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ABSTRACT

An n-string tangle is a three dimensional ball with n-strings properly embedded

in it. In late the 1980
′

s, C. Ernst and D. W. Sumner’s introduced a tangle model for

protein-DNA complexes. This model assumes that the protein is a 3-dimensional ball

and the protein-bound DNA are strings embedded inside the ball.

Originally the tangle model was applied to proteins such as Cre recombinase

which binds two DNA segments. This protein breaks and rejoins DNA segments and

can create knotted DNA. We can use a 2-string tangle model for this complex. More

recently, Pathania, Jayaram and Harshey predicted that the topological structure

within a Mu protein complex consists of three DNA segments containing five crossings.

Since Mu binds DNA sequences at 3 sites, this Mu protein-DNA complex can be

modeled by a 3-string tangle. Darcy, Leucke and Vazquez analyzed Pathania et al
′

s

experimental results by using 3-string tangle analysis.

Based on the 3-string tangle analysis of a Mu protein-DNA complex, we ad-

dressed the possibility that a protein binds DNA sequences at four sites. Such a

protein complex bound to a circular DNA molecule is modeled by a 4-string tangle

with four loops outside of the tangle. In this thesis, we determined a biologically

relevant 4-string tangle model. We also developed mathematics for solving tangle

equations to predict the topology of DNA within the protein complex.
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ABSTRACT

An n-string tangle is a three dimensional ball with n-strings properly embedded

in it. In late the 1980
′

s, C. Ernst and D. W. Sumner’s introduced a tangle model for

protein-DNA complexes. This model assumes that the protein is a 3-dimensional ball

and the protein-bound DNA are strings embedded inside the ball.

Originally the tangle model was applied to proteins such as Cre recombinase

which binds two DNA segments. This protein breaks and rejoins DNA segments and

can create knotted DNA. We can use a 2-string tangle model for this complex. More

recently, Pathania, Jayaram and Harshey predicted that the topological structure

within a Mu protein complex consists of three DNA segments containing five crossings.

Since Mu binds DNA sequences at 3 sites, this Mu protein-DNA complex can be

modeled by a 3-string tangle. Darcy, Leucke and Vazquez analyzed Pathania et al
′

s

experimental results by using 3-string tangle analysis.

Based on the 3-string tangle analysis of a Mu protein-DNA complex, we ad-

dressed the possibility that a protein binds DNA sequences at four sites. Such a

protein complex bound to a circular DNA molecule is modeled by a 4-string tangle

with four loops outside of the tangle. In this thesis, we determined a biologically

relevant 4-string tangle model. We also developed mathematics for solving tangle

equations to predict the topology of DNA within the protein complex.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

An n-string tangle is a three dimensional ball with n-strings properly embed-

ded in it. Tangles were studied by Conway in the 1960’s [3]. In the 1980’s, Ernst

and Sumners introduced a mathematical tangle model for protein-bound DNA com-

plexes [9]. In this model, the protein is modeled by a three dimensional ball and

the protein-bound DNA is modeled by strings. They used a 2-string tangle model to

analyze experimental results for Tn3 resolvase and phage λ integrase. This work was

motivated by Nick Cozzarelli [8, 20, 23, 24]. Some proteins can break and rejoin DNA

segments and will knot circular DNA molecules. The knot types of the products can

be used to determine information regarding how these proteins act.

Pathania, Jayaram and Harshey extended these methods to derive the number

of DNA crossings trapped in an unknown protein-DNA complex involving multiple

DNA segments [15]. This methodology, called difference topology, was used to deter-

mine the topological structure within the Mu protein complex, which consists of three

DNA segments containing five crossings. Since Mu binds DNA sequences at 3 sites,

the Mu protein DNA complex can be modeled by a 3-string tangle. 3-string tangle

analysis is much more complicated than 2-string tangle analysis. The experimental

results in [15] were mathematically [6] and computationally [5] analyzed by using a

3-string tangle model.
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From the 3-string tangle analysis of a Mu protein-DNA complex, we addressed

the possibility that a protein binds DNA sequences at four sites. Such a protein

complex bound to a circular DNA molecule is modeled by a 4-string tangle with four

loops outside of the tangle. In this thesis, we determined a biologically relevant 4-

string tangle model. We also developed mathematics for solving tangle equations to

predict the topology of DNA within the protein complex.

1.2 Organization of thesis

In chapter 2, we state the necessary definitions and mathematical prelimi-

naries. Background in biology and mathematics is given in chapter 3. In section

3.1, we introduce basic concepts of DNA recombination. We focus on site-specific

recombination since this is a very important concept for understanding difference

topology. In section 3.2, we introduce tangle analysis of protein-DNA complexes. In

section 3.3, we explain the methodology of difference topology and its application to a

Mu protein-DNA complex. In section 3.4, we summarize the 3-string tangle analysis

of the Mu protein-DNA complex in [6]. Finally, in chapter 4, we introduce a 4-string

tangle model for a protein which binds four DNA segments. We conclude that a

4-string tangle (with small number of crossings) which satisfies certain experimental

conditions must be R-standard (See definition 4.3). Some future directions of this

research are stated in Chapter 5.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, I state definitions and mathematical preliminaries which I use

throughout this thesis. They can be divided to three concepts: knot/link theory,

tangle theory and low dimensional topology. We are working in the piecewise linear

or smooth category.

2.1 Knots and links

Definition 2.1. [17] A subset K of a space X is a knot if K homeomorphic with a

sphere Sp. More generally K is a link if K is homeomorphic with a disjoint union

Sp1 ∪ · · · ∪ Spr of one or more spheres.

Definition 2.2. Let X and Y be topological spaces. A function h : X → Y is called

a homeomorphism if h is 1-1, onto, continuous, and h−1 is continuous.

Definition 2.3. A function i : X → Y is an embedding if i : X → i(X) is a

homeomorphism.

Definition 2.4. Let X and Y be two topological spaces. If f1 and f2 are continuous

maps from X to Y , we say that f1 is homotopic to f2 if there exists a continuous map

F : X × [0, 1] → Y such that F (x, 0) = f1(x) and F (x, 1) = f2(x) for each x ∈ X.

Definition 2.5. A homotopy F : X × [0, 1] → X is called an ambient isotopy if

F (x, 0) = identity and each F (x, t) is a homeomorphism for t ∈ [0, 1].
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Definition 2.6. [17] Two knots or links K, K
′

in X are isotopic if there is an ambient

isotopy F : X × [0, 1] → X such that F (K, 0) = K and F (K, 1) = K
′

.

Definition 2.7. A knot projection is a projection of a knot into the 2-dimensional

plane where under and over arcs are not specified. In this projection, no three points

correspond to one point on the plane and arcs cross transversly.

Definition 2.8. A knot diagram is a projection where at each crossing the over and

under arcs are specified as in Figure 2.1 (a).

If the diagram has an orientation, we can assign +1 or -1 at each crossing as

in Figure 2.1

(b) (c)(a)

Figure 2.1: Crossings on a knot diagram

(a) Possible crossings on a knot diagram; (b) +1 crossing; (c) -1 crossing

Two knot diagrams are equivalent if they are related by Reidemeister moves

(Figure 2.2).
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I II III

Figure 2.2: Reidemeister moves

2.2 Tangles

Definition 2.9. An n-string tangle is a pair (B, t), where B is a 3 dimensional ball

and t is a set of arcs embedded in B. The two end points of each arc lie on the

boundary of B.

Definition 2.10. Two tangles are equivalent if they are ambient isotopic keeping the

boundary of B fixed.

Definition 2.11. Two tangles T1, T2 are freely isotopic if there is an isotopy of the

3-ball taking T1 to T2, which is not necessarily fixed on its boundary.

Definition 2.12. If a tangle T = (B, t) is freely isotopic to a tangle with no crossing,

then we say T is a rational tangle. T is locally knotted if there is a 2-sphere S in B

that intersect one of the two strings transversely in two points and the string in S

is knotted with end points on S. In the case that T is neither rational nor locally

knotted, T is called a prime tangle.

Examples of 3-string tangles are shown in Figure 3.4.

Definition 2.13. [6] Let T be an n-string tangle. T is split if there is a properly

embedded disk separating some of its strands from other strands (Figure 2.3(a)).
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Strands s1, s2 of T are parallel if there is a disk D in B3 such that int(D) is disjoint

from T and ∂D = s1 ∪ α ∪ s2 ∪ β where α, β are arcs in ∂B3 (Figure 2.3(b)).

(a) (b)

Figure 2.3: Examples of 3-string tangles

(a) Example of a split 3-tangle; (b) Example of a 3-tangle with two parallel strands..

In particular, when n = 2, much theory was developed which was initiated by

John H. Conway [3]. For 2-string tangles, the zero tangle is the tangle in Figure 2.4

(a). A rational tangle can be obtained by adding alternating horizontal and vertical

twists to the zero tangle. By using this fact, Conway developed a notation for the

2-string tangle, (x1, ..., xn) where xi’s are integers. This notation means that we start

from the zero tangle, add x1 horizontal twists by moving NE and SE end points, add

x2 vertical twists by moving SW and SE end points, and add x3 horizontal twists,
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etc. Note that the last entry xn of conway notation (x1, ..., xn) must be the number

of horizontal twists. A horizontal twist is positive if it is right-handed and a vertical

twist is positive if it is left-handed. See an example in Figure 2.4 (b).

 (a)

NE

SE

(b)

NE

SE
SW

NW NW

SW

Figure 2.4: Examples of 2-string tangles

(a) The zero tangle; (b) The 2-string tangle, (-3,-2,0) In this figure, NW, NE, SW

and SE refer to the four endpoints of the strings.

The unique extended rational number
p

q
∈ Q ∪∞ corresponds to the conway

notation of a 2-string rational tangle (x1, ..., xn) by the continued fraction as follows:

p

q
= xn +

1

xn−1 + 1
xn−2+

1

... x2+ 1
x1

Conway proved that two rational 2-string tangles are equivalent if and only if the

corresponding two extended rational numbers obtained by the continued fraction are

the same. We denote a 2-string tangle which has a conway notation corresponding to

the extended rational number p

q
by T (p

q
).

We define an operation on 2-string tangles.

Definition 2.14. Let T1, T2 be two 2-string tangles. Then the tangle sum T1 + T2
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is defined as in Figure 2.5. In this figure, NW, NE, SW and SE refer to the four

endpoints of the strings.

T T T T+ =1 2 1 2

SW

NE

SE

NW NE

SE

NW NENW

SW SESW

Figure 2.5: Sum of two tangles, T1 + T2

By using this operation, we can define a different kind of 2-string tangle:

Definition 2.15. [26] A montesinos tangle T (r1, ..., rn) is a tangle obtained by taking

sums of 2-string rational tangles, T (r1), ..., T (rn). We always assume ri is a non-

integer.

If we connect the NW endpoint to the NE endpoint and the SW endpoint to

the SE endpoint of a tangle as shown in Figure 2.6, we get the numerator closure of

a 2-string tangle. We denote the numerator closure of a tangle T as N(T ). This can

be a knot or a link.

2.3 Low dimensional topology

In this thesis, all surfaces and 3-manifolds are assumed orientable and compact

and surfaces in 3-manifolds are assumed properly embedded.

Definition 2.16. [17] We regard an n-manifold Mn to be a metric space which may



9

T

Figure 2.6: Numerator closure of 2-string tangle

be covered by open sets, each of which is homeomorphic with Rn or the half-space

Rn
+.

Definition 2.17. A surface F in a 3-manifold M is compressible if there is a simple

close curve C on F which does not bound a disk in F , but bounds a disk in M ;

otherwise we say F is incompressible.

Definition 2.18. A 3-manifold M is irreducible if any 2-dimensional sphere bounds

a 3-ball in M ; otherwise we say M is reducible.

Definition 2.19. A 3-manifold M is ∂-irreducible if ∂M is incompressible in M .

Definition 2.20. A 3-manifold M is atoroidal if M contains no properly embedded

incompressible torus.

Theorem 2.1. [17] Jordan Curve Theorem

If Γ is a simple closed curve in R2 then R2 − Γ has precisely two components, and Γ

is the boundary of each.

Corollary 2.2. [17] If Γ is a simple closed curve in the sphere S2 then S2−Γ consists

of precisely two components, and Γ is the boundary of each.
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CHAPTER 3

BACKGROUND

3.1 DNA recombination

DNA recombination refers to a process in which DNA is rearranged within a

genome. This is one of the biological processes which can change topological prop-

erties of DNA. We are interested in DNA recombination where two specific short

DNA sequences are broken and rejoined in a different order. This process is called

site-specific recombination and the specific sequences are called target sites. This re-

action requires specialized proteins, called recombinases, to recognize these sites and

to catalyze the recombination reaction at these sites.

Site-specific recombination can result in either the inversion or deletion of

a DNA segment. As one can see from Figure 3.1(a), if the orientation of target

sites are opposite to one another (inverted repeat), then recombination leads to the

inversion of the DNA segment between the two target sites. On the other hand, if the

orientation of target sites are the same with respect to one another (directed repeat),

then recombination leads to the deletion of the DNA segment between the two target

sites, see Figure 3.1(b).

Note that the number of components is the same after inversion. But it is

different after deletion, since the DNA sequence between the two target sites are

deleted from the original DNA sequences. In particular, when the initial DNA is

circular, inversion results in a knot and deletion results in a link as one can see from
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A

A

X

X

Y

Y

B

B

BYXA

A

A

A B

B

B

X Y

X XY Y

Y X

BA

(a)  (b)

Figure 3.1: Site-specific recombinations

(a) Inversion; (b) Deletion. (This figure is redrawn from http://www.mun.ca/biochem

/courses/3107/Lectures/Topics/Site-specific-Recomb.html)

the following example. Cre is a site-specific recombinases. The target sites of Cre are

called loxP. Cre can catalyzes both DNA inversion and deletion. The recombination

products depend on the relative orientation of the loxP sites, the target sites of Cre.

When the DNA is circular, the products of DNA inversion and deletion by Cre are

knots and catenanes, respectively (see Figure 3.2).

3.2 DNA topology and the tangle model

An n-string tangle is a three dimensional ball with n-strings properly embed-

ded in it. The tangle model of a protein-DNA complex was developed by C. Ernst

and D. W. Sumners [9]. This model assumes the protein is a three dimensional ball
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Inversion
Cre

−binding
Cre

DeletionCre
−binding

Cre

3−noded knot

4−noded catenane

Figure 3.2: Cre recombination

and the protein-bound DNA are strings embedded inside the ball. See Figure 3.3.

Examples of 3-string tangles are given in Figure 3.4. A rational tangles is

ambient isotopic to a tangle which has no crossings if we allow the boundary of the

three ball to move. A tangle is rational if and only if its strings can be pushed to lie

on the boundary of the 3D ball so that no string crosses over another string on the

boundary of this ball. If the DNA wraps around the protein “ball” so that the DNA

does not cross itself on the boundary of this protein ball, then the tangle modeling

it is rational. Also, in nature, circular DNA is supercoiled. Protein-bound DNA is

also often supercoiled. Hence rational tangles are generally believed to be the most

biologically reasonable models for protein-bound DNA.

Example 3.1. Figure 3.4 (a)∼(e) give examples of 3-string tangles. Among those, (a),

(c) and (d) are examples of rational 3-string tangles.

The original tangle model was applied to proteins which bind two segments of
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Figure 3.3: Tangle models of DNA-protein complexes

(a)AFM image of a Cre synaptic complex with circular DNA [22] and a corresponding

2-string tangle model; (b) Electron microscope image of Hin invertasome formed with

circular DNA [11] and a corresponding 3-string tangle model.

(b) (c)   (a)

(d) (e)

Figure 3.4: Examples of 3-string tangles

(a) Zero tangle; (b) Locally knotted tangle; (c) and (d) Rational tangles; (e) Prime

tangle.
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DNA and which will break and rejoin segments of DNA creating knotted DNA. For

a review of 2-string tangle analysis, see for example [9, 10, 21, 4]. Software has been

developed to solve 2-string tangle equations [18, 7] and n-string tangle equations [5].

This software was used to search through all tangles up through 8 crossings which

satisfy the experimental results of [5]. But computational software which can only

solve one system of equations at a time lacks the ability mathematical theories can

provide for analyzing real and hypothetical experiments.

In the next section we will discuss the biological model for a Mu protein-DNA

complex given in [15], while in section 5 we will summarize the mathematical tangle

analysis given in [6].

3.3 Difference topology and its application to Mu

DNA transposition results in the movement of a DNA segment from one loca-

tion to another in a genome [14]. Bacteriophage Mu is a virus which uses transposition

efficiently to replicate its DNA. During the transposition process, Mu proteins bind

to 3 target sites including an enhancer sequence and two Mu ends (attL and attR)

(see Figure 3.5). The enhancer sequence will be denoted by E, the attL site by L

and the attR site by R. The protein-DNA complex consisting of Mu proteins along

with these three DNA sequences is called the transpososome. The structure of the

transpososome is very important for understanding the transposition pathway.

Pathania, Jayaram and Harshey used Cre inversion and deletion to determine

the topological structure of DNA within the Mu transpososome [15]. If Cre acts on
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Figure 3.5: Mu transposition. Courtesy: Pathania et al.[27]

unknotted DNA not bound by any proteins except for Cre, then the main products

of Cre inversion and deletion are unknots and unlinks, respectively. If, however, a

protein complex such as Mu binds the DNA before Cre acts, the products can be

more complicated. This difference in products was used in [15] to determine the

topological conformation of the DNA bound by Mu. This methodology is called

difference topology.

Pathania et al. first performed Cre inversion with two loxP sites lying on

either side of E, isolating this site from L and R. In Figure 3.6 (a), the loxP sites are

inversely repeated. Cre cuts these target sites and changes the topology of the DNA

before resealing it again. The product topology in this case was a three noded knot.

Those three crossings resulted from E crossing R and L three times. Note that the

crossings between R and L can be untwisted and thus have no affect on the topology

of the product.

If the loxP sites are placed on the loops indicated in Figure 3.6, but directly
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Figure 3.6: Cre recombination on the DNA-Mu protein complex

repeated instead of inversely repeated, than an extra crossing not bound by either Mu

or Cre is necessary to properly orient the loxP sites within the Cre-DNA complex. In

this case the product of Cre recombination is a 4-crossing link. Note that this product

has one more crossing than the product when the loxP sites were placed on the same

pair of loops, but in inverse orientation. There are three pairs of loops on which to

place the loxP sites. In each case the number of crossings in the product differed

by one when comparing inversely repeated versus directly repeated loxP sites on the

same pair of loops. It was assumed that the smaller crossing product corresponded to

the tangle equation where no extra crossing is needed to properly orient the loxP sites

within the Cre-DNA complex. The equations corresponding to the smaller crossing

product when comparing loxP sites on the same pair of loops is shown in Figures

3.7a, 3.8a. In Figure 3.7a, the solution found in [15] is shown while Figure 3.8a shows
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the equations where the tangle corresponding to the Mu transpososome is unknown.

One can prove that the solution set for T to the system of three equations in Figure

3.8a is the same as the solution set for T if all six experiments are considered [5, 6].

To determine the number of DNA crossings within the Mu transpososome, we

are interested in how many crossings are between E and R, R and L, L and E. Note

that the protein-bound DNA conformation shown in Figure 3.7 consists of supercoiled

DNA with three branches: one branch contains one crossing while the other two

branches each contain two crossing. The solution found in [15] was obtained by

assuming the protein-bound DNA conformation is a 3-branched supercoiled structure.

Let x be the number of crossings between E and R, y the number of crossing between

R and L, and z the number of crossings between L and E. If the DNA conformation

bound by Mu is supercoiled with three branches, then x, y, z represent the number

of crossings in each of the three branches. In this case, the equations in Figure 3.8a

correspond to the equations x + z = 3, x + y = 3 and y + z = 4. Since we have three

unknown variables and three linear equations, we can easily solve this linear system.

The solution is that x = 1, y = 2, and z = 2. This implies that there is one crossing

between E and R, two crossings between R and L, and two crossings between L and

E. Thus if the DNA conformation bound by Mu is supercoiled with three branches,

then the Mu transpososome has the five crossing configuration shown in Figure 3.8b

[15].
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Figure 3.7: Tangle model of Mu transpososome

3.4 3-String tangle analysis

Mathematically, the Mu transpososome can be modeled by a three dimensional

ball and the three DNA segments can be modeled by 3 strings in the ball. Pathania

et al. found a solution to the system of equations in Figure 3.8a in which the DNA

bound by Mu consists of supercoiled DNA with 3 branches and 5 crossings ([15], see

section 3.3). Pathania et al.’s experimental data [15] was mathematically analyzed by

using 3-string tangle analysis [6] without the assumption that the tangle T represents

supercoiled DNA with three branches. If a tangle T satisfies all the experimental

data in [15], it can be a possible tangle model for the Mu transpososome. By using

tangle theory, the following result was obtained:

Proposition 3.1. Let T be a 3-string tangle which satisfies the system of tangle

equations in Figure 3.8 (a). If T can be freely isotopic to a projection with less than
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8 crossings, then T is the tangle in the Figure 3.8 (b).

(a)

R

(b)

E

L3−noded knot

3−noded knot

4−noded catenane

T T

T T

T T

Figure 3.8: Tangle model of Mu transpososome

And this can be generalized to the following Corollary:

Corollary 3.2. [6] Assume T is a 3-string tangle which can be freely isotoped to a

projection with at most seven crossings. If T satisfies the system of tangle equations

in Figure 3.9 (a), then T is the tangle in the Figure 3.9 (b).

Two tangles are freely isotopic to each other if they are ambient isotopic al-

lowing the boundary to move. For example, a rational tangle is freely isotopic to a

tangle with no crossings. Thus Proposition 3.1 implies that the only rational tangle

solution to the Figure 3.8 (a) equations is that given in Figure 3.8 (b).

An additional experiment not described here was used in [6] to rule out eight

crossing solutions. The upper bound for the number of crossings which could be bound
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(2,p)−torus link

(2,p)−torus link

T T

T T

T T

Figure 3.9: 3-string tangle solutions

Generalized 3-string tangle solutions of difference topology experiment. In (b), ni

represents ni many left handed half twists.

by Mu is unknown. However, since the solution found in [15] has five crossings, it is

unlikely that a solution with more than eight crossings could be a model for the Mu

transpososome. Thus the solution found in [15] is the only biologically reasonable

solution.
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CHAPTER 4

4-STRING TANGLE ANALYSIS ON DNA-PROTEIN COMPLEXES

4.1 Introduction

We do not currently have experimental data for a protein-DNA complex which

binds four segments of DNA. However there are a number of protein-DNA complexes,

such as those involved in replicating and transcribing DNA, in which multiple proteins

interact with each other and with multiple segments of DNA. Thus it is highly likely

that protein-DNA complexes exist involving four or more DNA segments. We address

a model for a protein complex which binds four DNA segments. Such a protein

complex bound to circular DNA is modeled by a 4-string tangle with four loops

outside of the tangle (Figure 4.1 (a)).

In the cell, DNA is usually circular or the ends are constrained. For both

cases, DNA is usually negatively supercoiled [1]. Figure 4.1 (b) shows an example of a

branched supercoiled DNA-protein complex which would be a biologically reasonable

model for a protein-DNA complex involving four segments of DNA. More generally,

Figure 4.1 (c) shows a biologically natural tangle model of a 4-branched supercoiled

DNA-protein complex, where the ni’s are the number of left-handed half twists and

ci’s represent four outside loops of DNA.

In this chapter, we would like to extend 3-string tangle analysis (section 3.4)

to 4-string tangle analysis based on difference topology. For Cre recombination, we

need to put loxP sites on two of the outside loops. In the 3-string tangle model,
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n2

n1
n4

n5

n3

c 1

c3

c 4

c 2

Figure 4.1: 4-string tangle model of DNA-protein complexes

(a) A 4-string tangle model of a DNA-protein complex; (b), (c) Examples of 4-string

tangle model which are biologically relevant.

there are three choices for a pair of loops on which to place Cre binding sites. On

the other hand, in the 4-string tangle model, there are six different possible pairs

of loops. In each case, there are two possible orientations for the Cre binding sites,

directly or inversely repeated. Thus there are twelve possible Cre reactions for the

4-string tangle model (six different pairs of loops and two different orientation of loxP

sites for each pair). With our 4-string tangle model of a branched supercoiled DNA-

protein complex, the prediction of difference topology (section 3.3) indicates that the

crossing number of the knotted inversion product and the catenated deletion product

will differ by one when the Cre binding sites are placed on the same pair of loops but

in different orientations.

As we mentioned at the beginning of this section, Figure 4.1 (c) is a biologically

relevant 4-string tangle model. Assume two loxP sites are located on loops c1 and c2

of Figure 4.1 (c). After Cre recombination, the n1 and n2 crossings on two branches
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of the supercoiled DNA would be trapped, but the n3, n4 and n5 crossings on the

other three branches can be removed. The result is a (2, n1 +n2)-torus knot if n1 +n2

is odd or (2, n1 +n2)-torus link if n1 +n2 is even. For example, Cre recombination on

directly repeated sites assuming the tangle model Figure 4.1 (b) results in (2, 4)-torus

link. See Figure 4.2 (a). Similarly, if two loxP sites are located on loops c2 and c3,

Cre recombination on inversely repeated sites results in the (2, 7)-torus knot as shown

in Figure 4.2 (b). In Figure 4.2, the dotted circle represents Cre recombinase and the

two thickened arrows represent loxP sites. For convenience, Cre is placed on the left

side and the 4-string tangle is rotated 90◦ counterclockwise.

c2

c1

c3

c4

c1

c4

c2

c3

(b)

(2,4)−torus link

(2,7)−torus knot

(a)

Figure 4.2: Examples of Cre recombination at loxP sites on two outside loops

(a) Cre deletion at loxP sites on the loops c1 and c2 of this protein-bound DNA

conformation results in a (2, 4)-torus link; (b) Cre inversion at loxP sites on the loops

c2 and c3 of this protein-bound DNA conformation results in a (2, 7)-torus knot.
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Hence if T is a tangle of the form shown in Figure 4.1 (c), Cre recombination

results in a (2, p)-torus knot if p is odd or a (2, p)-torus link if p is even. Note that

the products of Cre recombination in the Mu/Cre experiments were (2, p)-torus knots

and links [15]. Thus for the 4-string tangle model, we focus on equations where we

assume the products are (2, p)-torus knots and links. However, the difference topology

predicted that the crossing number between inversion knot and deletion link differ by

one (see section 3.3). This implies that one extra crossing is introduced by either Cre

inversion or deletion on a pair of outside loops. This extra crossing does not affect

the DNA conformation within the complex. Hence the six deletion experiments result

are enough to decide a 4-string tangle solution of our model of DNA-protein complex.

Mathematically this is also a convenient assumption (see section 4.2.1, Theorem 4.2).

Therefore, we assume the products of Cre recombination are (2, p)-torus links.

This process can be modeled by Figure 4.3. In this figure, the tangle T rep-

resents a protein which binds to four DNA segments. The dotted circle represents

Cre. For convenience, Cre is placed on the left side of T . T is rotated by 90◦ in (b)

and (f), 180◦ in (c) and (e), 270◦ in (d) counterclockwise. We summarize all these

assumptions in Figure 4.3 and define a tangle satisfying these conditions a solution

tangle.

Definition 4.1. A solution tangle is a tangle T which is a solution to the system of 6

difference topology equations (Figure 4.3) where the products are (2, pi) torus links.

We will first discuss branched supercoiled DNA solutions such as a tangle of

the form shown in Figure 4.1 (b). A 4-string tangle model of a branched supercoiled
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Figure 4.3: 4-string solution tangle

The equations which define a 4-string solution tangle. In (b)∼(d) and (f), T is rotated.

The dotted circle represents a Cre recombinases.
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DNA-complex can be represented by a weighted graph as in the following definition.

Definition 4.2. A tangle of the form shown in Figure 4.4 (a) will be called standard,

where ni is the number of left-handed half twists. Note that a 4-string standard

tangle T can be represented by a weighted graph Gs, where Gs is as in Figure 4.4(b).

Call this graph Gs a standard graph.

Where

       (a) (b)

ni

i

=

if n > 0

if n < 0i

n2

n1
n4

n5

n3

n1

n2 n5

n4

n3

Figure 4.4: A standard tnagle and a standard graph

(a) Standard tangle; (b) A weighted graph Gs representing a 4-string standard tangle.

We will also address the possibility that a pair of supercoiled DNA branches

can be twisted. In other words, what if a tangle model is isotopic to a standard tangle

allowing boundary of the corresponding graph (see Definition 4.2) to move?

Definition 4.3. A weighted graph GR is an R-standard graph if it is isotopic to a
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standard graph Gs allowing the boundary of Gs to move. A tangle T is R-standard

if it corresponds to an R-standard graph GR.

Example 4.1. Examples of 4-string standard tangles are shown in Figure 4.5 (a), (b)

and an example of a 4-string R-standard tangle is shown in (b).

(a) (b) (c)

Figure 4.5: Examples of standard tangle and R-standard tangle

(a),(b) Examples of standard tangles; (c) Example of R-standard tangle.

Example 4.2. Figure 4.6 (a) shows an example of a weighted graph GR which repre-

sents the R-standard tangle T in Figure 4.6 (b).

By extending 3-string tangle analysis of [6] to 4-string tangles, we determined

that the biologically relevant solutions to the system of equations in Figure 4.3 must

be R-standard:

Theorem 4.15 Suppose T is a 4-string tangle which has less than 8 crossings up to

free isotopy. If T is a solution tangle, then T is R-standard.

In other words, if a 4-string tangle T satisfies all the equations of Figure 4.3



28

= 

(a) (b)

GR v5
v6

v1
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v3
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n4

n2

n1

n5
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n3

n5

n4

n2
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Figure 4.6: An example of a weighted graph GR for an R-standard tangle T .

and has less than 8 crossings up to free isotopy, T can be represented by an R-standard

graph. Since all rational tangles are freely isotopic to a tangle which has no crossings,

we can find all rational solutions.

4.2 4-string tangle analysis

The main goal of this section is proving our main result, Theorem 4.15. In

section 4.2.1, we defind a wagon wheel graph G in B3 which corresponds to a 4-string

solution tangle T . By proving that G can lie in a properly embedded disk in the

3-ball, i.e. G is planar, we conclude that the solution tangle T is R-standard (See

section 4.2.5). To prove the planarity of G, we mainly applied M. Scharlemann and

A. Thompson’s theorem (Theorem 4.4):

Theorem 4.4 [19] Let Ĝ be an abstractly planar graph embedded in S3. Ĝ is planar

if and only if:

1. Every proper subgraph of Ĝ is planar, and
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2. X(Ĝ)=S3 − int(N(Ĝ)) has compressible boundary.

Since this theorem is about a graph which lies in S3, we also define a new

graph Ĝ in S3 which acts as same as G in B3, see section 4.2.2. In the process of

proving the planarity of every subgraph of Ĝ, we have to use Theorem 4.4 several

times and its very complicate to show the compressibility of its exterior. To prove

this, we used 4-valent graph (section 4.2.3), handle addition lemma and a property

of montesinos tangles (section 4.2.4).

4.2.1 Wagon wheel graph G

We start with the following definitions:

Definition 4.4. The abstract wagon wheel is the graph with four vertices {v1, v2, v3, v4}

and eight edges {e1, e2, e3, e4, b12, b23, b34, b41} which are connected in the way of

Figure 4.7(a). A graph G is a wagon wheel graph if G is a proper embedding of the

abstract wagon wheel into a three dimensional ball, B3 (e.g. Figure 4.7(b)). If there

is an isotopy of B3 which takes one wagon wheel graph to another with fixing all end

points of G on ∂B3, we say the two wagon wheel graphs are the same [6].

Definition 4.5. [6] If a properly embedded graph lies in a properly embedded disk

in the 3-ball, we call it planar.

Since a wagon wheel graph G lies in B3, we can think about a regular neigh-

borhood of it in B3. From eight edges of G, we get eight meridian disks in the

neighborhood of G. The following definition summarizes this.
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e1

e2

e4
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v 1

v 3

v 4

v 2

b41

b34b12

b23

(a) (b)

Figure 4.7: Abstract wagon wheel graph and a wagon wheel graph

(a)Abstract wagon wheel graph; (b) A wagon wheel graph.

Definition 4.6. Let G be a wagon wheel graph as in Figure 4.4, and N(G) be a regular

neighborhood of G in the 3-ball. Define E1, E2, E3, E4 to be meridian disks of N(G)

corresponding to edges e1, e2, e3, e4, and let εi = ∂Ei. Define D12, D23, D34, D41 to

be meridian disks of N(G) corresponding to edges b12, b23, b34, b41. Let δij = ∂Dij .

See Figure 4.8.

Definition 4.7. Let X(G) be the exterior of G. Then X(G) = B3−(N(G)∪N(∂B3)).

Note that ∂X(G) is a surface of genus 4.

We now think about a tangle T which lies on ∂N(G) in some special way as

follows :

Definition 4.8. Let G be a wagon wheel graph. T (G) is a 4-string tangle carried

by G if the 4-strings sij, sjk, skl, sli (1 ≤ i, j, k, l ≤ 4 and each number represents a

direction as in Figure 4.9) can be isotoped to lie in ∂N(G) such that
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D12  

23

34

41

Figure 4.8: N (G) is a regular neighborhood of G in the 3-ball.

• sij intersects each of εi, εj exactly once.

• sij intersects δij exactly once and is disjoint from the remaining δst.

2=NW 3=NE

4=SE1=SW

Figure 4.9: An example of a tangle carried by a wagon wheel graph.

As one can see from Definition 4.8 and the example in Figure 4.9, a string sij

in a diagram of T (G) is ambient isotopic to an arc which is the union of three arcs:
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an arc wrapping around ei, a parallel copy of bij and an arc wrapping around ej . In

fact, sij can wrap around bij . However, it is always isotopic to a parallel copy of bij

since sij only intersects δij once and is disjoint from the remaining δst. Hence we can

conclude that X(G) and X(T (G)) are homeomorphic. This gives us the following

lemma 4.1.

Lemma 4.1. If T (G) is a tangle carried by a wagon wheel graph G, ∂X(T (G)) is

compressible in X(T (G)) if and only if ∂X(G) is compressible in X(G).

How are these graphs and the tangles carried by these graphs related to the

solution tangles? Let T be a solution tangle. Define ci, 1 ≤ i ≤ 4, as the outside loops

of a tangle in Figure 4.3 (a). Then let C = ci∪sij ∪ cj ∪sjk ∪ ck ∪skl∪ cl ∪sli. Isotope

C into the interior of B3 by pushing each ci along ei where ei is an arc from a point on

the boundary of B3 to C (See Figure 4.10 (a)). Then G is a wagon wheel graph and

T is carried by G. Cre recombination on two outside loops of T is related to deleting

two edges ei, ej of G. For example, Cre recombination on c1 and c2 corresponds to

pushing c3 and c4 into the tangle. Thus this action corresponds to deleting e3 and e4

from G. See Figure 4.10 (b).

As we can see from Figure 4.10 (b), a difference topology tangle equation can

be expressed by using numerator closure of a sum of 2-string tangles: N(0
1

+ T ) =

N(1
0
) → N(1

0
+ T ) = N(2p

1
) where T is a solution tangle and N(2p

1
) is a (2, p)-

torus link. This implies that T is a rational tangle with only vertical crossings by

M.Hirasawa and K.Shimokawa’s Theorem [12] and 2-string tangle calculus [9]:

Theorem 4.2. [12, 9] Let T be a 2-string tangle. If N(0
1
+T ) = N(1

0
) and N(1

0
+T ) =
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Figure 4.10: A solution tangle carried bya wagon wheel graph and a Cre recombination
on a solution tangle

(a) T is a tangle carried by a wagon wheel graph G; (b) Cre recombination on c1 and

c2 corresponds to capping off c3 and c4.
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N(2p

1
), then T is 1

n
for some integer n.

Hence we get the following lemma:

Lemma 4.3. Let T be a solution tangle and G be a wagon wheel graph constructed

as in Figure 4.10 (a). Then T is carried by G. Furthermore G − ei − ej is a planar

graph for any 1 ≤ i, j ≤ 4 and i 6= j.

The same argument is true for a (2, 3)-torus knot product by [13], but false for

a (2, 5)-torus knot product. These facts show us that it is mathematically preferable

to assume that a product topology of a difference topology experiment is a (2, p)-torus

link.

4.2.2 Pentahedral graph Ĝ

As we mentioned at the beginning of this section, we will apply Scharlemann

and Thompson’s theorem about planarity of a graph in S3:

Theorem 4.4. [19] Let Ĝ be an abstractly planar graph embedded in S3. Ĝ is planar

if and only if:

1. Every proper subgraph of Ĝ is planar, and

2. X(Ĝ)= S3 − int(N(Ĝ)) has compressible boundary.

To apply this to our theory, we define a new graph Ĝ in S3 by gluing a 3-

dimensional ball to a ball in which a wagon wheel graph lies.

Definition 4.9. Let G be a wagon wheel graph which lies in a 3-ball B3. Attach

another 3-ball B
′

to B3. Let Ĝ be a new graph in S3 given by collapsing B
′

to a
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point. Ĝ is a graph abstractly homeomorphic to the 1-skeleton of a pentahedron (See

Figure 4.11). The edges of Ĝ are e1, e2, e3, e4, b12, b23, b34, b41 which are also the

edges of G.

Ĝ is planar if and only if G is planar. Also X(G) and X(Ĝ) are homeomorphic.

∪
∂B3 Ĝ

Collapsing B
′

Figure 4.11: Ĝ is a graph abstractly homeomorphic to the 1-skeleton of a pentahedron

4.2.3 4-valent graph Γ(T )

We will use that a 3-string tangle with small number of crossings up to free

isotopy is split or has two parallel strands (see Theorem 4.5):

Theorem 4.5. [6] If T is a 3-string tangle which can be freely isotoped to a projection

with at most seven crossings, then either T is split or has two parallel strands.

This is nice property since if a tangle is split or has two parallel strand, its

exterior has compressible boundary (See Figure 2.3). We generalized this property

of 3-string tangle to n-string tangle by using 4-valent graphs. Let me start with the

definition of a 4-valent graph related to an n-string tangle.

Definition 4.10. [6] To a projection of an n-tangle T , we associate the 4-valent graph
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Γ(T ), that is obtained by placing a vertex at each crossing. If T is not split, we label

in sequence e1, ..., e2n the distinct edges which are incident to the tangle circle. Let

v1, ..., v2n be the vertices of Γ(T ) which are endpoints of e1, ..., e2n. Define fi be the

face of Γ(T ) containing ei, ei+1.

e1

e2

v2

v3
v4

v5

v6

v7

v2n

e7

e6

e5

e4

e3

v1

e2n

Figure 4.12: 4-valent graph.

We use the following properties of 4-valent graph:

Lemma 4.6. [6] Assume T is not split. If vi = vj for some i = j, then the crossing

number of its projection can be reduced by free isotopy.

Lemma 4.7. [6] No two edges of fi correspond to the same edge of Γ(T ). If two

vertices of fi correspond to the same vertex of Γ(T ), then the crossing number of the

projection can be reduced by an isotopy fixed on the boundary. Finally, if vj is incident

to fi, then j ∈ i, i + 1 or a crossing can be reduced by a free isotopy.

The following theorem is the generalization of Theorem 4.5 to an n-string

tangle.
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Theorem 4.8. If T is a n-string tangle with at most 2n + 1 crossings up to free

isotopy, then either T is split or has two parallel strands.

Proof. Assume T is freely isotoped to a minimal crossing projection. Suppose T is

not split. Then Γ(T ) is as in Figure 4.12. If there are two edges ei and ej such that

vi = vj, then the crossing number of T can be reduced by free isotopy. This is a

contradiction to the assumption that T is a minimal crossing projection. Therefore,

there should be at least 2n vertices in Γ(T ). If v1, ..., v2n are the only vertices, then

by lemma 4.7, Γ(T ) must be as in Figure 4.13. This implies that there is a closed

circle and this cannot happen in T by the definition of n-string tangle. Hence there

will exist at least one more vertex v. From the fact that the crossing number of T is

at most 2n + 1, v is the only vertex other than v1, ..., v2n (Figure 4.14 (a)).

Figure 4.13: If T is not split and has only 2n vertices, Γ(T ) has closed circle.

Then v will be connected to vi, vj for some 1 ≤ i, j ≤ 2n (Figure 4.14(b)). By

the assumption of minimal crossing projection, we can connect all vertices without
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ie 
iv 

j
j

(a) (b)

v

v e 

v

Figure 4.14: Γ(T ) with 2n + 1 vertices

(a) Since Γ(T ) has at least 2n and at most 2n + 1 vertices, there is the only vertex v

other than v1, ..., v2n; (b) v is connected to vi and vj for some 1 ≤ i, j ≤ 2n

making extra crossings. After connecting all vertices by edges, we get a 4-valent graph

up to free isotopy as in Figure 4.15.

v

Figure 4.15: There is only one type of Γ(T ) up to free isotopy after connecting v to
vi, vj for some 1 ≤ i, j ≤ 2n

Note that we see two parallel strands in this case. See Figure 4.16.
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has parallel strands 

v

Figure 4.16: Example of two parallel strands

From the proof of Theorem 4.5 [6], we find an interesting fact that a 3-string

tangle with at most seven crossings up to free isotopy has a certain type of confor-

mation:

Corollary 4.9. Assume T is a 3-string tangle which can be freely isotoped to a pro-

jection with at most seven crossings. If T is not split, then T is freely isotopic to the

tangle in Figure 4.20 (c) or its mirror image.

Proof. (This proof is motivated by the proof of Theorem 4.5 in [6].) Assume T is not

split and is freely isotoped to a minimal crossing projection. By lemma 4.6, T should

have at least 6 vertices v1 · · · v6. From lemma 4.7, Γ(T ) must be as in Figure 4.17(a)

if v1 · · · v6 are the only vertices. Then there would be a closed curve in T . This is a

contradiction. Hence there must be at least one more vertex, say v, besides v1 · · · v6

as in Figure 4.17 (b).

We assumed that T has at most seven crossings up to free isotopy, so v, v1, · · · , v6

are the only vertices on Γ(T ). Considering all possibilities where there is no closed

curve, we get 9 cases. Six cases are as in Figure 4.18 while the other three cases can
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v

(a) (b)

Figure 4.17: Γ(T ) with 6 or 7 vertices

(a) When Γ(T ) has exactly 6 vertices, there would be a closed curve in T ; (b) v is

another vertex besides v1 · · · v6. Figure from [6]

be obtained from the top three via reflection.

Note that if T is freely isotopic to a tangle with a 4-valent graph shown in

Figure 4.18, then it is freely isotopic to a tangle with any of the 4-valent graphs in

Figure 4.18. We also notice that T has 2 strings (say s1, s2) with 2 crossings and one

string (say s3) with 3 crossings. If the crossings of s3 are not alternating, then T will

be a tangle with no crossing up to free isotopy. One example is shown in Figure 4.19.

This contradicts the minimal crossing projection assumption. Hence the crossings of

s3 should be alternating and thus s3 will be a knotted component of T .

If the crossings of s1 or s2 are not alternating, then T is freely isotopic to one

of the tangles in Figure 4.20 (a), (b), or their mirror images. This also contradicts the

minimal crossing projection assumption. Hence T is isotopic to the tangle in Figure

4.20 (c) or its mirror image.
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Figure 4.18: Six cases of possible Γ(T ). Figure from [6]

Isotopic
Freely 

Isotopic
Freely 

Isotopic
Freely 

2 s

3 s

1 s

∼= ∼= ∼=

Figure 4.19: If s3 has non-alternating crossings, then T is freely isotopic to the zero
tangle.

(c)(a) (b)

Figure 4.20: Possible 3-string tangles which corresponds Γ(T ) in Figure 4.18

(a) Neither of s1, s2 are linked with s3; (b) One of s1, s2 is linked with s3; (c) Both

of s1, s2 are linked with s3.
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Hence we can conclude that if T is not split, then it is freely isotopic to the

tangle in Figure 4.20 (c) or its mirror image.

4.2.4 Handle addition lemma and montesinos tangles

In this section, we use the handle addition lemma (Lemma 4.10) to find a

compressing disc in X(G). By using that disc and and a property of montesinos

tangles (Theorem 4.13), we proved the compressibility of the exterior of subgraphs of

G.

Definition 4.11. [25] Let M be an orientable, irreducible 3-manifold and F a surface

in ∂M . Given a simple closed curve J on F , let τ(M ; J) be the manifold obtained

by attaching a 2-handle D2 × I to M so that ∂D2 × I is identified with a regular

neighborhood of J in F . Let σ(F ; J) be the surface (F − ∂D2 × I) ∪ (D2 × ∂I) on

the boundary of τ(M ; J).

The following is the handle addition lemma:

Lemma 4.10. [25] [Handle Addition Lemma] Let M be an orientable, irreducible

3-manifold and F be a surface in ∂M . Let J be a simple, closed curve in F . Assume

σ(F ; J) is not a 2-sphere. If F is compressible in M but F − J is incompressible,

then σ(F ; J) is incompressible in τ(M ; J).

From the handle addition lemma, we can find a compressing disc of X(G)

which does not intersect with every εi:

Lemma 4.11. Let G be a wagon wheel graph and X(G) its exterior. Let εi be the

meridian curves on ∂X(G) as in Definition 4.6. Suppose G carries a 4-string tangle
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T which has less than 8 crossings up to free isotopy. If T (G) is a solution tangle,

then ∂X(G) − (ε1 ∪ ε2 ∪ ε3 ∪ ε4) is compressible in X(G).

Proof. Let M be X(G) = B3−(N(G)∪N(∂B3)). Then M is an orientable, irreducible

3-manifold.

Step 1 : Let F = ∂X(G) and J1 = ε1.

Then F is surface in ∂M and J1 is a simple, closed curve in F . Since T (G) has less than

8 crossings up to free isotopy, T (G) is split or has two parallel strands by Theorem

4.8. Hence ∂X(T (G)) is compressible in X(T (G)). Thus ∂X(G) is compressible in

X(G) by Lemma 4.1. I.e., F is compressible in M . Since σ(F ; J1) = σ(∂X(G); ε1)

is homeomorphic to the exterior of a 3-string tangle with less than 8 crossings up to

free isotopy which is thus split or has two parallel strands, σ(F ; J1) is compressible

in τ(M ; J1). By Lemma 4.10, F − J1 = F − ε1 is compressible in M .

   F =    F   =1

(a) (b) (c)

ε1

ε2 ε3

ε4

Figure 4.21: F, F1 and σ(F1; ε2)

(a) F = ∂X(G); (b)F1 = σ(F ; ε1); (c) σ(F1; ε2). Shaded two disks are examples of

compressing disks on ∂X(T (G − e1 − e2)).
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Step 2 : Let F1 = σ(F ; ε1) and J2 = ε2.

σ(F1; J2) is homeomorphic to ∂X(T (G − e1 − e2)). By Lemma 4.3 G − e1 − e2 is

planar. Hence there is a compressing disk D on ∂X(T (G − e1 − e2)) (see Figure

4.2.4 (c)). Thus σ(F1; J2) is compressible in τ(M, J2). By Lemma 4.10, F1 − J2 is

compressible in M . From the figure 4.22 (a), we can see the following relation: F1−J2

=σ(∂X(G); ε1) − ε2= σ(∂X(G) − ε2; ε1) = σ(F − J2; J1).

In step 1, we proved F − J1 is compressible in M . By a similar argument, we

can prove that F − J2 is compressible in M . Now, we know F − J2 is compressible in

M and σ(F − J2; J1) is compressible in τ(M ; J1). Hence F − J1 − J2 is compressible

in M .

 (b) (a)

Figure 4.22: F2 and σ(F2; J3)

(a) F2 = σ(∂X(G); ε1) − ε2 = σ(∂X(G) − ε2; ε1) ; (b) σ(F2, J3). The shaded disk is

an example of a compressing disk on ∂X(T (G − e1 − e3)) − ε2.

Step 3 : Let F2 = σ(∂X(G) − ε2; ε1) and J3 = ε3.

We showed that F2 is compressible in step 2 and J3 is a simple, closed curve. σ(F2, J3)
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is a surface which is homeomorphic to ∂X(T (G − e1 − e3)) − ε2. Since G − e1 −

e3 is planar by the definition 4.1, σ(F2, J3) is planar and thus compressible with a

compressing disk D as in Figure 4.22 (b). By the Lemma 4.10, F2−J3 is compressible.

Similar to step 2, F2 − J3 = σ(∂X(G) − ε2; ε1) − ε3 = σ(∂X(G) − ε2 − ε3; ε1) and

hence ∂X(G) − ε1 − ε2 − ε3 = F − J1 − J2 − J3 is compressible in M .

Step 4 :Let F3 = σ(∂X(G) − ε2 − ε3; ε1) and J4 = ε4.

By step 3, F3 is compressible and J4 is a simple closed curve. σ(F3; J4) is a subsurface

of σ(σ(F ; ε1); ε4) which is planar and hence compressible. Hence F3 − J4 = σ(F −

ε2 − ε3 − ε4; ε1) is compressible. By step 3 and the Lemme 4.10, F −J1 −J2 −J3 −J4

is compressible in M . In other words, ∂X(G) − (ε1 ∪ ε2 ∪ ε3 ∪ ε4) is compressible in

X(G).

By surgering along the disc in Lemma 4.11, we get another compressing disc

in X(G) (G is carrying a solution tangle) which intersect each δij algebraically once

and is still disjoint from all εi’s.

Lemma 4.12. Let εi and δij be the meridian curves on ∂X(G) in Definition 4.6.

Suppose G carries 4-string solution tangle T which has at most 7 crossings up to free

isotopy. If T (G) is a solution tangle, then there is a properly embedded disk in X(G)

that intersects each δij algebraically once in ∂X(G) and is disjoint from the εi.

Proof. (The proof of this lemma is similar to the proof of Lemma 4.11 of [DLV]) Let

D
′

be a disk from Lemma 4.11 lying in X(G) such that ∂D
′

⊂ ∂X(G) −∪4
i=1Ei and

D
′

is compressible in X(G). Let M be a regular neighborhood of G∪ ∂B3. Then B3
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can be written by X(G) ∪∂X(G) M . The closure of M −∪4
i=1Ei has two components,

say M1 and M2. Then M1 = S2 × I and M2=solid torus.

Suppose ∂D
′

lies in ∂M1, then ∂D
′

will bound a disk D
′′

on ∂M1. We can

form a sphere S = D
′

∪∂ D
′′

. After slightly pushing the interior of D
′′

into M1, we can

say ∂D
′

= ∂X(G)∩S. Because D
′

is a compressing disc on ∂X(G)−ε1−ε2−ε3−ε4,

there is an arc α on ∂M1 which connects Ei and Ej for some i, j (1 ≤ i, j ≤ 4) such

that it intersects ∂D
′

algebraically once. On the other hand, there is an arc β on

M2 which connects Ei and Ej , but is disjoint from ∂D
′

, hence missing S. Thus we

can get a simple closed curve α∪ β which intersects S once, i.e., S is non-separating.

This is a contradiction to a Corollary of the Jordan Curve Theorem (see Theorem

2.2). Hence ∂D
′

must lie in ∂M2.

Now, ∂D
′

is a simple closed curve on a boundary of a solid torus M2. Suppose

∂D
′

does not bound a disk in ∂M2. Then ∂D
′

can be expressed by a ·m + b · l where

m is a meridian, l is a longitude of M2 and a, b are relatively prime integers. If

|b|6= 1, then B3 contains a lens space summand. In other words, ∂D
′

must intersect

any meridian of M2 algebraically once. In this case, D
′

is the desired disk.

Assume ∂D
′

bounds a disk D
′′

in ∂M2. Then the intersection of a neighbor-

hood of ∪4
i=1Ei and ∂M2 must lie in D

′′

as S = D
′

∪ D
′′

is separating. Since M2 is

an unknotted solid torus (our solution tangle with 4 outside loops is a model of an

unknotted circular DNA-protein complex), there exists a disc D properly embedded

in B3−intM2 such that ∂D= longitude of ∂M2 and hence essential. Since intersection

of D and D
′′

is a set of disks, we can arrange that D is disjoint from D
′′

. Then D∩S
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is a set of trivial circles in D
′

and D. Hence after surgeries which take off the trivial

circles from D without changing ∂D, D is a disk properly embedded in X(G) since

all εi’s lie on opposite side of S from D. Hence D is the desired disk.

To determine the compressibility of the exterior of subgraphs of Ĝ, we have to

determine the compressibility of Ĝ−bij and Ĝ−bij − bkl. This follows from showing

the compressibility of the exterior of T − sij and T − sij − skl where T is a tangle

carried by G. We use Lemma 4.12 and the following Theorem 4.13 about montesinos

tangles developed by Y. Wu:

Theorem 4.13. [26] Suppose T = T1 + T2 is a nontrivial sum of atoroidal tangles.

Then T is a nontrivial tangle, and it is ∂-reducible if and only if, up to relabeling,

T1 is a 2-twist tangle, and T2 is a rational tangle, in which case exterior of T is a

handlebody.

The following Lemma 4.14 summarizes the compressibility of the exteriors of

T, T − sij and T − sij − skl (sij, skl are the strings of G).

Lemma 4.14. Let T be a 4-string solution tangle which can be freely isotoped to a

projection with less than eight crossings. Then X(T ), X(T − sij) and X(T − sij −

skl) have compressible boundary where sij, sjk, skl, sli are the 4 strings of T , 1 ≤

i, j, k, l ≤ 4.

Proof. We assume T is freely isotoped to a minimal crossing projection. By Theorem

4.8, T is split or has two parallel strands. Hence X(T ) has a compressing disk, see



48

Figure 2.3 (b).

Since T is a 4-string tangle with less than 8 crossing up to free isotopy, T−sij is

a 3-string tangle which has also less than 8 crossings up to free isotopy. By Theorem

4.5, T − sij is split or has two parallel strands. In either case, X(T − sij) has a

compressible boundary.

To prove the compressibility of T − sij − skl, we consider two cases:

Case 1. T − sij is split. Let D be a compressing disc in the exterior of T − sij which

splits 3 strings into two and one on each side of D. All cases can be drawn as in

Figure 4.2.4.

Skl

Sij SijSklSij

Sij Sij

Skl

Skl

 (d) (c)

D D

DD

 (b)(a)

or or

splits or

Figure 4.23: 4 different cases of the position of D when T − sij is split

For the cases (b) and (c) of the Figure 4.2.4, T − sij − skl still split. Thus, the

compressing disk D of X(T − sij) is still a compressing disc of X(T − sij − skl).

To prove the cases of Figure 4.2.4 (a) and (d), we define a wagon wheel graph
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as in Figure 4.10 (a). Note that an edge bij corresponds to a string sij and X(G) and

X(T ) is homeomorphic.

For the case Figure 4.2.4 (a), by Lemma 4.12, there is a properly embedded

disk D
′

in X(T ) that intersects each dij which is a meridian algebraically once in

∂X(G) and is disjoint from the εi . After surgering along D , we may assume that

D
′

is disjoint from D, and hence from dij and dkl. But then D
′

is a compressing disk

in X(G − bij − bkl). Hence T − sij − skl also has compressible boundary.

For the case Figure 4.2.4 (d), let the boundary of the ball of the tangle T be

the union of two disks B1 and B2 where B1 ∩B2 = ∂D . Then T1 = closure(B1 ∪D)

is isotopic to a 3-string tangle including the string sij . We can consider two cases

again:

(i) If T1 is split, then there is a compressing disk D
′

in X(T1) which separates 3 strings

into two and one on each side of D
′

. If sij is in the side which has two strings, then

a disk D
′

after surgering along D is the desired disk. If sij is in the side which has

one string, by the similar argument of case Figure 4.2.4 (a), there is a disk D
′′

in

X(T1) which intersects each δij algebraically once in ∂X(G) and is disjoint from the

εi. Then a disk D
′′

after surgering along D
′

and D is the desired disk.

(ii) If T1 is not split, by Corollary 4.9, it is isotopic to the tangle in Figure 4.20 (c) or

its mirror image. If sij is the string with 3 self-crossings, then T1 − sij is isotopic to a

two string tangle with two parallel strands. Hence it has exterior has a compressing

disk D
′

which is the desired disc after surgering along D, If sij is not the string with 3

self-crossings, then T1−sij will be a montesinos tangle with the form M(±1/2,±1/3).
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By Theorem 4.13, X(T1 − sij) is handlebody thus it has a compressing disc D
′

which

is the desired disc after possibly surgering along D.

Case 2. T − sij is not split. If T − sij is not split, then it is isotopic to the tangle

in Figure 4.20 (c) or its mirror image by Corollary 4.9. If skl is the string with 3

self-crossings, then T − sij − skl is isotopic to a two string tangle with two parallel

strands. Hence it has exterior with compressible boundary. If skl is not the string

with 3 self-crossings, then T − sij − skl will be a montesinos tangle with the form

M(±1/2,±1/3). By Theorem 4.13, X(T − sij − skl) is handlebody thus its boundary

is compressible.

Hence we can conclude that ∂X(T − sij − skl) is compressible.

4.2.5 Proof of main theorem

Theorem 4.15. Suppose T is 4-string tangle which has less than 8 crossings up to

free isotopy. If T is a solution tangle, then T is R-standard.

Proof. Let T be a solution tangle with strands sij, sjk, skl, sli for 1 ≤ i, j, k, l ≤ 4.

Define G as in Figure 4.10 (a). Then G is a wagon wheel graph and T is carried by

G.

If G is planar,then there is an isotopy from G to a very simple wagon wheel

graph (see Figure 4.24 (a)) after allowing boundary points to move. A tangle carried

by a wagon wheel graph in Figure 4.24 (a) has strands s12, s23, s34 and s41 where sij

is a union of three arcs: an arc wrapping around ei, a parallel copy of bij and an arc
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wrapping around ej. See an example in Figure 4.24 (b). This tangle corresponds to

a graph in Figure 4.24 (c) which is a standard graph. Since an R-standard graph is a

graph which is isotopic to a standard graph allowing the boundary to move, we can

conclude that T (G) is R-standard. Hence it is sufficient to show that G is planar to

finish the proof of this theorem.

(a) (b) (c)

Figure 4.24: A simple wagon wheel graph and a standard graph

Since Ĝ is planar if and only if G is planar, we will show that Ĝ is a planar

graph. To use Theorem 4.4, we have to show that every proper subgraph of Ĝ is

planar, and X(Ĝ) has compressible boundary.

• Claim I : X(Ĝ) has compressible boundary.

Since T is a 4-string tangle with at most 8 crossings, T is split or has parallel strands

by Theorem 4.8, and hence X(G) has compressible boundary. Because X(Ĝ) is

homeomorphic to X(G), X(Ĝ) has also compressible boundary.

• Claim II : Every proper subgraph of Ĝ is planar.

It is sufficient to show that Ĝ-en and Ĝ-bij are planar for 1 ≤ i, j, n ≤ 4 and i 6= j.
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• Subclaim II-1 : Ĝ-en is planar for 1 ≤ i ≤ 4.

G − en carries 3-string tangle T (G − en) with at most 7 crossings. By theorem

4.5, T (G − en) (a tangle carried by G− en) is split or has two parallel strands.

Then by cororally 3.2, T (G − en) is planar and hence G − en is planar. Thus

Ĝ-en is also planar.

• Subclaim II-2 : Ĝ-bij are planar for 1 ≤ i, j ≤ 4 and i 6= j.

Unlike Ĝ-en, we cannot sure that Ĝ-bij carries a 3-string solution tangle. Hence

we would like to use theorem 4.4 for Ĝ-bij. In other words, we need to show

that every proper subgraph of Ĝ-bij is planar, and X(Ĝ-bij) has compressible

boundary.

• Subclaim II-2-(1) : X(Ĝ-bij) has compressible boundary.

An edge bij of the graph Ĝ corresponds to a string sij of the tangle T , and Ĝ-bij

corresponds to a 3-string tangle T − sij. By the hypothesis, T is 4-string tangle

having less than 8 crossings up to free isotopy. Then T − sij is 3-string tangle

having at most 7 crossings up to free isotopy, and hence T − sij is split or has

parallel strands by Theorem 4.5. From Lemma 4.14, X(Ĝ-bij) has compressible

boundary.

• Subclaim II-2-(2) : Every proper subgraph of Ĝ-bij is planar.

Since there are 4 different bij , there are 4 different cases of Ĝ-bij as shown in

Figure 4.25 (a)∼(d). It is sufficient to show that graph in Figure 4.25 (d) is

planar since other cases are similar. For the rest of the proof, we assume Ĝ-bij
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is the graph in Figure 4.25 (d).

b ij or or or

(a) (b) (c) (d)

Figure 4.25: Ĝ-bij can be 4 different graphs

• Subclaim II-2-(2)-(i) : (Ĝ-bij)-el is planar.

(Ĝ-bij)-el=(Ĝ-el)-bij is a subgraph of Ĝ-el (i, j, l ∈ 1, 2, 3, 4). Since Ĝ-el is

planar, all subgraphs of Ĝ-el are also planar. Hence (Ĝ-bij)-el is planar.

• Subclaim II-2-(2)-(ii) : (Ĝ-bij)-bkl is planar.

(Ĝ-bij)-bkl is homeomorphic to Figure 4.26 (a) or (b) (i, j, k, l ∈ 1, 2, 3, 4).

or

(a) (b)

Figure 4.26: Ĝ-bij − bkl can be 2 different graphs

In the case of (a), this graph has an edge with a free end, say en. Since an

edge with a free end can always lie on a disk properly embedded in B3, the
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planarity of this graph is the same as the planarity of a graph which we get

after deformation retract of en to a vertex. Hence the planarity of the graph

in (a) is same as the planarity of a subgraph of Ĝ-en. We already showed that

Ĝ-en is planar, hence the graph in (a) is also planar.

In the case of (b), it’s not simple like (a). Again, we will apply Theorem 4.4.

To do that, we should check the compressibility of exterior of (Ĝ-bij)-bkl and

planarity of all subgroups of it.

• Subclaim II-2-(2)-(ii)-(a) : X((Ĝ-bij)-bkl) has compressible boundary.

Note that X(G)=X(Ĝ) is isotopic to X(T (G)), hence it is sufficient to show

that X(T − sij − skl) has compressible boundary. This is true by Lemma 4.14.

• Subclaim II-2-(2)-(ii)-(b) : Every subgraph of Ĝ−bij − bkl are planar.

If Ĝ−bij − bkl has the form of Figure 4.26 (a), then it has an edge with a free

end, say en. Hence the planarity of this graph is the same as the planarity of

Ĝ-en for some n ∈ {1, 2, 3, 4}. Since Ĝ-en is planar, a subgraph of it is also

planar. Now, assume the graph Ĝ−bij − bkl has the form of Figure 4.26(b). A

subgraph of Ĝ−bij − bkl obtained by deleting either en or bmn has an edge with

a free end, m, n ∈ {1, 2, 3, 4}. Again, after deformation retract of the edge with

a free end, the planarity of this types of subgraph would be the same as the

planarity of a subgraph of Ĝ-en for some n ∈ {1, 2, 3, 4}. Hence all subgraphs

of Ĝ−bij − bkl are planar.

So far, we showed that every proper subgraph of Ĝ is planar, and X(Ĝ) = S3
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- int(N( Ĝ)) has compressible boundary. By Theorem 4.4, we conclude that Ĝ is a

planar graph. Thus G is also planar. Therefore T is R-standard.

4.3 Branched supercoiled DNA solutions

In this section, we discuss more about the branched supercoiled DNA solutions.

We start with the following definition:

Definition 4.12. Let GR be a graph which corresponds to an R-standard tangle.

There are two vertices in the interior of the ball and 4 vertices on the boundary of the

ball. Let v1 = SW, v2 = NW, v3 = NE, v4 = SE be the vertices on the boundary of

the ball, and v5 and v6 be the vertices in the interior of the ball. GR is (2, j)-branched

if v5 connects v2 = NW and vj for some 1 6 j 6 4, j 6= 2.

The vertex v5 can only be connected with (v1, v2) or (v2, v3) or (v2, v4); hence

there are 3 different (i, j) branchings (Figure 4.27). For example, the graph GR in

Figure 4.6 (a) is (2, 4)-branched. Note that n5 = 0 if and only if GR is (i, j)-branched

for all (i, j).

Each edge of GR represents a branch of a branched supercoiled DNA molecule.

This implies that an (i, j)-branched graph and a (k, l)-branched graph represent dif-

ferent topologies of a DNA molecule when n5 6= 0 and (i, j) 6= (k, l).

4.3.1 Simple branched solution tangles

We will first focus on tangles of the form shown in Figure 4.28. Suppose a

tangle whose corresponding graph has the form shown in Figure 4.28 (a) is a solution
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(a) (b) (c)

v1

v2
v3

v4

v5
v6

v1

v1

v2 v2

v3 v3

v4

v4

v5

v6

v5
v6

1n

2n
5n

3n

4n

1n

2n

5n

3n

4n
1n

2n 5n 3n

4n

Figure 4.27: (i, j)-branched weighted graphs for R-standard tangle

(a)(1,2)-branched; (b)(2,3)-branched; (c)(2,4)-branched weighted graph for R-

standard tangle (Note that the dege connecting v4, v5 can pass either over or under

the edge connecting v1, v6.)

n1

n2
n3

n5

n4

n2 n3

n4n1

n5

(a) (b) (c)

c 1

c 2
c 3

c4

n2

n1
n4

n5

n3

c 1

c 2 c 3

c 4

c 1

c 2
c 3

c4

Figure 4.28: Examples of R-standard tangle model of a branched DNA-protein com-
plex corresponding to a weighted graph

(a) (1,2)-branched; (b) (2,3)-branched; (c) (2,4)-branched (Similar to Figure 4.27 (c),

there are two cases at the crossing of two branches depending on which branch is over

than another.)
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to the system of equations in Figure 4.3. Then we have the equations in 4.1. The

values p1, · · · , p6 in Figure 4.3 must be determined experimentally. Our goal is to

find n1, · · ·n6 in terms of the pi’s.

n1 + n2 = p1

n2 + n3 + n5 = p2

n3 + n4 = p3 (4.1)

n1 + n4 + n5 = p4

n1 + n3 + n5 = p5

n2 + n4 + n5 = p6.

The solution to the system of equations 4.1 is the following:

n1 =
p1 + p2 − p6

2
, n2 =

p1 − p4 + p6

2

n3 =
p2 + p3 − p6

2
, n4 =

−p2 + p3 + p6

2
(4.2)

n5 =
−p1 + p2 − p3 + p4

2
, p2 + p4 = p5 + p6.

We can solve similar equations for tangles corresponding to the graphs in

Figure 4.28 (b) and (c). The summary of the results is the following:

• The solution to the Figure 4.3 equations is the following if the solution is of the
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form Figure 4.28 (b):

n1 =
−p3 + p4 + p5

2
, n2 =

p3 + p4 − p5

2

n3 =
p1 + p2 − p5

2
, n4 =

−p1 + p2 + p5

2
(4.3)

n5 =
p1 − p2 + p3 − p4

2
, p1 + p3 = p5 + p6.

• The solution to the Figure 4.3 equations is the following if the solution is of the

form Figure 4.28 (c) (In this equation, ±2 means that 2 if the branch with n4

half twists is over and -2 if it is under.):

n1 =
p1 − p2 + p5

2
, n2 =

p1 − p4 + p6 ± 2

2

n3 =
−p1 + p2 + p5

2
, n4 =

−p1 + p4 + p6 ± 2

2
(4.4)

n5 =
p2 + p4 − p5 − p6 ± 2

2
, p1 + p3 = p2 + p4 ± 2.

Note that the ni must be integral. To have an integer solution set n1, · · · , n5,

all numerators of Equations 4.2, 4.3 and 4.4 should be even. In fact, there are eight

possible cases to have an integer solution set for equation 4.2, shown in the following

table. Equations 4.3 and 4.4 have an integer solution set for the same eight cases.

Thus the different ways of branching can only be distinguished by the last equation

given in Equations 4.2, 4.3 and 4.4:

Lemma 4.16. The graph GR corresponding to an R-standard tangle in Figure 4.28

can only be branched in three different ways, (1,2), (2,3) or (2,4)-branched. The (i, j)

branching of a solution can be determined as follows:

• If p2 + p4 = p5 + p6 holds, GR is (1,2)-branched.
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p1 p2 p3 p4 p5 p6

1 even even even even even even

2 odd odd even even even odd

3 even odd even odd odd odd

4 odd even even odd odd even

5 even odd odd even odd even

6 odd even odd even odd odd

7 even even odd odd even odd

8 odd odd odd odd even even

• If p1 + p3 = p5 + p6 holds, GR is (2,3)-branched.

• If p1 + p3 = p2 + p4 ± 2 holds, GR is (2,4)-branched (±2 means that 2 if the

branch with n4 half twists is over and -2 if it is under).

In addition, n5 = 0 if and only if GR is (i, j)-branched for all (i, j).

We have only proved Lemma 4.16 for tangles corresponding to the graphs

shown in Figure 4.28. However, Lemma 4.16 can be extended to R-standard tangles

as discussed in the next section.

4.3.2 Discussion On complicated branched solution tangles

We will now consider a more complicate branched solution tangle like that in

Figure 4.29.
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Example 4.3. Let G be a graph which corresponds to the standard graph in Figure

4.29(a). After doing one counterclockwise half twist of v1 and v4 and two clockwise

half twists of v3 and v4 moving the boundary of 3-ball, one obtains the weighted

graph GR (Figure 4.29 (b)). Then GR is the weighted graph which corresponds to

the R-standard tangle T in Figure 4.29 (b). Since v5 is connected to v2 = NW and

v4 = SE, GR is (2,4)-branched.

SW= =SE

=NENW=

SW=

NW= =NE

=SE

G = = 

(a) (b) (c)

GR

v1
v4

v3v2

v5
v6

v1

v2
v3

v4

v5
v6

  T=

c 1

c 2
c 3

c 4

n3

n5

n1

n2

n4

n1

n2

n4

n5
n3

n4

n2 n5

n1

n3

Figure 4.29: Example of R-standard tangle

Let’s compare this example with the tangle in 4.28 (c), which we will call

T
′

. The link obtained from Cre recombination on c3 and c4 of T has positive 2

writhe which can be converted to four half twists as shown in Figure 4.30 [2]. Hence

p3 = n3+n4+n5−4 for T while for T
′

, p3 = n3+n4+n5. Similarly, p4 = n1+n4+n5+2

for T , while p4 = n1 + n4 + n5 for T
′

. The remaining equations for T are identical to

the equations for T
′

.

Note that a solution of the form T will satisfy the first five equations in 4.4
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  (b)  (a)

n3

n5

n3

n5

n1 n1

Figure 4.30: Writhe and twist

(a) A link obtained by doing Cre recombination in example 4.29 has writhe two; (b)

The writhe two can be converted to 4 half twists.

if and only if a solution of the form T
′

satisfies these equations. This is because

writhe of a link diagram can be converted to an even number of half twists. Thus, all

numerators of Equations 4.2, 4.3 and 4.4 will still be even after adding or subtracting

an even number. Hence the last equation in 4.4 determines if a tangle of the form T

or T ′ can be a solution.

4.3.3 Generalized R-standard solution tangles

We developed the concept of R-standard tangle because of the possibility that

a pair of supercoiled DNA branches can be twisted. An R-standard tangle T corre-

sponds to a weighted graph GR as in Figure 4.6. This implies that twisting a pair of

branches of T corresponds to twisting a pair of edges (excluding the one connecting

v5 and v6)of GR along the boundary of the 3-ball. This action of adding twists to

GR is exactly the same as the action of constructing a rational 2-string tangle (See
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section 2.2) except for the fact that a tangle starts from a zero tangle versus a graph

starts from a standard graph (see Definition 4.2). Hence we can get an R-standard

graph by adding alternating horizontal and vertical twists to a standard graph, and

thus an R-standard graph can be denoted by conway notation.

Let [a1, b1, ..., an−1, bn−1, an] be a conway notation for GR, where ai is the num-

ber of horizontal right-handed half twists and bi is the number of vertical left-handed

half twists. The a
′

is and b
′

is are integers. In other words, we start with a standard

graph, add a1 horizontal half twists by moving vertices at NE and SE along the

boundary of 3-ball, add vertical b1 half twists by moving vertices at SW and SE along

the boundary of 3-ball, and add a2 horizontal half twists, etc. Similar to rational 2-

string tangles, a unique rational number (∈ Q∪∞) is decided by a continued fraction

and two R-standard graphs are the same (i.e. ambient isotopic) if the two rational

numbers from each graph are the same. See Figure 4.31. for an example.

(a) (b)

Figure 4.31: Two ambient isotopic R-standard tangles

(a)[-3,-2,-1]↔ −10
7

= −1 + 1
−2+ 1

−3

; (b)[-4,2,-2]↔ −10
7

= −2 + 1
2+ 1

−4
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An interesting property of the continued fraction is that the numbers corre-

sponding to a conway notation can always be even numbers. Without loss of general-

ity, let A
B

be a reduced (A, B are relatively prime) rational number which corresponds

to GR with B = A · q + r (0 < r < A). We can assume A < B since if A > B,

then A
B

= q0 ± C
D

where C < D and q0 is even. Then A
B

= 1
B
A

= 1
A·q+r

A

= 1
q+ r

A

.

If q is an even number, it will be an entry of the conway notation for GR. If q is

an odd number, then q + 1 will be an entry of the conway notation for GR since

A
B

= 1
B
A

= 1
A·(q+1)+(r−A)

A

= 1
(q+1)+ r−A

A

. In this manner, we can always obtain a conway

notation for an R-standard tangle with all even entries. See Equation 4.5 for an

example.

12

65
=

1
65
12

=
1

12·6+(5−12)
12

=
1

6 + −7
12

=
1

6 + 1
7·2+(5−7)

−7

=
1

6 + 1
−2+ 2

7

=
1

6 + 1
−2+ 1

4+ 1
−2

(4.5)

In section 4.2.5, we proved that a solution tangle (with less than 8 crossings

up to free isotopy) of the equations in Figure 4.3 is an R-standard tangle. Let T

be a solution tangle and GR be the weighted R-standard graph (see Figure 4.6)

which corresponds to T . Then GR has a conway notation [a1, b1, ..., an−1, bn−1, an]

with all even integral entries (see Figure 4.32 (a)). Hence GR can be obtained by

adding alternating full horizontal twists and even full vertical twists to a weighted

standard graph. Since we add full twists to a weighted graph, the vertices are still

v1 = SW, v2 = NW, v3 = NE, v4 = SE. This is a very important clue to find a

solution tangle.

Let p1, ..., p6 be the numbers from the tangle equations in Figure 4.3. In other

words, pi is the number of half twists on the link from Cre recombination on two
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b1

v2

v1
v4

v3

v1

v2 v3

v4
v2

v1 v4

v3

n4n1

n2 n3
n5

n2 n5
n3

n4n1

n2 n5
n3

n1 n4 e2

e1
e4

e3

(a)

...

...

...
a 1

(b)

Figure 4.32: GR

(a) GR; (b) GR with a conway notation [-4,2,-2] and a different view of it

outside loops of a solution tangle T which corresponds to GR in Figure 4.32 (a). For

the standard tangle, pi values are related to the n
′

is as in Equation 4.1. Since we

didn’t move v2 at all when adding twists to a standard tangle, the equation involving

the p1, p2, p5, p6 are the same as in Equation 4.1, and only p3, p4 are changed. This

change can be easily seen in the different view of GR in Figure 4.32 (b). Let ei be

the edge of GR with weight ni. Then e2 has no crossings with any other edge. e1

and e4 may have crossings with only e3 because the number of added twists are all

even numbers. For example, in the graph of Figure 4.32 (b), if we walk along the

edge e3 from v3, we cross only e4. Same is true for e1. This implies that we get

(a1 + · · · + an)(sum of the numbers of all horizontal half twists added to a standard

tangle) many crossings when we connect v3 and v4 by using an arc. Hence the link

obtained from Cre recombination on c3 and c4 of a solution tangle T has -(a1+· · ·+an)

writhe which can be converted to 2·(a1+· · ·+an) half twists [2] (See Figure 4.30). I.e.,

p3 = n3+n4+2·(a1+· · ·+an). Similarly,the link obtained from Cre recombination on
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c1 and c4 of T has (b1+· · ·+bn−1) writhe which can be converted to −2·(b1+· · ·+bn−1)

half twists. Hence p4 = n1 + n4 + n5 − 2 · (b1 + · · ·+ bn−1). We can summarize all pi

values of a solution tangle T in Equation 4.6.

n1 + n2 = p1

n2 + n3 + n5 = p2

n3 + n4 + 2 · (a1 + · · ·+ an) = p3 (4.6)

n1 + n4 + n5 − 2 · (b1 + · · ·+ bn−1) = p4

n1 + n3 + n5 = p5

n2 + n4 + n5 = p6.

We can solve the system of equations in Equation 4.6, and the solution is the

following:

n1 =
p1 + p2 − p6

2

n2 =
p1 − p4 + p6 + 2 · (b1 + · · · + bn−1)

2

n3 =
p2 + p3 − p6 − 2 · (a1 + · · ·+ an)

2

n4 =
−p2 + p3 + p6 − 2 · (a1 + · · ·+ an)

2
(4.7)

n5 =
−p1 + p2 − p3 + p4 − 2 · (a1 + · · ·+ an) + 2 · (b1 + · · · + bn−1)

2

p2 + p4 + 2 · (b1 + · · ·+ bn−1) = p5 + p6.
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CHAPTER 5

FUTURE DIRECTION

First of all, I am looking for a real biological data for our 4-string tangle

model. Recently, I found an interesting figure (Figure 5.1) in the biology paper [16]

which is about the MukB protein. MukB is a bacterial protein which is needed to

compact DNA in a cell in Escherichia coli. In this paper [16], the difference topology

technique is used with Topoisomerase II instead of Cre. MukB binds to an unknotted

circular DNA and after that Topoisomerase II acts on the outside loops. The product

topology is usually a trefoil. Figure 5.1 is a working model of a DNA-MukB protein

complex. Even though this is not a real configuration of the complex, it shows us the

possibility of a DNA-protein complex which can be modeled by a n-string tangle.

Figure 5.1: An working model of DNA-MukB protein complex with Topoisomerase
II. Figure from [16]
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Second, I would like to extend the number of crossings in Theorem 4.15. Al-

though a rational tangle is the most biologically relevant tangle model of DNA-protein

complexes, mathematically, extending the number of crossings in Theorem 4.15 is still

an interesting problem.
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