
FAULT DETECTION AND DIAGNOSIS:
APPLICATION IN MICROELECTROMECHANICAL

SYSTEMS

DOCTORAL DISSERTATION
OF

VASILIKI REPPA

DIPLOMA IN ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF PATRAS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DISSERTATION No: 250

JULY 2010









To my parents, Maria and Dimitris



ii



ACKNOWLEDGEMENT

All my life I set goals and exerted efforts to achieve them. One of the major goals was
to complete my doctoral dissertation. In order to manage it, I realized that except
from studying, I should have patience, persistence, as well as critical mind and good
perception. Certainly, these wouldn’t be enough, if some people didn’t assist and
support me and give me the opportunity to collaborate with them. Through this
dissertation, I have the chance to express a public ”thank you” to all of them.

First of all, I am especially grateful to Prof. Anthony Tzes for agreeing to supervise
my doctoral studies with a very interesting research objective. The completeness of
my doctoral thesis would be unattainable without his scientific guidance, his support
and his confidence in me and my work, especially when I had lost mine. With his
enthusiasm and insatiable thirst for knowledge, his will to expand his research activ-
ities and his encouragement to attend international conferences in order to broaden
my research horizons, he made me want to pursue research after my doctoral studies.

I would like to thank the other members of the examination committee, Prof.
Petros Groumpos, Prof. Evangelos Dermatas, Prof. Demosthenes Kazakos, Prof. Nick
Koussoulas, Prof. Kostas Berberidis and Prof. Triantafillos Pimenides for their time
and recommendations. Particularly, I would like to thank Prof. Groumpos as Pres-
ident and CEO of Patras Scientific Park for giving me the opportunity to work in
many innovative projects and Dr. Chrysostomos Stylios, Research and Development
Consultant of Patras Scientific Park for his collaboration in these projects.

I was very fortunate to work in a very pleasant environment, created by the
former and current labmates, George Nikolakopoulos, George Georgoulas, Nancy
Panousopoulou, Themis Kolyvas, Yannis Koveos, Nikos Athanasopoulos, Marialena
Vagia, John Stergiopoulos, Kostas Alexis, Eleni Kelasidi and John Arvanitakis. I
would like to thank them for the very pleasant coffee and lunch breaks, their sup-
port and help. Particularly, I’m indebted to Nancy, Themis and Yannis, because we
spent many nights and weekends working at the lab and they were always willing
to answer my questions and give solutions not only to scientific problems. I would
like to express a big ”thank you” to Konstantinos Koutroumpas for his emotional
and psychological support and understanding especially during the last year of my
doctoral dissertation, as well as for the fact that he was the ”clear mind” that I needed
when everything seemed confusing.

During the course of my doctoral studies, I joined the Storage Technologies De-
partment of IBM Zurich Research Laboratory as a student intern. I am thankful
to Dr. Evangelos Eleftheriou, Manager of Storage Technologies Department and Dr.
Haris Pozidis, Manager of Memory and Probe Technologies Group for giving me the
opportunity to work in an international environment and gain experimental experi-
ence. I would like to thank Dr. Abu Sebastian, Dr. Aggeliki Pantazi and especially
Dr. Deepak R. Sahoo for teaching me and helping me understand the experiments
and apply the fault detection and diagnosis techniques.

iii



I am grateful that my doctoral studies were the reason for knowing new people,
getting closer to some others and making very good collaborations. However, I met
some people in my school and undergraduate years that they were always by my
side. I would like to thank my friends Nicky Koffa and Ioulietta Zindrou, because
since we were little we learned to make dreams and try always for the best. I would
like to thank Nicky not only for her 23-years friendship, but also because she and
her husband Tassos Stratis remind me that life is not only working and studying.
Furthermore, I would like to thank my friends Marina Maniadi and George Thomou,
and Alekos Ntounas for their support, assistance and protection that gave me since
the first time in Patras.

Finally, I would like to express my deepest gratitude to my parents, Maria and
Dimitris and to them I dedicate this thesis. I thank them for the values with which
they raised me and the sacrifices they made in order to accomplish my goals. I thank
them for supporting my choices and standing by me in joy and sorrow. They made
me what I am today.

iv



This doctoral thesis was partially supported by ”C. Carathéodory” initiative re-
search program of University of Patras (C. 152).

v



vi



CONTENTS

ABSTRACT xiv

Nomenclature xvii

1 Introduction 1
1.1 Review of Fault Detection and Diagnosis Methods . . . . . . . . . . 1

1.1.1 Fault Detection Methods . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Fault Diagnosis Methods . . . . . . . . . . . . . . . . . . . . 7

1.2 Review of MEMS Failure Modes and Detection Methods . . . . . . . 10
1.3 Dissertation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Review of Related Literature . . . . . . . . . . . . . . . . . . 15
1.3.2 Contribution of the Dissertation . . . . . . . . . . . . . . . . 20
1.3.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . 21

2 Set Membership Identification 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Ellipsoid and Orthotope Preliminaries . . . . . . . . . . . . . . . . . 25

2.3.1 Orthotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Ellipsoid and Support Orthotope . . . . . . . . . . . . . . . 26

2.4 Data-Generated Hyperspace . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Data-hyperstrip . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Data-hypersector . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Set Membership Identification . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Orthotope-based Set Membership Identification . . . . . . . 30
2.5.2 Ellipsoid-based Set Membership Identification . . . . . . . . 32

2.5.2.1 Ellipsoid-SMI using data-hyperstrips . . . . . . . 33
2.5.2.2 Ellipsoid-SMI using data-hypersectors . . . . . . 35

2.5.3 Data-Hyperspace Configuration Selection for Optimal SMI . 36
2.6 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Time Invariant Parameters . . . . . . . . . . . . . . . . . . . 37
2.6.2 Equation Error . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



3 Fault Detection and Diangosis 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Fault Detection and Diagnosis Assumptions . . . . . . . . . . . . . . 41
3.3 Fault Detection Procedure . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Fault Diagnosis Procedure . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Fault Isolation Procedure . . . . . . . . . . . . . . . . . . . . 49
3.4.1.1 Fault Isolation based on Orthotopic SMI . . . . . 49
3.4.1.2 Fault Isolation based on ellipsoidal SMI . . . . . 52

3.4.2 Fault Identification Procedure . . . . . . . . . . . . . . . . . 54
3.4.2.1 Fault Identification based on Orthotopic SMI . . . 54
3.4.2.2 Fault Identification based on ellipsoidal SMI . . . 54

3.5 Special Case:Time Invariant Parameters . . . . . . . . . . . . . . . . 54
3.5.1 Fault Detection Procedure . . . . . . . . . . . . . . . . . . . 55
3.5.2 Fault Diagnosis Procedure . . . . . . . . . . . . . . . . . . . 56

3.5.2.1 Fault Isolation Procedure . . . . . . . . . . . . . . 61
3.5.2.2 Fault Identification Procedure . . . . . . . . . . . 62

3.6 Fault Detection and Diagnosis Issues . . . . . . . . . . . . . . . . . . 63
3.6.1 Undetected Faults . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1.1 Undetected faults in the Orthotope-based Fault
Detection Procedure . . . . . . . . . . . . . . . . . 63

3.6.1.2 Undetected faults in Ellipsoid-based Fault Detec-
tion Procedure . . . . . . . . . . . . . . . . . . . . 63

3.6.2 Backward-in-time fault detection procedure . . . . . . . . . 64
3.6.2.1 Orthotope-based Backward-in-Time Fault Detection 64
3.6.2.2 Ellipsoid-based Backward-in-Time Fault Detection 65

3.6.3 Characterization of Algorithm Sensitivity . . . . . . . . . . . 69
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Fault Detection and Diagnosis applied in Microelectromechanical Systems 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Parallel-Plate Electrostatic Micro-Actuator . . . . . . . . . . . . . . . 74
4.3 Torsional Resonant Atomic Force Microscope . . . . . . . . . . . . . 82

4.3.1 Lumped-Parameter Modelling . . . . . . . . . . . . . . . . . 82
4.3.2 Detection and Diagnosis of Tip-Fractures . . . . . . . . . . . 86

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Concluding Remarks 95
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Areas for Further Research . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Dissertation Publications . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

viii



A Mathematical Auxiliary Analysis 109
A.1 Computation of the Perturbation Ellipsoid . . . . . . . . . . . . . . . 109
A.2 Time Invariant Jump Linearly Parametrizable Model . . . . . . . . . 110
A.3 Proof of Theorem II.3.6.2 . . . . . . . . . . . . . . . . . . . . . . . . 110
A.4 Computation of Modal-Shape of Torsional Resonant AFM . . . . . . 112

B Algorithms 115
B.1 OVE-based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2 Backward-in-Time Fault Detection Algorithm . . . . . . . . . . . . . 117

ix



LIST OF FIGURES

1.1 Location of faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Time dependency of faults. . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Physical and model based fault diagram. . . . . . . . . . . . . . . . 4
1.4 Classification of fault detection methods . . . . . . . . . . . . . . . . 5
1.5 a) Physical-based fault-symptom relationship, b) Diagnosis-based

symptom-fault relationship [1]. . . . . . . . . . . . . . . . . . . . . 9
1.6 Classification of fault diagnosis methods . . . . . . . . . . . . . . . 11
1.7 Time evolution of parametric fault . . . . . . . . . . . . . . . . . . . 14
1.8 Different representations of the parametric sets approximating the

feasible parameter set (n=2) . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Outer bounding parametric sets (n=2): a) orthotope, b) ellipsoid and
support orthotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Graphical representation of data-hyperstrip (n=2) . . . . . . . . . . 28
2.3 Graphical representation of the data-hypersector (n=2) . . . . . . . 30
2.4 Graphical representation of the computation of Ω(i) using: a) data-

hyperstrips and b) data-hypersectors (n=2) . . . . . . . . . . . . . 32
2.5 Graphical representation of the data-hyperstrip and the support hy-

perplanes of ellipsoid (n=2) . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Graphical representation of the computation of Θ(i) using a data-

hyperstrip (n=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Graphical representation of the computation of Θ(i) using data-

hypersectors (n=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 An example of empty intersection Θ̂(i) and Snp(i) (n=2) . . . . . . 37
2.9 Feasible parameter set generated by a) data-hyperstrips, b) data-

hypersectors (n=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Graphical representation of the jump-parameter case (n = 2). . . . . 42
3.2 Graphical representation of fault detection based on the empty in-

tersection between an orthotope and: a) a data-hyperstrip, b) a data-
hypesector (n = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Graphical representation of fault detection based on the empty in-
tersection between an ellipsoid and: a) a data-hyperstrip, b) a data-
hypersector (n = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



3.4 Detected fault case and orthotope-based resetting procedure (n = 2). 48
3.5 Detected fault case and ellipsoid-based resetting procedure (n = 2). 48
3.6 Graphical representation of the worst case orthotopes, Ω̂(i1|i0) , and

the orthotopes arisen from the normal operation of the SMI (Section
2.5.1), Ω(i1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Graphical representation of the computation of the intersection of
support orthotopes (n = 2). . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Activation of the FD-criterion using orthotopes with id j = i f j (n = 2). 57
3.9 Resetting procedure based on the intersection of support orthotopes

(n = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10 Fault isolation example (n = 2) . . . . . . . . . . . . . . . . . . . . . 62
3.11 Undetected fault case (n = 2). . . . . . . . . . . . . . . . . . . . . . 64
3.12 Incorrect time instant of fault detection in case of orthotopic FDD

(n = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.13 ‘Backward-in-time’ fault detection procedure in case of orthotopic

FDD (n = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.14 Incorrect time instant of fault detection in case of ellipsoidal FDD

(n = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.15 Fault detection example (n = 2). . . . . . . . . . . . . . . . . . . . . 68
3.16 Backward-in-time fault detection example (n = 2). . . . . . . . . . . 69

4.1 a) Simplified testbed layout and b) mass-spring-damper model of a
parallel-plate electrostatic micro-actuator. . . . . . . . . . . . . . . . 75

4.2 Fault detection case via the (D) scheme at id5 = 6001 . . . . . . . . 77
4.3 Empty intersection case between X(6000) and ΩΘ(6001) . . . . . . 78
4.4 Electrostatic microactuator–Time evolution of upper and lower bounds

of θ ◦1 generated by the FDD schemes. . . . . . . . . . . . . . . . . . 78
4.5 Electrostatic microactuator–Time evolution of upper and lower bounds

of θ ◦2 generated by the FDD schemes. . . . . . . . . . . . . . . . . . 79
4.6 Electrostatic microactuator–Time evolution of upper and lower bounds

of θ ◦3 generated by the FDD schemes. . . . . . . . . . . . . . . . . . 79
4.7 Fault Identification of microactuator parameter vector . . . . . . . 81
4.8 Schematic diagram of a torsionally resonant AFM interacting with

a sample surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 TR-AFM–Time evolution of upper and lower bounds of θ ◦1 gener-

ated by the FDD schemes. . . . . . . . . . . . . . . . . . . . . . . . 89
4.10 TR-AFM–Time evolution of upper and lower bounds of θ ◦2 gener-

ated by the FDD schemes. . . . . . . . . . . . . . . . . . . . . . . . 89
4.11 TR-AFM–Fault detection of θ ◦1 (i) applying (B) and (D) FDD schemes. 90
4.12 TR-AFM–Fault detection of θ ◦2 (i) applying (B) and (D) FDD schemes. 91
4.13 TR-AFM–Fault detection and isolation of cl(i) applying (B) and (D)

FDD schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xi



4.14 TR-AFM–Fault detection and isolation of Rt(i) applying (B) and (D)
FDD schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.15 TR-AFM–Fault identification of Rt(i) applying (B) and (D) FDD
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



LIST OF TABLES

1.1 Qualitative evaluation of theoretical process model-based FD tech-
niques [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 MEMS failure mechanisms and modes . . . . . . . . . . . . . . . . 12

4.1 Electrostatic Micro-actuator Fault Instances . . . . . . . . . . . . . 76
4.2 Electrostatic Micro-actuator–Time Instances of Fault Occurrence and

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Electrostatic Micro-actuator Parameter Vector Isolation Instants . . 80
4.4 TR-AFM–Time Instances of Fault Occurrence and Detection . . . 88

xiii



ABSTRACT

Supervisory control schemes incorporated in complex systems aim at maximizing
reliability, safety and quality, while minimizing downtime and cost of manufacturing.
However, all these requirements are affected by the occurrence of faults, giving rise
to the application of fault detection and diagnosis modules. In order to increase the
efficiency of these methods, their design should be realized by: a) gaining a deep
understanding of what kind of faults are expected to occur in the system under
investigation and how they are going to evolve, and b) by selecting the feature that
describes the status of the system and will change due to a fault.

This thesis presents the development of a fault detection and diagnosis (FDD)
procedure capable of capturing, isolating and identifying multiple abrupt paramet-
ric faults. The proposed method relies on parameter estimation deployed in a set
membership framework. This approach presupposes the utilization of a linearly
parametrizable model and the a priori knowledge of bounded noise errors and pa-
rameter perturbations. Under these assumptions, a data-hyperspace is generated at
every time instant. The goal of set membership identification (SMI) is the determi-
nation of the parametric set, formed as an orthotope or ellipsoid, within which the
nominal parameter vector resides and intersects with the data-hyperspace.

The fault detection mechanism is activated when the normal operation of the SMI
procedure is interrupted due to an empty intersection of the data-hyperspace and the
estimated parametric set. At the detection instant, a resetting procedure is performed
in order to compute the parameter set and the data-hyperspace that contain the var-
ied nominal parameter vector, allowing the SMI algorithm to continue its operation.
During the fault isolation, consistency tests are executed, relying on the projections
of the worst case parametric sets and the ones arisen from the normal operation of
SMI. A faulty component is indicated when these projections do not intersect, while
the distance of their centers is used for fault identification. In case of the ellipsoidal
SMI-based FDD and under the assumption of a time invariant parameter vector, a
new fault detection criterion is defined based on the intersection of support ortho-
topes of ellipsoids. A more accurate estimation of the time instant of fault occurrence
is proposed based on the application of a backward-in-time procedure starting from
the fault detection instant, while the conditions under which a fault will never be
detected by the orthotopic and ellipsoidal SMI based FDD are provided.

This dissertation explores the efficiency of the proposed FDD methodology for
capturing failure modes of two microelectromechanical systems; an electrostatic parallel-
plate microactuator and a torsionally resonant atomic force microscope. The need
for applying a FDD procedure in a microactuator emanates from the fact that this
device is embedded in other MEMS devices and possible abnormal operation may
cause severe damages. On the other hand, the TR-AFM is utilized for investigating
the tribological phenomena of materials and generating high resolutions 3D images

xiv



of the samples. When failure modes appear in its tip, the quality of these images
is affected, inferring wrong information about the materials’ properties. From an
engineering point of view, failure modes appeared in the microcomponents of the
microactuator and the TR-AFM are encountered as parameter variations and are
captured, isolated and identified by the proposed FDD methodology.
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Chapter 1

Introduction

1.1 Review of Fault Detection and Diagnosis Methods

In recent years, in the automation industry, there has been a migration from
classical control objectives such as stability and performance to less traditional ones
like robustness and fault tolerance. The reason for reassessing the goals was the need
for compensating the occurrence of faults, defined as the unpermitted deviations of at
least one characteristic property or parameter (feature) of the system from the acceptable,
usual, standard condition. The faults can emanate from: a) the wrong design and/or
assemblying, b) the improper operation or missing maintenance, and c) the material
ageing, corrosion or wear during normal operation. The unavoidable occurrence
of faults gives rise to the application of fault detection, isolation and identification
modules.

The goals of fault detection [2], [3], [1], [4], [5], [6] is the determination of faults
present in a system (in an extended definition) and their instant of detection. The
procedure of finding the location of the fault is defined as fault isolation. In [2], [3],
[1], the definition of fault isolation is extended to include the determination of the
kind and the time of fault detection, while the fault identification is described as the
procedure of determining the size and the time variant behavior of the fault. The
determination of the size of the fault is also included in the definition of the fault
identification provided in [5], [6], along with the assessment of the type (nature) of
the fault and its cause. Finally, the combined isolation and the identification tasks
are referred as fault diagnosis in [2], [4], [3], [1], while in [5], [6] the fault diagnosis
includes also the detection mechanism.

Since an integrated system consists of mechanical and electrical components,
electronic hardware and software, the possible apparent physical faults and the
mechanisms that cause them are different between these system parts [1]. Faults of
mechanical components may occur due to distortion (buckling, deformation), fatigue
and fracture (cycle fatigue, thermal fatigue), wear (abrasive, adhesive, cavitation), or
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1. INTRODUCTION

corrosion (galvanic, chemical, etc.) and may evolve in a drift-like manner (wear, cor-
rosion), or abruptly (distortion, fracture)). On the other hand, electrical components
usually consist of a large number of sub-components with various failure modes,
like short-cuts, loose or broken connections, parameter changes, contact problems,
contamination, etc. Generally, faults in electrical components appear more randomly
than the mechanical faults. Faults in electronic hardware exhibit a systematic behav-
ior and mainly stem from specification or design mistakes. Finally, software faults
(bugs) occur due to incorrect specification, coding, logics, calculation overflow, etc.

Under the fault-relevant knowledge, the first step of the FDD design is the fault
modelling, which describes how the physical faults can be reflected to the process
models. Consider the generic system description

Y (t) = g(U(t),x(t),θ) , (1.1)

where Y (t), U(t), x(t) are the output, input and state signal variables and θ parameter
vector. The faults are characterized as additive, when correspond to unknown inputs
acting on the process, which affect the process outputs and are independent of the
known inputs [4]. An example of an additive fault is presented in Fig. 1.1a [1],
where:

Y (t) = Y ◦(t)+∆Y (t) = Y ◦(t)+ f (t). (1.2)

The faults are characterized as multiplicative (parametric), when correspond to
variations in some process parameters that affect the process outputs and depend
on the magnitude of the known inputs [4]. An example of a multiplicative fault is
depicted in Fig. 1.1b [1], where for θ = a,

Y (t) = (a+∆a(t))U(t) = aU(t)+∆a(t)U(t) = Y ◦(t)+ f (t)U(t). (1.3)

+

f(t)=∆Υ(t)

oΥ (t) Υ(t)
a

f(t)=∆a(t)

process

U(t) Υ(t)

additive fault multiplicative fault

(a) (b)

Figure 1.1: Location of faults.

Moreover, the fault modelling is complemented using the available information
about the expected time evolution of the fault. Specifically, a fault is characterized as:
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a) abrupt (stepwise) (Fig. 1.2a), when occurs suddenly and remains for the rest of the
system operation (permanent fault) or remains for a finite time window (transient
fault) [7], b) incipient (Fig. 1.2b), when evolves gradually, [8] and c) intermittent
(Fig. 1.2c), when occurs and vanishes suddenly for a number of aperiodic finite time
windows [9].

f(
t)

t

f(
t)

t

f(
t)

t
(a)

incipient intermittentabrupt

(b) (c)

permanent

transient

Figure 1.2: Time dependency of faults.

1.1.1 Fault Detection Methods

The fault modelling procedure is followed by the selection of the most appro-
priate Fault Detection (FD) method according to the available measurable signals
and the mathematical models [1]. The construction of a mathematical model can be
realized via theoretical or experimental analysis. The theoretical models are based
on the mathematical formulation of the laws of nature and can be distinguished in
static or dynamic and continuous-time or discrete-time models. However, due to the
complexity of the resulted theoretical model, further simplifications may be needed.
A common simplification is the transition from the partial differential equations that
describe the time and space dependency of distributed parameter systems to ordi-
nary differential equations that describe lumped parameter systems, by limiting the
parameters on a fixed location. On the other hand, experimental models express
the mathematical relationship between measured input and output signals, which is
subsequently evaluated using identification methods. It has to be mentioned that the
theoretical models contain the functional description between the physical data of
the process and its parameters, while the experimental ones contain parameters as
numerical values, whose functional relationship with the physical data of the pro-
cess is undefined. Therefore, the utilization of theoretical models has the advantage
of determining the mathematical relationship between the model parameter vector
θ and the physical parameter vector p via nonlinear algebraic equations θ = h(p),
as depicted in Fig. (1.3). If there is one-to-one mapping between the physical and
model parameters, the isolation of a fault in physical parameters can be accomplished
by using the estimates of the model parameters.
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Figure 1.3: Physical and model based fault diagram.

The most common FD methods can be assorted according to the number of
the measurable signals and utilized models, as shown in Fig. 1.4. The simplest FD
procedure uses a single signal, the process output Y (t), under the assumption that
a fault somewhere in the process will be perceptible as change in Y (t). The goal
of this procedure is to compare the monitored signal Y (t) (limit checking) or its
first derivative Ẏ (t)(trend checking) in relation to thresholds, which can be fixed or
adaptive. The power density function and membership function of Y (t) may also
be used as features for fault detection, being compared with thresholds (change
detection) [10], [11]. In the case that multiple measured signals are available, but
the high computer effort and the high data correlation (i.e. chemical plants) do not
‘allow’ the utilization of a model, principal component analysis is applied. The main
concept of this method is the projection of the original process data onto a smaller
number of principal components, based on the fact that a small number of faults
produce unusual patterns. The faults are supposed to be detected using residuals,
created by the principal components [12], [13].

More sophisticated FD methods are assumed to be the signal and process model-
based ones. Signal model-based FD methods utilize mathematical descriptions of
periodic, stochastic and non-stationary signals. A periodical signal represented as
single amplitude/ phase /frequency modulated oscillation, or superposition of os-
cillations, can be: a) developed in Fourier series, b) described by parametric signal
models in frequency domain, or c) characterized by correlation functions. Correlation
functions are also used in the case of stochastic signals, along with power spectral
density and stochastic difference equations, while non-stationary signals are anal-
ysed by short-time Fourier transform or wavelets [14], [15], [16]. The objective of
the signal model-based FD methods is to detect additive or multiplicative faults as
changes in the signal features (amplitude, phase, power spectral density, correlation
function) that are compared with the observed ones under faultless behavior.
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Figure 1.4: Classification of fault detection methods
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Process model-based FD methods utilize multiple measured signals and ex-
perimental or theoretical models [17]. Neural networks have been employed using
experimental models for FD [18]. The neural network approach has two phases,
training and testing. During the first phase, the neural network is trained to de-
fine the underlying relationship between the measured inputs and outputs. After
training, the neural networks are tested with a sample data set, which was not used
during training. Once they are trained and tested, residuals are generated for fault
detection, describing the discrepancies between the resulted experimental model and
the process. The residuals are also used as features in the model-based FD methods
based on parity equations, state/output observers and state estimation, in which
continuous/discrete time state-space models or transfer functions are treated as the
process models [19], [20]. The residuals’ structure of the first two methods is very
similar and differs only in the way that the input and output measurements are
filtered. In the latter FD method, the residuals correspond to the difference between
the output measurements and the output predicted using an old estimate. Finally, a
very common process model-based FD technique that does not make use of residu-
als is based on parameter estimation [21]. The utilized model is based on a linear
relationship between the parameters and the observations, given as:

y = φ T θ , (1.4)

where y is the model output, φ is called the regression vector and θ is the model pa-
rameter vector. The components of the parameter vector are functions of the physical
parameters, while the model output y and the components of the regression vector
are functions of measurable signals. This model is called linearly parametrizable
(in the literature, it can be found as linear regression, regression form, linear in
parameters or affine in parameters).

As shown in Fig. 1.4, the output of the signal/process model-based modules
are treated as features describing the status of the process (e.g. parameters, state
variables, residuals, correlation functions etc.). Hence, the fault detection methods
seek to capture the unusual changes of the observable features from their nominal
values. These quantifiable changes are denoted as analytic symptoms. Moreover,
heuristic symptoms may be produced by using qualitative information from human
operators. In addition, information about the process history, such as performed
maintenance, repair, former faults, life cycle and load measures, or fault-statistical
data gained from the experience investigating the same or similar processes are
characterized as heuristic symptoms.

Process model-based FD methods can be further categorized based on the way
that they treat ‘variance’ terms like noise affecting the data, and ‘bias’ terms like
model errors, else system disturbances. Statistical approaches take into account the
mean and variance of the amplitude probability density function (pdf) of the model
errors, disturbances or noise, while the deterministic approaches consider the errors,
disturbances or noise as unknown-but-bounded with known bounds. The choice
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of the statistical or the deterministic strategy will have impact upon the feature
generation.

A qualitative evaluation between process model-based FD techniques is summa-
rized in Table 1.1 [1], relying on their design assumptions, fault detectability and
general issues relevant to the process. Parity equations, observers and state estima-
tion based FD methods have almost identical characteristics, but parity equations
are simpler to be designed and implemented. In addition, sometimes instability in
the detection procedure may emerge using state observer-based methods. The basic
assumptions for all of them is the precise knowledge of the model structure and
the invariant status of the parameters. On the other hand, in parameter estimation
techniques, the model structure is assumed to be known and the parameters may be
regarded not only as constant, but also as time-varying. All the process model-based
FD methods need to know how the uncontrollable inputs are induced in the model
(i.e. the way they are filtered). Parameter estimation methods can handle noise of
medium magnitude, in contrast with the rest of the methods that can compensate
small-magnitude noise.

Parameter estimation and parity equations may be used for fault detection in non-
linear processes under certain assumptions and appropriate modifications. Moreover,
the on-line real-time application of all the process model-based FD methods for fast
processes is in general realizable. In case of the observer-based and state estima-
tion methods, an increased number of observers is required. Multiple faults can be
detected and isolated using parity equations and output observers only in MIMO
processes. In case of state observers and state estimation, isolability may be feasible,
if the information for faults is conveyed in the state variables.

Parity equations, observer and state estimation based-FD methods are very effi-
cient in detecting additive faults in sensor and actuators. Parameter estimation is the
most suitable method for detecting primarily multiplicative faults in the processes and
faults which change the dynamics of sensors and actuators. Finally, model-based FD
methods based on parameter estimation are very sensitive in small changes, while
sometimes faults must be large enough so as to be detected by parity equations,
observer and state estimation based methods.

1.1.2 Fault Diagnosis Methods

The objective of the fault diagnosis (FDs) procedure is the determination of the
symptom to fault relationship, described as:

S ∈ Sns
M→F ∈ Fn f , (1.5)

where S is the symptom vector that contains all the available analytic and heuristic
symptoms, F is the fault vector containing the possible theoretical faults reflected to
parameters or signals and M is assumed to be the diagnostic model, whose determi-
nation is based on the fault-relevant knowledge about the process.
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Table 1.1: Qualitative evaluation of theoretical process model-based FD techniques [1]

Comparison Theoretical Process Model-based FD Techniques
Criteria Parity State Parameter

Equations Estimation Estimation
State Output

Observer Observer

assumptions
model structure exactly known exactly known known
model parameters known, constant known, constant unknown, constant

or time-varying
models for exactly known exactly known exactly known
unknown inputs
noise small small medium
stability of no problem depends on no problem no problem
detection scheme the design
detectable faults
additive faults yes yes yes
parametric faults no no yes
abrupt faults yes yes yes
incipient faults yes yes yes
multiple faults SISO:no,MIMO:yes SISO:no,MIMO:yes SISO,MIMO:yes
fault isolation SISO:no,MIMO:yes SISO:no,MIMO:yes SISO,MIMO:yes
general
robustness in problematic problematic unproblematic
parameter changes
nonlinear many classes limited many classes
processes possible possible
nonlinear many classes limited many classes
processes possible possible
static processes yes no straightforward
computational small/medium medium medium/larger
effort
closed loop yes yes yes, external

excitation

8



1.1 Review of Fault Detection and Diagnosis Methods

The ”functional mapping relationship” follows in general a physical cause-effects
relationship, as shown in Fig. 1.5. Figure 1.5a shows that a fault influences a num-
ber of events regarded as intermediate steps, which then influence the measurable
or observable symptoms, both by internal physical properties (physical-based fault-
symptom relationship). In case that the underline physical laws are unknown or too
complicated for calculations, the fault diagnosis proceeds the reverse way, namely
from the observed symptoms to the faults (diagnosis-based symptom-fault relation-
ship) (Fig. 1.5b). This implies the inversion of causality. However, there are cases
in which the intermediate events between faults and symptoms are not visible from
the symptoms’ behavior. The a priori knowledge of the fault-symptom causalities is
called structured knowledge.

fault

event 1 event 2

symptom 1 symptom 2 symptom 3 symptom 4

fault

event 1 event 2

symptom 1 symptom 3 symptom 4

physical system diagnosis system
cause

effect

diagnosis

observations

(a) (b)

symptom 2

Figure 1.5: a) Physical-based fault-symptom relationship, b) Diagnosis-based symptom-
fault relationship [1].

The FDs methods are distinguished based on the available fault-relevant knowl-
edge about the process. If there is no information about the fault-symptom causalities
(unstructured knowledge), classification methods are applied. Reference patterns
Sre f are determined for the normal performance and the corresponding symptom
vectors S are determined experimentally for certain faults F. The relationship be-
tween the fault vector F and S is therefore learned (or trained) experimentally and
stored, forming an explicit knowledge base. Faults F can be captured by comparing
the observed S with the normal reference Sre f . The classification-based FDs methods
are categorized as: a) pattern recognition methods [22], b) statistical methods using
Bayesian classifiers or decision trees [23], c) approximation methods using a poly-
nomial classifier, d) density-based functions using a geometric classifier [24], and e)
artificial intelligence methods, using fuzzy and/or neural net classifier [25].

If the basic relationships between the faults and the symptoms are at least par-
tially known, inference methods can be applied for fault diagnosis. The qualitative
knowledge of the physical-based fault-symptom and the diagnosis-based symptom-
fault analysis can be expressed in form of rules: IF condition THEN conclusion. The
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condition part contains facts in the form of symptoms as inputs, and the conclusion
part includes events and faults as a logical cause of the facts. If several symptoms
indicate an event or fault, the facts are associated by AND and OR connectors. The
most common inference method is the fault-tree analysis [26], in which the symp-
toms and the events are considered as binary variables and the condition part of
the rules is calculated by Boolean equations for parallel-serial connection. However,
this procedure has not proven to be successful, because of the continuous nature
of faults and symptoms. Therefore, approximating reasoning methods are used as
an alternative. Different forward and backward chaining reasoning techniques [27]
using fuzzy logic or probabilities are implemented, taking into account the effects
of the rule weighting and the available heuristic knowledge, originated from the ex-
perience of operators and system engineers. Finally, a more sophisticated inference
method is related to the the neuro-fuzzy systems [28]. The advantage of this method
is that it can fuse information from both human experts (heuristic knowledge) and
experimental data (analytic knowledge), resulting in generation of new rules from
data or refinement of the existing rules by adapting parameters within them.

If a theoretical process model-based method is used for detecting multiplicative
(parametric) faults, the fault causalities can be determined using quantitative knowl-
edge. Particularly, a physical-based fault symptom relationship can be calculated via
the functional relationship between the physical and model parameters, θ = h(p),
while the diagnosis-based symptom fault relationship can be determined by the in-
verse functional relationship h−1. In addition, if the analytic symptoms are residuals,
generated by a FD method based on parity equations or observers, a fault signature
matrix (FSM) is constructed. The rows of the FSM correspond to the symptoms
and its columns correspond to all possible additive and multiplicative faults, while
its elements indicate the relationship between a symptom and the listed faults [29],
[30]. A general overview of how the FDs methods are categorized according to the
symptoms and fault-relevant knowledge acquisition is presented in Fig.1.6.

1.2 Review of MEMS Failure Modes and Detection Methods

MicroElectroMechanical Systems (MEMS) consist of electrical and mechanical
components scaled down to the micrometer scale and integrated on a common sub-
strate. Their fabrication is the outcome of a batch processing and they are allocated
for functioning individually as well as in arrays. Their diminution of size has re-
sulted in their utilization in several domains, such as medicine and biology [31],
avionics [32], space [33], wireless communications [34], vehicles [35], data storage
technologies [36], metrology [37], etc. It is therefore of paramount importance to
maintain their reliability and functionality for a prolonged period of time.

The difficulty in ensuring proper MEMS-behavior and maintenance of their func-
tions in routine circumstances emanates from the limited information about the mi-
croscopic failure mechanisms, which differ from the macroscopic counterparts [38].
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Figure 1.6: Classification of fault diagnosis methods

By failure mechanism, we mean the physical cause of an apparent system damage,
called failure mode. The most common failure mechanisms and failure modes in
MEMS are depicted in Table 1.2 [39].

The list of MEMS faults is usually derived via failure analysis, during which
failure mechanisms are evaluated and failure modes are observed after elaborating
characterization tests [40], [41]. After identifying and understanding the sources
of the problems, different solutions are investigated for improving the fabrication
process, such as studying the strength of different MEMS coating films in relation
to failure mechanisms [42]. However, albeit their will to take into account all the
available information on the MEMS failure modes and mechanisms at the earlier
stages of manufacturing, new types of failures may be raised at later process steps
and packaging. Therefore, fault modelling and simulation are proven to be necessary
in the MEMS industry [43].

Fault modelling focuses on abstracting the behavior of physical MEMS defects
to a high level representation of the device under test. Fault modelling can be ac-
complished using CAD tools, such as CARAMEL (Contamination And Reliability
Analysis of MicroElectromechanical Layout) [44], which interprets the system struc-
tural variations by finite element techniques and computes lumped parameters to
represent the fault models as electric circuits [44]. The initial step of fault simu-
lation involves modelling both the mechatronic and electrical elements in the same
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Table 1.2: MEMS failure mechanisms and modes

Fault Modes Failure Mechanisms
Stiction Capillary forces

Van der Waals molecular forces
Casimir forces
Hydrogen bridging
Electrostatic forces

Wear Adhesion
Abrasion
Corrosion
Friction

Fracture Stress induced bending, shearing, torsion
Shock induced
Fatigue

Crystallographic defect Point defects
Dislocations
Planar defects
Bulk defects

Creep Applied stress
Intrinsic stress
Stray stresses (thermal, residual)

Degradation of dielectrics Leakage
Charging
Breakdown

Environmentally induced failure Vibration
Shock
Humidity effects
Radiation effects
Contamination
Temperature changes

Electric-related failures Electrostatic discharge
Electrical overstress
Electromigration
Electrical breakdown
Electromagnetic pulses

Packaging reliability Hermeticity and vacuum maintenance
Thermal issues

Other failure modes Parasitic capacitance
Dampening effects
Delamination
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simulation environment [45]. Then, fault models are injected in the fault-free MEMS
description, and the simulated faulty behaviors are classified and used to form fault
models at the next level of abstraction. Fault simulation is enhanced by test gener-
ation, which checks whether or not a fault can be detected after applying a range of
input stimuli [46].

Moreover, a laboratory prototype should be tested in order to be promoted to
a commercial product which is going to be used in other applications. The goal of
testing is to validate the product functionality and verifying if the data sheet specifi-
cations are sufficed. For this reason, analogue and digital built-in self-test techniques
are applied [47], [48]. However, MEMS devices should be tested many times during
their life cycle, not only after manufacturing (production testing) [49]. Therefore,
model-based techniques are developed for detecting failure modes in a general
supervisory scheme. Particularly, process model-based methods relying on neural
networks [50], [51], Kalman filters [52], Recursive Least Squares identification [53]
and interval analysis [54] have been applied for detection of failure modes in MEMS.
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1.3 Dissertation Objective

The main objective of this dissertation is the synthesis of process model based
FDD methods aiming at capturing parametric faults that occur suddenly at multiple
time instances, as shown in Fig.1.7. Due to the type of the fault to be detected, the
proposed FDD methods are based on parameter estimation.

0
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( )4ff i
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( )2ff i

2fi 3fi 4fi 5fi

Figure 1.7: Time evolution of parametric fault

The parameter estimation is performed using a linearly parametrizable model,
which, under the assumption of multiple abrupt parametric faults, is described as:

y(i) = φ(i)T θ ◦(i), (1.6)
θ ◦(i) = θ ◦(i−1)+w(i)+

(
∆θ (i)−∆θ

(
i f j
))

, i f j < i≤ i f j+1 , (1.7)
ym(i) = y(i)+ ey(i), (1.8)
φ m

u (i) = φu(i)+ eφu(i), (1.9)

where ym(i) ∈R, φ m(i) ∈Rn are the output and regression vector containing measur-
able signals, ey(i) ∈ R is measurement noise and/or model error affecting the noise-
free model output y(i), eφu(i)∈Rn is the measurement noise corrupting the noise-free
uth component of regression vector φu(i). θ ◦(i) ∈ Rn is the unknown nominal model
parameter vector to be identified, w(i) ∈ Rn is the vector modelling parameter per-
turbations, ∆θ (i) ∈ Rn is the vector modelling abrupt parameter variations.

The parameter perturbations and noises are treated as unknown but bounded
variables, with a priori known bounds. Under these assumptions, the parameter
estimation is implemented in a Set Membership framework, namely Set Membership
Identification (SMI), computing at every time instant the feasible parameter set that
contains the nominal parameter vector. In addition, a data-hyperspace is generated
taking into account the linearly parametrizable model, the measurement data and
the a priori known noise bounds. In this research work, the SMI is encountered as
an optimization problem, aiming at the recursive computation of the parametric set
that outer bounds the feasible parameter set and intersects with the generated data-
hyperspace. Two distinct SMI approaches are utilized, depending on the configuration
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of the outer bounding parametric set: a) the orthotopic SMI , and b) the ellipsoidal
SMI.

A fault is detected at the time instant that the estimated outer bounding para-
metric set does not intersect with the data-generated hyperspace, due to an abrupt
parameter change. In order to proceed with the fault diagnosis, a resetting proce-
dure is performed using set-theoretic operations, aiming at the determination of the
new outer bounding parameter set that contains the new nominal parameter vector.
During the fault isolation, consistency tests are executed, relying on the projections
of the worst case parametric sets and the ones arisen from the normal operation of
SMI, while the distance of their centers is used in fault identification.

The secondary objective of this dissertation is the application of the SMI-based
FDD method in typical MEMS-technology examples, such as: a) a parallel-plate
electrostatic microactuator, and b) a torsionally-resonant atomic force microscope
(TR-AFM). The electrostatic microactuator is usually embedded in other devices for
positioning or acceleration purposes in the microworld. The most common failure
mechanisms of a microactuator is the particle contamination affecting the microme-
chanical components (mass,spring), fatigue causing the fracture of the microsprings,
loss of hermeticity leading to damping changes. On the other hand, the TR-AFM
is the device that is used for investigating the tribological phenomena of materials
such as surface roughness, adhension, friction etc and generating high resolutions
3D images of the samples. The most common failure mechanisms of a TR-AFM is
the particle contamination of its tip affecting the tip’s mass, the adhesion and friction
leading to tip’s wear and fatigue resulted in tip’s fracture. From an engineering point
of view, the failure modes of these devices are treated as parameter variations. Simu-
lation studies are elaborated, in order to verify of the efficacy the proposed methods
in detecting the failure modes of these two MEMS-technology applications.

1.3.1 Review of Related Literature

Several works in the literature have dealt with fault detection and diagnosis de-
veloped in a set membership framework. The set membership approach is used in
the process model based FDD methods based on parity equations [55], [56], ob-
servers [57], [58], neural and neuro-fuzzy model [59], [60] to overcome the require-
ment of knowing the model structure or neuron, taking into consideration interval
models [61]. The set membership techniques are also utilized in FDD methods based
on parameter estimation. The diversification of the recorded method relies on the
description of the parameter set that approximates the feasible parameter set. The
different representations of the parametric set are shown in Fig. 1.8. Since these
methods are related to the objective of this dissertation, a brief description of them
follows in this section.
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Figure 1.8: Different representations of the parametric sets approximating the feasible
parameter set (n=2)

The common ground on these methods is the description of the linearly parametriz-
able model, given as

ym(i) = φ(i)T θ ◦(i)+ v(i) (1.10)
θ ◦(i) = θ ◦(i−1)+w(i) (1.11)

where v(i) is the equation error, corresponding to measurement noise and/or model
error. The equation error and the parameter perturbation vector w(i) are assumed to
be unknown but bounded with a priori known bounds. Under the assumption that

|v(i)| ≤ vmax (1.12)

and using the linearly parametrizable model (1.10), the nominal parameter vector
θ ◦(i) resides within a data-hyperspace, described as:

S(i) =
{

θ : ym(i)− vmax ≤ φ(i)T θ ≤ ỹm(i)+ vmax} . (1.13)

This data-hyperspace is defined by two parallel-hyperplanes and hereafter will be
refereed as data-hyperstrip.

In [62], the proposed fault detection strategy aims at capturing abrupt and incip-
ient parametric faults in time-varying systems, modelled through (1.10)-(1.11) with
v(i) ∈

[
vmin,vmax

]
. The parameter perturbation w(i) is assumed to reside within an

ellipsoid Θw (0,Rw) (Θw for brevity) and Rw is the a priori known symmetric positive
definite shape matrix. Taking into account that θ ◦(i−1) ∈ Θ(i−1), the computation
of Θ(i) for which θ ◦(i) ∈ Θ(i) is realized in a sequential manner using the Optimal
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Volume Ellipsoid (OVE) algorithm [63], [64] as:

Θ̂(i) = arg
Θ
[min{vol(Θ) : θ ◦(i) = θ ◦(i−1)+

w(i) ∈Θ,θ ◦(i−1) ∈Θ(i−1), w(i) ∈Θw)}],(1.14)

Θ(i) = arg
Θ

[
min

{
vol(Θ) : Θ⊇ Θ̂(i)

∩
S(i)
}]

(1.15)

The following approaches for fault detection are proposed. The first approach ad-
dresses that a fault is said to have occurred when

Θ̂(i)
∩

S(i) = /0. (1.16)

The second FD approach is used to monitor the system for incipient faults, according
to which a fault is detected when

Θ(i)
∩

Θ◦ = /0. (1.17)

where Θ◦ is produced by the OVE algorithm under nominal operating conditions.
If (1.17) is not valid, it is possible that the actual plant matches the nominal plant
model.

In [65], the assumptions described in [62] and the fault detection procedure
based on the first criterion are utilized. Moreover, two approaches for ‘recovering’
the parameters after the fault detection are presented. In the first approach, called
resetting algorithm, the ellipsoid Θ̂(i) is replaced by a ‘large’ enough ellipsoid Θreset
that is guaranteed to contain the new nominal parameter vector. Then, ellipsoid
Θ(i) = Θr(i), where Θr(i) is computed via (1.15) using Θreset instead of Θ̂(i). In
the second approach, called projection algorithm, ellipsoid Θ̂(i) is projected onto the
data-hyperstrip S(i). Then, Θ(i) equals to the minimum volume ellipsoid Θp(i) that
outer bounds the aforementioned projection. In the dissertation, it is referred that
using the resetting algorithm, the new nominal parameter vector is guaranteed to be
captured immediately after a fault is detected, but initially the ellipsoid may be too
large to be effective for applications such as robust adaptive control. On the other
hand, using the projection algorithm, there is no guarantee that the new nominal
parameter vector will reside in the computed ellipsoid Θp(i), but its volume may be
smaller than the volume of Θr(i). Therefore, the work in this dissertation proposes an
integrated approach, choosing which of the resetting or projection algorithm should
be applied, intending to exploit their advantages and surpass their drawbacks.

In [66], an input-output adaptive thresholding scheme is employed using the
adaptive ARMA model for detecting abrupt faults for a time-invariant system. The
proposed approach relies on the prediction of the worst-case system output uncer-
tainty bounds. The determination of the multi-step ahead system output uncertainty
interval is performed using the parameter bounds, whose computation is realized in
two steps. Initially, an ellipsoid Θ(i) outer bounding the feasible parameter set is com-
puted using the Set Membership Weighted Recursive Least Squares (SM-WRLS) [67].
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The next step involves the computation of the support orthotope ΩΘ(i) that tightly
outer bounds the generated ellipsoid. The coordinates of the orthotope’s vertices
correspond to the parameter bounds [68]. Then, using interval arithmetic the multi-
step ahead output predicted bounds y−(i|i− `), y+(i|i− `) are generated. A fault is
detected when the actual output does not lie between these bounds, namely:

y(i) /∈
[
y−(i|i− `),y+(i|i− `)

]
. (1.18)

A fault detection scheme for linear discrete systems is presented in [69]. Instead
of considering (1.11), θ ◦(i) is assumed to remain constant over a sliding window
with length L′, or θ(i) = θ(i− 1) = . . . = θ(i− L′). The window’s minimum length
L∗ is assumed to be known, whereas the time instants at which the parameter vec-
tor can change (jump) are unknown. This jump-parameter system configuration is
used for capturing abrupt faults. Under the assumption of a time sliding window
[i−L+1, . . . , i], an orthotope Ω(i) that outer bounds the feasible parameter set FL(i)
is computed as:

Ω(i) =
{

θ : θ−(i)4 θ 4 θ+(i)
}
, (1.19)

θ−(i) =

[
min

θ(i)∈FL(i)
θ1(i), . . . , min

θ(i)∈FL(i)
θn(i)

]T

, (1.20)

θ+(i) =

[
max

θ(i)∈FL(i)
θ1(i), . . . , max

θ(i)∈FL(i)
θn(i)

]T

, (1.21)

FL(i) =

{
θ : θ ∈

i∩
q=i−L+1

S(q)

}
(1.22)

The bounds θ−(i) and θ+(i) can be found from the optimal solutions of linear
programming problem with n variables and 2L+ 2n constraints. In the sequel, the
generated parameter bounds are used for computing of the `-step ahead output
uncertainty predicted bounds y−(i|i− `), y+(i|i− `). A fault is said to have occurred,
when the linear programming problem gives a non feasible solution, meaning that

Ω(i) = /0,or,y(i) /∈
[
y−(i|i− `),y+(i|i− `)

]
. (1.23)

The possible reasons that cause the fault are due to: a) the utilization of an under-
estimated noise bound, b) an abrupt parameter variation (jump), c) the modification
of the system’s internal structure or d) the lack of persistent excitation, denoted
as rank([φ(i−L+1), . . . ,φ(i)])≤ n. In addition, the authors highlight that there is no
mutual exclusion or inclusion of the two fault detection criteria and a simple example
generating four different scenarios is used to illustrate this assertion.

In [70], a robust FD strategy is proposed for capturing abrupt parametric faults
relying on a parallelotope-based SMI approach. The linearly parametrizable model
given in (1.10)-(1.11) is employed using |w(i)| 4 λ . Also θ ◦(i) is assumed to be
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unknown and belongs to a compact set E. Three cases are considered in terms of
λ : a) λ = 0, denoting that θ ◦(i) does not vary within E , but it is known that it will
not vary, b) λ = λ̄ , meaning that the parameter vector is varying, but the parameter
perturbation is bounded, and c) λ = ∞ , implying that the parameter perturbation is
implicitly bounded only by the initial parameter set E and can vary at will within
that set. At every time instant, it is assumed that θ ◦(i) resides in a parallelotope P(i),
which is computed in a recursive manner as:

P(i) = arg
P

[
min

{
vol(P) : P⊇ P̂(i)

∩
S(i)
}]

, (1.24)

P̂(i) = arg
P

[P : P⊇ Z(i)] , with (1.25)

Z(i) = arg
Z

{
Z : Z = P(i−1)⊕Ωλ ,θ ◦(i) ∈ Z,θ ◦(i−1) ∈ P(i−1),w(i) ∈Ωλ

}
,(1.26)

Ωλ = {θ :−λ 4 θ 4 λ} (1.27)

where Z(i) corresponds to a zonotope which contains the sum θ ◦(i)+w(i) and ⊕
denotes the Minkowski sum. In the time invariant case, λ = 0⇒ P̂(i) =P(i−1), while
in case that λ = ∞⇒ P̂(i) = E, ∀ i. A fault is said to have occurred, when

P̂(i)
∩

S(i) = /0. (1.28)

In order to check the intersection between the parallelotope and the data hyperstrip,
the intersection between the data hyperstrip S(i) and the support hyperstrip of P̂(i),
defined by the hyperplanes that are tangent to P̂(i) and parallel to S(i) is checked.
Finally, as far as concerns the fault isolation and estimation procedure, the concept
of resetting the parameter set to a ‘large’ enough set that contains all faulty and
non-faulty parameters, presented in [65], is adopted.

In [71], a robust FD procedure using a zonotope-based set membership consis-
tency test for capturing sensor and parametric faults is presented. The assumptions
related to the noise, parameter perturbations and the initial set presented in [70] are
also used in this work. The objective of the set membership procedure is to compute
at every time instant the parameter set, represented as a zonotope, that contains the
nominal parameter vector θ ◦(i). This is realized as:

Z(i) = arg
Z

[
min

{
vol(Z) : Z ⊇ Ẑ(i)

∩
S(i)
}]

, with (1.29)

Ẑ(i) = arg
Z

{
Z : Z = Z(i−1)⊕Ωλ ,θ ◦(i) ∈ Z,θ ◦(i−1) ∈ Z(i−1),w(i) ∈Ωλ

}
,(1.30)

Ωλ = {θ :−λ 4 θ 4 λ} . (1.31)

It has to be mentioned that when λ = 0, Ẑ(i) = Z(i−1) and when λ = ∞, Ẑ(i) = E. A
fault is said to have occurred, when

Ẑ(i)
∩

S(i) = /0. (1.32)
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For checking the intersection between the zonotope and the data hyperstrip, the
intersection between the data hyperstrip S(i) and the support hyperstrip of Z(i),
defined by the hyperplanes that are tangent to Z(i) and parallel to S(i) is checked.
At the time instant of fault detection, the parameter variation is calculated using the
distance between the zonotope and the data-hyperspace. In the sequel, the authors
provide the minimum sensor and parametric fault magnitude. In order to reduce the
conservativeness of the initial choice of λ , the execution of the algorithm is suggested
under the assumption of time-invariant parameters and using fault-free data, during
which if an inconsistency is observed, the value of the calculated parameter variation
is used as a candidate value for λ . Finally, the maximum of all the collected candidate
values is used in the fault detection procedure. This concept is also proposed for
direct application in the fault detection procedure. Hence, the algorithm for the time-
invariant case is applied. When an inconsistency is detected, the zonotope is expanded
by the calculated parameter variation and the intersection between the expanded
zonotope and the current hyperstrip is checked. If the inconsistency persists, then a
fault is indicated, otherwise the algorithm continues its execution.

1.3.2 Contribution of the Dissertation

The main contributions of this dissertation on the development of Fault Detection
and Diagnosis techniques relying on geometrical Set Membership Identification with
application in MEMS are:

• the design of methods for detecting and diagnosing multiple abrupt parametric
faults,

• Fault Detection and Diagnosis methods relying on Set Membership Identifica-
tion,

• the combination of orthotopic and ellipsoidal Fault Detection and Diagnosis
methods for the time invariant parameters case,

• the extension of the Fault Detection and Diagnosis methods to the time-varying
parameter case,

• the development of a backward-in-time procedure for a more accurate specifi-
cation of the time of fault occurrence and the investigation of detectability and
isolability issues,

• the application of the proposed FDD methods for capturing multiple abrupt
failure modes appeared in the mass, stiffness and damping coefficient of a
parallel-plate electrostatic microactuator,

• the lumped parameter modelling of a torsional-resonant Atomic Force Micro-
scope for the application of the FDD methods so as to capture abrupt fractures
of the tip’s radius.
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1.3.3 Structure of the Dissertation

The dissertation is organized in five chapters.
Chapter 1: The first chapter provides a review of the most common FDD meth-

ods, along with their general design specifications and a brief comparison between
the process-model based methods. The need for capturing failure modes in Micro-
ElectroMechanical Systems (MEMS) and the related detection methods is described
in the next section, followed by the the objective of dissertation and a review of the
related literature.

Chapter 2: The second chapter deals with the Set Membership Identification
(SMI) techniques for time varying systems. Two approaches are analysed accord-
ing to the representation of the parameter set outer bounding the feasible parameter
set: a) the orthotopic, and b) the ellipsoidal SMI. The mathematical preliminaries
related to the orthotopes and the ellipsoids are provided, followed by the description
of the two data hyperspace configurations, denoted as data-hyperstrips and data-
hypersectors. Further on, the development of the orthotopic SMI based on linear
programming techniques is presented in detail, followed by the description of the
Optimal Volume Ellipsoid algorithm which is implemented taking into account data-
hyperstrips and its modification in order to handle data-hypersectors. Finally, the
time-invariant system case and the equation error case are presented as special cases
of the previous analysis.

Chapter 3: The detailed description of the FDD method based on orthotopic
and ellipsoidal SMI is presented in Chapter 3. Initially, the FDD assumptions are
addressed. The fault detection mechanism relies on outer bounding parametric set
with the data-hyperspace. The fault detection is followed by a resetting procedure,
aiming at the computation of the parameter set that is guaranteed to contain the new
nominal parameter vector, exploiting the information of the worst-case parameter
bounds. Moreover, set theoretic operations are provided for fault isolation, while the
faulty status of the parameter components is determined using the projections of
the parametric set and the variation of the faulty components is estimated using the
centers of the projections. Further on, the customization of the FDD procedure for
time-invariant parameters is presented, while for the case of the ellipsoidal SMI, the
intersection of support orthotopes and its projection is used to enhance the FDD
mechanism. The last section of the third chapter deals with the fault detection and
diagnosis issues associated with the detectability of the faults, the better estimation
of the time instances of fault occurrence using a backward-in-time procedure and
the characterization of the algorithm sensitivity according to the assumptions.

Chapter 4: In this chapter, the suggested FDD methods are applied in a parallel-
plate micro electrostatic actuator and a torsionally resonant atomic force microscope
(TR-AFM). In the former example, the microactuator system is assumed time in-
variant and the objective of the study is to capture multiple parametric changes in
its mass, spring stiffness and damping coefficient. In the latter example, in order
to obtain a linearly parametrizable model, the lumped parameter modelling taking
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into account the partial differential equation of the TR-AFM is presented. Then, the
resultant model is regarded as time varying, the FDD methods are applied aiming
at the detection of abrupt fractures of the tip’s radius.

Chapter 5: In the fifth chapter, the dissertation results are summarized, followed
by the concluding remarks. In addition, areas for further research are proposed
followed by the publications of this dissertation.

Appendix A: Appendix A provides the auxiliary mathematical analysis related
to the SMI techniques, the FDD mechanism and the TR-AFM lumped modelling.

Appendix B: In Appendix B, the algorithms related to ellipsoidal SMI methods
and the backward-in-time fault detection are presented.
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Chapter 2

Set Membership Identification

2.1 Introduction

This chapter deals with parameter estimation based on a set membership ap-
proach, namely the Set Membership Identification (SMI). The set membership ap-
proach was initiated in the domain of state estimation by Witsenhausen [72] and
Schweppe [73] and was used mostly for parameter estimation in a large number of
research papers up to the present [74], [75], [76], [77], [78], [79]. The objective of the
SMI techniques is the determination of the feasible parameter set that contains the
nominal parameter vector and is consistent with a linearly parametrizable model, the
measurement data and the a priori known bounded noise-error. Due to the complex-
ity in computing the feasible parameter set, the majority of the SMI methods aims
at the determination of a more conveniently computable parametric set that outer
bounds the feasible parameter set.

In this research work, the feasible parameter set is outer bounded by two distinct
geometrical sets; an orthotope and an ellipsoid. Under the assumption of a linearly
parametrizable model, whose output and regression vector are functions of measur-
able signals corrupted by bounded noise, a data-hyperspace is generated, containing
the nominal parameter vector. Moreover, in the general case, the system is encoun-
tered as time-varying, due to unknown but bounded perturbations in parameter
vector. The orthotopic SMI is performed using linear programming techniques [68],
while the ellipsoid SMI relies on the Optimal Volume Ellipsoid (OVE) algorithm [63].
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2.2 Modeling Assumptions

Consider the linearly parametrizable model of the system under investigation:

y(i) = φ(i)T θ ◦(i), (2.1)
θ ◦(i) = θ ◦(i−1)+w(i), (2.2)

where y(i) ∈ R is the noise-free model output, φ(i) ∈ Rn is the noise-free regression
vector, θ ◦(i)∈Rn is the unknown nominal parameter vector to be identified, w(i)∈Rn

is the parameter perturbation vector. The model output y(i) and the components of
the regression vector φ(i) = [φ1(i), . . . ,φn(i)]

T are functions of measurable signals.
The observed model output is described as

ym(i) = y(i)+ ey(i), (2.3)

where ey(i)∈R is the output noise, modelling measurement noise and/or model error.
Similarly, the observed uth component of regression vector is described as:

φ m
u (i) = φu(i)+ eφu(i), (2.4)

with eφu(i) ∈ R, u = 1, . . . ,n. The noise terms ey(i) and eφu(i) are assumed unknown
but bounded at every instant i

µy(i) |ey(i)|2 ≤ 1 (2.5)
µφu(i)

∣∣eφu(i)
∣∣2 ≤ 1, (2.6)

with µy(i), µφu(i)∈R∗+. Rather than necessitating the knowledge of the bounds at ev-

ery time instant, without loss of generality, the worst-case bound emax
y(φu)

=max
i

(
1√

µy(φu)(i)

)
and the worst-case bounds of the noise,

|ey(i)| ≤ emax
y , (2.7)∣∣eφu(i)

∣∣≤ emax
φu

. (2.8)

are assumed to be known.
The vector w(i) represents the changes in parameter vector at every time instant,

whose components are assumed to be unknown but bounded:

wu(i) ∈
[
wmin

u ,wmax
u
]
, ∀i, u = 1, . . . ,n (2.9)

where wmin
u , wmax

u are the a priori known worst case parameter perturbation bounds.
The goal of Set Membership Identification (SMI) is to determine at every time in-

stant the feasible parameter set F(i) within which the nominal parameter vector θ ◦(i)
resides and is consistent with the linearly parametrizable model described via (2.1)
and (2.2), the measurement data given in (2.3) and (2.4), the bounded noise–terms
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given by (2.7) and (2.8) and the bounded parameter perturbations described by
(2.9). Due to the difficulty in computing the feasible parameter set, ellipsoids and
orthotopes will be used to outer bound it. These geometrical sets were selected be-
cause of their simplified mathematical expressions presented in the sequel and due
to their computational efficiency.

2.3 Ellipsoid and Orthotope Preliminaries

2.3.1 Orthotope

The orthotope is the parallelotope oriented parallel to the parametric axes, as
shown in Fig. 2.1, and is defined as:

Ω(i) =

θ :

 θ−Ω1
(i)
...

θ−Ωn
(i)

4 θ 4

 θ+
Ω1
(i)
...

θ+
Ωn
(i)


 . (2.10)
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Figure 2.1: Outer bounding parametric sets (n=2): a) orthotope, b) ellipsoid and support
orthotope

The projection of the orthotope on the uth axis is defined as:

Ωu(i) = proj
u

(Ω(i)) =
{

θu : θu ∈
[
θ−Ωu

(i), θ+
Ωu
(i)
]}

,∀ u ∈ {1, . . . ,n}, (2.11)

where proj
u

(X) denotes the projection of a parametric set X on the uth axis and its

center is computed as:

θ c
Ωu
(i) =

θ+
Ωu
(i)+θ−Ωu

(i)

2
, u = 1, . . . ,n. (2.12)
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Consequently, the centroid of Ω(i) is given as:

θ c
Ω(i) =

[
θ c

Ω1
(i), . . . , θ c

Ωn
(i)
]T

. (2.13)

2.3.2 Ellipsoid and Support Orthotope

The ellipsoid is defined as:

Θ(i) =
{

θ : (θ −θ c(i))T P(i)−1 (θ −θ c(i))≤ 1
}
, (2.14)

where θ c(i) is its centroid and P(i) � 0 is the symmetric shape matrix. The shape
matrix denotes how far the ellipsoid extends from its centroid, as presented in Fig.
2.1b. In addition, the lengths of the semi-axes of the ellipsoid are equal to the square
root of the eigenvalues of the shape matrix, while the principal axes of the ellipsoid
have the same direction with the eigenvectors of the shape matrix. Alternatively, the
ellipsoid can be computed in terms of its support function ρ (q |Θ(i)) as:

Θ(i) = {θ : 〈q,θ〉 ≤ ρ (q |Θ(i))} , ∀ q ∈ Rn, (2.15)

while the support function is computed as [80]:

ρ (q |Θ(i)) = sup
θ∈Θ(i)

〈q,θ〉= 〈q,θ c(i)〉+ 〈q,P(i)q〉1/2 ,q ∈ Rn, (2.16)

where 〈·〉 denotes the inner product function. Inequality (2.15) means that an ellip-
soid is the hyperspace between an infinity number of support hyperplanes defined
as:

h(i) = {θ : 〈q,θ〉= ρ (q |Θ(i))} . (2.17)

The parameter bounds correspond to the coordinates of vertices of the support
orthotope of the ellipsoid, ΩΘ(i). ΩΘ(i) is the convex polytope defined by the intersec-
tion of the support hyperplanes of the ellipsoid, which are parallel to the parametric
axes:

ΩΘ(i) =

{
θ :

2n∩
u=1

〈qo
u,θ〉 ≤ ρ (qo

u |Θ(i))

}
, (2.18)

where

qo
u = [0, . . . , 0, 1, 0, . . . , 0]T , qo

u+n =−qo
u (2.19)

with the location of one at the uth position, u = 1, . . . , n. Hence, the parameter
bounds are computed as:

θ+
ΩΘ

u
(i) = ρ (qo

u |Θ(i)) , (2.20)

θ−ΩΘ
u
(i) = −ρ

(
qo

u+n |Θ(i)
)
. (2.21)
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Moreover, θ−ΩΘ
u
(i), θ+

ΩΘ
u
(i) are the minimum and maximum values of the projection of

ΩΘ(i) on the uth parameter axis, which is equivalent to the projection of Θ(i) on the
uth parameter axis, defined as:

ΩΘ
u (i) = proj

u

(
ΩΘ(i)

)
= proj

u
(Θ(i)) =

{
θu : θu ∈

[
θ−ΩΘ

u
(i), θ+

ΩΘ
u
(i)
]}

,∀ u ∈ {1, . . . ,n}.(2.22)

2.4 Data-Generated Hyperspace

At every time instant, the nominal parameter vector θ ◦(i) resides in an un-
bounded, convex hyperspace S(i),

θ ◦(i) ∈ S(i) (2.23)

which is compatible with the linearly parametrizable model described in (2.1) and
(2.2), the measurement data given in (2.3) and (2.4) and the noise bounds (2.7) and
(2.8). There are two configurations of the data hyperspace; the data-hyperstrip Sp(i)
and the data-hypersector Snp [81], [64], [82], [83].

2.4.1 Data-hyperstrip

Inducing (2.3) and (2.4) into (2.1) yields in:

ym(i) = [φ m
1 (i), . . . ,φ m

n (i)]θ ◦(i)+
(
ey(i)−

[
eφ1(i), . . . ,eφn(i)

]
θ ◦(i)

)
= φ m(i)T θ ◦(i)+ ẽ(i). (2.24)

Since the nominal parameter vector is unknown, the computation of the bounds
of ẽ(i) relies on the fact that θ ◦(i) resides within an estimated parametric set Z(i).
Therefore, the values of θ ◦1 (i), . . . ,θ ◦n (i) are replaced by the estimated upper and lower
parameter bounds θ−Zu

(i),θ+
Zu
(i), where Zu(i) denotes the projection of Z(i) on the uth

axis, and the noise ẽ(i) is described as:

ẽ(i) ∈
[
ẽmin(i), ẽmax(i)

]
=

[
−emax

y ,emax
y
]
+
[
−emax

φ1
,emax

φ1

]
×
[
θ−Z1

(i),θ+
Z1
(i)
]
+ . . .+[

−emax
φn

,emax
φn

]
×
[
θ−Zn

(i),θ+
Zn
(i)
]
. (2.25)

According to interval arithmetic, since the noise terms ey(i), eφ1(i), . . . , eφn(i) are
distributed symmetrically around zero, then

|ey(i)| ≤ ẽmax(i), with (2.26)

ẽmax(i) = emax
y +

n

∑
u=1

emax
φu

max
(∣∣∣θ−Zu

(i)
∣∣∣ , ∣∣∣θ+

Zu
(i)
∣∣∣). (2.27)
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Using (2.24) in (2.26) implies that

θ ◦(i) ∈ Sp(i), with (2.28)
Sp(i) =

{
θ : ym(i)− ẽmax(i)≤ φ m(i)T θ ≤ ym(i)+ ẽmax(i)

}
. (2.29)

Sp(i) is called data-hyperstrip and corresponds to a hyperspace between two parallel
hyperplanes (Fig. 2.2),

Sp
1(i) =

{
θ : φ m(i)T θ = ym(i)− ẽmax(i)

}
, (2.30)

Sp
2(i) = {θ : φ m(i)T θ = ym(i)+ ẽmax(i)}. (2.31)
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Figure 2.2: Graphical representation of data-hyperstrip (n=2)

2.4.2 Data-hypersector

An alternative configuration of the data-hyperspace without using the estimated
parameter bounds can be accomplished under the a priori knowledge of the sign of
θ ◦u (i), ∀ i, u = 1, . . . ,n.

Introducing (2.1) into (2.3), and then into (2.7) yields:

ym(i)− emax
y ≤ φ(i)T θ ◦(i)≤ ym(i)+ emax

y (2.32)

and combining (2.4) with (2.8) results in:

φ m
u (i)− emax

φu
≤ φu(i)≤ φ m

u (i)+ emax
φu

, u = 1, . . . ,n. (2.33)

If θ ◦u (i)> 0, then(
φ m

u (i)− emax
φu

)
θ ◦u (i)≤ φu(i)θ ◦u (i)≤

(
φ m

u (i)+ emax
φu

)
θ ◦u (i), (2.34)
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or, if θ ◦u (i)< 0,(
φ m

u (i)+ emax
φu

)
θ ◦u (i)≤ φu(i)θ ◦u (i)≤

(
φ m

u (i)− emax
φu

)
θ ◦u (i), (2.35)

implying that:(
φ m

u (i)− sgn(θ ◦u (i))emax
φu

)
θ ◦u (i)≤ φu(i)θ ◦u (i)≤

(
φ m

u (i)+ sgn(θ ◦u (i))emax
φu

)
θ ◦u (i) . (2.36)

The summation of these terms yields:

∑n
u=1

(
φ m

u (i)− sgn(θ ◦u (i))emax
φu

)
θ ◦u (i)≤ φ(i)T θ ◦(i)≤

∑n
u=1

(
φ m

u (i)− sgn(θ ◦u (i))emax
φu

)
θ ◦u (i)

(2.37)

At every time instant, both inequalities (2.32) and (2.37) are valid, leading to:

n

∑
i=1

(
φ m

u (i)− sgn(θ ◦u )emax
φu

)
θ ◦u (i) ≤ ym(i)+ emax

y , (2.38)

n

∑
i=1

(
φ m

u (i)+ sgn(θ ◦u )emax
φu

)
θ ◦u (i) ≥ ym(i)− emax

y . (2.39)

Inequalities (2.38) and (2.39) imply that

θ ◦(i) ∈ Snp(i), with (2.40)

Snp(i) =
{

θ : ym(i)− emax
y ≤ φA(i)T θ , φB(i)T θ ≤ ym(i)+ emax

y

}
, (2.41)

with

φA(i) =

 φ m
1 (i)+ sgn(θ ◦1 )emax

φ1
...

φ m
n (i)+ sgn(θ ◦n )emax

φn

 , (2.42)

φB(i) =

 φ m
1 (i)− sgn(θ ◦1 )emax

φ1
...

φ m
n (i)− sgn(θ ◦n )emax

φn

 . (2.43)

Snp is called data-hypersector and corresponds to the hyperspace between two non-
parallel hyperplanes (Fig. 2.3),

Snp
1 (i) = {θ : φA(i)T θ = ym(i)− emax

y }, (2.44)
Snp

2 (i) = {θ : φB(i)T θ = ym(i)+ emax
y }. (2.45)
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Figure 2.3: Graphical representation of the data-hypersector (n=2)

2.5 Set Membership Identification

The SMI procedure is encountered as an optimization problem aiming at the
recursive computation of the ellipsoid or the orthotope that contains the nominal
parameter vector at every time instant,

θ ◦(i) ∈ Ω(i),∀ i (2.46)
or

θ ◦(i) ∈ Θ(i),∀ i. (2.47)

given that θ ◦(i) ∈ S(i).

2.5.1 Orthotope-based Set Membership Identification

The condition (2.46) implies that θ ◦(i− 1) ∈ Ω(i−1), while (2.9) implies that
w(i) ∈Ωw, ∀ i, with Ωw called perturbation orthotope and defined as:

Ωw =

θ :

 wmin
1
...

wmin
n

4 θ 4

 wmax
1
...

wmax
n


 . (2.48)

Given (2.2), the nominal parameter vector θ ◦(i) resides in the augmented orthotope
Ω̂(i), computed as:

Ω̂(i) = arg
Ω
{Ω : Ω = Ω(i−1)⊕Ωw} (2.49)
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2.5 Set Membership Identification

where ⊕ denotes the Minkowski sum and

Ω̂(i) =

θ :

 θ̂−Ω1
(i)
...

θ̂−Ωn
(i)

4 θ 4

 θ̂+
Ω1
(i)
...

θ̂+
Ωn
(i)


 , (2.50)

with

(2.51)
θ̂−Ωu

(i) = θ−Ωu
(i−1)+wmin

u , (2.52)
θ̂+

Ωu
(i) = θ+

Ωu
(i−1)+wmax

u . (2.53)

Then, the orthotope Ω(i) is computed in a recursive manner solving the optimization
problem:

Ω(i) = arg
Ω

{
Ω : Ω⊇

(
Ω̂(i)

∩
S(i)
)}

, (2.54)

θ−u (i) = min
{

θu : θu ∈ proj
u

(Ω(i))
}
, (2.55)

θ+
u (i) = max

{
θu : θu ∈ proj

u
(Ω(i))

}
. (2.56)

If S(i) = Sp(i), then it is defined through (2.29) with:

ẽmax(i) = emax
y +

n

∑
u=1

emax
φu

max
(∣∣∣θ̂−Ωu

(i)
∣∣∣ , ∣∣∣θ̂+

Ωu
(i)
∣∣∣), (2.57)

The problem stated in (2.54)-(2.56) can be expressed in a standard optimization
form and can be solved via linear programming techniques. In particular, the param-
eter bounds θ−Ωu

(i) and θ+
Ωu
(i) are the optimal solutions of the 2n linear programming

problem with 2(n+1) constraints:

θ−Ωu
(i) = min

θ
f T
u θ , (2.58)

θ+
Ωu
(i) = −min

θ
f T
u+nθ , u = 1, . . . ,n (2.59)

subject to

A(i)θ ≤ b(i), (2.60)
θ̂−Ωu

(i) ≤ θ ≤ θ̂+
Ωu
(i), ∀u ∈ {1, . . . ,n} (2.61)

where fu is the uth column of the matrix f = [In×n, − In×n], I is the n× n identity
matrix and

• A(i) = [−φ m(i), φ m(i)]T and b(i) = [−ym(i)+ ẽmax(i), ym(i)+ ẽmax(i)]T , if S(i) =
Sp(i),
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2. SET MEMBERSHIP IDENTIFICATION

• A(i) =
[
−φA(i), φB(i)

]T and b(i) =
[
−ym(i)+ emax

y , ym(i)+ emax
]T , if S(i) = Snp(i)

It has to be mentioned that Ω(i)⊆ Ω̂(i) and consequently:

θ̂−Ωu
(i) ≤ θ−Ωu

(i), (2.62)
θ+

Ωu
(i) ≤ θ̂+

Ωu
(i). (2.63)

An example of the computation of Ω(i) using either the hyperspace either Sp or
Snp is presented in Fig.(2.4).

1
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θ
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( )iΩ
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1
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( )iΩ

( 1)iΩ −

Ω̂( )i

( )p iS

θ −
�( 1)i θ −

�( 1)i

(a) (b)

Figure 2.4: Graphical representation of the computation of Ω(i) using: a) data-hyperstrips
and b) data-hypersectors (n=2)

2.5.2 Ellipsoid-based Set Membership Identification

The condition (2.47) implies that θ ◦(i−1) ∈Θ(θ c(i−1),P(i−1)) = Θ(i−1). Tak-
ing into account that the parameter perturbation vector resides in Ωw defined by
(2.48), w(i) ∈ Θw (wc,Pw), ∀ i, where Θw (wc,Pw) ⊃ Ωw. Θw is called the perturbation
ellipsoid and its computation is provided in Appendix A.1. Given (2.2), the nominal
parameter vector θ ◦(i) resides in the ellipsoid Θ̂

(
θ̂(i), P̂(i)

)
, called the augmented

ellipsoid hereafter, defined as [84], [85]:

Θ̂(i) = arg
Θ

[min{vol(Θ) : θ(i−1)+w(i) ∈Θ,θ(i−1) ∈Θ(i−1), w(i) ∈Θw)}] . (2.64)

The centroid and the shape matrix of Θ̂(i) are computed as:

θ̂ c(i) = θ c(i−1)+wc, (2.65)

P̂(i) = (ζ +1)P(i−1)+
(

1
ζ
+1
)

Pw. (2.66)
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2.5 Set Membership Identification

The variable ζ is the unique positive solution of
n
∑

u=1

1
λu+ζ = n

ζ (ζ+1) and λu are the

solutions of the generalized eigenvalue problem Pwχu = λuP(i−1)χu.
The computation of Θ(i) in recursive form is equivalent to the mathematical

solution of the optimization problem, described as:

Θ(i) = arg
Θ

[
min

{
vol(Θ) : Θ⊇

[
Θ̂(i)

∩
S(i)
]}]

. (2.67)

2.5.2.1 Ellipsoid-SMI using data-hyperstrips

If the ellipsoid-SMI is performed using data-hyperstrips, then S(i) = Sp(i) com-
puted via (2.29) with:

ẽmax(i) = emax
y +

n

∑
u=1

emax
φu

max
(∣∣∣θ̂−ΩΘ

u
(i)
∣∣∣ , ∣∣∣θ̂+

ΩΘ
u
(i)
∣∣∣), (2.68)

where

θ̂+
ΩΘ

u
(i) = ρ

(
qo

u

∣∣Θ̂(i)
)
, (2.69)

θ̂−ΩΘ
u
(i) = −ρ

(
qo

u+n

∣∣Θ̂(i)
)
, (2.70)

with qo
u, qo

u+n given in (2.19).
The recursive computation of Θ(i) based on (2.67) can be realized using the Op-

timal Volume Ellipsoid (OVE) algorithm. The main concept of its design is described
in details in [63] and is presented in algorithmic form in [64]. It should be men-
tioned that the first step of the OVE algorithm checks if the intersection between the
ellipsoid Θ̂(i) and the data-hyperspace Sp(i) is non-empty. This consistency check
relies on the distance between the hyperplanes Sp

1(i), Sp
2(i) and the support hyper-

planes of Θ̂(i) [86], parallel to Sp
1(i), Sp

2(i), as presented in Fig. 2.5. Particularly, the
support hyperplanes of Θ̂(i) are calculated as:

h1(i) =
{

θ : φ m(i)T θ =−ρ
(
−φ m(i),Θ̂(i)

)}
, (2.71)

h2(i) =
{

θ : φ m(i)T θ = ρ
(
φ m(i),Θ̂(i)

)}
. (2.72)

Therefore, if

ym(i)+ ẽmax(i) ≤ φ m(i)T θ̂ c(i)−
√

φ m(i)T P̂(i)φ m(i) or (2.73)

ym(i)− ẽmax(i) ≥ φ m(i)T θ̂ c(i)+
√

φ m(i)T P̂(i)φ m(i) (2.74)

then Θ̂(i)
∩

Sp(i) = /0.
When Θ̂(i)

∩
Sp(i) 6= /0, rather than computing directly Θ(i) through (2.67), the

ellipsoid Θ̃(i) is computed as the solution of the reformulated optimization problem:

Θ̃(i) = arg
Θ

[
min

{
vol(Θ) : Θ⊃ [E∩ S̃(i)]

}]
(2.75)
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Figure 2.5: Graphical representation of the data-hyperstrip and the support hyperplanes
of ellipsoid (n=2)

where: a) E =
{

θ̃ : θ̃ T θ̃ ≤ 1
}
is the unit radius hypersphere, arisen from the affine

transformation of Θ̂(i) using θ = θ̂ c(i)+ Jθ̃ , P̂(i) = JJT , b) S̃(i) is the transformed
hyperstrip S̃(i) =

{
θ̃ :
∣∣∣ym(i)−φ m(i)T θ̂ c(i)

/∥∥φ̃(i)
∥∥− φ̃(i)T θ̃

/∥∥φ̃(i)
∥∥∣∣∣≤ ẽmax(i)

/∥∥φ̃(i)
∥∥}

using the transformed regression vector φ̃(i)T = φ(i)T J. The centroid and the shape
matrix of Θ̃(i) are defined as θ̃ c(i) = τ(i) φ̃(i)

‖φ̃(i)‖ and P̃(i) = δ (i)I +(σ(i)−δ (i)) φ̃(i)φ̃(i)T

‖φ̃(i)‖2 ,

respectively. It has to be mentioned that the centroid θ̃ c(i) lies along the transformed
regression vector and its length equals to τ(i), δ (i)> 0 equals to the squared length
of semi-axis of Θ̃(i) perpendicular to φ̃(i), σ(i) > 0 equals to the squared length of
semi-axis of Θ̃(i) along φ̃(i), I is the identity n×n matrix and P(i) = JP̃(i)JT .

Following the previous operations, the centroid and shape matrix of ellipsoid
Θ(i) can be computed as:

θ c(i) = θ̂ c(i)+
τ(i)P̂(i)φ m(i)√
φ m(i)T P̂(i)φ m(i)

, (2.76)

P(i) = δ (i)P̂(i)+ [σ(i)−δ (i)]
P̂(i)φ m(i)φ m(i)T P̂(i)

φ m(i)T P̂(i)φ m(i)
. (2.77)

The graphical representation of the computation of Θ(i)⊃ Θ̂(i)
∩

S(i) is depicted in
Fig. 2.6. The computation of the ellipsoid based on data-hyperstrips (OVE algorithm)
is given in Appendix B.1.
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Figure 2.6: Graphical representation of the computation of Θ(i) using a data-hyperstrip
(n=2)

2.5.2.2 Ellipsoid-SMI using data-hypersectors

The ellipsoid-SMI procedure handling data-hypersectors can be performed, cus-
tomizing the OVE algorithm. At first, the intersection of the data hypersector Snp(i)
with the ellipsoid Θ̂(i) is investigated, based on the support hyperplanes of the el-
lipsoid. Particularly, it is checked if Snp

1 (i) ∈ [h11(i),h12(i)] with

h11(i) =
{

θ : φA(i)T θ =−ρ
(
−φA(i),Θ̂(i)

)}
, (2.78)

h12(i) =
{

θ : φA(i)T θ = ρ
(

φA(i),Θ̂(i)
)}

, (2.79)

and Snp
2 (i) ∈ [h21(i),h22(i)] with

h21(i) =
{

θ : φB(i)T θ =−ρ
(
−φB(i),Θ̂(i)

)}
, (2.80)

h22(i) =
{

θ : φB(i)T θ = ρ
(

φB(i),Θ̂(i)
)}

. (2.81)

When both Snp
1 (i) and Snp

2 (i) intersect with Θ̂(i) as shown in Fig. 2.7a, the computation
of Θ(i) is performed in two steps; initially, an ellipsoid Θ′(i) is computed via the OVE
algorithm as:

Θ′(i) = arg
Θ

[
min

{
vol(Θ) : Θ⊃ Θ̂(i)

∩[
Snp

1 (i),h12(i)
]}]

, (2.82)

as shown in Fig. (2.7b).
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Figure 2.7: Graphical representation of the computation of Θ(i) using data-hypersectors
(n=2)

Then, the OVE algorithm is applied again, checking the intersection of Θ′(i) with
Snp

2 (i). If Θ′(i)
∩

Snp
2 (i) 6= 0 (Fig. 2.7c) , then

Θ(i) = arg
Θ

[
min

{
vol(Θ) : Θ⊃

∩[
h′21(i),S

np
2 (i)

]}]
, (2.83)

h′21(i) =
{

θ : φB(i)T θ =−ρ
(
−φB(i),Θ′(i)

)}
. (2.84)

If Θ′(i)
∩

Snp
2 (i) = /0, it implies that:

Θ̂(i)
∩

Snp(i) = /0 while
(

Θ̂(i)
∩

Snp
1 (i) 6= /0 and Θ̂(i)

∩
Snp

2 (i) 6= /0
)
. (2.85)

This situation is presented in Fig. 2.8. The computation of Θ(i) using data-hypersectors
is described in Algorithm 2 in Appendix B.1.

2.5.3 Data-Hyperspace Configuration Selection for Optimal SMI

By definition, the data-hyperstrip Sp(i) depends on the estimated parameter
bounds θ̂−Zu

(i),θ̂+
Zu
(i), u = 1, . . . ,n, where Zu corresponds to Ωu or ΩΘ

u . This dependency
is reflected to the width of the data-hyperstrip and consequently to the intersection
Θ̂(i)

∩
Sp(i) or Ω̂(i)

∩
Sp(i). If the initialization of an SMI algorithm is realized taking

into account a ‘large’ set (ellipsoid or orthotope) that contains θ ◦(0), the bounds
of ẽ(i) will be loosen resulting in loosen parameter bounds. On the other hand,
the utilization of the data-hypersector Snp(i) provides tighter parameter bounds, but
demands the knowledge of the sign of θ ◦u (i) at every time instant. Moreover, the
utilization of an incorrect sign of θ ◦u (i) may lead to θ ◦(i) /∈ Snp(i).
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Figure 2.8: An example of empty intersection Θ̂(i) and Snp(i) (n=2)

In the case that the sign of θ ◦u (i) is unknwon, the signs of θ̂−Zu
(i), θ̂+

Zu
(i) can be

checked. If at the ith time instant sgn
(

θ̂−Zu
(i)
)
= sgn

(
θ̂+
Zu
(i)
)
,∀ u then S(i) = Snp(i)

defined through (2.41)-(2.43) using sgn(θ ◦u (i)) = sgn
(

θ̂+
Zu
(i)(i)

)
. If sgn

(
θ̂−Zu

(i)
)
6=

sgn
(

θ̂+
Zu
(i)
)
, then S(i) = Sp(i).

2.6 Special Cases

2.6.1 Time Invariant Parameters

If the parameters of the system modelled by (2.1) and (2.2) are assumed to be
time-invariant, then

w(i) = [w1(i), . . . ,wn(i)]
T = [0, . . . ,0]T , (2.86)

θ ◦(i) = θ ◦(i−1) = θ ◦(0) = θ ◦, ∀ i, (2.87)

resulting in:

y(i) = φ(i)T θ ◦. (2.88)

Therefore, the objective of SMI is to determine the feasible parameter set F(i), for
which

θ ◦ ∈ F(i), ∀ i. (2.89)

Under the time-invariant parameters assumption, the feasible parameter set cor-
responds to the intersection of the data-hyperspace until the ith time instant:

F(i) =
i∩

i0=1

S(i0), (2.90)
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with S(i) = Sp(i) (Fig.2.9a ) or S(i) = Snp(i) (Fig.2.9b).
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Figure 2.9: Feasible parameter set generated by a) data-hyperstrips, b) data-hypersectors
(n=2)

The modification that should be made in the implementation of the SMI under
the assumption of time invariant parameter vector is

Θ̂(i) = Θ(i−1), (2.91)
Ω̂(i) = Ω(i−1). (2.92)

Consequently, the data-hyperstrips are computed using the most recently parameter
bounds arisen from the projection of Θ(i− 1) and Ω(i− 1). In addition, the time
invariant case entails that the sign of the components of the nominal parameter vector
will not change with time, sgn(θ ◦u (i)) = sgn(θ ◦u (i−1)) = sgn(θ ◦u ) , ∀ i, u. Hence, the
data-hypersectors can be determined under the a priori knowledge of sgn(θ ◦u ) , ∀ u.

For the orthotope-based SMI, it can be inferred from (2.62) and (2.63) that the
computed upper (lower) parameter bound θ+

Ωu
,
(

θ−Ωu

)
is monotonically decreasing

(increasing) in time, θ+
Ωu
(i) ≤ θ+

Ωu
(i− 1) and θ−Ωu

(i) ≥ θ−Ωu
(i− 1), ∀ i, u. Thus, the

volume of the computed orthotope is monotonically decreasing, since:

vol(Ω(i)) =
n

∏
u=1

∣∣∣θ+
Ωu
(i)−θ−Ωu

(i)
∣∣∣≤ n

∏
u=1

∣∣∣θ+
Ωu
(i−1)−θ−Ωu

(i−1)
∣∣∣= vol(Ω(i−1)) . (2.93)

It has to be highlighted that vol(Θ(i)) ≤ vol(Θ(i− 1)), while Θ(i) * Θ(i− 1). On the
other hand, vol(Ω(i))≤ vol(Ω(i−1)) and Ω(i)⊆Ω(i−1).
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2.6.2 Equation Error

When the components of the regression vector are assumed to be perfectly known,
implying that eφu(i) = 0, ∀ i, u, and the noise term is introduced in the linearly
parametrizable model as an equation error:

ym(i) = φ(i)T θ ◦(i)+ e′y(i) (2.94)

The equation error is also assumed to be unknown but bounded∣∣e′y(i)∣∣≤ e′max
y , (2.95)

with e′max
y to be known a priori. Introducing (2.94) into (2.95) yields that the nominal

parameter vector resides within a data-hyperstrip, defined as:

S′(i) =
{

θ : ym(i)− e′max
y ≤ φ(i)T θ ≤ ỹm(i)+ e′max

y
}
. (2.96)

2.7 Conclusions

In this chapter, the orthotopic and an ellipsoidal SMI method is presented. In the
general case, the linearly parametrizable system is assumed to be time-varying due
to unknown but bounded parameter perturbations, while unknown but bounded
measurement noise is assumed to corrupt both the output and the regression vec-
tor. Two formulations of the data-hyperspace are provided: a) the data-hyperstrip,
whose computation is realized based on estimated parameter bounds, and b) the
data-hypersector, which presupposes the knowledge of parameters’ signs. In ad-
dition, an augmented orthotope (ellipsoid) is defined, incorporating the bounded
parameter perturbations. The orthotopic SMI is encountered as a 2n linear program-
ming problem with 2(n+ 1) constraints arisen from the augmented orthotope and
the configuration of the data-hyperspace. The optimal solutions of this problem cor-
respond to the vertices’ coordinates of the estimated orthotope. The ellipsoidal SMI
under the assumption of a data-hyperstrip is performed using the Optimal Volume
Ellipsoid, which is properly customized so as to handle data-hypersectors. Further
on, the appropriate modifications of the SMI methods under the assumption of time-
invariant parameters and equation error.
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Chapter 3

Fault Detection and Diangosis

3.1 Introduction

In this chapter, the Fault Detection and Diagnosis (FDD) procedure is analyzed
based on orthotopic and ellipsoidal Set Membership Identification (SMI), aiming
at capturing multiple abrupt parametric faults. The linearly parametrizable model is
reformulated, so as to efficiently embed the abrupt parameter variations. Regardless of
the type of the SMI procedure, a fault is detected when the existence of the parameter
set is affected by the abrupt transition (jump) of the nominal parameter vector. In
order to proceed to the fault diagnosis, a seamless update of the SMI procedure
is realized by resetting the parametric set to a new one that contains the ‘jump’
parameter vector. The resetting procedure is followed by the fault isolation and
identification mechanisms; the determination of the faulty parameters is the result
of the consistency test based on the projections of the parametric sets, whose centers
are used for estimating the size and the type of faults. Moreover, the modifications
of the FDD procedure, considering a time invariant parameter vector are provided.
The chapter is completed with a discussion concerning the fault detectability, the
possibility of a better estimation of the time instant of fault occurrence applying a
backward-in-time fault detection algorithm and the characterization of the algorithm
sensitivity.

3.2 Fault Detection and Diagnosis Assumptions

Consider the jump linearly parametrizable model given as:

y(i) = φ(i)T θ ◦(i), (3.1)
θ ◦(i) = θ ◦(i−1)+w(i)+

(
∆θ (i)−∆θ

(
i f j
))

, i f j < i≤ i f j+1 , (3.2)
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3. FAULT DETECTION AND DIANGOSIS

where y(i) ∈ R is the noise-free model output, φ(i) ∈ Rn is the noise-free regression
vector, θ ◦(i) ∈ Rn is the unknown nominal parameter vector, ∆θ (i) ∈ Rn are the
parameter variation vectors, i f j is the time instant of fault occurrence, f j is the fault-
index, with i f0 = 0, ∆θ

(
i f0
)
= 0. Moreover, the observed output and components of

regression vector are given in (2.3) and (2.4), while the unknown but bounded noise
and parameter perturbations are described through (2.7), (2.8) and (2.9).

The jump-parameter case implies that after every fault occurrence the parameter
variation vector remains constant for a time window with length

L◦f j
= arg

L◦f j

{
L◦f j

= i f j+1− i f j :
∥∥∆θ

(
i f j + i

)
−∆θ

(
i f j
)∥∥= 0, i ∈

{
0, . . . ,L◦f j

−1
}}

. (3.3)

Rather than demanding the knowledge of L◦f j
, it is assumed that the parameter

variation vector ∆θ
(
i f j
)
, ∀ i f j , remains constant within a time window with length

L≤min
f j

L◦f j
. The jump-parameter case is graphically represented in Fig.3.1 for n = 2.
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Figure 3.1: Graphical representation of the jump-parameter case (n = 2).

The safe operation parameter bounds are assumed to be known a priori:

θ ◦u (i) ∈
[
θ min

u ,θ max
u
]
,∀i, u = 1, . . . ,n. (3.4)

This condition implies that if the parameter perturbations and/or the abrupt paramet-
ric faults lead to a value of θ ◦u (i) beyond this interval, the system halts its operation
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3.3 Fault Detection Procedure

and the fault diagnosis may be unattainable. Using (3.4), the following condition
arises ∀ u ∈ 1, . . . ,n

∆θu (i)−∆θu
(
i f j
)

= θ ◦(i)−θ ◦(i−1)−w(i) ∈
[
γmin

u ,γmax
u
]
, ∀ i f j (3.5)

γmin
u = θ min

u −θ max
u −wmax

u , (3.6)
γmax

u = θ max
u −θ min

u −wmin
u . (3.7)

Under the a priori knowledge of: a) the structure of a jump linearly parametriz-
able model, b) the worst-case noise–bounds emax

y , emax
φu
, c) the worst-case parameter

perturbation bounds wmin
u , wmax

u , the objective of the fault detection mechanism is to
identify the time instants of detection id j (id j ≥ i f j) at which a fault has occurred. Ide-
ally, these time instants should be identical to the fault-occurrence instants (id j = i f j)
or close to them.

The fault diagnosis problem includes the fault isolation and fault identification
mechanisms. The fault isolation procedure amounts to the localization of the source
of the fault, indicating the component(s) of the parameter vector, influenced by abrupt
variations. The task of fault identification is the estimation of the magnitude and time
behavior of parameter variation.

3.3 Fault Detection Procedure

A fault is said to have occurred when an inconsistency between the measurement
data and the inherent assumptions appears;

Fault Detection Criterion 1 Given the data ym(id j), φ m(id j), a fault is detected when

Z
(

id j
)∩

S
(

id j
)
= /0, (3.8)

where id j denotes the time instant of fault detection, d j is the detection-index and
the fault is said to have occurred before the time instant id j , and more specifically
id j−1 < i f j ≤ id j .

If the FD procedure relies on:

• the orthotope-based SMI, Z
(
id j
)
corresponds to the augmented orthotope

Ω̂
(
id j
)
, which does not intersect with a data-hyperstrip (Fig. 3.2a) or a data-

hypersector (Fig. 3.2b). The empty intersection implies that the linear pro-
gramming problem stated in Section 2.5.1 has no feasible solution.

• the ellipsoid-based SMI, Z
(
id j
)
corresponds to the augmented ellipsoid Θ̂

(
id j
)
.

If the augmented ellipsoid does not intersect with a data-hyperstrip (Fig. 3.3a),
the Algorithm 1 (OVE) in Appendix B.1 halts its operation at Step 3, while in
case of a data-hypersector (Fig. 3.3b), the Algorithm 2 (customized OVE) in
Appendix B.1 halts its operation at Step 3 or 18.
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Figure 3.2: Graphical representation of fault detection based on the empty intersection
between an orthotope and: a) a data-hyperstrip, b) a data-hypesector (n = 2).
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Figure 3.3: Graphical representation of fault detection based on the empty intersection
between an ellipsoid and: a) a data-hyperstrip, b) a data-hypersector (n = 2)

3.4 Fault Diagnosis Procedure

After the fault detection, the fault diagnosis mechanism is applied presuppos-
ing that no catastrophic damage has occurred and the condition given in (3.5) is
not violated. Hence, using the measurement data after the fault detection, the FDs-
strategy aims at isolating and identifying the faults, after a seamless updating of the
parameter set and the data-hyperspace.

Resetting Procedure When a fault is detected, the SMI procedure is interrupted. In
order to proceed with the fault isolation and identification, the parametric set Z

(
id j
)
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and the data-hyperspace S
(
id j
)
should be reset

Z
(

id j
)
−→ Zr

(
id j
)
, (3.9)

S
(

id j
)
−→ Sr

(
id j
)
, (3.10)

in order to guarantee that

θ ◦
(
id j
)
∈ Zr

(
id j
)

and
θ ◦
(
id j
)
∈ Sr

(
id j
)
⇒ Zr

(
id j
)
∩Sr

(
id j
)
6= /0. (3.11)

where θ ◦
(
id j
)
is the new nominal parameter vector.

A. Orthotope-based Resetting Procedure In the case that the FDD procedure
is based on the orthotopic SMI, the resetting of the augmented orthotope at the time
instant of fault detection is accomplished according to the following theorem [87].

Theorem 3.4.1 If θ ◦
(
id j −1

)
+w

(
id j
)
∈ Ω̂

(
id j
)
, then θ ◦

(
id j
)
∈Ωr

(
id j
)
, where

Ωr
(

id j
)
=

θ :


θ r−

Ω1

(
id j
)

...
θ r−

Ωn

(
id j
)
4 θ 4


θ r+

Ω1

(
id j
)

...
θ r+

Ωn

(
id j
)

 (3.12)

and

θ r−
Ωu

(
id j
)

= θ̂−Ωu

(
id j
)
+ γmin

u , (3.13)

θ r+
Ωu

(
id j
)

= θ̂+
Ωu

(
id j
)
+ γmax

u , (3.14)

where θ̂−Ωu

(
id j
)
, θ̂+

Ωu

(
id j
)
are given in (2.52) and (2.53), respectively.

Proof The condition (3.5) implies that ∆θ (i)−∆θ
(
i f j−1

)
resides within an orthotope

defined as:

Ω∆θ =

θ :

 γmin
1
...

γmin
n

4 θ 4

 γmax
1
...

γmax
n


 . (3.15)

Assuming that θ ◦
(
id j −1

)
+w

(
id j
)
∈ Ω̂

(
id j
)
and θ ◦

(
id j
)
= θ ◦

(
id j −1

)
+w

(
id j
)
+∆

(
id j
)
−

∆
(
i f j−1

)
, it yields that θ ◦

(
id j
)
∈Ωr

(
id j
)
with:

Ωr
(

id j
)
= arg

Ω

{
Ω : Ω = Ω̂

(
id j
)
⊕Ω∆θ

}
, (3.16)

whose vertices’ coordinates are defined through (3.13)-(3.14).
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B. Ellipsoid-based Resetting Procedure The resetting procedure when the
FDD procedure relies on the ellipsoidal SMI is realized according to the following
theorem.

Theorem 3.4.2 If θ ◦
(
id j −1

)
+w

(
id j
)
∈ Θ̂

(
id j
)
, then θ ◦

(
id j
)
∈ Θr

(
id j
)
, with the cen-

troid and the shape matrix of Θr
(
id j
)
given as:

θ c
r

(
id j
)

= θ̂ c
(

id j
)

(3.17)

Pr
(

id j
)

= U
(

id j
)

Σr
(

id j
)

UT
(

id j
)
, (3.18)

Σr
(

id j
)

= Σ
(

id j
)
+2γΣ

(
id j
)1/2

+ γ2I, (3.19)

P̂
(

id j
)

= U
(

id j
)

Σ
(

id j
)

UT
(

id j
)
. (3.20)

Proof The worst case scenario amounts to the location of θ ◦
(
id j −1

)
+w

(
id j
)
almost

on the closure of Θ̂
(
θ̂ c
(
id j
)
, P̂
(
id j
))
. The closure of this ellipsoid should be enlarged

by the maximum possible parameter deviation given as

∥∥∆θ (i)−∆θ
(
i f j−1

)∥∥=√ n

∑
u=1

(
∆θu (i)−∆θu

(
i f j−1

))
≤

√
n

∑
u=1

max(|γmin
u | , |γmax

u |) = γ.

Based on the singular value decomposition of the shape matrix P̂
(
id j
)
given in (3.20),

the Σ
(
id j
)
-diagonal matrix contains the squared elements of the semiaxes’ lengths.

Let these elements be λu, u = 1, . . . ,n; then to ensure the presence of θ ◦
(
id j
)
inside

an ellipsoid Θr
(
id j
)
with the same centroid as in Θ̂(id j), these elements must be set to(√

λu + γ
)2

= λu+2γ
√

λu+γ2. In a more compact form, Σr
(
id j
)
= Σ

(
id j
)
+2γΣ

(
id j
)1/2

+

γ2I.

C. Data-hyperstrip Resetting Procedure If S
(
id j
)
is a data-hyperstrip, it has

been generated according to (2.29) with the worst-case noise bound ẽmax
(
id j
)
=

emax
y + ∑n

u=1 emax
φu

max
(∣∣∣θ−Zu

(
id j
)∣∣∣ , ∣∣∣θ+

Zu

(
id j
)∣∣∣), where θ−Zu

(
id j
)
,θ+

Zu

(
id j
)
are the parameter

bounds computed using the projection of the augmented orthotope Ω̂
(
id j
)
or the

augmented ellipsoid Θ̂
(
id j
)
. Since these parametric sets have been reset according

to Theorem 3.4.1 or Theorem 3.4.2, the data-hyperstrip S
(
id j
)
should also be reset.

Hence, the resetting data-hyperspace Sp
(
id j
)
is a data-hyperstrip Sp

r
(
id j
)
defined by

(2.29). The bound of the noise ẽmax
(
id j
)
is computed as:

• in the orthotopic SMI-based resetting procedure,

ẽmax
(

id j
)
= emax

y +
n

∑
u=1

emax
φu

max
(∣∣∣θ r−

Ωu

(
id j
)∣∣∣ , ∣∣∣θ r+

Ωu

(
id j
)∣∣∣) (3.21)

where θ r−
Ωu

(
id j
)
,θ r+

Ωu

(
id j
)
are given in (3.13) and (3.14), respectively,

46



3.4 Fault Diagnosis Procedure

• in the ellipsoidal SMI-based resetting procedure,

ẽmax
(

id j
)
= emax

y +
n

∑
u=1

emax
φu

max
(∣∣∣θ r−

ΩΘ
u

(
id j
)∣∣∣ , ∣∣∣θ r+

ΩΘ
u

(
id j
)∣∣∣) (3.22)

with

θ r−
ΩΘ

u

(
id j
)

= −ρ
(

qo
u+n

∣∣∣Θr
(

id j
))

(3.23)

θ r+
ΩΘ

u

(
id j
)

= ρ
(

qo
u

∣∣∣Θr
(

id j
))

(3.24)

with qo
u, qo

u+n given in (2.19).

If S
(
id j
)
is a data-hypersector, three distinct resetting procedures can be applied:

• if θ min
u ≥ 0 or θ max

u ≤ 0, ∀ u, then the data-hypersector will not be reset.

• if θ min
u < 0 < θ max

u and

sgn
(

θ r−
Ωu

(
id j
))

= sgn
(

θ r+
Ωu

(
id j
))

, (3.25)
or

sgn
(

θ r−
ΩΘ

u

(
id j
))

= sgn
(

θ r+
ΩΘ

u

(
id j
))

, (3.26)

then the resetting data-hyperspace Sr
(
id j
)
is a data-hypersector Snp

r
(
id j
)
, which

is defined through (2.41)–(2.43), using the sign presented in (3.25) or (3.26)
instead of sgn

(
θ ◦
(
id j
))
.

• if θ min
u < 0 < θ max

u and (3.25) or (3.26) is invalid, then the resetting data-
hyperspace Sr

(
id j
)
is a data-hyperstrip Sp

r
(
id j
)
defined by (2.29) and (3.21)

or (3.22).

Remark 3.4.3 In case that the noise-errors are induced as an equation error in the
jump linearly parametrizable model, as described in Section 2.6.2, the data-hyperstrip
resetting procedure is omitted.

The orthotope or ellipsoid at the time instant of fault detection is generated as:

Ω
(

id j
)

= arg
Ω

{
Ω : Ω⊇

(
Ωr
(

id j
)∩

Sr
(

id j
))}

, (3.27)

or
Θ
(

id j
)

= arg
Θ

[
min

{
vol(Θ) : Θ⊃

[
Θr
(

id j
)∩

Sr
(

id j
)]}]

, (3.28)
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3.4.1 Fault Isolation Procedure

After the fault detection at id j , the orthotopes Ω
(
id j + i

)
or the ellipsoids Θ

(
id j + i

)
for 1 ≤ i < id j+1 − id j will be computed according to the SMI procedure presented in
Section 2.5.1 or 2.5.2, respectively, containing the varied nominal parameter vector

θ ◦(id j + i) ∈ Ω
(

id j + i
) (

Θ
(

id j + i
))

, (3.29)

θ ◦u (id j + i) ∈ Ωu

(
id j + i

) (
ΩΘ

u

(
id j + i

))
, ∀ u, (3.30)

where Ωu(i),
(
ΩΘ

u
(
id j + i

))
is defined in (2.11)((2.22)).

In order to determine the component(s) of parameter vector subject to abrupt
variations, denoted as faulty component(s), the worst-case parametric sets (orthotopes
or ellipsoids) within which the nominal parameter vector would have resided if no
fault had occurred should first be computed [87].

3.4.1.1 Fault Isolation based on Orthotopic SMI

Lemma 3.4.4 Due to parameter perturbations and under faultless conditions, the
deviation vector θ ◦ (i1)−θ ◦ (i0) with i0 < i1 resides within the orthotope Ωδ i, defined
as

Ωδ i =

θ :


δ i ·wmin

1
...

δ i ·wmin
n

4 θ 4


δ i ·wmax

1
...

δ i ·wmax
n


 (3.31)

where δ i = i1− i0, δ i≥ 1.

Proof Based on (2.2) and for δ i≥ 1, it yields:

θ ◦ (i0 +1) = θ ◦ (i0)+w(i0 +1) ,

θ ◦ (i0 +2) = θ ◦ (i0 +1)+w(i0 +2)

= θ ◦ (i0)+
i0+2

∑
t=i0+1

w(t)

...

θ ◦ (i0 +δ i) = θ ◦ (i0)+
i0+δ i

∑
t=i0+1

w(t),

or else,

θ ◦ (i1) = θ ◦ (i0)+
i1

∑
t=i0+1

w(t). (3.32)
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Taking into account that w(i) ∈Ωw, ∀ i,then

i1

∑
t=i0+1

w(t) ∈Ωw⊕Ωw⊕ . . .⊕Ωw︸ ︷︷ ︸
δ i

= Ωδ i (3.33)

with Ωδ i defined in (3.31). From (3.32) and (3.33), it yields that θ ◦ (i1)−θ ◦ (i0)∈Ωδ i.

Proposition 3.4.5 If θ ◦ (i0) ∈Ω(i0), then under faultless conditions

θ ◦ (i1) ∈ Ω̂(i1|i0)⇔ θ ◦u (i1) ∈ Ω̂u (i1|i0) , ∀ u, (3.34)

with

Ω̂(i1|i0) = arg
Ω

{
Ω : Ω = Ω∗δ i⊕Ω(i0)

}
, (3.35)

Ω̂u (i1|i0) = {θu : θu ∈ [δ i ·wmin
u +θ−u (i0) ,δ i ·wmax

Ωu
+θ+

Ωu
(i0)]}, (3.36)

where Ω̂(i1|i0) is the worst-case orthotope and the minimum and maximum value
of Ω̂Θ

u (i1|i0) are the worst-case lower and upper parameter bound, respectively.

An example of the worst case orthotopes, Ω̂(i1|i0) , and the orthotopes arisen from
the normal operation of the SMI (Section 2.5.1), Ω(i1) , using the data-hypersector
Snp(i1) is presented in Fig. 3.6, for n = 2, i1 = i0 +1, i0 +2 and wmin

u > 0, ∀ u.
After the fault detection, the following lemmas can be offered for fault isolation,

relying on the conditions (3.30) and (3.34) with i0 = id j − 1, i1 = id j + i and 0 ≤ i <
id j+1− id j .

Lemma 3.4.6 The uth component of parameter vector is characterized as faulty at
the time instances iu∗ at which

Ω̂u

(
iu∗|id j −1

)∩
Ωu (iu∗) = /0, (3.37)

with id j ≤ iu∗ < id j+1 .

Proof Since θ ◦u (iu∗) ∈ Ωu (iu∗) and (3.37) is valid, then θ ◦u (iu∗) /∈ Ω̂u
(
iu∗|id j −1

)
. This

is in contrast with the condition (3.34) and the uth component of parameter vector
is defined as faulty at the time instant iu∗.

Lemma 3.4.7 The uth component of parameter vector is characterized as non-faulty
at the earliest time instant iu∗ if

Ω̂u

(
iu∗|id j −1

)∩
Ωu (iu∗) = Ωu (iu∗) , (3.38)

with id j ≤ iu∗ < id j+1 .
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Figure 3.6: Graphical representation of the worst case orthotopes, Ω̂(i1|i0) , and the
orthotopes arisen from the normal operation of the SMI (Section 2.5.1), Ω(i1)

Proof Since θ ◦u (iu∗)∈Ωu (iu∗) and (3.38) is valid, then θ ◦u (iu∗)∈ Ω̂u
(
iu∗|id j −1

)
. Hence,

based on the condition (3.34), the uth component of parameter vector is characterized
as non-faulty at the time instant iu∗. It can be proven that the uth component will
be characterized as non-faulty at future time instances iu∗+ i with 1≤ i < id j+1− i∗. In
particular, Equation (3.38) implies that Ω̂u

(
iu∗|id j −1

)
⊇Ωu (iu∗) and

δ i ·wmin
u +θ−Ωu

(
id j −1

)
≤ θ−Ωu

(iu∗) , (3.39)

δ i ·wmax
u +θ+

Ωu

(
id j −1

)
≥ θ+

Ωu
(iu∗) (3.40)

with δ i = iu∗−
(
id j −1

)
. Adding wmin

u , wmax
u in both sides of (3.39) and (3.40), respec-

tively, yields:(
iu∗−

(
id j −1

))
·wmin

u +θ−Ωu

(
id j −1

)
+wmin

u ≤ θ−Ωu
(iu∗)+wmin

u ⇐⇒(
(iu∗+1)−

(
id j −1

))
·wmin

u +θ−Ωu

(
id j −1

)
≤ θ̂−Ωu

(iu∗+1) (3.41)(
iu∗−

(
id j −1

))
·wmax

u +θ+
Ωu

(
id j −1

)
+wmin

u ≥ θ+
Ωu

(iu∗)+wmax
u ⇐⇒(

(iu∗+1)−
(

id j −1
))
·wmax

u +θ+
Ωu

(
id j −1

)
≥ θ̂+

Ωu
(iu∗+1) . (3.42)

Combining (2.62) and (2.63) with (3.41) and (3.42), the following inequalities
are obtained:
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(
(iu∗+1)−

(
id j −1

))
·wmin

u +θ−Ωu

(
id j −1

)
≤ θ−Ωu

(iu∗+1) ,(
(iu∗+1)−

(
id j −1

))
·wmax

u +θ+
Ωu

(
id j −1

)
≥ θ+

Ωu
(iu∗+1)

or else

Ω̂u

(
iu∗+1|id j −1

)∩
Ωu (iu∗+1) = Ωu (iu∗+1) . (3.43)

Following the same procedure iteratively, it yields

Ω̂u

(
iu∗+ i|id j −1

)∩
Ωu (iu∗+ i) = Ωu (iu∗+ i) (3.44)

with 0 ≤ i < id j+1 − i∗ and the uth component is characterized as non-faulty for the
time window

[
iu∗, id j+1

)
.

If there is no time instant i ∈
[
id j , . . . , id j+1

)
for which Equations (3.37), or (3.38) are

not valid, then there can be no inference for the status of the uth component of the
parameter vector.

3.4.1.2 Fault Isolation based on ellipsoidal SMI

Lemma 3.4.8 Due to parameter perturbations and under faultless conditions, the
deviation vector θ ◦ (i1)−θ ◦ (i0) with i0 < i1 resides within the ellipsoid Θδ i

(
θ c

δ i,Pδ i
)
,

defined as

θ c
δ i = δ i ·wc, (3.45)

Pδ i = δ i2 ·Pw (3.46)

where δ i = i1− i0, δ i≥ 1.

Proof According to [84], the sum of two ellipsoids Θ1 (c1,P1) and Θ1 (c2,P2) with
P1 = νPP2 is an ellipsoid Θ12 (c12,P12), where

c12 = c1 + c2, (3.47)
P12 =

(√
νP +1

)2 P2 (3.48)

Taking into account that w(i)∈Θw (wc,Pw) , ∀ i, (Θw is defined in Appendix A.1) then

w(i0 +1) ∈ Θw (wc,Pw)

w(i0 +1)+w(i0 +2) ∈ Θw (2wc,4Pw)

(w(i0 +1)+w(i0 +2))+w(i0 +3) ∈ Θw (3wc,9Pw)

...
i1

∑
t=i0+1

w(t) ∈ Θw
(

δ i ·wc,δ i2 ·Pw
)

(3.49)
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Defining Θδ i = Θw
(

δ i ·wc,δ i2 ·Pw
)
and combining (3.32) with (3.49) implies that

θ ◦ (i1)−θ ◦ (i0) ∈Θδ i
(
θ c

δ i,Pδ i
)
.

Proposition 3.4.9 If θ ◦ (i0) ∈Θ(θ c (i0) ,P(i0)), then under faultless conditions

θ ◦ (i1) ∈ Θ̂(i1|i0)⇔ θ ◦u (i1) ∈ Ω̂Θ
u (i1|i0) , ∀ u (3.50)

where

• Θ̂(i1|i0) is the worst-case ellipsoid and its centroid and the shape matrix are
computed as:

θ̂ c (i1|i0) = θ c (i0)+θ c
δ i, (3.51)

P̂(i1|i0) = (ζδ i +1)P(i0)+
(

1
ζδ i +1

)
Pδ i. (3.52)

where the variable ζδ i is the unique positive solution of
n
∑

u=1

1
λ δ i

u +ζδ i
= n

ζδ i(ζδ i+1) and

λ δ i
u are the solutions of the generalized eigenvalue problem Pδ iχu = λ δ i

u P(i−1)χu,
where δ i = i1− i0, δ i≥ 1.

• ΩΘ
u
(
id j + i

)
= proj

u

(
Ω̂Θ (i1|i0)

)
, or else

Ω̂Θ
u (i1|i0) =

{
θu : θu ∈

[
−ρ
(

qo
u+n

∣∣Θ̂( i1| i0)
)
,ρ
(

qo
u|Θ̂( i1| i0)

)]}
, (3.53)

and the minimum and maximum value of Ω̂Θ
u (i1|i0) are the worst-case upper

and lower parameter bound, respectively.

After the fault detection, the following lemmas can be offered for fault isolation,
relying on the conditions (3.30) and (3.50) with i0 = id j − 1, i1 = id j + i and 0 ≤ i <
id j+1− id j .

Lemma 3.4.10 The uth component of parameter vector is characterized as faulty at
the time instances iu∗ at which

Ω̂Θ
u

(
iu∗|id j −1

)∩
ΩΘ

u (iu∗) = /0, (3.54)

with id j ≤ iu∗ < id j+1 .

Proof Since θ ◦u (iu∗) ∈ΩΘ
u (iu∗) and (3.54) is valid, then θ ◦u (iu∗) /∈ Ω̂Θ

u
(
iu∗|id j −1

)
. This

is in contrast with the condition 3.50 and the uth component of parameter vector is
defined as ‘faulty’ at the time instant iu∗.
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Lemma 3.4.11 The uth component of parameter vector is characterized as non-
faulty at the earliest time instant iu∗ if

Ω̂Θ
u

(
iu∗|id j −1

)∩
ΩΘ

u (iu∗) = ΩΘ
u (iu∗) , (3.55)

with id j ≤ iu∗ < id j+1 .

Proof Since θ ◦u (iu∗)∈ΩΘ
u (iu∗) and (3.55) is valid, then θ ◦u (iu∗)∈ Ω̂Θ

u
(
iu∗|id j −1

)
. Hence,

based on the condition 3.50, the uth component of parameter vector is defined as
‘non-faulty’ at the time instant iu∗.

If there is no time instant i ∈
[
id j , . . . , id j+1

)
for which Equations (3.54), or (3.55)

are not valid, then there can be no inference for the status of the uth component of
the parameter vector.

3.4.2 Fault Identification Procedure

3.4.2.1 Fault Identification based on Orthotopic SMI

After the fault isolation event in which the faulty uth components of the parameter
vector were isolated as the ones for which (3.37) is satisfied, the most likely size
of ∆θu

(
i f j
)
− ∆θu

(
i f j−1

)
can be estimated based on the distance of the centers of

Ω̂u
(
iu∗|id j −1

)
and Ωu (iu∗) [87]. Particularly,

d̃θu(i
u∗) = θ c

Ωu
(iu∗)−

(
θ c

Ωu

(
id j −1

)
+δ i

wmax
u +wmin

u

2

)
, (3.56)

where θ c
u (i) is computed via (2.12) and δ i = iu∗− (id j −1).

3.4.2.2 Fault Identification based on ellipsoidal SMI

After the fault isolation event in which the faulty uth components of the parameter
vector were isolated as the ones for which (3.54) is satisfied, the most likely size
of ∆θu

(
i f j
)
− ∆θu

(
i f j−1

)
can be estimated based on the distance of the centers of

Ω̂Θ
u
(
iu∗|id j −1

)
and ΩΘ

u (iu∗). Particularly„

d̃θu(i
u∗) = θ c

u (i
u∗)− θ̂ c

u

(
iu∗|id j −1

)
. (3.57)

3.5 Special Case:Time Invariant Parameters

Under the assumption of a time invariant parameters after a fault occurrence, the
jump linearly parametrizable model described through (3.1)-(3.2) is transformed to:

y(i) = φ(i)T (θ ◦+∆θ
(
i f j−1

))
, for i f j−1 ≤ i < i f j . (3.58)
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The details of the transformation are provided in Appendix A.2.
The components of the nominal parameter vectors are restricted by the safe op-

eration bounds, implying that:

θ ◦u +∆θ
(
i f j
)
∈
[
θ min

u ,θ max
u
]
, ∀ i f j ,u = 1, . . . ,n (3.59)

and consequently

∆θ
(
i f j
)
∈

[
γ̃min

u , γ̃max
u
]
, ∀ i f j , (3.60)

γ̃min
u = θ min

u −θ max
u , (3.61)

γ̃max
u = θ max

u −θ min
u =−γ̃min

u . (3.62)

3.5.1 Fault Detection Procedure

In case of time-invariant parameters, the fault detection criterion defined by (1)
is modified as:

Z
(

id j −1
)∩

S
(

id j
)
= /0, (3.63)

where Z
(
id j −1

)
corresponds to Ω

(
id j −1

)
or Θ

(
id j −1

)
, depending on the type of

the SMI based on which the FDD procedure is performed.
However, in the ellipsoidal SMI-based FDD technique, another consistency test

can be applied for fault detection. Specifically, rather than relying solely on the el-
lipsoidal SMI method in which vol(Θ(i)) ≤ vol(Θ(i− 1)), while Θ(i) 6⊂ Θ(i− 1), the
intersection of the support orthotopes is used as another fault detection criterion,
defined as [88]:

X(i) =
i∩

t=1

ΩΘ(t), (3.64)

or equivalently,

X(i) = X(i−1)
∩

ΩΘ(i). (3.65)

It should be noted that unlike the ellipsoidal methods X(i)⊆X(i−1) and vol(X(i))≤
vol(X(i−1)).

In addition, the projection of the X(i) on each axis is denoted as:

Xu (i) = proj
u

(X) =
{

θu : θu ∈
[
θ−Xu

(i) ,θ+
Xu

(i)
]}

(3.66)

and its center computed as:

θ c
Xu
(i) =

θ+
Xu
(i)+θ−Xu

(i)

2
, u = 1, . . . ,n. (3.67)
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The centroid of the X(i) is defined as:

θ c
X(i) =

[
θ c
X1
(i), . . . ,θ c

Xn
(i)
]T

. (3.68)

It has to be mentioned that ∀ u, Xu (i) , is monotonically converging to the nominal
parameter values θ ◦u , in contrast with the projection of the support orthotope, ΩΘ

u (i).
Therefore, in the ellipsoidal SMI using data-hyperstrips, Sp(i) can be defined through
(2.29) with ẽmax(i) computed as:

ẽmax(i) = emax
y +

n

∑
u=1

emax
φu

max
(∣∣∣θ−Xu

(i)
∣∣∣ , ∣∣∣θ+

Xu
(i)
∣∣∣), (3.69)

The aforementioned sequence of orthotopes can be used for the fault detection:

Fault Detection Criterion 2 Given the data ym(id j), φ m(id j), a fault is detected when

X
(

id j
)
= X

(
id j −1

)∩
ΩΘ
(

id j
)
= /0. (3.70)

where id j denotes the time instant of fault detection, d j is the detection-index and
the fault is said to have occurred before the time instant id j , and more specifically
id j−1 ≤ i f j ≤ id j .

This criterion should be used in conjunction with

Θ
(

id j −1
)∩

S
(

id j
)
= /0. (3.71)

Figure 3.7 indicates the application of the OVE-method over a four sample time-
window i ∈

{
i f j −3, . . . , i f j −1

}
. The computed ellipsoids, orthotopes and hyper-

strips in ascending chronological order are shown with black, blue and red color-lines
respectively. The intersections X(i) are shown by the similarly colored hashed-areas.

X
(
i f j −1

)
and the Θ

(
i f j −1

)
sets are also presented in Fig. 3.8, from which it is

apparent that neither set contains the other. When the fault occurs at id j = i f j , the
OVE-method cannot capture it, since Θ

(
i f j
)
6= /0, in contrast with the FD-criterion 2

in which X
(
i f j −1

)∩
ΩΘ (i f j

)
= /0.

3.5.2 Fault Diagnosis Procedure

The fault diagnosis procedure presented in Section 3.4 is properly customized
assuming a nominal parameter vector that is time invariant after each fault occur-
rence.
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Figure 3.7: Graphical representation of the computation of the intersection of support
orthotopes (n = 2).
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Figure 3.8: Activation of the FD-criterion using orthotopes with id j = i f j (n = 2).
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Resetting Procedure When a fault is detected at the time instant id j , the resetting
of the parametric set

(
Z
(
id j −1

)
→ Zr

(
id j −1

))
and the data hyperspace (S(id j−1)→

Sr(id j −1)) is performed so as

θ ◦+∆θ
(
i f j
)
∈ Zr

(
id j
)

and
θ ◦+∆θ

(
i f j
)
∈ Sr

(
id j
)
⇒ Zr

(
id j
)
∩Sr

(
id j
)
6= /0. (3.72)

A. Orthotope-based Resetting Procedure In case that the FDD procedure is
based on orthotopic SMI, the resetting of Ω

(
id j −1

)
is accomplished according to the

following theorem.

Theorem 3.5.1 If θ ◦+∆θ
(
i f j−1

)
∈Ω

(
id j −1

)
, then θ ◦+∆θ

(
i f j
)
∈Ωr

(
id j −1

)
, where

Ωr
(

id j −1
)
=

θ :


θ r−

Ω1

(
id j −1

)
...

θ r−
Ωn

(
id j −1

)
4 θ 4


θ r+

Ω1

(
id j −1

)
...

θ r+
Ωn

(
id j −1

)

 (3.73)

with

θ r−
Ωu

(
id j −1

)
= θ−Ωu

(
id j −1

)
−2γ̃max

u , (3.74)

θ r+
Ωu

(
id j −1

)
= θ+

Ωu

(
id j −1

)
+2γ̃max

u . (3.75)

Proof From (3.60)-(3.62), it yields that ∆θu
(
i f j
)
,−∆θu

(
i f j−1

)
∈ [−γ̃max

u , γ̃max
u ] , ∀ u,

implying that ∆θu
(
i f j
)
− ∆θu

(
i f j−1

)
∈ [−2γ̃max

u ,2γ̃max
u ] , ∀ u. Subsequently, ∆θ

(
i f j
)
−

∆θ
(
i f j−1

)
resides within an orthotope defined as:

Ω∆θ =

θ :

 −2γ̃max
1
...

−2γ̃max
n

4 θ 4

 2γ̃max
1
...

2γ̃max
n


 . (3.76)

Assuming that θ ◦+∆θ
(
i f j−1

)
∈Ω

(
id j −1

)
, and taking into account that θ ◦+∆θ

(
i f j
)
=

θ ◦+∆θ
(
i f j−1

)
+
(
∆θ
(
i f j
)
−∆θ

(
i f j−1

))
it yields that θ ◦+∆θ

(
i f j
)
∈Ωr

(
id j −1

)
with:

Ωr
(

id j −1
)
= arg

Ω

{
Ω : Ω = Ω

(
id j −1

)
⊕Ω∆θ

}
(3.77)

whose vertices’ coordinates are defined through (3.74)-(3.75).
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B. Ellipsoid-based Resetting Procedure The resetting procedure when the
FDD procedure relies on the ellipsoidal SMI is realized according to the following
theorem.

Theorem 3.5.2 If θ ◦+∆θ
(
i f j−1

)
∈Θ

(
id j −1

)
, then θ ◦+∆θ

(
i f j
)
∈Θr

(
id j −1

)
, with the

centroid and the shape matrix of Θr
(
id j −1

)
given as:

θ c
r

(
id j −1

)
= θ c

(
id j −1

)
, (3.78)

Pr
(

id j −1
)

= U
(

id j −1
)

Σr
(

id j −1
)

UT
(

id j −1
)
, (3.79)

Σr
(

id j −1
)

= Σ
(

id j −1
)
+4γ̃Σ

(
id j −1

)1/2
+4γ̃2I, (3.80)

P
(

id j −1
)

= U
(

id j −1
)

Σ
(

id j −1
)

UT
(

id j −1
)
. (3.81)

Proof The worst case scenario amounts to the location of θ ◦
(
id j −1

)
almost on the

closure of Θ
(
θ c
(
id j −1

)
,P
(
id j −1

))
. The closure of this ellipsoid should be enlarged

by the maximum possible parameter deviation given as

∥∥∆θ
(
i f j
)∥∥ ≤

√
n

∑
u=1
|γ̃max

u |= γ̃, ∀ i f j ,∥∥∆θ
(
i f j
)
−∆θ

(
i f j−1

)∥∥ ≤
∥∥∆θ

(
i f j
)∥∥+∥∥∆θ

(
i f j−1

)∥∥≤ 2γ̃.

Based on the singular value decomposition of the shape matrix P
(
id j −1

)
=U

(
id j −1

)
Σ
(
id j −1

)
UT
(
id j −1

)
, the Σ

(
id j −1

)
-diagonal matrix contains the squared elements

of the semiaxes’ lengths. Let these elements be λu, u = 1, . . . ,n; then to ensure the
presence of θ ◦+∆θ

(
i f j
)
inside an ellipsoid Θr

(
id j −1

)
with the same centroid as in

Θ
(
id j −1

)
, these elements must be set to

(√
λu +2γ̃

)2
= λu +4γ̃

√
λu +4γ̃2. In a more

compact form, Σr
(
id j −1

)
= Σ

(
id j −1

)
+4γ̃Σ

(
id j −1

)1/2
+4γ̃2I.

An alternative procedure for calculating the resetting ellipsoid Θr
(
id j −1

)
based

on the intersection of the support orthotopes is provided in the next theorem [89].

Theorem 3.5.3 If θ ◦+∆θ
(
i f j−1

)
resides within the sets X

(
id j −1

)
and Θ

(
id j −1

)
,

then θ ◦+∆θ
(
i f j
)
will reside within the sets Xr

(
id j −1

)
and Θr

(
id j −1

)
, where

Xr
(

id j −1
)
=

θ :


θ r−
X1

(
id j −1

)
...

θ r−
Xn

(
id j −1

)
4 θ 4


θ r+
X1

(
id j −1

)
...

θ r+
Xn

(
id j −1

)

 (3.82)

with

θ r−
Xu

(
id j −1

)
= θ−Xu

(
id j −1

)
−2γ̃max

u , (3.83)

θ r+
Xu

(
id j −1

)
= θ+

Xu

(
id j −1

)
+2γ̃max

u (3.84)
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and

Θr
(

id j −1
)
= arg

Θ

[
min

{
vol(Θ) : Θ⊃ Xr

(
id j −1

)}]
. (3.85)

Proof It is reminded that ∆θ
(
i f j
)
−∆θ

(
i f j−1

)
∈ Ω∆Θ with Ω∆Θ given in (3.76). As-

suming that θ ◦+∆θ
(
i f j−1

)
∈ X

(
id j −1

)
, then θ ◦+∆θ

(
i f j
)
= θ ◦+∆θ

(
i f j−1

)
+(∆θ(i f j)

−∆θ(i f j−1)) ∈ Xr
(
id j −1

)
with:

Xr
(

id j −1
)
= arg

X

{
X : X= X

(
id j −1

)
⊕Ω∆θ

}
(3.86)

whose vertices’ coordinates are defined through (3.83)-(3.84). The ellipsoid Θr
(
id j −1

)
is the Löwner-John ellipsoid of Xr

(
id j −1

)
, whose centroid θ c

r
(
id j −1

)
and shape ma-

trix Pr
(
id j −1

)
are the solutions of the optimization problem [90]:

min log
(
det
(
Q−1

))
s.t.

∥∥Q
(
V p
Xr

(
id j −1

)
−θ c

r
(
id j −1

))∥∥≤ 1,
(3.87)

∀ p = 0, . . . ,2n−1, where Q ∈ Rn×n � 0, V p
Xr

(
id j −1

)
corresponds to the coordinates of

the pth vertex of Xr
(
id j −1

)
and Pr

(
id j −1

)
=
(
QT Q

)−1.

C. Data-hyperstrip Resetting Procedure The data-hyperspace is reset following
the procedure described in Section 3.4. The only modification that should be made
for the time invariant parameters case is that the parameter bounds arisen from
the projection of Ωr

(
id j −1

)
,
(
Θr
(
id j −1

)
,Xr
(
id j −1

))
are used for the computation of

Sp
r
(
id j
)
or Snp

r
(
id j
)
.

An example of the resetting procedure of the intersection of support orthotopes
and the data-hyperstrip is presented in Fig. 3.9.

Remark 3.5.4 In case that the noise-errors are induced as an equation error in the
jump linearly parametrizable model, as described in Section 2.6.2, the data-hyperstrip
resetting procedure is omitted.

After the orthotope-based resetting procedure, the computation of Ω
(
id j
)
is real-

ized according to:

Ω
(

id j
)
= arg

Ω

{
Ω : Ω⊇

(
Ωr
(

id j −1
)∩

Sr
(

id j
))}

(3.88)

and the orthotopic-SMI continues its operation, as described in Section 2.5.1. Simi-
larly, the ellipsoid-based resetting procedure is followed by the computation of Θ

(
id j
)

and X
(
id j
)
as

Θ
(

id j
)

= arg
Θ

[
min

{
vol(Θ) : Θ⊃

[
Θr
(

id j −1
)∩

Sr
(

id j
)]}]

, (3.89)

X
(

id j
)

= ΩΘ
(

id j
)
, (3.90)
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Figure 3.9: Resetting procedure based on the intersection of support orthotopes (n = 2)

while in the resetting procedure based on the intersection of support orthotopes the
ellipsoid Θ

(
id j
)
is computed via (3.89) and

X
(

id j
)
= Xr

(
id j −1

)
∩ΩΘ

(
id j
)
, (3.91)

For id j < i < id j+1 , the ellipsoid SMI procedure continues its operation according to
Section 2.5.2.

3.5.2.1 Fault Isolation Procedure

The fault isolation and identification procedure is realized taking into account
that [88]:

• θ ◦ ∈ X
(
id1−1

) (
Ω
(
id1−1

))
,

• θ ◦+∆θ
(
i f j
)
∈ X

(
id j + i

) (
Ω
(
id j + i

))
, ∀ i ∈ [0, id j+1− id j)

• X(i−1)⊆ X(i), (Ω(i−1)⊆Ω(i)) ∀ i.

Lemma 3.5.5 A fault can be isolated for the uth component of the parameter vector
at the earliest time instant iu∗ for which

Zu

(
id1−1

)∩
Zu (iu∗) = /0,

(
iu∗ ≥ id j

)
, (3.92)

where Zu(i) = Xu(i) for the ellipsoidal SMI-based FDD and Zu(i) = Ωu(i) for the
orthotopic SMI-based FDD.

Proof Since Zu (iu∗+ i)⊆ Zu (iu∗) , iu∗+ i < id j+1 then Zu
(
id1−1

)∩
Zu (i) = /0 ∀i ∈ [iu∗, . . . ,

id j+1), and the the uth component of the parameter vector is defined as faulty.

61



3. FAULT DETECTION AND DIANGOSIS

Lemma 3.5.6 The uth component of the parameter vector is termed non-faulty at
the earliest time instant iu∗ for which

Zu

(
id1−1

)∩
Zu (iu∗) = Zu (iu∗) ,

(
iu∗ ≥ id j

)
, (3.93)

where Zu(i) = Xu(i) for the ellipsoidal SMI-based FDD and Zu(i) = Ωu(i) for the
orthotopic SMI-based FDD.

Proof Since Zu (iu∗+ i) ⊆ Zu (iu∗) , iu∗+ i < id j+1 then Zu
(
id1−1

)∩
Zu (i) = Zu (i) ∀i ∈[

iu∗, . . . , id j+1
)
, and the the uth component of the parameter vector is defined as a

non-faulty one.

If there is no time instant i ∈
[
id j , . . . , id j+1

)
for which Equations (3.92), or (3.93)

are not valid, then there can be no inference for the status of the uth component of
the parameter vector.

An example, clarifying the fault isolation procedure with u = 2 is presented in
Figure 3.10, where for the left, middle, and right case, the status of the θ2 compo-
nent is termed as non-faulty, faulty, and unspecified, respectively. In all cases, the θ1

component is termed as a faulty one.
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Figure 3.10: Fault isolation example (n = 2)

3.5.2.2 Fault Identification Procedure

After the fault isolation event in which the ‘faulty’ u∗th components of the param-
eter vector were isolated as the ones for which (3.92) is satisfied, the most likely size
of these faults can be estimated by the distance of the centers of the sets Zu

(
id1−1

)
and Zu (iu∗+ i) with 0≤ i < id j+1− iu∗. In this case, using (3.67), the estimation of fault
is:

dθu(i) = θ c
Zu
(iu∗+ i)−θ c

Zu

(
id1−1

)
, (3.94)
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where θ c
Zu
(i) = θ c

Xu
(i) in the ellipsoidal SMI-based FDD and θ c

Zu
(i) = θ c

Ωu
(i) for the

orthotopic SMI-based FDD.θ c
Xu
(i), θ c

Ωu
(i) are computed through (3.67) and 2.12),

respectively.

3.6 Fault Detection and Diagnosis Issues

This section provides a discussion about the detectability of the faults, the possi-
bility of a more accurate estimation of the time of fault occurrence and the sensitivity
of the algorithm in relation to the SMI and FDD assumptions. For sake of simplicity,
the discussion is realized taking into account time invariant parameters, but it can
be extended to the time-varying parameter case.

3.6.1 Undetected Faults

We should note that a fault may never be observed despite its occurrence. This
depends on whether θ ◦+∆θ

(
i f j
)
∈ Z

(
i f j + `

)
, ` ∈ [0, . . . , i f j+1− i f j), where Z(i) corre-

sponds to either an orthotope or an ellipsoid.

3.6.1.1 Undetected faults in the Orthotope-based Fault Detection Procedure

Lemma 3.6.1 A sufficient condition for θ ◦+∆θ
(
i f j
)
∈Ω

(
i f j + `

)
, ` ∈ [0, . . . , i f j+1− i f j)

is θ ◦+∆θ
(
i f j
)
∈Ω

(
i f j −1

)
[91].

Proof At the time instant i f j , θ ◦+∆θ
(
i f j
)
∈ S
(
i f j
)
. If θ ◦+∆θ

(
i f j
)
∈ Ω

(
i f j −1

)
, then

Ω
(
i f j −1

)∩
S
(
i f j
)
6= /0 and the fault is not detected. Consequently, θ ◦ + ∆θ

(
i f j
)
∈

Ω
(
i f j
)
, with Ω

(
i f j
)
⊇ Ω

(
i f j −1

)∩
S
(
i f j
)
. This situation will be repeated in future

time, resulting in θ ◦+∆θ
(
i f j
)
∈ Ω

(
i f j + `

)
with Ω

(
i f j + `

)
⊇ Ω

(
i f j + `−1

)∩
S
(
i f j + `

)
for ` ∈ [0, . . . , i f j+1− i f j).

3.6.1.2 Undetected faults in Ellipsoid-based Fault Detection Procedure

In the ellipsoid-based FDD procedure, it is possible that θ ◦+∆θ
(
i f j
)
∈Θ

(
i f j + `

)
,

` ∈ [0, . . . , i f j+1− i f j), without θ ◦+∆θ
(
i f j
)
∈∈Θ

(
i f j −1

)
, as shown in Fig. 3.11.

Theorem 3.6.2 A sufficient condition for θ ◦+∆θ
(
i f j
)
∈Θ

(
i f j
)
(undetected case) is

θ ◦+∆θ
(
i f j−1

)
∈ Θ

(
i f j −1

)
, and

∥∥∆θ
(
i f j
)
−∆θ

(
i f j−1

)∥∥ ≤
−α2 +

√
α2

2 −4α1α3

2α1
, and

α3 < 0,
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Figure 3.11: Undetected fault case (n = 2).

where α2 = 2
∣∣∣∣ σ(i f j )−δ (i f j )

σ(i f j )
√

G(i f j )

(
φ T (i f j )θ̃1√

G(i f j )

)
+ δ (i f j )τ(i f j )

σ(i f j )
√

G(i f j )

∣∣∣∣∥∥φ(i f j)
∥∥+2

√
λmax[P(i f j−1)]

λmin[P(i f j−1)]
,

α3 = 1+ δ (i f j )

σ(i f j )

(
φ(i f j )T θ̃1√

G(i f j )
− τ(i f j)

)2

− δ (i f j), θ̃1 = θ ◦+∆θ
(
i f j−1

)
− θc

(
i f j −1

)
, and α1 =

δ (i f j )

λmin[P(i f j )]
.

Proof See Appendix A.3

3.6.2 Backward-in-time fault detection procedure

It should be noted that the instant of detection id j can be different than the time
of occurrence i f j of the fault. This may lead into a possible successive incorrect time
instant of fault detection id j+1 . If id j+1− id j < L, then our assumption of a jump system
for which the parameter vector remains constant for at least L-samples after the
occurrence of a fault contradicts our findings. In this case, the instant id j needs to be
revised and a ‘backward-in-time fault detection’ algorithm is sought.

3.6.2.1 Orthotope-based Backward-in-Time Fault Detection

The following scenario is provided so as to justify the previous allegation. Con-
sider that θ ◦ + ∆θ

(
i f j−1

)
∈ Ω

(
i f j −1

)
(black color) and a fault occurs at the time

instant i f j such that ∆θ
(
i f j
)
−∆θ

(
i f j−1

)
= [d1,0]

T , (Fig.(3.12)) and let L = 3 [91]. Al-
though there is a deviation of parameter vector that leads to the placement of the new
parameter vector θ ◦+∆θ

(
i f j
)
outside Ω

(
i f j −1

)
, the measurement data generate such

a hypersector Snp
(
i f j
)
(red color) that intersects with Ω

(
i f j −1

)
. Hence, the fault is not

detected and a new orthotope Ω
(
i f j
)
(red color) is computed, which contains neither

θ ◦+∆θ
(
i f j
)
nor θ ◦+∆θ

(
i f j−1

)
. The fault is detected at the time instant id j = i f j +1,

since Snp
(
i f j +1

)∩
Ω
(
i f j
)
6= /0, where Snp

(
i f j +1

)
is green colored. The algorithm con-

tinues with the computation of the resetting orthotope Ωr
(
i f j
)
(red dashed), using

Theorem (3.5.1), and in the sequel with the computation of Ω
(
i f j +1

)
. At the next
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time instant, the generated data-hypersector Snp
(
i f j +2

)
(blue color) does not inter-

sect with Ω
(
i f j +1

)
and a fault is detected again at id j+1 = i f j +2 < i f j +1+L = id j +L.

In this case, our assumptions that the fault occurred at id j = i f j +1 is incorrect. To cope
with this situation, the ‘backward-in-time fault detection’ modification is proposed.

1
θ

2
θ

( )jfiΩ

1

max2γɶ

( )1jfiΩ −
( )1θ θ −+∆

� jfi ( )θ θ+∆
� jfi

( )Ω jfr i

( )S
jfnp i

( )S +1jfnp i

( )S +2jfnp i

( )1jfiΩ +

2

max2γɶ

Figure 3.12: Incorrect time instant of fault detection in case of orthotopic FDD (n = 2).

Rather than assuming that the detection of the fault is at the time id j , we roll-
back the detection instant at id j∗ = id j −1 and proceed by substituting Ωr

(
id j∗−1

)
in

place of Ω
(
id j∗−1

)
. The fault detection algorithm is repeated, computing the ortho-

topes for
{

id j∗, . . . , id j+1
}
, aiming at a non-empty intersection between Snp

(
id j+1

)
and

Ω
(
id j+1−1

)
. If this roll-back fails (empty intersection), we continue in a recursive

manner with id j∗ =
{

id j −2, . . . , id j −L
}
, until the previous issue cannot be encoun-

tered. Figure (3.13) shows the application of the ‘backward-in-time’ procedure in
the previous fault scenario. As it can be observed, rolling-back to id j∗ = id j − 1 was
enough, so as S

(
id j+1

)∩
Ω
(
id j+1−1

)
6= /0.

3.6.2.2 Ellipsoid-based Backward-in-Time Fault Detection

In the case of the ellipsoid based FDD procedure, the need for applying the
backward-in-time procedure is exemplified in the following scenario. Assume that
Θ
(
i f j −1

)
=Θ(0,RI2) (circle), where R is the circle’s radius and θ ◦+∆θ

(
i f j −1

)
located

on the perimeter of the circle. Let the fault θ ◦+∆θ
(
i f j
)
be located at a distance∥∥∆θ

(
i f j
)
−∆θ

(
i f j −1

)∥∥= 2γ̃−ε (where ε is a positive constant), as shown in Fig. 3.14.
In addition, assume a regression vector φ

(
i f j
)
and a model output y

(
i f j
)
, such that

the Sp
(
i f j
)∩

Θ
(
i f j −1

)
corresponds to a single point. In this case, Θ

(
i f j
)
corresponds

to this point and the fault is not detected. Assume that at time instant i f j + 1 the
measurement data leads to Sp

(
i f j +1

)∩
Θ
(
i f j
)
= /0, then the resetting ellipsoid Θr

(
i f j
)

(circle centered at the intersection point and radius being equal to 2γ̃) will not capture
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Figure 3.13: ‘Backward-in-time’ fault detection procedure in case of orthotopic FDD
(n = 2).

the fault for 2γ̃ +R−
√

4γ̃2 +R2 < ε < 2γ̃ +R+
√

4γ̃2 +R2. In this case (depending
on the Sp

(
i f j +1

)
), the Sp

(
i f j +1

)∩
Θr
(
i f j
)
= /0 and our assumptions that the fault

occurred at id j = i f j +1 is not valid. To cope with this situation, the ‘backward-in-time
fault detection’ modification is proposed.
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Figure 3.14: Incorrect time instant of fault detection in case of ellipsoidal FDD (n = 2)

Rather than assuming that the detection of the fault is at the time id j , we roll-back
the detection instant at id j−1 and restart the fault detection algorithm by substituting
Θr
(
id j −2

)
in place of Θ

(
id j −2

)
and checking its intersection with the Sp

(
id j −1

)
. If

this roll-back fails, we continue in a recursive manner at id j −2, . . . , id j −L, until the
previous issue cannot be encountered.
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It has to be mentioned that the goal of the ‘backward-in-time’ procedure is the
better estimation of the time of fault occurrence and the guaranteed capturing of the
‘new’ parameter vector θ ◦+∆θ

(
i f j
)
within the computed orthotopes or ellipsoids

after the fault occurrence. The latter issue is proven to be necessary for the correct
fault isolation and identification mechanisms. The backward-in-time fault detection
is provided in algorithmic form in Appendix B.2.

Fault Detection Example
The following ‘fault detection case’ exemplifies the detection and update mecha-

nisms. Consider y(i)= [φ1(i),φ2(i)] [θ ◦1 ,θ ◦2 ]
T +e(i) where the corrupting noise |e(i)| ≤ 1.3

and the nominal parameter vector, θ ◦ = [−0.35, 0.5]T . The maximum sustainable
variation is equal to γ̃ = 0.825, the dwell time L = 3, and at the fifth time instant
θ ◦+∆θ(0) jumps to θ ◦+∆θ(5) = [−2,0.5]T . The OVE algorithm is initialized using
P(1) = I2, and θ c(1) = [0,0]T . Assume the following output and regression vector
measurements in an ascending chronological order:

i 1 2 3 4 5 6 7 8 9 10
y(i) 0.5 1 0.73 -0.31 -7.45 -0.89 -4.225 -5.4 -19 -22.78
φ1(i) 1.5 2 0.2 0.6 2 0.8 1.6 2.5 8 10
φ2(i) 0 1 0.5 0.9 -5 0.12 -4.55 1.7 -4 -3

In the ensuing Figure 3.15, where each graph is marked by its ith sample in-
stant, the suggested algorithm is exemplified in order to highlight the issues of fault
detection. The computed ellipsoid at the (i−1), [i] instant is shown in (black)[grey]
color. The centroids of these ellipsoids correspond to the (black)[grey] drawn dots.
The nominal parameter vector θ ◦ (θ ◦+∆θ(5)) is shown by the black ‘+’(‘*’) symbol
in the noted plots. The hyperplanes (lines in R2) h1(i) and h2(i) are shown with grey
lines; the hyperstrip Sp(i) corresponds to the space bounded by these lines.

During the time instants i ∈ {2,3,4} the hyperstrip Sp(i) intersects the ellipsoid
Θ(i− 1). At the fifth sample, despite the jump of parameter-vector, Θ(4)

∩
Sp(5) 6= /0

and the fault is not captured. The OVE-algorithm computes Θ(5) (see zoomed-
in portion at bottom-left part of this plot). Similarly, Θ(5)

∩
Sp(6) = Θ(5) 6= /0 and

Θ(6)
∩

Sp(7) 6= /0. At the eighth sample, the fault is captured since Θ(7)
∩

Sp(8) = /0
(Θ(7) is the ‘tiny’-black ellipsoid). In this case, the resetting (dashed black) ellipsoid is
formed for which Θr(7)

∩
Sp(8) 6= /0. The id1 = 8 time-instant is marked as the possible

fault detection instant and differs from the i f1 = 5 fault occurrence instant. The OVE-
algorithm continues its normal execution at the ninth instant since Θ(8)

∩
Sp(9) 6= /0

and at the tenth sample another fault is detected
(
id2 = 10

)
since Θ(9)

∩
Sp(10) = /0.

The time separation between the adjacent faults is id2− id1 = 2.
Since id2 − id1 < L the FDD algorithm rather than assuming that the first detec-

tion of the fault is at id1 = 8, it will backtrack-in-time and will assume that the fault
occurred at id1 = 7. This is highlighted in Figure 3.16, where at the seventh time
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Figure 3.15: Fault detection example (n = 2).
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instant Θ(6) (‘tiny’ black ellipsoid) is resetting Θ(6)←Θr(6) and the OVE-algorithm
continues its normal operation until the tenth instant. It should be noted that al-
though id1 = 7 6= i f1 = 5, the varied parameter vector θ ◦+∆θ(5) is captured by Θ(10),
computed during the backward-in-time procedure.
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Figure 3.16: Backward-in-time fault detection example (n = 2).

3.6.3 Characterization of Algorithm Sensitivity

The proposed FDD method based on parameter estimation is designed in a set
membership framework, presupposing the knowledge of: a) a linearly parametrizable
model, b) the noise error bounds, c) the parameter perturbation bounds, d) the safe
operation parameter bounds, and e) the minimum length of time window L related
to the jump parameter case.

The proper structure of the linearly parametrizable model is necessary for the
initialization of the algorithm. However, there are cases in which system dynamics is
not captured by the utilized linearly parametrizable model (i.e. some non-linearities
are linearised to simplify the model). Then, a model error representing the system
dynamics can be incorporated in the model, whose bounds should be estimated
under faultless operating conditions [92], [93]. Moreover, the linearly parametrizable
model should be formed so as its output and the components of regression vector to
be functions of measurable signals. In addition, the components of regression vector
should be linearly independent and must span the parametric space. Failure to do so,
because of linear dependence, may leave the nominal parameter vector unbounded
in at least one direction [94].
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The capability of knowing the measurement noise bounds is related to its source.
Measurement noise may stem from: a) errors of sensing instruments, b) quantiza-
tion errors due to analog-to-digital conversion and c) thermal noise. In regard to
the first type of noise, most sensor manufacturers provide rules for computing the
maximum and minimum possible instrumentation errors, while the bounds of quan-
tization errors are computed from the full-scale analogue range of the converter. Any
information about the latter type can be collected experimentally, recording its distri-
bution either in time or frequency domain. Based on the time-domain distribution,
the bounds can be determined directly, while using the frequency-domain distri-
bution, there are cases in which its statistical properties can be associated with the
deterministic bounds. Particularly, under the assumption of a zero-mean uniform
distribution on [−ε,ε] with variance σ 2, ε =

√
3σ 2 can be used. Under the assump-

tion of a zero-mean Gaussian process with variance σ 2, the choice of ε = ασ 2, with
α > 1 will yield to a probability of noise bound violation equal to 2Q(α), where Q is
the Q-function. Hence, if α = 3, the probability of noise bound violation is 0.3% of
the time [95]. If there is inadequate knowledge of the noise bounds, then a selection
of a larger value

emax
y(φu)

= β max
i

1√
µy(φu)(i)

, β � 1

can be used; however in this case, certain faults may not be captured.
The bounds of parameter perturbations can be arisen from material characteri-

zation, where parameter variation due to environmental changes, ageing, life cycle
can be estimated [38]. Also in this case, larger values can be used, which may affect
the detectability of the faults.

In a single fault detection (no isolation), there is no need to a priori know the
safe operation bounds. In general larger values of the safe operation bounds can be
selected to ensure that the resetting parametric set will capture the new nominal pa-
rameter vector after each fault detection. However this may lead to slow convergence
of the volume of ellipsoids or orthotopes and may result in a delayed isolation.

For a jump-system with a small dwell-time L, if the fault is not detected fast
enough, this will affect the fault diagnosis component. For the case where id j− i f j > L,
another fault can occur prior to the id j instant (i f j+1 < id j) leading to incorrect fault
isolation.

Even in the case where L is large enough, in pathological cases, regression vectors
φ(i), i > i f j can be selected leading to a very late id j (id j � i f j). In this case, the fault
isolation module will compute the intersection of the support orthotopes or ortho-
topes over a window-span where outputs from the neighbouring ‘faulty’ systems
((3.1)-(3.2) or (3.58)) will contribute. In these pathological cases, the fault isolation
module may provide an incorrect event.
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3.7 Conclusions

In this chapter, the design of the Fault Detection and Diagnosis (FDD) technique
in a set membership framework, relying on parameter orthotopic or ellipsoidal set
estimation is presented. The objective of the proposed FDD method is to capture and
diagnose abrupt parametric faults of a jump linearly parametrizable, time-varying
system. The fault detection is accomplished when the normal operation of the SMI is
violated, due to an empty intersection between the data-hyperspace and the estimated
parametric set. The fault isolation procedure relies on the projection of the parametric
sets (orthotopes or ellipsoids) computed by the normal operation of SMI, after the
fault detection, and the worst-case parametric sets, while the distance of the centers
of projections is utilized for fault identification. Moreover, under the assumption of
a time invariant parameter vector and in case of the ellipsoidal SMI, the consistency
test based on the intersection of support orthotopes is used for fault detection. The
analysis of the FDD procedure is concluded by discussing the detectability of the
faults, the possibility of a better estimation of the time instant of fault occurrence by
applying a backward-in-time fault detection algorithm and the characterization of
the algorithm sensitivity in relation to the inherent assumptions.
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Chapter 4

Fault Detection and Diagnosis
applied in Microelectromechanical
Systems

4.1 Introduction

The objective of this chapter is the application of the fault detection and diagnosis
(FDD) methods based on orthotopic and ellipsoidal set membership identification
(SMI) in order to capture and diagnose failure modes typically appeared in two
distinct MEMS-technology examples; an electrostatic parallel plate micro-actuator
[96], [97] and a torsionally-resonant atomic force microscope (TR-AFM) [98], [99].
These failure modes are treated as system parameters variations causing abnormal
systems performance [38], [100].

Electrostatic microactuators are usually embedded in other MEMS devices due
to their simplicity of operation and ease of fabrication. The parallel-plate electro-
static actuation works on the principle of Coulomb attraction between the opposite
charged suspended mass and a substrate, generating an electrostatic force. This force
is inversely proportional to the square of the distance between the plates. Between
the plate and the substrate, there is a film of viscous air, which is the dominant
dissipation mechanism. In open-to-air applications, there is a chance that dust and
other particles enter at the interior of the device and cause a change of mass. The
silicon-made structures absorb humidity of air that results in change of mechanical
properties of suspension springs. For devices operating in vacuum conditions, any
damage in the container might result in the loss of hermeticity and consequently
change of viscosity.

The TR-AFM is the device that utilized for investigating the tribological phenom-
ena of materials such as surface roughness, adhension, friction e.t.c and generating
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high resolutions 3D images of the samples. The TR-AFM consists of a rectangular
cantilever with a conical tip attached at its far end and interacts with the sample,
while two piezoelectric elements are used as a support torsion of the cantilever.
During measurements, the tip remains close to the sample surface, ensuring more
intensive tip-sample interaction and more surface material properties-related infor-
mation. However, this intensive tip-sample interaction may result in the growth of
failure mechanisms such as the particle contamination of its tip, the adhesion and
friction leading to tip’s wear and fatigue resulted in tip’s fracture.

In the simulation studies illustrated in this chapter, a simplified mass-spring-
damper model [101], [102], [103] is utilized in to describe the dynamics of the
electrostatic parallel-plate microactuator under the assumption of time-invariant pa-
rameters. The fault scenario addresses that the microactuator is subject to multiple
abrupt variations in its mass, spring stiffness and damping coefficient. In the TR-
AFM example, the initial goal is to obtain the lumped parameter model taking into
account the Euler-Bernoulli partial differential equation describing the torsional vi-
bration and a Kelvin-Voigt model describing the tip-sample interaction. The Kelvin-
Voight model is a combination of a spring (a function of the tip’s radius), in parallel
with a Newtonian dashpot that corresponds to the dissipative forces. According to
the fault scenario, tip’s fractures occur when the TR-AFM is operating in the re-
pulsive regime scanning a rough surface. These fractures are going to be detected
as abrupt variations of tip’s radius under the assumption of a time-varying linearly
parametrizable model [104].

4.2 Parallel-Plate Electrostatic Micro-Actuator

A simplified testbed layout of a typical electrostatic micro-actuator is shown in
Figure 4.1a, which consists of a plate suspended from the substrate by four serpentine
springs. The movable plate is controlled by the application of the voltage V between
the plates. Maintaining only the primary mode of motion results in a simplified
mass-spring-damper model of this micro-actuator as shown in Fig. 4.1b.

If z is the vertical displacement of the movable plate, zmax is its maximum unactu-
ated displacement, m◦ is the plate’s mass, k◦ is the spring stiffness, c◦ is the damping
coefficient, A is the plate’s area and εa is the air’s dielectric constant, and Fel is
the generated electrostatic force, then the dynamics of the aforementioned faultless
nominal microactuator is:

m◦z̈+ c◦ż+ k◦z =
εaAV 2

2(z− zmax)
2 = Fel . (4.1)

The parameters used in the simulation studies are: m◦ = 7.0496 ·10−10 Kgr, c◦ = 1e−5
Nsec/m, k◦ = 0.8 N/m, A = 400 ·10−6×400 ·10−6 m2, εa = 8.85 ·10−12 F/m and zmax =

4 ·10−6 m.
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Figure 4.1: a) Simplified testbed layout and b) mass-spring-damper model of a parallel-
plate electrostatic micro-actuator.

Let the linearly parametrizable system at the ith instant be defined as:

Fel(i) = [z̈(i), ż(i),z(i)]

 m◦

c◦

k◦

⇒ y(i) = φ T (i)θ ◦. (4.2)

The nominal parameter vector θ ◦= [θ ◦1 ,θ ◦2 ,θ ◦3 ]
T =

[
704.96 µNµsec2

µm ,10 µNµsec
µm ,0.8 µN

µm
]

is assumed to be time-invariant. Moreover, the observed data zm(i) (µm) , z̈m(i)
(

µm
µsec2

)
are typically collected from the displacement and acceleration signals provided by
the off- chip electronics, Fm

el (i) (µN) is extracted by the actuator force signals [96],
and żm(i)

(
µm

µsec
)
is assumed to be measured using a laser vibrometer [105] and

i ∈ [1,10000]. The system operates in open-loop within its stable region (0 < z < zmax
3 ).

The observed data ym(i),φ m
1 (i),φ m

2 (i), φ m
3 are given as:

ym(i) = Fm
el (i) = Fel(i)+ ey(i), |ey(i)| ≤ emax

y
φ m

1 (i) = z̈m(i) = z̈(i)+ eφ1(i),
∣∣eφ1(i)

∣∣≤ emax
φ1

φ m
2 (i) = żm(i) = ż(i)+ eφ2(i),

∣∣eφ2(i)
∣∣≤ emax

φ2

φ m
3 (i) = zm(i) = z(i)+ eφ3(i)

∣∣eφ3(i)
∣∣≤ emax

φ3
,

(4.3)

where ey(i), eφu(i),u = 1,2,3 correspond to noises that stem from the sensor instru-
ments and electronics with the worst case bounds emax

y , emax
φu

computed taking into
account SNR=55dB.

It is regarded that multiple abrupt parameter variations in its mass, spring stiff-
ness, and damping coefficient of the microactuator occur following the fault scenario
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Table 4.1: Electrostatic Micro-actuator Fault Instances

i f j 2001 3001 4001 5001 6001 7001
j 1 2 3 4 5 6

∆m
m◦ 0.05 0.10 0 0 0 0
∆k
k◦ 0 0 0.05 0.1 0 0
∆c
c◦ 0 0 0 0 0.3 0

presented in [53], which are provided in Table 4.1. The maximum allowable bounds
are of γ̃max

1 = 30%θ ◦1 , γ̃max
2 = 40%θ ◦2 and γ̃max

3 = 30%θ ◦3 respectively, while L = 500.
The objective of this study is to capture and diagnose the faults presented in

Table 4.1, applying the following FDD schemes:

(A) FDD based on Orthotopic SMI using data-hyperstrips,

(B) FDD based on Orthotopic SMI using data-hypersectors,

(C) FDD based on Ellipsoidal SMI using data-hyperstrips,

(D) FDD based on Ellipsoidal SMI using data-hypersectors,

where the data-hyperstrips are generated according to

Sp(i) =
{

θ : ym(i)− ẽmax(i)≤ φ m(i)T θ ≤ ym(i)+ ẽmax(i)
}
, (4.4)

ẽmax(i) = emax
y +

3

∑
u=1

emax
φu

max
(∣∣∣θ−Zu

(i−1)
∣∣∣ , ∣∣∣θ+

Zu
(i−1)

∣∣∣). (4.5)

with Zu = Ωu in case of orthotopic SMI-based FDD or Zu = Xu in case of ellipsoidal
SMI-based FDD, and the data-hypersectors are generated according to

Snp(i) =
{

θ : ym(i)− emax
y ≤ φA(i)T θ and φB(i)T θ ≤ ym(i)+ emax

y

}
, (4.6)

where φA(i), φB(i) are described by (2.42) and (2.43) with sgn(θ ◦1 ) = sgn(θ ◦2 ) =
sgn(θ ◦3 ) = 1, resulting in

φA(i) =
[

φ m
1 (i)+ emax

φ1
φ m

2 (i)+ emax
φ2

φ m
3 (i)+ emax

φ3

]T
, (4.7)

φB(i) =
[

φ m
1 (i)− emax

φ1
φ m

2 (i)− emax
φ2

φ m
3 (i)− emax

φ3

]T
. (4.8)

The abrupt parameter variations of θ ◦+∆θ
(
i f j
)
, for j = 1, . . . ,6 are detected by

the aforementioned FDD schemes at the same time instances id j j = 1, . . . ,6, as shown
in the Table 4.2. It is observed that there is a delay between the fault occurrence
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Table 4.2: Electrostatic Micro-actuator–Time Instances of Fault Occurrence and Detection

j 1 2 3 4 5 6
i f j 2001 3001 4001 5001 6001 7001

((A)− (D))− id j 2001 3001 4001 5004 6001 7003

i f j and the detection instances id j for j = 4,6. Applying the (A) and (B) schemes,
the fault is detected when Ω

(
id j −1

)∩
S
(
id j
)
= /0 ∀ id j . In the case of (C) and (D)

schemes the fault is detected when Θ
(
id j −1

)∩
S
(
id j
)
= /0 for id j , j = 1,2,3,4,6 and

X
(
id5−1

)∩
ΩΘ (id5

)
= /0. The fault detection applying the (D) scheme at id5 = 6001

is presented in the following figures. Particularly, Fig. 4.2(a) presents the generated
ellipsoids Θ(id5), Θ(id5−1), which along with the generated intersection of support
orthotopes X(id5−1) and support orthotope ΩΘ(id5) are depicted in Fig. 4.2(b).

(a) Ellipsoids Θ(6000) and Θ(6001) computed via
(D) scheme

(b) Ellipsoids Θ(6000) and Θ(6001) and intersec-
tions of orthotopes (6000) and (6001) computed
via (D) scheme

Figure 4.2: Fault detection case via the (D) scheme at id5 = 6001

Fig. 4.3 shows the 2D projection of the parametric sets presented in Fig. 4.2(b),
in which the empty intersection between the X(id5−1) and ΩΘ(id5) is observed.

In the (A) and (B) schemes, the resetting procedure is implemented according to
Theorem 3.5.1, while in the (C) and (D) schemes, the resetting procedure presented
in Theorem 3.5.3 is applied.

Figures 4.4, 4.5 and 4.6 present the upper bounds [lower bounds] (A)– θ+
Ωu
(i)

[θ−Ωu
(i)] ((black)–dashed [solid] line), (B)–θ+

Ωu
(i) [θ−Ωu

(i)] ((red)–dashed [solid] line),
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Figure 4.3: Empty intersection case between X(6000) and ΩΘ(6001)

(C)–θ+
Xu
(i) [θ−Xu

(i)] ((blue)–dashed [solid] line), (D)–θ+
Xu
(i) [θ−Xu

(i)] ((green)–dashed
[solid] line), u = 1,2,3. The nominal values of θ ◦u + ∆θu

(
i f j
)
are indicated on the

vertical axis and the time instances of fault detection id j are shown on the horizontal

axis of these figures.
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Figure 4.4: Electrostatic microactuator–Time evolution of upper and lower bounds of θ ◦1
generated by the FDD schemes.
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Figure 4.5: Electrostatic microactuator–Time evolution of upper and lower bounds of θ ◦2
generated by the FDD schemes.
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Figure 4.6: Electrostatic microactuator–Time evolution of upper and lower bounds of θ ◦3
generated by the FDD schemes.
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Based on the these diagrams, the fault isolation instances for each component of
the parameter vector are summarized in Table 4.3, with the type of isolation denoted
as F/NF/U for the ”Faulty/Non Faulty/Undetermined” cases. The faulty status of
θu,u = 1,2,3 is inferred by all FDD schemes, while the undetermined status is due
to the small size of Ωu

(
id1−1

)
in (A),(B) and X

(
id1−1

)
in (C), (D) schemes which

cannot satisfy the conditions described in (3.92) and (3.93). In addition, the fault
isolation in (C) and (D) schemes is realized earlier than in (A) and (B) schemes,
because of the fact that the volume of orthotope is decreasing slower than the volume
of ellipsoid.

Table 4.3: Electrostatic Micro-actuator Parameter Vector Isolation Instants

(A)
i1∗(F/NF/U) 2063(F) 3062(F) (U) (U) (U) (U)
i2∗(F/NF/U) (U) (U) (U) (U) 6037(F) (U)
i3∗(F/NF/U) (U) (U) 4051(F) 5031(F) (U) (U)

(B)
i1∗(F/NF/U) 2062(F) 3062(F) (U) (U) (U) (U)
i2∗(F/NF/U) (U) (U) (U) (U) 6037(F) (U)
i3∗(F/NF/U) (U) (U) 4051(F) 5031(F) (U) (U)

(C)
i1∗(F/NF/U) 2008(F) 3006(F) (U) (U) (U) 8153(NF)
i2∗(F/NF/U) (U) (U) (U) (U) 6006(F) (U)
i3∗(F/NF/U) (U) (U) 4008(F) 5009(F) (U) 8814(NF)

(D)
i1∗(F/NF/U) 2024(F) 3021(F) (U) (U) (U) 8032(NF)
i2∗(F/NF/U) (U) (U) (U) (U) 6013(F) (U)
i3∗(F/NF/U) (U) (U) 4020(F) 5016(F) (U) 8814(NF)

The fault isolation is followed by the estimation of the parameter variation ∆θu
(
i f j
)
,

u = 1,2,3 of the faulty components for the time window starting at the time instant of
fault isolation up to the next time instant of fault detection, as shown in Fig. 4.7(a),
4.7(b) and 4.7(c).
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Figure 4.7: Fault Identification of microactuator parameter vector
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4.3 Torsional Resonant Atomic Force Microscope

4.3.1 Lumped-Parameter Modelling

The schematic diagram of the torsional resonant AFM is presented in Fig 4.8.
In particular, an AFM consists of a rectangular cantilever (Lc: length , bc: width, hc:
thickness) with a conical tip (Rt : radius of tip’s apex, lt : tip’s length) attached at its
far end, at its longitudinal axis. Two piezoelectric elements are located at the base of
the cantilever and oscillate in opposite directions, resulting in a support torsion of
the cantilever. The sample surface lays on a PZT tube scanner, while the optical lever
method is used to measure the deflection of the cantilever. A laser beam is projected
on the upper surface of the cantilever close to the tip and then is led by a mirror
into a four-segment photodiode.

Split-diode 

photodetector

Mirror

Mirrored Prism

Diode laser &lens

PZT tube scanner

Sample

Ca
nti
lev
er

Piezo

Holder

( )in tψ

tsF
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Figure 4.8: Schematic diagram of a torsionally resonant AFM interacting with a sample
surface

The torsional vibration of the cantilever taking into account the moment, Mts,
generated by the tip-sample interaction force is described via the Euler-Bernoulli
equation:

GJ
∂ 2ψ t(x, t)

∂x2 = ρIρ
∂ 2ψ t(x, t)

∂ t2 + c
∂ψ t(x, t)

∂ t
−Mts, (4.9)

where ψ t(x, t), x ∈ [0,Lc] is the total torsion (rad), G is the shear modulus, J is
the torsional constant, ρ is the mass density, Iρ is the polar area moment of in-
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ertia and c is the coefficient of viscous damping. For a rectangular cantilever, J ≈
1
3 bchc

3
[

1−0.63
(

hc
bc

)
+0.052

(
hc
bc

)5
]
and Iρ = 1

12

(
hcbc

3 +bchc
3).

In pure torsional analysis, the moment Mts is given as:

Mts = ltFts (4.10)

and the tip-sample interaction Fts is represented by the Kelvin-Voigt model, which
is a combination of a spring in parallel with a Newtonian dashpot:

Fts =−kl∆l− cl∆̇l, (4.11)

where ∆l is the displacement in lateral direction, kl and cl are the lateral stiffness
and damping coefficients, respectively [106]. Based on Hertzian contact theory, the
calculation of the lateral contact stiffness is realized via the equation:

kl =

{
0, δ0 > α0 (attractive regime)

8G∗
√

Rt (α0−δ0), δ0 ≤ α0 (repulsive regime) (4.12)

where δ0 is the equilibrium tip-sample separation, α0 is the intermolecular distance, H
is the Hamacker constant and G∗ is the effective shear modulus. The aforementioned
displacement is computed as:

∆l = ltψ t(Lc, t) = ltψ t(x, t)δ (x−Lc), (4.13)

where ψ t(Lc, t) is the total rotation at the end of the cantilever and δ (·) denotes the
impulse function. Substituting (4.11) and (4.13) into (4.10) yields:

Mts =−kllt 2ψ t(x, t)δ (x−Lc)− cllt 2 ∂ψ t(x, t)
∂ t

δ (x−Lc). (4.14)

Introducing the last equation into (4.9) results in:

GJ
∂ 2ψ t(x, t)

∂x2 = ρIρ
∂ 2ψ t(x, t)

∂ t2 + c
∂ψ t(x, t)

∂ t
+

(
klψ t(x, t)+ cl

∂ψ t(x, t)
∂ t

)
lt 2δ (x−Lc).(4.15)

The total torsion of the cantilever is expressed as the sum of the torsion that is
induced by static application of the support motion and equals to the quasi static
torsion generated from the dual piezo-elements ψin(t), plus the additional torsion
ψ(x, t) due to dynamic inertia and viscous force effects ( [107]):

ψ t(x, t) = ψ(x, t)+ψin(t), (4.16)

with ψin(t) = ψ0 sin(ωint). Using (4.16), (4.15) is altered to:

GJ
∂ 2ψ(x, t)

∂x2 = ρIρ
∂ 2ψ(x, t)

∂ t2 + c
∂ψ(x, t)

∂ t
+

(
klψ(x, t)+ cl

∂ψ(x, t)
∂ t

)
lt 2δ (x−Lc)+

ρIρ ψ̈in(t)+ cψ̇in(t)+(klψin(t)+ clψ̇in(t)) lt 2δ (x−Lc). (4.17)
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In most practical cases, the damping contribution to the effective load is small com-
pared to the inertial contribution and cψ̇in(t) = 0.

The goal of this section is the transformation from the geometric torsional coordi-
nates to the modal-amplitude or normal coordinates and is accomplished following
the mode superposition analysis. This transformation is expressed as:

ψ(x, t) =
∞

∑
q=1

Ψq(t)ξq(x), (4.18)

where Ψq(t) is the time-dependent amplitude and ξq(x) is the modal shape, computed
by:

d2ξq(x)
dx2 +

ρIρ

GJ
ω2

q ξq(x) = 0. (4.19)

The detailed computation of modal shape is presented in Appendix A.4. Introducing
(4.18) and (4.19) into (4.17) results in:

−ρIρ

∞

∑
q=1

ω2
q Ψq(t)ξq(x) = ρIρ

∞

∑
q=1

Ψ̈q(t)ξq(x)+ c
∞

∑
q=1

Ψ̇q(t)ξq(x)+

kl

∞

∑
q=1

Ψq(t)ξq(x)lt 2δ (x−Lc)+ cl

∞

∑
q=1

Ψ̇q(t)ξq(x)lt 2δ (x−Lc)+

ρIρ ψ̈in(t)+(klψin(t)+ clψ̇in(t)) lt 2δ (x−Lc). (4.20)

Multiplying by ξq(x), integrating by
∫ Lc

0 and applying the orthogonality relationship
(see Appendix A.4) yields:

−ω2
q

(∫ Lc
0 ρIρξq(x)

2dx
)

Ψq(t) =
(∫ Lc

0 ρIρξq(x)
2dx
)

Ψ̈q(t)+ c
ρIρ

(∫ Lc
0 ρIρξq(x)

2dx
)

Ψ̇q(t)+

kllt 2
(∫ Lc

0 ξq(x)
2δ (x−Lc)dx

)
Ψq(t)+ cllt 2

(∫ Lc
0 ξq(x)

2δ (x−Lc)dx
)

Ψ̇q(t)+(∫ Lc
0 ρIρξq(x)dx

)
ψ̈in(t)+

kllt 2
(∫ Lc

0 ξq(x)δ (x−Lc)dx
)

ψin(t)+ cllt 2
(∫ Lc

0 ξq(x)δ (x−Lc)dx
)

ψ̇in(t).

Defining the generalized mass M∗q =
∫ Lc

0 ρIρξq(x)
2dx and the term L∗ =

∫ Lc
0 ρIρξq(x)dx,

the last equation is transformed in:

M∗q Ψ̈q(t)+
(

c
ρIρ

M∗q + cllt 2ξq(Lc)
2
)

Ψ̇q(t)+
(

ω2
q M∗q + kllt 2ξq(Lc)

2
)

Ψq(t) =

−L∗ψ̈in(t)− cllt 2ξq(Lc)ψ̇in(t)− kllt 2ξq(Lc)ψin(t) (4.21)

or else,

Ψ̈q(t)+

(
c

ρIρ
+

cllt 2ξq(Lc)
2

M∗q

)
Ψ̇q(t)+

(
ω2

q +
kllt 2ξq(Lc)

2

M∗q

)
Ψq(t) =−

L∗

M∗q
ψ̈in(t)−

cllt 2ξq(Lc)

M∗q
ψ̇in(t)−

kllt 2ξq(Lc)

M∗q
ψin(t).(4.22)
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The computation of M∗, L∗, ξq(Lc), ξq(Lc)
2 is provided in the Appendix A.4. The

readout of the measuring signal by the photodiode is:

ψ t(Lc, t) = ψ(Lc, t)+ψin(t). (4.23)

Using (4.18), it yields:

ψ t(Lc, t) =
∞

∑
q=1

Ψq(t)ξq(Lc)+ψin(t) =
∞

∑
q=1

ψq(Lc, t)+ψin(t) (4.24)

For the determination of ψq(Lc, t), both sides of (4.22) are multiplied with ξq(Lc),
implying:

ψ̈q(Lc, t)+
(

c
ρIρ

+
cl lt 2ξq(Lc)

2

M∗q

)
ψ̇q(Lc, t)+

(
ω2

q +
kl lt 2ξq(Lc)

2

M∗q

)
ψq(Lc, t) =

− ξq(Lc)L
∗

M∗q
ψ̈in(t)−

cl lt 2ξq(Lc)
2

M∗q
ψ̇in(t)−

kl lt 2ξq(Lc)
2

M∗q
ψin(t)

(4.25)

Consequently, the transfer function Hq(s) =
ψ(Lc,s)
ψin(s)

equals:

Hq(s) =
− ξq(Lc)L

∗

M∗q
s2− cl lt 2ξq(Lc)

2

M∗q
s− kl lt 2ξq(Lc)

2

M∗q

s2 +
(

c
ρIρ

+
cl lt 2ξq(Lc)

2

M∗q

)
s+
(

ω2
q +

kl lt 2ξq(Lc)
2

M∗q

) (4.26)

and the measured torsion ψ t(Lc, t) is given as:

ψ t(Lc, t) =

(
∞

∑
q=1

Hq(s)+1

)
ψin(t). (4.27)

In case that the cantilever is driving at its first torsional resonance frequency, (q = 1)
the transfer function Ht(s) = ψ t(Lc,s)

ψin(s)
equals to:

Ht(s) =

(
1− ξ1(Lc)L

∗

M∗1

)
s2 + c

ρIρ
s+ω2

1

s2 +
(

c
ρIρ

+ cl lt 2ξ1(Lc)
2

M∗1

)
s+
(

ω2
1 +

kl lt 2ξ1(Lc)
2

M∗1

) (4.28)

leading to the ordinary differential equation:

ψ̈ t(Lc, t)+
(

c
ρIρ

+ cl lt 2ξ1(Lc)
2

M∗1

)
ψ̇ t(Lc, t)+

(
ω2

1 +
kl lt 2ξ1(Lc)

2

M∗1

)
ψ t(Lc, t) =(

1− ξ1(Lc)L
∗

M∗1

)
ψ̈in(t)+ c

ρIρ
ψ̇in(t)+ω2

1 ψin(t)
(4.29)

Introducing (A.27)-(A.30) in (4.29) results in:

ψ̈ t(Lc, t)+
(

c
ρIρ

+ 2cl lt 2

ρIρ Lc

)
ψ̇ t(Lc, t)+

(
ω2

1 +
2kl lt 2

ρIρ Lc

)
ψ t(Lc, t) =(

1− 2
βqLc

)
ψ̈in(t)+ c

ρIρ
ψ̇in(t)+ω2

1 ψin(t)
(4.30)
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or in a more compact form,

ψ̈ t(Lc, t)+Cψ ψ̇ t(Lc, t)+Kψψ t(Lc, t) =
(

1− 2
βqLc

)
ψ̈in(t)+

c
ρIρ

ψ̇in(t)+ω2
1 ψin(t) (4.31)

with

Cψ =
c

ρIρ
+

2cllt 2

ρIρLc
, (4.32)

Kψ = ω2
1 +

2kllt 2

ρIρLc
. (4.33)

4.3.2 Detection and Diagnosis of Tip-Fractures

During the characterization of the tribological phenomena of a rough surface, the
damping coefficient of the dissipative shear force (lateral damping coefficient cl) varies
slowly with respect to the surface slope [108]. At the same time, it has been observed
that the radius of the tip’s curvature also changes slowly during the scanning of
the rough surface, while sudden tip’s fractures may occur [109], [110]. Under the
assumption of time varying lateral damping coefficient and tip’s radius and taking
into account that the TR-AFM is operating in the repulsive regime, the objective of
this study is to capture and diagnose abrupt variations of the tip’s radius.

The ordinary differential equation given in (4.31) is transformed into a linearly
parametrizable model, described as:

ψ̈ t(Lc, i)−U(i) =
[
−ψ̇ t(Lc, i) −ψ t(Lc, i)

][ Cψ(i)
Kψ(i)

]
⇒ y(i) = φ T (i)θ ◦(i), (4.34)

where U(i) =
(
1− 4

π
)

ψ̈in(i)+ ω1
Qc

ψ̇in(i)+ω2
1 ψin(i) and i denotes the sample instant with

i∈ [1, . . . ,10000]. Using (4.32), (4.33) and taking into account that kl = 8G∗
√

Rt (α0−δ0),
the components of the nominal parameter vector are described as:

θ ◦1 (i) =
ω1

Qc
+

2cl(i)lt 2

ρIρLc
= b◦1 +b◦2cl(i), (4.35)

θ ◦2 (i) = ω2
1 +

16G∗
√

(α0−δ0)lt 2

ρIρLc

√
Rt(i) = b◦3 +b◦4

√
Rt(i) (4.36)

where Qc is the quality factor of cantilever.
The simulation studies are performed with the following dimensional and ma-

terial parameters: Lc = 252 µm, bc = 35 µm, hc = 2.3 µm, ρ = 2330 kg/m3, G =

50.78 ×GPa, Qc = 33.3. For the tip-sample interaction process, the related parame-
ters are set H = 2.96×10−19J, G∗ = 4.2 GPa, a0 = 0.38 nm and δ0 = 0.375 nm. The dual
piezo-elements are vibrated at cantilever’s fundamental resonance frequency ω1 and
the amplitude of the support torsion of the equals to ψ0 = 5 µrad. The tip’s length
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is lt = 12.5 µm, the initial nominal value of the tip curvature is Rt(0) = 10 nm and
the damping coefficient cl(0) = 8×10−7 Kgr/sec.

The observed data records ψm(i) (µrad), ψ̇m(i)
(

µrad
µsec

)
, ψ̈m(i)

(
µrad
µsec2

)
are de-

scribed as ψm(i) = ψ t(Lc, i) + e1(i), ψ̇m(i) = ψ̇ t(Lc, i) + e2(i), ψ̈m(i) = ψ̈ t(Lc, i) + e3(i),
where eq(i), q = 1,2,3 are bounded measurement noises and their bounds emax

q are
computed taking into account SNR=55dB. The observed model output and regres-
sion vector are ym(i) = ψ̈m(i)−U(i) and φ m(i) = [−ψ̇m(i),−ψm(i)]T , respectively.

Because of the roughness of the sample surface, it is also assumed that cl and Rt

vary as:

cl(i) = cl(i−1)+wcl (i), |wcl (i)| ≤ 0.0005cl(0)︸ ︷︷ ︸
wmax

cl

Rt(i) = Rt(i−1)+wRt (i), 0≤ wRt (i)≤ 0.0001Rt(0)︸ ︷︷ ︸
wmax

Rt

.
(4.37)

It is also assumed that despite any parameter perturbation or fault, the safe opera-
tion bounds of cl(i) and Rt(i) are cl(i)∈

[
cmin

l ,cmax
l

]
= [4×10−7Nsec/m,12×10−7Nsec/m]

and Rt(i) ∈
[
Rt

min,Rt
max
]
= [10nm,30nm], ∀ i. The safe operation parameter bounds

of θ ◦1 (i),θ ◦2 (i) are defined as
[
θ min

1 ,θ max
1

]
=
[
b◦1 +b◦2cmin

l ,b◦1 +b◦2cmax
l

]
and

[
θ min

2 ,θ max
2

]
=[

b◦3 +b◦4
√

Rt
min,b◦3 +b◦4

√
Rt

max
]
, respectively. The parameter perturbations that influ-

ences cl(i), Rt(i) are reflected to θ ◦1 (i), θ ◦2 (i), so θ ◦q (i) = θ ◦q (i−1)+wθq(i), q = 1,2 with

|wθ1(i)| = |b◦2wcl (i)| ≤ b◦2wmax
cl

(4.38)

wθ2(i) = b◦4
(√

Rt(i)−
√

Rt(i−1)
)
= b◦4

(
Rt(i)−Rt(i−1)√
Rt(i)+

√
Rt(i−1)

)

∈

[
0,

b◦4wmax
Rt

2
√

Rt
min

]
. (4.39)

Under the previous assumptions, the objective of this study is to capture tip’s frac-
tures at the time instances i f1 = 3501 and i f2 = 6501, which are quantified as Rt

(
i f1
)
=

Rt
(
i f1−1

)
+wRt

(
i f1
)
+0.4Rt

(
i f1−1

)
and Rt

(
i f2
)
=Rt

(
i f2−1

)
+wRt

(
i f2
)
+0.25Rt

(
i f2−1

)
,

applying the following FDD schemes:

(A) FDD based on orthotopic SMI using data-hyperstrips,

(B) FDD based on orthotopic SMI using data-hypersectors,

(C) FDD based on ellipsoidal SMI using data-hyperstrips,

(D) FDD based on ellipsoidal SMI using data-hypersectors,
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where the data-hyperstrips are generated according to

Sp(i) =
{

θ : ym(i)− ẽmax(i)≤ φ m(i)T θ ≤ ỹm(i)+ ẽmax(i)
}
, (4.40)

ẽmax(i) = emax
3 + emax

2 max
(∣∣∣θ̂−Z1

(i)
∣∣∣ , ∣∣∣θ̂+

Z1
(i)
∣∣∣)+ emax

1 max
(∣∣∣θ̂−Z2

(i)
∣∣∣ , ∣∣∣θ̂+

Z2
(i)
∣∣∣)(4.41)

with Zu = Ωu in case of orthotopic SMI-based FDD or Zu = ΩΘ
u in case of ellipsoidal

SMI- based FDD, u = 1,2, and the data-hypersectors are generated according to

Snp(i) =
{

θ : ym(i)− emax
3 ≤ φA(i)T θ and φB(i)T θ ≤ ym(i)+ emax

3

}
, (4.42)

where φA(i), φB(i) are described by (2.42) and (2.43) with sgn(θ ◦1 ) = sgn(θ ◦2 ) = 1
since θ min

1 , θ min
2 > 0, resulting in

φA(i) =
[

φ m
1 (i)+ emax

2 φ m
2 (i)+ emax

1

]T
, (4.43)

φB(i) =
[

φ m
1 (i)− emax

2 φ m
2 (i)− emax

1

]T
. (4.44)

The abrupt parameter variations of tip’s radius are detected by all FDD schemes,
with the time instances of fault detection presented in Table 4.4. As observed, the
time instances of fault detection determined by the orthotope-based FDD schemes
((A),(B)) coincide with the time instances of fault occurrence. On the other hand,
there is a delay between the time instances of fault detection using the ellipsoid-
based FDD schemes ((C),(D)) and the time instances of fault occurrence. The fault

Table 4.4: TR-AFM–Time Instances of Fault Occurrence and Detection

j i f j (A)&(B)-id j (C)&(D)-id j

1 3501 3501 3519
2 6501 6501 6518

detection mechanism is followed by the resetting procedure, which is implemented
according to Theorem 3.4.1 in the orthotopic FDD schemes and Theorem 3.4.2 in
ellipsoidal FDD schemes. It has to be mentioned that despite the delay in detecting
the faults using the ellipsoid-based FDD schemes, the varied parameter vector is
captured within the ellipsoid computed by the applied resetting procedure.

Figures 4.9 and 4.10 present the nominal values of θ ◦u (i) (cyan line) and the
upper [lower] bounds (A)–θ+

Ωu
(i) [θ−Ωu

(i)] ((black)–dashed [solid] line), (B)–θ+
Ωu
(i)

[θ−Ωu
(i)] ((red)–dashed [solid] line), (C)–θ+

ΩΘ
u
(i) [θ−ΩΘ

u
(i)] ((blue)–dashed [solid] line),

(D)–θ+
ΩΘ

u
(i) [θ−ΩΘ

u
(i)] ((green) –dashed [solid] line), u = 1,2. The time instances of fault

occurrence i f j are shown on the horizontal axis of these figures.
It is apparent from the previous diagrams that there is a very small differ-

ence between the upper and lower bounds produced by (A) and (B) (also (C) and
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Figure 4.9: TR-AFM–Time evolution of upper and lower bounds of θ ◦1 generated by the
FDD schemes.
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Figure 4.10: TR-AFM–Time evolution of upper and lower bounds of θ ◦2 generated by
the FDD schemes.
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(D)). Moreover, the upper and lower bounds generated by the orthotope-based FDD
schemes are tighter than the ones generated by the ellipsoid-based FDD schemes.
This fact in combination with the difference between the fault detection instances
inferred by the orthotope and ellipsoid based FDD schemes, as shown in Table 4.4,
seems to stem from the fact that the perturbation orthotope Ωw used for computing
the augmented orthotope Ω̂(i) is smaller than the perturbation ellipsoid Θw (Θw ⊃Ωw)

used for computing the augmented ellipsoid Θ̂(i).
The fault isolation mechanism is implemented as described in Sections 3.4.1.1 and

3.4.1.2. Figures 4.11 and 4.12 present the nominal values of θ ◦u (i), u = 1,2 and the
upper and lower bounds generated by the (B) and (D) FDD schemes (the parameter
bounds produced by (A) and (C) schemes are omitted for simplicity) and the worst-
case upper and lower bounds corresponding to the maximum and minimum values
of the projection Ω̂u

(
i|id j −1

)
and Ω̂Θ

u
(
i|id j −1

)
, j = 1,2, defined in (3.34) and (3.36),

respectively.
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)

Figure 4.11: TR-AFM–Fault detection of θ ◦1 (i) applying (B) and (D) FDD schemes.

Using the (B) FDD scheme, the first component of parameter vector is inferred
as non-faulty for the time windows [3514,6500] and [6559,10000], while using the (D)
FDD scheme, it is inferred as non-faulty for the time windows [3759,3845]

∪
[3870,6517]

and [6924,10000]. Using the (B) FDD scheme, the second component of parameter
vector is characterized as faulty for the time windows [3529,6500] and [6534,10000],
except from the time interval [9914,9937], in which its status is undefined. Using
the (D) scheme there are a number of time windows between [3518,6517] and
[6519,10000] for which the second component of parameter vector is inferred as
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Figure 4.12: TR-AFM–Fault detection of θ ◦2 (i) applying (B) and (D) FDD schemes.

non-faulty. The earliest time instant that θ2(i) is inferred as faulty within the time
window [3518,6517] is i = 3592, while within the time window [6519,10000] it is
i = 6795.

Figure 4.13 presents the nominal values of cl(i) (cyan line), the estimated bounds
(B)[(D)]–c+l (i), (B)[(D)]–c−l (i) (red [green]–dashed, solid lines) and the worst-case
bounds (B)[(D)]–c+l (i|id j −1), (B)[(D)]–c−l (i|id j −1) (black [blue]–dashed, solid lines)
computed after the application of interval arithmetic to parameter bounds (B)[(D)]–
θ+

Ω1
(i), (B)[(D)]-θ−Ω1

(i) and the projection Ω̂1
(
i|id j −1

)
[Ω̂Θ

1

(
i|id j −1

)
], j = 1,2, respec-

tively, taking into account (4.35).
Similarly, Fig. 4.14 presents the nominal values of Rt(i) (cyan line), the estimated

bounds (B)[(D)]–R+
t (i), (B)[(D)]–R−t (i) (red [green]–dashed, solid lines) and the

worst-case bounds (B)[(D)]–R+
t (i|id j−1), (B)[(D)]–R−t (i|id j−1) (black [blue]–dashed,

solid lines) computed after the application of interval arithmetic to parameter bounds
(B)[(D)]–θ+

Ω2
(i), (B)[(D)]-θ−Ω2

(i) and the projection Ω̂2
(
i|id j −1

)
[Ω̂Θ

2

(
i|id j −1

)
], j = 1,2,

respectively, taking into account (4.36).
The lateral damping coefficient cl and the tip’s radius Rt are characterized as non-

faulty and faulty, respectively within the time intervals that θ1,θ1 are characterized
as non-faulty and faulty, respectively.
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Figure 4.13: TR-AFM–Fault detection and isolation of cl(i) applying (B) and (D) FDD
schemes.
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Figure 4.14: TR-AFM–Fault detection and isolation of Rt(i) applying (B) and (D) FDD
schemes.
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The estimation of the variation of Rt is shown in Fig. 4.15, computed as

d̃Rt (i) =
R+

t (i)+R−t (i)
2

− R+
t (i|id j −1)+R−t (i|id j −1)

2
(4.45)

for i ∈ [3529,6500] and [6534,10000] in the (B)-FDD scheme and for i ∈ [3592,6517]
and [6795,10000] in the (D)-FDD scheme. The nominal values of parameter variation
0.4Rt

(
i f1−1

)
and 0.25Rt

(
i f2−1

)
are indicated in the vertical axis, while the time

instances of fault occurrence are indicated in the horizontal axis. It is observed that
there is a divergence of the the estimated variation of Rt arisen from the (D)-scheme
and its nominal value. This divergence is probably due to the delay in detecting the
faults by the (D) scheme, leading to the computation of parametric sets that do not
contain the nominal vector θ ◦(i) for i ∈ [3501,3518] and [6501,6517].
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Figure 4.15: TR-AFM–Fault identification of Rt(i) applying (B) and (D) FDD schemes.

4.4 Conclusions

In this chapter, simulation studies are offered for verifying the efficiency of the
SMI-based FDD methodology, applied in an electrostatic parallel-plate microactuator
and a torsionally resonant atomic force microscope. In both examples, four different
schemes are used for the implementation of the FDD procedure, relying on orthotopic
and ellipsoidal SMI with data-hyperstrips and data-hypersectors. In the microactua-
tor example, under the assumption of a time-invariant linearly parametrizable model,
multiple abrupt variations in its mass, spring stiffness and damping coefficient are
detected by the FDD-schemes at the same time instances. The FDD schemes based
on ellipsoidal SMI isolate earlier the faulty components than the orthotopic SMI
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based ones. In the TR-AFM example, under the assumption of a time-varying lin-
early parametrizable model, the FDD schemes based on orthotopic SMI capture the
abrupt tip’s fractures earlier than the ones based on ellipsoidal SMI based FDD
schemes. The faulty component (tip’s radius) is isolated by the FDD schemes, but
the delay in fault detection using the ellipsoidal SMI ones seems to affect the fault
identification procedure.
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Chapter 5

Concluding Remarks

5.1 Conclusions

The objective of this dissertation is the development of a fault detection and di-
agnosis (FDD) methodology and its application in microelectromechanical systems
(MEMS). The need for utilizing a FDD module in complex systems stems from the
fact that faults must be captured and diagnosed before being compensated for en-
suring system reliability, maintainability and safe operation. These requirements are
very important especially in MEMS, whose improper operation may have a profound
impact in production cost and product quality, or even cause severe consequences
in human safety, since they are embedded in devices used in medicine, avionics,
vehicles e.t.c.

The goal of the proposed FDD methodology is to capture, isolate and identify
multiple abrupt parametric faults. Its design relies on parameter estimation in a set
membership framework under the assumption of a linearly parametrizable model
and the a priori knowledge of the bounds of the noise errors and parameter per-
turbations. The basic task of the set membership identification (SMI) is the deter-
mination of the feasible parameter set within which the nominal parameter vector
resides. Due to the difficulty in computing the feasible parameter set, orthotopes
and ellipsoids that outer bound it are used. Their mathematical expression is sim-
pler and they can be computed in an optimal way. Consequently, the goal of SMI
is reformulated in order to compute the orthotope or ellipsoid that guarantees to
contain the nominal parameter vector. This is accomplished given that the nominal
parameter vector resides in a hyperspace generated by the measurement data and
the a priori known noise bounds, which always intersects with the computed ortho-
tope or ellipsoid under faultless conditions. This data-hyperspace is depicted as: a)
a data-hyperstrip, which is the hyperspace between two parallel hyperplanes, and b)
a data-hypersector, defined by two non parallel hyperplanes. The former configura-
tion presupposes the utilization of parameter bounds, while the latter one demands
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the a priori known signed parameter vector. In this dissertation, an orthotope-based
SMI algorithm is developed handling both data-hyperstrips and hypersectors and
is implemented using linear programming techniques. On the other hand, the Opti-
mal Volume Ellipsoid (OVE) algorithm is used for the recursive computation of the
ellipsoid taking into account data-hyperstrips and is properly modified in order to
handle data-hypersectors.

In this research work, the FDD procedure is performed using a jump linearly
parametrizable model, in which the parameter variation vector is incorporated. The
jump-nature of the system description implies that the parameter variation vector
remains constant for a time window after the fault occurrence. The fault detection
is achieved when the normal operation of the SMI is violated, due to an empty
intersection between the data-hyperspace and the estimated parametric set. In order
to proceed with the fault diagnosis, a seamless update in SMI algorithm is realized by
resetting the parametric set and the data-hyperspace ensuring that their intersection
is non-empty and contains the new nominal parameter vector. The fault isolation
is carried out by checking the intersection between the projection of the estimated
parameter set arisen from the normal operation of SMI and the projection of the worst
case parameter set within which the nominal parameter vector would have resided,
if no fault had occurred. A faulty component is indicated when this intersection
is empty, and the size and type of the parameter variation is computed using the
distance of the projections’ centers. If the FDD procedure is implemented using the
ellipsoidal SMI and under the assumption of time-invariant parameter vector, a new
fault detection criterion is defined based on the intersection of the support orthotopes
of ellipsoids and is activated when this intersection is empty. In this dissertation, a
more accurate estimation of the time instant of fault occurrence is proposed, along
with a backward-in-time procedure starting from the fault detection instant, while
the conditions under which a fault will never be detected by the orthotopic and
ellipsoidal SMI based FDD are provided.

Simulation studies are elaborated in order to verify the efficiency of the SMI-
based FDD methodology, applied in an electrostatic parallel-plate microactuator and
a torsionally resonant atomic force microscope (TR-AFM). Orthotopic and ellipsoidal
SMI-based schemes handling data-hypersectors and data-hyperstrips are used for the
implementation of the FDD procedure, aiming at detecting failure modes appeared in
these systems. In the first example, under the assumption of a time-invariant linearly
parametrizable model, abrupt parameter variations in the mass, spring stiffness and
damping coefficient of the microactuator are detected and diagnosed by the proposed
schemes, while the faulty components are isolated earlier in the ellipsoidal FDD
schemes. In the TR-AFM example, the lumped parameter modelling is necessary
in order to obtain a linearly parametrizable model. Then, under the assumption
of a time-varying linearly parametrizable model, tip’s fractures corresponding to
abrupt variations of tip’s radius are detected and diagnosed by the orthotopic FDD
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schemes, while a delay is observed in the ellipsoidal FDD schemes, affecting the fault
identification mechanism.

5.2 Areas for Further Research

While there are many directions towards which this research could turn, there
are a few areas which seem particularly promising. In Chapter 2, the orthotopic
and ellipsoidal SMI algorithms are developed using the two configurations of data-
hyperspace. These algorithms could be modified taking into account the intersection
of the data-hyperstrips and the data-hypersectors. An alternative approach would be
the parallel operation of the algorithms using data-hypersectors and data-hyperstrips
and the selection of the smallest generated parametric set.

The suggested FDD methodology aims at the detection of multiple parametric
faults. Future work could include the customization of the FDD methodology in
order to detect additive faults as defined in Chapter 1 [71]. Further on, taking into
account that both multiplicative and additive faults may occur in the system under
investigation, consistency tests could be defined for identifying the type of the fault.
The FDD methodology is developed under the assumption of a linearly parametriz-
able model with y(i)∈R and φ(i)∈Rn. The FDD procedure may be extended in order
to encounter a linearly parametrizable model with y(i) ∈ Rr×1 and φ(i) ∈ Rr×n [111].

At the end of Chapter 3, there is a discussion concerning the detectability of
the faults and the characterization of the algorithms in relation to the inherent SMI
assumptions. Certainly, a sensitivity analysis of the proposed methods could be con-
ducted, by systematically checking whether or not a fault can be detected after apply-
ing a range of input stimuli, noise bounds, parameter perturbation bounds e.t.c. A
research work related to sensitivity analysis is presented in [100], in which the out-
put envelope detection of microsprings’ cracks in a microelectromechanical system
is investigated using a range of input stimuli and generating random perturbations
in electronics.

Simulation results presented in [103], [89] indicate the capability of the FDD pro-
cedure based on SMI in capturing faults appeared in an electrostatic parallel-plate
microactuator operating in a closed-loop configuration. However, the information
generated by closed-loop systems could be easily defective and the loss of identifi-
ability may be raised as shown in [112]. Hence, since the FDD procedure relies on
an identification technique, it would be worthwhile to explore the detectability of the
faults using different types of controllers.

Simulation studies in Chapter 4 indicate a good performance of the proposed FDD
methodology in detecting failure modes in an electrostatic parallel-plate microactu-
ator and a torsionally-resonant atomic force microscope. However, the experimental
verification of the efficiency of the FDD algorithms applied in a real MEMS setup
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is necessary. The FDD procedure should be customized so as to overcome diffi-
culties arisen from the experimental conditions such as limited or non informative
data, unknown disturbances that cannot be modelled and incorporated in a linearly
parametrizable model, high-magnitude measurement noise, high sampling rates that
lead to information losses e.t.c.

5.3 Dissertation Publications

The following articles appeared as a result of the research work in this disserta-
tion.

Journal Publications

J.1 V. Reppa and A. Tzes, Fault Detection and Diagnosis based on Parameter Set
estimation, to appear in IET Journal of Control Theory and Applications.

Conference Publications

C.1 V. Reppa and A. Tzes, Fault Detection and Diagnosis relying on Set Membership
Identification for Time Varying Systems, Conference on Control and Fault-
Tolerant Systems, Nice, France, 2010 (to appear, Paper FrA1.2).

C.2 V. Reppa, M. Vagia and A. Tzes, Fault Detection and Diagnosis enhanced by a
Reconfiguration Control Scheme for a Micro-Electrostatic Actuator, in Proceed-
ings of the 18th Mediterranean Conference on Control and Applications,
Marrakech, Morocco, 2010, pp. 477-482.

C.3 V. Reppa and A. Tzes, Fault Detection and Diagnosis based on Parameter
Set Estimation for Measurements corrupted by Bounded Noise, in Proceedings
of the 18th Mediterranean Conference on Control and Applications, Mar-
rakech, Morocco, 2010, pp. 460-465.

C.4 V. Reppa and A. Tzes, Fault Detection relying on Set Membership Techniques
for an Atomic Force Microscope, in Proceedings of the 7th IFAC Sympo-
sium on Fault Detection, Supervision and Safety on Technical Processes
(SAFEPROCESS), Barcelona, Spain, 2009, pp. 1186-1191

C.5 V. Reppa and A. Tzes, Fault Detection based on Orthotopic Set Membership
Identification for Robot Manipulators, in Proceedings of the 17th IFAC World
Congress, Seoul, Korea, 2008, pp. 7344-7349

C.6 V. Reppa, M. Vagia and A. Tzes, Fault Detection using Set Membership Identifi-
cation for Micro-Electrostatic Actuators, in Proceedings of IEEE International
Conference on Control Applications, Singapore, 2007, pp. 789-794

C.7 V. Reppa and A. Tzes, Synergy between control and electronic simulation models
in performance system enhancement, in Proceedings of IEEE International
Conference on Control Applications, Singapore, 2007, pp. 1138-1143
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C.8 V. Reppa and A.Tzes , Application of Set Membership Identification for Fault
Detection of MEMS in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 06), Orlando, Florida, 2006, pp. 643-648
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Appendix A

Mathematical Auxiliary Analysis

A.1 Computation of the Perturbation Ellipsoid

The perturbation ellipsoid Θw is determined as the ellipsoid that outer bounds
the perturbation orthotope given in (2.48).Two approaches are proposed for its com-
putation; Θw can be represented by the circle that crosses the vertices of Ωw, with its
centroid wc and shape matrix Pw computed as:

wc =

[
wmax

1 +wmin
1

2
, . . . ,

wmax
n +wmin

n

2

]T

, (A.1)

Pw = ‖W‖2 I, (A.2)

W =

[
wmax

1 −wmin
1

2
, . . . ,

wmax
n −wmin

n

2

]T

, (A.3)

where I is the n×n identity matrix. The second approach addresses that Θw is defined
as:

Θw = arg
Θ
[min{vol(Θ) : Θ⊃Ωw}] (A.4)

Therefore, Θw is computed as the Löwner-John ellipsoid of Ωw, whose center and
shape matrix are the solutions of the optimization problem [90]:

min log
(
det
(
Q−1

))
s.t.

∥∥Q
(
V p

Ωw−wc
)∥∥≤ 1, p = 0, . . . ,2n−1,

(A.5)

where Q ∈Rn×n � 0, V p
Ωw ∈Rn corresponds to the coordinates of the pth vertex of Ωw

and Pw =
(
QT Q

)−1
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A.2 Time Invariant Jump Linearly Parametrizable Model

The time invariant parameter vector case implies that

w(i) = 0n×1 ∀ i, (A.6)

θ(i) = θ(i−1) = θ ◦, i < i f1 (A.7)

Under the assumption i f0 = 0, ∆θ
(
i f0
)
= 0 and according to (3.2) and (3.3) the

following equations are valid

θ ◦
(
i f1
)

= θ ◦
(
i f1−1

)
+
(
∆θ
(
i f1
)
−∆θ (0)

)
= θ ◦+∆θ

(
i f1
)
,

θ ◦
(
i f1 +1

)
= θ ◦

(
i f1
)
+
(
∆θ
(
i f1 +1

)
−∆θ

(
i f1
)) 1

=θ ◦+∆θ
(
i f1
)
,

...

θ ◦
(
i f1 +L◦1−1

)
= θ ◦

(
i f1 +L◦1−2

)
+
(
∆θ
(
i f1 +L◦1−1

)
−∆θ

(
i f1
)) 1⇐⇒

θ ◦
(
i f2−1

)
= θ ◦

(
i f2−2

)
= θ ◦+∆θ

(
i f1
)
,

θ ◦
(
i f2
)

= θ ◦
(
i f2−1

)
+
(
∆θ
(
i f2
)
−∆θ

(
i f1
))

= θ ◦+∆θ
(
i f2
)
.

In a more compact form,

θ(i) = θ ◦+∆θ
(
i f0
)
, i f0 ≤ i < i f1

θ ◦(i) = θ ◦+∆θ
(
i f1
)
, i f1 ≤ i < i f2 ,

θ ◦(i) = θ ◦+∆θ
(
i f2
)
, i f2 ≤ i.

Hence, the time invariant jump linearly parametrizable model is described as:

y(i) = φ(i)T (θ ◦+∆θ
(
i f j−1

))
, for i f j−1 ≤ i < i f j

A.3 Proof of Theorem II.3.6.2

The presence of θ ◦+∆θ
(
i f j
)
inside the ellipsoid Θ

(
i f j
)
implies that:

V= δ (i f j)
[
θ̃ T

2 P
(
i f j
)−1 θ̃2−1

]
≤ 0,

∀δ
(
i f j
)
> 0, with

θ̃2 = θ ◦+∆θ
(
i f j
)
−θ c (i f j

)
. (A.8)
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A.3 Proof of Theorem II.3.6.2

Taking into account (2.76), the previous equation is transformed to:

θ̃2 =
[
θ ◦+∆θ

(
i f j−1

)
−θ c (i f j −1

)]
−

τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
) +

[
∆θ
(
i f j
)
−∆θ

(
i f j−1

)]
= θ̃1−

τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
) +∆θ̃ (A.9)

where ∆θ̃ = ∆θ
(
i f j
)
−∆θ

(
i f j−1

)
and G

(
i f j
)
= φ

(
i f j
)T P

(
i f j −1

)
φ
(
i f j
)
. The expression

of V can be simplified as:

V = δ (i f j)

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)

T

P
(
i f j
)−1

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)

+

2δ (i f j)∆θ̃ T P
(
i f j
)−1

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)

+δ (i f j)∆θ̃P
(
i f j
)−1 ∆θ̃ −δ (i f j)

= V1 +V2 +V3−δ (i f j). (A.10)

Using the matrix inversion lemma, (2.77) can be rewritten as:

P
(
i f j
)−1

=
1

δ (i f j)
P
(
i f j −1

)−1− σ(i f j)−δ (i f j)

δ (i f j)σ(i f j)G(i f j)
φ(i f j)φ T (i f j). (A.11)

Substituting P
(
i f j
)−1 into V1 yields:

V1 = δ (i f j)

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)

T

P
(
i f j
)−1

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)


= θ̃ T

1 P
(
i f j −1

)−1 θ̃1−
(
φ(i f j)T θ̃1

)2

G(i f j)
+

δ (i f j)

σ(i f j)

(
φ(i f j)T θ̃1√

G(i f j)
− τ(i f j)

)2

.

If θ ◦+∆θ
(
i f j−1

)
∈Θ

(
i f j −1

)
, then θ̃ T

1 P
(
i f j −1

)−1 θ̃1 ≤ 1, and −(φ(i f j )T θ̃1)
2

G(i f j )
≤ 0, and

V1 ≤ 1+
δ (i f j)

σ(i f j)

(
φ(i f j)T θ̃1√

G(i f j)
− τ(i f j)

)2

. (A.12)
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Similarly, using (A.11), V2 is rewritten:

V2 = 2δ (i f j)∆θ̃ T P
(
i f j
)−1

θ̃1−
τ
(
i f j
)

P
(
i f j −1

)
φ
(
i f j
)√

G
(
i f j
)


= 2∆θ̃ T P

(
i f j −1

)−1 θ̃1−2∆θ̃ T φ(i f j)

(
σ(i f j)−δ (i f j)

σ(i f j)
√

G(i f j)

(
φ T (i f j)θ̃1√

G(i f j)

))
−

2∆θ̃ T φ(i f j)

(
δ (i f j)τ(i f j)

σ(i f j)
√

G(i f j)

)
≤ α2

∥∥∆θ̃
∥∥ , (A.13)

where α2 = 2
∣∣∣∣ σ(i f j )−δ (i f j )

σ(i f j )
√

G(i f j )

(
φ T (i f j )θ̃1√

G(i f j )

)
+ δ (i f j )τ(i f j )

σ(i f j )
√

G(i f j )

∣∣∣∣∥∥φ(i f j)
∥∥+2

√
λmax[P(i f j−1)]

λmin[P(i f j−1)]
. In a sim-

ilar manner,

V3δ (i f j)∆θ̃ T P
(
i f j
)−1 ∆θ̃ ≤ δ (i f j)

λmin
[
P(i f j)

] ∥∥∆θ̃
∥∥2

= α1
∥∥∆θ̃

∥∥2
. (A.14)

Hence, θ ◦+∆θ
(
i f j
)
∈Θ

(
i f j
)
if V= V1 +V2 +V3−δ (i f j)≤ 0, or if

α1
∥∥∆θ̃

∥∥2
+α2

∥∥∆θ̃
∥∥+α3 ≤ 0 (A.15)

where α3 = 1+ δ (i f j )

σ(i f j )

(
φ(i f j )T θ̃1√

G(i f j )
− τ(i f j)

)2

−δ (i f j). Inequality (A.15) is a quadratic one

in terms of
∥∥∆θ̃

∥∥= ∥∥∆θ
(
i f j
)
−∆θ

(
i f j−1

)∥∥ and has a solution if the inequalities noted
in Theorem 3.6.2 are satisfied.

A.4 Computation of Modal-Shape of Torsional Resonant AFM

The undamped free torsional vibration of the cantilever is described by:

GJ
∂ 2ψ(x, t)

∂x2 = ρIρ
∂ 2ψ(x, t)

∂ t2 . (A.16)

The variables can be separated using

ψ(x, t) = ξ (x)Ψ(t). (A.17)

Substitution of (A.17) into (A.16) and dividing with ξ (x)Ψ(t) leads to:

d2ξ (x)
dx2

1
ξ (x)

=
ρIρ

GJ
Ψ̈(t)

1
Ψ(t)

. (A.18)
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Because the left-hand side of this equation is a function of x only and the right one
is a function of t only, the entire equation can be satisfied for arbitrary values of x
and t only if each term is a constant in accordance with

d2ξ (x)
dx2

1
ξ (x)

=
ρIρ

GJ
Ψ̈(t)

1
Ψ(t)

=−β 2
ψ , (A.19)

where the single constant involved is designated in the form β 2
ψ for later mathematical

convenience. This equation yields two ordinary differential equations:

Ψ̈(t)+ω2Ψ(t) = 0, (A.20)
d2ξ (x)

dx2 +βq
2ξ (x) = 0 (A.21)

in which ωq
2 ≡ GJ

ρIρ
βq

2. Equation (A.20) is the well known undamped one-degree-
of-freedom harmonic oscillator. The solution of (A.21) is:

ξ (x) = a0 sin(βqx)+b0 cos(βqx). (A.22)

Considering the clamped and free boundary conditions, ξ (x)|x=0 = 0, GJ dξ (x)
dx

∣∣∣
x=Lc

= 0,
the following characteristic equation is obtained

cos(βqLc) = 0, (A.23)

yielding in:

βq =
(2q−1)π

2Lc
, (A.24)

ωq =
(2q−1)π

2Lc

√
GJ
ρIρ

. (A.25)

Finally, the torsional modal shape is given as:

ξ (x) = a0 sin(βqx), (A.26)

where a0 is an arbitrary constant.
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Based on the previous analysis, M∗, L∗, ξq(Lc), ξq(Lc)
2 are computed as:

ξq(Lc) = a0 sin
(
(2q−1)π

2

)
=

{
a0, if q is odd
−a0, if q is even

, (A.27)

ξq(Lc)
2 = a0

2sin2
(
(2q−1)π

2

)
= a0

2, (A.28)

L∗ =
∫ Lc

0
ρIρξq(x)dx = ρIρa0

∫ Lc

0
sin(βqx)dx = ρIρa0

[
− 1

βq
cos(βqx)

]Lc

0

= ρIρa0

[
− 1

βq
cos(βqLc)+

1
βq

]Lc

0
=

ρIρa0

βq
, (A.29)

M∗q =

∫ Lc

0
ρIρξq(x)

2dx = ρIρa0
2
∫ Lc

0
sin(βqx)2dx = ρIρa0

2
[

x
2
− 1

4βq
sin(2βqx)

]Lc

0

= ρIρa0
2
(

Lc

2
− 1

4βq
sin(2βqLc)

)
= ρIρa0

2
(

Lc

2
− 1

4βq
sin
(

2
(2q−1)π

2Lc
Lc

))
=

ρIρa0
2Lc

2
. (A.30)

Orthogonality Relationship: For ωq 6= ωp, the modal shape ξ (x) satisfies the
orthogonality relationship:

Lc∫
0

ξq(x)ξp(x)dx =
Lc∫
0

a0
2 sin(βqx)sin(βpx)dx =a0

2
[

sin((βq−βp)x)
2(βq−βp)

− sin((βq+βp)x)
2(βq+βp)

]Lc

0
βq−βp =

(2q−1)π
2Lc

− (2p−1)π
2Lc

= (2q−1−2p+1)π
2Lc

= 2(q−p)π
2Lc

= (q−p)π
Lc

,

βq +βp =
(2q−1)π

2Lc
+ (2p−1)π

2Lc
= (2q−1+2p−1)π

2Lc
= 2(q+p−1)π

2Lc
= (q+p−1)π

Lc

implying that

Lc∫
0

ξq(x)ξp(x)dx = a0
2

sin
(
(q−p)π

Lc
Lc

)
2
(
(q−p)π

Lc

) −
sin
((

(q+p−1)π
Lc

)
Lc

)
2
(
(q+p−1)π

Lc

)
= 0. (A.31)
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Appendix B

Algorithms

B.1 OVE-based Algorithms

Algorithm 1 Ellipsoid Computation using Data-Hyperstrips

1. α(i)←min
(

ym(i)−φ m(i)T θ̂ c(i)+ẽmax(i)√
φ m(i)T P̂(i)φ m(i)

,1
)
, α(i)←max

(
ym(i)−φ m(i)T θ̂ c(i)−ẽmax(i)√

φ m(i)T P̂(i)φ m(i)
,−1

)
2. if α(i)≤−1 or α(i)≥ 1 then
3. there is no feasible parameter set and the algorithm stops
4. else
5. if α(i)α(i)≤−1

n then
6. θ c(i)← θ̂ c(i) and P(i)← P̂(i)
7. else
8. if |α(i)+α(i)| ≤ 2µ◦, µ◦ ' 0 then
9. α(i)←max(|α(i)| , |α(i)|) , τ(i)← 0

σ(i)← nα(i)2, δ (i)← n(1−α(i)2)
n−1

10. else
11. β (i)← n(α(i)+α(i))+ 2(1+α(i)α(i))

α(i)+α(i)

τ(i)←
β (i)−sign

(
α(i)+α(i)

2

)√
β (i)2−4(n+1)(1+nα(i)α(i))

2(n+1)

σ(i)← τ(i) [τ(i)−β (i)+n(α(i)+α(i))]+1
δ (i)← σ(i)

1− 2τ(i)
α(i)+α(i)

12. end if
13. θ c(i), (P(i)) is computed using (2.76) and (2.77)
14. end if
15. end if
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Algorithm 2 Ellipsoid Computation using Data-Hypersectors

1. α(i)←min
(

ym(i)−φB(i)T θ̂ c(i)+ẽmax(i)√
φB(i)T P̂(i)φB(i)

,1
)
, α(i)←max

(
ym(i)−φA(i)T θ̂ c(i)−ẽmax(i)√

φA(i)T P̂(i)φA(i)
,−1

)
2. if α(i)≤−1 or α(i)≥ 1 then
3. there is no feasible parameter set and the algorithm stops
4. else
5. if α(i) =−1 and α(i) = 1 then
6. θ c(i)← θ̂ c(i) and P(i)← P̂(i)
7. else
8. if α(i) = 1 and −1 < α(i)< 1 then
9. τ(i), δ (i), σ(i) are computed through Steps 8–12 of Algorithm 1 and

θ c(i), P(i) through Step 13 using φA(i) instead of φ m(i) in (2.76) and (2.77)
10. else if α(i) =−1 and −1 < α(i)< 1 then
11. τ(i), δ (i), σ(i) are computed through Steps 8–12 of Algorithm 1 and

θ c(i), P(i) through Step 13 using φB(i) instead of φ m(i) in (2.76) and (2.77)
12. else if −1 < α(i)< 1 and −1 < α(i)< 1 then
13. α(i)← 1
14. τ(i), δ (i), σ(i) are computed through Steps 8–12 of Algorithm 1
15. θ c′(i)← θ̂ c(i)+ τ(i)P̂(i)φA(i)√

φA(i)T P̂(i)φA(i)
,

P′(i)← δ (i)P̂(i)+ [σ(i)−δ (i)] P̂(i)φA(i)φA(i)T P̂(i)
φA(i)T P̂(i)φA(i)

16. α(i)←−1, α(i)←min
(

ym(i)−φB(i)T θ c′ (i)+ẽmax(i)√
φB(i)T P′(i)φB(i)

,1
)

17. if α(i)≤−1 then
18. there is no feasible parameter set and the algorithm stops
19. else
20. τ(i), δ (i), σ(i) are computed through Steps 8–12 of Algorithm 1
21. θ c(i)← θ c′(i)+ τ(i)P′(i)φB(i)√

φB(i)T P′(i)φB(i)
,

P(i)← δ (i)P′(i)+ [σ(i)−δ (i)] P′(i)φB(i)φB(i)T P′(i)
φB(i)T P̂(i)φB(i)

22. end if
23. end if
24. end if
25. end if
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B.2 Backward-in-Time Fault Detection Algorithm

Algorithm 3 Backward-in-Time Fault Detection
1. {Z= Ω in orthotopic FDD and Z= Θ in ellipsoidal FDD}
2. m1 = 1, m2 = 0
3. repeat
4. k = id j −m1

5. Z(k−1)← Zr(k−1) using the orthotopic or ellipsoidal resetting procedure ac-
cording to Theorem (3.5.1) or (3.5.2)

6. repeat
7. Z(k+m2)← Z(k+m2−1)

∩
Z(k+m2) via the OVE-algorithm

8. m2 = m2 +1
9. until Z(k+m2) 6= /0,OR m2 > L1 +m1

10. m1 = m1 +1
11. until m1 > L,or m2 = L1 +m1−1
12. The fault occurrence is at i f j ≤ k
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