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By using a Multi-Time-Stepping Adams-Bashforth (MTSAB) scheme, different regions 

of the computational grid can march with different time steps based on their local stable 

time steps and on local minimum length and time scales. This can save computational 

time for problems with large range of length and time scales. In this work, a fourth 

order, automated MTSAB scheme was developed for NASA Glenn Research Center‟s 

Broadband Aeroacoustic Stator Simulation Code (BASS) code. BASS code solves the 

Navier-Stokes equations on structured multi-block grids. The automated MTSAB 

scheme, during the run assigns time steps to grid blocks, based on local stability and 

accuracy.  The scheme automatically changes the time steps during the run as required. 

In this work, two automatic block cutting algorithms were also developed. The first 
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block cutting algorithm cuts the existing grid blocks during the run, to minimize the 

number of points at the smallest time steps. The second block cutting algorithm cuts the 

grid blocks to maximize the parallel efficiency of the scheme. This scheme was tested 

on CAA workshop problems, highly nonlinear flows (Transonic flows) with grid 

motion, and viscous flow cases. Results from these cases and the speed gains from 

using the MTSAB scheme are presented. 
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Chapter 1  
 

Background 
  

1.1 Introduction 

  The field of Computational Aeroacoustics (CAA) is focused on the accurate 

simulation of unsteady flow and noise [1, 2].  To achieve this goal, highly accurate spatial 

differencing schemes have been developed (e.g., Refs. [3-7]), along with optimized time 

marching schemes (e.g., Refs. [8-10]). To validate these schemes, a range of benchmark 

validation problems have been specified, and solutions made available [11-14].  

 As the CAA schemes have increased in capability, the validation problems have 

increased in complexity, incorporating realistic nonlinear flows about complex 

geometries. For example the optimized spatial differencing and time marching 

incorporated in CAA methods are designed to propagate accurately unsteady flow 

phenomena through non-uniform grids wrapped about complex geometries such as the 

stators in a turbojet engine.  Experience has shown that the increased accuracy from the 

spatial differencing schemes is always beneficial, even near flow discontinuities. 

 In a time marching scheme for an unsteady flow problem, there are two time steps of 

interest. The first is the largest time step that can be taken while retaining an accurate, 
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unsteady solution (the accuracy limit).  The second time step of interest is the largest time 

step that can be taken while retaining a stable calculation (the stability limit).  

 In general, there are two types of time marching schemes used: explicit time marching 

schemes and implicit time marching schemes. A good basic understanding of these 

approaches is given in [15]. For an explicit time marching scheme, the inviscid stability 

limit is directly related to the minimum time required for the fastest propagating wave to 

move from one grid point to the next (the CFL condition). If the time step taken is larger 

than the limit imposed by the stability limit, the time marching scheme will quickly go 

unstable.  The use of explicit time marching schemes can thus result in an excessive 

number of time steps resolving the solution due to stability limit imposed on the time step 

size. The upside of an explicit time marching is that, for a given time step, the amount of 

computational work required is less as compared to implicit schemes. The implicit 

schemes may require multiple iterations for each time step.  

  For most implicit schemes, stability can be maintained for large values of time steps. 

Some implicit schemes are unconditionally stable. The large time steps are accompanied 

with large errors and hence large time steps cannot be used to achieve high accuracy 

solution for an unsteady problem. In other words, the desired accuracy puts a limit on the 

time step size for an unsteady problem [15]. An example of application of an implicit 

scheme for a time accurate problem can be found in [16]. 

 The classification of time marching schemes is shown in Figure 1-1.  This figure does 

not show different kinds of implicit time marching schemes as the current work is 

focused on the use of explicit time marching schemes. From this point onwards, explicit 

time marching schemes will be just referred to as time marching schemes. 
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1.2 Motivation 

 In a time marching scheme using a single time step size throughout the computational 

domain, such as a Runge-Kutta time marching scheme or an Adams-Bashforth scheme, 

the smallest grid spacing determines the time step for the entire calculation, regardless of 

whether the resulting temporal resolution is necessary for solution accuracy. The 

explanation of the workings of Runge-Kutta scheme and Adams-Bashforth scheme are 

explained later in this chapter.  

 A popular explicit Runge-Kutta scheme is the classical four-stage fourth-order 

scheme, which has an inviscid stability limit of CFL = 2.83.  In the past, several 

researchers have optimized Runge-Kutta schemes to increase their stability and/or 

accuracy. For steady-state calculations, Jameson [17] developed a five-stage second-

order scheme, which has a stability limit of CFL = 4.0 but low accuracy for time 

marching. Hu et al. [8] introduced the low-dispersion and dissipation Runge-Kutta 

(LDDRK) schemes, which were optimized for accuracy to the stability limit.  The most 

popular of these schemes is the two-step fourth-order RK56 scheme, which has a stability 

limit of CFL = 2.85.  Recently, Calvo et al. [10] introduced a six-stage fourth-order 

Runge-Kutta scheme that is partially optimized for accuracy and partially optimized for a 

large stability limit. Allampalli et al. developed new High-Accuracy Large-Step Explicit 

Runge-Kutta (HALE-RK) schemes [18], which have an inviscid stability limit of CFL = 

4.9-5.7 while obtaining higher accuracy than the classical Runge-Kutta fourth-order 

scheme.  

 An inherent assumption in the optimization of Runge-Kutta schemes for stability is 

that the unsteady flow dynamics at the length and time scales associated with the smallest 
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grid spacing is not important to the accuracy of the overall solution. But for problems of 

practical interest such as Large Eddy Simulation and Broadband Noise calculations, the 

length and time scales associated with smallest grid spacing is important in the study of 

flow physics. Because of this, the high CFL offered by some of the optimized time 

marching scheme cannot be made use of.  

  One way to save computational time, while retaining time accuracy is to use different 

time steps in different regions on the computational domain. Tam et al. [19] developed 

optimized Adams-Bashforth schemes to use multi-time-stepping in the domain. In these 

methods the change in the time step from one region of the grid to the neighboring region 

is hardwired to a factor of two. Shen et al. [20] used multi-time-stepping for solving CAA 

problems, including the numerical simulation of the jet screech phenomena. 

   

 

 

  

 

 

 

 

  

  

  

 
          

Figure 1-1 Classification of the time marching schemes 

Time Marching Schemes 

Implicit schemes Explicit schemes 

Single-Time-
Stepping    
Schemes (Example, 
classical RK4 and 
Allampalli-HALE-
RK67) 

Multi-Time-
Stepping  
RK scheme 
(Example, 
NUTS-RK) 

Runge-Kutta 
(RK) scheme 

Adams-Bashforth 
(AB) Scheme  

Single-Time-
Stepping    
Adams-Bashforth 
Schemes (regular and 
Tam‟s optimized) 

Multi-Time-
Stepping 
Adams- 
Bashforth 
(MTSAB) 
scheme 
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Recently Liu et al. [21] developed Non-Uniform Time-Step Runge-Kutta schemes for 

CAA.  

     Multi-time stepping can be more generally applicable for complex geometries and 

grids, if the implementation is automated. The motivation behind current work was to 

automate the implementation of the new Multi-Time-Stepping Adams-Bashforth scheme 

and its optimization, to achieve maximum speed, while retaining fourth-order accuracy.  

 
1.3 Objective  
 
The objective of this work was to develop a new fourth order Multi-Time-Stepping 

Adams-Bashforth (MTSAB) scheme, and to implement and validate this scheme for 

NASA Glenn Research Center‟s Broadband Aeroacoustic Stator Simulation (BASS) 

code. BASS code is 3-D, curvilinear, Navier-Stokes solver [22].  

     The MTSAB scheme uses different time steps in different regions of the grid, based 

on local stability and accuracy. Two block cutting algorithms were also developed to 

achieve maximum speed. 

    After implementing the scheme in BASS code, it was tested on CAA Benchmark 

problems, transonic flows over airfoils and viscous flow problems. The scheme was also 

extended to solve problems with grid motion. A plunging airfoil case was solved for 

validation.   

 
1.4 Linear Analysis of Numerical Schemes 
 
In order to analyze the performance of a time-marching numerical method, a linear model 

equation for inviscid wave propagation is used: 
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A simple-harmonic solution to the equation is assumed: 

                                                                               (1.2) 

where,                               

                                                                                                                         (1.3) 

This solution represents a simple-harmonic wave propagating at a speed of c in the 

positive x-direction. In applying a numerical scheme to solve Eq. (1.1), the spatial and 

temporal derivatives are replaced by numerical approximations, each of which impacts 

the accuracy of the solution.  In the case of a propagating wave, the errors can be classed 

as dispersion (a change in the propagation speed of the wave) and dissipation (a change 

in the amplitude of the wave). The spatial derivative is considered first. The analytic 

result for the spatial derivative is: 

 

                                                         

A finite-difference spatial derivative at grid point j on a uniform grid can be written as: 

 
            (1.5) 

If the spatial derivative is formulated as a central difference, the dissipation errors can be 

eliminated.  The resulting spatial derivative can be written as: 

        (1.1) 

        (1.4) 
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            (1.6) 

 

Substituting the assumed solution into the central difference approximation, the 

numerical spatial derivative is obtained: 

 
  (1.7) 

Eq. (1.7) can be written as  

 

 
  (1.8) 

Defining the numerical wavenumber as: 

   (1.9) 

Eq. (1.8) becomes: 

            (1.10)                

 Due to the Nyquist limit, the highest-wavenumber wave that can be resolved on a 

uniform grid has two grid points per wavelength.  This limits the maximum value of the 

physical wavenumber that may be resolved in a numerical calculation to: 

                                                                                 (1.11) 
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Figure 1-2 shows the numerical wavenumber of several finite-differencing schemes, and 

are compared to the exact result.  The differences in accuracy of the various schemes can 

be seen; in particular, it can be seen that each scheme has a different maximum value for 

the numerical wavenumber. Table 1.1 lists the maximum numerical wavenumber from 

each scheme. Using the development thus far, the numerical equivalent of Eq. (1.1) can 

be written for this assumed solution as:          

       (1.12) 

Using Eq. (1.3) to define a numerical frequency: 

           (1.13) 

Equation (1.12) can be rewritten as: 
 
           (1.14) 

                          
                          Figure 1-2 Numerical Wavenumbers for Spatial Differencing Methods 
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           Table 1.1: Maximum Value of Numerical Wavenumber for Spatial Differencing Methods 
 
 
To integrate Eq. (1.14) in time, a Runge-Kutta scheme or an Adams-Bashforth time 

marching scheme can be used. These two time marching schemes are discussed in the 

next section. 

 

1.2.1 Runge-Kutta Scheme 

For an unknown vector  a classical four-stage fourth-order Runge-Kutta scheme can be 

written as: 

                                          

                                     

                                                                   (1.15) 

                                     

                                      

                                     

The scheme requires a solution ( ) at the current time. Intermediate solutions are 

calculated at different stages and final solution ( ) at the next time level is obtained at 

the end of the last stage. The intermediate solutions obtained are non-physical and 

Differencing Scheme Maximum (kx)* 
Explicit 2nd order 1.0 

Explicit DRP 1.644 
Explicit 6th order 1.586 
Compact 6th order 1.989 
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contain errors. The errors from all the stages cancel out to give a final fourth order 

solution at the next time level. Substituting in the function from Eq. (1.14), the fourth-

order Runge-Kutta scheme gives:   

 

   (1.16) 

 

The relative error magnitude of the time marching can be evaluated as: 

 
        (1.17) 

For stability, the amplitude of the propagating wave should not increase: 

 
        (1.18) 

Figure 1-3 and Figure 1-4 show the error magnitude and amplitude results for the fourth 

order Runge-Kutta scheme. 
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          Figure 1-3:  Amplitude Performance of Classical Runge-Kutta Scheme 

 

 

          Figure 1-4:  Error Magnitude of Classical Runge-Kutta Scheme. 
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1.2.2 Standard Adams-Bashforth scheme 

The fourth order Adams-Bashforth scheme is a four level scheme. Suppose u is the 

unknown vector. The time axis is divided into a uniform grid with time step . It is 

assumed that the values of u and are known at time level   n, n -1, n – 2, and n – 3. 

To advance to the next time level, 4-level, fourth order finite difference approximation 

given by Eq. (1.19) is used. 

 
         (1.19) 

The last term on the right side of Eq. (1.19) may be regarded as a weighted average of the 

time derivatives at the last 4 mesh points in time. There are four coefficients, namely, b0, 

b1, b2, and b3. On applying Laplace transform to Eq. (1.19), we need to generalize the 

equation to one with a continuous variable. The result is 

 
          (1.20) 

Eq. (1.20) reduces to Eq. (1.19) by using t = n t. On applying the shifting theorem for 

Laplace transform to (1.20), Eq. (1.21) is obtained. 

 
          (1.21) 

Thus, 

 
         (1.22) 
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The Laplace transform of the time derivative of  is . Thus by comparing the two 

sides of equation (1.22), the quantity, 

 
       (1.23) 

It is easily seen from Eq. (1.23) that the relationship between and  and  is not 

one to one. In other words, there are multiple solutions for .  One of these solutions 

is physical (gives actual solution) and the remaining solutions are spurious. These 

spurious solutions could cause numerical instability and introduce errors in the solution. 

So it is necessary to find out about their behavior. Let us rewrite Eq. (1.23) in the form 

below: 

            

 

 
 (1.24) 
 

In Eq. (1.24) . Thus, given   there are four roots of and hence four 

values of . The values of the coefficients of a fourth order Adams –Bashforth scheme 

are:         

            
 
 (1.25) 
 

 

For the values of the coefficients specified in Eq. (1.25), the values of the four roots of 

 as functions of  are found. The real and imaginary part of these roots, over the 

range  are plotted in Figures 1-5 and 1-6.  In the range , the 

imaginary parts of all the four roots are negative. Recall that the solution has time 

dependence of the form . If the imaginary part of the root is negative, the solution is 

damped in time. However, for , one spurious root has positive imaginary 
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part. The solution corresponding to this root will grow in time leading to numerical 

instability. On examining the real parts of the four roots, it is seen that one of the roots 

gives  over the range of . This is the desired root. The magnitude 

of the imaginary component of this root is very small and the spurious roots are damped 

below .  

     Since the numerical frequency is the product of the physical wave speed and the 

numerical wavenumber of the spatial differencing method, the maximum value of the 

numerical frequency depends on maximum value of the numerical wavenumber of the 

spatial differencing scheme. The maximum values of numerical wavenumber for 

different spatial differencing scheme are given in Table 1.1. Thus, spatial differencing 

schemes that have a higher maximum numerical wavenumbers result in higher maximum 

values of the numerical frequency. Because of this, maximum allowable time step for 

stability is lower for spatial differencing schemes with higher maximum numerical 

wavenumbers. For example, from Table 1.1 it is expected that the use of DRP scheme 

instead of a second order central scheme will result in a time step that is approximately 

1.644 times lower due to a higher value of maximum numerical wavenumber. 

     In this work,   or less was used. For this value of ,  of the 

desired root is . This automatically guarantees numerical stability and 

negligible numerical damping. 
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                                      Figure 1-5:   Real  for Adams-Bashforth scheme 
 
 

 
                                  
                                       Figure 1-6:  Real  for Adams-Bashforth scheme 
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1.2.3 Generalized form of the Adams Bashforth scheme 

Before moving to MTSAB scheme it is important to discuss the generalized form of 

Adams-Bashforth scheme. The Adams-Bashforth scheme given by Eq. (1.19) is the 

standard form of the Adams-Bashforth scheme. In this form of the Adams-Bashforth 

scheme, 

                                                                       (1.26) 

When, 
                                                                                                  (1.27) 
 
the generalized form of the Adams-Bashforth scheme in Eq. (1.28) is obtained. 

 
          (1.28) 

The coefficients can again be calculated from Taylor series for fourth order accuracy 

and can be written as: 

                                        

                                                                                       (1.29) 
 
                                          
 
                               
 
 

Figure 1-7 gives an illustration of the standard and the generalized Adams-Bashforth 

scheme. The generalized form of the Adams-Bashforth is the key in the implementation 

of the Multi-Time-Stepping of the Adams-Bashforth scheme. Let the current time be . 

By varying in the generalized Adams-Bashforth scheme, the data in the right hand 

side of the Eq. (1.28) can be used to calculate   for any time between  and , 
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by just recalculating the coefficients. This cannot be done for a Runge-Kutta scheme 

because all the time derivatives (Eq. (1.15)) at the intermediate stages have to be 

recalculated again to get  for a different . The solutions at intermediate times 

(stages), if available, cannot be made use of because they are non-physical or spurious. 

  When two adjacent grid blocks are marching in time with different time steps, by only 

recalculating the values of coefficients in Eq. (1.28) (for any ), data that a 

neighboring block needs at the block interface calculated. The complete method of 

implementation of the Multi-Time Stepping Adams-Bashforth scheme is explained in 

detail in the next chapter. 

 

 

    
   Figure 1-7   Illustration of the standard (left) and the generalized (right) Adams-Bashforth Scheme 
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Chapter 2 
 

Multi-Time-Stepping Adams Bashforth  
 

(MTSAB) Scheme 
 

2.1 Introduction 

As already mentioned in the previous chapter, using a Multi-Time-Stepping Adams 

Bashforth (MTSAB) Scheme, different regions or grid blocks of a multi-block grid can 

march in time with different time steps. The criteria for choosing the time steps in 

different regions of the computational domain and the implementation of the scheme are 

explained in this chapter, with the help of a 1-D grid.  

 Figure 2-1 shows a 1-D grid, with two grid blocks. The smallest grid spacing is in 

Grid Block 1 and the grid gradually stretches into Grid Block 2. The first step in using the 

MTSAB scheme is to calculate the stable time steps that can be used in each of the two 

grid blocks. The CFL condition is used to calculate the stable time steps. Let the smallest 

grid spacing in Grid Blocks 1 and 2 be   and respectively. The CFL 

condition given by Eq. (2.1) is used to calculate the stable time step for any Grid block n 

in the 1-D grid example. 
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            (2.1) 

In Eq. (2.1), c is the fastest wave speed in the calculation. Let the stable time steps 

calculated for the Grid blocks of the 1-D grid be and respectively. It 

can be seen from Eq. (2.1) that since is greater than   , is greater 

than .  

     When Runge-Kutta scheme or a single step Adams-Bashforth scheme is used, a single 

global time step ( is used for all the regions or blocks of the computational 

domain. The global time step is the largest stable time step that can be used for the entire 

domain. It is calculated as the minimum of the stable time steps calculated for all grid 

blocks in the computational domain. For the two block 1-D grid example, the global 

stable time step is calculated as: 

            (2.2) 

Since, , 

                                            (2.3) 

                                        

                                             Figure 2-1 1D grid with two grid blocks 
  

Once the global time step is calculated, the grid blocks are assigned different time steps 

for multi-time stepping. In this work, for any Grid block n, the time step is 

calculated as, 

                                                                                       (2.4) 
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The maximum value of m in Eq. (2.4) is chosen such that, 

                                                                                                  (2.5) 

For the 1-D grid example, the time steps for the Grid blocks are calculated as, 

                                                                

                                                                                       (2.6) 

The value m is chosen such that, 

                                                                                                  (2.7)    

 In the implementation of the MTSAB scheme, the grid blocks of multi-block grid are 

assigned different “level” values. The level for a block is the value m chosen for that 

block.  In the 1-D grid example, Grid block 1 is at level 1. If the value of m chosen for 

block 2 was 3, then Grid block 2 is at level 3 and so on. 

 For a computational grid with 6 levels, the time steps for the levels are given as:  

                                             

                                      

                                                                             (2.8)    

                                      

                                        

                                      

Once the time steps (or levels) are chosen for different grid blocks in the domain, 

MTSAB scheme can be implemented.    
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2.2 Starting problem with the Adams-Bashforth scheme    

It can be seen from Eq. (1.19), the fourth order Adams-Bashforth scheme need the values 

of time derivatives from three previous time steps. Therefore generally, when using an 

Adams-Bashforth scheme the problem cannot be started with just an initial condition for 

the flow variables.  

 A Runge-Kutta scheme as shown in Eq. (1.15) can be just started with an initial 

condition. Therefore, for the first three steps Runge-Kutta scheme is used. The time 

derivatives from the first three steps are stored after which the Adams-Bashforth scheme 

can be used.  

 
2.3 The Concept of Buffer Blocks 
 
In this work DRP (Dispersion Relation Preserving) scheme [4] was used for spatial 

differentiation. The DRP scheme is a seven point stencil. To calculate spatial derivative 

using the DRP scheme at an interior point requires three data points on each side of that 

point. The scheme uses one sided stencils at inflow, outflow and at wall boundaries.  

Consider a point located in the interior of the computational domain (away from 

inflow, outflow and wall boundaries) and at the interface of two grid blocks. The data 

required to calculate for spatial derivative at a given point , is shown in Figure 2-2. Both 

the grid blocks share this point and therefore, the spatial derivative is calculated for point 

 in both the grid blocks.  

In a multi-block grid, like in this example, the grid points near the block interfaces 

(number of points depends on how big the scheme stencil is) need data from the 

neighboring blocks to calculate spatial derivative. For each of the Grid blocks, blocks 



 
 

22 
 

defined as “Buffer blocks” are used to store data from the neighboring block, to calculate 

the spatial derivative at the block interface. In Figure 2-2, Buffer blocks shown by red 

lines, store data obtained from the neighboring blocks and enable the calculation of 

spatial differentiation at point. In BASS code, buffer blocks are generated between the 

blocks when the grid blocks are on different processors. For the implementation of the 

MTSAB scheme, the buffer blocks are also generated between adjacent blocks marching 

with different time steps. Buffer blocks enable the synchronization of the blocks 

marching with different time steps.  

          
                                         

                                             Figure 2-2 Illustrations of Buffer Blocks 
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2.4 Method of Implementation of the MTSAB Scheme 

In this section, the implementation of the Multi Time Step Adams-Bashforth (MTSAB) 

scheme is explained for same the 1-D grid with two grid blocks. Let the Global time step 

be . The time step for Grid block 1 is equal to   (level 1) and the time step for Grid 

block 2 is equal to  (level 2).   

 As explained earlier, Buffer blocks are used to store data needed from the neighboring 

blocks. Figures 2-3a shows the data that is stored in grid blocks and the buffer blocks. 

Data is sent from Grid blocks to Buffer blocks when the Grid blocks that send and 

receive data from these buffer blocks are at the same time level.  

   Since Grid block 1 is marching with a time step , it needs buffer data at every 

increment of   to calculate the spatial derivative at block interface. But its buffer block 

(Buffer block1) receives data from Grid block 2 (which is marching with ), only at 

every other . Only at every other time step, grid blocks (Grid block 1 and Grid block 2) 

sending and receiving data from this buffer block are at the same time level. 

     Figures 2-3b and 2-3c show how Grid block 1 uses it buffer block to calculate data 

needed at the block interface, at times when its Buffer block does not receive data from 

Grid block 2. 

      The horizontal lines are the Grid blocks and the Buffer blocks at different times. The 

vertical distance between the lines is a measure of time steps. In figure 2-3a all the blocks 

have sufficient data to march to the next time using the Adams-Bashforth formula. In 

Figure 2-3b Grid block 1 marches in time with a time step   using the Adams-

Bashforth scheme. At this new time level, Grid Block 1 needs data (three data points on 

the right side) at the interface to calculate the spatial derivative at that point. This data is 
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obtained, when Buffer block 1 marches in time with a time step , using the generalized 

Adams-Bashforth scheme (because the time steps used in the formula are not equal). This 

is shown in Figure 2-3c. In other words, Buffer block 1, which stores data from Grid 

Block 2, calculates data required by Grid block 1 (at the block interface) when this data is 

not directly calculated and sent by Grid block 2.   

(a) 

 

  (b) 
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(c) 

 

                     
Figure 2-3:   Pictures show the synchronization of blocks (marching with different time steps), using 
buffer blocks. 
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Chapter 3 

 

Automated MTSAB scheme for BASS 

Code 
 

3.1 Cartesian Coordinate Equations 

BASS code is NASA Glenn Research Center‟s Broadband Aeroacoustic Stator 

Simulation code [22]. The code solves the Navier-Stokes equation, which is written in  

Cartesian coordinates as: 

            (3.1) 

where, 

 

           (3.2) 

The inviscid fluxes are: 

                                              

 

          (3.3) 
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           (3.4) 

 

 

           (3.5) 

The viscous flux terms are: 

 

           (3.6) 

 

 

           (3.7) 

 

 

           (3.8) 

 

The stresses are defined as Newtonian, using Stokes hypothesis:
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            (3.9) 

                           

  
 

  
 

The Prandtl number is used to define   in terms of : 

           (3.10) 

 is the artificial dissipation added to the equations to damp unresolved 

wavenumbers. 
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3.2 Chain Rule Curvilinear Coordinate Equations 

The equations are then transformed into generalized curvilinear co-ordinates: 

            

           (3.11) 

            

            

The Cartesian derivatives can be written in terms of curvilinear co-ordinates as: 

            

  
         (3.12) 

  
          

  
          

     In this transformation, the   curvilinear time like coordinate is set equal to the t 

Cartesian time coordinate. 

  
 

          

  
 

        (3.13) 
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Using this transformation, the Navier-Stokes equations are written as: 

 (3.14) 

The curvilinear coordinate transformations are also applied to the calculation of the 

viscous stresses: 

            

 
 

          

 
 

          

            (3.15)          
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3.2.1 Grid Metrics for Chain Rule Equations 

The grid metrics can be related to curvilinear derivatives of the Cartesian grid point 

locations: 

  

 

          

            

            

             (3.16)          
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3.3 Numerical Schemes used in BASS Code 

In the formulation described in the previous sections, the spatial differencing in BASS 

code is performed using either a second-order explicit, sixth order explicit, 7-point 

explicit DRP or sixth order prefactored compact differences.  The time marching scheme 

that is currently used in BASS is Runge-Kutta schemes in a 2N storage format and the 

MTSAB scheme. The artificial dissipation scheme used in BASS code is a blended 

dissipation scheme and combines explicit high accuracy background dissipation with a 

second order shock capturing dissipation [23].   

 

3.4 Structure of BASS Code 

The spatial grid used by the code is block-structured. Each block can have arbitrary 

surface patches on each block face. These surface patches can be connectivity patches 

(where two computational blocks have interface in the interior of the computational 

domain) or boundary condition patches (where the boundary of the computational 

domain lie, and inflow, outflow or wall boundary conditions must be specified).The main 

computational work of the code for a given block can be split into these several areas: 

a) Grid metrics calculation ( at every step for moving grids)  

b) Flux calculation 
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c) Artificial dissipation calculation  

d) Flux derivative calculation 

e) Boundary condition calculation 

f) Flow time update  

g) Block communications 

 

The first five steps require spatial derivative noting that the flux calculation requires 

spatial derivative only for a viscous problem.  

The different volumes used in the BASS code are shown in Figure 3-1.  The basic 

object in the code is a „spatial derivative volume‟, in which the values of spatial 

derivatives are calculated. To define fully a spatial derivative volume there are three 

volumes. The first volume is the interior volume. In this volume the spatial derivatives 

will be used by the code. The second volume, which encompasses first as its subset, is the 

derivative volume which is defined as the volume in which the derivative is computed. 

The third and the largest volume is the „total volume‟ which contains all the variable data 

that is necessary for spatial derivative to be computed in the „derivative volume‟. The 

next level of objects are „boundary condition volume‟ which contain „spatial derivative 

volumes‟ and any other information such as mean flow data or source data that are 

required to define the boundary conditions. The next higher object is the „block volume‟ 

which is a grid block that may contain a number of „boundary condition volumes‟. The 

highest object is the „node volumes‟ dimensioned to the number of processors in the 

calculation. 



 
 

34 
 

          

                                                    Figure 3-1 Data Structure in BASS Code 
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 3.5 Data transfer Mechanism in BASS Code 

Whenever a grid block (block 1) has a boundary that connects to another grid block  

(block 2), the total volume of the grid block 1 must contain data from the neighboring 

grid block 2 in order to compute the spatial derivative at the boundary of grid block 1.     

     There are three data transfers that may occur during the single time derivative 

calculation: 

a)   Grid data transfer (to compute the grid metrics) 

b)   Flow data transfer (to compute the artificial dissipation and the viscous fluxes) 

c)   Flux data transfer (to compute the flux derivatives, and thus the time derivatives) 

     These data transfers between the blocks can be local or non local depending on 

whether the blocks are on the same processor. If the blocks are both on the same 

processor, the data can be transferred directly between the blocks as needed during the 

time derivative calculation process.  

     However, if the blocks are on different processors, messages that contain the data 

must be passed between the processors.  

     The way in which these messages are passed determines how efficient the parallel 

performance of the code. The message passing consists of two stages: message initiation 

and data transfer. Message initiation requires a fixed amount of CPU time, and data 

transfer is a function of the amount of data (message length) in the message. The data 

transfer rate increases with the message length until the network maximum data transfer 

is reached, where upon the data transfer rate remains at the maximum. Thus for parallel 

efficiency, it is preferred to have as few messages as possible (minimum number of 

initiation) that are as long necessary (maximum data transfer). 
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     Each block requires data from the neighboring blocks to compute spatial derivatives. 

This data is taken from the neighboring block and placed in the total volume of the block. 

The data that is required in the total volume of the local block becomes available on the 

neighboring block at different times during the derivative calculation process.            

     As explained in Chapter 2, buffer blocks contain data from the neighboring blocks.     

For the MTSAB scheme to work, buffer blocks also march in time (as explained in 

chapter 2), when the neighboring block is at a different MTSAB level. 

     These buffer blocks may themselves have buffer blocks associated with them; this 

occurs in the case of viscous flow calculation. The code defines the main grid block as 

Type 0 blocks; the first level of the buffer blocks as Type 1, the next level Type 2, etc.  

Figure 3-2 shows the grid blocks and buffer blocks in two dimensions.    

                                           

                
                       
                                Figure 3-2 An example buffer blocks in BASS code   
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3.6 Automated MTSAB for BASS Code  
 
BASS code is used to solve realistic flows over complex geometries (for e.g. (24)). The 

grids generated for these geometries can also be complex. It is difficult for a user to 

assign different values of time steps to different blocks of the multi-block grid (method 

explained in the previous chapter). Even if the user was able to do that, it is very difficult 

to keep track of the changing stable time steps in cases such as moving grid calculations 

or flows with large disturbances. In the implementation of the MTSAB scheme in BASS 

code, the optimization is performed during the run, to achieve maximum speed-ups. The 

optimization algorithms are explained later in the chapter. It is difficult for the user to 

perform this optimization manually. A major part of this work was to automate the 

MTSAB scheme in BASS code to overcome these hurdles. All the features of the 

automation are explained below:  

 

3.6.1 Assigning the Time Steps to Grid Blocks 

MTSAB scheme in BASS code first starts with the single step time marching scheme (as 

explained in chapter 2). Based on the CFL condition the code calculates the global 

minimum time step ( ) for the complete grid, and local minimum time step (or 

local stable time step) for each grid block of the multi block grid ( ). After the 

first few single steps the code dynamically groups the blocks into different levels and are 

assigned time steps based on their level values.  

     To quantify the speed increase from using the MTSAB scheme, Actual Speedup and 

Theoretical Speed-up can be calculated. The formulae for the Actual and Theoretical 

speed ups are given by Eq. (3.17) and Eq. (3.18).  
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     The Actual Speed-up includes overhead (calculations in the buffer blocks). 

Theoretical speed up does not include this overhead. Therefore the Theoretical Speed up 

is the maximum possible speed up for a given distribution of grid points in each level. It 

can be thought of as Carnot efficiency in a thermodynamic cycle. 

 

        
 

 

 
          (3.17) 

  

 

           (3.18) 

In Eq. (3.18), the total number of grid points and the effective number of grid points are:  

 

 
 

 

 
  (3.19) 

 
 

 

 
  (3.20) 

3.6.2 Dynamic level change 

Once the grid blocks are marching with different time steps, condition given by Eq. (2.5) 

is checked at regular intervals. The interval at which this check is performed can be set 

by the user in the BASS Input File. If at any time during the run this condition fails, the 
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code dynamically (or during the run) re-assigns the level values to the grid blocks, such 

that condition in Eq. (2.5) is satisfied again. This is a very useful automation for 

simulations with grid motion and flows with large disturbances, where the local stable 

time step can change. 

 

3.6.3 Optimization using Block cutting Algorithms 

In this work two block cutting algorithms were designed to optimize the implementation 

of the MTSAB scheme. These algorithms are discussed below: 

 

a)  Algorithm to increase MTSAB Speed-ups 

Within a given grid block, every point can have a different level (based on the CFL at 

that point). The level value assigned to the block is smallest level value of all the points 

within the block (for stability). This algorithm checks for point to point variation of the 

level value within the grid block and cuts the blocks based on this variation. As a result, 

new blocks are generated at higher levels. This shifts more grid points to a higher level 

and therefore increases the speed-up as shown by Eq. (3.17) and Eq. (3.18).   

     This is explained with an example. Consider an O-grid with a single grid block 

(Figure 3-3) around a 2-D cylinder. The grid is clustered near the cylinder and is 

stretched away from it.  Let the global time step for the grid be ( ). It is based on 

the smallest grid spacing (near the surface of the cylinder). Since the grid has one block, 

for numerical stability, (  is equal to ( ) for the block.  

    The level value for this grid block is 1 and there is no speed increase on applying the 

MTSAB scheme. Since the grid spacing on the cylinder is very small as compared to the 
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grid spacing at the boundaries, there is a grid point to grid point variation of levels or 

stable time steps within the grid block.  

     The block cutting algorithm cuts the original block during the run. It uses the point to 

point variation of levels within the grid block as a guiding tool to generate new blocks at 

higher levels. On using the automated block cutting algorithm, 6 blocks are generated at 6 

levels from the initial grid block. These blocks are shown in Figure 3-4. The block 

boundaries are shown by black lines. The new blocks, which are at higher levels, can 

increase the speed of the run MTSAB scheme. 

 

              Figure 3-3:  Single block O-grid around a 2D cylinder has one MTSAB level  
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Figure 3-4:  Six blocks generated at six MTSAB levels after cutting the original block, based on the 
point to point variation of levels within the block 

      

The method used by this algorithm to detect the variation of levels within a given grid 

block and to cut the block is explained here with an example. Consider a block shown in 

Figure (3-5a).  Figure 3.5a shows the point to point variation of the levels within the 

block. There are two levels within the block. Level 1 is shown by the red region and the 

rest of the block is at level 2.  

     Before the block is cut, the block is at level 1 (minimum level value within the block). 

The following steps are performed by the algorithm for one cut in i-direction. The same 

method is used for all the cuts the code makes, in all the directions. 

 

1) The block cutting algorithm uses the level variation data in the block and first 

constructs a histogram for the number of points in level 1, for every grid plane 

perpendicular to i-direction. This histogram is shown in Figure 3-5b. 
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2) The algorithm then detects the i-location with maximum value in the histogram. This 

is shown as ihist line in Figure 3-5c. 

 

3) Once the ihist line is located, the block cutting algorithm calculates the location of two 

other lines: ihist (+) and ihist (-). These lines completely cover the level 1 region. 

These lines are shown in Figure (3-5d). 

 

4) The algorithm then decides whether to make the cut on the ihist (+) line or the hist (-) 

line. For this, which ever of these two lines are closer to the nearest boundary in the i-

direction snaps to that boundary and the cut is made on the other line. 

      In the example, ihist (+) is closer to the imax boundary than ihist (-) is from the imin 

boundary. Therefore, ihist (+) snaps with the imax boundary and the cut is made on the 

ihist (-) line.  

 

4) The above steps are repeated in all the remaining cuts, in all the directions (including 

current direction). Figure 3-5g shows the two blocks after the cut is made. The new block 

generated as a result of the cut is at level 2.  
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           Figures 3-5: Pictures (a) to (g) show how one cut is made using the block cutting algorithm 

 

 

b)  Algorithm for Load Balancing 

Once the blocks are cut to maximize speed of the MTSAB scheme, a second block 

cutting algorithm is used for getting an efficient load balancing of the blocks in each 

level, for parallel computing. 

      Consider the grid over the cylinder again. If this same grid is run on four processors 

(of equal efficiency), the second block cutting algorithm cuts the block at each level into 

four equal blocks, and a total of 24 blocks are generated. Figure 3-6 shows all the new 

blocks and their levels after using both the block cutting algorithms. This algorithm uses 

METIS [25] recursively for the load balancing. Input that is given to METIS is a matrix 

that contains the number of points in each block (diagonal elements) and the amount of 

communication between the blocks (non-diagonal elements). A second input contains the 

number of processors and their corresponding weights. 
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     The following are the steps performed in the block cutting algorithm at each MTSAB 

level. 

1)  Calculate the inputs matrices for METIS and call METIS. 

3)  Calculate the over loading or under loading for each processor using the distribution 

(output) given by METIS. The underloading or overloading is given as, 

                        

 

 

where, the actual points on the processor is the number of grid point currently assigned to 

the processor by METIS and  the ideal points on the processor is the processor weight 

multiplied by the total number if grid points in the domain. 

 

4) , the largest block into 

two equal parts. The cut is made on the plane perpendicular to the direction with the 

largest number of points. Steps 1-4 are repeated again. 

  , or if the blocks cannot be 

cut any more (the minimum number of points in every direction for any block is 10) exit 

the algorithm. 

 

     The minimum number of points in every direction was hardwired 10 for this work. For 

values below 10, too many blocks were produced for some cases (from both the 

algorithms). For these cases, for values below 10, the algorithm used for increasing the 

MTSAB speed, tried to follow the point to point variations of levels too closely and in 
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turn produced too many connected blocks at different levels. This in turn produced huge 

number of buffer blocks. The MTSAB calculations in these buffer blocks caused an 

increase in the overhead. This also increased the overhead due to local data transfers 

between the blocks.  

      As a part of this work, sections in BASS code performing the local transfer of data 

was improved and overhead from this was reduced. At present, the overhead is 

dominated by the buffer block calculations required for the MTSAB scheme.    

 

                        

      Figure 3-6:  A total of 24 blocks are generated after using both the block cutting algorithms      
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Chapter Four 
 

Validation of the Multi-Time Stepping 

Adams- Bashforth (MTSAB) scheme for 

Computational Aeroacoustics (CAA) 

Problems  
 

 
4.1 Introduction 
 
     Calculation of unsteady flow and noise is more demanding than calculation of steady 

flow solutions [1].  The field of Computational Aeroacoustics (CAA) is focused on the 

application of computational methods for the purpose of understanding the physics noise 

generation and propagation. To validate the numerical schemes developed for CAA, a 

range of benchmark validation problems have been specified, and solutions made 

available in the CAA workshops [11-14].  

     Three of the CAA workshop problems were used to test the accuracy of the automated 

MTSAB scheme in BASS Code. The results from using the MTSAB scheme are 

presented in this chapter. 
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4.2 Problem-1: Acoustic Scattering 
 
This test case is from the 2nd CAA Workshop [12]. This test case is an initial value 

problem, and simulates the propagation of an acoustic pulse and its reflection from a 2D-

cylinder.  In Figure 4-1, point O is the center of the cylinder and point S is the location of 

the initial acoustic pulse. As the pulse travels, it is scattered off by the cylinder. The 

problem is to find the pressure histories at points A (   B (

 and C (  

 
 
  
 
                                                                       A                                 
 
                                      B 
     r 

                           
 
 
                                                      θ 
                     C                                                                                          S 
                                                                                                                                 
                           
                                                                          r-         r = 0.5        
 
 

                              Figure 4-1:  Configuration of the Acoustic-Scattering problem 
 
 
  
 
4.2.1 Equations 
 
The equations specified in the workshop, for this problem are the Linearized Euler 

Equations. As mentioned previously, BASS code is a Navier-Stokes solver. The 

equations in BASS Code can be reduced to Euler Equations (non-linear) by switching off 

the viscous terms in the Navier-Stokes equation. The idea, that for small amplitudes of 
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disturbance, (in this case, the acoustic pulse) the Euler equations behave like the 

Linearized Euler Equation, was used for this solving the problem [26].  

      In the problem, the initial acoustic pulse is given as: 

                
 

 
     (4.1) 
 

where the amplitude of the pulse, 

                                                            A   

To solve the problem with Euler equations, the amplitude was reduced to,  

                                                            A   

The initial conditions used for this problem are:      

                                                                    

 

                                                         

                                                         

 

 

 
  
 
 
     (4.2) 
 

 

In Eq. (4.2), . 

      After computing the results with the reduced amplitude, the values in the pressure 

perturbation history at points A, B and C were scaled back, by multiplying the values by 

a factor of . This was done to compare the results from the current simulation to 

the exact solution. 
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4.2.2 Grid and Numerical Details 
 
The circular cylinder has a radius  and is located at the center of the 

computational domain. The numerical simulation was carried out in a domain that 

extends from to . Figure 4-2 shows the computational grid. The 

computational grid consists of two grid blocks with 201 grid points in the radial direction 

and 201 grid points in the azimuthal direction in each grid block. Both the grid blocks 

extend from the cylinder surface to the outflow boundary. The grid has a uniform spacing 

in the r and θ direction.  

     The 4th-order DRP scheme was used for spatial differentiation. BASS code was run 

twice for this case. For the first run, the single step Adams-Bashforth scheme was used.  

The automated MTSAB scheme was used for the second run. The CFL set to 0.28 for 

both the cases. 

      Wall boundary condition [27] on the cylinder sets the normal velocity on the wall to 

zero. Acoustic Radiation (ACRAD) boundary condition [4] was used at the outflow 

boundary. The stable CFL for ACRAD boundary condition was 0.14-0.16 approximately, 

for the value of background dissipation (10th order) coefficient ranging between 0.05-0.1.  

This may be attributed to the fact that some boundary schemes may have a lower stability 

limit [29]. The exact reason for this not currently known. The CFL was therefore reduced 

to 0.15 at the outflow boundary. 

 

4.2.3 MTSAB Performance 

The size of the grid cell is a function of the radial distance from the cylinder, with the 

smallest cell on the cylinder surface and the largest at the outflow boundary. The 
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MTSAB scheme first calculates the level value (explained in chapter 2) at each grid point 

in the grid. This point by point distribution of the MTSAB levels in the grid is shown in 

Figure 4-4. It can seen in this figure,  that the point to point distribution of the levels 

varies from a value of 1 to 3.The level drops to a value of 2 at the outflow boundary.(due 

to the lower stability limit of ACRAD boundary condition).  

     Without using the block cutting algorithm during the run, the stable time step for both 

the grid blocks is based on the smallest cell size in them, which is located on the cylinder 

surface.  Therefore, both the grid blocks are at level one as shown in Figure 4-3. On using 

the block cutting algorithm during the run, the two original grid blocks are cut based on 

the point by point distribution on levels. The distribution of levels in the grid after the 

original blocks are cut, is shown in Figure 4-5 

      Table 4.1 shows the speed-up data from using the MTSAB scheme.  The table shows 

the actual, theoretical and ideal speed ups. The table also gives the number of points in 

each level for: point to point distribution, with block cutting and without cutting the 

blocks.  The ideal speed up, which is based on the point to point distribution of the levels 

in the grid, is 3.03. There is no speed up without cutting the blocks because all the blocks 

(or grid points) are at level 1. The theoretical speed up after cutting the blocks during the 

run is 2.92 and the actual speed up is 2.6. The difference between the theoretical speed up 

after block cutting and the ideal speed up is because of the fact that, the minimum 

number of points for any block in both the directions was set to 10 points.  

     After the blocks are cut, there are 8 blocks and the difference between the actual and 

the theoretical speed up is the overhead from the buffer block calculations.      
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4.2.4 Results 

Figures 4-6 to 4-9 show the snapshots of the pressure contours at different times. The 

initial pulse is located in the level 3 blocks. At around T=4 the large wave front reaches 

the cylinder surface and a small reflected wave (second wave front) can be seen near the 

cylinder. At this time the large wave front has already crossed through all the level 

change interfaces.  

     At T=7 a third wave front is observed near the cylinder which is generated as the 

initial wave propagates over the cylinder. At T=10 the initial pulse has already reached 

the outflow boundary and a smooth transition towards outside is seen. At this time, the 

second and the third wave fronts have crossed through all the level change interfaces.  

       Figures 4.10-4.12 compares the time history of the pressure perturbations at points A, 

B, and C. These points are shown in Figure 4-1. The numerical solutions are compared to 

the exact (analytical) solution given by Kurbatskii in [12]. 

    There is an excellent match, in amplitude and phase in the pressure histories at these 

locations for the single step Adam-Bashforth scheme and the MTSAB scheme. Small 

differences, between the exact and the computed results can be seen. 

      In Figure 4-10, the percentage of difference between the exact data and the data from 

using the MTSAB scheme for point A, at the maximum peak location is 0.41%.  At the 

minimum peak location the difference is 1.38%.  

       In Figure 4-11, the percentage of difference between the exact data and the data from 

using the MTSAB scheme for point B, at the maximum peak location is 0.29%.  At the 

minimum peak location the difference is 0.25%. 
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      In Figure 4-12, the percentage of difference between the exact data and the data from 

using the MTSAB scheme for point C, at the maximum peak location is 0.19%.  At the 

minimum peak location the difference is 1.8%. 

 

 
Grid 

Points in 
Level 1 

Grid 
Points in 
Level 2 

Grid 
Points in 
Level 3 

Theoretical 
Speed up 

Actual 
Speed up 

Number of 
blocks 

Point by 
Point 

Distribution 
4422 12462 63918 3.03 - - 

Distribution 
Without 
Block 

Cutting 
80802 0 0 None None 2 

Distribution 
With Block 

Cutting 
4422 16482 59898 2.92 2.6 8 

 
                                  Table 4.1:  Speed up data for the MTSAB scheme 

 

 

  
                                       
                             Figure 4-2:  Grid for the Acoustic-Scattering Benchmark problem 
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                                       Figure 4-3:   MTSAB level in the grid without block cutting 
 
 
                         

    
                            Figure 4-4:  Point to Point Distribution of the MTSAB levels in the grid 
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                    Figure 4-5:  New grid block and their levels, after the blocks are cut during the run 
 

   
                                              Figure 4-6:  Acoustic pulses at T=0  
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                                                        Figure 4-7:  Acoustic pulse at T=4  
 
 
 

                 
                                               
                                         Figure 4-8:  Acoustic pulse wave at T=6.8 
 
 
 



 
 

58 
 

   

 
                  
                                                Figure 4-9:  Acoustic pulse wave at T=10 
 
 

     
                                    
                                                   Figure 4-10:  Pressure disturbance history at point A 
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                                               Figure 4-11: Pressure Disturbance History at point B 

 

 
                     
                                              Figure 4-12:  Pressure Disturbance history at point C 
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4.3 Gust-Airfoil Problem 

The MTSAB scheme then was tested on a realistic 2D benchmark gust-airfoil interaction 

problem from the 4th CAA Workshop [14]. In this test case, the nonlinear Euler equations 

are solved for the unsteady flow about a cambered Joukowski airfoil. The free stream 

Mach number for this case is 0.5. A two dimensional vortical gust is introduced at the 

inflow boundary and convects with the flow. When the gust impinges the airfoil, noise is 

radiated. The BASS code has been extensively tested for this problem; details of these 

calculations are given in [30]. 

 

4.3.1 Grid and Numerical Details 

The grid used was C-H topology, extending at least 10 chord lengths away in each 

direction. The grid was generated using the commercial package GridPro [31]. The 

reduced frequency of the vortical gust, is introduced at the inflow boundary is defined as, 

                                 
     (4.3) 
 

In Eq. (4.3), c is the chord length and  is the speed of sound. In this current work, the 

MTSAB scheme is validated for the values of the reduced frequencies,  

and . The vortical gust is defined as, 

                                                   
 
     (4.4) 
 

                                
 
     (4.5) 
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 (4.6) 
 

                                

 

 
  

The grid was designed to have a minimum of 15 grid points per wavelength at the highest 

reduced frequency of inflow disturbance; to minimize the effects of grid variations on the 

solution.  

      Figure 4-13a and 4-13b show a close-up of the body-fitted grid used about the 

Joukowski airfoil.  The grid is clustered near the leading edge of the airfoil in order to 

resolve the sharp flow gradients in this region.  

     The spatial derivative scheme used for this problem is the DRP scheme. The time 

marching scheme used are: single step Adams-Bashforth scheme, the MTSAB scheme 

with block cutting algorithm switched off and MTSAB scheme with block cutting. The 

results are compared to previously validated results from this code using Stanescu and 

Habashi‟s [9] low-storage extension of Hu‟s LDDRK56 method [8].  

The smallest time step for this problem is based on stability restriction from the 

clustered grid at the leading edge of the airfoil. To provide damping for the inviscid 

nonlinear calculation, an explicit constant-coefficient 10th-order artificial dissipation 

using Kennedy and Carpenter‟s boundary stencils [32] was added at each stage of the 

RK56 scheme and each step of the Adams-Bashforth scheme. 

     In this calculation, the physical wavelength of the unsteady gust for  is 

approximately   times the chord length of the airfoil; thus, the time step obtained from 

the CFL is very small as compared to the time step necessary for resolving the unsteady 

gust dynamics. Therefore, using an MTSAB scheme, small time steps are only used 
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where the time step is restricted by grid clustering at the leading edge of the airfoil. In the 

rest of the region, as stable time step size increases, larger time steps can be taken while 

still resolving the unsteady vortical gust. 

 

 

 

 

 

                            
                                           
 
 
                                  Figure 4-13a:  Grid used for the Joukowski airfoil case 
 

Inflow 
Boundary 
(ACRAD) 

Outflow Boundary 
(Tam and Webb) 

Outflow Boundary 
(Tam and Webb) 

Outflow Boundary 
(Tam and Webb) 



 
 

63 
 

                                  
 
 
                               Figure 4-13b:  Grid used for the Joukowski airfoil case 
  

 

As an initial condition for the runs, the airfoil is impulsively started in a uniform flow 

field. The gust is introduced at the inflow boundary and convects into the domain. 

     As shown in Figure 4-13b, Acoustic Radiation (ACRAD) boundary condition [4] was 

used at the inflow and Tam and Webb boundary condition [4] was used at the three 

outflow boundaries.  

     The CFL of 0.30 was used for the Adams-Bashforth scheme. The stable local CFL at 

the ACRAD boundary was 0.15.  For the RK56 scheme a CFL of 1.25 was used.  

 

4.3.2 MTSAB Performance 

Figure 4-14 shows the MTSAB level distribution in the grid when the blocks are not cut.  

It can be seen from this figure that all the blocks surrounding the airfoil are at levels 1 

and 2. The rest of the blocks are at level 4. 
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      Figure 4-15 show the point to point variation of level in the complete grid and Figure 

4-16 shows the point to point distribution of levels near the airfoil surface. It can be seen 

from these figures that, only near the leading edge of the airfoil, where the grid is 

clustered to resolve the mean flow gradient, the grid points are at level 1. As the grid 

stretched away from the stagnation point, the levels of the points increase to a maximum 

value of 5. It can be seen in these figures that the original grids blocks can be cut, to 

generated new blocks at higher levels. 

      Figure 4-17 and figure 4-18 show the distribution of levels in the grid after the blocks 

are cut. It can be seen from these figures that, after the blocks are cut, there are 5 levels in 

the domain as opposed to 4 (without cutting the blocks). At the inflow boundary there is a 

drop in the level to a value of 4. This is because of the lower stable CFL at the ACRAD 

boundary.   

    By comparing Figures 4-15, 4-16, 4-17, 4-18 it can be seen that the block cutting 

algorithm is cutting the blocks efficiently. The difference in the point to point distribution 

and the distribution after the blocks are cut is due to the fact that the minimum number of 

points in all the directions, for any block is fixed at 10. Two small patches of level 4 

points can be seen on the upper and lower outflow boundaries, in Figure 4-15. These 

patches are present due to skewness of the grid lines in these regions; which caused a 

drop in level at these points. The block cutting algorithm is able to detect this drop in the 

level in this region and performs cuts around this region very efficiently. 

       Table 4.2 shows the speed- up data from using the MTSAB scheme.  The table 

shows the actual, theoretical and ideal speed ups. The table also gives the number of 

points in each level for: point to point distribution, with block cutting and without cutting 
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the blocks.  The ideal speed up, which is based on the point to point distribution of the 

levels in the grid, is 6.85. The theoretical speed up without cutting the blocks is 2.46.  

     The number of points at level 1 has the greatest effect on reducing the theoretical 

speed up. And the effect decreases as the level of the point decreases. This is show by the 

Eqns. (3.18, 3.19, and 3.20) in Chapter 3. It can be seen from Table 4.2 that in the ideal 

distribution, the number of points at levels 1 and 2 are 669 and 7872 respectively. The 

number of points in level 1 and 2 without cutting the blocks is 16463 and 28684 

respectively. This has a major impact in the difference between the ideal speed up and the 

theoretical speed up without cutting the blocks. The actual run time speed up without 

cutting the blocks in 2.46. The difference between the actual and the theoretical speed up 

is around 1.6%.The difference is due to the overhead from the buffer block calculations.   

    From table 4.2 it can be seen that after the blocks are cut, the theoretical speed up is 

6.27. Looking at the distribution of points at different levels it can be seen that the block 

cutting algorithm tries to achieve the ideal distribution for this case. The restriction of 10 

points in any direction for a block is the reason for the difference in these distributions. 

The actual speed up after cutting the blocks is 4.81. The difference between the actual 

and the theoretical has increase to 23%. This is because, after cutting the blocks the 

number of blocks has increased from 16 to 67. This increased the overhead from the 

buffer block calculations.  

     Without breaking blocks, the MTSAB scheme was 2.5 times faster than the RK56 

scheme for this run. 

    At the time of calculation of the results using the MTSAB scheme, the block cutting 

algorithm was still under development. The blocks were cut manually, or in other words 
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the cut locations were hardwired into the BASS code. The grid blocks and their levels 

after the blocks are cut is shown in Figure 4-19. The block cutting that was done 

manually was not as efficient as the automated block cutting and theoretical speed up was 

around 4.0 and the actual speed up was around 3.0. The results presented for the MTSAB 

scheme with block breaking are for the manual block breaking. Currently the input gust 

section of the ACRAD boundary is under work in BASS code. This is the reason for not 

running this particular case again with the automated block cutting.  

 

 
            Table 4.2 Speed up data from using the MTSAB scheme for the Joukowski airfoil case 
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Grid 
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in 
Level 4 

Grid 
Points 

in 
Level 5 

Grid 
Points 

in 
Level 6 

Theoretical 
Speed up 

Actual 
Speed 

up 

Number 
of 

blocks 

Ideal 
Distribution 669 7872 14295 17920 53720 0 6.85 - - 

Distribution 
Without 
Block 

Cutting 
16463 28684 0 49329 0  0 2.5 2.46 16 

Distribution 
With Block 

Cutting 
1133 8281 14868 26726 43468 0 6.27 4.81 67 
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                                        Figure 4-14:  Distribution of levels without block cutting  
 

 

                       
                                       Figure 4-15:   Point by point distribution of levels in the grid (Ideal) 
 



 
 

68 
 

 

 
                                 Figure 4-16: Point by point distribution of levels near the airfoil surface 
 
                         
                                  

                             
                           Figure 4-17:  New blocks and their levels after the blocks are automatically cut 
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Figure 4-18:  Levels of the new grid blocks near the airfoil surface after the original blocks are cut  
during the run.  

                       
                         Figure 4-19:  Levels of the new grid blocks after the blocks were cut manually 
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4.3.3 Results  

Figures 4-20 to 4-25 compare the results for the single Adams-Bashforth scheme, 

MTSAB scheme (with manual block breaking and without breaking the blocks) and 

RK56 scheme, for both the gust frequencies. 

     Figures 4-20 and 4-23 show the mean pressure distribution on the airfoil surface for 

both the values of the reduced frequencies. It can be seen in these figures that, there is an 

excellent match in the mean pressure for all the schemes used, for both the gust 

frequencies. 

    Figures 4-21 and 4-24 show the RMS pressure distribution on the airfoil surface for 

both the values of the reduced frequencies.  It can be seen in these figures that there is a 

good match between the single step Adams-Bashforth scheme and the RK56 scheme, for 

the RMS pressure distribution. The RMS pressure distribution from using the MTSAB 

schemes (with manual block breaking and without block cutting) varies slightly from the 

single step Adams-Bashforth scheme. This can be seen for both the values of the gust 

frequencies. The difference is more for the case with block cutting than without cutting 

the blocks. 

      Figures 4-22 and 4-25 show the plots of acoustic intensity in the near field on a circle 

of radius R=1, 2, 3, and 4 times the chord length of the airfoil, for both the values of the 

gust frequencies. There is an excellent match in the acoustic intensities for both; single 

step Adams-Bashforth scheme and the RK56 scheme. The MTSAB schemes, with and 

without cutting the blocks vary slightly from the single time stepping schemes.  

     The differences can be attributed to fact that the grid points at a bigger time steps 

when using a MTSAB scheme. 
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                          Figure 4-20:  Mean pressure distribution on airfoil surface for k=1.0 
 

              
                             Figure 4-21:  RMS pressure distribution on airfoil surface k=1.0 
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                                           Figure 4-22:  Near Field Acoustic intensities for k=1.0 
 

    
                                  Figure 4-23: Mean pressure distribution on airfoil surface for k=2.0 
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                                    Figure 4-24:  RMS pressure distribution on airfoil surface for k=2.0 
 

 

 
                                           Figure 4-25: Near Field Acoustic intensities for k=2.0 
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4.5 Fan-Stator with Harmonic Excitation by Rotor Wake 

The Category 4 problem from the Third CAA Workshop [13] was chosen to test the 

MTSAB for three dimensional problems in BASS code. In this problem, a stator row 

consisting of 24 infinitely thin flat plates are mounted in a constant radius annulus 

(Figure 4.26).  A uniform axial mean flow convects the wakes from an upstream 16-blade 

rotor through the stator row, and noise is generated when these wakes impinge on the 

stators. 

  In cylindrical co-ordinates, the wake is given as, 

                               
 

 
     (4.7) 
 

Where U is the axial flow speed,  and Ω is the rotor angular velocity. Only the 

blade passing frequency is considered (n=1) with up wash amplitude equal to 0.1. 

Following (13),  

                               
 

 
     (4.8) 
 

 where an   is in general complex. The function giving the radial dependence is: 

                                                 
 
     (4.9) 
 

In Eq. (4.9), q is the wake parameter; for q= 0 the excitation is in phase from root to the 

tip of the stator. When q = 3, there are 3 wakes intersecting each stator vane. All 

calculations were performed at tip Mach number MT =0.783.  BASS Code was tested by 

Sescu. et.al [24] for q values ranging from 0.0 to 3.0.The value of q = 3.0 was chosen to 

test the MTSAB scheme. 
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4.5.1   Grid and Numerical Details 

The computational grid was generated using the GridPro [31] package. A single passage 

grid was generated, and then „stacked‟ in the azimuthal direction. The grid has a 

minimum of 10 points per wavelength in all the three co-ordinate directions. 

    Axially, the grid begins 1.5 chord lengths upstream of the stator leading edge and 

extends 6 chord lengths downstream of the stator trailing edge. The sponge layer begins 

from, 2 chord lengths from trailing edge of the flat plate to the outflow boundary. The flat 

plate stators have no thickness in the grid, which gives rise to grid singularities at the 

leading and the trailing edge points of the stators. The grid is clustered about these points 

to resolve the sharp flow gradients which are generated at these locations. Due to the 

periodicity of the test problem, the computational domain included only three of the 24 

flat plate stators (1/8 of the full annulus).Periodic boundary conditions were specified in 

the azimuthal direction. The grid has a total of 526,752 grid points.  

    The wake given by Eq. (4.16) is imposed at the inflow boundary. Details of the gust 

imposition can be found in [24]. Giles boundary condition [34] is used at the inflow and 

outflow. The equations are designed such that the outgoing waves are absorbed with no 

reflection, but this is not always true.  

     At the outflow boundary, a sponge layer combined with grid stretching to absorb the 

unwanted spurious waves that could contaminate the flow domain [35, 36]. 
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4.5.2 MTSAB performance 

Based on the stability limit, CFL of the MTSAB scheme was set to 0.31. Figure 4-27 

shows the complete grid and the grid near the flat plate. Figure 4-28 shows the 

distribution of the levels in the grid before using the blocks cutting algorithm.  

It can be seen from this figure that there are four levels in this grid. As expected, the 

blocks which are at the leading and the trailing edges are at level 1 and the levels of the 

blocks increase as they are located away from the leading and the trailing edges.  

    Figure 4-29 shows the point to point distribution of the levels in the grid. It can be seen 

that most of the points in the grid are at level 5. The points at the inner radius of the 

annulus are at level 4 and the levels of the points increase to 5 away from the inner 

cylinder. The points clustered near the plate are at a lower level as expected. 

     Figure 4-30 shows the distribution of the grid points after the blocks are cut. As 

already discussed, the minimum number of points for any given block, in every direction 

is 10.  The block cutting for this case was restricted by an additional constrain for this 

case. The blocks could not be successfully cut on the Giles inflow and outflow faces due 

to a technical problem in the code. Currently, work is being done to resolve this issue. 

Looking at the levels near the plate in Figure 4-30 it can be seen that blocks are getting 

cut successfully at the interior of the computational domain.   

    Table 4.3 shows the speed up data from using the MTSAB scheme. The ideal speed up, 

which is based on the point to point distributions of the levels in the grid, is 6.85. The 

theoretical speed up without cutting the blocks was 2.66 and the actual speed up was 

2.25.  
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After the blocks are cut during the run, the theoretical increased to 3.02 and the actual 

speed up increased slightly to 2.28.  The difference in the actual and the theoretical speed 

up is due to the overhead from the buffer block calculations. The number of blocks after 

using the block cutting algorithm, increased from 156 to 234. This added to existing 

overhead from the buffer block calculations. The big difference in the theoretical speed 

up after the blocks are cut and the ideal speed up is due to the restrictions imposed on the 

block cutting (as already discussed).  

          

      Figure 4-26: Configuration of the blades in category 4 problem from the 3rd CAA Workshop  

                                        

                                  Table 4.3 Speed-up data for the MTSAB scheme 
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Distribution 

Without 
Block 

Cutting 
54684 196602 82026 193440 0  0 2.66 2.25 156 

Distribution 
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Cutting 
54684 140988 76998 225282 28800 0 3.02 2.28 234 
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                                               Figure 4-27: Grid for the 3D Workshop Problem 
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                                  Figure 4-28: Distribution of levels before cutting blocks  
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                                  Figure 4-29: Point by point distribution of levels in the grid  
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   Figure 4-30: Distribution of levels after the block cutting algorithm is used           
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4.5.3 Results 
 
The results are compared for the MTSAB scheme with automatic block cutting and the 

optimized HALE-RK67 scheme (Allampalli et. al. [18]). The CFL 1.5 was used for the 

RK67 scheme. The MTSAB scheme after block cutting was 1.8 times faster than the 

HALE-RK67 scheme. 

     Figure 4-31 show contours of instantaneous velocity magnitude. The effect of wake 

phase parameter can be seen in this figure. For q=3.0, the gust excitation at the hub leads 

that of the tip, as in the real fan wakes.  

   A pressure field modal expansion given by Tyler and Sofrin [37] is given as,  

  

                                                
 

 
   (4.10) 
 

 

In Eq. (4.10)   are the complex amplitudes and  is the radial mode shape 

and m=nB-Kv, with k=0, ±1, ±2. 

     Figures 4-32 to 4-39 compare the real and imaginary parts of the complex pressure 

amplitude of the radial modes for m= -8 and m=16 and for  and 2. Comparison is 

made for both the schemes used, at two axial locations. The axial upstream location is at 

x=-b and the downstream location is x=2b, where b is the chord length of the plate. 

    In these Figures it can be seen that at the upstream location, for m=16 real part of the 

complex amplitude computed from the MTSAB scheme differs from the values 

calculated by the RK67 scheme. The difference is in the order of 10-6. This can be 

attributed to the fact that the data computed for the MTSAB scheme has double precision. 
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The RK67 data had single precision. This is also true at the downstream location for the 

value of m=16.  

     For m=-8, at the upstream location, the MTSAB scheme slightly underpredicts the 

values of the real and the imaginary parts for  and slightly over predicts the values 

for  

      It can be seen from the results that at the downstream location, for m=-8 and  

the MTSAB scheme predicts a slightly higher value than the RK67 scheme for both, real 

and imaginary parts of the complex amplitude. 

              
                            Figure 4-31: Figure shows the Instantaneous Velocity magnitude  
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                  Figure 4-32:  Real part of the Complex pressure at the upstream location; m=16 

 
 

    
          Figure 4-33: Imaginary part of the complex pressure amplitude at the upstream location; m=16 
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        Figure 4-34:  Real part of the Complex pressure at the upstream location; m=-8 

 
 

 
 

          Figure 4-35: Imaginary part of the complex pressure amplitude at the upstream location; m=-8 
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   Figure 4-36:   Real part of the Complex pressure amplitude at the downstream location; m=16 
 
 

             

           
 

    Figure 4-37:  Imaginary part of the complex pressure amplitude at the downstream location; m=16 
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    Figure 4-38:  Real part of the Complex pressure amplitude at the downstream location; m=-8 
 

 

               
Figure 4-39: Imaginary part of the complex pressure amplitude at the downstream location; m=-8 
 
 
 
                                           



 
 

88 
 

              
 
                          

Chapter 5 

 
Application of Multi-Time-Stepping 

Adams-Bashforth Scheme to Transonic 

Flows 

 

5.1 Introduction 

Transonic flow occurs when there is mixed subsonic and supersonic local flow in the 

same flow field. Usually the supersonic flow region is terminated by a shock wave, 

allowing the flow to slow down to subsonic speed. The transonic problem is difficult 

because it is inherently nonlinear. 

     Multi-Time-Stepping Adams-Bashforth scheme in BASS code was tested for inviscid, 

transonic flows. The scheme was extended to be used with grid motion. The code, as 

discussed already, during the run calculates different time steps it chooses for different 

regions of the grid and changes this distribution automatically, as need arises. This 

automation is very useful, particularly for cases with grid motion. As the grid changes 

shape, there may be a change in local stable time step for some blocks. The MTSAB 

scheme automatically detects this and performs a Dynamic Level Redistribution, where it  
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reassigns the levels of the blocks during the run.                                                                                   

     NACA0012 and NACA64A010 airfoils were used for the tests. Steady calculations 

were obtained for NACA0012 airfoil at Mach 0.63 and Mach 0.75, for an angle of attack 

of 2 degrees. Unsteady flow was calculated for the plunging NACA64A010 airfoil at 

Mach 0.8.  

 

5.2 Shock Capturing  

Shocks are characterized by discontinuities in the flow variables. In an inviscid flow, the 

shocks have no thickness. The very sharp flow gradients at such discontinuities may not 

be resolved by the spatial differencing scheme and the grid spacing used, causing non 

physical oscillations to be generated in the flow properties at the nearby grid points [23]. 

These oscillations may be large enough to cause the flow solver to predict negative 

values for the flow density, pressure or temperature. When this occurs, the flow 

calculation fails. 

      Several researchers studied this issue and proposed switchable dissipation schemes by 

which shocks and discontinuities could be directly computed as part of the flow solution 

(e.g., Refs. 38-43). Generally, these researchers defined a background dissipation scheme 

for use in the smooth regions of the flow, a more aggressive dissipation scheme for use 

near flow discontinuities, and a shock detection method to determine the presence and 

location of flow discontinuities. An extension of this method was developed for use in 

CAA schemes [23].This method combines explicit high accuracy background dissipation 

with a second order shock capturing dissipation. The cases presented in this work used 
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this particular shock capturing method to calculate steady and unsteady, inviscid, 

transonic flow over airfoils. 

 

5.3 Grid Generation for Steady Flow Cases 

MTSAB scheme was first tested for subsonic flow over the NACA0012 airfoil at Mach 

0.63.  The Mach number was then increased to 0.75 at which the flow is transonic. Two 

grids were generated for the steady flow over the NACA0012 airfoil with a rounded 

trailing edge. The grids for these cases were generated using the GridPro package [31]. 

     Two grids were generated. The first grid (Grid 1) was used to calculate the steady 

flow solutions at Mach 0.63 and Mach 0.75. Figures 5-1 and 5-2 show the complete grid 

and the grid near the airfoil surface. Grid 1 has 40334 grid points. 

      For the Mach 0.75 case, an approximate shock location on the airfoil surface was 

obtained from running the case with Grid 1. A second grid (Grid 2) was generated with 

grid clustering at this approximate shock location, near the airfoil surface. This served 

two purposes. The first was to see the effect on shock resolution from a greater number of 

points on the airfoil surface, at the shock location. The second was to see the effect of 

changing the time step at the shock location.  

     Figure 5-3 shows the grid clustering on the airfoil surface for Grid 2. Grid 2 has a total 

of 44525 points. Both the grids generated extend to 24 chord lengths in the downstream 

direction and 10 chord lengths in remaining directions. 
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                                 Figure 5-1: Complete grid for NACA0012 airfoil  
 
 
 

   
 
                                             Figure 5-2: Grid near the airfoil surface (Grid 1) 
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Grid 1  
Grid 

Points 
in Level 

1 

Grid 
Points 

in 
Level 2 

Grid 
Points 

in 
Level 3 

Grid 
Points 

in 
Level 4 

Grid 
Points 

in Level 
5 

Grid 
Points in 
Level 6 

Theoretical 
Speed up 

Actual 
Speed 

up 

Number 
of 

blocks 

Ideal 
Distribution 131 2730 5522 6132 1626 24193 8.62 NA - 

Distribution 
Without 
Block 

Cutting 
4715 1155 7056 5953 0 21455 4.76 3.87 94 

Distribution 
With Block 
Cutting at 
Level  1 

2365 3285 7276 5953 0 21455 5.57 3.48 114 

Distribution 
With Block 
Cutting at 

Levels 1 and 
2 

2365 2955 7606 5953 0 21455 5.63 3.53 117 

Distribution 
With Block 
Cutting at 
Level 1,2 

and 3 

2365 2955 4776 8783 0 21455 5.93 3.57 126 

Distribution 
With Block 
Cutting at 
Level 1,2,3 

and 4 

2365 2955 4776 6673 420 23145 6.09 3.61 137 

Distribution 
With Block 
Cutting at 

Levels 
1,2,3,4 and 5 

2365 2955 4776 6673 220 23345 5.99 3.62 139 

 

                                                  Table 5.1 MTSAB Speed up Data for Grid 1  

 

 

 

 

 

 

 

 



 
 

93 
 

Grid 2  
Grid 

Points 
in Level 

1 

Grid 
Points 

in 
Level 2 

Grid 
Points 

in 
Level 3 

Grid 
Points 

in 
Level 4 

Grid 
Points 

in Level 
5 

Grid 
Points in 
Level 6 

Theoretical 
Speed up 

Actual 
Speed 

up 

Number 
of 

blocks 

Ideal 
Distribution 84 3189 6266 6738 2644 25604 8.81 - - 

Distribution 
Without 
Block 

Cutting 
5881  1155 6479 7548 903 22559 4.55 3.67 120 

Distribution 
With Block 
Cutting at 
Level  1 

2750 3636 7129 7548 903 22559 5.52 3.46 143 

Distribution 
With Block 
Cutting at 

Levels 1 and 
2 

2750 3206 7559 7548 903 22599 5.6 3.47 147 

Distribution 
With Block 
Cutting at 

Level 1,2 and 
3 

2750 3206 5249 9858 903 22559 5.81 3.57 155 

Distribution 
With Block 
Cutting at 
Level 1,2,3 

and 4 

2750 3206 5249 8168 903 24249 5.93 3.59 166 

Distribution 
With Block 
Cutting at 

Levels 
1,2,3,4 and 5 

2750 3206 5249 8168 473 24679 5.94 3.6 168 

 

                                                 Table 5.2:  MTSAB Speed up Data for Grid 2 

 
 
5.4 Numerical Details 

The equations solved were the Euler equations. Optimized 4th order DRP scheme of Tam 

and Webb was used for spatial differentiation. The shock capturing dissipation uses 2nd 

order explicit dissipation, while the background dissipation uses the 10th background 

dissipation [23]. The 2nd order dissipation coefficient used for the MTSAB scheme was 

0.08 and the 10th order dissipation coefficient was 0.2. Values, greater than 0.2, for the 
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background dissipation coefficient makes the solver unstable. Thompson boundary 

conditions were used for the inflow and the outflow boundaries [46]. 

 

5.5 MTSAB Performance for Steady Flow Cases 

     The CFL of the MTSAB scheme was set to 0.31. Figure 5-4 shows the MTSAB levels 

in Grid 1 when the blocks are not cut. It can be seen from this figure that most of the 

region away from the airfoil is at level 6. Figure 5-5 shows the MTSAB levels near the 

airfoil surface for Grid 1, when the blocks are not cut. It can be seen from this figure that, 

blocks on the trailing and the leading edges of the airfoil, where the grid is clustered to 

resolve the stagnation points, are at level 1. The levels of the blocks away from the 

stagnation points increase as the grid is stretched out from the stagnation points. 

    Figure 5-6 shows the point to point distribution of levels near the airfoil surface for 

Grid 1. By comparing Figures 5-5 and 5-6 it can be seen that the blocks near the airfoil 

surface can be cut to generate new blocks at higher levels.  

     Figure 5-7 shows the distribution of levels in the grid after the block cutting 

algorithms was used during the run.  It can be seen from this figure that, the blocks near 

the airfoil surface are cut during the run to get blocks at higher levels. The effect of the 

singularities on the levels can also be seen in this figure. There are two singularity points 

slightly away from the airfoil surface near the leading and the trailing edges of the airfoil. 

The level drops back to 1 in the regions surrounding the singularity points. 

    Figure 5-8 shows the levels of the blocks in Grid 2, before the blocks are cut.  In Grid 

2, as discussed earlier, the grid is clustered not only at the leading and the trailing edges 

to resolve the stagnation point but also at the approximate shock location (to improve the 
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shock resolution). Therefore the blocks, in the vicinity of the shock location are at levels 

1 and 2.  

     Figure 5-9 shows the point to point distribution of levels near the airfoil surface for 

Grid 2 and Figure 5-10 shows the levels of the blocks after the block cutting algorithm 

cuts the original grid blocks during the run. By comparing these two figures it can be 

seen that block cutting algorithm cuts the blocks efficiently. The difference between these 

distributions is again from the fact that minimum number of points in every direction is 

fixed at 10. 

      In Grid 2, an interesting observation can again be made about singularity points 

again. Two singularity points were created in the process of clustering the points near the 

shock location (just like for the leading and the trailing edges). It can be seen in Figure 5-

10 that, at the shock location, the region attached to the surface of the airfoil is at level 

2.The level drops from 2 to 1 slightly above the airfoil surface and goes back to 2 again. 

The drop in the level is due to the presence of the singularity points. 

     Table 5.2 shows the distribution of the grid points at different levels for Grid 1. The 

table also shows the actual speed up, theoretical speed up and ideal speed. The ideal 

speed up, which is based on point to point distribution of levels, is 8.62. The number of 

blocks in the grid is 94. The theoretical speed up without cutting the blocks is 4.76 and 

actual run time speed up without cutting the blocks was 3.87. The difference between the 

actual and the theoretical speed ups is due to the overheard from the buffer block 

calculations.    
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     Table 5.2 also shows the actual and theoretical speed ups after the block cutting was 

used at different maximum levels. It can be seen that when the blocks cut only at level 1, 

although the theoretical speed up increases to 5.57 the actual speed up drops to a value of  

3.48. The number of blocks increased from 94 to 114. This drop in the actual speed up is 

due to the fact that the speed loss from the increased overhead from buffer block 

calculations overwhelms the speed gain from cutting the blocks at level 1. As the 

maximum levels at which the blocks are cut increases to 5, the theoretical speed up 

reaches 5.99. The actual speed up, after the initial drop, after block cutting at level 1, 

increases to a value of 3.26. It never crosses the value of the 3.87, which was the actual 

speed up when no block cutting was performed. The total number of block generated, 

after the blocks were cut at 5 levels was 139. 

     The drop in the actual speed up when the blocks were cut only at level 1 can be 

explained by a combination of two possible reasons. The first reason is that, the overhead 

from the buffer blocks can depend on what level the buffer block is at. For example, 

buffer blocks generated for a level 1 block performs more work that the buffer blocks that 

are generated for a level 6 block, for same number of points. This is because; buffer 

blocks generated for level 1 block performs calculations at every single time step. The 

second reason might be the number of points at level 1 interacting with other levels. In 

other words, for a given number of points at level 1, the number of grid points that 

communicate with other levels can dictate the amount of overhead from the buffer block 

calculations. Comparing Figures 5-5 and 5-7 it can be seen that the points at level 1 

communicating with other levels has increased after the blocks are cut at that level. 
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      Table 5-3 shows the speed up data for Grid 2. It can be seen from this table that the 

actual and the theoretical speed ups exhibit similar behavior for Grid 2 as it was for Grid 

1.  

     Although there was a drop in the actual speed up from using the block cutting 

algorithm in both the grids, block cutting was used at all the levels to compute the results. 

This was done to test the accuracy scheme for a maximum value of the theoretical speed 

up.       

 

                                Figure 5-3:  Grid clustering at approximate shock location (Grid 2) 

    

 

 



 
 

98 
 

 

       

 

                    Figure 5-4:  Distribution of the MTSAB levels in Grid 1 without block cutting 
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Figure 5-5:   Distribution of the MTSAB levels near the airfoil (in Grid 1) without block cutting. 

                  

              Figure 5-6:   Point by point distribution of the MTSAB levels in Grid 1 near the airfoil 
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Figure 5-7:  Distribution of levels in Grid 1, after the block cutting algorithm cuts the blocks during 
the run 

                
   Figure 5-8:  Distribution of the MTSAB levels near the airfoil (in Grid 2) without block cutting 
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                      Figure 5-9:   Point by point distribution of the MTSAB levels in Grid 2 
 

                        
Figure 5-10: Distribution of levels in Grid 2 after the block cutting algorithm cuts the blocks during 
the run 
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 5.6 Steady Flow Results 

The steady flow was calculated for the rounded trailing edge NACA0012 airfoil at Mach 

0.63 and 0.75, for an angle of attack of 2 degrees. For the cases, the non-dimensional free 

stream quantities at the inflow boundary are:  

                                                           

                                                     

For Mach 0.63:              

                                                                                                   (5.1) 

For Mach 0.75:       

                                                                      

    

     Figures 5-11, 5-12 and 5-13 show the pressure contours around the airfoil. It can be 

seen from these pictures that using the MTSAB scheme, is able to capture the flow 

features in both subsonic and the transonic cases.  

     In figure 5-12, the effect of clustering of grid points in Grid 2 at the approximate 

shock location can be seen for the Mach 0.75 case. The shock in Figure 5-12 is less 

smeared as compared to the shock in Figure 5-11. 

      The distribution of coefficient of pressure on the airfoil surface for the cases run is 

shown in Figures 5-14 and 5-15. Figure 5-14 compares the compares the coefficient of 

pressure from the current simulation to that given by Steger in [44], for the Mach 0.63 

case. A good comparison in the lift can be seen for the computed results.  
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      Figure 5-15 shows the distribution of the coefficient of pressure on the airfoil surface 

for Mach 0.75 case. The results from using Grids 1 and 2 are compared to that given by 

Steger [44] for the same flow conditions. A good match in the shock location and lift can 

be seen between the computed results. The effect of clustering of grid points in Grid 2 

can also be seen in this figure. The shock is better resolved when the number of points 

across the shock is increases. Figure 5-16 shows the actual location of points on the 

airfoil surface, at the shock location. Grid 1 has around 8 points across the shock and 

Grid 2 has around 40 points across the shock. 

     These results are a validation for the MTSAB scheme to solve highly nonlinear steady 

flows.  

 
                            Figure 5-11:  Pressure Distribution for Mach 0.63 and 2 deg. AOA case 
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Figure 5-12: Pressure Distribution for Mach 0.75 and 2 deg. AOA case without grid clustering at 

shock 

 
  Figure 5-13:  Pressure Distribution for Mach 0.75 and 2 deg. AOA case with grid clustering at shock 
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Figure 5-14:  Distribution of coefficient of pressure on the NACA0012 airfoil at Mach 0.63 and 2 
AOA 
 
    

   
Figure 5-15: Distribution of coefficient of pressure on the NACA0012 airfoil at Mach 0.75 and 2 AOA 
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Figure 5-16   Plot showing the number of points resolving the NACA0012 airfoil at Mach 0.75 and 2 
AOA 
 
 
 
5.7 Unsteady Flow over NACA64A010 Airfoil 

MTSAB scheme in the BASS code was extended to work with grid motion. To test the 

scheme, it was used solve for, flow over a plunging NACA64A010 airfoil. The airfoil is 

plunging at the rate given by,   

              (5.2) 

For this case, the freestream Mach number was  and the speed of sound  

 . The airfoil is plunging between ±1 degrees AOA. In Eq. (5.2), the plunge angle 

at any non dimensional time is given as, 

                                        (5.3) 
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Where,  is the non dimensional time period of the plunge and is defined as, 

                                                                     (5.4) 

The chord length  in Eq. (5.4) is equal to 1. Therefore, 

                                                                                                                  (5.5) 

 To calculate  a reduced frequency of the plunging motion is defined as, 

                                                                     (5.6) 

The reduced frequency for this case was 0.4. 

Using Eq. (5.3) and Eq.(5.7), the plunge angle , is calculated as, 

                                                                      (5.7) 

 The plunging motion for this case was hardwired into the BASS code.  

 

5.8 Grid Generation and Numerical Details 

The grid (Grid 3) was again generated using the GridPro software. Grid 3 has a total of 

51465 points. The number of grid blocks in this grid was 95.  Figure 5-17 shows the 

complete grid and Figure 5-18 shows the grid near the airfoil surface. The grid was again 

clustered at the trailing and the leading edges to resolve the stagnation points. Since for 

this case, the shocks are moving on the surface of the airfoil, the shock location is not 

fixed. Therefore, no grid clustering was used to resolve the shocks. Instead, more grid 

points were used on the airfoil surface for Grid 3, as compared to Grid 1. The same 

numerical schemes, used for the steady cases were used for this case. BASS code uses a 
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high accuracy moving wall boundary condition developed by Hixon [45]. Thompson 

boundary condition was used at the inflow and the outflow boundaries [46]. 

 

Grid 3  
Grid 

Points 
in 

Level 1 

Grid 
Points 

in 
Level 

2 

Grid 
Points 

in 
Level 

3 

Grid 
Points 

in 
Level 

4 

Grid 
Points 

in 
Level 5 

Grid 
Points 

in Level 
6 

Theoretical 
Speed up 

Actual 
Speed 

up 

Number 
of 

blocks 

Ideal 
Distribution 472 2541 6754 9863 13686 18149 8.45 - - 

Distribution 
Without Block 

Cutting 
6279 451 9513 6069 16802 12351 4.64 3.99 95 

Distribution 
With Block 
Cutting at 
Level  1 

2849 3001 10393 6069 16802 12351 5.62 3.71 122 

Distribution 
With Block 
Cutting at 

Levels 1 and 2 
2849 2601 10793 6069 16802 12351 5.69 3.72 126 

Distribution 
With Block 
Cutting at 

Level 1,2 and 3 
2849 2601 7466 9396 16802 12351 5.96 3.68 141 

Distribution 
With Block 
Cutting at 

Level 1,2,3 and 
4 

2849 2601 7466 8566 17632 12351 6.00 3.66 144 

Distribution 
With Block 
Cutting at 

Levels 1,2,3,4 
and 5 

2849 2601 7466 8566 13897 16068 6.084 3.66 163 

 
                                             Table 5.3 MTSAB Speed up Data for Grid 3 
 
 
5.9 MTSAB Performance for Unsteady Flow cases 
 
The CFL of the MTSAB scheme was set to 0.31. Figures 5-4 shows the MTSAB levels in 

Grid 3 when the blocks are not cut. It can be seen from this figure that most of the region 

away from the airfoil is at level 5 and 6. Figure 5-5 shows the MTSAB levels near the 
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airfoil surface for Grid 1, when the blocks are not cut. It can be seen from this figure that 

blocks on the trailing and the leading edges of the airfoil, where the grid is clustered to 

resolve the stagnation points are at level 1 and the levels of the blocks increase as the grid 

is stretched away from the stagnation points. The level distributions shown in the figures 

are at the start of the plunging motion and can vary during the plunge cycle.  

     As the grid deforms from the plunging motion the, the point to point level distribution 

in the domain, can change. If the stable time step (or level) in a grid block drops below it 

existing value during the run, and the grid block continues to march with its originally 

assigned time step or level, the solution can quickly become unstable. The MTSAB 

scheme, on detecting this level change performs a Dynamic Level Redistribution. During 

this redistribution, the blocks are reassigned new level values to stay within the stability 

limit (as explained in Chapter 2).  

     Figure 5-23 shows the coefficient of lift during plunging cycle. The post-processor 

was programmed to write the coefficient of lift to an output file, at regular intervals. It 

was also programmed to write the lift coefficient whenever a Dynamic Level 

Redistribution was performed by the MTSAB scheme.  In this figure, there are two 

locations where the data points are located very close to each other, than the rest of the 

data points. These are the locations in the cycle where the MTSAB scheme detects a level 

change and performs a Dynamic Level Redistribution. 

      Table 5.3 shows the speed up data of the MTSAB scheme at the start of the plunging 

motion. The ideal speed up, which is based on point to point variation of the levels in the 

grid, is 8.45. 
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Figure 5-17 Complete grid for NACA64A010 airfoil 
 
 

 
                                      Figure 5-18: Grid near the NACA64A010 airfoil surface (Grid 3) 
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                       Figure 5-19 Distribution of the MTSAB levels in without block cutting 
 
       

     The theoretical speed up without cutting any block is 4.64 and the actual speed up 

without using the block cutting algorithm is 3.99. The difference between them is due the 

overhead from buffer block calculation. Table 5.3 also shows the theoretical speed ups 

and the actual speed ups for different maximum levels at which the blocks are cut. Again, 

as it was seen for the steady cases, cutting the blocks just at level 1 reduced actual speed 

up of the run to 3.71, although the theoretical speed up increases from 4.64 to 5.62. 27 

new blocks were generated from cutting blocks at level 1. This adds to the overhead from 

buffer block calculations.  The theoretical speed-up increases to a value of 6.084, when 
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blocks are cut at 5 levels. It can be seen that block cutting beyond 3 levels does not add 

much to the theoretical speed-up.  

      Although 22 blocks were added after block cutting at levels 4 and 5, the buffer block 

overhead at these levels hardly affects the actual speed up.   

 

 

 

          
                               
Figure 5-20: Distribution of the MTSAB levels near the NACA64A101 airfoil without block cutting 
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              Figure 5-21: Point by point distribution of the MTSAB levels in Grid 1 near the airfoil 
 
 
  

                 
Figure 5-22: Distribution of MTSAB levels after the block cutting algorithm cuts the blocks during 
the run 
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 Figure 5-23: The Coefficient of lift vs. Plunge angle plot showing the locations of Dynamic Level 
Redistribution  
 
 
5.10 Unsteady Flow Results 

Figures 5-24, 5-25 and 5-26 show the instantaneous pressure contours near the airfoil 

surface, for the maximum, almost mean and minimum values of the lift coefficient during 

the plunge cycle. The change in the shock locations during the plunge cycle can be seen 

in these figures. 

     In Figures 5-27 to 5-28, the coefficients of moment and lift are plotted against the 

plunge angle for the fourth cycle of the plunging motion. In these figures, the data from 

the current simulation is compared to the data given by Steger in [44]. 

     These figures also show the phase of the airfoil motion during the plunge cycle. The 

amplitude of the coefficient of lift computed from the present simulation differs from 

Steger‟s data, between 2-6%.  
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     The coefficient of moment, calculated at the quarter chord, differs slightly in 

amplitude and phase for all the three sets of data. This difference can be attributed to the 

fact that, the moment sensitive to the difference in shock resolution.  

       The NACA64A010 airfoil is a symmetric airfoil and there is no mechanism for there 

to be a difference in the minimum and the maximum values of the coefficients of lift 

during the plunging motion. In Table 5.4, the minimum, maximum and average values of 

the lift and the moment coefficients from the present calculation are compared to the 

minimum, maximum and average values in Steger‟s and Magnus‟s data. It can be seen 

from the table that the data from the present calculation almost has the same magnitude 

for positive and negative amplitudes of the coefficient of lift. 

    The moment can be slightly asymmetric, depending on the location of the grid points 

on the top and the bottom surface of the airfoil.            

 Min CL Max CL Avg. CL 

Current -0.106 0.105 -0.0005 

Steger -0.113 0.102 -0.0055 

Magnus -0.114 0.104 -0.005 

 Min Cm Max Cm Avg. Cm 

Current -0.0106 0.011 0.0002 

Steger -0.0124 0.014 0.0008 

Magnus -0.0117 0.0105 -0.0006 
  

           Table 5.4: Comparison of Min, Max and Avg. values of CL and Cm for all three sets of data 

 



 
 

116 
 

    

             Figure 5-24: Instantaneous Pressure distribution on NACA64A010 (Coeff. of lift=0.105) 

    

         Figure 5-25:  Instantaneous Pressure distribution on the NACA64A010 (Coeff. of Lift=-0.004) 

 
       Figure 5-26: Instantaneous Pressure distribution on the NACA64A010 (Coeff. of Lift=-0.106) 
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                                  Figure 5-27:  CL variation during the Plunging motion 
 
 

      
                                Figure 5-28:   CM variation during the plunging motion 
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Chapter Six 
 

Multi-Time-Stepping Adams-Bashforth 

scheme for Viscous Flow Calculations 

 
6.1 Introduction 
 
As a solid body moves through the fluid or as the fluid moves past a solid body, the effect 

of fluid viscosity causes a thin boundary layer to be formed near the surface of the solid 

body. The thickness of the boundary layer depends on the Reynolds number of the flow. 

Boundary layer is a region with large velocity gradients. Inside the boundary layer the 

velocity changes from being zero on the surface of the solid body (no-slip condition) to 

free stream velocity. According to Newton‟s shear stress law (Eq. (6.1)), which states that 

the shear stress is proportional to velocity gradient, the local shear stress can be very 

large inside a boundary layer. As a result, there is a skin friction drag exerted on the 

surface.   

   (6.1) 

     In computational fluid dynamics, to resolve the huge velocity gradient, the grid 

spacing in the boundary layer is very small.  The grid is clustered near the solid surface 
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and is stretched outside the boundary layer. For a solver using an explicit time marching 

scheme, the time step (calculated from the CFL condition) is driven by the very small 

grid spacing in the boundary layer. Also, the viscous stability limit is much stricter than 

the inviscid stability limit. This CFL condition for viscous flow calculations is shown in 

the next section.  This results in very long run times. In this scenario, a MTSAB scheme 

can be a very useful tool. In the BASS code, the MTSAB scheme was extended to 

perform viscous flow calculation. In this chapter, viscous flow simulations performed 

using the MTSAB scheme in BASS code are presented. 

 

6.2 Stability Restrictions for Viscous Flow Calculations 

The viscous terms in the governing equations add an additional restriction on the stable 

time step for explicit time marching schemes. This restriction is related to the time scales 

associated with viscosity. 

    The exact value of the stable time step is a function of both the spatial differencing 

method and the time marching scheme used.  

     Stability analysis for a model 1-D convective-diffusive equation is shown here. Given 

the Linearized viscous Burger‟s equation: 

             (6.2) 

where,   is the kinematic viscosity a numerical method is used to solve the equation, 

which is marching in the time direction: 

   (6.3) 
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In Eq. (6.3),   represents the time marching scheme and  is the time step 

used. 

     The governing equations relate the time derivatives of   with the spatial derivatives. 

Thus using the spatial differencing scheme for the first derivative D, the time derivatives 

can be obtained as: 

The combined equation is written as: 

            (6.5) 

The discrete solution S is defined as the exact solution to this equation: 

                        (6.6) 

However, due to the limited precision of the digital computers, the solution that is 

actually obtained is defines as the computed solution C: 

                        (6.7) 

where,  is the round off error due to the limited presicion of the digital computers. Thus 

the actual solution that is obtained is given as: 

                        (6.8) 

Substituting the definition of the computed solution into the previous equation, we 

obtain: 

  (6.9) 

 

 

 

        (6.4) 
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  (6.10) 

The error is transformed into Fourier components in space: 

                    
   (6.11) 

Since the error is linear, the equations for each error wavenumber can be examined 

separately. The resulting equation for a wavenumber   is: 

     (6.12) 

     The stability analysis is decomposed into three parts. First, the stability of the time 

marching scheme is analyzed. Second, the performance of the spatial differencing 

method is obtained. Third, these results are combined with the governing equation to 

determine the stability of the actual scheme. 

 

6.2.1 Effect of the Time Marching Scheme 

Initially, is assumed that „perfect‟ spatial differencing scheme is used: 

                      (6.13) 

                    
 

 (6.14) 

In the above equation,  and   is the grid spacing. Substituting in, Eq. (6.12) 

becomes,  

  (6.15) 
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Defining the parameters: 

                                                     (6.16) 

                     
  (6.17) 

gives  

   (6.18) 

In order for the time marching scheme to be stable, the magnitude of the error at each 

wavenumber cannot increase from one time step to the next: 

                           
   (6.19) 

or, for the particular time marching scheme, 

                              (6.20) 

Defining,   

                              

                              (6.21) 

gives the stability equation for the time marching scheme: 

                              (6.22) 

     In the governing equation, the real and the imaginary components of  depend on the 

magnitude of c, , grid spacing , and the wavenumber . Physically, the possible 

dynamics in the equation can range from the convection- dominated (corresponding to 

the imaginary value of ), to diffusion dominated (corresponding to the real value of ) 
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or anywhere in between. Note that the grid spacing can also change the dynamics in the 

numerical equation. 

Thus in practical analysis, the worst case ratio of the imaginary and the real components 

are determined along with the lowest magnitude of the , which will cause instability. 

This value is defined as . With the knowledge of , a maximum 

frequency must be defined for the problem. Combining the two parameters results 

in the maximum stable time step for the calculation: 

 

                            
        (6.23)      

 

6.2.2 Effect of the Spatial Differencing Scheme 

The spatial differencing method that is used and the grid chosen combine to define the 

value of  which can occur in the calculation. To accomplish this, the spatial 

differencing scheme is applied to the calculation of the derivative of a simple harmonic 

function on a grid with uniform spacing . This results in the definition: 

              

                             (6.24) 

                    
 

        (6.25) 

 

     Due to the Nyquist limit, there is a maximum wavenumber that can be resolved on the 

grid. The maximum wavenumbers correspond to the simple harmonic function with two 



 
 

124 
 

grid points per wavelength. Thus, the permissible values of the wavenumber must lie in 

the range: 

                                    (6.26) 

 or                               (6.27) 

In this range of the wavenumbers, the maximum values of  and can 

be determined. As an example, for the Tam and Webb DRP scheme, the maximum values 

are: 

                                    (6.28) 

          (6.29) 

These maximum values can be substituted in to the analysis for the time marching 

scheme to obtain: 

 

                                    (6.30) 

                                    (6.31) 

 

                            
        (6.32) 

 

6.3 Laminar Flow over a Flat Plate 

A laminar flow over a two dimensional flat plate, with zero pressure gradient was used to 

verify the accuracy of the MTSAB scheme in the BASS code. In this test, a flat plate with 
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a 0.12% thickness was used. The leading and the trailing edges of the flat plate were 

semicircular, to avoid the numerical singularities associated with infinitely thin flat plate.  

The results from the BASS code simulations are compared to the exact solution of 

Blasius, as given by Schlicting [47].  The non dimensional length of the plate is 1.0. As 

the fluid flows along the plate, a boundary layer is formed and the thickness of the 

boundary layer increases along the length of the plate  

 

6.3.1 Blasius solution 

A similarity solution for the boundary layer for a flow over a flat plate was presented by 

H. Blasius.  Let the leading edge of the flat plate be at x=0, the plate being parallel to the 

x-axis and infinitely long. Let the free stream velocity of the flow parallel to this flat pate 

flat plate is .The velocity of the potential flow is constant in this case and therefore,  

          (6.33) 

Using the above, the boundary layer equations for the flow over flat plate become, 

          (6.34) 

 
 

        (6.35) 

          (6.36) 

          (6.37) 

Since the flat plate is infinitely long, it is assumed that the velocity profiles at varying 

distances from the leading edge are similar to each other. The velocity curves  for 
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varying x distances are made identical by selecting the free stream velocity and the 

boundary layer thickness  at any given x location, as scale factors for  and . The 

similarity of the velocity profiles in the boundary layer is given as, 

          (6.38) 

From the order of magnitude analysis of the Navier-Stokes, the boundary layer thickness 

at any x location is given as, 

 
         (6.39) 

At this point a non-dimensional co-ordinate  is used as similarity variable. It is given as, 

 
         (6.40) 

At this point stream function    is introduced and the  and the  components of the 

velocity can be expressed in terms of stream functions as, 

          (6.41) 

Using a stream function defined above, Eq. (6.11) is obtained. 

          (6.42) 

the u velocity component becomes, 

          (6.43) 

Using the stream function and substituting it into the boundary layer equations an 

ordinary differential equation is obtained.       
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                                (6.44) 

The boundary conditions for this differential equation are: 

          (6.45) 

                                    

Numerical Solution to this nonlinear ODE is given in Table 6.2.Using the Blasius 

solution, the surface shear stress is given as: 

         (6.46) 

Then the Blasius, local skin friction coefficient is: 

          (6.47) 

where, the plate Reynolds number is,  

          (6.48) 

 

6.3.2 Grid Generation and Numerical Details 

The grid for this case was generated using GridPro [31]. The grid is a multi-block 

structured grid. The grid has 86 blocks and a total of 43808 grid points. Figure 6-1 and 

Figure 6-2 show the close up and body fitted views of the grid. Thompson boundary 

condition [46] was used at the inflow and the outflow boundaries and wall boundary 

condition [27, 48] was used on the plate. The non dimensional mean quantities at the 

inflow boundary are, 
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          (6.49) 

    

  
 
 

  

 

                                     Figure 6-1: Complete grid for the flow over a flat plate 
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                                                         Figure 6-2: Grid near the flat plate 
 
 
Optimized 4th order DRP scheme of Tam and Webb was used for spatial differentiation. 

Hixon‟s [29] optimized finite difference boundary stencils were used at the boundaries 

for improved stability.10th order background dissipation was used. Two cases with 

different length scales were run. For Case 1 the length scale was set to 0.01 and for Case 

2 the length scale was increased to 0.1. Based on the stability limit, CFL for the MTSAB 

scheme was set to 0.2.  

 

6.3.3 MTSAB Performance 

     Figure 6-3 shows the grid near the leading edge of the flat plate. It can be seen from 

this figure that the blocks that are located on the plate have very small grid spacing near 

the plate (to resolve the boundary layer on the plate) and stretch rapidly away from the 

plate.   
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     Figure 6-4 shows the distribution of levels near the leading edge when the block 

cutting algorithm was not used. The MTSAB speed-up data is given in Table 6-1.The 

actual speed up without the use of the block cutting algorithm was 2.2 and the theoretical 

speed up was 2.3. The difference between the actual and theoretical speed-ups is 0.05%.  

      Figure 6-5 shows the point by point variation of levels near the leading edge. It can be 

seen from this figure that the blocks located on or near the plate if cut, can result in 

shifting grid points to higher levels. The ideal speed up, which is based on the point to 

point distribution, is 9.32. 

    Figure 6-6 shows the distribution of the levels in the blocks after the blocks are cut 

during the run. The theoretical speed up after the blocks are cut at all levels is 6.07. 

Comparing Figures 6-6 and 6-5, it can be seen that the block cutting algorithm cuts the 

blocks efficiently. As mentioned before, the minimum number of points in every 

direction is restricted to 10 and this caused the difference between the point to point 

variations in the levels and the distribution of levels obtained from the block cutting 

algorithm. The actual run time speed up after cutting the blocks was 3.27.   

     It can be seen from Table 6.1 that as the blocks are cut at higher levels, the actual 

speed up does not keep in pace with the theoretical speed up. Table 6.1 also shows the 

number of blocks generated after cutting the blocks, for different maximum levels for 

which the blocks are cut. The number of blocks increase from 86, without cutting any 

block to 156 after the blocks are cut at all the levels. The increased number of blocks 

caused an increase in the overhead from the buffer block calculation. This overhead is 

greater for viscous flow calculations than it is for inviscid, as mentioned in chapter 3.  
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Grid 
Points 

in Level 
1 

Grid 
Points 

in 
Level 2 

Grid 
Points 

in 
Level 3 

Grid 
Points 

in 
Level 4 

Grid 
Points 

in Level 
5 

Grid 
Points in 
Level 6 

Theoretical 
Speed up 

Actual 
Speed 

up 

Number 
of 

blocks 

Ideal 
Distribution 1120 2306 3018 3654 5150 28560 9.32 NA 86 

Distribution 
Without 
Block 

Cutting 
12800 10100 1606 726 3572 15004 2.3 2.2 86 

Distribution 
With Block 
Cutting at 
Level  1 

2827 15939 5740 726 3572 15004 3.36 2.54 102 

Distribution 
With Block 
Cutting at 

Levels 1 and 
2 

2827 3938 9863 726 11450 15004 5.13 3.06 114 

Distribution 
With Block 
Cutting at 

Level 1,2 and 
3 

2827 3938 3177 5916 12946 15004 5.75 3.18 136 

Distribution 
With Block 
Cutting at 
Level 1,2,3 

and 4 

2827 3938 3177 4048 14814 15004 5.84 3.2 142 

Distribution 
With Block 
Cutting at 

Levels 
1,2,3,4 and 5 

2827 3938 3177 4048 5984 23834 6.07 3.27 156 

                                       

                                 Table 6.1 Speed up data from using the MTSAB scheme 
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Figure 6-3 Grid near the leading edge of the flat plate 

 
 

        
Figure 6-4 Distribution of the MTSAB levels near the leading edge, without block cutting 
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Figure 6-5 Point by point distribution of MTSAB levels near the leading edge 

 
 

 
Figure 6-6 Distribution of the MTSAB levels near the leading edge, with block cutting 
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6.3.4 Results 

The Reynolds number based on the length of the plate is 46,600 for case 1 and 466,000 

for case 2. Figures 6.7-6.8 show velocity vectors and temperature contours near the 

stagnation point and the leading edge of the flat plate for both the length scales used. The 

grid resolution is clearly seen in these figures along with the growth of boundary layer as 

the flow moves downstream. Figures 6-9 and 6-11 show the unscaled boundary layer 

velocity profiles at nine streamwise locations along the upper surface of the flat plate. In 

these plots, the growth rate and the thickness of the boundary layers along the flat plate 

can be clearly seen for both the length scales used. Figures 6-10 and 6-12 show the 

boundary layer velocity profiles scaled using the Blasius similarity parameter h, given 

by Eq. (6.40). The profiles nearly collapse onto a single curve, which matches very well 

with Blasius similarity profile. Figures 6-13 and 6-14 compare the skin friction 

coefficient on the top surface of the plate with the skin friction coefficient given by 

Blasius (Eq. 6.47), for both the cases run. A good agreement in the slopes can be seen in 

these figures.  
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 Figure 6-7: Flow development near the leading edge of the plate for length scale=0.01  
 
 

 
                 Figure 6-8: Flow development near the leading edge of the plate for length scale=0.1 
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                 Figure 6-9:  U/U_edge versus y at different x locations for the case with length scale=0.01  
 
 

 

                   Figure 6-10: U/U_edge versus h at different x locations for case with length scale 0.01 
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             Figure 6.11:  U/U_edge versus y at different x locations for the case with Length scale=0.1 

 
 

  
           Figure 6-12:  U/U_edge versus h at different x locations for the case with length scale=0.1            
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         Figure 6-13: Skin friction coefficients along of the surface of the plate (for length scale=0.01) 

 
 

 

              Figure 6-14: Skin friction coefficients along of the surface of the plate (for Length scale 0.1) 
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      Uy
vx
    F 




U
uf '  ''f  

0.0 0 0 0.33206 

0.2 0.00664 0.6641 0.33199 

0.4 0.02656 0.13277 0.33147 

0.6 0.05974 0.19894 0.33008 

0.8 0.10611 0.26471 0.32739 

1.0 0.16557 0.32979 0.32301 

1.2 0.23795 0.39378 0.31659 

1.4 0.32298 0.45627 0.30787 

1.6 0.42032 0.51676 0.29667 

1.8 0.52952 0.57477 0.28293 

2.0 0.65003 0.62977 0.26675 

2.2 0.78120 0.67132 0.24835 

2.4 0.92230 0.72899 0.22809 

2.6 1.07252 0.77246 0.20646 

2.8 1.23099 0.81152 0.18401 

3.0 1.39682 0.84605 0.16136 

3.2 1.56911 0.87609 0.13913 

3.4 1.74696 0.90199 0.11788 

3.6 1.92954 0.92333 0.09809 

3.8 2.11605 0.94112 0.08013 

4.0 2.30576 0.95552 0.06424 

4.2 2.49806 0.96696 0.05052 

4.4 2.69238 0.97587 0.03897 

4.6 2.88826 0.98269 0.02948 

4.8 3.08534 0.98779 0.02187 

5.0 3.28329 0.99155 0.01591 

5.2 3.48189 0.99425 0.01134 

5.4 3.68094 0.99616 0.00793 

5.6 3.88031 0.99748 0.00543 

5.8 4.07990 0.99838 0.00365 

6.0 4.27964 0.99898 0.00240 

6.2 4.47948 0.99937 0.00155 

6.4 4.67938 0.99961 0.00098 

6.6 4.87931 0.99977 0.00061 

6.8 5.07928 0.99987 0.00037 

7.0 5.27926 0.99992 0.00022 

7.2 5.47925 0.99996 0.00013 

7.4 5.67924 0.99998 0.00007 

7.6 5.87924 0.99999 0.00004 

7.8 6.07923 1.00000 0.00002 

8.0 6.27923 1.0000 0.00001 

8.2 6.47923 1.00000 0.00001 

8.4 6.67923 1.00000 0.00000 

8.6 6.87923 1.00000 0.00000 

           Table 6.2 Function   f ( ) for the boundary layer along the flat plate, after L. Howrath [51] 
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6.4 Flow over Cylinder at Re=150 

External flows past a blunt body, such as circular cylinder, usually experiences a 

boundary layer separation and flow oscillations in the wake region behind the body. The 

pressure is maximum at the stagnation point and gradually decreases along the front half 

of the cylinder. The flow stays attached in the region with favorable pressure gradient. 

However the pressure starts to increase in the rear half of the cylinder resulting in an 

adverse pressure gradient. This adverse pressure gradient causes the flow to separate. For 

Re>45, the flow becomes unsteady and an alternate vortex shedding appears behind the 

circular cylinder, even though the imposed conditions are held steady [49].  This regular 

pattern of vortices in the wake is called Von-Karman Vortex Street. Flow over a two 

dimensional cylinder at Reynolds number of 150 was chosen to test the MTSAB scheme. 

At this Reynolds number the flow is essentially two dimensional and laminar. The results 

are compared with those of the existing experimental and numerical studies.  

 

6.4.1 Grid and Numerical Details 

An O-grid is used for this test case is generated using GridPro [31]. The center of the 

cylinder is at the origin (x=0, y=0). The non dimensional diameter of the cylinder is 

D=1.0. The boundaries extend to 25 diameters from the center of the circle. The complete 

and the close-up grid are shown by Figures 6-15 and 6-16. The grid has four blocks and a 

total of 404 grid points in the circumferential direction and 143 grid points in the radial 

details. On the cylinder surface the grid spacing in the radial direction is 0.001. The grid 

was stretched from the cylinder surface at the rate of 1.08. The incoming freestream flow 

is uniform with a Mach number 0f 0.2.  Thompson boundary condition was used at the 
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inflow and the outflow boundaries .No-slip and adiabatic conditions were used on the 

cylinder surface. The reference variables for this test case are: 

 

 

                     (6.50) 

 

 

        

 

The initial flow and free stream quantities are: 

 

                                  (6.51)  

 

 

The Reynolds number is calculated as: 

 
           (6.52) 

6.4.2 MTSAB Performance 

     Without the use of the block cutting algorithm all the blocks are at level 1. Figures (6-

17) and Figure (6-18) show the distribution of levels in the domain after the blocks are 

cut. The use of the block cutting algorithm breaks the existing grid blocks during the run 
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to get 6 levels shown by Figures 6-17 and 6-18. The number of points in each level is 

given by Table 6.3. It can be seen in this table that there is a close match between the 

speed up from the ideal distribution and the theoretical speed up after the blocks are cut. 

The small difference between them is from the fact the minimum length block length was 

set at 10 points. The theoretical speed after the blocks are cut is 5.25. The actual run time 

speed up for this case was 4.04.  

 

 

Figure 6-15: Complete grid for the 2D cylinder case 
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                                          Figure 6-16:  Close-up view of the grid near the cylinder 
 
 

  
 

Figure 6-17: Levels for the blocks after cutting the blocks 
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Figure 6-18: Distribution of levels near the cylinder after cutting the blocks 

 
 
 
 

6.4.3 Results 
 
Figure 6-19 show the instantaneous u-velocity in the computational domain. The 

asymmetric vortex shedding and resulting vortex street can be clearly seen downstream 

of the cylinder. Figure 6-20 shows the instantaneous velocity magnitude near the surface. 

In this figure, the boundary layer, separation and vortex formation near the surface is 

clearly seen. Figure 6-21 shows the instantaneous temperature distribution near the 

cylinder surface. The figure has contour lines showing the distribution of the temperature 

gradients. In this figure, the effect of the zero heat flux wall boundary condition is clearly 

evident; the contour lines are all normal to the wall, indicating a zero normal derivative of 

the temperature at the wall. The dimensionless frequency of this vortex shedding is 

represented by the Strouhal number. The Strouhal number is given as,  
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          (6.53) 

where, D is the non dimensional diameter and u is the non dimensional free stream 

velocity. The parameter f is the frequency of the vortex shedding. To measure this 

quantity, u-velocity history at a point downstream of the cylinder and far away from the 

center of the wake is used. Figure 6-22 shows the history of the u-velocity for the point 

chosen. The initial conditions were symmetric and no attempt was made to force the 

asymmetric vortex shedding. The solution transitioned to asymmetric shedding as time 

went by. This transition can be seen for the chosen point in Figure 6-22.  The value  f  is 

the inverse of the time between the peaks in the u-velocity history. The value Strouhal 

number calculated using this method is 0.185. This value compares well with the data 

given in [49] and [50]. Next, the lift and drag coefficients were calculated. Figure 6-23 

shows plot of coefficient of lift and drag plotted against the non-dimensional time. Table 

6.4 compares the data obtained from this simulation to the data given in [49] and [50]. 

The values of Strouhal number, fluctuation in the coefficient of lift and fluctuation in the 

coefficient of drag from the current simulation fit the trend of the values from [49] and 

[50]. The mean drag coefficient is 2-3% higher than the values from [49] and [50].   

 

 

Grid 
Points in 
Level 1 

Grid 
Points 

in Level 
2 

Grid 
Points 

in Level 
3 

Gris 
Points 

in Level 
4 

Grid 
Points 

in Level 
5 

Grid 
Points 

in Level 
6 

Theoretical 
Speed up 

Actual 
Speed up 

Number 
of 

blocks 

Ideal 
Distribution 4444 4516 6630 7188 5643 29351 5.48 - - 

Distribution 
Without 
Block 

Cutting 
57772 0 0 0 0 0 None None 4 

Distribution 
With Block 

Cutting 
4444 4848 8282 6666 5656 27876 5.25 4.04 24 

 
Table 6.3 Speed up data from using the MTSAB scheme 



 
 

146 
 

 

 
                                            Figure 6-19: Instantaneous u-velocity contours 

  
                                       Figure 6-20: Instantaneous velocity magnitude contours 



 
 

147 
 

 
                                    Figure 6-21: Instantaneous Temperature contours 
                   
 
 

               

Figure 6-22:  u-velocity history at a downstream location(x=0.87, y=0.31) 
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Table 6.4:   Comparison of calculated data with references  

 
 
 

 

    
     Figure 6-23: Total drag and lift coefficients 

 
 

               

                           
Re Strouhal Number Cd, mean Cd, fluctuating Cl, fluctuating 

100 [50] 0.1569 1.3353 - 0.2534 
140 [49] 0.182 1.32 0.0224 0.4823 

150[Current] 0.185 1.3607 0.0242 0.5272 
160[49] 0.188 1.32 0.0293 0.5501 
200 [50] 0.1957 1.3365 - 0.6002 
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Chapter Seven 
 

Conclusions and Future Work 

 
 

A new Multi-Time-Stepping Adams-Bashforth (MTSAB) scheme was developed to 

increase the speed of a code using an explicit time marching scheme, which performs 

time accurate calculations. The scheme was then implemented in NASA Glenn Research 

Center‟s Broadband Aeroacoustic Stator Simulation Code.  

     It can be difficult to use a Multi-Time Stepping scheme for complex problems without 

the automation methods that were developed as a part of this work. Two automated block 

cutting algorithms were developed. 

      The first algorithm was aimed at increasing speed the MTSAB scheme by increasing 

the number of grid points marching close to their stable time steps. This algorithm 

efficiently cut the blocks, based on the point to point distribution of local stable time 

steps (or levels). Manually cutting the blocks can be difficult, as it was seen for the gust 

airfoil problem in Chapter 4.  

    The point to point distributions of stable time steps can change during the run for cases 

with grid motion and flows with large disturbances. The automation developed for the 

MTSAB scheme takes this change into consideration and assigns new levels (Dynamic
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Level Redistribution) to the blocks during the run. During this redistribution process, the  

block cutting algorithm cuts new blocks at different levels, based on the new point to 

point distribution. The second automated block cutting algorithm was developed to 

increase the parallel efficiency of the MTSAB scheme. This was implemented at every 

MTSAB level to achieve a good parallel efficiency of the scheme.  

         The automated MTSAB scheme was also extended to work with grid motion. A 

plunging airfoil case was shown to work with the scheme. The Dynamic Redistribution of 

Levels was shown to be particularly useful for this case. 

    The automated MTSAB scheme was also extended to work for viscous flow 

calculations. Several validation cases were tested to validate the automated MTSAB 

scheme for Computational Aero Acoustics (CAA) Workshop problems, steady and 

unsteady flows with shocks and viscous flows. The results based on these tests show a 

good performance of the scheme for the problems tested. 

      One of the major challenges faced in this work was to reduce the overhead from the 

buffer block calculations. Although, the first block cutting algorithm cut the blocks 

efficiently, as the number of blocks increased, so did the number of buffer blocks. 

For some cases, the speed increase from cutting the blocks was less than the speed 

reduction from the increased buffer block overhead. More efficient ways of implementing 

buffer blocks will be investigated in the near future. 

       As the development of the BASS code continues, the goal is to have a multi-size grid 

implementation in the BASS code. This is analogous to multi-time steeping, but is space 

(while still resolving all the unsteady dynamics).  This, in conjunction with the MTSAB 

scheme can further reduce the run times. Coarsening of an existing grid block will 
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basically increase the stable time step in the block and hence increasing the MTSAB level       

of the block. 
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