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ABSTRACT

In this thesis, I apply methods from the representation theory of finite dimen-
sional algebras to the study of versal and universal deformation rings. The main idea
is that more sophisticated results from representation theory can be used to arrive at
a deeper understanding of deformation rings. Such rings arise naturally in a variety
of problems in number theory and group representation theory.

This thesis has two parts. In the first part, A is an arbitrary finite dimensional
algebra over a field k. If V is a finitely generated A-module, I prove that V' has
a versal deformation ring R(A,V’). Moreover, if A is self-injective and the stable
endomorphism ring of V' is isomorphic to k, then R(A, V') is universal. If additionally
A is a Frobenius algebra and 2 denotes the syzygy operator over A, I show that
the universal deformation rings of V' and Q(V') are isomorphic. In the second part,
I analyze a particular finite dimensional Frobenius algebra A over an algebraically
closed field k£ for which all the finitely generated indecomposable modules can be
described combinatorially by using certain words in A. I use this description to
visualize the indecomposable A-modules in the stable Auslander-Reiten quiver of
A and determine all the components of this stable Auslander-Reiten quiver which
contain A-modules whose endomorphism ring is isomorphic to k. Finally I determine
the universal deformation rings of all the modules in these components whose stable

endomorphism ring is isomorphic to k.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The work in this thesis has to do with applying methods from the repre-
sentation theory of finite dimensional algebras to the study of versal and universal
deformation rings. The main motivation is that more sophisticated results from rep-
resentation theory can be used to arrive at a deeper understanding of deformation
rings.

The first main goal of this thesis is to translate Mazur’s deformation theory
of Galois representations to deformations of modules for arbitrary finite dimensional
algebras over fields. Particular goals are to find sufficient criteria for the existence of
a universal deformation ring of a module and for the preservation of this universal
deformation ring by the syzygy operator 2. The second main goal is to apply this
deformation theory to a particular finite dimensional algebra and to demonstrate the
power of representation theoretic techniques when computing universal deformation

rings.

1.2 Overview
In Chapter 2, many of the definitions and well-known results needed for the
remainder of this thesis are provided. For example, we define Frobenius and self-
injective algebras, projective covers, the syzygy operator, Ext groups, stable endo-
morphism rings, quivers, almost split sequences, path algebras and stable Auslander-

Reiten quivers. We state Schlessinger’s criteria for the pro-representability of Artin



functors. We mention Morita’s Theorem for the equivalence of module categories
over algebras and Gabriel’s Theorem for the classification of basic algebras over an
algebraically closed field.

In Chapter 3, we assume A to be a finite dimensional algebra over a field & and
V to be a finitely generated A-module. We provide the definition of the deformation
functor Fy over the category C of complete local commutative Noetherian k-algebras
with residue field k. Using similar techniques as in [9] and [3], we prove that V'
always has a versal deformation ring R(A, V') and that R(A, V') is universal provided
A is self-injective and the stable endomorphism ring of V' is isomorphic to k. Then,
assuming that A is a Frobenius algebra and V' has stable endomorphism ring k&, we
prove that the universal deformation rings of V' and (V') are isomorphic.

In Chapter 4, we assume k to be an algebraically closed field and work with a
particular special biserial algebra A. We find all the A-modules with endomorphism
ring k, and describe the components of the stable Auslander-Reiten quiver to which
they belong. We determine all the A-modules V' in these components whose stable

endomorphism ring is isomorphic to k, and calculate their universal deformation rings

R(A, V).



CHAPTER 2

BACKGROUND

2.1 Module Theory
2.1.1 Frobenius, Symmetric and Self-injective Algebras

Let k£ be a field and let A be a finite dimensional k-algebra. For every A-module

M, let M* = Homy (M, k) be the space of k-linear maps from M to k.

Definition 2.1.1. We say that A is a Frobenius algebra if there exists a k-linear map

B : A — k such that

(i) ker(p) contains no non-zero left or right ideal.

We say that A is a symmetric algebra if it is a Frobenius algebra, i.e. it satisfies (i),

and moreover

(ii) for all a,b € A, B(ab) = B(ba).

We say that A is self-injective if the left regular A-module 5 A is an injective A-module.

Proposition 2.1.2. (i) If A is a Frobenius algebra over k, then (Ap)* = AA as left

A-modules. In particular A is self-injective.

(i)* If A is a Frobenius algebra over k, then (AA)* = Ap as right A-modules.

(i1) Suppose A is self-injective. Then the following conditions on a finitely generated

AN-module M are equivalent:

(a) M is projective;



(b) M is injective;
(c) M* is projective;
(d) M* is injective.

Proof. We will prove (i)*, for the other statements see |2, Prop. 1.6.2]. Assume A is
a Frobenius k-algebra. Then there exists a k-linear map 3 : A — k such that ker(p3)
does not contain a non-zero left or right ideal. Let ¢ : Ay — Homg (s A, k) be defined
by ¥(a) = ¢, for all a € A, where ¢),(x) = [(ax) for all x € A. Let b € A. Then
for all z € A, Yyp(z) = B(abx) = P, (bx) = (V) (x). Thus ¢(ab) = ¥ (a)b. Therefore
¥ is a right A-module homomorphism. If 1)(a) = 0 then for all z € A, S(ax) = 0.
This implies that aA C ker(f). Thus aA = 0, implying a = 0. Hence 1) is injective.
Since the k-dimensions of Ay and (,A)* are the same and finite, it follows that 1) is

an isomorphism of right A-modules. ]

Lemma 2.1.3. Let A be a Frobenius k-algebra, let R be a commutative k-algebra
and define RN = R®y A. If P is a finitely generated projective left RA-module then

Hompg (P, R) is a finitely generated projective right RA-module.

Proof. Assume first that P = RA. Since A is Frobenius, if follows from Proposition
2.1.2 (1)* that A = Homyg(A, k) as right A-modules. By the Change of Rings Theorem

(see [5, Thm. 2.38]), the map

¢: R®yA=RA—Hompg(RA,R) (2.1)

r®ar——m, - Y(a)

is an isomorphism of R-modules, where m, is multiplication by » on R, 1 is the

right A-module isomorphism in the proof of Lemma 2.1.2, and for all ¢ € R and
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e A, (my-9(a)t®z) = m(t)h(z) = rtflax). We now show that ¢ is also a

homomorphism of right RA-modules. Let s € R and b € A. Then for all » € R and

a €A,
D((r @ a)(s @ b)) = P(rs @ ab)
= My - (ab)
= (m,s) - (1(a)b)
= (m, - ¢(a))(s ® b)
= (V(r ® a))(s ® ).
Thus

RA = Homp(RA, R)

as right RA-modules. Therefore, the result follows when P = RA. Assume now that

P is a finitely generated free left RA-module, say P = (RA)™. Then

Homp(P, R) = Hompg((RA)", R) = (Hompg(RA, R))"

as right RA-modules. Using the first part, we see that (RA)" = (Homg(RA, R))" as
right RA-modules. Thus Homg(P, R) is a free right RA-module, hence a projective
right RA-module. Finally, assume P to be an arbitrary finitely generated projective
left RA-module. Then there exist a finitely generated free left RA-module F and a left
RA-module @ so that FF = Q& P. Let (fg, fp) : F' — Q& P be an isomorphism of left

RA-modules. Applying Hompg(—, R), we obtain an isomorphism of right RA-modules

(fo, fr)" : Homg(Q & P, R) — Hompg(F, R).



Since Hompg(Q @ P, R) = Hompg(Q, R) @ Hompg(P, R) as right RA-modules, we obtain

Hompg(F, R) = Homg(Q, R) © Hompg(P, R)

as right RA-modules. Since Hompg(F, R) is a free right RA-module, it follows that

Hompg (P, R) is a projective right RA-module. O

2.1.2  Projective Covers
Definition 2.1.4. Let R be a commutative Artinian ring and let A be a finitely

generated R-algebra. Assume M and N to be finitely generated A-modules.

(i) The top of M, denoted by top(M), is the quotient M/rad(M) where rad(M)
is the radical of M, i.e. the intersection of all maximal submodules of M. The

socle of M, denoted by soc(M), is the submodule of M generated by all simple

submodules of M.

(ii) A surjective A-module homomorphism f : M — N is called an essential surjec-
tion if a homomorphism ¢ : X — M is surjective whenever fog: X — N is

surjective.

(iii) A projective cover of M is a pair (P,7) where P is a projective A-module and
m: P — M is an essential surjection of A-modules. Equivalently, 7 induces an

isomorphism P/rad(P) = M/rad(M) (see [1, Prop. 1.4.3]).

Theorem 2.1.5. Let A as in Definition 2.1.4. Then every finitely generated A-module
M has a projective cover (P, ). Moreover, if (Py,m) and (P, ms) are two projective

covers of M, then there exists a A-module isomorphism 7 : Py — Py with myoT = my.



Proof. See [1, Thm. 1.4.2]. O

Definition 2.1.6. Let A be as in Definition 2.1.4, and let M be a finitely generated
A-module. The first syzygy of M, denoted by Q(M), is defined to be the kernel of a

projective cover 7w : P — M. By Theorem 2.1.5, it is unique up to isomorphism.

2.1.3 Stable Endomorphism Rings
Definition 2.1.7. Let A be as in Definition 2.1.4. Let M and N be finitely gen-
erated A-modules. We denote by PHomy (M, N) the R-submodule of the R-module
Homy (M, N) consisting of those A-module homomorphisms from M to N factoring
through a projective A-module. Define the R-module of stable A-module homomor-

phisms from M to N, denoted by Hom, (M, N), to be the quotient
Hom, (M, N) = Hom, (M, N)/ PHomy (M, N).

In particular, if M = N then the R-module End, (M) = Hom, (M, M) is also an

R-algebra, called the stable endomorphism ring of M.

2.1.4 Ext Groups

Definition 2.1.8. Let A be a ring, and let M and N be left A-modules.

(i) A projective resolution of M is an exact sequence
B PSP M (2.2)

of A-modules such that for all n € Z* U {0}, P, is a projective A-module and

Py/Im(d7) = M as A-modules. Note that projective resolutions always exist.



(ii) Let -+ — Py LEN P LN Py — M — 0 be a projective resolution of M. By
applying Homy (—, V), we obtain an induced sequence

*

0 — Homy (P, N) 25 Homy (Pr, N)

*

%, Homp(Po, N) 55 ... (2.3)
Define Ext (M, N) = ker(6%) and for all n € Z*,
Ext} (M, N) = ker(d; )/ Im(0;,).
Note that Ext} (M, N) = Homy (M, N) as abelian groups.

Remark 2.1.9. If R and A are as in Definition 2.1.4 and M and N are finitely gener-
ated A-modules, then Ext} (M, N) is an R-module for all n > 0 and Ext} (M, N) =

Homp (M, N) as R-modules.

Proposition 2.1.10. Let A be a ring. Suppose that
0—->M —-M-—M"—0 (2.4)

is a short exact sequence of left A-modules. If N is a left A-module, then there exists

a long exact sequence of abelian groups
0— HOIIIA(N, M’) — HOIIIA(N, M) — HOHIA(N, M”)
— Ext) (N, M) — Ext) (N, M) — Ext) (N, M") — Exti(N,M')- -
— Ext} (N, M) — Ext} (N, M) — Extiy (N, M") — Exti" (N, M) — -

(2.5)

Proof. See |2, Prop. 2.5.3 (ii)]. O



Theorem 2.1.11. Let A be a self-injective finite dimensional k-algebra, where k is
a field. Let M and N be finitely generated left A-modules, and let S be a simple

non-projective A-module.
(i) If M has no projective direct summands, then M = Q=Y (Q(M)) = Q(Q~1(M))

as N-modules.

(1) Hom, (M, N) = Hom, (Q(M), Q(N)) = Hom,(Q'(M),Q7H(N)) as k-vector

spaces.

(11i) For alli € ZT,

Ext) (M, N) = Hom, (Q'(M), N) (2.6)
as k-vector spaces.
(iv) End,(S) = End,(S).
Proof. See |7, Thm. 2.19] O

2.2 Morita Equivalence
Definition 2.2.1. Let A and Aq be finite dimensional k-algebras, where £ is a field.
Let A-mod (resp. Ag-mod) be the category of finitely generated A-modules (resp.
Ag-modules). We say that A and Ay are Morita equivalent, denoted by A ~p; Ay, if

the categories A-mod and Ag-mod are equivalent categories.

Definition 2.2.2. Let k£ be a field and let A be a finite dimensional k-algebra. Then
A is called a basic algebraif A = P, &--- & P, as left A-modules, where P, ..., P, are
pairwise non-isomorphic projective indecomposable A-modules. If k is algebraically

closed, then A is basic if and only if all simple A-modules are one-dimensional over k.
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Theorem 2.2.3. Let k be an algebraically closed field. Two basic k-algebras are

1somorphic if and only if they are Morita equivalent.
Proof. See [6, Lemma 1.2.6]. O

Theorem 2.2.4. Let k be an algebraically closed field. If A is a finite dimensional
k-algebra, then there is a unique basic algebra Ay up to isomorphism with A ~y; Ag.

We call Ay the basic algebra of A.

Proof. See |6, Cor. 1.2.7]. O

2.3 Quivers and Path Algebras
2.3.1 Representations of Quivers
Definition 2.3.1. (i) A quiver @ is a directed graph Q = (Qo, Q1, s, €) where Qg
is the set of vertices and () is the set of arrows, and s, e are maps from ); to
Qo as follows. For any arrow o € @1, s(«) is the vertex where « starts and e(«)

is the vertex where « ends.

(ii) Suppose @ is a quiver and let k be a field. A representation V of the quiver @
over k is given by (V;, ¢, ) where for any vertex i € Qo we have a k-vector space
V;, and for any arrow i — j there is a k-linear transformation o, : V; — V.

Let V = (Vi, o) and V' = (V/,©)) be representations of @) over k. Then a

morphism 7 : ¥V — V' is defined to be n = (n;), where n; : V; — V' is a k-linear

transformation such that for any arrow i = j there is a commutative diagram
v, _ Pa 1%
N Nj

/

vy P, 1% (2.7)
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that is, ¢f, on; = nj0p,. Denote by Rep,(Q) the category of all representations

of Q) over k.

2.3.2 The Path Algebra of a Quiver

Let @ be a quiver and let k be a field.

Definition 2.3.2. Let i,j € Q. A path of length [ > 1 from ¢ to j is of the form
(Jlau, ..., a1|i) with arrows «,. satisfying e(a,.) = s(a,41) for all r with 1 <r <[ —1.
We also define for any vertex ¢ of () a path of length zero (from i to itself), denoted by
e;. The path algebra k@ of () is defined to be the k-vector space with basis given by
the set of all paths in ). The product of two paths is taken to be the composition if it
exists, and zero otherwise. In this way, we obtain an associative k-algebra which has
an identity if and only if ) is finite. If )¢ is finite then the identity is given by Z(;g e.
e€Qo
Note that the path algebra k() is finite dimensional over £ if and only if ) is finite and
there is no cyclic path in (). We denote by J the ideal of k() generated by all arrows

in . Then J" is the ideal of k@ generated by all paths of length greater than or

equal to n. We denote by kQ-mod the category of all finitely generated k()-modules.

2.3.3  Quiver with Relations

Definition 2.3.3. Let () be a quiver and let k£ be a field.

(i) Let i and j be vertices of Q. A relation 6 on @ is an element § = > c,w € kQ
where the w are paths between two fixed vertices and c¢,, € k for all these w. If

{6,}, is a set of relations on @ then (Q,{6,},) is called a quiver with relations.

(ii) If w = (jlay,..., i) is a path in @ and V = (V}, p,) is a representation of Q)
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over k, then w acts on V via the linear transformation w(V) = @, 0 -+ 0 @q,.
In general, if p is a relation on Q, say p = > ¢,w, where ¢, € k and each w,, is

a path, then p(V) = > c,w, (V).

(iii) Given a quiver with relations (@, {6,},) and a representation V = (V;, ¢,) of
Q over k, then V is called a representation of (Q,{6,},) if for all + we have
0,(V) = 0. Denote by Rep,(Q, {6.}.) the category of all representations of the

quiver with relations (@, {6,},) over k.

Theorem 2.3.4. Let () be a quiver, let k be a field and let (Q,{6,},) be a quiver with

relations.

(i) The categories Repy(Q) and kQ-mod are equivalent.

(i) The categories Rep,(Q,{0.}.) and kQ/I-mod are equivalent where I is the ideal

of kQ generated by the relations {6, },.
Proof. See [1, Thm. III.1.5, Prop. IIL.1.7]. O

Theorem 2.3.5 (Gabriel). Let k be an algebraically closed field. Any basic finite
dimensional k-algebra is of the form kQ/I for a unique quiver Q and some ideal I

with J* C I C J? for some n > 2, where J is the ideal of kQ generated by all arrows

of Q.

Proof. See [1, Cor. III.1.10]. O

2.4 Almost Split Sequences and Auslander-Reiten Quivers

Let A be a finite dimensional algebra over a field k.



13

Definition 2.4.1. A non-split exact sequence 0 — M LS N 5 0of finitely
generated A-modules with M and N indecomposable is called an almost split sequence,
if for any finitely generated A-module M’ and any A-module homomorphism h : M —
M’ which is not a split monomorphism, there exists a A-module homomorphism

B : L — M’ such that h' o f = h.

Theorem 2.4.2. (i) If N is an indecomposable non-projective A-module, then there

1s an almost split sequence ending in N.

(i1) If M is an indecomposable non-injective A-module, then there is an almost split

sequence starting in M.
Proof. See [1, Thm. V.1.15] O

Definition 2.4.3. f0 — M L L % N — 0 is an almost split sequence, we define
TN = M and say that 7N is the Auslander translate of N. Similarly, we define
7'M = N. If the k-algebra A is symmetric, then 7N = Q?(N) as A-modules (see

[1, Thm. V.1.15 and Prop. 1V.3.8]).

Definition 2.4.4. Suppose M and N are finitely generated A-modules. A A-module
homomorphism f : M — N is said to be irreducible provided f is neither a split
monomorphism nor a split epimorphism, and given a factorization f = go h of f,

then either ¢ is a split epimorphism or A is a split monomorphism.
Theorem 2.4.5. Let 0 — M s L % N — 0 be an almost split sequence.

(i) The irreducible maps starting at M are of the form f': M — L' where L' is

!
a non-zero direct summand of L, say L = L' ® L" and [ = < f) for some
f//
freM L
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(ii) The irreducible maps ending in N are of the form ¢ : L' — N where L' is a
non-zero direct summand of L, say L = L' & L", and g = (¢',¢") for some

g L"— N.

Proof. See [1, Thm. V.5.3]. O

Definition 2.4.6. Let A be a finite dimensional algebra over a field k. The Auslander-
Reiten quiver of A, denoted by I'(A), is defined to be the quiver whose vertices are
the isomorphism classes of indecomposable A-modules. In addition, the number of
arrows [M] — [N] in T'(A) is equal to the k-dimension of the space of irreducible maps
from M to N. More precisely, if N is indecomposable and non-projective, then the
k-dimension of the space of irreducible maps from M to N is equal to the multiplicity
of M as a direct summand of E, where 0 - 7N — E — N — 0 is the almost split
sequence ending in N. Similarly, if M is indecomposable and non-injective, then the
k-dimension of the space of irreducible maps from M to N is equal to the multiplicity
of N as a direct summand of E’ where 0 — M — E' — 77!M — 0 is the almost split
sequence starting at M. If N is indecomposable projective, then the k-dimension of
the space of irreducible maps from M to N is equal to the multiplicity of M as a
direct summand of rad(N). If M is indecomposable injective, then the k-dimension
of the space of irreducible maps from M to N is equal to the multiplicity of N as a
direct summand of M/ soc(M). The stable Auslander-Reiten quiver I's(A) is obtained
from I'(A) by removing for all projective A-modules P and all injective A-modules
and all i € Z* U {0}, [r7"P] and [r'E] and all adjacent arrows. In particular, if A

is self-injective, one removes only the vertices [P] for P projective and the adjacent
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arrows.

2.5 Special Biserial Algebras

Let k be an algebraically closed field and let A be a finite dimensional k-algebra.

Definition 2.5.1. The algebra A is special biserial provided that its basic algebra

kQ/1 satisfies the following conditions:

(i) Any vertex of () is starting point of at most two arrows. Any vertex of () is end

point of at most two arrows.

(ii) Given an arrow 3, there is at most one arrow 7 with s(8) = e(v) and vy & I.

Given an arrow <, there is at most one arrow [ with s(8) = e(vy) and v & 1.

The algebra A is a string algebra if it is special biserial and its basic algebra is

of the form k@ /I where I is generated by paths of length greater than or equal to 2.

Remark 2.5.2. Suppose A = kQ/I is a basic algebra. Let

L = {i € Qy|Ae; is injective}

and define S' = G% soc(Ae;). Then the indecomposable A-modules are given by the
ic
indecomposable A/S-modules together with Ae; for i € L. Moreover, the Auslander-
Reiten quiver I'(A/S) is obtained from I'(A) by removing the modules Ae; with i € L.
In the case that A is self-injective, S = G% soc(Ae;) = soc(A), and I'(A/S) is the stable
ic

Auslander-Reiten quiver I'g(A) (see |6, 1.8.11]).

Suppose now that A/S is a string algebra. Then it follows that to study the

indecomposable non-projective A-modules and the stable Auslander-Reiten quiver
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['s(A), we may assume that A is a string algebra. In particular, this is the case when

A is special biserial, since then A/S is a string algebra (see [6, 11.1.3]).

2.5.1 String and Band Modules

Let k be an algebraically closed field and let A = kQ/I be a basic string

algebra.

Definition 2.5.3. (i) Given an arrow 3 of @, denote by 37! the formal inverse of

(i)

(iii)

B. We set s(871) = e(B) and e(f71) = s(B), and we write (87!)"! = 3. By
a word of length n > 1 we mean a sequence w,, - - - wy, where the w; are of the
form 3 or 37! with 8 an arrow, and where s(w;, 1) = e(w;) for 1 <i <n—1. We
define (wy, - wy)™ b = w7t w, ™Y s(wy, - -wy) = s(wy) and e(w, -+ w;) =
e(wy). A rotation of a word w is a word of the form w;---wjw, -+ w;;; for
1 <i<n. Ifwvisa vertex of (), we define an empty word e, of length zero
with e(e,) = v = s(e,) and (e,)™' = e,. On the set of words, we define two

equivalence relations: (a) the relation ~ which identifies w with w™!, and (b)

the relation ~, which identifies a word with its rotations and their inverses.

A string is a representative w of an equivalence class under the relation ~ where
either w = e, for some vertex v of ), or w = w,, - - - wy; withn > 1 and w; # w;rll

fort=1,2,...,n — 1 and no sub-path of w or its inverse belong to I.

A band is a representative w of an equivalence class under the relation ~, where
W= w, --w; with n > 1 and w; 4, #w;l, 1<i<n-—1, wn%wfl such that
the powers of w are defined, w is not itself a power and w™ has no subword

lying in [ for any m > 1.
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Definition 2.5.4. For each string or band w, we define an algebra C, and a functor
Gy @ Cp —mod — A — mod. For each Cy,-module V we describe G, (V) as a
representation of a quiver ()., which defines a A-module. On morphisms, the functors

are defined in the obvious way.

(i) Let w be a string. Then we let C,, = k and take @, to be the quiver with

underlying graph:

{

(2.8)

where the edge labeled w; points to the left if w; is an arrow and to the right
otherwise. For a C\,-module V', we define G,,(V') to be the representation of @,
where at each vertex the space is V' and for each arrow the map is the identity

map.

(ii) Suppose now w = w, ---w; is a band. Without loss of generality, we may
assume that w, is an arrow. Let C,, = k[z,z!] and for Q,, take the circular

quiver:

29)

where the edge labeled w; points counterclockwise if w; is an arrow and clock-
wise otherwise. Let V be a k[z,r !']-module. We define G, (V) to be the

representation of (), with vector space V' at each vertex, such that the linear
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transformation representing the arrow w, is x and for every other arrow the

map is the identity.

Theorem 2.5.5. Suppose A is a string algebra. Then the modules G, (V') for w a
string or a band and V' an indecomposable C,,-module form a complete set of repre-

sentative of indecomposable A-modules.
Proof. See [4, Theorem on p. 161]. O

Definition 2.5.6. (i) If C is a string, we write M (C) instead of G¢(k), and we

call M(C) a string module.

(ii) If B is a band, A € k*, and n is a positive integer, we write M (B, A\,n) instead
of Gg(Vyz) where V,  is the k[z,z7']-module which has k-dimension n and
on which z acts as the n x n Jordan block J, (). We call M (B, \,n) a band

module.

2.5.2 Hooks and Co-hooks

Let k£ be an algebraically closed field and let A = kQ/I be a basic string

algebra.
Definition 2.5.7. Let C be a string. We say
(i) C starts on a peak provided that there is no arrow § with C'§ a string;
(ii) C starts in a deep provided that there is no arrow v with Cy~! a string;
(iii) C ends on a peak provided that there is no arrow § with f71C' a string;

(iv) C ends in a deep provided that there is no arrow v with yC' a string.
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(v) Assume C' = ¢,¢,—1---¢1 with n € Z*. We say that C' is directed if all ¢; are

1

arrows, and C'is inverse if all ¢; are arrows. We say that C is a mazimal

directed string if C' is directed and if for any arrow 6 € @y, 0C € I.

Definition 2.5.8. (i) Assume that C is a string not starting on a peak, say Cf is
a string for some arrow (. Then there is a unique directed string D such that

CBD™! is a string starting in a deep. We denote C3D~! by Cj,.

(ii) Assume that C is a string not ending on a peak, say 371C' is a string for some
arrow 3. Then there is a unique directed string D such that D371C is a string

ending in a deep. We denote D3~1C by ,C.

(iii) Assume that C' is a string not starting in a deep, say Cy~*

is a string for some
arrow . Then there is a unique directed string D such that Cy~1D is a string

starting on a peak. We denote C~y~'D by C..

(iv) Assume that C' is a string not ending in a deep, say 7C' is a string for some
arrow . Then there is a unique directed string D such that D™1vC' is a string

ending on a peak. We denote D~'~vC by .C.

Proposition 2.5.9. The canonical A-module homomorphisms M(C) — M(Cy),

M(C) — M(,C) and M(C.) = M(C), M(.C) — M(C) are irreducible.
Proof. See [4, Lemmas on p. 166, p. 168 and p. 169]. ]

Definition 2.5.10. We call the following exact sequences "canonical" exact se-

quences:
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i) Let u be a vertex. For any arrow ¢ starting at the vertex u, we have an almost
y g
split sequnece:

0— 7(Au/A0) = X — Au/Ad — 0 (2.10)

where the middle term is indecomposable (see [4, p. 170]). The middle term X
is a string module M (B) where B is a string of the form B = C~1§D~! and C

and D are maximal directed strings.

(ii) Assume that C is a string that neither starts nor ends on a peak. Then ,C, C,

and ,C), are defined. We have an exact sequence:

(iii) If C does not start on a peak but ends on a peak, then C'= .D for some string
D not starting on a peak. We have an exact sequence:
0— M(C)— M(D)® M(Cy) - M(Dy) — 0. (2.12)

(iv) If C starts on a peak but does not end on a peak, then C' = D, for some string

D. We have an exact sequence:

0— M(C)— M(,C)® M(D)— M(,D) — 0. (2.13)

(v) Finally, suppose C' both starts and ends on a peak and suppose M (C) is not
injective. Then C' = .D, for some D and we have an exact sequence:
0— M(C)— M(D.) & M(.D)— M(D) — 0. (2.14)

Theorem 2.5.11. The canonical exact sequences are the almost split sequences con-

taining string modules.
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Proof. See |4, Proposition on p. 172]. ]

2.6 Schlessinger’s Criteria
Let k£ be an arbitrary field. Denote by C the category of all complete local
commutative Noetherian k-algebras with residue field k. For all R € Ob(C), we fix
an isomorphism R/mpg = k, where mg denotes the unique maximal ideal of R. The
morphisms of C are continuous k-algebra homomorphisms inducing the identity on k.

We denote by C the full subcategory of C of all Artinian objects in C.

Definition 2.6.1. Let T : C — Sets be a covariant functor such that T(k) consists

of a single element.

(a) A couple for T is a pair (A, () where A € Ob(C) and ¢ € T(A). A morphism of

couples u : (A, () — (A', (') is a morphism u : A — A" in C with T(u)(¢) = ¢
(b) We can extend T to a functor T : C — Sets as follows:

— For all R € Ob(C), T(R) = lim T(R/m}).

~Foralla:R— R inC, T(a) = Jim T(a,), where for all n € Z*, «, is
the induced morphism «,, : R/m% — R'/m}, in C. A pro-couple for T is a
pair (B, () where B € Ob(C) and ¢ € T(B). A morphism of pro-couples

v:(B,¢) = (B',(’) is a morphism v : B — B in € with T(v)(¢) = ¢'.

(c) Let (R,() be a pro-couple for T, ie. ( = 1&1@ for an inverse system of
G € T(R/mY,) for n € Zt. We say that (R, () pro-represents T if the natural

transformation 7 : Homs(R,—) — T is a natural isomorphism, where 7 =
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(Ta)acob(e) is defined as follows: For all A € Ob(C),

Ta:  Homs(R,A) ——T(A) (2.15)

U ————T(un)(Cn)
where u factors through u, : R/m% — A for some n € Z*, since A is Artinian,
and wu,, is induced from wu. Note that 74 does not depend on n.
NoTE: This implies that the natural transformation 7 : Homs(R,—) — T

defined by 75 = 1&173 /mz 18 @ natural isomorphism. In other words, (R, ()

represents T.

(d) Let T' : C — Sets be another covariant functor such that T'(k) consists of a
single element. A natural transformation 7 = (ngr)reobe) : T — T’ is called

smooth if for every surjection o : B — A in C, the map

T(B) ——— T(A) x4 T'(B) (2.16)

¢ ———(T(@)(¢), n5(C))

is surjective, where T(A) X4y T'(B) is the pullback of the diagram

T(A)
na
(B — @i 217)

NoOTE: This implies that the natural transformation 7 : T — T’ defined by

B = WM 1B my, (2.18)
is surjective, in the sense that

i . T(B) — T'(B) (2.19)
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is surjective for all B € Ob(C).

(e) Let k[e] with €2 = 0 be the ring of dual numbers. Then the tangent space of T

is defined as

tr = T(k[e]). (2.20)

(f) A pro-couple (R,() of T is called a pro-representable hull of T, and a repre-
sentable hull of T, if the natural transformation 7 : Homgs(R, —) — T defined
in part (¢) of Definition 2.6.1 is smooth and Tkl : tr — tT is bijective, where

tr = Homg(R, kle]).

Theorem 2.6.2 (Schlessinger’s Criteria). Let T : C — Sets be as in Definition 2.6.1.

Consider diagrams in C of the form

Al x4 A

7N
A/ AI/
\ / (2.21)
[0 (6]
A

where o' : A” — A is a small extension, i.e. " is surjective and ker(a") = tA” for
some t € A" with mant = 0. For each such diagram, consider the natural map of

pullbacks
b:T(A x4 A”) — T(A") x1ea) T(A"). (2.22)
Then

(I) T has a pro-representable hull, and T has a representable hull, if and only if T

has properties (H1), (H2), (H3) below:
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(H1) b in (2.22) is always surjective for every diagram (2.21);
(H2) b in (2.22) is bijective if A =k and A" = kl[e] with €2 =0 in (2.21);

(H3) dimy(t1) < oo, where tv = T(k[e]) has a natural k-vector space structure

using (H2) as follows:

ADDITION.
- T(H
T(KIE]) 100y TORI) -2 T(bLe] x4 Kle]) — s TR f]
_ _ (2.23)
tr Xtp——————— - = —— = - — — —— - — — > b
where
B ke xp kl ——kle] (2.24)
(a+be,a+ ce)F—a+ (b+ c)e
SCALAR MULTIPLICATION. Let A € k.
(k) 2T (k) Xn Tk[e]) —Es Tk g kle]) = T(k[]) —"2 s T(k[e)
I ——— == — = = = = = — — — - — o — o — o — — — — - -~ — > tr
(2.25)
where
my k€] —————— k[€] (2.26)

a + be———>a + \be.

(II) T is pro-representable, and T is representable, if (H1)-(H3) are satisfied, and

T has the additional property (H4):
(H4) bin (2.22) is bijective if A" = A” and o/ =" in (2.21). .

Proof. See [10, Thm. 2.11]. O
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CHAPTER 3

DEFORMATION RINGS

3.1 Set Up
Let k£ be a field and let A be a finite dimensional k-algebra. Let V be a fixed left

A-module of finite k-dimension, and consider the following k-algebra homomorphism:

p: A ——Endg(V)

at— (v a-v)

Let {vy,...,v,} be a fixed ordered k-basis of V. Then, relative to this basis, we can
identify Endy (V) with Mat, (k). More precisely, for each a € A there is a unique

matrix (tf;)1<ij<n € Mat, (k) such that
a-vj =t{v 4 1, (3.1)

for all 1 < j < n. In other words, p(a) = (t{;) for all @ € A, and we can identify p

with the representation

p: A —— Mat,(k)

e — (t‘zlj)

corresponding to the A-module V. Let k™ be the standard n-dimensional k-vector
space with standard k-basis {ej,...,e,}. Then p defines a A-module structure on
k™ by setting a - © = p(a)zx for all a € A and all z € k™. If we denote k™ with this
A-structure by ,k", then the map h : ,k" — V with h(e;) = v; forall 1 < j <n
defines a A-module isomorphism. In the following, we will often identify V' with ,k".

Let C be the category of all complete local commutative Noetherian k-algebras

with residue field k. In particular, the morphisms in C are continuous k-algebra
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homomorphisms which induce the identity on k. For each R € Ob(é), let mp denote
its unique maximal ideal, and let kg : R — k be the natural surjection of R onto its
residue field. We denote by C the full subcategory of C of all Artinian objects in C.
For any R € Ob((f ), we denote by RA the tensor product of k-algebras R ®; A. Note
that RA is an R-algebra. Let R € Ob(C), and let M be an RA-module which is a
free R-module of rank n. Let {m4,...,m,} be a fixed ordered R-basis of M. Then,
relative to this basis, we can identify Endg(M) with Mat,(R). For each b € RA,

there exists a unique matrix (r%;)1<; j<n € Mat,(R) such that
b-m; = rll’jml + -+ rzjmn (3.2)

for all 1 <5 < n. Thus we get an R-algebra homomorphism

. RA—>Mat,(R)

corresponding to the RA-module M. Consider the natural injective k-algebra homo-

morphism

tr: A —>R®: A=RA

a4 F——m—m>1®a
!

Let 7wy = mas 0 tg. Then 7y is uniquely determined by 7y, since if b = > s, ® a; €
i=1

R ®, A = RA, then

! !
(b)) = Z simv(l ® a;) = Z simar (@)
i=1 i=1
Let R" be the standard free R-module with standard R-basis {eff,... ef}. Then 7y,

defines an RA-module structure on R" by setting

l l

b-y= Z(Sl ®a;) -y = Z sima(aq)y (3.3)

i=1 i=1
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!
forallb = > s;,®a; € R®, A = RA and all y € R". If we denote R" with this

=1

RA-module structure by ., R", then the map H : ., R* — M with H(ef') = m; for

™™

all 1 < 7 < n defines an RA-module isomorphism. In the following, we will often

identify M with .,, R".

Definition 3.1.1. Suppose R, M, {m,...,m,} and mp : A — Mat,(R) are as
above. Then we call 7y, the representation of A corresponding to M relative to the

R-basis {mq,...,m,}.

3.2 The Deformation Functor

Definition 3.2.1. Let R € Ob(C).

(a) A lift of V over R is an RA-module M which is free over R, together with a

A-module isomorphism ¢ : k ®p M — V. We denote such a lift by (M, ¢).

(b) Two lifts (M, ¢) and (M’',¢’) of V over R are said to be isomorphic if there is
an isomorphism f : M — M’ of RA-modules such that the following diagram
commutes:

k®p M e f

k®p M’

(3.4)

Vv

(c) A deformation of V over R is an isomorphism class of lifts of V' over R. We

denote by Def, (V, R) the set of deformations of V' over R.
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Definition 3.2.2. We define the deformation functorfor V to be the covariant functor
Fy : C — Sets (3.5)
such that

(a) for all R € C,

Fyv(R) = Defa(V, R); (3.6)

(b) for each morphism av: R — R’ in C, Fy () is the map
Fy(a): Defy(V, R) ———— Def(V, R')

(M, ¢)]1 (M, ¢)] (3.7)

where M’ = R’ ®po M and ¢’ : k @p M' — V is defined to be the composition
Z/JM, ¢
k@p M =kQp (R Qpa M) —5 k@M 5 V. (3.8)

Here vpy , : k @r (R’ ®ra M) — k ®r M is the natural isomorphism with
Vg oA @ (' @m)) = Xep/(r') @ m for all X € k, " € R, m € M. Note that

since a induces the identity on k, kg 0 @ = Kg.

Our first goal is to rewrite Fy in terms of representations. Let R € Ob(é) be

arbitrary. Consider the set

E(R) ={r: A — Mat,(R) : mis a k-algebra homomorphism and kg o ™ = p},
(3.9)
where kg @ Mat,(R) — Mat,(k) is the surjective ring homomorphism induced by
kr : R — k. Restricting kg to GL,(R) gives a surjective group homomorphism

Ky o GL,(R) — GL,(k). Let G(R) = ker(x}). Then G(R) is a group which acts
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on E(R) by conjugation. If 7 € E(R), we denote the corresponding element in

E(R)/G(R) by [n].

Lemma 3.2.3. Let o : R — S be a morphism in C, and denote the induced ring

homomorphism Mat,,(R) — Mat,,(S) also by a. Then we have a well-defined map
H(a): E(R)/G(R) ————— E(5)/G(S)

Gl [a(m)] (3.10)
where &(m) = ao .

Proof. Since a: R — S is a morphism in C, it induces the identity on k. This means

that kg o @ = kr. Hence for all 7 € E(R),
kgo(&(m)) =kso(awom)=Kgrom=p,

which implies that a(7) € E(S). Assume that [7] = [7/] in E(R)/G(R). Then
there exists X € G(R) such that X7X~' = /. Therefore a(7') = a(X7X 1) =
a(X)a(m)a(X)™L. Since kg(a(X)) = kr(X) = I,,, we have that a(X) € G(R). Thus

[&(m)] = [a(x")] in E(S)/G(S). O
Remark 3.2.4. In the following, we often write « instead of a.

Definition 3.2.5. For all R € Ob(C), let H(R) = E(R)/G(R) € Ob(Sets). Let
a: R — R and o : R — R" be morphisms in C. Consider also the identity

morphism idg : R — R. By Lemma 3.2.3, we have the following:
(i) H(idR) = idH(R);

(ii) H(o o ) = H() o H(«).
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Thus we obtain a covariant functor
H:C — Sets (3.11)
Lemma 3.2.6. For all R € Ob(C) there is a bijection
Tr : Fy(R) — H(R) (3.12)

which sends a deformation [(M, ¢)| of V over R to [myr] where my; is the representation

of A corresponding to M relative to a suitable R-basis of M.

Proof. Let (M, ¢) be a lift of V over R. By Nakayama’s Lemma we can lift the k-basis
{vi,...,v,} of V to an R-basis of M, say {my,...,m,}, such that ¢(1 @ m;) = v,
for all 1 < j < mn. Let mp; : A — Mat,(R) be the representation of A corresponding
to M relative to {ms,...,m,} as defined in Definition 3.1.1. We need to prove that
kromy = p. We identify V' with k" and M with ., R" as described in Section 3.1.

Then ¢(1®eff) = ¢; for all 1 < j <n. Thus for all a € A and all 1 < j <,

pla)e; =a- (1@ ef) = ¢(1® (1@ a) - ef)) = o(1 ® (mr(a)ef))

= kr(mur(a))d(1 ® ef) = kp(my(a))e;.

Thus p(a) = kr(my(a)) for all a € A.

Assume now that (M, ¢) and (M’,¢') are two isomorphic lifts of V' over R, so that
there exists an RA-module isomorphism f : M — M’ satisfying ¢’ o (id ® f) = ¢.
Let {my,...,m,} (respectively {m/,...,m/}), be an R-basis of M (respectively M")

such that forall 1 < j <n

(1@ m,;) = v; = ¢(1® ), (3.13)
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Let mpr, mar : A — Mat,, (R) be the representations of A corresponding to M and M’
relative to {my,...,m,} and {m/,...,m]}, respectively. Since f is an RA-module

isomorphism, there exists a unique matrix 7y € GL,(R) such that for all a € A
Tf?TM(CL)Tf_l == 7TM/(CL). (314)

Identifying V' with k", M with ., R" and M’ with . ,R", we get for all 1 < j <n,

ej=p(1®ell) = ¢ ((id® f)(1@ ) = ¢'(1® Tyel)
= rr(TH)¢' (1@ ef) = wr(Ty)e;.

Thus x3(Tf) = kr(T¢) = I,,. Therefore Ty € G(R), which implies [my] = [mar] in

E(R)/G(R) = H(R). So we have a well-defined map

TR : Fv<R) H(R)

[(M, §)]1 (1) (3.15)

CLAIM 1: 75 is surjective for all R € Ob(C).

Proof of Claim 1. Let R € Ob(C) and [r] € E(R)/G(R) = H(R). Then m : A —
Mat,, (R) is a k-algebra homomorphism with kg o m = p. Consider the free R-module
R", and let {ef, ... e2} be its canonical R-basis. Then 7 defines an RA-module

structure on R" by setting

l l

b-y= Z(sZ ®a;)y = Z sim(a;)y (3.16)

i=1 i=1
!

forall b= > s, ®a; € R®, A = RA and for all y € R". We denote R™ with this
i=1

RA-module structure by R". Define ¢ : k @ (R") = V by ¢(1 ® ef) = v; for all

1 <7 <n. Then ¢ is an isomorphism of k-vector spaces. We need to prove that ¢ is
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a A-module homomorphism. Let a € A and 1 < j <n. Then

$la- (1®¢f)) = d(l@m(a)e;)
= rr(m(a))p(1 ® ef)
— p@o(1® el

=a-p(1®@el).

Thus ¢ is a A-module isomorphism. So (,R", ¢) is a lift of V' over R. By definition

of 7g, we have that 7r([(rR",®)]) = [7 gn|, where m_gn is the representation of A
corresponding to ,R" relative to {eff,... ef} as in Definition 3.1.1. It follows that
m.gn = m, and hence [7] = [7_gn] = Tr([(xR", ¢)]). Therefore 75 is surjective for all

R € Ob(C). This proves Claim 1.

CLAIM 2: 7 is injective for all R € Ob(C).

Proof of Claim 2. Let (M, ¢) and (M', ¢') be lifts of V' over R, and let Tx([(M, ¢)]) =
[7a] and TR([(M',¢')]) = [mar]. Let the corresponding R-bases of M and M’ be
{mq,...,my} and {m/,...,m]}, respectively, and assume that [my;] = [7a]. Then
there exists a matrix U € G(R) such that Umy(a)U ™! = mpp(a) for all a € A. Define
fiM— M by

for all 1 < 7 < n. Since U is invertible, we have that f is an R-module isomorphism.

I
R™ we get forallb= > s;,®a; € RQp A =

i=1

Identifying M with ,, R" and M’ with

gt

RA and for all 1 < j <n,

f(b (ZsmM a;)e ) ZSUWM a;)e ZSZTFM/ a;) Ue =b- f(e; .
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Hence f: M — M’ is an RA-module isomorphism. Now, for all 1 < j < n we have

¢((id® fl(1@ej) = (1 ® f(ef))
=9l ® Uef)
= kr(U)p(1 @ efl)
= ¢(1®ef).
Hence ¢ = ¢ o (id® f). Therefore the lifts (M, ¢) and (M’, ¢') are isomorphic. Thus

(M, ¢)] = [(M',¢')] in Defp(V, R) = Fy(R). This proves Claim 2. O

Proposition 3.2.7. Let a : R — R’ be a morphism in C. Then we have the following

commutative diagram:

H(R) H(R')

(3.18)
MR MR
Fy(R) M&“V(R’)

where g = Tlgl forall R € Ob(é) and Tg 18 the bijection from Lemma 3.2.6. In other
words, nr([r]) = [(=R", z¢)] where ¢ : k@ (-R") = V is defined by ~¢(1®ef) = v;

foralll < j<n.

Proof. Let [r] € H(R). Then H(«)([r]) = [&(7)] = [aon] € H(R'), and nr (o)) =

[(aor (R)™;00x @')]. On the other hand, ng([7]) = [(R",x ¢)]. Then

FU(@)([(-R" 8)] = (R @ (<R"), )]

- Rn

where ¢ is the composition k@p (R Qpao(xR")) 2 k@r(-R™) =% V and I/}Sﬁg is as

in (3.8). Let f : R'®po(xR") = aor(R')" be the map defined by f(r'®y) = r'a(y) for
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all 7’ € R and y € R". Then f is an R'-module isomorphism. We need to prove that f

!
is an R’A-module homomorphism. Indeed, let ' € R', b’ = > si®a; € R’ @A = R'A
=1

1

and y € R". Then
!
FO (' @y) =Y fsir @m(a)y)
i=1

= > sira(r(ay)

- Z sir'a(m(a;))a(y)

i=1

- Z sia(m(a;))r'a(y)
=V f(r'ey).

Hence f is an R'A-module isomorphism. On the other hand, note that {lp ®
R . 1p ®el} is an R'-basis of R ®p, (-R") satisfying ,6(1 ® (1p ® ef)) = v
for all 1 < j < n. Also, aord((id @ f)(1® (1p ® €))) = acrd(1 @ f(lp @ ef)) =
aor@(1 ® a(ef)) = 4or®(1 ® ef’) =w; for all 1 < j <n. Therefore, ;5 = qor® 0 (1d ®
f), and hence [(aor(R)", aon®’)] = [(R' QR (an%E)]- This implies nr o H(a) =

Fy(a)ong. O

Note that for all R € Ob(é), nr is a bijection, hence an isomorphism in the

category Sets. Thus we have the following consequence of Proposition 3.2.7.

Corollary 3.2.8. There is a natural isomorphism n : H — Fy,, where for all R €

Ob(C), ng : H(R) — Fy(R) is as in Proposition 3.2.7.
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3.3 Schlessinger’s Criteria (H1), (H2) and (H4)
In this section, we check Schlessinger’s criteria (H1), (H2) and (H4) for the

functor H. Recall that C is the full subcategory of C of Artinian ob jects.

Lemma 3.3.1. Assume that o : R — S is a surjection in C. Then « induces a

surjection o : G(R) — G(S).

Proof. Assume o : R — S is surjective. Then the induced group homomorphism
a: GL,(R) — GL,(9) is surjective. Let Y € G(S), i.e. Y € GL,(S) with kg(Y) =
I,,. Then there exists X € GL,(R) with a(X) = Y. Since « is a morphism in C,

kg oa = kg. Hence kr(X) = kg(a(X)) = ks(Y) = I,, and X € G(R). O

To verify Schlessinger’s criteria, consider pullback diagrams in C of the form

R % R R

(3.19)

N
R/ R//
\ /
R

where o is a small extension, i.e. o is surjective and ker(a”) = tR” for some t € R"

with mg+t = 0. For each such diagram consider the natural map of pullbacks
b:H(R xg R") — H(R') xur) H(R"). (3.20)
Lemma 3.3.2 (H1). The map b is surjective.

Proof. Let ([7'],[7"]) € H(R') xuwy H(R"). Then [o/(r')] = ["(7")] in H(R) =

E(R)/G(R), i.e. there exists X € G(R) with

o (') = Xa'(7") Xt (3.21)
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Since o is surjective, it induces by Lemma 3.3.1 a surjection o’ : G(R") — G(R).
This means that there exists X" € G(R") with o/(X”) = X. Thus o/(7') =

o (X"7" X"=1). Therefore (7', X"n"X"~1) € E(R' xx R") and

b([(ﬂ',,X”ﬂ'”Xﬂ_l)]) — ([ﬂ_l]7 [X”?T”XH_ID — ([ﬂ_l]7 [71‘"]),

O
Let 7”7 € E(R") with o'(7") = 7. Define
G (R ={X" € G(R") : X"zx"X" " = 7"} (3.22)
and
G.(R)={X €G(R): XrX ' =nr}. (3.23)
Lemma 3.3.3. The map b is injective if the map
G (R") — GL(R) (3.24)

induced by /" is surjective for all 7" € E(R") with o/ (7") = 7.

Proof. Let ", 7" € E(R xp R") with

('], [="1) = b([="]) = b([x"]) = ([='], [x"]),

where 7 = B/(x"), n" = B'(z"), 7 = B (7") and 7" = B"(x"). Then there exist
X' € G(R) and X € G(R") with X'7'X'™" = 7/ and X"#"X"~' = 7. Let X’ and
X" be the images of X’ and X” in G(R) under o/ and o”, respectively. Let m =

o (') = o”(7") and 7 = o/ (') = a”(7"). Then X'nX' ' =# = X"7X" . Hence
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X7 X € Gr(R). By assumption, there exists Y € G (R") with Y = X7 'X7. Let

X" = X"Y. Then

)?7,71_//)’27,_1 _ X//yﬂ_//y—lX//—l — X" X = 7’1_\/7

and
X' =X'Y =X"X" 'X' =X,
Thus X’ and X” define an element X" in G(R' xz R") and
X" X =
Hence [7”] = [7"] in H(R' xz R"). O
Lemma 3.3.4 (H2). The map b is injective if R =k and R" = kle] with ¢ = 0.

Proof. Let m” € E(R"). Since R = k and (") = p, we have G(R) = G(k) = {I,.},
and thus G,(R) = G,(k) = {I,,}. Hence the map G.+(R") — G,(k) is surjective.
Thus (H2) follows from Lemma 3.3.3. O

Lemma 3.3.5 (H4). If Endy (V') = k then b is injective if R' = R” and o/ = o”.

Because of Lemma 3.3.3, to prove Lemma 3.3.5 it suffices to prove the following

result:

Lemma 3.3.6. If End, (V) = k then for all R € Ob(C) and for all ™ € E(R), G(R)

consists only of the scalar matrices in G(R).

Proof. Since R is Artinian, we prove this by induction on the length of R. If R = k
then G(k) = {I,,}, and hence G,(R) = G,(k) = {I,,}. Now consider a small extension
of the form

0—>tR—>Ri>R0—>O
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where Ry € Ob(C), t € R with mgt = 0 and tR = k. By induction assumption, we
have for all 7 € E(Ry) that G(Ry) consists only of the scalar matrices in G(Ry).
Let m € E(R) and X € G,(R). Then kg(X) =1, and X7 X' = 7. Let A(7) = m
and A(X) = Xy. Then XomoXo ' = m, and thus X, € G, (Ro), which means that
Xy is a scalar matrix. Thus there exists ro € Ry with Xg = r9 - I,,. Let r € R with

A(r) =ro. Then X =r- I, +tB for a certain B € Mat,,(R). We have
rm+ (tB)m = X7 =7X = nr + n(tB).

Thus (tB)m = w(tB). Hence tB defines an element in Endga (M) where M is the
RA-module R". Observe that Im(tB) C tM =V, since tR = k and k g M = V.

Therefore
tB € Hompy (M, tM) = Hompgy (M, V).
Since mg annihilates V and M/mgM =k ®g M = V| it follows that
Hompa (M, V) = Homy(V, V) = Enda(V) = k.

This means that tB is a scalar matrix in ¢t . Hence there exists a € R with tB = tal,.

Thus X = (r + ta)l,, and X is a scalar matrix. O

Next we want to show that (H4) is also valid in case A is self-injective and
End, (V) = k. Our proof follows the steps used to prove [3, Lemma 2.3]. We need

two Lemmas.

Lemma 3.3.7. Assume that A is self-injective. Let A : R — Ry be a surjective

morphism in C. Let M be a finitely generated RA-module which is free over R and
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consider My = Ry@r M. Assume that fy € Endgya(My) factors through a projective
RoA-module. Then there ezists f € Endgp(M) factoring through a projective RA-

module such that the following diagram commutes:

f

M——mM

PM‘ ‘Z?M
Jo

Mg—>'M()

where pyr : M — My is the natural surjection.

Proof. Since R, Ry are Artinian, it suffices to prove this Lemma in the case that X is
a small extension in C, i.e. A: R — Ry is surjective and there exists ¢ € R such that

ker(\) = tR = k and mgt = 0. Assume that we have a commutative diagram

Py
% Vo
M, Jo M,

where P, is a projective RyA-module. Since M is a finitely generated RA-module, we
may assume without loss of generality that F is also a finitely generated RA-module.

There exist idempotents €, ..., € RgA such that
PO = (R()A)El D---D (R()A)El. (325)

Since mrp ®; A = rad(R) ®, A C rad(RA), it follows that tR @, A C rad(RA).
Moreover, tensoring the short exact sequence 0 — tR — R EN Ry — 0 of R-modules

with A over k gives a short exact sequence of R-modules

0= tROLA = Rp A 22% Ry @p A — 0.
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It follows that (R @i A)/(tR @, A) = Ry ®; A = RoA as R-algebras. Therefore
the hypotheses of the Theorem on Lifting Idempotents (see |5, Theorem 6.7]) are
satisfied. Hence there exist idempotents ey, ..., e € RA so that (A ® id)(e;) = ¢; for
all 1 < j < [. Define

P=(RA)e, & - & (RA)ey. (3.26)

Then P is a projective RA-module satisfying Ry @r\ P = F,. Let pp : P — F, be

the natural projection. We have a diagram

P

Vo ©pp

M Pm M, 0

with exact bottom row. Since P is a projective RA-module, there exists an RA-
module homomorphism v : P — M such that py; o v = vy o pp. Now consider a

projective resolution of the RA-module M
B0, 2 00 2 Qo > M = 0. (3.27)
Applying Hompy (—, tP), we obtain the sequence
0 — Hompga (Qo, tP) o, Hompgy (Q1,tP) %, Hompp (Q2,tP) LN

Therefore

Extp, (M, tP) = ker(53)/ Im(87). (3.28)

Since all the terms in the projective resolution (3.27) of M are projective as R-

modules, tensoring (3.27) with k over R gives a projective resolution of the A-module
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k®p M

. —)id®63 k®pr Qs —>id®62 k®pr Q —>id®51 k®rQo— k®r M — 0. (3.29)

Applying Homy (—, tP), we obtain the sequence

(1d®d1)*

0 — Homa(k ®r Qo, tP) 2 Hom, (k @5 O, tP) L1220,

(3.30)

HOHIA<I€ ®R QQ,tP) M) s

and hence Ext} (k @z M, tP) = ker((id ® 65)*)/ Im((id ® §,)*). Since mp annihilates
tP and Q;/mpr@Q; = k ®r Q; for all i > 0, we obtain for all i > 0 a commutative

diagram

*

0;
HOIHRA(Qi7tP) + HOHlRA(Qi_H,tP)

1%
I

id ® 0ip1)"
Homy (k @ s, tP) 0 201)"

It follows that

Homp (k ®g Qi41,tP)

Exthy (M, tP) = Ext} (k @z M, tP). (3.31)

Since tP = k ®@pr P = k ®pg, P is a finitely generated projective A-module and A
is assumed to be self-injective, tP is also an injective A-module. Hence Ext/l\(k QR
M,tP) =0, and thus

Extp, (M, tP) = 0. (3.32)

Considering the short exact sequence of RA-modules

0—tP— P2 Py —0, (3.33)
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we obtain the corresponding long exact cohomology sequence

0 — Hompa (M, tP) — Hompa (M, P) 222 (3.34)

Hompa (M, Py) — Extp, (M, tP) = 0.

Thus there exists v € Hompgy (M, P) such that pp ou = (pp),(u) = ug o pps. Thus,

letting f = v o u, we have a commutative diagram:

M / M
N . i
Pm bp Pm
B, y
o fo ~

Mo My

]

Lemma 3.3.8. Assume that A is self-injective and End (V') = k. Let R € Ob(C), let
m € E(R) and let M be the RA-module R". Then G(R) consists only of matrices
of the form rl, + Ay where r € R and Ay € Mat,(R) is the matriz corresponding to

a homomorphism f € Endgy(M) which factors through a projective RA-module.

Proof. Since R is Artinian, we prove this by induction on the length of R. If R =k
then G(k) = {I,,}, and hence G,(R) = G,(k) = {I,,}. Now consider a small extension
of the form

0 tR— R Ry—0, (3.35)

where Ry € Ob(C), t € R with mgt = 0 and tR = k. Let 7 € E(R) and X €

Gr(R). Then kg(X) = I, and X7 X! = 7. Let A\(7) = mp and A\(X) = Xy. Then
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XomoXo ' = mp, and thus Xy € G, (Ry). Let My be the RyA-module ., (Ry)". By
induction, X, = rol,, + Ay, for some ry € Ry and some fy € Endpg,a (M) factoring
through a projective RgA-module. Let M be the RA-module ,R". Then Ry ®
M = My as RyA-modules. By Lemma 3.3.7, we can lift fy to an endomorphism
f € Endga(M) which factors through a projective RA-module. Let r € R with

A(r) =ro. Then X =r -1, + Ay +tB for a certain B € Mat,(R). We have

rm+ A+ (tB)r = Xn=7nX =nr +wAf + 7(tB).

Since f € Endga(-R"), we have Aym = wA;. Thus (tB)r = 7w(tB). Hence tB
defines an element in Endga(M). Observe that Im(tB) C tM =V, since tR = k and

k®r M = V. Therefore

tB € Hompp (M, tM) = Hompa (M, V).

Since mpg annihilates V and M/mgpM = k®gr M = V| it follows that Hompga (M, V) =
End, (V). Since End, (V) = k = tR, there exists a € R such that ¢tB — tal,, factors
through a projective A-module. By Lemma 3.3.7, there exists g € Endga(M) fac-
toring through a projective RA-module such that tB — tal,, = tA,. Thus X =
(r+ta)l,+Ar+tA, = (r+ta)l, + Ay, where f+tg € Endga(M) factors through

a projective RA-module. n

Lemma 3.3.9 (H4). Assume that A is self-injective and End, (V) = k. Then b is

injective if R = R" and o/ = o

Proof. By Lemmas 3.3.7 and 3.3.8, G(R') — G,(R) is surjective for all 7’ € R' and

7w =da/(7"). Thus b is injective by Lemma 3.3.3. O
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The following result, which we prove using Lemma 3.3.7, will be useful in

Section 3.6.

Lemma 3.3.10. Assume that A is self-injective and End, (V') = k. Let R € Ob(C)
and (M, @), (M',¢') be lifts of V' over R. Assume that f : M — M’ is an RA-module
isomorphism. Then f induces an isomorphism of RA-modules f : M — M’ so that
the following diagram commutes:

kon M 1d® f

k®p M’

(3.36)

Vv

Proof. Note that the RA-module isomorphism f induces an isomorphism of A-modules
idRf : k@rM — k@rM'. Consider the A-module isomorphism i = ¢~ lo@/o(idR f) €
End, (k®g M) and consider h+PEnd(k®r M) € End, (k®grM). Since kg M =V,
we have End, (k ®g M) = k. Therefore there exist ¢ € k* and a A-module homo-
morphism ¢ € Endy(k ®g M) factoring through a projective A-module such that
h = cidyg,m — g- By Lemma 3.3.7, there exists an RA-module homomorphism
g : M — M such that id ® § = g. Let r € R such that kr(r) = ¢ and define
h = ridy — ¢. Note that id ® h = cidygom — g = h. Since h is a A-module iso-

morphism, it follows by Nakayama’s Lemma that h is an RA-modules isomorphism.
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Define f = f o h=': M — M’. Note that f is an RA-module isomorphism. Then
¢'o(id® f)=¢'o((ide f)o(ideh™))
=¢'o((id® f)oh™")
=¢'o((id@ f)o(ide )~ o(¢) " 0 ¢)

= &

3.4 Schlessinger’s Criterion (H3)

In this section, we check Schlessinger’s criterion (H3) for the functor H. Let kle]
be the ring of dual numbers with 2 = 0. Consider the set H(kle]) = E(k[e])/G(k]e]).
Note that for all [7] € H(k[e]) and for all @ € A there exists Y (a) € Mat, (k) such
that

7(a) = p(a) + €Y (a). (3.37)

By Lemmas 3.3.2 and 3.3.4, we have a bijection
b: H(kle] xy. k[e]) — H(k[e]) x H(k[e]). (3.38)

We have shown in the proof of Lemma 3.3.2 that for [n], [r'] € H(k[¢]) there exists

X € G(k[e]) depending on 7 and 7’ such that
b= ([m], [7']) = [(m, X7’ X)) (3.39)
Now consider the k-algebra homomorphism

M. ke xk kle] k[ (3.40)

(r+es,r+es)———r+e(s+5)
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We usually write (r +es) B (r + es’) instead of B((r +es,r+€s’)). Then B induces a
ring homomorphism Mat,, (k[e] X k[e]) — Mat,, (k[e]) which we also denote by H. We

define an addition on H(k[e]) as follows. For all [r], [7'] € H(k[e]), we set
(] + [n') = HE@) (0~ (], [7'])) = [B(r, X7'X )] = [r B X7'X ], (3.41)
Let A € k. Consider the k-algebra homomorphism

ke ————— k€] (3.42)

T+ esk————1 + €(As).

We define a scalar multiplication on H(k[e]) as follows. For all A € k and all [7] €
H(k[e]), we set

Alr] = [ua o 7). (3.43)
Then (3.41) and (3.43) define a k-vector space structure on H(k[e]).

Lemma 3.4.1. There is a k-linear isomorphism
T : H(k[e]) — Exty(,k", k™) (3.44)

Proof. We first define the map 7. Let [r] € H(k[e]) and let .(k[e])™ be the corre-
sponding k[e]A-module. Let o : k — kle] be the injective k-linear map defined by

a(r) = er. Then « defines an injective k-linear map

a: s (k[g)" (3.45)

r ——— €T

Moreover, « is a A-module homomorphism, since for all a € A and all x € k",

ala-x) = a(pla)x) = pla)ex = (w(a) — €Y (a))ex = w(a)ex = a - a(x)
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where m(a) = p(a) + €Y (a) as in (3.37). Hence ,k™ = € (-(k[e])™) as A-modules. Let
B : kle] — k be the surjective k-algebra homomorphism defined by f(r + €s) = r.

Then [ defines a surjective k-linear map

B o(kle])" ———— k" (3.46)

ytez—— Y

where y, z € k™. Moreover, 3 is a A-module homomorphism, since for all « € A and

all y, z € k™,

Bla-(y+ez)) = p(m(a)(y + ez)) = B((p(a) + €Y (a))y + ep(a)z) = p(a)y

=a-f(y+ez).

Since ker(f) = € (r(kle])™), we have ,k" = . (k[e])" /e (- (k[e])") as A-modules. Hence

we have a short exact sequence of A-modules
Ce i 0= k" S (k)" S k" = 0. (3.47)

Let [¢;] be the corresponding element in Ext}(,&", k"), and define for all [r] €
H(k[e]), T([x]) = [G]-

CrAmM 1: T is well-defined.

Proof of Claim 1. Let [r] = [7'] in H(k[e]). Then there exists X € G(k[e]) such that
X7 X' =7 Let .(kl[e])™ and . (k[e])™ be the k[e]A-modules corresponding to 7 and

7', respectively. Define

9 (ke ——— o (K[e])" (3.48)
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Then g is a k-linear isomorphism. Moreover, g is a A-module isomorphism, since for

all @ € A and all y € (kle])™,

gla-y) = Xn(a)y = '(a) Xy = a- g(y).

We obtain the following diagram of A-modules

I ok > (K[e])" ok 0

L

Goi 0 ks (el — 0
Since X € G(k[e]), there exists X’ € Mat, (k) such that X = [, + eX’. Thus for all

x € k", gla(r)) = eXx = ex = ax), and for all y,z € k", B(g(y +€2)) = B((I, +
eX')y +e€2) =Bly+ e X'y +2)) =y = B(y + ez). Hence the diagram commutes,
which implies that [(;] = [¢(x] in Ext}(,k", ,k"). Therefore T ([r]) = T([«]), which
proves Claim 1.

CLAIM 2: T is additive.

Proof of Claim 2. Let ([r], [7]) € H(k[e]) x H(k[e]). Then by (3.39) and (3.41), there

exists X € G(k[e]) such that
[7] + [7] = [r B X7’ X]. (3.49)
Let = 7B X7’ X ~'. Then T([f]) = [(y] where (p is the extension of A-modules
G 0= k" S p(kle)" D k" = 0. (3.50)

Let - (k[e])™ and xx-1(k[€])™ be the k[e]A-modules corresponding to m and X7/ X1,
respectively. Then 7 ([r]) = [(;] and T ([7']) = [(x] where (, and ( are the extensions

of A-modules

Cri 0= k" S (k)" S k" =0 (3.51)
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and

Cxmx—1 00 = K" S o (K[ S k" — 0. (3.52)

We now describe the Baer sum (; + (x» x-1 of (; and (xmx-1. Let
B

M = (x(K[e])") Xk (xrx -1 (Kle])") (3.53)
be the pullback of
«(Kle])"
g
co (el — T (3.54)

Thus M ={(y+ez,y+ez'):y,z, 2 €k"} is a submodule of ,(k[e])" X xpx-1(k[e])™.
Let B = {(ez,—€z) : z € k"}. Then B is a A-submodule of M, and the Baer sum

(e + Cxx—1 18 the extension
B
Grf Gmxr 10 = " 5 M/B 5 k" 0

where a(x) = (ez,0)+ B for all z € k™ and S((y+ez,y+ez')+B) = y for all y, z € k"

(see [11, p. 78]). Note that [(] + [Cxmx-1] = [(r + Cxmx-1] in Ext) (&7, k). Let

f M o(Kle])"

(y+ez,y+e)—(y+ez) B (y+e€2) (3.55)

Then f is a surjective k-linear map. We obtain that f is a A-module homomorphism,
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since for all @ € A and all (y +ez,y + €2’) € M,

fla-(y+ezy+e)) = f(m(a)(y +ez), Xn'(a) X (y + €2))
= 71(a)(y + e2) B X7 (a) X (y + €2)
= (m(a) B X7 (a)X71)((y +e2) B (y + €2'))
= 0(a)((y + €2) B (y + ')

=a- f((y+ez,y+e2)).

Moreover, ker(f) = B. Hence f induces a A-module isomorphism f : M/B —

o(kle])™. We get the following diagram of A-modules:

Gt xmx—1t KT —2 5 M/B b k" 0
‘id ‘f Jid
G- 0 s (e — 0

For all z € k", f(a(z)) = f((ex,0) + B) = ex = a(x) and for all y,2,2 € k",
B(f((y +ez,y+ez')+B)) =By +e(z+2)) =y =By +ez,y +e2) + B). Hence

the diagram commutes, which implies that [(y] = [(x —g Cxnx-1). Thus
T([r] + 7)) = T((r BX7' X)) = T([0]) = [¢] =[G + Conrx 1]
= [Ge] + [Cxwx—] =[] + [Go] = T([]) + T([']).

CLAIM 3: T is k-linear.
Proof of Claim 3. Let A € k and [r] € H(k[e]). If A = 0 then py o7 = p viewed as

p: A — Mat, (k) C Mat,(k[e]). Hence

Gt 0= k" (k)" S k" =0 (3.56)
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splits. Thus H(0 - [7]) = [(,] = [0] in this case. Now assume A # 0. Let ,, o (k[e])" be
the k[e]A-module corresponding to py o w. Let my : k™ — k™ be multiplication by A.

Then we have a pullback diagram:

ma(G) 0 e (a,0) P2 0
‘id ‘m ‘mA
Gt 0 1 0
where
P={(\c+ey,a)le,y € K"} C A (K[])" @ k" (3.57)

Note that A[¢:] = [ma(¢r)] in Exty(,k", k). Define

9: P ——— por(k[e])"
Az + ey, o) ———x + €y. (3.58)
Then g is a k-linear isomorphism. Moreover, g is a A-module homomorphism, since
for all @ € A and all (\x + ey, x) € P,
gla- (A + ey, x)) = g((m(a)(A\z + ey), p(a)x))
= 9((Ap(a)z + e(AY (a)z + p(a)y), p(a)r))
— p(a)a + (A (a)x + p(a)y) = (p(a) + AeY (a))(x + ey)

= (urom)(a)(z +ey) = a- g((\x + ey, x))

where 7(a) = p(a) + €Y (a) as in (3.37). Thus we have the following diagram of

A-modules

mA(Cﬂ) 20 Pkn

C,u)\mr: 0 pkn @ uxoﬂ(kj[e])n
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For all x € k", g((,0)(x)) = g((ex,0)) = ex = a(x) and for all z,y € k™, B(g(A\x +
ey,z)) = Blx + ey) = x = po((Ax + ey, x)). Hence the diagram commutes, which

implies that [my((r)] = [Cuyon). Therefore

TAl]) = T(lpx 0 7)) = [Guror] = [ma(Gr)] = AlGa] = AT ([)).

CLAIM 4: 7T is surjective.
Proof of Claim /. Let [(] € Ext)(,k", ,k™), corresponding to a short exact sequence

of A-modules

C:0— k" S MS ko0, (3.59)
We define a kle]-module structure on M by
(r+es)-m=rm+ s(aof)(m) (3.60)
for all r;s € k and all m € M. Thus M becomes module for k[e]A = k[e] @ A via

(r+es)®a)-m=(r+es)(a-m)=r(a-m)+s(a-(aop)(m)) (3.61)

for all @ € A, where the last equality follows, since o and g are A-module homomor-

phisms. We now prove that in this way M becomes a free k[e]-module. Consider the

standard k-basis {ey, ..., e,} of ,k". Since [ is surjective, there exist my,...,m, € M
such that B(m;) = e; for all 1 < j < n. Then my,...,m,,emy,...,em, gen-
erate M as a k-vector space, since [(my),...,[H3(m,) generate Im(f) and em; =

a(B(mq)),...,em, = a(B(m,)) generate Im(a) = ker(8). This implies that
{my,...,m,,emq,....em,} is a k-basis of M, since dimy M = 2n. It follows that
{m1,...,m,} is a k[e|-basis of M. Define m; : A — Mat, (k[e]) to be equal to the

representation my; of A corresponding to M relative to the k[e]-basis {mq,...,m,},
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as described in Definition 3.1.1. Identifying M with . (k[¢])” and {m,...,m,} with

the standard basis {e’f[e], . ,eﬁ[d}, we have foralla € Aand 1 < j <n

(ki 0 me(a))e; = B(me(a)my) = Bla-my) = a-e; = p(a)e;.

Thus kgjq o mc = p. It follows that [r.] € H(k[e]) and T ([m¢]) = [¢]. Therefore, T is
surjective, which proves Claim 4.

CLAIM 5: T is injective.

Proof of Claim 5. Suppose T ([r]) = T ([7']). This means that (, and (, are equivalent

extensions, i.e. there is a commutative diagram of A-modules

G0 0 (k)2 0
‘m ‘go ‘Zd
G 0 (k) 0

where ¢ is a A-module isomorphism. Moreover, ¢ is a k[e/A-module isomorphism

l
since for all b = > s; ® a; € k[e] @, A = k[e]A and for all y € . (kle])",

i=1

pb-y) = (i m(%)@/)
= gsz«p(ai y)
= gsi(ai - o(y))
= Z;Szﬂ'(ai)@(y)

=b-¢(y).

Hence there exists X € GL,(k[¢]) such that ¢(y) = Xy for all y € ,(k[¢])" and



54

X7(a) =7'(a)X for all a € A. For all 1 < j < n we have

ke (X)e; =B (Xef[e]) = <<p <e§[€]>> = (e?[€]> = e;j.

Thus g (X) = I, which means X € G(k[e]). Hence 7] = [7] in H(kle]), and T is

injective. This proves Claim 5, completing the proof of Lemma 3.4.1. O]
Corollary 3.4.2 (H3). The k-vector space H(k[e]) has finite k-dimension.

Proof. Let P be a finitely generated projective A-module together with a surjective
A-module homomorphism f : P — ,k". Then, by dimension shifting, Exty (,k", k")
is a quotient of Homy (ker(f), k™). Since dimy Homp (ker(f), ™) < oo, it follows

that dimy(Ext} (,k", ,k")) < co. Hence the result follows from Lemma 3.4.1. O

3.5 Continuity of the Deformation Functor
Let R € Ob(C). We have that ({R/m%}iczt, {aji};>i) is an inverse system
where
aj; - R/ml, — R/m%, (3.62)
is the natural surjection for j > 4. Since R is complete, it follows that
R @R/mg. (3.63)
Note that ({Mat,(R/m%)}icz+, {ji};>i) is an inverse system where for j > i,

;i - Mat, (R/m%) — Mat,,(R/m,) (3.64)

is the ring homomorphism induced by «j; : R/m? — R/m". Tt follows that there is an

isomorphism of k-algebras

P lim Mat,,(R/m%) — Mat,(R). (3.65)
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We also have that ({H(R/m%)}iez+, {H(ayi)};>:) is an inverse system.
Proposition 3.5.1. For all R € Ob(C),

H(R) = Jim H(R/m%) (3.66)
and this isomorphism is natural with respect to morphisms in C.

Proof. Consider the natural projections p; : R — R/m%, for all i € Z*. Note that for

all j >4, H(ej;) o H(p;) = H(aj; o p;) = H(p;). Thus we have a diagram for j > ¢
H(R/mi)

H(ay:)

(3.67)

H(R/m},)

where for all s € ZT, ¢, : @H(R/mz) — H(R/m?®) is the natural projection. By
the universal property of in\jerse limits, there is a unique morphism g : H(R) —
@H(R/mj}%) such that ¢s o v, = H(p,) for all s € Z*. By uniqueness of tp we have
tr([7]) = ([ps o ]); for all [r] € H(R).

CLAIM 1: (g is surjective.

Proof of Claim 1. Let ([m]); € @H(R/mﬁ%) Then [m;] = H(ciy1,:)([Ti41]) = [ 0
mit1) for all i € Z*. Hence for ;ll i € ZT, there exists X,,; 1 € G(R/m%) such that
= X;il_l(oziﬂ,i o iy1)Xii—1. Let Z1 o= I,. We prove by induction that for all i €

Z*, there exists Z;y1; € G(R/m'1) such that ai+17i(ZijrlLﬂriHZHLi) = ZijiilﬂiZi_17i.
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We have m; = Xi&(a2,1 omg)X1,0. Since oy is surjective, there exists Zy; € G(R/m%)

with a91(Z21) = X1,0. Thus
062,1(22_7117T2Z2,1) =m = Zl_,éﬂ'lZl,O-
Since a1, is surjective, there exists Z;1,; € G(R/m% ") with
ai+1,i(Zi+1,i) = Xi,i—lzi,i—L
Therefore,
ai+1,i(2;_1171‘77-1'—&—122'—1-1,1') = Zijil_lX;il_l(Oém,i o Ti1)Xii—1Zii-1 = Zijil_lﬂ'izi,i—l-
Note that for all i € Z*, Z;;_1 € G(R/m%). Hence for all a € A we get

Using the isomorphism ¢ : T&nMa‘cn(R/ m%) — Mat,, (R) from (3.65), we get a repre-

sentation of A

m: A — Mat,(R) (3.69)

a — ¢(*ri(a)).

Note that we have a commutative diagram:

@ Mat,(R/m%y) Y Mat,,(R)

«—
/{R/mZR K;R




57

Hence for all a € A we have
Fr((F:(0)) = B (Fajmy (7:(0))) = 7 (B (ZiiLmi(@) Zii1)): ) = B ((p(@)))
= p(a).

This proves that [7] € H(R). Note that we have a commutative diagram for all j > i
Mat,, (R/mb)

(3.70)

Mat, (R /m’,)

Therefore

tr([7]) = (pi o 7])i = ([pi o w0 ))i = ([pi o Wi))i = ([ZiamiZiima))i = ([mi))s.

This proves Claim 1.

CLAIM 2: g is injective.

Proof of Claim 2. Let [r] and [7'] in H(R) such that tg([7]) = tg([']) in 1&1& H(R/m%).
Then for all i > 1, [p; o w| = [p; o 7] in H(R/m%). This means that folr each 1 > 1
there exists X; € G(R/m%) such that p; o m = X;(p; o 7')X; !. Therefore for each
i>1,8 ={X; € G(R/mY) : pyom = X;(p;on')X; '} is nonempty. On the other
hand, for all @ € A, 7(a),7'(a) € Mat,(R). Hence aj;(p;j(n(a))) = pi(r(a)) and
aji(pj(r'(a)) = pi(n’'(a)) for all j > i and for all a € A. Let j > i, X; € S; and a € A.

Then p;(m(a)) = a;:(X;)pi(7'(a))a;;(X;)~!, which means «;;(X;) € S;. Therefore
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({Si}iez+,{ji};>i) is an inverse system. Since R/mi, is Artinian for all ¢ > 1, it
follows that 1&151 is not empty. Let (X;); € l&nSl and define X = ¢((X;);). Then
X € G(R) an(; m = X7 X! Hence [r] =[] i; H(R).

CLAIM 3: Let 5 : R — R’ be a morphism in C. Then

tr o H(B) = Jm H(B;) or (3.71)

where f; : R/mi, — R'/mi, is the morphism induced by 8.

Proof of Claim 3. For each i > 0, let p; : R — R/mi, and p, : R — R'/mi,
be the natural projections. Note that pj o 8 = B; o pi. Let [r] € H(R). Then
(i 0 HE) (7)) = e (HB)([7]) = 1w (B o 7)) = (pho Borl)s = (B0 psom]) =
i F(5) (i © 7)) = Gm (5 (eal(])) = G H(3) 0 ) ). This proves Claim

3, and hence completes the proof of Proposition 3.5.1. O

Theorem 3.5.2. Let Fy : C — Sets be the deformation functor from Definition 3.2.2.

Then Fy has a representable hull, in the sense of Definition 2.6.1 (f).

Proof. This follows from Corollary 3.2.8, Lemmas 3.3.2 and 3.3.4, Corollary 3.4.2,

Proposition 3.5.1 and Theorem 2.6.2. O
Theorem 3.5.3. Let Fy, : C — Sets be the deformation functor from Definition 3.2.2.
(a) If Endp (V) = k, then Fy is representable.
(b) If A is self-injective and End, (V') = k, then Fy is representable.

Proof. This follows from Corollary 3.2.8, Lemmas 3.3.2, 3.3.4, 3.3.5 and 3.3.9, Corol-

lary 3.4.2, Proposition 3.5.1 and Theorem 2.6.2. O
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Definition 3.5.4. Let Fy : C — Sets be the deformation functor from Definition

3.2.2.

(a)

If Fy is representable, as in Theorem 3.5.3, then there exists an object R(A, V) €
Ob(C) and a lift (U, ¢y) of V over R(A, V) such that for all R € Ob(C) and all
lifts (M, ¢) of V over R there exists a unique morphism « : R(A,V) — R in
C with [(M, ¢)] = Fy () ([(U, ¢v]). We call R(A,V) the universal deformation
ring of V and [(U, ¢y)] the universal deformation of V over R(A, V). Note that

R(A,V) is unique up to unique isomorphism in C.

In general, as in Theorem 3.5.2, there still exists R(A,V) € Ob(C) and a lift
(U, ¢) of V over R(A,V) such that for all R € Ob(C) and all lifts (M, ¢) of V
over R there exists some (not necessarily unique) morphism o : R(A,V) — R
in C with [(M,$)] = Fy(«)([(U, ¢v)]). In this case we call R(A,V) the versal
deformation ring of V' and [(U, ¢y)| the versal deformation of V over R(A, V).

Note that R(A, V) is unique up to (not necessarily unique) isomorphism in C.

3.6 Universal Deformation Rings and the Syzygy Operator ()

The goal of this section is to prove that if A is a Frobenius algebra (see Def-

inition 2.1.1) and End, (V) = k, then End, (2(V)) = k and R(A, V) = R(A, Q(V)),

where R(A, V') and R(A,Q(V)) are the universal deformation rings of V" and Q(V'), re-

spectively. Our proof follows the steps used to prove |3, Prop. 2.4 and Cor. 2.5(i),(iii)].

Lemma 3.6.1. Assume that A is self-injective and End, (V') = k. Then

End, (2(V)) = k.
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In particular, Q(V)) has a universal deformation ring R(A, Q(V)) in C.

Proof. Since A is self-injective and End, (V') = k, it follows from Theorem 2.1.11 (ii)

that End, (2(V')) = k. The second statement follows from Theorem 3.5.3 (b). O

Lemma 3.6.2. Let (P(V),¢€) be a projective A-module cover of V. Let R € Ob(C)
be Artinian and let (Pr(P(V')),n) be a projective RA-module cover of P(V') viewed
as an RA-module. Then for all lifts (M, ®) of V over R, there ezists an essential
surjection ¥y @ Pr(P(V)) = M of RA-modules such that ¢ o pyr oy = € on, where
Py M — k®g M is the surjective RA-module homomorphism with pyr(m) =1 m

for allm € M. In particular, (Pr(P(V)),¥) is a projective RA-module cover of M.

Proof. Since Pr(P(V)) is a projective RA-module and ¢ o pyy : M — V is a sur-
jective RA-module homormophism, there exists an RA-module homomorphism ), :
Pr(P(V)) — M with ¢ o py; o1y = € on. Tensoring Pr(P(V)) and M with k over
R, we obtain ¢ o (id ® 1) = € o (id @ n). Hence id ® ¢y is surjective, which im-
plies by Nakayama’s Lemma that 1y, is surjective. Let X be an RA-module and let
h:X — Pgr(P(V)) be an RA-module homomorphism such that ¢, o h is surjective.
Then e onoh = ¢ opy oy oh is surjective. Since € and 7 are essential, we obtain
that h is surjective. In particular, 1y, is an essential surjection and (Pr(P(V),¥n)

is a projective RA-module cover of M. O

Let R € Ob(C) and let (M, ¢) be alift of V over R. Let (P(V),€), (Pr(P(V)),n)
and ¢y : Pr(P(V)) — M be as in Lemma 3.6.2. Define Qr(M) = ker(¢ps). Because
Pr(P(V)) and M are free over R, it follows that Qg(M) is free over R. Since e is

surjective and since k@ Pr(P(V')) is a projective A-module, there exists a A-module
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homomorphism @y, : k&g Pr(P(V) — P(V) such that ¢go(id®1y) = eo®ys. Define
Qr(@) : k@r Qr(M) — Q(V) to be the restriction of @y, to k ®g Qr(M), ie. we

have a commutative diagram of A-modules

1d ® Py

0 ——————>kQRr QrM ——k ®@g Pr(P(V)) k®p M— 0
Qr(9) Py ¢
0 QV)——P(V) € 1% 0

Since € o &)y = ¢ o (id ® 1)) is surjective and € is essential, @y, is surjective. Hence
®) is a A-module isomorphism since the k-dimensions of k @ Pr(P(V)) and P(V)
are equal and finite. It follows that Qg(¢) : k @r Qr(M) — Q(V) is also a A-module
isomorphism. Therefore, (Qr(M), Qr(¢)) is a lift of Q(V') over R.

Suppose now that A is self-injective and End, (V') = k. Let (M’ ¢) be a lift of
V over R which is isomorphic to (M, ¢). In other words, there exists an RA-module
isomorphism f : M — M’ such that ¢’ o (id ® f) = ¢. We obtain a commutative

diagram of RA-modules

0 —— > Qp(M)——— Pr(P(V)) Yu M 0
Y A f
0 — > Qp(M') —— PR(P(V)) ar M 0

where A exists since Pgr(P(V)) is a projective RA-module and p is the restriction
of A to Qg(M). Since 1y is essential and f o 1)y, is surjective, it follows that A is

surjective. Hence A is an RA-module isomorphism, since Pr(P(V)) is a free R-module
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of finite rank. It follows that p is also an RA-module isomorphism. By Lemmas 3.3.10

and 3.6.1, p induces an RA-module isomorphism fi : Qr(M) — Qg(M’) such that

Qr(¢') o (id @ 1) = Qr(d). Hence [(QLr(M), Qr(9))] = [(2r(M'), Qr(¢))].
Therefore, if A is self-injective and End, (V') = k, we obtain for each R € Ob(C)

a well-defined map

go.R Fy(R) ——Fou)(R) (3.72)
(M, §)|—[(Qr(M), Qr())]
Lemma 3.6.3. Assume A is self-injective and End, (V) = k. For any morphism

0: R — R inC we have a commutative diagram

9Jo.r

Fy(R) Foo,)(R)
(3.73)
Fy(0) Faw)(0)
Fy(R)— 22 Fou) (R')

Proof. Let [(M, )] € Fy(R). Then goa(I(M.6)]) = [(Q(M), 2(6))] € Faw)(R).

Thus Fow)(0) (9e.x([(M, 0)]) = (R ©re (M), 2(9) o VM) where viii™ is

defined as in Definition 3.2.2 (b). On the other hand
go.r (Fv(O)([(M, 9)]) = gar ((R' ®re M, dovy)]) = [(Qnr (R ®re M), Qr (dovg)))-

Using the notation from Lemma 3.6.2 and (3.72), we obtain a commutative diagram
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of R'A-modules

1d @ Ppp
—— 5

0 — SR ®R,9 QR(M)—>-R, ®R,0 PR(P(V)) R ®R,0 M— 0

QﬁR’@}-}c,(ﬂV[

0 —>QR/(R/ ®R,9 M)—>PR/(P<V)) R ®R,0 M— 0

where A\ exists since R’ ®rg Pr(P(V)) is a projective R’A-module and f is the
restriction of A to R’ ®pg Qr(M). Since Ypg,,m is essential and id ® vy is
surjective, A must be surjective. Hence A\ is an R'A-module isomorphism since
R ®py Pr(P(V)) and Pgr/(P(V)) are free R'-modules of the same finite rank. It
follows that f is also an R'A-module isomorphism. By Lemmas 3.3.10 and 3.6.1, f
induces an R'A-module isomorphism f : R @z (Qr(M)) = Qp(R' @gg M) such
that (Qgr(¢) o yg,’fe(M)) o (id® f) = Qu(¢po Vi) Where nge(M) is as above. Thus

(R'®roQr(M), Qr(@)ovps™)] = [(Qp (R @ro M), QU (dovih o)) in Fory(R)). O

Lemma 3.6.4. Assume that A is self-injective. Let R € Ob(C) and let (U, p) be
a lift of QV) over R. Let (P(V),¢) and (Pr(P(V)),n) be as in Lemma 3.6.2, so
that Q(V') = ker(e). Then there ezists an injective RA-module homomorphism ¢ :
U — Pr(P(V)) such that nop = ¢ o py, where py : U — k &g U is the RA-module

homomorphism with py(x) =1 ® x for all x € U.

Proof. Since R is Artinian, we prove this by induction on the length of R. If R = k
then n : Pr(P(V)) — P(V) is an RA-module isomorphism. Hence we can let ¢ =

n~!o¢opy. Now consider a small extension

0—>tR—>Ri>R0—>O
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where Ry € Ob(C), t € R with mgzt = 0 and tR = k. Let Pp,(P(V)) = Ry Qg
Pr(P(V)) and let ny : Pr,(P(V)) — P(V) be defined by no(ro ® x) = kg, (ro)n(z)
for all ry € Ry and x € Pr(P(V)). Then (Pg,(P(V')),no) is a projective RyA-module
cover of P(V') viewed as an RyA-module. Let Uy = Ry®p U and ¢y = gboz/gow where
Vi, is defined as in Definition 3.2.2 (b). Then (Up, ¢y) is a lift of Q(V') over Ry. By
induction assumption there exists an injective RyA-module homomorphism ¢, : Uy —
Pr,(P(V)) such that 79 o pg = ¢o 0 py,. Let mpr, : Pr(P(V)) = Ry @px Pr(P(V))
and my g, : U = Ry®pg U be the natural surjections. Consider a projective resolution
of the RA-module U

Applying Hompga(—, tPr(P(V))), we obtain the sequence

0 — Hompa(Qo, tPr(P(V))) 2 Hompa (Q1, tPr(P(V)))

%, Hompa (Qa, tPr(P(V))) 35 - -

Then Extp, (U, tPr(P(V)) = ker(65)/Im(5}). Since all the terms in the projective
resolution (3.74) of U are projective as RA-modules, tensoring (3.74) with k over R

gives a projective resolution of the A-module £k ®r U
1d®03 1d®d2 1d®d1
= k@rQr —— k®r Q1 —— k®rQy = k®rU — 0. (3.75)
Applying Homp (—,tPr(P(V))), we obtain the sequence

0 — Homa (k @r Qo, tPa(P(V))) =25 Homy (k @ Q1, tPr(P(V)))

(id®62)* (id®63)*
—_+ _____) o e

Homy (k ®r Q2,tPr(P(V)))
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Hence Ext) (k®grU, tPr(P(V))) = ker((id®65)*)/ Im((id®4;)*). Since mp annihilates
tPr(P(V)) and Q;/mgQ; = k®rQ; for all i > 0, we obtain for all i > 0 a commutative
diagram

011
Hompga (Qi, tPr(P(V)))

Hompa(Qiv1,tPr(P(V)))

14
1%

(id @ 6;41)"

HOHlA(kZ QR QI,tPR(P(V) ) HOII]A(]{? SR Qi-i-lu tPR(P(V ))
Hence Extj, (U, tPr(P(V))) = Exty (k @ U, tPr(P(V))). Since tPr(P(V)) = k ®r

Pr(P(V)) = P(V) is a finitely generated projective A-module and A is assumed to be
self-injective, t Pr(P(V)) is also an injective A-module. Thus Exty, (U, tPr(P(V))) =

0. Considering the short exact sequence of RA-modules
0 — tPr(P(V)) = Pr(P(V)) =222 P, (P(V)) — 0, (3.76)

the long exact cohomology sequence corresponding to Hompgy (U, —) gives a short
exact sequence

0 — Hompa (U, t Pr(P(V))) — Hompn (U, P(P(V)) 580,

Hompgy (U, Pr,(P(V))) — 0.

Thus there exists an RA-module homomorphism ¢ : U — Pr(P(V)) such that 7p g, 0
¢ = (TPRy)+(¢) = o 0 TR, Hence no @ = 1ngompr, 0@ = 190wy omyRr, =
®0° Py, ©TUR, = PO pu. Since ¢ induces an injective homomorphism modulo mp and
since U and Pg(P(V)) are free R-modules of finite rank, it follows by Nakayama’s

Lemma that ¢ is injective. O
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Lemma 3.6.5. Assume that A is self-injective and End, (V) = k. Then for all

R € Ob(C), ga,r is surjective.

Proof. Let R € Ob(C) and let (U,¢) be a lift of V' over R. Let (P(V),¢) and
(Pr(P(V)),n) be as in Lemma 3.6.2, so that Q(V') = ker(e). Let ¢ : U — Pr(P(V))
be the injective RA-module homomorphism from Lemma 3.6.4. We obtain a commu-

tative diagram of RA-modules

0 U d Pp(P(V')) ——Z—— Coker(p) —> 0
¢ opy n §
0 V)¢ P(V) < v 0
(3.77)

where 7 is the natural projection and ¢ is the RA-module homomorphism induced by
n. Since U and Pr(P(V)) are free R-modules of finite rank, it follows that Coker(y)
is also free over R. Tensoring the top row of (3.77) with k& over R, we obtain a
commutative diagram of A-modules

’ |
0 — ko U—222 1o Pa(P(V) 22T 1, Coker(p)— 0

0 QV)¢ P(V) < 1% 0
(3.78)
where 7 (respectively () is induced by 7 (respectively £). Since 7 is a A-module iso-
morphism, it follows that ¢ is a A-module isomorphism. Hence (Coker(y), () is a lift

of V over R. Since (Pr(P(V)), ) is a projective RA-module cover of Coker(yp), it fol-
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lows from (3.78) and from the definition of go g in (3.72) that g r([(Coker(y),()]) =

(U, ¢)]. O

Lemma 3.6.6. Assume that A is a Frobenius algebra and End, (V') = k. Then go r

is injective for all R € Ob(C).

Proof. Let [(L1, ¢1)], [(La, ¢2)] € Fv(R) such that

[(Qr(L1), Qr(¢1))] = go.r([(L1, d1)] = ga.r([(L2, ¢2)] = [(Qr(L2), Qr(¢2))]

Then there exists an RA-module isomorphism f : Qg(Ly) — Qgr(L2) with Qg(p2) o
(id ® f) = Qr(¢1). Using the notation from before, we obtain for i € {1,2} a short

exact sequences of left RA-modules

0— Qr(L) % Pr(P(V)) 5 L; =0 (3.79)

where m; = 1y, for i € {1,2} and ¢; is inclusion and ¢ is induced by f. If M is
a left RA-module, we denote by M* the right RA-module Homg(M, R). Applying
Hompg(—, R) to (3.79) and using that Qz (L) and L; are free R-modules for i € {1, 2},

we obtain a short exact sequence of right RA-modules

0— L — PR(P(V)) = Qp(Ly) =0 (3.80)

for i € {1,2}. By Lemma 2.1.3, P5(P(V)) is a projective right RA-module. It follows
by Schanuel’s Lemma (see |5, Thm. 2.24|) that P5(P(V)) @ L7 = Pj(P(V)) & L}
as right RA-modules. By the Krull-Schmidt-Azumaya Theorem (see [5, Thm 6.12]),
we have L} = L} as right RA-modules. Therefore (L})* = (L3)* as left RA-modules.

Let i € {1,2}. Then the natural R-module isomorphism h; : L; — (L})* given by



68

= (b- hi(1)) ().

Hence L & Ly as left RA-modules. Let  : L1 — Ly be an RA-module isomorphism.

By Lemma 3.3.10, ¢ induces an RA-module isomorphism ¢ : L, — L, such that

20 (id ® () = ¢1. Hence [(L1, ¢1)] = [(L2, ¢2)]. O

Theorem 3.6.7. Assume that A is a Frobenius algebra and End, (V) = k. The
syzygy operator ) induces a natural isomorphism gq between the restrictions of the

deformation functors Fy and Fovy to the full subcategory C of Artinian objects R in

C. In particular, R(A, V) = R(A, Q(V)).

Proof. The first part of the statement is a direct consequence of Lemmas 3.6.3, 3.6.5
and 3.6.6. The second part of the statement follows from Corollary 3.2.8 and Propo-

sition 3.5.1. OJ
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CHAPTER 4

A PARTICULAR EXAMPLE

4.1 Set Up

In this chapter we assume k to be an algebraically closed field and A to be the

basic algebra kQ/I where (@ is the quiver

o Si—2 e (4.1)
N/
@
3
and [ is the ideal of the path algebra k() generated by the set of relations
{Ba, &, aN, pB, 0p, £6, 0 — NOB, p* — BAS, €2 — §BA}. (4.2)

Remark 4.1.1. The algebra A is of dihedral type as introduced by K. Erdmann, but
not isomorphic to a block of a group algebra (see |6, Lemma IX.5.4]). In particular A
is a symmetric k-algebra. Notice also that A is a special biserial algebra according to
Definition 2.5.1. There are three simple A-modules up to isomorphism corresponding
to the vertices in )y, which we denote by Sy, S7 and Sy. Their projective covers Py,

P, and P, respectively, can be described using the following diagrams:

PQZ 0 > P1: 1 and PQZ 2

1 2 0
0 1 2
2 0 1
0 1 2
The stable Auslander-Reiten quiver of A has

e infinitely many components of type ZAZ, consisting entirely of string modules,
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e two 3-tubes, one corresponding to the maximal directed strings «, p, £ and one

corresponding to the maximal directed strings 65, Ad, S\, and

e infinitely many 1-tubes, consisting entirely of band modules.

4.2 Canonical Homomorphisms
Definition 4.2.1. Let S and T be strings for A. Suppose C'is a substring of both S

and T such that the following conditions (I) and (II) are satisfied.

(I) S~ BCD, where B is a substring which is either of length zero or B = B'r for
an arrow 7, and D is a substring which is either of length zero or D = ¢~ 1D’

for an arrow ¢. In other words
S~B<&CcSD. (4.3)
(IT) T ~ ECF, where E is a substring which is either of length zero or F = E’¢™!

for an arrow €, and F' is a substring which is either of length zero or F' = puF”

for an arrow u. In other words
T~E SCc&F. (4.4)

Then there exists a canonical A-module homomorphism

ac : M(S) = M(C) < M(T). (4.5)

Theorem 4.2.2. Each f € Homp(M(S), M(T)) can be written uniquely as a k-
linear combination of canonical A-module homomorphisms as in (4.5). In particular,

if M(S) = M(T), the canonical endomorphisms generate Endy (M (S5)).
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Proof. See [8]. O

Lemma 4.2.3. Assume S is a string in A. If S € {3,6,\,08,6,8),0,1,2} then

Enda(M(S)) = k.

Proof. Let S € {,5,\, 05,0, B\, 0,1, 2} Since the unique substring C' of S satisfy-
ing (I) and (II) above is S itself, the only canonical endomorphism a¢ of M(S) is the

identity homomorphism. By Theorem 4.2.2, dim; End, (M (S)) = 1. O

4.3 Stable Endomorphism Rings

In this section, we determine all string A-modules with stable endomorphism
ring k& which lie in the same component as a string A-module whose endomorphism
ring is k. We first look at the string modules corresponding to maximal directed
strings of length 1.

Consider the string ,,0 = ,,0. There are two substrings of a satisfying (I)
and (II) above, namely, the substring 0 with corresponding canonical endomorphism
a; — ag, and « itself which induces the identity endomorphism of M («). By Theorem

4.2.2, dimy Endy (M («)) = 2. Looking at the commutative diagram

@0 [0]¢ 0@

0
0}y — [0 ;—” o]
0

we see that the canonical map a; — ay factors through the projective A-module Fj.

Since M («) is not projective, this implies

dimy PEndy (M («)) =1,
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which means dimy End, (M («)) = 1. Arguing similarly with each of the strings p and

&, we obtain the following result.

Lemma 4.3.1. If S € {a,p, &}, then dimy Enda(M(S)) = 2 and End,(M(S)) = k

as k-algebras.

We now determine all string A-modules whose endomorphism ring is isomor-

phic to k.

Proposition 4.3.2. The only string A-modules with endomorphism ring k are the

A-modules corresponding to the strings 0,1,2, 5,8, X, 83, A\, BA.

Proof. Let S be a string which does not represent any of the strings in the Proposition.
If the length of S is 1 then S is one of the strings «, p or £&. Hence dimy, End (M (S)) =
2 by Lemma 4.3.1. Assume now that the length of S is greater than 1. Then S contains
a maximal directed substring. If S' contains a maximal substring ., S, ap? Of length
1, where (o, (1,¢2) = (o, p, &), then S ~ DaD’ for suitable strings D and D’. So we
have at least two canonical endomorphisms of M (S), namely, one given by a; — as
and another given by the identity. Hence dimy Endy (M (S)) > 2. Now suppose that
S contains a maximal substring i <= j <= [ of length 2, where 17, € {65, \d, BA}.
Since S # 17, either S ~ Dymg{lD’ or S ~ D¢ 'y17, D’ for suitable strings D and
D’. In other words, S contains a maximal directed substring of length 1. Therefore,

it follows as above that dimy End, (M (S)) > 2. O

4.3.1 Stable Endomorphism Rings of the A-modules in
the Components of the Stable Auslander-Reiten
Quiver Containing Simple A-modules
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Definition 4.3.3. Let o be the automorphism of ) which induces the permutation
(0,1,2) on the vertices and the permutation (3,4, A\)(«, p, &) on the arrows. The o
induces a k-algebra automorphism of A = kQ /I of order 3, which we also denote by

g.

Proposition 4.3.4. Let v € {0,1,2}. The A-modules in the component of the stable
Auslander-Reiten quiver containing S, which have stable endomorphism ring k are

precisely those of the form:
(i) Q(S,) = Q" (M(0)),
(ii) (M (b)), and

(iii) Q"(M (dnn)),

for alln € Z.

Proof. Since ¢ in Definition 4.3.3 is a k-algebra automorphism of A, it suffices to
prove Proposition 4.3.4 in the case when v = 0. Consider the simple A-module Sy
corresponding to the string 0 and consider the diagonal in the component of the stable

Auslander-Reiten quiver containing Sy

Ohn-h
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Note that

: 2 : 2 1 : 2 1 0
Oh=10"2, Owmw= 972 1 and Owmn= ¢ 27 1 0
Consider first the string
2

Oh =0 622.
There are two canonical endomorphisms of M (Oh), namely, one given by ¢; — ¢y and

another given by the identity map. Considering the following commutative diagram

2
o2, 2] 0

2
0 2
2(—>1_-».0
2

we see that the canonical endomorphism of AM(0y) corresponding to ¢; — ¢, factors
through the projective A-module P,. Since dimy Enda (M (0,)) = 2, it follows that
dimy, End, (M (0;)) = 1. Hence End,(M(0;)) = k as k-algebras. Now consider the
A-module corresponding to the string

. 012 b11
Omh = 0 o2 41

We see that there are three canonical endomorphisms of the A-module M (0y),
namely, those corresponding to the maps ¢; — ¢, respectively by — bo, respectively
the identity. Therefore

dlmk EHdA(M<Ohh)) = 3.

Consider the commutative diagrams
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and

2 1
1<—>-0—»2
1

We see that the A-module endomorphisms of M (Ohh) corresponding to ¢; — ¢,

respectively b; — by, factor through P, respectively P;. Therefore
dlmk EHdA(M<Ohh)) =1.

Hence End,(M(04,)) = k as k-algebras. However, if we consider the A-module
corresponding to the string

_ 2 1 40
O =00 21 0

we see that the A-module endomorphism of M (Ohhh) corresponding to the map a; —

ag does not factor through a projective A-module. Let S, = Ohhh- .. p- Since we
——

always have the endomorphism of M(S,) corresponding to the map a; — ag when

n > 3, we obtain dimy End, (M (S,,)) > 2 for n > 3.

Consider now the diagonal
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hh--h0

hth
hho

10

We see that

hhho = 0 and hhhho = 0 -

Note that Q(M(h())) = So, Q(M(hh())) = M(Oh), Q(M(hhho)) = M(Ohh) and

Q(M(hhth)) = M(Ohhh). In general, for all n Z 1

QUM (.- 50D = MOppp,. .. 1)
—_— ——

n times n — 1 times

By Theorem 2.1.11, End, (M (p,p,5p ... 10)) = K if and only if n € {1,2,3}. Since
ti 5

every A-module in the component of the stable Auslander-Reiten quiver containing

Sy lies in the %-orbit of a module in either one of the diagonals above, this completes

the proof of Proposition 4.3.4. O

4.3.2 Stable Endomorphism Rings of the A-modules in
the 3-Tubes
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Proposition 4.3.5. The A-modules in the 3-tubes which have stable endomorphism

ring k are precisely those of the form:
(i) '(M(a)),
(i) Q" (M(ay)), and

(i) (M (ann)),

for alln € Z.

Proof. Since the syzygy functor 2 induces a graph isomorphism between the two 3-
tubes, we can by Theorem 2.1.11 restrict ourselves to the A-modules in the 3-tube

containing M («). Consider the diagonal

Ahhe--h

/

/
Ohhh

/

Qhh

S

Qap

/

«

We can describe the A-modules M (o), M (apy) and M (apps) by

=0 2 » %= 0 2 1 5> %= 0 2 1 0 -
0 2 0 2 1 0 2 1 0

By Lemma 4.3.1, End, (M(«)) = k. Consider now the string

ap = alo 012 .
(lQO 622
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We have three canonical endomorphisms of M (qy,) corresponding to the maps a; —
as, respectively ¢; — ¢, respectively the identity. Hence dimy Enda (M (ay)) = 3.

Consider the commutative diagrams

@022 [0]€ 0@22
0

and

1
2
@0 — @ 2 - @
0
0
0 ]
, > 2
2
We see that the A-module endomorphisms corresponding to a; — ag, respectively

¢1 — ¢q, factor through Py, respectively P». Hence dimy End, (M (ay,)) = 1.

Consider next

Qnrh = 4,0 2 41 -
aQO 022 b21

We have four canonical endomorphisms of M (ay;), namely those corresponding to
the maps a; — ao, respectively by — by, respectively ¢; — cs, respectively the identity

map. Therefore dimy Enda (M (apy)) = 4. Consider the commutative diagrams
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and

1
2 1
1 C 0 —> 9
1
we conclude that dimy End, (M (app)) = 1.
Consider now the string
Qnhh = 4,0 2 1 a0

a0 2 1 a0

Note that the canonical endomorphism of M (app,) corresponding to (aq,ap) —

(a3, ay) does not factor through a projective A-module. Therefore

dimy, End\ (M (annn)) > 2.

Let S, = appp, ... - Since we always have the endomorphism of M(S,,) correspond-
—_—

n times

ing to the map (ai, ap) — (as,az) when n > 3, we obtain dimy End, (M(S,)) > 2 for
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n > 3. Because every A-module in the 3-tube containing « lies in the Q%-orbit of a

module in the above diagonal, this completes the proof Proposition 4.3.5. O

4.4 Ext groups

In this section, we determine the Ext groups for the A-modules found in Propo-

sitions 4.3.4 and 4.3.5.
Lemma 4.4.1. For all v € {0,1,2}, Ext}(S,,S,) = k as k-vector spaces.

Proof. Since ¢ in Definition 4.3.3 is a k-algebra automorphism of A, it suffices to

prove Lemma 4.4.1 in the case v = 0. Note that Q(Sy) can be described by the string

There is only one canonical homomorphism in Homy (€2(.Sy), Sp), namely

meo 2 (0] o] ———— [0

Since 1y does not factor through a projective A-module, we obtain

dimy Hom , (©2(Sp), Sp) = 1.
By Theorem 2.1.11, this means Ext) (Sy, Sp) = k as k-vector spaces. O
Lemma 4.4.2. For all v € {0,1,2}, Exty (M (i), M(03)) = 0.

Proof. Using the k-algebra automorphism o of A from Definition 4.3.3, it suffices to
prove Lemma 4.4.2 in the case when v = 0. Note that Q(M(05,)) can be described by
the string

S=1 .
2
Since Homy (Q(M(01,)), M (01,)) = 0, we obtain Ext} (M(0,), M(05)) = 0. O
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Lemma 4.4.3. For all v € {0,1,2}, Exty (M (n), M (0py)) = k as k-vector spaces.

Proof. Using the k-algebra automorphism o of A from Definition 4.3.3, it suffices to
prove Lemma 4.4.3 in the case when v = 0. Note that Q(M(0p;)) can be described

by the string

There are only two canonical homomorphisms in Homy (Q(M (041)), M (Ops)), say 71

and 75, where

1) 2
T1: 2 0 ( 02217

and

o1 21
To @ 2—/0 . C 0 1
Note that 71 does not factor through a projective A-module. However, looking at the

commutative diagram

1 [2 2 1
A2l [2]¢ 02] 1

2 1
| 0 !
1
we see that 75 factors through the projective A-module P;. Thus

dimy, Hom  ((M (0nn)), M (On)) = 1,

which implies by Theorem 2.1.11 that Ext} (M (04), M (0n1,)) = k as k-vector spaces.

]
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The following result follows from Lemmas 4.4.1, 4.4.2 and 4.4.3 together with

Theorem 2.1.11.
Proposition 4.4.4. For allv € {0,1,2} and all n € Z we have:
(i) Extp(Q"(M(v)), Q"(M(0))) = k,
(i) Exty(Q"(M (), 2" (M(0s))) = 0, and
(iii) Exty (Q"(M (0n1)), Q" (M (0n1))) = k.
We next consider the A-modules from Proposition 4.3.5.
Lemma 4.4.5. We have Ext} (M (), M(a)) = 0.
Proof. Note that we can describe Q(M («)) by the string

S=
2
0

Thus Homy (2(M («)), M («)) = 0, which implies by Theorem 2.1.11 that

Exth (M(a), M(a)) = 0.

Lemma 4.4.6. We have Ext} (M (), M(ay,)) = 0.

Proof. Note that we can describe Q (M (a4)) by the string

There is only one canonical homomorphism in Homy (Q2(M (o)), M (av,)), namely

1
To: 2 0@1 @C 0@2 9

2

Looking at the commutative diagram



o] [0] 2
2 —
12 21 2

we see that 7y factors through the projective A-module P,. Thus

Exty (M (an), M (o)) 2 Hom, (Q(M (an)), M (an)) = 0

Lemma 4.4.7. We have Exty (M (any), M(anp)) = k as k-vector spaces.

Proof. Note that we can describe Q(M (ayy)) by the string

There are three canonical homomorphisms in Hom (Q(M (app), M (apr)), namely

1
2 [0] 0_2 1
. C
To 01,2, 0] 02 1°
1
2 0 0 2 1
T 0 1220 ( 0 2
1
and
12 0
. 0 21
ne g 2 o
1

Looking at the commutative diagrams

33
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2 [0] 0.2 1
0—1 2 — 0| ——
20, 0] 0] 2 1

0
1 1
2 0] & [0]  —> 0]
0 2 0
0
and

1

2 0 0 21
0’12 —E— %%

5
0 ; 1 1

1 0

we see that 79 and 75 factor through P, and P;, respectively. However 7 does not
factor through a projective A-module. Thus dimy Hom, (Q(M (aps)), M (anp)) = 1,

which implies Ext} (M (ann), M (onn)) = k. O

The following result follows from Lemmas 4.4.5, 4.4.6 and 4.4.7 together with

Theorem 2.1.11.
Proposition 4.4.8. For any n € Z we have:
(i) Exty(Q"(M (), Q"(M(a))) =0,
(i3) Exti (Q(M(an)), Q" (M(aw))) =0, and
(i4i) Ext) (Q"(M (ann)), @ (M (any))) = k.
4.5 Universal Deformation Rings

Let A be our basic string algebra from Section 4.1. Since A is a symmetric

k-algebra, A is in particular Frobenius and self-injective. If V' is a A-module with
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finite dimension over k& and End, (V) = k then by Theorem 3.5.3 there exists a
universal deformation ring R(A,V) € Ob(C) of V. Furthermore, by Theorem 3.6.7,
R(A,Q*(V)) = R(A,V) for all n € Z. In this section we find the universal deformation

rings of the A-modules V' with End, (V') = k found in Section 4.3.

Definition 4.5.1. Let R € Ob(C). The cotangent space t is defined to be the

2
k-vector space mp/ms,.

Lemma 4.5.2. Let 0 : R — S be a morphism in C. Let 6% : t%, — t% be the induced

map of cotangent spaces. Then 0 is surjective if and only if 0* is surjective.
Proof. See [10, Lemma 1.1]. O

4.5.1 Universal Deformation Rings of the A-modules in
the Components of the Stable Auslander-Reiten
Quiver Containing Simple A-modules

Proposition 4.5.3. For v € {0,1,2}, R(A, S,) = k[[t]]/(t?)

Proof. We prove this for v = 0; the cases when v = 1 and v = 2 are similar. By
Proposition 4.4.4 (i), Ext} (So, So) = k. Therefore R(A, Sp) is isomorphic to a quotient
algebra of the ring of formal power series k[[t]]. Consider Ry = k[[t]]/(¢?) and let M ()
be the string A-module corresponding to the string 0 = 0. We have a short exact
sequence of A-modules

O%SOL)M(OOL)SO—)O

where ¢ is the canonical A-module monomorphism

0] — 5]
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and 7 is the canonical A-module epimorphism
@O —[0]

The A-module M («) is naturally an Rg-module by letting ¢ act as ¢ o 7, i.e. for all
m € M(a), tm = «(7(m)). Let {Z} be a k-basis of M(«a)/rad(M(a)) = Sy. Lift
Zp to an element zp € M(«). Then tzg = ¢(7(z)) is not zero and thus gives a k-
basis of rad(M («)). Hence {2} is an Ry-basis of M («) implying that M («) is a free
Ro-module of rank 1. Note that Ry/tRy = k, which means we have a short exact

sequence of Ry-modules

0—>tRy — Ry — k— 0.

Hence, tensoring this sequence with M («) over Ry, we obtain a short exact sequence
0_>tRO®Ro M(a) — RO PR, M(O[) — k®Ro M(O[) —0

of RyA-modules. Since Ry ®g, M(a) = M(«), we have tRy ®p, M(a) = tM(«).
Therefore, Sy = M(a)/tM () = k ®p, M(a) as A-modules. If ¢ : k ®@p, M(a) — Sy
is a A-module isomorphism, then (M (), () is a lift of Sy over Ry. By Theorem 3.5.3,
there exists a unique morphism 6 : R(A, Sy) — Ry in C such that Fg,(8)([(U, ¢)]) =
[(M (), )] where [(U, ¢)] is the universal deformation of Sy over R(A, Sp). Note that
since (M (w),() is not the trivial lift of Sy over Ry, € is a surjection. We want to
show that 6 is an isomorphism. Suppose that € is not an isomorphism. Then there
exists a surjective morphism 6, : R(A,Sy) — Ry in C, where Ry = E[[t]/(¢?), such

that 6 = 7 o 61, where 7 is the natural projection

1 Ry = K[[t]]/(t?) = Ro = [[t]}/(£).
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Let My = Ry ®p(a,s,),0, U. Note that M;/tM; = S, as A-modules. Since R(A, Sy) is

the universal deformation ring of Sy, Ry ®p(a,s0),0 U = M(cv). Therefore,
M(a) =2 Ry @p(a,s0),0 U = Ro Qr, .« (R1 @r(A,80),00 U) = Ro g, M.

Note that since ker(m) = (¢?)/(t*), we have Ry ®g, » My = M, /t*M;. Hence M («) =
M, /t*M; as RyA-modules. Consider the R; A-module homomorphism g : M; — t2 M,
defined by g(z) = t?z for all x € M;. Since M; is free over Ry, it follows that
ker(g) ={x € M, : >z =0} = {z € M, : x = ty for some y € M;} = tM;. Clearly, g
is onto. Thus M, /tM, = t>M,, which implies that Sy = t>M;. Hence we get a short

exact sequence of R;A-modules
0— Sy — M; — M(a) — 0. (4.6)

Note that the sequence (4.6) does not split as a sequence of RjA-modules. We
now show that (4.6) does not split as a sequence of A-modules. Suppose that
M, =2 Sy & M(a) as A-modules, and let (Z> € So® M(a) = M. Then t acts on
(Z) as a matrix U; = <O ¢ ) where € : M () — Sy is a surjective A-module ho-
m 0 toT
momorphism and ¢o 7 is the action of £ on M («r). Since 7 generates Homy (M (S), Sp)
as a k-vector space, there exists ¢ € k* so that € = ¢r. Since t?M; = S, is non-
zero, there must exist a nonzero element (z) € M; with (Uy)? ('Z) # 0. Since

m m
ker(cr) = tM(«), it follows that

(U,)? (z) _[(eroroT)(m)) _ ((CT)(tm)) —0
m (toT)%(m) t’m
which is a contradiction. Therefore, (4.6) does not split as a sequence of A-modules.

However,

Exty (M (), So) = Hom, (M (), So) = Hom, (M (Ad), So) =0,
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which implies that (4.6) has to split. Since this is a contradiction, it follows that

0: R(A,Sy) — Kk[[t]]/(t?) is an isomorphism. O
Proposition 4.5.4. Forv € {0,1,2}, R(A, M(vy,)) = k.

Proof. Since Ext} (M (i), M (7y,)) = 0 by Proposition 4.4.4 (ii) and since R(A, M (vy,))

is a k-algebra, it follows that R(A, M (v,)) = k. O
Proposition 4.5.5. Forv € {0,1,2}, R(A, M (vn)) = k[[t]].

Proof. We prove this for v = 0; the cases when v = 1 and v = 2 are similar. Let
V = M(0p1,). By Proposition 4.4.4 (iii), Ext}(V, V) 2 k, which implies that R(A, V)
is isomorphic to a quotient algebra of k[[t]]. Let {bi,bs, b3, by, bs} be a k-basis of
V = M(0y;,) corresponding to the vertices of the linear quiver used to define M (0y)

as follows

2 Rl (4.7)
50 52 5l
For all i > 1, let T} be the string T; = (Opn/3)* 'Opn, which can be visualized as follows
2 1

and let R; = k[[t]]/(t"). Note that if ¢ = 1, then M(T}) =V and R; = k. Let i > 2
be fixed, and consider the endomorphism 7; of the string A-module M (7;) induced

by the canonical homomorphism
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which sends the basis vector ¢; of M(T;) to ¢j41 for 1 < j <i—1 and ¢; to zero. Note
that ker(r;) is the unique A-submodule of M (7;) which is isomorphic to V' and the

image of 7; is isomorphic to M(T;_;). Moreover, the image of 7/

is isomorphic to
V and 7/ is the zero endomorphism of M(T}). The A-module M (T;) is naturally an
R;-module by letting ¢t act on M(T;) as 7, i.e. for all m € M(T;), tm = 7;(m). Let
{by,bo, b3, by, bs} be a k-basis of M(T;)/tM(T;) = V. Lift these elements to elements
b1, by, b3, by, bs of M(T;). Tt follows that by, by, bs, by, b5 are linearly independent over
k and {tby,... ths,...,.t7 by, ... t"7 b5} is a k-basis of tM(T;) = M(T;_;). Thus

{b1, b, b3, by, b5} is an R;-basis of M(T;), which means that M (T;) is free over R;. By

tensoring the short exact sequence
0—>tR, >R, —k—0
with M(T;) over R;, we obtain a short exact sequence of R;A-modules
0— tM(T;) — M(T;) — k®g, M(T;) — 0.

Since V' = M(T;)/tM(T;) as A-modules, there exists a A-module isomorphism ¢; :
k ®@pr, M(T;) — V. Therefore (M(T;),(;) is a lift of V over R;. For all i > 1, the
R;A-module M (T;) is a k[[t]]A-module via the natural projections p; : k[[t]] — R;.
Moreover, the k[[t]]A-modules M (T;) form an inverse system ({M(T;) }icz+, {mji}i>i)
where 7;; : M(1;) — M(T;) is the composition mj; = 11,0+ -- 0741 where m, ,_1 :
M(T,) — M(T,-1) is the canonical homomorphism from (4.8) for i +1 <n < j+ 1.
Let N = @M(TZ) Then N is a k[[t]]A-module, where ¢ acts on N as ¥;. In
particular, Jif/tN > V. Let {by,...,bs} be a k-basis of N/tN = V. By Nakayama’s

Lemma, we can lift these elements to elements by, ..., bs € N such that {b;,...,bs} is
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a generating set of N. Then S = {by,...,bs,tby,..., tbs, t*by, ..., 1%bs,...} generates
N as a k-vector space. If S’ is an arbitrary finite subset of S, then there exists ¢ > 1
such that S" C {by,...,b5,tby, ..., tbs,... .t by, ... t771bs} with the latter being a
k-basis of M(T;). This implies that S’ is in particular a k-linear independent subset
of S. Hence S is a k-basis of N. Since {tby, ..., tbs,t%by, ..., t%bs, ...} is a k-basis of
tN, it follows that {by,...,bs} is a k[[t]]-basis of N. Thus N is a free k[[t]]-module of

rank 5. Consider the short exact sequence
0— (t) = K[[t]] = & — 0.

Tensoring this sequence with N over k[[t]], we obtain a short exact sequence of k[[t]]A-
modules

0—>tN—)N—>k®k[[t”N—>O.

It follows that N/tN = k @y V. Hence there exists an isomorphism of A-modules
C:k Qg N — V, since N/tN =V as A-modules. Therefore (IV,() is a lift of V'
over k[[t]]. Let R(A, V) and [(U, ¢)] be the universal deformation ring and universal
deformation of V', respectively. Then there exists a unique morphism 6 : R(A, V) —
k[[t] in C such that Fy(8)([(U,#)] = [(N,)]. In particular, N = k[[t] ®p.v)e U as
k[[t]]A-modules. We want to show that 6 is an isomorphism. Note that R(A,V) =
k[[t]]/I for some ideal I of K[[t]] since Ext)(V,V) = k as k-vector spaces. Hence
it is enough to prove that 6 is surjective. Consider the lift (M (T3),(2) of V' over
Ry = K[[t]]/(t?). Note that N/t?N = M(T3). There exists a unique morphism
0 : R(A,V) — Ry such that Fy(6")([(U, ¢)]) = [(M(Tz),(2)]. Since (M (T3), (s) is not

the trivial lift, @ is surjective. Consider the natural projection ps : k[[t]] — Rz, and let
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(Us, ¢2) be the lift of V over Ry corresponding to the morphism pyo6 : R(A, V) — Rs.

Then

Us =2 Ry @p(A,v)paot U = Ro Qpi)pe (K[[H]] @ravy,0 U)
= Ry @kl p. N
~ N/t*N

>~ M(Tp).

By Lemma 3.3.10 this implies that (Us, ¢2) = (M(T5),(s) as lifts of V over Ry, i.e.
[(Us, ¢2)] = [(M(T3), ()] By uniqueness of #', it follows that 6 = pyo6. Let 6%, (p2)”
and (¢')* be the induced maps on the cotangent spaces. Note that (0')* = (py)* o 6*.
Assume that 6 is not surjective. By Lemma 4.5.2, this implies that 6* cannot be
surjective. Since dimy tz[[t” = 1, it follows that dimj Im #* = 0, which implies that
6* = 0. Hence (0')* = (p2)" 0 0* = 0. On the other hand, since ¢’ is surjective, it
follows from Lemma 4.5.2 that (¢')* is surjective. In particular, (6')* # 0 which is a

contradiction. Thus @ is surjective, and hence an isomorphism. O

4.5.2  Universal Deformation Rings of the A-modules in
the 3-Tubes

Proposition 4.5.6. We have R(A, M («)) = k = R(A, M(ay)) and R(A, M (app)) =
k[[t]].

Proof. By Proposition 4.4.8 (i)-(ii), Ext) (M (a), M(a)) = 0 = Ext) (M (az), M (a3)),
which implies R(A, M («)) = k = R(A, M(ay)). Let V.= M(apy). By Proposition

4.4.8 (iii), Ext}(V,V) = k, which implies that R(A, V) is isomorphic to a quotient
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algebra of k[[t]]. Let {by, by, bs, by, bs,bs} be a k-basis of V = M (ayy) corresponding
to the vertices of the linear quiver used to define M (ayy,) as follows
o0 b2 byl (4.9)
5,0 b2 bl
For all 7 > 1, let T} be the string T; = (axs8) ' apn, which can be visualized as follows

0 2 1 ci U 2 1 0 2 1
0 2 1 0 2 1 0 2 1

and let R; = k[[t]]/(t"). Note that if i = 1, then M(Ty) =V and Ry = k. Let i > 2
be fixed, and consider the endomorphism 7; of the string A-module M (T;) induced

by the canonical homomorphism

Tii—1

M(T) M(TZ_Q%M(TZ) (4.10)

which sends the basis vector ¢; of M(T;) to ¢j+1 for 1 < j <i—1 and ¢; to zero. As
in the proof of Proposition 4.5.5, it follows that M (T;) is an R;-module by letting ¢
act on M(T;) as 7;. Let {by, bo, b3, by, bs, b} be a k-basis of M(T;)/tM(T;) = V. Lift
these elements to elements by, by, b3, by, bs, bg of M (T;). As in the proof of Proposition
4.5.5, it follows that {by, be, b3, by, b5, bs} is an R;-basis of M (T;), which means that

M(T;) is free over R;. By tensoring the short exact sequence
0—tR, >R, > k—0
with M(T;) over R; we obtain a short exact sequence of R;A-modules
0— tM(T;) — M(T;) — k ®gr, M(T;) — 0.

Since V' = M(T;)/tM(T;) as A-modules, there exists a A-module isomorphism ¢; :

k ®g, M(T;) — V. Therefore (M(T;),(;) is a lift of V over R;. For all ¢ > 1, the
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R;A-module M(T;) is a k[[t]]A-module via the natural projections p; : k[[t]] — R;.
Moreover, the k[[t]]A-modules M(T;) form an inverse system ({M(T;) }icz+, {mji}i>i)
where 7;; : M(T;) — M(T;) is the composition 7j; = m41,; © -+ o w41, where
Tpn—1 : M(T,) = M(T,_1) is the canonical homomorphism from (4.10) for i + 1 <
n<j+1 Let N = l&nM(Tz) Then N is a k[[t]]A-module, where ¢ acts on N as
5. In particular, N/t]z\f ~ V. Let {b1,...,bs,bs} be a k-basis of N/tN = V. By
Nakayama’s Lemma, we can lift these elements to elements bq,...,b5,bs € N such
that {by,...,bs,bs} is a generating set of N. As in the proof of Proposition 4.5.5, it
follows that {by,...,bs5,b6} is a k[[t]]-basis of N. Thus N is a free k[[t]]-module of

rank 6. Consider the short exact sequence
0— (t) — K[[t]] = k—0.

Tensoring this sequence with N over k[[t]], we obtain a short exact sequence of k[[t]]A-
modules

0—=tN — N =k N — 0.

It follows that N/tN = k @y V. Hence there exists an isomorphism of A-modules
C:k®puy N =V, since N/tN =V as A-modules. Therefore (IV,() is a lift of V'
over k[[t]]. Let R(A,V) and [(U, ¢)] be the universal deformation ring and universal
deformation of V', respectively. Then there exists a unique morphism 0 : R(A, V) —
k[[t] in C such that Fy(8)([(U,#)] = [(N,¢)]. In particular, N = k[[t] ®p.v)e U as
E[[t]] A-modules. We want to show that 6 is an isomorphism. Note that R(A, V') =
k[[t]]/I for some ideal I of K[[t]] since Extj(V,V) = k as k-vector spaces. Hence

it is enough to prove that 6 is surjective. Consider the lift (M (T3),(2) of V' over
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Ry = K[[t]/(t?). Note that N/t?N = M(T,). There exists a unique morphism
0" : R(A, V) — Ry such that Fy(0)([(U, ¢)]) = [(M(T3), ()] Since (M(T5),(s) is not
the trivial lift, 6’ is surjective. Hence we can use the same arguments as in the proof

of Proposition 4.5.5 to show that 6 is surjective, and hence an isomorphism. O

The following result follows from Propositions 4.5.3, 4.5.4, 4.5.5 and 4.5.6

together with Theorem 3.6.7.

Theorem 4.5.7. For v € {0,1,2} and for all n € Z we have:

(i) R(A, Q" (M(0))) = K[[t]}/ (%),

(i) R(A, Q" (M(0n))) = k,

(i) R(A, Q" (M (0nn))) = K[[H]],

(iv) R(A,Q"(M(a))) =

o

)

(v) R(A, Q" (M(ayp))) =k, and

(vi) R(A, Q" (M(ann))) = K[[1]]-

The figures on the following two pages illustrate Theorem 4.5.7.
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