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Abstract of thesis entitled 

Autonomous Agent-Based Systems and Their Applications in 

Fluid Dynamics, Particle Separation, and Co-evolving Networks 

Submitted by Oliver Graser 

foi the degi ee of Doctoi of Philosophy 

at The Chinese University of Hong Kong in July 2010 

This thesis comprises three parts, reporting research results in Fluid Dynaniicb 

(Part I), Particle Sepaiation (Part II) and Co-cvolvmg Networks (Part III) 

Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann 

method Microfluidir deviccs often feature two-dimensional, repetitive arrays 

Flows through such deviccs are pressure-driven and confined by solid wallb We 

have defined new adaptive generalised peiiodic boundary conditions TO repre-

sent the effects of outer solid walls, and are thus able to exploit the periodicity 

of the ai ray by simulating tho flow through one unit cell in lieu of the entiie 

device The so-calculated fully developed flow describes the flow through the 

entile an ay accuiately, but with computational lequircments that aie reduccd 

according to the dimensions of the array 

Part II discusses the problem of separating macromolecules like proteins 

or DNA coilb The leliable sepaiation of bucli molccuies ib a cruuaJ tabic in 

molecular biology The use of Brownian ratchets as mechanisms for the separa-

tion of buch partickb has been propobcd and dibcusbcd during the labt decade 

Pressure-driven flows have so far been dismissed as possible driving forccs for 

Brownian ratchets, as they do not generate ratchet asymmetry We propose 

a microfluidic design that uses pressure-driven flows to create asymmetry and 



hcnce allowb paiticlc bepaiation The dependence of the asymmetry on vaii-

ous factors of the microflmdic geometry is discussed We further exemplify the 

feasibility of oui approach using Biownian dynamics simulations of pa it ides 

of difieront sizes in such a device The results show that ratchet-based particle 

separation using flows as the diivirig forcc is possible Simulation lesults and 

ratchet theory predictions are in excellent agreement 

Pait III deals with the co-ovolution of networks and dynamic models A 

gioup of agents occupies the nodes of a network, which defines the relationship 

between these agents The evolution of the agents is defined by the rules of the 

dynamic model and depends on the relationship between agents i e , the state 

of the netwoik In letuin the evolution ot the network depends on the htate 

of the dynamic model The conccpt is introduced through the adaptive SIS 

model We bhow that the previously used criterion detei mining the cutical 

iiifcctcd fraction, i c , the number of infected agents required to sustain the 

epidemic i8 iriappiopiiate foi this model Wc mtioduce a diffeient ciiterion 

and show that the critical infected fraction so determined is in good agreement 

with lesults obtained by immeiical bimulations 

We further discuss the conccpt of co-evolving dynamics using the Snowdrift 

Game as a model paradigm Co-evolution occurs through agents cutting dissat-

isfied links and rcwirmg to othei agents at random The effect of co-evolution 

on the emergence of cooperation is discussed using a mean-field theory and 

numerical simulations A transition between a connectcd and a disconnected, 

highly cooperative state of the system is obseived, and explained using the 

mean-field model Quantitative deviations regarding the level of cooperation 

111 the disroiinected regime can be fully resolved through an impioved mean-

field theory that includes the effect of random fluctuations into its model 



摘要 
本論文分成三個部份，分別包括流體動力學（第一部分）分子分離（第二 

部份）及共同演化網絡（第三部份）的研究結果。論文的第一部份研究利用 

晶格波兹曼法模擬流體動力學的若干問題，探討在重複分佈的結構中在壓力 

推動下，對邊界條件作出適當定義的問題。在水壓梯度驅動下，新定義的適 

應性週期邊界條件代表系統的牆壁對流動的影響。因此，我們可以簡化針對 

整個系統的計算步驟，集中處課箇元胞的計算，從而得出能準確描述整個系 

統流動的計算結果。 

論文的第二部份討論分離高分子如蛋白質或DNA螺旋的問題。可靠的 

分離方法對分子生物學的工作十分重要。利用布朗齒輪作為分離這些分子的 

方法己被提出及討論多年。在布朗齒輪中，壓力梯度因會形成對稱性，而未 

被視作系統可能的驅動力.我們提出種微流體的設計之果，利用壓力差形成 

不對稱性，從而達到分子分離的效果.我們還會討論不同的因素對於其不對 

稱性的影響.我們利用布朗動力學模擬了，分離不同大小的分子的可行性， 

得出的結果與我們利用齒輪定理所預測的相符。 

論文的第三部份研究網絡和動力學模型的共同演化。有一些個體佔據了 

網點，而網點間的關係定義了個體間的關係。這些個體的演化是根據動力學 

模型的規則。而這種演化是受到個體間的關係或網絡影響。而網絡的演化亦 

取決於動力學模型的狀態。我們利用適應SIS模型帶出相關概念。我們指出 

以往對臨界感染比例。即要維持傳染性所需的初始受感染個體比例的判斷準 

則並不恰當。我們提出了一個新的判斷準則，得出的臨界感染比例的數值跟 

電算模擬的結果相當吻合。 

我們引申到利用雪堆博弈來討論共同演化的概念。共同演化是在一些個 

體切斷不滿意的聯繫再隨機接駁其他個體的時候發生的。我們會以平均場理 

論和電算模擬去討論共同演化對產生合作性的影響。利用平均場理論可解釋 

連接相和不連接相之間的變化。進一步包含了隨機漲落影響的平均場理論， 

能夠完全解決在不連接相中系統的合作程度和簡單平均場理論的偏差。 

111 
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Chapter 0 

Introduction 

Complrx phciioineiia that arise out ot very siinpk、scciiaiios have、been a 

subject of physics research for a long time A good example is the study of 

the physics of glasses Consider a dispeision of haid 'spheres that interact 

through elastic collisions A fluid system can suddenly freeze if its density is 

only marginally increased [1] Similai ly surpiibing effects can also occui in a 

dispersion of hard ellipsoids Such a dispersion might have a very low shear 

viscosity if gently btirred, but can nearly solidify almost irihtantly if a strong 

shear force is applied [2] Without going into the details of the statistical 

phybics of glabsy sybtems, we can take the bimplcbt units in these systcnib as a 

paradigm of autonomous agent-based systems Each hard sphere can be seen 

as an autonomous agent whose movement depends only on its current state 

and its local surroundings If a sphere collides with another, momentum is 

exchanged according to the laws of clastic collisions If not, the spheie moves 

according to its current velocity 

This thesis consists of thiec parts For cach of the problems studied, it 

IS possible to define a basic unit that acts according to a predefined rule set 

0 



Thcbe unitb aie autonomous, i c，they may internet with other unitb but do 

not need any instructions from the outside The question of how complex 

rcsultb eincige from the collcctivc intei action of buch bimplc unitb foinib the 

overall theme of this thesis 

Part I dealb with the simulation of fluid dynamics using the lattic e-Bolt7maiin 

method At every latticc node the state of the fluid is described by a small set 

of populations that have reiTaiii piodcfined velocities iNonethclebs the fluid 

flow desLiibed by the collective intei action of these nodes fulfils the Navier-

Stokcs equation In Pait I wc disrubs issues ielated to boundaiy roiidiTioiis in 

the bimulation of fluid dynamics in repetitive geometries Exploiting periodic 

ity in a '̂ ystcm allows us to solve problems that would otherwise vastly excecd 

our capabilities, e g，the Bloch'b theorem in energy band theory in solid state 

phybicb allowb ub to focub on solving the Schiodmgei equation in one unit ceil 

nibtcad of dealing with the > atoms that are typically found in a small 

piece of coridcnbed matter Micio-fabiicated sieve deviccb used in moleculai 

biology research pose a similar problem These dcvices typically consist of a 

lepetitive array of obfetades The flow thiough thehc deviLCs cannot be calcu-

lated with meaningful precision if the entire array is simulated Simply using 

pel iodic boundaiy conditions is however not possible In particular, the efterts 

of an external pressure gradient driving the flow and of the solid walls roiifiiiiiig 

the flow would be ignoied in this •way Hencc a boundary condition schcme 

that exploits peiiodicity but at the same tune incoiporates such external foires 

IS needed Such a boundary condition schemc applicable to the simulations of 

mi( rofluidic d(、vices is proposed lu Part I 

111 Ch 1 an iiitrodurtioii to the problem is given so as to motivate the 

subsequent work Chapter 2 introduces the lattice-Boltzmann method as such, 

and provider bome background knowledge about fluid dynamicb, together with 



C H A P T E R 0 . INTRODUCTION 

a dibcussion on the problem of boundary conditions in the lattice-Boltzmann 

method. Some recently proposed periodic boundary conditions for pressure-

driven flows through lepctitive geometries aic used to illustrate the problem 

at hand. In Chapter 3, we introduce a novel class of boundary conditions that 

provides foi the effects of the outer confining walls, and therefore facilitates ef-

ficient simulations of the flow through repetitive mirrofluidic geometries. The 

methodology is discussed in detail The validity is tested by comparing simu-

lation results of our method with results fioin simulations of a full array. It is 

found that the deviations in the resulting fully developed flows arc marginal 

(10—8). while the roinputatioii tune is much reduccjd. The results were pub-

lished in Physical Review E [3], 

In Part II，wc propose a novel microfluidic design for a pressure driven 

Brownian ratchet that can be used lor paiticlc separation, based on the results 

111 Part I. The task of separating macromolecules, e.g., proteins, polymers or 

DNA stiairis, is crucial in the field of molccular biology and yet often highly 

non-trivial. This is particularly the case for coils of DNA fragments that 

need to be sepaiated for genome sequencing. However, they elude separation 

because their net charge and fluid mobility depend on their size in the same 

manner. Thus, the scpaiation of DNA fragments is still a cumbeisome task 

that involves many manual steps and cannot bo automated in a straightforward 

manner. Brownian ratchets could offer a remedy to this problem as they are 

able to separate particles according to their diffusion constant. They can be 

micro-fabricated as an array of identical, simple obstacles on a silicon wafer, 

and the sepaiated stiaiiis can be retrieved at different exit channels of the 

dcvice. 

A recurrent problem in the design of such ratchct-based particle separators 



IS the choice of the driving foice that keeps the latcliet out of tiieimal equi-

librium and thus allows the rectification of Brownian motion Electrostatic 

fields, meitial and gravitational foices all proved to have different downbides 

for realising the separation effect Pressure-driven flo^vs wore previously not 

considcicd to be a possible alternative as a foicc orthogonal to the latchct 

structure rould not be induced In Part II wc introduce a novel design that 

circurnvcnts this problem, and thus facilitates pressure-driven particlc separa-

tion 111 Biowiiiaii latrhets The discussion is split into two chapters Cliaptei 4 

discusbcs the underlying mechanism of Brownian ratchets existing pioposed 

devjCBb and issues that arose m thoii realisations ChapTti 5 disrussoh oui pio-

pobcd microscopic structure The principal advantages of our design and the 

theoietical abilities to lesolve paitides of diffeient sizes aic discussed in de-

tail Results of Brownian dynamics simulations, based on flow fields obtained 

by the methods developed m Pait I，aie ubcd to teht the functionality of the 

design The prospccts of our proposed design are also discusscd Results in 

thifc. chapter have been faubmitted foi publication [4] Expeiimental icalibation 

of our design is now underway at the National University of Singapore 

Part III discusses the co-evolvmg processes in complex networks The struc-

ture of complex networks has been a focal point of reseaich m science and m 

physics in particular during the last two decades [5 6] Properties such as 

the degree distributions, clustering coefficients and degiec coiielations have 

all been iiivpfetigated in detail More leceiitly networks have been used as an 

underlying connection matrix for social and biological dynamic models These 

netwoiks weie typically taken to be static, or thty evolved iiidepc ndeiitly In 

contrast, human relationships, which these networks arc supposed to represent, 

typically evolve in response to the dynamic model For example opinions aie 

spread via connections between people, but people may intend to be connected 



C H A P T E R 0 I N R N O D U C I I O N 

to others who bhare their views The co-cvolution of a dynamic model bj-btem, 

reprebented through autonomous agcntb, and the underlying network is the 

ioLus of Pait III, which compribcb Chb 6 to 9 of the thebis 

Chapter 6 gives an mtioduction to the essential concepts of complex net-

works and dynamic models that are used extensively thereafter Chapter 7 

introduces the concept of coevolvmg or adaptive netwoikb, using the adap-

tive susceptible-infective-susreptible (SIS) model that oiigiiially popularised 

this topic as the context [7] The adaptive SIS model describes the spicad 

of a non-lethal disease against which no immunity is arqmied through a pop-

ulation Afa a reaction to the infection, healthy individuals try to distance 

themselves from those infected in ordei to fend off the disease We review the 

model, and discuss how it can be described within a mean-field theory (MFT), 

and how a MFT can be used to piovide fundamental mbight into the posbiblc 

states attainable by a system We further discu&s the critical initial infected 

fiaction, 1 e , the initial level of mfccted individuals in a population requiied 

to sustain a disease Wc show that the critical fraction is dependent on the 

spatial configuration of the netwoik, and that the fixed point of the MFT, 

which was used to determine the critical fraction, in general does not give a 

good estimate of the critical fiaction We propose a better way to identify the 

critical fraction and validate it by numerical simulations of the system Our 

approach is also applicable to other co-evolvmg systems that are describable 

by a set of dyiiamiral equations foi which the fixed point may also refer to 

a highly unlikely network configuration The results have been submitted for 

publication [8] 

Chapters 8 and 9 consider the emergence of roop(、ratioii in co-evolvmg 

networks When humans or agents have to make choices about how to act in 

a ceitain bitudtion, they aie often faced with what is called a social dilemma 

4 



A choice made out of puie belf-inteicst laicly coincides with the choice that 

IS most beneficial for society as a whole While personal relationships can 

explain coopeiation on a local bcalc, the qucbtion why people act coopciativciy 

on a larger scale towards others whom they do not know remains largely 

unresolved 

Chapter 8 mtioduccs a co-cvolviiig model of the Snowdrift Game on net-

works In game thoory, the Siiowdnft Game can be SOPH as a borial dileniina 

as it promises the highest possible payofi to a selfish uiicoopeiative peibon but 

at tho same tune puts that poison at risk to end up with the woist outcome 

In our model individuals encounter Snowdrift Game situations in pairs Dib-

satisfied individuals can react m two ways by changing then stiategy of being 

cooperative or uncooperative or by rcjcctmg their counterpart and choos-

ing anothei individual to abbociate with The model exhibits disconnected-

connected transitions in the network structure and phase separations m the 

nodeb’ fatiategieb driven by the co-evolvirig dynamics Coopeiative nodcb may 

overcome uncooperative nodes expel them, and form a closely connectcd, fixed 

network consibtmg exclusively of individuals who are willing to coopciate If 

they do not manage to overcome the uncooperative individuals a permanently 

evolving network results, with significantly fewer coopeiative individuals than 

111 the disconnected state The emergenre of either state depends both on the 

temptation involved in the Snowdrift Game and the number of initially co-

operative individuals The results are qualitatively explained usiiig a simple 

mean-field theory The results were published in EPL [9j 

Chapter 9 examines the mathematical aspects of the model In particular, 

we discuss how to iiirlude the effects of random fluctuations piopeily into 

mean-field, theories Each of the assumptions that are required to clobc a set 

of mean-field equations ib carefully tested We discubs why pievioubly used 

5 
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clobuic mcthodb, buch as those proposed for the adaptive SIS model discubsed 

in Ch 7 [10], arc unsuitable for the different co-evolving strategies of our 

model We intioHncc a TIPW doburc method that hignificantly impioves upon 

the results in Ch 8 Wo use the method to porform a detailed analysis of 

oui model and discover a surprising situation in which a gradually decieasing 

temptation to be selfish leads to a dcrreabuig number of cooperators [11] The 

methods we used m developing a proper mean-field theory can be applied to 

a wide laiige of mod(4s 

A suminaiy of the main results and an outlook on futuie work and fuithei 

applications will be found at the end of each part and, where applicable at 

the end of a chaptci 



Part I 

Novel Boundary Conditions for 

the Lattice-Boltzmann Method 



Figure 1.1: An exemplary microfluidic design, consisting of a repetitive array of 

identical obstacles confined by solid walls. Reservoirs of constant and different 

pressures pa and p^ result in a pressure driven flow through the array. 

This part of the thesis was motivated by a simple which-tool-to-use prob-

lem. To understand the microfluidic geometry needed for efficient particle 

separation (see Part II)，we wanted to calculate pressure driven flows through 

a vast array of obstacles. An example is shown in Fig 1.1. We chose the 
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lattice-Boltzmann method ab a tool foi bolving the Navicr-Stokcb equatiorib, 

since it can be easily adapted to different obstacle geometries Physical boimd-

aiy conditioiib are well defined ovei the cntiic byt-tem Solid no-slip wallb, i e , 

zero-velocity boundary conditions, on the upper and lower boundaries, and 

constant piessurc boundary conditions on the left and right Howevci the 

vast dimensions of the entire system do not allow a direct simulation A possi-

ble remedy is the simulation of one single unit cell of the array, here highlighted 

111 gi(、(、ii Uiifoituiiatoly, physical boundaiy conditions on one single unit c(、ll 

are much more difficult to define, and implementations of such boundary con-

ditions did not exist previously Wc therefore extended a method pioposed by 

Klin and Pitsch [12] to obtain boundary conditions that exploit the periodic-

ity of the system, and at the same time into:poiate the efiects of the outci 

physical boundary conditions The presented results have been published in 

Rcf [3] 

The outline of thib part is ab follows In Ch 2, wc will give an overview 

of the lattice-Boltzmaiin method, with emphasis on boundary condition im-

plementations m gcneial and the Kim/Pitbch (KP) boundaiy coriditiontj in 

particular In Sec 3 1, we will state the problem definition and discuss our 

appioach in detail The icsultb of oui appioach and a quantitative comparison 

with a reference system will be shown in See 3 2 



Chapter 2 

Introduction to the 

Lattice-Boltzmann Method 

This chapter gives an overview on the basic features and conccpts of the 

lattice-Boltzmann method. The goal of this overview is to offer the back-

ground information required to understand the results in the following chap-

ters. Details in the derivation of the lattice-Boltzmann equation are omitted to 

allow for brevity (see Refs. [13. 14. 15, 16]). Further information on the back-

ground of the lattice-Boltzmann method can be found, among others, in Refs. 

[17, 18. 19, 20]. Concepts from fluid dynamics in general will only be discussed 

as long as they arc directly relevant to the lattice-Boltzmann method. 

10 



2 1 A P R I M E R ON F L U I D D Y N A M I C S 

2.1 A Primer on Fluid Dynamics 

2.1.1 The Incompressible Navier-Stokes Equation and 

its Numerical Solutions 

While ical mattci, as well ab the idealised fluid in a latticc-Boltzinann 

simulation, is compressible, it can be advantageous to imagine an idealised, 

incomprebsible fluid of constant dcnbity 

(2 1) 

The state of such a fluid within some domain is described by its fluid velocity 

u(x, t) dnd pressure t) The motion of such a fluid follows the incompress-

ible Ndvier-Stokes equation 

孕+ (u = + (2 2) 
ot Po 

and the incompressible continuity equation 

• u 二 0 (2 3) 

The piopcrties of the fluid enter the equation through its density po and kiiic-

matic viscosity v To constitute a fully specified physical problem, boundary 

and initial conditions have to be specified Common physical boundary con-

ditions spec ify eithei a velocity oi pressure profile on tho bouiidaiy of the 

domain Solid walls confining the fluid are turned into velocity boundary con-

ditionb thiough the bo-called no slip condition) which assumob that moleculeb 

in direct contact with the walls have zero velocity In addition pressure and 

velocity initial Londitiorib have to be bpecified on the entire domain 

11 



to dimcnfeionlesb quantities By multiplying the lebultmg equation with t^/k 
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2.1.2 Dimensionless Formulation and Dynamic Similar-

ity 

Obviously, two fluid dynamics problems for liquids of identical character-

isticb (1 e , vibcobity and deribity) and identically defined boundary and ini-

tial conditions have identical solutions In addition even differently specified 

physical pioblems can have identical mathematical bolutioiib - a phenomenon 

referred to as dynamic similarity To understand this concept one should keep 

in mind that a phybical pioblem ib alwayb hpecified in dimenbional umtb The 

choicc of units however is arbitrary, even if standards like the Sl-system should 

be used for clarity Howevei, using difteient unit systemb does not changc the 

physics of the system 

Looking at a fluid dynamics problem one ran charartcrise it through length 

and time scales intrinsic to the system For example the diameter of an 

obstacle can define a length scale IQ and the time it takes for the fluid to flow 

such a distance can define a characteristic time scale f。We can then express 

quantities withm this problem in units of IQ and TO by traiistorniiiig 
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To 
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2 . 1 . A P R I M E R ON F L U I D D Y N A M I C S 

we find the dimensionless formulation of the Navier-Stokes equation 

嘉u ' + (u' . • ' ) u' = - w + , (2.5) 

where the Reynolds number 

. (2.6) 

was introduced. Accordingly, boundary and initial conditions have to be ex-

pressed in terms of the characteristic length and time scales as well. Two 

physically different fluid dynamics problems might in this way be transformed 

into an identical mathematical problem. If this is the case, the resulting flows 

are called dynamically similar. 

Since the Reynolds number is a combination of all characteristic quantities, 

it is often used to characterise the resulting flow. Typically, systems with 

He《1 feature only laminar flow without any turbulence. This regime is 

also referred to as the Stokes ‘ limit Karman vortex streets start to appear 

for Re > 100. For much faster flows, e.g., with Re > 3000, even flows in 

unobstructed geometries like a straight pipe become turbulent. 

The general Reynolds number dependence is illustrated in Fig. 2.1. Both 

panels show velocity profiles within an identical Karman channel, where a cir-

cular obstacle is slightly offset from the middle of the channel. A Poisseuille 

velocity profile on the left, solid no-slip walls on the upper and lower bound-

aries and a zero-gradient velocity profile on the right were used as boundary 

conditions. The Reynolds number was adjusted by changing the kinematic 

viscosity of the fluid. While the flow is purely laminar and becomes virtually 

time-independent for Re = 1, vortex streets occur for Re > 100，leading to a 

time-dependent flow profile. 

13 



C H A P T E R 2 . INTRODUCT ION TO THE LATTICE-BOLTZMANN M E T H O D 

Figure 2.1: Flow through a Karman channel in the Stokes regime (laminar 

flow, Re — 1, bottom) and intermediate regime (Karman vortices, Re = 200, 

top). Colours indicate the absolute velocity |u|. 
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2 . 2 . T H E LATTICE-BOLTZMANN M E T H O D 

• 

Figure 2.2: Schematic representation of a lattice-gas model. (A) Single pseudo-

particles on the lattice grid. In the next time step, the two molerulcs in the 

grey area will collidc. (B) The two possible resulting states, preserving energy 

and moment inn. 

2.2 The Lattice-Boltzmann Method 

Like other methods to imiiieiically solve tho Navier-Stokes Equation, e.g., 

through finite difference methods, the latticc-Boltzmann method (LBMj is 

based oil a discietisatioii of the fluid domain. Howovei. unlike a direct solution 

of the Navier-Stokes Equation, the state of the fluid is not determined by 

the overall behaviour of the macioscopic variables, but rather through local 

interactions of neighbouring volumes. 

The lattice-Boltzmarin method originates from so-called latticc-gas models 

[21，22，23]，which define pseudo-particle kinctics on a discrete lattice with 

15 
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discrete times. Such a lattice-gas consists of pscudo-particles residing on lattice 

nodes. Each pseudo-particlc itself already consists of a number of real gas 

molccules, i.e., the lattice-gas itself is already a coarse-grained model compared 

to real molecular dynamics simulations. Figure 2.2 exemplifies the dynamics 

of a lattice-gas: during a discrete time step, they move along a lattice vector 

to a neighbouring node, resulting in a discrete set of possible velocities. If at 

any time two particles arrive at the same latticc node, they collide and thereby 

change their velocities while preserving energy and momentum. Since these; 

mappings of possible incoming velocities to resulting outgoing velocities form 

a discrete rule matrix, the lattice-gas models were also known as lattice-gas 

ccllular automata. 

The lattice is defined through a set of q lattice vectors e ,̂ i G {0,... , q — 1} 

which connect neighbouring nodes. The state of a latticc-gas model is given by 

a set of binary occupation numbers t), giving the number of particles — 

zero or one — that occupy the lattice node with coordinate x at time t, having 

the discrete velocity v̂  = ei/dt. However, such a discrete approach carries 

a number of downsides, in particular large localised fluctuations and possible 

violations of Galilean invariance. 

Ill order to overcome these downsides, and to better incorporate a statis-

tical physics point of view into the model, the latticc-Boltzmann method was 

developed. The latticc-Boltzinami method can be seen as a coarse-grained 

latticc-gas method: Instead of discrete occupation numbers, the state of a 

small volume of liquid is given through a set of distribution functions /^(x, t). 

These functions correspond to the amount of molecules at lattice node x at 

time t having velocity v。chosen again from a discrete set. The macroscopic 

16 
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variables of the fluid, i c , the derihity and velocity aie given by 

Q 1 <1—1 r . 

P 二 T j ” (2 

where is the momentum density in direction of ê  

Since the discrete time step 6t is commonly used as the rcfcrencc time for 

the dimensionless foimulation of the Naviei-Stokes equation, it is equivalent 

to unity within the LBM system and therefore normally omitted 

The evolution of the system is defined through the lattico-Boltzinaiin equa-

tion 

/ “ X + e" t + 5t) — (X, t) = Q,(f)， (2 8) 

which IS a discretised version of the Boltzmann transport equation The col-

lision oporatoi Q leplaces the sot of collision lulcs in the latt ice-gas method 

Originally, the collision operator was modelled by a translation of the latticc-

gab collibion ruleb [24] Nowadayb, the collibion opeiatoi ib commonly modelled 

using the Bhatnagar-Gross-Krook approach [25], i e , as an exponential decay 

towardb an equilibrium function u) 

/;(x,力)-/eq(p(x，力)’u(x，t)) (2 9) 

T 

The validity of such an approach depends on varioub factois Key problems 

are a suitable rhoirp of lattice vortors e ,̂ whirh have to fulfil rertam symmetry 

conditions, and an approximation of a equilibrium functions 人閃 Today lat-

tices with ^ = 8 + 1 vp( tois arc used foi 2Z)—simulations while lattices with 

q = 14+1 q — 18 + 1 or g — 26 + 1 vectors are chosen for 3D-simulations The 

+1 indicates that one of thobe vectoib ib the null vcctoi eo = 0 coirebpondnig 

to molecules that will stay at the same lattice node The choice of iattice 

vcLtorb lb determined by bymmetry conditjoiih that have to be fulfilled foi the 

17 
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Figure 2,3: Lattice vectors for the D2Q9 lattice (A) and exemplary distribution 

function for the same system (B). The vector eo is equivalent to molecules at 

rest. 

LBM equation Eq. (2.8) to be equivalent to the Navier-Stokes equation. In 

what follows, we will focus on the D2Q9 lattice of a two-dimensional problem 

with nine lattice vectors. All our results can be extended to three-dimensional 

lattices in a straightfoiward manner. For a detailed discussion on the question 

of lattice symmetry, the derivation of the lattice-Boltzmann equation from the 

Navier-Stokcs Equation, and the collision operator, see Refs. [22. 26] and the 

oveiviews listed at the beginning of Ch. 2. 

The BGK collision operator depends on two quantities: the equilibrium 

distribution function f 叫 and the relaxation time r. To be numerically stable, 

the relaxation time has to fulfil 1/2 < r < oo. Generally, one distinguishes 

the regimes 1/2 < r < 1 (or 1 < l / r < 2) and 1 < r < cx) (or 0 < 1/r < 

1). refeired to as the ovei-relaxation regime and the sub-relaxation regime, 

respectively. These regimes correspond to an exponential decay (1 < r < oo) 

or a damped oscillatoiy decay (1/2 < r < 1) to the equilibrium, with the 

18 
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bpecial cabe of t•二 1 rebulting in a direct icplacement of the distiibution 

function by the corresponding equilibrium distribution function It wab shown 

that values of r ~ 0 8 typically yield the mobt accuiatc icsultb and we will 

use such a value of r m the following calculations [27] However the choice 

of T IS not arbitrary, but is conncctcd to the kinematic viscosity of the liquid 

through 

"LBM - , (2 10) 
CS 

where cs = l/\/3 is the speed of sound in LBM units By choosing r = 0 8, 

we thub effectively fix the value of the kincrnatic vibcobity, db expie&bed in 

our simulations units 5t and 5x Hence, the scale factors between the latticc-

Boltzmarm unitb 6x and 6t and the phybicai umtb of the pioblem cannot be 

arbitrarily choscn This constraint is probably best illustrated with an ex-

ample Let us assume a system whcie the fluid is noimal watci, which has 

a kincmatic viscosity at room temperature of "丑2O ~ 10 ^w? js Let us fur-

ther assume that our system is a squaie of side lengths 1mm, which wc want 

to disrretise using 200 x 200 lattice nodes, thereby defiiiiiig 8x — b^m The 

viscosity, howevei, has to transform into our predefined LBM viscosity 

N 1 I^PHYJT LO—W/S X ST 

圆 二 ^ ^ 二 2 5 X 10-11爪2 

6t = 2 5fis 

The equilibrium distributions f^^ are functions of the density and flow velocity 

at one lattice node It can be derived using a second order expansion of the 

Boltzmami equation which is valid 111 the case of small inach iminbeis, 1 (、, 

as long as the flow velocities are much smaller than the speed of sound in the 

bimulation [28] The exact form of the cocfficientb foi the quadidtic expansion 

can be found through symmetry conditions of the momentum flux tensor, 

which dcperidb on the equilibrium dibtiibution Although feome ambiguity 
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cxibtb in the choice of the coeffiuentb，it hab become convention to bct the 

speed of sound m the D2Q9 model to 

1 5x 
Cs = 

•sflht 

As a result, the remaining coefficients of the expansion 

equilibrium distribution becomes 

(2 11) 

fixed, and the LBM 

/r(/5，u) 二 +-• 
lU e. 

2 
丄ir 

2 d 
(2 12) 

For the D2Q9 lattice, the weight factors are Wq = 4/9, Wj = 1/9 for j G 

{1, 2，3’ 4} and Wk = 1/36 for k e {5，6，7, 8} 

Dining a computei simulation, the described evolution is typically split into 

three steps At first the macroscopic variables u and p, and thereafter the 

equilibrium distributions /叫 are calculated from the distribution functions 

During the second, so-called collision step new values are calculatcd for the 

dibtribution functionb 

人new = 1 —丄人old + -人cc 
V T乂 T 

(2 13) 

Finally the new distribution functions are propagated or streamed to the cor-

lespondmg node 

/ “x + e”t + ̂  = r ( x ， f ) (2 14) 

Hencc, thib step it> often refer led to ab the sti earning step 

2.3 Boundary Conditions 

Physicaliy, the specification of a hydro dynamic problem is not complete 

until the btate of the fluid on the boundary is given Such boundary conditions 
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bpecify the velocity oi the prebbuic of the fluid on the boundaiy oi define a 

relationship between the state of the flu】d at two different points For example, 

m the cabe of pcriodic boundaiy conditionb, the valueb of piesbuic and flow 

velocity at opposite ends of a unit ccll have to be identical 

p(0,y:t) = p(L,,y,t) (2 15) 

Physically and mathematically the problem is well defined if appiopiiate ini-

tial and boundary conditions are specified For the lattice-Boltzmann method, 

tliib lb uiifoitunately inbufficient The physical quantiticb which arc defined 

on the boundary, are functions of the local distribution functions and not vicc 

veiba Defining the macioscopic vdiiableb heiicc does not unambiguously de-

fine the distribution functions Figure 2 4 illustrates this problem It bhows 

a stiaight boundary in a D2Q9 sybtem Six of the nine distribution functions 

are well defined after the streaming step while the three remaining functions 

are undefined Peiiodic boundaiy conditions are an exceptional cabe where the 

physical pcnodicity conditions Eq (2 15) can just be applied to the distribu-

tion functions 人 itself In geneial, additional assumptions have to be made 

to turn physical boundary conditions into sppcifirations for LBM boundary 

distribution functions The creation of novel LBM boundary conditions has 

thorefoie bcon a continuous focal point of lesoarch siiirc the emergence of the 

latticc-Boltzinaiin method itself In the following, we will discuss some of the 

more commonly employed LBM boundary conditiorih, and in paiticulai focus 

oil the generalised periodic boundary conditions that allow to exploit period-

icity in piebbuie-diivcn flowb 
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MO,y) = 

+ = MSx,y) (2 17) 
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Figure 2 4 A horizontal boundary of a lattice-Boltzmann simulation Before 

btrcammg both BGK-nodeb (light giey) and boundary nodes (black) have a 

full set of distribution functions (A) After the streaming step, the boundary 

nodcb have an incomplete bet of boundary conditioiib bincc no nodes below 

exist (B) The missing distribution functionb (dotted arrows) have to be cal-

culated from macroscopic conditiorib oi by other methods (bee text) 

2.3.1 Simple Periodic Boundary Conditions 

Periodic boundary conditionb are commonly employed in vaiioub problems 

in physics For a fluid dynamics problem they would be defined on both the 

piesbure and velocity of the fluid [29] 

u(x, t) — u(x + 1’ t) 

=p (x + 1，t) (2 16) 

These definitioiib can be directly mapped on a LBM lattice Let us assume 

that buch bimple periodic boundary conditions (SPEC) aie ubcd in ；r-direction， 

and that boundary nodes are located at x = 0 and x ~ L^ + 5x In such a 

setup SPBC aic defined as 
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Figure 2,5. Illustration of the differcncc between bounce-back and BGK dj" 

iiamics. (A) Original prc-streaming configmation. (B) Post-streaming (C) 

Collision versus bounce-bark. (D) Post-streaming. 

2.3.2 Bounce-Back Boundary Conditions 

No-slip, mid-plane bounce-back boundary conditions are among the most 

commonly used boundary condition schemcs foi lattice-Boltzmann boundary 

conditions [30]. Lattice nodes with bounce-back dynamics replacc the BGK 

collision step with an inverting of momentum of molecules at that node. This 

inechaiiisiri is illustrated in Fig. 2.5. All panels show an nitertace botw(;cii a liq-

uid with BGK dynamics and a solid no-slip wall using bounce-back dynamics. 

The distribution functions of one node are ！shown befoie the sti earning stop 

(Fig. 2.5(A)). After streaming, these distributions have moved to adjacent lat-

tice nodes. Three of these nodes follow bounce-back dynamics (Fig. 2 5(B)). 
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Duimg the following collision btep, the dibtiibution functionb on BGK nodes 

are changed, depending on the overall distribution at the respective node In 

contiast, dibtiibution functionb on bounce-back nodes aic simply mapped on 

the function of the opposite direction (Fig 2 5(C)) After the next stream-

ing steps, these mirrored functions have again readied the original node (Fig 

2 5(D)) 

While bouiicc-back dyiiamirs aie iiuirierically acruratc in 0{Sx), they can 

be easily implemented even for the most convoluted boundaries, making them 

voiy popular in LBM simulations [31] They arc particularly helpful in tlie 

study of liquid flows through porous media, where boundary conditions can be 

created directly from oloctiomc images of the porous matter 

2.3.3 Velocity Boundary Conditions 

A velocity boundaiy condition bpecificb a velocity profile u(x, t) on the 

boundary of the domain The problem is then physically and mathematically 

well defined, but the LBM boundaiy conditions are not Foi a btraight bound-

ary on a D2Q9 lattice, we have 6 specified, and 3 unspecified distributions on 

a boundary node In addition, the velocity boundaiy conditions define two 

further constraints 

pux = fi + h + h-fs-h — fi 

puy = /2 + /5 + /e - /4 - A - /s 

This leads to an uudeideteimined system of equations To determine a single 

solution, additional constraints have to be defined In the most commonly 

taken approach, developed by Zou and He[32], it ib abhumed that the non-

equilibrium contribution orthogonal to the boundary is bounced back, e g , at 

a horizontal boundary 
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h — f P = h - fT (2 18) 

Alternative methods include approaches that altei all boundary popula-

tions 111 01 dor to allow for gieatei iimneiical stability iii the turbulent legiine 

New populations are calculated from the density, the pre-defined vclority, and 

the stress tensor [33] However foi low Reynolds iiumboi legimes, the diffei-

ences in these methods are marginal 

2.3.4 Pressure Boundary Conditions 

The situation is similar if a pressure profile rather than a density profile is 

defined Howevei, the definition of the prcbbuie only offers a single coribtramt 

(2 19) 
口 0 

Hence, two additional assumptions arc made for one the aforementioned as-

sumption that bounce-back mechanics apply to the non-oqmlibrmin contribu-

tion of the orthogonal component for another that the velocity component 

oithogoiial to the boundary vanishes, e g , again for a horizontal boundaiy 

/2 - /r = h - /r 

/ 1 + / 5 + / 8 _ / 3 — /6 — /7 = 0 (2 20) 
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2.4 Pressure-Driven Flows in Repetitive Ge-

ometries 

Fluid flows through confined geometries, e g , a simple duct or pipe, are 

often driven by a pressure gradient Such a pre^buie giadicnt can be caubed by 

gravity, or simply by conncctmg the ends of the duct to reservoirs of different 

prcbbure Ab discusbcd before, boundary conditiorib for a bpecified boundary 

pressure have been defined If the pressure profile on the boundary is known, 

bucli piebbure-driven flowb can be readily simulated 

A common pioblem, encountered foi example in the simulation of microflu-

idic dovices, is that the liquid flows through a repetitive geometry of identical 

unit cells Each single unit cell could be simulated using the lattice-Boltzmann 

mrthod but the solution of the entire flow exceeds the dimensions that ran be 

tacklcd with modern computer systems It appears sensible that the periodic-

ity of the geometry should be exploited Simple pcriodic boundary conditions, 

however, can not be used, since this would eliminate the force driving the flow 

As an preliminary remedy, the pressure gradient was replaced by a so-called 

body foice driving the flow Body forces altei the equilibimm distribution in 

such a way that the equilibrium distribution of density p and velocity u does 

not add up to the same velocity 

Q—1 

T^u (2 21) 
P 

Body force approaches were initially developed to incorporate mertial and 

gravitational foiccs into lattice-Boltzmann bimuiationb [34, 35] By replacing 

the pressure gradient with a body force as the force driving the flow, exploiting 

periodicity becomes bimple bince bimple periodic boundaiy conditiorib can be 
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used. However, it has been argued that the body force appioach is not equiv-

alent to a pressure gradient if the flow geometry does not possess a uniform 

LIOS8 section [36]. Hence, moie advanced generalised periodic bouridaiy con-

ditions (GPBC) arc needed that incorporate the density gradient as a driving 

forcc 

2.5 Generalised Periodic Boundary Conditions 

with Pressure Gradients 

2.5.1 Existing Models 

The general problem is shown in Fig. 2.6. A fluid is driven through a 

icpetitivc geometiy by the pressure diffeicnce between the outer icseivoiis 

Ap = PA — PB- The entire array can be divided into MY. unit cells, each of 

which has dimensions Lj. x Ly N^： x Ny x Sx'^ Instead of simulating the 

entire system at a great expense of computation power and thereby sacrificing 

accuracy, simulating only a single unit ccll is highly advantageous. If a single 

unit ccll is simulated, tlie distribution fuiirtioiis on the outer boundary nodes 

/么 i.e., the nodes directly outside the unit ccll, arc undefined To define these 

populations, relations between the distiibutioii function flowing out of the unit 

cell at one end and those flowing in from outer boundary nodes f; at the 

othei end have to be derived 

Two diffeient appicaches have been pioposed to combine piessuie differ-

ences with periodic boundary conditions [37, 12]. They differ mainly in the 

quantity that is assumed to be peiiodic. The fiist proposed method by Zhang 
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and Kwok [37] abbumcd pcriodicity in the flow velocity combined with a preb-

sure gradient 

uO,?/) = \i{x + L^,y) 

= p{x + L:,,y) + 5p 

K工,y) = + (2 22) 

This approach was realised by simply lescaliiig the particlo distribution func-

tions If f :: a f , the density is simply rescaled by the factor a, but the 

velocity remains unchanged 

As a physical bouudaiy condition, these equation have a caveat the undei-

lying assumption of this approach is that of an incompressible flow, for which 

the pcriodicity of the velocity ib leabonable However, bince the equation of 

state of the lattice-Boltzmann method directly relates pressure and density, 

〃 暴 " ， 

this method leadb to eironeoub icbultb Conbcquently, Kirn and Pitbch pio-

posed another boundary condition [12] that requires pcriodicity m the mo-

mentum density j instead 

p{oo,y) = + + (2 23) 

While this approach is more accurate it is more complicated to implement 

If the momentum denbity has to lemain conbtant while a deribity gradient ib 

applied, the flow velocity at the inflow has to be smaller than at the outflow To 

implement this lequircment, Kim and Pitsch splitted the distiibution functions 

into an equilibrium and a non-equilibrmm distribution 

f r ( x , t) = /.(x, t) - Cipi^, 0，u(x, t)) (2 24) 
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The equilibrium pait is himply given by the cquilibrmm dibtribution calcu-

lated according to Eq (2 12) The non-cquilibrium distribution can hcncc be 

negative Its contiibution to both fluid velocity and density ib ncutial 

E r 二 0 
口 0 

9-1 

E f e , = 0 (2 25) 

Kim and Pitsch's central assumption is that while the equilibrium distribution 

between a pobition in difieient unit cellb will difter in oidei to fulfil conditionb 

(2 23), the non-cquilibnum dibtributions will be fully periodic Hence, the full 

bet of periodicity luleb bccomes 

nix + L丄,y) 

f:、x,y) 

f:、仏,y) 

in^.y) 

fi{x + L 工,y) 

p{x,y) — Sg^ 

p{x,y) - SQ^ 

r^ipix,y),uix,v)) 

= - 知 ” 咖 f 知 ^ 

=人 0， y ) - /广(PCC，y), y)) 

= + + (2 26) 

The differences between the two appicaches are illustrated in Fig 2 7 

Figure 2 7(A) shows an exemplary distribution function assumed to be some-

where at the outflow of the unit ccll, corresponding to the right purple node 

111 Fig 2 6 It IS assumed that the density difference over this unit cell is 

Sp = po/2 with po being the average density p(x = L^) of the unit cell Fig-

ure 2 7(B) bhowb the resulting distiibution ubing the Kim/Pitbch method at 

the purple inflow node The non-equilibrium parts are unchanged while the 

equilibiium paitb aie changed dccoidmg to a blowei moving but denber flow 
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Figure 2 7(C) shows the rcbultb of the Zhang/Kwok method Both equilibrium 

and non-equilibrium are simply rescalcd, resulting in an increased mass flow 

As the Zhang/Kwok method does not preserve tne inomentain ueiibity, cQid 

was fuitheimore shown to yield less accuiate results [12], wc will m the follow-

ing use the Kim/Pitsch periodic boundary conditions with pressure gradients 

It should be noted, though, that only the long-time limit of the simulation 

IS a bolution for the fully developed flow This means that the solution has to 

become stationary before it is applirablp Initial effects such as the behaviour 

of the fluid oncc the pressure gradient is activated, do not occur in all unit 

cells at the same time or iii the same way This effectively invalidates the 

pcriodic relationships in Eq (2 22) and Eq (2 23) while the flow is not yet 

fully developed If the time evolution of the flow through a buch a geometry it, 

of interest, then indeed the entire system has to be simulated Consequently, 

wc dlbo tocub on the Stokeb limit, i e , the cdbc of very bmall Reynolds nurnberb 

For high Reynolds numbeib, turbulences cause a permanent time-dependence 

of the flow, and thub no steady final state exibtb 

2.5.2 Implementation of the Kim & Pitsch Boundary 

Conditions 

The common use of the Kim/Pitsch (KP) method differs slightly from the 

theoretical derivation In theory only the density gradient over exactly one 

period 1 (、, Â a； = p[x, y) — p{x + Lx, y), is defined This gradient ran already 

be used to spccify the densities on the inflow and outflow columns a; — 0 and 

X = L^^ 6x However, bincc initially the denbity over the unit cell is conbtant, 

this creates an initial gradient between x = 0 and x = L^ + Sx oi nearly 

and thereby caubefc. a piolonged initialisation period Hence, typically 
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two average densities pL = 'p(x — 0) and pR = 'p{x = L̂； + 1) are externally 

defined. The densities at single points on the inlet and outlet columns are then 

defined through 

p{La: + 6x,y) = pr + p{5x,y) - p(6x) (2.27) 

The quantities 'p(6x) and are measured directly inside the simulation. 

The flow velocities on the boundary are set to 

u ( 0 , y ) = 

+ 5x,y)= 

工，咖(L工,y) 

p{5x,y)\i(8x,y) 
(2.28) 

With these definitions, the inflowing distributions are calculated as 

/：(0,|/) = /rwo’?/),u(o’2/)) 

+ ML』-

= + 6x, y), + Sx, y)) 

+ M知’ y) - r(如,y). (2.29) 
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y = 12 

X = La； + 

a; = 1 X ~ Lci 

Figure 2.6: Schematic description of pressure-driven flows in ID-periodic ge-

ometries. A geometry with a repetitive pattern connects two reservoirs of 

different pressure. To simulate a single unit cell, rules have to be defined re-

lating outflows f and inflows f on nodes with a periodic relationship, here 

shown in identical colours. The density relations of the Kim-Pitsch boundary 

conditions are explicitly listed. The different grey-levels indicate different dy-

namics, i.e., light grey for BGK dynamics, dark grey for outer boundary nodes, 

and black for bounce-back dynamics. 
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• • B 

[=顶e; 

=ifee, 

30 

p = 1.5 p = 1.5 
_3. e. 

Figure 2.7: Different periodicity rules for Zhang/Kwok and Kim/Pitsch gen-

eralised periodic boundary conditions. Each distribution function is split into 

its equilibrium (until the flat end) and non-equilibrium distribution (from the 

flat end to the arrow tip). (A): particle distribution function at some node 

at a: = Lx. (B): resulting distributions at a; = 0 for the Kim/Pitsch model. 

(C): resulting distribution at x = 0 for the Zhang/Kwok model. Both cases 

correspond to a pressure difference of 6px = l/2p{Lx). 
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Chapter 3 

Adaptive Generalised Periodic 

Boundary Conditions 

3.1 Methodology 

The problem discussed in Sec. 2.5.1 can further be complicated if the ge-

ometry is repetitive in more than one dimension. Such a case is typically found 

among microfiuidic devices, where a 2D-array of M^ x My unit cells is con-

fined by solid walls, such as shown in Fig. 3.1. With the previous methods, 

a columnar unit cell that extends over an entire column, shown in red in this 

figure, could be simulated. However, this would come at a great computa-

tional expense, as such structures can easily extend over many hundred cells. 

Finding ways to simulate a single unit cell (highlighted in green) is therefore 

highly desirable. However, it is not always possible to just use simple periodic 

boundary conditions on the upper and lower boundary of the green unit cell. 

If the cell's obstacle geometry is asymmetric, a net momentum in ^-direction 

will be transferred between the fluid and the obstacle, leading to a net mass 
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-n/\/\/\/\/V 

V yv 
^ Pot yv 
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I I I I I O： 
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'X/X/X/X/X/̂  

'N/N/X/X/N/̂  

v/̂  

Pus v/^ 

'VN/X/X/N/̂  

'X/X/X/X/X/̂  

‘\j\j\j\r\r-

Figure 3.1: Schematic layout of a microfiuidic array device. A 2D-array of 

identical obstacles is placed inside a duct and confined by solid walls. A pres-

sure difference between the reservoirs A/) = pa — fKj drives a flow through this 

geometry. The column-like unit cell that can be simulated with KP-boundary 

conditions is highlighted in red, while a single geometrical unit cell is high-

lighted in green. 
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Figure 3.2: Comparison of the flow lines of a unit cell of N^ = Ny — 200 exclud-

ing (A) or including (B) the effects of outer solid walls. (B) Flow lines enter 

and exit at the same ^―value. (A) Flow lines are shifted upwards significantly. 

flow in direction 
^x+Lx 

j±(y) = J jy{x,y)dx . (3.1) 

Through the effects of the solid wall boundaries at the bottom and top of the 

array, such a flow cannot exist forever. Instead, it leads to a density gradient 

in 没一direction, which itself acts as a force: 

p(x, y) ~ p{x, y-\-Ly) = Agy . (3.2) 

In the final steady state, the resulting force caused by the density gradient and 

the force from the asymmetric obstacle balance, and the momentum flow in 

y-direction vanishes. 

An illustration why this density gradient cannot be ignored is shown in 

Fig. 3.2. The obstacle design of a single unit cell is a thin, inclined rectangle, 

deflecting the flow upwards. Both panels show the resulting flow lines. Fig. 

3.2(A) is a simulation of a single unit cell, using KP boundary conditions 

with a pressure gradient in rc-direction to drive the flow. Simple periodic 
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3 . 1 , M E T H O D O L O G Y 

boundary conditions aie ubed in ^-diiection The lesults show that the flow 

lines leave the unit ccll at a higher point than they enter it, indicating a net 

upwaid momentum ib induced In contiafat, Fig 3 2(B) showb no such upward 

momentum, with each flow line leaving the unit coll at the same level as it 

entered it Data for Fig 3 2(B) was obtained by simulating a columnai unit 

rell consisting in this example of only My = 3 rows The outer walls were 

explicitly included in the simulation Afterwards the data of the central unit 

roll 111 this columnar an ay was used to creatc Fig 3 2(B) 

111 ordei to be ablo to simulate only one single unit ccll, we iicod to use 

generalised periodic boundary conditions that incorporate the pressure gradi-

ent m "-direction To do bo, we use the KP boundaiy conditions and define 

two average densities over the ccll's top and bottom outer boundaries 

PB = P{Y 二 0) 

PT = P{y = Ly + 5x) 

PB - OT =- SPY (3 3) 

The density difference in 以-direction has to be chosen in such a way that the 

flow in 以-d i r ec t i on j丄(y) vamslieb 

= 0 (3 4) 

The flow through any single line can fluctuate significantly, particularly in the 

eaily btage when bound waveb are tiavclmg through the cell We can rcplace 

condition Eq (3 4) as follows Instead of suppressing the flow through any 

single line, we rcquiie that the total ^-momentum of the fluid within the unit 

cell vanishes 

. N̂  Nj 8 
jT 二 / JYD^dy 二 Y^YlJ^y eMkSx, ISx) =0 (3 5) 
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Here, the numbered vectorb ê  refer to the lattice vectorh of the LBM bimula-

tiori, while e^ ih the basis vcctor in ^/-direction of the coordinate systems (and 

hence identical to 62) 

This condition is not yet equivalent to Eq (3 4) Eq (3 5) is still fulfilled 

if cach line itself has a positive or negative 沪flow as long as these flows cancel 

when summed up ovei the entire unit cell A possible scenario is an inflow from 

tho left boundaiy that partially leaks out If the leakage through the uppei 

and lower boundaiy is equal then the condition = Q might be fulfilled 

Howevei, it is impossible foi such a state to occur peiiodirally, as the outflow of 

one unit cell has to be the inflow of another Therefore, we require as a sccond 

condition that the leakage thiough the upper and lowei cell boundaiieb, 

. VVx / 

% = • JyGydo = Y2 Mkdx,LY) — f八k如,0) 
Jdv =2 5 6 

+ Y1 h{k5x,6x) - f,(k5x,Ly + 6x)\ , (3 6) 

1=4 7 8 / 

vanishes separately In terminology of systems engineering, and arc 

Ieferred to ab control variables We can control j》。t through adjusting Spy and 

屯y through PB (see Eq (3 3)), respectively The quantities Spy and ps arc 

in bybtcmb cngincciiiig refeiied to as the actuating variables of their respec-

tive control variable Both actuating variables are adjusted using a standard 

propoitional-diffcrential (PD) contioiler algorithm [38], such that 

-芸 " B = + (3 7) 

The mechanibmb of buch an algorithm aie bimple Let us abbunie an abymmet-

ric obstacle design that generates positive ^-momentum, e g , the triangular 

obbtacleb ubed in all our example figureb Through the bo-called linear terra Kp, 
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a pobitive momentum leads to an mcieasc m the countering adaptive density 

gradient, and vicc versa The resulting oscillatory dccay is damped through 

the inclubion of a bo-callcd differential teiin iQ, which, mcieabcb the adaptive 

density gradient if is increasing oven if it is still negative Suitablr rhoicrs 

can be found with elementary methods of contiol system theoiy [38] We will 

in the following refer to this setup as adaptive generalised periodic boundary 

conditions (AGPBC) 

The full relationship between boundary nodes using AGPBC is shown m 

Fig 3 3 Distnbutioii functions on the outer boundaiy nodes have to be doiived 

according to Eqs (2 27)-(2 29) Additional problcmb arise sincc the distribu-

tion functions on the outer boundaiy nodes at the coiners can not be defined 

111 this manner The average densities [p-Q etc ) are defined as averages over 

one line ol boundaiy nodcb of a directly adjacent unit cell In contrafet the 

corner nodes belong to a unit cell shifted in both dimensions, c g , above and 

shifted to the light We cannot diiectly define the denbity at thcbe iiodeb, and 

hencc have to resort to the original boundary conditions 

P(0,0) 二 piLx, Ly) - A & 4 

p{Lx = P ( 3 X , L y ) — 

Ly + 6x) ^ + 

+ 5x,. Ly + 二 p{Sx,5x)— A办 (3 8) 

However, since we define the density gradients between the outei boundaries 

Spx/y the difterences over exactly one period 5q工丨y are not a-priori known We 

have to measure thcni in simulation as 

Afo —— p{x 0) — p{t = NJx) 

^Qy = •piylO、一 二 Ny5x) (3 9) 
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3.2 Simulation Results 

To validate our method, we first need to define a control system. Generally, 

the use of a single unit cell, taken from a full Mj： x My an ay with extensive 

dimensions M工 and My. as the control system would be appropriate. However, 

computational coiistiaiiis do not allow the simulation of such an array unless 

very small unit cells are used. We hence use the KP boundary conditions, 

whose accuracy was aheady demonstrated for systems with one-dimcnsional 

periodicity [12], to reducc the system to an 1 x My array. Such an array of unit 

cells of dimension N̂； = Ny = 200 can still be simulated for a column of My = 7 

unit cells. Each cell contains one triangular obstacle of height h = l/2Ly. We 

use regularised zero-velocity boundaiy conditions to simulate the solid walls 

at ^ = 0 and y = 1401 奴[33. 15]. For this design, the introductory length is 

less than two unit cells, i.e., the inner cells behave virtually identical We will 

use the innermost of these cclls as our control system. When referring to the 

entire seven-cell system, we will use the term control array. 

Following current literature, we set the LBM relaxation time to r = O.SSt 

for optimal numerical accuracy. Setting the time constant implicitly also 

fixes the inter-simulation kinematic viscosity to Z/LBM 二 Sx'^/lOSt. Since our 

method is valid foi the fully-developed state of time-independent and hence 

turbulence-free flows only, the flow has to be restricted to the Stokes regime. 

We theiefoie choose a density difference in jj-direction of Ap/p ^ 10—5 by 

setting PL = 1-00001 and Pr = 1 for both the AGPBC system and the control 

an ay. The Reynolds number calculatcd fioin the resulting flow velocity of 
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P = Pxl 
p{r),Ly + l)=pT 

+ p{v,i) 

PiOn) = PL 

-PxL 

BGK lattice node 

bounce back lattice node 

Figure 3.3: Periodic relationships in the 2D AGPBC model. Nodes of identical 

color have the same location in different unit cells. The highlighted distribution 

functions hence have to be transformed in accordance with Eqs. (2.27)-(2.29). 
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u ^ l(}~A6x/6t^ the horizontal length of the triangle I = and the kine-

matic viscosity is Re ^ 10—i. This can be seen as an upper boundary for the 

validity of our method. For faster flow velocities, small time-dependent fluctu-

ations occur. The method can still be used at Re ^ 10, but the magnitude of 

these fluctuations will significantly exceed the accuracy that our method can 

offer, and quantitative comparisons hence become meaningless. However, typ-

ical microfluidic devices operate significantly below this regime. For example, 

even the highest velocities used for deterministic lateral displacement result in 

a Reynolds number of Re ^ 10—4 [39，40]. 

The fluid in the system is initially inert. After the density gradient in x-

direction becomes active, no adaptive gradient is used in the AGPBC system 

for an initialisation period of = 10, 000 St in order to avoid initial effects 

affecting the controller algorithm. Afterwards, the adaptive gradient Apy is 

adjusted usingi K u = 0.8 x 10"®, Kip = 0.8 x 10"®. The parameters for the 

lower boundary density ps are = 0.5 x 10—5, K2p 二 0.5 x 10一4. 

The system was simulated for a total of 力：400,000 St steps, at which 

time the evolution of all quantities was limited by machine precision. In the 

following, long-time limits or final values are always meant to imply the state 

of the system after machine precision was reached. 

Figure 3.4 shows the initial evolution of the adaptive pressure gradient in 

comparison with the emergence of the density differences over different unit 

cells inside the control array. After the initialisation period, a very short tran-

sient period with strong oscillations follows. The first oscillation's amplitude 

actually exceeds the final value of the adaptive pressure gradient by a factor 

^It might be surprising that the gain coefficient Kp of the gradient is two orders of 

magnitude smaller than that of the lower density. This is caused by the control quantity 

is summed over Ny times as many nodes compared to which the coefficients need 

to compensate for. 
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Figure 3.4: Evolution of the adaptive density gradient (solid line), compared 

to the density difference over the topmost (green circles), central (blue crosses) 

and bottommost (red triangles) unit cells of the control array. 

of four. However, these oscillations are quickly suppressed through the dif-

ferential term in the controller loop. After t > 20,000 6t, oscillations have 

nearly subsided. The adaptive density gradient now approaches its long-time 

value even faster and with less fluctuations than the gradient over the control 

system. 

Notably, the density gradients over the two outermost cells differ signifi-

cantly from those over the AGPBC system or over the control cell. This is 

caused by the decelerating effects of the adjacent zero-velocity outer walls, 

which nearly suppress the flow between the walls and the obstacle. For the 

general validity of our model, this effect can be neglected since it occurs only at 
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2.4x10 

1.8x10-6 

unit cell 

Figure 3.5: Long-time limit values of the density difference over different unit 

cells of the control array (red squares), with the applied adaptive difference 

/S,py (dashed blue line, between nodes 0 and 201) and the resulting periodic 

difference A^y (solid black line, between nodes 1 and 201) shown as horizontal 

lines. 

the two outermost cells. This is demonstrated in Fig. 3.5, where the final den-

sity differences over all unit cells in the control array are shown. Except for the 

outermost cells, the density difference over all cells was within a 1%-interval 

of the adaptive density gradient. 

However, these deviations over the outermost cells do not only occur in y-

direction. In fact, the average density gradient in j^-direction p[x = 0) — 'p{x 二 

201), when averaged over the topmost (1200 < y < 1400) or bottommost 

(0 < t/ < 200) cells, is lower than the applied mean gradient pL — Pr- This 

leads to a small numeric issue. Because the mean density difference is defined 
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ovei the cntiie an ay of unit cellb the mean gradient over the innei ccllb m 

return is slightly larger than the overall mean gradient However, this overall 

mean gradient ib identical to the gradient ovei the AGPBC system The x-

density gradients of the AGPBC system and the control system hence differ 

slightly 

A „ A G P B C A ^ctrl 

〜二、… 4 (3 10) 
To see the importance of this difference, let us look at the final state results 

of the AGPBC bybtcm and a bystem that ubCb GPBC in x-dircction but only 

SPBC m y-direction Figure 3 6 shows velocity isolmes |v| for AGPBC (panel 

A) and GPBC/SPBC (panel B), both in comparison with the contiol by stem 

While the AGPBC system agrees with the control system to a degree that dis-

tinguishing the contours becomes impossible deviations arc cleaily visible for 

the GPBC/SPBC system, where they are of an order of magnitude comparable 

to that of the flow 

To quantify these dificicnces, we define the relative eiror m the flow as 

/ E ^ ^ ， (3 11) 

V Vetrl 

wheie IVT̂ HI the mean absolute velocity in the contiol bybtem Fig 3 7 

shows the such defined errors for the AGPBC system^ Fig 3 7(A) shows the 

eirois ab computed directly from the AGPBC bybtem The eiiorb obbcived are 

of order e ^ 10—4 However, a comparison between the errors observed and 

the velocity profile (Fig 3 6(A)) mdicateb that they aie diiectly propoitional 

Given our definitions, a proportionality in the velocities i e , VAGPBC 二 C X 

Vetri, would icsult 111 ail ciToi proportioiial to the cm rent velocity e = |(]— 

•^Thc errors for the SPBC/GPBC system is of order 10"^ ckarly txcccding thobc of the 

AGPBC sybtem and therefore irrelevant to the discussion here 

45 



C H A P T E R 3 . A D A P T I V E GENERAL ISED P E R I O D I C B O U N D A R Y COND IT IONS 

m 

Figure 3.6: Flow isolines (|v|) of the control system (thick gray lines) and the 

single cells (thin black lines) for AGPBC (A) and Kimpie GPBC (B). Velocity 

isolines are spaced 4 x 10~^6x/6t 

Figure 3.7: Relative deviations e between the control system and the adaptive 

system with original Apx (A) and with the control system's effective Ap^ (B). 
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3 . 2 . S IMULATION RESULTS 

c)vctril/|vctri|- Furthermore, the observed error is also of the same magnitude 

as the measured deviation in the effective density gradient. This makes it 

plausible that the error observed actually is caused by the difference in the 

effective density gradient (see Eq. (3.10)). 

To test this hypothesis, we simulate an AGPBC system, using the mea-

sured effective density gradient in x-direction. The resulting errors are shown 

in figure 3.7(B). The observed error has dropped by four orders of magnitude, 

showing clearly that the initially observed error was caused by the mismatch 

in the applied density gradient. However, since the simulated system is within 

the Stokes regime, this error affects only the flow velocity, but not the flow 

pattern. In fact, the error could have been reduced in the same extent by 

simply rescaling the flow field by the ratio of the applied density gradients. Fi-

nally, it should be stressed that the observed mismatch in the effective density 

gradients is a finite size effect intrinsic to our control system, which for compu-

tational purposes had to be of limited size. For systems with larger numbers 

of rows of obstacles as our method intends to help simulate, this mismatch 

would gradually diminish. 

Figure 3.8 shows the long term evolution of the control and actuating 

variables. Figure 3.8(A) shows the net flow through the lower boundary of 

the control system, as well as the convergence of the vertical density differ-

ence over the control system against its long time value. Both quantities 

show an oscillatory exponential decay of the form exp(—Ai) sin(a;i + </>) with 

a time constant of approximately A "；^ 1/(12,000(5t). Figure 3.8(B) shows the 

absolute y-momentum and its asymptotic absolute actuating variable 

Ap^mp 二 |Apy⑴-Apj/(oo)|. Figure 3.8(C) shows the absolute leakage 

through the cell boundaries and the absolute asymptotic actuating variable 

pgymp = |pB(0 — /5b(OO)|. Apart from a very short time directly after the 
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Figure 3.8: (A): Decay of the net flow = 60(M;r) through a horizontal 

boundary (red line) and of the corresponding asymptotic density difference 

Apjtri _ Apjtri⑷—Ap『i(oo) measured over the control cell, i.e., between 

lines y — 600 and y = 800 of the array (blue dotted line). Since the quantities 

decay oscillatorily, the absolute value was taken and hence only the positive 

parts are displayed. (B): Relaxation of absolute total y-momentum |j•广丨(red 

circles) and controlling density difference A/)̂ ® "̂̂  二 — (blue 

line) in the AGPBC system. (C): Relaxation of absolute leakage (red 

triangles) and the controlling average bottom density =|pB⑷一PB(OO)| 

(blue line) in the AGPBC system. 
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3 3 S U M M A R Y AND CONCLUS ION 

initialisation peiiod all quantities^ decay exponentially though not oscilla-

tory The decay conbtant is virtually identical to that of the control system, 

bhowing that with a piopei choice of contiol coefficicntb, a fully developed flow 

can be simulated within the same number of simulation steps 

For implement at 1011 purposes an important point should be noted In 

the prebentcd case the hoiizontal momentum is monotonously increasing 

duiiiig the long tune evolution of tho flow Just as well the leqmiod gradient 

in ^-direction mcreabes until it has readied its long-time limit If the control 

coeffic loiits are not suitably rhoscii, particiilaily if the initialisation peuod is 

too long, the flow might adapt itself into a direction where the obstacle oflcrs 

less resistance Oncc the adaptive giadicnt is applied the flow is forced into a 

less favourable direction and will decrease by pasbing momentum to the solid 

obstacle Since the icaction of a flow to a deribity giadicnt ib much tabtci than 

the reaction to an obfetaclc this type of long time decay will occur with a 

much bmaller decay conbtant (A ~ 1/(60, 000况）was obseivcd foi the bybtem 

discussed here ) However a suitable choice of controlling quantities as well as 

a pobbible giadual onset of the driving density gradient can avoid buch effcctb 

138] 

3.3 Summary and Conclusion 

We introduced a new boundary condition algorithm for the treatment of 

solid outoi walls in a. lepetitivc geometry The method allows to rodu( e a 

two-dimensional repetitive array to a single unit cell and therefore signifi-

cantly red lie Ob the computational cxponbe lequiied for the bimulation of buch 

a system For the Stokes regime of laminar flows, our method offers exrellent 

accuracy, without requiring more bimulation time bteps than d simulation of 
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the entire setup Hence, iniciofluidic devicch, which use vaiioub foims of unit 

cell layouts, can be efficiently simulated using the lattice-Boltzmann method 

III particular, the calculation of flowh in microfluidic deviceb with laige iiuin-

bers of unit cells benefits from our proposed boundary condition A good 

example for such a device is the deterministic lateral displacement array for 

continuous particle separation [39] 
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Chapter 4 

An Introduction to Brownian 

Ratchets 

4.1 Mot i vat ion 

The separation of large macromolecules is a crucial task in molccular biol-

ogy, in particular with respect to proteins and DNA fiagments. Such macro-

molecules can differ in size, drag, electrostatic charge, clectrophoretic mobility, 

and other pioperties. However, existing separation techniques like gel elec-

tiophoiesis aie often slow and cumbeisoine, sometimes taking more than ten 

hours to separate large DNA coils [41]. 

Brownian ratchets, in form of microfiuidic sieve devices, have received in-

creasing attention as a paitirle sepaiatioii mechanism based on a paitide's 

diffusivity. Such ratchets require a driving forcc (see Sec. 4.2) to keep them 

outside thermal equilibrium. However, those driving forces each proved to have 

different downsides (see Sec. 4.4.2) Electric fields are influenced by the nii-

cioscopic sieve baiiiers. ineitia forces require a rotating mechanism and hence 
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make the realibation of a whole device on a chip' imposbiblc, and gravitation 

cannot be tuned, which is unfortunate also for entirely different reasons In 

what follows, we will discubs the general ratchct inechariibm, as well ab wh}-

and how it can be used for particle separation In Cli 5, we will propose a 

mechanism that uses pressure-driven flows as a driving mechanism for particle 

separation This mcchamsm circumvents the aforemeiitioripd problenib and 

could facilitate the realisation of chip-sized microfluidic particle separators 

4.2 The On-Off Ratchet 

Being able to turn thermal noise into ubeful woik is an idea bO defaiiable 

that many people have tried to come up with thought-experiments that would 

make a realibation pobbible Unfortunately, generating work from a dobed 

sybtem in thermal equilibrium is impossible according to the sccoiid law of 

theimodynarnicb One of the mobt famoub budi experiments ib the ratchet-pawl 

mechanism first discubsed by Smoluchowski [42] and popularised by Richard 

Feynman [43, 44] Both showed that, if both pawl and heat paddle have the 

same temperature the system is in thermal equilibrium and thermal energy 

alone will not do any work If however, the temperature of the paddle cxcccds 

that of the ratchet, then the ratchet can move foiward but at the system's 

free energy's expense [45] 

Another approach is to apply a force that permanently keeps a system 

outside equilibrium This iriethod was widely discussed with rcspect to molec-

ular transport m cells [46, 47, 48] Ajdari and Prost [49] proposed a simple 

method, using an obcillatory potential to keep the bybtem out of equilibrium 

and rectify its Brownian motion, the so-called on-off ratchct This method was 

experimentally lealibed by Roubselct et al [50] 
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Coiibider a bmall paiticle of radius r huspendcd in a liquid of temperature 

T and viscosity rj The motion of the particle is described by the Langevin 

equation 

mx = F ( x ， t ) + f d " x (4 1) 

The forces acting on the particle are comprised of an external force F caused 

by some potential 办 a drag term —/5x, and a theimal noise term f The 

thermal fluctuations are supposed to be white noise, i e，they have zero mean 

and arc uncorrelatcd m time 

(f(t)f{t')) - 2kBTmt - t')， (4 2) 

where the diag coefficient 

/? - 67r"r (4 3) 

IS determined through the viscosity of the fluid and the size of the (sphcrical) 

pdrticlc 

The probability density of a paitide undergoing bucli Brownian motion ib 

dcscnbcd by the Fokker-Planck equation 

dV 

m - - : 取 力 ） 

J(x, t) = t)F(x, t) — DVP(x，t) (4 4) 

with 

D ^ M ： . ^ (45) 

Girrrr 13 、 乂 

being the diffusion constant according to the Stokes-Einstein relation 

In the following, we will coiibider a one-dimensional problem, i e , we abbume 

the potential to be independent of two coordinates dy龟=dz^ = 0 Consider 

the following potential 
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= 

$。n⑷ 

$。ff(a；) = 0 

which is cyclic with period T = ri + r2. 

屯( 

0 < ^ < ri 

ri <t <TI-\-T2 
(4.6) 

Figure 4.1: Possible choices of sawtooth-style potentials with identical asym-

metry parameter. 

The potential is a sawtooth-style potential with spatial period L^ = 

a + 6. Examples of such potentials are depicted in Fig. 4.1. The exact shape of 

the sawtooth potential is not important for the time being. What does matter, 

however, is that the potential has an asymmetry, i.e., the distances a and b 

between the potential minimum, and the adjacent maxima are different. We 

can quantify the asymmetry by defining an asymmetry parameter 

€ = 
a + b 

(4.7) 

As a convention, we will label the length of the shorter edge as a. The asym-

metry parameter is e = 0.5 for a symmetric potential, and e — 0 for a sawtooth 

potential with an orthogonal edge.i 

1 Unfortunately, this means that the asymmetry parameter is decreasing when the po-

tential is more asymmetric. Attention should therefore be paid to the exact formulation 
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m 

中。“⑷ 

m 

B 

Figure 4.2: Particles in an on-off ratchet. (A) Particles are localised near the 

potential minimum at t = ri- (B) While the sawtooth potential is switched off 

Ti < t < T2, the particles can diffuse freely. Their probability density function 

is a Gaussian bell curve whose width is determined by their diffusivity. (C) 

When the sawtooth potential is active again, the step probabilities can be 

expressed in terms of the corresponding error functions. 

Let us consider the effects of such a potential on the suspended particle. 

Figure 4.2(A) shows two particles of different sizes under the influence of such 

a potential, right before the potential is switched off. The interval Ti has 

been chosen such that the particles are now in their equilibrium state and are 

used. 
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dibtnbutcd according to the Boltzmann distribution 

P ⑷ = c x c x p ( — ( 4 8) 
V ksT / 

Even for different particles like the ones shown here, the equilibrium distribu-

tion lb identical ab long ab the potential doeb not depend on the particlc'b size 

or mass The resulting distribution has been drawn very broadly for illustra-

tive purposeb However, the potential can be choben to be large againbt the 

thermal energy 》k^T , such that the distribution bccorries very narrow 

and the particle is effectively localibcd at the minimum XQ WC will in the 

following choosc both the potential and the oii-time interval TI such that the 

particle i& localised at a potential mimmum when the potential is switched off 

For t > Ti, the potential is switched off and the paitides difiufee fieely 

(sco Fig 4 2(B)) If the particles were previously localised at x — ；To, their 

probability density is now given by a Gaussian distiibution 

Pix, t) = , 1 exp ( (二一〜)2 (4 9) 
、 ) V 4 7 r D ( t 一 Ti) P、4D(t - n) J 丨 

The diffusion pioecss does depend on the pioporties of the paitirlcs, as its 

diffusion constant is related to its radius through Eq (4 5) At time i = ti +丁2, 

the potential is switched on again, and the particles will drift to the IOLQI 

potential minimum If a particle has diffused to the right by more than a, 

or to the left by more than 6, it will move to a different local mimmum than 

the one occupied before More formally, we are interested in the probabilities 

that a paitidc will move n peiiodb to the light^ p^ We can expiebb these 

probabilities in terms of the error function 

ed{x) 二 4 / exp{-x''^)dx' (4 10) 
\h Jo 

2Movements to the left are chdracterised by negative n 
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The integral of an aibitiary Gaubbian dibtribution ib expressed m teiinb of the 

error function as 

/
 

cxp 
(T (7 

—erf 
fu- XQ 

V cr / 
(4 11) 

Conbequently, the step probabiliticb to move by n = 0’ ±1 minima are given 

as (see also Fig 4 2(C)) 

P 1 二 

Po = 

P+i = 

- e r f 
—b 

/ 

2 

erf 

erf 

a 

2a+ 6 

eif 

erf 

erf 

—b 

and aibitiaiily by n potential miiiiina 

(n + l)a + nb、 
Pr 2 

2 

erf 

/ 
erf 

fL.jn + ey 

-e i f 
f na + {n - l)b\ 

-erf 
.L 工[n — 1 + e)、 

(4 12) 

(4 13) 

We can combine all system parameters into one dimensionless variable called 

the particle's relative difiusivity 

V 二 
DT2 

Ti 
(4 14) 

which expresses the diffusion constant in terms of the system s characteristic 

length and time By doing so, we can express the step probabilities as a 

function of T> and 

Vn = ^ e
 

n + e 

2 V V V ^ / 
erf 

n - 1 +e. 
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Figure 4.3: (A) Step probabilities pn for a system with e — 0.2 as a function of 

the standard deviation of the diffusion process ao ~ V4P. The probabilities 

are drawn for a displacement by n = 0 (green), n = ±1 (orange), n = ±2 

(blue), n = 土3 (red) and n = 士4 (purple) steps. Solid lines refer to positive, 

dashed lines to negative movement. The inset shows the mean number of steps 

{s) = {oc)/Lx for systems with asymmetries e = O.Ol(red), e = 0.05(blue), 

e = 0.2 (orange) and e = 0.4 (green). Both figures are drawn on a logarithmic 

scale for y/V 
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In the limit of V oo, the right side becomes the Riemann integral of the 

Gauss curve, 
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The step probabilities are shown in Fig. 4.3(A). For very small values of 

T>, particles remain in their original potential minimum. For larger values of 

V, particles start to diffuse over the nearest barrier and hence experience a 

net displacement to the right. For even larger values of T>, backwards step 

probabilities and higher probabilities also become relevant. The mean number 

of steps of a particle during one cycle is shown in the inset Fig. 4.3(B). For very 

small diffusivities, no displacement occurs, and the maximum displacement is 

reached for values of < 1. The slope of (s)(\/4P) represents the resolving 

ability of the setup. Systems with larger asymmetry have larger d{s)/d'D, and 

offer therefore better resolution. If the system is used for spatial separation, 

i.e., separating particlcs by size rather than just into two categories larger than 

ro and smaller than VQ, V 4 P 《 1 is required, and hence all step probabilities 

other than pi and po can be neglected. 

For a given e, the mean displacement (s) converges against a constant 

values (s)max = I — e. This behaviour can be understood as follows [51]. For 

one cycle, the mean displacement is given as 

/\ + 1 / Jn-}-e\ Z n - J ^ X X 
(s) = > npn 二 〉 n- ert , - ert • ； = ~ 

= - • £ 宗 ) . （4.15) 

The derivative of the mean number of steps with respect to the asymmetry is 

(4.16) I 
n： V47rX> 

外〉 
de 



4 .3 . EXISTING METHODS FOR D N A FRAGMENT SEPARA I ION 

1 皿 外 ) 
v-^oo de 

lim {s)(i 

1 ^ a n + ef\ 
二 一 iiin , > exp ———~ 

P^oo y i ^ ^ \ AV J 
V 7-J=—OO \ ^ 

I 广 

= — — / exp (-x^) dx ~ - I 

- C " € (4 17) 

Since we know that no displacement occurs for symmetric ratchcts, i e ,〈s〉(V 二 

1/2) = 0 we can conclude that (s)niax = 1/2 - e 

Accoidmg to the cential limit theorem, the distribution after m icpetitioiis 

of thp cycles follows a Gaussian distiibutioi) with mean and variance given by^ 

{s)m = ni{s) 

{{s-{s)f)m = m((s-(s}f) (4 18) 

4.3 Existing Methods for D N A Fragment Sep-

aration 

Scpaiation of laige biomoleculeb such ab DNA coilb and proteins ib a cru-

cial task required in a plethora of bioclicmical investigation methods Un-

fortunately, working methods of DNA strain bepaiation by length are lathei 

cumbersome as they cannot be automated and involve many manual steps 

When fiecly dibpeibcd in a fluid and subjected to an elcctiic field a paitide 

experiences an electrostatic force F丑 二 qE While moving through the fluid, 

it Will also expeiience a diag foice F̂ ^ For sphcrical pai tides of radius r， 

this forcc can be written as F^ — — GTrrr/v where r/ is the fluid's dynamic 

^For a finite number m of repetitions, the dibtnbutioii is given by a binornidl dibtnbution 

with mean mp However for large m the binomial distribution becomes simply an integer 

version of the Gaubbian distribution 
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viscobity At velocity VQ these forces balance and we can define the particlc's 

electrophoretic mobility as 

Howevei, the charge g of a DNA coil is typically also piopoitional oi nearly 

proportional to its radius of gyration [52] DNA fragments of different length 

thus tend to travel at the same speed In order to separate DNA fragments of 

different size the coils are dispeised in a gel iriatiix that functions as a micro-

scopic sieve Depending on the pore size of the gel, the mobility's dependence 

on r changes, and shoiter DNA strains travel faster After a reitam tunc of 

electrophoresis, DNA strains of dificrent size have travelled difierent distances 

and are located at distinct positions m the matrix Howevei, retiievmg the 

DNA fragments from the matrix is a cumbersome task, and the method is 

theiefore only of limited ube if the DNA ib to be procebbed further 

4.4 Particle Separation Using Brownian Ratch-

ets 

4.4.1 Proposed Ratchet-Based Particle Separation De-

vices 

The use of ratchet-based particlc separation devices could provide a remedy-

to most of the aforementioned problems Minoflmdic systems that are able 

to fully automate chcmical or biological tasks have bccome known as lah-on-

a chip dcvicob Exploiting the ratchet effect foi paiticle reparation was first 

proposed by Erta§ and, independently by Duke and Austin The proposed 

debigiib were published in the same ibbue of Phybical Review Letters [53, 54] 

62 



4 . 4 . PARTICLE SEPARATION U S I N G B R O W N I A N RATCHETS 

and differ mainly in the exact design of the microscopic sieve. Figure 4.4 

shows such an microfluidic sieve design. It features all essential mechanisms 

proposed in Refs. [53, 54]. Some changes in the exact geometry were made for 

the purpose of easier comparison with the designs used in Ch. 5. The basic 

mechanism is as follows. Particles are electrophoretically driven through an 

array of obstacles. They are able to diffuse freely between two rows of obsta-

cles, corresponding to the ratchet potential being switched off. The obstacles 

then serve to localise the particles inside the gap between two obstacles, corre-

sponding to the ratchet potential being switched on. For a suitable asymmetric 

obstacle design, this will induce a net drift of the particles orthogonal to the 

direction of the electrophoretic force. The average perpendicular displacement 

will be dependant on the diffusivity of the particle, and particles of different 

diffusivity will therefore travel at different angles. 

The effects of such a unit cell can be discussed quantitatively. One unit 

cell has the dimensions L^ x Ly. Particles of different sizes are dispersed in a 

fluid and driven by an electrophoretic force F̂；, and hence travel horizontally 

at uniform velocity v^. The fluid itself is macroscopically inert. After passing 

through a line of obstacles x = 0, the particles are localised at the obstacle 

gap. In the ratchet model, this corresponds to a ratchet potential that has 

been active for some time and is just about to be switched off, i.e., t = ri. 

Hereafter, the particles drift towards the next row of obstacles, but are free 

to diffuse in y-direction. Without diffusion, the particles would drift straight 

through the gap in the next row of obstacles. Through diffusion, a particle 

may have moved above the line y+, in which case it will be moved towards the 

upper gap, and hence be displaced by Ly. Particles that diffused below y— will 

be displaced by —Ly. Speaking in terms of the ratchet model, this corresponds 
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Figure 4.4: Design of a particle separator based on the ratchet effect. Particles 

are driven by a electrophoretic force. At each gap x — n x L^, particles are 

localised at I/Q. In the range 0 < x < 6x, the particles can diffuse freely in 

^-direction. At a: 二 Sx, the gap through which the particle will pass is decided: 

the particles that diffused above y+ will be displaced by Ly, while those that 

diffused below y_ will be displaced by 一Ly. 
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4 . 4 . PARTICLE SEPARATION US ING B R O W N I A N RATCHETS 

to a diffusion time T2 = 5工 j � ,a n d a potential with asymmetry 

e = . (4.20) 
Ly 

If y+ — yo < yo — then the system is asymmetric with e < 1/2, and 

particles will experience an upward displacement. Since the separation occurs 

orthogonally to the direction of the electric field, this process is also referred 

to as vector chromatography. 

4.4.2 Realisations of Ratchet-Based Separation Devices 

Realisations of ratchet-based particle separation devices were attempted 

shortly after the mechanisms were proposed. Chou et al. reported a successful 

separation of DNA coils that differed by less than 6% in diameter, using a 

10cm micro-fabricated sieve device [55]. The observed diffusion paths, in par-

ticular the angular deflection, differed significantly from theory's predictions. 

In particular, the step probability pi was found to exceed theoretical expec-

tations significantly, and finite hopping probabilities Pn=i > 0 were observed 

even for very high drift velocities V^ that minimised the free diffusion time TI. 

Several factors can contribute to such deviations. For one, the obstacles 

act on the particles slightly differently than a ratchet potential would. This 

problem is illustrated in Fig. 4.5(A). The vertical gap between two obstacles 

has to be wide enough to allow the largest particles to pass. These particles 

will then be located perfectly in the middle of the gap. Smaller particles, 

however, do not feel a potential over the entire range of the gap, but instead 

can diffuse freely in some range centred around the midpoint of the gap. This 

means that the particle distribution will be localised in the middle of the gap 

only for large particles. Smaller particles will have a tilted distribution. When 
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D 

Figure 4.5: Issues in the realisation of particle separation devices. (A) Disloca-

tion due to a particle-size dependent effective potential. Black lines illustrate 

the effective potential for different sized particles at the gap. Red lines illus-

trate the resulting distribution inside the gap. (B) Electric field lines in a dif-

ferent separation device, reproduced from [56] (with permission from Springer 

Science & Business Media). 
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they approach the obstacle from an}/where but diicctJy above the gap, tlic) 

will be guided along the obstacle's inclined flank and hcnce m this example, 

I each the gap at itb light end 

Anothei pioblem is that the elcctiostatic foice mside the obstacle an ay is 

distorted by the obstacles Fig 4 5(B) shows the movement of one partirlc 

inside a different type of obstacle array, together with the calculatcd eloctiic 

field [56] Indeed, a large part of the hoii70iital inovenioiit here is caused by 

the field lines fanning out behind the gaps, rather than the particle diffusing 

This piocess obfuscates the ratchet offcct biiK e small paiticlos following the 

field lines will be guided around the obstacles and will hencc not cxpericnce a 

idtchet potential at all 

The lattei problem was dihcubbed by Li and Drazei [57j, who porfoiined 

a quantitative analysis of the diffusion of particles through an array of ob-

btacleb akin to the one piopobed by Duke and Aubtin [54] They aigucd that 

the electric field cannot penetrate the electric double layer that forms around 

buch obbtacleb, and showed that buch non-peimeatmg fieldb cannot be used for 

ratcliet-bafeed vcctor chromatography Instead, tliey propobed the use of per-

meating foice fields such as meitial or giavitational foiccs, and calculated the 

migration angle as a function of the partic le's diftusivity They furthermoro 

stated that lamiriai flow fields can not be used for vector chiomatogiaphy, 

Sim c the dispersed particlos would again bo guided around the obstacles and 

not experience a ratchet potential 
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4.5 Conclusion 

We discussed the mechanisms of a Brownian on-off ratchet and analysed 

how a particle is displaced inside such a ratchet, depending on the ratchet's 

dimensions, its asymmetry, its diffusion time interval, and the particle's dif-

fusion constant. We showed how this displacement can be expressed in terms 

of the dimeiisioiiiess diffusivity and the ratchet's asyniinetry only, and finally 

introduced and discussed a design that exploits the ratchet effect to separate 

particles depending on their diffusion constant. In the following chapter, we 

will show how this design can be modified to use a pressure-driven flow, rather 

than electrostatic forces, as the driving force of a Brownian ratchet. 
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Chapter 5 

Creating Asymmetry in 

Brownian Ratchets Using 

Pressure-Driven Flows 

5.1 Motivation 

PI cssiKOdriven flows were originally not considered as driving forces foi 

ratchet-based particle separators This is because the flow fields nrruiiivent 

all obstacles and interactions between obstacles and particles are hence lim-

ited to finite-sizo effects, which arc for example used in deterministir lateral 

displacement methods [39, 58] Nonetheless, pressure driven flows ofter inter-

esting pioperties that make them particularly well suited as diiviiig toices of a 

ratchct-based particle separator If diftusion is neglected, the movement of the 

dibpersed paiticle is the same as the movement of the fluid, at least ioi flows 

as slow as those that wc consider {v ^ 1/im/s) Hence, neither fluctuations 

in the elect:ophoietic force, e g , due to fluctuatioiib m the double layer, oi 
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fluctuatioiib in the diag foice, e g，due to varying shapes of the particles, can 

alter the result Furthermore, flow fields can easily and reliably be calculated 

onrp the kinematic viscosit}^ of the fluid and the geomctiy of the bystcm it, 

known Electric fields, meanwhile, depend on a variety of parameters that 

involve the inateiial that the obstacles are made of’ the ion density m the fluid 

and the electrostatic properties of the particle Practically, the only problem 

i& that particles dispersed in a laminar flow do not feel any force orthogonal 

to any obstacle's suiface in this flow Under the iio-slip assumption, the fluid 

molecules in direct contact with the obstacle's surface are inert, and the flow 

111 the next layer is tangential to the obstacle s surface In tins rhaptei, we will 

bliow that by using perforated obstacles ratchet-based particle separation can 

be adnevcd using pieshuie-driven flows as the diiving forcc 

5.2 Geometry Design 

Figure 5 1 illustrates the problem generally cxpenenccd with non-permeating 

fields A piessuie difference in x-direction drives a flow through an airay of 

unit cells of dimension L^ x Ly At its upper and lower ends, the array is 

cncloscd by solid walls, such that the entire device resembles Fig 1 1 m Ch 

1 The flow field was calculated using a lattirc-Boltzinaim simulation, with 

adaptive generalised periodic boundary conditions as discussed in Sec 3 1 

Lets us consider a particle of diameter 5y, which exactly fits into the gap 

between the obstacles It hence passes exactly in the middle of the gap and, 

without diffusing, will follow the flow line marked as ŷ  In order to move 

through the upper or lower gap it has to diffuse beyond the lines or y— 

into the streams S+ or S-, respectively Even though the obstacle itself is 

abymmetric, the resulting flow itbelf ib not both y— and y+ aie, one average, 
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Figure 5.1: Pressure-driven flow field using a solid obstacle design. Flows 

passing through different gaps are shown in different colour. Figure design 

courtesy of A. Grimm. 
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Figure 5.2: Flow field for an obstacle design with permeable upper flank. Flows 

passing through different gaps are shown in different colour. The parts of the 

flow in which particles are deflected are highlighted in the same colour. Figure 

design courtesy of A. Grimm. 

the same distance apart from its original position at^ yo. In terms of the 

ratchet model, this means a = b. 

y+ - yo 
Lht 2 

(5.1) 

and hence^ pi — p-i. Without creating an asymmetric flow profile，particle 

separation is impossible. 

^This argument is more for illustrative purposes, since layouts can be created where this 

is quite clearly not fulfilled anymore. However, the probability to diffuse from yo to in 

one cycle is equal to the probability to diffuse from to yo in the next cycle. This is not 

the case in a ratchet, where diffusing the distance a causes a much larger displacement of 

a + b, 
^The distance between the flow lines was measured at x = 6x/2 
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Figure 5.2 shows the flow field for an obstacle design with a permeable 

upper flank. The upper flank is made up of circular pillars, with a pillar gap 

spacing of Sp. Particles with a diameter larger than 6p are sterically excluded 

from passing through these gaps. If such a particle enters one of the high-

lighted flows S", it will be deflected upwards. As a certain part of the flow 

passes through the upper flank of the obstacle, the resulting flow pattern is 

asymmetric: — yo < yo — y一 Ratchet-based particle separation is now pos-

sible for particles with diameter 6p < 2r < 6y. The task of creating a design 

that is suitable for a wide range of particle sizes, i.e., 6p Sy, and at the same 

time offers sufficient asymmetry is difficult. In fact, every decrease of dp or 

increase of 6y reduces the portion of the flow through the upper flank of the 

obstacle, and hence decreases the asymmetry. 

Figure 5.3 shows flow fields for different gap-width-to-inter-pillar-width ra-

tios (Fig.5.3 (A)), and the dependence of the resulting asymmetry on this 

ratio (Fig.5.3 (B)). For wide gap widths and thus large values of Sy/6p, such 

as shown in the topmost example of Fig. 5.3(A), hardly any flow penetrates 

the obstacle and the asymmetry therefore is close to e = 1/2. For smaller 

ratios, this flow increases, and hence e decreases. However, this decrease is 

very slow, and small values of e are achieved only for ratios 6y/5p ^ 1. The 

corresponding flow field is shown in the bottommost panel of Fig. 5.3(A). Here, 

the main gap has basically become another inter-pillar gap. Now, all particles 

that fit through the obstacle gap will also fit through the gap between two 

pillars, and the resulting situation is identical to having solid obstacles. 

Interestingly, the asymmetry of the flow does not need to correspond di-

rectly to an asymmetry in the obstacle design. For example, if the lower flank 

of our obstacle design was permeable as well, the obstacle would still appear 
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Figure 5.3: Asymmetry dependence on the gap width/inter-pillar width ratio. 

(A) Flow patterns for different ratios. Bold green and red lines indicate 如 and 

respectively. The width of the red stream, as a fraction of Ly, is equivalent 

to €. (B) Asymmetry e as a function of the gap size between two adjacent 

obstacles Sy, expressed in multiples of Sp. 

74 



5 . 2 . G E O M E T R Y D E S I G N 

asymmetric, but the flow would become nearly perfectly symmetric. In re-

turn, we can extend the obstacle horizontally by extending the impermeable 

lower flank and adding a permeable horizontal extension to the upper flank, 

as shown in Fig. 5.4(A). This method turns out to be very effective, since the 

horizontally extended gap both causes additional flow through the upper flank 

as well as reduced flow through the obstacle gap, in the same manner as a 

Poisseuille flow is slowed down if the pipe through which it flows is extended. 

Figure 5.4(B) shows the asymmetry as a function of the number of pillars 

in the elongated upper flank. For an obstacle gap width of Sy = 3Sp, the 

asymmetry coefficient is reduced by more than a factor four. A larger number 

of pillars can be used to a create large asymmetry for even larger obstacle 

gaps. A vertical extension of the upper flank by a small number of pillars 

can further increase asymmetry. However, many other parameters like the 

minimal structure size have an equally large influence in the realisation of 

such a device. We hence postpone a discussion of the optimal design for 

experimental realisation, and conclude here that permeable horizontal walls 

can tremendously increase the asymmetry of the flow. 
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700 

Figure 5.4: Asymmetry dependence on the number of pillars in the horizon-

tally extended upper flank. (A) Flow fields for horizontal flanks with (top to 

bottom) zero, three, five and eight pillars. Bold green and red lines indicate 

yo and y+, respectively. Again, the width of the red stream is equivalent to e. 

(B) Flow asymmetry as a function of the number of pillars in the horizontal 

row, for obstacle gaps of Sy = 3dp (purple), 6y 二 4Sp (blue), Sy 二 5Sp (green) 

and Sy = (red). 
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5.3 Brownian Dynamics and Ratchet Theory 

According to oui previous analybib, oui proposed devicc should function at, 

a Brownian ratchet for particles with a diameter of > 2r > 6p In terms 

of ratchet theoiy, the time intei val foi diffusion is given by the tune requiied 

to pass the distance between two rows of obstacles, i e , 丁2 ~ Sxv^ Flow 

velocity in thib area is neaily umfoim, bince nothing obbtiuctb the flow Once 

the particle has moved to the range Sx < x < L^, the gap through which it 

will pass IS determined Hcnce, we ignore diftusion in this lange 

We use a design as shown in Fig 5 4 (A), but with a hoiizontal extension 

of iV = 8 pilldFb and an obstacle gap size Sy = 4�,corresponding to an 

asymmetry of e — 0 179 We can adapt the dimcnsioiilcss diftusivity to this 

layout and define 

Foi a paiticle of given radiub and hence difiusion Loiibtant, we can adjust 

its diffusivity over a wide range by adjusting the flow vcloaty accordingly 

Paitides in the range 6p < 2r < 6y aie cxpectcd to show a mean movement 

111 ^-direction akin to the displacement shown in Fig 4 3(B) Larger particles 

will not pass through the obstacles, and particles with 2r < 6p arc assumed to 

be not deflected at all [57] 

To test these predictions, w(、performed Brownian dynamics simulations 

for spherical pseudo hard-core particles dispersed in the discussed flow fields 

The siirmlation of a finite-si/e paitirlo iii shear flow and m the presence of 

non-trivial boundary conditions is a complex problem, because the involved 

cffectb oLcui on a wide range of time-bcalet. [59] Since we aie interested in 

particle trajectories through a large number of obstacles, it is impossible to 

fully rebolve hydiodynamic eficcts, which happen on much bhoitei time scaleb 
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We therefore assume that the presence of a suspended particle doeb not alter 

the flow field In other words, the particles interact with the flow as if they 

weie point-bized, but they pobbCbb the potential of a finite-bized particle foi 

intcrartion with the obstacles 

Under these assumptions, the two-dimensional trajectories r{t) — {x{t),y{t)) 

of suspended particlcs are governed by the Langevm equation 

R - ; U [ F O B S ( R ) + F W ] + V ( R ) , F5 3) 

wheie fi = v/F = 1//? is the mobility coefficient of the particle, akin to 

Eq (4 19) The components of the random force f⑷ are unbiased, so that 

(f(t)) = 0 and obey the fluctuation-dissipation theoiem 

(imt')) - 2kBT_ - t') (5 4) 

The interaction force between the obstacle and the particle is modelled ab a 

pseudo-hard core repulsive potential 

fobs = -Wobs (5 5) 

Kbs = C X『12， (5 G) 

where d is the closest distance between the paiticle's surface and the obstacle 

The piopoitioiidlity factor is chosen such that the minimal distance during 

the simulations is approximately d^ 0 01 Sp The displacement of the particlc 

duiiiig one tiiiio step as caused by the flow, is equal to the velocity v(r) of 

the fluid at the centre of the particle The Langevm equation was integrated 

using a standard Euler approach 

With the radiub of the pillarb set to Tp = = 0 5 /im, the hystcm hab 

5y 二 2/im，6x = 20 fim, L^ = 32 /im and Ly = 7 7 fim Flow velocities 

in the range from v^ — 0 25 to 25 have been simulated The 
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0.2 
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0.001 

Figure 5.5: Mean step displacement for different particles as a function of 

the diffusivity T>, for particles of diameter d = l.O/rni (blue circles), d : 

1.4"m (green triangles) and d ~ 1.8//m (red diamonds), compared with theory 

predictions (solid black line). Black squares give the displacement of small 

particles of diameter d = 0.2/xm = 2r < 6p. The dashed line shows the 

predicted maximal displacement (5)max = 1/2 — e — 0.321. 
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Figure 5.6: Mean step displacement for different particles as a function of the 

flow velocity v^, for particles of diameter d 二 1.0/xm (blue circles), d=1.4//m 

(green triangles) and d = l.Sfim (red diamonds). Black squares give the 

displacement of small particles of diameter d 二 0.2/̂ tm = 2r < 5p. 
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0.00 

Figure 5.7: Particle distribution after passing n^jl, 000 rows, equivalent to 1000 

ratchet cycles. Results for d = l.Ofim (blue circles), d — 1.4yu;m (green trian-

gles) and d = I.S/ZTTI (red diamonds) are shown together with their theoretically 

predicted binomial distribution. The displacement of the small particles of di-

ameter d = Q.2/mi ^ 2r < dp (black squares) is a finite size effect and hence 

does not follow a binomial distribution (shown as dotted line). 
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corresponding Reynolds numbers Re = v^Ly/r] are in the range between 10_io 

and 10—8 and hence completely in the Stokes regime. In this hydrodynamic 

regime, the flow pattern is independent on the pressure gradient Ap^,, and it 

is thus sufficient to scale the velocity field v(r), in order to achieve the desired 

average velocity The resulting rescaled mean displacement {s) = (JSy) jLy 

is depicted in Fig. 5.5 as a function of the dimensionless diffusivity V for four 

particle radii r. The diffusion constant D was calculated using the Stokes-

Einstein relation, assuming water at 300X as the used liquid. The data reveals 

two operational regimes, depending on the particle size. In the first regime, 

with particle sizes larger than the inter-pillar distance 2r > 〜，the results 

agree qualitatively with the prediction of ratchet theory (Eq. (4.15)). In 

particular, the mean displacement converges closely to the maximum value 

= 0.33 for large values of V as predicted in Eq. (4.17). This 

behaviour indicates that the symmetry of the flow field is indeed broken as 

predicted and that the ratchet effect occurs. Figure 5.6 shows the same data 

as a function of the average flow velocity v^. For a certain value of the mean 

displacement decreases for larger particle sizes. This particle size dependence of 

the mean displacement facilitates vector chromatography, since the trajectories 

of particles with different radii point towards different directions. 

In the second regime, with particle sizes smaller than the inter-pillar dis-

tance, 2r < (5p, the particle trajectories are not significantly inclined. Particles 

of these sizes can pass between the pillars. As a consequence, they perceive 

each pillar as an individual impermeable obstacle. Since individual pillars are 

not able to break the symmetry of the flow pattern, the mean trajectories are 

not expected to be inclined. The small inclinations that we observe in this 

regime may rise from finite-size effects [60]. 

Assuming that all probabilities but and po are negligible, the rescaled 
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mean dibplaccment {Ay)/Ly is equal to p+i The probability to find the par-

ticle displaced by riy gaps in y-dircction after having pasbed n』rows in x-

direction bhould hcnce be given by a binomial dibtiibution In Fig 5 7 the 

numerical results of P((s)) for = 2 5 /iins—i are compared with the r or re-

sponding binomial distributions for 71工=1000 Foi 2r > ^p, the numeiical 

data IS well described by binomial distributions For 2r < Sp however, the 

numerical results clearly deviate from the binomial distribution This further 

indicates that th(> bohdvioui o士 small particlcs in this r(、giine is not dcsciibod 

by the discussed ratchet effect The results in this figure demonstrate that 

vcTtoi chioiriatography ran be effectively loalised m such a device, smc(、the 

distributions for the three particle sizes that operate in the first regime arc 

cleaily distinguishable and completely sepaiatcd from the distiibution foi the 

particle size that operate m the sccond regime 

5.4 Summary and Outlook 

In this chapter we have demonstiatcd that it is in pimcipie possible to 

create ratchet-based particle separation dcvices using pressure-driven flows as 

the diiving force The key feature of oui design is the use of obstacles per-

meable to the flow but impeimeablo to mac lomolerules As a losult, particles 

driven by the fluid flow actually interact with the obstacles, rather than being 

guided ai ound them as it would be the case foi solid obstacles Coiiscquontly, 

the symmetry of the experienced ratchet potential is broken, and vcctor chro-

inatogi aphy based on the paitidc s diffusivity bccoincs possible 

The goneial feasibility of the debign was bhown ubing Brownian dynam-

ics simulations A discussion of the overall capabilities of the proposed de-

sign, howcvei, depends on varioub parameters of the experimental realiisation, 
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which is currently underway at the National University of Singapore. For the 

discussed design, we used large circular pillars, since such obstacles can be 

included directly in simulations and can readily be fabricated with today's 

lithographic methods. However, the choice of such a simple design also causes 

some problems. For one, the relationship between the asymmetry e and the 

obstacle gap width Sy restricts the range of particle sizes that can be sepa-

rated. For another, particles that are only slightly larger than the inter-pillar 

gap 2r w 5p get sucked into and consequently stuck in the gaps. Plenty of 

remedies to both of these problems are available, for example by replacing the 

circular pillars with rectangular or triangular pillars in such a way that the 

inlet is not cone-shaped. Given that the feasibility of such measures strongly 

depends on the realisation techniques, we will postpone their discussion until 

details of the experimental realisation are available. 
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Chapter 6 

Networks and Dynamic Models: 

A Review 

In this chapter, we will briefly discuss two concepts essential for the under-

btandmg of the dibcusbions m Chs 7-9 Networks and Dynamic Models Both 

topics have been extensively studied for over a decade, and accordingly we will 

not be able to provide an actual ovei view over either of these fields Compre-

hensive reviews on the physics of networks can be found in Refs [5, 61 62, 63] 

For a more general but less detailed discussion see Ref [6] A thorough review 

of various dynamic models, including the opinion formation model discussed 

below (See 6 5), can be found in Ref [64] 

6.1 What Are Networks? 

A giaph lb defined by a bet of vertices and a set of edgeb that each connect 

two vertices For our purposes, networks and graphs differ mainly with regard 

to terminology For netwoikb, we will commonly lefei to the veiticeb ab nodes 
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and to the edges as hnks Links define lelatioribhipb between nodes, and nodcb 

that are connected via a link arc referred to as neighbours In the same manner, 

the hct of no deb conncctcd to a node A ib callcd neighbourhood 

Netwoiks can be used to icprcscnt many leal-lifc systems In rail networks, 

no deb represent stations and depots，while links represent tracks [65] In com-

puter science networks arc used on many diftcrcnt levelb [66] On the so-c ailed 

PHY-layer, active rompoiients that send and receive signals aic leprespiitod 

as nodes, while cablcs (or even ladio frequencies) aic the links connccting 

them On highoi levels, nodes ippiespiit application seivcrs and clients such 

ab web servers and internet browsers The entire infrastructure, cablcs, hubs, 

I outers etc，scive as linkh m such a model Also social or profesMoiial relation-

ships between humans can be represented by networks Links tlien represent 

the relationbhipb between individuals, who thcmbelves arc mapped onto nodes 

[61, 62, 64] 

Bccause they are used as models for such a plethora of systems, networks 

can posbebh more elaborate featureb than thobe jubt desciibed Linkb can be 

directed, for example to represent causality They can be weighted, to represent 

the intensity of a relationship Also, they can be tiinc-dependent, for example 

to distinguish transient from long-term relationships The widely investigated 

network of cooperation among scientists can serve as an example to illustrate 

the different types of networks [67, 68, 69] A simple network representation 

of scientific cooperation would use nodes to represent leseaichers Rcsearcheis 

who have co-authoied at least one research papei are coiisideiod roopeiatois 

and connccted through links Figure 6 1(A) illustrates this relationship using 

the authors of lesearrh articles related to this thesis as an example The 

used graph is bidirectional and unweighted and therefore does not contain 

information about the frequency oi impoitance ot the coopeiation This is 
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addrcbbcd in Fig 6 1(B) Here, the line width correspondh to a link weight, 

which itself IS a representation of, for example, the number of coauthored 

paperb Finally. Fig 6 IfCl reprebents a related citation matrix as a diiected 

network Research articles are the nodes in this network, and a link from one 

paper to another represent citations of the former by the latter Since a paper 

ran only cite previous articles, this graph does not contain any closed loops 

A comprehensive graph of such data, representing the citation relationships 

among the majoiity of published scientific articles is published by Thomson 

as the so-called Weh of Knowledge 

6.2 Properties of Networks 

In this thesis, wc will deal only with the simplest kind of networks that 

fcatuic bidirectional links without an abbociated weight Still, such netwoiks 

possess a number of remarkable features In what follows, we will introduce 

properties commonly used to describe such networks, and discuss these prop-

erties for two exemplary types of networks 

6.2.1 Connectivity 

The connectivity or degree of a node is the number of links connected to the 

node, or, equivalently, its nuinbei of neighbouis For the whole network, we 

often define or measure a mean degree We denote the degree of a single node as 

K, and the mean degiee of the entire network as k Apait from the mean degree 

of a network, the distribution oi K ~ its degree distribution - is a significant 

piopeity of complex networkb It wab found that leal-woild networks often 

88 



6 .2 . PROPERPIES OF N E T W O R K S 
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Figure 6 1 Different kinds of networks illustrating scientific cooperation (A) 

Bidiiectionai unweighted graphs with links repiesenting cooperation between 

two authors (B) Weighted graph The weight of a link is illustrated in the line 

width and corresponds to the number of coauthored papers (C) Diiectional 

network illustrating the citation relationships among different papers 
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feature a power law degree distribution, and consequently various models were 

developed that aimed to explain how such structures emerge. 

6.2.2 Clustering Coefficient 

In many networks, the neighbourhoods of two neighbouring nodes overlap 

significantly. The clustering coefficient is a quantitative measure of this over-

lap. In an extreme case, the nodes comprising the neighbourhood of a node 

are all connected to each other. If this neighbourhood consists of K. nodes, 

then there exist 丑 = — l)/2 links among them. However, in many 

cases, only a smaller number E of such links exists. The clustering coefficient 

of node A'H neighbourhood is then defined as the ratio between existing and 

possible links 

Ca = . (6.1) 

This value can be averaged over the entire network consisting of N nodes to 

give the mean clustering coefficient 

N 

It should be noted that the clustering coefficient only relates to local neigh-

bourhoods. A well-mixed network, where all nodes are connected to cach 

other, and a set of mutually disconnected triplet loops, for example, would 

both feature a mean clustering coefficient of C = 1. 
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6.2.3 Mean Degree of Neighbours 

The average degree of the neighbours、K皿、of a node A is defined as the 

mean degree of all nodes connected to A: 

〈 O = — , (6.3) 
leJV(A) 

where Af(A) is the set of neighbours of node A. It is commonly averaged over 

ail nodes Aj of the same degree KJ — q and then studied as a function of the 

node degree q. 

= E E (6-4) 
where iVq is the number of nodes with degree q. The mean neighbour degree 

can be used to find assortative behaviour of networks, e.g., whether or not 

nodes of a certain degree prefer to associate with identical or similar nodes 

[70]. 

6.3 Examples of Complex Networks 

In order to illustrate the types of networks and their properties, we will 

briefly discuss two popular network models and their features. 

6.3.1 Random Graphs 

The theory of random graphs was first discussed by Paul Erdos [71]. Con-

sider a set of N nodes, for which exists a maximum of Z/poss) 二 N[N — l)/2 

possible links that can connect these nodes. A random graph with mean de-

gree k = 2L/N can be generated by randomly selecting L links from this set 

of possible links. Alternatively, an identical random graph can be generated 
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by creating eveiy link out of the set of posbible links with piobability p The 

two methods are equivalent if the parameters are chosen such that they create 

the same mean Hcgiee 

鄉）=kN (6 5) 

In both rases, a network with binomial degiee distribution is generated The 

probability V{K, = q) to randomly pick a node with degree q is 

(权=q) = ( N - 1)沪(1 — (6 6) 
\ Q J 

Generating a very large network for simulation purposes m such manner is 

a Iathei expeiibive piocehb, bince either memoiy oi CPU consumption bcalet. ab 

0(N'^) Mathematically, it is known that the binomial distribution converges 

against the Poihbon distiibution foi laige valuer of N 

jUq 
lim P(b賺)（《： = = q) = exp{-/c)^ (6 7) 

N^OQ 

Accordingly, wc can also generate a random network using a Poissonian method 

by randomly selecting two nodcb, linking them, and lepcatmg the process 

L = kN/2 times In this case care has to be taken to avoid self-linking 

or multiple links between two nodes This reduces both mcmoiy and CPU 

consumptions to order 0{N) 

Figure 6 2 shows the propeities of a random giaph Figure 6 2(A) displays 

the degree distributions of three random graphs with difterent mean degree, 

shown as symbols All giaphs have N = 10, 000 nodes in total The ac-

tual degree distribution thus differs slightly from the Poissonian distribution, 

which lb the limiting distribution for networks of iiifiiiite size Such Poissonian 

distributions are shown as lines of the same colour 

Figure 6 2(B) displays the average neighbour degree〈/c撤〉as a function 

of a node's own degree n Smcc theie exists no asboitative mechaiiibm, the 
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Figure 6.2: Properties of random graphs. (A) Degree distributions with mean 

degree A; = 20 (orange squares), fc = 40 (green diamonds) and A; = 60 (purple 

triangles), all for a network with N = 10,000 nodes. Lines show Poisson distri-

butions with identical mean, corresponding to the theoretical limit for N ^ oo. 

(B) Nearest-neighbour mean degree distributions of the same systems. Dotted 

lines show the mean degree of these networks. 
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expected distribution is flat. At the boundary of the displayed interval, the 

mean neighbour degree is averaged over very few nodes only, which leads to 

larger fluctuations. The overall average of the mean neighbour degree is slightly 

higher than the system's mean degree k, since high-degree nodes are included 

in more neighbourhoods than low degree nodes. 

6.3.2 Preferential Attachment — the Barabasi-Albert Model 

Many real-life networks were found to have a power-law degree distribution, 

i.e., V(K — q) OC with some exponent 7 > 1 [72]. Examples include 

the topology of internet protocol devices (OSI level 3) [66], scientific citation 

networks [69], and even the metabolic networks of eukaryotic organisms [73]. 

Such networks are also sometimes referred to as scale-free networks, since their 

degree distribution can mapped on itself using a proper rescaling of both axes 

1 

Barabasi and Albert proposed a mechanism that explains why many human-

generated networks follow such a degree distribution [74]. Their underlying 

assumption is that new individuals who enter a system prefer to associate 

themselves with individuals who are already popular. Turning this into a 

mathematical model, they assumed that a system is started by a group of mo 

individuals, who form a network with homogenous degree m < m。. Individuals 

joining the network will also establish m connections to existing individuals. 

The probability for a new individual A to pick an existing node B as one of 

its neighbours is assumed to be proportional to the degree of B: 

V(A 扔二 m ^ , (6.8) 

仏 t o t 

iPor a power-law degree distribution y — f{x) —ex x'^, we have f{ax) = c x oCx^ = 

a^ i.e., if the a:-axis is rescaled with a factor a , the graph is mapped onto itself if the 

y-axis is scaled by a^ . This feature is unique to power-law distributions. 
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500 

Figure 6.3: Properties of Barabasi-Albert networks. (A): degree distribution 

= q) (symbols) and cumulative degree distribution 1—cdf, for mo/m = 6/5 

(red) and mo/m = 4/3 (blue). Dotted lines show fitted power-laws for the 

range with exponents 71 + 1 = -1.9782 (red) and 72 + 1 = -1.9619 (bli 

(B): Average neighbour degree distribution, shown for iow degree nodes with 

q < 500 

where Ltot is the total number of links in the network. It was shown in several 

ways that such a mechanism leads to a scale-free degree distribution [75, 76]' 

V{k 二 q) 二 
q < m 

q>m 
(6.9) 

Figure 6.3 shows the properties of a Barabasi-Albert (BA) network with 

N — 10^ nodes. Figure 6.3(A) shows the degree distribution for two dif-

ferent setups mo = 6, m = 5 and mo 二 4, m = 3. This means that the 

initial configuration was a fully connected network in both cases, in one case 
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with four and in another with six nodes in total. Inevitable fluctuations in the 

degree distribution for high q make it difficult to see the power-law behaviour 

clearly. To even out these fluctuations, we can instead look at the cumulative 

distribution function 

cdf(«: = g) = 「 V ( K = q')dq' = 1 — . (6.10) 
J m 

Any power law behaviour in the degree distribution can be found again in the 

cumulative degree distribution, with the exponent being increased by 1. 

The dotted lines are power law distributions of type a x with 71 = 

2.9782 for m = 5 and 72 = 2.9619 for m = 3. To obtain these values, a linear 

function y = log (a) — ^yx was fitted against the log-log curve of the recorded 

degree distributions, i.e., the fitting algorithm minimised the sum over squares 

of deviations on the log-log scale. Both values are very close to the theoretically 

predicted exponent 7 — 3. 

Figure 6.3(B) shows the average neighbour degree </€•〉for a limited range 

of g < 500. Unlike the case of the random graph, associativity patterns can be 

observed here. Young individuals with very few connections are predominantly 

connected to high-degree nodes, while the neighbourhood of older nodes with 

higher degree contains more low degree nodes. For higher degrees, averages 

are taken over very few (100 out of 10^) nodes, resulting in a highly fluctuating 

distribution. 

6.4 Dynamic Models 

We can define a dynamic model as a set of individuals, or agents, together 

with a set of properties these individuals have, and a set of rules that define 

the evolution of the individuals and their properties. Commonly, dynamic 
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modclb are used to dcbcribe bomc abpects of human bociety — the evolution of 

opinions [77], of diseases [78], or of social relations [79] For the use in physics, 

thcbe situations aie often rcduccd to then mobt fundamental abpcctb eg is 

a person mfccted or not, does she agree with a ccrtam opinion or not, docs he 

coopcratc with others oi not, and the like If thcic are only two possible states 

for the properties of an individual the dynamir model is somctimos referred 

to as binary or spin like 

The lelationship between individuals in a dynamic model can be that of a 

well-mixed iietwoik, i e , rwiy individual is roniierted to every othei individual 

in the group, or specific to each individual In the latter case networks arc 

commonly used to doscribe the relationships between individuals Individuals 

occupy a node on the network, and the relationships between individuals arc 

debcribed by bimple, dircctional, oi weighted linkb In the dibcubbion of such 

models the terms mdwiduals, agents and nodes are often used interchangeably 

The btatus of the individuals can also be used to classify the links into dif-

ferent categories Considei the Subccptible-Infected-Removed (SIR) model a 

non-bmary epidemics model [80, 81, 82] In this model individuals go through 

a sequence of thi ee possible states susccptible i e healthy and able to con-

tract a disease, infected and removod Susceptible individuals contract the dis-

ease from infected agents, whcrcaftei they are themselves contagious and can 

infect other susceptible individuals After a while they may either recover and 

acquire immunisation against the disease oi succumb to the disease and die 

III either outcome, they will not paitinpate in the epidoinir spreading anymore 

1 e , neither will they contract the same disease again, nor will they spread it to 

other individuals With every agent taking on one of thes(、thiee states each 

link can be classified into one of six categories, depending on the state of the 

individuals they are connecting sufeceptiblc-buhceptible subceptibie-infected, 
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bubceptible-iemoved, mfccted-infected, mfect-ieinoved, and reinoved-iemovcd 

The evolution of the status of mdividualb is governed by a bet of luleb that 

represent the underlying situation Generally speaking, these rules describe 

how the properties of individuals change, depending on then current prop-

erties their neighbourhood, and possibly random events For the aforemen-

tioned SIR model, the evolution of the disease is commonly described in rates 

With a rcrtam rate r, an infected individual will pass the infection to each 

of its susceptible neighbours With another rate r, the bame individual will 

eithoi overcome or succumb to the disease and remove itself fioin the system 

[80] The usage of rates reflects the uncertainties that exist in the spreading 

of real-world epidemics The lules of the model also imply that diseases are 

onl;y spread through the links connecting susceptible and infectcd individuals 

Hence, the riumbei of such clabbified Imkb ib a key observable of this model 

6.5 The Dynamics of the Majority Voter Model 

on a 2D Lattice 

As an example of a dynamic model on a network wc will briefly discuss 

some results of a study on tho majoiity voter model on a 2D-lattire, oiigiiially 

published by Chen and Redner [83] 

Voter models arc a popular class of opinion formation models The model 

represents a votei's opinion on a referendum that offeis two choices — a runoff 

presidential election or a proposition, for example The model fully disregards 

the actual issue, i e it doeh not dibtinguihh between the Itgaiisation of Mar-

ijuana and a referendum on joining the European Union Instead, it focusscs 

on the wa), opinions are spread between individuals Different classeb of the 
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votei model have been suggested, e g , the diicct voter model, where a node 

asks one of his neighbours for and adopts his opinion, and the rcverbc voter 

model, where a node will talk one of hib iiciglibourb into adopting hib opinion 

[841 

In contrast, the majority voter model depends much stronger ou the over-

all topology of the system During one time step, a smglc individual is picked 

at random This individual and all his neighbours foim one opinion gioup 

The entire group then adopts its mteinally predominant opinion In the fol-

lowing, wc will use a two-dimensional squaie lattice with peiiodic bouiiddiy 

conditions as the underlying network Opinion groups thub always comprise 

five individuals and a majority opinion always exists 

Figure 6 4 shows the evolution of such a bystem A lattice with N — 

50 X 50 二 2500 nodes forms the underlying network The initial opinion of 

every node ib landomly ciiobcn with equal probability Alieady after very blioit 

time t = N, domains of homogenous opinion have formed As a result the 

evolution of the system is slowed down, since the majority voter model rules 

do not create any changes when applied inside a homogenous domain As 

the evolution proceeds, enclosed areas of one opinion shiink until the opinion 

becomcs extinct At around t = ION, stnpe-like btructurcs form as thesr 

have the lowebt density of ciosb-opmion links Finally (at around f — 83iV), 

all nodes have adopted the same opinion 

A more quantitative illustration of this process is shown in Fig 6 5 By 

associating the binary voter model with a magnetic bpin system, we can define 

a pseudo-magnetisation of the system as m = (N{Op A) - N{Op B))/N^ot 

Similarly, we can count the links between two nodes of opinion A LAA, two 

nodes with opinion B LBB, and between nodes of opposite opinion LAB Figure 

6 5(A) and (B) show the behaviour of the such defined magnetisation m and 
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Figure 6.4: Evolution of a majoiity game opinion foimation model on a square 

lattice of TV 二 50 X 50 nodes. From left 

of an exemplary system after zero, N, 

Consensus was reached at t ~ 83N. 

to right and top to bottom: the state 

5iV, lOiV, 50iV and 1007V iterations. 
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5000 

TC[N] 

10000 5000 

rc[N] 

10000 

Figure 6.5: Evolution of the majority voter model. (A) Evolution of magneti-

sation and (B) link density (green: IAA^ yellow: I仙)for the single system of 

Fig. 6.4. (C) Consensus time distribution. (D) Cumulative distribution func-

tion. (C)&(D): Data taken for an ensemble of 10,000,000 iV = 50 x 50-systems 

(red) or 1,000,000 Â  = 100 x 100-systems (blue). 

link densities ZAB = ^AsZ- t̂ot over time. The number of links between nodes 

of opposite type, initially half the number of total links, drops rapidly, This 

corresponds to the formation of homogenous domains observed before. The 

evolution continues then rather slowly until t ^ 60N. At this time, the last 

domain of the minority opinion has been fully surrounded. Consensus, i.e., a 

uniform opinion of either type, is reached at roughly t ^ 83iV. 

The consensus time TQ is an important quantity in the research of opinion 

formation [85, 86, 87], Figure 6.5(C) shows the consensus time distribution for 

two ensembles, one comprising ten million systems with 2500 nodes each, one 
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comprising one million systems with ten thousands nodes each. Because the 

distribution again shows large fluctuations for large r^, we show the cumulative 

distribution functions in Fig. 6.5(D). Both figures show that the consensus 

time distribution decays exponentially V{TC r) OC exp(—Ar), with a decay 

constant depending on the system size. 
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Chapter 7 

Introduction to Complex 

Adaptive Networks: Epidemics 

In the following, we will discuss the properties of an adaptive Susceptile-

Infectcd-Susccptible (SIS) model bystem This model system combines the 

mechanisms of the SIS cpideinics dynamic model [78, 82] with an adaptive 

leaction mechanism in which healthy agents tiy to minimise then exposure to 

infocted agents 

7.1 The SIS Epidemic Model 

7.1.1 Model Introduction 

The SIS epidemics model defines two possible states of an agent one in-

fected (/) btatc duiing which an agent buffeis from the diseabe and can infect 

other agents, and one healthy state during which an agent is susceptible (S) 

and can contract the disease from infected agents with whom it ib in contact 
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The state bequcnce ib / A 5" Tliib rneanb that a recovered node neither 

acquires immunity nor dies from the disease Instead, it might be instantly 

infccted again, possibly even by a neighbour whom it infected itself In bi-

ological terms, such a model can be valid for certain sexually transinittable 

or gastrointestinal diseases Also, diseases caused by quickly mutating viruses 

(with the mutation time shorter than the average spreading time) might fol-

low the SIS cycle In more common infectious diseases the host usually cither 

withers or acquires iinmuiiity due to the proseiice of antibodies in his system 

Such diseases are better described by a Susceptiblc-Infected-Removed model 

Howevei the SIS model offeis very interesting insights into the dynamics of 

epidemics 

Consider a random static network of N nodes, with L^ t̂ = kN/2 links 

m total, and hence an aveiage of k iieighbouib pei node, with the agentb 

sitting on nodes following the SIS cycle During a given discrete time step, any 

infected agent can spiead the disease to cach of its neighbours with probability 

T At the same time it might rccover with probability r, irrespective of its 

burioundmgb If the time inteival ib chosen bufficiently binall, piobabilities of 

higher orders such as contracting the disease from two neighbours during the 

same time step can be neglected In such a first-order approximation, the 

probability for any single susceptible node to become infected is proportional 

to the number of infected neiglibouis Vs-^i = i^iXr Smcc the actual infection 

rate also depends on the number of iiifertrd rontarts, we refer to r alone as 

the model's contagiousness If a node, on average, recovers before it infccts 

one of its iieighbouis, the disease will die out If it, howevei, manages to infect 

on average more than one of its neighbours, the disease will spread over the 

system If that is the cabe, then the infection will spread over the network until 

some equilibrium fraction rf^ is readied At this level, an infected nodes has 
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fewer susceptible neighbours, such that now every infected node on average 

infects exactly one susceptible neighbour before they recover. In this manner, 

we can define the infection threshold 

(7.1) 

The infection threshold is the contagiousness level required for the spread 

of a disease on a fully susceptible network. For a contagiousness above this 

threshold, the corresponding equilibrium infection level is 

- (7.2) 

Such a threshold is well defined only for the case of a well-mixed network, 

although it may serve as a rough guiding principle in the case of random 

graphs. Interestingly, the extreme heterogeneity of scale-free network makes 

the definition of such a threshold impossible. This problem was discussed using 

model systems [88, 89], but also shown to exist in the spreading of computer 

viruses over the internet [90, 91]. 

Figure 7.1(A) shows the dynamics of the SIS mechanism on a small sub-

network. Two infected nodes are connected via four links to susceptible nodes 

(5/-links, shown in red). The disease can spread over each of these links, 

hence the probability for any form of infection spreading in this subnetwork is 

V{3S /) = 4r + Other connections between two susceptible nodes 

(5'5'-links, blue) or two infected nodes (//-links, black) do not affect the evolu-

tion of the system. At the same time, both nodes can recover with probability 

r, so the probability for one of the two possible recovery processes to occur is 

V{31 S) = 2r. The lower panel shows two possible states of the subsystem 

after one recovery (left) or infection (right) process has taken place. The single 

recovery process of node IQ SQ, occurring with V — r, turns two SI- into 

SiS-links and one II- into an 57-link. The infection process Si —)• I i can occur 
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Figure 7.1: Schematics of the infection and recovery process of the SIS model 

(A) and the rewiring process (B). Probabilities are given for the changes shown. 

Link colours indicate active -SJ-links (red), inactive (S'5'-links (blue) and inac-

tive //-links (black). 
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in two ways, bince both infected nodes can bpread the dibease to the central 

node It therefore has a probability of P 二 2T 

7.1.2 Adaptive Re-wiring 

Networks do not have to be static They can for example, evolve through 

iiiscitioii or lemoval of nodes oi of links Of paitirular interest is when the dy-

namics of the network do not occur independently, but rather m order to adapt 

to the coiresponding dynamic model The piocess of such adaptive lewiiing 

lb also referred to as coevolution of the dynamic model and the network The 

fundamental differ encc to bimplei previous rnodcib is that the evolution of tlie 

network now depends on the currcnt state of the dynamic model On the con-

trary, in previoub modelb only the evolution of the dyiidmic model did depend 

on the state of the network i e , whether or not an agent changcs its status 

may have depended on its neighbourhood The evolution of the netwoik itself, 

if existing, was typically depending only on the state of the network, and not 

on any state the ageritb may have had 

Gross et al proposed a set of ruleb to create such an adaptive reaction to 

an SIS-typc epidemics hereafter referred to as the adaptive SIS model [92 7j 

The process of adaptive lewiimg is shown in Fig 7 1(B) Staitmg from the 

same subnetwork configuration as before, a susceptible node S2 connected to an 

infected node Jg may at a time step decide to reduce its exposure to the disease 

by cutting this connection In doing so, it will seek another susr(、ptible node S4 

and establish a link with it such as to keep its number of neighbours constant 

The adaptive SIS model abburnes abbolute tianbparency of the epidemic model, 

1 e , it IS always public whether a node is infected or susceptible Because of 

this, lewiiing always turnb an SI- into an 6"<S-lmk, and this method ib hcncc 
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efficient in i educing the exposure of bUbceptibie nodes even if the majority of all 

agents IS mfcctcd The probability for any single SI-\mk to be rewired in such 

mannei ib denoted ab the lewiring piobability UJ In thib model, the lewirmg 

probability is always constant Thr possibility of a rewiring pobsibility that 

depends on the public awareness of the disease, oi more specific the mfcction 

level in the system, was discussed in Rcf [93] 

7.1.3 Evolution 

The system evolves through a series of short discrete time intervals (or 

steps) 5t At any tunc step, three kinds of events can occui Evciy infected 

node can recovcr, every 57-lmk can infect the susccptible node at its end, 

and every 57-link may be disconnected from its mfccted node and re-wire to 

another, randomly chosen susreptiblc node All these actions are based on the 

btate of the syhtem at the beginning of the interval After the outcome of all 

pos8iblo actions is decidcd, the state of the nodes and the network arc updated 

at the end of the interval We can use the recovery rate r to define an intrinsic 

time scale cx 1/r, and expiess all other rates in terms of r For computer 

simulations, 5t then has to be chosen to be small compared to this time scale 

buch ab to avoid the occuirence of multiple cvontb at a single node 5t <C 1/r 

A similar model for a susccptible-mfected-recovered-susceptiblc epidemic cycle 

wah dihcubbed by Shaw et al [94] 
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7.2 Mean Field Theory Derivation 

7.2.1 Node-level Derivation 

Originally, the time evolution of the epidemics of an SIS model was de-

scribed by means of a single ordinary differential equation (ODE) [82] The 

undei lying idea is that the agents form a well-mixcd network Any single 

agent is weakly ronriected to any other agent, and the neighbourhood of each 

agent thus consists of the entire network In such a case every ^-nodc has 

TV/ = N — Ns infcrted neighbours that can infect liim At the same time, those 

/-nodes can recover hence the time evolution is described by the equation of 

motion (EOM) ^ 

Ns = r[N - N S ) - T X N S X { N - NS) (7 3) 

Such a simple approach is not possible in our ease For one a topological 

network differs from a well-mixed network in that a disease spreading over a 

network cannot instantly infect iemote nodes Furtheimoie paiticulariy in 

the ease of rewiring, wc need to be able to distinguish infections in isolated 

aieas from those m highly mmiecTx、d areas Thernfoie, additional vailables aie 

required to describe the link configuration of the system 

Wc can use five variables to describe the macroscopic state of the sys-

tem The number of infected and susceptible agents, Ns and N!, ab well as 

the number of links between two susccptible agents two infected agents and 

one infected and one susccptiblc agent each, wiittcn as Lss,丄// and Lsi、re-

spectively Alternatively, lower case quantities will refer to the densities with 

respect to the total number of links or nodes e g , Isi Lsi/Liot We keep 

^To give meaningful results, the coritdigiousnes& m such systems is usually aiiti-

proportioiia】 to the number of nodes in total 
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the total number of nodeb N = Ns Nj and linkb I/tot = Lss + Lsi + Ljj 

constant Hence, these variables are actually rcduced to a set of three indepen-

dent vaiiables Foi most figures and equations we will use N! Lqt and Lrr 

or the respective densities as the independent variables However, if necessary 

we will ficcly change the set of variables, using the above constraints To refer 

to any of these variables without choosing any single one in particular, wc will 

use the quantity X G {Ns, Ni, Lss, Lsi, Lji], or lowercase x for densities 

In total, there arc thiee types of events that can alter these variables 

bpreadiiig the disease i e , turning a susceptible into an infected node, recovery, 

1 e , turning an infected into a susceptible healthy node and rewiring, i e , 

the cutting of an 57-lmk and creation of an SS-\mk between the original 

and another susceptible node All thebe events change the macroscopic state, 

but the change depends on the node'b local configuration To denote the 

configuration of a single node instead of the entire system, we use lower case 

gieck letters, e g Xsi foi the number of 5'/-linkb of a single node These 

rhangcs and their macroscopic results arc illustrated in Fig 7 2 

Knowing all these microscopic changes, the total expected changc of the 

macioscopic variables can be written as a series of conditional probabilities 

Let us denote the three different events recovering re-wiring, and getting in-

fccted by E^ with % G {1, 2, 3} Recovering and re-wiring aflects infccted nodes 

while infection affects susceptible nodes The changc in the macroscopic quan-

tities X e {Ns, LSI,丄//} of any of these events Ei can be added up if the 

number of susceptible and infected neighbours 入aS, of the node of status 
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Qty General Ex 
ALsri -Xsi + \n -1 
A i " 
AS 

-A// -1 
1 1 

Qty Ex Qty Ex 

Ais/ 
AL// A i r 

Figure 7.2: Changes on a network through recovery (left), rewiring (middle) 

and infection spreading (right). Tables below give the resulting changes in 

the macroscopic variables, in general (middle column) and for this subnetwork 

(right column). 
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a is known: AX 三 ZH(五！，A^s, ^ai)- We hence write 

N-l 
AXtot = S x J 2 n\ss = a)V(Xsi - b\Xss = ci)P(B,, As,) AX(丑3, a, 6) 

ij, {；=0 

N-l 
+ / X E V{Xsi = a)V(Xn 二 = b) 

0,6=0 

2 

X J2viE„Xsi)AX{E,,a,b) . (7.4) 

Both the probability for the occurrence of an event and the change in the 

macroscopic variable can be expressed as second-order polynomials of the num-

ber of links of different types. Through the first summation, these polynomials 

turn into the corresponding first and second probabilistic moments. Below, in-

dices of the moments denote whether the average was taken with respect to 

an S- or /-node. 

A N s 二 一iVs X T〈Asj〉s + iV /X r 
Ez El 

^Lsi 二 Ns 八—T�>?sj)s +八XsiXss)s) 
V y 

E3 
+ IV/ X ( r ( A / / ) Z - r{Xsi)i) — Niuj{Xsi)i 

El £2 
ALss 二 Nsx -T{XSI\SS)S + iVj X r{\si)i + -Nj x a;(As/). 

Es El E2 
^LN = NSX T(XIJ)S - NJ X r{\N)I . (7 .5) 

^ V ‘ ^ V ‘ 

Es El 

The first moments, e.g. the average number of 57-links per susceptible node, 

can be directly calculated from the macroscopic variables: {Xsi)s 二 Lsi/Ns-

In contrast, the second moments cannot be deduced directly without making 

specific assumptions regarding the link distributions. We derive the mean-field 

equations here from node-level. For the original derivation of the mean-field 

theory using triplets following Keeling et al. [10], see App. B. 
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7.2.2 Assumptions for Second Moments 

Two diftercnt second moments enter the equations of motion foi oui global 

variables the correlation between SS- and 57-links ronnec ted to an Ŝ-node 

and the sccond moment of S'i-links connected to an 5-nodc {Xgi)s 

The latter is veiy closely related to the varianre in the distribution of S7-links 

(4/)5 = + {>^Sl)s 

Let us begin with the correlation between SI and *S5̂ -links 5/-links 

connected to a susceptiblo node R are created and destroyed if one of its 

neighbours say a node Q cliangcs itb status If node Q changes its status from 

infcctcd to bUbceptible oi vice veiba neither ot the status changes depends in 

any way on the surroundings of node R Furthermore, if R dccides to rewire 

itb connection to Q, then this decision ib just as independent of R'b lemainmg 

neighbours It is therefore reasonable to assume that no correlation between 

the numbei of SS- and 57-lmkb of R exibts Wo hence abbumc the becond 

moment to be^ 

�\ss\si)s 三{><ss)s{^si)s 三 S I (7 6) 

The second moment of 67-links connected to an S"-nodb is more di&cult to 

estimate A variance is always positive definite and hence a lower bound for 

the moment cxistb with (A|j)g > {Xsi)s Such a closure would asbumc that 

all S-nodes have an identical neighbourhood This is unlikely, since even a 

sybtem that was initially bet up to fulfil this condition would bhow vaiiatioiib 

in nodes' neighbourhoods duo to random fluctuations 

The link distribution of Sl-lmks in a random network can be estimated us-

ing assumptions rcgaidmg the vaiiance Heie, we use the common absumption 

that the variance is equivalent to the mean of the system We thus find 

^Since every SS link ha& two ends ending m a S node a factor 2 has to be added 
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( M i h 二一 + 二 (A5/)5 + = ^ + ^ (7 7) 

Of couibc it lb not given that these abfaumptionb are fulfilled In particular, 

the re-wirmg mechanism works to separate the susccptible and iiifccted nodes 

into difteicnt groups leading to lelatively high numbers of SS- and //-links 

R erovering infectod nodes will hencc have nearly exclusively S7-links This 

conscquence contradicts our assumption of a random network, and might sig-

nificantly alter the validity of oui closme We will hence investigate the validity 

of tlie assumption using computer simulations in the following chapters 

With equations (7 6) and (7 7) we can write down a closed set of equations, 

giving the expected lesultiiig chaiigc in the macroscopir quantities during one 

time step 5t For our analytic discussion, we can however choose 5t to be 

arbitrary bmall Thib tin rib the diffcrcnce into a difieiential, and we obtain a 

closed set of equations of motion 

Ns -- = 

Lsi 三 AI/57 = 

Lss 三 〜 L s s — 

Lii三丛II = 

-tLsi + rNi 

- r g — TLSI + T 让二Lsi + 2rL/j — rLsi — OJLSI 
Jvs l � s 

让 SsLsi y , R 
-T H RLSI + UJLSI 

As 

• I + TLSI - 2rLij (7 8) 

7.3 Long Time Limits 

In the 士ollowing, we will invcbtigato the predicted behaviour of the bybtem 

We will attempt to answer questions such as what the final state of a system 

will be, or what paiameters buch a final state might depend on To do bo, 
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0.5 

0-5 0.0 

Figure 7.3: Exemplary trajectory of an adaptive SIS system. Parameters r = 

2.5r, oj = lOOr, N = 10000, k — 20. Upper graphs: projections of the 

trajectory onto the respective planes. Solid lines for MFT curves, symbols for 

simulations. 

we will first employ a fixed point analysis of our mean field theory [95], and 

compare the results with computer simulations in later chapters. 

.3.1 Fixed Point Analysis 

Within a phase space spanned by the variables nj, Igi and Z/j, the SIS 

system can access a prism inside the unit cube (the other half would require 

negative values of Iss)- Within this phase space, the trace of the system's 

configuration over time forms its trajectory. 
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Figure 7.3 shows an exemplary trajectory of an adaptive SIS system, ob-

tained both from computer simulations and numerical solutions of the EOM. 

The system starts with N j = 4, 000 infected nodes in an otherwise random 

network of TV = 10, 000 nodes and mean degree k = 20. This corresponds to a 

scenario where 40% of the population become infected before the system reacts 

to the disease. The adaptive reaction then rapidly reduces the number of SI-

links, thereby slowing down the dynamics significantly. However, the ^-nodes 

become highly connected during this process and once these highly connected 

nodes become infected, the infection can spread very quickly. Finally, the 

trajectory of the mean-field equations converges towards a single point, while 

the simulation trajectory fluctuates around the same point. At this point, a 

stable portion of the nodes in a network is infected, creating an endemic state 

of the system. 

In the studies of nonlinear dynamics, such points are commonly called 

attractive fixed points. The name ’fixed point' originates from Eq. (7.8), as 

all derivatives vanish at such a point. A system at exactly that point will not 

change over time. The word 'attractive' refers to an additional quality of such 

points, namely that systems anywhere within some small neighbourhood of 

such a point will be drawn towards it. We can further analyse the system by 

examining for which relations of parameters cu/r, r / r , fixed points exists and 

what their properties are. 

An obvious choice for a fixed point, both from the equations and from 

simple reasoning, is the point ns = 1, Iss = 1- This is simply the fully 

healthy state in absence of a disease. It exists irrespectively of the choice of 

parameters cj and r. Using computer algebra software^，two other fixed points 

can be found by setting the left side of equations (7.8) to zero. Depending on 

very lengthy calculation of a cubic equation 
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n i 0.4 

Figure 7.4: nj-values of fixed points of an SIS system with k = 20 as a, function 

of r, for rewiring parameters to = lOr (red), uj = 50r (blue), cu — lOOr (green) 

and UJ = 500r (purple). Lines are dashed where the fixed point has either 

negative or complex values. 

the parameters, the other fixed points may not be real-valued quantities. 

Figure 7.4 shows the n/-values of all fixed points as a function of the con-

tagiousness T for various values of the rewiring parameter UJ, both expressed 

in terms of the rewiring rate r. Generally, three fixed points are found: the 

aforementioned healthy state (which exists for any parameter combination), 

an endemic state with the majority of the nodes infected, and an intermedi-

ate fixed point whose 7i/-value decreases with increasing contagiousness. The 

endemic and intermediate fixed points are complex for small values of r and 

hence not applicable to our system. The n/-value of the intermediate fixed 

point turns negative for higher values of r, where it hence becomes irrelevant 
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for our system as well. 

These fixed points can show different behaviour depending on the system 

parameters. Parameter sets at which fixed points emerge or cliarige theii be-

haviour are referred to as bifurcations. In the following, we will investigate 

these bifurcations by means of a stability analysis of the fixed points [96，97]. 

7.3.2 Stability Analysis 

By definition, the time derivatives of the macroscopic density variables 

X G {Isi, In, ns} vanish at a fixed point: Ns = Lsi 二 丄n = 0. However, 

if small fluctuations occur, for some fixed points the system's trajectory will 

always return to the fixed point (in which case we would call it an attractive 

fixed point). Just as well, it may not return but oscillate following closed loops, 

or it may move away towards some other fixed point. For systems with three 

dimensions or more, it may even continue to move without being attracted to 

any fixed point or ending in a closed loop [98]. 

The partial derivatives of x with respect to each density form the Jacobi 

matrix of the system: {J')ij = For the SIS system, the Jacobian is 

3 二 

dlsi dlsi 
dlsi din dns 
din din 
dlsi din dns 
dns dns dns 
dlsi din dns 

(7.9) 

For a small displacement (5x (i.e., a short vector in the phase space) against 

the fixed point, J • Jx gives the initial direction of the resulting trajectory. If 

the eigenvectors of the Jacobian at the fixed point are linearly independent, 

its stability can be judged by the eigenvalues 77̂  of J . 

Let us for the moment assume real-valued eigenvalues. If all three values 
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are negative, then the fixed point is attractive, i.e., the trajectory will move 

closer towards the fixed point. If all eigenvalues are positive, then the fixed 

point is repulsive, i.e., the trajectory will move further away as soon as any 

displacement occurs. More common, however, are so called bistable fixed points 

where some eigenvalues are positive and some eigenvalues are negative. A 

system that is close to a bistable fixed point might hence be attracted towards 

the fixed point along the attractive eigenvector, but will ultimately be repelled 

towards the direction of the repulsive eigenvector. 

Imaginary parts of eigenvalues represent a movement of the system or-

thogonal to the small displacement. Moreover, complex eigenvalues with a 

negative real part represent attractive spirals, while those with a positive real 

part represent expanding spirals. Hence, the imaginary part is not relevant 

for the stability analysis itself but rather describes the manner in which the 

trajectories are attracted towards or repulsed by the fixed point. A special 

case occurs when the real part vanishes, in which case a purely imaginary 

eigenvalue predicts stable closed loop oscillations around the fixed point. 

Figure 7.5 shows the eigenvalues of the Jacobian of the endemic fixed point 

for a system with a high rewiring rate UJ. At its emergence at TQ, the fixed 

point is bistable: while eigenvalue 7]i is strongly negative, the other eigenvalues 

772 and rjs are real positive. The fixed point changes its behaviour. At ri, the 

real parts of r}2 and 773 are still positive, but an imaginary component emerges. 

Hence, the trajectories are now spiraling outward. At T2, the real parts of "2，Vs 

vanish and the trajectories would form stable closed loops. For larger r > r2, 

all eigenvalues have negative real parts and the fixed point is hence a stable 

attractor. However, since the imaginary parts do not vanish, the trajectory 

will spiral towards the final state. 
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To T-l 
0.25 

-0.25 

-0.5 

-0.75 

Figure 7.5: Eigenvalues of the Jacobian of the endemic fixed point. 

Solid (solid-dashed) lines; real parts, dashed lines: imaginary parts. Parame-

ters: w = 300r, k = 20. 
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TO 丁3 

0.05 

-0.05 

-0.15 

5 

•M 
10 

Figure 7.6: Eigenvalues ĵ bistabie ^f the Jacobian of the bistable fixed point. 

Parameters: w = lOOr, k = 20. 
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0.2 

0. 
hea l t hy 

-0.1 

-0.2 

Figure 7.7: Eigenvalues T̂ heaithy。【the Jacobian of the healthy fixed point. The 

value of one eigenvalue was magnified by a factor 100 to make it visible (light 

green line). Parameters: w — lOOr, k = 20. 
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Figureb 7 6 and 7 7 show data fiom an otherwibe identical bybtcin^ with 

a lower re-wiring rate of a; = lOOr Figure 7 6 shows the eigenvalues of the 

Jacobian of the inteimediate fixed point Technically also a bibtablc fixed 

point, it has one real positive and two real negative eigenvalues over its entire 

interval of existence Figure 7 7 shows the eigenvalues ot the healthy fixed 

point Iss = 1 i = 0 One eigenvalue hero magnified by a factor 100 for 

clarity, is constant and real negative One other eigenvalue is also constantly 

negative but iiirieases steadily with increasing r until it converges against 

a very small negative value In contrast, the third eigenvalue docs change 

its sign and becomes positive at the sain(、point wheie the iiitcrinediate fixed 

point vanishes For higher values of r, the healthy fixed point therefore itself 

changes fiom being attiactivo (foi small r) to bistable (foi laige r) For laigei 

T there thus existb only one attractive fixed point any system not starting in 

a perfectly healthy state will end m an endcmic btate 

Ubing this information, wc can clatsbify the expccted bchavioui of an adap-

tive SIS system For very small values of the contagiousness, only the healthy 

fixed point exibtb and ib attractive Any disease mtioduccd will definitively die 

out At a larger value r = ro(a;), a bifurcation occurs and two other fixed points 

- the endemic fixed point and the inteimediate fixed point 一 emerge Sincc 

neither of these fixed points is initially attractive again any disease introduced 

into the system will be oveicomc The transient dynamics of the system might 

however be affcrted by these fixed pomts, eg it might uiideigo expanding os-

cillations near the endemic fixed point In particular, for some value 丁 > TI{UJ), 

tiajertories swiping close to the endemic fixed point may exhibit outward spi-

ralling behaviour At r — T2{UJ), trajectories in small neighbourhoods of the 

endemic fixed point can foim closed loops, and the system might not recovei 

''The different choice of was made for purely illustrative purposes since unstable healthy 

fixed points occur only for much higher values of r at CJ = 0 6 
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to the healthy state, but will not end in a bingle endemic btatc cithei For even 

higher values r > T2(a；)，the endemic fixed point becomes attractive Depend-

ing on the initial infection level, the bybtcm may lecovei fiom a dibease or it 

might end m a final endemic state with a part of the population being infected 

at all time In this later case, the approach to the final state will occur in 

oscillations Finally for r > ra, the intermediate fixed point vanishes and the 

healthy fixed point becomes bistable itself Should any disease be introduced 

into the healthy system it will spread over the system and the system will 

definitively approach the endemic state The approach itself is still oscillatory 

HOW(、VC!1 foi oxtrcino cases r > LJ the approach will become stiaight again 

The system then acts again like a non-adaptive network above its infection 

thieshold 

With tliib infoimation, wc can clabbify the regime of an SIS sybtem, de-

pending on its parameters Figure 7 8 shows the three main regimes - healthy, 

with any disease dying out, bistable with the final outcome depending on the 

system's initial conditions and endemic, with any initial infection becoming 

permanent - ab a function of the mfcction and rewiring lateb r and to The 

health}^ regime is characterised by only the healthy fixed point being stable 

The bifurcations occuiimg at TQ and ri, namely the emergence of an unstable 

endemic fixed point and the onset of oscillatory dynamics in the vicinity of this 

point, do not afiect the final outcome The bistable regime is characterised 

by both the healthy and the endemic fixed points being stable The final out-

come here will depend on the initial configuration of the system At last the 

eiideimc state is rharartenscd by only the endemic fixed point being stable 

The healthy fixed point still exists but is unstable Any perturbation, i e , the 

introduction of a disease into the system will spread ovei the system 
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Figure 7.8: Different regimes of an adaptive SIS system: healthy (blue), 

bistable healthy/endemic (yellow), and endemic (red). Additional sub-regimes 

are shown for the healthy and endemic states: only healthy fixed points (dark 

blue), unstable endemic fixed points (lighter blue), unstable endemic fixed 

points with oscillatory behaviour (turquoise), only endemic fixed points are 

attractive, with an oscillatory approach (purple), and without oscillatory ap-

proach. (red) 
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7.4 Comparison with Computer Simulations 

To test the validity of the previous theoretical analysis, we will discuss 

various results of Monte-Carlo-simulations of the model. For all simulations, 

a network consisting OI N = 10000 nodes with mean degree A; = 20 was used. 

The recovery parameter was set to r — 0.002. All other parameters will be 

given together with the corresponding results. 

7.4.1 Infection Spreading Prior to Adaptive Reactions 

In the bi-stable regime, a disease introduced into the system can lead to 

an endemic state, but may die out as well, depending on the initial conditions. 

In what follows, we will therefore investigate the initial conditions leading to 

either state, how they can be distinguished, and whether or not our theoretical 

expectations agree with simulation results. 

From an epidemics point of view, it is of particular interest to define a 

critical fraction of initially infected nodes r^cnt). The idea is that if a disease is 

discovered before such a threshold is reached, the adaptive counter-measures 

will be successful in suppressing the spreading of the disease. If the adaptive 

reaction only begins when more than nf '̂̂ ^ nodes are infected, the system will 

end in an endemic state. 

Previously, Gross et al. used the n/-value of the intermediary fixed point 

Tî imd) as a measure for [92, 7]. However, this method can produce erro-

neous results, as we are going to show. 

At first, the initial state of the network has to be discussed. Except for 

pathological cases, any macroscopic coordinate within the accessible phase 

space 0 < n/ < 1, 0 < 5̂7 < 1, 0 < /// < 1 — can be represented by 
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a simulation network. However, for a real system, not every configuration 

is equally likely to occur. If we assume a fraction rij of randomly chosen 

individuals to be infected, the link configuration of the system can be easily 

deduced. We can assume that every link has a chance of nj to have an infected 

node and 1 ~ n/ to have a healthy node at either end. Hence, the mean 

configuration of a randomly infected network is 

Isi = 2n/(l - ni) 

III = n] . (7.10) 

Within the phase space spanned by the the variables n/, I si and ///, these 

randomly infected networks form a one-dimensional manifold. The question 

remains, however, whether the initial state of an infection on an adaptive 

network can be assumed to be of this random type. 

Typically, the network's configuration would initially represent the con-

nections between individuals before the disease is introduced into the system. 

At this time, all individuals are healthy and susceptible. A disease is then 

introduced from outside, typically through the infection of one or several indi-

viduals, e.g., travellers returning from a trip to a country where the disease is 

endemic. In the following, the disease would spread unnoticed. For an adaptive 

reaction, the disease's symptoms have to be known, and the individuals need 

to be aware of the risks in associating themselves with infected individuals. 

Until this happens, the disease will spread through the so-far static network, 

until, at some time, the adaptive reaction begins. We assume here that the 

adaptive reaction begins abruptly, i.e., cj = 0 for ^ < 0 and uj = const > 0 for 

亡〉0, for a discussion of time-dependent uo see [93]. The configuration of the 

network at time i = 0 is what has to be used as the initial conditions of the 

adaptive SIS network. 
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Figure 7.9: Spreading of an SIS-type disease (symbols) on a static random 

network above the infection threshold (Eq.(7.1)), with projections on the re-

spective planes. Lines give the subspace of a random infection as defined in 

Eq. (7.10). 
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Figure 7.9 shows the phase space trajectory of an SIS-type infection spread-

ing on a static network. The disease was introduced into the system by ran-

domly infecting 1% of the nodes. Hence, the initial conditions of the static 

network fulfil Eq. (7.10) by default. However, the states of a spreading epi-

demic are not always identical to that of random infections. Small deviations 

occur, here noticeable mostly in slightly fewer 5/-links than expected. This 

can be understood since a spread on a network has to follow the causality prin-

ciple: Nodes can only infect nodes in their own neighbourhood, which in return 

includes those nodes through which they contracted the infection, effectively 

reducing the number of susceptible neighbours. Furthermore, any topologic 

relationships, i.e., overlapping neighbourhoods, can affect the spread of the 

disease. If the disease initially spreads to such a cluster, overly many //-links 

will be formed, while such a cluster has only 5'S'-links before this happens. 

Such topological effects are much smaller for random networks than for lattice 

structures, however, they are sufficient to cause the small deviations observed 

here. Given that the overall state of this epidemic process is always very close 

to the subspace of randomly infected networks, we will in the following take 

the expected initial configuration of a network at the onset of the adaptive 

reaction from this subspace. 

7.4.2 Separatrix and Basins of Attraction 

Neither chaotic behaviour nor closed loops occur here. Hence, the phase 

space can be divided into basins of attraction of the attractive fixed points. 

The surface that separates them is commonly referred to as the separatrix. For 

the present system, the separatrix is a 2D-manifold in the Isi, In, n/-space. For 

otherwise identical systems with, n/-values above the separatrix, the trajecto-

ries will converge towards the endemic fixed point. For ^/-values below the 
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Figure 7.10: Separatrix of an SIS system with N = 10000, /c = 20, r = r 

and uj = 50r. The blue line gives the subspace of randomly infected systems. 

The intersection with the separatrix marked by the blue circle. The black 

triangle gives the coordinates of the intermediate fixed point. The bottom 

shows a projection of the fixed point, the intersection point, as well as a contour 

representation of the separatrix. Such contours are in the following used in 

Fig. 7.11 

separatrix, the trajectories will converge towards the healthy fixed point and 

the disease will die out. Several methods exist for calculating separatrices. For 

the present system, repeated iteration of the equations of motion is perfectly 

sufficient to obtain the separatrix. 

Figure 7.10 shows the separatrix exemplary for a system in the bistable 

regime. Generally, the ^/-values of the separatrix vary between approximately 

Tij = 0.5 for a system in which nodes of the same type are never connected, 

and 71/ 二 0.9 if connections only exist between infected nodes {In ^ 1). For 

Iss = 1, i.e., only connections between susceptible nodes, the infection can 
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ncvci bpiead all infectcd nodeb aie alieady ibolated and will lernain bo even 

after they recover Rewiring does not occur in this case since no 5/-links exist 

For a given set of system parameters r, CJ, r and k, the fixed points are 

given by the roots of Eqs (7 8) Foi the case in Fig 7 10, the cooidinates 

of the intermediate fixed point arc nj™"*) = q 675049, I、工议、=0 067505 and 

也md) _ Q 103869 The configui ation corresponding to these coordinates con-

sists of two subnetworks network of highly connected susccptiblob and sparely 

connccted infectcd nodes, with only veiy few links connecting the gioups The 

moan degi ce of susceptible nodes 】ii such a i ir twoik is ks ~ 51, w/hilr kj ^ 4 

However, such a configuration is very unlikely to occur while the disease is 

spieadmg on a network On the contiary, if such subnetworks of highly and 

sparsely comiectcd nodes existed, the infection would in all likelihood spread 

much tastci on the highly connccted network and thub mvcit tlic configuration 

described by the intermediate fixed point's coordinates In fact, the configura-

tion of the intei mediate fixed point ib so impiobable that it is not even achieved 

once the adaptive rewirmg incchanism is active 

The subspace of randomly infected networks is shown as a blue parabola 

Its intersection with the separatrix, shown as a blue ciicle gives the thiesliold 

above which a randomly infectcd network would enter an endemic or suscep-

tible btatc Since, as discussed befoie, the spreading of an infection on a static 

network very closely resembles a randomly infected network, wc ronsider the 

n/-vaiuc of the intersection point to be a more appropriate criteiia foi 几̂“丄七） 

The value is hpie r̂ mts) _ Q 699300, which is different although leasoiiable 

close to the n/-valuc of the intermediate fixed point This leaves the 

question whethei it is common for the n/-values of the mteisectioii and the 

intermediate fixed points to differ In what follows, we will try to answer 
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this quebtion Furthermore, we will discubb whether any buth en or is bignifi-

cant compared to deviations between the MFT'b separatrix and the separatnx 

obfaeived in c omputei simulationb 

Figure 7 11 shows contouis for a set of bcpaiatrices, each including both 

the randomly infected system's subspace, the intermediate fixed point, and 

the intei section point Notably, the intermediate fixed point always lies in the 

pioxiinity of the axis Iss = 1 coi responding to the improbable coiifiguiation of 

highly connccted subnetworks mentioned above The intersection point, on the 

coiitiary always corresponds to a raiidoiii network configuration Arcoidiiigly, 

even if the n广values of intersection point and intermediate fixed point are 

similar the othoi two variables Isi and In diftei significantly 

To judge the rclevance of thebo deviations, wc compare the theoietically 

predicted separatrix with the results of Monte Carlo simulations of the model 

I n order t o d o bo we bet u p a b i i nu l a t i on sys t em for a het of p a i a m e t e i b 

r, cj, T, nj, Isi, hi as follows Out of a total oi N — 10,000 nodes N[ = ujN 

arc set to be initially infected Aftcrwaids two subceptiblc (oi two mfccted, 

or one susceptible and one infected each) nodes arc randomly chosen and a 

link between them is established until a total of Lss = (1 — Isi — lii)Nk/2 (oi 

LII, or LSI) links arc created Creating multiple links between two nodes or 

linking a node with itself is not allowed Following such a method network 

configurations corresponding to nearly every set of parameters n i J s h h i can 

be creatcd For cach set of parameters an ensemble of 50 systems is created 

Each system then evolves according to the adaptive SIS dyiiaimcs If for a 

given combination of I si and In the n/-value is chosen low enough, all systems 

will finally result in a healthy state Equivalontly a large nz-value will result 

in all 50 systems entering the endemic state By varying the initial value of 

n/, we can tiace out the traiibition lange of a bimulated epidcmic bybtem The 
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(c) 0.1 0.002 0.6750 0.6993 

(d) 0.4 0.006 0.7294 0.8403 

Figure 7.11; Contours of separatrices for several systems, all shown together 

with the corresponding fixed point (black triangle), the randomly infected 

system's subspace (blue parabola) and the intersection point (blue circle). The 

table lists the n/-values of both intermediate fixed point and intersection point. 

133 



C H A P T E R 7. E P I D E M I C M O D E L S ON N E T W O R K S 

0.0 0.2 0.4 
Isi 

0.6 0.8 

Figure 7.12: Simulation transition ranges and MFT separatrix for a set of 

values in the planes Isi — 0.2 (A) and In = 0.2 (B). Color bars indicate the 

percentage of systems ending in an endemic state, going from 0% (black) over 

50% (blue) to 100% (red). The blue line connects the nz-values where a system 

is as likely to end in either state. The red dashed line gives the cut trough the 

separatrix. 

separatrix is expected to lie somewhere within this transition range. 

For a quantitative comparison, we cut the parameter space of Fig. 7.10 

along the planes Isi = 0.2 {Iji 二 0.2) and vary In (/§/) accordingly. The cut 

through the separatrix is shown as a line in Fig. 7.12. For several values of 

In (Jsi), the transition range of the simulation systems is probed. For the cut 

at Isi — 0.2, shown in figure 7.10(A), the separatrix falls into the transition 

range except for very large or very low ///-values. For the cut at In = 0.2, 

the separatrix always lies above the simulation transition range, but typically 
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only by a small margin of An/ < 0.05. These deviations are comparably small, 

lending confidence to the overall accuracy of the MFT separatrix. 

To get a better understanding of the relation between the accuracy of the 

MFT prediction and the accuracy of the intermediate fixed point as a represen-

tative of nj^nt), we also compared the simulation transition range for random 

systems with theory predictions. To do so, we set up simulation systems as 

described above, with the Isi and In coordinates given by Eqs. (7.10). We 

compared the transition range with the intersection point and the interme-

diate fixed point. The results are shown in Fig. 7.13 for a range of r, for 

0； = 0.4 = 200r and r = 0.002. While the 72产”—values given by the intersec-

tion point nearly perfectly coincide with the center of the transition ranges, 

the deviations between the intersection point and the intermediate fixed point 

are very pronounced over most part of the bistable range. 

One remaining question is how the transition ranges, shown in Figs. 7.12 

and 7.13, are influenced by the number of agents in the system. Generally 

speaking, they are caused by random fluctuations that are intrinsic Monte 

Carlo simulations of the model. The dependence of these transition ranges 

on the system size is shown in figure 7.14 for a range of 10^ < N < 10 .̂ 

The relative importance of the fluctuations decreases with increasing system 

size, leading to smaller transition ranges for large systems. For very large 

systems, the n/-value of the intersection point n̂ mts) jg not anymore within 

the transition range, owing to model features not captured by the mean-field 

theory. However, the difference between nĵ md) and the simulation transition 

point exceeds that between and the simulation transition point by a 

factor of more than five. 
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Figure 7.13: Simulation transition ranges (colorcd bars), intersection point 

(blue line) and intermediate fixed point (red dashed line) of randomly infected 

networks for a range of contagiousness parameters r. Colours indicate how 

many (0% (black) to 100% (red)) of the systems with such configurations 

enter an endemic state. 
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Figure 7.14: Size dependence of the transition range. For a fixed set of param-

eters (r : 0.002, r — 0.008, ui = 0.4, k = 20), ensembles of systems of different 

size are created and their transition range is traced. The colours indicate the 

percentage (black: 0%, red: 100%) that enter an endemic final state. The in-

fected fractions of the unstable fixed point r4™d) and of the intersection point 

n (ints) 
shown for comparison. 
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7.4.3 Conclusion 

We have introduced and discussed the adaptive SIS model as an example 

of co-evolvmg networks In the first part of this chapter, we have focussed 

on reproducing existing results, m order to make sure that both our under-

standing of the model and our implementations are correct In the section 

following Ch 7 4, we have built upon these results by discussing how a mean-

ingful criterion for the critical initially infected fraction n(『劝 can be found 

The key results of this analysis can be summarised as follows The intermedi-

ate fixed point IS an unsuitable criterion for ？^严)，as it correbponds to highly 

unusual network configurations The overall agreement between mean-field 

theory and simulations, illustrated by comparing the separatnx values for dif-

ferent configurations with the transition point of the simulation, is very good 

(see Figs 7 12-7 13) We therefore propose the n/-value of the intersection 

point between the separatnx and the subspace of randomly infected networks 

as a new criterion for nf̂ ^̂ ^ 

Based on these results, various options exist that still need to be investi-

gated In particular, the behaviour of a system with a rewiring process that 

follows preferential attachment should be investigated As epidemic thresholds 

are absent in scale-free networks [88, 89], it would be very interesting to know 

whether or not a disease could be efficiently suppressed if the rewirmg process 

itself creates such a scale-free network 
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Chapter 8 

Adaptive Snowdrift Game 

Networks: Introduction 

111 this chapter, wc will introduce the concept of evolutionary games as a 

type of dynamic modelb on networks We will dibcubb boine general fcatureb 

of such games, and introduce the so-called evolutionary Snowdrift Game m 

detail In Sec 8 2, we will review some results regarding the Snowdrift Game 

as a dynamic model on networks In Sec 8 3, we will propose a new, coevo-

lutionary snowdrift game model, the Dissatisfied-Adaptive Snowdrift Game, 

which allows nodes to adapt their environment as a reaction to unfavourable 

outcomes of a game trial Finally, we will discuss simulation results and a 

mean fk、ld theory for this model The results presented in this chapter wore 

published in Ref [9] 
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8.1 The Evolutionary Snowdrift Game and Other 

Competitive Games 

Imagine the following situation: A country road in winter has been blocked 

by a snow drift, hindering drivers from both directions to get to their destina-

tion. To get to his destination, a driver would have to shovel the snow away, 

which is a laborious task he would like to avoid. If he is lucky, someone, on 

the othc;r side of the snowdrift, is stuck as well and will do the work for him. 

If he is unlucky, however, the other driver is just as uncooperative, and nei-

ther of tlicin will get to their destination. Although it appears reasonable that 

both drivers share the workload, a lack of information about what is going on 

on the other side of the drift means both drivers have to make their decision 

- t o cooperate and shovel or to wait inside the car and thus defect - all by 

themselves [99, 100]. 

In game theory, this scenario is formalised as follows. If he manages to get 

through the snowdrift, each driver will obtain a benefit b. At the same time, 

shovelling away the entire snow drift comes at a labour expense c. The cost 

can be shared equally by both players, or carried by a single shovelling player 

alone. The cost is always smaller than the benefit c < b. since otherwise no 

player would consider removing the snowdrift all by himself. Commonly, the 

decision to or not to shovel is identified with characters related to another game 

(the prisoners dilemma, see below): A cooperator (symbolized by the vector 

Be = (1,0)T) is willing to do his share of the workload and shovel, while a 

defector {eo = (0, 1)T) prefers to let others do the work and hence waits inside 

his warm car. With these definitions, the payoff matrix, defining the payoff 

B) of a player of type A playing against an opponent of type B, is 
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(8 1) 

The payoff is commonly normalised by setting the mutual coopcration-pa3^ofF 

to = 1 By mtioducing the temptation parameter r —— c/(26 — c), wc can 

then write the paramcterised payoff matrix as 

P 二 

‘ 0 
(8 2) 

Game theory uses a variety of such games, each offeimg paiticipants the choice 

to either cooperate or defect The game is characterised by the values of the 

pay oft matiix, i c , the mutual coopciation payoff R, the mutual defection 

payoff P, and the cooperator versus defector payoffs S and T The ranking of 

these payofib ih of high impoitance to the choice of a strategy when playing 

such a game The Snowdrift Game (SG) generally refers to a payoff ranking 

T > R > S > P, which IS a moie geneial definition than the one we use hcic 

For the Snowdrift Game in general, the excess benefit of the defcctor docs 

not have to be identical to the exccss cost of a cooperatoi in a CD-situation 

The SG ranking moans no optimal choice exists for a single player playing one 

single lound If his opponent coopciates, defecting ofteis an additional benefit 

r, but if the opponent is a defector himself, the player will not receive any 

payoft unless he chooses to cooperate Hence, the Snowdrift Game is often 

also lefeiied to as a social dilemma Alt PI natively, other laiikiiigs result in 

diftercnt games For example, the case oiT> R> P> S became widely 

known ab the Piiboner'b Dilemma (PD) [101，102, 103] Heic, foi both choicer 

of the opponent's action, defecting always yields higher payofis Consequently, 

any bingie-round PD game played by two rationally acting agents will always 
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icbult in both ageiith defecting and therefore obtaining payoff P Thib ib a 

less-thaii-pcrfcct choice for both players, sincc mutual cooperation could offer 

a higiiei benefit R to both playeib A third widely-used ranking ib the Stag-

Hunt Game (SG) with R > T > P > S, originally discussed by Rousseau [104] 

It IS the most coopeiation-promotmg scenario among the three games, since 

mutual cooperation offers the highest benefit R to both players However, 

mutual defection P is more bcncficial than being the exploited coopcrator 

obtaining S Heiire, oven in this case cooperation is not an obvious choice 

[105 106, 107, 108] 

Like the Snowdrift Game, the other two model paradigms are also social 

dilemmas They confront the player with a situation in which theie is no 

definitive winning strategy All have been used extensively m rcscarch on 

the cmcrgcnce of cooperation Geneially, coopeiation benefits the bociety but 

comes at a cost to the cooperator Hcnce, the question arises why cooperation 

ocLurb at ail The impact of several factorb on the emcigence of coopei ation 

has been investigated 

To investigate such scenarios on a population, dynamical rules have been 

specified foi a group of agents playing such games against each other While 

A^-person competitions have been defined [109] the most common scenarios 

involve two-player interactions In such a case, two connected agents play 

against all ot their neighbours respectively The outcomes of the games are 

dctcimined by each player's current status, i e , to cooperate or to defect 

Afterwards they rompaie their average payoffs The likelihood of one player 

adopting his neighbour's status will then be determined by the difference of 

then payoffs In the most common rases, the playei with the smaller payoff 

will be more likely to adopt the status of the more successful player, in an 

attempt to improve liib fitnebs Such dyiiamicb are commonly lefened to at, 

evolutionary games 
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8.2 The Snowdrift Game on Networks 

Originally, the Snowdrift Game dynamics wore defined as a dynamic model 

on a well-mixed network, i e a system where all nodes aie m contact with 

each other, or at least where the composition of ovei y node's neighbour hood 

resembles the composition of the entire system Foi such a system, cooperation 

will vanish foi ail evolutionary Piisoiiei's Dileinina game [110], since a dcfertoi 

will in every environment receive payofts superior to those of a cooperator On 

the contiaiy, cooperation survives in case of the (evolutionary Snowdrift game, 

sincc agents obtain no payoff in ease of a system consisting solely of defectors 

A single cooperator, introduced into such a system will rcceive a benefit and 

hencc spread its strategy until a fraction = 1 — r is cooperative At this 

point, an equilibiium ib leachcd [9] 

Instead of playing evolutionary games on well-mixed networkb, bpatial 

structures such as lattices can significantly change a game's dynamics Under 

such circumstances, cooperation can exist even in an evolutionary PD sccnaiio 

[101] However, lattice structures may not represent human relationships very 

well They generally imply strong correlations between the neighbourhoods of 

roriiiected nodes, which are not necessarily fulfilled for human relations Fur-

thermore, the interfaces between clusters of nodes on a latticc have the form of 

surfaces i e nodes behind the surface have no contact with nodes of the other 

type Many cftects observed for evolutionary games on lattices originated in 

such suifaces between clusters of cooperatois and defectois Tht、small-world 

effect observed m real-world networks [111] cflectivcly removes such surfacc ef-

fects bince some connectionb will reach far outbide an otheiwibe dobed domam 

Consequently, the dynamics of evolutionary games on complex networks with 

leal world pioperties were investigated as well A comprehensive review of the 
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cffcctb of the undei lying graplib on evolutionary gameb can be found m [112] 

However even buch real-woild complex nctwoiks do not ofter a suitable en-

vironment to investigate human interactions like competitive situations Obvi-

ously, the scenaiios mentioned lack a common fate that a detei mined defector 

will fac o sooner or later being abandoned by its peers Indeed, social networks 

between humans aie typically not btatic Instead a network's links change 

frequently (rompared to the timo scale of introducing new and removing old 

agents) and often in response to interactions between the participants Hence, 

evolutionaly dyiiairnrs need to be defined foi both the game model and the 

underlying network If the dynamics are interdependent, i e , if the evolution 

of the game model depends on the underlying network and the evolution of the 

underlying network depends on the status of the game model, we refer to them 

as co-evolving dynamics Hov»/evcr, the definition of rules foi budi dynamicb is 

far from trivial Such rules may depend on the single individual or even on 

the single individual's currcnt mood Thib makeb the definition of rules more 

difficult than, for example, the definition rules for epidemic dynamics Fur-

thermore, the adaptive co-evolutionary luleb mubt not by thcinbelveb promote 

cooperation i e the ability to change their environment should not by itself 

destroy the dilemma as such 

Intel action between the evolution of the netwoi k and that of the dynamic 

model (an take many forms such as interdopcndence between the network 

growth and the game evolution [113] or diftusion on a diluted lattice as a reac-

tion to the game s dynamics [114] The most common approach is the diiect 

rc arrangement of an agent s neighbourhood as a consequence of the evolu-

tional y game model Such rcariaiigeineiit can be stochastic i e links can 

be randomly created and destroyed following creation and anniliilatioii rates 
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that, m turn are depending on the game model Such appioaches wcie mtio-

duced by Pacheco et al [115] and Zimmermann et al [116] for the Prisoner's 

Dilemma Alternatively, one agent can actively learrange itb neighbouihood 

as a consequence of a two-player game that it was involved in [117, 118] For a 

bi-diiectional netwoik with links of uniform weight, such an adaption is com-

monly realised by one agent cutting a link to a neighbour and rewiring to 

another agent 

A compichcnsivc review of coevolutionary games was recently published 

by Peic and Szoliioki [119] 

8.3 The Dissatisfied-Adaptive Snowdrift Game 

As an example of the influonce of co-evolutioiiary dynamics on the emer-

gence of cooperation, wc will in the following discuss the mechanisms of the 

Dissatisfied-Adaptive Snowdii士t Game (DASG) The DASG is a roevolutioiiaiy 

competitive game on a complex network Agents occupy the nodes of a bidi-

lectional network, and can altci it by breaking connections to their neighbouis 

and establishing connections to other nodes in the network 

8.3.1 Model 

The underlying ideas of the Dissatisfied-Adaptive Snowdiift Game aie sim-

ple We assume that every agent, no matter whether it is a coopcrator (C-

node) 01 defector (Z?-node), wantb its neighbouis to be C-nodcb since this will 

maximise its payoff Playing against a defecting neighbour leaves the agent 

dibsatisfied, and it will conbcquently rcact Two kinds of icactionb are pobbible, 
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cithei bwitchmg itb own strategy or cutting then connection and rcwirmg to 

another agent 

In detail, the rules of the model are specified as follows (see overview in 

Fig 8 1) Initially, the nodes form a landom netwoik of N nodes with an 

average of k neighbours, i e , a mean degree k At any time, every node has an 

internal status or character that determines its action during the next round 

of the game, i (、，to defect or to cooperate Initially these status are randomly 

assigned according to some predefined initial fraction of cooperation f l i e , 

Nc — fc x N randomly chosen nodes aie set to be rooperatois while the 

remaining ND = (1 — f � N nodes are initially defectors 

We assume node-drivcn dynamics, i c any node will at random encounter 

a competitive bituation (oi tnal) with identical frequency uj Thib ib important 

since all nodes have identical influence in the system's evolution In contrast, 

in liiik-diivcn bybtcinh like the pievioubly dibciibbed adaptive SIS epidcmic net-

work, high-ranking nodes with many neighbours are pivotal to a disease's 

bprcadmg while low ranking nodcb have a negligible influence 

Foi a trial, a hinglc node is randomly choscn, and itbclf picks one of itb 

neighbours at random It then plays one round of tho snowdrift game against 

this neighbour We will hereaftei refer to the first node as the player and to 

its randomly chosen neighbour as the opponent If the player is of character A 

and the opponent of diameter B, then the (d.is)satisfaction S of the player can 

be expressed through the difference in tho payoff it obtained and the payoff it 

would have obtained if the opponent had been of opposite character B 

S{A, B) = Q{A,B)~Q[A,B) (8 3) 

Obvioubly S lb positive if the opponent chose to cooperate (B = C), and 
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At every trial, four player-

opponent-combinations are pos-

sible Only dissatisfied players 

will take action and contribute to 

the system's dynamics 

A reacting player will choose one of two 

options Switching its status or rewiring 

A rewinng player will try but not always 

find a new cooperative neighbour Switch-

ing and rewiring probabilities depend 

(shown below) 

V 

05 

0 0-

z 尸丨(•f) 
\ 

< z 
\ 

• cooperative agent 

• uncooperative agent 

口 dissatisfied player 

二 satisfied player 

satisfied (7(7-link  

-dissatisfied CI?—link  

dissatisfied £)£)—link  
Player > Opponent 

00 05 1 0 

Figure 8.1" Overview of the rules of the Dissatisfied-Adaptive Snowdrift Game 
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negative if the opponent chose to defect {B — D). For the latter case, the 

player will be dissatisfied and hence choose to take one of two possible actions: 

To switch its status from A to A, or to cut the link to its opponent and rewire 

to another randomly chosen node. Importantly, the character of this other 

node is not a-priori known to the player. Hence its chances to improve its 

situation by adding another cooperator to its neighbourhood are determined 

through the overall composition of the system. If the system consists nearly 

entirely of defectors, the chance to rewire to a cooperator is very low. 

The dynamics of the model are determined by the definition of the prob-

abilities for a node of type A^ dissatisfied after playing against defector, to 

either rewire or switch its character. Four different events can occur: a C-node 

switches {CS), a C-node rewires (CR), a D-node switches {DS)^ or a D-node 

rewires {DR). We denote the respective probabilities by pg.), v f ) — 1 — , 

V、】、and V、，二 1 — 幻.We require these probabilities to fulfil certain con-

ditions: 

They must reflect a rational choice, i.e., a rational agent should believe 

that such actions improve its fortunes. 

They should be functions of the disappointment of the player, and thus 

of the temptation parameter r. However, factors outside the scope of a 

single agent (such as the overall composition of the system) should not 

influence its decision. 
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We hence define 

‘c — 
-

‘C — 

-piS) 
‘D 

S{C,D) — 7_ 
2 = 2 

c 2 
S[D.D) 1 

= - + 

2 2 2 

⑶ - ! — 二 
2 2 P j f = (8 4) 

The dependence of these probabilities on the r is shown in the graph on the 

lowei left of Fig 8 1 These probabilities fulfil condition (2) However, they 

also constitute a rational behaviour of the playei For example a cooperative 

playei hat., in the cabc of low r, nothing to win from switching Since he 

might 】ose its entire payoff when playing - as a D-node — once more against 

a D-node, lewiiing is the piefcired leaction For laigc r howcvei the iifak of 

losing the remaining payoff 1 — r is offset by the prospect of benefitting from 

its C-neighbours after a possible switch Hence, rewiring and switching aic 

equally likely choiceb In the same manner, a D-node has hardly anything to 

win from switching in the case of large r It would only gain a piofit 1 — r 

when playing against a £)-npighbour, but would lose the exccss benefit r it 

currently gets from its C7-neighbours Hcnce, the predominant choice of action 

for a D-iiode at laige r is lewirmg 

Aftei a dissatisfied playei choohes and caiiies out one reaction, its tiial is 

over and another agent is chosen at random to be the next trial's piayer Since 

we assumed every single node to eiicountei buth a situation with constant 

frequency w, the time span St between two rounds on average results to 

(St) = l/(u;N) (8 5) 

in actual time 
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8.3.2 A Simple Mean Field Approach 

To get a first understanding of how such a system will behave we can 

resort to a mean-field approach that assumes that every node's environment 

will represent the composition whole system However, assuming that all nodes 

feature an identical cnviromneirt will not allow us to understand the model 

m full Such an assumption would automatically imply that the number of 

bilks betw( en C-iiodes and D-iiodes is propoitioiial to a well-mixed sceiiaiio 

Our model's rewiring features thus could not be captured Instead, we will 

assume that all C-nodes have an identical environment and all D-nodeb have 

an identical environment The mean environments of C-nodcs and Z)-nodes 

arc allowed to be diffeient To know how these mean enviionmcnth looks like, 

we define three macroscopic variables 

1 The magnetisation of the system as the difterencc of the densitieb of 

roopeiators and dcfectois, 

Nc — ND 广、 
771 = ^ - ( 8 C) 

2 The link magnetisation of the sybtern as the diffeicnce between the link 

density between cooperators and between dcfectors 

Lcc— LDD mi -
U ̂tot 

3 The density of links between coopeiatoib and defectorb, 

7 LCD 
^CD = 

(8 7) 

(8 8) 
t̂ot 

With these variables, wc can express the numbers of cooperators and defcctors 

as 

‘+ m 
Nc = N-

2 
1 一 777 

Nd - (8 9) 
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and calculate the nuinbei of different typeb of Imkb 

r Nkl+mi- IcD 
Lcc = 

Li 

2 2 
Nkl-mi- J CD 
2 2 

Nk 

LCD = —IcD (8 10) 

The average degrees kc and k^ of C-nodes and -D-nodes are thus given by 

—2Lcc + LCD — , 1 + m； 
t^C ~ rr — K—  

Nc 1 + m 
2LDD + Lcd , 1 - m； 

ko [丁 = k~ 8 11) 
No 1 — m 

In the same manner, we can express the mean number of CC/CD/DDAiiiks 

of either a C- or D~iiode We (̂ xpress these iiuiribeis as averages (AXY}T I E , 

the mean number of XF-type links connected to node of type T The number 

of linkb of type XY of a single node ib wiitten as Axy Since we arc curicntly 

assuming all nodes of one type to have an identical environment, these values 

are identical for all nodeh The averages can be expiebbed in teimb of tlie global 

variables as 
I � \ 2Lcc 1 + mi — IcD 
�Xcc)c ‘ -^T— = k — Nc 1 + m 
/ \ \ Lcd j IcD 

Nc 1 + m 
/ \ \ Lcd , IcD 
〈 g = = 

{Xoo)n = 华 二 了 IcD (8 12) 

1\£) L ~ m 

The mean environment of a node is specified thiough itb number of links of 

each type or, equivalently, through its degree kc/n and its number of CD-

Imkb Therefore, the thiee global variableh are bufficieiit to fully bpcufy the 
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mean environment of a single C- or D-node. To understand how the the 

system evolves over time, we need to derive equations describing how the 

global variables are expected to change. 

We can write the expectcd change A X of a global variable X G {iVc/D, Lqc , 

LCD^ LDD} during one single trial as 

A X ^ X： E 时 ) 丸 A⑶) 
m ^ r^ ^T n cy 

(8.13) 

T=C’D E=R,S 

Here. "P(” is the probability that a node of type T is chosen as the player, 

which is simply the density of C- or /Anodes. The probability that such 

a node chooses a defector as its opponent and hence becomes dissatisfied is 

given through its share of such neighbours, i.e., Xco/kc for cooperators and 

\DDI^D for defectors. The rewiring/switching probabilities v!^�for a node 

of type T to choose action E are specified in the game model (see Fig. 8,1). 

Finally, AX{E, kr, ^cd) gives the change that such an event E would cause, 

if it happens at a node of type T with degree kx and \cd neighbours of the 

opposite type. By carrjdng out the sum in Eq. (8.13), wc arrive at a set of 

coupled equations for the three global variables: 

Am = 

Am£ = 

A/cd 

J_ 
iV 

+ 爪-pĈ)丄(1 - y ^K i— 爪广 Zcd)m(s) 
I _ ’ C ^ 1 ~ ‘ D 

kN 

1 + m^ 

•I , ( _ k V � + (1 十爪 

— r u i 

m 

+ (1-肌广 W (砍If + J r ^ 对) 2(1 - me) 
1 

kN led k 
+ — 2lcd^{S) 

c -1 + m^ ''c 
2 ( 1 + 

+ [l-rrii- led) k 
rrii 2(1 - rrii) D 

(8.14) 
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These are difference equationb foi the expectcd changeb occuiimg duiiiig 

one single trial By defining a time step analogous to Eq (8 5)，they can be 

turned into a bet of couplod ordinary difterentia】 equationfe Such non-lmcai 

differential equations typically comc without an analytic solution Numerical 

integrations from predefined initial conditions, however, aie stiaightforward 

The numerical results to follow were obtained using a fourth-order Runge-

Kutta method 

8.3.3 Simulation Results 

Monte Carlo (MC) simulations of the model have been carried out and 

results are compared with MFT calculations At firbt, we look at the long 

time limits of the sinmlatioii for several different initial (onfiguratious of the 

system Wc run the MC simulations on a network of N = 10, 000 nodes for 

a total time of At = 50 (oi 500 000 single trials) to cqmlibiate the system 

Hereafter, we average the system's macroscopic status over one whole time fatcp 

(or 10 000 single tiials) Foi necessary Cds(、s as discusscd below an average 

was taken over several such systems 

To integrate the MFT equations, initial conditions arc required We de-

fine an initial fraction of coopeiatorb f l and dbbume that the cooperatorb are 

randomly distributed on a random network These two conditions define the 

initial value of the macrobcopit variableb ah 

m(0) 二 2f l - 1 

ICD(0) = V l i l - fl) 

mm = 2fl - 1 , (8 15) 

from where the MFT equationb can be integrated until t = 50 The lebultmg 
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long time values for the magnetisation aie bhown in Fig 8 2 and foi the CD-

link density and the link magnetisation in Fig 8 3, respectively 

Foi d uettei undeistanding of the results, let as look at Fig 8 3(B) first, 

which showb the final link magnetisation For small values of r all systems, 

independent of the initial fraction of cooperators, have a long time limit of 

mi{t = oo) = 1 This means that all surviving links are indeed between two 

rooprratois Since all systems at any r, show a magnetisation of less than one 

(see Fig 8 2) some defectors are surviving, but they are isolated and expelled 

by a iietwoik of highly romicrted rooperatois 

Foi larger values of r, the link iiiagiiotisatioiii suddenly diops to values be-

low one indicating that the network is now in a different, connectcd state 

where 8ome dibbatibfied links burvivc Duiing some intermediate range, both 

the connccted and the disconnected topology are possible final states of the 

netwoik It bhould be kept m mind that the disconnected state with itb ab-

sence of dissatisfied links, docs not evolve anymore Such states are commonly 

refericd to ab sticky, since not even fluctuations can cause the sybtem to enter 

another stable attractive state In this case, the system is frozen, sincc its 

configuration does not expenence any fluctuations anymoie Within the MFT 

model there exists a transition value above which a system will end 

in a disconnected state In simulation, this threshold is not so precise, since 

fluctuations can drivo a system into a frozen state, from which it of course 

will not return For a value near /2(。"七)(7")，the fraction of systems ending in a 

disroniiO( ted state monotonously increases ovei time, since a connectpd system 

can always become disconnected through fluctuations, but not vice versa The 

iiiteimediate values of the link density and iriagiietisatioii in Figs 8 3(A) and 

8 3 (B) for example for 二 0 7 at r = 0 21, are just an average over an en-

semble of connectcd and dibconnected systcnib that originated fiom the same 
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m(oo) 

Figure 8.2: Long-time limits of the fraction of cooperation. Simulation results 

are shown as symbols, starting from random systems with an initial fraction 

of cooperation of f l — 0.1 (red squares), = 0.7 (blue circles) and /】=0.9 

(brown triangles). Lines give the MFT long time limits (color same as for 

simulations). 
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ICD(C)O) 

0.75 

0.50 

0.25 

0.00 

0.2 

10 1.0 

m£(oo) 0.0 

Figure 8.3: Long-time limits of (A) the CD-lmk density and (B) the link 

magnetisation. As before, simulation results are shown as symbols, starting 

from random systems with an initial fraction of cooperation of = 0.1 (red 

squares), = 0.7 (blue circles) and f l — 0.9 (brown triangles). Lines give the 

MFT long time limits (color same as for simulations). 
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initial conditions The dibplayed link denbity valueh actually do not occui in 

any single connected system 

Figure 8 2 shows the magnetisation and thus the degree of cooperation of 

the system Small illustrations of network topologies are shown foi thiee diffci-

piit ranges of r Tho disronnected-connected transition can again be observed 

at different values of r, depending on the initial fraction of coopcrators Co-

operation jumps to highci values foi systems in the disconnected regime Foi 

identical values of r e g , r = 0 2, systems with initially more coopeiatois can 

expel all dcfertois and foi in a homogenous network of coopeiatois, contain-

ing nearly 90% of the system's individuals At the same time, systems with 

initially moie defectoib entei a connected state, with only about 50% of the 

individuals being coopcrators 

Overall, MFT (lines) and simulation (symbols) results are in excellent 

agieernent for the CD-hnk dcnbity and link magnetisation (see Fig 8 3), while 

agreement is reasonably good for the overall magnetisation (see Fig 8 2) De-

viations are mainly obbervcd m two areab The magnetibation in the dibcon-

nected state, in particular for low values of /工 and the location of the transition 

lange or vicc veisa /< (̂cr】t)(r), m particular for large values of fl To 

understand the origin of these deviations, it helps to look at the evolution of 

the system via simulations and MFT 

Generally speaking, Eqs (8 14) carry an implicit time dependence since the 

event probabilities are expressed as rates of the expected change during one 

time step For the observed deviations, it is more important to understand 

what the iiatuir of those deviations is than whether the expected evolution 

just happens slower or faster than expected Therefore, we discuss m tlic 

following the evolution of simulated systems and mean-field theory by looking 

at trajectories Such trajectories are creatcd by projecting the trace of the 
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vcctor (m(t), lcD(t), m£(t)) onto the m-ZcD-plane 

Figuie 8 4 bhowb the trajectoiies of bybtemb with diffeient values of r All 

systems iniiially consist neaily exclusively of defectors,丄 e , the system is close 

to TTit —1,/cD ~ 0 A small group of coopcratois fc ~ 0 001 was added, 

such that no continuous closure is required for the mean field equations, which 

have smgulaiities at m — 1 and m = —1 While tiajectories for high-r systems 

agiee veiy well witli MFT's predictions, deviations heroine obvious for smaller 

values of r In particular, MFT underestimates the crcation of (7_D-links sig-

nificantly III addition, the final decay towards ICD ~ 0 orcuis pretty much as 

a straight line in the simulation, which means that Am is only weakly depend-

ing on IcD Theory, on the contiaiy, predicth a stronger dependence of the 

switching behaviour on the link density However, the shape of the trajectories 

ife qualitatively captured by MFT foi all valuer of r, lending confidence to the 

general approach 

Figure 8 5 shows trajectories of systems with r = 0 2, but starting from 

different values foi the init ial f iaction of cooperation Since we asbumc all 

systems to have initially random configurations, the starting points in the 

phase space all lie on the giey parabola 8 15 Again, M F T and simulat ion 

agree qualitatively Both simulat ion and theory show a spiralling decay toward 

the final value for small values of f l However, a larger ampl i tude of Icd and 

a weaker dependence of Am on ICD are again observed The former actually 

has interesting consequcnces for = 0 1 and fl 二 0.3, the lower point of 

the simulation trajectory is below the value predicted by MFT by a margin 

of SlcD as indicated in Fig 8 5, but still significantly above ICD ~ 0 For 

— 0 7, however, this lower tuiiiiiig point has fallen so low that the simulation 

trajectory m fact hits the axis ICD ~ 0 This means the system entered the 

dibconnected, frozen btate The same ib the case for higher values of = 0 8, 
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ICD 
0.25 

Figure 8.4: Trajectories of ASG systems for different temptation parameters 

r (dark green: 0.9，orange: 0.7, dark red: 0.5, light blue: 0.3, light red: 0.1), 

shown for simulations (solid lines) and MFT (dashed lines). All systems start 

from an initial configuration with = 0.001 and k = 4. Simulated systems 

have N = 10000 nodes in total. 
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0.50 

0.25 

0.00 

Figure 8.5: Trajectories of ASG systems for temptation parameters r — 0.2 and 

different initial fractions of cooperators /】(light blue: 0.1，dark red: 0.5，dark 

green: 0.7，orange: 0.8, purple: 0.9), shown for simulations (solid lines) and 

MFT (dashed lines). The gray parabola gives the siibspace of randomly dis-

tributed cooperators. System parameters: A; = 4, (simulation: N — 10,000). 

and hence can be identified as the source of the discrepancy between theory 

and simulation in critical initial fraction of cooperation as observed in Fig. 8.2. 

8.4 Summary 

In this chapter, we have proposed and discussed the Dissatisfied-Adaptive 

Snowdrift Game and reviewed the evolutionary Snowdrift Game and social 

dilemmas in general. We have introduced the model and discussed the validity 

of its rules. Alongside, a mean-field theory was derived and compared with 
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computei bimulatiorib of the game model The mean-field model makcb veiy 

restrictive assumptions, such as that all nodes of one kind are expectcd to 

behave identically Still, it captures all key featureb of oui model but quantJ-

tative deviations are observed These deviations have to be addressed before 

we try to use the MFT to get a deeper understanding of our pioposed model 

161 



Chapter 9 

Adaptive Snowdrift Game 

Networks: Formulating Mean 

Field Theories 

9.1 Remaining Issues and Change of Variables 

A& shown in Sec 8 3, a strict mean-field approach is able to explain key 

features of the dissatisfied-adaptive Snowdrift Game The quantitative devi-

atioiib between MFT and simulation results indicate that some relevant parts 

of the behaviour of the model arc not yet captured In what follows, wc seek 

to improve the mean-field model To do so, we will re-denve the mean-field 

equations, with an explicit focus on when and in what maimer any potentially 

erroneous assumptions are made 

As a first step, we will transform our set of global variables into a new one 

which will allow to include fluctuations in a more concibe way We define the 
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new deiisiticb and vailables 

fc 

few) 二 LCD/N = 培 代 

Lcc 1 + mz — 
he = 

N 2 

(9 1) 

(9 2) 

I (9 3) 

The new CD-liiik density 培二 differs fiom the old one only in that it is 

normalised by the number of nodes rather than by the total number of links 

Foi the bake of bimplicity, w(、will m the following use the bynibol ICD = ^CN^^ 

exclubively with the ne^̂  definition of the CD-link densit}^ The mapping 

between the old and new bct of vanablcb ib an ibornoiphism, i e , at any time 

there exists an unique relation between exactly two points in the old variables' 

and new vaiiablcs' phase bpaccb 

To foimulate the mean field equations, we btait again from a point akin 

to Eq (8 13) Sincc we will not include any implicit assumptioiib here, wc do 

allow nodes to have varying degree and environment 

bJi 二 Y^ P ( ” E 对） E — E 巧e)AX(E,kt,X�D) 
T=CD K=0 XcD=0 财 E二 RS 

(9 4) 

As before, " p d is the fi action of nodes of type T In addition, wc now sum over 

all possible configurations a siriglr node can have i P , cvpry possible degree 

0 < K, < N — 1 and every possible number of CD—links 0 < A^D < To 

do so, we mrludc、the two conditional probabilities into the suiniiiatioii The 

probability V^^ of a node of type T to have degree /-c, and the probability 

V巧- for a node of type T with degiee kt to have Xcd CD-links Ab before, 

the fraction ATD/Ẑ T IS the likelihood of picking a dissatisfied link for the trial 

The changes in the macrobcopic quantitieb A X are defined as bcfoie 
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Neithci of the conditional piobabilities 宅、and V、^。、î , known Howevei, 

we do not actually need the exact probability distribution functions to derive 

a better medn-ficld thcoiy Since we sum over all possible combinations, the 

sums will only return the equally unknown expectation values Expressing the 

mean field equations m terms of these expectation values, we get 

AvYc 二（ 1 - / c ) 

^Lcd = fcV^c^ . 

XCD 
K 

-piS) 

{^CD)C - 2 

DJ 
CD 

D — f c 

、\ 

\CD 
V严 c (9 5) 

c 

CJ 
- ( ^ 

c 

+ ( 1 - fcYP^P ( - 3{Acd)D + 2 
A; 

+ 

ALcc = /c 增 ) 

/c(l — 
\2 
A广n 

C 

+ 
/ 

/AczpX 
\ /DJ 

- 〈 A ^ 〉 c ) + / M f ) 

令〉J 

(9 6) 

K C 

ALdd = fcV�cS� 

(1 - FC)VF {>^CD)D -

V \ « / 
Xjw \ 

\ ^ / c 

(1 - FCYP\? - 2{\CD)D + 
\ 

广 1\印\ \ 

(9 7) 

(9 8) 

K DJ 

A detailed deiivation of these equationb can be found in Appendix A By 

examining these equations, we sec that there are three kinds of cxpcctation 

values included in the equations 

1 The mean number of links per node, e g , {K) or {\XY) These averages 

all refer to the number of links a node on average has, and are also 

lefcired to ab the firbt moments 
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2 The mean fiaction of CD-lmkb {XCD/^) 

3 The mean squared number of CD-liiiks over the node dcgiec {\'CD/ 

We need to find a way to express these expectation values in terms of our 

global variables accurately to aiiive at a closed set of mean field equations 

The first 

to a certain 

variables 

moments, i c，the mean values of the number of links attached 

type of node can be expressed directly in terms of the global 

{^CD)D = 

⑷ c 二 

MD = 

IcD 
X 

ICD 
可 c 

+ hp 
^ T c 

k - 2lcc — IcD 

(9 9) 

(9 10) 

(9 11) 

(9 12) 

To close the system, further assumptions have to be made legaidmg the 

combined moments, so that we can express the expectation values of the frac-

tions and the second moments in terms of the global variables It is commonly 

assumed that the degree dibtnbutioii of agents if sufficiently iiaiiow, can bo 

taken to be a 知function [120] This means that every node of each type has the 

same degree As a consequence, the doiiominator of the tractions is a roustaiit 

that can be pulled outside the average For our case, we make the slightly less 

rehtrictive asfeumption that the aveiage over the fraction can be decoupled into 

a fraction of two averages 

IcD 
K 

1% 
K 

C/D 

C/D 

{ICD)C/D 

VCD)C/D 

⑷CAD 
(9 13) 
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Both the average of the degree as well as the average of the number of CD-

links can be expressed in terms of the global variables, and hence only the 

second moment of links (A^^), connected to either type of node, remains 

undefined. The sccond moment is related to the variance of a distribution as 

TJ' = —〈X〉2 ^ ( X ^ ) = { X Y + ， （9.14) 

which means we have to make an assumption regarding the variance of the 

CD—link distribution. 

Although finding the variance of a random variable requires significantly 

less information than the specification of its probability distribution, deducing 

just the variance from our set of rules would constitute a formidable prob-

lem. However, our previous attempt a.t a mean-field theory was already rather 

successful (see Sec. 8.3.3), even though we assumed that all nodes were iden-

tical, This means that wc assumed zero variance, and replaced the sccond 

moment just with a squared first moment, which wc are able to express in 

global variables: 

n ^ 

佑o)'r、三{lcD?o - • (9.15) 

We refer to this as the simple squared closure (SSC), since it just squares 

the first moments. Tho variance is positive definite, and this closure thus 

constitutes a lower boundary for the second moment. We know, however, that 

this assumption is wrong: even if no features intrinsic to the model spread 

out the distribution, the rewiring mechanism picks a random node as the new 

neighbour, which will inevitably lead to some variation in the node degree. 
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We hence have to find a difieient closure that mcorpoiateb fluctuatiorib 

One possible option is to adapt the mean-field closure of Gross et al [7] for the 

adaptive SIS network A detailed derivation and dibcubbion of this clobure can 

bo found in Appendix B (see m partic ulai Eqs (B 15)-(B 17)) This iiiothod 

was originally proposed by Keeling and Eames and we will hercaftei icfei to 

it as the Keelmg/Eanieb (KE) closure [82] The resulting relation between the 

overall sccond moment and the number of link is 

〈 A i 》 = 曾 + 每 = 脅 + 每 糊 

Thib incanb that in the KE closure, the mean and the variance of the dib-

tribution of 57-links per node are identical We can simply transfer this 

assumption by defining 

/\2 \{KE) _ 色D i^CD 
\^CD/C — t 

/x2 \(KE) ĈD I kw 
� � �D — ( T ^ + ( T ^ 

A third option is to use a clobure based on the binomial distribution The 

binomial distribution describes the numbei of successful outcomes of a iandom 

experiment with success probability p that is repeated n times The mean 

numb CI of buccesbful events ib> = np, and the variance is cr̂  = np — np^ If we 

look at a single node, we can consider its degree to be the number of repetitions 

n = K, Albo, if we abbume that the linkb are jubt randomly dibtiibuted, we can 

define the success probability as the number of CD-links over the number of 

total links connectcd to a node 

Vc = ~~—~~ 
IcD + 2/cC 

D IcD + 忍DD k — 2lcc - ICD ‘‘ ^ 
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The binomial distribution is only defined for an integer number of repetitions 

n. However, we can just apply the definitions of the mean and the standard 

deviation of the binomial distribution to the mean values of the degree and 

arrive at 

(MDYC-o�三 + ^cVc - ^cVl 

= ^ C D I IcD Igp /Q TQ-] 
— I F 17 — m c c + icd) l ) 

〈AL〉ir。）̂  +kdVD -帖Pi 
l%n + Inn I'^n 

(1 — f c f l - / c (1 — fc){K - 2lcc — ICD). 

It should be noted that neither of these closures takes the exact rules of the 

model in any way into account. In fact, the binomial closure basically assumes 

the fluctuations to be purely random and not assortative at all. This is most 

likely not the case. However, given that our previous models in fact denied 

the very existence of fluctuations, these new closurey should improve upon our 

previous results. In what follows, we will analyse the validity of each of our 

assumptions against simulations, and discuss which closure is best suited for 

a mean-field theory of the DASG model. 

9.2 Assumption Validation 

To close our set of mean field equation, we need to make two assump-

tions: the decoupling approximation Eq. (9.13), and an second-moment ap-

pioximation, Foi the latter, we can choose among the simple squared closure 

Eq. (9.15), the Keeling/Eames closure Eq. (9.17), or the binomial closure Eq. 

(9.18). Before we will test if and to what degree these assumptions can im-

prove our MFT results of Ch. 8, we will first test the validity of each of these 

assumptions directly against the simulation. 
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9.2.1 Decoupling Approximation 

The decoupling approximation consists actually of two approximations, 

since we require both the first and the second moment of CD—links to decouple 

from the I/K, factor, i.e., 

\ K / C/£> 

1% 

^ / C/D 

{ICD)C/D 

VCD)C/D 

{f^)c/D 

Each of the approximations has to be valid for both C- and D-nodes. An 

additional problem is that the original average is an average over a 

fraction. As our original results showed us, it is possible for a node to become 

isolated and have zero degree, in which case the fraction 0/0 is undefined. To 

resolve this, we have to slightly alter the definition of the average. If a player 

without any neighbours is chosen for trial, he will not find an opponent and 

hence no change will occur. Consequently, we will count all nodes without 

neighbours by defining = 0 Acd//^ 三入?7£>/代：0. 

Figure 9.1(A) shows the time evolution of the mean second moment per 

degree. The values show a qualitatively very similar behavior, but the de-

coupling approximation slightly exceeds the real simulation average. This is 

further exemplified in Fig. 9.1(C), which shows the same data by plotting the 

simulation averages on the x-axis against the approximation results on the y-

axis. If the decoupling approximation was 100% accurate, the curves of both 

types of nodes would collapse onto the dotted y — x line. However, this is the 

case only for D—nodes (blue line), and for C-nodes during the early stages 

of the simulation (red line). In the long time limit, the trajectory of the C-

node approximation is slightly above the equivalency line, showing that our 

assumption is not fully valid here. 
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Figure 9.1: Test of the decoupling approximation for the second moment. (A) 

(XCD/‘^) as measured in the simulation (red) and as given by the decoupling 

(blue), shown for C—nodes over time. Parameters: A: 4’ r 二 0.8, 

started from a random graph with f l = 0.5. (B)-(D)： Plot of the decoupled 

average versus the actual average (XCD/I^), with the dotted diagonal 

indicating perfect agreement between simulation and assumption. Parameters: 

(B) fc = 4, r = 0.2; (C) A; = 4, r = 0.8; (D) A: = 10, r = 0.8. All panels are 

normalised by the system's respective mean degree k. Results for C-nodes(D-

nodes) are shown in red (blue). All simulations use networks with N = 10,000 

nodes. 
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9 . 2 . ASSUMPTION VALIDATION 

Figure 9.1(D) shows an identical setup, but for a network with a mean 

degree of A; = 10. While the data qualitatively resembles that in Fig. 9.1(C), 

the deviations are less pronounced here. The reason for this is related to the 

problem of zero-degree nodes, since it is less likely to occur in a network with 

higher connectivity. The opposite issue is illustrated in Fig. 9.1(B), where the 

same relationship is shown for a system with A; = 4 and r 二 0.2. In this 

regime, D-nodes have very few neighbours and are comparably often isolated. 

Accordingly, the decoupling assumption fully breaks down here. The decoupled 

mean〈AID〉D/WD is not only not identical but also not even correlated to 

the simulation mean However, this does not necessarily make our 

assumption less useful. In this regime, few Z)-nodes exist, and even, fewer will 

have dissatisfied links connecting them to other D-nodes. Hence, the overall 

impact of this very large deviation will be limited. 

Figure 9.2 illustrates the approximation for the first moment in the same 

manner. Fig. 9.2(A) again shows the time evolution, with the evolution of 

the approximation here being virtually identical to that of the real average. 

Accordingly, the trajectories both collapse onto the diagonal in Figs. 9.2(C) 

and (D). This means that the decoupling approximation is much more accurate 

when applied to the first moment. The problematic case of a system with 

many isolated nodes is again shown in Fig. 9.2(B). Indeed, the decoupling 

approximation breaks down again for this case, and is not valid for the first 

moments of D-nodes for small r either. However, the relevance of D-nodes 

to the system's evolution in this case is again limited, and we will have to 

investigate further to see whether or not this large deviation has any impact 

on the mean-field theory's results. 
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m 

B 

(•̂ cp) n K 

Figure 9.2: Test of the decoupling approximation for the first moment. (A): 

{XCD/I^) as measured in the simulation (red) and as given by the decoupling 

(blue), shown for C—nodes over time. Parameters: k 二 r = 0.8, 

started from a random graph with /】=0.5. (B)-(D): Plot of the decoupled 

average {XCD)/(/«) versus the actual average {XCD/I^}, with the dotted diagonal 

indicating perfect agreement between simulation and assumption. Parameters; 

(B) A; = 4’ r = 0.2; (C) A; = 4, r - 0.8; (D) A; = 10’ r = 0.8. Results for C-

nodes(D-nodes) are shown in red (blue). All simulations use networks with 

N = 10000 nodes. 
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9.2.2 Closure Approximation 

The merit of the different moment closures are more difficult to evaluate. 

Generally, the second moment can vary substantially during a simulation run, 

and there is no a-priori estimate regarding which part of the dynamics is most 

relevant to the overall evolution. Therefore, we will for now only discuss the 

qualitative behaviour of the different closures, before moving on to a more 

rigorous overall comparison in Sec. 9.2.3. 

Figure 9.3 shows the initial evolution of the second moment in several 

simulated systems, together with the second moment, calculated using differ-

ent closure methods. As it was expected from the definition of the moment 

closures, we generally find〈A&〉Ef 五）>〈A^〉『卯）>〈入^〉^。for any con-

figuration. Furthermore, we find > i.e.，all closures still 

underestimate the variance of the CDAmk distribution. Quantitatively, the 

results differ in inconsistent ways, e.g., for distributions with a higher degree 

k — 10 and low r = 0.2, as shown in Fig. 9.3(B), the binomial distribution and 

the Keeling/Eames closure are nearly identical. On the contrary, for systems 

with small A: = 4 and high r = 0.8, the binomial distribution is very close to 

the simple squared closure, as shown in Fig. 9.3(D). 

Figure 9.4 shows the same data for the second moments connected to D-

nodes(A^^)D. The observed features are generally very similar to those ob-

served at C-nodes. We again find {XIDY^^ > {MDY^。、> i^^wYf��- Also, 

the binomial closure will, depending on the simulated system, be sometimes 

close to either the simple squared closure (Fig. 9.4(B)) or the Keeling/Eames 

closure (Fig. 9.4(D)). However, there are some important differences. For all 

panels, we can see that within a very small range, the KE closure exceeds the 

observed second moment. Such an error is positively correlated with the error 
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Figure 9.3: Second moment of CLMinks connected to C-nodes (A^^)c as taken 

from simulations (blue circles), compared with different moment closure ap-

proximations: simple squared closure (purple lines), binomial closure (orange 

lines), Keel ing/Eames closure (dark blue lines). The underlying first moment 

of CD-links {\CD)C is shown for comparison using green triangular symbols. 

Parameters used for each panel: (A) r 二 0.2, /】=0.01, fc — 4; (B) r = 0.2, 

fl = 0.5, k 二 10; (C) r - 0.5, fl = 0.01, A: - 4; (D) r = 0.8，/】=0.5，k = 4. 

observed for the decoupling approximation of the second moment. We will 

therefore need to investigate the combined error of decoupling and moment 

closure approximation. 
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Figure 9.4: Second moment of Ci?-links connected to D-nodes (A^^)D as taken 

from simulations (blue circles), compared with different moment closure ap-

proximations: simple squared closure (purple lines), binomial closure (orange 

lines), Keeling/Eames closure (dark blue lines). The underlying first moment 

of CD-links {XCD)C is shown for comparison using green triangular symbols. 

Parameters used for each panel: (A) r = 0.2, fl = 0.01, k 二 4; (B) r = 0.2, 

fl = 0.5, k = 10; (C) T = 0.5 = 0.01, A: = 4; (D) r 二 0.8, f^ = 0.5, k = 4. 
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9.2.3 Overall Assumption Accuracy 

In the last two sections, we discussed the validities of the two assumptions 

we need to make in order to close the mean-field equations. During the dis-

cussion, we found that the decoupling approximation for the second moment 

in general, the decoupling approximation in case of isolated nodes, and the 

closure of the second moment are problematic areas. However, it is hard to 

judge the impact of these problems on the mean-field theory. To proceed, it is 

useful to consider the quantity 

A=〈令〉—〈Act^〉. (9.19) 

We can calculate this quantity directly from simulation data, or we can instead 

calculate the macroscopic variables of a simulation state, and calculate A from 

these variables using our decoupling and moment closure approximation. The 

interesting point about this quantity is that we can make some a-priori as-

sumptions about it. For example, we expect it to be negative definite, because 

� �- X c D � < 
K 

^ A < 0 

In addition, we can expect 

(9.20) 

lim A = 0 

lim A = 0 . (9.21) 

This means that for nodes that have zero CD—links, both terms in the def-

inition of A vanish. On the other hand, the two terms become equal to K 

and cancel each other if a node only has neighbours of the other type. These 
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conclusions are important in that they describe situations that indeed occur in 

our network near the disconnected-connected transition. For low r, D-nodes 

become isolated, however, they cut links among themselves first so that the 

surviving links are nearly exclusively of CD-type. In contrast, (7-nodes asso-

ciate with each other and seek to expel Z)-nodes, resulting in a configuration 

with nearly no Ci^-links at all. 

It also should be noted that A occurs in the mean-field equations. For 

example, in Eq. (9.7) for the number of CC-links, A represents the expected 

change for a C ^ D-switch, and —A the expected change for a D ^ C-switch. 

Also, 

lim W-3 (ACD ) + 2 / ^ \ = 2A, 
Acd/K—I \ K / 

which is a term that represents the expected change of CZ>-lmks for a D ^ C-

switch. Therefore, errors in A, particularly if they violate the conditions in Eqs. 

(9.20) and (9.21), can have a direct impact on the accuracy of the equations 

of motion. 

Figure 9.5 shows A, calculated for both C- and _D-nodes. The data has been 

taken directly from simulation, and calculated from the macroscopic variables 

using the decoupling and different closure approximations. It is plotted versus 

the mean success probability to pick a neighbour of opposite kind P(。PP)= 

^CD/I^- For plotting the real simulation averages, ；P(OPP) was calculated as a 

simulation mean as well ?(。卯)二、\cdIf^、- This average cannot be calculated 

from the macroscopic variables, and it was therefore calculated as ”(卿）= 

for all of the approximative curves. 

All panels in Fig. 9.5 show that the simulation average and the previously 

used simple squared closure fulfil both requirements, they are negative definite 

and vanish on the intervals boundaries. However, the simple squared closure 
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0.6 0.8 
-pCopp) 

Figure 9.5: Control quantity A, plotted against the probability P(OPP) for 

different systems. All panels show A taken directly from simulations (cir-

cles) compared with the results of the KE closure (dark blue line), sim-

ple squared closure (purple line) and binomial closure (orange line). The 

probability to pick a CD—link was calculated directly in the ensemble as 

<p(opp) = (ACD/k) for the simulation average, or through the decoupling ap-

proximation as P(。PP) = { \ C D ) / f o r all approximative closures. System pa-

rameters: (A) D-nodes，r = 0.1; (B) £)-nodes, r = 0.5; (C) C-nodes, r = 0.1; 

(D) C-nodes, r = 0.5. All systems: k = fi = 0.01, N - 10000. 
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significantly underestimates the variance of the CD-link distribution. There 

are thus equally significant deviations in the resulting A. Meanwhile, the 

binomial distribution also fulfils the requirements Eqs. (9.20) and (9.21), but 

shows a much better agreement with the simulation average. Deviations are 

only visible in Fig. 9.5(B). The observed differences are actually mostly caused 

by a deviation in the probability to pick a CD-link 尸(卿).For jD-nodes in the 

low r-regime, this kind of deviation was already demonstrated in Fig. 9.2(B). 

The KE closure meanwhile shows very strong deviations for D-nodes, and 

in the small r-regime does not even fulfil the negativity requirement anymore. 

As we mentioned before, A represents the change in the macroscopic quantities 

for certain events. The here observed deviation in the KE closure means that, 

for a network with no DD-links at all, a switching D-node is expected to turn 

nonexistent DD- into CD-links. Indeed, if one tries to apply the 丑-closure 

to the mean-field equations, the resulting trajectories will often be unphysical, 

e.g., featuring negative or infinite link densities. Using the binomial closure, we 

can repeat previous calculations and check whether the accuracy of the mean-

field calculations has been improved. Figure 9.6 shows the long-time limits of 

the fraction of cooperation for the same set of simulations as Fig. 8.2. We use 

the new variable f ^ instead of the system magnetisation m, however, this just 

means that the vertical axis has been linearly rescaled. The previous results, 

which were in effect obtained using a SSC closure, are indicated by black dashed 

lines. The improvement over the SSC closure is clearly visible. In particular, 

simulation and MFT are now in perfect agreement for the disconnected state 

in the low r-regime, which previously showed the most significant deviations. 

In contrast, deviations are still visible for the connected state. 

179 



C H A P T E R 9 . A S G NETWORKS： F O R M U L A T I N G M E A N F I E L D T H E O R I E S 

Moo) 

0.2 

Figure 9.6: Long time limits of the fraction of cooperation. Symbols refer to 

simulation data and solid lines to MFT results obtained using the binomial 

closure. Dashed lines give MFT results using the SSC closure, equivalent to 

the previous strict mean-field approach that neglected fluctuations (see Sec. 

8.3). System parameters: f l = 0.9 (triangles, dark red); f l = 0.7 (circles, 

blue)； /J 二 0,1 (squares, light red). 
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9.3 Fixed-Point Analysis 

From the model definition, it directly follows that the model enters a frozen 

state if there aie only CC-links left, iirespective of the nunibei of C- or D-

nodcs or the value of r. Within our phase space, this corresponds to an entire 

line consisting of fixed points, defined as Icc = A:/2 (and therefore ICD = 0). 

These fixed points arc sticky since once readied, no random fluctuations can 

change the system's configuiation anymoie. Tliey coiiespond to the discon-

nected states of the network discussed before. 

While our MFT strictly speaking does not include this ease, the MFT equa-

tions can be continuously closed by defining Afc{lcc = k/2) = AJcci^cc = 

k/2) = AICD(JCC = k/2) = 0. If r is low enough, it was found that systems 

staiting fiom a random configuration typically end in such a frozen state Foi 

larger values of 0.15 < r < 0.4，the system could end in a frozen state if its 

initial fraction of cooperators was high enough [9]. Apart from this fixed point 

axis, setting Eqs. (9 5)-(9.7) to zero results in one other solution for every value 

0 < r < 1. For large values of r, this can be identified with the long time limit 

of tiajectories previously shown, hence this solution repieseiits the connected 

state of the network. However, for small values of r, a disconnected-connccted 

tiaiisitioii was observed, depending on the initial state of the network. In par-

ticular. for values r < 0.15, only disconnected final states were observed, while 

the MFT equations still prcdict a fixed point with finite positive values of ICD 

and IDD. 

To further investigate this issue, we need to analyse the stability of the 

isolated fixed point. First, it should be stiessed that a single solution^ is 

^There exists only one isolated fixed point inside the accessible phase space. Tf the M F T 

equations are set to zero, otiier solutions are found which do not constitute fixed points since 

they are outside the accessible phase space 
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found for any value of 0 < r < 1 We show the /c-coordinate of thib solution, 

together with the /。-value of the long time limit, m Fig 9 7(A) For large 

values of r, both valueb are identical For binall values of r, the long time 

limits branch off as the systems reach the disconnected state (dotted line) 

The MFT equations, however, pi edict another fixed point whose fraction of 

cooperation decreases with decreasing r 

The stabilit}' of a fixed point can be analysed by calculating the Jacobiaii 

matrix of the equations of motion at the fixed point If the real parts of all 

its eigenvalues are negative then small fluctuations away from the fixed point 

will be driven towards the fixed point again, and the fixed point will be stable 

against small distuibances 

Figuie 9 7 bhows the negated real parts of the eigenvalues —於(?7i) of the 

Jacobian matrix of the single fixed point, for clarity shown on a log scale As 

expccted, for large values of r all eigenvalues are clear ly negative, indicating 

a stable fixed point Strictly speaking, this holds true even for small values of 

r, as all eigenvalueb lemain negative Howevei, while one eigenvector becomes 

more and more attractive, with its eigenvalue diverging to lim^^o 况(Ai) = —oo, 

the other eigenvectors becomc less and less attiactive, with their eigenvalues 

converging against zero Hence, unlike previously observed in other models 

[94，95], our system does not undeigo any bifurcations Rather, a gradually 

shrinking basin of attraction of the stable fixed point reduces the Dumber 

of configurations that can be diawn towards it At the same time, random 

fluctuations can cause systems within the basin of attiartioii of the stable 

fixed point to leave this basin and end in a sticky fixed point Such effects 

significantly reduce the lifetime of the stable fixed point 

To test the existence of the single fixed point foi hmall valueb of r, we lun 

Monte Carlo (MC) simulations that sweep r from r = 1 —̂  0 Starting from r = 
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1, we run 10^ MC steps and record the mean, the standard deviation and the 

maximal and minimal values of the global variables. Afterwards, r is decreased 

by 0.005, and the system is allowed to equilibrate for MC steps before 

the same cycle is repeated. Figure 9.8 shows the simulation results. Figure 

9.8(A) shows the time-average of f^. The minimal/maximal values during the 

simulation run are indicated by the error bars. While the deviations between 

theory and simulation exceed the fluctuations observed in the simulation, the 

simulation nonetheless confirms the existence of the stable fixed point down 

to r — 0.05. In particular, the predicted decrease in f � f o r lower r is also 

confirmed. This means that, if the temptation is allowed to vary during a 

system's evolution, reduced temptation can actually result in decreased co-

operation. This non-monotonous reaction is very surprising, since it shows 

that even if every agent acts in a very rational manner, the overall response of 

a system as a whole can be irrational nonetheless. 

For values below r — 0.05, the system's fluctuations can make it enter 

a frozen state, and therefore oblivious to changes in r. Although MFT still 

predicts a stable fixed point, this fixed point is now short-lived. For one, 

the fluctuations of the system increase, as shown in Fig. 9.8(C). This agrees 

with the MFT prediction that all but one eigenvalue of the system's Jacobian 

vanish, allowing for larger fluctuations. At the same time, the predicted stable 

CC-link density approaches the sticky axis, making it possible for fluctuations 

to reach a frozen state (see Fig. 9.8(B)). 
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• 

Moo) 

10 

Figure 9.7: (A): /。-values of the single fixed point and of the disconnected 

branch of the long time limit of trajectories starting at f l — 0.5 (dashed). (B): 

negative real part of the eigenvalues — of the Jacobian of the single fixed 

point. The strongly attractive eigenvalue T/I is plotted as a solid red line. The 

real parts of the two weakly attractive complex eigenvalues are identical and 

plotted as the blue line. 
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Figure 9.8: Simulation results obtained by tracing r —)• 0. (A):/^ , with error 

bars indicating upper and lower bounds. (B): Icc (circles) and ICD (triangles). 

(C): standard deviation, of /cc(circles) and IQD(triangles). The standard de-

viation increases in accordance with 况("2/3) — a s shown in Fig. 9.7. All 

figures: simulation results as symbols, MFT results as lines. 
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9.4 Mean Degree Dependence 

So far, all results referred to a model s3,stem consisting of N = 10000 agents 

having on average k = 4 neighbours. The number of nodes in total should not 

significantly influence the system's dynamics, since all occurring events have 

only a local impact, i.e., within a single node's neighbourhood. Still, the 

system's sensitivity to random fluctuations might require a certain minimal 

network size. On the contrary, the connectivity, i.e., the number of neighbours 

an agent typically has, can alter the model's dynamics. However, unlike the 

case of the aforementioned epidemic models, the effects of connectivity on 

cooperation are less obvious to predict. 

Figure 9.9 shows the long time limit of the fraction of cooperation for 

three systems with different connectivity, starting from k = 2 (which means 

disconnected fragments unless all agents form a perfect ring) to k — 100. 

Simulation results are shown as symbols. Open symbols give the /。if the 

system does not start from a random network, but instead starts from the 

previous system's final state with r being incrementally decreased (see Sec.9.3). 

MFT results are shown, as lines, with solid lines showing the long time limit 

for systems starting at f l = 0.5 and the dashed lines showing the /c-value of 

the isolated fixed point, if different. 

All three systems show a qualitatively similar behaviour. Starting from 

r = 1, reducing temptation leads to increased cooperation. However, after 

a certain value of Vmax : drf^{rmax) = 0, cooperation starts to shrink. If 

the system originally starts from a random network, a disconnected-connected 

transition will occur at some value of r < 7 ~觀工,The fraction of cooperation in 

these disconnected systems then again increases with decreasing temptation r. 

However, there are significant quantitative differences between the different 
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systems. Overall, a higher connectivity generally increases the fraction of 

cooperation. It also pushes the onset of the disconnected-connected transition 

to lower values^ of r. 

Another notable point is that the deviations between MFT and simula-

tions also show a clear dependency on the mean degree of the network. While 

deviations are most notable for connected networks with a low mean degree, 

deviations are barely noticeable in the case oi k — 100. The reason for this 

is twofold. For one, in the case of a low mean degree, many isolated D-nodes 

exist which, if chosen for trial, will not contribute to the system's dynamics. 

This issue occurs only for D-nodes since C-nodes, unless initially disconnected, 

never lose a neighbour. It is not yet adequately addressed by our decoupling 

approximation (Eq.(9.13)). For another, deviations can arise since even the 

improved moment closure does not yet exactly agree with the degree distri-

bution observed in simulations. However, the relative importance of these 

deviations diminishes for systems with higher connectivity. 

2Given the larger f ^ of disconnected systems, this can actually lead to (disconnected) 

systems of lower k to have a higher f � t h a n connected systems of higher k at the same 

value of r. 
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/ c ( o o ) 

Figure 9.9; Long time limits for fc for various degrees of connectivity: k = 100 

(red triangles), k — 10 (purple circles) and k = 2 (blue squares). Solid symbols 

refer to systems starting from a random network with /】—0.5, while open 

symbols refer to systems obtained by tracing r. Solid lines give the MFT long 

time limits for such systems. Dashed lines show the isolated fixed point, if 

different from the long time limit. 
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9.5 Conclusion and Outlook 

A new mean-field cloburc for the dissatisfied-adaptive Snowdrift Game was 

introduced The assumptions required to close the mean-field theoiy were dis-

cussed in detail and compared to assumptions niado in previous and Lonipa-

lable models Wc introduced the cnteiia limp(opp)_̂ o A = hmp(opp)—]_ A = 0 and 

八 < 0 t h a t h a v e t o b e f u l f i l l e d f o r a c l o s u r e To b e v a l i d a n d s h o w e d w l i 》 p i p -

viously successful closures violate these criteria m the case of the dissatisfied 

adaptive Siiowdiift Game Using our mean-field riosuic、we showed that two 

stable fixed points exist for any value of the temptation parameter r, corre-

sponding to a connectcd and a disconnected state, respectively The conncctcd 

state in the small-r limit showb a counter-mtuitive behaviour, as a decrease 

in the temptation parametci r leads to a decrease in the fiaction of coopera-

tion We performed computer simulationb to trace this previously undetected 

fatate, and applied a fixed-point stability analyhis to show why fluctuations can 

turn the connected state into a disconnected state for very small r Finally, 

we showed that the DASG-moderb emeigcnce of coopeiation is strongly de-

pendant on the mean degree k, but that qualitatively the atypical behaviour 

linv—o /c(⑴）—0 occurs foi all values of k in both MFT and simulation Fur-

thermore, it IS shown that the mam eiior m our MFT assumptions diiiniiishes 

for systems with large degree k 

We believe that the contribution of this work is twofold For one，wc 

show how (ollective dynamics can (、veii if every single agent arts piiiely ra-

tional, lead to a very irrational reaction of the system namely a suppression 

of cooperation if the temptation i8 gradually leduccd For anothei wc believe 

that our introduced criteria will allow to derive mean-field theories for other 

co-evolvmg modelb Given that fixed-point and stability analybCfa can point 
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towards non-obvious and possible overlooked dynamical features, we expect 

that additional insight could be gained from a variety of social, economical or 

biological adaptive models. 

Of course, as it is usually the case with works in the field of complex sys-

tems, the question whether or not our system is an appropriate model for 

the emergence of cooperation between humans remains unclear. Experimen-

tal studies could shed light on this question, but such an investigation would 

exceed the scope of this thesis. We nevertheless hope to perform such studies 

in the near future. However, two problems arise that have to be handled very 

carefully for any comparison to be worthwhile. First, pre-existing relation-

ships between participants have to be controlled for, which will require very 

careful anonymising of the interaction between participants. Second, human 

intelligence might make participants exploit scenarios that were unaccessible 

to our agents. For example, since every interaction offers a positive payoff, a 

human player might just try to maximise his number of connections. He or 

she might disregard any sense of fairness, which would exist in a real-world 

competitive scenario. Second, experimental social setups arc often not treated 

seriousl}^ by participants, and therefore their utility function might not be lin-

ear. This means that a player might not try to maximise its payoff, but maybe 

rather employ a all-or-nothing strategy - again something unlikely in real life^ . 

Therefore, offering participants a reasonable scenario might be the paramount 

problem in the setup of a,ii experimental realisation.. 

^Among friends of the author of this thesis, who a.ll are a.vid board game players, such 

behaviour is commonly called the Frank effect^ after one particular player who starts to act 

erratic once he finds out he will not win this round. 

190 



Appendix A 

Node-Level Derivation of the 

Snowdrift Game's Mean-Field 

Theory 

In this appendix, wc will derive the equations of motion foi the global 

variables of the dissatisfied-adaptive Snowdrift Game model from node level 

These foim the basis of the mean-field theories derived m Ch 9 We start with 

the rules of the inodol foi a single trial 

1 A single random node ib picked as the player 

2 Among its neighbours, if any, one is randomly selected as its opponent 

3 The nodes play one round of the Snowdrift Game The game ends here 

if the opponent is cooperative and the player is thus satisfied 

4 If the opponent wab a D-node and the player ib now dibbatibfiod, it will 

randomly but with pre-defined probabilities choose cxactlv one of the 

two possible leactioiib 
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(a) Break the link to itb opponent and lewiie to anothei, randomly 

chosen node 

(b) Switch its own character, from C ^ D OT vice versa, 

If wc knew the detailed configuration of the system, we could write the 

expected change in a macroscopic variable as a sum over all possible trials 

times their probability and outcome 

V � t � Y A � E 欢"“、X TfD) p f )AX(T’£ : ,〜A⑶） 
T=C D K=1 ACD=0 E=R S 

( A l ) 

(X) 

As before Vy lefeis to the conditional probability of event X to happen 

under condition Y These probabilities are in detail 

1 V�T=c D) to pick a C- or D-node as the player i e , trial step 1 These 

probabilities are just the density of C- and £)-nodes and can be expressed 

as V{C) = Nc/N V例-Nd/N 

2 V、f that this T-node has At neighbouis m total 

3 V洽:D�, that a node of type T with dcgiee k has Xcd neighbouis of the 

opposite type 

4 V^XcD‘ that, among its neighbours a D-node is picked as the opponent 

(trial steps 2&3) This probability is given through P 忍 ⑶ = 0 for nodes 

with degree zero, V^XCD ~ 入⑶/代 for C-nodos with > 0, and V器⑶ ~ 

1 — Xco/f^ foi D- nodes with > 0 

5 Vjp~ that a dissatisfied node of type T carrics out action E’ which 

can be rewiimg oi switching (trial btep 4) 
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AX(T, E, K, XCD) ite the resulting change in the global variable X G {N。, 

Lcc, L(JD}, caused by event E at a node of type T with K neighbours and \CD 

neighbours of oppobitc type 

Equation (A 1) is an exact desciiption of the cxpectcd evolution of these 

variables However ever}, trial ends in one discrete outcome which is not 

iiecebbanly close, let alone equal to the expected change Such fluctuations 

ran causc deviations between theoiy and simulations, even when no additional 

afefeumptions aie made 1 

Consider first the change m the global variables that a feingle event causcs 

Foui kinds of playei-opponent roinbiiidtions can bo chosen foi a tiial C —> C, 

C —> D, D C and D D For a purely dissatisfied-adaptive game, only 

difefeatibficd combinationb, i e , combmationfe with a D-opponeiit, will caube a 

reaction 

Generally, the results of a rewirmg-cvent are simpler than thobe of a bwitchiiig-

event No node chdngeb itb btatub hcnce 

ANCIC, R, K, XCD) = R, A C D ) = 0 ( A 2) 

However rcwiriiig will cut one CD-link (or DIMiiik) , respectively A new 

roiinect】on is established to a randomly chosen node whose statufe, at time of 

rewirmg, is unknown Hence, whether a link of the same type or a CC-link 

(CD-link) IS established depends only on the likelihood of choosing a C-nodo 

as the new neighbour 

ALCCIC. R A；, XCD) = 1 / c + 0 (1 - A ) = / c 

ALCC{D,R,K,XCD) = 0 / e + 0 ( 1 - / c ^ = 0 

ALCD(C, R,K,XCD) = - 1 / c + 0 (1 - / c ) = ~FA 

A L c d { D , R , k , X c d ) = 1 /c + 0 (1 - fc) = fc (A3 ) 
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It is important to note that this is only the expected change of the macroscopic 

quantity, the real change of course will never be a fraction but instead either 

zero or one. 

For switching events, the outcome is in general more complicated. It de-

pends on the player's status and neighbourhood, but not on the network's 

global configuration. The changes to the number of cooperative nodes are 

trivial: 

ANCIC, S, AC, XCD) 二 -ANC{D, S,�A⑶）=—1 . (A.4) 

The changes to the number of links are more complicated as they depend on 

the player's degree K and its number of CD-links 

ALCCIC, S, K, XCD) — ~XCC = — + XCD 

ALCC{D, \CD) = \CD 

S, K, X C D ) = \JC — XCD = K - 2XCD 

ALCNID.S^K, X C D ) 二 >^DD - >^CD = ac - 2XCD • ( A . 5 ) 

Having found all these changes, we can go one step back and ask what the 

expectcd change is if we already chose one node as the player. Such a node can 

be of C- or D-type. will have a degree and a number of CD-links XCD < 

The conditional probabilities to choose a dissatisfied link now is 

vT)(〜入cn)= 

^ K > 0 
K 
0 K = 0 

K> 0 
(A.6) 

0 = 0 

Having to treat the case ^ = 0 separately is a cumbersome technicality. 

Nonetheless, the averaging process over those terms are among the causes 
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of some of the obbeived deviationb between MFT and simulatiorib In the fol-

lowing, wc will mostly omit the special treatment and assume k > 0 We will 

dihcuss this assumptjon fepeufically m thohe cabeb where it affects the validity 

of the MFT 

If a dissatisfied link is chosen the probabilities Pg) V^J^ v]^ and V、f 

determine which event will occur Hence, the expccted changes when choosing 

a node of a certain type for tiial become 

ACD) 

XcD) 

Xr 
-n (S) 

K, c 

A CD V ( S ) 

D 

K 

V ^ 

ALCC{D,k,Xcd): 

V^f + fc � f 

\ 

>iS) 
D 

ALcDiC,^,, XCD) = ¥ {(t^ — 2XcD�Tis�— hVif) 

ALCDIDK, XCD)= 

A ⑶ - 2 ^ ) 增 ) - h v � c均 
K J KJ 

1 〜 督 - 2 A ⑶ ) + / 对 ) ) 
K 

= U - 3 A ⑶ + 2 
A; 

K 
(A 7) 

At last, we have to mcludr the sums over the probabilities to choosc a node 

of a certain type and configuration as the player Generally, we will treat nodes 

of opposite typo explicitly,! e we will cany out the sum ovci VT The oth(、i 

two probability distributions, V貨、and remain unknown However, it 

ih impoitant to notice that we do not need the exact distributions at all bincc, 

by summing over all nodes, they will results m the expectation values of the 

termb m Eqb (A 7) Hence, we can write the final bet of equations for the 
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global variables ab 

K DJ 
‘ \ 2 
Ar-: 

P j f ) - /c ATVc 二 （ 1 - / J ( 1 -

^ L c d = / c P 外 A ⑶〉c-2 

\ \ 〜 / c / 

十（1 — fc)vf ({K)n — 3〈A⑶〉z； + 2 

XCD 
c 

嫩 〈 字 

\ 2 \ \ 
\ \ 

C 

K D' 

+ 

ALcc = fcV『 

M l - /c)时) 

A^n 

1 -

+ (1- / c )对 D/D 

/ A C D \ 

\ ^ / D/ 

〈A ⑶〉c) + / ， ， 
XCD 

K C 

fx, 
(A.8) 

These equations are still exact However, it should be noted that tho avei-

aging process for the expectation values now has to take the eases with K = 0 

into account When taking averages, zeio-over-zeio-fractions have to be evalu-

ated according to Eq. (A.6), i e . typically as zero To be usable, this system of 

equations needb to be closed using some approximation schome for the fractions 

and the second moment, as discussed in Chs. 8-9. 
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Appendix B 

Mean-Field Theory Derivation 

for the Adaptive SIS Model 

Using Link Triplets 

Gioss et al originally defined the rules of the adaptive SIS model m Ref [7] 

To describe the state of the model, they used throe macrosc opic variables The 

number of infccted nodes Nj, the number of links between two busceptibk 

nodes Lss, and of links between two infer ted nodes Lj j As the total iminbei 

of nodes N, the mean degree k and thus the total number of links Ltot = Nk/2 

IS kept constant, the number of susceptible nodes Ns = N — Nj and of links 

between a susceptible and an infccted node Lsi = Ltot — Lss — Lj j can both 

be calculated directly from these variables 

The configuration of the bybtem can change thiough thice difieient eventb 

E e {SP, R, RW} 

1 A susccptible node can contract the disease from one of its infected neigh-

bours with I ate T {E = SP) 
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2 An infcctcd node can recover fiom the diseabc with rate r {E = R) 

3 A healthy node can cut a link to an infected neighbour with rate u) and 

establish a new connection to a randomly chosen susceptible node which 

IS not yet among its neighbours {E = HW) 

The fiequency of all three eventb is given m terms of rateb During the 

discrete time btcp 6t of a simulation these rates turn into probabilities, e g , 

V{R) — r X 6t Foi convenience sake, wc will expiess the time in units of St, 

which means that rates and probabilities have the bame numerical value It is 

importdiit, though, to understand that the rates are defined foi a continuous 

time model In continuous time two events never occur at the same instant 

In discrete time, they may occur within the same time step The rate at 

which a susceptible node with thiee infectod neighbours coiitiarts the disease 

IS equivalent to 3r The probability for the same node to contract the disease 

during a simulation step, however is 3T — + r^ We therefore have to 

choose the time step short enough such that the rates, expressed in this time 

unit, aie bmall enough to make eventb of higher order negligible 

Tlie easiest event to dcbcribe in a medn-field model is the rewiimg event 

E = RW With probability to, every S7-link will turn into an S'5'-link On 

avciage this means 

ALCC{RW) =UJXLSI ( B 1) 

Neither the number of infected nodes nor the number of //-links are affccted 

in such an event 

The recoveiy event E = R occurs at every infected node with the same 

probability The change in the number of infected nodes is thus 

ANriR) = - r x Ni (B 2) 

198 



An //-link will turn into an iS/-link if either of the nodes at its ends recovers. 

Similarly, an 57-link turns into an 5'S'-link if its /-node recovers. The change 

in the link numbers is thus 

A L i i ( R ) = — 2 r X L u 

^Lss{R) = r x L s i . (B.3) 

As discussed before, events of higher order are ignored, i.e., we do not include 

a transition of an //-into an S'5'-link when both nodes recover. 

The infection spreading process E 二 SP is more complicated. Generally, 

every 5/-link can infect its S'-node with probability r: 

ANi(SP) = TX Lsi . (B.4) 

The impact on the links is less easy to determine. Obviously, the links that 

spread the infection turn from SI- into //-links: 

A ,Ln{SP) = t x L s i . (B.5) 

But the spreading infection also affects all other links connected to the node 

that became infected. We can describe these effect using triplets. Fig. B.l 

shows such a scenario. In Fig. B.l (A), the disease will spread from the lower 

node to the centre node. It will turn all other 5/-links connected to this node 

into //-links. These links together form triplets / —)- 5" — / . Every 57-link 

that spreads the infection will hence create another //-link for every triplet 

that it is part of. Figure B.l(B) sums up the effects of this process, illustrating 

the three existing 5T-links and the resulting six /S'/-triplets. Triplets are 

counted in an oriented way, hence every triplet is counted in two directions. 

The resulting change is 

A ^ L n i S P ) = r X h s i . ( B . 6 ) 
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5/-link 

^^-link 
selected 57-link 

corr. /^/-triplet 

Lsi 3 

Lss 1 

Lisi 6 

Figure B.l: /^/-triplets and their effects 

over a single 57-link and the associated 

associated /^/-triplets. 

in infection spreading. (A) Spread 

/S7-triplets. (B) All 57-links and 

57-link 

55-link 

selected 5/-link 

corr. /55-triplet 

LSI 2 

LSI 2 

Liss 4 

Figure B.2: /5'5'-triplets and their effects in infection spreading. (A) Spread 

over a single S7-link and the associated /5'5'-triplet. (B) All S7-links and 

associated ISS-tiiplets. 
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In a similar manner, a 57-lmk that bpreads the disease to a susccptible 

node turns all ^^-links of this node into 57-links Such configiiratioiib form 

I S S tiiplctb The situation ib shown in Fig B 2 Figuie B 2(A) bhowb 

the ISS-tnple\b abbociated to single S7-lmk，and Fig B 2(B) shows the total 

number of links and tiipletb for the same situation We can wiite the link 

rhangcs through this cfFert as 

A'LssiSP) 二 —7" X Liss (B 7) 

Summing up all these contiibutioiis the expected changcs during one step aie 

ANj = TLSI - riVj 

ALgs = (r + uj)Lsi - TL^ss 

AL,, = TLSI + TLISI - 2rLn (B 8) 

To obtain a closed system of equations of motion, we need 

numbei of link triplets m tcrmh of oui variables Accoiding 

Eames [10, 78], the number of triplets of arbitrary type A —)• 

expressed as 

to express the 

to Keeling and 

B ^ C can be 

Labc - ^ ^ (B 9) 

For our triplets, this means 

Ll 
Lisi = SI 

Nc 

LISS = 警 ， （ B 1 0 ) 

with an added factor two for ISS-inplets since either 5'-node of a S'5'-liiik can 

take the place ot the ccntral node in the triplet The resulting set of equations 
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APPEND IX B S I S M F T DERIVATION USING TR IPLE IS 

IS 

ANi = tLsi - rNi 

= ( r + oj)Lsi 

a 

^Lss 

A L J 7 = TLSI + 
SI 

Ns 

•让 siLss 
Ns 

- 2 r L / / . ( B . l l ) 

and for the remaining variables 

AA'5 = RNI - TLSI 

AL.,r = T让siLss + 加LH - tLSI - t 昏 - ( r + w)Lsi 
Ns Ns 

(B .12) 

An interesting consequence of this moment closure should be noted. At a 

single 5-nodc, the number of /^/-triplets with this node as its centre is 

Xisi = \s i、\si — 1) (B .13) 

We used greek symbols here since we are referring to the quantities of a single 

node. The number of total triplet is thus given by 

Ns 

Lisi = — 1)], 

and consequently 

{ X s i i ^ s i - 1)>5 = ( 4 l ) s —、\si)s = 

At the same time, we know that 

(^57)5 — 

LISI 一 

Ns 

Lsi 

(B .14) 

(B .15) 

(B .16) 

With this information, we can write for the variance of the distribution of 

57-links at S'-nodes 

乂 = 〈A*/〉—〈As/〉；̂  =〈A妄/〉—（As/〉+〈As/〉一〈A沿〉2 

-Lisi + 知、一 (a,,)^ —站'，[si 场,【s/ 

Ns 
+ 

Ns Nl Ns 
= H . (B .17) 
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The variance and the mean of the underlying distribution 

sure are hence identical. A well known example fulfilling 

the Poisson distribution. 

of the moment clo-

tliis requirement is 
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