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ABSTRACT

Global illumination adds tremendous visual richness to rendered images. Un-

fortunately, such illumination proves quite costly to compute, and is therefore of-

ten coarsely approximated by interactive applications, or simply omitted altogether.

Global illumination is often quite low-frequency, aside from sharp changes at dis-

continuities. This thesis describes three novel multiresolution image-space methods

that exploit this characteristic to accelerate rendering speeds. These techniques run

completely on the GPU at interactive rates and require no precomputation, allowing

fully dynamic lighting, geometry, and camera.

The first approach, multiresolution splatting, is a novel multiresolution method

for rendering indirect illumination. This work extends reflective shadow maps, an

image space method that splats contributions from secondary light sources into eye-

space. Splats are refined into multiresolution patches, rendering indirect contributions

at low resolution where lighting changes slowly and at high resolution near disconti-

nuities; this greatly reduces GPU fill rate and enhances performance.

The second method, image space radiosity, significantly improves the per-

formance of multiresolution splatting, introducing an efficient stencil-based parallel

refinement technique. This method also adapts ideas from object-space hierarchical

radiosity methods to image space, introducing two adaptive sampling methods that

allow much finer sampling of the reflective shadow map where needed. These modi-

fications significantly improve temporal coherence while maintaining performance.
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The third approach adapts these techniques to accelerate the rendering of di-

rect illumination from large area light sources. Visibility is computed using a coarse

screen-space voxelization technique, allowing binary visibility queries using ray march-

ing. This work also proposes a new incremental refinement method that considers

both illumination and visibility variations. Both diffuse and non-diffuse surfaces are

supported, and illumination can vary over the surface of the light, enabling dynamic

content such as video screens.
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CHAPTER 1

INTRODUCTION

Much of our perception of reality comes from the human visual system, which

allows us to recognize the world around us from the light in our environment. Before

reaching our eyes, this light may be reflected or refracted; it may be partially absorbed;

it may be focused or it may diverge. And although only the tiniest fraction will

makes it to our retinas, that incoming illumination allows us to perceive the world:

to recognize objects, to discern color, to comprehend the spatial relationship of one

thing to another, to guess at the feel and texture of materials, and much more.

Humans can also extract meaningful visual information from synthetic images.

The creation of these images is far from new; the attempt to synthesize images that

have the appearance of reality is as old as art itself. More recent is the attempt to

synthesize, or render, photorealistic images using computers, by modeling the effects

of light in an artificial environment. Creating a truly convincing synthetic image

requires plausible reproduction of reflection, refraction, and the many other effects of

light that enable our accurate perception of the world.

This is an ambitious goal, but an achievable one: given enough time and

computational power, most of what we see can be plausibly recreated in a synthetic

image. However, “enough” can add up to a great deal. A still more demanding goal is

to generate photorealistic images interactively : to render each image, start to finish, in

under 30 milliseconds. At these speeds, a user can smoothly move around a rendered

scene and interact with its contents. Much current research in computer graphics
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attempts to move towards the creation of photorealistic graphics at interactive speeds.

The work described in this thesis takes several small steps in that direction.

1.1 Local and Global Effects

Each pixel in a rendered image depicts some 3D point in a synthetic scene;

to determine what color that pixel should be, the light reaching the corresponding

point must be computed. The simplest and least computationally expensive methods

of computing illumination at a point consider only information local to that point:

the point’s location in 3D space, the surface normal at that point, the location of

any light sources, and the direction in which the viewer is looking. The light sources

in these models are simple as well; although light sources in the real world have

area, local models allow only infinitely small point lights. Furthermore, every surface

facing towards the light source receives illumination, regardless of any occluders. Due

to these restrictions, local illumination models are incapable of reproducing effects

such as shadows, color “bleeding” between surfaces, reflection and refraction effects,

and other lighting effects that add a crucial level of realism.

In the earliest interactive graphics applications, given the scarcity of com-

putation resources available for shading objects, these limitations were acceptable.

Constant or “flat” shading, Gourad shading [40], Phong shading [108], and even

wireframe rendering [5] were widely used. The addition of techniques such as shadow

mapping [21] enabled the interactive rendering of hard shadows, which proved to be

an important visual cue for judging spatial layout of a scene [57].
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These local illumination models are quite efficient, but the results are rarely

convincing. In reality, light reaching a point includes not only direct illumination -

light that comes straight to the point from a light source - but also indirect illumi-

nation - light that first bounces off one or more other surfaces. Additionally, other

surfaces may block some or all of that light, producing shadows. Creating these

effects requires knowing all surfaces that may affect incident illumination. Because

global information is necessary, this lighting is often referred to as global illumination.

Global illumination adds an essential level richness to rendered images, and as such,

a huge amount of research has focused on its efficient rendering.

1.2 GPU Rendering

Much work of the past decade has focused not just on algorithms to create com-

pelling images, but on the computing hardware that runs them. Recent widespread

availability of powerful consumer-level graphics cards has dramatically changed how

graphics algorithms are created.

For much of the history of computer graphics, the only available computational

resource was a computer’s Central Processing Unit (CPU), which is responsible for

most of the general purpose computation that takes place. In addition to handling

the basic functions of a computer, such as running the operating system and applica-

tion software, a system’s CPU also had to handle any processing required by graphics

algorithms. Higher level machines sometimes offered multiple CPUs, capable of pro-

cessing multiple instruction streams in parallel, but the number of CPUs – and thus
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the available parallelism – was often limited.

In the 1990s, specialized graphics coprocessors found widespread success in

consumer market. These processors, known as Graphical Processing Units (or GPUs),

were initially designed to accelerate 2D graphical operations required by graphical

user interfaces such as Microsoft Windows. As computers became more powerful,

3D applications – primarily high end CAD applications and consumer video games –

grew in popularity.

Driven primarily by these markets, GPUs exploded in processing power during

the late 1990s and 2000s. The massively parallel nature of computer graphics spurred

the development of GPUs with dozens or hundreds of computational cores that could

process many elements in parallel. These cores, originally limited to a fixed set

of functions, grew in sophistication and eventually became programmable, enabling

algorithms to run directly on the GPU with minimal CPU intervention. Modern

GPUs are highly programmable, massively parallel, and offer a great deal of processing

power – a combination ideal for computer graphics. Consequently, much modern

graphics research focuses on algorithms tailored to execute partially or wholly on the

GPU.

1.3 Overview of this Work

Our work focuses on plausible, GPU-based approximations of indirect and

direct illumination. Specifically, the techniques described in this thesis are image-

space effects, which avoid wasted processing on off-screen geometry as well as enabling
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a number of important performance advantages on the GPU.

This thesis is organized as follows: Chapter 2 discusses previous and alternate

approaches to global illumination, with a focus on interactive techniques. Chap-

ters 3, 4, and 5 present the core contributions of this thesis: our research towards

interactive global illumination. Specifically, Chapter 3 presents an image-space mul-

tiresolution approach [102,103] to interactively rendering indirect illumination on the

GPU. Chapter 4 discusses an extension of that work [101] that improves overall effi-

ciency and increases accuracy and temporal coherency. Chapter 5 presents additional

background, and then proposes a a novel technique towards the rendering of direct

illumination from large dynamic area lights [100]. Finally, conclusions and future

directions are discussed in Chapter 6.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

Even considering the relative youth of the computer graphics field, photoreal-

istic rendering has seen an enormous amount of work, much of it focused on global

illumination. This chapter describes the broad categories of that work. Although this

thesis as a whole focuses on interactive algorithms, many of the methods presented

in this chapter were not published as real-time methods. However, many either be-

came real-time thanks to computational or algorithmic advances, or inspired other

real-time algorithms.

In this chapter, Section 2.1 briefly presents a background to the global illumi-

nation problem. The remaining sections discuss particular classes of algorithms that

have been proposed to solve that problem.

2.1 Global Illumination

To compute physically-based global illumination, a renderer must approximate

the behavior of light in the real world. This section introduces radiometric units,

describes how surface reflectances affects light, and describes the Rendering Equation

[68], which mathematically models interactions between surfaces and scene lighting.

2.1.1 Radiometric Units

Technically, global illumination algorithms compute or approximate the steady-

state distribution of radiant energy in an environment. The study and measurement
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of this radiant energy is known as radiometry. The radiant energy in a synthetic scene

may be measured from an actual environment, or specified using real-world units. In

either case, it is helpful to understand the measurement of real-world electromagnetic

radiation.

The simplest radiometric quantity is radiant energy, measured in joules, which

describes the energy of electromagnetic waves. Radiant flux (often denoted as Φ) is

measured in watts, and describes how much energy per unit time flows to, from,

or through a surface. Irradiance (E) is the radiant flux incident on a surface, per

unit surface area. Radiant exitance, on the other hand, is known as radiosity ; both

quantities are measured in watts/m2.

Radiance is radiant flux per unit area per unit time per unit solid angle (watts

/ (steradian ∗ m2)). Put simply, radiance describes how much energy leaves a given

area of a surface in a given direction. This quantity can be used to describe the “look”

of a surface as it is seen from a particular angle of view.

2.1.2 Surface Reflectance

The appearance of a surface comes from the way it reflects light. A surface

that reflects each incident light ray perfectly will appear mirror-like; a surface that

reflects light equally in all directions, regardless of incident direction, will yield a

paper-like diffuse appearance. Early graphics techniques often employed very simple

reflectance models such as these, allowing purely specular and purely diffuse surfaces

but very little else.
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Real world materials, however, are rarely purely diffuse or specular. To better

approximate the reflectance characteristics of real surfaces, Nicodemus et al. describes

the Bidirectional Reflectance Distribution Function, or BRDF [104]. A material’s

BRDF defines how much light is reflected in an outgoing direction ~wo for an incoming

direction ~wi at a given position x.

The BRDF has become a ubiquitous method of specifying reflectance for re-

alistic materials, and many different BRDFs have been proposed. For example, the

Cook-Torrance [20] and He [50] models are physically based BRDFs that attempt to

model physical reality. The Ward [159] and Lafortune [87] models, which are based

on empirical data captured from real-world reflectance measurements, have also been

shown to be effective.

An underlying assumption of the BRDF is that an incident ray of light will

reflect away from the surface at the same point. This assumption breaks down in sur-

faces that exhibit effects such as subsurface scattering and translucency, where the

outgoing ray exits the surface at a different point than the incident ray. The Bidirec-

tional Scattering Surface Reflectance Distribution Function, or BSSRDF, allows for

these effects.

2.1.3 The Rendering Equation

Given the radiometric quantities defined in Section 2.1.1 and the BRDF func-

tion as presented in Section 2.1.2, the way that light moves around within a scene can

be described by the rendering equation [68]. Hence, rendering systems that aim for
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photorealism attempt to solve or approximate this equation. Specifically, the render-

ing equation defines an outgoing radiance at a given point x and in a given direction

~wo:

Lo(x, ~wo) = Le(x, ~wo) +

∫

Ω

Li(x, ~wi) fr(x, ~wi → ~wo) ( ~wi · ~n) d ~wi (2.1)

where:

• Lo(x, ~wo) is the ‘result’ of the equation: the light leaving x in direction ~wo

• Le(x, ~wo) is the light emitted from the surface itself at x in direction ~wo

• Li(x, ~wi) is incoming light at x from direction ~wi

• fr(x, ~wi → ~wo) is the BRDF (Bidirectional Reflectance Distribution Function),

which defines the amount of light reflected from incoming direction ~wi to out-

going direction ~wo at point x

• ( ~wi · ~n) is the attenuation of the incoming light based on its angle with the

surface normal

To simplify, the rendering equation says that the radiance leaving a point in a

given direction is equal to the radiance emitted from that point, plus any illumination

in the visible hemisphere reflected toward that point. Of course, a complete evaluation

of the Li term requires further invocation of the rendering equation; the resulting

recursive nature of this integral is one reason global illumination effects are so costly.
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2.2 Coarse Ambient Approximations

Early interactive applications lacked the computational resources to incorpo-

rate global illumination. In these early applications (and even in simple 3D appli-

cations today), indirect lighting was often approximated using an ambient term - a

constant color that added to all the colors in the scene to ensure that each point has

at least some color, even if that point receives no direct illumination. Because the

ambient term is constant and independent of any geometric occlusion in the scene, it

adds almost no cost to the rendering process. However, the ambient term is an ex-

tremely crude approximation of global illumination and is inadequate for any system

aiming towards photorealism.

Further work such as that of Parker et al. [106] improves this somewhat, allow-

ing for the use of a directionally variant ambient term. This reduces the somewhat

flat appearance that can come from the use of a static ambient term, and allows

shading variation on surfaces that are not directly lit.

Similarly, Castro et al. [14] compute an extended ambient term by grouping

each surface into one of six classes by normal vector, and solving a small system of

linear equations. This method yields a better approximation than a constant ambient

term, but inherits many of the disadvantages of the radiosity approach it resembles

(see Section 2.3) – notably, dynamic scenes become difficult.

All of these techniques assume an extremely simple illumination setup, and as

such are generally considered inadequate approximations to global illumination.
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2.3 Radiosity

Radiosity [16,39] is an application of the finite element method to solving the

rendering equation for scenes with purely diffuse surfaces. In the radiosity algorithm,

each surface of the scene to be rendered is divided into small patches. In an ex-

tensive preprocessing step, a links are created between each pair of mutually visible

patches. By computing the energy transfer and visibility between each set of patches,

a linear system of equations can be constructed; the result approximates the global

illumination equilibrium throughout the environment.

With n patches, the initial link computations are O(n2) in both time and

space – quite expensive, especially with complex environments. Later work seeks to

reduce this expense. Cohen et al. [17] imposes a two-level hierarchy of patches on

the environment to reduce the number of interactions. Hanrahan et al. [47] further

extend this idea with hierarchical radiosity, which subdivides each patch into a hi-

erarchy; patch to patch interactions use the appropriate levels on both ends. Other

researchers [78, 139] propose augmenting hierarchical radiosity with a clustering ap-

proach, allowing small, similar surfaces to be “grouped” into larger ones in addition

to subdividing large surfaces into smaller elements. The computational cost of com-

puting links can be further reduced by considering importance [140], which avoids

computation in areas that have little effect on the surfaces of interest, and by prepro-

cessing global visibility to avoid link computation when patches cannot “see” each

other [145].

Because computed radiosity solutions are viewpoint independent, they have
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long been used in interactive applications. While the radiosity computations them-

selves are not generally possible in real time, the results can easily be “baked” into

a scene, allowing easy and cheap runtime global illumination in static, diffuse scenes.

Further work attempts to allow limited dynamism by recomputing only the changed

areas of a scene [15]. Another approach tries to compensate for lighting and geometry

changes by shooting “negative light” [109].

2.4 Ray Tracing and Path Tracing

Whitted [162] first describes recursive ray tracing, which shades points by

tracking individual “rays” of light as they move through a scene, computing precise

interactions with other objects in order to determine color and shadowing information.

Recursive ray tracing (often just called ray tracing) offers simplicity and elegance, and

can be easily extended to handle a variety of complex illumination effects like reflection

and refraction. However, ray-based techniques must rely on efficient ray-geometry

acceleration structures such as bounding volume hierarchies [72,122,161,162], kd-trees

[49], or uniform grids [7,36] to achieve reasonable efficiency; the overhead required to

build and maintain these structures may be substantial.

Early ray tracing approaches select rays deterministically, disallowing complex

BRDFs or “fuzzy” effects such as motion blur and depth of field, which require the

evaluation of complex integrals. Cook et al. [19] addresses this with a solution known

as distribution ray tracing or stochastic ray tracing. This approach uses multiple rays

at each surface point to sample the analytic function in question, essentially applying
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Monte Carlo integration [97] to image synthesis. Further extensions of ray tracing

allow its use in rendering densities within a volume grid [67] by allowing light to

scatter within such a volume. This extension allows ray traced rendering of effects

such as clouds, fog, flames, dust, and particle systems.

Kajiya [68] describes path tracing, extending distribution ray tracing to fully

solve the rendering equation. Path tracing methods calculate the complete path of a

ray from the light source to the eye, including its reflection from each intervening sur-

face. By computing many such paths (probablistically selecting a ray at each surface

according to that surface’s BRDF) path tracing allows computation of a complete

global illumination solution. A key problem, however, is the amount of computa-

tion required to produce images with acceptable levels of noise. Using Monte Carlo

integration, path tracing converges at a rate of 1/
√

N : quadrupling the number of

sample rays only halves the amount of error. In complex environments, convergence

may require an unacceptable amount of rendering time.

Conventional path tracing often requires many indirect ray bounces before

encountering a light source. Bidirectional path tracing [86] improves speed by si-

multaneously originating ray paths from both the eye and any light sources, reusing

each intersection point to create multiple eye-light paths. Other approaches, such as

Metropolis light transport [149], attempt to reuse known-good paths by probabilis-

tically mutating them. Furthermore, other approaches [29, 30] reduce the number

of required paths by considering the relative importance of each path to the scene,

leading to fewer paths in areas that do not contribute much useful illumination.
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2.4.1 Interactive Ray Tracing

Thanks to the explosion of computing power (both on the CPU, and more

recently on the GPU), real-time ray tracing has received considerable attention over

the past decade. Early work in this area focuses on interactive ray tracing of static

scenes: once acceleration structures have been built, ray tracing benefits from massive

parallelism, scaling linearly with the number of processors used. Early interactive ray

tracers often required large supercomputers [73, 106] or PC clusters [151] and used

only simplistic material models.

Ray tracing performance largely depends on ray traversal costs – the raw speed

at which rays can be intersected with geometry. Several approaches reduce these costs

by exploiting spatial coherence (i.e., rays that are close together and moving in similar

directions). One technique, known as beam tracing [52], traces wide “beams” instead

of infinitely thin rays, capitalizing on the likelihood of adjacent rays to hit the same

surfaces. Wald et al. [150] suggest a similar approach, aggregating groups of rays

into bundles or “packets”. Each packet simultaneously traverses through accelera-

tion structures, amortizing the costs of memory access, function calls, and traversal

computations over the rays in the packet. Where applicable, SIMD instructions are

employed to process the packet in parallel. Further work [26,115] uses interval arith-

metic to avoid intersection or traversal steps based on conservative bounds of the

rays. These techniques work well for coherent eye rays, but are not as effective with

less coherent secondary rays. Instant Caching [24] mitigates this effect by exploiting

temporal coherence, reusing diffuse ray paths between frames when possible.
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While past work on interactive ray tracing focused on the efficient traversal

of acceleration structures, much recent work examines their efficient creation – a

necessity when rendering fully dynamic scenes. For an overview of work in this area,

see Wald et al.’s [152] relatively recent survey of the state of the art in ray tracing

animated scenes.

Much recent research focuses on GPU ray tracing, capitalizing on the massive

parallel processing power modern GPUs offer. Methods exist that execute entirely

on the GPU [111]; others emphasize specific strategies such as optimal traversal of

kd-trees [56] and bounding volume hierarchies [45], as well as efficient construction of

acceleration structures on the GPU [128,168]. Aila and Laine [2] describe strategies

to boost performance by enhancing parallelism of ray tracing on GPUs. GPU ray

tracing is an active area of research, and given the advent of comprehensive toolkits

such as NVIDIA’s OptiX [121], it will likely remain so.

2.5 Photon Mapping

Some ray paths, especially those containing specular interactions, often prove

difficult to compute when originating from the eye. The number of such rays that

are successfully traced back to the light source can be vanishingly small, requiring an

enormous number of rays for a converged image.

One alternative described by Arvo [6] is to originate rays (or “shoot photons”)

from the light source instead of the eye. This alteration guarantees that all ray paths

intersect the light source. In this technique, photon hits are stored in illumination
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maps, a 2D bitmap similar to a texture map, created for each diffuse surface that may

receive specular illumination. Thus, incident illumination at each shade point can be

simply determined by accessing the illumination map at the correct location. An

extension of this technique [18] allows adaptive creation of these illumination maps,

densely sampling illumination only where necessary (i.e., in high frequency regions

such as shadow edges).

Jensen [65] proposes a similar, now ubiquitous, approach known as the photon

map. Like previous approaches, photons are emitted from the light source(s) and

traced through a scene. Instead of storing irradiance with an illumination map within

a per-surface texture, however, the photons themselves are stored (including direction,

color, and energy) in 3D space, often within a kd-tree. When computing incident

illumination at a point, nearby photons are gathered and combined to produce a

result.

One way to reduce variation in the computed illumination is to shoot photons

as evenly as possible. This can be accomplished using Monte Carlo methods [123]

or low-discrepancy quasi-random sampling [74]. Other methods [62, 107] suggest im-

portance sampling to concentrate photons in areas of interest. Photon mapping can

be extended to create soft shadows efficiently [64], and to work with non-diffuse sur-

faces [63] as well as participating media such as smoke and fog [66].

Like interactive ray tracing, GPU photon mapping is an active area of ongo-

ing research; particular attention is being paid to GPU photon mapping strategies.

Purcell et al. [110] were the first to describe a GPU-based photon mapping imple-
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mentation. In this work, a simple GPU ray tracer [111] traces photons into the scene;

these are then scattered into a regular grid using a vertex shader and the stencil

buffer. Other methods take a hybrid approach, dividing the workload between the

CPU and GPU. Hachisuka [46] suggests performing conventional photon mapping

on the CPU, and describes a rasterization-based final gather approach on the GPU.

Wang et al. [157] partitions sparse sets of raytraced sample points into spatially co-

herent clusters, computing a final gather for each cluster using GPU-based photon

mapping. Image Space Photon Mapping, a recent hybrid technique from McGuire and

Luebke [93] achieves interactive rates at high resolution. Their method renders the

first and final photon bounces as image-space buffers on the GPU, performing world

space ray tracing on the CPU to compute the intermediate bounces. The GPU then

performs final scattering as an image space operation, yielding high quality results in

real-time.

2.6 Illumination Caching

Aside from sharp changes at discontinuities, illumination often changes slowly

over surfaces. This property enables a class of techniques that compute illumination

(usually using ray or path tracing) only at sparse points, storing them in a cache (often

using an acceleration structure to optimize retrieval speed). These points are then

used to interpolate the rest of the illumination, avoiding the necessity and expense of

computing it at every point.

Ward et al. [160] first describe this idea as irradiance caching. The authors
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apply the technique to indirect illumination with path tracing, obtaining significant

performance improvements by storing illumination samples within an octree. Later

work [83–85] extends this approach to handle glossier BRDFs, by caching radiance

instead of irradiance. Lehtinen et al. [90] use a similar approach, although rather

than using the cached values directly, their method uses them to define basis func-

tions that represent output lighting. Gautron et al. [38] describe a GPU-friendly

variant of radiance and irradiance caching that employs a scattering approach rather

than gathering, although this reformulation precludes indirect shadows. A related

approach known as lightcuts [154, 156] computes a similar set of point samples and

then builds a hierarchy over them, adaptively selecting the correct level of point sam-

ples for each shadepoint. Herzog et al. [55] combines lightcuts with a cache splatting

method to increase efficiency and allow anisotropic BRDFs.

Ward and Heckbert [158] augment irradiance caching by computing irradiance

gradients while sampling the visible hemisphere to evaluate irradiance. Irradiance

gradients provide a reasonable approximation of how irradiance is changing on a

particular surface with respect to position and orientation. This information can

then be used to guide interpolation of the cached samples, yielding higher quality

results.

Another influential approach known as the irradiance volume [43] precomputes

a coarse volumetric approximation of the irradiance function. With an irradiance

volume, an approximation of the irradiance of an arbitrary point within the scene

can quickly be approximated by sampling nearby values within the volume. Several
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similar approaches have been proposed for interactive applications. Nijasure and

Goel [105] create an extremely coarse volumetric grid similar to an irradiance volume,

rendering a cube map at each grid point to evaluate incoming radiance. Irradiance

volume methods also form the basis of cascaded light propagation volumes [69], a

real-time technique discussed in Section 2.11.

Other approaches involving illumination caching attempt to take advantage

of temporal as well as spatial coherence [37], and decouple sample generation from

rendering [147, 155], achieving essentially arbitrary framerates. With this approach,

however, scene modifications may fade in over time as the cached samples “catch up”

to the current application state.

2.7 Precomputed Radiance Transfer

A broad class of real-time global illumination techniques partially or entirely

precompute light transport. In these methods, an expensive precomputation pass de-

termines how incident lighting is reflected at each point on selected geometry, yielding

a transfer function. This function is compressed to allow a low-frequency approxima-

tion of the lighting to be efficiently reconstructed at runtime.

Although a number of basis functions have been employed to encode the

transfer function (such as wavelet bases [80, 99] and radial basis functions on the

sphere [148]), the most common representation uses spherical harmonics, the solu-

tions to Laplace’s equation when restricted to the sphere. With spherical harmonics,

a function on the sphere is approximated using a set of orthonormal basis functions
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known as the Associated Legendre Polynomials. These functions are broken into

bands; higher order approximations of spherical functions are more accurate but re-

quire more coefficients (an n-band approximation uses (n + 1)2 coefficients), and are

thus more computationally expensive to evaluate.

While spherical harmonics have long been employed to solve potentials prob-

lems in physics – notably those related to heat transfer [12] – they have proved quite

useful in computer graphics as well. Ramamoorthi [112] uses spherical harmonics to

encode irradiance environment maps, allowing interactive rendering of diffuse objects

with distant illumination.

Sloan [71,136] uses precomputed radiance transfer, represented with spherical

harmonic functions, to represent the response of an object or scene to a lighting

environment. This method convincingly reproduces such effects as soft shadows and

diffuse interreflections. It also works quite well for indirect illumination, which is often

low frequency and thus can be approximated convincingly with low-order spherical

harmonics. However, early PRT approaches impose severe limitations: surfaces are

restricted to diffuse (or slightly glossy) materials, models are required to be static,

and lights must be distant and low-frequency for convincing results. These methods

also preclude the use of local high-frequency effects such as normal maps. Finally,

the large amount of required prepocessing limit the applicability these methods to

dynamic scenes and models.

Further work by others has mitigated these limitations to some degree. Ad-

ditional work by Sloan [135] and Lehtinen et al. [89] extends PRT methods to work
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with to a broader class of BRDFs, and enables visibility due to self-occlusion [41].

Two later publications [137,138] focus on the use of precomputed radiance at a local

scale, allowing for limited amounts of deformation. Sun and Ramamoorthi [142] relax

limits on viewpoint and light position, allowing for interactive relighting. Sloan [133]

explores the use of PRT with normal maps, allowing the rendering of local high fre-

quency detail. Although PRT still works best with environmental lighting, other

work [82] enables the limited use of PRT with local lights. Transport fields [61, 169]

extend this approach to allow scenes with a few rigid, dynamic objects. Related

techniques [70, 114] allow simple deformable models, albeit without indirect illumi-

nation. However, all of these approaches still require substantial precomputation,

largely precluding the use of completely dynamic geometry.

2.8 Approximate Methods

Expensive accurate global illumination solutions may not be necessary when

speed trumps realism. For many applications, a coarse approximation often suffices.

One common example is ambient occlusion [170], a widespread effect in the

visual effects and animation industries. Ambient occlusion approximates indirect

illumination by darkening direct lighting based upon the amount of occlusion from

neighboring geometry. Even though ambient occlusion is computed independently

of any light source, when modulated with simple local lighting models, the results

behave similar to those using indirect lighting.

Precomputed ambient occlusion provides a cheap alternative to complex ra-
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diosity solutions, but assumes static geometry. Bunnell [11] describes an iterative am-

bient occlusion approximation for simple dynamic models. Other techniques [79, 92]

precompute occlusion “fields” for rigid objects, allowing these objects to move while

occluding nearby geometry. In recent years, an approximation of ambient occlusion

known as screen space ambient occlusion (SSAO) [10,96] has become ubiquitous. This

method only computes occlusion using visible geometry, which can lead to visible arti-

facts. However, SSAO is easily achievable in real-time, and yields results of sufficient

quality for interactive applications such as video games.

Ambient occlusion computes visibility, not lighting; however, similar approaches

can be applied to create coarse lighting effects. Iones et al. [60] employ ideas from

ambient occlusion to create an ambient light model based on obscurances. This model

yields crude viewpoint-independent indirect lighting for diffuse surfaces that can be

baked into lightmaps and easily accessed in real-time. Mendez et al. [94] describe an

extension to obscurance-based ambient lighting that adds color bleeding, and allows

for a limited amount of scene dynamism. Another approach, Screen Space Direct

Occlusion (SSDO), [120] generalizes SSAO to directional occlusion, adding a single

bounce of indirect light.

2.9 Instant Radiosity

An influential publication by Keller [75] introduces instant radiosity, a method

for computing indirect illumination in which the lighting in the scene is approximated

by point light sources generated by a quasi-random walk. In this technique, a set of
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virtual point lights (VPLs) are traced into a scene, potentially reflecting from surfaces

according to their BRDFs. For each VPL, the scene is rendered with hard shadows

(using rasterization hardware for fast rendering), with a point light source at the

origin of the photon. The cumulative illumination from the VPLs approximates the

indirect illumination in the scene.

Instant radiosity – and more specifically, the virtual point light concept –

has proven hugely influential in interactive rendering techniques. However, instant

radiosity requires a separate shadow map to be rendered for each VPL. However, as

each object must be rasterized once for each virtual point light, this proves a severe

performance bottleneck, directly demonstrating the cost of visibility queries in global

illumination.

One drastic method of avoiding these costs is to ignore indirect occlusion

altogether, obviating the need to render shadow maps at all. The indirect illumination

techniques presented in Chapter 3 and Chapter 4 adopt this approach. Short of this

extreme, many other approaches attempt to lessen the cost of computing visibility.

These techniques are broadly reviewed in Section 5.2.

2.10 Image Space Algorithms

Many graphics algorithms require global information about the scene to com-

pute results, but do not take into account how the results will be used. Radiosity

(see Section 2.3), for example, requires information about all the diffuse surfaces in

a scene, but does not consider the eventual viewpoint from which the results will be
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Figure 2.1: Components of a reflective shadow map: a linear distance from the eye
(top left), a surface normal (top right), a world space fragment position (bottom left),
and a reflected flux (bottom right).

seen. Such algorithms are said to operate in object space or world space.

A growing set of algorithms instead operate in image space. Image space algo-

rithms operate using one or more images as input, avoiding more complex structures

when possible. For example, one oft-used strategy known as deferred shading [25]

renders data about visible surfaces (such as color, surface normal, and view-space

position) into a G-buffer [125]. Shading for these surfaces is computed in a later pass,

using solely the information from the G-buffer as input; this strategy ensures that

illumination is only computed for surfaces that will actually be visible.

Image space algorithms map very well to GPUs, which are designed to allow

fast coherent texture fetches from input images. As such, GPU-accelerated image

space algorithms have become an active area of research in the past several years.

2.10.1 Reflective Shadow Maps

Our work relies heavily upon reflective shadow maps, an image-space algo-

rithm designed to compute indirect illumination. Reflective shadow maps in turn

build on the idea of instant radiosity, using shadow mapping hardware to generate

virtual lights directly instead of using quasi-random path tracing. The map itself
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consists of a standard shadow map augmented by additional buffers to store surface

normals, positions, and reflected flux (see Figure 2.1)—essentially a light-space G-

buffer [125]. Rather than computing or approximating visibility, reflective shadow

maps [22] entirely ignore visibility for indirect rays, assuming that viewers will not

notice incorrect visibility for secondary illumination.

Dachsbacher et al.’s original method [22] uses a gathering approach to sample

nearby locations in the reflective shadow map for each pixel in the final image; eye-

space interpolation reduces illumination artifacts due to low sampling rates in both

eye and light space. Later work [23] reformulates reflective shadow mapping using a

shooting algorithm (see Figure 2.2), splatting each VPL’s contribution onto a nearby

region in eye-space. This technique extends to glossy materials and simple caustics by

elongating the splat size based upon the material’s BRDF, and importance sampling

the shadow map allows selection of a good set of VPLs based upon flux distribution.

One of the problems with splatting illumination from VPLs is excessive over-

draw. In theory, each VPL can affect final illumination everywhere in the scene; using

1000 point lights requires computing contributions for 1000 splats at each eye-space

pixel. The authors propose reducing overdraw by restricting splat sizes. Beyond

a certain distance from each VPL, indirect contributions are ignored. This gives

an ideal parameter for tuning performance, but darkens illumination significantly as

splat sizes shrink.
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Light View

Figure 2.2: A light space rendering of the scene (left) yields a reflective shadow map,
which is then sampled to create virtual point lights (VPLs). Here, 256 uniformly
sampled VPLs are created (middle). In the splatting formulation of reflective shadow
maps, a large is splatted for each VPL, centered around its eyespace location (right),
to compute its illumination contribution to the scene. These splats frequently have
limited area of effect. This process is illustrated using two VPLs marked with orange
and purple.

2.10.2 Splatting Approaches

Interactive techniques often rely on splatting, as gathering sometimes proves

less amenable to GPU acceleration. Gautron et al. [38] approximate global illumina-

tion using a splat-based renderer with a radiance cache. Shanmugam and Arikan [132]

use billboards as splats to compute ambient occlusion on surfaces within the splat’s

influence. Sloan et al. [134] use splats to accumulate indirect illumination from spher-

ical proxy geometry. Caustic mapping [131] frequently uses splats to represent pho-

ton energy, varying splat size to account for divergent photons and reduce sampling

noise [166].

Even offline illumination rendering has investigated splatting as an alterna-

tive to gathering techniques, allowing more accurate illumination on high-frequency
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geometry and the removal of low-frequency noise [54].

However, many interactive splat-based illumination algorithms simply assume

splats must be rendered at full resolution, or clamp splats to a “reasonable” size

to maintain performance. Point-based rendering [124] and volume rendering [88]

use multi-resolution splatting to achieve interactive speeds. Lehtinen et al. [90] use

an adaptive hierarchical point sampling method to induce a basis function for PRT,

which is rendered using GPU-based splatting. Offline rendering techniques frequently

use multi-resolution and hierarchical techniques to reduce computational costs (e.g.,

hierarchical radiosity [47]).

In our work, we draw inspiration from recent caustic work [165] that renders

illumination from splats into a multi-resolution image. This allows capturing illu-

mination from very large splats into coarse buffers and fine illumination details in

high resolution buffers while maintaining small splat sizes, dramatically reducing the

overhead introduced by overdraw.

2.11 Recent Work

Since the publication of the work in Chapter 3 and Chapter 4, work towards

GPU-based interactive global illumination has continued. Several recent techniques

drew inspiration from the methods presented in this thesis.

Notably, Kaplanyan proposes cascaded light propagation volumes [69], an adap-

tation of irradiance volumes for real-time indirect illumination. Like our work, this

method computes an eye-space G-buffer and a reflective shadow map (see Section
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2.10.1); rather than splatting or gathering directly from the RSM, it is used to pop-

ulate a coarse volumetric grid with spherical harmonic radiance coefficients. Illumi-

nation is then propagated through the grid. The illumination for a rendered point

can be obtained by interpolating oefficients and evaluating an intensity function. The

authors also describe methods for selectively increasing grid resolution using cascaded

grids, and introducing coarse indirect occlusion. This technique proves quite efficient,

but is limited to diffuse (or slightly glossy) materials, and provides no clear method

to increase quality using additional VPLs.

Soler et al. [141] describe an image-space indirect illumination technique. Like

the method we present in Chapter 4, theirs is a hierarchical technique. However,

instead of dividing the screen into multiresolution patches, their technique computes

indirect illumination for the entirety of each mipmap level. To yield acceptable per-

formance, only local sampling is performed at each level, taking advantage of texture

cache coherence to achieve acceptable speeds. A final indirect image is created by

combining each level using joint bilateral upsampling [81]. This technique works

efficiently, but lacks indirect occlusion and can suffer from temporal artifacts.
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CHAPTER 3

MULTIRESOLUTION SPLATTING FOR INDIRECT ILLUMINATION

3.1 Introduction

Indirect illumination represents light reaching a surface after previously inter-

acting with other surfaces. While this lighting adds tremendously to visual richness

and scene realism, the costs to track multi-bounce light reflections often prove pro-

hibitive. Chapter 2 describes many different methods to address this problem, but

these techniques impose restrictions, often ignoring color bleeding or restricting the

motion of geometry, lights, or viewer. Rather than deal with these restrictions, many

interactive applications forgo complex global illumination entirely.

However, physically accurate global illumination may be unnecessary in most

contexts. Tabellion and Lamorlette [143] found that even in visually demanding ap-

plications, such as feature films, single bounce indirect illumination provides plausible

lighting. Accepting this limitation avoids tracing complex light paths that add little

to a scene and dramatically simplifies the rendering equation.

Section 2.10.1 describes a single bounce approach that uses an augmented

shadow map to either gather during a final deferred render pass [22] or scatter in-

direct illumination via splatting [23]. Both techniques build on the idea of instant

radiosity [75], where pixels in the shadow map represent virtual point lights (VPLs)

used as secondary light sources for computing indirect lighting. This approach effec-

tively reformulates the rendering equation from a complex integral over surfaces to a
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Figure 3.1: Direct light only (left); indirect light generated with our method (center);
the combined image (right). This scene is generated at 29 fps with fully dynamic
lighting, geometry, and camera.

sum over all texels in the shadow map. The key to achieving performance then lies

in reducing the costs of this summation.

This chapter proposes a novel multiresolution splatting technique that reduces

costs for RSM-based indirect illumination. Previous techniques either gathered light

from a subset of the virtual point lights or splatted light into limited regions. Our

approach instead recognizes that each virtual light potentially affects the whole scene,

but due to the low-frequency nature of indirect illumination many pixels receive ra-

diance quite similar to their neighbors and can be processed as a group. This idea

is similar to hierarchical radiosity approaches [47], but instead works in image-space.

We divide the image into regions with similar indirect illumination, which we call sub-

splats. When indirect light from VPLs is splatted into our multiresolution buffer, each

subsplat is rendered as a single fragment into an appropriate layer of the the buffer.

Effectively, we use a piecewise-constant illumination approximation inside subsplats

and reduce fillrate by rendering subsplats at varying resolutions (rather than always
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splatting into an image-resolution buffer). The buffer layers are upsampled and ad-

ditively blended, and a new interpolation technique removes discretization artifacts

from the final indirect illumination.

Our most general formulation defines different subsplats (i.e., regions of near-

constant indirect illumination) for each virtual point light, allowing the rendering of

arbitrary BRDFs. Recomputing subsplats for each VPL quickly becomes the bottle-

neck, so we propose an alternative approach using the same set of subsplats for an

entire frame. This significantly improves performance, though only diffuse materials

are properly handled.

Like other RSM approaches, our technique does not consider visibility, and

therefore does not converge to correct single bounce indirect illumination. In spite

of this limitation, our method yields plausible results at reasonable framerates. In

many applications, the lack of strict physical accuracy is an acceptable compromise.

3.2 Algorithm

Like Dachsbacher and Stamminger’s algorithm [23] and other splatting ap-

proaches, we splat illumination from each virtual point light onto the scene. Naive

splatting approaches render one splat for each VPL into a single resolution buffer.

Choosing the optimal resolution for this buffer is nontrivial. Indirect lighting from a

point light generally changes quite smoothly as the 1/r2 falloff gradually goes to zero;

even a coarse buffer often suffices to capture this slowly-changing illumination. Be-

cause splats are rendered in eye-space, however, high-frequency normal variations and
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�xed-resolution subsplatsmulti-resolution subsplatsfull-resolution rendering

(a)

(b)

Figure 3.2: A full-screen quad divided into single-texel subsplats, each of which are
then adaptively refined twice. Here, the first subsplat (a) remains at its current res-
olution after each refinement pass. The second subsplat (b) is refined to a higher
resolution. Three of the resulting subsplats are further refined, while the fourth re-
mains at its current resolution. Summation of the multiresolution subsplats (lower
right) and for comparison, a fixed-resolution summation where all subsplats are re-
fined to the highest resolution. Multiresolution refinement allows comparable quality
with many fewer subsplats.

depth discontinuities can introduce rapid changes into the illumination that cannot

be adequately captured with a coarse buffer. While this problem can be eliminated

by simply rendering the splats at a higher resolution, doing so imposes much higher

fillrate requirements and thus negatively impacts performance.

Instead of splatting into a single-resolution buffer, we propose a multiresolution

approach. We begin with a full-screen quad for each VPL. This quad is divided into

a set of primitives called subsplats: each subsplat covers just a single texel at some

resolution, though its image space area may contain up to several thousand pixels.

The initial set of subsplats is produced at very low resolution: 162 or even 82. We then

adaptively refine the subsplats, subdividing those that are too coarse. After repeated

refinements, the final set of subsplats is rendered, with some subsplats output to a 162

buffer, some refined and output to a 322 or 642 buffer, and some refined all the way
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to the final output image. The“splat” is the summation of this set of multiresolution

subsplats. Figure 3.2 illustrates this concept, depicting the results as two different

subsplats are refined twice.

This idea has roots in various previous techniques. It could be seen as a

variant of hierarchical radiosity [47], where patches are chosen based upon image-

space rather than object-space constraints. Radiance caching [38] typically focuses

illumination samples near edges, and Tole et al. [147] rely on image-space criteria to

better select cache samples for an interactive render. Mitchell [95] describes a method

of reconstructing an image from nonuniform samples.

Ultimately, our algorithm simply allows splatting-based techniques to reduce

fillrate costs by avoiding redundant computations, grouping them, and rendering to

the coarsest buffer allowable for each group. In our algorithm each subsplat covers

a single texel, though that texel might lie in a low resolution buffer and thus affect

hundreds of pixels in the final image.

The rest of this section describes, in greater detail, the steps of our algorithm.

A quick breakdown follows:

1. Compute reflective shadow map and direct light,

2. Select VPLs used to splat indirect illumination,

3. Generate mipmap to detect discontinuities,

4. Create and iteratively refine the list of subsplats,

5. Render to multi-resolution illumination buffer,



34

6. Upscale and combine buffer for total indirect light,

7. Add direct and indirect light for final result.

Steps 1 and 2 are described in Section 3.2.1, steps 3 through 5 are described

in Sections 3.2.2 through 3.2.4, and steps 6 and 7 are described in Section 3.2.5.

3.2.1 RSM and VPL Creation

We begin by generating a reflective shadow map [23] by rendering from the

light, storing world-space position, distance from the light, surface normal, and re-

flected flux for each texel (for an example, see Figure 2.1). Next, we render from the

eye, computing only direct light with shadow mapping. During this step, we also gen-

erate a G-buffer [125] containing data needed for deferred shading (i.e., world-space

position, normal, and distance from the eye).

We then sample the reflective shadow map to create VPLs. In our imple-

mentation, we always use the same fixed grid of RSM sampling locations to create

VPLs, without regard to the content of the RSM. A flux-based importance sampling

or quasi-random sampling may ultimately give better quality.

3.2.2 Min-Max Mipmap Creation

To correctly refine subsplats, we need to identify image-space discontinuities.

Toward this end, we make use of the min-max mipmap, which is similar to a subdi-

vided quad-tree [126]. Each layer in such a mipmap stores both the maximum and the

minimum (instead of the average) of all corresponding texels from finer resolutions
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in the map. Sampling any texel of a min-max mipmap gives the largest and smallest

values in that texel’s image space region. Recent uses of min-max mipmaps include

the rendering of soft shadows [44], geometry intersection [13], and dynamic height

field rendering [146].

To best detect depth and normal discontinuities, we investigated several dif-

ferent types of min-max mipmaps, described in the following sections.

3.2.2.1 Min-Max Mipmaps for Depth Discontinuities

We begin by describing the construction of a conventional min-max mipmap

using linear depth values. We start with the full-resolution linear depth buffer (com-

puted in Section 3.2.1) and run the mipmap generation process. We halve the reso-

lution at each step, computing for each output element the maximum and minimum

values of the four input elements. When completed, sampling a texel within the

min-max mipmap gives us the minimum and maximum depth values in that texel’s

image-space area. This allows efficient detection of depth discontinuities: if the dif-

ference between these values is greater than a threshold, then we consider a depth

discontinuity to exist within that texel’s region.

This method conservatively detects discontinuities, causing excess subsplat

subdivision when a surface is viewed at a steep angle. In this case, depth differences

along smooth surfaces viewed obliquely will be incorrectly treated as discontinuities.

To address this, we investigated the use of a depth derivative to detect discontinuities.

We compute a screen-space depth derivative, calculating
√

(dz/dx)2 + (dz/dy)2 for
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each texel at the highest resolution. When computing each lower-resolution mipmap

texel, we select only the largest of the four input texels, generating a max-mipmap

rather than a min-max mipmap. When refining subsplats, an area contains a discon-

tinuity if the depth derivative for that region is greater than a threshold.

3.2.2.2 Min-Max Mipmaps for Normal Discontinuities

Detecting surface normal discontinuities using a min-max mipmap is less straight-

forward. As the goal is to detect significant differences in surface normal orientation,

we note that surface normals with significantly different orientations vary significantly

in at least one component. Therefore, we generate three sets of min-max mipmaps,

one for each component of the unit surface normal. If the difference between the max

and min values of any of the normal components exceeds a threshold, we consider it a

normal discontinuity. In practice this method works well for detecting sharp surface

features.

Because we generate three separate min-max mipmaps, this approach con-

sumes excess memory. As an alternative, we experimented with detecting surface

normal discontinuities based on variations in surface curvature. Given the normals

~N1 and ~N2 of two neighboring texels, the curvature κ of the surface between them

can be estimated by: [35]

κ = 2 ∗ sin

[

arccos( ~N1 · ~N2)

2

]

(3.1)

Similar to the depth derivative, we compute surface curvature for each pair
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Initial set at resolution 162 Re!ned to 322 Re!ned to 642

Re!ned to 1282 Re!ned to 2562 Final, combined set at 10242

Figure 3.3: Subsplat refinement occurs in areas with depth or normal discontinuities.
In this case, we demonstrate how an initial set of subsplats at 162 might be refined
four times. For clarity, the set of unrefined subsplats at each step is displayed in
grayscale. The combined result at 10242, after 6 refinement passes (lower right).

of neighboring texels at the highest-resolution mipmap level, and choose the largest

input at each additional step. When detecting discontinuities, we sample the min-

max mipmap and compare the largest curvature value to a threshold to determine

whether a significant change exists in the surface within that texel.

3.2.3 Refining the List of Subsplats

We begin with a very coarse set of subsplats at the coarsest resolution in

our illumination buffer, the multi-resolution image used to accumulate our indirect

illumination. This coarse set is rarely sufficient to represent indirect illumination

for the entire image at a reasonable level of quality. To generate an adequate set of

subsplats, many of them must be refined to higher resolutions. In our implementation,
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we use a 162 buffer for the coarsest resolution; we therefore start with 256 subsplats.

During each refinement step, each subsplat can either be rendered as a point at

a coarse resolution or refined into four new subsplats corresponding to the next layer

in the illumination buffer. Since these subdivided subsplats each represent a fragment

in a higher resolution layer, each refinement quadruples the required fillrate. Thus,

the key to performance is determining when to refine a subsplat and when a coarser

one suffices.

In general indirect illumination changes slowly, based upon a distance-squared

falloff from the light and cosine falloffs dependent on surface patch orientation. In

simple scenes, coarse sampling and bilinear interpolation give plausible lighting. How-

ever, complex models create depth discontinuities along silhouettes and normal dis-

continuities along creases that introduce rapid changes to the indirect illumination

seen by a viewer.

We detect these discontinuities by sampling the min-max mipmaps. Sampling

these mipmaps at the subsplat’s resolution allows us to detect significant depth or

normal variations within the subsplat. If the difference between the max and min

depth values exceeds a threshold, or the difference in any of the normal components

exceed a similar threshold, then we consider a discontinuity to exist within that

subsplat.

If a discontinuity exists, we subdivide the subsplat into four higher-resolution

subsplats (see Figure 3.3). During each pass, we iteratively refine the subsplats,

subdividing some and not others:
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SubsplatList inputList;
SubsplatList outputList;

for all (subsplats s ∈ inputList) do

if ( ContainsDepthDiscontinuity( s ) or
ContainsNormalDiscontinuity( s ) ) then

outputList.Add( s.TopLeftChild() );
outputList.Add( s.TopRightChild() );
outputList.Add( s.BottomRightChild() );
outputList.Add( s.BottomLeftChild() );

else

outputList.Add( s );
end if

end for

Each refinement pass doubles the resolution of the indirect illumination. If the

resulting set of subsplats has reached the desired resolution, they can be rendered.

Otherwise, the set of subsplats is used as the input to a subsequent pass.

3.2.3.1 Refinement for Arbitrary BRDFs

Complex lighting models often give rise to regions of focused light, which must

be rendered at high resolution to be properly reproduced. Refinement based solely on

depth and surface normal discontinuities is insufficient in these cases: if a highlight

occurs on a surface without discontinuities, the refinement of that surface will likely

be too coarse to adequately reproduce them.

To address this, we explored a variation of our method that uses discontinu-

ities in illumination, rather than depth or surface normal, to guide the refinement

process. When evaluating whether to subdivide a subsplat, we compute the indirect

illumination in each of the subsplat’s quadrants and compare the results. We refine

the subsplat if any of the samples differ significantly:
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SubsplatList inputList;
SubsplatList outputList;

for all (subsplats s ∈ inputList) do

l1 = IlluminationAtPoint( s.TopLeft() )
l2 = IlluminationAtPoint( s.TopRight() )
l3 = IlluminationAtPoint( s.BottomRight() )
l4 = IlluminationAtPoint( s.BottomLeft() )

if ( SamplesDiffer( l1, l2, l3, l4 ) ) ) then

outputList.Add( s.TopLeftChildPoint() );
outputList.Add( s.TopRightChildPoint() );
outputList.Add( s.BottomRightChildPoint() );
outputList.Add( s.BottomLeftChildPoint() );

else

outputList.Add( s );
end if

end for

Many ways exist to detect a “significant difference” in illumination samples.

In our implementation, we achieve reasonable results by computing the maximum and

minimum values of each component of the inputs, and comparing their differences to

a threshold T:

boolean SamplesDiffer( l1, l2, l3, l4 )

// component-wise max/min of the input samples
maxValues = max( max( max( l1, l2 ), l3, l4 );
minValues = min( min( min( l1, l2 ), l3, l4 );

if ( (maxValues.r - minValues.r) > T or
(maxValues.g - minValues.g) > T or
(maxValues.b - minValues.b) > T ) then

return true;
else

return false;
end if

Because this style of refinement depends on point samples to detect illumina-
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tion discontinuities, very sharp highlights may go undetected, and areas that contain

them may not be sufficiently refined. Thus, this method may not yield sufficient qual-

ity using BRDFs that often exhibit high-frequency illumination detail (i.e., mirror-like

BRDFs). For many BRDFs, though, refining subsplats in this manner effectively cap-

tures illumination behavior, allowing the plausible reproduction of lighting features

and enabling our method to be used with complex materials (such as the Phong ma-

terial shown in Figure 3.4). The performance implications of this variation of our

method are explored in Section 3.3.2.

3.2.4 Rendering Indirect Illumination

After iterative refinement, we have a large list of subsplats. Our implemen-

tation requires a three-tuple to store each subsplat, with one value specifying the

subsplat’s output resolution, and two values specifying its screen-space location.

During rendering, a vertex shader positions each subsplat in the correct layer

of the illumination buffer, a fragment shader computes indirect illumination for each

subsplat, and additive blending accumulates all contributions. For each subsplat, our

indirect illumination is:

I(xs, xl) = ρl(~L, ~Vls)ρs( ~Vsl, ~E)Φl

〈 ~Vls, ~Nl〉〈 ~Vsl, ~Ns〉
π| ~Vls|2

, (3.2)

where xs and xl are the shaded point and the virtual light point, ~Ns and ~Nl are the

surface normals at xs and xl, Φl is the flux to the VPL at xl, ρs and ρl are the BRDFs

at xs and xl, ~L is the vector from xs to the light, ~E is the vector from xs to the eye,

and ~Vls and ~Vsl are respectively the vectors from xl to xs and from xs to xl. These
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Figure 3.4: Indirect lighting from a Buddha with a Phong BRDF; here, subsplats
are refined separately for each VPL. To emphasize the contribution, a blue tint was
added to indirect light reflected by the Buddha. Direct lighting (left), indirect lighting
(middle), and combined result (right). Indirect illumination rendered at 2562 at 23
fps.

values are retrieved from the appropriate location either in the RSM or the G-buffer.

Here, 〈 ~A, ~B〉 = max( ~A · ~B, 0).

After rendering all subsplats, the illumination buffer contains all indirect illu-

mination split into disjoint components at various resolutions. Naively summing the

layer contributions gives a blocky representation of total indirect light (see Figure 3.5)

that requires interpolation.

3.2.5 Upsampling and Combination

Figure 3.5 demonstrates the artifacts from naive methods of combining mul-

tiresolution illumination: blocky illumination when using nearest neighbor upsam-

pling, and strange multiresolution haloing and ringing when using bilinear interpola-

tion. Clearly, neither is acceptable.
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32x32 64x64

128x128 256x256 nearest neighbor upsampling upsampling with naive bilinear interpolation

32x32 64x64

128x128 256x256 nearest neighbor upsampling upsampling with naive bilinear interpolation

Figure 3.5: Each illumination buffer level contains pieces of the indirect illumination
at a different resolution. Artifacts from combining the illumination buffers using
nearest neighbor upsampling (middle) and naive bilinear interpolation (right).

The problem lies in the complex structure of the illumination buffer. Each texel

contains either all of the illumination for that location, or none at all. Interpolation

between a texel containing all of its relevant light and one containing no illumination

makes little sense, as it spreads energy from texels containing energy to those deemed

too coarse or too fine. Roles may be reversed at other levels in the illumination

buffer; multiresolution linear interpolation leads to ringing and haloing arising from

the varying regions of support for the interpolation filter at multiple scales.

We address this with a unique upsampling scheme. Upscaling progresses from

coarsest to finest layers in the illumination buffer. At each resolution, texels contain-

ing illumination information are linearly interpolated with neighboring texels of the

same resolution, whether they were originally rendered at that resolution or upsam-

pled from a lower resolution during a previous pass:
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(additional upsampling passes)

combine,
upsample, and

interpolate

=+

32x32 illumination bu!er samples 16x16 result samples (at 32x32) 32x32 result samples (at 64x64)

32x32 result samples (at 64x64)64x64 illumination bu!er samples 64x64 result samples (at 128x128)

32x32 illumination bu!er samples 16x16 result samples (at 32x32) 32x32 result samples (at 64x64)

32x32 result samples (at 64x64)64x64 illumination bu!er samples 64x64 result samples (at 128x128)
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=+

Figure 3.6: Two upsampling passes, from 322 to 642 to 1282. At each level, missing
samples are combined with interpolated data from previous levels. The result is
interpolated to higher resolution, and used as the input for the next upsampling
pass. The non-interpolated summation (lower left), and the final interpolated and
upsampled result (lower middle).

for all layers l ∈ illumination buffer, coarsest to finest do

for all (texels t ∈ l) do

// 3x3 input texels both from the illumination
// buffer and from previous passes
inputTexels[9];
renderedTexels[9];
interpolationWeights[9];

outputTexel = EmptyTexel();
totalWeight = 0;

for (i=0 to 8) do

if HasData(inputTexels[i]) or
HasData(renderedTexels[i) then

totalWeight += interpolationWeights[i];
outputTexel += interpolationWeights[i] *

(renderedTexels[i] + inputTexels[i]);
end if

end for

outputTexel /= totalWeight;
end for

end for
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After each layer has been upsampled, the result then becomes the input for

the next resolution. To avoid the haloing and ringing shown in Figure 3.5, each

upsampling pass only outputs interpolated texels in locations where the illumination

buffer already contained data for that resolution: energy is never pulled from empty

areas nor spread into them, and all texels that contained no energy at the start of

each pass remain empty. Figure 3.6 demonstrates this process graphically through

two upsampling steps.

After processing all the layers, we have a single combined and upsampled

image that varies smoothly, without ringing artifacts. Furthermore, this method does

not spread energy across major discontinuities. Our refinement process ensures that

areas with these discontinuities are refined into high resolution subsplats. Because

each texel is interpolated only with texels of equal resolution and those upsampled

from coarser resolutions, energy stays on the correct side of a discontinuity.

3.3 Implementation

We implemented our method using OpenGL and GLSL on a machine with

a dual-core 3GHz Pentium 4 and a GeForce GTX 280. Our implementation uses

OpenGL’s geometry shader and transform feedback extensions. We use a geometry

shader to subdivide subsplats, selectively either dividing each input into four new

outputs, or passing it through unchanged; the resulting subsplats are output to a

vertex buffer object. We repeat the refinement process until the highest-resolution
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Performance Variations By Viewpoint
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Figure 3.7: Framerates and subsplat counts during a flythrough of the dragon scene.
Four different combinations of depth and normal discontinuity detection are illus-
trated, rendered at 10242 with similar visual quality.

subsplats have reached an appropriate resolution.

All images in this paper were generated using a final output resolution of 20482,

which was downsampled to a 10242 window for an antialiased rendering.

3.3.1 Discontinuity Detection

We found that neither depth derivatives nor surface curvature offer a sub-

stantive advantage in detecting discontinuities. Min-max mipmaps constructed with

depth derivatives sometimes produce a smaller set of subsplats than those built with

direct linear depth values. However, they are slightly more costly to construct due to

the additional samples required to calculate the derivative. In practice, using a depth

derivative min-max mipmap is slightly slower than using one constructed with linear

depth values for a similar level of quality.

Min-max mipmaps built using surface curvature values do not fare as well.
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In particular, detection of gradually curving surfaces is problematic using curvature

mipmaps: even if a great deal of change occurs within the complete image-space area

of a low-resolution texel, curvature between neighboring high-resolution texels may

be minimal. To detect these gradual changes, a very low threshold is required, leading

to unnecessary subdivisions and a corresponding performance hit.

Figure 3.7 demonstrates the relative performance of these discontinuity detec-

tion methods as the scene viewpoint changes. Although each method was configured

to produce results of similar quality, an absolute qualitative comparison is difficult.

In particular, the different normal discontinuity detection methods each accentuate

certain features. For example, when reproducing a gently curved surface with the

surface curvature method, a very low threshold must be used to match the quality of

the surface normal method. However, this also results in sharp, detailed reproduc-

tions of small surface features that would be smoothed over by the surface normal

method at anything but a very low threshold. Additionally, different viewpoints can

yield results of varying quality depending on the detection method used.

3.3.2 VPLs and Subsplat Refinement

Our initial implementation refined a separate list of subsplats for each VPL as

described in Section 3.2.3.1, computing illumination during refinement to guide the

splitting process. With this approach, generating and refining a list of subsplats for

each VPL is the most expensive part of our method, often by a large margin. Refining

a single subsplat into four new subsplats using the method outlined in Section 3.2.3.1
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Table 3.1: Refinement costs for a Phong Buddha

Indirect 162 322 642 1282

Resolution VPLs VPLs VPLs VPLs
65.5K 262.1K 1.05M 4.19M

162 0.0ms 0.0ms 0.0ms 0.0ms
95 fps 60 fps 25 fps 7.4 fps
120.5K 484.9K 1.94M 7.20M

322 3.9ms 28.0ms 49.4ms 201.6ms
65 fps 21 fps 13 fps 2.83 fps
220.4K 893.9K 3.57M

642 11.7ms 37.1ms 86.3ms N/A
52 fps 14 fps 6.4 fps
421.8K 1.73M 6.66M

1282 17.7ms 37.1ms 149.0ms N/A
39 fps 14 fps 4.0 fps
852.0K 3.22M

2562 35.3ms 60.1ms N/A N/A
27 fps 8.9 fps

Note: Subsplats are refined separately for each VPL.

Each cell contains the number of refined subsplats,

refinement time, and the resulting framerate. “N/A”

entries required excessive memory or execution time.

takes roughly 30 nanoseconds, and rendering it takes a comparable amount of time.

At these speeds, hundreds of thousands of subsplats can be refined and rendered

while easily maintaining interactive rates. However, with each VPL generating tens

of thousands of subsplats, the refinement and rendering costs quickly become unman-

ageable. As Table 3.1 illustrates, subsplat counts can easily climb into the millions,

even at low VPL counts and relatively low resolutions. Additionally, because this

method requires the calculation of illumination during refinement, more expensive

BRDFs increase these costs yet further.

For diffuse scenes we found that splats were being split almost identically for

each VPL. Noting this, we implemented an alternate approach that performs splat
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Figure 3.8: Framerates of our method in the dragon scene with an increasing normal
refinement threshold, at various resolutions of indirect illumination.

refinement just once per frame, avoiding illumination calculations and refining solely

based on normal and depth discontinuities. All VPLs then reuse the same subsplats

for rendering. While there is no guarantee that normal and depth discontinuities

are completely predictive of areas that will need refinement, we found that in diffuse

scenes, this approach yields a significant increase in performance while maintaining

similar image quality. Unless otherwise stated, all images and results in this paper

are generated using this approach.

3.3.3 Adding Surface Detail

The number of subsplats generated has a significant impact on the performance

of our technique. Since this number is heavily influenced by thresholds within the

refinement process, these thresholds can serve as a parameter for tuning performance.

This is particularly true of the threshold used to detect normal discontinuities, which
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ranges from [0..2]; a higher threshold allows faster framerates, at the expense of fine

surface details. Figure 3.8 illustrates this effect for one viewpoint in the dragon scene.

While having no effect at low resolutions, at high resolutions the normal threshold

substantially affects the overall framerate. This parameter’s effect on image quality

can be observed in Figure 3.9: with high normal thresholds, insignificant surface

features of the Buddha do not trigger refinement. These areas are then rendered at

low resolution, effectively blurring them out.

One solution is to approximate the missing detail, modulating the indirect

illumination using the surface normal’s alignment towards the camera. For each

image-space pixel of illumination c, with view vector ~V and surface normal ~N at

the same location, and a parameter α (ranging from [0..1]) controlling the effect’s

intensity:

cout = c ∗ (α ∗ 〈~V , ~N〉+ (1− α)) (3.3)

Ideally, instead of modulating the indirect illumination with the viewing vec-

tor, we would introduce cosine falloff by modulating with the vector to each VPL.

However, once the indirect illumination has been splatted into the illumination buffer,

VPL locations are no longer easily accessible. While our method is somewhat ad-hoc,

it gives visually plausible results and incurs almost no runtime cost. This allows the

use of higher normal thresholds, which in turn leads to faster framerates. This ap-

proximation may cause some areas to appear overly dark, which may be objectionable

in some circumstances. The third panel of Figure 3.9 illustrates the effect of replacing
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Figure 3.9: The Buddha model rendered at 10242. The left image, rendered with a
normal splitting threshold of 0.25, runs at 8 fps; the two images on the right use a
threshold of 1.4 and run at 32 fps. The rightmost image approximates surface detail
with the technique described in Section 3.3.3, using α = 0.5.

surface detail using this method.

3.4 Results and Discussion

Like other splatting approaches for indirect illumination, the performance bot-

tleneck in our technique is the cost of rendering the indirect subsplats. The resolution

of each subsplat does not matter: in our approach, subsplats each cover a single texel,

so the cost of rendering them is independent of resolution. This also allows us to ren-

der subsplats as points, rather than triangle meshes, quads, or point sprites. We

achieved a 5% speed increase simply by switching from quads to points.

As demonstrated by the data in Table 3.2, our performance has little depen-

dency on geometric scene complexity: when rendering indirect illumination at 10242,

performance is similar whether the scene contains a single teapot or many complex



52

Table 3.2: Framerates at various resolutions of indirect illumination

Indirect Simple Teapot Spinning Buddha Dragon & Bunny Flying Bunnies
Resolution (6.3K triangles) (250K triangles) (405K triangles) (417K triangles)
1282 68 fps 60 fps 59 fps 52 fps
2562 50 fps 42 fps 42 fps 41 fps
5122 33 fps 30 fps 28 fps 31 fps
10242 22 fps 24 fps 21 fps 25 fps

models. Geometry is rasterized twice, one rendering from the light and one from the

eye. Only at fairly low resolutions does the geometric complexity of a scene have

a significant effect on performance. However, our method is sensitive to the visual

complexity of a scene. When looking at a flat wall, few subsplat refinements are

required; complex geometry requires refinement around edges, creases, and crevices.

High frequency random geometry may require a uniformly dense refinement, where

naive splatting would outperform our multiresolution approach.

As the viewpoint moves within the scene, changing the visual complexity of

the current view, total subsplat count can vary up to 300%. Since splatting remains

the bottleneck in our method, overall performance is strongly tied to the number of

subsplats rendered, an effect that can be easily observed in Figure 3.7.

As with other splatting techniques, we ignore visibility considerations when

accumulating indirect illumination, which can result in an overly bright image. VPLs

on a scene’s ceiling illuminate not only the surface of a table, but also the floor

below the table. One method of addressing this might be to approximate visibility

independently, e.g., using ambient occlusion, and modulate the results. In the future,

we also hope to explore multiresolution techniques that account for visibility.
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Figure 3.10: Example scenes using our technique, with indirect illumination rendered
at 10242. These scenes were rendered with direct illumination only (top row); indirect
illumination generated with a curvature min-max mipmap, using threshold 0.1 (sec-
ond row) and 0.3 (third row); indirect illumination generated with a surface normal
min-max mipmap as described in Section 3.2.2, using normal threshold 0.2 (fourth
row) and 1.5 (fifth row); using normal threshold 1.5, and replacing surface detail using
the method described in Section 3.3.3 (with α = 0.5).
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23 fps 166.6 minutes/frame9.8 fps 153 minutes/frame

29 fps 12.4 fps 152 minutes/frame 221.7 minutes/frame

Figure 3.11: Compare our work (top) to reflective shadow mapping (upper middle),
with near indistinguishable results. One problem our work shares with RSMs is the
need to clamp the minimum r2 falloff to avoid point singularities. When using every
texel of the RSM as a VPL, no clamping is required and generates a brighter image
(lower middle). A path traced comparison (bottom), shows the main differences
are lack of indirect visibility, clamping the r2 falloff to avoid singularities, and an
approximation that all RSM texels subtend the same solid angle. The solid angle
approximation causes our work and RSM implementation to appear dimmer towards
the inside of the spotlight and brighter towards the outside.

Figure 3.1 demonstrates the dragon and bunny scene rendered with direct il-

lumination only, and with indirect illumination subdivided to a maximum refinement

of 5122. Figure 3.10 depicts several different scenes under varying rendering param-

eters, rendered with a maximum refinement level of 10242. In the second and third

rows, discontinuities were detected using min-max mipmaps built using the surface

curvature method described in section 3.3.1, using a low threshold for the images in

the second row and a higher threshold for those in the third row. The remaining three

rows were rendered with min-max mipmaps built from surface normals, using a low

surface normal threshold for the fourth row, and a high threshold for the fifth and
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Framerates for Various Numbers of VPLs
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Figure 3.12: Framerates of our method in the dragon scene using increasing numbers
of VPLs, at various resolutions of indirect illumination.

sixth rows. The sixth row illustrates the effects of the reintroduction of detail using

the ad-hoc method described in Section 3.3.3. The visual appearance of complex

objects, especially those close to the camera, depends heavily on refinement parame-

ters. On the other hand, scenes with high geometric complexity, such as the kitchen

scene in the right-most column, often suffer little degradation in quality even when

rendered with higher normal thresholds.

In Figure 3.11, we compare the results of our technique to naive reflective

shadow maps and a ground truth image produced by a Monte Carlo path tracer.

Figure 3.12 explores performance on the dragon scene, showing variations due

to the number of VPLs and refinement passes. With no refinement, indirect illumi-

nation is rendered at 162 resolution. Each refinement doubles the resolution (up to

10242 after 6 passes).
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Figure 3.13: Examples of upsampling artifacts, including interpolated (top) and unin-
terpolated versions (bottom). Left group: artifacts arising from insufficient refinement
along coarse mipmap boundaries (left column), and correct refinement (right column).
Right group: artifacts from insufficient refinement along diagonals (left column), and
correct refinement (right column).

3.4.1 VPL Sampling Artifacts

We regularly sample the reflective shadow maps to choose our virtual lights.

While this sampling scheme is simple, it can result in flickering under animation

as VPL locations jump on and off surfaces in successive frames. In simple scenes

we found that 162 to 322 VPLs gave smooth results under animation, with minimal

flickering. More complicated scenes (in which VPLs jump between surfaces more

often) require larger number of VPLs to achieve smooth results. This represents a

tradeoff; increasing the number of VPLs reduces performance (as demonstrated by

Figure 3.12). A more sophisticated VPL sampling scheme may reduce the number

required and minimize flickering.

3.4.2 Upsampling Artifacts

Our upsampling method assumes that adjacent texels in the illumination buffer

can be safely interpolated together without visual artifacts. This relies heavily on
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sufficient subsplat refinement, which in turn depends on the successful detection of

discontinuities. Suboptimal behavior of either of these processes results in a set of

subsplats that does not adequately represent the scene. Additionally, when disconti-

nuities are present in low-resolution subsplats, energy is blurred across the disconti-

nuity, causing distracting artifacts that flicker and pop under animation as subsplats

are re-refined each frame.

Figure 3.13 presents two examples of artifacts arising from inadequate refine-

ment. In the top example, a horizontal edge lies on a mipmap boundary, and is not

correctly detected as a discontinuity. The min-max mipmap can be constructed to

detect discontinuities such as these by sampling outside the usual neighborhood, al-

lowing refinement when a discontinuity is present not just in the cell being refined,

but in any adjacent cell. However, this modification causes an excessive amount of

refinement, incurring as much as a 40% speed penalty.

Artifacts also occur when a mipmap cell is situated diagonally to a disconti-

nuity, as shown in the lower half of Figure 3.13. To address these, when evaluating

whether to refine a given subsplat, we detect discontinuities not just in the current

subsplat, but also in all subsplats situated diagonally. This does result in overrefine-

ment (and a roughly 2–3% speed penalty), but it is necessary to minimize these

particularly distracting artifacts.
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3.5 Conclusions

This chapter introduced a novel multiresolution splatting technique, and de-

scribed its application to the rendering of indirect illumination with a reflective

shadow map. Our method reduces the cost of rendering indirect illumination by

rendering each piece of it at the lowest possible resolution. This allows indirect illu-

mination to be rendered at high resolutions at interactive rates, without artificially

restricting each VPL’s ability to contribute illumination to the entire scene.

We discussed a variant of our method that works efficiently with diffuse sur-

faces, and a more general form that allows its use with arbitrary BRDFs. We dis-

cussed artifacts that can arise and potential solutions, presented a simple and efficient

method of adding plausible detail to indirect illumination, and evaluated the effects

of various parameters and configurations on performance.
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CHAPTER 4

HIERARCHICAL IMAGE SPACE RADIOSITY FOR INTERACTIVE

GLOBAL ILLUMINATION

4.1 Introduction

This chapter introduces image-space radiosity, based on our observation that

image-space techniques often have advantages over object and world-space techniques

for interactive applications. In particular, image-space techniques divorce algorithmic

and scene complexities and avoid wasting computations on off-screen portions of

the scene. Because we aim for completely dynamic content, complex acceleration

structures would be discarded each frame. Image-space techniques lend themselves

to trivial quad-tree based hierarchical techniques that leverage hardware-accelerated

mipmap creation and contain only relevant geometry (see Figure 4.1).

We use an instant radiosity [75] approach that builds on the work presented

in Chapter 3, as well as other recent multiresolution techniques [165], reformulated

for higher performance. Combined with a technique similar to Lightcuts [156] and

Light Pyramids [77], we propose a one-bounce radiosity algorithm where each frag-

ment gathers illumination from a unique set of image-space light clusters selected to

reduce fragment error below a user specified threshold. While we currently ignore vis-

ibility for indirect illumination, future work should enable incorporation of visibility

approximations, such as imperfect shadow maps [118].

Note that in this chapter, the “subsplats” from Chapter 3 are referred to as

“patches”, reinforcing our method’s similarities to hierarchical radiosity.
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Figure 4.1: Object-space patches (left) compared to image-space patches (right).
Object-space patches remain constant through a simulation; image-space patches
vary each frame and between eye and light space.

4.2 Image-Space Radiosity

In the Chapter 3, we introduced a novel multiresolution splatting algorithm.

This section describes a stencil-based rendering scheme that improves performance

of multiresolution splatting by nearly an order of magnitude. We then describe two

light-clustering techniques that extend this to image-space radiosity, clustering lights

either on a per-frame basis or selecting VPL clusters individually for each fragment.

4.2.1 Stenciled Multiresolution Illumination

Prior multiresolution rendering techniques [77, 102, 165] use a multipass ge-

ometry shader to refine a list of primitives and corresponding fragment locations.

Unfortunately, outputting variable length computation results into temporary mem-

ory and GPU pass overhead leads to relatively poor performance, even though speeds

exceed comparable single-resolution techniques.
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A) F)B) C) D) E)

Figure 4.2: Multiresolution illumination splatting begins by drawing (a) just the direct
illumination, as seen from the eye. Creation of a (b) multiresolution depth map occurs
simultaneous with creation of a (c) depth derivative max mipmap. Locations of high
depth or normal discontinuities (found using a similar normal mipmap) require higher
resolution detail. Our improved approach first computes a (d) multiresolution stencil
buffer that stores relevant fragments at each level of detail, then gathers illumination
from VPLs at all valid fragments. The resulting (e) multiresolution illumination
buffer is upsampled, interpolated, and combined into the (f) final indirect illumination
(brightened for display).

We propose a stencil-based approach that vastly improves performance. Fig-

ure 4.3 provides a high level comparison between our approach and prior work [102].

We first replace the costly iterative refinement with a single pass that selects appro-

priate fragments in a stencil buffer. We then reformulate the final pass to gather

indirect illumination rather than splatting illumination. This provides an immedi-

ate performance improvement, in addition to enabling the hierarchical VPL selection

described in Section 4.2.4.

4.2.1.1 One Pass Stencil Refinement

By observing that GPUs internally use hierarchical z-buffers [42] that enable

hardware-controlled early stencil culling, we can replace the software refinement loop

depicted in Figure 4.3 with an equivalent, optimized technique that leverages this

GPU hardware. Multiresolution splatting [102] identifies the appropriate resolution

image-patches, seen in Figure 4.1, as follows:
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Add direct & indirect light
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New Stencil Based Approach Multiresolution Splatting [NW09]

Figure 4.3: Our stencil-based multiresolution illumination differs from prior work in
two important ways. First, we avoid an iterative multi-pass refinement, costly on
current GPUs. Second, we reformulate the final pass as a gather instead of a scatter,
which proves more cache-friendly.

patches ← CoarseImageSampling();
for (i=1 to numRefinementPasses) do

for all (p ∈ patches) do

if ( NoDiscontinuity( p ) ) then

continue;
end if

patches ← (patches − {p});
patches ← (patches ∪ SubdivideIntoFour( p ) );

end for

end for

The resulting patch list is used as a vertex array identifying which fragments

in the multiresolution buffer will accumulate light. When splatting, this causes each

patch to generate one vertex and one fragment for each VPL.

We simplify this by noting that each refinement pass does not truly depend
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on prior passes and can be parallelized. First, we flatten our multiresolution buffer

into a 2D image:

Then we render a single full-screen quad over this flattened image to set a stencil bit

for valid multiresolution fragments:

for all (fragments f ∈ image) do

if ( ∀i, f /∈ MipmapLevel( i ) ) then

continue; // Fragment not actually in multires buffer
end if

i← CurrentMipmapLevel( f );
if ( IsDiscontinuity( f , i ) ) then

continue; // Patch not valid (needs subdivision)
end if

if ( NoDiscontinuity( f , i + 1 ) ) then

continue; // Coarser patch did not need subdivision
end if

SetStencil( f );
end for

This approach observes multiresolution fragments are required only when they do not

need subdivision, but corresponding next-coarser fragments do.

Once the appropriate stencil bits have been set, every multiresolution “splat”

can be accomplished by drawing a single full-screen quad with stenciling enabled.

Early stencil culling avoids generating fragments in sparsely populated regions of the
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illumination buffer, and we avoid explicitly creating and repeatedly processing the

list of patches.

4.2.1.2 Gathering Illumination

In an instant radiosity-based algorithm, indirect illumination may either be

scattered to pixels via splatting or gathered to pixels during a single pass over all

pixels. If all VPLs affect all patches, as in our work, both scattering and gathering give

equivalent results. Prior work where VPLs illuminate only a subset of the image [23]

achieve better performance via splatting. More recent techniques achieved better

performance via gathering [118]. We also found gathering to perform better.

To improve cache coherency during this gather, we first create a VPL cache,

which stores a list of VPL positions, normals, and colors. This avoids fragments

fetching VPLs from incoherent locations in the RSM and condenses all relevant data

into a single texture.

When a fragment passes the stencil test, we gather contributions of all VPLs

to the corresponding eye-space patch. To calculate the contribution from each light-

space patch, we approximate the patch-to-patch form factor using Wallace et al.’s [153]

disk-to-point approximation:

Fj→i =
Aj( ~Ni · ~Vij)( ~Nj · ~Vji)

π‖ ~Vij‖2 + Aj

, (4.1)

where patches i and j are, respectively, the multiresolution fragment seen from the

eye and the current VPL, Lj . See Figure 4.4 for a visual depiction of the area Aj , the

normals ~Ni and ~Nj and the vectors ~Vi, ~Vj , ~Vij, and ~Vji. We do not consider visibility,
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Figure 4.4: Notation used for image-space radiosity.

so we omit the visibility from Equation 4.1.

Every VPL, Lj , corresponds to some block of pixels in the reflective shadow

map. Each block of pixels, and thus each Lj , represents some solid angle ωj. The

total intensity Ij of Lj relates to the total intensity I of the light L as follows:

Ij = I
ωj

4π
. (4.2)

Additionally, we can approximate area Aj based upon the solid angle ωj and distance

from L:

Aj ≈ ωj‖Vj‖2. (4.3)

Finally, for ease of computation we make the approximation that all RSM texels

have equal solid angle. For slightly reduced performance, this approximation can be

eliminated. Each texel t thus represents solid angle ωt:

ωt ≈
ωfrustum

4π

1

RSM2
res

. (4.4)
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As we use a 2562 RSM with a 90◦ field-of-view, ωt ≈ 1/(6× 2562). The solid angle ωj

represented by each VPL depends linearly on the number of RSM texels it represents.

We obtain the indirect color for each fragment, corresponding to an eye-space

patch i, by summing over all VPLs:

Cindirect
i = ρi

∑

j

IjρjFj→i, (4.5)

where ρi and ρj are the diffuse colors of patches i and j.

After gathering illumination into the multiresolution illumination buffer, we

produce a combined, interpolated indirect illumination image using the approach

described by previous work [102]. We combine this with the direct illumination Cdirect
i

to produce the final result.

4.2.2 Multiresolution VPL Clusters

This stencil-based technique renders indirect illumination significantly faster

than prior work, but it still exhibits temporal incoherence. As geometry and lights

move around the scene, the sampled VPLs can jump suddenly from one surface to

another, as illustrated in Figure 4.5.

While this is clearly a sampling issue, it can also be viewed in another light

(see Figure 4.6). Typically, VPLs are selected by quasi-Monte Carlo ray casting or

sampling on a regular grid, without regard to image discontinuities that introduce

high frequencies. Effectively, this means light-space patches may contain multiple

surfaces! Thus, point sampling patches to find a single representative VPL can give

significant variations from similar viewpoints.
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Figure 4.5: Temporal coherence between two successive animation frames. From
left to right: the brightened indirect illumination, frame-to-frame difference using
RSMs with 256 VPLs, difference using image-space radiosity, and difference using
hierarchical image-space radiosity.

Figure 4.6: (Left) Multiresolution splatting has temporal coherence issues when light
samples jump suddenly from one surface to another. This is due to poor light-space
patch selection. (Right) Using multiresolution VPLs lessens this problem, as VPLs
near boundaries split into multiple, less important patches.
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We propose subdividing VPL patches, just as we divide patches in eye-space.

Each light-space patch will cover a single surface, with energy varying by patch size.

As a VPL approaches a discontinuity its patch splits into smaller pieces, each con-

tributing less. On the other side of the boundary, these pieces recombine to form

larger patches.

We describe two light-clustering techniques. The first creates a set of light-

space patches and corresponding VPLs each frame. All contribute energy to all

eye-space patches, just as basic radiosity [39] evaluates form factors between all patch

pairs. The second approach realizes that VPLs may contribute little energy to distant

patches, and thus clusters VPLs independently for each eye-space patch, reducing

per-fragment computation.

4.2.3 Basic Image-Space Radiosity

Our first clustering technique extends the stencil-based gather from Section 4.2.1.

Instead of naively sampling the RSM to identify VPLs, we form VPLs by clustering

RSM texels at various resolutions. A single geometry shader pass depicted in Fig-

ure 4.7 processes initial, finely sampled VPLs by discarding ones without nearby

discontinuities. Discontinuity detection relies on light-space normal and depth max-

min mipmaps, similar to those used during eye-space rendering. This produces a

set of light-space patches of varying size: large patches in low-frequency areas, and

smaller patches densely clustered around discontinuities.

After identifying our patches, corresponding VPLs are stored in the VPL cache.
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Figure 4.7: (Left) Per-frame light patch construction starts from a dense RSM sam-
pling, here shown at 162. Imagine an implicit mipmap on this sampling; all samples
represent a texel at the finest resolution. Some, like the upper right point, only corre-
spond to texels at the finest level. Others, like the white point, are valid at multiple
levels. After implicitly clustering once, the white point represents the patch out-
lined by the dashed box. A few points, like the black sample, represent patches after
numerous clustering stages, depicted by the dotted regions. A geometry shader per-
forms our light clustering, testing each patch to identify any nearby discontinuities.
If no nearby discontinuities are detected at any valid mipmap level, it is discarded.
(Right) Here, the resulting VPLs are shown in yellow, red, or white, depicting regions
after 0, 1, or 2 clustering stages. Three representative patches are displayed at varied
resolutions.

Each multiresolution eye-space fragment then gathers illumination as before, taking

care to assign VPL solid angles ωj based upon their hierarchy level, ensuring all

contribute an appropriate amount of light.

4.2.4 Hierarchical Image-Space Radiosity

While partially addressing the undersampling depicted in Figure 4.6, this ap-

proach is not optimal. Although light patches may contain discontinuities that require

a finer subdivision, it is not necessary to always use these finer patches. For distant

eye-space fragments, coarser VPL sampling may introduce negligible error. Ideally,

we would select the best VPL clusters for each fragment, using the finest light-space
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patches only where noticeable error otherwise occurs.

Our second clustering technique approaches this goal. When rendering frag-

ments, we adaptively gather from light-space patches as coarse as 162 or as fine as

the RSM resolution. We gather illumination for each fragment independently, with

no assumed knowledge of which patches are required for any fragment.

Instead of creating a VPL cache each frame, we reorganize the full resolution

RSM data into a VPL tree, a structure akin to the single texture, implicit mipmap de-

picted in Figure 4.7. However, we reorganize this texture to facilitate cache coherence

by clustering VPLs representing coarser mipmap levels (i.e., similar to the clustering

of Harr wavelet coefficients after applying a 2D wavelet transform). When gathering

illumination, we start with the 162 coarsest light patches and adaptively subdivide

whenever the error introduced by clustering exceeds a user-specified threshold.

4.2.4.1 VPL Tree Traversal

To determine when to subdivide patches, we must quantify image-space error.

To do this, we find a computationally cheap, conservative bound to patch j’s contri-

bution to the fragment i, only refining light patches when this contribution exceeds

a user threshold. First, from Equations 4.1 and 4.5, we know the contribution Cj→i

from j to i:

Cj→i = ρiρjIj

(

Aj( ~Ni · ~Vij)( ~Nj · ~Vji)

π‖ ~Vij‖2 + Aj

)

. (4.6)

Observing that ( ~Ni · ~Vij), ( ~Nj · ~Vji), ρi, and ρj always remain less than 1, we

bound Cj→i by replacing them. We then apply Equations 4.2, 4.3, and 4.4 to rephrase
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this bound only in terms of the constant RSM resolution and the distances ‖ ~Vj‖ from

light to VPL and ‖ ~Vij‖ from i to j:

Cj→i ≤
2I‖Vj‖2

3 ·RSM2
res‖ ~Vij‖2 + 2‖Vj‖2

≡ B(Cj→i). (4.7)

We refine patch j whenever the bound B(Cj→i) exceeds a user threshold τ . By

reorganizing further, we identify a simpler per-frame constant T such that refinement

occurs when:

‖ ~Vij‖2 ≤
2(I − τ)

3τ · RSM2
res

‖Vj‖2 ≡ T‖Vj‖2, (4.8)

allowing evaluation of each patch’s refinement criteria with a single texture lookup,

multiply, and comparison.

Point sampling the RSM to find ‖Vj‖2 may mistakenly end refinement too

soon, especially on surfaces seen obliquely from the light. To avoid the resulting

artifacts, we sample ‖Vj‖2 from a min-max mipmap and use the maximum depth

over the entire patch as ‖Vj‖2.

4.3 Results and Discussion

Our implementation uses OpenGL and GLSL, with performance measured on

a dual-core 3GHz Pentium 4 with a GeForce GTX 280. Because we use a geometry

shader only to discard geometry, which can be done via clipping, older Shader Model

3 hardware can also run our techniques.

Figure 4.8 compares static results from our hierarchical technique, our stencil-

based multiresolution gather, a full-resolution RSM gather, and a splatting-based

RSM approach [23] that limits VPL influence to nearby fragments to reduce overdraw.
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Figure 4.8: Scenes depicted with four rendering techniques (left to right): hierar-
chical image space radiosity, our stencil-based multiresolution gather, RSMs using
full-screen splats, and RSM splatting with reduced overdraw (i.e., VPL influence lim-
ited to nearby fragments). Note that static images do not convey the vastly improved
temporal coherence enabled by our approach.

Here, the threshold is chosen to generate the same number of fragments per splat as

our multiresolution approach.

4.3.1 Stencil Refinement

Table 4.1 demonstrates the large performance gains achieved with our stencil

refinement, as compared to splatting using a geometry shader for iterative patch

refinement. Note the constant speed of the “stencil setup” phase, which identifies

the multiresolution fragments. Comparatively, the iterative refinement of prior work

varies in performance based upon the specified subdivision thresholds and the number

of refined fragments.

The big performance win comes from the stenciled gathering process. Mul-
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Table 4.1: Comparison of per-frame costs

Multiresolution Cornell Feline Sponza Indoor
Stenciled Gathering Box Scene Atrium Garden
Direct Light 1.8 ms 5.8 ms 2.8 ms 2.8 ms
Generate Reflective Shadow Map 0.9 ms 2.3 ms 1.4 ms 1.6 ms
Create Min-Max Mipmap 0.7 ms 0.7 ms 0.7 ms 0.7 ms
Multires Stencil Setup 0.7 ms 0.7 ms 0.7 ms 0.7 ms
Multires Light Gather 2.5 ms 3.5 ms 3.0 ms 6.6 ms
Upsample Indirect Illumination 1.6 ms 1.7 ms 1.3 ms 1.3 ms
Total 8.2 ms 14.7 ms 9.9 ms 13.7 ms

Multiresolution Cornell Feline Sponza Indoor
Splatting [102] Box Scene Atrium Garden
Direct Light 1.8 ms 5.8 ms 2.8 ms 2.8 ms
Generate Reflective Shadow Map 0.9 ms 2.3 ms 1.4 ms 1.6 ms
Create Min-Max Mipmap 0.7 ms 0.7 ms 0.7 ms 0.7 ms
Geometry Shader Refinement 1.3 ms 1.7 ms 1.3 ms 1.6 ms
Multires Light Splatting 45.8 ms 67.0 ms 58.1 ms 130.0 ms
Upsample Indirect Illumination 1.6 ms 1.7 ms 1.3 ms 1.3 ms
Total 52.1 ms 79.2 ms 65.6 ms 138.0 ms

Costs of each step for a single frame for (top) our new stencil-based

multiresolution gathering and (bottom) multiresolution splatting [102], using

256 VPLs. “Direct light” includes all other rendering overhead.

tiresolution splatting typically generates around 50,000 multiresolution fragments for

a 10242 image. For each VPL, all these fragments are processed by both a vertex

and fragment shader and scattered incoherently into a multiresolution buffer. This

is clearly the most expensive stage. Reformulating as a gather roughly halved this

stage’s cost, and leveraging the hierarchical z-buffer for early stencil culling avoided

the incoherent scatter of fragments into the buffer. Combined, these techniques reduce

the cost of the indirect illumination by over an order of magnitude.

As with multiresolution splatting, performance depends more on eye-space

visual complexity than on scene complexity. For instance, the feline scene contains

more geometry than the garden, but high frequencies introduced by the plants require
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Image Error From Multiresolution Gathering
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Figure 4.9: Root mean squared error between multiresolution gathering and gathering
illumination at every eye-space pixel. Both use one million VPLs (i.e., a 10242 RSM)
to help differentiate between error caused by clustered eye-space patches and clustered
light-space patches (light patch error is depicted in Figure 4.13).

finer eye-space patches, increasing costs.

Figure 4.9 illustrates the error introduced solely by multiresolution eye-space

patches as a function of the depth discontinuity required to refine fragments. At a

depth threshold of zero, indirect light is gathered at full resolution, yielding zero RMS

error. Increasing this threshold increases error as fragments are clustered together.

At thresholds that yield reasonable performance, error ranges from 2-3%.

4.3.2 Light Hierarchies

Just as Table 4.1 demonstrates a performance dependence on eye-space vi-

sual complexity, clustering VPLs adds a performance sensitivity to light-space visual

complexity. Figure 4.10 shows framerate variations in the feline scene as the light

moves. As visual complexity changes, so does the required number of VPLs, leading

to fluctuations in performance.

Performance characteristics for image space radiosity and our hierarchical vari-

ant are displayed in Figures 4.11 and 4.12. These figures start with 1024 coarse VPLs
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Performance Variations By Light Position
50

20

30

40

Framerate Over Time

Frames

Fr
a

m
es

 P
er

 S
ec

o
n

d
 (

fp
s)

0.003 0.016 0.04Hierarchical Image Space Radiosity:

Image Space Radiosity: 642

Figure 4.10: Framerate varies as a light moves through the feline scene. Compared
are image space radiosity with a maximum VPL subdivision to 642 and hierarchical
image-space radiosity with three different error thresholds.
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Figure 4.11: Performance of image space radiosity in the feline scene, with different
initial VPL resolutions. Lower depth thresholds introduce more light patches.

and subdivide in important areas. Performance tops out around 50 fps, when gather-

ing into the illumination buffer is no longer the bottleneck; fixed cost passes including

VPL tree creation or per-frame patch construction then limit performance.

Figure 4.13 explores the error introduced by hierarchical image space radios-

ity as a function of the user-specified error threshold. To distinguish error from our
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Figure 4.12: Performance of hierarchical image space radiosity in the feline scene,
using different maximal traversal depths. As we allow additional subdivisions, lower
error thresholds introduce more light patches.

light- and eye-space hierarchies, the baseline image uses our multiresolution gather-

ing with one million VPLs; even with multiresolution gathering, this requires more

than 10 seconds. A threshold of zero forces a full traversal of the VPL tree, though

due to reduced VPL sampling (322–1282) error is not completely eliminated. At

higher thresholds, fewer VPLs contribute illumination, and error increases to 3–4%

for thresholds with acceptable performance.

Combined with the error demonstrated in Figure 4.9, we get interactive per-

formance with a 5–6% RMS error compared to a baseline gather of a million VPLs at

every pixel in eye-space. Considering the half hour computation for the baseline and

the temporal coherence maintained by our method, we believe this is an acceptable

trade-off.
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Image Error From Hierarchical Image Space Radiosity
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Figure 4.13: Root mean squared error between hierarchical image space radiosity
(with different maximal traversal levels) and our multiresolution gathering using one
million VPLs (i.e., from a 10242 RSM).

4.4 Conclusions

This chapter presented image-space radiosity and a hierarchical variant, tech-

niques that build upon our improved one-pass stenciled multiresolution gathering

for indirect illumination. These techniques dramatically reduce the cost of approx-

imating one-bounce indirect illumination using reflective-shadow map based instant

radiosity. We achieve this by gathering indirect light at varying resolutions in image

space, depending on proximity to discontinuities. When gathering illumination for

each image space patch, we proposed two light-space clustering techniques to reduce

the number of VPLs used per patch; one creates VPL clusters once per frame, the

other selects VPL clusters based upon a per-fragment error metric and a user specified

error threshold.
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CHAPTER 5

INTERACTIVE, MULTIRESOLUION IMAGE-SPACE RENDERING

FOR DYNAMIC AREA LIGHTING

5.1 Introduction

Interactive rendering has long relied on illumination from infinitesimal points,

where efficient lighting and visibility are well understood. Illumination from more

complex area sources requires integrating both visibility and radiance over the light’s

surface. Given framerate constraints in interactive applications, per-pixel computa-

tion of such integrals is infeasible. Current solutions include precomputing light trans-

fer [136], discretely sampling the light source [75], and caching samples in object-space

data structures [83] that require updates for dynamic geometry.

Researchers have developed numerous algorithms for soft shadows that inte-

grate light over an area light [48], but most break with larger lights and few allow

radiance fluctuations over the emitter. A few sophisticated algorithms account for

radiance variations in penumbral regions using 4D lookup tables [9] or summed area

tables [44], but they generally treat unoccluded radiance as coming from a single-

colored emitter, using the average source radiance.

In this chapter, we propose a novel image-space technique for interactive light-

ing from area lights that draws inspiration from recent global illumination research.

In particular, recent techniques demonstrate that rendering of slowly varying lighting

can be accelerated via multiresolution image-space computations like those described

Chapters 3 and 4, and can rely on crude visibility approximations [119].
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Figure 5.1: Traditional real time renderers (a) allow only point lighting. We introduce
a multiresolution image-space approach (b) that enables illumination from dynamic
area lights. No precomputation is needed, so we handle dynamic geometry (c). The
image-space computations decouple algorithmic and geometric complexity, so scenes
with hundreds of thousands of polygons (d) still render interactively.

This chapter presents three main contributions:

1. A multiresolution approach that gathers illumination from dynamic area lights

without visibility. This runs in real time for diffuse and non-diffuse BRDFs.

2. A multiresolution algorithm using screen-space voxelization to quickly compute

per-pixel area light visibility.

3. An incremental refinement that considers both illumination and visibility vari-

ations when choosing an appropriate resolution for rendering illumination.

Since we avoid precomputation, our work handles dynamic lights, viewpoint, and ge-

ometry (see Figure 5.1). Image-space computations allow our algorithm to scale with

visual complexity rather than geometric complexity. Additionally, iterative refine-

ment provides a clear quality/performance tradeoff: simply stop sooner for improved

performance. However, our discrete geometric representation can introduce aliasing.
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5.2 Previous Visibility Approximations

Researchers have long developed techniques to interactively compute light vis-

ibility. Until recently, these focused on visibility from point lights and approximate

methods for uniform area lights. Here, we present additional background, discussing

the most relevant of these techniques. Discussion of global illumination techniques

with characteristics similar to our work may be found in Chapter 2.

5.2.1 Single Shadow Map

Standard shadow maps [163] quickly compute visibility from point lights. The

image-space computations scale well with increased scene complexity and enable ef-

ficient post processing [34, 113] for approximating more complex effects, such as soft

shadows. Most soft shadow map algorithms [48] rely on crude, but plausible, visibility

approximations and ignore radiance variations over the light.

Recent work aims to improve accuracy. Backprojection soft shadows [44] re-

place each shadow map texel by a micropolygon, allowing computation of analytical

per-patch visibility. Disjoint micropolygons introduce light leakage and overshadow-

ing, but more sophisticated meshing reduces the problem [129]. Backprojection cre-

ates a per-fragment list of potential occluders; to avoid searching all micropolygons,

hierarchical shadow maps [44, 129] accelerate identification. While these hierarchies

break for large lights, subdividing the lights [167] improves quality.

While backprojection soft shadow maps accurately compute visibility from

area lights, they largely ignore variations due to multicolored lights. A few tech-
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niques use 4D lookup tables [9] or summed area tables [44] to represent varying

radiance. Bitmask soft shadows [129] use a bitmask approach that inspires our work.

However, none of these algorithms consider how radiance variations affect unoccluded

fragments.

One common problem for all single map algorithms stems from use of a single

silhouette edge to approximate occlusions. While sufficient for small lights, it presents

challenges for large lights, especially as occluders approach the light.

5.2.2 Multiple Shadow Map

Using many shadow maps avoids this problem, at the cost of additional render

passes. Heckbert and Herf [51] suggest rendering shadow maps from many samples.

While this converges for increasing sampling density, rendering hundreds of shadow

maps proves a serious bottleneck.

Annen et al. [3] split lights into multiple samples and use fast per-sample soft

shadowing [4], though they handle an order of magnitude fewer samples than our

work due to memory limits and shadow map construction costs. Coherent shadow

maps [116] precompute and compress shadow map per-object visibility, enabling mov-

ing geometry and complex lighting if object convex hulls do not overlap [118]. How-

ever, this requires substantial precomputation and memory overhead.

An ingenious way to accelerate multi-shadow map illumination uses crude,

imperfect maps [119] and relies on averaging over thousands of shadow lookups to

remove low-resolution shadow map artifacts. To efficiently create imperfect shadow
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maps, a preprocess densely point-samples the scene. While relatively inexpensive, this

preprocess limits dynamic scenes to deformations that need no resampling. Recent

work [117] shows point primitives also work with more complex illumination and

material properties, albeit at significantly increased cost.

5.2.3 Multi-Layer

Shadow maps help accelerate many complex illumination problems, but ex-

tending the depth buffer to contain 3D data, e.g., using layered depth images [130],

provides an interesting alternative. Agrawala et al. [1] precompute visibility for in-

teractive rendering, and Im et al. [59] achieve near-interactive soft shadowing with

layered depth.

Multi-layer techniques often use depth peeling [33] to achieve interactivity,

and recent work simultaneously peels many layers [91]. One visibility approximation

using layer depth is screen-space ambient occlusion [10, 96]. While it interactively

captures visibility from large area lights, it poorly handles highly directional lighting.

We use another layered visibility approximation: image-space scene voxeliza-

tion [27, 31]. Voxelization discretizes the volume enclosed by the view frustum,

with each framebuffer pixel representing multiple single-bit voxels (see Figure 5.2).

Voxelization occurs in a single render pass, requiring under a millisecond even for

relatively complex scenes. This representation proves useful for numerous applica-

tions [32], such as refraction, translucency, and collision detection. We observe that

screen-space voxelization efficiently creates a perspective grid [58], suitable as a simple
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view direction
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Figure 5.2: An example of voxelization, viewed from the side. Each quanta of depth,
represented by a single bit in the color buffer, identifies whether geometry is present
in the voxel.

ray acceleration structure (similar to Woo [164]).

5.3 Multiresolution Illumination

Direct illumination from an area light requires integrating over the light for

each pixel, combining light contributions, material reflectance, and any occlusions.

Using an area formulation of the rendering equation [68], we write this:

L(x, ~ω) =

∫

y∈S

fr(~ω,x→y)I(y)V (x→y)G(x→y)dA, (5.1)

where x is the point to shade, ~ω the viewing direction, S the light surface, I the

light intensity, x→y the vector from x to the light sample y, V the binary visibility

between x and y, and G(x→y) the geometry term:

G(x→y) =
cos(x→y, ~Nx) cos(y→x, ~Ny)

||x→y||2 .

~Nx and ~Ny are the surface normals at x and y. In an interactive context, sampling

provides the only feasible solution, so we rewrite Eq. 5.1 as a sum over discrete light
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samples:

L(x, ~ω) ≈
N
∑

i=0

fr(~ω,x→yi)I(yi)V (x→yi)G(x→yi)A(yi). (5.2)

Here, light samples yi can be thought of as virtual point lights, allowing algorithms

akin to recent global illumination research (e.g., [22, 75]).

5.3.1 Overview

We have three main contributions. Section 5.3.2 ignores the visibility in Eq. 5.2

and adapts the methods from Chapters 3 and 4 to interactively gather from virtual

point lights (VPLs) on the area light. While this retargeting is relatively straightfor-

ward, area illumination enables opportunities for improved performance and, unlike

our earlier work, allows rendering of non-diffuse materials. Section 5.3.3 considers

only the visibility from Eq. 5.2 and applies screen-space voxelization [32] to coarsely

represent the scene. We introduce an incremental, multiresolution ray marching ap-

proach that interactively approximates light visibility. Section 5.3.4 combines these

into a multiresolution approach to interactively render area illumination, allowing

both visibility and radiance variations over the light.

5.3.2 Gathering Without Visibility

Illumination from area sources generally changes smoothly, giving low fre-

quency lighting where coarser than per-pixel illumination sampling should suffice.

One could apply object-space caching [83], but this requires data structures that

incur expensive updates in dynamic environments. We instead build on the multires-

olution image-space work presented in Chapter 4, akin to an image-space cache, with
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a cheap per-frame build cost that allows dynamic geometry.

First we simplify area illumination in Eq. 5.2 by ignoring visibility (setting

V = 1) and assuming a diffuse material with albedo ρ, giving the following equation:

L(x, ~ω) ≈ ρ

π

N
∑

i=0

I(yi)A(yi) cos(x→y, ~Nx) cos(y→x, ~Ny)

||x→y||2 .

This per-sample contribution resembles Equation 3.2, the per-VPL contribu-

tion from Chapter 3, suggesting that a similar multiresolution approach may also

work for direct area lighting. The earlier approach works as follows:

1. Render an eye-space G-buffer [125];

2. Compute multi-scale image-space depth and normal variations by creating a

mipmap structure over the G-buffer;

3. In parallel, set stencil bits in a multiresolution buffer at the texels where illumi-

nation will be gathered (where depth & normal variations exceed a threshold);

4. In parallel, gather illumination only at specified texels;

5. Combine and upsample to full-screen resolution.

We observe that illumination discontinuities for area sources occur at locations

similar to indirect light: at image-space depth and normal boundaries. We retain the

depth and normal metrics from Chapter 3, computing per-pixel depth derivatives

(in Step 2) as
√

(dz/dx)2 + (dz/dy)2, and creating a max-mipmap. We use a similar

computation for normals, performed on a per-component basis; normal discontinuities

occur when at least one component of the normal changes significantly.
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Step 3 stencils all resolutions in parallel, via a full-screen pass over a flattened

multiresolution buffer:

for all (fragments f ∈ quad) do

if ( ∀i, f /∈ MipmapLevel( i ) ) then

continue; // Fragment not actually in multires buffer
end if

i← CurrentMipmapLevel( f );
if ( HasDepthOrNormalDiscontinuity( f , i ) ) then

continue; // Patch not valid (needs subdivision)
end if

if ( NoDiscontinuity( f , i + 1 ) ) then

continue; // Coarser patch did not need subdivision
end if

SetStencil( f );
end for

The resulting stencil has bits set for fragments to be sampled:

We gather illumination from VPLs on the area light, using the stencil to cull unneeded

computations. Figure 5.3 shows the resulting area lighting, with coarse samples in

slowly varying regions and denser samples near discontinuities.

For area lighting, a priori knowledge of the source location enables multiresolu-

tion improvements infeasible for global illumination. First, gathering light on emitters

is unnecessary; we stencil them out, resulting in dramatic performance improvements
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Figure 5.3: The indoor garden with diffuse (left, center) and Phong (right) materials.
We show the final rendering above a pseudocolor image depicting the resolution we
rendered each region. Our naive approach (left) gathers illumination everywhere.
Discarding fragments on or facing away from the light (center) improves performance.
Phong surfaces (right) are refined extensively or trivially discarded.

in scenes with large light sources.

Second, while indirect light often arrives incoherently, direct light often has a

preferred direction. For point sources, a cheap ~N · ~L < 0 identifies unlit fragments.

For area lights, we detect geometry facing away from the light by testing ~N · ~Lj for

vectors ~Lj towards the corners (or bounding box) of the light. If ~N · ~Lj < 0 for all j,

we trivially discard the fragment. Additionally, for one-sided lights, such as television

screens, we also discard fragments behind the source.

5.3.2.1 Non-Diffuse Materials

Non-diffuse materials require keeping the BRDF inside the sum in Eq. 5.2.

This complicates multiresolution rendering, as shiny materials introduce high fre-
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quencies not considered by image-space depth and normal metrics. Specular surfaces

need additional refinement to capture these frequencies.

Seemingly, further refinement degrades performance by adding additional sam-

ples. But while shiny materials reflect high frequencies near the reflection direction,

they often reflect little light in others. This suggests traditional importance sampling

techniques directly translate into material-specific refinement metrics for multireso-

lution rendering.

Consider a Phong BRDF without a diffuse component, reflecting light accord-

ing to the term (~R·~L)n. For even low shininess n, this reduces off-specular illumination

significantly. We discard fragments where the Phong lobe misses the light. We iden-

tify these fragments by locating where the reflection vector ~R misses the light, and

checking that the Phong lobe does not overlap the source (by guaranteeing (~R · ~Lj)
n

falls below a threshold for all j).

Frequencies in a Phong reflection depend on lobe size. Large lobes give blurry

reflections representable via coarser sampling. When we create our depth and normal

mipmaps, we also compute the cross-sectional Phong lobe size at the light. Image-

space sample spacing must be denser than the lobe width, which we add as a Phong-

specific refinement metric. We separate diffuse and Phong components into sepa-

rate gather passes (see Figure 5.3), which should work for many other BRDFs (e.g.,

Ashikhmin-Shirley [8]).

As we use 256 VPL samples, highly specular materials can show reflections of

individual VPLs. We avoid this using a simplistic adaptive strategy: when a specular
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lobe includes too few VPLs (we used a threshold of 9) we directly sample the light

texture 25 times inside the lobe using a mipmap level dependent on the lobe size

when it hits the light. We sample on a regular 5 × 5 grid centered on the reflection

direction, with sample spacing dependent on lobe width.

5.3.3 Voxel-Space Visibility

Interactive rendering algorithms frequently rely on depth maps to approximate

the visibility in Eq. 5.2. Creation of a z-buffer as a rasterization byproduct encour-

ages this ubiquity, and algorithmic improvements naturally start from prior shadow

mapping work. However, creation of multi-layer buffers [91] or thousands of shadow

maps [119] is costly, and accessing the results strains bandwidth and texture cache

without providing true 3D data.

Fortunately, screen space voxelization [27, 31] provides a compelling alterna-

tive. Voxelization is efficient, taking under a millisecond even in complex scenes,

and produces a 3D structure where each bit represents the presence or absence of

geometry in a single voxel (see Figure 5.2). Yet, there is a clear tradeoff. 32-bit

z-buffers uniquely store 232 depth values, whereas 32-bit voxelizations uniquely rep-

resent just 32. But the voxelization can simultaneously store 32 depths while the

z-buffer stores just one. We found a 128-bit voxelization worked well for our scenes,

though additional render targets could extend this to 2048 bits.
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Figure 5.4: Compare (top) brute force visibility and (bottom) our incremental refine-
ment. Brute force computations ray march from each pixel to every VPL, whereas
incremental computations reuse results from coarser visibility passes.

5.3.3.1 Naive Voxel-Space Visibility

Inspired by the visibility quality attained using imperfect shadow maps [119],

we suggest that image-space voxelization, a similarly crude approximation, can achieve

similar quality. Instead of creating thousands of shadow maps and querying each, we

propose marching rays through a coarse scene voxelization.

Our naive query spawns a ray traversal between every light sample at each pixel

(see Figure 5.4). Ideally, we would perform a 3D DDA for each traversal, checking

all intermediate voxels for intersections. This performed poorly on our GPU, due to

varying numbers of loop iterations, so we instead sample the ray uniformly between

each fragment and VPL. While a sparse sampling may miss occlusions from thin

geometry, we partially compensate for missed occlusions by checking multiple bits in

texels fetched from the voxel buffer. This essentially thickens the ray.
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Figure 5.5: Each pixel stores a bitstream of visible and occluded VPLs. When refining,
we only resample lights whose visibility changes between neighboring pixels. Even
at significant discontinuities (top), only a subset of VPL visibilities change. Often
visibility changes more slowly (bottom); here only a few VPLs need resampling during
refinement.

5.3.3.2 Incremental Voxel-Space Visibility

While we need per-pixel visibility to each VPL, this visibility, like illumination,

changes slowly throughout our image. We leverage this observation, introducing two

algorithms that incrementally refine visibility from sparser samples.

Consider shadows from a point light. By definition, these are coherent except

at shadow boundaries. A coarse shadow sampling is correct at low resolution, except

near these boundaries. Clearly, this also holds for any single VPL. Instead of comput-

ing visibility to each VPL at every pixel, we first sample on a coarser pixel grid (e.g.,

642) and incrementally refine only near visibility discontinuities (see Figure 5.5).

When refining, we reuse a VPL’s visibility when coarse samples in a 3 × 3

region agree, only spawning a new visibility ray when inconsistencies arise. When
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using hundreds of VPLs, usually fewer than 5% vary in any region, significantly

reducing the rays needed. To this end, our visibility passes output a binary bitstream

(as in bitmask soft shadows [129]) with one bit per VPL, allowing identification of

regions needing additional queries.

While our incremental approach can converge to a correct solution, this is

rarely necessary. For instance, imperfect shadow maps have inaccurate per-VPL visi-

bility that gets averaged out, and ambient occlusion algorithms often sample coarsely

and then apply a blur. Given our multiresolution approach from Section 5.3.2 es-

sentially blurs illumination, we seek to avoid computing per-pixel visibility prior to

blurring.

Instead of refining visibility everywhere, we only generate denser samples near

discontinuities. It turns out that most visibility discontinuities occur at image-space

depth and normal boundaries, so we can use the same refinement criteria from Sec-

tion 5.3.2. However, these metrics miss discontinuities caused by contact shadows.

To detect these discontinuities, we add a bit-counting metric. When enough VPLs

change visibility in an image-space neighborhood, refinement is needed. Surprisingly,

this threshold can be quite high: in our scenes, we captured light discontinuities by

refining only when at least half the VPLs (i.e., 128) were partially visible in a neigh-

borhood. We compare naive voxel-space visibility with a combination of both our

incremental improvements in Figure 5.4.

Given the gradual visibility variations in most scenes, we found interleaved

sampling [76] on 2 × 2 pixel blocks worked at all our sampling resolutions. This
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allows a 4-channel 16-bit render target to store visibility to all 256 VPLs used in our

implementation. Interleaved sampling is essentially orthogonal to the incremental

refinements proposed above, so our results include all three.

5.3.3.3 Visibility with Sharp BRDFs

While visibility from a fixed set of 256 VPLs gives good results for diffuse

surfaces, for sharper BRDFs individual shadows are clearly visible for the few VPLs

reflected in the specular highlight. We propose an alternative for such materials based

on the simple adaptive strategy proposed in Section 5.3.2.1. We send visibility rays

to the 25 samples chosen in the specular lobe.

This improves shadow quality, but with only 25 visibility samples some shadow

banding remains. We could add additional visibility queries in the lobe, but this

increases cost, potentially highlights voxel aliasing, and behaves poorly using our

incremental visibility. Instead we use a variance shadow query, inspired by variance

shadow maps [28].

Instead of storing a single bit per visibility query, we store the distance (and

distance squared) to the nearest occluder along the ray. We then estimate the per-

query distance variance using a screen space blur, applying the equations described

by Donnelly [28] to compute the per-VPL light intensity. This eliminates the shadow

banding from individual shadows (see Figure 5.6), as it essentially performs per-query

percentage closer filtering.

Unfortunately, this greatly increases storage for visibility queries—from 1 bit
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Figure 5.6: Two examples of our method with a Phong BRDF, with and without
visibility, and varying levels of shininess.

to 2 floats per VPL. We manage by sending only 24 visibility queries (ignoring one

corner on the 5×5 grid), for a total of 48 floats. Using 2×2 interleaving, this requires

only 12 floats per pixel, which fits in three 4-channel render targets.

5.3.4 Incremental Stencil Rendering

While our algorithms from Sections 5.3.2 and 5.3.3 give either area illumination

or visibility, we need both simultaneously. Additionally, the algorithms refine image-

space regions differently, so separate evaluation of lighting and visibility followed by

a per-fragment combination is infeasible. Shadows introduce high frequencies where

illumination varies slowly, and for specular materials the reverse can hold.

To address this, we propose an incremental approach to multiresolution ren-

dering. We still rely on a stencil mask to identify which mulitresolution fragments to

render. But instead of creating the stencil masks simultaneously before rendering, we

create the masks and render one resolution at a time, from coarsest to finest. This

allows each stencil mask to depend on illumination variations at coarser levels, in
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642 1282 2562 5122 10242

Figure 5.7: An example of incremental stencil refinement. (Top) The refinement
stencil for each resolution. Areas in blue are not rendered; areas in white are refined
due to depth or normal discontinuities, and areas in red are refined due to illumination
discontinuities. (Bottom) The resulting image after each step, with unrendered areas
in blue.

addition to prior metrics (e.g., depth and normal). This requires only minor changes

from sequential stenciling:

i← CurrentMipmapLevel( f );
for all (fragments f ∈ quad( mip-level( i ) ) ) do

if ( HasIlluminationDiscontinuity( f , i + 1 ) ) then

SetStencil( f ); // Coarse patch had light discontinuity;
continue; // re-render at higher resolution

end if

if ( HasDepthOrNormalDiscontinuity( f , i ) ) then

continue; // Patch not valid (needs subdivision)
end if

if ( NoDiscontinuity( f , i + 1 ) ) then

continue; // Coarser patch did not need subdivision
end if

SetStencil( f );
end for

Rapid color changes between coarse samples indicates that higher sampling

may capture higher frequencies. When iterating, we compare the light variations

between computed samples to a user threshold to determine if additional sampling is

needed (see Figure 5.7).

Our incremental rendering iterates the following steps once per rendering res-
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olution, beginning at the coarsest level and progressing through the finest:

1. Create a stencil based on image-space depth, normal, and BRDF frequency

metrics and any illumination discontinuities observed in coarser levels,

2. At set stencil bits, incrementally compute visibility and illumination to locally

approximate Eq. 5.2.

3. When the stencil is not set, upsample and interpolate any coarser results.

Figure 5.7 depicts incremental stencil rendering. At the lowest resolution, we

create a stencil based solely on depth and normal discontinuities. At higher resolu-

tions, observed illumination discontinuities (shown in red) supplement regions known

to require refinement. At each level, we upsample and interpolate unrendered areas

using the method developed for our earlier work, described in Section 3.2.5 - essen-

tially an edge-aware bilinear interpolation that avoids using uncomputed fragments

(those shown in blue).

This enables adaptive refinement at shadow boundaries. Furthermore, the

illumination metric can capture high frequency BRDFs. Discontinuities introduced

by specularities naturally trigger refinement, though we find that material specific

metrics (e.g., Section 5.3.2.1) typically provide better quality, performance, and avoid

aliasing.
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Figure 5.8: Two complex scenes (left) without visibility, using our multiresolution
approach; (center left) our incremental visibility; (center right) coarse, 642 shadow
maps, with quality similar to imperfect shadow maps; and (right) path tracing.

5.4 Results and Discussion

Our timings come from a dual-core 3GHz Pentium 4 and a GeForce GTX 280,

using OpenGL. Unless otherwise stated, all images and reported results were for an

output resolution of 10242. Key GPU functionality required includes integer textures

(for voxelization) and early stencil culling (to cull unnecessary fragments).

Figure 5.1 demonstrates the realism area sources add to a scene. The top

compares a living room with and without our area lighting. Figure 5.6 shows surfaces

with a Phong BRDF, comparing our results with and without visibility. The selective

stenciling described in Section 5.3.2 allows us to discard many fragments unprocessed,
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improving performance.

Figure 5.8 compares our work, with and without visibility, to a path traced

reference and a rendering using 1024 coarse (642) shadow maps, similar to rendering

with imperfect shadow maps. We created the coarse shadow maps via traditional

rasterization, leading to higher quality but poorer performance than ISMs. In general,

our work compares favorably to path tracing, and captures higher shadow frequencies

than those possible with coarse shadow maps.

5.4.1 Performance

Ultimately, multiresolution rendering performance depends on refinement qual-

ity. Illuminating each fragment requires gathering light from hundreds of VPLs and

many visibility queries; thus, performance depends directly on the number of frag-

ments rendered per frame. Because we require only a few passes over the geometry,

geometric complexity plays a relatively minor performance role. But like prior mul-

tiresolution image-space algorithms, our performance varies with visual complexity.

Scenes with high frequency details require more rendered fragments with a corre-

sponding performance hit, regardless of polygon count.

Figure 5.9 explores this effect for a moving camera in the Yeah Right scene atop

Figure 5.8. While polygon count stays constant, the motion provides varying visual

complexity and causes the fragment count to fluctuate each frame. The top graph

shows the percentage of fragments rendered from each resolution. At 642, we render

roughly half, or 2000, of the fragments. Finer resolutions cheaply interpolate and



99

Per Frame Costs After Each ResolutionFragments Rendered At Each Resolution

75%

0%

25%

50%

0

20

40

60

80

Frames

Setup 642 1282 2562 5122 10242

Frames

A
lg

o
ri

th
m

 s
te

p
 c

o
st

s 
(m

s/
fr

a
m

e)

P
er

ce
n

ta
g

e 
o

f f
ra

g
m

en
ts

 r
en

d
er

ed

0

30

Fr
a

m
es

 P
er

 S
ec

o
n

d
 (

fp
s)

Framerate (frames per second)

Figure 5.9: Percentage of fragments rendered from each resolution (left) and the per-
frame costs for each refinement (right) as the camera moves through the “Yeah Right”
scene. The rightmost graph also displays the framerate at 10242.

reuse many of these, and only 10-15% of the final image needs per-pixel computation.

While we process a small percentage at high resolution, 10% of 10242 is signif-

icantly larger than 50% of 642. The bottom graph of Figure 5.9 reveals the cost for

each refinement level. The quantity of fragments at higher resolutions still contribute

much of our overall cost. To improve speed, some applications might render at only

2562 or 5122 and apply edge-preserving bilateral filters to upsample for final display.

As refinement thresholds directly affect fragment count, they greatly impact

performance, as shown in Figure 5.10. Both strongly affect performance, but the

lowest relative threshold has the strongest impact; with a color threshold of 0.005 the

normal threshold has a minor impact, whereas the normal threshold dominates for

higher color thresholds.
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Figure 5.10: Speeds with varied normal and color thresholds.

5.4.2 Voxel Buffer Resolution

We achieve compelling visibility using surprisingly coarse voxelizations. Figure

5.11 shows a closeup of the 755k triangle, genus 131 YeahRight model with six different

voxel resolutions. All our results use 128 bits of depth, via a 32-bit per channel

buffer. Visibility from a 1282 × 128 buffer is almost indistinguishable to the 10242 ×

128 visibility. While coarser resolutions give noticeably different results, this may

be acceptable for large geometry with low-frequency visibility. Additionally, small

voxel buffers increase cache coherence during ray traversal and significantly improve

performance.

5.4.3 Limitations

Coarse voxelization, especially in the z dimension, leads to self occlusions.

This occurs when initial visibility ray steps remain inside voxels representing the
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322
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Figure 5.11: The basket of the YeahRight model (also in Figure 5.8) rendered with
varying voxel buffer dimensions.

Figure 5.12: A dragon with self-occlusion artifacts due to limited voxel resolution. A
bias helps alleviate the problem.

originating surface (see Figure 5.12). This is a variant of the “shadow acne” problem

that plagues shadow mapping. We address it similarly, adding a bias to push the ray

origin away from the surface.

While reducing self-occlusion errors, a bias causes missed contact shadows for

thin geometry. In general, our method yields best results for geometry occupying

multiple voxels; such geometry exhibits less aliasing during ray marching. Increasing
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Figure 5.13: Results of our technique as the light size varies. In the top row, the
watts/m2 is kept constant, yielding less illumination as the light size decreases; in
the bottom row, the overall wattage of the light source remains constant.

steps per visibility query reduces aliasing as does increasing voxel resolution, though

both impact performance. Using additional render targets would capture higher fi-

delity voxels (for up to 2048-bit z-resolution). Though, surprisingly, we found a

single 128-bit buffer sufficient for all but the thinnest geometry (e.g., the furniture in

Figure 5.3).

As visual complexity dramatically impacts performance, naively adding nor-

mal or bump mapping may refine a lot of pixels, degrading performance. We see

numerous ways to mitigate this, which we plan to address in future work.

5.4.4 Varying Light Sizes

While we designed our algorithm with large, dynamic area lights in mind, it can

be applied to smaller sources, as demonstrated in Figure 5.13. As light size decreases,

at some point the rationale for using our work disappears. Our main advantage
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over more traditional “soft shadow” work (e.g., [129]) is twofold: our avoidance of

artifacts from the single silhouette assumption and our capture of lighting variations

in unshadowed regions that arise from radiance variations across the light surface.

With small area lights, the single silhouette assumption is usually acceptable and a

single color light source closely approximates the results for most pixels. In such a

scenario, traditional soft shadow algorithms may be faster.

Furthermore, as the light size decreases one would expect the voxelized vis-

ibility to become more apparent. This is, in fact, visible for the smaller lights in

Figure 5.13, though the 128-bit voxel depth exacerbates the problem. For smaller

light sizes, a 256, 512, or 1024-bit voxel depth could easily be added (as in [32]).

5.4.5 Comparison to LPVs

Recently published work introduced the idea of Cascaded Light Propagation

Volumes [69]. This work was published after the initial submission of our research,

and its still-recent publication date makes it difficult to provide comparison images.

Below, we instead provide a brief qualitative comparison.

Basically, Kaplanyan introduces a multiresolution implementation of irradi-

ance volumes, using spherical harmonics to represent illumination and visibility sam-

ples at the grid lattice points. These SH coefficients are populated by sampling VPLs

from a reflective shadow map [22] and projecting them to a SH basis. Because they

compute illumination and visibility only at these lattice points, instead of the hun-

dreds of thousands of fragments we use, their work runs significantly faster than ours.
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They also handle participating media, which we do not address.

However, their coarse sampling makes rendering of high frequency illumination

and visibility quite difficult. They claim to sample on 323 grids, which suggests their

aliasing from low volumetric resolution (e.g., poor contact shadows, difficulty with

sharp illumination boundaries) will be significantly worse than ours. Our use of a

2D image-space structure suggests we might scale to higher sampling rates than their

3D structure, due to the curse of dimensionality, though we must reconstruct our

structure each frame.

Finally, while reliance on a SH-basis enables propagation volumes to easily

shade normal mapped surface, they are unable to render high frequency BRDFs or

sharp shadows, such as our Phong images from Figure 8.

It may be possible to use a hybrid between our work and theirs, sampling light

and visibility to a SH basis in a multiresolution screen space fashion, though this is

future work.

5.4.6 Comparison to ISMs

Ritschel et al. [118] proposed imperfect shadow maps (ISMs), the other work

closely comparable to ours. Figure 7 compares our work with a rendering using many

perfect 642 shadow maps. These shadow maps were generated using the traditional

rasterization pipeline instead of using the precomputed, uniform sampled points and

the subsequent hole filling algorithm proposed for ISMs. This leads to a comparison

in Figure 7 with significantly slower performance than ISMs, but higher quality, due
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to the elimination of aliasing and shadow map holes arising from coarsely sampled

points.

Our rendering times are faster than those reported by Ritschel et al. even

though we output higher resolution images. However, their speeds may be comparable

to ours after accounting for GPU improvements. We likely run slower on high polygon

models but faster on lower polygon models, due to ISMs’ use of user-specified numbers

of point samples.

As far as quality, the coarse resolution of ISMs makes hard contact shadows

impossible. While our voxel buffer also leads to errors for contact shadows, we can

capture higher frequencies in these regions and a finer voxelization reduces our errors

for a modest cost. The banding visible in the shadow map comparison in Figure 7

comes from the low resolution shadow maps, which our per-pixel visibility sampling

avoids. As the BRDF becomes more specular, shadow map texel aliasing becomes

more objectionable for ISMs as fewer shadow maps are used to average visibility.

Conversely, ISMs sample the light surface more densely, giving better quality when

high VPL sampling is needed (see Section 5.4.7 below).

One key difference: ISMs require a preprocess to point sample the scene geom-

etry. This somewhat limits geometric changes. Additionally, due to fixed sampling,

the samples used to create individual imperfect shadow maps may be outside the

light frustum or too sparse on nearby geometry, potentially leaving visible parts of

the scene undersampled.

In general, we view ISMs as somewhat orthogonal to our work. As stated in



106

162 VPLs 322 VPLs 642 VPLs 1282 VPLs

Figure 5.14: A scene using 162, 322, 642, and 1282 VPLs. Increasing VPL sampling
generally yields little visible change for diffuse surfaces.

our conclusion, we envision using ISMs in our incremental rendering process instead

of ray-marched voxel visibility, combining the strengths of these different techniques.

5.4.7 VPL Sampling

For diffuse and slightly glossy surfaces, our implementation uses a fixed set of

256 VPLs. We found this coarse sampling sufficient; Figure 5.14 compares a scene

with varying VPLs counts. There is no perceptible difference between the images

(even in a difference image), despite the factor of 64 change in VPL count. While the

larger VPL count does not often yield increased quality, it certainly increases cost.

A naive implementation scales linearly with VPLs, though the incremental visibility

detailed in Section 5.3.3.2 may allow sub-linear scaling. We did not explore scaling

issues, as we found 256 VPLs a good quality-performance tradeoff; lower sampling

does start introducing banding.

While 256 VPLs suffice for many diffuse scenes, pathological scenarios will
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Figure 5.15: A pathological scene demonstrating artifacts from a fixed 16× 16 VPL
sampling. Here, a video on the back wall has a white square bouncing around a black
screen, so most VPLs uselessly represent large black regions on the light.

show artifacts. Figure 5.15 compares 256 and 16,384 VPLs in such a scene; the

geometry is identical to Figure 5.14, but the video on the back wall contains a white

square bouncing around a mostly black screen. In this case our uniform VPL sampling

wastes most samples on black regions of the video and undersamples the square. An

adaptive sampling would reduce artifacts, though a better option would simply treat

the video as a dynamic square light.

Non-diffuse surfaces complicate matters. Light samples should be focused

inside the material’s reflection lobe. One approach would be to adaptively sample

the light for each fragment, as proposed by Nichols et al. [102]. Instead, as outlined in

Section 5.3.2.1, we use the regular sampling where sufficient and adapt to a per-lobe

texture sampling scheme when fixed VPL samples become visible.
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n = 300 n = 2000

Figure 5.16: With sharp BRDFs, simple binary visibility queries may require many
VPLs to produce artifact-free results. Here, the limited set of VPLs produces banding
and interleaving artifacts with binary visibility queries (top). Querying using filtered
variance values yields much better results (bottom).

5.4.8 Variance Visibility Queries

Figure 5.16 illustrates banding and interleaving artifacts that may arise using

binary visibility queries to a small number of VPLs. Applying filtering and using

variance queries as described in Section 5.3.3.3 greatly reduces these artifacts.

5.5 Conclusions

We introduced a multiresolution image-space rendering algorithm able to com-

pute direct illumination from dynamic area lights. We described refinement methods

to accelerate the rendering of diffuse and non-diffuse surfaces, proposed a method

of coarsely approximating visibility using screen space voxelization, and combined

them using incremental refinement. We achieve interactive speeds for a variety of



109

scenes, require no precomputation, and impose no restrictions on the light, camera,

or geometry.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis presented our work towards interactive global effects on the GPU.

Chapter 3 described our initial work in this area, a multiresolution image space al-

gorithm that refined indirect illumination into patches, or “subsplats”, and rendered

each at the lowest possible resolution. Chapter 4 proposed a more efficient method

for achieving identical results by reformulating patch refinement as a parallel process

and gathering illumination instead of splatting it. Additionally, this chapter presented

two improved methods for improving temporal coherence by applying ideas used in

hierarchical radiosity to image space. Finally, Chapter 5 applied similar methods to

the computation of direct illumination, also discussing a novel method for computing

visibility and an enhanced variant of multiresolution rendering.

Our work contributes a number of interesting ideas towards the pursuit of in-

teractive global illumination. Our techniques operate in image-space, avoiding wasted

computation on areas outside the view frustum and limiting the effect of geometric

complexity on performance. Unlike comparable techniques such as imperfect shadow

maps [119], our work requires no preprocessing and places no limits upon scene dy-

namism. Stencil-based multiresolution rendering, as introduced in Chapter 4, can

greatly accelerate computation of largely low-frequency global illumination effects.

Finally, in contrast to techniques like cascaded light propagation volumes [69] that

require diffuse or nearly-diffuse surfaces, we show in Chapter 5 that our methods can

function with more complex BRDFS – potentially even at higher speeds than diffuse
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surfaces.

Naturally, other methods carry some advantages over our work. When certain

limitations are accepted (i.e. diffuse-only scenes with solely low-frequency lighting),

other approximations such as light propagation volumes often prove more efficient.

Furthermore, our methods create approximations – sometimes coarse ones – and thus

may not be suitable where strict accuracy is required. However, they offer versatility

and yields plausible results at interactive speeds. We believe that our work is therefore

a useful and worthwhile contribution to the field.

Our results suggest a number of future directions:

1. Improved BRDF-specific refinement metrics: Both the indirect and di-

rect illumination methods presented in this thesis would benefit from improved

refinement metrics, especially for non-diffuse surfaces. Section 5.3.2.1 presented

a method of refining patches for a Phong BRDF, showing that our multires-

olution methods can apply to nondiffuse materials in addition to the diffuse

surfaces depicted throughout this thesis. Additional research towards refine-

ment for specific BRDFs would increase rendering efficiency, and widen the

usefulness of our methods.

2. Improved visibility computation: Chapter 5 presented a method of com-

puting visibility by marching rays through coarse screen space voxelization. We

demonstrated that this method can achieve quality results at interactive speeds,

but ray marching remains quite an expensive operation. The ray tracing com-

munity has spent decades researching efficient coherent ray traversal strategies
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(some of which are mentioned in Section 2.4.1); we believe that dramatic per-

formance increases could be achieved by applying them to this new context.

Additionally, our illumination refinement is orthogonal from our proposed vis-

ibility queries; incremental lookups (from Section 5.3.3.2 into other visibility

approaches such as imperfect shadow maps [119] may work well.

3. Improved visibility for direct illumination with complex BRDFs: The

more complex reflection of light from non-diffuse BRDFs simultaneously sim-

plify and complicate their usage with our techniques. With a complex BRDF,

more of the illumination at a given point comes from a smaller area of the visi-

ble hemisphere; as suggested above, this can simplify and accelerate rendering.

With these BRDFs, however, our results suggest that a finer sampling of vis-

ibility is required to yield plausible shadows. Rather than uniformly increase

visibility sampling, a hierarchical approach (similar to that described in Chap-

ter 4), applied to visibility computation for non-diffuse BRDFs, may produce

quality results.

4. Visibility for indirect illumination: Our methods for computing indirect

illumination from Chapters 3 and 4 do not consider occlusion. While indirect

occlusion is arguably less important than occlusion for direct lighting, an ef-

ficient approximation for indirect visibility would be interesting future work.

Our method of computing occlusion for direct lighting, presented in Section

5.3.3, may work well for this purpose. Investigation into alternate methods of
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computing coarse occlusion approximation may also prove worthwhile.

5. Multi-bounce indirect illumination: Techniques derived from reflective

shadow maps, including those described in this thesis, approximate only a single

bounce of indirect illumination. Although this has been shown to be sufficient

for many applications [144], others may benefit from multiple bounces of indirect

illumination. Even with just an eye-space G-buffer and a light-space reflective

shadow map, there may be enough information to generate a coarse approxi-

mation of the second and higher bounces; additional research could determine

if this is the case, or what additional scene information would be required to

efficiently approximate additional bounces.

6. Temporal caching: Each frame, our techniques completely recompute all il-

lumination. Given that illumination often changes slowly temporally as well

as spatially, there may be additional performance or quality to be gained from

caching and reusing results from previous frames. While temporal caching ap-

proaches tend to complicate scene dynamism, much recent work [53, 98, 127]

has focused on alleviating these problems. Combining these ideas with our

multiresolution approach may prove worthwhile.

7. Additional applications: Our multiresolution methods provide a flexible base

for rendering other global effects, such as caustics, participating media, volumet-

ric caustics and shadows, etc. Some parts of our work have further applicability:

for example, we think that screen-space voxelization may yield superior results
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when applied to screen space ambient occlusion.

In summary, this dissertation presented three multiresolution image-space

techniques for interactively computing global effects on the GPU. Each of these tech-

niques yields plausible results at interactive speeds, taking a small step closer to the

goal of completely interactive photorealistic rendering.
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[14] Francesc Castro, László Neumann, and Mateu Sbert. Extended ambient term.
J. Graph. Tools, 5(4):1–7, 2000.

[15] Shenchang Eric Chen. Incremental radiosity: An extension of progressive ra-
diosity to an interactive image synthesis system. In Proceedings of SIGGRAPH,
pages 135–144, 1990.

[16] Michael Cohen, Shenchang Eric Chen, John Wallace, and Donald Greenburg.
A progressive refinement approach to fast radiosity image generation. In Pro-
ceedings of SIGGRAPH, pages 75–84, 1988.

[17] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthe-
sis. Academic Press Professional, Boston, MA, 1993.

[18] Steven Collins. Adaptive splatting for specular to diffuse light transport. In In
Fifth Eurographics Workshop on Rendering, pages 119–135, 1994.

[19] Robert Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
In Proceedings of SIGGRAPH, pages 137–145, 1984.

[20] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. In Proceedings of SIGGRAPH, pages 307–316, 1981.

[21] Franklin Crow. Shadow algorithms for computer graphics. In Proceedings of
SIGGRAPH, pages 242–248, 1977.

[22] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In Pro-
ceedings of the Symposium on Interactive 3D Graphics and Games, pages 203–
231, 2005.

[23] Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination.
In Proceedings of the Symposium on Interactive 3D Graphics and Games, pages
93–100, 2006.



117

[24] Kurt Debattista, Piotr Dubla, Francesco Banterle, Lúıs Paulo Santos, and Alan
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