
Dissertation

Models, Design Methods and Tools

for Improved Partial Dynamic

Reconfiguration

Markus Rullmann

Supervisor

Prof. Dr.-Ing. habil. Renate Merker

Technische Universität Dresden

Models, Design Methods and Tools for Improved Partial

Dynamic Reconfiguration

Markus Rullmann

von der Fakultät Elektrotechnik und Informationstechnik

der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. H. Schreiber

Gutachter: Prof. Dr.-Ing. habil. R. Merker

Prof. Dr. rer. nat. F. J. Rammig

Tag der Einreichung: 07.09.2009

Tag der Verteidigung: 26.02.2010

Contents

1 Introduction 1

1.1 Reconfigurable Computing . 4

1.1.1 Reconfigurable System on a Chip (RSOC) 4

1.1.2 Anatomy of an Application . 6

1.1.3 RSOC Design Characteristics and Trade-offs 7

1.2 Classification of Reconfigurable Architectures 10

1.2.1 Partial Reconfiguration . 10

1.2.2 Runtime Reconfiguration (RTR) 10

1.2.3 Multi-Context Configuration . 11

1.2.4 Fine-Grain Logic . 11

1.2.5 Coarse-Grain Logic . 11

1.3 Reconfigurable Computing Specific Design Issues 12

1.4 Overview of this Dissertation . 14

2 Reconfigurable Computing Systems – Background 17

2.1 Examples for RSOCs . 17

2.2 Partially Reconfigurable FPGAs: Xilinx Virtex Device Family 20

2.2.1 Virtex-II/Virtex-II Pro Logic Architecture 20

2.2.2 Reconfiguration Architecture and Reconfiguration Control . . 21

2.3 Methods for Design Entry . 24

2.3.1 Behavioural Design Entry . 25

2.3.2 Design Entry at Register-Transfer Level (RTL) 25

2.3.3 Xilinx Early Access Partial Reconfiguration Design Flow 26

2.4 Task Management in Reconfigurable Computing 27

2.4.1 Online and Offline Task Management 28

2.4.2 Task Scheduling . 28

2.4.3 Task Placement . 29

2.4.4 Reconfiguration Runtime Overhead 31

2.5 Configuration Data Compression . 32

2.6 Evaluation of Reconfigurable Systems . 35

2.6.1 Energy Efficiency Models . 35

2.6.2 Area Efficiency Models . 37

I

II Contents

2.6.3 Runtime Efficiency Models . 37

2.7 Similarity Based Reduction of Reconfiguration Overhead 38

2.7.1 Configuration Data Generation Methods 39

2.7.2 Device Mapping Methods . 40

2.7.3 Circuit Design Methods . 41

2.7.4 Model for Partial Configuration 44

2.8 Contributions of this Work . 44

3 Runtime Reconfiguration Cost and Optimization Methods 47

3.1 Motivation . 48

3.2 Reconfiguration State Graph . 50

3.2.1 Reconfiguration Time Overhead 52

3.2.2 Dynamic Configuration Data Overhead 52

3.3 Configuration Cost at Bitstream Level . 54

3.4 Configuration Cost at Structural Level 56

3.4.1 Definitions . 57

3.4.2 Virtual Architecture . 62

3.4.3 Reconfiguration Costs in the VA Context 65

3.5 Allocation Functions with Minimal Reconfiguration Costs 67

3.5.1 Allocation of Node Pairs . 68

3.5.2 Direct Allocation of Nodes . 76

3.5.3 Experiments . 84

3.6 Summary . 90

4 Implementation Tools for Reconfigurable Computing 95

4.1 Mapping of Netlists to FPGA Resources 96

4.1.1 Mapping to Device Resources . 96

4.1.2 Connectivity Transformations . 99

4.1.3 Mapping Variants and Reconfiguration Costs 100

4.1.4 Mapping of Circuit Macros . 101

4.1.5 Global Interconnect . 102

4.1.6 Netlist Hierarchy . 103

4.2 Mapping Aware Allocation . 103

4.2.1 Generalized Node Mapping . 104

4.2.2 Successive Node Allocation . 105

4.2.3 Node Allocation with Ant Colony Optimization 107

4.2.4 Examples . 109

4.3 Netlist Mapping with Minimized Reconfiguration Cost 110

4.3.1 Mapping Database . 111

4.3.2 Mapping and Packing of Elements into Logic Blocks 112

4.3.3 Logic Element Selection . 114

4.3.4 Logic Element Selection for Min. Routing Reconfiguration . . 115

Contents III

4.3.5 Experiments . 121

4.4 Summary . 123

5 High-Level Synthesis for Reconfigurable Computing 125

5.1 Introduction to HLS . 127

5.1.1 HLS Tool Flow . 127

5.1.2 Realization of the Hardware Tasks 128

5.2 New Concepts for Task-based Reconfiguration 131

5.2.1 Multiple Hardware Tasks in one Reconfigurable Module 132

5.2.2 Multi-Level Reconfiguration . 133

5.2.3 Resource Sharing . 138

5.3 Datapath Synthesis . 139

5.3.1 Task Model . 139

5.3.2 Resource Model . 142

5.3.3 Resource Binding . 142

5.3.4 Scheduling . 149

5.3.5 Constraints for Scheduling and Resource Binding 151

5.4 Reconfiguration Optimized Datapath Implementation 153

5.4.1 Effects of Scheduling and Binding on Reconfiguration Costs . 153

5.4.2 Strategies for Resource Type Binding 154

5.4.3 Strategies for Resource Instance Binding 157

5.5 Experiments . 163

5.5.1 Summary of Binding Methods and Tool Setup 163

5.5.2 Cost Factors . 165

5.5.3 Implementation Scenarios . 166

5.5.4 Benchmark Characteristics . 168

5.5.5 Benchmark Results . 170

5.5.6 Discussion . 174

5.6 Summary . 177

6 Summary and Outlook 185

Bibliography 189

A Simulated Annealing 201

IV Contents

List of Symbols

Notation

s scalar value

v vector

S set

f(), f : S 7→ S function

v() vector valued function

k = 1, . . . , K range from 1 to K

|S| cardinality of the set S

Chapter 3

a node allocation, p. 77

s total configuration size, p. 53

s average configuration size, p. 53

t total reconfiguration time, p. 52

t average reconfiguration time, p. 52

tE total reconfiguration time for interconnect, p. 66

a() allocation, p. 59

as() re-labelling of the source label, p. 59

ad() re-labelling of the drain label, p. 59

ae() edge allocation, p. 60

d() device configuration, p. 49

ln() node configuration, p. 57

ls() source label, p. 57

ld() drain label, p. 57

r() reconfiguration bitmap, p. 51

u() reuse function, p. 65

A stack of node allocations, p. 77

ET set of transitions between tasks, p. 50

NT set of tasks, p. 50

Gi(. . .) input graph of task i, p. 59

V

VI List of Symbols

G′
i
(. . .) image graph of task i, p. 59

GA(NA,EA, . . .) virtual architecture graph, p. 63

G(NT,ET) reconfiguration state graph (RSG), p. 50

Chapter 4

a node allocation, p. 107

a′ possible LE allocation, p. 118

Aa′ binary variable to select an LE allocation, p. 119

Ba1,a2
binary variable to select a pair of LE allocations a′

1
,a′

2
, p. 120

EL,i number of local connections in task i, p. 115

EM,i number of merged connections in task i, p. 116

EU number of matching edges between all tasks, p. 120

Sv binary variable to select an LE v, p. 114

wL() number of local connections in an LE, p. 117

wM() number of merged connections in an LE, p. 117

A set of node allocations, p. 107

A′ set of possible LE allocations, p. 118

A′′ set of feasible LE allocations, p. 118

Li relation between nodes and LEs for task i, p. 113

Rn set of LE resources for node n, p. 112

Vi set of LEs for task i, p. 112

Chapter 5

Cdp,m implementation costs of a datapath of reconfigurable module

m, p. 147

Cres,m resource costs of reconfigurable module m, p. 147

Cmux,m dataflow multiplexer costs of reconfigurable module m, p.

147

Cwire,m interconnect costs of reconfigurable module m, p. 147

a() allocation, p. 59

aT() resource type allocation, p. 143

b() number of resource instances, p. 144

bi() number of resource instances in task i, p. 157

bm() number of resource instances in reconfigurable module m, p.

158

bVA() number of resource instances in the VA, p. 158

c() schedule, p. 150

l() latency, p. 142

o() offset, p. 142

VII

r() reconfiguration bitmap for modules, p. 148

wLE() resource cost, p. 142

wS() control signal cost, p. 142

wW() wire cost, p. 148

wt() reconfiguration costs of a reconfigurable element, p. 149

x() number of inputs of a dataflow multiplexer, p. 146

EA,m set of edges in the datapath of reconfigurable module m, p.

146

EC set of precedence constraints, p. 140

ED set of data dependencies, p. 140

NA,m set of nodes in the datapath of reconfigurable module m, p.

146

NO set of operations, p. 140

NT,m set of tasks realized in reconfigurable module m, p. 145

NV set of variables, p. 140

M set of reconfigurable modules, p. 148

R set of resource instances, p. 142

RT set of resource types, p. 142

GC(N ,EC) conflict graph, p. 159

GR(N ,RT,ER) resource graph, p. 143

VIII List of Symbols

List of Abbreviations

ca. approximately (Latin: circa)

cf. compare (Latin: confer)

e.g. for the sake of example (Latin: exempli gratia)

et al. and others (Latin: et alii)

et seq. and the following (Latin: et sequens)

etc. and so on (Latin: etcetera)

i.e. that is (Latin: id est)

p. page

ACO Ant Colony Optimization

ALU Arithmetic Logical Unit

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

ASIP Application Specific Integrated Processor

CDFG Control Dataflow Graph

CFG Configuration

CPU Central Processing Unit

DCT Discrete Cosine Transform

DDR Double Data Rate

DFG Dataflow Graph

DSP Digital Signal Processor

EAPR Early Access Partial Reconfiguration

EDIF Electronic Design Interchange Format

ESM Erlangen Slot Machine

FPL Field Programmable Logic

FPGA Field Programmable Gate Array

FU Functional Unit

GPIO General Purpose Input Output

HDL Hardware Description Language

HLS High-Level Synthesis

ICAP Internal Configuration Access Port

ILP Integer Linear Program

LB Logic Block

IX

X List of Abbreviations

LCSG Largest Common Subgraph

LE Logic Element

LMG Labelled Multidigraph

LUT Look-up Table

MWCP Maximum Weighted Clique Problem

OPB On-chip Peripheral Bus

OS Operating System

PLB Processor Local Bus

PPC PowerPC

RAM Random Access Memory

RSG Reconfiguration State Graph

RSOC Reconfigurable System on a Chip

RTL Register Transfer Level

RTR Runtime Reconfiguration

SA Simulated Annealing

SOC System on a Chip

SRL Shift Register Logic

UART Universal Asynchronous Receiver Transmitter

VA Virtual Architecture

XDL Xilinx Description Language

Chapter 1

Introduction

Electronic devices today contain, apart from analog interfaces to the physical world,

a wide range of digital circuitry for data processing and operation control. Digi-

tal circuits are part of automotive systems, mobile devices, home entertainment and

multimedia systems, telecommunication networks, computers, and many more elec-

tronic devices in everyday live. As these devices become even more advanced, the

requirements in terms of computing performance, energy consumption, reliability,

and manufacturing cost increase, too.

Digital circuits are the common basis for a range of different digital computing

architectures. All those architectures are dedicated to implement the data process-

ing and control functionality in the most efficient way. The most common archi-

tecture is the instruction-set based processor that implements the Von-Neumann

execution model. In Von-Neumann computing, the behaviour of the digital circuit

is controlled by a sequential stream of instructions that defines the data processing

and control operations. Von-Neumann computing is used in different computing ar-

chitectures: general purpose processors (CPU), digital signal processors (DSP), and

application-specific instruction-set processors (ASIP). The internal processing of the

instruction stream is not necessarily sequential. However, the execution model as-

sumes that the processing is controlled by these instructions such that the data is

processed in the specified order. Von-Neumann computing allows us to build very

flexible processors that compute any type of algorithm. The use of such a processor

is not efficient for every application. A processor may contain functions that is not

used in every application. Also, the processing performance may not be sufficient for

any application or algorithm. In addition, the storage, loading, and decoding of the

instruction stream requires a significant amount of circuitry and energy. If the com-

putation and control required by an application is of a more static kind of nature, it

may be much more efficient to design customized digital hardware that realizes the

computations. Instead of a sequential instruction stream that controls the operation

of a generic machine, the operations are realized as a fixed digital circuit. Now,

only the application data is supplied to the circuitry at runtime. Many electronic

1

2 Chapter 1. Introduction

devices employ this kind of computing paradigm in application-specific integrated

circuits (ASIC) that implement selected parts of an application in a very efficient

way. A major drawback of this technology is its static nature: after manufactur-

ing, the functionality of an ASIC can not be changed. If the application changes, a

new ASIC is to be designed and integrated into the computing system. A solution

to this problem is provided by programmable logic. Programmable logic consists

of a digital circuit that can be configured to implement a wide range of functions.

Therefore, the interconnect and the function of the digital logic is programmable.

The configuration describes not a sequential instruction stream as in Von-Neumann

computing, but the logic function of the data processing hardware itself. It means

programmable logic can be customized after the devices are being manufactured.

Programmable logic is almost as flexible as an instruction-set processors and the

configuration realizes a digital circuit that behaves similar to an ASIC. Hence pro-

grammable logic provides a very flexible hardware platform to implement different

applications very efficiently.

Originally, programmable logic has been used to replace discrete logic and ASICs

in low volume products. Later on, the use of programmable logic to build comput-

ing systems became apparent. The original concept of reconfigurable computing is

attributed to Gerald Estrin [29] who proposed a computer consisting of a processor

and additional reconfigurable hardware. In the 1960s, programmable logic was not

available and therefore Estrin’s idea did not have notable impact on computing ar-

chitectures. It was not until the 1980s that powerful programmable logic appeared,

which allowed to build complex computing systems. The new programmable logic

devices were called field-programmable gate arrays (FPGAs). Driven by the idea

of a regular array of programmable computing elements and interconnect, the re-

search into reconfigurable computing broadened in the early 1990s. It has been in

the focus of computer architecture research until today.

The advantages of reconfigurable computing may be summarized in short: pro-

grammability allows the hardware to be customized after fabrication. The inherent

parallelism of the programmable hardware allows a significant speedup in algo-

rithm execution over conventional processor-based computing, even at lower clock

frequencies. The parallel computation at lower clock frequencies also increases the

energy efficiency of the implementation. The mass fabrication of programmable

logic gives a significant cost advantage over ASICs for low volume products.

The emergence of programmable logic that allows a runtime adaptation of the

configuration and hence a change of the operational digital circuit, led to a whole

set of new concepts for reconfigurable computing. The programming data for the

programmable logic device was perceived software-like, called configware. Still,

configware does not denote a sequential instruction stream as for processors but

it denotes the configuration of an array of computing elements and interconnect.

Execution models now include the frequent reconfiguration of the programmable

logic: at runtime, the programmable logic does not implement fixed functions, but

3

the functionality is adapted as required by the application. Thus the functional

diversity of the programmable logic appears much more versatile to the application

compared to the functionality offered by a single configuration. The application

perceives reconfigurable functions as virtual hardware, a concept similar to virtual

memory in general purpose computing.

The reconfiguration of programmable hardware can significantly increase the ef-

ficiency of reconfigurable computing systems, but it also has drawbacks to be consid-

ered. Usually, the amount of programming data for the hardware is large, because

the data configures all parts of the reconfigurable hardware directly, and the data

are not as densely coded as software instructions. Hence if multiple configurations

are used, a large amount of memory must be provided to store these data. Because

the programming data can be transferred into the programmable logic device only

at a limited bandwidth, the reconfiguration also introduces a time overhead. Dur-

ing the reconfiguration, parts of the programmable logic are not in a known state

and can not perform meaningful computations. A reconfigurable computing system

needs to handle these restrictions at runtime.

In the thesis at hand we investigate where the large amount of programming

data originates. We develop a theoretical model that describes the relationship be-

tween the functionality of the hardware and the necessary configuration data. Based

on this model we propose several techniques to reduce the amount of data needed

to change the device’s configuration in order to implement new functionality. The

effect on reconfigurable computing systems is twofold: the amount of memory re-

quired to store programming data is reduced as well as the reconfiguration runtime

overhead. Both leads to more efficient realizations of reconfigurable computing

applications.

At the low level, we target the reduction of configuration data directly and take

the description of the hardware functionality as an input. We demonstrate how

similar hardware structures can be identified in the input. We describe how the

similarity can be exploited to reduce configuration data while the description is

mapped to the reconfigurable device.

We apply the reconfiguration model to a high-level specification of hardware

functionality as well. It is assumed that the hardware functions are reconfigured

at runtime, i.e. one function is executed after another. At the high-level, the spec-

ification is compiled into a detailed hardware description that contains hardware

structures being optimized for similarity. Hence, we achieve a higher similarity of

the hardware structures and thus less programming data overhead compared to

a non-optimized hardware description. The high-level analysis further provides in-

sight into the necessity of runtime reconfiguration. We provide exact information on

how many resources are required with and without runtime reconfiguration for the

same high-level specification. With our approach, designers can trade-off resource

requirements against reconfiguration cost.

4 Chapter 1. Introduction

i/o pins

programmable switches

local interconnect

global interconnect

configurable function unit

Figure 1.1: Components of a generic FPGA architecture.

1.1 Reconfigurable Computing

Many of today’s applications have very demanding requirements on computation

performance, flexibility, and power consumption. E.g. in the domain of high per-

formance computing the highest possible performance is required for a wide range

of commercial and scientific applications. Several vendors offer hybrid FPGA/CPU

computers [62][22][83]. Other reconfigurable computing architectures target the

multimedia application domain, cf. [58][66][93][110][3][85].

Reconfigurable computing combines the flexibility of a software processor with

the performance of a dedicated hardware implementation. A reconfigurable com-

puting fabric consists of a flexible array of configurable functional units and a con-

figurable interconnect, cf. Figure 1.1. The fabric can be configured to function

like specialized datapath similar to an ASIC or ASIP implementation. The fabric

contains either dedicated control units or the datapath control must be realized by

using generic logic elements. The performance and power efficiency of reconfigur-

able computing arises from these custom datapath configurations: The datapath is

often built such that there is no sequential control flow as in Von-Neumann com-

puting. The datapath can be deeply pipelined and a high degree of instruction level

parallelism can be realized. All that can be tailored to the application at hand.

1.1.1 Reconfigurable System on a Chip (RSOC)

Most reconfigurable computing architectures can not only implement algorithm pro-

cessing, but also a significant part of the system architecture: Memory interfaces,

local on-chip caches, system buses, peripheral interfaces, and control processors

– everything that is needed to build complex, reconfigurable systems on a chip

(RSOC).

In 2005 we published an example of an RSOC [97]. At that time it was the first

implementation of an RSOC that used the embedded PowerPC CPU in a VirtexII-Pro

1.1. Reconfigurable Computing 5

PLB
ARB

DSOCM

INT
ISPLB

DSPLB

ISOCM

OPB
ARB

PLB2OPB
Bridge

PS/2

IP
IF

BRAM IP
IF SystemACE

IP
IF ICAP

DDR Ctlr

TFT Ctlr

PPC

IP
IF UART

IP
IF GPIO Reconfig

Figure 1.2: RSOC bus architecture and peripherals.

as the system’s main processor. The complete system architecture is shown in Fig-

ure 1.2. The system contains one main processor (PPC), two system buses (PLB,

OPB), and a number of peripherals. The system is based on an embedded Linux

OS (Montavista Linux) that manages the software application and contains a driver

that gives access to the device’s configuration control. The high-bandwidth periph-

erals are connected to the CPU via the PLB: the main memory (DDR) controller, the

TFT controller, and the PLB-to-OPB bridge. The low-bandwidth peripherals are con-

nected to the CPU via the OPB and the PLB-to-OPB bridge: the serial port (UART),

the mouse/keyboard (PS/2), the harddisk controller (SystemACE), the configura-

tion controller (ICAP), and finally the generic interface to the reconfigurable area

(GPIO/Reconfig).

While the overall system implements a general system on a chip, two periph-

erals are unique to RSOCs: the ICAP controller and the GPIO/Reconfig peripheral.

The ICAP controller allows the system to access the internal configuration logic of

the device, i.e. the software running on the CPU can change the configuration of

the device at runtime. The RSOC contains resources that are dedicated to be re-

configured at runtime. In order to provide a generic interface to the logic that is

configured onto these resources, we inserted a General Purpose IO (GPIO) interface

to these resources. Special busmacros provide a static hookup to realize a physical

connection to the reconfigurable circuits.

The limitations of the configuration architecture in the VirtexII-Pro devices and

the I/O-Pin connections to external components led to the floorplan as shown in

Figure 1.3.

So far we have identified the following key features that an architecture must

6 Chapter 1. Introduction

Configuration 1
Configuration 2
Configuration 3

CPU

JTAG

ICAP

Busmacros

Ethernet PS2

D
D

R
 R

A
M

SystemAce

P
C

I

Static System

R
ec

on
fig

ur
ab

le
 M

od
ul

e

S
ta

tic
 M

od
ul

e

P
ar

al
le

l P
or

t

GPIO Interface

Figure 1.3: Floorplan of the RSOC depicted in Figure 1.2.

posses to be able to implement RSOCs: The architecture must provide means to

realize a runtime control of reconfiguration. It must also provide access to the con-

figuration interface of the architecture in order to customize the device at runtime.

The device customization at runtime must be performed such that non-interruptable

parts of the device stay operational while re-programming the dynamic part of the

device. This feature is frequently called partial runtime reconfiguration.

1.1.2 Anatomy of an Application

Consider an application that is executed on an RSOC as depicted in Figure 1.4.

The application consists of different tasks 1 to N that are implemented as hardware

tasks to be executed on the reconfigurable fabric. The task execution control and the

system management is usually performed by an operating system (OS) running on

the CPU. Here we focus on the execution of the hardware tasks on the reconfigurable

fabric. A hardware task is first loaded onto the reconfigurable fabric in step (c) and

then the task is executed (e). The steps (c) and (e) are repeated for each task. The

OS manages the resource allocation in the reconfigurable fabric, the task execution,

and the communication between tasks.

On the example above several challenges in RSOC design can be identified:

Hardware/Software Partitioning The original application must be partitioned into

hardware and software tasks. The decision is made on the basis of performance

requirements and the available resources for the hardware tasks.

1.1. Reconfigurable Computing 7

Application

CPU

Reconfigurable

Resources

Task 1

Control Flow

Task N

Task 2
...

RSOC Execution

CPU

Reconfigurable

Resources

time

e e e e e...c c c cc

Figure 1.4: A reconfigurable application running on an RSOC. The reconfigurable re-

sources are configured (c) to implement a task before the task can be executed (e).

Hardware Task Implementation The original application is usually specified in C or

C++. However, the hardware tasks must be re-implemented in a hardware specific

design language like Verilog/VHDL or re-implemented for a C-based synthesis tool.

Hardware tasks can also be implemented with different resource requirements and

performance trade-offs.

Hardware Reconfiguration and Hardware Task Execution Management At runtime,

the reconfigurable fabric must be managed. The OS schedules the loading of tasks

into the reconfigurable fabric, it manages the placement of tasks in the fabric and it

controls the task execution. The loading of hardware tasks often requires consider-

able effort and requires efficient scheduling and placement strategies.

1.1.3 RSOC Design Characteristics and Trade-offs

Here we introduce several measures that characterize an RSOC implementation of

an application. The measures are either a requirement or a result of the system

design and implementation. At first, the characteristics are described in detail. After

that the trade-offs between different characteristics are illustrated.

The system parameters include:

The code size of the application determines the amount of data required to

store the binary code of the application. This includes the processor’s software

libraries and configuration data of the configurable hardware.

The resource use measures the amount of device resources that are required to

implement the RSOC. These include general logic of the reconfigurable fabric

and the use of macro blocks like on-chip RAM, multipliers/DSP blocks, clock

resources, processor cores, and i/o resources etc.

A RSOC may employ a number of different clock signals. The clock period of

certain parts in the RSOC relates to the processing speed achieved within that

part, even though other implementation parameters are relevant as well. The

8 Chapter 1. Introduction

CPU clock determines the processing speed of the software part of the appli-

cation, the system bus clock determines largely the available communication

bandwidth, and the clock period of the hardware task implementation defines

the task’s performance.

The execution time of the application covers the execution time of the individ-

ual tasks as well as the operating system overhead and time overhead inferred

by dynamic reconfiguration.

The reconfiguration time measures the time required to reconfigure the device

before the new task can be executed.

Apart from general system design issues, there are trade-offs specifically related

to runtime reconfiguration. The RSOC designer needs to consider the following if

he wants to implement the reconfigurable tasks: resource utilization of the task,

the task execution time, the number of reconfigurable tasks (task granularity), and

frequency of reconfiguration between tasks. The parameters may interact as follows:

If a task is implemented such that more operations are executed in parallel

then the resource utilization increases, but the task execution time decreases.

A reconfigurable task that uses more resources also requires a longer time to

be configured on the device, which partially outweights the gain in execution

time.1

A fine granularity of tasks may increase the efficiency of the data processing,

but a fine granularity is likely to increase the amount of configuration data

required as well as the number of reconfigurations at runtime.

Usually the reconfigurable tasks exchange application data between each other.

This data must be buffered at runtime in order to be transferred from the

task, which existed before reconfiguration to the task after reconfiguration.

The frequency of task reconfiguration also determines how much data must

be buffered. If the same task runs for a longer period of time, more data to

be buffered is produced. Thus frequent reconfiguration reduces the interme-

diate buffering required but also increases the time budget needed to perform

partial reconfiguration.

The considerations discussed above are now illustrated on Example 1.1.

Example 1.1 A synthetic example consists of a reconfigurable application that is im-

plemented in three different versions A–C. On this example we demonstrate the rela-

tionship between reconfiguration time, throughput, latency and memory requirements.

Version A is fully static with no reconfiguration overhead o (i.e. oA = 0). However the

throughput t is limited to tA = 1 data

s
because the implementation could not be opti-

mized for any task in particular. The hardware contains a generic circuit that supports

1Later on we will see that reconfiguration time is not a function of resource utilization but of

configuration differences.

1.1. Reconfigurable Computing 9

all parts of the application. Version B implements a very optimized circuit for each task

of the application and reaches – without reconfiguration overhead – a throughput of

tB = 5 data

s
. The reconfiguration overhead is assumed to be oB = 10 s

rec
(read: seconds

per reconfiguration). We further assume a Variant C that is implemented such that

the reconfiguration overhead is reduced to oC = 2 s

rec
at the expense of little reduced

throughput of tC = 4.5 data

s
. Let the reconfiguration rate r define how many data is

processed before the tasks are reconfigured. Thus a low rate means more reconfigura-

tions per time scale.

The overall throughput t of the application that includes reconfiguration overhead

depends on the reconfiguration rate r which defines how many data is processed before

the tasks are reconfigured:

t
�

data

s

� =

r

[data

rec]

o

[s

rec]
+

r

[data
rec]
t

[data
s]

. (1.1)

The output data of a task must be buffered before it can be processed by the next task,

hence the required memory is proportional to r. The latency l of the application is

given by the time required for reconfiguration o and the delay caused by the processing

of the data – which depends on the reconfiguration rate r:

l
�

s

rec

� =
o
�

s

rec

� +

r

[data

rec]
t

[data

s]

. (1.2)

In Figure 1.5 we plot the overall throughput of the implementation if the reconfig-

uration is performed at different intervals, i.e. after different amounts of data r were

processed. The static version A has a fixed throughput of tA = 1 data

s
. Although version

A has a much lower throughput than version B and C, it’s overall performance is better

than version B and C if the reconfiguration is performed often. However, if the recon-

figuration rate increases then the reconfiguration overhead becomes less compared to

the processing time. In this case, the versions B and C converge to the throughput with-

out reconfiguration overhead tB and tC . At the same time, the execution latency and

memory requirements increase. Thus an efficient reconfigurable implementation must

realize a high throughput at the lowest possible reconfiguration rate. In our example

we demonstrate that this can be achieved by reduced reconfiguration overhead o, even

if this sacrifices the maximum throughput. The plots in Figure 1.5 show that version

C with lower reconfiguration overhead is superior to version B in the desired range of

low latency and memory consumption.

After a general introduction into reconfigurable computing we present a sum-

mary common reconfigurable architecture features.

10 Chapter 1. Introduction

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500

T
hr

ou
gh

pu
t [

da
ta

/s
]

Reconfiguration Rate [data/reconfiguration]

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

La
te

nc
y

[s
]

Reconfiguration Rate [data/reconfiguration]

tA tB tC lB lC

Figure 1.5: Plots for average throughput t and execution latency l of the variants A, B,

and C for different reconfiguration intervals.

1.2 Classification of Reconfigurable Architec-

tures

According to the literature [36][21][24][11][39][95][34], current reconfigurable

architectures can be classified by the architecture properties described below. Note

that an architecture possesses one or more of these properties.

1.2.1 Partial Reconfiguration

Partial reconfiguration is a feature that allows the reconfiguration of a subset of the

device resources as opposed to full device reconfiguration. Partial reconfiguration

can be realized if the configuration interface provides a mechanism to write new

configuration data to selected device resources.

1.2.2 Runtime Reconfiguration (RTR)

This term describes the fact that the architecture can be reconfigured at runtime, i.e.

while the device is active and the currently configured circuits are in use. It must

be taken care that the reconfiguration does not interfere with the active circuitry.

Non RTR devices are configured before they are activated with a so-called static

configuration.

1.2. Classification of Reconfigurable Architectures 11

1.2.3 Multi-Context Configuration

Current commercial SRAM-based FPGAs contain a large on-chip memory that stores

a single, active device configuration. Runtime reconfiguration speed can be im-

proved if a device stores several device configurations at the same time, together

with the possibility to select one of these configurations as an active configuration

at a high rate. With multi-context configurations, reconfiguration rates in the order

of nanoseconds are possible.

1.2.4 Fine-Grain Logic

Fine-Grain logic allows the implementation of functionality at bit-level. I.e. the fab-

ric is organized such that the basic logic elements perform binary operations and

the routing structure is able to route single-bit signals individually. In order to re-

alize complex operations, word-level operations must be decomposed into bit-level

operations. Fine-grain architectures allow a maximum of flexibility to implement

digital circuits. However, each binary operation and the bit-level routing must be

configured at a fine granularity as well, resulting in a large amount of configuration

data.

1.2.5 Coarse-Grain Logic

Coarse-grain logic typically refers to reconfigurable architectures that realize word-

level operations in the fabric. Word-level operations include simple arithmetic

and logical operations, multiplication, and memory operations with fixed word

width. The routing structure also implements configurable interconnect of fixed

word length. Coarse-grain architectures are optimized for data processing and not

for arbitrary digital logic. Because the logic configuration allows much less possibil-

ities, the configuration data is significantly reduced.

Coarse-grain logic architectures can be divided further into configurable dat-

apaths and weakly programmable processor arrays. Configurable datapath archi-

tectures consist of a fabric of ALU and memory elements and reconfigurable in-

terconnect. The reconfiguration is initiated by a central configuration controller.

The logic in the fabric can not control the mode of operation directly [66][58].

Weakly programmable processor array architectures consist of an array of simple,

but small processors that are programmable [50][65][93]. Each processor contains

a small instruction memory that configures the processor’s operation, similar to a

multi-context device. If the processor implements control operations like loops and

branches then each processor in the array reconfigures itself by means of execution

control. However, the instructions are loaded by a global configuration controller.

12 Chapter 1. Introduction

1.3 Reconfigurable Computing Specific Design

Issues

We have already discussed that a fine grain architecture requires a huge amount

of configuration data to program an entire device. In general, this is not an issue

in coarse grain architectures. The amount of configuration can be reduced, if par-

tial reconfiguration is employed. With partial configuration, only those resources in

a device are reconfigured, which require changes to implement new functionality.

Therefore the configuration contains only data for selected resources. Partial con-

figuration requires support by the configuration architecture of the device as well

as software support by the design tools. The development software must provide

a mechanism to produce configuration data for the entire device as well as partial

configuration data. The full configuration data is used to initialize the device at

system start-up and the partial configuration data is used at runtime to reconfigure

relevant parts of the device.

Partial runtime reconfiguration sets another requirement on the development

software. In reconfigurable computing, the tasks are implemented as digital circuits

that operate concurrently, distributed over the entire device. However, dynamic re-

configuration is not realized as an immediate, single-cycle reconfiguration of the de-

vice resources. During reconfiguration the digital circuit is transformed successively

into the new circuit. In between, the active circuit may not perform a meaningful

operation.

In Figure 1.6 the successive reconfiguration is illustrated. The new circuit is

configured column by column which results in non-functional intermediate circuits.

The busmacros prevent the intermediate circuit to interfere with the active part of

the RSOC.

In runtime reconfigurable systems this problem is solved with the development

software in conjunction with the runtime control of the RSOC. The designer must

implement the reconfigurable tasks such that the tasks can be isolated from the

RSOC during runtime reconfiguration, i.e. by disabling the bus interface. At run-

time, the OS can disable the task before partial reconfiguration is performed. Fur-

thermore the development software must place and route the RSOC design so that

static parts are not affected by intermediate configurations that occur during recon-

figuration.

In multi-context devices, the configuration data is loaded into a configuration

context that is not active. The context is only activated when the reconfiguration is

finished. Therefore, reconfiguration of the context is hidden to the logical operation

of the device and thus no intermediate configuration can occur.

The huge amount of configuration data that is necessary to program a fine grain

reconfigurable device has other implications as well. The configuration interface of

a device has only a limited data bandwidth, which determines the speed at which

1.3. Reconfigurable Computing Specific Design Issues 13

Persistent Circuit Persistent Circuit Persistent Circuit Persistent Circuit

−

*
+

−

+
*

−

+
*

−

+

−

+

−

+

−

+

−

*
+

−

+

+ −

+
*

Step 2 Step 3Step 1

* *

Step 0

Before Reconfiguration Intermediate Circuits After Reconfiguration

Busmacro Busmacro Busmacro Busmacro

Figure 1.6: Partial reconfiguration in a single context device. The persistent, active circuit

is isolated with busmacros to prevent interference from intermediate configurations. The

new circuit is configured column by column which results in non-functional intermediate

circuits.

new configuration data can be loaded into the device. The time required to load

a new (partial) configuration determines the reasonable frequency of reconfigura-

tion. Configuration caching and configuration prefetching techniques can mitigate

the bandwidth limitations. The techniques are inspired by CPU caching strategies:

In configuration caching, configuration data is kept as long as possible in the config-

uration memory of the device. If the data persists in the configuration memory until

it is required for a reconfiguration later on, then the data must not be loaded over

the relatively slow configuration interface. In configuration prefetching, the con-

figuration data is loaded speculatively before the configuration is actually needed.

Later on, the prefetched configuration can be activated much faster. Both config-

uration caching and prefetching require spare configuration memory to store the

configuration data. These may be unused configuration contexts in multi-context

devices or unused resources in a single-context device. The improvement depends

on the performance of the reconfiguration prediction algorithms and the amount of

available configuration memory.

Data compression is another option to increase reconfiguration speed. Because

the configuration data exhibit a lot of redundancy, data compression can reduce

the amount of data to store and transmit configurations. If the configuration archi-

tecture of a device supports compression directly, then the effective configuration

bandwidth is increased and reconfiguration becomes more efficient.

14 Chapter 1. Introduction

Apart from the reconfiguration specific design issues, design productivity is a ma-

jor concern in reconfigurable computing. Coarse grain reconfigurable architectures

frequently provide a C-like programming language that is compiled and mapped to

the device by the development software. Reconfigurable architectures can realize

a high degree of instruction level parallelism. The development software needs to

extract this instruction level parallelism from the C program in order to take full

advantage of the target architecture. Today, synthesis from Hardware Description

Languages (HDL) is the preferred design method for most fine grain reconfigur-

able architectures. HDLs require a detailed description of the datapath and control

functionality that realizes a task, but it also offers unique control over the algo-

rithm throughput and device resource usage. Using HDLs the design productivity

is quite low. The RSOC design time can be considerably reduced by using system

design tools (Xilinx EDK, Altera Nios II EDS) that integrate pre-designed IP Cores

and custom-built HDL designs into an RSOC. High-level synthesis provides another

method to implement tasks on reconfigurable architectures. Here behavioural VHDL

or C-like programming languages are used to specify a task and the high-level syn-

thesis tool translates this specification into an HDL design that is implemented on

the reconfigurable architecture.

1.4 Overview of this Dissertation

In this work we focus on the most wide-spread class of reconfigurable architectures.

Our methods are designed for the use with fine-grain, runtime reconfigurable archi-

tectures that support partial reconfiguration. Examples for such architectures are

for instance the FPGAs (Spartan and Virtex) of Xilinx Inc. Our primary goal is to

develop new methods for the design and implementation of RSOCs with minimal

reconfiguration overhead on such architectures. Our methods can be applied to non-

runtime reconfigurable architectures too, but only to a limited extend. Within this

work we developed a number of design tools that are based on our methods. The

tools enable the design of hardware tasks with minimal reconfiguration overhead.

A recent summary of our work can also be found in [79].

This dissertation is structured as follows: In Chapter 2 we provide a comprehen-

sive background on reconfigurable computing with references to other related work.

We describe some examples of existing RSOCs and the design trade-offs involved.

Then we summarize necessary technical details regarding the programmable logic

and the reconfiguration mechanisms of the Xilinx VirtexII devices. We refer to this

details later in this work. We also provide an overview about design entry, hardware

task scheduling, and hardware task placement. Later we review some existing mod-

els to evaluate the efficiency of RSOCs in terms of energy consumption, resource

utilization and application runtime. A larger part of the chapter is devoted to a re-

view of different techniques that aim at the reduction of reconfiguration overhead.

1.4. Overview of this Dissertation 15

We present the established methods for configuration data compression and for the

reduction of reconfiguration overhead by exploiting the similarity of hardware tasks

at several levels in the design process. Here we also point out what is missing in pre-

vious work and how the contributions presented in this work differ from previous

approaches.

In Chapter 3 the fundamental modelling concepts that are used throughout this

work are introduced. First an extensive motivational example is described in or-

der to introduce the general mindset of our modelling concepts. Then we present

the reconfiguration state graph that is used to model runtime reconfiguration. We

provide a new concept to evaluate the reconfiguration overhead between different

tasks. Our concept evaluates the finite differences between tasks. We derive two im-

portant measures for reconfiguration overhead: the overhead associated with both

configuration data and reconfiguration time. The measures are applied to binary

configuration data. A major contribution of this work is the application of the cost

model to the structural representation of hardware tasks. Therefore we introduce

a graph model for the structural representation and the notion of a virtual archi-

tecture. Finally, we present several methods how the structural representations of

different hardware tasks can be mapped to a virtual architecture with the objective

of minimal reconfiguration overhead.

In Chapter 4 we present two tools developed within this work. The tools can

be used to implement hardware tasks, which are given as synthesized netlists, on

an FPGA. During the implementation, the synthesized netlists are mapped to device

specific netlists. First, we analyze different effects that occur in the mapping process.

We show how the effects can be incorporated into a tool that computes the mapping

of the synthesized netlists to a virtual architecture, based on the methods presented

in Chapter 3. The mapping computed with the tool can be used as an input to our

mapping tool. The mapping tool translates the synthesized netlists to device specific

netlists. The translation is performed such that the resulting device specific netlists

exhibit minimal reconfiguration cost for interconnect reconfiguration.

Chapter 5 is devoted to the domain of high-level synthesis. In this work we

have developed a high-level synthesis tool that incorporates our reconfiguration cost

models. The aim of the tool is the realization of hardware tasks as reconfigurable

modules with minimum reconfiguration overhead. In Chapter 5, we introduce the

design flow of our tool. The automatic synthesis of hardware tasks from high-level

descriptions provides the possibility to apply several new concepts for the use of

partial dynamic reconfiguration. We propose the synthesis of multiple tasks into

one reconfigurable module in order to obtain a more efficient resource utilization

and lower reconfiguration cost. Further we show how the reconfigurable modules

can be adapted to different hardware tasks by dynamic reconfiguration with varying

granularity: reconfigurable modules can be reconfigured to change the configura-

tion of logic resources, of sub-modules within the reconfigurable module, and the

control functionality can be adapted to support multiple hardware tasks. In order to

16 Chapter 1. Introduction

realize these concepts, we describe our approach for the synthesis of the datapaths

in the reconfigurable modules. We extend previous synthesis models by the notion

of the virtual architecture in order to incorporate our reconfiguration cost model. In

the synthesis model we use a novel cost function that combines the implementation

cost and the reconfiguration cost. We present several optimization strategies for the

synthesis of the datapaths. The efficiency of our methods is demonstrated on a series

of examples. The examples illustrate the application of our high-level synthesis tool

to the proposed concepts for reconfigurable modules. The results provide insight

into the trade-off between implementation cost and reconfiguration cost. In a final

discussion we show the advantage of our new methodology compared to previous

approaches.

Finally, in Chapter 6 we give a brief summary of our findings. This work is con-

cluded with a proposal of a complete RSOC design flow that integrates our approach

and existing methods. The primary aim of the design flow is an implementation with

minimal reconfiguration overhead. We show that our tools are the key to such an

RSOC design flow.

Chapter 2

Reconfigurable Computing Systems –

Background

This chapter provides viable background information on reconfigurable computing

systems. We review briefly some example RSOCs and discuss the related design

trade-offs. We also describe the Xilinx VirtexII architecture in more detail in order

to provide a profound understanding of the logic architecture and its versatility. In

addition to the device architecture, we describe the partial dynamic reconfigura-

tion mechanism. This highlights the restrictions in runtime reconfiguration for this

architecture.

In the following, we will give a brief overview about major topics that are re-

lated to reconfigurable computing using FPGAs: design entry, reconfiguration/ task

management, efficiency metrics, and methods to reduce reconfiguration overhead.

An extensive discussion on previously published methods that optimize designs or

configuration data follows next.

Finally we discuss the proposed techniques, their drawbacks, and open areas for

research. We suggest a new methodology to tackle the major disadvantages of dy-

namic reconfiguration in FPGAs during the design and implementation process. Our

methods targets the reduction of reconfiguration time and of configuration data.

Thus, it is possible to create reconfigurable modules that can be configured much

more efficiently.

2.1 Examples for RSOCs

In this section, reconfigurable computing systems are introduced from a system

point of view. There are many existing realizations of reconfigurable systems. Even

though reconfigurable devices itself can be found in many consumer and industrial

products, runtime reconfigurability is rarely exploited. Runtime reconfigurable sys-

tems are often used in the context of academic research. These systems are either

17

18 Chapter 2. Reconfigurable Computing Systems – Background

general purpose development boards or systems especially designed for the needs

of reconfigurability. A few popular examples are mentioned in the following.

In 2005 we presented a generic reconfigurable system [97] that contains a free

area of reconfigurable resources. The area can be connected to the system bus of the

static system. We also provided a Linux device driver that allows the embedded soft-

ware to reconfigure the FPGA using the internal configuration access port (ICAP). As

an example we realized two computational kernels that implement an integer trans-

form and a motion estimation engine that can be used in MPEG4 video compression.

The system is designed such that the software controls the reconfiguration and the

computational kernels mapped to the reconfigurable area.

The Xilinx XUP board[111] has been used to realize a reconfigurable video

processing system for automobile driver-assistance [18][20]. The reconfiguration

in this system is controlled by one of the two PowerPC CPUs embedded in the

FPGA device. The CPU triggers the reconfiguration that is performed by a hard-

ware controller using ICAP The special design of the hardware controller allows

a configuration data transfer rate that approaches the limits of the ICAP interface

(8bit@66MHz) in the Virtex-II Pro devices. The configuration data is stored in an

external DRAM. The video processing itself is performed in part by the software

running on the PowerPC and in part by reconfigurable hardware accelerators. The

realtime processing of these hardware accelerators is achieved by and efficient bus

master operation, which requires no CPU control, and local storage of video data,

which es very efficient for the selected algorithm. The selected application requires

dynamic reconfiguration because the video processing algorithm depends on the

driving environment, which is not known in advance.

The Erlangen Slot Machine (ESM) [53] is a complete hardware/software system

that has been specifically designed for dynamic partial reconfiguration [12]. The

ESM consists of two FPGA boards: A motherboard that hosts an embedded PowerPC

CPU for system control and i/o interfaces for various video and audio standards. A

babyboard contains a large Virtex-II 6000 FPGA as a reconfigurable device, several

banks of SRAM, and a separate configuration controller. The configuration data is

stored in a FLASH memory device on the babyboard. The ESM contains a special

feature to allow flexible placement of reconfigurable modules on the FPGA. Many

FPGA i/o pins is not connected directly to the motherboard’s i/o interfaces, but to

a programmable crossbar. Thus, the system software can connect the i/o interfaces

to the reconfigurable modules depending on the module placement. The crossbar

can also provide flexible interconnect between i/o pins of the FPGA. On the ESM,

an embedded Linux runs on the CPU as central OS. The OS provides drivers to

initiate partial reconfiguration, to set up the crossbar, and to transfer application

data from the CPU to the FPGA. Several applications have been realized on the

ESM: a reconfigurable video filter is provided as a tutorial, a car recognition video

processor, and an object recognition algorithm [4].

All the above examples have the following building blocks in common: recon-

2.1. Examples for RSOCs 19

figurable device(s), large external memories for application and configuration data,

and a configuration controller. An application designed for such a system is usually

divided into hardware and software tasks. At runtime, the tasks are executed ac-

cording to the needs of the application. Before a hardware task can run, the device

must be configured such that it is capable to execute the assigned hardware task.

The hardware task can require the whole device or only a fraction of it.

The design goal for any system is to achieve the most cost efficient solution

for the given application. System cost is a function of device cost and memory

cost: larger memory and more resources offered by a device increase system costs.

Power dissipation increases with higher clock rates and for larger devices. Finally,

execution time decreases with higher clock rates, more parallelism and increases by

use of runtime reconfiguration because of the associated overhead. In the following,

a more elaborate description of system design issues is given:

resources–time Often tasks can be implemented in space or time. By exploiting

parallelism, more instructions can be executed in shorter time, which requires

more computational resources. Vice versa, by executing the instructions more

sequentially, less computational resources are required.

time–power High clock rates increases throughput, but also power dissipation in a

device because of a higher switching activity in the circuit. Also, clock distribu-

tion consumes a considerable amount of power. Often, the operating voltage

is increased to enable higher clock speeds, which also contributes to higher

power consumption in the device.

reconfiguration–resources Reconfiguration offers the possibility to share resources

in time. Consequently, less expensive devices are required to implement the

same functionality. It is also possible to implement the application statically,

which requires more resources but no reconfiguration – and thus no reconfig-

uration overhead.

memory–resources Sequential execution often requires less resources, but more

memory to store intermediate data.

reconfiguration–memory Reconfiguration increases memory requirements, at first

to store intermediate data between reconfigurable tasks in an application, and

second, for the configuration data itself.

resources–power Power dissipation in electronic devices depends on the switch-

ing activity (dynamic power) and the die size (static power). It follows that

devices providing more resources need a larger silicon area and consequently

have a higher static power dissipation.

20 Chapter 2. Reconfigurable Computing Systems – Background

2.2 Partially Reconfigurable FPGAs: Xilinx Vir-

tex Device Family

Xilinx Virtex FPGAs are a prominent example for today’s reconfigurable devices.

The Virtex device family has considerably evolved since 1998. In Table 2.1, major

properties of the device series are presented. The table illustrates several major

trends in FPGA architecture development: increase in total logic capacity, increase

in logic complexity, and continued integration of macro blocks. The total functional

capacity could be increased because of IC technology advancement. Smaller feature

sizes allow the integration of more transistors per chip and the propagation delay of

logic gates also decreases, which allows for higher clock frequencies. Unfortunately,

the propagation delay of the interconnect does not decrease at the same rate. In-

stead, FPGA architectures incorporate special routes for the most frequently used

direct connections. The introduction of specialized functions and more complex

programmable logic also contributes to faster and smaller circuit realizations. Ex-

amples are the introduction of 6-Input LUTs, dedicated hardware multipliers/MAC

units, and memory blocks. Integrated mixed signal functions (Clock Management,

SerialIO and Ethernet MAC) reduce the complexity in system design and possibly the

number of required external components. However, the specialized macro blocks

and mixed signal functions occupy silicon area that can not be used by general

reconfigurable logic. Therefore, FPGA vendors tailor the device capabilities to dif-

ferent application domains. In the newer generations, Xilinx provides device with

different mixture of integrated functions: devices with higher capacity of general

LUT logic, more MAC unite, more serial transceivers, or embedded PowerPC CPUs.

2.2.1 Virtex-II/Virtex-II Pro Logic Architecture

The programmable logic in a Xilinx FPGA is organized in Configurable Logic Blocks

(CLBs) that are layed out on a regular two-dimensional array on the FPGA. Each CLB

is composed of logic Slices and a switch box. The switch box provides programmable

resources to connect both the logic to the routing network of the FPGA, different

wires of the routing network itself.

The composition of the logic architecture differs substantially between device se-

ries. Here, we describe the Virtex-II/Virtex-II Pro device series [107][105] in greater

detail because these series are used for all examples and benchmarks in this work.

A CLB consists of four slices and a switch box. The programmable logic is con-

tained in the slices. Each slice consists of two, four-input LUTs (LUT F, LUT G) and

two flipflops (FF Y, FF X). The LUTs can be configured to act as 16 bit ROM, 16 bit

RAM, Shift Register or ordinary LUT. Both flipflops are driven by the same clock

and can function as edge triggered registers or level triggered latches, both with

different kinds of synchronous or asynchronous set/reset. Each slice also contains

2.2. Partially Reconfigurable FPGAs: Xilinx Virtex Device Family 21

LUT F

LUT G

FF Y

FF X

Carry OutShift In

LUT In

Mux In

LUT In

Clock In

Logic Out

Reg Out

Mux Out

Logic Out

Reg Out

Shift Out Carry In

Carry
Logic

Carry
Logic

Figure 2.1: Simplified schematic of a Xilinx Virtex-II/Virtex-II Pro slice.

additional logic to allow an efficient implementation of large multiplexers, logic

with carry propagation, and multipliers. A simplified schematic of a Virtex-II type

slice is shown in Figure 2.1.

2.2.2 Reconfiguration Architecture and Reconfiguration

Control

Here we describe the Virtex-II/Virtex-II Pro FPGAs from a reconfiguration point of

view. The programmable logic of the FPGA is configured to realize a specific circuit.

There is a distinct difference in terms of flexibility between the elements of the

programmable logic architecture. E.g. the slice flipflops can be used as registers

with synchronous set or reset. In circuit operation, the circuit logic directly controls

the set or reset signal. However, whether the flipflops behave as synchronous set or

reset registers is controlled by the configuration of the register.

The configuration of the FPGA is stored in SRAM memory cells that are dis-

tributed over the chip. The configuration architecture determines how the configu-

ration is written to the memory cells and how the configuration defines the function

of the programmable logic and interconnect. The configuration interface managed

by a special configuration controller. The controller can be addressed through sev-

22 Chapter 2. Reconfigurable Computing Systems – Background

eral interfaces: a JTAG/ boundary scan programming mode, master and slave serial

programming modes, and master and slave parallel programming modes. The slave

parallel programming mode can be accessed from outside the FPGA via the Se-

lectMAP interface or from inside the FPGA via the ICAP resource. The interfaces

differ in the way the programming is controlled and in the data transfer bandwidth.

The bandwidth ranges from 33 Mbit in boundary scan mode to 528 Mbit in the par-

allel programming modes. The configuration controller contains a set of control and

status registers and is controlled by a set of configuration commands. A configura-

tion bitstream for the FPGA is a sequence of data that is written to the configuration

interface. The sequence contains a series of configuration commands and associated

data. The data is written either into the control registers or to the FPGA configura-

tion memory depending on the configuration command.

The configuration memory is organized as follows. The atomic unit of con-

figuration is a configuration frame[103]. Each configuration frame is written to a

memory location with a specific frame address. A complete configuration bitstream

contains configuration data for all memory addresses of a device. Each resource on

the device is configured by configuration data at specified frame addresses and bits

within the configuration frame. Detailed information which pieces of configuration

data configure which resources is not published by Xilinx. However, a few impor-

tant properties are published that are relevant for our work, other details can be

obtained through reverse engineering[64][109].

In Figure 2.2 the FPGA resources and the configuration memory addressing is

shown for a simplified Virtex-II FPGA. The frame address encodes the configuration

data block type, the major address, and the minor address. The block type differen-

tiates between CLB logic and interconnect resources, BlockRAM memory contents,

and global clock configuration. The major address selects the appropriate device

column (CLB or BlockRAM column) and the minor address is used to address a

subset of configuration memory within the device column. The number of major

addresses depends on the size of the FPGA. Each CLB column is configured by 22

configuration frames. It can be assumed the association between slice resources and

configuration data is equal across all CLB columns. However, this is not true for the

configuration of the switch box because the hierarchical FPGA routing architecture

is irregular with respect to the CLB column. In Figure 2.3 the association between

some logic resources and the minor frame address is shown. It appears that the

configuration of the slices in one CLB and hence of all slices in a CLB column can

not be altered independently from each other.

The granularity of the configuration memory leads to the following situation:

the reconfiguration overhead is the same for a resource in a single slice and for a

resource in all slices of that column. This is especially useful for reconfigurable word

level operations, were many logic resources of the same type are reconfigured at

once. Both the logic and the reconfiguration architecture favour a vertical placement

of the associated resources. It can also be observed that the reconfiguration of

2.2. Partially Reconfigurable FPGAs: Xilinx Virtex Device Family 23

NN−1 N+1
Major Address
Block Type 1

Configuration
Frames

BlockRAM/
Multiplier Blocks

... M ...M−1 M+1

210 ...1 20

Major Address
Block Type 0

Minor Address

Configuration Memory Addressing

FPGA

......

CLB Blocks

I/O Blocks

Figure 2.2: Configuration data organization and configuration memory addressing of the

Virtex-II FPGAs.

the logic requires 6 configuration frames at the maximum, the configuration of the

interconnect is contained in the frames 4–21. Thus, interconnect reconfiguration is

more costly than logic reconfiguration.

24 Chapter 2. Reconfigurable Computing Systems – Background

Switch
Box

Slice 0
X0Y0

Slice 1
X0Y1

Slice 2
X1Y0

Slice 3
X1Y1

(a)

Minor Frame Address 0 1 2 3 4 8

CLB Slice 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

FF X, FF Y Type Ø Ø Ø Ø

FF X Init Value Ø Ø Ø Ø

FF Y Init Value Ø Ø Ø Ø

LUT F Ø Ø Ø Ø

LUT G Ø Ø Ø Ø

Slice Internal Routing Ø Ø Ø Ø Ø Ø

Signal Inverters Ø Ø Ø Ø Ø Ø Ø Ø

(b)

Figure 2.3: The association between logic resources and the minor frame address of a

CLB column. (a) depicts the relative position of the slices within the CLB and (b) shows

the resources within the slices that are configured with a particular configuration frame.

2.3 Methods for Design Entry

Design methods for reconfigurable systems can be done at different abstraction lev-

els. In a software-like approach, the hardware task is described in a language bor-

rowed from the software world, e.g. C/C++, or in application specific languages

like Matlab/Simulink and SA-C [14]. The C-language derivatives often have special

intrinsics to describe hardware-like behaviour. In a hardware design approach, cir-

cuit function is described in a hardware description language, i.e. VHDL or Verilog.

The pros and cons of both approaches will be discussed at the end of the section. At

first we will introduce both concepts in detail.

2.3. Methods for Design Entry 25

2.3.1 Behavioural Design Entry

The design entry is usually with done in a high level language. Popular examples

are the ANSI-C derivatives Handel-C [1], Streams-C [33] and CatapultC [59]. The

languages do not conform to a common standard, they are specific to the related

design tools and libraries. Often, they are also specific to an architecture [8]. The

languages provide macros to support special hardware related constructs, e.g. ac-

cess to i/o-ports, extensions to describe parallelism in parallel loops, and timing

with cycle constraints.

The tools offer some control over the compilation process that allows the de-

signer to constrain design performance and resource allocation. After compilation,

the design is represented in an intermediate representation. If the target is a fine

grain architecture, then the intermediate representation might be a hardware de-

scription language or a target specific netlist. For coarse grain architectures the

intermediate representation is closer related to an assembly language. Finally, a

device mapper maps the constructs of the intermediate representation to specific

resources in the architecture. The configuration data of the device can be directly

generated from this mapping.

2.3.2 Design Entry at Register-Transfer Level (RTL)

This design style is very common for FPGA-like architectures. The behaviour of the

hardware task is described in a hardware description language. These languages

have an inherent model for parallelism and provide access to hardware functions at

gate-level.

A synthesis tool compiles the hardware description into a device specific netlist,

using target-dependent libraries. The RTL description can be target independent, at

least to some extend. The description might contain instances of target-dependent

modules to access special functions in the device. However most functionality can

be described without those instances.

The compiled netlist is mapped to device resources with a device mapper. The

result is a device specific netlist that contains instances of hardware architecture

elements with the elements’ configuration and the required connections. The com-

pilation process succeeds by binding the elements to actual hardware resources, a

step known as placement. A router realizes the connectivity by allocating appropriate

wires between hardware resources.

The configuration of the device is fully specified after place and route. The con-

figuration needs to be translated to a binary program, called bitstream, that contains

the configuration data and the configuration commands for the target device.

Both methods for design entry have distinct advantages. Behavioural design

entry allows high productivity in complex designs. Changes in the original speci-

fication can be incorporated quickly into an existing implementation. Behavioural

26 Chapter 2. Reconfigurable Computing Systems – Background

design entry is very tool dependent. RTL design is less flexible and productive, but

designers can implement very optimized designs because the HDL allows a detailed

description of the implemented architecture. HDL code is portable between vendors

because VHDL/Verilog are standardized.

2.3.3 Xilinx Early Access Partial Reconfiguration (EAPR)

Design Flow

Xilinx provides design tools and a special design flow specific for partial reconfigu-

ration. The design flow is summarized in the following in order to explain available

techniques and restrictions for partial reconfiguration that exist in current design

tools. For more details refer to [106][108].

The EAPR flow provides guidelines on how to implement partial reconfigurable

designs on Xilinx FPGAs. At first, the designer sets up a top level design. The top level

design instantiates global resources, i/o-pins and static and partial reconfigurable

modules. In addition, a floorplan for the top level design is created which assigns a

placement to global resources and to the modules. The placement of the reconfig-

urable modules is fixed by this floorplan; they can only be placed freely at runtime

with relocation methods [46]. The top level module also contains busmacros that

provide a fixed interface between static and reconfigurable modules in the design.

In the next step, the static and reconfigurable modules are designed, verified

and prepared for place and route by a synthesis tool.

Now, only the top level design is implemented, i.e. the design is placed and

routed without the static or reconfigurable modules. This yields a static, base con-

figuration of the device in which the modules will be integrated. Next each module

is implemented independently of the other modules on top of the base configuration.

In the merge step, all implemented modules are merged to complete configurations,

from which the partial configuration data is generated. The complete configurations

are used as initial device configurations and the partial configurations are used to

reconfigure the device partially. The merge step produces as many initial and partial

configurations as there are reconfigurable modules in the design.

The restrictions of the EAPR design flow clarify that partial reconfiguration in

Xilinx devices is targeted at task-based reconfiguration. However, the partial config-

uration data can be processed to eliminate redundancy, see Section 2.5. At runtime,

only configuration data that differs between configurations must be loaded into the

device which allows further optimizations. The aim of the EAPR flow is to produce

configuration data valid for partial reconfiguration. It provides predefined mecha-

nisms to connect static and reconfigurable circuitry in a design. The reconfigurable

modules are implemented independently, i.e similarities between the modules are

not exploited in order to produce implementations with less reconfiguration over-

head. Also, the design flow is not automated but must be carried out by the user

2.4. Task Management in Reconfigurable Computing 27

step by step. Many steps must be repeated if design changes must be incorporated.

The runtime management of the reconfiguration is also completely left to the RSOC

designer.

2.4 Task Management in Reconfigurable Com-

puting

Applications use reconfigurable devices in different ways. With dynamic reconfigu-

ration the device can be used as virtual hardware that provides different functions

during application execution. Hardware virtualization is used in applications that

exhibit a fairly static runtime behaviour, but where the full application would not fit

into a single static configuration of the device. Other applications are inherently dy-

namic which means that they use several hardware functions in a way that can not

be predicted at design time. One static hardware configuration is not efficient in that

case because it requires to many resources. The dynamic allocation of reconfigur-

able resources during application runtime demands new execution control schemes

that are not known from traditional computing systems.

The application can be specified as a set of tasks. The hardware tasks can be de-

composed into subtasks where each subtask is executed on a circuit, implemented

in a partial configuration of the reconfigurable device. Decomposing the complex

task into subtasks is called temporal partitioning [11]. The execution of the subtasks

requires (sub-) task scheduling and placement that respects both task dependen-

cies and resource constraints. The scheduling and placement must be managed at

runtime by some configuration controller which is often regarded as part of the

reconfigurable system’s operating system (OS) [15, 96, 87, 63, 35]. Design-time

scheduling and placement is sometimes referred to as temporal placement in anal-

ogy to temporal partitioning. It can be applied only to applications with a task

execution order known a priori.

Fu et al. [32] and Bazargan et al. [9] discuss the problem of task binding at

runtime. An arriving task is executed on reconfigurable hardware, or on the host

processor in software. In these approaches a task can have several hardware im-

plementations with different resource demands, execution times, and energy con-

sumption. The task scheduler has to bind the task to a suitable implementation.

In the following we present a summary of model properties that are relevant to

the scheduling and placement strategies available in the literature. Most scheduling

and placement algorithms have been developed with models that assume only some

capabilities mentioned below. The scheduling and placement is usually handled

together because both problems are highly interrelated.

28 Chapter 2. Reconfigurable Computing Systems – Background

2.4.1 Online and Offline Task Management

Task management can be divided into online and offline methods, In offline meth-

ods [9][92], the task scheduling and placement is performed at design time. These

methods achieve very high quality results in terms of resource utilization and over-

all execution time, if the runtime and resource requirements of the tasks are known

at design-time. Though the methods are usually computation intensive.

Online task management must be performed with limited knowledge of the

tasks. Typically, the tasks arrive at a certain time and must be scheduled with the

objective that they meet a given deadline or that the overall execution time of the

application is minimized. Examples for these methods can be found in [2, 96, 9,

25, 15, 87]. In these works, several heuristics for scheduling and placement are

described. They achieve high quality results with reasonable scheduling overhead.

Chen et. al [16] show a typical area utilization of over 70 % with their approach.

There exist also combined approaches that combine online and offline task man-

agement in order to improve both application throughput and scheduling over-

head [73][56].

The choice between online and offline task management depends on the appli-

cation. If the tasks of an applications are executed in a predictable way, i.e. the

tasks have a fixed execution time and known occurrence then offline scheduling

is the best solution. Online methods are applied to dynamic applications or in a

multitasking OS environment.

2.4.2 Task Scheduling

The function of the task scheduler is to arrange a number of tasks in time such

that several requirements are met. The scheduler may have to observe data and

control dependencies between tasks. Hence a task can not be scheduled before the

task it depends on is finished. The scheduler can be designed to meet realtime

requirements of an application, i.e. tasks must be finished at a certain deadline.

Further, the total application execution time or makespan of all tasks can be of

interest.

Many RSOCs are designed for dynamic real-time systems. Here, the tasks must

be scheduled such that they are finished at a certain deadline. In this scenario,

each task has a known execution time and a deadline to finish the execution. The

schedulers in [2][96][9][87][92] decide on the basis of the current system load if

the deadline can be met and accept or reject the task accordingly.

Some schedulers allow for task preemption [96][63] in order to improve the

realtime behaviour of the system. This means a running task is interrupted and

resources are assigned to another task. The realization of this feature requires the

hardware tasks to store the current state of a running task, e.g. actively by the

task itself or by using a state capture and readback mode of the device. After the

2.4. Task Management in Reconfigurable Computing 29

inserted task is finished, the preempted task is configured again and the state before

task preemption is restored before the task continues it’s execution.

In many applications, the individual tasks depend on each other. The tasks can

have data dependencies, i.e. one task processes data that is produced by another

task, and control dependencies, i.e. the execution of a task depends on the condi-

tions produced by a previous task. Offline schedulers must take these dependencies

into account as e.g. in [92]. In online scheduling, the dependencies between tasks

are not known to the scheduler in an explicit way. Instead the tasks are presented to

the scheduler when they are ready to be executed. Therefore, task dependencies can

be neglected [5][2][96][25]. A hybrid approach of independent tasks scheduled at

runtime that consist of dependent sub-tasks is presented in [73].

Even though the task execution can not be started until the data and control

dependencies are satisfied it can be of advantage to the runtime behaviour that a

task is configured before. Some schedulers [73][39] prefetch the configuration of

tasks to speed up the execution.

The scheduler does not only need to manage the runtime behaviour of tasks but

also the configuration port of the device as a unique resource. The configuration

port is used to load configuration data into the reconfigurable resources of a device.

Devices usually have only one configuration port. With partial configuration, it is

assumed that only one task is reconfigured at a time [5][27]. Some models also

support preemption of the resource reconfiguration [96].

2.4.3 Task Placement

Task placement describes the assignment of tasks to reconfigurable resources in the

spacial domain. The device resources can be modelled as one-dimensional (1D)

or two-dimensional (2D) array of resources. The 1D placement model is moti-

vated by the partial reconfiguration mechanism in the Virtex and VirtexII-series

devices [106].

The placement can be modeled such that the device area is partitioned into fixed

blocks of resources. Alternatively, the placement model allows that tasks are placed

anywhere on the device as unless the area is already occupied. Sometimes, fixed

blocks can be joined to form larger blocks of resources to accommodate larger tasks.

Several authors describe the use of a model that partitions the FPGA resources into

fixed blocks of resources, e.g. [5][73][96][63][56]. Managing the reconfigurable

resources as distinct blocks greatly simplifies the problem of task placement be-

cause only a limited number of possible placements exists. Thus the placement be-

comes similar to the problem of scheduling n tasks on m parallel processors, cf. [5].

On the contrary, several authors also describe methods that manage the FPGA re-

sources as a homogeneous array of logic elements where the tasks can be freely

placed [16][2][9][92][87]. The resources required by a task are defined as – in

30 Chapter 2. Reconfigurable Computing Systems – Background

Used Logic
Free Logic

(a) internal fragmentation (b) external fragmentation

Task placement on fixed blocks Task placement on 2D area

running tasks

new task
Required Logic

Figure 2.4: Internal and external fragmentation. In (a) the new task can not be placed

because all slots are occupied, in (b) the new task can not be placed because the existing

tasks are improperly placed. In both cases there are enough unused logic elements to run

the new task.

case of a 2D resource model – a rectangular area of resources, or a column of device

resources in case of a 1D resource model. If free placement of tasks is allowed for,

an online task placement algorithm has to manage the allocation of device resources

using a free space manager such that a suitable placement can be found quickly. The

authors in [9][2] propose several heuristics where to place incoming tasks based on

resource demand, free space, and task deadlines.

If the RSOC uses fixed blocks to place tasks then small tasks leave resources in

such a block unused, leading to internal fragmentation. If free placement is applied

there may occur small areas of unused resources between tasks during runtime,

called external fragmentation. In consequence, the placer may fail to assign a rect-

angular area to a task even though enough free resources are available in the device.

Both cases are depicted in Figure 2.4. Some models allow for online defragmenta-

tion [25] of the placement or task relocation [63], if necessary. Both techniques

require the implementation of task preemption, too. Diessel [25] notes that task

preemption and online defragmentation is only efficient if the task runtime is large

compared to reconfiguration time. In FPGAs, configurations are specific for a task

placement. If tasks must be configured elsewere, module relocation techniques are

required, cf. [46].

Usually, due to the large effort to perform placement and routing of a task, the

task implementations have a fixed layout. However, it is possible to adjust the task

implementation dynamically at runtime to the available resources by using online

routing [43].

The placement algorithm also needs to respect some requirements special to

reconfigurable devices. Because the device resources are not necessarily homoge-

neous, some tasks can only be placed at specific positions in the device. E.g. the

2.4. Task Management in Reconfigurable Computing 31

tasks may require access to specific i/o resources, embedded memory blocks, and

DSP blocks. Further, the hardware tasks must be integrated into the communication

infrastructure on the RSOC. This can be, e.g. a fixed bus with a static interconnect

infrastructure [87] or a reconfigurable network on chip [10].

Configuration reuse is the capability to use the same hardware configuration of

some resources for the execution of another task or of another instance of the same

task [16][73]. Configuration reuse is very similar to configuration caching [26]

were the placer tries to keep partial configurations on chip until they can be reused.

In the context of task scheduling and placement the configuration reuse usually

means the reuse of the resource configuration of the entire area of a task. Thus con-

figuration reuse is not exploited at logic element granularity [40] or at configuration

frame granularity as in [20][54].

2.4.4 Reconfiguration Runtime Overhead

The runtime overhead that is caused by the dynamic reconfiguration is treated very

different in the methods presented above. Frequently, the runtime overhead is com-

pletely neglected [2][9][87]. This may be a valid assumption if the reconfiguration

can be performed very fast, as in [56], or if the reconfiguration time is sufficiently

small compared to the task runtime. If the tasks are allocated to fixed blocks of re-

sources, several authors assume a fixed reconfiguration time when such a partition

is reconfigured, e.g. in [16][5][96]. In Teich et al. [92] it is assumed that a fixed

reconfiguration time is included in the task’s execution time. However, this prevents

the scheduler from splitting the configuration of a task from its actual execution.

Thus configuration prefetch can not be applied.

Note that the reconfiguration overhead metric must be consistent with the recon-

figuration architecture of the device. Some approaches assume that the fixed blocks

of resources or a whole device column is partially reconfigured, e.g. [5][63][56].

This type of partial reconfiguration can be applied to current architectures. It is

supported by the EAPR design flow (see Section 2.3.3) and the reconfiguration ar-

chitecture of the Xilinx Virtex series devices. The models that assume a rectangular

area for each task demand that the related resource area can be reconfigured in-

dividually [16][92][87]. This requirement is not fullfiled in current partial recon-

figurable architectures in the Virtex series, because the logic elements can not be

configured individually as it was possible in Xilinx 6200 devices [102]. However, if

1D task placement is used, these models can be applied to the column-based recon-

figuration architecture of the Virtex and VirtexII devices.

In practical realizations of RSOCs the reconfiguration overhead can be quite

high. Angermeier et al. [5] quote a reconfiguration time of 130 ms for a task slot

in a huge VirtexII-6000 device. This figure includes the OS overhead and the time

for data transfer in their Erlangen Slot Machine [12]. In the best case individual

32 Chapter 2. Reconfigurable Computing Systems – Background

CLB columns could be configured in less than 0.4 ms. This shows that the reconfig-

uration time is critical for dynamic applications and there can be a a huge gap in

reconfiguration overhead between device capabilities and practical realizations.

In our review on task scheduling and placement methods we observed that re-

configuration overhead is often neglected even though it is an important limitation

of reconfigurable architectures. Moreover, there is no consideration of partial re-

configuration in the true sense, because partial reconfiguration is interpreted as re-

configuration of individual tasks, not of resources and interconnect. There are only

few methods that include methods of configuration prefetch and reuse into sched-

uling and placement [16][73][39]. It is also interesting to note how the paradigm

of partial configuration shifted along with the evolution of reconfigurable archi-

tectures. Early approaches consider small circuits or swapable logic units [15] as

reconfigurable functions or reconfigurable instruction set extensions [100], today

reconfigurable tasks are executed on complex hardware accelerators.

2.5 Configuration Data Compression

The configuration data for a fine grain reconfigurable architectures set up the be-

haviour of a huge number of reconfigurable resources at bit level. The logic elements

itself contain – apart from LUTs and flipflops – many other reconfigurable resources.

These resources control more specialized circuitry in the logic elements, e.g the use

of distributed RAM, shift registers, carry chains, inverters, and multiplexers for in-

ternal routing. The configuration of those elements usually differs only from the

default configuration if they are in use. In many designs the digital circuits which

are mapped to the LE use only a fraction of the LE resources and routing switches.

Hence a lot of configuration bits are set to the default value and are therefore re-

dundant. Likewise, configuration data of resources in the same configuration and

configuration data of resources in different configurations can be equal, too. The

redundancy in the configuration data can be used by compression schemes to re-

duce the amount configuration data in an RSOC. The configuration data must be

stored and transferred during runtime in an RSOC. Compressed configuration data

provides an advantage to both. However, the configuration port of a device must

support the decompression in order to be efficient. Frequently, the decompression

scheme must be implemented in the reconfigurable part of the device because it is

not supported directly by the configuration port. This overhead must be taken into

account when implementing a compression scheme.

Apart from data compression without knowledge of the configuration data prop-

erties, the compression scheme can exploit several distinct properties of the con-

figuration data. This may lead to more efficient compression or simpler and more

resource efficient implementations of the compression scheme. In the following we

describe redundancy properties that are specific to the frame-based bitstream format

2.5. Configuration Data Compression 33

of Xilinx Virtex devices.

Intra-Frame Redundancy Each configuration frame contains data for a column of

resources of the same type. Several of these resource may use partially the same

configuration. E.g. the LUT contents of all LEs that are part of an adder function

can be identical. The redundancy may become only apparent if the assignment

of configuration data to these resources is respected and not the rather arbitrary

composition of binary data, i.e. the bit positions of relevant data in a frame must be

known.

Inter-Frame Redundancy Using the same argument as before, the configuration

data is partially identical across different frames if the LEs or routing switches are

configured equally. Often, similar structures like logic functions and multiplexers

are used repeatedly across the device.

Intra-Configuration Redundancy The compression scheme may exploit the intra-

frame and the inter-frame redundancy within a single configuration bitstream only.

This makes the decompression of the bitstreams for different configurations inde-

pendent of each other.

Inter-Configuration Redundancy The compression ratio might be improved if the

redundancy between different configuration bitstreams is exploited, too.

An early approach [38] to exploit redundancy in configuration data uses a de-

vice specific feature of the Xilinx 6200-series [102]. Using the “wildcard registers”

the same configuration data could be written to the different resources simulta-

neously. There are other approaches that are targeted specifically at frame-based

configuration data. Zhiyuan Li et al. [52] investigate configuration data compres-

sion using a dictionary based approach. In their work, the symbols in the dictionary

are chosen to match the regularity in the configuration data of the reconfigurable

resources. This enables an efficient use of intra-frame regularities. They propose

a reordering algorithm to change the sequence of frame data such that the dictio-

nary data provides good inter-frame regularity matches. The data compression after

reordering is performed by a Lempel-Ziv based algorithm [112][88]. The authors

[52] describe two variants, both rely on a modified configuration controller that

must be implemented in the FPGA. The configuration frame buffer in the config-

uration controller is extended to hold two frames which serve as a dictionary for

decompression. In their study the compare the two proposed compression meth-

ods to standard, entropy coding techniques, namely Huffman coding [45] and fixed

precision arithmetic coding [101]. While entropy coders reduce the configured data

to about 50–60 %, their proposed Lempel-Ziv variant with configuration frame re-

ordering achieves 25 % on average, even for configurations with high resource uti-

lization. The authors note that the manually placed designs achieve even better

coding efficiency. We suspect that this arises from the higher regularity compared

to designs placed by automated tools. The approach presented by Li [52] is taken

one step further by Pan et al. [67]. The authors made two important modifica-

tions. Instead of the dictionary based compression they assume that the regularity

34 Chapter 2. Reconfigurable Computing Systems – Background

in the frame data is located at the same bit position in any two frames. Hence, they

propose to encode the difference vector between two binary configuration frames

using a run-length code combined with a Huffman coding of the run-length data.

Frame data reordering is applied as before. As an extension targeted at runtime

reconfigurable systems, the algorithm takes not only intra-configuration frame data

into account, but also the configuration data of the already configured circuit in the

device. This allows them to exploit inter-configuration redundancy for configura-

tion data compression. However, this approach can be used only if the sequence

of runtime configurations is known in advance. The authors in [67] observe that

the inter-bitstream regularity is especially efficient if the sequence of configurations

contains statically configured circuitry. They note that inter-configuration compres-

sion can be as much as 2× better than intra-configuration compression only. In [23]

another dictionary-based configuration compression method is described. The au-

thors propose to use global dictionary for several different configurations. However,

their approach achieves only a small compression ratio – about 70 %. This may be

due to their dictionary that is not tuned to the relation between configuration data

and configurable resources in the FPGA.

A more fundamental analysis of the bitstream entropy is presented by Malik et

al. [55]. They investigate how many configuration data deviates from the default

configuration of a device. They observe that in many designs, even if the designs

occupy a large amount of the device’s logic resources, only few bits are changed

compared to the default device configuration. The authors suggest that the run-

length of zeros in the configuration data bitstream are random symbols, which is

supported by statistic analysis of some example bitstreams. With only few relevant

bits in the configuration data, the authors suggest that run-length based compres-

sion will always be more efficient than entropy coding like Huffman [45] and dictio-

nary based methods like Lempel-Ziv [112][88]. They propose a hierarchical vector

compression method that achieves an average compression of 10 % on the presented

examples, which is very close to the theoretical bounds that are derived in [55]. In

this paper, it is also suggested that hierarchical vector compression is well suited to

a fast and area-efficient hardware implementation.

Hübner et al. [44][94] describe the implementation of a so-called LZSS decom-

pression algorithm [88] in the reconfigurable hardware. They selected the LZSS

algorithm because it achieves a good compression ratio (around 25 %), it can be im-

plemented with high throughput, and the algorithm can be implemented resource

efficient. The decompressor requires only 129 Virtex Slices and 1 BlockRAM. It can

be clocked at 75 MHz and thus provides enough throughput to decode the com-

pressed bitstream such that the reconfiguration speed is not limited by the decom-

pression. An example for configuration data decompression using the embedded

software in an RSOC is presented in [98].

Research in improving configuration data compression provides an insight into

FPGA reconfiguration at bit-level. It can be concluded that the most efficient com-

2.6. Evaluation of Reconfigurable Systems 35

pression schemes can also be implemented at low hardware cost for the decom-

pression functionality. Although the approaches are difficult to compare directly —

because there exits no set of standard bitstreams — the best known method by Malik

et al. [55] achieves a compression of up to 10 % of the original configuration data

size. The efficiency of the compression methods also supported by a more recent

study on Virtex4 FPGAs [86]

The authors of the compression schemes also made an important observation

that supports the approaches presented in our work. They observed that inter-

configuration data compression becomes much more efficient if the configurations

contain parts that remain static between configurations. Later on we will describe

in detail how this can be achieved with an automated design flow.

2.6 Evaluation of Reconfigurable Systems

There are several approaches to evaluate the efficiency of reconfigurable computing

systems. Efficiency can be measured for different system parameters: energy, area,

and execution latency. Here we only summarize models that are targeted specifically

at reconfigurable computing architectures. For a discussion on how reconfiguration

overhead is incorporated into runtime management refer to Section 2.4.4.

2.6.1 Energy Efficiency Models

A major concern in today’s computing systems is energy consumption. In line-

powered systems the energy consumed in high-performance computing causes mainly

thermal design challenges – in battery powered devices (mobile computing, wire-

less sensor networks etc.) the energy consumption determines the required battery

capacity and the system runtime. Thus the computational requirements must be ful-

filled with limited amount of energy. In instruction stream processors the operation

and the data to be processed are controlled by a continuous instruction stream and

hence the average energy efficiency can be given in million instructions per second

per Watt (MIPS/W).

In [41] the reconfigurable architectures energy throughput ratio (RETR) is defined

to quantify energy efficiency for reconfigurable computing. The metric is separated

into reconfiguration of the hardware and the data processing itself. It is given by:

RETR =
Eex+ Erec

T
(2.1)

RETR =

�

Cex

(NaΦopup)2
+

CrecαR

NaΦopup

�
V 2

DD

fclk

. (2.2)

The terms Eex and Erec denote the average energy consumption per operation for

36 Chapter 2. Reconfigurable Computing Systems – Background

data processing and reconfiguration, respectively. T is the throughput of the archi-

tecture. The terms in Equation 2.2 are defined as follows: Cex and Crec define the

average effective switching capacity during data processing and reconfiguration, re-

spectively; VDD is the supply voltage, fclk the systems clock frequency. Na,Φop, u, p

are the number of available operational resources, the operator’s performance, the

utilization factor of the operators and the penalty in execution delay caused by re-

configuration. α denotes the effective reconfiguration activity. R is the ratio of

performed operations to reconfigured operations. In his work, Hinkelmann draws

several notable conclusions regarding the energy efficiency of reconfigurable sys-

tems from the metric described by Equation 2.2. The main argument is to optimize

both throughput and reconfiguration of the device to increase energy efficiency.

Hinkelmann’s conclusions are as follows:

Increasing the number of available resources Na will also increase Cex and

Crec, but more resources allow to increase throughput. It is expected that the

energy efficiency for reconfiguration will decrease at the same time.

If the throughput Φop of the operators is increased, overall throughput in-

creases, too. At the same time reconfiguration takes place more often.

The overall throughput can also be increased if the execution is not delayed

by reconfiguration. This can be achieved by using reconfiguration sparingly,

enabling fast reconfiguration, or execute reconfiguration and execution in par-

allel.

Reconfiguration efficiency can be increased if the redundancy in the configu-

ration data is exploited for reconfiguration.

Another method to increase reconfiguration efficiency is to separate reconfig-

uration that is required frequently and reconfiguration that remains constant

over longer time periods [68].

The granularity of reconfiguration is also important. If it is too high, reconfig-

uration becomes less efficient if only few operators must be reconfigured. On

the other hand, a low reconfiguration granularity will increase the reconfigu-

ration cost per operator, i.e. Crec is increased.

In multi-context reconfigurable architectures, the configurations are cached

on-chip. This increases the reconfiguration efficiency by decreasing the execu-

tion delay required for reconfiguration and by reducing the energy consump-

tion for loading configuration data from off-chip memory.

The number of reconfigurations and hence the energy for reconfiguration Erec

also depends on the available resources Na. If the same functionality is imple-

mented in a device with less resources, reconfigurations occur more frequently

which increases Erec.

2.6. Evaluation of Reconfigurable Systems 37

2.6.2 Area Efficiency Models

Another approach to measure the computational efficiency has been developed by

DeHon [24]. The main interest of his model is the area efficiency of a reconfigurable

computer for general purpose computing. He proposes the so-called RP-space model

that allows him to compute several efficiency measures. The functional density Fdensity

is defined as the number of gate evaluations Nge, e.g. 4-input LUTs, per unit space-

time tcycle · A:

Fdensity =
Nge

tcycle · A
. (2.3)

Similarly, DeHon defines the functional diversity or instruction density Idensity as the

number of distinct function descriptions Ninstruction that are present per unit area A:

Idensity =
Ninstruction

A
. (2.4)

The RP-space model describes an estimation function for the required device area

that depends on several architectural parameters: the number of processing ele-

ments, the datapath width, the number of on-chip instructions (or contexts), the

size of the instruction word and the data memory. The total area is composed of

the device area allocated to interconnect, instruction memory, data memory and

control.

The model provides guidelines for the design of reconfigurable architectures

if some of the aforementioned parameters are known for an application domain.

These guidelines give hints to design an architecture such that the functional density

and the instruction density is acceptable for a large range of applications. DeHon

proposes the general rule that the instruction memory should account for one half

of the processing cell area.

A major advantage of the RP-space model is that it allows to relate the functional

density of reconfigurable architectures to other general purpose computing architec-

tures. It is found that the functional density of FPGAs can be up to 100 times better

then general purpose processors in regular, highly pipelined computations.

The model calculates the functional diversity that originates from the configura-

tion (multi-context) memory inside the architecture only. The increase in functional

density that can be achieved with runtime reconfiguration is not covered.

2.6.3 Runtime Efficiency Models

Wirthlin et al. [99] investigate the functional density of statically versus runtime

reconfigured circuits. Therefore the reconfiguration time trec is introduced into the

38 Chapter 2. Reconfigurable Computing Systems – Background

functional density metric:

Fdensity,rec =
Nge

(tcycle+ trec) · A
(2.5)

Fdensity,rec =
Nge

tcycle(1+ f) · A
with f =

trec

tcycle

(2.6)

The equations above suggests that the relationship between reconfiguration time

and execution time affects the functional density. Hence, if the reconfiguration

time is small compared to the execution time, the increase in functional density is

more prominent. Note that the advantage of a runtime reconfigurable circuit stems

from the possibly smaller area and less execution time of a task.The theoretical

maximum improvement is achieved if the reconfiguration time can be neglected,

i.e. Fdensity,max = lim f→0 Fdensity,rec.

More important is the relationship of the functional density between the stat-

ically and the runtime reconfigurable circuit. In order to be more efficient, the

functional density of the runtime reconfigurable circuit must be higher than the

functional density of the statically configured circuit, i.e. Fdensity,rec ≥ Fdensity. This

yields by substitution of Fdensity,max:

Fdensity,max

Fdensity

− 1≥ f . (2.7)

In [99], the authors conclude that the maximum allowable configuration ratio f

must be less then the maximum potential improvement in functional density, in

order to be more efficient. They suggest that if a runtime reconfigurable circuit

has a greater advantage over a static circuit then the reconfiguration time is a less

important limitation.

2.7 Similarity Based Reduction of Reconfigura-

tion Overhead

We have already seen that reconfiguration overhead can be reduced by compres-

sion of the configuration data and by smart scheduling of the reconfiguration which

includes configuration reuse and configuration prefetch. While the data compres-

sion incorporates inherent properties of the configuration data, the scheduling tech-

niques use a very coarse model of the reconfiguration overhead. In the following

we describe approaches that consider either the reuse of individual resources or in-

terconnect within applications or increase the reuse of these resources by specific

circuit design or mapping techniques. Both techniques are very closely related to

our work. We will highlight the notable difference in the relevant sections later on.

2.7. Similarity Based Reduction of Reconfiguration Overhead 39

The improvements in the reuse of resources inside tasks can increase the effi-

ciency of both aforementioned methods. Compression can be higher because inter-

configuration redundancy is increased. Further the application execution latency is

decreased by partial resource reuse, too. If resource reuse is taken into account, the

reconfiguration overhead depends not only on the size of the reconfigured area for

a task, but it also depends on how much configuration data must be loaded to trans-

form the configuration of one task to another. More details on that will be given in

Chapter 3.

2.7.1 Configuration Data Generation Methods

One trivial method to take advantage of partial reconfiguration is the direct compar-

ison of configuration frames. Claus et al. [18][20] developed a framework in which

all configuration bitstreams are compared to each other. If the data of a configura-

tion frame differs between any two configurations then this frame is considered a

dynamic configuration frame. The tool produces new bitstreams for each configu-

ration, where the bitstreams contain only dynamic configuration frames. The static

frames are configured with the initial configuration. The methods aims to reduce

the bitstream size and hence the configuration overhead. With this method, the

bitstream size is not equivalent to the area occupied by a task but it depends on the

differences of the configuration of resources that are associated to a configuration

frame. For a detailed comparison to our approach cf. [77].

Kennedy [48] proposed a method that exploits unused interconnect and logic

resources in a configuration bitstream. He presents a detailed analysis of the dif-

ferences in configuration bits and relates those differences to different classes of

FPGA resources. He finds that most differences occur in the LUT contents and in

the configuration of the routing multiplexers that drive the LUT inputs. For typi-

cal designs, the number of bit-level differences between two configurations is about

8–10 % over all resources. For the reduction of differences in the bitstream he pro-

poses the following method: Consider the reconfiguration from configuration A to

B. Any configuration bits that are contained in B and configure resources that are

unused and thus do not interfere with any circuitry in A, are added to A. Now we

have configuration A+ which contains these advance configuration bits. The recon-

figuration from A to B is replaced by a reconfiguration from A+ to B. Reconfiguration

from A+ to B is more efficient because some circuitry of design B is already present

in the current configuration A+. Thus on reconfiguration fewer configuration data

must be loaded into the device. Kennedy notes that, by taking into account only

some resource classes, about 10 % of the bit-differences can be turned into advance

configuration bits. The method takes advantage of the fact that the resources –

especially for interconnect – in an FPGA are highly under-utilized. Hence there is

a high probability that resources can be configured in advance without interfering

40 Chapter 2. Reconfigurable Computing Systems – Background

with the active configuration. However, it is not investigated what secondary effects

these randomly configured resources can have in terms of power consumption. Also

the method relies on random similarities between two circuits and random unused

resources. With the approaches presented in our work, we can identify similarities

in the original design specification. It is then possible to produce configurations

that have a higher similarity in the configuration data. Our approach also considers

more than two reconfigurable designs.

2.7.2 Device Mapping Methods

We already observed that configuration data itself depends on the mapping of the

digital circuit to the reconfigurable resources. Here were present existing methods

that perform circuit mapping with the aim of reduced configuration overhead.

The following method tries to reduce the amount of configuration data for in-

dividual configurations, independent of each other. Tan et al. [90] propose a set of

guidelines for the placement of logic elements such that fewer configuration frames

are required by the implementation. Although the authors claim a reduction of con-

figuration data of 30 % for a set of very simple examples, it seems that this method

is not useful for more complex designs. This method may be efficient if the cir-

cuit occupies only a some of the resources provided by a partially reconfigurable

area, hence it can only be applied to modules with high internal fragmentation. The

authors mention that only 2 out of 22 configuration frames are related to LUT con-

tents in a VirtexII architecture. We conclude that, even if there are unused columns

of LUTs in an area, the circuit router will produce implementations that use rout-

ing resources in these unused columns. Hence 20 out of 22 frames can still carry

configuration bits, which renders this approach quite useless.

An alternative placement method that exploits the similarity between circuits is

described by Shirazi et al. [84]. The authors propose a heuristic to find the similar-

ity in two circuits. The method is based on bipartite weighted graph matching of the

elements in both circuits. Any two elements in the circuits that can be implemented

on the same device resources can be matched in the bipartite graph. The weights

of the edges in the bipartite graph are calculated from three terms: the similarity

of the logic function, the placement on the device, and a metric that describes the

similarity in the connectivity. The results of these automated similarity matching is

used twofold: to produce partially reconfigurable designs with minimal reconfigu-

ration cost or to produce designs with both circuits integrated such that a dedicated

control signal can switch the functionality of the implementation. The last method

is very similar to the approach in [61]. According to the results the method is able

to identify good matchings between the structure of similar circuits. However, the

given examples are simple and exhibit a similar structure in general. It is unclear

how this method performs for larger, more complex circuits. The similarity in inter-

2.7. Similarity Based Reduction of Reconfiguration Overhead 41

connect is only identified if the nodes have a similar position in the circuits. Instead

we propose that the type of interconnect determines whether an interconnect must

be partially reconfigured, cf. Section 3.4.

Huang et al. [42] present a mapping method that aims to reduce the reconfig-

urable interconnect overhead. Although they target a different architecture model,

their method is still relevant to our research. The authors use a high level synthe-

sis tool to generate datapath descriptions for kernel loops (similar to tasks in our

model) from a high level language. The datapath description is then mapped to a

reconfigurable datapath that consists of fixed functional units, registers, a reconfig-

urable control unit, and reconfigurable interconnect. The mapping method trans-

lates the datapath description of the tasks into a directed graph, the task graph. Two

such tasks are then mapped to a merged graph using a bipartite weighted matching.

The task graphs are subgraphs of the merged graph. The bipartite weighted match-

ing is used as a heuristic to minimize the number of edges in the graph and hence

the number of reconfigurable interconnect in the final datapath implementation.

The method has several drawbacks for interconnect minimization: The datapath

mapping is performed after resource binding which hides part of the optimization

space. The datapaths are merged successively, thus the result depends in the pro-

cessing order and no global optimization is performed. The weight assignment

heuristic takes into account only the possibility of interconnect sharing for indepen-

dent nodes. However, if there are many instances of the same resource type then the

realization of interconnect sharing becomes less likely. In the ADPCM codec exam-

ple, the authors report an interconnect reduction of 22 % compared to a datapath

without interconnect sharing.

The partial configuration of routing is considered in Rakhmatov et al. [71]. Here

it is assumed that a configuration occupies a number of 1D channels in a routing

track. The method identifies a channel assignment for another configuration such

that the channels overlap as much as possible. Hence only few switches must be

dynamically reconfigured to adapt the channel routing to a new configuration.

An example on how the configuration data architecture and the device map-

ping can be used to reduce configuration overhead for LUT contents is described

by Raghuraman et al. [70] for Xilinx Virtex devices [104]. The authors propose

a technique to map the logic functions to LUT tables such that the difference be-

tween successive configurations is minimal in the related reconfiguration frames.

The method is limited to reconfigurable devices where the LUT configuration bits

(1–16) are stored in separate configuration frames.

2.7.3 Circuit Design Methods

The device mapping methods in the previous section depend very much on the

similarity of the structure in the input circuits. The structure of a design can be

42 Chapter 2. Reconfigurable Computing Systems – Background

improved by manual circuit design or by automated methods. In this section we

will review several methods that produce designs that are optimized for dynamic

reconfiguration.

Merged Dataflow Graphs

Moreano et al. [61] describe a technique to synthesize reconfigurable datapaths

from a set of dataflow graphs (DFGs). The dataflow graphs represent different

tasks that must be executed by the application. It is assumed that these tasks can

time-share the same hardware by means of runtime reconfiguration. The method

can be outlined as follows. The input dataflow graphs are mapped successively to

a merged dataflow graph. The target of the mapping is a datapath for this merged

dataflow graph with minimum area. The problem is described as a compatibility

graph that contains nodes for each pair of DFG nodes and edges which can share

a datapath resource. Nodes in the compatibility graph are weighted with the area

reduction achieved if this resource sharing is employed. Resource sharings that can

be realized concurrently are connected by an edge in the compatibility graph. The

authors propose that the maximum weighted clique in the compatibility graph rep-

resents the merged DFG that yields a datapath implementation with minimum area.

The datapath can be reconfigured by setting up the steering multiplexers accord-

ingly. Thus, the method produces a custom coarse grain reconfigurable design that

can be implemented as IP in an ASIC or FPGA. Because the reconfiguration is per-

formed by configuring multiplexers only, the implementation requires only a small

configuration memory.

The method considers no intra-DFG resource sharing, but only shared resources

between configurations. Hence, resource selection and resource binding of each

node in the merged DFG becomes trivial. The method explicitly models the inter-

connect area associated to the dataflow multiplexers. In order to reduce datapath

size further, the method takes into account the commutativity of operations. The au-

thors provide an interesting comparison to another approach in which the DFGs are

combined in the high-level description for a commercial high-level synthesis tool.

The authors claim that their datapath merging approach achieves about 20 % lower

area compared to the result of the Synopsys Design Compiler for combined HDL

code.

Common Subgraph Extraction

In contrast to the merged DFGs the authors in [6] propose a partitioning method for

reconfigurable DFGs. They describe a method to extract a dominant common sub-

graph from two DFGs and assume that this common subgraph can be implemented

with low reconfiguration cost. The remaining parts of the DFGs are implemented as

reconfigurable modules. The common subgraph is scheduled in the context of the

2.7. Similarity Based Reduction of Reconfiguration Overhead 43

original DFGs for each task. Next, the common subgraph is mapped to a datapath

which can be configured to be part of the full datapath implementation of the orig-

inal DFGs. The authors highlight that the common subgraph does not necessarily

result in a static datapath module because the original DFGs define different con-

strains on the datapath operation schedules. The method reduces reconfiguration

overhead because the dynamic reconfiguration of the common part is minimized.

However it does not take advantage of the similarity in the rest of the DFGs. Re-

source sharing between configurations is only exploited for the common subgraph.

Furthermore resource selection and binding possibilities are not investigated in this

method.

Architectural Template

Another approach to optimize the design of reconfigurable circuits with low recon-

figuration overhead is described by Heron et al. [40]. They present a design for

reconfiguration flow. At each stage in the design flow, the new design is compared

to existsing designs in a library in order to identify common, static circuitry. The

authors propose that commonality of circuits is a key design goal for fine grain

reconfigurable circuits. They propose the use of a common architectural style for

all circuit blocks in a design and an efficient floorplanning strategy. As an exam-

ple, circuits for multiplication, division and square root targeted at the Xilinx 6200

series are developed manually. The result is a regular array of logic for each func-

tion. The relatively simple architecture of this FPGA surely was an advantage for

this methodology. The authors demonstrated an overall reduction in reconfiguration

overhead between those functions. However it is observed that, when a large cir-

cuit is replaced incrementally by a smaller circuit, considerable overhead is spent on

removing the large circuit. For example an FIR-Filter MAC-unit the reconfiguration

time could be reduced from 1500µs to 322µs with partial reconfiguration.

Temporal Placement

Boden et al. [13] use a special High Level Synthesis framework to implement appli-

cations on partially reconfigurable architectures. The application is compiled to a

binary macro tree representation. The representation contains control, dataflow and

reconfiguration operations. On this tree a temporal modularization is performed in

which the application is partitioned into configurations on the time axis and tem-

poral reusable modules that are implemented as partially reconfigurable modules in

the device. The authors derive a placement of functional modules such that tem-

poral sharing, i.e. inter-configuration reuse of the modules is exploited in order to

reduce reconfiguration overhead. Although this is an interesting approach, the au-

thors do not reveal how this is accomplished in detail. Furthermore, their model

of reconfiguration differs from our model: we assume applications that are already

44 Chapter 2. Reconfigurable Computing Systems – Background

partitioned into tasks and want to exploit the similarities in those tasks to reduce

reconfiguration overhead.

2.7.4 Model for Partial Configuration

The reconfiguration model used by Heron et al. [40][82] describes the configuration

of a device as a configuration state. The authors introduce a reconfiguration state

graph (RSG) which describes the reconfiguration of a device as a transition between

two configuration states. The model is used for partial reconfiguration with a virtual

hardware handler that manages the change of the configuration state. The virtual

hardware handler knows about the current configuration state and the difference in

terms of configuration data to the next configuration state. Thus, the handler is able

to perform partial reconfiguration by loading the new configuration data only - in

contrast to approaches that always load the configuration data of a complete model.

With their experimental setup, a Xilinx 6200-based system, the authors observed a

decrease in configuration overhead by leaving configuration data of the previous

state. The authors also explore the possibility to reuse remains of any previous

configuration that occurs when traversing the RSG.

The RSG model describes the reconfiguration of a device during runtime in a

very intuitive way. We adapted this model to describe partial reconfiguration, too.

Instead of using the RSG model for runtime management only, we employ the model

in the circuit design phase as well.

2.8 Contributions of this Work

In the beginning of this chapter we presented a few RSOCs that employ partial dy-

namic reconfiguration of FPGAs. We observed, when mapping applications onto

these RSOCs, only one design methodology is supported by the vendor’s implemen-

tation tools: the design of partial reconfigurable modules using the EAPR design

flow. The partial configurations occupy a fixed area of device resources, which in-

creases internal fragmentation and thus can lead to inefficient implementations.

Also, modules are difficult to relocate. The effort to design and implement recon-

figurable modules is usually high. In practice, designers have no capacity to eval-

uate different implementations regarding the overall efficiency. We also observed

that the reconfiguration overhead using standard module based reconfiguration is

high — both in terms of reconfiguration time and configuration data storage. Both

can be reduced with appropriate methods: configuration data can be reduced with

data compression and reconfiguration time can be reduced by smart scheduling and

placement. However both methods are not targeting the origins of reconfiguration

overhead, they are merely treating the symptoms. In this work we develop methods

2.8. Contributions of this Work 45

that allow us to decrease configuration overhead during circuit design. The meth-

ods are orthogonal to the data compression and scheduling methods described in

this chapter.

Existing theoretic models predict a twofold gain when reducing reconfiguration

overhead: The RETR model predicts a higher energy efficiency because the switch-

ing activity due to reconfiguration is reduced. The runtime efficiency model predicts

a higher functional density that results in either less area for the implementation or

in faster overall throughput.

There exist other approaches that try to minimize differences in the configura-

tion data: either by placement and routing or by design for similarity. However we

found the proposed methods to be incomplete, which results in major limitations re-

garding the applicability and the efficiency. Either placement and routing does not

take into account the similarity between configurations, the methods consider only

two configurations at a time or the measure for similarity does not fit well into the

resources configuration model of the devices. Moreover, the authors often propose

only a method with a secondary objective, without defining a concise cost model

for partial reconfiguration as e.g. the RSG. From the designers point of view, there

exists no continuous design flow that allows to evaluate potential reconfiguration

cost at all levels and that allows to evaluate trade-offs between reconfigurable and

static implementations.

In this work, we employ a uniform reconfiguration cost model that can be ap-

plied at all levels of design and implementation. It provides precise information

how much of the device must be reconfigured between tasks. Our model is suite-

able to do both: a calculation of reconfiguration costs and an optimization of the

implementation regarding those costs. The model can be applied at different de-

sign phases: during high-level synthesis, in the mapping phase, the place-and-route

phase, and for generating the final bitstreams. Our high-level synthesis framework

provides a unique method evaluate the trade-offs between static and reconfigurable

implementations. We also provide several solutions in the design space with differ-

ent reconfiguration overhead and resource requirement trade-offs, which have not

been explored before. Further, we propose the separation of tasks and configura-

tions, because one configuration may contain the functionality required for multiple

tasks. Our method allows to optimize overhead in interconnect reconfiguration and

in logic reconfiguration.

4
6

C
h

a
p

te
r

2
.

R
e

c
o

n
fi

g
u

ra
b

le
C

o
m

p
u

ti
n

g
S

y
s

te
m

s
–

B
a

c
k

g
ro

u
n

d

Table 2.1: Xilinx Virtex device families. MAC denotes the Multiply-Accumulate units, Gb Serial IOs are serial gigabit transceiver

blocks, and Ethernet MACs provide blocks for ethernet media-access control.

Virtex

Family

Year Technology

(nm)

Slices/

CLB

LUT

Inputs

Largest

Device

LUTs Memory

(Kbits)

Reconfigu-

ration

Macro Blocks

Virtex 1998 220 2 4 xcv1000 24576 128 CLB

Column

Memory

Virtex-E 1999 180 2 4 xcv3200E 64896 832 CLB

Column

Memory

Virtex-II 2000 150/120 4 4 xc2v8000 93184 3024 CLB

Column

Memory, Multiplier

Virtex-II Pro 2002 130/90 4 4 xc2vp100 88192 7992 CLB

Column

Memory, Multiplier,

CPU, Gb Serial IO

Virtex-4 2004 90 4 4 xc4vlx200 178176 6048 16 CLB/

Column

Memory, MAC, CPU,

Gb Serial IO, Ethernet

MAC

Virtex-5 2006 65 2 6 xc5vlx330 207360 10368 20 CLB/

Column

Memory, MAC, CPU,

Gb Serial IO, Ethernet

MAC

Virtex-6 2009 40 2 6 xc6vlx760 474240 25920 ? Memory, MAC, Gb

Serial IO

Chapter 3

Runtime Reconfiguration Cost and

Optimization Methods

Appropriate models are essential to assess the cost associated with runtime recon-

figuration, especially in comparison to static implementations. Cost models are

also used to measure improvements in reconfiguration costs achieved by any de-

sign methodology. The models introduced here describe the cost associated directly

with the dynamic reconfiguration at runtime. The overhead caused by system de-

sign efforts or additional resources to enable runtime reconfiguration are discussed

elsewere, e.g. in [19].

The main objective of this chapter is to provide a formal model for reconfig-

uration cost, which is not specific for any reconfigurable architecture. It enables

us to assess the reconfiguration effort that is caused by different implementations

of reconfigurable tasks independently of the reconfigurable device. It appears that

runtime reconfiguration cost can be estimated directly for the binary configuration

data. However we provide a new approach that allows the us to assess and optimize

the designs for runtime reconfiguration during the design implementation stages.

In this chapter, we review the idea of a reconfiguration state graph (RSG) in-

troduced by Heron et al. [40]. Here, we extend the RSG substantially in order to

describe the device configuration and the reconfiguration requirements in detail.

These properties allow us to assess the reconfiguration overhead based on binary

configuration data directly. We introduce a new formalism that allows us to compute

the reconfiguration cost for structural design representations, e.g. netlists and data-

flow graphs. Based on this model we investigate how the mapping of the designs to

an architecture influences the reconfiguration cost. Based hereon we describe sev-

eral methods to optimize the mapping in order to achieve minimal reconfiguration

cost. The chapter is concluded with a series of experiments that demonstrate the

potential of our approach.

47

48 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

9 10

87

6

4 5

3

21 1

2

1

1

2
1

2

Task A Task B Task C

C
o

n
fi

g
u

ra
ti

o
n

A
rc

h
it

ec
tu

re

D
es

ig
n

Task A Task B Task C

s1 s1 s1

s1

s2 s2 s2

s2

s3 s3 s3

s3

s4 s4 s4

s4

f1

f2

f3

f4

∅

∅

'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

'10'

i11
i12

o1 o1 o1

o1

i21
i22

o2 o2 o2

o2

i31
i32

o3 o3 o3

o3

i41
i42

o4 o4 o4

o4

∅
∅

∅
∅

∅
∅

∅
∅

∅
∅

∅

∅

∅
∅

∅
∅

∅

s1 s1 s1

s3 s3

s4 s4
〈 f1, i11, i12, f2, i21, i22,

f3, i31, i32, f4, i41, i42〉

d(A) = (′1′,∅,∅,′ 2′,

s3, s1,′ 3′,∅,∅,∅,∅,∅)

d(B) = (′5′, s4,∅,′ 6′,

∅, s1,∅,∅,∅,′ 4′,∅,∅)

d(C) = (′10′, s4,∅,′ 8′,

s3, s1,′ 7′,∅,∅,′ 9′,∅,∅)

Figure 3.1: An example reconfigurable architecture, three (reconfigurable) designs and

the configurations that result from a specific design-to-architecture mapping.

3.1 Motivation

Before we introduce the RSG model in all details, we present an example that illus-

trates some important aspects of device reconfiguration from the implementation

tools’ point of view. The example motivates our generic notation of the device con-

figuration. Further we give hints on the mapping process and on the challenge of

configuration cost assessment.

For now we assume a simple, reconfigurable architecture as shown in Figure 3.1

(left). The architecture features four identical functional units (FUs). Each unit

contains a configurable function fx and two programmable input ports ix1 and ix2.

The function fx can drive the output signal ox directly to an individual vertical

wire sx . Each input signal can be driven by one of the vertical wires s1 . . . s4. The

configuration of the architecture is specified by 12 reconfigurable elements. The

resources associated with the reconfigurable elements are listed in the 12-tuple

〈 f1, i11, i12, . . . , f4, i41, i42〉. The configurable function fx is not specified further in

this example, but the input signals ix1, ix2 may take any value from {s1, s2, s3, s4}.
The example designs in the top of Figure 3.1 constitute tasks that are mapped

to the architecture. At runtime, the mapped tasks will be configured on the device

on demand. We assume that the designs comprise a set NT of tasks. In our example

NT = {A, B, C}. The designs are represented as graphs which is a reasonable ab-

3.1. Motivation 49

straction from the original netlist format. The nodes represent logical or arithmetic

functions that can be executed on the configurable functions in the architecture.

The edges indicate a transfer of data between functions or nodes, respectively. The

edges are labelled with the targeted input port. E.g. node ’2’ of Task A receives data

from node ’3’ for on port 1 and data from node ’1’ on port 2. The designs contain

only information on the configuration of individual functions but this information is

unrelated to the device configuration at this stage.

A device configuration is derived from the design by a mapping step. A mapping

describes how the nodes of a design are realized on the resources of an architecture

and how the data transfers between resources are realized using the interconnect.

In our example in Figure 3.1, the nodes from the designs are mapped to resources f1

to f4 and the data transfers are realizes by connecting a vertical wire s1 to s4 to the

input pin of a resource. Consider the edge (1, 2) in Task A: the node ’1’ is mapped

to f1 and the node ’2’ to f2. The output o1 drives bus s1 directly. Hence, the input

i22 must be connected to s1 in order to receive the data from f1 as indicated by the

design. In Figure 3.1 the mapping of nodes to resources for all designs is indicated

by the arcs from nodes to resources.

The mapping of a design specifies how a device is configured in order to re-

alize the given functionality. Hence, the configurations that are used at runtime

are known in detail after mapping. In this work, we denote a device configuration

with a vector d(n) = (d(n)1, d(n)2, . . . , d(n)m) that is a function of the task n with

n ∈ NT. The vector element d(n)k, k = 1 . . . m describes the configuration data for

the reconfigurable element k. In our example we assume that all resources and

input select switches are independently reconfigurable elements, i.e. m = 12. The

relationship between the reconfigurable elements k and the configurable resources

are given by the 12-tuple 〈 f1, i11, i12, . . . , f4, i41, i42〉 in Figure 3.1: d(A)1 describes the

configuration of resource f1 for Task A, d(B)2 describes the configuration of resource

i11 for Task B etc. The complete configurations for the tasks A, B, C are given by

d(A),d(B), and d(C), respectively. The symbol ∅ denotes the default configuration

of the appropriate resource.

Finally, the process of device reconfiguration is illustrated on our example from

Figure 3.1. At power up, the device is reset to an initial state with all reconfigurable

elements being ∅. Hence, if e.g. Task A is loaded first then at least the reconfigur-

able elements k = 1, 4, 5, 6, 7 must be configured with the appropriate configuration

data d(A)k. In this case, partial reconfiguration is used. Alternatively, all reconfigur-

able elements k = 1, . . . , 12 can be loaded using d(A), which is called full reconfigu-

ration. Apparently, full reconfiguration is independent of the previous configuration

and does not require additional information about which elements must be recon-

figured. A major drawback is the number of elements that are reconfigured: in our

example all 12 elements are loaded instead of just 5 elements as with partial re-

configuration. In the case of partial reconfiguration, it must be known at runtime

(1) what is the current configuration of the device and (2) which elements must be

50 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

reconfigured with what data to realize a new configuration. The efficiency of both

approaches depends on the configuration architecture of the device, i.e. how much

data is required for a reconfigurable element, and on the runtime management of

configuration information.

A compromise between partial and full reconfiguration is achieved by using a

static partitioning for the reconfigurable elements. This approach is taken e.g. by

the Xilinx EAPR Flow, see Section 2.3.3. At design time it is determined which

reconfigurable elements will be loaded at runtime for each reconfiguration. All other

reconfigurable elements remain static. Therefore, the information which elements

are reconfigurable is the same for all configurations. In the case of our example, the

reconfigurable elements changed between any configuration are k = 1, 2, 4, 5, 7, 10.

Hence, at runtime we need to store the configuration data for six reconfigurable

elements for each configuration.

Within this section we have discussed the relationship between architecture, de-

sign, and configuration. We have shown that the reconfigurable tasks itself provide

very little information on the expected reconfiguration effort, because the configu-

ration of the device depends on the mapping of each design. We further introduced

a detailed, abstract representation of configuration data and highlighted the dif-

ferent reconfiguration effort for partial and full reconfiguration. In the following

we will introduce a generic model to describe runtime reconfiguration. The model

is applied at two different levels of design representation: at device configuration

level that consists of binary configuration data and at structural level that describes

the original design prior device mapping. We further discuss various methods to

minimize device reconfiguration by a proper mapping of the tasks.

3.2 Reconfiguration State Graph

We have already shown that the amount of necessary reconfiguration depends on

the differences between device configurations, i.e. on the element-wise differences

between d(ni) and d(n j), ni, n j ∈ NT. In order to model the device reconfigura-

tion depending on these differences, we introduce the Reconfiguration State Graph

(RSG) model. The RSG is a digraph G(NT,ET). In this model, the active configura-

tion is associated with a task n from a set NT of possible tasks. A possible change at

runtime from the active configuration, associated with task ni ∈ NT to a new con-

figuration, associated with task n j ∈NT is described by a directed edge (ni, n j) ∈ ET.

An example RSG is shown in Figure 3.2.

The transition between the RSG states, or the equivalent reconfiguration, is per-

formed by loading new configuration data into the device. There are as many dif-

ferent reconfigurations as edges in an RSG. If the RSG is complete, i.e. there exists

an edge between each possible pair of nodes, the number of possible transitions is

|ET|= |NT|(|NT| − 1).

3.2. Reconfiguration State Graph 51

CB

A

Reconfiguration

Configuration

Figure 3.2: A reconfiguration state graph example. The edge from A to C represents the

reconfiguration of the device from configuration A to C. The node C symbolizes the new

configuration of the device after the reconfiguration is complete.

Each state n ∈ NT in the RSG is associated with a device configuration d(n) =

(d(n)1, d(n)2, . . . , d(n)m), that is active in the device’s configuration memory when

the state n is the active state. Here, we assume that the configuration d consists of m

individually reconfigurable elements, e.g. configuration frames. The vector element

d(n)k, k = 1 . . . m describes the configuration data for the reconfigurable element k.

Each transition e = (ni, n j) ∈ ET in the RSG requires a change in the active de-

vice configuration, i.e. the active configuration changes from d(ni) to d(n j). This

exchange of configuration data causes runtime reconfiguration cost that can be de-

scribed with the reconfiguration cost te(e). The RSG and the device configuration is

illustrated in Example 3.1.

Example 3.1 Consider the transition from state ni to n j with the device configurations

d(ni) = (6, 5, 3, 7, 3) and d(n j) = (6, 5, 2, 7, 5). In order to perform partial reconfig-

uration, the configuration of the elements k = 3 and k = 5 must be changed, causing

reconfiguration cost of te((ni, n j)) = 2 elements.

ni n j(ni, n j)
d(ni) = (6,5,3,7,3) d(n j) = (6,5,2,7,5)

r(ni , n j) = (0,0,1,0,1)

Figure 3.3: Illustration of Example 3.1.

In order to quantify the reconfiguration cost te, we define a reconfiguration

bitmap r : ET 7→ {0, 1}m, where r(e = (ni, n j)) = (r(e)1, r(e)2, . . . , r(e)m) describes

which of the reconfigurable elements have to be reconfigured in order to realize

the transition e ∈ ET. An element r(e)k = 1 denotes that new configuration data

d(n j)k must be loaded into the device’s configuration memory at position k. In the

RSG model, it is assumed that for a state n the configuration of all m reconfigur-

able elements is specified. We further assume that each reconfigurable element can

be reconfigured independently. Hence, r(ni, n j) can be derived from the difference

between the configuration data of both configurations d(ni) and d(n j):

r((ni, n j))k =

�
1 if d(ni)k 6= d(n j)k
0 otherwise

. (3.1)

52 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

Now, we define the reconfiguration cost te(e) for a transition e as follows:

te(e) =

m∑

k=1

wt(k)r(e)k, (3.2)

where the term wt(k) denotes the reconfiguration cost of element k.

3.2.1 Reconfiguration Time Overhead

Based on the RSG G(NT,ET) and the reconfiguration cost te(e) for a single transition

e ∈ ET, we define the total reconfiguration time t.

Definition 3.1 The total reconfiguration time t is the sum of reconfiguration costs

over all transitions e ∈ ET in G:

t =
∑

e∈ET

te(e). (3.3)

The total reconfiguration time t describes the reconfiguration cost that occur if all

transitions in G are performed once. The measure represents the time overhead at

runtime associated with partial reconfiguration. The total reconfiguration time can

be normalized in order to describe the average time per reconfiguration:

t =
t

|ET|
. (3.4)

It provides a reasonable measure to compare different implementations of reconfig-

urable applications in terms of reconfiguration runtime overhead.

3.2.2 Dynamic Configuration Data Overhead

The time required to reconfigure a device is only one aspect of the reconfiguration

overhead. Another one is the amount of configuration data that must be available

at system runtime. In FPGAs the amount of configuration data can be huge and

hence, is usually stored in external memory. Here we introduce a measure that en-

ables us to determine how much data must be available at runtime. We determine

the amount of data for the configurations independent of each other. Moreover, we

assume that the device is initialized with a configuration n ∈NT at system start-up.

Together with the initial configuration, all fully static configuration data is loaded.

The amount of fully static configuration data is neglected here, because it is neces-

sary in any case.

At first, consider all reconfigurations represented by the edges e ∈ ET,n which

lead to configuration n were ET,n := {e ∈ ET : e = (n′, n), n′ ∈ NT}. At runtime,

any configuration data that changes on any transition e ∈ ET,n must be available.

3.2. Reconfiguration State Graph 53

Applied to the configuration n it means that for any reconfigurable element k which

is configured with new data on any transition e ∈ ET,n, the configuration data d(n)k
are required. Overall, the element k in the reconfiguration bitmap r′(n) indicates

what configuration data d(n)k must be present at runtime for a configuration n. The

reconfiguration bitmap r′(n) is now defined as:

r′(n)k =
∨

e∈ET,n

r(e)k. (3.5)

Subsequently, the configuration size sn(n) for a configuration n is defined as:

sn(n) =

m∑

k=1

ws(k) r
′(n)k, (3.6)

where ws(k) denotes the configuration size of the element k. The computation of

the configuration size sn(n) is illustrated next:

Example 3.2 Consider an RSG with the reconfiguration bitmaps r((n1, n3)) = (0, 0, 1,

1, 0) and r((n2, n3)) = (0, 1, 1, 0, 0). According to Equation 3.5, the reconfiguration

bitmap evaluates to r
′(n3) = (0, 1, 1, 1, 0) and hence with ws = 1, the configuration

size yields sn(n3) = 3.

Now, we are able to define the total configuration size s:

Definition 3.2 The total configuration size s is the sum of the configuration sizes for

all configurations n ∈NT that are required at runtime for dynamic reconfiguration:

s =
∑

n∈NT

sn(n). (3.7)

Similar to the reconfiguration time, the total configuration size can also be nor-

malized in order to describe the average amount of data required to store the dy-

namic part of a configuration:

s =
s

|NT|
. (3.8)

The reconfiguration bitmap r′(n) determines which elements k of a configuration

are dynamic at runtime. Moreover, if the RSG is a complete graph, then the recon-

figuration bitmaps r′(n) are equal for all n ∈ NT: The reconfiguration bitmap r′(n)k
can only be 0 if all reconfiguration bitmaps r((n′, n))k are 0, too. This is only true if

the configuration data d(n′)k = d(n)k for all n′, n ∈NT. Otherwise, if d(n′)k 6= d(n′′)k
then at least r((n′, n))k = 1 or r((n′′, n))k = 1 and hence, in any case r′(n)k = 1.

Although external memory in reconfigurable systems is inexpensive today, the

amount of storage needed for configuration data impacts the external memory size,

the system’s memory bandwidth, the system’s energy consumption and the size of

54 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

on-chip caches for configuration data. Therefore, the total configuration size must

be reduced to allow for more efficient reconfigurable systems.

In the following we will use the RSG model to compute reconfiguration cost for

both, binary configuration data and structural design representations.

3.3 Configuration Cost at Bitstream Level

At bitstream level, the data that constitutes the device configuration is well-known

for each task. Initially, each task is associated with an individual bitstream produced

by the FPGAs implementation tools. From that starting point, the RSG model can

be established and subsequently the expected costs for reconfiguration time and

configuration data can be computed as discussed in Section 3.2.

For a more detailed illustration consider the Xilinx EAPR flow in Section 2.3.3: In

an initial floorplanning step, the designer selects a fixed, reconfigurable area on the

device where the reconfigurable tasks will be implemented on. After the final place

and route of the reconfigurable modules, a bitstream for each module is generated.

Each bitstream contains the data that configures the reconfigurable area such that

it realizes the desired functionality.

By selecting the reconfigurable area, it is already defined which configuration

data is contained in the bitstream. Let the reconfigurable area to be configured by

the configuration frames starting at address a1 and ending at address am. Consis-

tently with the RSG model, the bitstream of task n contains the configuration data

d(n) = (d(n)1, . . . , d(n)m), where each element d(n)k, k = 1 . . . m comprises the ac-

tual data of a configuration frame associated with the configuration n ∈NT. Hence,

the element d(n)1 contains the configuration data that is written to address a1, d(n)2
the frame data for address a2 and so forth. The elements d(n)k contain a sequence

of binary data that has the size of the configuration frame of a particular device.

For such a sequence it can be easily decided whether the elements d(ni)k and d(n j)k
contain equal configuration data or not, as required by Equation 3.1.

Example 3.3 Consider a reconfigurable area that covers two columns of CLB logic in

a VirtexII-6000 device. The size of a each frame in this device is 246 × 32 bit. The

bitstreams of each configuration contain m = 44 such frames, associated with the

frame address a1 . . . a44. As an example, there may be four tasks NT = {1, 2, 3, 4} and

the reconfiguration bitmap is given as follows:

r((1, 2)) = r((2, 1)) = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
(3.9)

r((2, 3)) = r((3, 2)) = (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)
(3.10)

3.3. Configuration Cost at Bitstream Level 55

r((3, 4)) = r((4, 3)) = (1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0)
(3.11)

r((1, 3)) = r((3, 1)) = (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0)
(3.12)

r((1, 4)) = r((4, 1)) = (0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0)
(3.13)

r((2, 4)) = r((4, 2)) = (0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0).
(3.14)

The average reconfiguration time can be evaluated as, (with wt(k) = 1 ms):

t =
1

12
(12+12+10+10+11+11+12+12+12+12+11+11)ms= 11.33 ms (3.15)

whereas the average reconfiguration time using a bitstream with all 44 frames would

be 44 ms per reconfiguration.

The dynamic configuration data overhead can be derived from the reconfiguration

bitmap r((·, n)), n ∈NT:

r((·, n)) = (1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0). (3.16)

The given frame size is ws(k) = 7872 bit. Thus the average amount of dynamic config-

uration data becomes:

s =
1

4
(15+ 15+ 15+ 15)× 7872 bit= 118080 bit. (3.17)

This amount of data is only about one third of the original bitstream data that would

be required for all 44 frames.

At this point the information about the reconfiguration costs seems to be contra-

dictory. We want to clarify that there is a difference between the configuration data

that must be sent to the device in order to perform a reconfiguration between two

states—and the configuration data that must be available at runtime in order to be

used by any reconfiguration in the RSG. In many existing reconfigurable comput-

ing platforms, the bitstreams used for partial reconfiguration must be available at

system start-up and can not be compiled at runtime from raw configuration frame

data. In [77] we describe several optimization problems which enable us to find

a compact set of pre-compiled bitstreams that achieve low average reconfiguration

times.

56 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

3.4 Configuration Cost at Structural Level

So far we have explained in greater detail, how the RSG model is applied to con-

figuration data that is available in the configuration bitstreams. The approach is

relatively straightforward and the results can be directly measured in approximate

configuration time and data. But we have already shown in the motivational exam-

ple in Section 3.1 that the binary configuration data is only one possible instance of

a complicated mapping process. The mapping assigns the elements of a structural

circuit representation to resource instances in the FPGA. Often there exists a mul-

titude of mapping variants for a structural circuit. The binary configuration data is

eventually a transcript of one such mapping.

With a focus on reconfiguration cost, we are interested in mappings that ex-

hibit the smallest possible differences in terms of configuration data at binary level.

Currently, the existing tools perform the circuit mapping to resource instances with

constraints that arise from timing and area restrictions only. Thus, our idea requires

a significant effort in new mapping models and algorithms. Further on in this chap-

ter, the appropriate modeling concepts, problem formulations and solution methods

are introduced.

The mapping of synthesized netlists and the placement and routing of such a cir-

cuit can be done only with very large computational efforts. It is therefore unreason-

able to perform this process in order to generate many different mapping variants –

from which the ones with the lowest configuration cost could be selected. Instead,

we apply the RSG model to higher levels of abstraction, to the structural representa-

tions of tasks that are used prior mapping, placement and routing. We develop new

methods to assess the reconfiguration cost within the structural representations, but

without the creation of different mapping variants and the subsequent computation

from binary configuration data.

Our method is based on the idea to find similarities within the structural rep-

resentations of different tasks or circuits. Hence, the comparison is made with

the original task/circuit representation without complicated mapping. Our method

identifies elements in the structural representation that can be mapped to the same

FPGA resources – for both logic and interconnect. For now, assume that the struc-

tural representation of a task/circuit is a graph that consists of nodes and edges.

We use the following important assumptions for finding similarities that minimize

reconfiguration costs after mapping:

1. Two nodes that are mapped to the same resource instance using the

same configuration, require no reconfiguration.

2. Two edges that connect the same two resource instances, as a conse-

quence of the node mapping, can be realized such that they require no

routing reconfiguration.

3.4. Configuration Cost at Structural Level 57

Example 3.4 For an example to illustrate the assumptions above, please refer to Fig-

ure 3.1. The nodes 1 and 2 of task A are mapped to the resources f1 and f2, respectively

as well as the nodes 5 and 6 of task B. In this scenario, the configurations of the re-

sources f1 and f2 differ between both tasks and reconfiguration must be performed. In

the contrary, the edge between the nodes 1 and 2 and the edge between the nodes 5 and

6 result in the same interconnection configuration (d(n1)6 = d(n2)6 = s1), due to the

chosen mapping of the nodes.

In the following we refine the model of the structural representation of tasks and

derive the configuration cost definition for the structural level. In Section 3.5 we

present several methods on how to identify structural similarities such that minimal

reconfiguration cost are achieved.

3.4.1 Definitions

Here, we introduce a labelled multidigraph in order to have a formal description

for tasks. The notation will be used to describe structural representations of tasks.

Using the labelled multidigraph we are able to define structural similarities between

two tasks more formally. The notion of structural similarity is used for the optimiza-

tion methods in Section 3.5 and throughout the Chapters 4 and 5.

Definition 3.3 A labelled multidigraph (LMG) is a graph defined as a 9-tuple G(N ,E ,

Sn,Sp, ln, s, d, ls, ld) where:

N is the set of nodes,

E is the set of directed edges,

Sn is the finite set of configurations of the nodes,

Sp is the finite set of labels for the source and drain of an edge,

ln : N 7→ Sn assigns to each node a configuration,

s : E 7→N assigns to each edge a source node,

d : E 7→N assigns to each edge a drain node,

ls : E 7→ Sp assigns to each edge a source label, and

ld : E 7→ Sp assigns to each edge a drain label.

We assume that each node is labelled with a configuration, provided by the function

ln. In addition to a general directed graph, an LMG allows multiple edges between

the same source and drain node. An edge e ∈ E of the LMG can be described as

e := (s(e), d(e), ls(e), ld(e)). The functions ls and ld are called port labelling functions.

The formal definition of the edges is illustrated in Figure 3.4.

The formal definition of an LMG is illustrated now on two examples that consti-

tute possible structural representations of tasks, a netlist of a digital circuit and a

dataflow graph.

58 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

s(e) d(e)
e ∈ E

ls(e) ld(e)

Figure 3.4: Illustration of an edge with (s(e), d(e), ls(e), ld(e)).

Example 3.5 In Figure 3.5(a) a schematic of a netlist is shown. The netlist is described

as an LMG (Figure 3.5(b)) as follows:

N = {In, Clk, Out, Lut2, Reg},
E = {e1, . . . , e5} with e1 := (In, Lut2, o, i0), e2 := (In, Reg, o, d), e3 := (Clk,

Reg, o, clk), e4 := (Reg, Lut2, q, i1), e5 := (Lut2, Out, o, i),

Sn = {∅, 0, 1, i0 i1, i0 i1, i0 i1, i0 i1} is the set of node configurations; the exact

meaning depends on the node where they are used,

Sp = {o, i, i0, i1, clk, d, q} is the set of labels for the source and the drain of an

edge.

The remaining functions of the multidigraph are illustrated on specific elements. E.g.

node Lut2 may have the configuration ln(Lut2) = i0 i1. The edge e1 is represented by the

4-tuple (In, Lut2, o, i0) which indicates that the source node is s(e1) = In and the drain

node is d(e1) = Lut2. The edge connects the output port ls(e1) = o on the source side to

the input port ld(e1) = i0 on the drain side of edge e1. Also note that the wire which is

connected to the netlist element In is represented as two independent edges e1, e2 in the

LMG. The edge e1 indicates the connection from node In to node Lut2 and the edge e2

indicates the connection from node In to node Reg.

Clk

Reg

In Lut2

Out

(b)

o

o

i0

d i1
q

clko

o

i

Clk Reg

In Lut2 Out
i0

i1

d

clk

i

(a)

o

o o

q

e1

e2

e3

e4
e5

Figure 3.5: (a) netlist of a digital circuit as a schematic. (b) LMG of the netlist.

Example 3.6 In Figure 3.6 an LMG that describes the dataflow graph of the function

d = (a-b)c is shown. Again, the formal description of the LMG is very straightforward:

N = {a, b, c, d,−,×},

3.4. Configuration Cost at Structural Level 59

E = {e1, . . . , e5} with e1 := (a,−, o, i0), e2 := (b,−, o, i1), e3 := (−,×, o, i0),

e4 := (×, d, o, i), and e5 := (c,×, o, i1),

Sn = ∅, hence for dataflow graphs the node configuration is not used,

Sp = {o, i, i0, i1} is the set of labels for the source and the drain of an edge.

In the LMG, both the variables and the operations are represented by nodes. The use

of an input variable such as a,b,c or of an result from an operation such as −,× is

indicated by an edge. The example shows that the port labelling functions ls, ld can be

used to indicate the argument where the data is used. The variable a is used as an input

for the first argument (i0) and the variable b as an input for the second argument (i1)

of the node (−). Thus the expression (a-b) is built.

a b c

d

o

o

o

d = (a−b)c

o
i0 i1

o

i0 i1

i

e1

e2

e3

e4

e5

Figure 3.6: An LMG which describes the dataflow graph for the function d = (a-b)c.

We have already observed that the reconfiguration cost depend on the mapping

of the structural representation of tasks to common resources and to common inter-

connect. Now we introduce a formalism to describe such a mapping in detail.

Given the set NT of original tasks. Each task can be represented by an LMG

as described above. Now these LMGs are called input graphs G(N ,E ,Sn,Sp, ln, s, d,

ls, ld). In the mapping process each input graph is mapped by a transformation to

another labelled multidigraph, hence G 7→ G′(N ′,E ′,S ′
n
,S ′

p
, l′

n
, s′, d′, l′

s
, l′

d
). The graph

G′ is called the image graph of G. The transformation is enabled by three allocation

functions a, as, and ad as follows:

The resource allocation a : N 7→N ′ maps each node in G to a new node in G′.

The two port re-labelling functions as, ad : E 7→ S ′
p

assign to each edge e ∈ E

port labels in the image graph G′. Whereas as(e) assigns the label of the edge

source and ad(e) assigns the label of the edge drain, respectively. Port re-

labelling assists in the mapping formulation and can enhance the similarity of

the interconnect.

60 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

In a nutshell, the edge e := (s(e), d(e), ls(e), ld(e)) ∈ E of the input graph G is mapped

to the edge e′ := (s′(e′), d′(e′), l′
s
(e′), l′

d
(e′)) ∈ E ′ of the image graph G′ by the alloca-

tion functions a, as, and ad as follows:

s′(e′) = a(s(e)),

d′(e′) = a(d(e)),

l′
s
(e′) = as(e),

l′
d
(e′) = ad(e).

In the following this edge mapping is abbreviated with the edge allocation ae : E 7→
E ′.

If the input graph is a netlist, we consider the allocation as a mapping of netlist

elements to device resources. In this context we assume that the allocation maps

only netlist elements to resources that provide the required functionality. Besides,

each node n′ ∈ N ′ of an image graph G′ is allocated exclusively by a node n ∈ N

of the input graph G because a netlist describes a digital circuit with concurrently

active elements. The port re-labelling allows us to exploit different port-mappings

that are available for some resources. For example the input ports of LUTs can be

swapped (concurrently with a LUT content modification) while the circuit function-

ality is retained.

However, if the input graph is a dataflow graph, then two nodes of the same

input graph G can possibly be mapped to the same node in image graph G′. For a

dataflow graph it is known at design time, when the function associated with a node

is executed. Therefore, two nodes that are not executed at the same time interval

can share a resource and hence, can be allocated to the same node in the image

graph. Just like netlist nodes, port re-labelling can be applied to exploit several

different mappings for commutative functions.

Now we consider the mapping of multiple, reconfigurable tasks. Each task

i, j ∈ NT is represented by a separate graph Gi(Ni,Ei,Sn,Sp, ln,i, si, di, ls,i, ld,i) and

G j(N j,E j,Sn,Sp, ln, j, s j, d j, ls, j, ld, j). The graphs Gi and G j are completely unrelated,

i.e. Ni ∩N j = ∅ and Ei ∩ E j = ∅ for i 6= j. However, the image graphs G′
i
, G′

j
may

have a number of common elements, i.e. if Gi 7→ G′
i
and G j 7→ G′

j
then both – the sets

N ′
i

and N ′
j

of resulting nodes and the sets E ′
i

and E ′
j

may have common elements,

i.e. N ′
i
∩N ′

j
6= ∅ and E ′

i
∩ E ′

j
6= ∅. This situation is illustrated in Figure 3.7.

With that concept in mind it is straightforward to define the graph similarity in

terms of individual elements more formally. For this purpose we introduce a match-

ing between nodes and between edges of input graphs. Note that this matching is

not equivalent to the matching in graph theory.

Definition 3.4 (Matching nodes) Given the set of nodes Ni and N j of the input

graphs Gi and G j, a resource allocation function a and hence the set of nodes N ′
i

and N ′
j

of the image graphs G′
i

and G′
j
.

3.4. Configuration Cost at Structural Level 61

...

N1

N2

NN

N ′
1

N ′
2 N ′

N

a

a

a

E1

E2

EN

E ′
1

E ′
2 E ′

N

a, as, ad

a, as, ad

a, as, ad

Figure 3.7: The allocation functions a, as, and ad map the nodes and edges of the input

graphs G1, G2, . . . , GN to a image graphs G′
1
, G′

2
, . . . , G′

N
where the set of nodes and the

set of edges may have a common subset.

Two nodes ni ∈ Ni, n j ∈ N j match with respect to an allocation function a, if both

are mapped to node n′ with n′ ∈N ′
i
, n′ ∈N ′

j
, i.e.

a(ni) = a(n j) = n′, n′ ∈N ′
i
, n′ ∈N ′

j
. (3.18)

The nodes ni and n j are called matching nodes.

Definition 3.5 (Matching edges) Given the set of edges Ei and E j of the input graphs

Gi and G j, the resource allocation functions a, as, and ad and hence the set of nodes

E ′
i

and E ′
j

of the image graphs G′
i

and G′
j
. Two edges ei ∈ Ei and e j ∈ E j match

with respect to the allocation functions a, as, and ad, if both are mapped to the edge

e′ = (s′(e′), d′(e′), ls
′(e′), ld

′(e′)) with e′ ∈ E ′
i
, e′ ∈ E ′

j
, i.e.

a(si(ei)) = a(s j(e j)) = s′(e′),

a(di(ei)) = a(dj(e j)) = d′(e′),

as(ei) = as(e j) = ls
′(e′),

ad(ei) = ad(e j) = ld
′(e′).

The edges ei and e j are called matching edges.

The definition of matching nodes and matching edges are illustrated by the fol-

lowing example:

Example 3.7 Figure 3.8 shows an example set of three input graphs G1, G2, G3 and

the image graphs G′
1
, G′

2
, G′

3
. The allocation functions a, ae are given in Table 3.1.

E.g. the nodes 1, 5, and 10 match because they are mapped to the same resource f1,

i.e. a(1) = a(5) = a(10) = f1. The node allocation defines also an edge matching.

For instance the three edges (1, 2, o, i2), (5, 6, o, i2), and (10, 8, o, i2) are mapped to the

same edge (f1, f2, o, i2) and are therefore matching edges.

62 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

1

3

2 54

6

87

9 10

f1

f1f1f1

f2

f2f2f2
f3

f3f3f3

f4

f4f4f4

G1 G2 G3

G′
1 G′

2
G′

3

GA

o

o

oo

o

o
o

o

o

o

i1

i1i1

i1

i1i1i2

i2

i2

i2

Figure 3.8: Input graphs G1, G2, G3 for Example 3.7. The edges are depicted with with

the port labels of the source and drain nodes. The input graphs are mapped to the image

graphs G′
1
, G′

2
, G′

3
. The VA GA provides a common reference for the image graphs.

3.4.2 Virtual Architecture

With the definition of the allocation functions a, as, and ad at hand, we introduce a

central concept of our work, the virtual architecture (VA). As already mentioned, we

need a common reference model in order to assess the reconfiguration cost metrics

in the RSG at structural level. This common reference is provided by the VA. We im-

plicitly assumed that the allocation functions map the input graphs to image graphs

that are related to each other, i.e. the nodes and edges of the image graphs may have

common subsets. In order to built a common reference model for the image graphs,

we define the VA as a supergraph that contains all image graphs as a subset. The

Table 3.1: Allocation of nodes and edges as used in Example 3.7. The input graphs are

depicted in Figure 3.8.

Gi G1 G2 G3 a(n) ae(e) u()

Nodes n ∈Ni 1 5 10 f1 3

2 6 8 f2 3

3 7 f3 2

4 9 f4 2

Edges e ∈ Ei (1, 2, o, i2) (5, 6, o, i2) (10, 8, o, i2) (f1, f2, o, i2) 3

(si(e), di(e), (3, 2, o, i1) (7, 8, o, i1) (f3, f2, o, i1) 2

ls,i(e), ld,i(e)) (4, 5, o, i1) (9, 10, o, i1) (f4, f1, o, i1) 2

3.4. Configuration Cost at Structural Level 63

VA itself is defined as an LMG denoted as GA = (NA,EA,SA,n,SA,p, lA,n, sA, dA, lA,s, lA,d).

We require the set NA of nodes and the set EA of edges to be enumerable sets, i.e.

the elements of these sets can be completely enumerated by an index l as follows:

nl ∈ NA = {n1, . . . , n|NA|}, l = 1, . . . , |NA| and el ∈ EA = {e1, . . . , e|EA|}, l = 1, . . . , |EA|.
For a set of input graphs Gi with i ∈ NT and the allocation functions a, as, and ad,

the VA observes the following conditions regarding the image of the input graphs:

⋃

i∈NT

N ′
i
⊂ NA, (3.19)

⋃

i∈NT

E ′
i
⊂ EA. (3.20)

There exists a very straightforward way to construct a VA for a set of image

graphs. For a known allocation function, the VA can be constructed from the image

graphs by setting up the nodes and edges according to:

NA :=
⋃

i∈NT

N ′
i
, (3.21)

EA :=
⋃

i∈NT

E ′
i
. (3.22)

Alternatively, the VA may be given along with the input graphs. In this case,

the nodes and edges in the VA may be available resources that can be allocated by

the nodes and edges of the image graphs. In this situation, the problem consists of

finding valid allocation functions such that the conditions in the Equations 3.19 and

3.20 hold.

The VA provides the ideal tool to establish the reconfiguration cost model based

on the RSG. As the name virtual architecture suggests, the VA defines an assumed

architecture model. The reconfiguration cost can now be established with the VA as

a reference.

The VA defines the reconfigurable elements of a device configuration d(i) =

(d(i)1, . . . , d(i)m), i ∈ NT. The device configuration d(i) consists of m = |NA| +
|EA| elements. We assume all elements of a VA are reconfigurable. For the VA

model, the elements d(i)k with k = 1, . . . , m describe the configuration as follows:

the elements d(i)1, . . . , d(i)|NA| are associated with the resource configuration of the

nodes n1, . . . , n|NA| ∈ NA and the elements d(i)k, k = |NA|+ 1, . . . , m are associated

with the interconnect use of the edges e1, . . . , e|EA| ∈ EA.

In the following we describe the device configuration d(i) for an input graph Gi

with i ∈ NT, an allocation a and a VA GA. The device configuration describes how

the resources and interconnect of a VA must be configured in order to implement

the image graph G′
i

on the VA such that it realizes the functionality described in the

input graph Gi.

64 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

The configuration of a resource nk ∈ NA for an input graph Gi depends on the

configuration required by the node ni ∈ Ni that is allocated to the resource nk.

More precisely, the configuration of resource nk ∈ NA, k ∈ {1, . . . , |NA|} is specified

by d(i)k = l′
n,i
(nk) if a node ni ∈ Ni exists with a(ni) = nk ∈ N

′
i
, nk ∈ NA, otherwise

d(i)k = ∅. The nodes nk in the VA may have a different configuration for each task

i ∈NT.

The edges ek−|NA| ∈ EA, k ∈ {|NA|+ 1, . . . , m} in the VA represent possible con-

nections between nodes. The edges given by an input graph are mapped to edges

in an image graph. Depending on this mapping, the interconnect in the VA is ei-

ther used by the image graph or it is unused. The configuration of interconnect

ek−|NA| ∈ EA, k ∈ {|NA| + 1, . . . , m} is given with d(i)k = 1, if an edge ei ∈ Ei is

mapped to an edge ek−|NA| ∈ EA i.e. ae(ei) = ek−|NA| ∈ E
′
i
, otherwise d(i)k = 0.

The device configuration that describes the mapping of each input graph to a

configuration of the VA model fully defines the reconfiguration cost within the RSG

model. The reconfiguration bitmap is computed from the device configuration as

given in Equation 3.1. The definitions used so far are summarized in Figure 3.9.

Input Graphs

Virtual Architecture

Image Graphs/ RSG Reconfiguration

Cost

G(NT,ET)GA(NA,EA, . . .)

Gi G′
i

d

r
a, as, ad

t, s

Figure 3.9: The relationship between input graphs, image graphs, the VA, and the RSG

cost model. The reconfiguration cost t, s are defined in Section 3.2.

Example 3.8 In this example we want to illustrate the reconfiguration cost that arise

for the tasks G1, G2, G3 given in Table 3.1. The VA graph is given by the nodes NA :=

{ f1, f2, f3, f4} and edges EA := {(f1, f2, o, i2), (f3, f2, o, i1), (f4, f1, o, i1)}. The allocation

functions a, ae given in the table yield the device configurations d(i), i = 1, 2, 3 for

each task: d(1) = (′1′,′ 2′,′ 3′,∅, 1, 1, 0), d(2) = (′5′,′ 6′,∅,′ 4′, 1, 0, 1), and d(3) =

(′10′,′ 8′,′ 7′,′ 9′, 1, 1, 1). Note that these device configurations are not related to a

specific mapping to the target architecture as in Section 3.1. The reconfiguration

bitmap can be derived from the device configurations d(i). In the example the bitmaps

are: r(1, 2) = r(2, 1) = (1, 1, 1, 1, 0, 1, 1), r(2, 3) = r(3, 2) = (1, 1, 1, 1, 0, 1, 0), and

r(1, 3) = r(3, 1) = (1, 1, 1, 1, 0, 0, 1).

The reconfiguration cost (with unit weight for wt and ws) in the example evaluate

to t = 16

3
and s = 6.

3.4. Configuration Cost at Structural Level 65

The VA serves as an internal reference architecture in order to optimize the

allocation and to identify similarities between the input graphs. However, the map-

ping of the input graphs to device resources during the implementation process is

a different step. The allocation found for the mapping to a VA provides important

allocation constraints for the device mapping: nodes that are mapped to the same

node in the VA must be mapped to the same resource in the FPGA and edges that

are mapped to the same edge in the VA must be realized by the same interconnect

in the FPGA, too. If these constraints are observed, the reconfiguration cost can be

reduced as expected from the VA/RSG based cost model.

3.4.3 Reconfiguration Costs in the VA Context

Our reconfiguration cost model describes two cost functions: reconfiguration time

t (Equation 3.3) and configuration size s (Equation 3.7). The initial definition of

these cost functions is purely based on the RSG model and the associated recon-

figuration bitmap. Now we present an alternative way to compute reconfiguration

cost for structural models, based on the reuse function. The aims of the new for-

mulation are twofold: (1) it shows the relationship between resource reuse and

reconfiguration cost and (2) the cost function can be evaluated more efficiently, if

the allocation function and the reuse function is modified iteratively as it is required

in many heuristic optimization methods. For our derivation we assume that the

RSG is complete and that the allocation ae describes a one-to-one mapping with

|E |= |E ′|. We further set the weight functions to unit weight, i.e. ws = wt = 1.

The reuse function u : NA∪EA 7→ N defines how often the nodes and edges in the

VA are allocated by the nodes and edges of the input graphs. However, the reuse

function does not depend on the configurations of the nodes that are required by

the input graphs. Therefore the reconfiguration cost can only be derived from the

reuse function if the cost depends purely on the utilization of that resource, e.g. in

the case of interconnect or other non-reconfigurable resources. In this section, we

limit the computation of the total reconfiguration time to the reconfiguration cost

caused by interconnect only. The cost term is denoted as tE .

First, consider a reconfiguration for two input graphs Gi, G j with the image

graphs G′
i
, G′

j
and an allocation a. The reconfiguration cost for a transition from

task i ∈ NT to task j ∈ NT consists of the de-configuration of all edges E ′
i

and the

configuration of all edges E ′
j
. Because we reconfigure only the differences between

both tasks, the common subset E ′
i
∩E ′

j
with respect to the VA is not reconfigured and

hence the reconfiguration cost evaluate to:

tE(i, j) = |E ′
i
|+ |E ′

j
| − 2|E ′

i
∩ E ′

j
|. (3.23)

As the RSG is complete, the total reconfiguration costs are the sum of all possible

66 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

transitions between the graphs:

tE =
∑

i∈NT

∑

j∈NT

i 6= j

tE(i, j) =
∑

i∈NT

∑

j∈NT

i 6= j

h

|E ′
i
|+ |E ′

j
| − 2|E ′

i
∩ E ′

j
|
i

(3.24)

The number of edges in all input graphs is constant and because we require a one-

to-one mapping by the allocation function we let

E =
∑

i∈NT

|Ei|=
∑

i∈NT

|E ′
i
|=
∑

e∈EA

u(e) = const. (3.25)

be the total number of edges. With this definition, Equation 3.24 can be simplified

as follows: at first the double sum is expanded to

tE =
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
|+
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
j
| − 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
|. (3.26)

In the first term we swap the inner and outer sum and substitute the term according

to Equation 3.25. The sum over j repeats |NT| − 1 times. In the second term, the

double sum over |E ′
j
| is equivalent to

∑

i∈NT

�

E − |E ′
i
|
�

. Hence we receive

tE = (|NT| − 1)E +
∑

i∈NT

�

E − |E ′
i
|
�

− 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
| (3.27)

tE = (|NT| − 1)E + |NT|E − E − 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
| (3.28)

tE = 2(|NT| − 1)E − 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
|

︸ ︷︷ ︸

xt

(3.29)

tE = 2(|NT| − 1)E − 2xt. (3.30)

The term xt represents the number of edges in the VA which are allocated in both,

the configuration i and the configuration j, for all transitions (i, j) in the RSG. It can

be computed alternatively—in the case of full reconfigurability—by using the reuse

function. The reuse function u(ek−|NA|) for an interconnect element ek−|NA| ∈ EA

describes in how many configurations d(i), i ∈ NT the element ek−|NA| is used, i.e.

d(i)k = 1. Instead of computing |E ′
i
∩E ′

j
|, we investigate the reconfiguration cost for

a single interconnect ek−|NA| ∈ EA in the VA.

The RSG G(NT,ET) is a complete graph with the node set NT and hence, any

subgraph of G with N ′
T
⊂ NT is also complete. The subgraph is given by N ′

T
= {i ∈

NT : d(i)k = 1}. It follows that |N ′
T
| = u(ek−|NA|). For a complete (sub)graph with

3.5. Allocation Functions with Minimal Reconfiguration Costs 67

u(ek−|NA|) nodes it is known that u(ek−|NA|)(u(ek−|NA|)− 1) edges exist. Hence, the

term x t is now given by:

xt =
∑

e∈EA

u(e)(u(e)− 1). (3.31)

Equation 3.30 can be further simplified using the Equations 3.25 and 3.31 as fol-

lows:

tE = 2(|NT| − 1)E − 2
∑

e∈EA

u(e)(u(e)− 1) (3.32)

= 2(|NT| − 1)E + 2
∑

e∈EA

u(e)− 2
∑

e∈EA

u2(e) (3.33)

= 2|NT|E − 2
∑

e∈EA

u2(e). (3.34)

It appears that the total reconfiguration time tE for the interconnect is minimized

by increasing the reuse of interconnect. Moreover, the effect of the reuse function is

squared and it follows for a VA mapping that fewer elements which are reused more

often are preferred to more elements which are reused less often. Equation 3.34

also indicates that the reconfiguration time t and the configuration size s are not

necessarily optimized at the same time. If we assume that the VA interconnect con-

tains only elements which are reconfigured at runtime, i.e. 1≤ u(e)< |NT|, then the

configuration size sE for interconnect depends only on the amount of interconnect

in the VA, i.e. sE = |EA|. However, the reconfiguration time tE depends on the sum

of squares of the reuse function, whereas the reuse function does not matter for the

configuration size.

3.5 Allocation Functions with Minimal Recon-

figuration Costs

In Section 3.4.1 it was shown how the reconfiguration costs can be defined for input

graphs. The costs depend on the structure of the input graphs, which are given by

design, but the costs also depend on the allocations a, as, and ad. There are many

different allocations to choose from, but we are interested in the allocations that

reduce reconfiguration costs as much as possible, which constitutes the allocation

problem:

Definition 3.6 Consider the RSG G(NT,ET) and the associated input graphs Gi,

i ∈ NT. The allocation functions a, as, and ad map the input graphs to image graphs

G′
i
, i ∈NT. The allocation problem consists of finding such allocation functions so that

the resulting reconfiguration cost s or t become minimal.

68 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

In order to solve the allocation problem, we developed different approaches to com-

pute allocations that achieve minimal costs. The cost assessment is based on the

VA as a reference. We assume a complete RSG as before and for this reason the

reconfiguration cost can be calculated by using the reuse function.

The nodes and edges of the input graphs induce very different reconfiguration

costs. In FPGAs, nodes describe logical resources that require a small, fixed amount

of configuration data only. Conversely, edges describe connections between log-

ical resources. The connections are realized by using configurable interconnect

resources in several switch boxes, distributed on the FPGA area. The switch box

configuration requires much more configuration data than the configuration of log-

ical resources. Hence, reconfiguration of interconnect causes substantially more

reconfiguration costs. We will therefore neglect the reconfiguration costs of logic

resources for now and focus on methods to minimize reconfiguration costs for

interconnect-related configuration data instead. A method for the simultaneous op-

timization of the allocation functions with respect to reconfiguration cost for both

logic and interconnect reconfiguration is discussed in the Sections 3.5.2 and 5.4.3.

In the following we describe a method that finds as many as possible matching

edges for a set of input graphs (Section 3.5.1). In Section 3.5.2 we describe a

method which directly enumerates different allocation functions and selects the best

solution.

3.5.1 Allocation of Node Pairs

We have already shown that the reuse of edges in the VA decreases reconfiguration

cost. We want to identify an allocation of edges that maximizes the reuse in order to

minimize reconfiguration cost. The edge mapping is a result of the node allocation.

Originally it does not seem possible to allocate the edges in the input graphs directly,

without node allocations. Here, we derive a problem formulation that allows us

to optimize the edge allocation that achieves maximum reuse directly; the node

allocation is a mere by-product.

First we describe how the input graphs can be decomposed in order to treat

edges independently of the node allocation. For the decomposition we show that

the interconnect-related reconfiguration cost can be split into terms that can be

accumulated linearly without interference. The optimization problem consists of

the selection of edge allocations from a set of possible edge allocations such that

the interconnect-related reconfiguration cost are minimal. Meanwhile it must be

possible to realize the edge allocation with a valid allocation for nodes.

The input graphs can be decomposed into node pairs. A node pair can be any

combination of nodes ni,1, ni,2 ∈Ni from the same input graph Gi. There may be sev-

eral edges between the nodes in such a pair. An example is shown in Figure 3.10(a).

Each node pair may be allocated to a small VA with two resources and the required

3.5. Allocation Functions with Minimal Reconfiguration Costs 69

Node Pair

(a) (b)

Allocation small VA

G1

G1

Figure 3.10: (a) The graph G1 is decomposed into pairs of nodes including the related

edges. (b) The allocation of a node pair also allocates the related edge.

interconnect as shown in Figure 3.10(b). Note that the edges running between the

same node pair can not be mapped independently.

Consistently with our VA model we can allocate node pairs from different input

graphs to the same resources in a VA. A node pair of one input graph may be allo-

cated to the same resources in the VA as the node pair of another input graph, thus

the allocation results in matching nodes and matching edges at the same time. The

node pairs that are allocated to the VA resources are treated independently of node

pairs allocated to other VA resources (Figure 3.10(b)). This is reasonable because

the reuse of edges in the VA can be treated independently in this case.

Now we introduce the notion of a node pair combination n = (n1, . . . ,n|NT|):

A node pair combination is a vector of 2-tuples, i.e. each vector element ni =

(ni,1, ni,2), i = 1, . . . , |NT| consists of two nodes ni,1, ni,2. The nodes ni,1 and ni,2

represent a node pair from task i ∈ NT, i.e. ni,1, ni,2 ∈ Ni. We assume the node

pairs in a node pair combination are all allocated to common VA nodes as follows:

∀i ∈ NT : a(ni,1) := nk1
∈ NA and a(ni,2) := nk2

∈ NA. For this allocation, the

matching edges can be determined accordingly.

In order to find the node pairs that induce matching edges for low reconfigura-

tion cost, any node pair combination over all input graphs is considered. A weight

is assigned to each node pair combination in order to formulate an optimization

problem. More precisely, the weight reflects the reuse of VA elements as defined by

the node pair combination. Here we are only interested in the reuse of intercon-

nect. The example below illustrates the allocation of a node pair combination to a

common VA.

Example 3.9 In Figure 3.11 an example with two input graphs is shown. The node

pairs are allocated to a small VAs. Consider the node pair combination n = ((1, 2),

(4, 5)), which consists of the node pair (1,2) and the node pair (4,5): the nodes 1,4

are allocated to one resource in VA A, and the nodes 2,5 are allocated to the other

70 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

Compatibility GraphInput Graphs VA A−C

A

B C

1 2

3

4 5

6

A

...

B

1
5 6

2
C

5
2

6
3

1
4 5

2u(e1) = 2

u(e2) = 1

u(e3) = 1

u(e4) = 2

n= ((1,2), (4,5))

n= ((2,3), (5,6))

n= ((1,2), (5,6))

Figure 3.11: Allocation of node pairs from two different input graphs to the VA. The com-

patibility graph shows which allocations can be realized at the same time.

resource in VA A. The VA A also contains one interconnect to realize the edge described

by the original node pairs (1,2) and (4,5). The interconnect is allocated by edges from

two input graphs, i.e. u(e1) = 2.

Obviously not all node pair combinations can be allocated as required at the

same time, thus some node pair combinations are incompatible to each other. This

is illustrated in the example below:

Example 3.10 Consider the node pair combinations allocated to the VAs A–C and the

compatibility graph in Figure 3.11. The allocations chosen in VA A and B are compati-

ble because they are based on a consistent node allocation. In both VAs, the nodes 2,5

are allocated to the same VA resource and the nodes 1,4 and 3,6 are completely inde-

pendent, i.e. they have no node in common. By contrast, the allocations in the VAs A

and C are incompatible because, e.g. the nodes 1,4 are allocated to one resource in VA

A and at the same time, the nodes 1,5 are allocated to one resource in VA B. For design

netlists it is not possible two allocate the nodes 4,5 of the same input graph to the same

node in the VA model. In the compatibility graph in Figure 3.11, all node pair com-

binations that enforce a compatible allocation are connected by an edge, incompatible

node pair combinations are not connected.

Here we propose that the lowest reconfiguration cost in terms of routing recon-

figuration can be achieved as follows: (1) generate a set of all possible node pair

combinations and (2) derive a compatibility graph for this set; (3) select the largest

subset of compatible node pair combinations. (4) derive an allocation that complies

with this subset. The steps 1–3 are described in the following.

3.5. Allocation Functions with Minimal Reconfiguration Costs 71

Creation of Node Pairs

All possible node pair combinations can be generated by enumeration. The number

of node pairs combinations is huge, but can be reduced in practice, cf. Sections 3.5.1

and 3.5.3. The enumeration is very straightforward. For one input graph Gi, i ∈NT,

every possible combination of two nodes is considered as a node pair. Each such

node pair is combined with any other node pair from another input graph G j, j ∈NT

and i 6= j to form a node pair combination. The enumeration is realized with

Algorithm 1, which creates all possible node pair combinations for the of input

graphs.

Algorithm 1 Enumerate all node pair combinations

1: cont = false

2: n= ∅

3: repeat

4: i = NT

5: while not cont and i > 0 do

6: if not ni,2 last element in Ni then

7: ni,2 = choose next element after ni,2 from Ni

8: cont = true

9: else if not ni,1 last element in Ni then

10: ni,1 = choose next element after ni,1 from Ni

11: ni,2 = ∅

12: cont = true

13: else

14: ni,1 = ∅

15: ni,2 = ∅

16: i = i − 1

17: cont = false

18: end if

19: store n

20: end while

21: until cont = false

The algorithm does enumerate all node pair combinations and stores them as

vectors n, it does not distinguish between valid, invalid, and symmetric node pair

combinations.

A vector n is an invalid node pair combination, if the node pair of one task

i ∈ NT is allocated to two different resources nk1
6= nk2

in the VA while the node

pair of another task j ∈ NT is allocated to two identical resources nk1
= nk2

. More

formally, a node pair combination n = (. . . , (ni,1, ni,2), . . . , (n j,1, n j,2), . . .), i 6= j is

72 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

invalid if:
ni,1 6= ni,2, and thus a(ni,1) = nk1

6= a(ni,2) = nk2
and

n j,1 = n j,2, and thus a(n j,1) = nk1
= a(n j,2) = nk2

.
(3.35)

Algorithm 1 generates all possible node pair combinations for all input graphs.

We already observed that edges running between two nodes can not be allocated

independently. Hence, for any node pair ni,1, ni,2 any existing edge (ni,1, ni,2) ∈ Ei

and (ni,2, ni,1) ∈ Ei would be included in the weight w(n) for the node pair combi-

nation. Nevertheless, the Algorithm 1 produces a vector n with the reverse order

of the node pair (ni,1, ni,2), which is fully symmetric and hence the allocation of

both vectors is compatible to each other. In consequence, the solution algorithm

will include both vectors in the solution, which results in an invalid cost computa-

tion and in a much more complex problem formulation. Therefore we include only

one vector of the two symmetric vectors. Two vectors n = (. . . , (ni,1, ni,2), . . .) and

n′ = (. . . , (n′
i,1

, n′
i,2
), . . .) are symmetric if:

ni,1 = n′
i,2

and ni,2 = n′
i,1
∀i ∈NT. (3.36)

Algorithm 2 determines whether a vector can be discarded because a symmetric

vector is produced by Algorithm 1. Algorithm 2 assumes a partial order between

the nodes ni,1, ni,2 ∈Ni.

Algorithm 2 identify dual match pair vectors

1: s ym = false

2: for all i such that 1≤ i ≤ |NT| do

3: if ni,1 > ni,2 then

4: s ym = true

5: else if ni,1 6= ni,2 then

6: break;

7: end if

8: end for

9: return s ym

We have already shown that the reconfiguration time for interconnect depends

on the reuse of interconnect in the VA. If the sum over the interconnect reuse is

maximized then the reconfiguration time for interconnect will be minimal, cf. Equa-

tion 3.34. The reuse can be determined for each node pair combination indepen-

dently, as described in Example 3.9. Suppose the nodes that are contained in the

vector n are allocated to a VA. The VA is denoted as G
(n)
A (N

(n)
A ,E

(n)
A). The weight w

associated with the vector n is then given as:

w(n) =
∑

e∈E (n)
A

u2(e). (3.37)

3.5. Allocation Functions with Minimal Reconfiguration Costs 73

Next, we describe which of the generated node pair combinations are compatible

with each other.

Compatible Match Pair Vectors

Here we define whether the allocation assumed for two node pair combinations

n = (. . . , (ni,1, ni,2), . . .) and n′ = (. . . , (n′
i,1

, n′
i,2
), . . .) can be realized at the same

time, i.e. whether the two vectors are compatible to each other. An example has

been discussed in Example 3.10. The allocation induced by two such vectors can be

realized, if the following conditions hold:

∀i ∈NT : ni,1 = n′
i,1

∨ ∀i ∈NT :ni,1 6= n′
i,1

, (3.38)

∀i ∈NT : ni,2 = n′
i,2

∨ ∀i ∈NT :ni,2 6= n′
i,2

, (3.39)

∀i ∈NT : ni,1 = n′
i,2

∨ ∀i ∈NT :ni,1 6= n′
i,2

, and (3.40)

∀i ∈NT : ni,2 = n′
i,1

∨ ∀i ∈NT :ni,2 6= n′
i,1

. (3.41)

The conditions above are the inverse of Equation 3.35. Two vectors are compatible

if the vector elements, which may be mapped to the same VA node, are identical, i.e.

in case of Condition 3.38 it means that all nodes are equal (ni,1 = n′
i,1

,∀i ∈NT). Al-

ternatively, the nodes may be completely independent, i.e. in case of Condition 3.38

all nodes are unequal (ni,1 6= n′
i,1

,∀i ∈NT).

Maximum Weighted Clique Problem

Until now we have described how the problem of finding an edge allocation with

minimal reconfiguration cost can be transformed into another problem. The allo-

cation of edges from the input graphs is described by the vectors n. Each vector is

associated with a weight w(n) that describes the quality of the allocation. Further

we have derived which allocations defined in the vectors n can be realized simul-

taneously. Now, we denote the set of all possible node pair combinations n as NC.

The set EC contains all pairs of node pair combinations that are compatible with

each other, i.e. (n1,n2) ∈ EC if n1,n2 ∈NC are compatible.

Now, the reconfiguration cost are minimal if we choose a subset N ′
C
⊂ NC with

the following properties:

the weight over all nodes n ∈ N ′
C

is maximal compared to all other possible

subsets of NC, and

all nodes in NC are compatible to each other, i.e. (n1,n2) ∈ EC,∀n1,n2 ∈N
′
C
.

The problem of finding a subset N ′
C

is known as maximum weighted clique problem

(MWCP) in graph theory. The MWCP is known to be NP complete [47]. There exist

74 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

different of algorithms to solve the problem. Note that with the MWCP, we can only

optimize interconnect reconfiguration but not the resource reconfiguration.

In the following, G(NC,EC) defines the input to the MWCP. Each node in NC

defines a part of the allocation function. All nodes of any maximal clique define an

allocation function that is sufficient to compute the term xt, i.e. xt =
∑

n∈N ′
C

w(n).

In this work, the MWCP has been solved with the algorithm described by Ba-

bel [7]. The algorithm performs fast and is easy to implement. It uses a weighted

colouring heuristic that computes upper and lower bounds. The branch and bound

algorithm takes advantage of the computed bounds. Alternatively, there exist a

number of optimal and heuristic methods to solve the MWCP problem.

Maximum Weighted Clique Problem Size

Because the MWCP is a very challenging optimization problem, we derive the prob-

lem size in terms of nodes, i.e. the number of node pair combinations |NC| here. It

is assumed that the input consists of |NT| tasks and each task consists of N nodes.

The value for |NC| is calculated from four components:

|NC|= Call− Cinv− Csym+ Cboth (3.42)

Call describes the number of all possible node pair combinations. A single node

pair is one of (N + 1)2 combinations since each part of a pair may be one of the N

nodes of a task or the void node ∅. Each node pair can be combined with any node

pair of the other tasks, hence

Call = (N + 1)2|NT|. (3.43)

An invalid node pair combination occurs if at least one node pair consists of

two equal nodes and one other node pair consists of unequal nodes, which violates

condition 3.35. In the following we derive how many of all possible node pair

combinations are invalid, i.e. Cinv:

Cinv =

|NT|∑

i=2

�
|NT|

i

�

︸ ︷︷ ︸

d©

i∑

j=2

�
i

j − 1

�

︸ ︷︷ ︸

c©

N j−1
︸︷︷︸

a©

2i− j+1

�
N(N + 1)

2

�i− j+1

︸ ︷︷ ︸

b©

. (3.44)

At first we assume that a node pair from one task has been chosen such that it

consists of two identical nodes, which is true for exactly N node pairs (cf. Equa-

tion 3.44 a©). Any other task contains now N+1 node pairs that are also equal and

2
N(N+1)

2
node pairs that cause an invalid node pair combination (b©).

The number of combinations of all such invalid node pair combinations is com-

puted for a fixed number of equal node pairs (index j). Now the terms (a©) and

3.5. Allocation Functions with Minimal Reconfiguration Costs 75

(b©) have to be multiplied with the number of combinations that exist for this fixed

number of equal node pairs (c©). For a node pair that consists of two void nodes

there exist only invalid node pair combinations. The number of combinations of

void node pairs is accounted for in term (d©).

The number of symmetric node pair combinations can be computed as follows:

for a single node pair, there exists a symmetric node pair if ni,1 6= ni,2. This is true

for
N(N+1)

2
node pairs. For each such node pair, all node pair combinations that

contain the symmetric node pair are symmetric. This are (N + 1)2(|NT|−1) node pair

combinations. The (N + 1) node pairs with ni,1 = ni,2 also part of symmetric node

pair combinations, their size is given by Csym(|NT| − 1). The number of symmetric

node pair combinations denoted as a recurrence equation as follows:

Csym(|NT|) =
N(N + 1)

2
(N + 1)2(|NT|−1)+ (N + 1)Csym(|NT| − 1). (3.45)

The recurrence Equation 3.45 can be rewritten in closed form as:

Csym =

|NT|∑

t=1

(N + 1)t−1
N(N + 1)

2
(N + 1)2(|NT|−t). (3.46)

The number of the node pair combinations denoted as Cinv and Csym count several

node pair combinations twice. For each invalid node pair combination there exists a

symmetric node pair combination, too. Thus the term Cboth in Equation 3.42 is given

by:

Cboth =
Cinv

2
. (3.47)

Here, we derive only an upper bound for the number of edges in the MWCP. At

the maximum, every node in the MWCP can be connected with any other node and

hence:

|EC| ≤
1

2
|NC|(|NC| − 1). (3.48)

In Table 3.2, the upper bound from Equation 3.48 and the exact number of edges

|EC| in the MWCP are compared for different parameters N , |NT|. The values give

a hint on the complexity of the MWCP that results from input graphs of a certain

size. For instance if we have four input graphs with four nodes each, the number of

node pair combinations is already 97865! We observe that, for larger N the number

of compatibility edges increases and reaches a large fraction of the upper bound in

Equation 3.48.

76 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

Table 3.2: Number of compatible nodes |EC| in the MWCP compared to the number of

edges in a complete graph with |NC| nodes. Ratio is the quotient of |EC| and
1

2
|NC|(|NC|−

1).

|NT| N |NC| |EC|
1

2
|N C|(|N C| − 1) ratio

2 3 100 1 917 4 950 0.39

2 4 245 11 070 29 890 0.37

2 5 516 50 520 132 870 0.38

2 10 6 281 10 084 815 19 722 340 0.51

2 20 89 061 2 729 326 230 3 965 886 330 0.69

3 3 1 162 89 451 674 541 0.13

3 4 4 755 1 536 879 11 302 635 0.14

3 5 15 111 18 256 305 114 163 605 0.16

4 3 14 536 4 907 025 105 640 380 0.05

4 4 97 865 267 046 572 4 788 730 180 0.06

3.5.2 Direct Allocation of Nodes

In Section 3.5.1 we described a method to derive an edge allocation with minimal

reconfiguration cost. The method allocates the edges in the input graphs indepen-

dently, if possible. Now, we describe a method that determines an optimal alloca-

tion for the nodes, such that reconfiguration cost are minimized. This direct method

eliminates the need to build an intermediate MWCP to find an optimal allocation.

The problem still remains complex to solve: a suitable heuristic is described below,

but first an exact algorithm is described.

Iterative Node Allocation

The algorithm discussed here follows an iterative approach to investigate all possi-

ble node allocations. The allocations are enumerated in a predefined order. In the

algorithm, the allocation is determined successively. For each new node allocation

it is computed whether it contributes to a quality solution or whether it can be omit-

ted in the search of further solutions. Therefore, for each node allocation the added

reuse and the yet undetermined reuse is computed. If the reuse can not exceed a

previously found, best solution then all solutions that contain the unfavourable al-

location are discarded from the further iterative exploration. Hence, our algorithm

reduces the overall runtime by two methods: (1) the reuse is computed succes-

sively for each added allocation and (2) inefficient allocations are discarded from

the solution space.

The iterative node allocation algorithm consists of three parts. First, the suc-

cessive node allocation must be realized such that all possible allocations are enu-

merated. Second, the quality of the actual allocation is evaluated. And third a

3.5. Allocation Functions with Minimal Reconfiguration Costs 77

termination condition is computed that excludes inefficient allocations from the so-

lution space. The overall algorithm is given in Algorithm 3. Before the algorithm is

discussed in detail, we introduce the used variables and data structures.

Variables and Data Structures In the algorithm it is assumed that the set Ni of

nodes in each input graph is a list with a fixed order, i.e. the nodes in this list

are given by ni,vi
∈ Ni, vi = 1, . . . , |Ni|. Moreover, nodes can be removed from or

inserted into Ni on specified positions vi. The variable v = (v1, . . . , v|NT|) stores an

index vector for the sets Ni. Each element vi, i = 1, . . . , |NT| refers to one node ni,vi

in the set Ni. The set P forms a stack of index vectors v.

An allocation vector a = (a1, . . . , a|NT|) contains all nodes ai ∈ Ni, i = 1, . . . ,

|NT| that are allocated to the same node in the VA. The current allocation of in-

put nodes is stored in the stack A. The stack contains allocation vectors a =

(a1, . . . , a|NT|). The best allocation found so far is stored in the stack Amax.

The quality of the solution, i.e. the metric for the current allocation is stored in

the variable w. The metric associated with the best allocation Amax is stored in wmax.

The potential increase in the metric is stored in wx . In addition, the stack W holds

the metric w associated with the allocations found in A.

The vector f = (f1, . . . , f|NT|) stores the number fi, i = 1, . . . , |NT| of currently

unallocated edges. The stack F holds the unallocated edges associated with the

allocations found in A.

Table 3.3 summarizes the variables.

Table 3.3: Variables used in the algorithm for iterative node allocation.

Variable Symbol

Input Nodes Ni

Index Vector v

Index Vector Stack P

Allocation Vector a

Allocation Stack A

Allocation Stack of the best Solution Amax

Current Solution Metric w

Solution Metric of the best Solution wmax

Potential Solution Metric wx

Solution Metric Stack W

Unallocated Edges f

Unallocated Edge Stack F

Enumeration of Allocations All different allocations of nodes from the input

graphs to VA nodes are enumerated in Algorithm 3. The algorithm ensures that

an allocation is not considered more than once. The enumeration is realized as

78 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

an iterative algorithm. It is assumed that the nodes are partially allocated during

the iterations, i.e. some nodes from the input graphs are allocated whereas other

nodes are not allocated. For any partial allocation, all possible allocations for the yet

un-allocated nodes are investigated. If the algorithm determines that for a partial

allocation, the currently best solution can not be improved then the exploration of

un-allocated nodes is discarded.

In more detail, the algorithm works as follows: At first, the allocation of all

nodes specified by the index vector v is stored in the allocation vector a. The allo-

cated nodes are temporarily removed from the sets Ni. In preparation of the next

iteration, the vector f is stored on F . Next, we add the cost savings caused by the

reuse of edges to the metric w. Here, the metric is incremented according to the

reuse that is induced by the existing allocation A and the additional allocation in

a. Hence, all edges between the nodes in A and the nodes in a are considered, as

opposed to the node pair combinations discussed in Section 3.5.1. Now the number

of unallocated edges is updated in f and subsequently a potential metric increase is

calculated. In preparation of further allocations with the current partial allocation

as a starting point, the allocation vector a is added to A and the index vector v to

P . Note that the set Ni of input nodes only contain unallocated nodes and hence,

the exploration starts again with v := (1, . . . , 1).

The exploration of unallocated nodes and the enumeration of different alloca-

tions is realized in lines 17–30 of Algorithm 3. First, the index vector v is incre-

mented if possible using permuteNext (Algorithm 4). Usually this yields a new

allocation of nodes that is processed as described above, which implements a depth-

first exploration of possible allocations. Otherwise, if the current allocation can not

surpass the metric of the best solution, i.e. if w + wx < wmax, then the algorithm

discards the current allocation induced by the incremented index vector v and con-

tinues from the last allocation stored on A. Therefore, the variables are retrieved

back from the stacks A, P , W , and F .

Algorithm 3 Iterative Node Allocation

1: Input: Ni, i = 1, . . . , |NT|
2: Output: Amax, wmax

3: ∀i ∈ {1, . . . , |NT|} : vi = 1;

4: repeat

5: ∀i ∈ {1, . . . , |NT|} : ai = ni,vi
, erase all nodes at Ni,vi

6: put f on stack F and w on stack W

7: w += getMatchWeight(A, a);

8: f = getFreeEdges(A, a, f);

9: wx = getPotentialWeight(f);

10: put a on stack A and v on stack P

11: ∀i ∈ {1, . . . , |NT|} : vi = 1;

12: if w > wmax then

3.5. Allocation Functions with Minimal Reconfiguration Costs 79

13: wmax = w;

14: Amax = A;

15: end if

16: valid = false;

17: repeat

18: (v, valid) = permuteNext(v, N1, . . . ,N|NT|);

19: if valid = false and A= ; then

20: break;

21: end if

22: if w + wx < wmax or wx = 0 then

23: valid = false;

24: end if

25: if valid = false then

26: remove a from stack A, v from stack P , w from stack W , and f from stack

F

27: ∀i ∈ {1, . . . , |NT|} insert ai back at Vi,vi

28: wx = getPotentialWeight(f);

29: end if

30: until valid

31: until not valid

The sub-program permuteNext (Algorithm 4) simply increments the index vector

v similar to a decimal counter. Each digit in a decimal counter would be represented

by an vector element vi. Here, each vector element vi is in the range 1, . . . , |Ni|. If

the increment of one element exceeds the range of vi, then the previous element

vi−1 is incremented and all other elements vk, k = i, . . . , |NT| are set to vk = 1. If v

can not be incremented any further then the function returns valid=false.

Algorithm 4 select next node allocation (permuteNext)

1: Input: v ∈ N
|NT|, Ni, i = 1, . . . , |NT|

2: Output: v, valid

3: valid = false;

4: i = |NT|;
5: while i > 1 and valid = false do

6: if vi < |Ni| and |Ni|> 0 then

7: valid = true;

8: vi = vi + 1;

9: else

10: vi = 1;

11: i = i − 1;

12: end if

13: end while

80 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

3
6

1

1
4

2 2
5

3.

3
7

2

5
221

4

5.

7
1

1 1

6
3

5
21

4
2

4.

1
6

1
4

2 2
5

2

3
7

6.

5
221

4

2.

1
4

1.

2

3

1 4 5

6 7

Input Graphs

Iterative Node Allocation

A

a

G1 G2

∆w = 0, w = 0,

f= (2,3), wx = 9

∆w = 4, w = 4,

f= (1,2), wx = 5

∆w = 1, w = 5,

f= (0,2), wx = 2

∆w = 2, w = 7,

f= (0,0), wx = 0

∆w = 4, w = 8,

f= (0,1), wx = 1

∆w = 1, w = 9,

f= (0,0), wx = 0

Figure 3.12: An example for the iterative node allocation. The figure shows the first six

iterations (1.–6.) of the algorithm. In each iteration a new allocation a (black print) are

added to the previous allocation A (gray print). For each iteration, some variables are

shown, the edges are labelled with u(e).

.

14: return valid;

In the following example we illustrate the enumeration of allocations by Algo-

rithm 3.

Example 3.11 Consider the iterative allocation for input graphs G1 and G2 shown in

Figure 3.12. At first, the nodes 1 and 4 are allocated to the same resource. Because

there are unallocated nodes in the input graphs Ni, the algorithm continues and allo-

cates the nodes (2, 5), (3, 6), and (-, 7). Now, there are no unallocated nodes available.

Thus the state (2.) is restored from the stack and the iterations continue. Next, the

function permuteNext yields the allocation (3, 7). The algorithm continues until all

possible allocations are investigated. Figure 3.12 shows only the first six iterations of

the algorithm.

The Solution Metric for the allocation is computed successively. It is assumed that

the metric w is known for an allocation A. Now, the function getMatchWeight

computes how the metric is increased if the new allocation a is added to A.

3.5. Allocation Functions with Minimal Reconfiguration Costs 81

Formally, the metric increase is calculated as follows: Assume that the allocation

stack is given by A = {a1, . . . ,al} with ak = (ak,1, . . . , ak,|NT|), k = 1, . . . , l and ak,i ∈
Ni, i = 1 . . . , |NT|. It is further assumed that all nodes ak,i within the same allocation

vector ak are allocated to the same VA node, i.e. a(ak,i) = n′
k
∈ NA. Now, a new

allocation vector a is added to A with al+1 = a. The edges induced by this additional

allocation are given by the set:

E
(A,a)
A = {e ∈ EA : e = (n′

k
, n′

l+1
)∨ e = (n′

l+1
, n′

k
)∨ e = (n′

l+1
, n′

l+1
),∀k ∈ {1, . . . , l}} ,

(3.49)

where the set EA denotes all edges in the VA. The function getMatchWeight computes

the metric ∆w, which results from the new allocation vector as follows:

∆w(A,a) =
∑

e∈E (A,a)
A

u2(e). (3.50)

The current metric w is saved on stack W , then the term ∆w is added to the

metric w in line 7. In the algorithm, the best solution is recorded in Amax and wmax

(lines 12–15 of Algorithm 3).

Example 3.12 (continued from Example 3.11.) Suppose A = {(1, 4)} and a = (2,

5). There is an edge (1, 2) in graph G1 and an edge (4, 5) in graph G2 that is allocated

to the same edge e in the VA, i.e. u(e) = 2. Both edges have one already allocated

node (1 and 4) and one node in a (2 and 5). The added metric ∆w evaluates to

∆w = u2(e) = 4.

Computing an Upper Bound for the Metric For a large number |NT| of tasks and

for input graphs with many nodes the number of possible allocations becomes very

large. Many allocations can be omitted from the computation when it can be shown

that they can not yield an optimal allocation. Hence, the iterative node allocation

can be truncated if the upper bound of the current metric is smaller than the current

best solution wmax, cf. Algorithm 3, lines 22–24. Therefore we compute an upper

bound of the metric w for the current allocation A.

We require the computation of the upper bound to be simple, because otherwise

the computation time for the upper bound may outweight the benefits of a reduced

runtime for the enumeration of allocations.

Here, we use the following assumption to compute the upper bound: Consider

there are f edges in each input graph that are not yet allocated to an edge in the

VA because at least one node of the edge is not allocated yet. In the best possible

case, there are f edges in each input graph such that |NT| edges are allocated to the

same edge e ∈ EA, i.e. u(e) = |NT|. Hence the added weight ∆w for all f edges is

bounded by:

∆w ≤ f u2(e) = f |NT|
2. (3.51)

82 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

The idea has been extended such that the number of unallocated edges in f =

(f1, . . . , f|NT|) does not have to be equal for all elements. The algorithm getPotential-

Weight (Algorithm 5) computes the metric that can be achieved by yet unallocated

edges, cf. Algorithm 5. First, the vector elements f are sorted in increasing order.

Thus it is known that every input graph contains at least f1 unallocated edges, i.e.

in the first iteration of the loop (line 6), wx = f1|NT|
2. For f2, only |NT| − 1 tasks

contain a certain number of unallocated edges. Here, all f1 edges have already been

taken into account, hence for i = 2, wx = wx + (f2− f1)(|NT| − 1)2.

Algorithm 3 maintains a count of unallocated edges in f that is updated for ev-

ery allocation using a function getFreeEdges (Algorithm 3, line 8). The function

getFreeEdges computes the number of edges in each input graph that are not allo-

cated to an edge in the VA by an allocation A,a. f is saved on stack F during the

enumeration of all allocations. Hence, for each iteration, the term w+wx yields an

upper bound of the metric.

Algorithm 5 compute the potential solution metric (getPotentialWeight)

1: Input: f

2: Output: wx

3: wx = 0

4: sort f in increasing order

5: f ′ = 0

6: for 1≤ i ≤ |NT| do

7: wx += (fi − f ′)(|NT| − i + 1)2

8: f ′ = fi

9: end for

10: return wx

Example 3.13 (continued from Example 3.12.) Suppose there is an allocation stack

A = {(1, 4)} and an allocation vector a = (2, 5). The edge (3, 2) in G1 and the edges

(6, 7) and (7, 5) in G3 are not allocated yet, i.e. f = (1, 2). The function getPotential-

Weight yields wx = 4+1 because the edge (3, 2) could be allocated to the same edge in

the VA as one of the edges in G2. The other edge in G2 can not be reused by G1.

Number of Allocations Here we want to determine the number of possible alloca-

tions for a set of input graphs. We assume that each input graph contains N nodes

and that there are |NT| input graphs.

First, the number of complete allocations is calculated, i.e. the number of dif-

ferent allocations that result from the allocation of all nodes to the VA. In order to

avoid any symmetry in the allocation, Algorithm 3 assumes a fixed allocation for

one task and enumerates all permutations of node allocations for the other tasks.

Hence, the number of different complete allocations Cca is given by:

Cca = 1× (N !)|NT|−1. (3.52)

3.5. Allocation Functions with Minimal Reconfiguration Costs 83

However, the iterative node allocation algorithm evaluates the cost metric not

only for complete allocations, but also for all intermediate partial allocations. Now

we derive how many partial allocations exist.

Assume that the allocation stack A contains l allocations. With the rules of

combinatorics, the number of different allocations that contain exactly l allocations

in A is given by:
�

N !

(N − l)!

�|NT|−1

. (3.53)

The total number of partial and complete allocations Cpa that can occur during enu-

meration (without truncation) is given by:

Cpa =

N∑

l=1

�
N !

(N − l)!

�|NT|−1

. (3.54)

It can be seen, the number of different allocations and thus the algorithm com-

plexity increases over-exponentially for N and exponentially for |NT|. Apparently,

the problem can be solved for small input graphs in reasonable time with the pre-

sented algorithm. The efficiency of the truncation condition depends on the struc-

ture of the input graphs. Therefore a manageable number of allocations can not be

guaranteed for general input graphs.

Direct Allocation with Simulated Annealing

In the previous section we have shown that the number of different allocations be-

comes very large for many tasks with many nodes. Therefore we have implemented

a heuristic optimization approach that enables us to find near-optimal allocations

with a limited computation time. However, the heuristic can not guarantee an op-

timal allocation with respect to reconfiguration cost, but in general the approach

achieves high-quality results.

Here, we use a simulated annealing (SA) based optimization method. The con-

cept has been introduced by Kirkpatrick [49]. SA is a metaheuristic that can be

adapted to a range of nonlinear optimization problems. The general approach is

described in Appendix A. In summary, SA works as follows: The algorithm starts

with an initial, non-optimal allocation. In every iteration, the current allocation is

slightly modified and the cost of the modified allocation are computed. The modi-

fied allocation may become the new, current allocation, depending on the progress

of the optimization and the difference between the cost for the current allocation

and the modified allocation. During the iterations, the best overall allocation is

recorded and represents the near-optimal allocation found by SA.

In order to apply this general scheme to the allocation problem, we have to

define three methods: 1) a method that generates an initial allocation, 2) a method

84 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

that modifies the current allocation randomly to generate a new allocation, and 3)

a function to compute the cost of the new allocation.

Initial Allocation (getInitialSolution) Initially, the nodes of the input graphs are al-

located in any order to nodes in the VA. The number of VA resources that is required

for the allocation depends on the size of the largest input graphs, i.e.

|NA|=max
i∈NT

|Ni|. (3.55)

Generate a new Allocation (PermuteSolution) The SA approach requires that the

current allocation is modified slightly. For the allocation problem it is straightfor-

ward to modify the allocation for a few nodes only while the allocation remains

valid. Here, we choose the following method:

1. Select randomly one node n1 ∈Ni from any of the tasks i ∈NT. In the current

solution, n1 is allocated to n′
1
∈NA.

2. Select randomly a new allocation n′
2
∈NA for this node, i.e. set a(n1) = n′

2
.

3. If another node n2 ∈Ni is already allocated to n′
2
, then change the allocation

of n2 to a(n2) = n′
1
.

In summary, the modified allocation is derived from the current allocation by the

exchange of the allocation for two nodes of one task.

Note that the modification in terms of node allocation is small. However, because

a node can have many related edges, the effect on the edge allocation ae can be more

profound.

Allocation Cost Function (getSolutionCost) The allocation of nodes from the in-

put graphs also defines the allocation of edges. Therefore we can determine the

reconfiguration cost caused by the allocation. The average reconfiguration time

can be computed according to Equation 3.4 (Section 3.2.1). Alternatively, average

reconfiguration time for interconnect can be computed with Equation 3.34. The

average configuration size is given in Equation 3.8 (Section 3.2.2).

In this section we have shown how the allocation of nodes can be optimized

such that low reconfiguration cost can be achieved. The methods described here

allow a simultaneous optimization of node allocation and interconnect allocation,

in contrast to the allocation of node pairs presented in Section 3.5.1.

3.5.3 Experiments

In this section we present some experimental data on randomly generated input

graphs. The goal is to compare the performance of the different approaches de-

scribed in Sections 3.5.1 and 3.5.2. It is also discussed how the complexity of the

solution algorithms relates to the theoretical bounds in practice. Further we are

3.5. Allocation Functions with Minimal Reconfiguration Costs 85

interested in the performance of the SA-based heuristic compared to the optimal

solutions computed with the exact algorithms.

First, the general setup of the experiments is described. In the following we

analyze the complexity of the introduced algorithms in practice. Finally, the experi-

mental results are discussed and some general conclusions for reconfiguration cost

are drawn.

Benchmark Set-Up

We generated random input graphs with N nodes each. We assume that each node

has k different input ports and one output port, similar to a k-input LUT or an

operation with k arguments. All input ports of each node were connected randomly

to an output port of a node. We run the experiments for a different number |NT| of

tasks. We assumed a complete RSG in all cases. The optimization goal was set to

minimize the average reconfiguration time. We do not include the reconfiguration

cost for nodes here, but only the interconnect related cost.

The results shown were averaged over 10 different sets of input graphs with

the same parameters for N , |NT|, and k. The runtime of the solution algorithms

was restricted to 1800 sec. If the runtime limit was exceeded, the results were not

included in the results. The experiments were run on a Pentium4, 2.4 GHz with

1 GB RAM.

Allocation of Node Pairs

At first, an optimal allocation in terms of reconfiguration cost has been computed

with the allocation of node pairs. It is known that the related MWCP is hard to

solve, thus we attempted to solve only MWCPs with less than 100,000 nodes and

2,000,000 edges. In this section we do not focus on the results, but on the effective

MWCP complexity. The complexity depends on the parameters of the input graphs

N , |NT|, and k.

In Section 3.5.1 we calculated a theoretical upper bound of the number of nodes

in the MWCP (Equation 3.42). In the implementation we omit all nodes with

w(n) = 0 (cf. Equation 3.37) from the MWCP, because these nodes do not con-

tribute to the overall solution. We found that the effective number of nodes in the

MWCP is considerably lower than suggested by Equation 3.42. The effective MWCP

complexity is shown in Table 3.4.

It appears that the effective MWCP size grows considerably if the number of

nodes N or tasks |NT| are increased as it is suggested by Equation 3.42.

Also, the MWCP size increases with the number of LUT inputs k. An input graph

with N nodes contains kN edges. If an input graph with the same number of nodes

contains more edges, it is more likely that a node pair combination yields a weight

w(n) 6= 0 and hence, the effective MWCP problem becomes more complex.

86 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

For increasing N , the effective MWCP size becomes a smaller fraction of the

theoretical MWCP size. Nevertheless, the decrease is slow, while the absolute in-

crease in terms of problem complexity is exponential. As a consequence, the MWCP

can only be solved for small problems in reasonable time. The computed optimal

solutions can compared to other approaches in order to evaluate their performance.

Table 3.4: Complexity of the MWCP for different parameters N , |NT|, and k.

Input Graphs Theoretical MWCP Size Effective MWCP Size

k = 2 k = 4

N |NT| |NC| |EC| |NC| |EC| |NC| |EC|

3 2 100 1 917 8.8 6.8 14.7 19.5

4 2 245 11 070 17.6 28.8 32.6 92.8

5 2 516 50 520 29.9 88.0 60.6 388.5

10 2 6 281 10 084 815 162.0 5 595.5 307.1 19 820.7

20 2 89 061 2 729 326 230 722.9 171 852.8 1 452.5 691 320.0

3 3 1 162 89 451 232.3 996.6 369.2 2 667.1

4 3 4 755 1 536 879 894.1 16 646.3 1 464.9 47 267.0

5 3 15 111 18 256 305 2 298.6 192 100.9 4 137.6 618 508.3

3 4 14 536 4 907 025 4 481.2 85 513.4 6 396.5 188 320.2

Iterative Node Allocation

The iterative node allocation is described in Section 3.5.2. Here we discuss the ef-

fective complexity of the algorithm for the input graphs compared to the theoretical

complexity. As above, the parameters of the random input graphs are N , |NT|, and

k.

In Table 3.5, the number of enumerated (partial) allocations are compared. The

theoretical complexity is given by the number of partial (Cpa) and complete alloca-

tions (Cca). The effectively investigated number of partial and complete allocations

are denoted as C ′
pa

and C ′
ca

. In Table 3.5, it is shown that the number of investigated

allocations can be reduced to a small extend only. It seems that the computation of

the upper bound is possibly based on very optimistic assumptions, or the quality of

the allocation becomes apparent very late, i.e. for a large allocation stack A. There

are little differences between k = 2 and k = 4.

Direct Allocation with Simulated Annealing

The allocation has been optimized for minimal reconfiguration cost using the SA al-

gorithm described in Section 3.5.2. The results are shown in Table 3.6 and Table 3.7.

Via simulated annealing, it was easily possible to solve large input problems, with

3.5. Allocation Functions with Minimal Reconfiguration Costs 87

up to N = 500 nodes per task, within the given time limit. With very few exceptions,

the computational results match exactly those computed with the exact solution al-

gorithms.

Results

As discussed before, we run the allocation algorithms for different parameters N ,

vv|NT|, and k. The results are shown in Table 3.6 and Table 3.7 for k = 2 and k = 4

respectively.

Note that only the reconfiguration cost for interconnect is considered here.

The results obtained with the allocation of node pair combinations could be

confirmed with the iterative node allocation algorithm. The iterative node allocation

requires only a small amount of memory during the enumeration of allocations.

Further, the allocation of node pair combinations is solved as a complex MWCP

problem. As a result, the iterative node allocation algorithm is able to handle some

larger problems compared to the MWCP method, cf. to Tables 3.6 and 3.7. The

SA-based allocation algorithm can handle much larger problems (up to 500 nodes

per task), even though the quality of results can not be compared to other solutions.

Figures 3.13 and 3.14 show the results obtained by the SA algorithm compared

to the upper bound of the reconfiguration cost. The configuration size for the in-

terconnect is bounded by ŝ. If there is no reuse of interconnect in the VA, then

every edge is allocated only once. There are ŝ = kN |NT| edges in all input graphs.

Now we define the relative configuration size as s

ŝ
. Similarly, the reconfiguration

time between any two input graphs is 2kN if we assume there are no matching

edges between the graphs. There are exactly |NT|(|NT| − 1) such reconfigurations.

Hence, the upper bound for the total reconfiguration time is t̂ = 2kN |NT|(|NT|−1).

Now we define the relative reconfiguration time as t

t̂
. Note that the relative re-

configuration costs compare the reconfiguration cost with a known similarity to the

reconfiguration cost, which is caused if the interconnect is completely reconfigured.

As an example, consider the results obtained for the parameters N = 3, k = 2,

and |NT| = 2. The upper bounds for the configuration size and the reconfiguration

time are ŝ = 12 and t̂ = 24. However, the nodes of the input tasks can be allocated

such that s = 8 and t = 10. This means the relative configuration size is now only
8

12
·100 %= 66.7 % and the relative reconfiguration time is only 10

24
·100 %= 41.7 %

of the reconfiguration cost’s upper bound.

The Figures 3.13(a) and 3.13(b) show the relative configuration size for k = 2

and k = 4 for several numbers |NT| = {2, 3, 4, 5} of tasks, respectively. It can be

observed that, for an increasing number |NT| of tasks, the relative configuration size

decreases. Hence, more interconnect in the VA is reused. We conclude that if the

the VA must support more different tasks, then fewer additional interconnect must

be provided in order to accommodate the additional tasks.

88 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

s

ŝ

N

2
3
4
5

(a) Relative configuration size for interconnect,

k = 2.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

s

ŝ

N

2
3
4
5

(b) Relative configuration size for interconnect,

k = 4.

Figure 3.13: Relative configuration size for random input graphs computed with the SA

algorithm for different parameters k, N . The four plots show the results for |NT| =
{2, 3, 4, 5}.

The relative reconfiguration time is shown in Figures 3.14(a) and 3.14(b) for

k = 2 and k = 4, respectively. In contrast to the relative configuration size, the

relative reconfiguration time increases with the number of tasks |NT|. Hence on

average, more interconnect must be reconfigured if there are more different tasks

allocated to the VA, even though the complexity of a single task remains constant.

This behaviour can be explained as follows: For more different tasks, the overall

configuration size of the VA interconnect increases (see above). Hence, the possi-

bility that the edges of two tasks are allocated to the same interconnect decreases,

which increases reconfiguration time.

We observe that for larger N the relative reconfiguration cost increase substan-

tially, cf. Figures 3.13 and 3.14. This can be explained by the fact that for larger

N , more variations in the input graphs exist. Thus, a reuse of many interconnects

in the VA becomes less likely. The effect is more prominent for k = 4, because in

this case smaller graphs (in terms of nodes) contain already more edges that should

be reused. Moreover, the reuse of interconnect is determined by the allocation of

nodes. With k = 4, each node allocation influences the allocation of 5 edges. Thus

the allocation of edges is more restricted than with k = 2.

3.5. Allocation Functions with Minimal Reconfiguration Costs 89

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

t

t̂

N

2
3
4
5

(a) Relative reconfiguration time for intercon-

nect, k = 2.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

t

t̂

N

2
3
4
5

(b) Relative reconfiguration time for intercon-

nect, k = 4.

Figure 3.14: Relative reconfiguration time for random input graphs computed with the

SA algorithm for different parameters k, N . The four plots show the results for |NT| =
{2, 3, 4, 5}.

While the results are very promising for tasks with a small number of nodes, the

performance decreases for N > 20. This can be rooted in the performance of the

simulated annealing method, which can not be justified with an exact solution, but

it is more likely caused by the allocation problem itself. Although the experiments

were run with random graphs, this behaviour can be a general trend also for real-

life structural representations. However, we expect the performance in real task sets

to be much better because:

a) Real-life circuits often contain common structures (macros), generated by the

synthesis tools. We will deal with structural representations of circuit netlists

in Chapter 4.

b) Structural representations compiled from high-level languages have fewer

nodes than circuit netlists, hence it is more likely to find reconfiguration-

efficient allocations. Moreover, these structural representation allow for re-

source sharing, i.e. several nodes of one task can be mapped to the same VA

resource. High-level synthesis with the objective of low reconfiguration cost

will be described in detail in Chapter 5.

90 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

3.6 Summary

In this chapter we have introduced the RSG model. It has been shown how the

RSG model can be used to describe both, the configurations and the reconfiguration

between configurations. We have described two cost metrics based on the RSG, the

reconfiguration time and the configuration data. The RSG model has been applied

to frame-based, binary configuration data in order to evaluate configuration cost.

We have shown that the RSG can be applied to structural representations of tasks,

too. Therefore we define an allocation of the structural representations to a VA.

The allocation and the VA is used to derive a configuration that can be used in

conjunction with the RSG in order to evaluate reconfiguration cost. Further we

have studied the problem of finding an optimal allocation such that reconfiguration

cost become minimal. Three approaches have been developed and their usefulness

has been demonstrated with experiments. The experiments indicate that it can be

expected to reduce reconfiguration cost substantially with an optimal allocation and

the difference based reconfiguration model. The application of the methods will be

described in the following chapters.

3
.6

.
S

u
m

m
a

ry
9

1

Table 3.5: Number of allocations enumerated for different input problem sizes.

Input Graphs Theoretical Complexity Effective Complexity

k = 2 k = 4

N |NT| Cpa Cca C ′
pa

C ′
ca

C ′
pa

C ′
ca

3 2 15 6 14.2 6.0 14.7 6.0

4 2 64 24 53.1 23.1 55.7 24.0

5 2 325 120 242.8 116.9 287.2 118.1

10 2 9 864 100 3 628 800 1 268 280.3 910 366.6 4 315 564.0 2 646 961.6

3 3 81 36 78.3 36.0 80.9 36.0

4 3 1 312 576 1 065.9 576.0 1 253.4 576.0

5 3 32 825 14 400 21 519.2 13 883.4 28 441.3 14 400.0

3 4 459 216 450.2 216.0 459.0 216.0

4 4 29 440 13 824 24 083.8 13 824.0 29 120.7 13 824.0

5 4 3 680 120 1 728 000 2 218 421.2 1 720 446.3 3 346 974.0 1 728 000.0

3 5 2 673 1 296 2 646.8 1 296.0 2 673.0 1 296.0

4 5 684 544 331 776 548 859.3 331 776.0 684 077.4 331 776.0

92 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

Table 3.6: Reconfiguration cost for interconnect with k = 2. The computation of the

configuration size s and reconfiguration time t is given in Equations 3.3 and 3.7.

No Reuse SA Solution Exact Solution

N |NT| s t s t s t

3 2 12 24 8 10 8 10

3 3 18 72 10 33 10 33

3 4 24 144 11 66 11 66

3 5 30 240 12 112 12† 112†

4 2 16 32 11 14 11 14

4 3 24 96 14 45 14 45

4 4 32 192 16 95 16† 94†

4 5 40 320 17 160 17† 158†

5 2 20 40 14 19 14 19

5 3 30 120 18 58 18 58

5 4 40 240 20 120 20† 119†

5 5 50 400 23 210

10 2 40 80 29 38 29 37

10 3 60 240 39 134

10 4 80 480 46 268

10 5 100 800 54 475

20 2 80 160 62 88

20 3 120 480 82 287

20 4 160 960 103 608

20 5 200 1600 125 1062

50 2 200 400 160 242

50 3 300 1200 222 796

50 4 400 2400 280 1644

50 5 500 4000 339 2828

100 2 400 800 331 527

100 3 600 2400 462 1677

100 4 800 4800 587 3438

100 5 1000 8000 711 5867

200 2 800 1600 664 1056

200 3 1200 4800 936 3431

200 4 1600 9600 1190 6946

500 2 2000 4000 1692 2770

† These results could only validated with the iterative allocation method.

3.6. Summary 93

Table 3.7: Reconfiguration cost for interconnect with k = 4. The computation of the

configuration size s and reconfiguration time t is given in Equations 3.3 and 3.7.

No Reuse SA Solution Exact Solution

N |NT| s t s t s t

3 2 24 48 17 23 17 23

3 3 36 144 21 70 21 70

3 4 48 288 24 146 24 146

3 5 60 480 26 250 26† 250†

4 2 32 64 24 32 24 32

4 3 48 192 30 104 30 104

4 4 64 384 35 212 35† 212†

4 5 80 640 39 363 39† 363†

5 2 40 80 31 45 31 45

5 3 60 240 39 138 39 138

5 4 80 480 46 283 46† 283†

5 5 100 800 52 484

10 2 80 160 64 98 64 97

10 3 120 480 87 322

10 4 160 960 107 667

10 5 200 1600 125 1132

20 2 160 320 134 218

20 3 240 960 186 700

20 4 320 1920 236 1461

20 5 400 3200 282 2482

50 2 400 800 349 596

50 3 600 2400 497 1902

50 4 800 4800 637 3884

50 5 1000 8000 779 6599

100 2 800 1600 709 1239

100 3 1200 4800 1024 3937

100 4 1600 9600 1321 7999

100 5 2000 16000 1625 13561

200 2 1600 3200 1434 2536

200 3 2400 9600 2079 8024

† These results could only validated with the iterative allocation method.

94 Chapter 3. Runtime Reconfiguration Cost and Optimization Methods

Chapter 4

Implementation Tools for

Reconfigurable Computing

In Chapter 3 we have introduced a generic reconfiguration cost model. The model

is based on an abstract representation of a reconfigurable architecture. The abstract

architecture model consists of resources and the interconnect between resources.

This enables a very concise formal description of the allocation of structural repre-

sentations to such an architecture. However, existing FPGA architectures have fea-

tures that are not reflected in the formal model. In this chapter, we describe these

features and their effect. We describe two different tools that take advantage of the

FPGA features, whereas the allocation problem is solved. The tools optimize the

mapping of synthesized netlists to FPGAs, not the synthesis from RTL or high-level

descriptions itself. High-level synthesis will be described in Chapter 5.

In an FPGA implementation flow, a digital circuit is given as a synthesized netlist.

The netlist is translated to a configuration bitstream in a three-step approach: (1)

the netlist is mapped to a device specific netlist. While the synthesized netlist con-

sists of basic sequential and combinational logic, the device specific netlist consists

of resource instances that are available in the device, e.g. logic elements (LEs), RAM

blocks, and multipliers. Each resource instance is associated with a configuration of

that instance. The configuration is derived from the functionality of the sequential

and combinational logic that is mapped to the resource instance. (2) the device

specific netlist is placed and routed on an FPGA device, i.e. resource instances are

placed on physical resources in the device and the interconnect between resource

instances is routed using physical wires and switches in the device. At this stage,

the netlist is still a structural representation, but there is already a fixed association

between resource instances and interconnect with the configurable elements in the

device. (3) The placed and routed netlist is transcribed into a configuration bit-

stream. In current FPGA implementation flows, the steps 1–3 are repeated for each

reconfigurable task independently. The reconfiguration costs depend on the result

of the implementation flow. The differences between the configuration bitstreams of

95

96 Chapter 4. Implementation Tools for Reconfigurable Computing

different digital circuits define the reconfiguration costs as described in Chapter 3.

Currently, the implementation of digital circuits is not optimized for low reconfigu-

ration cost, because the digital circuits are translated independently and there has

been no model to assess reconfiguration cost during the steps 1 and 2.

In this chapter we describe how our generic reconfiguration cost model can be

used in the implementation flow. At first, in Section 4.1 we discuss some effects

that arise from the mapping of synthesized netlists to device specific netlists in step

1. In the Sections 4.2 and 4.3 we describe two different tools: The first tool com-

putes an allocation to the virtual architecture and outputs information on matching

nodes and matching edges. The second tool computes a mapping of synthesized

netlists to device specific netlists. Thereby the tool treats multiple netlists at the

same time. The aim of the tool is to compute a mapping with minimal cost for the

reconfiguration of interconnect.

4.1 Mapping of Netlists to FPGA Resources

The synthesized netlists are structural representations of the different tasks. The

synthesized netlists can be represented as LMG as shown in Section 3.4.1. However,

the mapping of elements in the synthesized netlists to resources in a real FPGA

architecture is not as straightforward as the allocation of nodes in the input graphs

to a resources in a VA, because often a one-to-one mapping is not possible. Whereas

our cost model provides a reasonable abstraction, a tool that can be applied in a

real implementation flow must take advantage of the special properties of an FPGA

architecture.

We discuss the mapping on single device resources first and on the overall device

afterwards.

4.1.1 Mapping to Device Resources

The properties of an FPGA architecture result in several effects that can occur

during the mapping process. The analysis presented here is based on the Xilinx

VirtexII/VirtexII-Pro FPGA architecture, which has been introduced in Section 2.2.1.

Similar effects can be observed for other FPGA architectures, too. We concentrate

the discussion on the properties of the LEs here, because these is the most often

used resource type in the FPGA. The LE is called a Slice in the documentation pro-

vided by Xilinx [107][105]. The LEs consist of several internal resources for logic

and routing. The properties of the LE architecture can be summarized as follows:

several different functions can be mapped to the same type of resource in the

LE,

some functions can be mapped in several ways to resources in the LE,

4.1. Mapping of Netlists to FPGA Resources 97

there are several semi-independent logic resources in one LE,

some of the resources types are available more than once in one LE, e.g. LUTs

and flip-flops,

there exists local interconnect between the logic resources inside the LE,

some local interconnects are fixed while others are configurable, and

the LEs contain specialized logic for specific functionality.

We observed that the resources and interconnect in an LE can be reconfigured

with a small number of reconfiguration frames (cf. Figure 2.3).

Miscellaneous digital logic functions can be realized on configurable logic in an

FPGA, whereas many different logic functions are realized by using the same type

of device resource, e.g. LEs. In the VirtexII architecture, an LE contains two 4-input

LUTs, two flip-flops, and other logic. In this architecture, different types of registers

(e.g. synchronous set or reset, asynchronous clear, with or without enable, active

at the rising or falling edge of a clock signal) are realized by using the same flip-flop

resource in an LE. The configuration of the resource determines the actual function

of the flip-flop.

Example 4.1 Figure 4.1 depicts different register types (FD, FDC, and FDCE) that can

be present in synthesized netlists. All types can be mapped to the same flip-flop resource

in the LEs. Therefore the configuration of the flip-flop resource is chosen such that it

realizes the functionality required by the register type. For example, to realize the FDCE

type (edge triggered register with asynchronous clear and data enable) the following

configuration is chosen: enable the driver on ports CE and SR to connect the inputs to

the routing matrix, set the reset type to Async for asynchronous reset, set SRLow to set

the register content to ’0’ if SR is triggered, set Init0 to initialize the register content to

’0’ on power-up, and set FF to implement an edge triggered register.

A function can be mapped such that the same functionality is realized on the

same kind of resource, but with a different resource configuration. This is illustrated

in the following example:

Example 4.2 The boolean function o = i1 + i2 can be mapped in six different ways

onto a 3-input LUT. In Figure 4.2(a) the schematic that realizes the function is shown.

The circuit in Figure 4.2(b) depicts the 3-input LUT. The variables b0–b7 represent the

configurable LUT content. One of the variables is presented by the multiplexer on the

output o. The select signal for the multiplexer is given by the input signals a1, a2, a3.

Table 4.1 shows all possible mapping variants of the boolean function to the LUT. For

each variant, the realized function and the configuration of the variables b0–b7 is given.

The mapping defines—in addition to the LUT configuration—a mapping of the original

boolean function arguments to the input signals a1, a2, a3 of the LUT. For example, in

the first variant the argument i1 is mapped to the input a1 and the argument i2 is

mapped to the input a2.

98 Chapter 4. Implementation Tools for Reconfigurable Computing

D Q

FDC

Clr

Clk

FDCE

D Q

En

Clr

Clk

D Q

FD

Clk

(b)

D D Q Q

FF

Init1

Latch

En CE

Clk CK

Clr

Async

Sync

Reset Type

Init0

SRLow

SRHigh

SR Rev

(a)

Figure 4.1: (a) Register symbols from a synthesized netlist. (b) Flip-flop resource in an

LE configured as FDCE register.

Table 4.1: Mapping variants of the boolean function o = i1+ i2 to a 3-input LUT.

LUT Function Input Port Map LUT Configuration

i1 i2 “b0 b1 b2 b3 b4 b5 b6 b7”

o = a1+ a2 a1 a2 “1101 1101”

o = a1+ a3 a1 a3 “1111 0101”

o = a2+ a1 a2 a1 “1011 1011”

o = a2+ a3 a2 a3 “1111 0011”

o = a3+ a1 a3 a1 “1010 1111”

o = a3+ a2 a3 a2 “1100 1111”

We already mentioned that a VirtexII LE contains two resources to realize 4-

input LUTs (LUT G, LUT F) and registers (FF Y, FF X). Apparently, any function in

the synthesized netlist that can be realized with a 4-input LUT can be mapped to LUT

G or LUT F. In practice, the functions are not isolated in the netlist, but connected

to other functions. Therefore, the mapping depends also on the routability (and

timing requirements) of the interconnect between functions.

For example the outputs of combinational functions are often connected to reg-

isters in the synthesized netlist. Inside the LE there exists a direct, configurable

connection between the LUT output and the flip-flop input, i.e. between LUT G and

FF Y, and between LUT F and FF X. Therefore if a combinational function is mapped

to one of the LUTs, the connected registers must be mapped to the corresponding

flip-flop in order to obtain a timing-optimized implementation of the circuit. The

4.1. Mapping of Netlists to FPGA Resources 99

≥ 1

1

i1

i2

o

(a)

b0

b1

b2

b3

b4

b5

b6

b7

a1a2a3

o

(b)

Figure 4.2: A circuit diagram of the boolean function o = i1+ i2 (a) and a 3-input LUT the

function is mapped to (b).

situation becomes even more complex if larger circuit structures such as full-adder

circuits are mapped to device specific netlists.

The effects that occur during the mapping must be observed, when the circuit

similarity is analyzed and during the mapping process that takes advantage of the

similarity, cf. Sections 4.2 and 4.3.

4.1.2 Connectivity Transformations

In the previous sections we discussed how the mapping to device specific netlists

effects the resource configuration. Now, we discuss how the connectivity is trans-

formed by such a mapping. The interconnect between the different resources in an

FPGA is realized in two different ways: There exists (configurable) local intercon-

nect inside the LEs and configurable interconnect between the LEs, which is realized

with the FPGAs routing resources.

If a synthesized netlist is mapped to a device specific netlist then the original

netlist elements are mapped to resources inside the LEs. Thereby several netlist

elements may be mapped into one LE. As a result, the interconnect of the synthe-

sized netlist is transformed during the mapping, too. The following effects can be

observed:

Connections between netlist elements that are mapped into the same LE can

become local interconnect. Local interconnect does not utilize the FPGA rout-

ing resources. As already mentioned local interconnect is either static or it can

be reconfigured at low costs.

The mapping of multiple netlist elements to one LE can also lead to a re-

duced utilization of FPGA routing resources. Consider two connections with

100 Chapter 4. Implementation Tools for Reconfigurable Computing

the same source but different drains. If the drains are mapped to one LE and

the two connections are realized using one pin of the LE, then there is only one

connection to be routed using the FPGA routing resources; from the source to

the pin of the LE.

Both effects are illustrated on Example 4.3.

Example 4.3 Consider the synthesized netlist illustrated in Figure 4.3(a) and the de-

vice specific netlist in Figure 4.3(b). The connection labelled N1 in the synthesized

netlist is mapped to a local connection inside the LE. The connection is not routed

through the FPGA routing fabric.

The connections from the source S to Reg1 and Reg2 are mapped as follows. Because

both Reg1 and Reg2 are mapped to one LE, the source S needs to be connected only once

to the LE using the routing fabric. The connection to both Reg1 and Reg2 is realized

inside the LE. Thus the mapping has merged two connections in the synthesized netlist

to one connection in the device specific netlist.

LE

Lut1 Reg1

Reg2

N1

N2S

(b) Mapped Netlist

Reg2

Lut1

N1

Reg1

S

N2

(a) Synthesized Netlist

Figure 4.3: A netlist and the mapping to a LE. The connection N1 becomes a local con-

nection inside the LE and both connections from the source S are reduced to one connec-

tion outside the LE.

4.1.3 Mapping Variants and Reconfiguration Costs

We observed that there exist a number of mapping variants for some elements of the

synthesized netlists. The mapping variants result in different transformations of the

interconnect. More specifically, the connections must be realized between different

pins of a LE, because a netlist element can be mapped to different resources inside

the LE. Thus the resources are connected via different LE pins to the FPGA routing

resources. This may have a huge effect on the similarity of the circuits and on the

reconfiguration cost.

Example 4.4 Consider the example depicted in Figure 4.4. The tasks 1 and 2 contain

the elements A–D, which are mapped to different resources in the LEs. If Task 2 is

mapped according to the mapping variant 2, then two interconnects (bold lines) must

4.1. Mapping of Netlists to FPGA Resources 101

not be reconfigured between Task 1 and Task 2. This is not the case if mapping variant

1 for Task 2 is chosen instead.

A

B

C A

B

C

A

B

C

Task 2, Mapping 1 Task 2, Mapping 2

D

D D

Task 1, Mapping

Figure 4.4: Mapped netlists of a Task 1 and two possible mapping variants for Task 2.

4.1.4 Mapping of Circuit Macros

As already mentioned the synthesized netlists often contain specialized circuitry that

prefers a specific mapping of netlist elements to LE resources, e.g. in the case of LUT

logic and registers. Furthermore, the synthesized netlists can contain circuitry that

requires such a specific mapping, it can not be mapped in any other way. Examples

are large multiplexers, shift register logic, and carry logic for adder structures.

Example 4.5 Consider the netlist of a 4-bit full adder. The Xilinx ISE synthesis tool

generates a netlist that can be mapped directly to LEs. It consists of one 2-input LUT,

one 2-to-1 multiplexer, and one XOR function per bit. Whereas the LUTs in the LE have

a very versatile connectivity, i.e. all inputs and outputs can be directly connected to the

FPGA routing resources, the 2-to-1 multiplexer and the XOR function is only accessible

by other resources in the LE.

Figure 4.5 depicts the mapping of the 4-bit full adder two 2 LEs. The adder inputs

are provided via the G1, G2, F1, and F2 pins, the adder outputs appear on the pins X

and Y of each slice. The interconnect between the LUT, the 2-to-1multiplexer and the

XOR function is realized internally in the LEs. The connection of the carry path (COUT

to CIN) is a direct interconnect between two LEs. Hence, both LEs must be placed next

to each other as shown here.

The circuit macros do not only constrain the mapping of the circuitry to LE re-

sources, but the relative placement of the resulting LE is also constrained. A tool

that analyzes the similarity between circuits has to observe these constraints. Oth-

erwise, it is possible that the tool assumes a placement of matched LE that can not

be realized in the FPGA architecture, due to special routing/placement constraints.

102 Chapter 4. Implementation Tools for Reconfigurable Computing

MUXCY

LUT G
G2
G1

Y

LUT F

CYOF

CYOG

GYMUX

FYMUX

X

CIN

COUT

MUXCY

XORF

XORG

F1
F2

MUXCY

LUT G
G2
G1

Y

LUT F

CYOF

CYOG

GYMUX

FYMUX

X

CIN

COUT

MUXCY

XORF

XORG

F1
F2

Slice 2

Slice 1

Figure 4.5: Implementation of a 4-bit full adder on two VirtexII Slices.

4.1.5 Global Interconnect

Most synthesized netlists contain a few special interconnects. For example some

input pins are connected statically to logic “0”, “1”, or to clock signals. For these

signals, special routing structures exist in the FPGA architecture. The clock signals

are routed using a dedicated clock distribution on the FPGA. Static signals with a

high fan-out are converted to multiple static signals that are placed local to the LEs.

Hence both kind of interconnect does not utilize the generic routing architecture of

the FPGA. Therefore such global signals can be reconfigured with minimal effort. It

follows that the structural similarity must not be exploited for global signals.

4.2. Mapping Aware Allocation 103

4.1.6 Netlist Hierarchy

The synthesized netlists do not necessarily consist of circuit primitives only. Instead,

the netlists can instantiate complete sub-circuits as a basic building block. Even-

tually the netlist can consist of a hierarchy of sub-circuits. For the assessment of

reconfiguration cost a circuit hierarchy provides both benefits and drawbacks.

At first, if a sub-circuit is used in several reconfigurable tasks then it is known

that this part of the task is identical and causes no reconfiguration overhead if it is

mapped, placed and routed equally in those tasks. Hence, reconfiguration cost can

be reduced by re-using the sub-circuit in several tasks.

However, if the reconfiguration cost are only analyzed at one level in the netlist

hierarchy, the complex sub-modules can occlude circuit similarity.

After several effects that occur during the device mapping have been discussed,

it is shown how the effect can be considered during the reconfiguration cost opti-

mization.

4.2 Mapping Aware Allocation

The Section 3.4.1 we have shown how the allocation of nodes and edges can be

performed such that minimal reconfiguration cost are achieved. Therefore we used

a simplified resource model that assumes a one-to-one mapping of netlist elements

to resources in a VA. Here, we outline a tool that takes into account the effects

caused by the mapping to a real FPGA architecture, as discussed in Section 4.1.1.

The goal of the tool is to identify an allocation for two different netlists such

that the reconfiguration cost for interconnect are minimal. The interconnect re-

configuration cost are calculated for the interconnect contained in the synthesized

netlists, not for the interconnect of a device specific netlist. The tool accepts the

netlists in a industry standard netlist format, called Electronic Design Interchange

Format (EDIF) [28]. The tool provides both an exact optimization algorithm (cf.

Section 3.5.2) and an algorithm based on an established optimization heuristic.

The tool represents the original netlists as input graphs. Circuit/netlist elements

are represented as nodes and connections between circuit elements are represented

as edges in the input graphs. Here, we assume that each circuit element—and

hence, each node—is associated with a node type.

In this section we describe the features of the mapping aware allocation tool.

We discuss how the mapping effects are considered in the allocation algorithms and

we describe the implementation of the optimization heuristic employed in the tool.

Some details of the tool were initially described in [75].

104 Chapter 4. Implementation Tools for Reconfigurable Computing

4.2.1 Generalized Node Mapping

The tool takes into account how the circuit elements are mapped to device resources.

As described in Section 4.1.1, there exists a multitude of mapping variants for many

circuit elements. The user of the tool can provide a constraint file that describes

how the nodes and edges in the input graphs are effected by such a mapping. In

the tool we do not generate a mapped circuit, but instead the reconfiguration cost

optimization is based on architecture specific assumptions about the mapping.

These assumptions are specified in the constraint file. It can be described, what

kind of circuit elements are realized on the same resource type in the FPGA. It can

be specified how the interconnect will be transformed by the mapping. Finally, the

constraint file may contain user specified allocations in order to incorporate a priori

knowledge about the allocation.

The tool will only allocate nodes to the same resource that will be mapped to the

same resource type in the FPGA. Because the resource type itself is not of interest,

we only need to specify which node types will be mapped to the same resource type

and how this effects the interconnect.

Example 4.6 The netlist contains LUTs of different complexity, e.g. elements with the

node types LUT2, LUT3, and LUT4. All those node types will be mapped to either an

LUT G or an LUT F resource in a VirtexII LE. In general it is not important, which

resource type is chosen, but only that the node of this type can be allocated to the same

resource type.

As we have already discussed in Section 4.1.1, there exist several mapping vari-

ants for some node types. The allocation of the edges in the input graphs to con-

nections in the VA must be modelled accordingly. For the transformation of input

graphs to image graphs, we introduced the port re-labelling functions as, ad in Sec-

tion 3.4.1. The edges in the input graphs describe the connection between the ports

of the netlist elements. After allocation, which can include a re-labelling of ports,

the edges in the image graph describe the connection between the ports of LEs in the

FPGA. However in our tool we are only interested in the edges of the input graphs,

that can be allocated to the same edge in the VA, i.e. in the edges that match be-

tween both input graphs. Therefore the re-labelling is considered in an implicit way,

similar to the node types discussed above.

In the constraint file, it can be defined how the source and drain labels of nodes

of a certain type are treated. Whether the source or drain labels of two edges in the

input graphs are re-labelled to the same source or drain label in the image graph is

specified by the user. There are several possibilities:

Equal source or drain labels are re-labelled to equal source or drain labels.

Any source label can be re-labelled to any source label and any drain label in

can be re-labelled to any drain label.

4.2. Mapping Aware Allocation 105

Labels like bus N[x] that belong to an index x = 1, . . . , X of a bus N[1 : X] can

be re-labelled to the same index of any other bus. This feature is especially

useful to compute the reconfiguration cost for netlists that contain regular

structured sub-circuits. E.g. it allows to match edges associated with the same

index of a bus, but with different source or drain labels.

The re-labelling can be defined explicitly for each source or drain label.

The allocation that respects the mapping of the netlist is illustrated with the Exam-

ples 4.7 and 4.8.

Example 4.7 Consider the register types shown in Figure 4.1(a). All register types

have port names that are mapped to the same port of the flip-flop resource inside a

VirtexII LE. For example any edge with the drain label ’D’ that is connected to a node

with node type FD, FD, or FDCE will be mapped to the LE-internal port D of either the

FF X or the FF Y resource.

As mentioned before, the behaviour of the resource depends on the resource config-

uration and the connections with other resources.

Example 4.8 For LUT logic, there exist several mapping variants (cf. Example 4.2).

In Figure 4.6 two nodes of the node types LUT3 and LUT2 are shown. Here we assume

that the interconnect sig1–sig4 with the same name should be matching edges. The

mapping of the nodes to 4-input LUTs can be done in that manner, regardless of the

original port labels.

For example LUT3 can be mapped to the 4-input LUT as shown in Figure 4.6(c) and

LUT2 can be mapped to the 4-input LUT as shown in Figure 4.6(d). Hence, the edge

sig3 that leads to LUT3, port I2 is mapped such that it connects to 4-input LUT, port

A2. Similarly, the edge sig3 that leads to LUT2, port I1 is mapped to 4-input LUT, port

A2.

The tool allows to incorporate the designer’s knowledge about the circuit struc-

ture into the reconfiguration cost optimization. Therefore it can be specified in

the constraint file which netlist elements of the input graphs can be allocated to

the same resource. The specification limits the allocation variants and therefore

decreases the solution time of the algorithms. Furthermore, with this method a

meaningful allocation of the netlist elements that belong to a circuit macro (cf. Sec-

tion 4.1.4) can be obtained.

4.2.2 Successive Node Allocation

The tool implements an exact solution algorithm that is based on the algorithm

described in Section 3.5.2 with the extensions described in Section 4.2.1. In its

specialized form, the algorithm computes the allocation of two given circuits to a

106 Chapter 4. Implementation Tools for Reconfigurable Computing

I0

I1 O sig4

sig1

sig3

(a) (b)

(c) (d)

I0

I1

I2

O sig4

sig3

sig2

sig1

LUT2LUT3

A1

A2

A3

O sig4

sig2

sig1

A4

sig3

A1

A2

A3

O sig4

sig1

A4

sig3

Figure 4.6: Example of a port re-labelling that maps edges with the same name to the

same port of the 4-input LUT, cf. Example 4.8. The source node of the edges sig1–sig3

and the drain node of the edge sig4 is not shown here.

VA with the objective of minimal reconfiguration cost. The output of the tool consists

of matching nodes and matching edges, which define the structural similarity of the

circuits obtained for the allocation.

The annotation of netlist elements (i.e. nodes in the input graphs) with node

types and the allocation restriction of netlist elements causes a reduction in the

number of possible allocations. Thus, the allocations investigated with the succes-

sive node allocation algorithm is also reduced. Here, we compute the number of

different allocations that is possible under the current assumptions. Each node in

an input graph is associated with a node type t from a set T of node types. We

assume there are N1,t and N2,t nodes of the node types t ∈ T in the input graphs G1

and G2. Now the number of complete allocations for the two input graphs is given

by:

∏

t∈T

�
Ni,t!

(Ni,t − N j,t)!

�

(4.1)

where i = 1, j = 2 if N1,t > N2,t and i = 2, j = 1 otherwise.

The introduction of node types reduces the search space for an optimal solution

considerably. However, for many relevant applications, a complete enumeration of

the search space is not feasible with an acceptable algorithm runtime. The computa-

tion of an upper bound for the reconfiguration cost metric discussed in Section 3.5.2

can alleviate the problem to some extend.

4.2. Mapping Aware Allocation 107

4.2.3 Node Allocation with Ant Colony Optimization

In addition to the SA annealing method described in Section 3.5.2, we also devel-

oped a solution algorithm for the allocation problem based on ant colony optimiza-

tion (ACO). The algorithm originates from the early developments of this work. Our

ACO algorithm is based on the work of Stützle and Hoos [89]. The approach has

been chosen, because the heuristic has a good performance and the computation of

the cost function is similar to the successive node allocation. It has been demon-

strated before that ACO algorithms are competitive with other heuristic methods

on well known optimization problems e.g. the travelling salesman problem and

quadratic assignment problem (cf. [89] for further references). Although some de-

tails have already been published in [75], the algorithm is described in this section

in detail.

ACO is a biologically inspired meta heuristic that mimics swarm intelligence.

We applied the algorithm to the allocation problem (cf. Definition 3.6). In ACO,

many individuals (i.e. ants) successively construct solutions of the given problem,

where each ant constructs one solution. A solution is constructed step-by-step. In

each step, a partial solution is chosen randomly, based on the quality of the partial

solution in the current context and the quality of the partial solution with respect to

previous solutions. The partial solutions of the previous steps form the context for

the new partial solution.

In the following we describe the adaptation of the ACO algorithm to the alloca-

tion problem in detail. For now, a solution may be identified by m. In each iteration

t of the ACO there are M solutions generated. The allocation associated with the

solution m is denoted as a(m). The input to the algorithm are the input graphs G1

and G2. Next we describe how a single solution is constructed and then we describe

the iterations of the ACO.

An allocation a(m) is constructed as follows: Initially the set A of node pairs is

empty. The set A contains the node pairs a = (n1, n2), where the nodes n1 and n2

are allocated to the same resource in the VA, i.e. a(n1) = a(n2) = ak ∈ NA. In

each step, the ACO selects a node pair a = (n1, n2) with n1 ∈ N1, n2 ∈ N2, where

the nodes n1 and n2 are not already contained in any other node pair in A. Now

the node pair is added to A. This method is continued until there are no further

un-allocated nodes.

The solutions that are generated by the algorithm depend on the selection of the

node pairs. In each step there exists a variety of node pairs that can be added to A.

The probability to select one node pair depends on two parameters: the pheromone

level τ resembles the contribution of this node pair to the cost metric known from

the previous iterations and local heuristic weight η describes the contribution of the

node pair to the cost metric in the context of A.

The ACO is an iterative algorithm. In each iteration a number of different al-

locations are constructed. The allocations found during one iteration are used to

108 Chapter 4. Implementation Tools for Reconfigurable Computing

update the pheromone levels τ of the node pairs. With an increasing number of

iterations, node pairs that lead to good overall solutions strengthen the weight of

τ. Subsequently it becomes more likely that these node pairs are selected when

a new allocation is constructed. Thus the allocations are constructed from “good”

node pair allocations. Often this allocations are good local optima of the allocation

problem but a global optimum can not be guaranteed.

The following steps describe an iteration t of the ACO algorithm:

1. For each solution m, construct an allocation function a(m). The probability

p(n1,n2)
(t) to allocate a node pair (n1, n2), n1 ∈ N1, n2 ∈ N2 to the resource

nk ∈NA, i.e. a(m)(n1) = a(m)(n2) = nk ∈NA, is:

p(n1,n2)
(t) =

[τ(n1,n2)
(t)]α · [η(n1,n2)

]β
∑

∀(n′1,n′2)
[τ(n′1,n′2)

(t)]α · [η(n′1,n′2
)]β

(4.2)

where α,β are tuning parameters for the ACO algorithm. τ(n1,n2)
and η(n1,n2)

resemble the pheromone levels and the local heuristic weight for the node pair,

respectively. The local heuristic weight is given by Equation 3.50, i.e. η(n1,n2)
=

∆w(A, (n1, n2)). The sum in the denominator normalizes the probability such

that the sum of the probability over all possible node pairs equals one. Here,

∀(n′
1
, n′

2
) denotes all possible node pairs that consist of nodes, which have not

been allocated in A yet.

2. After all M allocations have been constructed, the pheromone levels τ are

updated based on the rules:

τ(n1,n2)
(t + 1) = (1−ρ) ·τ(n1,n2)

(t) +

M∑

m=1

∆τ
(m)

(n1,n2)
(t), (4.3)

∆τ
(m)

(n1,n2)
(t) =

w(A) if (n1, n2) ∈A for

solution m in iteration t

0 otherwise
. (4.4)

Equation (4.3) implements a decay of the pheromone level from the previ-

ous iteration (evaporation) and an enforcement of the weight depending on

the quality of the current solutions. The enforcement is proportional to the

reuse of interconnect in the VAs derived for all allocations a(m), which contain

the node pair (n1, n2). The term w(A) denotes the metric derived from the

reuse of edges in the VA, i.e. w(A) =
∑

e∈E (A)
A

u2(e) (cf. Equation 3.50). The

evaporation is controlled by the parameter ρ.

3. Continue with the next iteration t + 1 at step 1, until the desired number of

iterations is reached.

4.2. Mapping Aware Allocation 109

The best allocation found in all iterations represents the (sub-)optimal solution with

the maximum reuse and hence, the lowest reconfiguration cost.

The approach of the ACO algorithm is similar to the successive node alloca-

tion algorithm. In both algorithms, the allocations are constructed successively by

adding additional node pairs to already investigated allocations. In the case of the

successive node allocation, any combination of such allocations is investigated until

the allocation is proved to be non-optimal. The ACO constructs a large number of

different allocations. The allocations are investigated randomly, controlled by the

information derived from previous solutions. For each selection, Equation 4.2 must

be computed for every possible node pair, which can be costly if many nodes are

available. In comparison with the simulated annealing (SA) algorithm presented

in Section 3.5.2, the allocation of nodes is modified randomly in SA. There, the

changes in the cost function arise from a few, re-allocated nodes only. Thus, the cost

function in SA can be evaluated more efficiently.

4.2.4 Examples

Here we reproduce the experimental result already presented in [75] in order to

compare the two approaches for mapping aware allocation presented here. The

examples are small, such that it is possible to compute the optimal solution with

both algorithms. The results are summarized in Table 4.2.

Table 4.2: Experimental results of the successive node allocation and the ACO algorithm

taken from [75]. The reconfiguration time tE for interconnect is given in Equation 3.24.

Test Set Solution Time [sec] Time/Allocation [sec] tE
SNA† ACO SNA† ACO without with

reuse reuse

(A) Random 278 0.92 2.4 · 10−6 3.2 · 10−4 160 60

|N1|= 12, |E1|= 40

|N2|= 12, |E1|= 40

(B) Adder/Subtractor 1 0.41 9.6 · 10−7 2.6 · 10−4 186 18

|N1|= 25, |E1|= 44

|N2|= 28, |E2|= 49

† successive node allocation.

In the table it can be seen that the overall solution time of the ACO is much

better in both examples. As already discussed, the computation of a single alloca-

tion for the ACO algorithm requires much more time compared to the successive

node allocation. In the table we computed the reconfiguration cost (tE w/o reuse)

without any reused interconnect (i.e. u(e) = {0, 1}) and tE with reuse that results

110 Chapter 4. Implementation Tools for Reconfigurable Computing

from the optimal allocation (i.e. u(e) = {0, 1, 2}). For the above examples, the algo-

rithms identified 25 matching edges out of 40 in (A) and 42 matching edges out of

44/49 in (B). In both examples, the reconfiguration time for the interconnect could

be reduced substantially, i.e. from tE = 160 to tE = 60 in (A) and from tE = 186 to

tE = 18 in (B).

4.3 Netlist Mapping with Minimized Reconfigu-

ration Cost

In the previous section it has been shown, how the similarity can be computed

for synthesized netlists. It has been mentioned that the netlists are translated into

device specific netlists by a mapping tool. During this translation the mapping tool

maps the synthesized netlist to a device specific netlist. The device specific netlist

consists of elements that are realized using LEs and of interconnect that is realized

using the FPGA’s routing resources.

In most fine grain reconfigurable devices, LEs can implement several elements

from the synthesized netlist. Therefore, elements from the synthesized netlist are

packed to LEs. Often, there exist multiple variants to map an element to a resource

inside the LE. In Section 4.2 we described a tool that solves the allocation problem

where the mapping of netlist elements to resources inside the LE is anticipated.

In this section we describe our mapping tool [76] that performs the mapping

of several synthesis netlists to the device specific netlists at the same time. The

mapping is performed with the objective of minimal reconfiguration cost in terms

of interconnect. Therefore the allocation constraints computed by the tool in Sec-

tion 4.2 are observed. In addition the tool exploits the existing mapping variants

to obtain optimized solutions. The mapping tool can be used for modern, complex

FPGA architectures such as Xilinx VirtexII—in contrast to previous approaches that

assume a simplistic LE structure [57]. However, our objectives are minimal recon-

figuration cost, not timing or resource optimizations.

The result of the mapping tool are the device specific netlists. Each netlist con-

sists of elements that are instances of LEs associated with a configuration of that

instance. The LE configuration describes the behaviour of the resources in the LE

and the connectivity inside the LE. The netlists also contain connections between

the ports of the LE instances.

The connectivity inside a LE can be reconfigured very efficiently because it re-

quires very few configuration data. Hence, the connectivity inside the LE is not

relevant for the computation of reconfiguration cost of the device specific netlists.

In the following we describe the implementation of the mapping tool. At first

it is described how the information on how to map synthesized netlist elements

is obtained. Then a mapping algorithm is presented to ensure correct mapping of

4.3. Netlist Mapping with Minimized Reconfiguration Cost 111

several elements to the same LE. The proposed mapping algorithm provides several

mapping variants for a range of elements. Finally a method is described that selects

the mapping variants that are optimal in terms of reconfiguration costs.

4.3.1 Mapping Database

The mapping tool uses two device specific databases that contain information on

how to map netlist elements to device resources.

One database describes the device architecture itself. In our implementation we

use a database generated with the Xilinx XDL tool. The XDL tool can generate ar-

chitecture descriptions for all Virtex and Spartan device families. The architecture

description consists of a definition of LE types and of a definition of the device archi-

tecture, which describes where the LE types are placed and how they are connected.

The mapper uses the definition of the LE types as input. An LE type definition de-

scribes the LE as a circuit, very similar to a netlist. The definition also contains the

configuration possibilities of all resources inside an LE. However, the functionality

of resources is not defined in the formal architecture description. This information

can be obtained from the technical documentation, e.g. [107].

A second database contains the mapping rules for an architecture. The mapping

rules define, how the elements of a synthesized netlist can be mapped to resources

in an LE. One element can occupy more than one resource inside the LE, also there

may be several possibilities to map one element to resources inside an LE. The

mapping rules describe only the mapping of netlist elements, the routing inside

the LE between internal resources is determined automatically by the mapping tool.

The LE type definitions in the XDL generated database are used for the automatic

routing.

Some netlist elements require special treatment of the device mapper that cannot

be expressed easily by mapping rules. However, we tried to keep such elements

minimal and implemented the mapping tool as generic as possible.

One example are LUTs. The configuration of an LUT inside the LE depends on

LUT defined in the synthesized netlist and the chosen mapping variant for that LUT.

Therefore the configuration of the LUT inside the LE is computed by the device

mapper depending on those parameters. For an example refer to Example 4.2.

The employed mapping algorithm considers only routability inside the LEs. For

a few exceptions, the interconnect between the LEs requires an additional pre-

processing step. In the pre-processing, special circuit structures are extracted from

the synthesized netlist. The structures exploit features in the architecture that im-

prove the implementation of commonly used logic such as arithmetic (e.g. adders

that use the fast carry chain, cf. Example 4.5), large multiplexers, and shift registers.

The extracted elements are packed according to the requirements of the architecture

in order to generate a routable device specific netlist.

112 Chapter 4. Implementation Tools for Reconfigurable Computing

4.3.2 Mapping and Packing of Elements into Logic Blocks

Today’s FPGAs have increasingly complex LEs with support for shift registers, carry

chain logic, large multiplexers etc. This often requires packing of specific netlist

elements to ensure routability, since not all resources in an LE are connected to

the FPGA’s routing resources. In this section we present a mapping algorithm which

automatically packs elements into LEs that must be connected with local routes. The

algorithm is designed to avoid additional processing of special circuit structures as

much as possible. Another objective is the generation of multiple mapping variants

for many elements of the synthesized netlist.

Now we describe our approach for a mapping algorithm that automatically maps

netlist elements to LE resources and packs the elements such that (1) routability in-

side the LE, and (2) the mapping of locally connected elements to a single LE is

enforced. The major advantage of the algorithm is the independence from any spe-

cific target architecture. The mapping algorithm is described in Algorithm 6. It

is performed independently for each synthesized netlist. The algorithm generates

several mapping variants. The appropriate mapping variant that minimizes recon-

figuration cost is selected as described in Section 4.3.4 and the following.

In order to describe the algorithm consistently with the notation introduced in

Chapter 3, we assume that the synthesized netlist of task i ∈ NT is given as an

input graph Gi. The set Ni of nodes n are the elements of that netlist. Finally, the

synthesized netlist is mapped to the device specific netlist, i.e. in the terminology

of Chapter 3 the input graph Gi is mapped to the image graph G′
i

with a set N ′
i

of

nodes, which are the LEs of the device specific netlist.

The algorithm generates a set Vi of LEs v. The set N ′
i

of nodes in the image

graph G′
i

will be a subset of Vi and contains those LEs, which resemble the chosen

mapping variants. There may be several nodes n mapped to an LE v. However, it

is ensured that v contains only nodes that are connected in the input graph. The

algorithm ensures the routability of all nodes n mapped to v.

The set Rn of LE resources rn denotes all mapping variants of a node n.

Algorithm 6 works as follows. First, for each n ∈Ni (line 1) the mapping variants

Rn (line 3) are investigated with the aim of producing a series of valid LEs v that

contain node n. Two lists (line 4) and a queue (line 5) are introduced for controlling

the following operations. The mapping procedure starts from one mapping version

rn ∈Rn of node n ∈Ni, where n is called initial node. For this case, the edif_queue

contains all nodes nk ∈Ni connected to the initial node n.

For each element nk in the edif_queue, all possible mapping variants Rnk
of the

node nk to the resources inside the current LE v are investigated in sequential (line

10), until a valid mapping for each node is found.

Condition (line 11) determines which mappings rnk
∈ Rnk

for nk are investi-

gated: For the initial node n (i.e. nk = n), only the mapping rn = rnk
is allowed;

For all other nodes (i.e. nk 6= n), any mapping to the same type of LE as rn can be

4.3. Netlist Mapping with Minimized Reconfiguration Cost 113

chosen. A mapping is valid, if the LE has free resources to map the node accord-

ing to rnk
and if the mapping leads to any new connection inside the LE (line 14).

Condition (line 14) also skips the local route condition for the initial node n.

After this mapping procedure the LE v is generated. If the LE v is routable, it is

stored temporarily in routable_list. In line 24, we add all nodes that are connected

to nk to the back of edif_queue. If one node of the edif_queue could not be mapped

to resources of the current LE, it is inserted into black_list (line 26), a list of nodes

that will not be inserted into edif_queue again.

If loop (line 7) is finished, the first and last element of routable_list are added

to the set Vi of generated LEs. Hence we obtain two different LEs for each mapping

variant rn of the initial node: one LE has a minimal number of nodes mapped to and

another one has a maximum number of nodes mapped to the LE, with respect to the

greedy packing algorithm. The algorithm ensures that all connections between the

resources inside the LE can be routed locally, connections that run between different

LEs are routed later, during the place and route step.

This procedure is repeated for all elements n ∈Ni and their corresponding map-

ping variants rn ∈Rn.

The result of the mapping algorithm can be summarized in a relation Li for task

i, where the elements (n, v) ∈ Li describe the mapping of element n ∈ Ni to the

generated LE v ∈ Vi.

Algorithm 6 Pseudo code for the mapping algorithm

1: for all n ∈Ni do

2: obtain mapping variants Rn of node n

3: for all rn ∈Rn do

4: initialize empty black_list, routable_list

5: initialize edif_queue with n as initial node

6: create empty LE v

7: while edif_queue not empty do

8: nk := front(edif_queue)

9: obtain mapping variants Rnk
of node nk

10: for all rnk
∈Rnk

do

11: if (((n = nk and rn = rnk
) or n! = nk) and LE_type(rn) = LE_type(

rnk
)) then

12: v′ := v

13: ok = map nk to v′ according to the rules rnk

14: if (ok and nk adds new local routes) or n= nk then

15: v := v′

16: if v routable then

17: add v to routable_list

18: end if

19: exit loop 10

114 Chapter 4. Implementation Tools for Reconfigurable Computing

20: end if

21: end if

22: end for

23: if nk was mapped to v then

24: add edif instances connected with nk to back of edif_queue

25: else

26: add nk to black_list

27: end if

28: remove nk from edif_queue

29: add front(routable_list) and back(routable_list) to Vi

30: end while

31: end for

32: end for

The presented algorithm generates all mapping variants for each initial node and

ensures routability of the generated LEs by packing all nodes that result in local con-

nections. However, the logic packing is only performed in a greedy manner, hence

there is only one feasible mapping variant investigated for each node connected

with the initial node. This reduces the amount of LEs generated, but results still in

a variety of different LEs for each node. Note that this algorithm does not perform

packing of unconnected nodes, this separate problem is discussed e.g. in [57].

4.3.3 Logic Element Selection

The mapping algorithm yields a number of mapping variants for each element in

the synthesized netlist. However, it is required that every element of the synthe-

sized netlist is mapped only once to the device specific netlist. Thus there exists an

allocation a : Ni 7→ N ′
i

with N ′
i
⊂ Vi. Here, we describe an integer linear program

(ILP) that can be used to choose a set N ′
i

of LEs. The ILP is extended in Section 4.3.4

to select optimal LEs for reconfiguration.

The ILP formulation is straightforward. For each LE v ∈ Vi we define a binary

variable Sv that is 1 if the LE v is contained in N ′
i
, or 0 if not. To select exactly one

LE v for each node n ∈Ni the following constraint is used:

1=
∑

(n,v)∈Li

Sv. (4.5)

The constraint considers all LEs that contain the node n. The sum over all Sv repre-

sents the number of selected LE. An ILP that minimizes the amount of LEs used in a

task i can be written as follows:

4.3. Netlist Mapping with Minimized Reconfiguration Cost 115

Program 1 Select a minimal set of LEs

minimize: ∑

v∈Vi

Sv (4.6)

subject to:

∀n ∈Ni : 1=
∑

(n,v)∈Li

Sv (4.7)

where:

Sv ∈ {0, 1}. (4.8)

4.3.4 Logic Element Selection for Minimal Routing Re-

configuration

In this section we describe a method to select a valid set LEs in order to optimize

the reconfiguration time for interconnect. The objective is to reduce the number of

reconfigurable connections to be routed in the FPGA, because these are the major

cost factor in fine grained architectures. At first we derive a cost function for routing

reconfiguration similar to Section 3.4.3. The mapping of elements from the synthe-

sized netlist to the device specific netlist requires some modifications to that model,

because the interconnect is mapped to both LE local connections and to connec-

tions realized in FPGA’s routing resources. We further analyze, how the allocation

information derived with the tool presented in Section 4.2, is incorporated into the

allocation of device specific netlist elements. Finally we present an ILP that selects

the LEs as required.

Reconfiguration Time for Interconnect after Mapping

It has already been discussed in Section 4.1.2, how the connectivity of the original

synthesized netlist is altered during the mapping process. Here, the transformation

is quantified to derive a cost function for the optimization that is consistent with the

reconfiguration cost model presented in Chapter 3. In the following, we distinguish

connections from the synthesized netlist by net edges (i.e. the edges Ei in the input

graphs) and connections from the device specific netlist as route edges. The net

edges of a task i can occur as route edges in the device specific netlist as follows:

as local connections inside an LE, where the number of local connections is

denoted as EL,i,

as connections between LEs (E ′
i
), and

116 Chapter 4. Implementation Tools for Reconfigurable Computing

as multiple net edges that are merged into one route edge, where the number

of such edges is denoted as EM,i.

Hence, for a task i the number |Ei| of net edges in the synthesis netlist translates to:

|Ei|= |E
′
i
|+ EL,i + EM,i. (4.9)

The number |Ei| of net edges is constant, while the number of local connections,

connections between LEs and merged connections depends on the selected LEs for

task i. Both type of connections, local and external may be reconfigured at runtime.

We noted that the reconfiguration external connections is much more expensive be-

cause more configuration data must be used to reconfigure the routing resources in

the FPGA. Therefore, one objective of the LE selection is to reduce the reconfigurable

external connections in a device specific netlist.

In the following we derive the cost for the reconfiguration of interconnect analog

to Section 3.4.3. The reconfiguration cost between two tasks i, j ∈NT are given by:

tE(i, j) = |E ′
i
|+ |E ′

j
| − 2|E ′

i
∩ E ′

j
|. (4.10)

In contrast to Equation 3.25 the mapping is not a one-to-one mapping here. With

Equation 4.9 we receive:

E′ =
∑

i∈NT

|E ′
i
|=
∑

i∈NT

[|Ei| − EL,i − EM,i] = const. (4.11)

With the definitions above, a cost function similar to Equation 3.24 can be de-

rived. This cost function is used to minimize the reconfiguration time between tasks

that is induced by the reconfiguration of the routing configuration.

tE = 2(|NT| − 1)E′− 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
| (4.12)

tE = 2(|NT| − 1)
∑

i∈NT

[|Ei| − EL,i − EM,i]− 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
| (4.13)

tE = 2(|NT| − 1)
∑

i∈NT

|Ei| − 2(|NT| − 1)
∑

i∈NT

[EL,i + EM,i]− 2
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
|(4.14)

Observe that, in order to minimize routing reconfiguration time we can maximize

the use of LE internal routing (i.e. EL,i + EM,i) and increase matching route edges

between the tasks (i.e. |E ′
i
∩ E ′

j
|). Hence, in order to minimize the reconfiguration

cost tE we can maximize the term:

(|NT| − 1)
∑

i∈NT

[EL,i + EM,i] +
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
|. (4.15)

4.3. Netlist Mapping with Minimized Reconfiguration Cost 117

In the following we derive constraints that allow us to compute the terms of the

cost function in Equation 4.15. The constraints are used to formulate an ILP that

selects the LEs appropriately.

Computation of Local and Merged Interconnect

The terms EL,i and EM,i can be directly calculated from the LE selection for each task

i:

EL,i =
∑

v∈Vi

wL(v)Sv (4.16)

and

EM,i =
∑

v∈Vi

wM(v)Sv. (4.17)

Where wL(v) is equal to the number of local connections inside an LE and wM(v) is

the number of merged connections in the LE v.

Sustained Node Allocation

In Section 4.2 we have presented a tool that analyzes the synthesized netlists for

similarity. The identified node allocation can be used as input to the mapping tool.

However, the tool faces two problems due to the mapping to complex LEs. First,

nodes that have been allocated to the same VA node may be mapped to different

resources inside LEs, cf. Section 4.1.3. Second, there may be several nodes mapped

to one LE (cf. Section 4.1.1), which in turn makes the similarity information am-

biguous. Here we present a method that takes the similarity information from the

synthesized netlists as a starting point. Using this information, the complexity of

the reconfiguration cost optimization is reduced because not all possible allocations

of LEs to a VA must be investigated. Here, we differentiate between the allocation

derived for the synthesized netlists and the allocation of the device specific netlist to

the VA model, which is referred to as LE allocation. Before we describe the method

formally, we illustrate the situation with an example.

Example 4.9 Figure 4.7 shows two device specific netlists. The nodes 1–9 from the

synthesized netlist are mapped to 5 LEs. The nodes that should have been mapped

to the same resource are connected by dashed lines. Because the LEs are generated

independently of each other by Algorithm 6, the matching nodes are not necessarily

mapped into a single LE in each task. I.e. in Netlist 2 the nodes 6, 9 are mapped to

LE ‘d’, but the matching counterparts (2,3) in Netlist 1 are mapped to separate LEs

‘A’ and ‘B’. However, after mapping the LEs can be allocated such that two LEs (‘B’,‘D’)

and (‘C’,‘E’) in each netlist are matched. As a result one external connection matches

in both tasks.

118 Chapter 4. Implementation Tools for Reconfigurable Computing

1 2

3

4 5

9 6

7 8

Netlist 1 Netlist 2

Original

LE Matching Matching

A

B

C E

D

LE

Resource

Figure 4.7: Illustration of how the matching information is effected by the mapping of

nodes to LE resources.

It appears that the similarity information from the synthesis netlists can only

serve as a hint in the reconfiguration cost optimization. In fact, the allocation of

nodes is used to restrict the search for good candidates to of LE allocations. Instead

of investigating all allocations of generated LEs, only the LEs that contain matching

nodes considered. The ILP constraints that describe matching LEs are introduced in

the following.

We assume that the allocation of nodes Ni is given as a set A of tuples a =

(a1, . . . , a|NT|). Each element ai, i = 1, . . . , |NT| of a tuple a is a node associated with

a task i ∈ NT, i.e. ai ∈ Ni. It is assumed that all elements of a are allocated to the

same resource in the VA in the context of the synthesized netlists. Obviously, each

tuple a contains one node from each task, and each node belongs to only one tuple

in A. The allocation defined in A is used to define constraints in the ILP that can be

used to compute an allocation for the LEs.

Now we define a set A′ of possible LE allocations a′ = (a′
1
, . . . , a′|NT|

). Here,

the element a′
i
, i = 1, . . . , |NT| of a′ is an LE associated with task i, i.e. a′

i
∈ Vi.

The possible allocations A′ are induced by the relations Li = A×A′ and the node

allocations in A. Thus for any LE a′
i
, i = 1, . . . , |NT| in a possible LE allocation a′ ∈A′

there exists a mapping (ai, a′
i
) ∈ Li where the nodes ai belong to the same allocation

a ∈A.

Example 4.10 This example is illustrated in Figure 4.8. Consider the allocation A =

{(1, 3, 5), (2, 4, 6)} as an example. The elements may be mapped to LEs as follows:

L1 = {(1, a), (2, b)}, L2 = {(3, c), (3, d), (4, c)}, and L3 = {(5, e), (6, e)}. The possible

LE allocation A′ induced by L1, L2, and L3 are A′ = {(a, c, e), (a, d, e),

(b, c, e)}.

From the set of possible allocations it is required to select a subset A′′ of feasible

LE allocations, i.e. A′′ ⊂ A′. The feasible allocations describe, which LE must be

4.3. Netlist Mapping with Minimized Reconfiguration Cost 119

Device Specific
Netlist

Synthesized
Netlist

1

2

3

4

5

6

a

b

d

e

c

Mapping Variants

1

2

3

4

5

6

Allocation

a

b

d

e

c

LE Allocation

Task 1

Task 2

Task 3

A A′

a1

a2

a′
1

a′
2

a′
3

L1

L2

L3

Figure 4.8: An example that illustrates mapping variants of the nodes from the synthe-

sized netlist to device specific netlist. The example shows the possible allocations A′

derived from the allocation A.

placed on the same resource in the VA in order to obtain low reconfiguration cost.

Therefore the subset A′′ must fullfill the same condition as A: each LE is contained

not more than once in any allocation a′′ ∈ A′′. With respect to the LE selection,

each LE a′′
i

in an allocation a′′ must be selected, i.e. a′′
i
∈N ′

i
. In order to formulate

the conditions in an ILP, we introduce a binary variable Aa′ that is 1 if an allocation

a′ ∈ A′ is contained in A′′ and 0 if not. Aa′ can only be 1 if all related LE are

selected:

Aa′ ≤

a′|NT |∧

v=a′1

Sv where a′ = (a′
1
, . . . , a′|NT|

). (4.18)

Additionally, every LE v ∈ Vi of a task i can only be contained in one LE allocation

a′, which is ensured by the constraint:

1≥
∑

∀a′:a′
i
=v

Aa′ . (4.19)

Matching of Route Edges

Finally we compute the term |E ′
i
∩E ′

j
| contained in Equation 4.15. The term describes

the amount of matching edges for two tasks i and j. The matching edges are defined

by the selected LE allocation A′′, but the contribution to the cost function is not yet

computed explicitly. In the following, the computation of matching edges from node

pair combinations is adopted.

120 Chapter 4. Implementation Tools for Reconfigurable Computing

Suppose there are two allocations a′
1
= (a′

1,1
, . . . , a′

1,|NT|
) and a′

2
= (a′

2,1
, . . . ,

a′
2,|NT|
). A node pair combination n is induced by the allocations. It is denoted

as n = ((a′
1,1

, a′
2,1
), . . . , (a′

1,|NT|
, a′

2,|NT|
)). For such a node pair combination the reuse

w(n) is given by Equation 3.37.

In Section 3.4.3 we have shown that the number EU of matching edges between

all tasks is equivalent to the reuse of edges in the VA:

EU =
∑

i∈NT

∑

j∈NT

i 6= j

|E ′
i
∩ E ′

j
|=
∑

e∈EA

u2(e). (4.20)

Therefore we can conclude that the number EU of matching edges between all tasks

is equal to the reuse of edges induced by the node pair combinations. The reuse of

edges has been calculated by assuming a small VA for each node pair combination.

The overall reuse if given by the sum over all node pair combinations.

In the ILP the node pair combination does only contribute to the reuse if both

associated allocations are selected, i.e. if Aa′1
= 1 and Aa′2

= 1. This condition is

checked by the binary variable Ba1,a2
, which is introduced for any node pair combi-

nation a′
1
,a′

2
∈A′:

Ba1,a2
= Aa′1

∧ Aa′2
. (4.21)

Now the number of matching edges is given by:

EU =
∑

a′1∈A
′

∑

a′2∈A
′

w(n)Ba1,a2
. (4.22)

The above equation includes all reused edges defined by the node pair combination

a′
1
,a′

2
, which is enabled by the binary variable Ba1,a2

.

The complete ILP is shown in Program 2. The ILP describes the selection of LE

and the selection of LE allocations simultaneously. The objective is the minimization

of the total reconfiguration time for the routing between LEs.

Instead of minimizing the term tE directly, the ILP maximizes Equation 4.15.

The logical and (∧) of the binary variables can be reformulated as linear constraints,

which is not done here to maintain the readability of the ILP.

Program 2 Minimal Routing Reconfiguration Time

maximize:

(|NT| − 1)
∑

i∈NT

[EL,i + EM,i] + EU (4.23)

4.3. Netlist Mapping with Minimized Reconfiguration Cost 121

subject to:

∀n ∈Ni : 1=
∑

n=n′∧
(n′,v)∈Li

Sv (4.24)

∀i ∈NT : EL,i =
∑

v∈Vi

wL(v)Sv (4.25)

∀i ∈NT : EM,i =
∑

v∈Vi

wM(v)Sv (4.26)

∀a′ ∈A′ : Aa′ ≤

a′|NT |∧

v=a′1

Sv where a′ = (a′
1
, . . . , a′|NT|

) (4.27)

∀a′ ∈A′ : 1≥
∑

∀a′:a′
i
=v

Aa′ (4.28)

∀a′
1
,a′

2
∈A′ : Ba1,a2

= Aa′1
∧ Aa′2

(4.29)

EU =
∑

a′1∈A
′

∑

a′2∈A
′

w(n)Ba1,a2
(4.30)

(4.31)

where:

EL,i, EM,i, EU ∈ N (4.32)

Sv, Aa′ , Ba1,a2
∈ {0, 1} (4.33)

4.3.5 Experiments

We have conducted a number of experiments in order show the feasibility of our

mapping approach. We run our mapping tool on a number of example tasks, cf. Ta-

bles 4.3 and 4.4. The tasks add8, sub8 contain an 8 bit add and subtract circuit with

registered outputs, respectively. Tasks opb_add and opb_sub are reconfigurable IP

cores of an RSOC, see [17]. The tasks int_trafo and motion_est are reconfigurable IP

cores that perform integer transform and motion estimation for a video compression

algorithm, cf. [74]. The tasks have been analyzed with our matching tool presented

in Section 4.2.

At first, we discuss the data obtained for our mapping algorithm. In Table 4.3,

the results show the number of nodes in the synthesis netlists and the number of

generated LEs. On average, there are two valid mapping variants for each node.

From the generated LEs a subset of LEs is chosen that are included in the final

122 Chapter 4. Implementation Tools for Reconfigurable Computing

Table 4.3: Number of generated (|Vi|) and selected (|N ′
i
|) LEs compared to the number

of nodes (|Ni|) in the synthesized netlists.

Task |Ni | |Vi | |N ′i |

add8 58 71 32

sub8 60 74 33

opb_add 300 614 262

opb_sub 300 614 262

int_trafo 932 1 629 555

motion_est 985 1 801 578

device specific netlist. The results show that about one third of the generated LEs is

chosen by mapping tool.

Now, we describe the results of the LE selection obtained from the ILP solution.

In Table 4.4 we show the similarity of the reconfigurable circuits. In this table,

both the size of the synthesized netlists and the size of the device specific netlists

are shown. The size of the synthesized netlists is determined as number of nodes

(i.e. the number of resources used) and as the number of edges between nodes (i.e.

the interconnects between resources). Similarly for the device specific netlist the

number of nodes represents the number of LEs. It can be observed that the size of

the device specific netlist is about 30 % smaller than the synthesized netlist.

The benchmark tasks presented here belong to the applications (1)–(3) as shown

in Table 4.4. For each application we computed the reconfiguration cost tE for

interconnect for both, the synthesized netlists and the device specific netlists. For

the synthesized netlists we first computed an optimal allocation in order to reduce

reconfiguration cost. The results are given in Table 4.4. Here, we compare the

results to the case, were no reuse of interconnect is assumed. It can be seen that the

reconfiguration cost computed for the synthesized netlists can be reduced to 1.8 %,

27.7 %, and 23.1 % for the applications (1)–(3), respectively.

The allocation information was used by the mapping tool for an optimal selec-

tion of LEs and the computation of a cost optimized allocation for the device specific

netlist. It can be observed that the interconnect complexity is reduced substantially.

About one third of the connections from the synthesized netlist are realized as local

connections inside the LEs, because there are several nodes assigned to most LEs.

This reduces the requirements for interconnect reconfiguration in general. How-

ever, our mapping tool reduces the interconnect reconfiguration cost additionally

by computing an optimized allocation during the selection of LEs. In the example,

the reconfiguration cost for the device specific netlists are reduced to 4.4 %, 7.7 %,

and 16.6 % for the applications (1)–(3), compared to the reconfiguration cost if no

reuse of interconnect is assumed. It can be observed that the advantage of the opti-

4.4. Summary 123

Table 4.4: Results of the mapping tool compared to the similarity information from the

synthesized netlists.

Appli- Task Synthesized Netlist Device Specific Netlist

cation |Ni| |Ei | |E1 ∩ E2| tE |N ′i | |E
′
i | |E

′
1 ∩ E

′
2| tE

(1) G1: add8 57 109 32 46

G2: sub8 58 111 33 46

108 8 44 8

0 440† 0 184†

(2) G1: opb_add 300 969 262 687

G2: opb_sub 300 969 262 687

701 1 072 634 212

0 3 876† 0 2 748†

(3) G1: int_trafo 932 3 564 555 2 224

G2: motion_est 985 3 715 578 2 224

2 799 3 362 1 854 1 480

0 14 558† 0 8 896†

†The entries show the reconfiguration cost if no reuse of edges is assumed.

mized allocation is increased by the mapping tool. For example in Application (2),

the reconfiguration cost are 27.7 % before and only 7.7 % after the mapping has

been performed. This may serve as evidence that the mapping has a fundamental

impact on the reconfiguration cost optimization.

Our experiments have shown that the mapping tool indeed shows the intended

behaviour for real life synthesized netlists. The tool generates a number of mapping

variants with Algorithm 6. The mapping variants include the LEs where several

nodes are mapped into. The optimal LE selection described in ILP 2 retains the sim-

ilarity information and provides an optimized allocation of LEs within the VA model.

Furthermore we have shown that the similarity can be increased substantially by the

mapping tool.

4.4 Summary

In this section we have applied the reconfiguration cost model and the virtual archi-

tecture model that have been introduced in Chapter 3 to the implementation flow

for FPGAs. The starting point has been a set of synthesized netlists that should

be mapped to an FPGA architecture with the aim of low interconnect reconfigura-

tion cost. At the outset, we presented a detailed analysis of circuit transformations

that occur during the mapping step. Based on this analysis we have implemented

a tool that computes an optimized allocation for the nodes and edges specified in

124 Chapter 4. Implementation Tools for Reconfigurable Computing

the synthesized netlists. In the computation, the circuit transformations have been

considered. Finally we have implemented a mapping tool that takes the allocation

information as an input in order to perform an optimized mapping of the synthe-

sized netlists to device specific netlists. The mapping tool maps all reconfigurable

circuits of an application at once. Thus it is possible to select the best solution from

several possible mapping variants and to compute the according allocation informa-

tion that is required later in the implementation process.

Chapter 5

High-Level Synthesis for

Reconfigurable Computing

Today’s economic requirements of short development cycles together with the in-

creasing complexity of electronic systems call for efficient design methods. High-

level synthesis1 (HLS) is an automated design process to generate digital systems

from behavioural descriptions [91][60]. The behavioural descriptions are provided

for example as SystemC or ANSI-C/C++ source code. HLS tools compile the be-

havioural descriptions into register transfer level (RTL) code that is implemented

with traditional logic synthesis tools.

In general, RTL code describes the dataflow between registers and logical oper-

ations and the control of the dataflow. RTL descriptions describe a timed behaviour,

i.e. it is specified for each control step, which operations from the behavioural de-

scriptions are executed. The allocation of data to registers and of operations to

computational resources is fixed. However, resources can be shared by different

operations.

In contrast to RTL descriptions, a behavioural description does not model the

circuit behaviour at this level of detail. Instead, behavioural descriptions model the

algorithm as an untimed sequence of operations. An HLS tool translates the be-

havioural description into a digital circuit that performs exactly the function speci-

fied. The HLS tool decides, based on user constrains, in which cycle and on which

resource the operations are computed, in which memory elements the results are

stored, and how the control of the dataflow is realized. Apparently, the HLS tool op-

erates on a large design space from where the tool aims to choose the best feasible

solution. The design space consists of different resource types on which operations

are computed, the available device area to instantiate those resources, and the order

in which the operations can be executed. Different solutions in the design space can

result in implementations with different structures and different control sequences.

1Also: C-synthesis, electronic system level (ESL) synthesis, algorithmic synthesis, or behavioural

synthesis

125

126 Chapter 5. High-Level Synthesis for Reconfigurable Computing

The motivation for using HLS for RSOC design arises from the large design space.

In Chapter 4 we considered fixed, synthesized netlists of each configuration. The

netlists were produced by an RTL synthesis tool, which usually optimizes the syn-

thesis result only in terms of resource usage and circuit delay. Hence, the principal

similarity of the netlists and the resulting reconfiguration costs could only be in-

fluenced by the designer, but not by the synthesis tools. Therefore the designer

is required to write reconfiguration-optimized code in order to enhance the netlist

similarity.

With HLS the situation is completely different: the HLS tool has the possibility

to choose solutions from the design space that form the desired trade off between

resource usage, execution latency, circuit delay, and reconfiguration costs. This is

possible because the untimed behavioural description is transformed fundamentally

into a corresponding datapath during HLS synthesis.

In this chapter we describe new methods for HLS that are used to generate imple-

mentations, which are optimized for dynamic reconfiguration. We have developed

a complete HLS tool that implements these methods [78]. Additionally we intro-

duce several other approaches that exploit the versatile behavioural descriptions to

realize runtime reconfiguration of tasks with reduced overhead.

This chapter is structured as follows: In Section 5.1 we describe the HLS tool

flow that is used to generate the reconfigurable modules. Next, the architecture

of the reconfigurable modules and the execution of a task in such a module is ex-

plained. This information is fundamental to the introduction of new concepts for

runtime reconfiguration in Section 5.2. In these concepts we illustrate how hard-

ware tasks can be realized more efficiently in terms of resource usage and reconfigu-

ration cost. We propose the implementation of multiple tasks in one reconfigurable

module in Section 5.2.1 and the use of dynamic reconfiguration for sub-blocks of

the reconfigurable module in Section 5.2.2. With these concepts reconfiguration

is considered at system design level. In Section 5.3, we briefly review established

HLS models. We employ established methods to model the resource binding and

scheduling of a task. However, the models are extended such that our virtual ar-

chitecture model is incorporated in order to assess the reconfiguration cost during

resource binding. We describe how the reconfiguration cost and the implementa-

tion cost are computed within the virtual architecture/HLS model. In Section 5.4

we propose several optimization strategies for implementation of datapaths that are

optimized in terms of runtime reconfiguration cost. The optimization methods are

based on the methods introduced Chapter 3. Finally we present a series of exper-

iments in Section 5.5, which demonstrate the performance of our methods. Based

on the results we discuss the performance compared to traditional approaches and

the implications of the proposed reconfiguration concepts presented in Section 5.2.

5.1. Introduction to HLS 127

5.1 Introduction to HLS

In this section we present an overview of the synthesis steps that are performed by

our HLS tool. We further describe the resulting architecture of the reconfigurable

modules and the execution model of the hardware tasks on such a module..

5.1.1 HLS Tool Flow

The HLS steps of our tool are depicted in Figure 5.1. The tool flow shows the

processing steps that are applied to the behavioural description given as C-Code.

The result of the processing are the reconfigurable modules.

Architectural Synthesis

HLS Steps

C−Code C−Code

Scheduling

C−Compiler

Resource Instances

Operation Schedule

Resource Instance Binding

Operation Schedule

Resource Instances

CDFG

Resource Types

Resource Type Binding

CDFG

Resource Types

Reconfigurable
Module 1

Reconfigurable
Module M

Configuration 1 Configuration M

Logic Synthesis

FPGA Implementation

HW Task 1 HW Task N... ...

... ...

Device Reconfiguration

...

...

Figure 5.1: The HLS tool flow.

Here we assume that the designer has selected the hardware tasks (HW Task

1. . . N) for the implementation as reconfigurable modules in the RSOC. For our tool

128 Chapter 5. High-Level Synthesis for Reconfigurable Computing

flow we have extended the lcc ANSI-C compiler [31][30] such that it compiles a

C-function into a control dataflow graph (CDFG). The compiler has been modified

such that instruction level parallelism can be exploited by the HLS tool. Each HW

task is compiled separately.

In the next processing steps, the CDFG is processed until the reconfigurable mod-

ules can be created. Therefore information on how to execute the operations con-

tained in the CDFG is gathered.

At first, a resource type is selected for each operation in the CDFGs. The re-

source types are provided in a library. The library contains several resource types

for arithmetic and logical operations, and for special hardware functions. The re-

source types are annotated with resource requirements and timing information. The

resource types are selected for all CDFGs in one step in order to allow an optimiza-

tion of reconfiguration cost, cf. Section 5.4.2. With the timing information and

resource requirements, a scheduling of operations in the CDFG is performed, for

each task independently. Now, the operations are allocated to resource instances.

This is performed for all hardware tasks at once, because there exists a huge opti-

mization potential in terms of the resulting similarity in the implementation. The

architectural synthesis step translates CDFG according to the collected information

into an RTL description. The RTL description contains a datapath to realize the

CDFG operations and a unit that controls the datapath.

The RTL description represents the starting point for existing logic synthesis tools

and the FPGA implementation tools to generate a reconfigurable module and the

configuration that implements the reconfigurable module. In Section 5.2 we discuss

several concepts how the reconfigurable modules 1. . . M can be designed such that

efficient runtime reconfiguration can be achieved.

As indicated in Figure 5.1, the reconfigurable modules can contain a datapath

and control logic that enables the execution of multiple hardware tasks on that

module. Therefore, architectural synthesis is performed such that the reconfigurable

module contains all necessary resource instances and control functions.

In the following we describe the architecture and the operation of such a recon-

figurable module.

5.1.2 Realization of the Hardware Tasks

The HLS determines all parameters that are required to describe the execution of a

hardware task. However, in order to build an RTL description that can actually exe-

cute the hardware task an architecture template is needed. The architecture template

is a concept how the reconfigurable module is built from the information provided

by the HLS. The formal parameters that result from HLS describe the structure of

the datapath and the control sequence that realizes the task control. The architec-

ture template defines how the datapath is connected to the control unit and to the

5.1. Introduction to HLS 129

other components in the RSOC, and how the control sequence is implemented in

a state machine. The architecture template defines also how the RSOC can initiate

the hardware task execution in the reconfigurable module and how to communicate

with the hardware task. The architecture template further provides several possi-

bilities to perform partial reconfiguration of sub-modules inside the reconfigurable

module. Therefore, the device configuration can be adapted by reconfiguring parts

of a reconfigurable module in order to adapt the functionality for execution other

hardware tasks. The partial reconfiguration of the sub-modules is explained in Sec-

tion 5.2.

In the following, we describe the architecture template and the execution scheme

of a hardware task on reconfigurable module, which is based on the architecture

template.

Architecture Template

The architecture template consists of a datapath unit, a control unit, a bus interface

and optional i/o interfaces. The general structure is shown in Figure 5.2.

Register

I/O Interfaces

Data ConnectionControl Connection

Datapath Control Memory

State Control Memory

State Control

branch flag

Control Unit

next state

start state

Bus Interface

Datapath

Architecture Template

Operations

Figure 5.2: Architecture template for HLS

The control unit consists of a state control memory and a datapath control mem-

ory. In the control unit, a multiplexer selects the next state of the state machine

according to the contents of the state control memory. The memory contains two

alternative next states, one of those states is selected depending on the branch flag.

130 Chapter 5. High-Level Synthesis for Reconfigurable Computing

Alternatively, a required next state can be requested via the bus interface. Depend-

ing on the next state, the datapath control signals are driven from the datapath

control memory.

The sequence stored in the state control memory can contain the control se-

quence for several tasks simultaneously. In addition, the state control memory con-

tains special states that are used to exchange data between the RSOC and the dat-

apath. Different tasks can be executed by forcing the control unit to the respective

initial state of that task.

The state and datapath control memories are parametrized according to the re-

quirements of the datapath and the control sequence. The parameters include the

memory width, i.e. the size of a data word in the memory, and the memory depth,

i.e. the number of data words stored in the memory.

The datapath unit contains registers as storage elements for variables, opera-

tions to compute data, and multiplexers to control the dataflow over the datapath

connections. The control signals of these units are driven from the datapath control

memory in the control unit. The operations can realize either math and logic func-

tionality or they are used as an interface to external i/o. External i/o can realize

bus master accesses and access to FIFOs, memories and other periphery. Operations

can also set the branch flag transferred to the control unit. Thus, a data dependent

operation of the control unit is obtained.

The architecture template provides several different possibilities to adapt the

module to a new task. The control memories and the datapath can be reconfigured

as separate entities by dynamic reconfiguration. The memory contents could also be

adapted by simple memory transfers from the system bus. The datapath is adapted

at clock speed by the control signals from the datapath control memory. A more

elaborate description of these methods is given in Section 5.2.

During architectural synthesis, the RTL description of a reconfigurable module

is generated according to the presented architecture template. The datapath con-

sists of resource instances from a macro library and the interconnect between the

instances. The control memories are parametrized according to the requirements

and filled with the control data. The reconfigurable module can be integrated easily

into current FPGA SOC design tools, like e.g. Xilinx EDK.

Hardware Task Execution Scheme

In this section we describe the execution of a hardware task on a reconfigurable

module that is based on the architecture template described above.

At first, the configuration associated with the reconfigurable module is loaded

into the FPGA. Before the actual task is started, the initial parameters of the task are

written over the system bus into the datapath registers. These parameters include

the constant values and input variables used in the task. In order to initialize a

5.2. New Concepts for Task-based Reconfiguration 131

parameter the bus address selects a state from the state control memory. For this

state, a datapath control word is selected. The control word activates the write

function of the register where the parameter should be written to. The data of

the parameter is supplied from the system data bus directly to the register input.

Immediately after the write, the state control returns to an idle state.

After the initialization is performed, the initial state of the task is selected over

the system address bus. The initial state is the entry point to the control sequence

that controls the whole task execution. After the initial state is activated, the control

of the task is performed by the state control, independently from the system bus.

The task is finished when the state control returns to the idle state. The reconfigur-

able module contains a special register that holds a flag wether the task is running or

idle. The system can monitor this register to determine when the task has finished.

The return values of the task are read through the system bus as well. The bus

sets the desired read address and the state control selects the output of a register

according to that address. The data is then transferred from that register to the data

bus. Note that the state control has direct control over a multiplexer that connects

several datapath registers to the data bus; the data read is not realized with special

control states.

5.2 New Concepts for Task-based Reconfigura-

tion

The high abstraction level of the behavioural description of a task provides a clear

separation between the functionality and the realization of a task. While the func-

tionality is specified by the designer, the realization is determined by the HLS tool.

Therefore the HLS tool has the ability to take advantage of new concepts that are

based on dynamic reconfiguration, without putting additional burden on the de-

signer.

Here we introduce new concepts that allow a more efficient realization of tasks

with reconfigurable modules. Efficiency here means high quality trade offs be-

tween resource usage of the reconfigurable modules and runtime reconfiguration

cost. First, we propose the implementation of different tasks in one reconfigurable

module, cf. Section 5.2.1. Second, we propose the use of dynamic reconfigura-

tion for sub-blocks of the reconfigurable module (Section 5.2.2). Third, we want

to highlight that partial reconfiguration and datapath control should be considered

altogether when hardware tasks are realized.

The concepts extend the way dynamic reconfiguration is understood and used

today.

132 Chapter 5. High-Level Synthesis for Reconfigurable Computing

5.2.1 Multiple Hardware Tasks in one Reconfigurable Mod-

ule

Traditionally, dynamic reconfiguration is used to implement separate tasks as sep-

arate reconfigurable modules and hence, configurations. As already discussed, this

can be inefficient in both resource usage and reconfiguration costs. In most recon-

figurable systems, the amount of reconfigurable resources is fixed at design time.

Naturally the reconfigurable resources must allow the largest among the tasks to

fit into the reconfigurable area. The other tasks may leave some resources unused,

which leads to internal fragmentation.

Later on in this chapter we will demonstrate that the tasks can re-use a large

amount of datapath resources. We show that it is feasible to realize several tasks in

one reconfigurable module, often without excessive resource overhead. The reason

is that resources can be shared between tasks at the expense of a small amount of

extra resources to control the dataflow.

This method is perfect to use up previously unoccupied resources. Hence we

can realize as many hardware tasks in a reconfigurable module until the resources

are exhausted. At the same time, the number of different reconfigurable modules

in an RSOC is reduced, which in turn reduces the number of reconfigurations. Thus

we are able to use available resources more efficiently and reduce the number of

reconfigurable modules.

The realization of tasks in one reconfigurable module is effected by knowledge

on the expected execution order of the tasks. Mainly those tasks should be merged

into one module, that are most frequently reconfigured. In this case the frequency

and time required for dynamic reconfiguration can be reduced.

(b)(a) (c)

RSG for Reconfigurable
Modules

Assignment of
Tasks to Modules

A

B

C

D

1

2

3

A

B

C

D 3

2

1

RSG for Tasks

Figure 5.3: Realization of multiple hardware tasks in reconfigurable modules.

Example 5.1 Consider the tasks shown in Figure 5.3. The RSG for the tasks A–D

is shown in Figure 5.3(a). The RSG for the reconfigurable modules 1–3 is shown in

5.2. New Concepts for Task-based Reconfiguration 133

Figure 5.3(b). The mapping of tasks to reconfigurable modules is illustrated as bipartite

graph in Figure 5.3(c).

There are five possible transitions between tasks. It is assumed that the Tasks A

and B can be realized in the same reconfigurable module (1) without the violation of

resource constraints. Hence there is no dynamic reconfiguration necessary if either task

is executed after the other.

Still dynamic reconfiguration must be used when e.g. Task C (realized in Module

2) is executed after Task D (realized in Module 3). For realization b), the number of

dynamic reconfigurations is three, compared to five dynamic reconfigurations if each

task would be mapped to an individual module.

5.2.2 Multi-Level Reconfiguration

Here we present a holistic view of reconfiguration. There is much dispute over

the definition of the term reconfiguration. For FPGAs the term is often used only

for techniques that change the configuration of the FPGA device. This view totally

neglects the purpose of reconfiguration, i.e. the runtime adaptation of a digital

circuit to the required data processing. In this section we want to discuss several

techniques to adapt a reconfigurable module at runtime under the notion of multi-

level reconfiguration.

The techniques considered for multi-level reconfiguration include:

dynamic reconfiguration of LE resources (e.g. LUTs),

dynamic reconfiguration of sub-modules (e.g. datapath and control memo-

ries), and

runtime control of the datapath.

With our HLS approach we are able to generate reconfigurable modules that use

all aforementioned reconfiguration techniques. In this chapter we want to inves-

tigate, which techniques are efficient in which scenarios. We expect that several

techniques must be applied in order to obtain an efficient RSOC implementation on

FPGAs.

In the following we discuss the reconfiguration techniques in detail. At first we

show how the dynamic reconfiguration of LE resources can be exploited to imple-

ment resource efficient datapaths that can be adapted with little reconfiguration

data. Second, the dynamic reconfiguration of sub-modules of a reconfigurable mod-

ule is explained. We point out that the control memory contents can be adapted

by dynamic reconfiguration or via the RSOC system bus. Third, we consider the

runtime control of the datapath as ‘reconfiguration’ of the datapath functionality.

At last, we compare the differences between the dynamic reconfiguration of LE re-

sources and the runtime control on an example datapath operation.

134 Chapter 5. High-Level Synthesis for Reconfigurable Computing

Dynamic Reconfiguration of LE Resources

We have already shown in previous chapters, that for general reconfigurable circuits,

parts of the logic and parts of the connectivity can be reused in several configura-

tions. Because the reconfiguration of connectivity is very expensive we want to

reconfigure parts of the logic only, i.e. individual LE resources.

In many island style FPGAs the logic is structured such that it can be configured

for several different functions, while the connectivity over the routing resources re-

mains the same. We have explored this manually e.g. in [81]. If word level ALU

operations are considered, it becomes obvious that only a fraction of the reconfig-

urability of the logic and routing resources are needed. In fact, many ALU operations

can be realized by a reconfiguration of the LE only. The connectivity to other logic

in the design remains static.

2 Frames
LE Reconfiguration:

LUT

FF

MUX
MUXCY

LUT

FF

MUX
MUXCY

LE

LE

LE

LE

LE

LE

LE

LE

a(n+1)
b(n+1)

c(n+1)

b(n)
a(n)

c(n)

cin(n+1)

XOR

XOR

l(n)

l(n+1)

ca b

16 bit AND/ADD

Figure 5.4: Realization of a reconfigurable ADD/AND operation with VirtexII LEs .

Example 5.2 In this example we illustrate how the reconfiguration of the LE resources

can change the ALU operation that is realized by the LEs. Suppose the resource instance

implemented on the LEs must be reconfigured between an AND (c = a and b) and an

ADD (c = a + b) operation. The logic block in Figure 5.4 shows the relevant logic

functions.

5.2. New Concepts for Task-based Reconfiguration 135

Table 5.1: LE configuration to realize either an AND or an ADD operation.

LE Element AND ADD Minor Frame Address†

LUT a(n)and b(n) a(n) xor b(n) 1

MUX LUT out XOR out 0

† if the logic blocks are placed on even numbered slice columns.

The AND operation is composed of the AND operation of the individual bits n of a, b,

hence each LUT in the LEs realizes c(n) = a(n)and b(n). The LUT output is propagated

through the MUX element directly to the output flipflop FF.

Conversely, the ADD operation employs the carry chain to propagate the carry bit

from one partial result to the next. A 1 bit full adder is realized as follows: the LUT

computes l(n) = a(n) xor b(n). The MUXCY select signal is controlled by l(n) and

propagates either the carry input (cin(n)) to the next bit or generates a carry bit

if necessary from a(n). The adder result is computed by the XOR resource: c(n) =

l(n)xorcin(n).

The difference in the LE configuration is summarized in Table 5.1. Note that the

use of the carry chain enforces that only logic blocks in the same column are allocated

by resource instance. Hence, the whole operation can be reconfigured with two config-

uration frames only. The connection to the routing structures and the placement of the

ADD and AND operation remains static and does not require reconfiguration.

In the macro library of the HLS tool, a reconfigurable resource type may be

introduced that is capable to realize many ALU functions at the same time. At

runtime, the instances of this resource type are frequently reconfigured to adapt the

associated LEs to the required functions in a certain control state.

Dynamic Reconfiguration of Sub-Modules

Using partial dynamic reconfiguration, the implemented digital logic can be changed

completely. However, the reconfiguration costs are high, because the logic as well

as the connectivity of the circuit is reconfigured. The reconfigurable modules con-

tains the control until and the datapath as separate sub-modules, hence they can be

reconfigured independently.

The control memories can be reconfigured in two domains: (1) The memory

content may be reconfigured to accommodate the control data for different tasks.

Thus, the control data must not be present for all tasks at once, which saves valuable

on-chip memory. In dynamically reconfigurable architectures, the memory contents

can be updated with partial dynamic reconfiguration or via a bus that is connected

to the RSOC system bus. (2) In the case of very tight resource restrictions it might

also be necessary to adapt the memory layout, i.e. the width and the depth of the

136 Chapter 5. High-Level Synthesis for Reconfigurable Computing

control memories. The depth of the state control memory depends on the number of

states that are required in the control sequence. The memory width depends on the

address width of both control memories. The depth of the datapath control mem-

ory depends on the number of different datapath control words. The data width

depends on the number of control signals that are used for a datapath. It becomes

apparent that both memory layouts are very application dependent and dynamic

reconfiguration of the memory layout can provide benefits in terms of task depen-

dent resource utilization. An alternative implementation of the datapath control is

described in [80].

The tasks may be assigned to reconfigurable modules based on their similarity

in the datapath. However, if a reconfigurable module is configured on the FPGA,

then the datapath of that module can be exchanged by reconfiguration of the data-

path sub-module. The dynamic reconfiguration of the datapath has the advantage

that less unused datapath and control flow resources are needed to implement dif-

ferent tasks. Despite the differences in the datapaths there are resources that can

be re-used. The HLS tools provide exact information, which operations, registers,

datapath multiplexers and data connections can remain static and which must be re-

configured. If dynamic reconfiguration at these fine grain level can not be realized,

the datapath can be reconfigured altogether.

Runtime Control of the Datapath

As already mentioned, the control of the datapath is usually not considered as re-

configuration in FPGAs, but here we interpret any change in the functionality of the

datapath as reconfiguration, because it enables a consistent description of runtime

reconfiguration over many levels and granularity. The main argument for using the

datapath control to implement different tasks arises from the fact that in many dat-

apaths, the control is required for a single task anyway. The datapath control of a

single task results from the task control flow and from resource sharing.

Different sequences of dataflow control can be used to realize several tasks on

the same datapath, if the datapath contains all necessary control and logic resources.

The data processing is adapted by control data only. In this work we show that this

technique re-uses large parts of dataflow control that is required for the execution

of a single task anyway, hence the introduced overhead is small.

Note the fundamental difference between the dynamic reconfiguration of LE

and the reconfiguration by dataflow control: the first uses the device reconfigura-

tion mechanism to adapt parts of the circuit; the second adapts the circuit by control

logic that uses FPGA resources. Dynamic reconfiguration uses the reconfiguration

mechanism in the FPGA which has a limited reconfiguration speed; the reconfigu-

ration by datapath control can be executed in a single clock cycle.

The architecture template provides a very simple mechanism to execute different

tasks on the same datapath. The state control memory and the datapath control

5.2. New Concepts for Task-based Reconfiguration 137

memory is programmed to contain the data for multiple tasks to be executed. The

RSOC initiates the tasks simply by putting the control unit in the correct initial state.

Dynamic reconfiguration and reconfiguration by dataflow control can be com-

bined to achieve the most efficient implementation of an application.

Comparison Between Datapath Control and Reconfiguration of LEs

It has already been discussed that the function of a datapath resource can be con-

trolled by control signals generated in the control unit or by dynamic reconfigura-

tion of the associated LE resources. Control signals can only be used for LE resources

where the control is connected to the routing resources. However, many multiplex-

ers inside the LEs are only controlled by the device configuration. Therefore, data-

path resources that employ control signals are implemented less resource efficient,

compared to device reconfigurable datapath resources. This is illustrated in Exam-

ple 5.3. However, device reconfigurable datapath resources can not be adapted in a

single clock cycle.

Example 5.3 Here we compare the implementation of two reconfigurable resources.

In one resource, the operation is selected by a control signal and in the other resource

the operation is adapted by device reconfiguration. Both resources perform two types

of operations: an AND and an ADD operation. For the ADD operation, the fast carry

path in the VirtexII LE shall be used. The LE configuration for both resources is shown

in Figure 5.5. For illustration, only the logic for the partial result c(n) = f(a(n), b(n))

is shown.

The configurations of the device reconfigurable resource are shown in Fig-

ures 5.5(a) and 5.5(b). Figure 5.5(a) depicts the LE configuration for the ADD op-

eration. In the LE, the LUT is used to implement and XOR function. The MUXCY and

XOR elements are used to realize a carry chain. The MUX is configured to pass the

XOR output to the result c(n). The configuration of the LE for the AND operation is

shown in Figure 5.5(b). The LE configuration differs in the configuration of the LUT

that realizes the logical AND of a(n) and b(n), and in the configuration of the MUX

that passes the LUT output to the result c(n). The configuration of the LUT and the

MUX can not be controlled from the FPGA fabric, instead 2 configuration frames must

be written in order to reconfigure the functionality, cf. Example 5.2.

As an alternative, both functions can be implemented in a datapath resource, where

the function is selected by a control signal d, cf. Figure 5.5(c). The ADD functionality

is realized in the left LE, similar to Figure 5.5(a). In the right logic block, the LUT is

used to realize the AND function of a(n) and b(n) and to pass through the result c′(n)

of the adder, depending on the control signal d. Hence, the LUT function is e.g. FCN =

c′(n)d + a(n)b(n)d. Observe that the control over the type of operation is achieved by

LUT logic now, not by a reconfiguration of the MUX element.

138 Chapter 5. High-Level Synthesis for Reconfigurable Computing

LUT

a(n)

b(n)

c(n)
MUX

XOR

MUXCY

LUT

a(n)

b(n)

c(n)
MUX

XOR

MUXCY

XOR

LUT

MUX

XOR

MUXCY

LUT c(n)
MUX

XOR

MUXCY

b(n)

a(n)

d

c’(n)

XOR AND

(b)(a)

(c)

FCN

Dynamic Reconfiguration

Runtime Control

Figure 5.5: VirtexII LE configuration (simplified) for a single bit of operation ADD (a), AND

(b), and selectable ADD/AND (c). Active LE resources are drawn black.

The example illustrates the trade-off involved when using reconfigurable resources.

The implemention requires only half the resources of a resource with a control sig-

nal and also has a shorter propagation delay, because no LUT cascading is used. On

the other hand, the resource may not be allocated by both types of operations within

the same task, because dynamic reconfiguration within the execution of a task is not

feasible.

5.2.3 Resource Sharing

Resource sharing is a technique that is frequently applied when DFGs are realized

on a datapath. Resource sharing means that a resource instance in a datapath is

used to execute more than one DFG node on this resource. As a result, less resource

instances are required in the datapath and hence, the implementation is more re-

source efficient.

In this work we can distinguish different kinds of resource sharing. In intra-task

resource sharing, several nodes of one DFG are executed on one resource instances.

This is the classic application of resource sharing. If multiple tasks are realized

in one reconfigurable module, then inter-task resource sharing can be exploited:

the nodes of different DFGs are mapped to the same resource instances in such a

datapath. Hence, the number of resource instances can be reduced further.

5.3. Datapath Synthesis 139

The resource instances that are shared by DFG nodes, where the DFGs are re-

alized in different reconfigurable modules, are not considered as shared resources

here. Instead, these resource instances are called reused resource instances, accord-

ing to our RSG model.

5.3 Datapath Synthesis

In this section we review established models that are used in HLS. The established

models are extended in an appropriate way in order to incorporate our reconfigura-

tion cost model. We describe a graph-based model for the tasks in Section 5.3.1

and a model for the datapath resources in Section 5.3.2. The task model and

the resource model are borrowed from earlier work on HLS, cf. Teich [91] and

de Micheli [60]. In Section 5.3.3 we first review the established definition of re-

source binding. We further demonstrate how our virtual architecture (VA) model

that has been derived in Section 3.4.2 (p. 62 et seq.) can be employed to describe

the resource binding. With the definition of resource binding and the VA model we

are able to introduce our implementation cost and a reconfiguration cost definition

for HLS. The scheduling of the tasks is reproduced from previous works [91][60]

in Section 5.3.4. Similarly, the constraints for scheduling and resource binding are

summarized from [91][60] in Section 5.3.5. The scheduling and binding constraints

are included for completeness and in order to motivate our method for resource

binding presented in Section 5.4.3.

5.3.1 Task Model

Here we assume that each hardware task is specified as a graph. Similar to other

work, we employ control dataflow graphs (CDFGs) here. A CDFG is a heterogeneous

model that consists of a control flow graph (CFG) and a dataflow graph (DFG). The

CFG models the control flow of a task, i.e. jumps and the conditional execution of

basic blocks of computation. The DFG models the operations, data dependencies

and precedence constraints inside a basic block. In our work, a modified ANSI-C

compiler (lcc) is used to compile tasks specified as C-code into these CDFGs. In the

following, more a elaborate description of the graphs is given.

The CFG describes the execution order of the basic blocks of a task. Since a

formal definition of a CFG is not required in the remainder of this work, it will be

omitted here. Instead, we describe the execution of a task using a CFG. The CFG

consists of a begin node, an end node, and a node for each basic block. The nodes

are connected by directed edges that indicate the execution order of the basic blocks

associated with the nodes.

The task execution starts at the begin node of a CFG and follows the edge to the

140 Chapter 5. High-Level Synthesis for Reconfigurable Computing

first basic block. After all computations of the basic block are finished, the execution

is passed to the next basic block, which is chosen according to the outgoing edge.

The exit condition of a basic block (if one exists) determines, which basic block is

executed next depending on the label of the outgoing edge. The task execution is

finished if the control is passed from the last basic block to the end node.

The DFG is an labelled multidigraph (LMG), which has been introduced in Sec-

tion 3.4.1 (Definition 3.3, p. 57). However, in our DFG the set N of nodes can

be divided into two exclusive sets: a set NO of operations and set NV of variables.

Similarly, the set E of edges can be divided into two exclusive sets: a set ED of data

dependencies and set EC of precedence constraints.

An operation n ∈ NO performs a computation with the input data supplied by

incoming data dependencies. A variable n′ ∈ NV is used to provide and to store

data.

The definition of an edge in an LMG has been illustrated in Figure 3.4, p. 58. A

data dependency e ∈ ED indicates a data transfer from the source node s(e) to the

drain node d(e). The source label ls(e) indicates the result (esp. for multi-valued

operations) that is transferred to the drain node. The drain label ld(e) indicates the

argument of the operation referred to by the drain node. A precedence constraint

e′ ∈ EC defines that the source operation s(e′) must be finished before the drain

operation d(e) can be started. Precedence constraints are defined in addition to data

dependencies in order to realize a partial ordering of read and write operations on

variables.

A basic block is described by a DFG. The purpose of the basic blocks is to sep-

arate control flow from dataflow. I.e. all operations in the DFG of a basic block

are performed, if the basic block is executed. In addition to regular operations or

variables, the DFG of a basic block contain one node that serves as entry point and

another node that serves as exit point of the basic block.

The CFG defines a sequential execution order of the basic blocks. Thus, we can

treat the operations in a basic block independently from other basic blocks. The only

inter-dependency between the basic blocks is given by common variables. Hence,

we have to ensure that common variables are mapped to the same resource instance

for all basic blocks.

The CDFG model is illustrated in Example 5.4.

Example 5.4 The CDFG model is illustrated on the CDFG specification of the Fibonacci

algorithm, cf. Figure 5.6. The specification has been compiled with the modified lcc

compiler. The source code is compiled into 3 basic blocks, labelled 1 to 3 in the figure.

Block 2 represents the operations executed in the do-while loop. The block is always

entered at node 6 and the block is finished when node 12 is executed. The subtraction

at node 10 reads the variables ’n’ and ’1’ as input and sends the output to variable ’n’.

Additionally, there exists a data dependency between node 10 and node 11. The result

computed at node 11 is passed to exit node 12. The result is used as a branch flag by

5.3. Datapath Synthesis 141

the control unit to decide, whether the next basic block is started at node 6 (to continue

the loop) or whether the next block is started at node 13. In block 2, the assignment of

’f2’ must take place before the assignment of ’f ’. Hence, the corresponding operations

at nodes 8 and 9 are connected by a precedence constraint.

int fib(unsigned n) {
// basic block 1:

int f1 = 1;
int f2 = 0;
int f;

// basic block 2:
do {

f = f1 + f2;
f2 = f1;
f1 = f;

} while (--n > 1);
// basic block 3:

return f;
}

(a)

6:ENTRY

12:EXIT

7:ADD

10:SUB

11:GT

8:MOV

9:MOV

bus

alu2

alu1

ctrl

o=1, l=0

o=1, l=2

o=1, l=1

o=1, l=1

(b)

17:f

18:f2

19:0

20:f1

21:n

22:1

Variable

Operation

Resource Type

Precedence Constraint

Data Dependency

Basic Block

1

1

1

2

3

1:BEGIN 2:ENTRY

4:MOV 3:MOV

5:EXIT

6:ENTRY

7:ADD
10:SUB

11:GT

8:MOV

9:MOV

12:EXIT

13:ENTRY

14:MOV

15:EXIT

1

16:END

3:ret

1

(c)

Figure 5.6: C-Source (a) and CDFG specification (c) of the Fibonacci algorithm. The

resource graph of the CDFG, basic block 2 is shown in (b).

142 Chapter 5. High-Level Synthesis for Reconfigurable Computing

5.3.2 Resource Model

Resources can execute operations, store variables or provide a mechanism to access

i/o interfaces. Operations include arithmetic and logic operations and i/o inter-

faces provide memory access or bus transfers. The resources are used to realize the

functionality defined by the DFG in the datapath.

We differentiate between resource types rT ∈ RT and resource instances r ∈ R.

Resource types specify general characteristics of resources, e.g. the execution delay,

the use of FPGA resources, or the DFG operations that can be executed. Many

resource instances of the same resource type can exist. A resource instance is an

entity that is realized as part of the datapath on FPGA resources. The number of

resource instances may be restricted by the available FPGA resources, i.e. by the LEs

in an FPGA. We continue to discuss properties that are associated with the resource

types. The resource instances inherit the properties of the associated resource type.

A basic property of a resource type rT is the execution latency l, where l : RT 7→ N.

For each resource type we assume an operation is started at clock cycle t and the

execution of this operation is finished at clock cycle t + l. When the execution is

finished, the results of the operation (if any) are available. The results must be

transferred to other operations depending on the data dependencies, or stored in

an intermediate register. While the latency describes time delay of an operation,

the offset o, where o : RT 7→ N describes the occupation of the resource itself. if the

previous operation has been started at clock cycle t, then the resource can be used

by the next operation at clock cycle t+o. A resource is called a pipelined resource if

o < l, i.e. new operations can be started before the result of the previous operation

is available. For simplicity, the offset and latency is given globally for each resource

type here.

Further parameters of resources are: the required device resources wLE, the num-

ber of control signals wS. The cost for dynamic reconfiguration a resource is assumed

to be proportional to the required device resources.

5.3.3 Resource Binding

In this section we define how the nodes in the DFG are associated with datapath

resources. We differentiate between the selection of a resource type that is used ex-

ecute the operation and the selection of a resource instance on which the operation

is actually executed. The selected resource type provides vital information for the

scheduling of the operation. The mapping of operations and variables to resource

instances in conjunction with the data dependencies and precedence constraints of

the DFG yields the description of the complete datapath architecture.

The focus of this section is on resource binding for datapaths in reconfigurable

modules. We describe the resource binding with respect to our VA model. This en-

ables us to evaluate the reuse of resources between different reconfigurable modules

5.3. Datapath Synthesis 143

at a high abstraction level. The use of shared resources requires the introduction of

dataflow multiplexers. We show how the size of the dataflow multiplexers can be

derived from the VA. Based on our VA model we define the implementation cost and

the reconfiguration cost of a datapath in a reconfigurable module.

Resource Type Binding

The resource type binding is a HLS step that assigns each node from the DFG to

a resource type. The assignment is described by an allocation function aT, where

aT : N 7→ RT assigns each node n ∈ N to a resource type rT ∈ RT. Resource type

binding imposes some (weak) constraints on the resulting datapath architecture.

The binding defines, which operations are mapped to the same resource type, but

not necessarily to the same resource instance.

The nodes of a DFG may be executed on different resources types from the HLS

library. Thus, the resource type binding is not a one-to-one mapping. In addition,

there exist different variants to map a node to the same resource type, if the node

describes a commutative operation. The allocation aT realizes only one mapping

from several possibilities. In order to express all possibilities to map operations to

resource types, a resource graph is defined as follows (cf. Teich [91], p. 84):

Definition 5.1 For a given set N of DFG nodes and a set RT of resource types, the

resource graph GR(N ,RT,ER) is defined as a bipartite graph with a set ER of edges.

The resource graph is a multigraph because there exist different possibilities k to map

an operation to a resource type. An operation (or variable) n ∈N can be executed (or

stored) on an instance of the resource type rT ∈RT, if an edge (n, rT)k ∈ ER exists.

The resource graph is illustrated in Example 5.5.

Example 5.5 In Figure 5.6(b) a resource graph is shown. The operations 6, 12 can be

executed on resource type ctrl and operation 8, 9 on type bus. The operations 7, 10 can

be bound to either resource type alu1 or alu2 and Node 11 only to resource type alu2

. alu2 is a pipelined resource type: a resource instance can be allocated at every clock

cycle (o = 1), but the results take 2 clock cycles to be computed (l = 2).

Resource Instance Binding

Resource instance binding is performed by mapping each node n ∈N from the DFG

to a resource instance r ∈ R. The allocation a : N 7→ R describes such a mapping

(cf. Section 3.4.1, p. 59). With the allocation, the actual datapath architecture is

derived. The allocation of nodes also describes the mapping of data dependencies

to connections in the datapath. The data transfers indicated by the data dependency

are realized on the connections.

144 Chapter 5. High-Level Synthesis for Reconfigurable Computing

In many applications, the number of resource instances of a resource type is

constrained. The restriction often reflects the memory or logic constraints or system

design considerations. The number of available resource instances given by the

function b : RT 7→ N, which assigns to each resource type rT ∈ RT the number

of available resource instances. The binding to resource instances is restricted by

the function b. There are only b(aT(n)) different allocations possible for each node

n ∈N .

Embracing the VA Model into Resource Binding

In the following we show how the resource binding is used to map the DFGs to

datapaths. Therefore the DFGs are considered as input graphs (cf. Section 3.4.1,

p. 59). The DFG of a task i ∈NT is denoted as an LMG Gi(Ni,Ei, . . .), which is called

an input graph in the following. The input graph Gi of a task i ∈ NT is mapped to

an LMG G′
i
(N ′

i
,E ′

i
, . . .), which is called the image graph of Gi.

The resource type binding and the resource instance binding represent two dif-

ferent mappings of input graphs to image graphs. The mappings are highly inter-

related. The mapping realized by the resource type binding yields image graphs

that consist of types only. In contrast, the mapping realized by the resource instance

binding yields image graphs that consist of resource instances and interconnect.

This kind of image graph is a suitable model for a datapath in a reconfigurable

module.

For the resource type binding, the input graph is mapped to an image graph G′
i
,

where the set N ′
i

of nodes contains all resource types that are used by the DFG.

The employed resource types are a subset of all resource types RT provided in a

synthesis library, i.e. N ′
i
⊂ RT. The mapping of Ni to N ′

i
is given by the allocation

aT. The allocation of nodes also results in an allocation of edges (cf. Section 3.4.1,

p. 60). Here, the function ae : Ei 7→ E ′
i

allocates the set Ei of edges to the set E ′
i

of edges. The an edge e′ ∈ E ′
i

denotes an interconnect type. The interconnect type

describes, which ports of which resource types are connected with each other in

the datapath, independently of the resource instance binding. For instance an edge

e′ = (add, sub, o, arg1) indicates an interconnect type, which describes that there

exists a connection in the datapath between an instance of the resource type ‘add’

and an instance of the resource type ‘sub’. The connection is established between

the ports ‘o’ and ‘arg1’ of these resource instances.

The resource instance binding is modelled similarly. The input graph Gi(Ni,

Ei, . . .) is mapped to an image graph G′
i
(N ′

i
,E ′

i
, . . .). The allocation function a : Ni 7→

N ′
i

maps the nodes n ∈Ni of the DFG to the nodes n′ ∈N ′
i

(cf. Section 3.4.1, p. 59).

Now, the set N ′
i

of nodes contains all resource instances that are used to realize

the DFG on a datapath. The used resource instances are a subset of all provided

resource instances R, i.e. N ′
i
⊂ R. The edges E ′

i
in the image graph comprise the

5.3. Datapath Synthesis 145

interconnect in the datapath that is required to realize the DFG. Again, the edge

allocation ae is performed according to the definition in Section 3.4.1, p. 60.

The mapping results of the resource type binding and of the resource instance

binding differ in both, the nodes and the edges of the image graph. However, the re-

labelling of the port labels is the same in both cases, because the port labels depend

only on the resource type, but not on the allocated resource instance.

Both, resource type binding and resource instance binding map the input graphs

to image graphs. Here we employ our virtual architecture (VA) model presented

in Section 3.4.2, p. 63. The VA model is used for two objectives: First, the reuse

of resources and interconnect can be analyzed for different allocations. Second, it

provides an efficient method to merge the resources and interconnect required for

different tasks into a common datapath.

The VA graph GA(NA,EA, . . .) consists of a set NA of nodes and a set EA of edges

amongst others. Here we discuss the resource instance binding in the context of the

VA as an example. In this case, the nodes of the image graphs (and the nodes in the

VA) represent resource instances in a datapath. The edges in the image graphs (and

the edges in the VA) represent the interconnect in a datapath. For all tasks, the sets

Ni, i ∈ NT of nodes are mapped to the sets N ′
i

of resource instances. Similarly, the

sets Ei, i ∈NT of edges are mapped to the sets E ′
i

of interconnect edges.

A valid VA GA(NA,EA, . . .) that contains the resource instances and the intercon-

nect required by all tasks i ∈NT is given in Equations 3.21 and 3.22 as follows:

NA :=
⋃

i∈NT

N ′
i
, (5.1)

EA :=
⋃

i∈NT

E ′
i
. (5.2)

The VA represents a super-datapath that is capable to realize DFGs of all tasks i ∈NT

without being reconfigured. The set NA of nodes in the VA model is equal to the set

R of resource instances introduced in Section 5.3.2.

With the VA model, the reuse of resource instances and interconnect can be

computed in order to evaluate the reconfiguration cost for reconfigurable modules.

Here, we take into account the implementation of multiple tasks in one reconfigur-

able module. We define the set NT,m of tasks, where all tasks i ∈ NT,m are realized

in the same reconfigurable module m. Each reconfigurable module realizes a subset

of all hardware tasks in an application, i.e. NT,m ⊂NT. The datapath is only recon-

figured if the task i to be executed is not realized in the reconfigurable module m

that is currently active in the device, i.e. if i /∈NT,m.

For the computation of reconfiguration cost, the partial reconfiguration of be-

tween different reconfigurable modules, but not between different tasks, is consid-

ered. Hence, if a resource instance or interconnect is used in the datapaths of two

146 Chapter 5. High-Level Synthesis for Reconfigurable Computing

reconfigurable modules, then the resource instance or interconnect is not reconfig-

ured between those two modules.

The requirements for the datapath of a reconfigurable module m are derived

from the datapath requirements of all task i that are realized on the same reconfig-

urable module. All resource instances and interconnect defined in the image graphs

Gi of the tasks i ∈ NT,m must be contained in the datapath of the reconfigurable

module m:

NA,m :=
⋃

i∈NT,m

N ′
i
, (5.3)

EA,m :=
⋃

i∈NT,m

E ′
i
. (5.4)

Where the set NA,m of nodes represents all resource instances and the set EA,m of

edges represents all interconnect in the datapath of the reconfigurable module m.

The reuse of resource instances and interconnect is computed on the basis of the

reconfigurable modules. Hence, if the same resource instance n ∈ NA is contained

in y different reconfigurable modules, then the reuse u(n) := y . For the partial

reconfiguration of the datapath it does not matter, how often the resource instance

n is used by any DFG that is realized in a reconfigurable module.

Dataflow Control and Interconnect

In the DFGs, a data dependency indicates the transfer of a single date between

the operations. However in the datapath the data dependencies are realized as

permanent connections between resource instances. The allocation function allows

the mapping of several data dependencies onto the same connection. Although

there may be several different resource instances that are connected to an input port

of the same resource instance. In this case a dataflow multiplexer is required. With

the multiplexer, the control unit can activate only the connection that is required in

a specified control state.

We show how the number of inputs of the dataflow multiplexer can be deter-

mined from the graph representation of the datapath. Again, consider the set EA,m

of edges that represents the interconnect in the reconfigurable module m. A data-

flow multiplexer has to control the data transfer over all edges e ∈ EA,m that lead to

the same input port p := ld(e) of a resource instance n := d(e). In each reconfigur-

able module m, the number x of inputs of the dataflow multiplexer assigned to the

input port p of resource instance n is given by:

x(m, n, p) = |{e ∈ EA,m : d(e) = n∧ ld(e) = p}|. (5.5)

Equation 5.5 allows to calculate the complexity of the dataflow multiplexers that

are required for each reconfigurable module m. For each reconfigurable module m

5.3. Datapath Synthesis 147

we define the set Im, which contains pairs (n, p). In each pair, n ∈ NA,m denotes

a resource instance and p denotes an input port. The set Im contains all possi-

ble pairs (n, p) that can be constructed for the set NA,m of resource instances of a

reconfigurable module m.

Implementation Costs

Here, we define the implementation cost of a datapath for a reconfigurable module

m. The implementation cost describe, how many device resources are required

to realize the datapath in the FPGA. The implementation cost are the combined

requirements of LEs for both resource instances and dataflow multiplexers, and of

interconnect resources. The implementation cost are calculated from the datapath

definition NA,m, EA,m (Equations 5.3 and 5.4) and the resulting dataflow multiplexers

described by x in Equation 5.5.

During HLS only an estimation of the implementation cost is possible, because

the datapath implementation costs depend on several optimization steps during

logic synthesis and device mapping. The parameters used by the HLS estimation

are based on a pre-synthesized resource library. Nevertheless, those estimates are

necessary to optimize the resource instance binding in terms of implementation cost.

The implementation cost Cdp,m for a datapath of the reconfigurable module m

with the sets NA,m and EA,m is given by:

Cdp,m = Cres,m+ Cmux,m+ Cwire,m, (5.6)

where Cres,m represents the cost for resource instances, Cmux,m represents the cost for

dataflow multiplexers, and Cwire,m represents the cost for the interconnect.

The cost Cres,m and Cmux,m determine the device resources used on the FPGA by

the resource instances and dataflow multiplexers. The cost terms Cres,m and Cmux,m

are calculated as follows:

Cres,m =
∑

n∈NA,m

[f1+ f2wLE(n) + f3wS(n)], (5.7)

Cmux,m =
∑

(n,p)∈Im

[f1+ f2wLE(x(m, n, p)) + f3wS(x(m, n, p))]. (5.8)

The cost terms Cres,m and Cmux,m are a weighted sum over all used resource instances

or multiplexers. The factors f1, f2,and f3 respresent a cost offset, a weight for the

size in terms of device resources, and a factor for the control overhead, respec-

tively. The term wLE(x(m, n, p)) yields the resource requirements of a multiplexer

with x(m, n, p) inputs and the term wS(x(m, n, p)) the associated control overhead.

The cost Cwire,m for the datapath interconnect is specified as:

Cwire,m =
∑

e∈EA,m

[f4+ f5wW(e)], (5.9)

148 Chapter 5. High-Level Synthesis for Reconfigurable Computing

where the function wW(e) yields the word-width of an interconnect e. The factors

f4 and f5 represent a cost offset for the use of the interconnect and a weight for the

word length of an interconnect.

The definition of the implementation cost Cdp,m provides a very flexible cost func-

tion that allows us to weight the contributions of different cost parameters, depend-

ing on the overall objective of the optimization.

Reconfiguration Costs

In this section we apply the RSG model to compute the reconfiguration cost for a set

of reconfigurable modules. Therefore, we refine the definitions from Section 3.4.2

(p. 63) for the VA model used here.

Consider a set M of reconfigurable modules m ∈ M, where each module is

associated with a datapath defined by the set NA,m of nodes and the set EA,m of

edges. The VA that implements all reconfigurable modules is given by the set NA of

nodes and the set EA of edges.

In order to compute the reconfiguration cost, we need to determine, which re-

source instances and which interconnect can be reused. The use of these datapath

elements is described by the device configuration d(m) = (d(m)1, . . . , d(m)K), where

an element d(m)k, k = 1, . . . , K denotes the usage of the datapath element k in a

reconfigurable module m ∈M. Here we do not consider different configurations

for the resource instances. It follows that the elements d(m)k, k = 1, . . . , K indicate

whether a datapath element k is used by a reconfigurable module m, i.e. d(m)k = 1,

or whether a datapath element k is not used, i.e. d(m)k = 0.

Similar to Section 3.4.2, the elements d(m)k, k = 1, . . . , K are associated with the

nodes NA and the edges EA of the VA (cf. p. 63).

From the device configurations d(m) of all reconfigurable modules m ∈M, the

reconfiguration bitmap r can be derived. In the HLS context, we refine the defini-

tion of the reconfiguration bitmap, cf. Equation 3.1 p. 51. Now, the reconfiguration

bitmap r((m1, m2)) indicates all reconfigurable elements that are used in reconfig-

urable module m2 and that have not been used in reconfigurable module m1:

r((m1, m2))k =

�
1 if d(m2)k = 1∧ d(m1)k = 0

0 otherwise
, k = 1, . . . , K . (5.10)

The definition is based on the assumption, that any resource instance or intercon-

nect, which is contained in the datapath of module m1, but not in module m2 will

be overwritten by another resource instance or interconnect that is only present in

m2, but not in m1.

We define the reconfiguration cost of the datapath according to the average

5.3. Datapath Synthesis 149

reconfiguration time defined in Equation 3.4, p. 52:

t =
1

|ET|

∑

e∈ET

K∑

k=1

wt(k)r(e)k. (5.11)

Now, the set ET represents all reconfigurations between the reconfigurable modules

defined in M.

The cost wt(k) to reconfigure an element k = 1, . . . , K of the device configuration

d(m) = (d(m)1, . . . , d(m)K) is now defined as follows (cf. p. 63): The reconfigurable

elements k = 1, . . . , |NA| are associated with the nodes nk ∈ NA, nk = n1, . . . , n|NA|

and the reconfigurable elements k = |NA|+ 1, . . . , K are associated with the edges

ek ∈ EA, ek = n1, . . . , e|EA|. Now the weight function wt(k) is given by:

wt(k) =

�
f6+ f7wLE(nk) + f8wS(nk) if k = 1, . . . , |NA|
f9+ f10wW(e(k−|NA|)) if k = |NA|+ 1, . . . , K

(5.12)

Similar to the cost factors f1– f5, the factors f6, f7, and f8 respresent a cost offset, a

weight for the size in terms of device resources, and a factor for the control over-

head, respectively. The factors f9 and f10 represent a cost offset for the use of the

interconnect and a weight for the word-width of an interconnect.

Through the factors f1– f10, the contributions can be weighted differently for the

computation of reconfiguration cost and the computation of implementation cost.

The factors f1– f10 are summarized in Table 5.2.

Table 5.2: Factors for the implementation and reconfiguration cost weights.

Cost Category Datapath Element Description Factor

Implementation Cost

multiplexer or

resource instance

cost offset for usage f1
weight for device resources f2
weight for control overhead f3

interconnect
cost offset for usage f4
weight for word length f5

Reconfiguration Cost

multiplexer or

resource instance

cost offset for usage f6
weight for device resources f7
weight for control overhead f8

interconnect
cost offset for usage f9
weight for word length f10

5.3.4 Scheduling

Scheduling assigns an execution time to each operation in a DFG. The execution

time t is counted in clock cycles, i.e. t ∈ N. The execution time determines, when

150 Chapter 5. High-Level Synthesis for Reconfigurable Computing

the operation is started and hence when the input data must be available. Moreover,

with a known resource type binding, it is known when the operation is finished, i.e.

at time t + l. Similarly, the execution time of an operation determines at what time

the associated resource instance is allocated. The resource instance can be used to

execute another operation at time t + o, cf. Section 5.3.2. The schedule function c,

where c : NO 7→ N assigns to each operation n ∈NO an execution time t ∈ N.

The offset and latency definition is only useful for resource types that execute

operations. Variables v ∈ NV are allocated to resources as long as it is required by

the schedule of the operations. The first cycle when the variable v is allocated is

denoted as tmin(v) and the last cycle when the variable v is required is denoted as

tmax(v). Both, tmin(v) and tmax(v) are computed as follows: Suppose there is a vari-

able v ∈ NV and two sets EI,EO ⊂ ED of data dependencies. The source node of a

data dependency e is denoted by s(e) and the drain node by d(e) (cf. Definition 3.3,

p. 57). The set EI = {e ∈ ED : d(e) = v} denotes the data dependencies, which cause

a write to the variable v. The set EO = {e ∈ ED : s(e) = v} denotes the data depen-

dencies, which cause a read from the variable v. The time span tmin(v), . . . , tmax(v)

where the variable v is allocated is given by:

tmin(v) = min
e∈EI

c(s(e)) + l(aT(s(e))), (5.13)

tmax(v) = max
e∈EO

c(d(e)). (5.14)

The function aT assigns to each node a resource type (cf. Section 5.3.3, p. 143) and

the function l yields the latency of that resource type (cf. Section 5.3.2, p. 142). The

time tmin(v) is given by the minimal completion time of any operation s(e), which

writes data to the variable v. The completion time of the operation s(e) is given by

the operation start time c(s(e)) plus the latency l(aT(s(e))) of the operation defined

by the associated resource type aT(s(e)). The time tmax(v) is given by the latest time

of any operation d(e), which reads data from the variable v.

In addition to the variables specified in the DFG it can be necessary to introduce

intermediate storage for direct operation-to-operation data dependencies. In our

resource model we assume that data is present on a resource output port at cycle

t + l only. If any operation that depends on this data output is scheduled after this

cycle then the data must be stored in an intermediate register. Hence, there is an

intermediate variable insertion needed after scheduling for all such data dependen-

cies. For any data dependency e ∈ ED there is an intermediate variable required if:

c(s(e)) + l(aT(s(e)))< c(d(e)). (5.15)

The schedule function c and the resource type binding aT determines the total

execution time of a DFG. The execution starts at the earliest scheduled node and

finishes after the execution of the latest scheduled node has been completed. The

time span between those two cycles is called the total execution latency L. The total

5.3. Datapath Synthesis 151

execution latency L of a DFG G(N ,E , . . .) with the set NO ⊂N of operations is given

by (cf. Teich [91], p. 85):

L =max
n∈NO

[c(n) + l(aT(n))]− min
n∈NO

[c(n)]. (5.16)

In the following, we describe the relationship between scheduling and resource

binding.

5.3.5 Constraints for Scheduling and Resource Binding

From the previous discussions, it is apparent that scheduling and binding interact

with each other. For instance the schedule function allows or disallows the alloca-

tion of operations to the same resource instance. The resource type binding sets

constraints for the schedule function and the number of resource instances influ-

ences possible schedules, too. This inter-dependency results in several constraints

that must be observed during scheduling and resource binding [91, Chapter 3].

The data dependencies and precedence constraints restrict the schedule of oper-

ations. A valid schedule function must fullfill the following condition (cf. Teich [91],

p. 85):

c(d(e))≥ c(s(e)) + l(aT(s(e))) ∀e ∈ E . (5.17)

Hence for any edge e ∈ E a schedule is valid if the execution time c(d(e)) of the

depending operation d(e) is greater or equal to the finishing time c(s(e))+l(aT(s(e)))

of the operation s(e). If the data dependency originates from a variable, then the

data is available one cycle after it has been written by the previous operation.

Resource conflicts arise when a resource instance is allocated more than once in

any cycle. A resource instance n′ ∈ N ′ is allocated by an operation n ∈ N in the

interval c(n), . . . , c(n) + o(aT(n)). The allocation offset o is given by the resource

type aT(n) associated with operation n (cf. Section 5.3.2, p. 142). Hence, the

allocations a(ni) := n′ and a(n j) := n′ of any two nodes ni, n j ∈ N , which are

allocated to the same resource instance n′ ∈ N ′, are conflict free if the execution

intervals c(ni), . . . , c(ni) + o(aT(ni)) and c(n j), . . . , c(n j) + o(aT(n j)) do not overlap.

Thus, two nodes ni, n j ∈ N can be allocated to the same resource instance if the

following condition holds (cf. Teich [91], p. 168):

c(ni) + o(aT(ni))≤ c(n j) ∨ c(n j) + o(aT(n j))≤ c(ni)

∀ ni, n j ∈N , ni 6= n j, a(ni) = a(n j). (5.18)

In addition to resource conflicts, the binding and scheduling must obey any re-

source constraints. The number of resource instances of a resource type rT ∈ RT is

constrained by b(rT) (cf. Section 5.3.3, p. 144). Thus at any time t, there may be

no more instances of the resource type rT in use than given by b(rT). Otherwise it

152 Chapter 5. High-Level Synthesis for Reconfigurable Computing

is not possible to realize a conflict free allocation a. More formally, the following

resource constraint must be satisfied for all nodes n ∈ N in order to find a valid

allocation a for a DFG (cf. Teich [91], p. 89) with a given schedule c and allocation

aT to resource types:

|{n ∈N : aT(n) = rT ∧ c(n)≤ t ≤ c(n) + o(aT(n))}| ≤ b(rT)

∀ rT ∈RT,∀ t ∈ [min
n∈NO

(c(n)), max
n∈NO

(c(n) + l(aT(n)))]. (5.19)

The set described by the first term in Equation 5.19 contains all nodes n ∈ N that

are bound to the same resource type rT at cycle t. The size of the set must be less or

equal to the number b(rT) of instances of the resource type rT. The condition must

hold for any cycle t = minn∈NO
(c(n)), maxn∈NO

(c(n) + l(aT(n))) within the schedule

of the DFG. The resource constraints are not violated if the condition holds for all

resource types rT ∈RT.

In this section it has been discussed, which parameters are important to de-

scribe the execution of a DFG on a datapath. It is a non-trivial problem to find

optimal parameters for resource binding and scheduling. These parameters include

the allocation aT to resource types, the allocation a to resource instances, and the

schedule function c. Overall, the execution of the DFG should have a low latency,

low resource use and, especially for reconfigurable modules, low reconfiguration

cost. Any parameter set is a trade-off between any of these objectives.

The problem of finding good solutions for these parameters has been studied

extensively in the past decades. Previously, the allocation and scheduling has been

optimized for execution latency, resource utilization and power consumption. In

this section we have introduced a cost function that describes the reconfiguration

cost. The cost function is based on our virtual architecture model.

Finally, we summarize our method to compute parameters for binding and sched-

uling.

Even though the scheduling and binding problems are interacting, it is possible

to divide them into successive processing steps. In this work we have adopted a

three-step approach to determine these parameters. At first, we perform resource

type binding. This step yields the resource types as well as constraints on the re-

source instances. It also provides vital parameters for the next step. Next, in the

scheduling step, an execution time is assigned to operations. The schedule function

is constrained by the data dependencies and precedence constaints, by the num-

ber of available resource instances, and the resource types chosen. With a known

schedule function, intermediate variables are inserted in the original DFG for all

data dependencies that fullfill the condition in Equation 5.15. Finally, the resource

instance binding is performed. Now, all operations and variables are mapped to re-

source instances. The resource instance binding is restricted by the parameters from

the resource type binding and the scheduling. The three-step approach guarantees

a feasible implementation of the DFGs, if no constraints on registers resources exist.

5.4. Reconfiguration Optimized Datapath Implementation 153

5.4 Reconfiguration Optimized Datapath

Implementation

High-level synthesis provides a large design space for scheduling and binding. Pre-

viously, the primary goal of HLS has been to achieve optimal implementations in

terms of resource usage, execution latency, delay, and power consumption. In this

work our primary aim is an implementation with minimal reconfiguration costs. In

the following we will discuss the effect the resource binding and scheduling on re-

configuration costs in Section 5.4.1. Several resource binding methods have been

developed in this work. We present methods to perform resource type binding in

Section 5.4.2 and an instance binding method in Section 5.4.3.

Both, implementation cost and reconfiguration cost have been described in the

context of HLS in Section 5.3.3. In summary, the implementation cost are deter-

mined by the device resources occupied by the datapath of each reconfigurable

module and the reconfiguration cost are determined by the differences in terms

of resource instances and interconnect.

5.4.1 Effects of Scheduling and Binding on Reconfigura-

tion Costs

The scheduling and binding steps determine the datapath implementations for the

DFGs and hence, the implementation costs and reconfiguration costs. Here, we

discuss how different decisions made at these steps can influence these costs. This

section serves a motivation for the strategies employed at the resource type binding

and resource instance binding steps.

The chosen resource type binding determines the kind of resources that are used

in each reconfigurable module and hence, which resource types are available to

exploit reuse. Moreover, the chosen resource types also control the kind of inter-

connect that is used to propagate data in the datapath. The resource type binding

decides, which operations may share the same resource instance and which data de-

pendencies may be mapped to the same interconnect. Thus, resource type binding

can have large impact on the resource instance binding. The effects can be put into

three categories:

Type binding variants Many operations can be bound to many different resource

types, which results in different solutions for the execution time, resource sharing

and datapath connectivity.

Port re-labelling In the datapath, each data dependency is mapped to a connection

between resource instances. Therefore a re-labelling of the port labels associated

with the data dependencies to the port labels associated with the datapath intercon-

nect is performed. The re-labelling occurs during resource type binding, because

154 Chapter 5. High-Level Synthesis for Reconfigurable Computing

here the allocation of DFG nodes to resource types is chosen.

Commutative operations For many resource types that implement arithmetic or

logical operations the re-labelling of ports is flexible, because the operations are

commutative. Hence, the datapath structure depends not only on the type of re-

source chosen, but also on the specific mapping.

The resource type binding obviously effects the scheduling and hence, the num-

ber of resource instances as well as the intermediate variables that must be intro-

duced after scheduling.

The resource type binding defines constraints for the scheduling and for the

resource instance binding. The constraints either allow or disallow the reuse of re-

sources. The actual resource reuse and the resulting reconfiguration costs are finally

determined by the resource instance binding step. The reuse is directly determined

by the allocation a of nodes in the DFGs to the set NA of resource instances in the vir-

tual architecture GA(NA,EA, . . .) (cf, Section 3.4.2, p. 62 and Section 5.3.3, p. 145).

If a resource or a connection is present in two reconfigurable modules, then it can

be reused and must not be reconfigured. The effect of the resource instance binding

on reuse can be measured instantly in the virtual architecture model.

5.4.2 Strategies for Resource Type Binding

It has been discussed in the previous section that the resource type binding serves

as an enabler to both intra- and inter-task sharing of resources and datapath inter-

connect. Operations that belong to different reconfigurable modules can reuse a

resource instance, if the operations have been mapped to the same resource type.

Furthermore, the chosen type binding presumes the interconnect that can po-

tentially be reused. Therefore the data dependencies e ∈ E in a DFG G(N ,E , . . .)

are allocated to connection types e′ ∈ E ′ in an image graph G′(N ′,E ′, . . .) by the

allocation function aT (cf. Section 5.3.3, p. 143) and the port re-labelling func-

tions as and ad (cf. Section 3.4.1, p. 59) as follows: e′ = (aT(s(e)), aT(d(e)), as(e),

ad(e)). Two data dependencies that are mapped to the same connection type, can

possibly mapped to the same interconnect in the VA. The realization of data depen-

dencies on the same interconnect is useful inside each reconfigurable module, be-

cause the interconnect complexity is reduced. Also, this interconnect may be reused

between different reconfigurable modules, which reduces reconfiguration costs.

In this work we evaluate two different strategies for resource type binding. In

one approach we minimize the number of allocated resource types over all DFGs.

In the other approach we minimize the number of connection types..

5.4. Reconfiguration Optimized Datapath Implementation 155

Minimum Number of Resource Types

The number of different resource types influences the intra-task as well as the inter-

task resource sharing possibilities. For example, an ALU offers more potential to be

shared by different operations than a simple resource type that can only perform

an addition operation. I.e. if resource types are chosen more general then there

are more operations that can be bound to such a type, hence the possibilities for

resource sharing are increased. This also increases the probability that interconnect

between resources can be re-used. In contrast, more general resource types tend to

require more device resources and a more complex control compared to specialized

types.

The resource type binding of the sets Ni of nodes from the DFGs Gi(Ni,Ei, . . .),

i ∈ NT to a minimal number of resource types can be formulated as an ILP, which

can be solved to optimality. The ILP is shown in Program 3.

Program 3 Minimum Number of Resource Types

minimize: ∑

rT∈RT

(f1+ f2wLE(rT) + f3wS(rT))SrT
(5.20)

subject to:

∀n ∈N : 1=
∑

∀rT:(n,rT)∈ER

Sn,rT
(5.21)

∀rT ∈RT : SrT
=
∨

∀n:(n,rT)∈ER

Sn,rT
(5.22)

where:

SrT
, Sn,rT

∈ {0, 1} (5.23)

The starting point to formulate the ILP is the resource graph GR(N ,RT,ER) de-

fined in Definition 5.1, p. 143. We model the binding to resource types as follows:

We introduce a binary variable Sn,rT
, n ∈ N , rT ∈ RT for each edge (n, rT) ∈ ER.

Equation 5.21 ensures that each node n is bound to exactly one resource type rT.

Whether a resource type rT is used in the datapath or not is determined by the bi-

nary variable SrT
. A resource type rT will be used in any datapath if at least one

operation is bound to that type and thus, SrT
is set to 1. Finally the number of used

resource types minimized in the objective function.

Minimum Number of Connection Types

In an alternative approach, we seek to minimize the number of connection types.

The aim is to enable as much interconnect sharing as possible. Note that, if two data

156 Chapter 5. High-Level Synthesis for Reconfigurable Computing

dependencies are allocated to equal connection types, then those data dependencies

can possibly share an interconnect in the datapath. In particular we minimize the

connection types that are introduced by the resource type binding. Again, this prob-

lem is described as ILP.

Program 4 Minimum Number of Connection Types

minimize:
∑

e′∈E ′
(f4+ f5wW(e

′))Se′ (5.24)

subject to:

∀n ∈N : 1=
∑

∀rT∈RT:(n,rT)∈ER

Sn,rT
(5.25)

∀e′ = (rT,1, rT,2, p1, p2) ∈ E
′ : Se′ =
∨

e∈E ,
(n1,rT,1),(n2,rT,2)∈ER:

p1=as(e)∧p2=ad(e)

Sn1,rT,1
∧ Sn2,rT,2

(5.26)

where:

Sn,rT
, Se′ ∈ {0, 1} (5.27)

The objective of the ILP aims to minimize the number of different connection

types. The Equation 5.25 ensures that all nodes are bound to exactly one resource

type. We define a binary variable Se′ for any possible connection type e′ ∈ E ′.
The constraint in Equation 5.26 assigns a 1 to the binary variable Se′ if corre-

sponding connection type e′ is present in the solution and 0 if not. A connection

type e′ is chosen, if any edge e ∈ E in G(N ,E , . . .) is allocated to the edge e′ ∈ E ′

in G′(N ′,E ′, . . .). Hence, the or-operator (
∨

) iterates over all edges e ∈ E and all

possible allocations (n1, rT,1) ∈ ER, (n2, rT,2) ∈ ER of the source node n1 = s(e) and

the drain node n2 = d(e). If both, the allocation of the source node and of the drain

node are chosen, which is indicated by the binary variables Sn1,rT,1
and Sn2,rT,2

, then

the connection type is chosen by setting the Se′ = 1.

The Program 4 is much more complex than Program 3 in terms of generated con-

straints. The number of resource types results only from the mapping of individual

nodes to possible resource types. In contrast, the number of connection types results

from the mapping of data dependencies, which results from the combination of the

mapping of the individual nodes. In the experiments in Section 5.5 we will deter-

mine, which method results in lower reconfiguration costs for the reconfigurable

modules.

5.4. Reconfiguration Optimized Datapath Implementation 157

5.4.3 Strategies for Resource Instance Binding

The type binding step aims to provide reasonable constraints to the scheduling and

instance binding steps. Type binding is based only on strategies that were designed

to enable resource and interconnect reuse between configurations. In contrast, the

resource instance binding determines the structure of the datapath in detail.

The number of required resource instances to realize each DFG is determined

by the scheduling step. However in this section we discuss several options how

the number of resource instances in the VA can be defined. The resource instance

binding may benefit from more resource instances, because the number of resource

instances has a severe impact on the allocation of DFG nodes and data dependencies.

This is mainly due to the required dataflow multiplexers.

Next, we introduce a model that describes the constraints presented in Sec-

tion 5.3.5. Finally we introduce a simulated annealing (SA) based algorithm to

actually perform the resource instance binding with the given constraints and the

cost functions defined in Section 5.3.3.

Resource Instances in the VA

In our approach the minimum number of required resource instances b are known

after the scheduling step. However, the scheduling defines this number for a single

DFG only. Moreover it can be useful to apply different strategies on how many

resource instances are available in the virtual architecture (VA) that is used for

the resource instance binding. Before those strategies are explained in detail, we

reconsider the function b after scheduling: For any DFG Gi(Ni,Ei, . . .) and a resource

type rT ∈RT the number of required resource instances is given by bi(rT).

Now we compute how many resource instances are required in the VA GA(NA,

EA, . . .) for a set NT of tasks. Following that, we compute how many resource in-

stances are required if no intra-task resource sharing is applied.

Resource instances based on scheduling constraints During scheduling, the min-

imum number of required resource instances for the DFG of each task i ∈NT is de-

termined. Now we compute how many resource instances of each type are required

for each reconfigurable module and for the VA in order to perform the resource

instance binding.

Again, we imply a set M of reconfigurable modules m ∈ M. The set NT,m

denotes all tasks that are realized on the reconfigurable module m.

In each reconfigurable module the dominant resource requirement above all

tasks in that module must be satisfied. It follows that for each reconfigurable mod-

ule, there must be as many resource instances provided of each resource type, as

there are needed by the maximum requirement of a task. Thus the number bm(rT)

of instances of the resource type rT that is required by the reconfigurable module m

158 Chapter 5. High-Level Synthesis for Reconfigurable Computing

a b

d

d

bc+

+

(a)

DFG 1

DFG 2

d

+

a c b

(b)

Datapath 1

a c b

d

+ +

(c)

Datapath 2

Figure 5.7: Dataflow control and resource sharing, cf. Example 5.6. (a) shows an excerpt

from a DFG and (b),(c) depict two possible realizations on a datapath.

is given by:

bm(rT) = max
i∈NT,m

bi(rT). (5.28)

Note that a reconfigurable module may use occupy FPGA resources for resource

instances that are used in some, but not all tasks that are realized in this module.

Similarly, the VA must provide enough resource instances of each type such that

the requirement of the largest reconfigurable module can be satisfied. The number

of resource instances of required any resource type rT ∈RT in the VA are given by:

bVA(rT) =max
m∈M

bm(rT) =max
i∈NT

bi(rT). (5.29)

The allocation of only minimal resource instances in each reconfigurable mod-

ule often requires that resources are shared between nodes in the DFG. This results

frequently in additional multiplexers for the dataflow control. In FPGAs, large mul-

tiplexers require more resources than basic ALU functions. Hence the total number

of FPGA resources required by a reconfigurable module can be less, when more

computational resources are allowed.

Resource instances with no intra-task resource sharing The problem of dataflow

control can be alleviated if more resource instances are provided for resource in-

stance binding than absolutely necessary. Then the binding algorithm can decide

whether to apply resource sharing or not.

The problem of dataflow control overhead can not be completely resolved in all

cases by avoiding resource sharing, as explained in Example 5.6. Hence, the binding

algorithm must be able to find a balanced solution, given that there are sufficient

resource instances available.

Example 5.6 This example illustrates that dataflow multiplexers can be necessary,

even though resource sharing is avoided.

5.4. Reconfiguration Optimized Datapath Implementation 159

Consider the DFG excerpts in Figure 5.7(a). The operation nodes ’+’ in both DFGs

use the variables a–c as input and write the output both to variable ’d’.

Figure 5.7(b) shows a datapath realization with resource sharing. Both operations

are mapped to one resource ’+’. As a benefit, computational resources are saved as well

as the dataflow control at the register ’d’. The input data on one port of resource ’+’ is

selected by the dataflow control.

Alternatively, Figure 5.7(c) avoids resource sharing by mapping each operation to

an individual resource instance. However, the result of both operations is written to the

same register ’d’, which makes it necessary to implement a dataflow multiplexer again.

The number of instances of a resource type rT ∈ RT that are required to realize

the DFG Gi(Ni,Ei, . . .) of a task i ∈NT with no resource sharing is given by:

bi(rT) = |{n ∈Ni : aT(n) = rT}|. (5.30)

Again, the number of resource instances in the reconfigurable modules and in the

VA are given by the Equations 5.28 and 5.29.

We have discussed different possibilities of how many resource instances shall

be included in the VA. The availability of these instances is only a prerequisite for

different binding strategies. The number of resource instances that are available

at the binding step define the size of the VA. During instance binding it will be

calculated how many resources are actually used in each configuration; the VA is

not necessarily utilized completely by any reconfigurable module. Moreover, the re-

source instances in the VA define the space for optimizations at the resource instance

binding step.

Allocation Constraints

The scheduling restricts the resource sharing. The restrictions are expressed as re-

source conflicts in Equation 5.18, p. 151. Resource conflicts can be represented in

either a conflict graph or the inverse representation, the compatibility graph [91].

Here, we define a conflict graph GC(N ,EC)where the nodes n ∈N are connected

by an edge e ∈ EC if they must not be bound to the same resource instance. The

edges in the conflict graphs are given by:

EC = {(ni, n j), ni, n j ∈ N : ni 6= n j ∧ c(ni) ≤ c(n j) ≤ c(ni) + o(aT(ni))}. (5.31)

Hence, any combination of nodes (ni, n j), where the execution time of node n j falls

into the execution time interval of node ni, results in an edge in the conflict graph.

Resource conflicts occur only between the nodes of one DFG, because our execution

model assumes that tasks are executed sequentially on the reconfigurable modules.

Note that the use of resource instances in a configuration is secondary objective.

Primarily we focus on the overall hardware resource demand and reconfiguration

costs, when the resource instance binding is done.

160 Chapter 5. High-Level Synthesis for Reconfigurable Computing

Resource Instance Binding with Simulated Annealing

In our HLS, the resource instance binding is performed with simulated annealing

(SA). In Section 3.5.2 we have already described how to use an SA based algorithm

to optimize the allocation of nodes for low reconfiguration cost. Therefore in this

section, we describe only the key aspects of the SA algorithm. First we describe how

the initial solution is obtained. Second, we explain the permutation of the solution

such that resource conflicts are avoided. Third, the employed cost function is given.

The inputs to the SA algorithm are:

the input graphs Gi for each task i ∈NT,

the set M of reconfigurable modules,

the tasks i ∈NT,m that are assigned to a reconfigurable module m ∈M,

the allocation aT of nodes n ∈Ni to resource types rT ∈RT,

the conflict graph GC(N ,EC), and

the set NA of resource instances of the VA graph GA(NA,EA, . . .).

The SA algorithm computes the allocation a of nodes to resource instances and

the interconnect EA of the VA. Thereby, the SA algorithm aims to achieve minimal

implementation cost and reconfiguration cost.

The port re-labelling is defined by the resource type binding (cf. Section 5.3.3,

p. 143). The edge allocation ae is derived from the allocation a and the port re-

labelling, cf. Section 3.4.1, p. 60.

Initial Solution The initial solution of the allocation a is computed e.g. with the

Left-Edge algorithm [37][91].

However, if resource sharing prohibited, then Algorithm 7 can be used to gain

an initial solution. Assume there is a set N ′′ that contains all nodes that do not

share resource instances. The set N ′′ contains e.g. all nodes n ∈Ni of one task iNT

or all nodes n ∈
⋃

i∈NT,m
Ni of all tasks implemented in a reconfigurable module m.

The nodes of the set N ′′ are successively assigned to a resource instance taken from

a set P of resource instances. The set P of resource instances initially contains all

instances NA that are available. If a resource instance r is allocated by a node n,

this instance is removed from the set P .

Algorithm 7 Resource Instance Binding without Resource Sharing

1: P = NA; // initialize the pool of resources

2: for ∀n ∈N ′′ do

3: r = select(P , aT(n));

4: a(n) = r;

5: P = P \ r;

6: end for

5.4. Reconfiguration Optimized Datapath Implementation 161

Permutation of the Solution The current solution is defined by the allocation a. The

current solution is permutated by changing the allocation of DFG nodes to resource

instances. This permutation must be performed consistently with the conflict graph.

In order to compute a permutation of the allocation, a node n ∈ Ni is selected

randomly from any task i ∈ NT. In the current solution, the node n is allocated to

the resource instance r = a(n) with the resource type rT = aT(n). For the node n,

a new allocation a′(n) := r ′ is chosen from the set Rn \ {r} of available resource

instances r ′ ∈ Rn \ {r}, where Rn contains all resource instances of the resource

type given by aT(n).

Now, other nodes may require a new allocation if resource conflicts arise from

the allocation a′(n) := r ′. We observe that the permutation effects only nodes that

are allocated to either r or r ′. The nodes that are allocated to r are given by the set

N1 = {n ∈Ni : a(n) = r} and the nodes that are allocated to r ′ are given by the set

N ′
1
= {n ∈Ni : a(n) = r ′}. We define a set E ′

C
⊂ EC that contains any edge between

the nodes N1 and N ′
1
.

The nodes that must be re-allocated for the chosen permutation are now given

by the nodes N2 ⊂ N1 and N ′
2
⊂ N ′

1
. The sets N2,N ′

2
contain all nodes that can be

reached by any path contained in the graph G(N1 ∪N
′
1
,E ′

C
) that originates in n.

A conflict free permutation from a(n) = r to a′(n) := r ′ involves the permutation

of all nodes N2,N ′
2
:

∀n ∈N2 : a′(n) := r ′ (5.32)

∀n ∈N ′
2

: a′(n) := r (5.33)

All other nodes are not affected by this permutation. Example 5.7 illustrates the

permutation of node allocations.

Example 5.7 In Figure 5.8(a) a conflict graph for the nodes A–I is shown. The current

allocation to the resource instances r and r ′ is shown in Figure 5.8(b).

The binding of node F shall be changed from r to r ′, without inferring resource

conflicts. Therefore all nodes allocated to r are denotes as N1 and all nodes allocated

to r ′ are denotes as N ′
1
. Only the nodes N2 = {D, F} and the nodes N ′

2
= {G} are

connected to node F. Thus in Figure 5.8(c) the nodes in N2 are now allocated to r ′ and

the node in N ′
2

is now allocated to r.

As it can be seen, the new allocation a′ in Figure 5.8(c) is also conflict free. The

nodes A,B,C,E,H, and I are not effected by the permutation.

The permutation of nodes is more complex for resource instance binding than

the method described in Section 3.5.2. The method described earlier assumed that

any nodes that belong to the same task, must be permutated. However the method

described now considers the conflict graph.

Note that the resource binding of the nodes is gently modified by this permuta-

tion. The effect on the connections can be more severe, because each node infers

multiple connections in the datapath.

162 Chapter 5. High-Level Synthesis for Reconfigurable Computing

D

F

D

F

A

G

A

D

I

G

H

E

C

A B B

E

I

F G

I

E

B

Conflict Graph

(a) (b) (c)

Allocation a Allocation a’

rr r ′r ′

N1 N ′
1

N2 N ′
2

Figure 5.8: Example for conflict free permutation.

Calculation of the Cost Function The cost function is calculated from the alloca-

tion a, which represents the current solution in the SA algorithm. We use a cost

function C that combines implementation costs Cdp defined in Equation 5.6 and

reconfiguration costs t defined in Equation 5.11:

C = t +
1

|M|

∑

M

Cdp. (5.34)

The factors f1– f10 allow a tuning of the cost function for different objectives. Hence,

the SA algorithm can optimize the allocation a for implementation costs, reconfigu-

ration costs or both.

Now we describe how the cost function is computed from the allocation in more

detail. The allocation a describes, which nodes n ∈ Ni of the tasks i ∈ NT are

allocated to which nodes n′ ∈ NA in the virtual architecture GA(NA,EA, . . .). Thus,

from the allocation we can directly compute the implementation costs Cres for the

resource instances (cf. Equation 5.7, p. 147).

The connectivity and the required dataflow multiplexers are a secondary result

of the allocation. The interconnect edges e ∈ EA in the VA are derived from the

allocation a. The implementation costs Cwire (Equation 5.9, p. 147) for the intercon-

nect are derived from the set EA,m ⊂ EA of edges that are used by a reconfigurable

module m. The implementation costs Cmux (Equation 5.8, p. 147) for the dataflow

multiplexers are derived similarly.

The reconfiguration costs for resource instances and interconnect are computed

5.5. Experiments 163

from the differences in the device configurations d(m1) and d(m2) of any two recon-

figurable modules m1, m2 ∈M (cf. Section 5.3.3, p. 148). The device configurations

are given by the utilization of the VA by the reconfigurable modules.

The SA algorithm can be implemented straightforward. The conflict graph en-

sures that only valid solutions are generated, because the initial solution is valid

and each permutation ensures that the new solution is also valid. The changes in

the interconnect that result from the permutation of the resource instance allocation

result in a complex update of the VA interconnect. Hence the computation of the

cost function becomes expensive compared to the simple permutation of the cur-

rent solution. Nevertheless the SA implementation provides quality results for the

computed datapaths as we will see on a series of examples in Section 5.5.

5.5 Experiments

In the previous section we have developed a range of methods to optimize the im-

plementation of tasks in terms of implementation and reconfiguration cost. In this

section we present a series of experiments, where our HLS tool has been used to gen-

erate reconfigurable modules for different applications. The results are presented in

this section together with an in-depth analysis of the implementation and reconfigu-

ration cost. The experimental results allow a direct comparison of the cost between

established solutions and our method. The experiments clearly demonstrate the ad-

vantages of our methodology compared to previous methods. We reveal how the

results of our HLS tool can be applied in order to realize the novel reconfiguration

methods proposed in Section 5.2. Further we show which methods for type binding

and instance binding are to be preferred.

This section is structured as follows: First we summarize the binding methods

that have been employed and determine the necessary cost factors for the cost func-

tion in the optimization in Sections 5.5.1 and 5.5.2. Second we formulate four

implementation scenarios that describe to use of our tool according to the proposed

reconfiguration methods in Section 5.5.3. Third, we briefly describe the character-

istics of the benchmark applications (Section 5.5.4). In Section 5.5.5 we present the

results that have been obtained for the implementation scenarios. Finally in Sec-

tion 5.5.6 we discuss the results and extrapolate the results towards more complex

applications.

5.5.1 Summary of Binding Methods and Tool Setup

In the Sections 5.4.2 and 5.4.3 we described several methods for resource type

binding and resource instance binding. In our experiments we used our HLS to

implement several benchmark set. Each benchmark set has been implemented with

164 Chapter 5. High-Level Synthesis for Reconfigurable Computing

different combinations of type binding and instance binding methods. This allows

us to analyze the performance of each combination in terms of implementation

costs and reconfiguration costs. With our results it is possible to identify the best

combination of resource type binding and resource instance binding depending on

the system requirements.

Resource Type Binding

Resource type binding can be done with one of the methods described in Sec-

tion 5.4.2. The methods choose the resource types such that either the cost for

resource types (Equation 5.20) or the cost for connect types (Equation 5.24) is re-

duced. In addition, we generated results with a method that simply assigns the

module type with minimal cost to each operation.

The cost optimization has been applied to a either single task or to all tasks at the

same time. Hence we optimized the types used in an individual task or the types

used over all tasks. When considering the tasks individually, intra-task resource

sharing is improved but inter-task resource sharing of the types is neglected. If all

tasks are considered at the same time, then an overall optimization is achieved. The

investigated resource type binding methods are listed below:

1. Choose the module type with minimal cost for each operation in a task.

2. Minimize the cost for module types for each task individually.

3. Minimize the cost for both, module types and connect types for each task

individually.

4. Minimize the cost for module types over all tasks.

5. Minimize the cost for both, module types and connect types over all tasks.

Resource Instance Binding

The implementation and reconfiguration cost are finalized with the resource in-

stance binding. We investigated several optimization targets during this step that

were combined with the different type binding methods. The results that have been

obtained depend on the combination of both steps. The different objectives for the

resource instance binding step are:

1. Minimize the implementation cost for module instances and interconnect in-

dividually for each task.

2. Minimize the implementation cost for module instances and interconnect for

all tasks merged into one datapath.

3. Minimize the reconfiguration cost for module instances.

4. Minimize the reconfiguration cost for module instances and interconnect.

5.5. Experiments 165

The methods are selected such that the results will illustrate the range of possible

realizations with different implementation and reconfiguration cost trade-offs.

5.5.2 Cost Factors

The modules and interconnect used in a datapath configuration cause different kind

of cost, which makes a global optimization of all parameters difficult. Common so-

lutions to this problem are the use of multiobjective optimization or the use of a

weighted cost function that describes a global optimization target. In our experi-

ments we choose the second option to simplify the optimization. The general cost

function that has been used in the SA algorithm for the resource instance binding is

given in Equation 5.34.

The different binding methods are realized by using different factors f1– f10 (cf.

Table 5.2) in cost function, in order to perform the optimization with different ob-

jectives. The weights of the cost functions are given in Table 5.3. The weighting of

the resource and interconnect cost has been chosen for the following reasons: The

use of a resource type or instantiation introduces a penalty f1 = f4 = f6 = f9 = 1 on

the implementation or reconfiguration of that resource. For resources we emphasize

use of device resources by setting the f2 = f7 = 2. The factor for the control wires is

set such that the cost of an interconnect is equal to the cost of a resource with the

same word length, i.e. f5 = f10 = 1.

Table 5.3: Setup of the factors f1– f10 used in the computation of the implementation and

reconfiguration cost for different binding methods in Section 5.5.1. The symbol ‘–’ means

that the factor is not applied in this type of optimization.

resource

instance and

multiplexer†

cost

interconnect

cost

resource

instance re-

configuration

cost

interconnect

reconfiguration

cost

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Type Binding 1 1 2 1 0 0 – – – – –

Type Binding 2 1 2 1 0 0 – – – – –

Type Binding 3 1 2 1 1 1 – – – – –

Type Binding 4 1 2 1 0 0 – – – – –

Type Binding 5 1 2 1 1 1 – – – – –

Instance Binding 1 1 2 1 1 1 0 0 0 0 0

Instance Binding 2 1 2 1 1 1 – – – – –

Instance Binding 3 0 0 0 0 0 1 2 1 0 0

Instance Binding 4 0 0 0 0 0 1 2 1 1 1

† Multiplexer cost are not considered during type binding.

166 Chapter 5. High-Level Synthesis for Reconfigurable Computing

5.5.3 Implementation Scenarios

In Section 5.2 we have described new methods that take advantage of HLS in order

to realize tasks on reconfigurable modules. In order to demonstrate the effect of

our HLS tool, we specify four different implementation scenarios A–D based on

these concepts. The scenarios include static as well as dynamically reconfigurable

solutions. With the implementation scenarios it is possible to compare traditional

implementation methods with the new methods developed in this work.

The implementation and reconfiguration cost presented here reflect the cost that

appear when the datapaths of the reconfigurable modules are implemented as de-

scribed in the scenarios. We will describe how these cost are computed for each

scenario.

A: Static, Parallel Implementation

Scenario A represents the classical way to implement the HW tasks on an FPGA.

All tasks are realized concurrently on the device. Each task occupies it’s own set of

resources including logic resources, memory or bus interface logic. This scenario

is used if the tasks need to run concurrently or if no dynamic reconfiguration is

available in the device. In this scenario the utilization of occupied device resources

is low if the tasks are not required to run at the same time. Hence, this method lead

to inefficient implementations.

The implementation cost CA are given by the sum of the costs of the different

modules, cf. Equation 5.6. We assume that each task i ∈ NT is assigned to an

individual module m, i.e. NT,m = {i}, m= 1, . . . , |NT|, i ∈NT (cf. p. 145):

CA =
∑

m∈M

Cdp,m. (5.35)

Obviously the cost for dynamic reconfiguration are zero in a static implementation.

For a static parallel solution the tasks are usually optimized for size individually,

independent of the other tasks.

B: Static, Sequential Implementation

In Section 5.2.1 we proposed to implement multiple tasks in one reconfigurable

module. Accordingly, in scenario B we assume that all tasks of one benchmark ap-

plication are implemented in one datapath. Thus no dynamic reconfiguration is

required. Instead, the control unit executes the different tasks on the static data-

path. Since all tasks are executed on the same datapath resources, they can not

run concurrently but only sequentially. This scenario may require considerable less

resources and is more efficient if the tasks are not required to run concurrently. The

5.5. Experiments 167

control memory may hold the control data for all tasks at once. Alternatively the

control data can be loaded dynamically for each task before the task is executed.

The implementation cost CB are the cost for the single static datapath that can

realize all tasks. Hence, all tasks are considered to belong to one (static) module,

i.e. NT,1 =NT. The reconfiguration cost are now:

CB = Cdp,1. (5.36)

Again a static implementation causes no dynamic reconfiguration costs.

C: Reconfiguration without Reuse of Resources

Scenario C assume a full partial reconfiguration between reconfigurable modules.

It reflects the established use of dynamic reconfiguration, whereas the datapath is

considered as a single unit which is reconfigured completely. The reuse of resource

instances and interconnect between reconfigurable modules is not considered. The

tasks can be executed only sequentially and must be configured on the device be-

forehand. The reconfigurable scenario C can require considerable less resources

than the scenarios A and B, because each datapath contains only resources that are

needed by a single task. The downside are the configuration costs.

The implementation cost CC are computed as the average implementation cost

over all reconfigurable modules:

CC =
1

|M|

∑

m∈M

Cdp,m. (5.37)

In scenario C, there is assumed that the datapath is completely reconfigured. There-

fore, the average reconfiguration cost RC are equal to the average implementation

cost of a reconfigurable modules:

RC = CC. (5.38)

D: Reconfiguration with Reuse of Resources

In order to reduce the reconfiguration costs we propose the reuse of resources be-

tween different reconfigurable modules. The potential of this technique is analyzed

in scenario D. This scenario is the same as scenario C except that the datapath is

not considered as a single unit. Here we assume that resources from the previous

reconfigurable modules are reused by the new reconfigurable module. With dy-

namic reconfiguration, the only new resource instances and interconnect are added

to the datapath. This overwrites the configuration of now unused resources from

the previous reconfigurable module.

168 Chapter 5. High-Level Synthesis for Reconfigurable Computing

The implementation cost are computed as in scenario C:

CD =
1

|M|

∑

m∈M

Cdp,m. (5.39)

Now, the average reconfiguration cost are computed according to the reconfigu-

ration cost model (cf. Equation 3.4):

RD = t. (5.40)

As expected, the focus of implementation cost and reconfiguration cost is dif-

ferent for each scenario. Hence we would like to identify the preferred methods of

type binding and instance binding for each scenario.

The scenarios A–C may lead to the least cost if the datapath is optimized in terms

of logic resources used for operations and multiplexer logic. It is assumed that the

datapath implementation is not limited by interconnect resources. In scenario A

the tasks can be optimized independent of each other, because inter-task reuse of

resources is not applicable. Scenario B is likely to benefit from intra-task as well as

inter-task reuse. In scenario C the reconfiguration costs are of primary concern, but

they are equivalent to the implementation costs of the tasks. Hence the independent

optimization of the tasks serves both objectives at the same time. The preferred

binding method for scenario A and C will be the same.

In scenario D the major aim is to reduce reconfiguration cost. Hence, the best

implementation may be achieved if the intra-task and the inter-task resource reuse

is considered in the binding method. Depending on the target architecture, the

reconfiguration cost for either the resource instances or for the interconnect are

dominant.

The scenarios A and C represent the established methods to realize HW tasks

and static or reconfigurable modules. The scenarios B and D are available through

our new methods.

The basic properties of the different scenarios are summarized in Table 5.4. The

table also shows, which binding methods have been employed for each scenario in

our experiments.

5.5.4 Benchmark Characteristics

Currently, there are no well established benchmarks designed for reconfigurable

computing systems. Similarly to the area of HLS, the benchmarks are often taken

from popular benchmark sets from the embedded systems and multimedia domain,

e.g. the MediaBench suite [51]. The results that can be found in the literature often

refer to some extracted, computing extensive kernels of those benchmarks. The

exact definition of those kernels is usually not given. Moreover there is no common

5.5. Experiments 169

Table 5.4: Properties of the scenarios A–D and the use of the binding methods.

Scenario A B C D

Concurrent Execution of Tasks Ø – – –

Dynamic Control Memory possible – Ø Ø Ø

Dynamic Datapath Reconfiguration – – Ø Ø

Reuse of Resources between Tasks – Ø – Ø

Type Binding Method

1 Ø Ø Ø Ø

2 Ø Ø Ø Ø

3 Ø Ø Ø Ø

4 – Ø – Ø

5 – Ø – Ø

Instance Binding Method

1 Ø Ø Ø Ø

2 – Ø – –

3 – – – Ø

4 – – – Ø

method to measure of resource usage, timing, and reconfiguration cost. Hence, it is

difficult to compare results to other work.

Instead we generate benchmark results with our HLS tool such that the results

resemble the outcomes of established implementation methods (scenarios A,C).

These results can be then rightfully compared to the results obtained with our new

methodology (scenarios B,D).

The benchmark consist of several task sets. Each task set contains tasks that

might be used in a real reconfigurable system. The tasks within one set are assumed

to be reconfigured against each other. Thus the tasks provide a good example on

how our methodology can be employed in practice. In Table 5.5 the characteristics

of the tasks are given in more detail. The table contains information on how many

tasks are present in each task set and about the complexity of the CDFG of each

task. These kind of tasks can be found in many similar work on HLS.

The benchmark ADPCM contains an ADPCM encoder and decoder from the

MediaBench suite. EDGE contains three different Sobel edge detection filters: a

combined horizontal and vertical filter, a horizontal only, and a vertical only filter.

JPEG_DCT consists of tasks that perform an integer based forward discrete cosine

transform (DCT) and a task for the backward transform. Both tasks are also taken

from MediaBench. The JPEG_DCT represents the most complex task set in terms of

operations per CDFG. Finally the RGB_YUV describes a colour conversion from RGB

colour space to the YUV colour space and vice versa, this function is used in many

image and video coding applications.

In general, the all tasks are implemented such that one task is realized in one

reconfigurable module, except for scenario B.

170 Chapter 5. High-Level Synthesis for Reconfigurable Computing

Table 5.5: Characteristics of the tasks.

Task Set Task Basic

Blocks

Operations Variables Data

Dependencies

Control

States

ADPCM
adpcm_encode 35 126 24 199 101

adpcm_decode 29 105 24 161 89

EDGE

sobel_hv 9 113 36 204 38

sobel_h 9 100 33 177 38

sobel_v 9 100 33 175 38

JPEG_DCT
jpeg_dct 6 178 43 378 120

jpeg_idct 9 267 59 563 198

RGB_YUV
ycrcb2rgb 3 26 16 32 22

rgb2ycrcb 3 24 13 28 24

5.5.5 Benchmark Results

Our HLS tool has been run on all task sets using the aforementioned binding meth-

ods. From the immediate results we computed the implementation and reconfig-

uration cost for each scenario. In this section we present the results in detail and

provide an in-depth analysis. In order to prove the efficiency of our approaches we

will answer the following questions regarding the proposed implementation scenar-

ios and binding methods:

What is the improvement achieved with the proposed binding methods?

What are the benefits of the new implementation scenarios compared to pre-

vious approaches?

What is the trade-off between resource requirements and reconfiguration cost

in a reconfigurable implementation?

We will also investigate, which combination of binding methods yields the best

quality of results and discuss the implications on the runtime of our prototype HLS

tools.

The type binding methods have been developed with assumptions of the intra-

task and inter-task reuse of resources. The benchmark data provide hints to what

extend the assumed reuse is actually exploited during instance binding.

Analysis of Results

The benchmark results are analyzed for each scenario separately here in order to

understand which binding method achieves the best results. Again, for the sce-

narios A and B only the implementation cost are relevant. In the scenarios C and

5.5. Experiments 171

D the reconfiguration cost in terms of resources and interconnect are the primary

optimization objective.

In the following figures, all results are plotted with the determined cost (CA,

CB, CC, CD, RC, RD) at the y-axis. The x-axis is labelled with the pair of the used

combination of resource type binding, resource instance binding method as it is given

in Section 5.5.1.

Scenario A In scenario A all datapaths are implemented concurrently. We expected

that if the DFG operations are bound to common module types, then intra-task reuse

would lead to the most resource efficient datapath. For the selected benchmarks

this could not be validated. Instead, type binding method 1 leads to the best overall

results (cf. Figure 5.9). It can be seen that the differences in the results achieved

with different binding methods are very small. It may be possible that the advantage

of smaller and more specialized resource types selected by resource type method 1

outweights the potential resource sharing that is enabled by the other resource type

binding methods 2 and 3 with more general resource types.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1

D
ev

ic
e

R
es

ou
rc

es
 [S

lic
e]

(Type Binding, Instance Binding)

Resource Instances Dataflow Multiplexer

RGB_YUVJPEG_DCTEDGEADPCM

Figure 5.9: Resource requirements for both resource instances and dataflow multiplexers

for the datapaths in scenario A.

Scenario B In scenario B all tasks are implemented in a single datapath. The re-

sults for the resource use in this scenario is shown in Figure 5.10. It can be observed

that the resource use of the combined datapath is considerably reduced by using in-

stance binding method 2, which takes advantage of the inter-task resource sharing.

172 Chapter 5. High-Level Synthesis for Reconfigurable Computing

The reduction is achieved to a large extend by reducing the datapath multiplex-

ers. Hence, the method reuses the module instances such that the interconnect is

reduced as well.

It seems that the impact of the chosen type binding method is relatively small,

as already observed in scenario A.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1,
1

1,
2

2,
1

2,
2

3,
1

3,
2

4,
1

4,
2

5,
1

5,
2

1,
1

1,
2

2,
1

2,
2

3,
1

3,
2

4,
1

4,
2

5,
1

5,
2

1,
1

1,
2

2,
1

2,
2

3,
1

3,
2

4,
1

4,
2

5,
1

5,
2

1,
1

1,
2

2,
1

2,
2

3,
1

3,
2

4,
1

4,
2

5,
1

5,
2

D
ev

ic
e

R
es

ou
rc

es
 [S

lic
e]

(Type Binding, Instance Binding)

Resource Instances Dataflow Multiplexer

RGB_YUVJPEG_DCTEDGEADPCM

Figure 5.10: Resource requirements for both resource instances and dataflow multiplex-

ers for the datapaths in scenario B.

Scenario C Full reconfiguration of the datapath is assumed in scenario C. In this

scenario, only one reconfigurable module is configured in the FPGA at a time.

This reduces the average resource use dramatically (cf. Figure 5.11(a)). In Fig-

ure 5.11(b) the number of reconfigurable Slices of the datapath is shown. Note

that we included only the Slices associated with the resource instances here, for

better comparison with scenario D. The amount multiplexer logic can be seen in

Figure 5.11(a) as well.

Similar to scenario A, the chosen type binding method has very little influence

on the overall results.

Scenario D In scenario D the datapath implementation is intended to minimize

the reconfiguration cost. According to scenario C the instance binding method 1

achieves the lowest resource use of the datapath, but this is not the objective in this

scenario. It serves as a starting point to evaluate the efficiency of our new instance

binding methods.

The instance binding methods 1, 3, and 4 yield to very different results in both

resource use and resource reconfiguration: Method 1 achieves the best results in

5.5. Experiments 173

terms of resource use. With this method, there is already some unintended reuse

of datapath resources, because the synthesis tool uses a common set of resource

instances. This can be seen by comparing the number of Slices used for resource

instances (Figure 5.12(a)) and the number of Slices that are reconfigurable (Fig-

ure 5.12(b)).

The number of slices for the reconfigurable modules is dramatically reduced

when reconfiguration costs are the primary objective during instance binding (cf.

method 3 and 4). Our results clearly show that only a small amount of Slices must

be reconfigured when the datapath is adapted to different tasks. The improvement

is more the 50 % compared to the unintended reuse of datapath resources, for the

benchmarks ADPCM and EDGE it is even higher. If we compare the reconfigurable

Slices to the overall use of Slices for the resource instances (cf. Figure 5.16(b)),

it can be seen that only a small fraction of Slices (typically below 10 %) must be

actually reconfigured in order to realize a new reconfigurable module on the device.

The differences in the results obtained for the instance binding methods 3 and 4

show a clear advantage for method 4. With instance binding method 4 we achieve

better results in terms of device resource usage and reconfiguration of resources. In

scenario D the type binding method has some influence on the results. Type binding

method 5 achieves the best results in terms of reconfiguration costs whereas method

1 yields the lowest use of device resources.

The results are confirmed when the interconnect use and interconnect reconfig-

uration is considered (cf. Figure 5.13). The results clearly show the advantage of

instance binding method 4. With this method a very low amount of reconfigurable

interconnect with little overhead in the datapath wiring is obtained.

Datapath Control

Another measure to assess the quality of results is the length of the datapath control

word, that is needed to control the resource instances and dataflow multiplexers.

Thus, the control word length allows a relative comparison of the required memory

in the control unit.

We observe that the control word length is directly correlated with the occupied

datapath resources. Larger datapath implementations require wider control words.

The results shown in Figure 5.14 support our statement. Note that the cost for

datapath control has been included in the cost function, cf. Table 5.3. The number

of control states is equal for all realizations.

Datapath Delay

In our experiments we used a commercial synthesis tool (Xilinx XST) to estimate

the minimum delay of the datapath (cf. Figure 5.15). The delay estimation of the

synthesized netlist is usually not very accurate, because the placement and routing

174 Chapter 5. High-Level Synthesis for Reconfigurable Computing

is not considered by the synthesis tool. The expected error in the estimation is about

10 % compared to the final implementation.

Our results show a similar signal delay for most combinations of the binding

methods. The results are in the expected range of datapath delay for a Xilinx VirtexII

architecture. It can be seen that the most complex application (JPEG_DCT) has

the largest datapath delay (typically below 12 ns) and the less complex application

(RGB_YUV) has a very low datapath delay (typically below 5 ns).

5.5.6 Discussion

For now we have studied the results obtained for each scenario in detail. Here

we take the opportunity to summarize our findings and to answer the three major

questions raised in the beginning of Section 5.5.5. In Figure 5.16(a–f), a comparison

of results for all scenarios is shown.

In scenario B we have shown that a global optimization of the merged datapath

can lead to a reduction of the datapath logic resources of up to 50 % compared to

a naive reuse approach. The reduction is achieved by reusing operation modules

as well as steering logic for the datapath control. As a result, the static datapath

becomes much smaller compared to the parallel implementation of tasks at no cost

for dynamic reconfiguration.

In scenario C the resource requirements are reduced compared to scenario A by

using dynamic partial reconfiguration of the whole datapath. It allows to reduce

the resource requirements of the datapath at the cost of a full reconfiguration of all

involved logic and interconnect. However, in our examples the advantage in terms

of resource requirements is small compared to scenario B.

With scenario D we have shown that the overhead in reconfiguration costs can

be dramatically reduced if the datapath is optimized for reconfiguration. Our results

show that essentially there is a very small amount of logic that must be reconfigured

in order to change the functionality of the datapath.

Our results suggest that there is a large trade-off between the implementation

costs and the reconfiguration costs. The instance binding methods 1, 3, and 4 result

in two extremes of the implementation costs/reconfiguration costs plane. Method

1 optimizes only for implementation costs and achieves some reuse of logic and in-

terconnect as a by-product, while the methods 3 and 4 optimize only for the recon-

figuration costs and still achieve acceptable results for the datapath implementation

costs. We are confident that our method can lead to many more attractive results

between both extremes by choosing appropriate weights in the cost function.

The current design points that can be achieved with the chosen weights are

shown in Figure 5.17. The x-axis corresponds to the relative resource use of a solu-

tion compared to the result of scenario C using type and instance binding method

1. The y-axis corresponds to the relative module reconfiguration cost computed

5.5. Experiments 175

for the same setting. Note that the diagram contains all generated solutions, even

the ones that are non-optimal in either metric. The results look very similar for all

benchmarks. Scenario C results in solutions with highest reconfiguration cost, but

low resource use and static scenario B yields solutions with a largest datapaths and

no reconfiguration cost. Scenario D yields many solutions in between. It can be

observed that solutions with lower reconfiguration cost tend to use only few more

resources.

It is interesting that the resource advantage of dynamic reconfiguration is rather

limited when compared to our approach of merged datapaths, even in the best case.

However we expect that the results would be different if benchmarks with more

reconfigurable tasks would be used.

In the following we would like to discuss the qualitative behaviour of the differ-

ent cost metrics for larger task sets. We assume that the tasks within a set are of

similar size. In scenario A the resource use and memory requirements will grow lin-

early with the number of tasks and the datapath delay remains constant. Scenario

B will show a more moderate increase in resource use and memory requirements,

because more and more functionality may be shared between tasks at the cost of

additional interconnect. A similar trend has been discussed in Section 3.5.3: the

expected qualitative increase will be similar to Figure 3.13(a) and 3.13(b). Merging

more tasks into one datapath also means that the datapath becomes more complex

and hence, the datapath delay will increase.

In scenario C the resource use, the memory requirements, and the average recon-

figuration time will remain almost constant even if the number of tasks increases.

What really increases is the memory footprint of the reconfiguration data. Thus, if

more reconfigurable tasks are used then the cap in the resource demands between

scenario A and scenario C, D will grow.

The trend in the cost metric for scenario D will be somewere between scenario

A and C, depending on the chosen cost function parameters during binding. It

is either possible to obtain solutions with low resource use similar to scenario C,

but more reconfiguration cost in terms of Slices and interconnect—or to obtain a

solution with more static elements but larger datapaths. In general we expect a

growth of reconfiguration cost in scenario D when the number of tasks is increased,

because the binding algorithms need to compromise the resource and interconnect

reuse between more and more tasks. The behaviour has already been observed in

Figure 3.14(a) and 3.14(b). A sketch of the general trends is shown in Figure 5.18.

In Section 5.2.2 we considered the adaptation of a datapath with different re-

configuration mechanisms. Now we show the implementation and reconfiguration

cost trade-off that results for our benchmark applications.

We consider scenario B as a solution that achieves the adaptation of the datapath

by runtime control. Scenario B achieves a single cycle control of the datapath func-

tionality, but sacrifices more resources to implement the dataflow control. Moreover

176 Chapter 5. High-Level Synthesis for Reconfigurable Computing

a fraction of resource instances is only used by some of the tasks.

Scenario C realizes only the minimal datapath control that is necessary to run

a single task. Device reconfiguration is used to adapt the datapath to a new task.

In scenario D it is assumed that as many resources and interconnect of a datapath

should be reused in a new reconfigurable module. Our results indicate that this can

result in a less resource efficient datapath implementation compared to scenario C.

In principle it would be possible to generate datapath that are a hybrid solution

between scenario B and scenario D: each reconfigurable module may contains some

unused resource instances in order to reduce the overall reconfiguration cost. This

solution does not seem reasonable for the presented examples, because the gap

between the scenario B and the scenario D is small. The reconfiguration-optimized

solution for scenario D requires almost as many resources as the merged datapath

in scenario B.2

Finally, we want to analyze the results obtained for scenario D more critical.

From the presented results and the discussion of Figure 5.18 it seems that the oppor-

tunities to take advantage of scenario D can be limited, especially when compared

to scenario B. One may object for scenario D that:

1. Dynamic reconfiguration does decrease resource usage compared to a static

implementation (scenario B) only to a limited extend.

2. The datapath implementation with maximum reuse between reconfigurable

modules may require as many resources as a static implementation.

3. When the number of tasks increases, the reuse is likely to decrease, thus re-

configuration cost will increase and approach that of full reconfiguration (sce-

nario C).

In the following we will discuss the objections raised above.

Objection (1) is actually caused by the results presented for the merged data-

paths (scenario B). Before our study there was no direct comparison available for

these two implementation scenarios. When the comparison between a static and

dynamically reconfigurable implementation was made, the basis has always been

scenario A and scenario C. In this work we offer the merged datapath implemen-

tation as a design point which in fact narrows the gap between static and recon-

figurable solutions. Still, scenario B has disadvantages compared to a dynamically

reconfigurable solution: the datapath resource and memory requirements increase

with the number of merged tasks and—due to increased complexity of the merged

datapath–the maximum achieveable clock frequency is less than those for a smaller,

dynamically reconfigurable implementation.

Regarding objection (2), the cost function used in scenario D results in the so-

lution with the least possible reconfiguration cost. There exist many solutions in

2Note that scenario D is not optimized for resource use.

5.6. Summary 177

between, which may achieve a different trade-off between implementation and re-

configuration cost.

The efficiency of the resource reuse raises objection (3). As a solution, we pro-

pose that our methods should be used such that they best fit the application. Some

general considerations have been discussed in Section 5.2. A real reconfigurable ap-

plication provides several aspects that can be exploited. At first, reconfiguration is

not required between all tasks. Thus, the binding does not need to produce a datap-

ath that decreases the reconfiguration cost between any two tasks, but only between

tasks that are reconfigured against each other. Second, not all tasks have the same

potential for resource reuse. Third, the datapath of the tasks can differ significantly

in size. Hence there are tasks that can be merged into the same datapath at a small

increase in resource cost only and others that can not. The merging of some tasks

can be performed until the limit of available device resources is exceeded. The tech-

nique reduces the number of necessary device reconfigurations and further allows

to balance the size of the different reconfigurable modules, thus avoiding internal

fragmentation.

In summary, our methods provide a solution for the implementation of reconfig-

urable systems that give the best possible balance between resource requirements

and cost for dynamic reconfiguration.

5.6 Summary

In this chapter we have described new methods for HLS that consider the recon-

figuration cost during the implementation of tasks. We presented our tool flow,

which is able to perform HLS of C-based functions to reconfigurable modules. The

reconfigurable modules are based on an architecture template that provides several

possibilities to integrate runtime device reconfiguration. We developed new con-

cepts how runtime reconfiguration can be applied to these modules. We proposed

the realization of multiple tasks in one reconfigurable module. Furthermore we pro-

posed the concept of multi-level reconfiguration, which is based on the idea that as

many parts as possible are reused in different reconfigurable modules. The concepts

result in different implementation and reconfiguration cost trade-offs.

In order to facilitate the reuse between modules, we integrated our reconfig-

uration cost model and the virtual architecture model in a newly developed HLS

tool. We proposed several methods on how to perform resource type binding and

resource instance binding. The objective of these methods is the synthesis of dat-

apaths that result in reconfigurable modules with minimal reconfiguration costs.

Therefore we proposed a resource type binding that considers all tasks at the same

time in order to select common resource types and common interconnect types for

all tasks. These common types enable an efficient resource instance binding step.

Here, we proposed the use of our virtual architecture model in order to perform a

178 Chapter 5. High-Level Synthesis for Reconfigurable Computing

simultaneous binding for all tasks. Our reconfiguration cost model allows an op-

timization of the resource instance binding in terms of reconfiguration cost. The

result of our HLS tool are reconfigurable modules that exploit the reuse of datapath

resources as much as possible and thus, can be reconfigured at low cost.

Finally we have performed several experiments with our HLS tool. We have

shown that our new method provides a significant advantage over established ap-

proaches. Our results prove that our HLS tool can be used to implement more

efficient datapaths: one method allows the realization of many tasks in one static

module, without the need for dynamic reconfiguration. A second method realizes

datapaths in reconfigurable modules that achieve very low reconfiguration costs.

5.6. Summary 179

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1

D
ev

ic
e

R
es

ou
rc

es
 [S

lic
e]

(Type Binding, Instance Binding)

Resource Instances Dataflow Multiplexer

RGB_YUVJPEG_DCTEDGEADPCM

(a) Resource requirements for both resource instances and data-

flow multiplexers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1 1,1 2,1 3,1

R
ec

on
fig

ur
ab

le
 D

ev
ic

e
R

es
ou

rc
es

 [S
lic

e]

(Type Binding, Instance Binding)

RGB_YUVJPEG_DCTEDGEADPCM

(b) Reconfiguration cost assuming full reconfiguration of resource

instances.

Figure 5.11: Results of the datapath implementation using scenario C.

1
8

0
C

h
a

p
te

r
5

.
H

ig
h

-L
e
v

e
l
S

y
n

th
e

s
is

fo
r

R
e

c
o

n
fi

g
u

ra
b

le
C

o
m

p
u

tin
g

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Device Resources [Slice]

(T
ype B

inding, Instance B
inding)

R
esource Instances

D
ataflow

 M
ultiplexer

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(a
)

R
e
s
o
u
rc

e
re

q
u
ire

m
e
n
ts

fo
r

b
o
th

re
s
o
u
rc

e
in

s
ta

n
c
e
s

a
n
d

d
a
ta

fl
o
w

m
u
ltip

le
xe

rs
.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Reconfigurable Device Resources [Slice]

(T
ype B

inding, Instance B
inding)

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(b
)

R
e
c
o
n
fi
g
u
ra

tio
n

c
o
s
t

a
s
s
u
m

in
g

p
a
rtia

l
re

c
o
n
fi
g
u
ra

tio
n

o
f

re
s
o
u
rc

e
in

s
ta

n
c
e
s
.

F
ig

u
re

5
.1

2
:

R
e

s
u

lts
o

f
th

e
d

a
ta

p
a

th
im

p
le

m
e

n
ta

tio
n

u
s
in

g
s
c
e

n
a

rio
D

.

5
.6

.
S

u
m

m
a

ry
1

8
1

 0

 2000

 4000

 6000

 8000

 10000

 12000
1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Interconnect [Wire]

(T
ype B

inding, Instance B
inding)

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(a
)

In
te

rc
o
n
n
e
c
t

w
ire

s
.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Reconfigurable Interconnect [Wire]

(T
ype B

inding, Instance B
inding)

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(b
)

R
e
c
o
n
fi
g
u
ra

b
le

in
te

rc
o
n
n
e
c
t

w
ire

s
.

F
ig

u
re

5
.1

3
:

N
u

m
b

e
r
o

f
d

a
ta

p
a

th
in

te
rc

o
n

n
e

c
t
a

n
d

re
c
o

n
fi
g

u
ra

b
le

in
te

rc
o

n
n

e
c
t
in

s
c
e

n
a

rio

D
.

1
8

2
C

h
a

p
te

r
5

.
H

ig
h

-L
e
v

e
l
S

y
n

th
e

s
is

fo
r

R
e

c
o

n
fi

g
u

ra
b

le
C

o
m

p
u

tin
g

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200
1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Datapath Control Word Width [Bit]

(T
ype B

inding, Instance B
inding)

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

F
ig

u
re

5
.1

4
:

T
h

e
a
ve

ra
g

e
w

id
th

o
f
th

e
d

a
ta

p
a

th
c
o

n
tro

l
w

o
rd

in
s
c
e

n
a

rio
D

.

 0 2 4 6 8

 10

 12

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

1,1
1,3
1,4
2,1
2,3
2,4
3,1
3,3
3,4
4,1
4,3
4,4
5,1
5,3
5,4

Minimum Period [ns]

(T
ype B

inding, Instance B
inding)

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

F
ig

u
re

5
.1

5
:

M
in

im
u

m
p

o
s
s
ib

le
c
lo

c
k

p
e

rio
d

o
f

th
e

d
a

ta
p

a
th

in
s
c
e

n
a

rio
D

.
L

o
w

e
r

va
lu

e
s

c
o

rre
s
p

o
n

d
to

h
ig

h
e

r
c
lo

c
k

fre
q

u
e

n
c
ie

s
.

5
.6

.
S

u
m

m
a

ry
1

8
3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

Device Resources [Slice]

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(a
)

M
o
d
u
le

in
s
ta

n
c
e
s

a
n
d

d
a
ta

fl
o
w

m
u
lti-

p
le

xe
rs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

Device Resources [Slice]

R
esource Instances

R
econfigurable R

esource Instances R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(b
)

 0

 50

 100

 150

 200

 250

 300

 350

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

A: 1,1
B: 1,2
C: 1,1
D: 1,4

Datapath Control Word Width [Bit]

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(c
)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

Interconnect [Wire]

Interconnect
R

econfigurable Interconnect

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(d
)

 0 2 4 6 8

 10

 12

A: 1,1

C: 1,1

D: 1,4

A: 1,1

C: 1,1

D: 1,4

A: 1,1

C: 1,1

D: 1,4

A: 1,1

C: 1,1

D: 1,4

Minimum Period [ns]

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(e
)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

A: 1,1

B: 1,2

C: 1,1

D: 1,4

Binding Runtime [sec]

R
G

B
_Y

U
V

JP
E

G
_D

C
T

E
D

G
E

A
D

P
C

M

(f)
A

lg
o
rith

m
ru

n
tim

e
fo

r
ty

p
e

b
in

d
in

g
a
n
d

in
s
ta

n
c
e

b
in

d
in

g
.

F
ig

u
re

5
.1

6
:

C
o

m
p

a
ris

o
n

o
f
re

s
u

lts
o

b
ta

in
e

d
w

ith
s
e

le
c
te

d
b

in
d

in
g

m
e

th
o

d
s

fo
r

s
c
e

n
a

rio
s

A
–

D
.

184 Chapter 5. High-Level Synthesis for Reconfigurable Computing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
el

at
iv

e
R

ec
on

fig
ur

ab
le

 R
es

ou
rc

e
In

st
an

ce
s

Relative Resource Instances

ADPCM, B
ADPCM, C
ADPCM, D

EDGE, B
EDGE, C
EDGE, D

JPEG_DCT, B
JPEG_DCT, C
JPEG_DCT, D

RGB_YUV, B
RGB_YUV, C
RGB_YUV, D

Figure 5.17: Implementation and reconfiguration cost trade-offs discovered by our in-

stance and type binding methods. The data of each application was scaled by the solution

computed for scenario C, type and instance binding method 1.

No. of Tasks

C

R
ec

on
fig

ur
at

io
n

C
os

t

C

A

B

No. of Tasks

R
es

ou
rc

e
U

se

(a) (b)

D

D

Figure 5.18: Expected utilization of device resources and reconfiguration cost for an in-

creasing number of tasks for the scenarios A–D.

Chapter 6

Summary and Outlook

In this work we described several methods to reduce the reconfiguration overhead

in FPGAs. The reconfiguration overhead has a severe impact on the efficiency of

reconfigurable systems-on-a-chip. In fact, the gain obtained by the utilization of

formerly temporary-unused FPGA resources is degraded by the required reconfigu-

ration time and the memory footprint of configuration data. We developed several

design and implementation methods that can be used to reduce reconfiguration time

and configuration data by increasing the similarity between configurations.

In previous works, it is frequently assumed that reconfiguration overhead de-

pends on the frequency of runtime reconfiguration and on the size of the reconfig-

urable area. This is a general assumption made in scheduling and placement algo-

rithms. Other researchers observed that reconfiguration overhead can be reduced,

when the similarities between tasks are considered. However, there has been no

general approach to identify the similarity between configurations. Furthermore

there has been no unified model that links the similarity between configurations

with the reconfiguration overhead. In this work we have shown that both the simi-

larity and the reconfiguration overhead are highly interrelated.

We established a reconfiguration cost model, which is based on the reconfigu-

ration state graph. The reconfiguration state graph reflects the fact that reconfig-

uration is performed between predefined configurations. Our reconfiguration cost

model takes into account the individual cost for the reconfiguration of individual

reconfigurable elements. Thus the reconfiguration cost model assumes a fine grain

reconfiguration of reconfigurable elements instead of the full reconfiguration of a

reconfigurable module. We have shown that there is a distinct difference between

the cost associated with reconfiguration time and configuration data. Our model

can be directly applied to compute the reconfiguration cost for binary configuration

data.

We have introduced a virtual architecture model in order to be able to assess the

reconfiguration cost for structural representations, too. The aim of this model is to

establish a relation between the elements of the structural representations. The re-

185

186 Chapter 6. Summary and Outlook

lation is then used to evaluate the reconfiguration cost at structural level. Therefore

the reconfigurable elements of the structural representations are allocated to a ele-

ments of a virtual architecture. We introduced a new approach for the optimization

of reconfiguration cost that can be applied to all several levels in the design flow

using structural representations. The inherent relationship between the mapping

to a virtual architecture and the reconfiguration cost has been used to find optimal

allocations that minimize reconfiguration cost. Our methodology requires a new

class of implementation constraints to be integrated in the implementation tools.

Reconfigurable elements of different configurations that are allocated to the same

resource in the virtual architecture must be assigned to the same resource in the

FPGA, too.

We presented several general optimization methods that can be used to compute

an allocation of reconfigurable elements such that the reconfiguration cost are mini-

mal. In an initial experimental investigation we have shown that the reconfiguration

time and the configuration data can be reduced considerably with an optimized al-

location.

The methodology has been refined and adapted to the specific requirements

for the mapping of synthesized netlists to device specific netlists. We were able

to show that the estimated reconfiguration time for interconnect could be reduced

to less than 28 % for synthesized netlists, when a fine grained reconfiguration is

assumed. Our mapping tool could improve these results even further: for the device

specific netlists, the reconfiguration costs are less than 17 % compared to a full

reconfiguration of interconnect.

Another major contribution of this work is the development of a high-level syn-

thesis tool for reconfigurable modules. We described how the reconfigurable mod-

ules can be realized such that they can be reconfigured at low cost. Therefore we

proposed to integrate the functionality of several hardware tasks in one module and

the reconfiguration of the modules at different levels. We have developed several

methods for the optimized synthesis of the reconfigurable modules’ datapaths. For

this purpose we applied our virtual architecture model and the reconfiguration cost

function to the high-level synthesis process. With a number of examples we have

shown that our tool delivers cost efficient solutions that could not be obtained by

previous methods. The integration of multiple hardware tasks results in compact,

but flexible modules that are very resource efficient compared to previous solutions.

No device reconfiguration is required between the integrated hardware tasks. Our

tool can also synthesize datapaths that are optimized in terms of reconfiguration

costs. We have shown that the resulting datapaths have a very similar structure.

The reconfiguration time for resources is typically less than 10 % and for intercon-

nect it is typically less than 26 % compared to the results obtained with existing

methods. Moreover we have illustrated that there exists a trade-off between imple-

mentation cost and reconfiguration cost. This trade-off can be exploited with our

tool in order to meet the requirements of the application.

187

In Figure 6.1 it is illustrated how our tools can be integrated into a complete

RSOC design flow.

Configuration Data

Reconfigurable
Modules

Similarity
Information

Similarity
Extraction

High−Level Synthesis

TasksLibrary

Compiler

HW TasksSW Tasks

Application

HW/SW Partitioning

RTL Coding

Synthesized Netlists

Synthesis

Place and Route

Bitstream Generation

Similarity Information

Device Specific Netlists

Device Mapping

Figure 6.1: The proposed design flow. The highlighted design steps have been described

in this work.

In hardware/software partitioning the application is divided into software and

hardware tasks, which is done usually manually by a system design expert. The

software tasks are implemented with a programming language and compiled into a

software library.

188 Chapter 6. Summary and Outlook

The hardware task are implemented either manually in an RTL coding step or

with an high-level synthesis tool from a behavioural description. Such a tool is pre-

sented in this work. At present, the designer chooses what tasks are integrated into

what reconfigurable modules and between which reconfigurable modules dynamic

reconfiguration is required. However, in future work this decision could be part of

the optimization in the tool. Furthermore it might be possible to divide tasks auto-

matically into different reconfigurable modules in order to adhere to tight resource

constraints.

Our high-level synthesis tool provides detailed similarity information to the de-

vice mapping tool. For manually implemented RTL code, these information can

be obtained with our tool for similarity extraction. Our device mapping tool takes

advantage of the provided similarity information.

In the future, currently available place-and-route tools must be extended in order

to respect the placement constraints generated by our device mapping tool. If this

has been done, then the effect of our design flow on reconfiguration cost can be

observed for binary configuration data.

With the completion of this work, we established a unique model for the op-

timization and evaluation of reconfiguration cost at all levels of the design flow.

Although there remain some minor modifications to existing tools to be done, our

tools provide the key functionality that is required for future developments.

Bibliography

[1] Handel-C Language Reference Manual, [On-

line], Agility Design Solutions Inc., 2008,

www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf.

[2] A. Ahmadinia, C. Bobda, and J. Teich, “A dynamic scheduling and placement

algorithm for reconfigurable hardware,” in Workshop on Organic and Perva-

sive Computing at International Conference Architecture of Computing Systems

(ARCS 2004), ser. Lecture Notes in Computer Science, vol. Volume 298. Hei-

delberg, Germany: Springer, February 2004, pp. 443–465.

[3] “www.altera.com,” [Online], Altera Inc., 2009, http://www.altera.com.

[4] J. Angermeier, M. Majer, J. Teich, L. Braun, T. Schwalb, P. Graf, M. Hübner,

J. Becker, E. Lubbers, M. Platzner, C. Claus, W. Stechele, A. Herkersdorf,

M. Rullmann, and R. Merker, “SPP1148 booth: Fine grain reconfigurable

architectures,” in International Conference on Field Programmable Logic and

Applications (FPL 2008), Heidelberg, Germany, September 2008, p. 348.

[5] J. Angermeier and J. Teich, “Heuristics for scheduling reconfigurable devices

with consideration of reconfiguration overheads,” in IEEE International Sym-

posium on Parallel and Distributed Processing (IPDPS 2008), Miami, FL, April

2008, pp. 1–8.

[6] D. Aravind and A. Sudarsanam, “High level - application analysis techniques

& architectures - To explore design possibilities for reduced reconfigura-

tion area overheads in FPGAs executing compute intensive applications,” in

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS

2005), Denver, CO, April 2005.

[7] L. Babel, “A fast algorithm for the maximum weight clique problem,” Com-

puting, vol. 52, no. 1, pp. 31–38, March 1994.

[8] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt,

“PACT XPP - a self-reconfigurable data processing architecture,” The Journal

of Supercomputing, vol. 26, no. 2, pp. 167–184, September 2003.

189

www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.altera.com

190 Bibliography

[9] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement

for reconfigurable computing systems,” IEEE Design and Test of Computers,

vol. 17, no. 1, pp. 68–83, Jan–Mar 2000.

[10] C. Bobda and A. Ahmadinia, “Dynamic interconnection of reconfigurable

modules on reconfigurable devices,” IEEE Journal on Design and Test of Com-

puters,, vol. 22, no. 5, pp. 443–451, Sept.–Oct. 2005.

[11] C. Bobda, Introduction to Reconfigurable Computing: Architectures, algorithms

and applications. Dordrecht, The Netherlands: Springer, 2007.

[12] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, J. Teich, S. P. Fekete,

and J. van der Veen, “The Erlangen Slot Machine: A highly flexible FPGA-

based reconfigurable platform,” in IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2005), Napa, CA, April 2005, pp. 319–

320.

[13] M. Boden, T. Fiebig, M. Reiband, P. Reichel, and S. Rülke, “GePaRD - A high-

level generation flow for partially reconfigurable designs,” in IEEE Computer

Society Annual Symposium on VLSI (ISVLSI ’08), Montpellier, France, April

2008, pp. 298–303.

[14] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Na-

jjar, “Mapping a single assignment programming language to reconfigurable

systems,” The Journal of Supercomputing, vol. 21, no. 2, pp. 117–130, Febru-

ary 2002.

[15] G. Brebner, “A virtual hardware operating system for the Xilinx 6200,” Field-

Programmable Logic, Smart Applications, New Paradigms and Compilers, (FPL

1996), vol. 1142, pp. 327–336, September 1996.

[16] G. Chen, M. Kandemir, and U. Sezer, “Configuration-sensitive process sched-

uling for FPGA-based computing platforms,” in Design, Automation and Test

in Europe Conference and Exhibition (DATE 2004), Paris, France, 2004, pp.

486–493.

[17] C. Claus, F. Müller, and W. Stechele, “Combitgen: A new approach for creat-

ing partial bitstreams in Virtex-II Pro devices,” in Workshop on Dynamically

Reconfigurable Systems at the International Conference on Architecture of Com-

puting Systems (ARCS 2006), ser. GI Lecture Notes in Informatics, March

2006, pp. 122–131.

[18] C. Claus, J. Zeppenfeld, F. Müller, and W. Stechele, “Using partial-run-time

reconfigurable hardware to accelerate video processing in driver assistance

Bibliography 191

system,” in Design, Automation and Test in Europe Conference and Exhibition

(DATE 2007), Nice, France, April 2007, pp. 1–6.

[19] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, and J. Becker, “A multi-

platform controller allowing for maximum dynamic partial reconfiguration

throughput,” in International Conference on Field Programmable Logic and

Applications (FPL 2008), Heidelberg, Germany, Sept. 2008, pp. 535–538.

[20] C. Claus, F. H. Müller, J. Zeppenfeld, and W. Stechele, “A new framework to

accelerate Virtex-II Pro dynamic partial self-reconfiguration,” in IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS 2007), Long

Beach, CA, March 2007, pp. 1–7.

[21] K. Compton and S. Hauck, “Configurable computing: A survey of systems

and software,” Department of Electrical and Computer Engineering, North-

western University, USA; Department of Electrical Engineering, University of

Washington, USA, Tech. Rep., 1999.

[22] “Cray XD1 supercomputer,” http://www.cray.com, Cray Inc., 2004.

[23] A. Dandalis and V. Prasanna, “Configuration compression for FPGA-based em-

bedded systems,” IEEE Transactions on Very Large Scale Integration Systems,

vol. 13, no. 12, pp. 1394–1398, December 2005.

[24] A. DeHon, “Reconfigurable architectures for general-purpose computing,”

Massachusetts Institute of Technology, Artificial Intelligence Laboratory,

Tech. Rep. 1586, 1996.

[25] O. Diessel and H. ElGindy, “On scheduling dynamic FPGA reconfigurations,”

in The 5th Australasian Conference on Parallel and Real-Time Systems (PART

’98). Adelaide, Australia: Springer Verlag, September 1998, pp. 191–200.

[26] F. Dittmann and S. Frank, “Caching in real-time reconfiguration port schedul-

ing,” in International Conference on Field Programmable Logic and Applications

(FPL 2007), Amsterdam, The Netherlands, August 2007, pp. 740–744.

[27] ——, “Hard real-time reconfiguration port scheduling,” in Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE 2007), Nice, France,

April 2007, pp. 1–6.

[28] EIA/EDIF, “Edif version 2 0 0,” ANSI/EIA Standard 548-1988, March 1988.

[29] G. Estrin, “Organization of computer systems - The fixed plus variable struc-

ture computer,” in Western Joint Computer Conference, New York, NY, USA,

1960, pp. 33–40.

192 Bibliography

[30] C. Fraser and D. Hansen, A Retargetable C Compiler: Design and Implementa-

tion, C. Fraser and D. Hansen, Eds. Addison Wesley, 1995.

[31] C. W. Fraser, “A retargetable compiler for ANSI C,” SIGPLAN Notices, vol. 26,

no. 10, pp. 29–43, 1991.

[32] W. Fu and K. Compton, “An execution environment for reconfigurable com-

puting,” in 13th Annual IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM 2005), Napa, CA, April 2005, pp. 149–158.

[33] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented FPGA

computing in the Streams-C high level language,” in IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM 2000), Napa Valley,

CA, April 2000, pp. 49–56.

[34] M. Gokhale and P. S. Graham, Reconfigurable computing, M. Gokhale, Ed.

Springer, 2005.

[35] M. Gotz and F. Dittmann, “Reconfigurable microkernel-based RTOS: Mecha-

nisms and methods for run-time reconfiguration,” in IEEE International Con-

ference on Reconfigurable Computing and FPGA’s (ReConFig 2006), San Luis

Potosi, , Mexico, September 2006, pp. 1–8.

[36] R. Hartenstein, “A decade of reconfigurable computing: A visionary retro-

spective,” in Design, Automation and Test in Europe Conference and Exhibition

(DATE 2001), Munich, Germany, 2001, pp. 642–649.

[37] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel assign-

ment within large apertures,” in 8th Workshop on Design automation (DAC

’71). New York, NY, USA: ACM, 1971, pp. 155–169.

[38] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the Xilinx

XC6200 FPGA,” in IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM 1998), Napa Valley, CA, April 1998, pp. 138–146.

[39] S. Hauck, “Configuration prefetch for single context reconfigurable coproces-

sors,” in ACM/SIGDA sixth International Symposium on Field Programmable

Gate Arrays (FPGA 1998), Monterey, CA, 1998, pp. 65–74.

[40] J. Heron, R. Woods, S. Sezer, and R. Turner, “Development of a run-time

reconfiguration system with low reconfiguration overhead,” The Journal of

VLSI Signal Processing, vol. 28, no. 1–2, pp. 97–113, May 2001.

[41] H. Hinkelmann, P. Zipf, and M. Glesner, “A metric for the energy-efficiency

of dynamically reconfigurable systems,” in Workshop on Dynamically Recon-

figurable Systems at the 19th International Conference on Architecture of Com-

puting Systems (ARCS ’06), Frankfurt am Main, Germany, March 2006.

Bibliography 193

[42] Z. Huang and S. Malik, “Managing dynamic reconfiguration overhead in

systems-on-a-chip design using reconfigurable datapaths and optimized in-

terconnection networks,” in Design, Automation and Test in Europe Conference

and Exhibition (DATE 2001), Munich, Germany, March 2001, pp. 735–740.

[43] M. Hübner, C. Schuck, and J. Becker, “Elementary block based 2-dimensional

dynamic and partial reconfiguration for Virtex-II FPGAs,” in 20th Interna-

tional Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes

Island, Greece, April 2006.

[44] M. Hübner, M. Ullmann, F. Weissel, and J. Becker, “Real-time configuration

code decompression for dynamic FPGA self-reconfiguration,” in 18th Inter-

national Parallel and Distributed Processing Symposium (IPDPS 2004), Santa

Fe, NM, April 2004.

[45] D. Huffman, “A method for the construction of minimum-redundancy codes,”

in Proceedings of the I.R.E., September 1952, pp. 1098–1102.

[46] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “REPLICA: A bitstream ma-

nipulation filter for module relocation in partial reconfigurable systems,” in

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS

2005), Denver, CO, April 2005.

[47] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, Eds. New York, NY,

USA: Springer, 1972, pp. 85–103.

[48] I. Kennedy, “Exploiting redundancy to speedup reconfiguration of an FPGA,”

in 13th International Conference on Field-Programmable Logic and Applications

(FPL 2003), ser. LNCS, vol. 2778, Lisbon, Portugal, September 2003, pp.

262–271.

[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, 4598, pp. 671–680, May 1983. [Online].

Available: http://citeseer.ist.psu.edu/kirkpatrick83optimization.html

[50] D. Kissler, F. Hannig, A. Kupriyanov, and J. Teich, “A highly parameteriz-

able parallel processor array architecture,” in IEEE International Conference

on Field Programmable Technology (FPT 2006). Bangkok, Thailand: IEEE,

December 2006, pp. 105–112.

[51] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool

for evaluating and synthesizing multimedia and communications systems,”

in Proceedings of the 30th International Symposium on Microarchitecture

(MICRO-30), Research Triangle Park, USA, December 1997, pp. 330–335.

http://citeseer.ist.psu.edu/kirkpatrick83optimization.html

194 Bibliography

[52] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs,” in 9th

Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM 2001), Rohnert Park, CA, 2001, pp. 147–159.

[53] M. Majer, J. Angermeier, and J. Teich, “Main page - ESM wiki,” [Online],

2009, http://www12.informatik.uni-erlangen.de/esmwiki.

[54] U. Malik and O. Diessel, “On the placement and granularity of FPGA config-

urations,” in IEEE International Conference on Field-Programmable Technology

(FPT2004), Brisbane, Australia, December 2004, pp. 161–168.

[55] ——, “The entropy of FPGA reconfiguration,” in International Conference on

Field Programmable Logic and Applications (FPL ’06), Madrid, Spain, August

2006, pp. 1–6.

[56] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, and A. De-

Hon, “Analysis of quasi-static scheduling techniques in a virtualized recon-

figurable machine,” in ACM/SIGDA tenth international symposium on Field-

programmable gate arrays (FPGA ’02). Monterey, CA: ACM, 2002, pp. 196–

205.

[57] A. S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks and

timing-driven packing to improve FPGA speed and density,” in ACM/SIGDA

seventh International Symposium on Field Programmable Gate Arrays (FPGA

’99). New York, NY, USA: ACM Press, 1999, pp. 37–46.

[58] “Arrix FPOA overview,” [Online], MathStar Inc., 2008,

http://mathstar.com/Documentation/Documentation0408/

FPOA_Overview_REL_Final_v1.7.pdf.

[59] “Catapult C synthesis,” [Online], Mentor Graphics, 2009,

www.mentor.com/c-based_design.

[60] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw Hill,

1994.

[61] N. Moreano, E. Borin, C. de Souza, and G. Araujo, “Efficient datapath

merging for partially reconfigurable architectures,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 7, pp.

969–980, July 2005.

[62] “FSB development platform - overview,” [Online], Nallatech Inc., 2008,

http://www.nallatech.com.

http://www12.informatik.uni-erlangen.de/esmwiki
http://mathstar.com/Documentation/Documentation0408/
FPOA_Overview_REL_Final_v1.7.pdf
www.mentor.com/c-based_design
http://www.nallatech.com

Bibliography 195

[63] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “Designing an

operating system for a heterogeneous reconfigurable SoC,” in International

Conference on Parallel and Distributed Processing Symposium (IPDPS 2003),

Nice, France, April 2003.

[64] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in 16th in-

ternational ACM/SIGDA symposium on Field programmable gate arrays (FPGA

’08). New York, NY, USA: ACM, 2008, pp. 264–264.

[65] T. Oppold, T. Schweizer, T. Kuhn, and W. Rosenstiel, “Cost functions for

the design of dynamically reconfigurable processor architectures,” in Work-

shop on Synthesis And System Integration of Mixed Information technologies

(SASIMI), Kanazawa, Japan, 2004, pp. 443–450.

[66] XPP-III Processor Overview, [Online], PACT XPP Technologies Inc., 2006,

http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf.

[67] J. H. Pan, T. Mitra, and W.-F. Wong, “Configuration bitstream compression for

dynamically reconfigurable FPGAs,” in IEEE/ACM International Conference on

Computer Aided Design (ICCAD 2004), San Jose, CA, November 2004, pp.

766–773.

[68] T. Pionteck, T. Staake, T. Stiefmeier, L. Kabulepa, and M. Glesner, “Design of

a reconfigurable AES encryption/decryption engine for mobile terminals,” in

International Symposium on Circuits and Systems (ISCAS ’04), vol. 2, Vancou-

ver, Canada, May 2004, pp. II–545–8.

[69] M. Platzner, N. Wehn, and J. Teich, Eds., Dynamically Reconfigurable Systems:

Architectures, Design Methods and Applications. Springer, 2009.

[70] K. P. Raghuraman, H. Wang, and S. Tragoudas, “A novel approach to mini-

mizing reconfiguration cost for LUT-based FPGAs,” in 18th International Con-

ference on VLSI Design, 2005., Kolkata, India, January 2005, pp. 673–676.

[71] D. Rakhmatov and S. B. K. Vrudhula, “Minimizing routing configuration cost

in dynamically reconfigurable FPGAs,” in 15th International Parallel and Dis-

tributed Processing Symposium (IPDPS 2001), San Francisco, CA, April 2001,

pp. 1481–1488.

[72] M. Reiband, “Optimierte netzlistengenerierung bei der high-level-synthese

anhand der layoutvorgaben für dynamisch rekonfigurierbare FPGAs,” Mas-

ter’s thesis, Technische Universität Dresden, July 2007.

[73] J. Resano, D. Mozos, D. Verkest, F. Catthoor, and S. Vernalde, “Specific

scheduling support to minimize the reconfiguration overhead of dynamically

http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf

196 Bibliography

reconfigurable hardware,” in 41st Design Automation Conference 2004 (DAC

2004), San Diego, CA, 2004, pp. 119–124.

[74] M. Rullmann and R. Merker, “Design and implementation of reconfigurable

tasks with minimum reconfiguration overhead,” in Dynamically Reconfigur-

able Architectures Workshop at 19th International Conference Architecture of

Computing Systems (ARCS 2006), Frankfurt/Main, Germany, March 2006,

pp. 132–141.

[75] ——, “Maximum edge matching for reconfigurable computing,” in Recon-

figurable Architectures Workshop at 20th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS 2006), Rhodes, Greece, April 2006.

[76] ——, “A reconfiguration aware circuit mapper for FPGAs,” in Reconfigurable

Architectures Workshop at the 21st IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2007), 14th, 2007.

[77] ——, “A cost model for partial dynamic reconfiguration,” in International

Conference on Embedded Computer Systems: Architectures, Modeling and Sim-

ulation (IC-SAMOS), W. Najjar and H. Blume, Eds., Samos, Greece, July 2008,

pp. 182–186.

[78] ——, “Synthesis of efficiently reconfigurable datapaths for reconfigurable

computing,” in International Conference on Field-Programmable Technology

2008 (ICFPT ’08), Taipeh, Taiwan, December 2008, pp. 277–280.

[79] ——, Dynamically Reconfigurable Systems: Architectures, Design Methods and

Applications. Springer, 2009, ch. Design Methods and Tools for Improved

Partial Dynamic Reconfiguration, Marco Platzner and Norbert Wehn and Jür-

gen Teich eds.

[80] M. Rullmann, R. Merker, H. Hinkelmann, P. Zipf, and M. Glesner, “An in-

tegrated tool flow to realize runtime-reconfigurable applications on a new

class of partial multi-context FPGAs,” in International Conference on Field

Programmable Logic and Applications (FPL 2009), Prague, Czeck Republic,

September 2009.

[81] M. Rullmann, S. Siegel, and R. Merker, “Optimization of reconfiguration

overhead by algorithmic transformations and hardware matching,” in Recon-

figurable Architectures Workshop at the 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS 2005), Denver, CO, April 2005, pp.

151–156.

[82] S. Sezer, J. Heron, R. Woods, R. Turner, and A. Marshall, “Fast partial recon-

figuration for FCCMs,” in IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM 1998), Napa Valley, CA, April 1998, pp. 318–319.

Bibliography 197

[83] “SGI RASC RC100 blade,” [Online], SGI, 2008,

http://www.sgi.com/pdfs/3920.pdf.

[84] N. Shirazi, W. Luk, and P. Cheung, “Automating production of run-time recon-

figurable designs,” in IEEE Symposium on FPGAs for Custom Computing Ma-

chines (FCCM 1998), Napa Valley, CA, April 1998, pp. 147–156.

[85] “www.siliconbluetech.com,” [Online], SiliconBlue Technologies Corporation,

2009, http://www.siliconbluetech.com/.

[86] R. Stefan and S. Cotofana, “Bitstream compression techniques for Virtex 4

FPGAs,” in International Conference on Field Programmable Logic and Appli-

cations (FPL 2008), Heidelberg, Germany, September 2008, pp. 323–328.

[87] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfigurable

embedded platforms: Online scheduling of real-time tasks,” IEEE Transac-

tions on Computers, vol. 53, no. 11, pp. 1393–1407, November 2004.

[88] J. A. Storer and T. G. Szymanski, “Data compression via textual substitution,”

Journal of the ACM, vol. 29, no. 4, pp. 928–951, 1982.

[89] T. Stützle and H. H. Hoos, “MAX-MIN Ant system,” Future Generation Com-

puter Systems, vol. 16, no. 9, pp. 889–914, 2000.

[90] H. Tan and R. F. DeMara, “A physical resource management approach to min-

imizing FPGA partial reconfiguration overhead,” in IEEE International Con-

ference on Reconfigurable Computing and FPGA’s (ReConFig 2006), San Luis

Potosi, Mexico, September 2006, pp. 1–5.

[91] J. Teich, Digitale Hardware/Software-Systeme. Synthese und Optimierung.

Springer-Verlag, Berlin Heidelberg New York, 1997.

[92] J. Teich, S. P. Fekete, and J. Schepers, “Optimization of dynamic hardware

reconfigurations,” The Journal of Supercomputing, vol. 19, no. 1, pp. 57–75,

May 2001.

[93] T. Toi, N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi, and L. Jing,

“High-level synthesis challenges and solutions for a dynamically reconfig-

urable processor,” in IEEE/ACM international conference on Computer-aided

design (ICCAD ’06). New York, NY, USA: ACM, 2006, pp. 702–708.

[94] M. Ullmann, M. Hübner, B. Grimm, and J. Becker, “An FPGA run-time system

for dynamical on-demand reconfiguration,” in 18th International Parallel and

Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM, April 2004.

http://www.sgi.com/pdfs/3920.pdf
http://www.siliconbluetech.com/

198 Bibliography

[95] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable Comput-

ing, D. Soudris, Ed. Springer, 2007.

[96] H. Walder and M. Platzner, “Online scheduling for block-partitioned recon-

figurable devices,” in Design, Automation and Test in Europe Conference and

Exhibition (DATE 2003), Munich, Germany, 2003, pp. 290–295.

[97] A. Weder, M. Rullmann, and R. Merker, “Ein Linux-basiertes, dynamisch

rekonfigurierbares hardware-softwaresystem auf basis der Xilinx ML300

plattform,” in Dresdner Arbeitstagung Schaltungs- und Systementwurf (DASS

2005), Dresden, Germany, April 2005.

[98] J. Williams and N. Bergmann, “Embedded Linux as a platform for dynami-

cally self-reconfiguring systems-on-chip,” in International Conference on Engi-

neering of Reconfigurable Systems and Algorithms. Las Vegas, Nevada: CSREA

Press, June 2004, pp. 163–169.

[99] M. J. Wirthlin and B. L. Hutchings, “Improving functional density using run-

time circuit reconfiguration,” IEEE Transactions on Very Large Scale Integra-

tion Systems, vol. 6, no. 2, pp. 247–256, 1998.

[100] M. Wirthlin and B. Hutchings, “A dynamic instruction set computer,” in IEEE

Symposium on FPGAs for Custom Computing Machines (FCCM 1995), Napa

Valley, CA, April 1995, pp. 99–107.

[101] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data com-

pression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[102] XC6200 Field Programmable Gate Arrays Product Description, Xilinx Inc., San

Jose, CA, 1997.

[103] Xapp151: Virtex Series Configuration Architecture User Guide, Xilinx Inc.,

1999.

[104] Xilinx Virtex 2.5 V Field Programmable Gate Arrays, Xilinx Inc., San Jose, CA,

2001.

[105] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet, Xilinx

Inc., 2002.

[106] Xapp290 – Two Flows for Partial Reconfiguration: Module Based or Difference

Based, Xilinx Inc., September 2004.

[107] Virtex-II Platform FPGA User Guide, Xilinx Inc., March 2005.

[108] Early Access Partial Reconfiguration User Guide, [Online], Xilinx Inc., 2006,

http://www.xilinx.com/support/prealounge/protected.

http://www.xilinx.com/support/prealounge/protected

Bibliography 199

[109] “JBits 3.0 SDK,” [Online], Xilinx Inc., 2009, http://www.xilinx.com/

labs/projects/jbits.

[110] “www.xilinx.com,” [Online], Xilinx Inc., 2009, http://www.xilinx.com.

[111] “Xilinx university program Virtex-II Pro development system,” [Online], Xil-

inx Inc., 2009, http://www.xilinx.com/products/devkits/XUPV2P.htm.

[112] J. Ziv and A. Lempel, “A universal algorithm for sequential data compres-

sion,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343,

May 1977.

http://www.xilinx.com/
labs/projects/jbits
http://www.xilinx.com
http://www.xilinx.com/products/devkits/XUPV2P.htm

200 Bibliography

Appendix A

Simulated Annealing

Simulated annealing (SA) is a well known heuristic to solve complex optimization

problems. The implementation used in this work was inspired by Reiband [72].

The SA itself was originally described by Kirkpatrick [49]. The main control loop

of our SA implementation is given in Algorithm 8. The aim of this algorithm is to

find a solution s of the optimization problem such that the cost c of this solution is

minimal.

The general concept of SA can be stated as follows: The solution s is initialized

to an initial solution s0, which is the starting point s = s0 of the following iterations.

At first, another solution s′, which is close to the current solution s, is obtained by

modifying s randomly. Then, the algorithm decides randomly whether to move to

the new solution by setting s := s′ or not. The probability of moving to the new

solution depends on the cost c′ of the new solution s′ and on the progress that the

SA has already made. The globally best solution that occurs during the iterations is

saved in sb.

Any SA implementation has to determine several details that depend on the

optimization problem:

1. How to create an initial solution s0 (s0 =getInitialSolution())?

2. How to generate a new solution s′ based on the current solution s

(s′ =PermuteSolution(s))?

3. How to compute the cost function (c =getSolutionCost(s))?

4. When to accept a new solution?

5. How to update the acceptance criteria?

6. When is the SA terminated?

The items 1–3 are problem dependent and are discussed in the appropriate sections

in this work. However, the algorithm control is more general and is described in the

following.

The acceptance criteria of the SA is controlled by a temperature t. The annealing

is started with an initial temperature t0. A robust approach to calculate t0 is to run

201

202 Appendix A. Simulated Annealing

a number t init of initial iterations, in which every move to a new state is accepted.

The average cost for all such generated solutions is used as t0. During SA iterations,

the temperature decreases according to a fixed schedule: every tconst iterations, the

temperature t is decreased by a constant factor α, see line 42:

t := αt (A.1)

The decision, whether s′ is accepted as a new solution s depends on the temper-

ature t and the costs c, c′ of the solutions s and s′, respectively. At the beginning of

the optimization, almost any new solution is accepted, even when the solution cost

increase. When the algorithm proceeds and the temperature decreases, only new

solutions with lower cost are likely to be accepted.

The algorithm uses a new random variable v, 0 ≤ v ≤ 1 in each iteration to

determine whether a new solution is accepted or not. The acceptance probability

for a solution is calculated in the function getProbability() that is defined as follows:

p =

(

1 if c′ < c

exp c−c′

t
else

. (A.2)

In any iteration, the new solution s′ is accepted if p ≤ v, cf. line 24.

Finally, the termination mechanism of the SA implementation is described. The

termination is controlled by the progress of the optimization and the execution time

of the algorithm. These mechanisms are used because the algorithm has no infor-

mation whether a solution represents a global optimum or not.

The SA runs until no improved solution can be found during ifix iterations, be-

cause then no significant improvements are expected in further iterations. The exe-

cution of the SA algorithm stops if the execution takes more than τmax seconds, see

line 52. The time limit can also be disabled. To be safe, the SA must run for at least

imin iterations, see line 49.

The following parameters that control SA behaviour have been proved to be

useful during our experiments:

tconst = 5T N

ifix = 2tconst

α = 0.95

t init = 100

imin = 1000.

The parameter setting provides a good compromise between the algorithm runtime

and the quality of the optimization result. The parameter tconst represents the num-

ber of permutable objects multiplied with a constant. For example, for the optimiza-

tion of the node allocation, the number of permutable objects is given by the total

203

number of nodes in the input graphs. The objective of the parameter setting of tconst

is to obtain 5 permutations of each object at the same temperature, on average.

The SA algorithm is given below:

Algorithm 8 Simulated Annealing Algorithm

1: // initialize the initial (and best) solution

2: s = sb = getInitialSolution();

3: c = cb = getSolutionCost(sb);

4: // SA control variables

5: k = 0; // count iterations

6: kt = 0; // count iterations with fixed temperature

7: kc = 0; // count iterations with fixed cost

8: tsum = 0;

9: cont = true;

10: τstart = getTime();

11: while cont do

12: s′ = PermuteSolution(s); // Pick some neighbour of solution s

13: c′ = getSolutionCost(s′); // Compute the solution cost

14: if c′ < cb then

15: sb = s; // Yes, save new best solution

16: cb = c′;

17: end if

18: if k < t init then

19: p = 1.0; // Always accept new state during initialization

20: tsum += c′; // Collect costs of random solutions

21: else

22: p = getProbability(c, c′, t);

23: end if

24: if p ≥ getUniformRandom(0,1) then

25: s = s′; // Yes, change state (and save to old one)

26: c = c′;

27: if c 6= c′ then

28: kc = 0; // Reset same cost counter

29: end if

30: else

31: kc++; // No, keep to old state

32: end if

33: k++;

34: if k = t init then

35: // restart iteration with initial temperature

36: t = tsum/k;

204 Appendix A. Simulated Annealing

37: kt = 0;

38: // load best allocation found during temperature initialization

39: s = sb;

40: c = cb;

41: end if

42: // update temperature:

43: kt++;

44: if kt > tconst then

45: kt = 0;

46: t = αt;

47: end if

48: // decide whether to stop or not

49: if k > imin and kc > ifix then

50: cont = false;

51: end if

52: if τmax ≥ 0 then

53: τ = getTime();

54: if τ−τstart > τmax then

55: timelimit_exceed = true;

56: cont = false;

57: end if

58: end if

59: end while

About this Book

Partial dynamic reconfiguration of FPGAs has attracted high attention from both aca-

demia and industry in recent years. With this technique, the functionality of the pro-

grammable devices can be adapted at runtime to changing requirements. The approach

allows designers to use FPGAs more efficiently: E. g. FPGA resources can be time-

shared between different functions and the functions itself can be adapted to changing

workloads at runtime. Thus partial dynamic reconfiguration enables a unique combination

of software-like flexibility and hardware-like performance.

Still there exists no common understanding on how to assess the overhead introduced

by partial dynamic reconfiguration. This dissertation presents a new cost model for both

the runtime and the memory overhead that results from partial dynamic reconfiguration.

It is shown how the model can be incorporated into all stages of the design optimization

for reconfigurable hardware. In particular digital circuits can be mapped onto FPGAs such

that only small fractions of the hardware must be reconfigured at runtime, which saves

time, memory, and energy. The design optimization is most efficient if it is applied during

high level synthesis. This book describes how the cost model has been integrated into a

new high level synthesis tool. The tool allows the designer to trade-off FPGA resource use

versus reconfiguration overhead. It is shown that partial reconfiguration causes only small

overhead if the design is optimized with regard to reconfiguration cost. A wide range of

experimental results is provided that demonstrates the benefits of the applied method.

The Author

Markus Rullmann commenced his university education in Electrical

and Electronic Engineering at the Technische Universität Dresden in

1997. He received a DAAD scholarship to support his studies of mobile

communications at the Newcastle University (UK) in 2000/01. Markus

Rullmann graduated in 2003 at the department of Electrical and Com-

puter Engineering back in Dresden. Since then he has been working

as a research associate at the Technische Universität Dresden. The fo-

cus of his research has been FPGA based reconfigurable computing.

His research was granted by the German Research Foundation (DFG) within the Prior-

ity Programme 1148 “Reconfigurable Computing Systems.” As a result of his work, he

published several papers on reconfigurable computing at national and international con-

ferences. Markus Rullmann received his PhD in 2010. Currently, he is associated with the

FPGA Systems Group at Signalion GmbH.

	Introduction
	Reconfigurable Computing
	Reconfigurable System on a Chip (RSOC)
	Anatomy of an Application
	RSOC Design Characteristics and Trade-offs

	Classification of Reconfigurable Architectures
	Partial Reconfiguration
	Runtime Reconfiguration (RTR)
	Multi-Context Configuration
	Fine-Grain Logic
	Coarse-Grain Logic

	Reconfigurable Computing Specific Design Issues
	Overview of this Dissertation

	Reconfigurable Computing Systems -- Background
	Examples for RSOCs
	Partially Reconfigurable FPGAs: Xilinx Virtex Device Family
	Virtex-II/Virtex-II Pro Logic Architecture
	Reconfiguration Architecture and Reconfiguration Control

	Methods for Design Entry
	Behavioural Design Entry
	Design Entry at Register-Transfer Level (RTL)
	Xilinx Early Access Partial Reconfiguration Design Flow

	Task Management in Reconfigurable Computing
	Online and Offline Task Management
	Task Scheduling
	Task Placement
	Reconfiguration Runtime Overhead

	Configuration Data Compression
	Evaluation of Reconfigurable Systems
	Energy Efficiency Models
	Area Efficiency Models
	Runtime Efficiency Models

	Similarity Based Reduction of Reconfiguration Overhead
	Configuration Data Generation Methods
	Device Mapping Methods
	Circuit Design Methods
	Model for Partial Configuration

	Contributions of this Work

	Runtime Reconfiguration Cost and Optimization Methods
	Motivation
	Reconfiguration State Graph
	Reconfiguration Time Overhead
	Dynamic Configuration Data Overhead

	Configuration Cost at Bitstream Level
	Configuration Cost at Structural Level
	Definitions
	Virtual Architecture
	Reconfiguration Costs in the VA Context

	Allocation Functions with Minimal Reconfiguration Costs
	Allocation of Node Pairs
	Direct Allocation of Nodes
	Experiments

	Summary

	Implementation Tools for Reconfigurable Computing
	Mapping of Netlists to FPGA Resources
	Mapping to Device Resources
	Connectivity Transformations
	Mapping Variants and Reconfiguration Costs
	Mapping of Circuit Macros
	Global Interconnect
	Netlist Hierarchy

	Mapping Aware Allocation
	Generalized Node Mapping
	Successive Node Allocation
	Node Allocation with Ant Colony Optimization
	Examples

	Netlist Mapping with Minimized Reconfiguration Cost
	Mapping Database
	Mapping and Packing of Elements into Logic Blocks
	Logic Element Selection
	Logic Element Selection for Min. Routing Reconfiguration
	Experiments

	Summary

	High-Level Synthesis for Reconfigurable Computing
	Introduction to HLS
	HLS Tool Flow
	Realization of the Hardware Tasks

	New Concepts for Task-based Reconfiguration
	Multiple Hardware Tasks in one Reconfigurable Module
	Multi-Level Reconfiguration
	Resource Sharing

	Datapath Synthesis
	Task Model
	Resource Model
	Resource Binding
	Scheduling
	Constraints for Scheduling and Resource Binding

	Reconfiguration Optimized Datapath Implementation
	Effects of Scheduling and Binding on Reconfiguration Costs
	Strategies for Resource Type Binding
	Strategies for Resource Instance Binding

	Experiments
	Summary of Binding Methods and Tool Setup
	Cost Factors
	Implementation Scenarios
	Benchmark Characteristics
	Benchmark Results
	Discussion

	Summary

	Summary and Outlook
	Bibliography
	Simulated Annealing

