〈kc,z, ϕ(a∗)kb,w〉 = 〈kc,z, kba,w〉 = K(z, w)(ca∗b) = 〈kca∗,z, kb,w〉 = 〈φ(a)kc,z, kb,w〉.

The verification of linearity is similar, and thus ϕ is a ∗-homomorphism.

The action of a ∈ N on f ∈ EK is given by

(a · f)(b, z) = 〈kb,z, a · f〉 = 〈a∗ · kb,z, f〉 = 〈kba,z, f〉 = f(ba, z),

as required, and all that remains is to show that ϕ is normal. Because EK is the

self-dual completion of E0, it suffices by Lemma 4 and Proposition 8 to show that

for each x and y in E0, the map a 7→ 〈x, a · y〉 is in B∗(N,M). So let
∑

i kbi,wi
xi

and
∑

j kcj ,zj
yj be fixed elements of E0, and note that for each a ∈ N ,

a 7→

〈∑
i

kbi,wi
xi, a ·

∑
j

kcj ,zj
yj

〉
=
∑
i,j

x∗iK(wi, zj)(biac
∗
j)yj

is an ultraweakly continuous function because multiplication maps by fixed ele-

ments of W ∗-algebras are ultraweakly continuous, and each K(wi, zj) is ultraweakly

continuous by hypothesis. This completes the proof.

Remark 42. One of the main things the preceding results add to the theory is the

extension of the results on C∗-correspondences to W ∗-correspondences. For the

considerations of Ball et al. [5], which involved tensoring with a Hilbert space

over a representation, self-duality was not relevant, and although they sometimes

considered modules over W ∗ algebras, they did not consider ultraweak continuity

of the left action.

Motivation for the introduction of multipliers of reproducing kernel W ∗-corre-

spondences will come from the following review of the interpolation theorem and

positivity criterion for the algebras of functions obtained from the noncommuta-

tive Hardy algebras by evaluating on adjoints of elements of dual correspondences.
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Let E be a W ∗-correspondence over M , and let σ : M → B(H) be a normal rep-

resentation of M on a Hilbert space H, to be fixed throughout the remainder of

this section. Then, as discussed in Chapter 1, H∞(E, σ) is the algebra of B(H)-

valued functions on D(Eσ∗) obtained from H∞(E) by evaluating F ∈ H∞(E) at

z ∈ D(Eσ∗) as F̂ (z) = ψz(F ) = (σ × z)(F ). The kernel Jσ of the corresponding

homomorphism Γσ : H∞(E) → H∞(E, σ) is ultraweakly closed, because it is the

intersection of the kernels of the ultraweakly continuous maps {ψz : z ∈ D(Eσ)}. It

follows that H∞(E, σ) can be given the norm and ultraweak topologies induced by

the algebraic isomorphism H∞(E, σ) ∼= H∞(E)/Jσ, thus making H∞(E, σ) a dual

operator algebra. Recall also the cp kernel KS : D(Eσ∗) × D(Eσ∗) → B∗(σ(M)′)

from example 34, defined by KS(w, z) = (id−θw∗,z∗)−1. It will be convenient to

extend the codomain of the values of KS to B(H) without changing the notation,

and this will be highlighted in cases where confusion may arise. For fixed operators

X and Y in B(H), let Ad(X, Y ) : B(H) → B(H) denote the bounded operator

defined by Ad(X, Y )(T ) = XTY ∗.

Part of Muhly and Solel’s interpolation theorem [31, Theorem 5.3] can be

stated as follows.

Theorem 43. Given z1, . . . , zn ∈ D(Eσ∗) and operators C1, . . . , Cn ∈ B(H), there

is an element F of H∞(E) with ‖F‖ ≤ 1 such that F̂ (zk) = Ck for each k if and

only if the matrix ((id−Ad(Ci, Cj)) ◦KS(zi, zj)) defines a completely positive map

from Mn(σ(M)′) to Mn(B(H)).

This positivity condition provides motivation for what Muhly and Solel call

Schur class operator functions on D(Eσ∗), defined as follows.

Definition 44. Let f be a B(H)-valued function on D(Eσ∗) Then f is called a Schur

class operator function on D(Eσ∗) if for each positive integer k and each k-tuple of

elements z1, . . . , zn ∈ D(Eσ∗), the matrix ((id−Ad(f(zi), f(zj)))◦KS(zi, zj)) defines

a completely positive map from Mn(σ(M)′) to Mn(B(H)). The set of all Schur class
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functions on D(Eσ∗) will be denoted SE,σ.

An immediate consequence of Theorem 43 is that if F is an element of the

closed unit ball of H∞(E), then F̂ is in SE,σ. In fact, using analogues of systems

matrices and transfer functions, Muhly and Solel proved the converse, namely that

each element of SE,σ is F̂ for some F in the closed unit ball of H∞(E) [32, Theorems

3.3 and 3.6]. Here is another proof, which takes advantage of the dual space structure

of H∞(E) to argue directly from the interpolation theorem.

Theorem 45. The image of the closed unit ball of H∞(E) under the map F 7→ F̂

is precisely SE,σ.

Proof. As already mentioned, and as pointed out in [32, Theorem 3.2], one di-

rection is immediate from the interpolation theorem. If F is in the closed unit

ball of H∞(E) and z1, . . . , zn are in D(Eσ∗), then by taking Ck = F̂ (zk) in The-

orem 43, the existence of the interpolating function F̂ coming from F in the

closed unit ball of H∞(E) implies the complete positivity of the matrix function

((id−Ad(F̂ (zi), F̂ (zj))) ◦KS(zi, zj)). Thus F̂ is in SE,σ.

Conversely, suppose that f is in SE,σ. Let Λ denote the set of finite subsets

of D(Eσ∗), directed by inclusion. For each λ = {z1, . . . , zn} ∈ Λ, by hypothesis the

map ((id−Ad(f(zi), f(zj)) ◦ KS(zi, zj)) is completely positive. Thus by Theorem

43, there is an Fλ in the closed unit ball of H∞(E) such that F̂λ|λ = f |λ. Consider

the net {Fλ}λ∈Λ in the closed unit ball of H∞(E). Since H∞(E) is an ultraweakly

closed subspace of L(F(E)), the ultraweak topology restricted toH∞(E) is a weak-∗

topology coming from a quotient of the predual L(F(E))∗ of L(F(E)) [42, Theorems

4.7 and 4.8]. By Alaoglu’s theorem, the closed unit ball of H∞(E) is compact in

the relative ultraweak topology. Since a topological space is compact if and only if

each net in the space has a convergent subnet, there is an F in the closed unit ball

of H∞(E) and a subnet {Gi}i∈I of {Fλ}λ∈Λ that converges ultraweakly to F . The

claim is that F̂ = f .
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Saying that {Gi}i∈I is a subnet of {Fλ}λ∈Λ means that there is a function

T : I → Λ such that Gi = FT (i) for all i ∈ I, and for each λ0 ∈ Λ there is an i0 ∈ I

such that i ≥ i0 in I implies T (i) ≥ λ0 in Λ. Let z be an element of D(Eσ∗), and

let λ0 = {z} ∈ Λ. Then there exists an i0 such that for all i ≥ i0, T (i) ≥ λ0. This

means that for all i ≥ i0, z is in T (i), and thus Ĝi(z) = F̂T (i)(z) = f(z). Hence, the

net {Ĝi(z)}i∈I is eventually constant with value f(z), so that {Ĝi(z)}i∈I converges

to f(z). On the other hand, by ultraweak continuity of the “point evaluation map”

at z, ψz : H∞(E) → B(H), the fact that {Gi}i∈I converges to F implies that

{Ĝi(z)}i∈I converges to F̂ (z). Since the ultraweak topology is Hausdorff, it follows

that f(z) = F̂ (z), as claimed.

The relationship between a Schur class operator function and the cp kernel

KS on D(Eσ∗)× D(Eσ∗) is reminiscent of the relationship shown in Proposition 29

between a contractive multiplier of a reproducing kernel self-dual W ∗-module EK

and its corresponding positive kernel K. This prompts the question of whether

elements of SE,σ, and therefore elements of H∞(E, σ), are the multipliers (in an

appropriate sense) of a reproducing kernel W ∗-correspondence, and leads to the

following definition.

Definition 46. Let N and L be W ∗-correspondences, and let EK be a reproducing

kernel W ∗-correspondence from N to L with associated cp kernel K : Z × Z →

B∗(N,L). Then a function φ : Z → L is called a multiplier of EK if for each

f ∈ EK , the function (a, z) 7→ φ(z)f(a, z) is in EK .

The next two results are extensions of Lemma 27 and Proposition 29 to re-

producing kernel W ∗-correspondences.

Lemma 47. Let φ be a multiplier of EK. Then the map Mφ : EK → EK defined

by (Mφf)(a, w) = φ(w)f(a, w) is in L(E) and commutes with the left action of N .

For all a ∈ N and w ∈ Z, M∗
φka,z = ka,zφ(z)∗.

Proof. The proof of Lemma 27 goes through line by line, except for the condition



42

of commuting with the left action of N . The latter follows from the computation

(Mφ(a·f))(b, z) = φ(z)(a·f)(b, z) = φ(z)f(ba, z) = (Mφf)(ba, z) = (a·(Mφf))(b, z),

which concludes the proof.

Theorem 48. Let EK be a reproducing kernel W ∗-correspondence from N to L

with cp kernel K : Z × Z → B∗(N,L). Then a function φ : Z → L is a multiplier

of EK with ‖Mφ‖ ≤ 1 if and only if the map Kφ : Z × Z → B∗(N,L) defined by

Kφ(w, z) = (id−Ad(φ(w), φ(z))) ◦K(w, z) is a cp kernel.

Proof. The values of Kφ are normal because the values of K(w, z) are normal and

multiplication operators by fixed elements of L are normal on L. The remainder

of the proof is similar to that of Proposition 29. The details are provided for

completeness, and because it should be ensured that everything goes through with

the additional structure. Recall that K ′ is the L-valued kernel function associated

with EK on (N × Z) × (N × Z) that satisfies K ′((a, w), (b, z)) = K(w, z)(ab∗) =

〈ka,w, kb,z〉. Similarly, K ′
φ denotes the L-valued function on (N × Z) × (N × Z)

defined by K ′
φ((a, w), (b, z)) = Kφ(w, z)(ab

∗). First suppose that φ is a multiplier of

EK with ‖Mφ‖ ≤ 1. Then IE −MφM
∗
φ is positive in L(EK). For all a1, . . . , an ∈ N ,

z1, . . . , zn ∈ Z, and b1, . . . , bn ∈ L, compute
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0 ≤

〈
n∑
i=1

kai,zi
bi, (IE −MφM

∗
φ)

(
n∑
j=1

kaj ,zj
bj

)〉

=
n∑

i,j=1

b∗i
(
〈kai,zi

, kaj ,zj
〉 − 〈kai,zi

,MφM
∗
φkaj ,zj

〉
)
bj

=
n∑

i,j=1

b∗i
(
〈kai,zi

, kaj ,zj
〉 − 〈M∗

φkai,zi
,M∗

φkaj ,zj
〉
)
bj

=
n∑

i,j=1

b∗i
(
〈kai,zi

, kaj ,zj
〉 − 〈kai,zi

φ(zi)
∗, kaj ,zj

φ(zj)
∗〉
)
bj

=
n∑

i,j=1

b∗i
(
〈kai,zi

, kaj ,zj
〉 − φ(zi)〈kai,zi

, kaj ,zj
〉φ(zj)

∗) bj
=

n∑
i,j=1

b∗i (K ′((ai, zi), (aj, zj))− φ(zi)K
′((ai, zi), (aj, zj))φ(zj)

∗) bj.

This shows that K ′
φ is a positive L-valued kernel by part 1 of Lemma 10, and hence

Kφ is a cp kernel by Lemma 32.

Conversely, suppose that Kφ is a cp kernel. Similarly to the proof of Propo-

sition 29, inspiration comes from the “eigenvalue” property of Lemma 47, and

the first goal is to show that there is a map T ∈ L(E) with ‖T‖ ≤ 1 satisfying

T (ka,z) = ka,zφ(z)∗ for all a ∈ N and z ∈ Z. Thus, if it exists, T sends a sum∑n
i=1 kai,zi

bi to
∑n

i=1 kai,zi
φ(zi)

∗bi, with each ai ∈ N , zi ∈ Z, and bi ∈ L. By

Lemma 32, K ′
φ is a positive L-valued kernel, whence〈

n∑
i=1

kai,zi
φ(zi)

∗bi,
n∑
j=1

kaj ,zj
φ(zj)

∗bj

〉

=
n∑

i,j=1

b∗iφ(zi)K
′((ai, zi), (a,j , zj))φ(zj)

∗bj

≤
n∑

i,j=1

b∗iK
′((ai, zi), (aj, zj))bj

=

〈
n∑
i=1

kai,zi
bi,

n∑
j=1

kaj ,zj
bj

〉
.

Taking norms shows that
∑n

i=1 kai,zi
bi 7→

∑n
i=1 kai,zi

φ(zi)
∗bi defines a contractive

module map on the L-submodule of EK generated by {ka,z : a ∈ N, z ∈ Z}. By
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Proposition 7, this map has an extension T ∈ L(E) with ‖T‖ ≤ 1. Let f be an

element of EK . Then for each a ∈ N and z ∈ Z, (T ∗f)(a, z) = 〈ka,z, T ∗f〉 =

〈Tka,z, f〉 = 〈ka,zφ(z)∗, f〉 = φ(z)〈ka,z, f〉 = φ(z)f(a, z). Thus φ is a multiplier with

M∗
φ = T , and ‖Mφ‖ = ‖T‖ ≤ 1.

The theorem can now be applied to the algebras H∞(E, σ) to yield a direct

connection between the noncommutative Hardy algebras and reproducing kernel

correspondences. Let KS : D(Eσ∗) × D(Eσ∗) → B∗(σ(M)′, B(H)) be the cp ker-

nel defined in Example 34, KS(w, z) = (id−θw∗,z∗)−1, with the codomain of the

values extended to B(H). Let Mult(EKS
) denote the algebra of multipliers of the

reproducing kernel W ∗-correspondence EKS
from M to B(H) associated with KS.

Corollary 49. Let E be a W ∗-correspondence over M , and let σ : M → B(H) be a

normal representation of M on a Hilbert space H. Then H∞(E, σ) = Mult(EKS
).

Furthermore, for each f ∈ H∞(E, σ), there is an F ∈ H∞(E) such that f = F̂ and

‖Mf‖ = ‖F‖.

Proof. Let f be an element of H∞(E, σ). Then for some F ∈ H∞(E), f = Γσ(F ).

Consider the function g = 1
‖F‖f = Γσ(

1
‖F‖F ) ∈ H∞(E, σ). By Theorem 45, g is a

Schur class operator function on D(Eσ∗). By Theorem 48, g is a multiplier of EKS
.

Thus, so is f = ‖F‖g, and H∞(E, σ) is contained in the algebra of multipliers of

EKS
.

Now suppose that φ : D(Eσ∗) → B(H) is a multiplier of EKS
. Then applying

the other directions in Theorems 48 and 45 in that order shows that 1
‖Mφ‖

φ = Γσ(F )

for some F in the closed unit ball of H∞(E), so in particular φ is in H∞(E, σ), which

concludes the proof of the first statement.

For the final part of the corollary, let f be an element of H∞(E, σ), and let

g = 1
‖Mf‖

f . Then g is a multiplier of EK with ‖Mg‖ = 1, so by Theorem 48 g

is a Schur class operator function, and by Theorem 45 there is an element F of

H∞(E) with ‖F‖ ≤ 1 such that g = Γσ(F ). Suppose, to reach a contradiction, that
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‖F‖ < 1. Then 1
‖F‖g is a multiplier of norm strictly greater than one, so by Theorem

48, 1
‖F‖g is not a Schur class function. On the other hand, 1

‖F‖g = Γσ(
1
‖F‖F ), so by

Theorem 45, 1
‖F‖g is a Schur class function. This contradiction shows that in fact

‖F‖ = 1. Thus, ‖Mf‖F has norm ‖Mf‖, and f = Γσ(‖Mf‖F ).

Corollary 50. If H∞(E, σ) is given the quotient norm induced by the algebraic

isomorphism H∞(E, σ) ∼= H∞(E)/ ker(Γσ), then the identification of H∞(E, σ)

with Mult(EKS
) is isometric. In particular, the closed unit ball of H∞(E, σ) is

precisely the set SE,σ of Schur class operator functions. Furthermore, the sup norm

that H∞(E, σ) has as an algebra of B(H)-valued functions is dominated by the

quotient (or multiplier) norm.

Proof. By definition of the quotient norm on H∞(E, σ), the norm of an element

f ∈ H∞(E, σ) is ‖f‖ = inf{‖F‖ : Γσ(F ) = f}. By the last part of the preceding

corollary and its proof, this is the same as ‖Mf‖ (and in fact, the infimum is always

attained). The second statement of the corollary follows by Theorems 45 and 48.

For the last statement, let f be an element of H∞(E, σ), let z be an element of

D(Eσ∗), and let F0 be an element of H∞(E) such that f(z) = F̂0(z). Then the fact

that ψz is contractive yields the inequality ‖f(z)‖ = ‖F̂0(z)‖ ≤ ‖F0‖. Consequently,

‖f(z)‖B(H) ≤ inf
F̂ (z)=f(z)

‖F‖H∞(E) ≤ inf
F̂=f

‖F‖H∞(E) = ‖f‖H∞(E,σ),

and taking the sup over z ∈ D(Eσ∗) concludes the proof.

Remark 51. 1. Tensoring EKS
withH over the identity representation id of B(H)

yields an induced representation of L(EKS
) on EKS

⊗idH, which in particular

restricts to a representation of Mult(EKS
). This is closer to the perspective

studied by Ball et al. [5].

2. One area of future interest is to explore how EKS
may be described more

concretely as a space of functions. This correspondence may be obtained by

“extending the scalars” from the reproducing kernel correspondence ẼKS
over
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σ(M)′ that is obtained when one restricts the codomain of the values of KS

to σ(M)′. It follows from work of Muhly and Solel [33, page 229] that ẼKS

may be naturally realized as a sub-correspondence of the Fock space of the

σ-dual of E, F(Eσ). However, the function theoretic aspects of F(Eσ) and

this submodule remain largely unexplored.
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CHAPTER 4

FUNCTION SPACE REPRESENTATIONS OF HARDY ALGEBRAS

Recall from Chapters 1 and 3 that if E is a W ∗-correspondence over M and

σ : M → B(H) is a normal representation, then Γσ : H∞(E) → H∞(E, σ) is the

homomorphism defined by Γσ(F )(z) = F̂ (z) = ψz(F ), and Jσ = ker(Γσ). As already

mentioned, Jσ is ultraweakly closed because each ψz is ultraweakly continuous, and

Jσ =
⋂

z∈D(Eσ∗)

ker(ψz).

In this chapter, further properties of Jσ and the quotient H∞(E, σ) are studied.

In section 4.1, the observation that Jσ is gauge invariant is used to deduce results

on “polynomial approximation,” and elements of H∞(E, σ) are described from the

perspective of holomorphic function theory on Banach spaces. The noncommutative

analytic Toeplitz algebras provide a motivating class of examples in section 4.2, in

which it is shown that the considerations of the previous section lead to connections

with algebras of polynomial identities and generic matrices.

4.1 Approximation by polynomials

As seen in Chapter 1, the gauge automorphisms {γt}t∈R are the ultraweakly

continuous and completely isometric automorphisms of H∞(E) satisfying γt ◦ϕ∞ =

ϕ∞ and γt(Tζ) = eitTζ for all t ∈ R and ζ ∈ E. The first observation of this section

is that the ideal Jσ is gauge invariant. This invariance will in turn imply that the

partial sums of the Fourier series of elements of Jσ also lie in Jσ, thus allowing

ultraweak “polynomial approximation” in Jσ. The details are as follows.

Proposition 52. The ideal Jσ is gauge invariant.

Proof. Recall from Chapter 1 that if z is in D(Eσ∗), then ψz : H∞(E) → B(H)

is the ultraweakly continuous completely contractive representation determined by

the conditions that ψz ◦ ϕ∞ = σ on M and ψz(Tζ)h = z(ζ ⊗ h) for all ζ ∈ E and
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h ∈ H. For each t ∈ R, ψz ◦ γt is an ultraweakly continuous completely contractive

representation of H∞(E) satisfying

(ψz ◦ γt) ◦ ϕ∞ = ψz ◦ (γt ◦ ϕ∞) = ψz ◦ ϕ∞ = σ,

and

(ψz ◦ γt)(Tζ)h = ψz(e
itTζ)h = eitψz(Tζ)h = eitz(ζ ⊗ h)

for all ζ ∈ E and h ∈ H. On the other hand, so is ψ(eitz), and thus ψ(eitz) = ψz ◦ γt.

Therefore, since eitD(Eσ∗) = D(Eσ∗),

Jσ =
⋂

z∈D(Eσ∗)

kerψz =
⋂

z∈D(Eσ∗)

kerψ(eitz) =
⋂

z∈D(Eσ∗)

ker(ψz ◦ γt),

and it follows that γt(Jσ) ⊆ Jσ.

Proposition 52 is a simple result, but has useful consequences. It can be

interpreted as saying that Jσ is a “homogeneous” ideal, thus allowing the “grading”

of H∞(E) to be passed onto the quotient, as will be made precise below. As

discussed in Chapter 1, each element F of H∞(E) has a Fourier expansion, F ∼∑∞
k=0 Fk, the series being ultraweakly Cesàro summable to F . If Qj ∈ F(L(E))

denotes the orthogonal projection onto E⊗j, then

Fk = Φk(F ) =
1

2π

∫ 2π

0

γt(F )e−iktdt =
∞∑
j=0

Qj+kFQj.

Intuitively, this means that elements of H∞(E) have well behaved “polynomial”

approximations. It is convenient to give this intuition a formal status in the following

definition.

Definition 53. Let F be an element of H∞(E).

1. F is called a polynomial if there exists a nonnegative integer k such that

Fn = 0 for all n > k. If F is a nonzero polynomial, then the smallest such k

is called the degree of F .

2. If F = Fk, then F is called a k-homogeneous polynomial.

3. In general, Fk is called the k-homogeneous part of F , whether or not F is a

polynomial.
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4. The set of all polynomials in H∞(E) will be denoted by P(E).

5. The set of all k-homogeneous polynomials, Φk(H
∞(E)) = Φk(P(E)), will be

denoted by Pk(E).

The algebra H∞(E) is in a sense a dual operator algebraic version of a graded

algebra. The set of polynomials, P(E), is a graded complex algebra in the usual

algebraic sense; it is the vector space internal direct sum of its homogeneous parts,

P(E) =
∑∞

k=0Pk(E), with Pj(E)Pk(E) ⊆ Pj+k(E) for all nonnegative integers j

and k. The existence of ultraweakly Cesàro summing Fourier expansions of elements

of H∞(E) implies in particular that P(E) is ultraweakly dense in H∞(E), but that

is also apparent from the definition of H∞(E). More importantly, these polynomial

approximations carry over to ultraweakly closed gauge invariant ideals.

Proposition 54. Let J be an ultraweakly closed gauge invariant ideal in H∞(E).

Then J ∩P(E) is a homogeneous ideal in P(E) that is ultraweakly dense in J . The

graded algebra P(E)/(J∩P(E)) imbeds canonically into H∞(E)/J as an ultraweakly

dense subalgebra.

Proof. Let F be an element of J , and let k be a nonnegative integer. Then

Fk = 1
2π

∫ 2π

0
γt(F )e−iktdt is in J , because each value of the integrand is in J , and the

integral is an ultraweak limit of finite linear combinations of values of the integrand.

In particular, the partial Cesàro sums of the Fourier expansion of F are in J ∩P(E)

and converge ultraweakly to F , so J∩P(E) is ultraweakly dense in J . Furthermore,

the fact that Fk is in J ∩ P(E) whenever F is in J ∩ P(E) shows that J ∩ P(E) is

a homogeneous ideal in P(E), and thus the grading passes to the quotient algebra

P(E)/(J ∩P(E)). The canonical isomorphism P(E)/(J ∩P(E)) → (P(E) + J)/J

maps onto an ultraweakly dense subalgebra of H∞(E)/J because P(E) is ultra-

weakly dense in H∞(E).

Remark 55. Various notions of Banach algebras graded by the nonnegative integers



50

have appeared in the literature [8, 13]. The graded algebras in [8] are assumed

to have `1-summable homogeneous parts, which makes them far removed from the

Hardy or tensor algebra setting. Dixon’s definition [13] is closer to capturing our

situation, but there it is assumed that the “polynomials” (in the terminology used

here) are norm dense in the algebra. In fact, the tensor algebras T+(E) provide

examples of graded Banach algebras in Dixon’s sense, but these will not be explored

here.

The remainder of this section will be concerned with the holomorphic nature

of the functions in H∞(E, σ). For the general theory of analytic mappings between

Banach spaces, a good reference is Upmeier’s book [45, Section 1]. First, note

that if F = Fk is a homogeneous polynomial of degree k, then F̂k extends to a

continuous k-homogeneous polynomial from Eσ∗ to B(H). For the special case

where Fk = Tζ1 · · ·Tζk , the function F̂k : Eσ∗ → B(H) is defined by

F̂k(z)h = z(IE ⊗ z) · · · (IE⊗(k−1) ⊗ z)(ζ1 ⊗ · · · ⊗ ζk ⊗ h)

= z(ζ1 ⊗ z(· · · z(ζk−1 ⊗ z(ζk ⊗ h)) · · · ))

= z(k)(ζ1 ⊗ · · · ⊗ ζk ⊗ h),

where z(k) : E⊗k⊗H → H is the kth generalized power of z in the terminology of [31,

page 363],1 defined by z(k) = z(IE ⊗ z) · · · (IE⊗(k−1) ⊗ z). For a general Fk ∈ Pk(E),

the extension of F̂k to Eσ∗ is given by F̂k(z)h = z(k)(Fk(1) ⊗ h), 1 denoting the

identity of M = E⊗0 as an element of F(E). Thus if G : (Eσ∗)k → B(H) is the

continuous multilinear map defined by

G(z1, z2, . . . , zk)h = z1(IE ⊗ z2) · · · (IE⊗(k−1) ⊗ zk)(Fk(1)⊗ h),

then F̂k(z) = G(z, z, . . . , z), and ‖F̂k(z)‖ ≤ ‖Fk‖‖z‖k, justifying the remark above

that F̂k is a continuous k-homogeneous polynomial from Eσ∗ to B(H) [45, Defini-

tion 1.1]. The norm of F̂k as a homogeneous polynomial is defined by ‖F̂k‖∞ =

1Generalized powers of elements of Eσ will also appear in Chapter 5. It was for elements of
Eσ that the generalized powers were originally defined in [31], but the same terminology is used
here for the adjoints, and context will make it clear which is intended.
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sup{‖F̂k(z)‖ : ‖z‖ ≤ 1}, and therefore the estimate above shows that ‖F̂k‖∞ ≤

‖Fk‖. In fact, by Corollary 50 and continuity of F̂k, the potentially sharper inequal-

ity ‖F̂k‖∞ ≤ ‖F̂k‖H∞(E,σ) holds.

Now let F be an element of H∞(E) with Fourier series
∑∞

k=0 Fk. Then the

series
∑∞

k=0 F̂k is a power series from Eσ∗ to B(H) [45, Definition 1.3]. Its radius

of convergence R satisfies

1

R
= lim sup

k→∞
(‖F̂k‖∞)

1
k .

For each k, ‖F̂k‖∞ ≤ ‖Fk‖ = ‖Φk(F )‖ ≤ ‖F‖, so that R ≥ 1. Thus z 7→ F̂ (z) =∑∞
k=0 F̂k(z) is a holomorphic mapping from D(Eσ∗) to B(H), with the series con-

verging uniformly on each ball centered at 0 ∈ Eσ∗ of radius strictly less than 1 [45,

Proposition 1.5, Definition 1.6, and Corollary 1.15].

Remark 56. 1. The algebras H∞(E, σ) form a class of operator-valued holomor-

phic functions defined on the bounded symmetric homogeneous domains [18]

D(Eσ∗) that deserve extensive further study, both for their own interest and

for their connections to the noncommutative Hardy algebras. Such a study

was begun by Muhly and Solel [32]. They gave transfer function realiza-

tions of elements of the unit ball of H∞(E, σ), analogues of the notion from

mathematical system theory, to which a gentle introduction can be found in

[43]. In the case when σ is faithful, they used these to describe holomorphic

automorphisms of D(Eσ∗) that induce automorphisms of H∞(E), and much

more.

2. In another direction, Popescu has undertaken an extensive study of what he

calls “free holomorphic functions” [38]. These are power series in noncom-

muting variables that define operator-valued holomorphic functions on spaces

of row operators, generalizing the functions obtained from the function space

representations of the noncommutative analytic Toeplitz algebras discussed in

the next section. One area of future research interest is to extend his ideas
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to the setting of holomorphic functions on domains in Eσ∗ that come from

power series of the form
∑∞

k=0 F̂k, with each F̂k ∈ Pk(E) being a continuous

k-homogeneous polynomial extended to all of Eσ∗ as above, but not neces-

sarily coming from an element F̂ of H∞(E, σ). This would involve extending

P(E) to an algebra of formal power series, and looking at all of the possi-

ble representations of these power series as functions on domains in Eσ∗ as σ

ranges over the normal representations of M .

4.2 Generic matrices and polynomial identities in
noncommutative analytic Toeplitz algebras

In this section attention is focused on the noncommutative analytic Toeplitz

algebras. By applying the observations of the previous section, it is seen that Jσ in

this case can be viewed as a completion of an algebra of polynomial identities for

the n-by-n matrices, and that the resulting algebra of functions can be viewed as a

completion of an algebra of generic n-by-n matrices. First, some preliminaries are

given on the algebras and some of their finite dimensional representations.

Let d and n be positive integers. Set M = C, E = Cd with the standard inner

product and standard basis denoted {e1, . . . , ed}, and set σ : C → B(Cn) to be the

only nondegenerate representation of C on Cn. Then H∞(Cd) is the ultraweakly

closed unital subalgebra ofB(F(Cd))) generated by the creation operators S1, . . . , Sd

defined by Sj(x) = ej ⊗ x; i.e., Sj = Tej
in the general notation above.2 The

algebra H∞(Cd) is called the noncommutative analytic Toeplitz algebra, introduced

by Popescu [37] and since studied by several authors, including Arias, Davidson,

Pitts, and Popescu [2, 11, 12, 38].

Using the fact that a basis has been fixed for Cd, the set Eσ∗ of adjoints of

2This algebra appears with various names and notation in the literature. For example, it is
sometimes called the noncommutative Hardy algebra or the noncommutative analytic Toeplitz
algebra, and it has been denoted by F∞d or Ld. To avoid further overloading the term “non-
commutative Hardy algebra,” the latter terminology is used, and for consistency with the general
notation for the noncommutative Hardy algebra of a correspondence, the algebra will be denoted
by H∞(Cd).
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elements of the σ dual of E = Cd is identified as follows:

Eσ∗ = (Cd)σ∗ = B(Cd ⊗ Cn,Cn) ∼= B((Cn)(d),Cn) ∼= Rowd(B(Cn)).

Elements of Eσ∗ will be treated as lying in the latter space, so if T is in Eσ∗, then

T = (T1, T2, . . . , Td) with each Tj in B(Cn) and ‖T‖ = ‖
∑d

j=1 TjT
∗
j ‖. Note that T is

still thought of as an element of B((Cn)(d),Cn), but with its “coordinates” chosen.

Following Davidson and Pitts [11], the shorthand notation Bd,n = D(Rowd(B(Cn)))

will be used, the case n = 1 being the standard unit ball Bd = Bd,1 in Cd, thought

of as a row Hilbert space, or as the dual of Cd.

The Fock space F(Cd) and the series expansions of elements of H∞(Cd) can

be described using the free monoid on d generators. Let F+
d denote the free monoid

generated by the symbols g1, . . . , gd with identity ∅. Elements of F+
d are “words”

of the form w = gi1gi2 . . . gik , and the length of w is |w| = k. Thus ∅ is the empty

word and has length zero. The space F(Cd) has a canonical orthonormal basis

indexed by F+
d . The “vacuum” in F(Cd) will be denoted by e∅ = (1, 0, 0, . . .),

and if w = gi1gi2 . . . gik , then ew denotes ei1 ⊗ ei2 ⊗ · · · ⊗ eik ∈ (Cd)⊗k ⊂ F(Cd)

(considering (Cd)⊗k as a subspace of F(Cd) in the obvious way). If (T1, . . . , Td) is a

d-tuple of bounded operators, then Tw denotes Ti1Ti2 . . . Tik . If F is in H∞(Cd) and

Fe∅ =
∑

w∈F+
d
awew, then the “Fourier series”3 associated with F is

∑
w∈F+

d
awSw.

Thus, with Fk = Φk(F ) denoting the k-homogeneous part of F as in the previous

section, Fk =
∑

|w|=k awSw, and

F = uw- lim
k→∞

k−1∑
j=0

(
1− j

k

)
Fj = uw- lim

k→∞

∑
|w|<k

(
1− |w|

k

)
awSw.

It is now easy to describe the function F̂ : Bd,n → B(Cn). Given z =

(z1, . . . , zd) ∈ Bd,n, for each k ∈ {1, . . . , d} and h ∈ Cd, reflecting on how the coordi-

nates for Bd,n were chosen leads to the evaluation ψz(Sk)h = z(ek⊗h) = zk(h). Thus,

3In case the reader is curious, the ordering on F+
d for summation can be determined first by

length and second by lexicographic ordering on words of fixed length. For example, g2 < g2
1 <

g1g2 < g2g1 < g2
2 < g3

1 . This is not particularly relevant, as there will be no considerations of
conditional convergence.
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ψz(Sk) = zk, and more generally it follows that ψz(Sw) = zw for w ∈ F+
d . Therefore,

the holomorphic function F̂ : Bd,n → B(Cn) is given by F̂ (z) =
∑

w∈F+
d
awzw, where

the series converges uniformly on compact subsets of Bd,n, as follows from the more

general discussion in the previous section.

To describe how the material from the previous section relates to the present

setting, some algebraic preliminaries are needed from the theory of polynomial iden-

tity rings [41, 17]. Let C〈X1, . . . , Xd〉 denote the free unital associative complex

algebra in d variables X1, . . . , Xd. Let PId,n denote the subset of C〈X1, . . . , Xd〉 con-

sisting of all polynomial identities for Mn(C) in d variables. That is, p(X1, . . . , Xd)

is in PId,n if and only if specializing the variables to a d-tuple of n-by-n matrices

A1, . . . , Ad ∈Mn(C) always results in p(A1, . . . , Ad) = 0. Let Cn〈Y1, . . . , Yd〉 denote

the algebra of d generic n-by-n complex matrices. This means that Cn〈Y1, . . . , Yd〉

is the subalgebra of the matrix algebra Mn(C[xij(k)]) over the polynomial ring in

dn2 commuting variables {xij(k) : i, j ∈ {1, . . . , n}, k ∈ {1, . . . , d}} generated by

the generic matrices Yk = (xij(k))i,j. Then the homomorphism C〈X1, . . . , Xd〉 →

Cn〈Y1, . . . , Yd〉 sending Xk to Yk is surjective, and its kernel is PId,n. The algebra

Cn〈Y1, . . . , Yd〉 is free among algebras satisfying the polynomial identities of the

n-by-n matrices, and it has no zero divisors [17, pages 18-19].

For the present setting where E = Cd and σ : C → B(Cn), the notation H∞
d,n,

Jd,n, and Γd,n will be used in place of H∞(E, σ), Jσ, and Γσ, respectively.

Proposition 57. 1. The map α : p(X1, . . . , Xd) 7→ p(S1, . . . , Sd) is an isomor-

phism from the free algebra C〈X1, . . . , Xd〉 onto the algebra of polynomials

P(Cd) in H∞(Cd). The ideal PId,n is mapped under α onto Jd,n ∩ P(Cd),

which is ultraweakly dense in Jd,n.

2. The unique homomorphism β : Cn〈Y1, . . . , Yd〉 → H∞
d,n sending Yk to Ŝk maps

Cn〈Y1, . . . , Yd〉 isomorphically onto (P(Cd) + Jd,n)/Jd,n, which is ultraweakly

dense in H∞
d,n.
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Proof. It is clear that α is onto P(Cd). Since elements of H∞(Cd) are uniquely

determined by their Fourier series, α is also injective. Suppose that p is in PId,n.

Then for all z = (z1, . . . , zd) ∈ Bd,n, Γd,n(α(p))(z) = p(z1, . . . , zd) = 0, by definition

of PId,n, and therefore α(p) is in Jd,n. Conversely, if F is in Jd,n ∩ P(Cd), then

α−1(F ) is a polynomial that vanishes when evaluated on all d-tuples of n-by-n

matrices in an open subset of Mn(C)d. By the identity theorem for holomorphic

functions, α−1(F ) induces the 0 map on Mn(C)d, and hence α−1(F ) is in PId,n.

Thus α(PId,n) = Jd,n ∩ P(Cd), which is ultraweakly dense in Jd,n by Propositions

52 and 54. This concludes the proof of part 1.

For part 2, the ultraweak density of (P(Cd) + Jd,n)/Jd,n in H∞
d,n follows from

the fact that P(Cd) is dense in H∞(Cd), as in Proposition 54. The uniqueness

and existence of β follows from the fact that H∞
d,n(E), being an algebra of B(Cn)-

valued functions, satisfies all of the polynomial identities of the n-by-n matrices.

However, it will be helpful to be more explicit. By part 1, α induces an isomor-

phism C〈X1, . . . , Xd〉/PId,n → P(Cd)/(Jd,n ∩ P(Cd)) ∼= (P(Cd) + Jd,n)/Jd,n that

sends [Xk] to Ŝk, and precomposing with the isomorphism from Cn〈Y1, . . . , Yd〉 to

C〈X1, . . . , Xd〉/PId,n sending Yk to [Xk] simultaneously yields β and shows that it

is an isomorphism.

Remark 58. 1. The result of part 1 has some overlap with a result of Davidson

and Pitts [11, Proposition 2.4] when n = 1, in which they proved that Jd,1

is the weak closure of the commutator ideal of H∞(Cd). However, they also

allow d to be infinite, and the above arguments would need some adjustment

to accommodate this case. Namely, it would no longer be true that α is onto

if d were infinite.

2. While Popescu has studied the function theory of the algebras H∞(Cd), most

of the attention so far has been spent on the case when n is infinite. In this

case, Jd,n = (0), and it turns out that if H∞
d,n is given the sup norm, then it is
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completely isometrically isomorphic to H∞(Cd) [38, Theorem 3.1].

3. The algebras H∞
d,1 = H∞

d have been studied from several perspectives. Ap-

plying the results of Chapter 3 to this setting leads to a realization of H∞
d as

the multiplier algebra of the symmetric Fock space F s(Cd), viewed as a repro-

ducing kernel Hilbert space of holomorphic functions on the unit ball. This

is part of the original perspective of Arveson [3], who was not working with

noncommutative analytic Toeplitz algebras. Davidson and Pitts observed the

connection to representations of the noncommutative analytic Toeplitz alge-

bras [12]. Arveson, among other things, identified the C∗-envelope of H∞
d [3,

Theorem 8.15].

4. The above results show that the algebra H∞
d,n of holomorphic functions in d

matrix variables can be thought of as a completion of a generic matrix algebra,

and by the results of Chapter 3 it may be studied as the multiplier algebra of

a reproducing kernel correspondence over B(Cn) consisting of B(Cn)-valued

functions on Bd,n. There remains much to be studied concerning the algebraic

and function theoretic properties of H∞
d,n. In particular, the identification of

its C∗-envelope is still an open problem.
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CHAPTER 5

CURVATURE OF A VECTOR BUNDLE OVER THE UNIT BALL
OF A DUAL CORRESPONDENCE

In this section, a Hermitian holomorphic vector bundle is associated with each

dual correspondence in such a way that the metric is related to an operator-valued

positive kernel function that generalizes the Szegő kernel on the open unit disk of C.

The canonical connection and curvature of these bundles are given. Specialized to

the disk, the Cowen-Douglas bundle of the backward shift is recovered, also yielding

the Poincaré metric.

Let E be a C∗-correspondence over a C∗-algebra A, and let σ : A→ B(H) be a

nondegenerate representation. The Cauchy kernel [33] is defined by assigning to each

z in the unit disk D(Eσ) of the dual correspondence Eσ over σ(A)′ an element C(z) in

the dual correspondence of the Fock module of E, F(E)σ, as follows. First, for each

positive integer k, define the kth generalized power of z, z(k) : H → E⊗k ⊗σ H, by

z(k) = (IE⊗(k−1) ⊗ z) · · · (IE⊗ z)z. The map C(z) : H → F(E)⊗σH is defined by its

block column form C(z) := [z(0), z(1), z(2), . . .]>. Each map C(z) is injective and has

closed range by [33, Proposition 10], so C(z)H is an element of the Grassmannian

space G(dimH,F(E) ⊗σ H) of closed subspaces of F(E) ⊗σ H whose dimensions

are equal to that of H. While many of the computations below are valid in the

general setting, for the remainder of this section it will be assumed that Eσ and

H are finite-dimensional.1 Finite-dimensionality of Eσ allows the theory of finite

dimensional complex geometry to be applied to vector bundles over D(Eσ), and

finite-dimensionality of H removes possible topological complications involving the

meaning of “frame” for a vector bundle whose fibres are isomorphic to H.

1Thus, the remark that C(z)H is closed becomes superfluous.
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Let n = dimH < ∞. The map z 7→ C(z)H determines a Hermitian holo-

morphic vector bundle Y over D(Eσ) as a pullback of the universal bundle over

the Grassmannian space G(n,F(E) ⊗σ H) [47, pages 17 and 24]. The bundle Y is

trivial as a holomorphic vector bundle, and a global frame can be given by choosing

a basis for H as follows. Let {ej}nj=1 be an orthonormal basis for H, and for each j

let γj : D(Eσ) → Y be defined2 by γj(z) = C(z)ej. Then {γj}nj=1 is a global frame

of holomorphic sections for Y .

Once this is done it is possible to determine the coordinate form of the canon-

ical connection and curvature of the bundle with respect to this frame and a choice

of coordinates on D(Eσ), following Section III.2 of [47]. The matrix of the Her-

mitian metric at z ∈ D(Eσ) with respect to the frame (i.e., the Grammian of the

frame at z) is the matrix of h(z) = C(z)∗C(z) = (id−θz,z)−1(IH), where id de-

notes the identity operator on σ(A)′ and θz,z ∈ B(σ(A)′) is the operator defined by

θz,z(a) = z∗(IE ⊗ a)z = 〈z, a · z〉Eσ .

Remark 59. Although it will not play a direct role in what follows, it is worth

noting that h is obtained from KS of Chapter 3 by evaluating KS on the diagonal

(on adjoints) and evaluating the resulting values at the identity.

The first step in computing the curvature and connection will be to compute

the Fréchet derivative of the function h : D(Eσ) → σ(A)′, which as above is given

by h(z) = (id−θz,z)−1(IH). This derivative, Dh, assigns to each point z ∈ D(Eσ) a

bounded, real linear operator from Eσ to σ(A)′, which will be denoted by Dh(z, ·).3

It will be useful to first extend the notation θz,z used above. For each w1 and w2 in

Eσ let θw1,w2 denote the operator in B(σ(A)′) defined by θw1,w2(a) = w1
∗(IE⊗a)w2 =

〈w1, a·w2〉Eσ . Notice that h can be written as a composition of elementary mappings.

2Technically γj(z) should be the pair (z, C(z)ej), but this abuse of notation can be used where
the context makes it clear.

3Under the standing assumption that Eσ is finite-dimensional it is superfluous to mention
boundedness of Dh(z, ·), but everything in this paragraph works in the general case.
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For example, evaluation at the identity is linear, so its derivative is the constant

map with value equal to evaluation at the identity. The map f : a 7→ (1 − a)−1

is differentiable on the unit ball of any unital Banach algebra, with Df(a, b) =

(1 − a)−1b(1 − a)−1 (a straightforward computation). As for g : z 7→ θz,z, it is

the specialization of a bilinear map to the diagonal, and Dg(z, η) = θη,z + θz,η.

Combining these facts, the result of the computation is thatDh(z, η) = (id−θz,z)−1◦

(θη,z + θz,η)(h(z)).

Fix an orthonormal basis {ej}nj=1 for H along with the associated frame

{γj}nj=1 as above. Assume that D(Eσ) is given (complex) coordinates z1, z2, . . . , zN

corresponding to a (complex) basis v1, v2, . . . , vN for Eσ. By [47, page 79], the for-

mulas for the connection and curvature in terms of h are Θ(z) = h(z)−1∂h(z) and

K(z) = ∂̄Θ(z), respectively, where ∂ and ∂̄ act on differential forms of type (p, q) by

exterior differentiation followed by projection onto the forms of type (p+ 1, q) and

(p, q + 1), respectively. In coordinate form, ∂ =
∑N

j=1
∂
∂zj
dzj and ∂̄ =

∑N
j=1

∂
∂z̄j
dz̄j.

So ∂h(z) =
∑N

j=1
∂h
∂zj

(z)dzj, and each partial derivative ∂h
∂zj

is obtained from Dh as

∂h
∂zj

(z) = 1
2
( ∂h
∂xj

(z)− i ∂h
∂yj

(z)) = 1
2
(Dh(z, vj)− iDh(z, ivj)) = (id−θz,z)−1 ◦θz,vj

(h(z)).

Thus the connection is

Θ(z) = h(z)−1

N∑
j=1

(id−θz,z)−1 ◦ θz,vj
(h(z))dzj. (5.1)

To compute the curvatureK(z) = ∂̄Θ, the partial derivatives of the coefficients

of Θ are needed, and again they can be obtained by first computing the Fréchet

derivatives. Fix j ∈ {1, 2, . . . , N} and let Fj : D(Eσ) → σ(A)′ be the function

defined by Fj(z) = h(z)−1(id−θz,z)−1 ◦ θz,vj
(h(z)). At first sight Fj is significantly

more complicated than h, but again the calculation of the derivative can be broken

up into routine parts. For instance, the derivative of h was already computed. The

map z 7→ θz,vj
is linear and thus presents no problem. The inverse map Inv : a 7→

a−1 on the invertible elements of any Banach algebra has derivative D Inv(a, b) =

−a−1ba−1 (a straightforward computation). Finally, to put it all together, note
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that the component parts are related by multiplication or composition, and thus Fj

is a multilinear combination of functions whose derivatives are straightforward to

compute. The result of the somewhat tedious computation shows that

DFj(z, η) = h(z)−1
[
−(id−θz,z)−1 ◦ (θη,z + θz,η)(h(z))h(z)

−1(id−θz,z)−1 ◦ θz,vj
(h(z))

+(id−θz,z)−1 ◦ [(θη,z + θz,η) ◦ (id−θz,z)−1 ◦ θz,vj

+θz,vj
◦ (id−θz,z)−1 ◦ (θη,z + θz,η) + θη,vj

](h(z))
]
.

For each k ∈ {1, 2, . . . , N}, ∂Fj

∂z̄k
(z) = 1

2
(DFj(z, vk) + iDFj(z, ivk)). Thus the

formula for DFj yields

∂Fj
∂z̄k

(z) = h(z)−1
[
−(id−θz,z)−1 ◦ θvk,z(h(z))h(z)

−1(id−θz,z)−1 ◦ θz,vj
(h(z))

+(id−θz,z)−1 ◦ [θvk,z ◦ (id−θz,z)−1 ◦ θz,vj

+θz,vj
◦ (id−θz,z)−1 ◦ θvk,z + θvk,vj

](h(z))
]
.

Finally, using the fact that K = ∂̄Θ =
∑N

k=1

∑N
j=1

∂Fj

∂z̄k
dz̄k ∧ dzj, the formula

for the curvature at z ∈ D(Eσ) is

K(z) = h(z)−1
∑

1≤j,k≤N

[
−(id−θz,z)−1 ◦ θvk,z(h(z))h(z)

−1(id−θz,z)−1 ◦ θz,vj
(h(z))

+(id−θz,z)−1 ◦ [θvk,z ◦ (id−θz,z)−1 ◦ θz,vj

+θz,vj
◦ (id−θz,z)−1 ◦ θvk,z + θvk,vj

](h(z))
]
dz̄k ∧ dzj.

Here are a couple of examples illustrating special cases of the formulas above.

Example 60. Consider the case when A = E = H = C. The map σ is then just

the identification of the algebra C with B(C). Identifying E⊗σH = C⊗C C with C

in the usual way, Eσ is identified with B(C), which in turn is canonically identified

with C. Similarly, all of the tensor powers of C will be identified with C in the usual

way; both F(E) and F(E)⊗σH are therefore identified with `2Z+
. For z in the unit

disk D of the complex plane, C(z) : C → `2 is given by C(z)λ = λ(1, z, z2, z3, . . .).

So the fibre of the vector bundle over z is the span of (1, z, z2, . . .). This is precisely

the vector bundle associated with the backward shift U∗
+ in [10] because the span

of (1, z, z2, . . .) is ker(U∗
+ − z). In this case it is easier to compute the curvature
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directly than to specialize the formulas above. Either way, the result is

h(z) =
1

1− |z|2
,

Θ(z) =
z̄

1− |z|2
dz, and

K(z) =
1

(1− |z|2)2
dz̄ ∧ dz.

Note that h is the Poincaré metric on the disk [23, page 40].

Example 61. Let A = H = C again, but this time let E = Cd for some d ∈ N.

There are identifications of Eσ with Cd and of F(E) ⊗σ H with F(Cd), and the

standard basis of Cd will be used. Here the fibre over a point z in the unit ball of Cd

is the span of (1, z, z⊗2, z⊗3, . . .). Direct computation or specialization of the above

formulas yield

h(z) =
1

1− 〈z, z〉
,

Θ(z) =
d∑
j=1

z̄j
1− 〈z, z〉

dzj, and

K(z) =
∑

1≤j,k≤d

(
z̄jzk

(1− 〈z, z〉)2
+

δjk
1− 〈z, z〉

)
dz̄k ∧ dzj.
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