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 Critical care (e.g. trauma and cardiothoracic surgical) and diabetic patients are 

prone to variability in glucose concentration on a daily basis. Hypoglycemic and 

hyperglycemic glucose values in these patient populations have been associated with 

decreased patient outcomes. In diabetic patients, persistently elevated glucose values are 

associated with development of long term complications such as, but not limited to 

retinopathy, neuropathy, and nephropathy. In the critical care patient population, elevated 

glucose has been correlated to increases in mortality, length of stay in the intensive care 

unit (ICU), and morbidities. The maintenance of tight glycemic control in these patients 

without severe hypoglycemia or glycemic variability appears to improve outcomes in 

these patients. 

 Various factors are associated with future glycemic excursions such as, but not 

limited to: lifestyle/activities (e.g. sleep-wake cycles), emotional factors (e.g. stress), 

nutritional intake, medication dosages, and ICU medical records (in critical care patients). 

In the field of diabetes research, models for prediction of glucose and/or models used to 

maintain tight glycemic control have been the focus of research. In the critical care 



iv 
 

patient population, very little research into development of such models has been 

completed to date.  

Multiple factors affect or are indicators of future glucose concentration. A suitable 

modeling technique needs to incorporate the effect of such factors for accurate prediction 

of glucose. A modeling technique well suited for this task is a neural network model.A 

neural network is an adapative modeling technique, which learns and updates model 

parameters based on determining patterns/trends existent in input data.This adapative 

capability, makes neural network modeling well suited for prediction of glucose where 

multiple factors impact future glycemic excursions.     

This dissertation summarizes the development and optimization of various neural 

network model architectures for the real-time prediction of glucose in diabetic and critical 

care patients. Neural network models were configured to predict glucose using prediction 

horizons >60 minutes, which have not been attained in many predictive models to date. 

The performance of the neural network model is assessed via determination of overall 

model error, percentage of glycemic extremes predicted,  and clinical acceptability of 

model predictions as determined via Clarke Error Grid Analysis. 
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CHAPTER 1 
 
INTRODUCTION 

 
 Lack of glycemic control in patients with diabetes is a well known phenomenon. 

This is especially difficult in patients with type I or insulin dependent diabetes as the 

body no longer produces insulin and insulin injections or continuous subcutaneous 

insulin infusion via an insulin pump must be optimized.  Optimum control of glucose 

concentration in patients with diabetes is the main goal of diabetes therapy. Optimized 

control of glucose in patients with diabetes is obtained via frequent sampling of blood 

glucose and adjustment of insulin based on these sampled values. Research has been 

completed which substantiates that such intensive treatment is necessary for reduction of 

long term complications associated with persistently elevated glucose. [1-4] 

 What is less known however, is the lack of glycemic control in critical care 

patients (e.g. trauma and cardio thoracic surgical patients). Research has also 

substantiated that an intensive insulin infusion protocol in critical care patients in the 

intensive care unit can help reduce mortality. [5] 

 The optimization of glycemic control can be enhanced with advanced knowledge 

of unwanted glycemic excursions. Given the prediction of hyperglycemic and 

hypoglycemic excursions, patients and clinicians can adjust insulin and therapeutic 

delivery to mitigate occurrences of these unwanted glucose values. The enhancement of 

glycemic control can be correlated with enhancement of outcome in both diabetic and 

critical care patient populations.  
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 Recent advances in technology for monitoring of glucose include the development 

and utilization of real-time continuous glucose monitoring (CGM) devices. These devices 

measure glucose concentration in the interstitial fluid every one to five minutes 

depending on CGM technology. Currently patients with diabetes monitor blood glucose 

anywhere from 2-6 times daily. These values are discrete time measurements and do not 

provide insight to glycemic excursions when such metered values are not obtained.  In 

the critical care patient population, current convention of care is to monitor a patient’s 

blood glucose concentration every 1-4 hours. Based on the metered glucose readings 

obtained, the patient is given insulin according to a specific institutions insulin delivery 

protocol. Even in the event that a patient is monitored every hour, there is an hour time 

span where glycemic excursions and response to the insulin infusion protocol are 

unknown. There is thus a need to predict and forecast future glucose concentration when 

discrete metered glucose readings are not obtained.  The utilization of real-time CGM 

technologies will provide considerable data on which to develop models for prediction of 

glucose which can be therefore used for therapeutic direction/guidance and eventually 

automation.  

This dissertation summarizes the results of two clinical investigations.  In these 

investigations, the development and performance analysis of neural network models for 

prediction of glucose in diabetic and critical care patients was accomplished. These 

models were developed using data derived from utilization of CGM technologies. The 

clinical acceptability and applicability of the developed predictive models is summarized.  
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CHAPTER 2  
 
LITERATURE REVIEW 

 
 

2.1 Glycemic Excursions and Diabetes Mellitus: A Multivariate System 
 
 Type I diabetes is an autoimmune disease in which the beta-cells of the body are 

destroyed thus resulting in a lack of insulin production. This leads to an inability to 

control blood glucose concentration as insulin facilitates the cellular uptake of glucose.  If 

glucose levels remain high for extended periods of time, long-term complications such as 

but not limited to neuropathy, nephropathy, and retinopathy can arise. Due to the lack of 

insulin production, type I diabetics are required to take insulin subcutaneously as their 

primary method of therapy. 

 The major difficulty involving the successful treatment of diabetes is the 

appropriate dosing of insulin such that a therapeutic range of glucose concentration (80-

120 mg/dl) can be achieved. There are a multitude of factors which influence subsequent 

glucose concentrations in diabetics including but not limited to: insulin dosage, 

carbohydrate and nutritional intake, lifestyle (i.e. sleep-wake cycles and sleep quality, 

exercise, etc.), and emotional states (i.e. stress, depression, contentment, etc.). [6-16] The 

effect of these various factors on subsequent glucose concentration is not fully 

understood, and may be similar across all diabetic patients or patient specific.  In order to 

optimize control in diabetic patients, there needs to be some method for quantifying or 
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predicting future occurrences of dysglycemia (i.e. high and low blood glucose 

concentration also referred to as hyperglycemia and hypoglycemia, respectively). 

Fluctuations in glucose concentration experienced on an everyday basis appear to 

be chaotic, however, prior research does identify possible patterns which may exist. 

[15,17-22] Circadian rhythms in sleep and subsequent glucose regulation have been 

identified in previous research. [15] Other patterns in glucose tolerance, insulin activity, 

insulin sensitivity, insulin clearance, and hormone levels (e.g. cortisol, epinephrine, 

norepinephrine) and their subsequent effect on glucose concentration have also been 

identified in previous research. [11,15,17-31] The existence of rhythms in insulin 

activity, and subsequent quantifiable patterns in glucose fluctuations, provide a 

foundation and hypothetical construct for the development of modeling techniques for 

prediction and ultimately control of glucose.  

 

2.2 Historical Attempts at Prediction and Control of Glucose in Patients with Diabetes 

 The major goal in treatment of patients with diabetes is the optimization of insulin 

therapy such that a normal glucose concentration may be obtained. Previous and ongoing 

research has been focused on the development of mathematical models for optimal 

glycemic control using various analytical and mathematical approaches. The goal of 

many of these previous and ongoing studies is the development of a closed loop artificial 

pancreas to maintain euglycemia (normal glucose) in patients with diabetes.  

 One of the most well known methods for development of an artificial pancreas for 

optimal glycemic control is a classic PID algorithm developed by researchers at 

Medtronic Minimed/Diabetes. [32-34] The basis of this model is that the PID controller 



5 
 

mimics the biphasic nature and function of the beta cell in the body. The PID control 

algorithm has three components the proportional, integral, and derivative components. 

The function of these components, are based on tracking of glucose in the body. The 

proportional component is proportional to glucose concentration, the integral component 

slowly increments up or down based on response to glucose, and the derivative 

component reacts to the rate of change of glucose. 

 Another investigation was completed by Schaller and colleagues involved 

generation of a model predictive control algorithm for optimization of glycemic control 

in fasting type I diabetic patients. [35] In this investigation, venous glucose concentration 

sampled at 15 minute intervals, carbohydrate intake, and insulin dosages were inputs to 

the model predictive control algorithm. Furthermore, the model predictive control 

algorithm developed in this investigation, had eight adaptable parameters. 

Further investigations such as the investigation by Sparancino et al., demonstrated the 

prediction of glucose using continuous glucose monitoring (CGM) and description of past 

glucose data by either a first-order polynomial or a first-order autoregressive (AR) model, 

both with time-varying parameters determined by weighted least squares. [36] This 

research demonstrated that prediction of glucose was possible implementing a prediction 

horizon of 30 minutes. The investigation substantiated that utilizing this prediction 

horizon gives the patient adequate time to compensate and avoid predicted hypoglycemic 

extremes.  

Further investigation completed by Reifman et al. demonstrated the usage of 

autoregressive modeling for prediction of glucose using CGM in patients with diabetes. 

[37] In this investigation, 15 patients were confined to a study site and limited in physical 
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activity while undergoing CGM. Meals and snacks were kept consistent. The 

investigation demonstrated that prediction of glucose utilizing prediction horizons of 30 

and 60 minutes resulted in considerably accurate predictions with 95.9-100% of the 

predictions being determined as clinically acceptable and not leading to adverse 

therapeutic direction. Analysis of predictions generated using a prediction horizon of 120 

minutes was also completed. It was determined that implementation of this prediction 

horizon resulted in considerably less predictive accuracy in comparison to the 30-60 

minute predictions.  

 

2.3 Necessity of Glycemic Control in Critical Care Patients   

 It is known that patients with type 1 diabetes mellitus routinely experience lack of 

glucose control due to inability to produce insulin. In these patients, there is need for 

intensive monitoring of glucose followed by modification of insulin dosages to maintain 

a normal glycemic state.  It is less known however, that critical care patients (i.e. trauma, 

cardiothoracic surgical patients, and other intensive care unit patients) also experience 

glycemic variability and lack of optimal glucose control. It has been reported that critical 

care patients experience insulin resistance and corresponding hyperglycemia. [38] 

Similarly to the patients with diabetes, lack of optimal glucose control is correlated with 

decreased outcomes in this critical care patient population.  

 

Glycemic variability following trauma is a common phenomena. Following severe 

trauma, research  indicates  that  approximately  25% of  individuals  may experience 

hyperglycemia. [39] If hyperglycemia is sustained, mortality and requirements for care 



7 
 

are potentially increased. [40-43] Published data indicate that lowering glucose levels 

after trauma may decrease mortality, the length of stay on ventilators, incidence of 

infection, and length of stay in the intensive care unit (ICU) and in the hospital.  

Aggressive therapy to maintain glucose levels below 150 mg/dl was shown to improve 

outcomes although the ability to sustain this goal in post-traumatic circumstances may 

be difficult as the patient recovers. [41] If glucose levels exceed 200 mg/dl in severely 

injured patients on admission to trauma centers, their expected survival has been 

reported to be reduced by more than 50%. [40] Persistence of this hyperglycemia during 

the first two days after trauma has been shown to further reduce survival [43] and 

increasing glucose levels during this early post-trauma period has been shown to 

potentially predict adverse outcomes in these patients. [40] Glucose levels greater than 

150 mg/dl during the first two post- trauma days is also associated with an increased 

risk of mortality and/or other complications and subsequent euglycemic maintenance 

does not appear to improve these outcomes. [39] 

In addition to trauma patients, cardiothoracic surgical patients also experience a 

considerable degree of glycemic variability and associated elevated glucose.  Patients 

who undergo some form of cardiovascular surgical intervention are prone to glycemic 

fluctuations. Control of glucose concentration in such patients is a desired goal for 

improving patient outcomes. Tight glycemic control in cardiac surgical patients has been 

correlated to reduced morbidity and mortality rates. [44-48] Thus, it is integral to patient 

outcome that tight glycemic control be obtained in cardiac surgical patients both 

interoperatively/perioperatively as well as postoperatively.  

A considerable percentage of patients who undergo some form of cardiothoracic 
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surgical intervention are diagnosed with some type of diabetes. Over the years, various 

treatment protocols have been designed for optimization of glycemic control in such a 

patient base. These protocols, however, are often tedious and difficult to maintain. The 

development of such treatment protocols for tight glycemic control began in 1987, with 

the Portland Protocol. [49] The Portland Protocol is a well-defined intravenous insulin 

infusion protocol for hospitalized patients for use in both intensive care units and general 

inpatient wards. The Portland Protocol has been in use since 1992 and has been modified 

by various institutions worldwide to provide tight glycemic control. Further investigation 

to date substantiates that intensive insulin delivery in these patients has been correlated 

with decreased occurrences of morbidity (e.g. deep sternal wound infections), decreased 

length of stay in the hospital, and mortality. [49-54] 

Utilization of intensive insulin therapeutic protocols across the critical care patient 

populations with lack of optimal glycemic control has been a major research focus by 

Van Den Berghe and colleagues. [55] Furthermore, Van Den Berghe stressed that such 

intensive insulin therapy in critically ill patients directly benefits patient outcomes. [56] 

 

2.4 Patterns in Glycemia in Critical Care Patients: A Justification for Predictability   

 The reported patterns in glucose, insulin clearance, insulin sensitivity, hormone 

levels, etc. by previous research in both diabetic and non-diabetic individuals are also 

present in patients in the critical care setting. [11,15,17-31] Furthermore, research has 

been completed which demonstrates the existence of patterns in glucose in critical care 

patients receiving intensive insulin therapy and insulin infusions. [57-59]  

 Patterns in glucose can be correlated with hormone levels of cortisol in the critical 
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care patient population. Research has demonstrated that cortisol plays a significant role in 

the human counter-regulatory response to hypoglycemia. [60] Furthermore, patients with 

critical illness have elevated cortisol levels which can be correlated to the elevated 

glucose observed in this patient population. It is important to note however, that both 

insufficient and excessive hypothalamic-pituitary-adrenal axis is associated with 

increased mortality in critical care patients. [61]   The measurement of serum free cortisol 

in this patient population has therefore been subject of previous research endeavors. [62]  

 While cortisol has been demonstrated to have a significant impact on glycemic 

excursions in the critical care patient population, other factors also are indicators or 

significantly impact future glucose concentration. Various factors are documented in 

patient medical records throughout the course of a patient’s stay in the intensive care unit. 

These factors include but are not limited to: vital signs, lab results, ventilation data, pain 

indices, organ systems analysis, nutritional intake, medications, etc. A major difficulty 

facing caregivers in the intensive care unit is to determine the effect of these factors on 

future glucose such that corresponding changes in insulin therapy can be adapted to 

optimize glycemic control. The utilization of these records, in combination with glucose 

values collected throughout the patient’s length of stay in intensive care will provide a 

hypothetical construct for development of predictive and/or models for optimizing 

glycemic control in these patients. The optimization of glycemic control in these patients 

has been correlated with enhancement of patient outcome and further research is needed 

for the development of strategies to facilitate optimal glycemic control. [56,63-66] 
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2.5 Models for Prediction and Control of Glucose in Critical Care Patients 

 Due to the large quantity of research substantiating that increased glycemic 

control is correlated with enhancement of critical care patient outcome, research has 

shifted towards the development of predictive and/or control models/algorithms for 

enhancement of glycemic control. Currently, monitoring and control of glucose in critical 

care patients is completed via discrete point of care monitoring with handheld glucose 

monitors by caregivers. Insulin requirements for maintaining normal glucose 

concentration are determined from the point of care glucose values. [67] The 

development of predictive and assistive models to enhance this conventional therapeutic 

approach is subject of ongoing research.  

 A method utilizing a model predictive control algorithm for control of glucose 

was compared against conventional critical care glucose management protocols by Plank 

et al. [68] Results of this investigation demonstrated that utilization of the model 

predictive control algorithm resulted in a higher percentage of the time the patients 

glucose values were maintained within target normal glucose ranges.   

 The implementation of the PID control algorithm for optimized glycemic control 

in patients with diabetes [32-34] has been investigated in pediatric intensive care unit 

patients as well.  [69] This investigation was preliminary and completed on six pediatric 

patients.  Results demonstrated that hyperglycemia could be significantly reduced via 

implementation of the PID control algorithm. In addition to this PID control algorithm, a 

similar approach has been investigated and applied to the general critical care population. 

[70] 

 The development of a computer program (GRIP) for enhancement of glycemic 
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control has been investigated for its applicability in the critical care setting.  In this 

computer program an insulin pump rate for maintaining glucose within a target range is 

approximated via Equation 1. In this equation, I  is the estimated insulin pump rate, hI 4  

is the mean insulin pump rate over the previous four hours, 0G is the most recent glucose 

value, ettG arg  is the target glucose value, and Gh4  is the change between the last 

glucose value and the glucose value measured four hours earlier. [71] In addition to this 

estimation, the GRIP program also estimates the time between which nursing and clinical 

staff should measure point of care glucose values. Results of this investigation 

demonstrated that usage of GRIP enhanced glycemic control with respect to a previously 

implemented paper-based sliding scale protocol. 

      GGGII hetth 4arg04 3.02.025.01     [Equation 1]     

 

2.6 Advances in Monitoring Technology: Continuous Glucose Monitoring (CGM) 

 Historically, both diabetic and critical care patients are monitored via handheld 

blood glucose monitors. Patients with diabetes use these handheld glucose monitoring 

devices to measure glucose concentration 2-6 times daily. Critical care patients are 

monitored more frequently with point of care glucose being monitored every 1-6 hours 

depending on an institution’s insulin infusion protocol. Recent advances in glucose 

monitoring include the development of continuous glucose monitoring devices which 

measure glucose in interstitial fluid every 1-5 minutes depending upon technology. [72-

74] Further advances have led to the development of real-time implementations of these 

continuous glucose monitoring devices.  The utilization of this technology would thus 
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provide patients and caregivers, insight into glycemic control and effectiveness of therapy 

when discrete glucose monitoring is not provided. [75] Additionally, the glucose data 

acquired via these devices can be utilized for development, implementation, and 

subsequent optimization of predictive and/or optimal control models for glucose 

implemented in the diabetic and critical care populations as previously discussed. 

 Utilization of continuous glucose monitoring in patients with diabetes has been 

demonstrated to provide significant insight into glycemic excursions when discrete meter-

based glucose concentrations are not routinely obtained.  The usage of this technology in 

this patient base has thus been demonstrated to enhance glycemic control via providing 

addition insight into glycemic excursions otherwise unseen via conventional discrete 

glucose monitoring. [74-83] The major goal of diabetes therapy is the maintenance of a 

normal glucose concentration. An indicator used to gauge glycemic control in this patient 

population is the glycated hemoglobin A1C value (HbA1C). Utilization of CGM in 

patients with diabetes has been demonstrated to lower HbA1C values and correlate with 

increased ability to control blood glucose values. [76]  The utilization of CGM in patients 

with diabetes is an emerging and continuously growing field.  

 While CGM in patients with diabetes has been considerably investigated over the 

past 5-10 years, the utilization of CGM in critical care patients is a relatively new field. 

[84-90] Given that a critical care patient is intensively monitored during their length of 

stay in intensive care, the utilization of CGM will provide insight to the quality of care 

the patient receives. The utilization of CGM may also provide insight as to which 

documented variables in the patient’s medical record affect or are indicators of 

subsequent glycemic excursions. The quantification of these various factors would thus 
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provide significant insight into optimizing the control of blood glucose concentration in 

this patient population.    

 Real-time CGM technologies have been developed and integrated with real-time 

alarms based on real-time sensor glucose values as well as trends in the CGM data. [91-

95] The Medtronic Diabetes© Guardian RT® real-time CGM device alerts patients when 

their glucose crosses programmable thresholds for hypoglycemia and hyperglycemia thus 

providing some form of real-time feedback.[95] In contrast, the Abbott Diabetes© 

Freestyle Navigator® real-time CGM device alerts users of pending hypoglycemia and 

hyperglycemia based on trends in real-time CGM data and predicts the occurrence of 

unwanted glucose values based on these trends. [94] Patients with diabetes often 

experience hypoglycemic unawareness where they are unaware when their glucose 

reaches dangerously low glucose values and there is a degree of cognitive 

dysfunction.[96-98] The utilization of real-time CGM and these alarms and alerts for 

pending dysglycemia are extremely important. The utilization of real-time CGM 

technologies provides a unique foundation for improving glycemic control. The 

development of further predictive models utilizing these real-time CGM devices as a 

platform for prediction and or automated closed loop insulin delivery is therefore 

warranted of future research endeavors.   

 There has been some controversy in utilizing real-time CGM technology and its 

applicability in a clinical setting. A time-lag existent between interstitial glucose 

(subcutaneous glucose) and blood glucose concentrations has been determined. [99-102] 

Mathematical analysis of the time-lag existent between interstitial and blood glucose 

revealed that this time–lag was on the order of 12.5 minutes. [101] The utilization of 
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closed loop controllers such as the PID controller may have some limited adverse effects 

given this time lag, however, predictive models with large enough prediction horizons 

(>60 minutes) will minimize the effect of this time-lag.   

 Given that there are a variety of factors which impact and are indicators of future 

glycemic excursions in both diabetic and critical care patients as previously discussed, a 

successful modeling technique should be capable of quantifying the effects of these 

variables. Previously reported modeling techniques do not take into account a majority of 

these factors which at times may inhibit model success.   For example, overly aggressive 

insulin therapy with PID controllers is possible if glucose changes rapidly due to other 

variables and factors which will lead to unwanted hypoglycemia. [32-34] Research 

demonstrates patients with an extended history of diabetes often have impaired counter-

regulation in response to hypoglycemia due to autonomic insufficiency/failure. [103-105] 

A PID controller configured for automated insulin delivery given changes in glucose may 

give an inappropriate increase in insulin infusion given delayed counter-regulatory 

response in this patient base which would lead to further hypoglycemia and a dangerous 

cycle. Most of the initial studies completed using the PID control algorithm for automated 

closed loop glucose control were implemented in a controlled inpatient setting and 

variations/factors in everyday life were negated. [32-34]  

2.7 Introduction to Neural Network Modeling and Attempts to Control and Predict 

Glucose 

 An artificial neural network model or neural network is a mathematical or 

computational modeling technique.  Neural network models contain a connected series of 

processing elements called neurons. These neurons exhibit complex global behavior 
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which is determined by the connections existent between various processing elements and 

related parameters within the neural network architecture. Neural network modeling and 

the concept thereof is derived from knowledge of the central nervous system and 

specifically neurons (consisting of axons, dendrites, and synapses) which are the most 

basic information processing elements in neuroscience. Neural network models are 

desirable as they are adaptive technologies, which learn based on determining 

patterns/trends existent in input data. Based on this learning process, weights within the 

neural network architecture are modified to minimize error in neural network model 

output and complete a specific task.   Historically, neural network modeling has been 

used in a variety of applications. These applications include but are not limited to: time 

series prediction, function approximation, regression analysis, classification, and data 

processing (e.g. filtering, and clustering). 

  Historically, neural network modeling has been investigated to predict glucose 

and/or optimum insulin therapy for maintaining normal glucose levels in patients with 

diabetes. One such investigation was completed by Tresp et al., in which his research 

group investigated the utilization of recurrent neural network models and time series 

convolution neural networks to model glucose metabolism in diabetic patients. [106] In 

this investigation, a dataset of 63 days with a total of 463 blood glucose measurements 

were used to model glucose metabolism in a male diabetic patient.  This correlates to 

approximately seven discrete glucose measurements per day acquired for the 

investigation.   

 Investigation by Prank et al. was also completed to develop neural network 

models for learning the time course of blood glucose levels from the complex interaction 
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of counter-regulatory hormones. [107] In this investigation, neural network modeling was 

utilized to model blood glucose given activity of counterregulatory (glucose raising) 

hormones and their subsequent effect on future glycemic excursions.   

 Davide and his research group investigated the utilization of fuzzy logic combined 

with neural network techniques to modify intravenous insulin administration in diabetic 

patients subjected to glucose and potassium infusion. [108] Insulin infusion rates were 

adjusted every 4 hours between -1.5 and 1.5 units per hour, based on results of the fuzzy 

logic and neural network control algorithm. Glycemic control obtained using this method 

was compared against utilization of a conventional insulin estimation algorithm. The 

system was found to be effective in improving glycemic control without increasing the 

risk of hypoglycemia.  

 Research efforts by El-Jabali were completed to develop a neural network system 

for prediction and control of glucose in diabetic patients. The system was configured to 

predict the long term and short term insulin requirements for maintaining normal glucose 

levels. The neural network model inputs were discrete blood glucose measurements, 

insulin dosages, meals, and exercise. [109] Results demonstrated that reliable estimation 

of the next glucose level and insulin needed to maintain a normal glucose concentration 

can be obtained.  

 In these attempts at prediction and/or control of glucose using the neural network 

modeling techniques outlined above, discrete glucose monitoring was utilized as inputs to 

the neural network models. The utilization of CGM as inputs to these neural network 

models would likely provide better quality training data on which patterns in glucose can 

be learned and processed by the neural network models. Various modeling techniques 
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take into account other factors known to impact glucose such as meals, insulin dosages, 

exercise, sleep, and counterregulatory hormone levels. [107,109] The utilization of CGM 

in these cases would better help quantify the effect of these factors on future glucose 

concentration as well.  

2.8 Summary of Literature Review  

 The optimization of glycemic control in patients with diabetes is a well known 

problem. Similarly, critical care patients such as but not limited to, trauma, and 

cardiothoracic surgical patients experience glycemic variability and elevated glucose 

during their course of stay in the intensive care unit which has been linked to increases in 

morbidity and mortality rates. Research has demonstrated that a multitude of factors 

affect and are indicators of subsequent glycemic excursions in both of these patient bases. 

Successful models for prediction and ultimately optimization of glycemic control in these 

patient bases would likely need to incorporate the occurrence and effect of such factors. 

To date, this issue has not been fully addressed in both patient populations. In diabetic 

patients, lifestyle and emotional factors (unincorporated by previous modeling 

techniques) have been demonstrated in previous research to impact glucose. [6-8,12,14-

16,24] In critical care patients, modeling has been completed for predicting optimized 

insulin delivery for maintaining a normal glycemic state, however, considerable research 

regarding development of predictive models for glucose has not been the subject of 

research. Furthermore, there are a variety of factors documented in patient medical 

records throughout the course of their stay in intensive care. Many of these factors impact 

or are indicators of future glycemia in this patient base. To date, a modeling technique 

incorporating these factors which impact or are indicative of future glucose has not been 
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developed.   

 Recent advances in glucose monitoring technology, includes the development of 

real-time CGM technologies. The utilization of these technologies has and will be, 

implemented in closed loop insulin delivery applications in both the diabetic and critical 

care patient populations. The proportional integral derivative (PID) controller has been 

investigated for its potential in closed loop insulin delivery and automated glycemic 

control. This classical control algorithm closely mimics the beta cell, which is the primary 

insulin delivery mechanism in the human body. There are limitations accompanied with 

the utilization of this control algorithm as well. Studies on patients using such PID 

controllers were done in a controlled setting (i.e. hospital bed) where nutritional intake, 

activity, and other factors were controlled and did not parallel everyday variability in 

lifestyle and other factors a patient would expect in the course of their everyday lives. In 

critical care patients, utilization of these control algorithms would likely need to include 

the effect of various factors such as but not limited to medications, vitals, nutritional 

intake, ventilation data,  and other factors routinely  documented in medical records 

throughout a patient’s stay in intensive care. If the PID control algorithm is implemented, 

changes in glucose, may be correlated to other factors and the PID control algorithm 

could not differentiate this and lead to overly aggressive insulin infusion. This may 

potentially lead to unwanted hypoglycemia which has also been correlated to adverse 

outcomes.[110]    

 Neural network modeling is a technique which has considerable potential to the 

prediction and control of glucose in these patient bases. What makes neural network 

modeling an attractive technique is its adaptive capabilities.  Neural network models learn 
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based on patterns in input data and can quantify the effect of various input factors on a 

desired/predicted output. Given that a variety of factors impact or are indicators of future 

glucose in the patient bases discussed, neural network modeling is well suited for 

quantification of these factors and subsequent prediction of glucose. Neural network 

modeling techniques for prediction and control of glucose in patients with diabetes have 

historically utilized only discrete metered glucose values and did not include factors 

which may have an effect or impact on future glycemic excursions. In regards to the 

critical care population, CGM has only recently been investigated for clinical utility. The 

development of predictive models for glucose in this patient population has not been a 

major focus of research endeavors to date.  

While control algorithms such as the PID controller have been successful in 

automated glycemic control, this investigation outlines a unique and different approach 

towards optimization of glycemic control. This dissertation includes the development of 

various renditions of neural network modeling techniques for prediction of glucose in 

diabetic and critical care patient populations. These neural network models were 

developed using CGM data, and the documentation of other factors known to affect or be 

indicators of future glucose concentration.  In the diabetic patient population neural 

network models were configured to utilize inputs including: time, insulin dosages, 

nutritional intake, metered glucose readings, CGM data, lifestyle, emotional factors, and 

presence of hypoglycemic and hyperglycemic symptoms.  For the critical care population, 

a genetic algorithm was utilized to determine which inputs documented in patient medical 

records were relevant to include in neural network model architecture. Using the medical 

records known to impact or be indicative of glycemic excursions, neural network models 
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were developed using this ―optimized‖ training set.  The neural network models 

developed were integrated into a computer application for real-time prediction of glucose 

in both patient bases, and the predictions generated in real-time were analyzed for clinical 

acceptability.  

The application of the neural network models outlined in this dissertation will 

provide patients and caregivers insight into future glucose concentration and provide a 

means for therapeutic intervention to mitigate occurrences of unwanted hyperglycemic 

and hypoglycemic excursions. Furthermore, the utilization of these neural network 

models may provide a means to gauge the effect of the various input factors on 

subsequent glycemic excursions. This information can be utilized both as an instructive 

tool as well as provide a means for optimizing predictive model accuracy. Although 

neural network models were developed for both diabetic and critical care patient 

populations, the major focus of this dissertation will be the development/optimization of 

the neural network models for the critical care patient population. The development of 

such predictive models, especially those utilizing CGM, has not received much research 

attention. The development and utilization of such models will fill a gap in research and 

lead to advances in care, safety, and outcome of diabetic and critical care patients.  

The neural network models presented in this dissertation can be utilized for 

intelligent therapeutic direction and assistance for patients and caregivers. Given 

increased model accuracy, the development of models for estimation of insulin needed for 

optimized glycemic control can be constructed. From this, the creation of semi-closed 

loop (i.e. closed loop implementation with user entering of input factors to predict and 

control glucose), and fully automated closed loop systems can be developed.   
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CHAPTER 3  

MATERIALS AND METHODS 

3.1 Introduction 

 Neural network modeling provides a well suited construct for predictive models 

for glucose given the effect/impact of a variety of factors on glucose concentration. 

Neural network models have the ability to distinguish the effect of individual as well as 

multiple factors on a desired/predicted output.  

 This chapter will outline the procedures used for data collection, development, 

and testing/validation of the various neural network models developed in two clinical 

investigations. This chapter will be divided into two sections. One section will focus on 

clinical study and model development for patients with diabetes. A second section will 

include the clinical study and model development for critical care patients.  

 

3.2 Neural Network Model Development for Patients with Insulin Dependent Diabetes 

3.2.1 Generation of Pocket PC based Electronic Diary for Initial Data Collection 

The initial step in development of the neural network models was data 

acquisition.  A Pocket PC based electronic diary facilitating documentation of a 

patient’s meter blood glucose readings, insulin dosages, carbohydrate intake, 

hyperglycemic and hypoglycemic symptoms, lifestyle (activities and events), and 

emotional states was created using Visual C# .NET.  The graphical user interface 
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(GUI) of the developed software application is included in Figure 3-1. Emotional 

factors and lifestyle factors were selected from drop-down menus with pre-

defined selectable inputs. Based on the input selected from the interface the input 

is binary encoded via Equation 2. In Equation 2, Vencoded is the encoded value, i is 

the selected index of the drop-down menu and imax is the number of selectable 

indices in the drop-down menu.   

 

max2
2
i

i

encodedV   [Equation 2] 

 

The Pocket PC based electronic diary was configured to output a file 

containing all data-logged from the intensive electronic diary, which is used for 

subsequent integration with CGM data and neural network model training and 

development. CGM data and electronic diary data were integrated via merging the 

data into a single tab-delimited text file.  The electronic diary automatically 

updated the date and time of each entry to facilitate real-time data acquisition and 

mitigate instances of erroneous input. 
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Figure 3-1. GUI of Electronic Diary for Initial Data Acquisition 

 

3.2.2 Patient Training and Data Collection 

The patient population utilized for neural network algorithm/model development 

was obtained from a private endocrine practice in Warren, OH. The only inclusion 

criterion for the study was that patients must have insulin dependent diabetes mellitus. 

Using the developed electronic diary, 27 patients were subjected to usage of the diary in 

combination with a Medtronic CGMS (Continuous Glucose Monitoring System) Gold® 

device.  Patient utilization of CGM varied from patient to patient between 3-9 day 

monitoring periods. The electrochemical sensor for the device was changed every three 

days in accordance with manufacturer and FDA recommendations for sensor life and 

stability period.  Patients were instructed on calibration of the CGM unit, as well as, 

trained in usage of the electronic diary before their involvement in the study.  
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It is important to note that the data logged via the usage of the electronic diary 

may have been entered incorrectly. Data was evaluated after each patient monitoring 

period, and erroneous inputs were removed.  It was impossible to monitor the patients 

involved in the study over the course of their everyday lives. To mitigate such errors, 

patients were instructed and trained to record data using the electronic diary prior to their 

involvement in the study. 

 

3.2.3 Neural Network Model Design and Development 

 Neural network models were generated using NeuroSolutions® software 

(Neurodimension, Gainesville, FL). These neural networks were configured to forecast 

future glycemic levels within a certain pre-defined time frame or prediction horizon. 

Models were developed with prediction horizons ranging from 50-180 minutes. These 

prediction horizons were chosen for two reasons: to cover a wide range of time, and to 

gain a predictive view of 120-180 minutes which is very important for a diabetic patient 

specifically after meals and insulin dosages. Each glucose value obtained from the 

Medtronic CGM device was collected every five minutes, therefore, for a 100 minute 

prediction horizon, the neural network was configured to predict 20 CGM values.  

The neural networks developed in this investigation were time-lagged feed 

forward neural networks. These neural networks are multi-layer perceptrons which have 

memory components to store previous values of data within the network. The existence 

of such memory components provides the network the ability to learn 

relationships/patterns existent in the data over time.  These neural networks consist of 

multiple layers of processing elements which are connected together in a feed forward 
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manner. Various connections (synapses) were constructed to facilitate connections 

between the processing elements of the neural network (axons).  

The neural networks generated were trained using a method known as the 

backpropagation of errors.  Elements in the neural network known as backpropagation 

axons (BackAxons) facilitated the training process.  BackAxons derive a relative error at 

their input which is to be back propagated to any processing elements which precede 

them in the neural network design.  Backpropagation of errors is completed as an error is 

presented at the output of each BackAxon in the neural network, and the BackAxon is 

charged with calculating the gradient information associated with calculating weights for 

minimization of total error in the neural network.  Optimal weights for minimization of 

error in the predictive model are obtained via a gradient descent with momentum 

algorithm performed within the BackAxon elements.  This gradient descent algorithm 

calculates the optimal weight for minimization of total error in the neural network model.  

The optimization value of step size in such an algorithm is integral in the amount of time 

it takes to train the neural network.  A small step size could lead to large training time, 

and conversely a large step size could lead to over estimation of the desired local 

minimum. Neural networks were configured with a forward trajectory of 50 samples and 

the back propagation of 40 samples (i.e. single exemplar). The neural network model was 

configured to update weights after 200 exemplars were encountered. The neural networks 

were configured to terminate training if the mean squared error exceeded the threshold of 

0.01 or after 1000 epochs (i.e. cycles through the dataset).    

Optimization via usage of a genetic algorithm, which are useful computer aided 

design techniques, was completed during neural network model training. [111-113] 
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Optimization via a genetic algorithm was used to minimize the number of processing 

elements (neurons) and inputs into the neural network.  The genetic algorithm also 

effectively determines which inputs have an impact on predictions and minimizes the 

various interconnections between neurons (i.e. processing elements in the neural 

network). The genetic algorithm also determines the best value for step-size and 

momentum for calculating the optimum weights for minimization of total error the neural 

network as well. 

Figure 3-2 includes the neural network design/architecture of one of the 

processing and output layers of the neural network models designed using the 

NeuroSolutions® software. The various components in the neural network design are 

labeled 1-5.  Component 1 is a hyperbolic tangent axon (Tanh axon). The Tanh axon has 

the processing elements for the hidden layer of the neural network. This processing 

element effectively processes inputs within the neural network between a range of -1 and 

1. This range makes patterns in the data more easily interpreted due to the smaller range 

of potential values. For example, CGM values would have values between 40 and 400 

mg/dl, utilizing the hyperbolic tangent processing element would limit this large range of 

values to a more quantifiable one.  Each processing element sums the weighted 

connections from the inputs into the axon.  Component 2 is a Laguarre Axon which 

functions to store delayed versions of the processing elements output and pass it onto the 

next layer of the neural network. The Laguarre axon, therefore, serves to provide the 

neural network with memory thus enabling the processing of information in time.  

Component 3 is the momentum/gradient descent component of the network.   This 

component serves to adjust the weights with information about the error within the 
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network.  Optimal step sizes and momentum values in these elements for minimization of 

error are determined via implementation of a genetic algorithm, as discussed previously.  

Component 4 is an example of the synapses of the neural network which serve to connect 

the various axons/processing elements of the neural network.  Component 5 is the output 

layer of the neural network which consists of a Bias axon (leftmost element in component 

5) and an Output Axon (rightmost element in component 5). The Bias axon component 

has the processing elements for the output layer, each of which sums the weighted 

connections from the second hidden layer. The Bias axon adds an offset to the weighted 

values obtained from the previous layer. The output axon yields the predicted values in 

the original format (i.e. desired response) as originally presented to the neural network. 
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Figure 3-2. Hidden Layer and Output Layer Design of Time-Lagged Feed Forward 

(TLFF) Neural Network Model Architecture Implemented for Prediction of Glucose in 

Diabetic Patients 

 

3.2.4 Testing/Validation of Developed Neural Network Models 

Three methods were implemented to analyze the accuracy of the developed neural 

network’s predictive abilities. The first method involved the validation of neural network 

models generated with variable length training sets. In this analysis, training sets using 
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11-17 patients were used to generate neural network models with a constant prediction 

horizon of 100 minutes. The performance of each neural network model was evaluated 

using the CGM and electronic diary data from a patient which was not included in the 

training data of any of the neural network models. MATLAB® was used for performance 

analysis of the neural network model. The mean absolute difference percent (MAD%) of 

the model’s predictive abilities on the entire test data set (overall MAD%), hypoglycemic 

extremes (<=70 mg/dl) and hyperglycemic extremes (>=180 mg/dl), were calculated 

using Equations 3 and 4.  Equation 3 is utilized for calculating the absolute difference 

percent (AD%) between each neural network predicted value and the corresponding 

actual CGM value. Equation 4 is used to calculate the mean absolute difference percent 

(MAD%), which is defined as  the mean of all obtained absolute difference percent 

values in the dataset. The percentage of hyperglycemia and hypoglycemia predicted by 

the system was also calculated.  

Note: AD%(t) is the calculated AD% at time t, NNetpredict(t) is the predicted neural 
network glucose value at time t, and CGMactual(t) is the actual CGM data point at 
time t. N is the number of data points in the dataset, used for calculating the 
MAD%.  
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A second method of performance analysis involved the validation of the multiple 

neural network models generated using 12-17 patient datasets.  The final patient included 

in each dataset, (i.e. the last 3-3.5 days of each dataset) was omitted from the training 

data and utilized to validate the accuracy/predictive abilities of the neural network on 
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unseen patient data.  This analysis mimics real-time functionality of such models on 

multiple unseen patients as the data used to test model performance is a different patient 

each time. MATLAB® was utilized for performance analysis and used to calculate the 

previously described performance measures.   

The final method of performance analysis was the validation of the various neural 

network models with variable prediction horizons ranging from 50-180 minutes, tested on 

data from a patient which was not included in the initial training data. The respective 

predictive abilities were analyzed using MATLAB®.   

 

3.2.5 Development of a Real-Time Software Implementation of Neural Network Based 

Predictive Model for Patients with Diabetes  

The neural network models developed in 3.2.3 above consisted of a complex 

architecture, which consisted of an input layer, and two hidden layers which contained 

memory structures for giving the network memory of the input signals past. These 

memory structures provide the neural network a medium through which trends and 

patterns in input data can be identified. The utilization of a neural network model with 

this architecture may not be ideally suited for utilization in a real-time setting with a 

CGM device which samples interstitial glucose concentration every five minutes.   These 

neural network models, depending on configuration, can have increased processing time 

(i.e. time needed to train and generate predictions). For this reason, a neural network 

model was developed with a reduced complexity feed forward architecture, which 

differed from the neural network models developed in section 3.2.3. The neural network 

models were converted to C++ source code, and a dynamic linked library (DLL) was 
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developed to implement the neural network model in a real-time setting in a graphical 

user interface (GUI) based C++ application. The next sections outline the neural network 

architecture implemented in the real-time application as well as the procedure taken to 

test the performance of the developed neural network model in a simulated real-time 

setting. In addition to this reduced complexity neural network model, a model 

implementing the time-lagged feed forward architecture outlined in section 3.2.3 is also 

developed, and integrated into the real-time predictive system and outlined in the 

following sections.  

 

3.2.6 Feed Forward Neural Network Architecture Implemented in Real-time Predictive 

System 

The neural network model generated for the real-time application was configured 

to implement a feed forward neural network model architecture. The neural network 

architecture included a three layer design which included a single input layer, a hidden 

layer for processing (implementing a hyperbolic tangent transfer function), and an output 

layer. Figure 3-3 is an illustration of the neural network model architecture and three 

layer design. Figure 3-3 also demonstrates the flow of the data through the neural 

network model. The complexity of this neural network architecture was implemented as 

it would be well suited for a real-time predictive application.  The utilization of such a 

model architecture will decrease computation time (which would benefit in a real-time 

application), and allow time for pre and post-processing algorithms and other supporting 

algorithms for enhancement of model accuracy. 
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Figure 3-3. Real-time Predictive System Neural Network Architecture and Data 

Flow  

 

The neural network model was developed using NeuroSolutions® software 

(Neurodimension, Gainesville, FL). The neural network model was configured to predict 

glucose using a prediction horizon of 75 minutes (i.e. 15 CGM values). The neural 

network model was trained via backpropagation of errors. As demonstrated in Figure 3-3, 

the error of the neural network predictions (i.e. mean squared error between actual and 

predicted CGM data) is backpropagated to previous layers of the neural network and 

optimum weights for minimization of error are calculated via a gradient descent with 

momentum algorithm. The neural network model was configured with a forward and 

backpropagation trajectory of a single input (i.e. exemplar). Additionally, the neural 

network model was configured to update weights after 200 exemplars and to terminate 

training after 1000 epochs (i.e. cycles through entire dataset), or if a mean squared error 

threshold of 0.01 is exceeded.  
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3.2.7 Integration of Neural Network Functionality into Real-time C++ Application  

NeuroSolutions® software was utilized to generate a C++ source code 

representation of the developed neural network model. This C++ source code was limited 

in functionality and only worked for the initial training set used to generate the neural 

network model. For this reason, the source code was modified significantly and a DLL 

was generated which implemented functions to generate neural network model 

predictions in a real-time setting. The DLL was integrated into a graphical user interface 

(GUI) based program for real-time prediction of glucose, and the computer program was 

configured to formulate predictions within a five minute timeframe. This step was 

necessary for integration of this technology into a real-time system as most CGM 

technologies report glucose concentration every five minutes. The patient data used for 

testing the accuracy of the neural network model’s predictions in a real-time setting 

included data from 10 patients not used in initial model development and training. These 

patients were derived from the private endocrine practice in Warren, OH and via the data 

collection procedures defined in section 3.2.2. 

The neural network model accuracy was evaluated via two different 

methodologies. The first of these methods involved loading the model weights derived 

from model training using the initial 17 patient training set before each real-time 

prediction. A second method involved the utilization of the real-time application to 

update and adapt weights as new data is presented to the real-time system.  

The application was designed to read from an input file which initially contained 

800 inputs to the neural network. Of these 800 inputs, 799 contained historical CGM 

data. The final 800th input represented the current real-time CGM value. Separately, a file 
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contained the desired predicted output of the neural network. This file consisted of 800 

CGM values time shifted ahead to implement a prediction horizon of 75 minutes and was 

presented to the neural network for training and weight adaptation. The final 800th value 

in the desired predicted output file was set to zero (i.e. unknown). The final 15 predicted 

values of the neural network output represent the neural networks prediction of glucose 

implementing the prediction horizon of 75 minutes. The application was configured to 

generate its predictions within 5 minutes (the sampling rate of the CGM device) such that 

upon reception of a new CGM value, another prediction may be generated. After each 

prediction, a new CGM value is appended to the end of the input data file, and the 

previous CGM value is added to the desired output file at the index before the current 

real-time data to maintain the prediction horizon and appropriate training/adaptation of 

the neural network. After a total of 100 predictions and file length of 900 is achieved, the 

application was configured to delete the first 100 inputs and predictions resume as 

outlined above.  

The GUI of the computer program generated for this investigation is included in 

Figure 3-4. This GUI allows the user to select the prediction horizon, and displays the 

predictive results to the user. 
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Figure 3-4. GUI of Real-Time System (GlucoCast RT) for Real-time Glycemic 

Forecasting 

 

3.2.8 Enhanced Multifunctional Neural Network Model Architecture in Real-Time 

Application 

 A neural network model was designed implementing a model architecture similar 

to the initial neural network models developed in 3.2.3 and integrated into the real-time 

predictive application outlined in section 3.2.7. This neural network was designed to be a 

multifunctional neural network (MFNN) model which predicts glucose concentration 
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(CGM data) and glycemic states (i.e. glucose ranges based on numerical classification 

from 1-7). Glycemic states were defined as 1 (hypoglycemia [CGM<70 mg/dl]), 2 (lower 

normal [CGM>70&CGM<100 mg/dl]), 3(middle normal [CGM>100&CGM<140 

mg/dl]), 4(upper normal [CGM>140&CGM<179 mg/dl]), 5(lower hyperglycemic 

[CGM>179&CGM<220 mg/dl]), 6(middle hyperglycemic [CGM>220&CGM<300 

mg/dl]), 7 (upper hyperglycemic [CGM>300 mg/dl]).  

The neural network models were designed with an input layer, 2 hidden 

processing layers, and an output layer. The input layer was designed with a memory 

component with 3 taps, and a tap delay line of 1 sample (i.e. delay of 2 samples between 

successive taps). The memory component thus provides memory of the current input as 

well as 2 historical inputs. The first hidden processing layer was designed with a 

hyperbolic tangent axon and a memory component with 8 taps and a tap delay line of 1 

sample. This memory component provides memory of the current input, as well as 7 

historical inputs. The second hidden processing layer was designed with a hyperbolic 

tangent axon and a memory component with 4 taps and a tap delay line of 1 sample. This 

memory component provides the memory of a current input and 3 historical inputs. The 

output layer of the neural network included a bias axon which adds an offset to the neural 

network data from the second hidden layer to generate the neural network model 

predicted output.  

 The real-time predictive application was generated via similar methodologies as 

outlined in section 3.2.7 In this implementation, the input file presented to the neural 

network model needs to be maintained at a constant file length. For this real-time 

implementation, the input file was maintained at a constant length of 800 values (799 
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historical and 1 real-time input data vector). Additional design modifications included the 

forward and back propagation trajectory of N samples (i.e. single exemplar). The forward 

trajectory is the number of input and desired values of which the neural network model 

looks ahead and calculates gradient information for modification of model weights. The 

back propagation trajectory is the calculated error between neural network output and 

desired response which is back-propagated to other neural network layers for weight 

adaptation.  An additional design modification is the number of exemplars per weight 

update in the neural network model design.    

3.2.9 Performance Analysis of Neural Network Models in Real-Time 

 The neural network models developed for prediction of glucose in the insulin 

dependent diabetic population were tested in a real-time setting. To test the performance 

of these real-time predictive models, Clarke Error Grid Analysis (CEGA) was 

implemented to determine the percentage of model predictions which can be deemed 

clinically acceptable. CEGA was utilized in this investigation to assess accuracy of 

predicted CGM values with respect to actual CGM values. CEGA was established in 

1987 and was originally utilized to assess meter-based patient estimates of blood glucose 

compared to those obtained using a ―gold-standard‖ reference glucose meter. [114] The 

accuracy of current CGM technologies is also assessed via utilization of CEGA to 

compare CGM performance to that of blood glucose meters. [81] Region A contains 

predicted values within 20% of the reference concentration and region B contains 

predictions outside 20%, however, would not lead to inappropriate treatment. Regions A 

and B therefore contain predicted values which can be classified as ―clinically 

acceptable‖. Region C contains points which lead to unnecessary treatments, and region 
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D contains points indicating a potentially dangerous failure to detect hypoglycemia. 

Region E contains predicted values which would confuse treatment of hypoglycemia for 

hyperglycemia and vice-versa. A successful predictive model and system would thus 

need a majority of predicted CGM to fall within regions A and B in the Clarke Error 

Grid. Furthermore, a higher percentage of values falling within region A of the Clarke 

Error Grid is most desireable. 

 Additional performance analysis was completed via calculating the overall error 

of the neural network model predictions with respect to actual CGM values. Overall error 

was determined via calculation of mean absolute difference percent (MAD%) via 

equations 3 and 4 in 3.2.4. Error of CGM devices with respect to gold standard handheld 

blood glucose meters has been reported to be 14.0-21.0%. [115] A successful predictive 

model would therefore need predictive errors (MAD%) within this range. In addition to 

overall error, the percentage of hypoglycemic, hyperglycemic, and normal glucose 

extremes predicted was also calculated. For multifunctional neural network models, the 

percentage of general glycemic states (low (state 1), normal (states 2-4), and high (states 

5-7)) was calculated. Additionally, the percentage of each specific glycemic state (1-7) 

predicted was calculated.    

3.3 Neural Network Model Development for Critical Care Patient Population 

The section will outline the procedures and methodologies implemented in the 

clinical study for prediction of glucose in critical care patients completed at the 

University of Toledo Medical Center (UTMC) in the surgical intensive care unit (SICU) 

and medical intensive care unit (MICU).  This investigation was approved by the 

University of Toledo Biomedical Institutional Review Board (IRB) with approval 
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#106204. The approved IRB documents utilized for the patient consent process are 

included in the appendix of this dissertation (Appendix A.1).   

 

3.3.1 Development of Electronic Clinical Intensive Data-Logger (eCIDL) 

 Currently, the medical records in the surgical and medical intensive care units 

(SICU and MICU) at the University of Toledo Medical Center (UTMC) are transcribed 

in paper format. The utilization of these medical records in a computer based 

mathematical model is therefore not possible in the current state. For this reason, a 

computer application was developed to facilitate documentation of the paper-based 

medical records into an electronic format. This electronic clinical intensive data-logger 

(eCIDL) was created as a GUI based C++ software application using Microsoft Visual 

Studio 2008 development environment.  

 The preliminary step in the development of the eCIDL was discussion with 

clinical investigators involved in the project to determine which medical records 

information needed to be logged using the developed eCIDL. A copy of the intensive 

care unit paper-based records were obtained, and these records were transcribed into the 

computer application. Discussion with clinical staff and the University of Toledo 

Department  of  Pharmacy generated a list of commonly utilized medications and labs in 

the critical care patient population. Following the derivation of specifications for eCIDL 

development from clinical staff, the eCIDL was developed and tested/validated for data 

entry. The main menu GUI of the developed eCIDL is presented in Figure 3-5.  
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Figure 3-5. GUI of Developed Electronic Clinical Intensive Data-Logger (eCIDL) 

 The design of the eCIDL included a variety of text fields for documentation of 

numerical medical records. Non-numerical medical records were included in drop-down 

menus, and the inputs were logged based on the index of the selection from the drop-

down menu. If the parameter was not logged (i.e. text field or drop down menu was 

blank), data was defined as 0 in the electronic medical record. The eCIDL was configured 

to log both a text based and numerical based (encoded for neural network model 

integration) rendition of the medical records. Each record logged using the eCIDL was 

time-stamped with the time and date of each entry so that data could be combined with 

CGM data acquired during a patient’s intensive care unit stay. The numerical (i.e. neural 
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network) time was converted to a decimal value between 0 and 24 to document data on a 

24 hour scale.  

 In the event that multiple medical records (e.g. medication, labs, and clinical 

events) were logged at the same time, the eCIDL was configured to encode the data based 

on the category, type, and number of the specific events (i.e. medication, lab results, or 

clinical events) logged at a single time stamp.  

For example, if multiple medications were entered into the system at a single 

instance in time, Equations 5 and 6 are utilized to numerically encode the multiple 

medications. Equation 5 is a weighted ratio medWt , to scale individual medication dosages 

based on the binary encoding of medication category and medication type (i.e. specific 

medication) used. Binary encoding of medication category (Medcategory) and medication 

type (Medtype) is completed via calculating 2 raised to the drop-down menu index+1 of 

each medication category and type as demonstrated in Equation 5.  Equation 6 is the 

encoded dosage ( doseMed ) of the medication such that for multiple medications, the 

neural network model input is unique. Multiple medication categories and types were 

encoded at a single time stamp via summing the values of the binary encoded categories 

types, and dosages logged using the eCIDL. If the medication logged is infused via a 

specific dose/hr, the infusion rate (dose/hr) is weighted via the same methodology as the 

medication dosage. NOTE: The same method of encoding was utilized for laboratory 

results logged using the eCIDL. Instead of dose, the lab result was weighted based on the 

lab category and type selected. 
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              [Equation 5] 

 

                                         dosemeddose MedWtMed      [Equation 6] 

3.3.2 Optimal Input/Training Set Selection for Neural Network Using a Genetic 

Algorithm 

 Utilization of the eCIDL resulted in the collection of 131 different medical 

records and potential inputs to the neural network model for prediction of glucose. A total 

of 15 categories of medical records were logged using the developed eCIDL. The 

categories and number of medical records logged within each category are included in 

Table 3-1. Although there are a large number of medical records logged using the 

developed eCIDL, many of these records would not have an impact or be an indicator of 

glucose concentration in the critical care patient population. Furthermore, throughout the 

course of the investigation it was determined that a significant number of the medical 

records were not routinely logged by clinical staff throughout the course of the clinical 

investigation.  Genetic algorithms were implemented to determine which variables 

logged during utilization of the eCIDL should be included in the neural network model 

training and input dataset. Genetic algorithms were implemented using Eigenvector 

Research® Solo-MIA© with PLS Toolbox 4.0 software. 
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         Table 3-1. Medical Record Categories Logged Using eCIDL 

Medical Record Category 
# of Medical 

Records 

Vital Signs 8 

Intake 14 

Output 7 

Lab Results 4 

Pulmonary Artery Data 12 

Medications 8 

Ventilation Data 14 

Skin Risk 8 

Organ Systems Analysis 8 

Diabetic Flowsheet 5 

Sedation Analgesia 10 

Clinical (Special) Events 4 

Lines Insertion 3 

Pain Assessment 2 

Total Parenteral Nutrition 24 

 

The theory behind utilization of a genetic algorithm is that given an x-block of 

predictor data and y-block of data to be predicted, the variables from the x-block which 

can be used for prediction of the y-block can be determined. This is accomplished 

through cross-validation and regression to determine the root mean squared error of cross 

validation (RMSECV) obtained when a subset of variables from the x-block are utilized 

for prediction. This process is iterated to determine which variables from the x-block 

produce the lowest RMSECV.  For this investigation, the x-block included medical 

records from the developed eCIDL, CGM device sensor current, and CGM values 

categorized as glycemic states.   The y-block was defined as CGM glucose concentration 

values measured every five minutes.  

 Two renditions of genetic algorithms were utilized. The first rendition of genetic 

algorithm implemented a multiple linear regression based genetic algorithm. In this 
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genetic algorithm, the actual variable values were utilized. The second rendition of 

genetic algorithm was a partial least squared regression based algorithm. In this algorithm 

latent variables (i.e. not direct variable values but values derived via mathematical 

modeling) were utilized. This rendition of genetic algorithm was configured with 10 

latent variables.   

Both genetic algorithms were configured with a window width (i.e. number of 

adjacent variables to be grouped together at a time) of 1. In these algorithms, a population 

size (i.e. random selection of variables from x-block) of 64 was implemented. The 

algorithms were configured to initially have 30% of the variables in the initial variable 

subsets. Each of the populations (i.e. subsets of variables) has an associated RMSECV. 

After allocation of variable subsets, the genetic algorithm determines the fitness (error) of 

each of the variable subsets for prediction of the y-block. After determination of fitness, 

each of the variables was ―bred‖ using single crossover. During this crossover, the 

variables from 2 random variable subsets were split at into two random subsets and 

combined with the other random variable subset from which the variables were not 

initially included. Following crossover, the variables are given a chance for random 

mutation. Mutation allows for a finite chance of adding or removing variables which may 

be over or under represented in the x-block. A mutation rate of 0.05 was chosen such that 

mutation did not occur frequently.   The genetic algorithms were configured to terminate 

after a maximum of 100 generations and a percent convergence of 50%. 

 

 

 



45 
 

3.3.3 Data Acquisition for Neural Network Model Development  

 Critical care (trauma or cardiothoracic surgical) patients admitted to the 

University of Toledo Medical Center: >18 years of age, and elevated glucose >150 mg/dl 

(upon admission to the intensive care unit or upon arrival at UTMC) were approached for 

consent by clinical staff. The only exclusion criterion was defined as pregnancy. 

 After patient consent was obtained, a CGM device (Medtronic Diabetes CGMS 

Ipro®, Northridge, CA) was placed on the patient. All clinical personnel involved in the 

investigation were trained on insertion, setup, removal, downloading, and maintenance of 

the subcutaneous glucose sensors, and CGM device.   CGM sensors were changed every 

three days in accordance with FDA and device manufacturer recommendations for 

optimum accuracy. Routine care utilizing the established University of Toledo Medical 

Center insulin infusion protocol was maintained throughout the patient’s length of stay in 

the intensive care unit. Furthermore, routine documentation of medical records was 

maintained.  When the patient was discharged from the intensive care unit, the CGM 

device and sensor was removed from the patient and the patient was removed from the 

investigation. NOTE: CGM values and model predictions generated throughout the 

course of the investigation were not utilized by clinical staff and no modifications to 

conventional care established at the University of Toledo Medical Center occurred.   

 Various study personnel were trained and provided with an instructional manual 

on the successful operation and utilization of the eCIDL (developed in 3.3.1) for 

conversion of paper-based medical records into an electronic format. Additionally, study 

personnel were trained to combine CGM and electronic medical records into data files to 

be used for subsequent neural network model development and testing.    
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Before initiation of the clinical study, it was estimated that a total of 40-45 trauma 

patients at a rate of 2 patients every 2-3 weeks would be enrolled in the investigation. 

During the investigative timeframe, patient enrollment was drastically decreased from 

initial expectations. Due to decreased enrollment, the IRB protocol was amended to 

include cardiothoracic surgical patients to increase patient enrollment. Various factors 

have lead to a reduced patient enrollment in the clinical investigation. One such factor 

was that trauma incidences were drastically decreased over the last year. This is 

hypothesized to be due to the current ongoing economic crisis and increased fuel cost. A 

large proportion of trauma incidences at the University of Toledo Medical Center 

(UTMC) are automobile and motorcycle accidents which may be decreased due to the 

current state of the economy. Another factor due to the decreased patient enrollment is 

the limited surgical/critical care staff at UTMC. Decreased clinical staff made enrollment 

and consenting of patients for the investigation more difficult. Key members of the 

cardiothoracic surgical staff at the UTMC also departed from the institution, which can 

also be directly attributed to the decreased patient enrollment. 

The data acquisition process outlined in the section was continued until March 

2010, at which time final renditions of the neural network models were developed and 

tested using all available patient data collected in the clinical investigation. 
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3.3.4 Neural Network Model Development for Prediction of Glucose in Critical Care 

Patients 

 Following determination of the optimal variables/predictors for use in the neural 

network model design by the genetic algorithms implemented in 3.3.2, neural network 

models were developed for forecasting glucose concentration in the critical care patient 

population. Initially, a training set comprised of 14 critical care patients consisting of 

19,989 data points (CGM data and medical records information obtained from utilization 

of the developed eCIDL) was utilized for model development and training. The neural 

network model architecture implemented for prediction of glucose in this patient base 

was a feed forward neural network model architecture similar to the neural network 

models developed in 3.2.6 for real-time prediction of glucose in patients with insulin 

dependent diabetes. The implementation of this neural network architecture enables the 

prediction of glucose in real-time within the time constraints of the sampling rate of the 

CGM device (CGMS Ipro®, Medtronic Diabetes©, Northridge,CA). The neural network 

model inputs and training set were determined from genetic algorithm application 

(outlined in 3.3.2) and inputs/predictors used in the model training set are included in 

table 3-2. Neural network model architecture and design is included in Figure 3-6. 

 

Table 3-2. Final Inputs for Neural Network Model based on Genetic Algorithm for 

Variable Selection 

Variable 
Number Variable 

1 Time 
2 Temperature 
3 Heart Rate 
4 Respiratory Rate 
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5 Blood/Colloids (Intake) 
6 Packed Red Blood Cells (Intake) 
7 5% Albumin 
8 D5W 
9 D5NS 

10 NS 
11 D5LR 
12 Time Period Collected 
13 NG (Resid) 
14 Lab Category 
15 Lab Type 
16 Lab Results 
17 Num Labs 
18 PCWP 
19 SVO2 
20 SPO2 
21 Medication Category 
22 Medication Class 
23 Medication Type 
24 Medication Dose 
25 Number of Medications 
26 PAO2 
27 pH 
28 PACO2 
29 Conciousness 
30 Activity 
31 Nutrition 
32 Gen. Phys Cond 
33 POC Test Time 
34 POC Blood Glucose 
35 Insulin Dosage 
36 Insulin Delivery Type 
37 Pain Level 
38 CGM Value 
39 CGM Sensor Current 
40 Glycemic State 
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Figure 3-6. Feed Forward Neural Network Model Design and Architecture for Prediction 

of Glucose in Critical Care Patient Population 

Neural network models were trained via the backpropagation training algorithm 

previously outlined in neural network model development for patients with diabetes 

(section 3.2.3). The neural networks were configured to terminate training if the mean 

squared error exceeded the threshold of 0.01 or after 1000 epochs (i.e. cycles through the 

dataset). Neural network models were configured as multifunctional neural network 

models to predict actual glucose concentration values and classified ranges of glycemic 

states (same ranges as outlined in section 3.2.8). Neural network models were initially 

configured to predict glucose using a prediction horizon of 75 minutes.   

A prediction horizon of 75 minutes is the maximum prediction horizon chosen for 

implementation in this patient population. This maximum prediction horizon was 

determined via determining the amount of hyperglycemic and hypoglycemic excursions 
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detected by POC glucose monitoring implemented at UTMC. Determination of the 

percentage of hyperglycemic and hypoglycemic excursions detected via POC glucose 

monitoring was determined for the initial 19,989 data points used for initial model 

training and development. Table 3-3 demonstrates the percentage of hyperglycemic and 

hypoglycemic glucose extremes detected via conventional POC monitoring within a 

predefined time window.  NOTE: A time window of 60 minutes is defined as 30 minutes 

before and 30 minutes after the detected event.   Table 3-3 demonstrates that the 

prediction horizon of 75 minutes implemented in the models developed in this 

investigation is near ideal for this patient population and will provide insight where POC 

glucose values are not obtained. In addition to the 75 minute prediction horizon (which is 

the main prediction horizon implemented in this investigation), neural network models 

implementing prediction horizons of 30, and 60 minutes were also investigated. Models 

with reduced prediction horizons are hypothesized to have increased accuracy with 

respect to the models implementing larger prediction horizons, but will also be useful for 

intelligent therapeutic direction and clinical decision support 

 

Table 3-3. Percentage of Hyperglycemia and Hypoglycemia detected Via POC 

Monitoring 

  % Detected 
40 Minutes 

% Detected 
60 Minutes 

%Detected  
80 Minutes 

Hyperglycemia 44.2 64.1 83.9 

Hypoglycemia 31.7 44.8 58.4 
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To assess the performance of neural network models implementing different 

prediction horizons, feed forward neural network models were developed and trained via 

the initial training set of 19,989 data points. These neural network models were developed 

via the aforementioned methodologies and configured for prediction of glucose using 

prediction horizons of 30, 60, and 75 minutes. Data from three patients not utilized for 

initial model development and training were utilized to test the performance of the 

models implementing 30, 60, and 75 minute prediction horizons.  Performance analysis of 

the models was completed in MATLAB® and Clarke Error Grid Analysis (CEGA) was 

utilized to determine clinical acceptability of the predictions. In addition to CEGA, 

overall model error (MAD%) and the percentage of hypoglycemic, hyperglycemic, and 

normal glycemic extremes predicted was calculated.      

 

3.3.5 Development of a Patient Specific Neural Network Model 

 Neural network models developed in this investigation have been general neural 

network models trained with data from multiple patients. In this investigation, a feed 

forward neural network model implementing the architecture/design outlined in 3.3.4 was 

trained using data from a single patient resulting in a patient specific neural network 

model.  

A single trauma patient (38 year old, MVA (motor vehicle accident) victim, 

intubated, with multiple blunt force injuries) who met the aforementioned criteria, was 

admitted to the UTMC SICU. The patient was subjected to continuous glucose 

monitoring (CGM) (Medtronic Diabetes, CGMS Ipro®), and routine documentation of 

medical records throughout their length of stay in the ICU. The patient had an extended 
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length of stay in the ICU of 16 days. A patient specific feed forward neural network 

model was developed/trained using 243.6 hours (2,923 data points) of CGM and 

concurrent medical records data for prediction of glucose implementing a prediction 

horizon of 75 minutes. The neural network model was developed and trained using the 

same architecture included in Figure 3-6 and the model configuration as discussed in 

section 3.3.4.  Model performance was compared with the performance of a general 

neural network model (trained with data from 5 critical care patients) on a segment of 

data from the patient utilized for patient specific model development not included in 

either model training set. The inputs to the patient specific and general neural network 

models were configured as time, CGM data, and data collected from the diabetic flow 

sheet maintained in the UTMC SICU. The diabetic flow sheet contained POC glucose 

values and test time, units of insulin delivered, and insulin delivery type (subcutaneous 

sliding scale or IV insulin infusion).   

3.3.6 Development of a Multifunctional Complex (Time-Lagged Feed Forward) Neural 

Network Model  

 In addition to the reduced complexity feed forward neural network models 

generated in this investigation for prediction of glucose in critical care patients, a 

multifunctional complex time lagged feed forward (TLFF) neural network model was 

also generated. This model was designed using NeuroSolutions® software 

(Neurodimension©, Gainesville,FL) such that predictive performance could be compared 

with that of the feed forward neural network model generated in 3.3.4.  

 The complex TLFF neural network model was designed with the similar 

architecture implemented in the diabetes investigation in section 3.2.3 and included in 
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Figure 3-2. The major differences between complex TLFF and reduced complexity feed 

forward (FF) neural network architectures is that TLFF models have Laguarre Axons 

which contain memory structures to store historical values of neural network inputs. 

These memory structures give the system memory thus enabling the processing of 

information in time. Further differences in model architecture include the existence of 

two hidden processing layers equipped with memory components (Laguarre Axons) in 

the TLFF neural network model architecture. These hidden processing layers serve to 

limit the range of neural network input values within the hidden layer to a defined range 

which enables the neural network to process and interpret patterns in data more 

efficiently.  A final difference existent between the TLFF neural network and FF neural 

network is the forward and backpropagation trajectories implemented in both approaches. 

The forward trajectory is the number of input and desired values of which the neural 

network model looks ahead and calculates gradient information for modification of model 

weights. The back propagation trajectory is the calculated error between neural network 

output and desired response which is backpropagated to other neural network layers for 

weight adaptation.  In the FF neural network model, a forward and backpropagation 

trajectory of a single sample is implemented. Conversely, in the TLFF model architecture 

is configured to implement variable forward and back propagation trajectories and the 

number of exemplars (i.e. a single pass through forward and back propagation trajectory) 

experienced before the neural network model updates model weights.  The existence of 

memory structures in the TLFF architecture make implementation of these variable 

trajectories more effective than the alternative FF model architecture.    
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The FF model architecture was the same architecture as implemented in section 

3.3.4. The TLFF neural network model architecture was designed with an input layer 

containing a Laguarre Axon (memory component) containing two taps which function to 

store one historical and the current neural network input value. The TLFF model was also 

generated with two hidden layers each with an axon (with an associated Laguarre Axon) 

which were configured to implement a hyperbolic tangent transfer function, which served 

to limit input values within each layer to a range of -1 and 1. The first hidden layer was 

configured with a Laguarre Axon configured with five taps which stored memory of 4 

historical and one current input values. A second hidden layer was configured with a 

Laguarre Axon configured with 2 taps which stored the memory of a single historical and 

current input value. Both neural network models were trained via the backpropagation of 

errors training algorithm as previously outlined in this document. 

 The TLFF and FF neural network models were developed/trained using the 

genetic algorithm optimized initial 14 patient comprehensive training set consisting of 

19,989 input data vectors. The TLFF model was configured with variable forward and 

back propagation trajectories and tested on two patients not included in the original model 

training set. The FF neural network model was tested on the same 2 patient dataset. 

Variable trajectories implemented in the TLFF models included a forward trajectory of 5 

and a back propagation trajectory of 2 and updating model weights after 10 exemplars (5-

2-10), a forward trajectory of 5 and a back propagation trajectory of 2 and updating 

model weights after 100 exemplars (5-2-100), and a forward trajectory of 10 and a back 

propagation trajectory of 5 and updating weights after 100 exemplars (10-5-100). These 

trajectories were chosen based on initial design and testing of complex TLFF neural 
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network model architectures developed for prediction of glucose in insulin dependent 

diabetic patients as previously outlined in this document.   

Performance of these multifunctional neural network model variations was 

measured via calculating overall model error (MAD%) between actual and predicted 

CGM data, percentage of hypoglycemic, hyperglycemic, and normal glucoses values 

predicted, percentage of general and specific glycemic states predicted,  as well as clinical 

acceptability of model predictions determined via Clarke Error Grid Analysis (CEGA). 

Performance measures of the FF and TLFF model architectures are compared in this 

dissertation.   

3.3.7 Real-Time Prediction of Glucose in the Critical Care Patient Population 

  Neural network models generated in this investigation were configured for real-

time prediction of glucose and implemented in the C++ computer application included in 

Figure 3-4 of section 3.2.7. The neural network models were configured for real-time 

training and adaptation of model weights for generation of glycemic predictions.  The 

neural network model functionality was integrated into a GUI-based C++ program via 

dynamic linked library (DLL) generation as previously discussed (3.2.7). A selected 

portion of the C++ source code implemented in the DLL for neural network 

implementation is included in Appendix B.1 of this dissertation.   The C++ source code 

implemented in the previous diabetes application was enhanced in regards to how data 

was presented to the neural network for model training and subsequent prediction in real-

time.  In the previous rendition, unknown desired responses (future glycemic responses 

across model prediction horizon) were set to 0.   

In the newly developed rendition of the real-time predictive application, the file 
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length (at each predictive iteration of the real-time predictive application) presented for 

training and prediction was kept constant and included 800 vectors of data points which 

consisted of the 40 optimal input/predictors determined from genetic algorithm 

implementation. Of these 800 vector values, 799 of these included an input and predicted 

(desired) response (i.e. glucose value ahead given prediction horizon).  At the first 

iteration of the predictive application, the desired response of the final (800th) vector of 

data points is set to the current real-time glucose value because no method of determining 

trend information in real-time glucose exists. After the first iteration of the real-time 

predictive application, the rate of change between the previous glucose value and the real-

time glucose value is obtained, and the desired response (based on the prediction horizon 

implemented) is estimated based on the observe trends and rate of change in real-time 

glucose. The formula for estimation of the predicted (desired) response of glucose is 

included in Equation 7. In Equation 7, Prresponse is the estimated predicted response, 

GlucoseRT is the current real-time glucose value, Glucoseprev is the previous glucose value, 

and ratesamp is the sampling rate of the CGM device (5 minutes for the device 

implemented in this investigation).  After this estimation is obtained, the predicted 

glucose is converted to the corresponding classified concentration range or glycemic state 

to facilitate the multifunctional neural network design and training process.   After a total 

of N iterations of the predictive system (where N equals the samples in the prediction 

horizon) are completed, the current real-time glucose and glycemic state is appended to 

the desired file (containing desired response for real-time model training) at the index of 

the input/desired file length subtracted from the quantity (N-1).  After each iteration of the 

predictive application, the first vector of data points in the input and desired files used for 
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real-time model training and prediction was removed and the next real-time vector of data 

points is appended at the end of each file.          

 
rate

prevRT
RTresponse samp

eGlueGlu
eGlu

coscos
cosPr


          [Equation 7] 

 The neural network models were configured to update using a forward and 

backward trajectory of 1 sample. Furthermore, analysis of real-time predictions revealed 

that real-time training and updating model weights after a single exemplar (each forward 

and backward trajectory) led to increased predictive accuracy and the ability of the neural 

network model to predict trends in glucose. This is due to the fact that the real-time rate 

of change in glucose can be identified and incorporated into model predictions.  Models 

were run for a total of 1000 epochs and configured to terminate training if a mean squared 

error (MSE) threshold of 0.01 was exceeded. Furthermore, if accuracy in neural network 

model did not improve after 100 epochs the neural network training and subsequent 

prediction process was terminated. This real-time application was configured to 

implement a prediction horizon of 75 minutes.  

 

3.3.8 Performance Analysis of Neural Network Models for Critical Care Patients in Real-

Time 

 The neural network models developed for prediction of glucose in the critical care 

patient population were tested in a real-time setting. Model performance analysis was 

completed via the same methodologies outlined for the insulin dependent diabetes patient 

population (3.2.9). Each patient enrolled in the investigation following the initial 14 

patients (19,989 data points) used for comprehensive model training was utilized for 

model performance analysis. The utilization of this data provides a means of assessing 
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model accuracy in unseen patient data (data not used for model training), and provides a 

means of assessing performance of the models in a real-life hospital and patient setting. 

After performance analysis on an unseen patient record, the data from this patient is 

appended to the end of the comprehensive model training set, and the performance 

analysis process is completed on a new unseen patient record. This performance analysis 

was completed on data from 5 unseen critical care patients.    

To test the performance of these real-time predictive models, Clarke Error Grid 

Analysis (CEGA) was implemented to determine the percentage of model predictions 

which can be deemed clinically acceptable. [114] A successful predictive model and 

system needs a majority of predicted CGM values to fall with regions A and B in the 

Clarke Error Grid. Furthermore, a higher percentage of values falling within region A of 

the Clarke Error Grid is most desireable. 

 Additional performance analysis was completed via calculating the overall error 

of the neural network model predictions with respect to actual CGM values. Overall error 

was determined via calculation of mean absolute difference percent (MAD%) via 

equations 3 and 4 in 3.2.4. Error of CGM devices with respect to gold standard handheld 

blood glucose meters has been reported to range between 14.0-21.0%. [115] A successful 

predictive model would therefore need predictive errors (MAD%) within this range. In 

addition to overall error, the percentage of hypoglycemic, hyperglycemic, and normal 

glucose extremes predicted was also calculated. For multifunctional neural network 

models, the percentage of general glycemic states (low (state 1), normal (states 2-4), and 

high (states 5-7)) was calculated in addition to the percentage of each specific glycemic 

state predicted.   
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 In addition to the performance analysis of the real-time predictive application 

used for real-time model training and weight adaptation, utilization of the real-time 

predictive system for prediction of glucose implementing original model weights derived 

via comprehensive model training was completed. This performance analysis is also 

completed on the five patients not utilized for initial model training and development. 

The performance of the real-time models utilizing real-time training/weight adaptation 

(weight update method) and original model weights is compared. 

 

3.3.9 Preliminary Weight Analysis: Neural Network Models for Critical Care Patient 

Population 

 MATLAB® source code was generated for preliminary weight analysis of the 

model weights which were updated in the real-time application as outlined in section 

3.3.7.  The real-time predictive application (outlined in 3.3.7) was configured to acquire 

neural network model weights in each layer of the neural network model design. Source 

code was generated such that the weights were acquired and logged into spreadsheets for 

subsequent analysis. Neural network model weights were acquired after every 800 

exemplars during each iteration of the real-time predictive application. After model 

weights were acquired, the weight values were imported into MATLAB® for subsequent 

weight analysis.  

Analysis of the weights in the output bias axon of the output layer was the focus 

of this preliminary weight analysis. The output bias axon weights consist of two weight 

values which serve as offsets which are added to the neural network data after the output 

layer synapse weights are applied to neural network data output from the hidden layer of 
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the neural network. The output bias axon weights derive the two outputs of the neural 

network which consist of predicted CGM value and predicted classified glycemic state. 

The analysis outlined in this section will provide a means of correlating real-time 

input/training data in the neural network with model predictive performance and 

accuracy.   The focus of this preliminary weight analysis will be on the first output bias 

axon weight value. 

 The MATLAB® source code was configured to simulate the prediction 

(implementing a prediction horizon of 75 minutes) of the neural network model utilizing 

the weights which were acquired via the implementation of the real-time application in 

3.3.7. After every 800 exemplars (single pass/epoch) through the test dataset, neural 

network predictions were generated via the MATLAB source code and the overall model 

error (MAD%), short term error (MAD% between first five predicted values and first five 

glucose values in the actual glycemic response), midterm error (MAD% between second 

five predicted values and second five glucose values in the actual glycemic response),  

and long term error (MAD% between last five predicted values and last five glucose 

values in the actual glycemic response) were calculated. These calculated errors and 

associated output bias axon weight values were categorized based on historical and real-

time input data presented to the neural network model. Categorization was based on real-

time CGM values (final 800th value) in the test dataset. These CGM values were sorted 

based on glycemic threshold as well as whether insulin was delivered within 15 historical 

input values (model prediction horizon) preceding the current real-time CGM value. 

Glycemic thresholds were defined according to Table 3-4 below. Further categorization 

based on the occurrence of tachycardia (defined as heart rate >90 beats per minute) in 
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real-time or within 15 historical input values (model prediction horizon) preceding the 

current real-time CGM value was also completed.   

  Weight analysis was completed using the data and weights acquired from the real-

time prediction of glucose in the 5 critical care patients outlined in section 3.3.7. Results 

of this weight analysis were combined based on the categorization defined previously and 

correlation analysis was completed.   Pearson correlation coefficient values were acquired 

between model weights and error for each category (CGM glycemic threshold with 

historical insulin, CGM glycemic threshold without historical insulin, and tachycardia). 

This correlation analysis will indicate how real-time data and output axon weight values 

for each of the categories are correlated with model performance. This correlation 

analysis was performed on an individual patient basis as well as on all model weights 

obtain across the complete five critical care patient dataset.   

 

Table 3-4. Glycemic Thresholds Implemented in Preliminary Weight Analysis 

CGM Glycemic Threshold Minimum CGM Value Maximum CGM Value 

1 40 70 

2 71 149 

3 150 190 

4 190 240 

5 241 400 
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3.3.10 Development of Preliminary Post-Processing Algorithms to Enhance Model 

Accuracy 

This section will outline the procedures utilized for development of a post-

processing algorithm for enhancing the performance of the real-time neural network 

models developed and tested in sections 3.3.7 and 3.3.8.   The post-processing algorithm 

generated in this investigation takes into account two factors to be utilized for modifying 

neural network model predicted output to enhance model accuracy. The first factor taken 

into account in the post-processing algorithm design is the rate of change of the neural 

network predicted output as well as the offset existent between current real-time glucose 

and first predicted value in the output predicted vector of the neural network. Model 

predictions generated by the neural network model track the rate of change in glucose 

concentration accurately, however, at times this offset value is large and it is 

hypothesized that model predictions can be significantly improved if this calculated 

offset is applied to the initial predicted value in the neural network output predicted 

vector while maintaining the overall rate of change in the predicted output. The rate of 

change in predicted output is also adjusted via weighting the rate of change based on the 

glycemic threshold of the real-time glucose values. Given the threshold of this real-time 

glucose value the physiologic rate of change in glucose varies with time. For example, if 

real-time glucose is hyperglycemic, the value can decrease or increase at high rates across 

the model prediction horizon.  On the contrary, if a hypoglycemic or near hypoglycemic 

glucose concentration is experienced, overall rate of change in glucose values will tend to 

be less then when potential for glycemic changes is greater at hyperglycemic extremes. 

To accommodate for this observed phenomena, the post-processing algorithm was 
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configured to weight rate of change values in the neural network predicted value based on 

the threshold of the current real-time glucose value. Ranges of glucose were defined and 

a percentage of the rate of change of the predicted output is utilized in the post-

processing algorithm.  Equation 8 includes the equation utilized to implement this post-

processing algorithm to determine the post-processed predicted CGM value )( jPPCGM  at 

the jth index of the neural network model predicted output. At initiation of the post-

processing algorithm the first value in the post-processed predicted output applies the 

offset or difference between the current real-time CGM value and first predicted value in 

neural network output. )(Pr jROC  is the rate of change at the jth index of the predicted 

neural network output. rateSamp  is the sampling rate of the CGM device (for this 

investigation rateSamp  is 5 minutes). iW  is the weight value of the rate of change given 

current real-time glycemic threshold. Table 3-5 includes the defined glycemic threshold 

ranges and the weight values ( iW ) utilized to adjust rate of change in the post-processing 

algorithm.     

 

)(**)1()( Pr jROCWSampjCGMjPP irateoffCGM                [Equation 8] 

 

 

 

 

 

 



64 
 

Table 3-5. Rate of Change/Offset Based Post-Processing Algorithm Weights and 

Associated Glycemic Thresholds 

Glycemic 

Threshold 

Min CGM Value  in 

Threshold (mg/dl) 

Max CGM Value in 

Threshold (mg/dl) 

iW  

1 40 70 0.2 

2 71 100 0.3 

3 101 140 0.5 

4 141 180 0.7 

5 181 400 0.9 

  

A second factor utilized in the developed post-processing algorithm will be the 

real-time data input to the neural network model. The effect of various factors recorded in 

the medical records and included in the neural network input structure can be correlated 

to subsequent glycemic responses. To determine an overall ―trend‖ in future glycemic 

excursions based on the occurrence of these factors, the comprehensive model training 

set was analyzed and glycemic responses following the occurrence of these 

events/factors/states was determined. In the developed preliminary post-processing 

algorithm, factors to be correlated to future glycemic trends include: body temperature, 

respiratory rate, heart rate, and insulin dosages. These factors were chosen as they were 

recorded intensively (every hour) during the course of each patient’s stay in the intensive 

care unit. Furthermore, classification of various states of these factors such as tachycardia 

(elevated heart rate) for example, can be made and interpreted for its effect on future 

glucose concentration. Analysis of the comprehensive model training set based on 
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different extremes of these factors were determined via grouping glycemic responses 

based on categorized values of these input factors/events (e.g. tachycardia, hypothermia, 

etc). Glycemic responses after each categorized input event/factor were grouped for the 

75 minute prediction horizon (15 CGM samples) following the categorized input 

event/factor such that deduction of trends in glycemic excursions could be identified, 

modeled, and integrated into the post-processing algorithm.   Given occurrence of these 

factors in real-time, when neural network model predictions differ from expected trends, 

the model predicted output will be modified to enhance model accuracy.   

Analysis of respiratory rates, and temperature in the initial model training did not 

identify patterns in glycemic responses. Many of the patients in the investigation were on 

ventilators during their stay in SICU and MICU therefore respiratory rates documented in 

the medical records were artificially controlled and maintained within a physiologic 

range. For this reason it would be difficult to correlate changes in respiratory rate with 

subsequent glycemic responses. Body temperature can be correlated as an 

indicator/predictor of glucose, however, temperature changes do not occur rapidly, and 

subsequent changes in glucose concentration as a result of temperature changes do not 

occur or are not quantifiable within the defined 75 minute prediction horizon.  

Analysis of heart rate specifically the occurrence of tachycardia resulted in 

patterns which when grouped with historical insulin delivery (insulin delivery occurring 

75 minutes before the occurrence of tachycardia) could be successfully modeled. 

Glycemic responses after tachycardia were grouped based on whether glucose increased 

and decreased and whether any historical insulin was delivered. These responses were 

further classified based on the defining various ranges/degrees of tachycardia and the 
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glycemic threshold/extreme of the real-time glucose value at the instance of tachycardia. 

Tachycardia extremes are defined in Table 3-6.   Conversely, glycemic thresholds are 

defined in Table 3-7. 

Table 3-6. Tachycardic Extremes Utilized in Post Processing Algorithm Development 

Tachycardic Extreme Minimum Heart Rate (bpm) Maximum Heart Rate 

(bpm) 

Near Tachycardia 90 99 

Onset Tachycardia 100 110 

Moderate Tachycardia 110 119 

Severe Tachycardia 120 All heart rates >120 

  

Table 3-7. Glycemic Extremes Utilized in Post Processing Algorithm Development 

Glycemic Extreme Minimum Glucose Value 

(mg/dl) 

Maximum Glucose Value 

(mg/dl) 

Hypoglycemic 40 70 

Normal 71 149 

Hyperglycemic Extreme 1 150 190 

Hyperglycemic Extreme 2 191 240 

Hyperglycemic Extreme 3 241 300 

 

After grouping glycemic responses 75 minutes after instances of tachycardia 

based on glycemic thresholds of real-time glucose and historical insulin delivery as 

outlined previously and in Tables 3-6 and 3-7, MATLAB® was used for fitting these 
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grouped glycemic responses to a third order polynomial functions in the form of 

43
2

2
3

1 axaxaxay  . The MATLAB® function polyfit was used to obtain the best 

fit of a third order polynomial function while using the x data as time (up to 75 minutes 

following tachycardia) and the y data as interstitial glucose concentration (over this 75 

minute time period) obtained via CGM. The model fits of the glycemic responses after 

tachycardia were utilized for final post-processing model generation if the correlation 

coefficient of the model fit was > 0.85. For each of the grouped glycemic responses, 

average coefficients of the best model fits were obtained and implemented in the final 

post-processing algorithm. 

Source code was generated in MATLAB® for this event-based post-processing 

algorithm implementation.  This MATLAB source code is also included in Appendix B.2 

of this dissertation. The source code was configured to analyze real-time medical records 

and CGM data and implement the two renditions of post-processing outlined in this 

section. If tachycardia is detected in real-time the event-based post-processing algorithm 

will be initiated. If no tachycardia is detected the rate of change and offset based post-

processing algorithm is initiated. The post-processing algorithm was utilized to modify 

neural network model predictions in the five patients not included in original neural 

network model development/training subjected to performance analysis in section 3.3.8. 

Additionally, MATLAB® was utilized to compare performance of original neural 

network model predictions with predictions modified by the post-processing algorithm. 

Performance measures utilized for comparison included CEGA, overall model predictive 

accuracy (MAD%), and percentage of hypoglycemic, normal, and hyperglycemic 

extremes predicted. 
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CHAPTER 4  

RESULTS 

 This section demonstrates the results obtained in the various clinical 

investigations outlined in this document for prediction of glucose using a neural network 

modeling approach. Prediction of glucose is demonstrated in both insulin dependent 

diabetic and critical care patient populations however, the emphasis of this dissertation is 

the prediction of glucose in the critical care patient population.  

4.1 Neural Network Model Based Prediction of Glucose in Insulin Dependent Diabetic 

Patients 

 This section includes the results obtained via development of neural network 

models for prediction of glucose in patients with insulin dependent diabetes. In this 

section, predictive accuracy of the developed models is evaluated.  

4.1.1 Initial Neural Network Model Development and Performance Analysis  

Figure 4-1 is a plot containing neural network predictions using a 100 minute prediction 

horizon on a single patient whose data was not included in the training data during initial 

model development. This plot illustrates the effect of varying the number of patients (11, 

14, and 17) utilized for training each neural network model. Figure 4-1 demonstrates that 

as the number of patients used in training is increased, the sensitivity of the neural 

network predictions at hyperglycemic extremes generally increased. Training sets of 

fewer patients (i.e., less data) appear to underestimate hyperglycemia to a greater
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extent, which leads to some hyperglycemic reactions not being predicted. Table 4-1 

includes the performance analysis results while varying the number of patients included 

in the initial training set in neural network development from 11–17 patients. There were 

a total of 128 hyperglycemic reactions and 94 hypoglycemic reactions in the unseen 

patient data that was used to validate model performance. The overall MAD% appears to 

be relatively consistent throughout, regardless of training set size ranging from 18.7 to 

25.8% with an average of 22.7%. Neural network theory substantiates that as the quantity 

of training data is increased, neural network performance increases; however, this was 

not observed. A possible reason for the slight variability in overall MAD% is that the 

patients added to training set had different electronic diary data documenting similar 

lifestyle and emotional factors, which did not lead to the same glycemic trends as the 

patient chosen for analysis. Furthermore, the patient data used to validate these neural 

network models had a significant number of hypoglycemic reactions (as demonstrated in 

Figure 4-1). The neural networks generated with lower quantities of training data 

underestimate hyperglycemic extremes and are more accurate at the estimation of lower 

glucose extremes, thus leading to a smaller MAD% overall. This is realized as the 

MAD% at hypoglycemic extremes is greater when the neural network model overall 

MAD% does not follow the expected trend. As the amount of training data is increased, 

the percentage of hyperglycemic reactions predicted successfully by the neural network 

model increases from 49.2 to 69.5% for 11 and 17 patients, respectively. In addition, 

there is a corresponding decrease in MAD% at hyperglycemic extremes from 17.4 to 

11.7% for 11 and 17 patients, respectively. Models routinely overestimate hypoglycemic 
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extremes due to the limited number of hypoglycemic CGM values in the training set used 

for neural network model development.  

 

Figure 4-1. Neural Network Model Accuracy Generated Using Variable Length Training 

Sets  
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Table 4-1. Performance Analysis on Unseen Data: Variation of Training Set Length (100 

min Prediction Horizon) 

Number of 

Patients 

Overall 

MAD% 

MAD% 

Hyper 

MAD% 

Hypo 

Hyper 

Predicted 

(%) 

Hypo 

predicted 

(%) 

11 18.7 17.4 44.0 49.2 0 

12 21.5 14.0 55.4 56.3 0 

13 23.1 13.7 57.4 58.6 0 

14 25.8 12.5 61.6 67.2 0 

15 25.1 11.5 58.7 68.0 0 

16 22.1 11.2 54.1 70.3 1.1 

17 22.5 11.7 51.9 69.5 0 

 

Figures 4-2 and 4-3 show neural network model predictions (implementing a 

prediction horizon of 100 minutes) made on two different patient datasets, while the 

number of patients, 15 and 16, respectively, were used for training the developed neural 

network model. Both neural network models accurately follow trends in data as well as 

predicting a significant percentage of hyperglycemic reactions. In Figure 4-3, the patient 

utilized for validation experiences extended hyperglycemic and hypoglycemic reactions, 

which occur at the maximum recorded value for the glucose sensor at 400 and 40 mg/dl, 

respectively. In each respective case, the neural network predictions underestimated and 

overestimated the glycemic extremes, which leads to a significant impact on overall 

MAD% as well as the MAD% at hyperglycemic and hypoglycemic extremes (i.e., 39.9, 
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24.1, and 30.0%, respectively, compared with 22.6%, 19.0%, and 3.0% for the 15-patient 

model—see Table 4-2). Calculation of overall model error is therefore very subjective to 

trends in the dataset used for validation. Table 4-2 summarizes the performance analysis 

and an assessment of neural network performance in predicting glucose values in multiple 

unseen patients while varying the length of the training data utilized during the initial 

model development. Because each patient is different, the number of hyperglycemic and 

hypoglycemic reactions in each dataset varies. In each case, the quantity of training data 

is increased, and the model is validated on a single patient dataset that was not used in the 

initial model formulation. As the quantity of training data is increased, there is an 

observed increase in model performance, and overall MAD% decreases with the 

exception of the final neural network model developed using the 16-patient training set 

for the reasons previously described. In addition to these reasons, it is also important to 

note that this patient exhibited the second highest number of hypoglycemic reactions of 

the unseen patient data that was tested. The respective models predict a significant 

percentage of hyperglycemic reactions ranging from 52.8–92.6%; however, they 

commonly overestimate hypoglycemic values. This correlates to the poor performance in 

the successful prediction of hypoglycemic extremes, and likely correlates to the decreased 

model accuracy in the model with the 16-patient training set. 
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Figure 4-2. Neural network predictive abilities (generated using a 15-patient training set) 

(unseen data) 

 

 

Figure 4-3. Neural network predictive abilities (generated using a 16-patient training set) 

(unseen data) 
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Table 4-2. Performance Analysis: Multiple Unseen Patients with Increasing Training Set 

Length (100 Minute Prediction Horizon) 

Patients in 

Training 

Set 

Overall 

MAD% 

MAD% 

Hyper 

MAD% 

Hypo 

# Hyper 

Reactions 

# Hypo 

Reactions 

Hyper 

Predicted 

(%) 

11 43.0 30.6 15.8 431 55 57.1 

12 46.3 29.4 46.2 303 157 52.8 

13 28.4 22.3 6.7 784 61 92.6 

14 20.0 19.6 N/A 750 0 86.5 

15 22.6 19.0 3.0 504 20 72.4 

16 39.9 24.1 30.0 475 94 67.8 

  

Figure 4-4 shows neural network models developed using a 17-patient training set 

and the predictions on a single unseen patient data record with variable prediction 

horizons of 50, 100, and 180 min. As the prediction horizon is increased, the accuracy in 

each model decreases, respectively. It is hypothesized that the underestimation of 

hyperglycemic extremes is due to the extension of the prediction horizon and the 

associated inability of the neural network to determine oscillations and trends in glycemia 

as well as the occurrence of other relevant input events such as lifestyle, emotional states, 

insulin dosages, and meals that may occur within the prediction horizon and may impact 

or change neural network weights.  
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Table 4-3 includes the performance analysis for the models generated with the 17-

patient training set and variable prediction horizons. This dataset included 429 

hyperglycemic reactions and 8 hypoglycemic reactions. A consistent increase in overall 

MAD% (6.7–18.9%) is observed with an increase in the prediction horizon. Similarly, the 

MAD% at hyperglycemic and hypoglycemic extremes increases from 6.6–22.1% and 

0.6–1.7%, respectively. A majority of the hyperglycemic reactions in this dataset are 

predicted with 71.6–97.2% of hyperglycemic reactions being predicted by the models. 

Conversely, for reasons previously mentioned, hypoglycemic reactions are routinely 

overestimated, resulting in no hypoglycemic extremes being predicted successfully. 

 

Figure 4-4. Neural Network Model Performance Analysis: Effect of Variation of 

Prediction horizon on Same Segment of Unseen Patient Data 
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Table 4-3. Performance Analysis: Prediction horizon Variation on Same Unseen Data 

Segment 

Prediction 

horizon 

(min) 

Overall 

MAD% 

MAD% 

Hyper 

MAD% 

Hypo 

Hyper 

Predicted 

(%) 

Hypo 

Predicted 

(%) 

50 6.7 6.6 0.6 95.3 0.0 

75 8.9 8.0 0.9 94.9 0.0 

100 11.7 11.0 1.3 90.4 0.0 

120 14.5 12.0 1.5 97.2 0.0 

150 16.6 19.6 1.5 79.0 0.0 

180 18.9 22.1 1.7 71.6 0.0 

 

4.1.2 Performance Analysis of Predictive Models for Glucose in Real-time in Patients 

with Diabetes (Reduced complexity Model Architecture) 

Figures 4-5 and 4-6 include the real-time predictions of glucose in a segment of 

CGM data derived from 10 patients not utilized for model training.  Figures 4-5 and 4-6 

include model predictive accuracy at hypoglycemic, normal, and hyperglycemic 

extremes. Due to the large number of predictions generated by the neural network model 

(15 predicted CGM values for each real-time CGM value acquired), the data was 

resampled to plot every 20th predicted value such that trends in predictions can be more 

accurately displayed.  Real-time predictions were generated via the real-time predictive 

computer program outlined in 3.2.5.  A feed forward neural network model architecture 

was implemented and the model was trained using the same training set utilized in section 
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3.2.3 for model development. Real-time prediction of glucose was completed using two 

methodologies. Figure 4-5 includes model predictions generated using original model 

weights (no weight updating) determined via initial model training during each iteration 

of the real-time predictive program. Figure 4-6 includes model predictions generated 

using the real-time predictive program for real-time training to update model weights at 

each predictive iteration (weight update method).  

 

Figure 4-5. Real-Time Predictions in Insulin Dependent Diabetic Patients (No Weight 

Update) 
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Figure 4-6. Real-Time Predictions in Insulin Dependent Diabetic Patients (Weight 

Update) 

Figures 4-7 and 4-8 include Clarke Error Grids to demonstrate the predictive 

accuracy and clinical acceptability of the real-time model predictions. Figure 4-7 includes 

the Clarke Error Grid for the model implementing no weight update (model weights 

determined via initial comprehensive model training). Figure 4-8 includes the Clarke 

Error Grid for the model in which weights were updated using the real-time predictive 

model. Tables 4-4 and 4-5 include the summary of Clarke Error Grid Analysis (CEGA), 

model predictive error (MAD%), and the percentage of hypoglycemic (CGM <70 mg/dl), 

normal (CGM >70 and <180 mg/dl),  and hyperglycemic (CGM > 180 mg/dl) glucose 

values predicted successfully. Table 4-4 includes the summary of CEGA, and predictive 

results for the model implementing no weight update (model weights determined via 
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initial comprehensive model training). Table 4-5 includes the summary of CEGA, and 

predictive results for the model in which weights were updated using the real-time 

computer program. 

 

Figure 4-7. Clarke Error Grid of Real-time Predictions (No Weight Update) 

 

Table 4-4. CEGA and Summary of Model Predictive Accuracy (No Weight Update) 

Zone A B C D E 
Total in Zone 66112 34763 477 5291 202 
Percentage Of Data in 
Zone 61.9 32.5 0.4 5.0 0.2 
Total in Dataset 106845 

    Overall MAD% 22.3 
    MAD% (No Hypo) 19.2 
    % data Hypo 4.4 
    % Hypo Predicted 16.8 
    % data Norm 37.3 
    % Norm Predicted 73.0 
    % data Hyper 58.3 
    % Hyper Predicted 87.2 
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Figure 4-8. Clarke Error Grid of Real-time Predictions (Weight Update) 

  

Table 4-5. CEGA and Summary of Model Predictive Accuracy (Weight Update) 

Zone A B C D E 
Total in Zone 59201 41026 689 5775 154 
Percentage Of Data in 
Zone 55.4 38.4 0.6 5.4 0.1 
Total in Dataset 106845 

    Overall MAD% 27.0 
    MAD% (No Hypo) 22.4 
    % data Hypo 4.4 
    % Hypo Predicted 15.2 
    % data Norm 37.3 
    % Norm Predicted 61.8 
    % data Hyper 58.3 
    % Hyper Predicted 88.6 
     

Clarke Error Grid Analysis (CEGA) of real-time predictions revealed that a 

majority of predictions were clinically acceptable and would not lead to adverse 
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therapeutic direction or outcome. In utilizing the real-time program with no weight 

update/adaptation during each predictive iteration of the model (i.e. model weights 

determined via training as outlined in section 3.2.3), 61.9% and 32.5%  (94.4%)  of 

predicted values fell within regions A and B respectively of the error grid and could be 

classified as clinically acceptable. A total of 0.4%, 5.0%, and .2% of predicted values fell 

within regions C, D, and E of the error grid respectively, and could lead to 

inaccurate/adverse therapeutic direction. Utilization of the real-time predictive system for 

weight update/adaption (i.e. neural network model was retrained at each predictive 

iteration) resulted in slightly less predictions within regions A and B of the error grid with 

55.4% and 38.4% (93.8%) respectively. A total of 0.6%, 5.4%, and .1% of predicted 

values fell within regions C, D, and E of the error grid respectively, and could lead to 

inaccurate/adverse therapeutic direction. 

In utilizing original model weights (no weight update), the overall error (MAD%) 

of the model predictions was calculated as 22.3% for the entire dataset and 19.2%  for the 

dataset at non-hypoglycemic extremes (CGM values < 70 mg/dl). Utilizing this approach 

resulted in the prediction of 16.8% of hypoglycemia (CGM <70 mg/dl), 73.0% of normal 

glycemia (CGM >70 and <180 mg/dl), and 87.2% of hyperglycemia (CGM >180 mg/dl). 

Conversely, utilizing the real-time predictive system for weight adaptation resulted in less 

accurate predictions with an overall error (MAD%) of 27.0%, and 22.4% at non-

hypoglycemic extremes. Utilizing this approach resulted in the prediction of less 

hypoglycemia (15.2%) and normal glycemia (61.8%) and an insignificant increase in 

percentage hyperglycemia predicted (88.6%) than utilizing original model weights.  
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4.1.3 Effect of Design Variation of Neural Networks Utilized for Real-time Prediction of 
Glucose in Insulin Dependent Diabetic Patients 
 
 This section outlines the effect of neural network model design differences on 

real-time glucose prediction. The neural network models developed in this investigation 

were designed with a prediction horizon of 75 minutes (i.e. prediction of 15 CGM 

values). The neural network models were configured as multifunctional neural network 

(MFNN) models and to predict glucose concentration, as well as glycemic states (i.e. 

ranges of glucose concentration classified numerically from 1-7). It is hypothesized that 

prediction of glycemic states may be more accurate than prediction of specific glucose 

concentration values. Furthermore, the prediction of two factors can be used for 

comparison. If both predictions coincide then the prediction is likely accurate.   

Differences in overall neural network model complexity are analyzed. Differences in 

trajectory and number of samples backpropagated to calculate gradient information for 

weight optimization are also investigated. The results of this analysis will provide insight 

towards the best and optimal architecture to be implemented in subsequent investigations. 

 
 In prediction of glucose concentration, there is often considerable predictive error.  

Due to the inherent nature of neural network models, it is hypothesized that prediction of 

ranges of glucose concentration (i.e. glycemic states) may have less associated errors in 

prediction. In this investigation, glycemic states were classified numerically from 1-7 as 

demonstrated in Table 4-6.   Glycemic state 1 represents hypoglycemic glucose values. 

Glycemic state 2 represents lower-normal glucose values. Glycemic state 3 represents 

middle-normal glucose values. Glycemic state 4 represents upper-normal (i.e. near 

hyperglycemic) glucose values. Glycemic state 5 represents lower-hyperglycemic 
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glucose values. Glycemic state 6 represents middle-hyperglycemic values. Glycemic state 

7 represents extremely elevated hyperglycemic glucose values. The prediction of these 

glycemic states may lead to enhanced predictive accuracy, and also allow for caregivers  

to adjust therapy (similar to sliding scale protocol) based on predicted glycemic states.   

 

Table 4-6. Classification of Glycemic States for Multifunction Neural Network Models 

Glycemic 
State 

Glucose Concentration Range 
(mg/dl) 

1 <70 
2 >70 & <100 
3 >100 & <140 
4 >140 & <180 
5 >180 & <220 
6 >220 & <300 
7 >300 

 
 
 
4.1.4 Reduced complexity Feed Forward MFNN: Prediction of Glycemic States 
 
 Table 4-7 demonstrates the predictive accuracy of reduced complexity MFNN in 

prediction of general glycemic states. Comparison of performance of real-time models 

implementing weight adaptation and implementation of original model weights was 

analyzed. Utilizing the neural network model for real-time training (weight update) 

predicts a significantly smaller percentage of hypoglycemia (0.02 % versus 15.9%) with 

respect to implementation of original model weights. The model implementing original 

model weights (no weight updates) predict a slightly higher percentage of normal 

glycemic states (86.6% versus 85.2%). Furthermore, implementation of original model 

weights resulted in prediction of a significantly higher percentage of hyperglycemic 

states (79.3% versus 71.9%).      
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Table 4-7.  Prediction of General Glycemic States in Reduced Complexity MFNN 

Models 

Glycemic State Low (State 1) Normal (States 2-4) High (States 5-7) 
Percent Predicted 
(Weight Update) 0.02 85.20 71.90 
Percent Predicted 
(Original Model 
Weights) 15.90 86.60 79.30 

 

The performance of the MFNN models in prediction of specific glycemic states is 

presented in Table 4-8. Prediction of hypoglycemia is again higher in the model 

implementing original model weights (15.9% versus 0.02%). The percentage of glycemic 

states 2 and 3 predicted were significantly higher in the model implementing original 

model weights and no weight updating. Original model weights resulted in the prediction 

of 22.7% of glycemic state 2 and 54.8% of glycemic state 3. In comparison, the neural 

network model implementing real-time training resulted in the prediction of 12.3% and 

46.9% of glycemic states 2 and 3 respectively. Models implementing original model 

weights therefore result in an improvement of 15.7%, 10.4%,   and 7.9% in prediction of 

specific glycemic states 1, 2, and 3. Utilizing neural network models with real-time 

training resulted in increased accuracy in prediction of glycemic states 4, and 7. In these 

models 53.7% and 46.6% of glycemic states 4 and 7 were predicted successfully. In 

comparison, models implementing original weights predicted 43.7% and 28.4% of 

glycemic states 4 and 7 respectively. Models implementing weight adaptation therefore 

had an increase in performance in prediction of glycemic states 4 and 7 with increases in 

10.0% and 18.2% respectively. Both modeling approaches predicted the same percentage 
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of glycemic state 6 (30.1%). In prediction of glycemic state 5, utilization of original 

model weights resulted in a higher performance in predicting 48.2% of glycemic state 5 

versus 44.2% using the model implementing real-time training.  

 

Table 4-8. Glycemic States Predictive Results (Specific Glycemic States) 

Glycemic State 1 (Hypo) 2(>70&<=100) 3(>100&<=140) 4(>140<=179) 
Percent Predicted  
(Weight Update) 0.2 12.3 46.9 53.7 
Percent Predicted  
(No Weight Update) 15.9 22.7 54.8 43.7 
 
5(>=180&<=220) 6(>220&<=300) 7(>300) 

44.2 30.1 46.6 
48.2 30.1 28.4 

 
 
 
 
4.1.5 Enhanced Complexity Multifunctional Neural Network Models: Effect of 
Modifying Exemplars per Update 
 

Multifunctional neural networks for real-time prediction of glucose and glycemic 

states in patients with diabetes are presented in this section. Neural networks were 

designed with enhanced complexity in design including an input layer with memory 

consisting of 3 taps and a tap delay line of 1 (1 sample delay between successive taps). 

The neural network thus had memory of the current input plus 2 historical inputs in the 

input layer. Additionally, the neural network was designed with two hidden layers both 

with hyperbolic tangent axons for processing neural network inputs to between a range of 

-1 and 1. The first hidden layer contained a memory structure with 8 taps and a tap delay 

line of 1 which maintained a memory of the current input and 7 historical inputs. The 

second hidden layer contained a memory structure with 4 taps and a tap delay line of 1 



86 
 

which maintained a memory of the current input and 3 historical inputs. The neural 

networks were designed with a forward trajectory of 50 samples and backpropagation of 

40 samples (i.e. single exemplar) to acquire gradient information and modify weights 

accordingly. In the analysis below three real-time implementations of the neural network 

were investigated where the neural networks were configured to update weights after 

every 10, and 100 exemplars. 

 A neural network model was configured to update model weights after every 10 

exemplars (i.e. forward trajectory of 50 samples and back-propagation of 40 samples). 

Figure 4-9 demonstrates the Clarke Error Grid for neural network model predictions. 

Clarke Error Grid Analysis (CEGA) indicated that 93.7% of the predictions were 

clinically acceptable with 59.9% and 33.8% of predictions falling within regions A and B 

of the error grid. This analysis also revealed that 0.7%, 76.4%, and 88.3% of 

hypoglycemic, normal, and hyperglycemic glycemic extremes were predicted 

successfully. CEGA results are displayed in Table 4-9. Only a small percentage of 

hypoglycemic extremes were predicted successfully. The overall error (MAD%) between 

actual and predicted CGM was 22.5%. If MAD% is recalculated at non-hypoglycemic 

extremes, error is improved to 19.2%, correlating to an improvement of 3.3%. 
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       Figure 4-9. Clarke Error Grid of MFNN (10 Exemplar Per Update) 
 
 
Table 4-9. Results: Clarke Error Grid Analysis (10 Exemplars Per Update) 

Zone A B C D E 
Total in Zone 63138 35622 690 5700 195 
Percentage Of Data in Zone 59.9 33.8 0.7 5.4 0.2 
Total in Dataset 105345     
Overall MAD% 22.5     
MAD% (No Hypo) 19.2     % data Hypo 4.4     
% Hypo Predicted 0.7     % data Norm 36.9     
% Norm Predicted 76.4     % data Hyper 58.7     
% Hyper Predicted 88.3      

The neural network model previously described was configured to update model 

weights after 100 exemplars. Figure 4-10 demonstrates the Clarke Error Grid for neural 

network model predictions. Clarke Error Grid Analysis (CEGA) indicated that 93.7% of 

the predictions were clinically acceptable with 62.7% and 31.0% of predictions falling 

within regions A and B of the error grid. This analysis also revealed that 1.6%, 85.7%, 
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and 82.6% of hypoglycemic, normal, and hyperglycemic glycemic extremes were 

predicted successfully. CEGA results are presented in Table 4-10. Only a small 

percentage of hypoglycemic extremes were predicted successfully. The model 

overestimates hypoglycemic extremes. This phenomenon is again attributed to the lack of 

hypoglycemic training data in the initial model training set which will be discussed later 

in this document. The overall error (MAD%) between actual and predicted CGM was 

20.6%. If MAD% is recalculated at non-hypoglycemic extremes, error is improved to 

17.8%, correlating to an improvement of 2.8%.  

 
Figure 4-10. Clarke Error Grid (100 Exemplars Per Update) 
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Table 4-10.  Results: Clarke Error Grid Analysis (100 Exemplars Per Update) 
Zone A B C D E 
Total in Zone 66038 32692 360 6165 90 
Percentage Of Data in 
Zone 62.7 31.0 0.3 5.9 0.1 

Total in Dataset 105345     
Overall MAD% 20.6     MAD% (No Hypo) 17.8     
% data Hypo 4.4     % Hypo Predicted 1.6     
% data Norm 36.9     % Norm Predicted 85.7     
% data Hyper 58.7     
% Hyper Predicted 82.6      

 
 

In addition to overall accuracy in prediction of glucose concentration, MFNN 

models were assessed for their abilities to predict glycemic states. Table 4-11 

demonstrates model accuracy at prediction of general low, normal, and high glucose 

states. Prediction of normal glucose states is highest in the model which updates weights 

after 100 exemplars. More hyperglycemic (high) glucose states were predicted when 

weights were updated after 10 exemplars. Table 4-12 demonstrates the percentage of 

specific glycemic states predicted successfully by the real-time neural network model 

application. In prediction of specific glycemic states, models updating weights after 10 

exemplars are more accurate at elevated glycemic extremes. Models updating weights 

after 100 exemplars are more accurate at normal glycemic extremes.  

 
Table 4-11. Prediction of General Glycemic States in MFNN Models (Exemplars per 
Update) 
Glycemic State Low Normal High 
10 Exemplars Per Update 0 88.6 79.6 
100 Exemplars Per Update 0 93.5 70.6 
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Table 4-12. Prediction of Specific Glycemic States in MFNN Models (Exemplars per 
Update)  

Glycemic State 
1 

(Hypo) 
2 

(>70&<=100) 
3 

(>100&<=140) 
4 

(>140<=179) 
1 Exemplar Per Update 0 12.3 66.2 40.0 

10 Exemplars Per Update 0 10.5 66.5 40.7 
100 Exemplars Per Update 0 26.3 73.0 37.7 

 
5 

(>=180&<=220) 
6 

(>220&<=300) 
7 

(>300) 
45.7 46.9 61.2 
45.5 46.5 58.9 
36.2 34.1 49.6 

 
 
 
 
 
4.1.6 Enhanced Complexity Multifunctional Neural Network Models: Effect of 
Modifying Forward and Back-Propagation Trajectories  
 

The multifunctional neural network models outlined in section 4.1.6 were 

investigated to gauge the effect of modifying the forward and backpropagation 

trajectories. The neural networks were designed with variable forward trajectories of 10 

and 5 samples and backpropagation trajectories of 5, and 2 samples (i.e. single exemplar) 

to acquire gradient information and modify weights accordingly. All neural network 

models were configured to update weights after 100 exemplars. Additionally a neural 

network using a forward trajectory of 5 samples and backpropagation of 2 samples is 

utilized and configured to update after 10 exemplars.  Trajectories are abbreviated in this 

section as 10-5 for 10 samples in forward trajectory and 5 samples back propagated.  

Figure 4-11 demonstrates the Clarke Error Grid containing neural network model 

predictions generated by the MFNN model implementing a forward trajectory of 10 and a 

backpropagation trajectory of 5, and configured to update weights after 100 exemplars. 

Clarke Error Grid Analysis (CEGA) indicated that 93.7% of the predictions were 
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clinically acceptable with 62.7% and 31.0% of predictions falling within regions A and B 

of the error grid. This analysis also revealed that 1.6%, 85.7%, and 82.6% of 

hypoglycemic, normal, and hyperglycemic glycemic extremes were predicted 

successfully. CEGA results are presented in Table 4-13. The overall error (MAD%) 

between actual and predicted CGM was 20.6%. If MAD% is recalculated at non-

hypoglycemic extremes, error is improved to 17.8%, correlating to an improvement of 

2.8%.  

 

 
                Figure 4-11. Clarke Error Grid (10-5 Trajectory/100 Exemplars Per Update) 
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Table 4-13. Results: Clarke Error Grid Analysis (10-5 100 Exemplars per Update) 
Zone A B C D E 
Total in Zone 66038 32692 360 6165 90 
Percentage Of Data in Zone 62.7 31.0 0.3 5.9 0.1 
Total in Dataset 105345     Overall MAD% 20.6     
MAD% (No Hypo) 17.8     % data Hypo 4.4     
% Hypo Predicted 1.6     
% data Norm 36.9     
% Norm Predicted 85.7     
% data Hyper 58.7     
% Hyper Predicted 82.6      

 
 

A MFNN model was developed implementing a forward trajectory of 5 samples 

and the back propagation of 2 samples and configured to update weights after 100 

exemplars.  Figure 4-12 demonstrates the Clarke Error Grid containing predictions for the 

MFNN model implementing a forward trajectory of 5 samples and the backpropagation 

trajectory of 2 samples and configured to update weights after 100 exemplars. Clarke 

Error Grid Analysis (CEGA) indicated that 93.8% of the predictions were clinically 

acceptable with 59.9% and 33.9% of predictions falling within regions A and B of the 

error grid. This analysis also revealed that 0.7%, 76.4%, and 88.3% of hypoglycemic, 

normal, and hyperglycemic glycemic extremes were predicted successfully. CEGA 

results are presented in Table 4-14. Only a small percentage of hypoglycemic extremes 

were predicted successfully. The model overestimates hypoglycemic extremes. This is 

again due to the lack of hypoglycemic training data in the initial model training set. The 

overall error (MAD%) between actual and predicted CGM was 22.6%. If MAD% is 

recalculated at non-hypoglycemic extremes, error is improved to 19.2%, correlating to an 

improvement of 3.4%.  
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Figure 4-12. Clarke Error Grid (5-2 Trajectory/100 Exemplars Per Update) 

 
 
Table 4-14. Results: Clarke Error Grid Analysis (5-2 100 Exemplars per Update) 
Zone A B C D E 
Total in Zone 63118 35675 630 5727 195 
Percentage Of Data in Zone 59.9 33.9 0.6 5.4 0.2 
Total in Dataset 105345     
Overall MAD% 22.6     
MAD% (No Hypo) 19.2     
% data Hypo 4.4     
% Hypo Predicted 0.7     % data Norm 36.9     
% Norm Predicted 76.4     % data Hyper 58.7     
% Hyper Predicted 88.3      
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A MFNN model was developed implementing a forward trajectory of 5 samples 

and the back propagation of 2 samples and configured to update weights after 10 

exemplars.  Figure 4-13 includes the Clarke Error Grid containing predictions generated 

by the MFNN implementing a forward trajectory of 5 and a backpropagation trajectory of 

2 and configured to updated model weights after 10 exemplars. Clarke Error Grid 

Analysis (CEGA) indicated that 93.8% of the predictions were clinically acceptable with 

59.7% and 34.1% of predictions falling within regions A and B of the error grid. This 

analysis also revealed that 0.7%, 75.9%, and 88.6% of hypoglycemic, normal, and 

hyperglycemic glycemic extremes were predicted successfully. CEGA results are 

presented in Table 4-15. The overall error (MAD%) between actual and predicted CGM 

was 22.7%. If MAD% is recalculated at non-hypoglycemic extremes, error is improved 

to 19.3%, correlating to an improvement of 3.4%.  
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Figure 4-13. Clarke Error Grid (5-2 10 Exemplars Per Update) 

 
 
 
Table 4-15. Results: Clarke Error Grid Analysis (5-2 10 Exemplars per Update) 
Zone A B C D E 
Total in Zone 62846 35929 675 5700 195 
Percentage Of Data in Zone 59.7 34.1 0.6 5.4 0.2 
Total in Dataset 105345     
Overall MAD% 22.7     
MAD% (No Hypo) 19.3     
% data Hypo 4.4     
% Hypo Predicted 0.7     
% data Norm 36.9     
% Norm Predicted 75.9     
% data Hyper 58.7     
% Hyper Predicted 88.6     
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In addition to overall accuracy in prediction of glucose concentration, MFNN 

models were assessed for their abilities to predict glycemic states. Table 4-16 

demonstrates model accuracy at prediction of low, normal, and high (general) glucose 

states. Prediction of normal glucose states is highest in the model which updates weights 

after 100 exemplars with a trajectory of 10-5.  Prediction of hyperglycemic (high) 

glucose states was increased with a trajectory of 5-2 while updating weights after 100 and 

10 exemplars. Table 4-17 demonstrates the percentage of specific glycemic states 

predicted successfully by the real-time neural network model application. In prediction of 

specific glycemic states, the model implementing a trajectory of 10-5 is higher in 

accuracy at prediction of normal glycemic states 2 and 3. Models updating weights 

implementing trajectories of 5-2 and updating weights after 100 and 10 exemplars are 

more accurate at hyperglycemic states and extremes.  

Table 4-16. Prediction of General Glycemic States in MFNN Models (Forward and 
Backpropagation Trajectory Variation) 

Glycemic State Low Normal High 
10-5 (100 Exemplars/Update) 0 93.5 70.6 
5-2 (100 Exemplars/Update) 0 88.7 79.5 
5-2 (10 Exemplars/Update) 0 88.1 80.5 

 
Table 4-17. Prediction of Specific Glycemic States in MFNN Models (Forward and 
Backpropagation Trajectory Variation) 

Glycemic State 
1 

(Hypo) 
2 

(>70&<=100) 
3 

(>100&<=140) 
4 

(>140<=179) 
10-5 (100 Exemplars/Update) 0 26.3 73.0 37.7 
5-2 (100 Exemplars/Update) 0 10.3 66.6 40.6 
5-2 (10 Exemplars/Update) 0 10.2 66.0 40.3 

 
5 

(>=180&<=220) 
6 

(>220&<=300) 
7 

(>300) 
36.2 34.1 49.6 
45.6 46.7 56.6 
46.0 47.2 59.8 
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4.2 Prediction of Glucose in the Critical Care Patient Population 
 
 
4.2.1 Justification for Predictability of Glucose in Critical Care Patients: Glycemic 
Patterns in Response to Insulin Delivery 
 

Figure 4-14 demonstrates 12 patterns in glucose in patients when subjected to the 

UTMC insulin infusion protocol who experience an elevated glucose value of 

approximately 180 mg/dl. The data in Figure 4-14 is CGM data (sampled every five 

minutes) in response to the insulin infusion protocol at UTMC six hours after an elevated 

glucose value of ~180 mg/dl is experienced. Glycemic responses to the UTMC insulin 

infusion protocol are similar and there are indeed patterns which can be visualized. 

Previous research has substantiated the existence of ultradian glycemic patterns (in 

discrete metered glucose measurements) in the critical are patient population in response 

to insulin infusion. [57] These results support and are an extension of these findings in 

that patterns are demonstrated using CGM with glucose measurements obtained 

continuously every 5 minutes. Ideally, the insulin infusion protocol should lower glucose 

to within a target range of 90-140 mg/dl. This is demonstrated in this patient population. 

There are incidences however, where the insulin infusion protocol appears over 

aggressive and leads to hypoglycemia. Furthermore, there are incidences where insulin 

infusion is not adequate and glucose remains elevated > 150 mg/dl which has been 

demonstrated in current literature to be correlated to decreased patient outcome. Table 4-

18 includes insulin infusion in each patient over the 6 hour time period, as well as the 

time of the initial elevated glucose value (on a 24 hour scale). 
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Figure 4-14. Patterns in Glucose: Critical Care Patients with Elevated Glucose (~180 
mg/dl) 
 
 
Table 4-18. Data Demographics of 12 Critical Care Patients in Figure 4-14 

Pattern Patient Type 

Time 
Start 

(Hours) 
Insulin Infused Over Time 

(units) 
1 Cardiac 17.08 5.0 
2 Trauma 11.16 11.0 
3 Cardiac 3.67 18.0 
4 Cardiac 0.08 0.0 
5 Trauma 17.66 42.0 
6 Cardiac 22.66 42.0 
7 Cardiac 12.16 34.5 
8 Trauma 12.00 0.0 
9 Cardiac 17.91 42.5 

10 Trauma 6.41 23.5 
11 Trauma 10.00 61.0 
12 Trauma 6.33 98.0 
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4.2.2 Determination of Optimal Neural Network Model Input/Predictor Variables 

Utilizing a Genetic Algorithm 

A genetic algorithm implementing multiple linear regression (MLR) was  

generated for variable selection. In this genetic algorithm, 73 variables obtained through 

data-logging using the developed eCIDL were used as the x-block and the y-block was 

defined as CGM data. The genetic algorithm was utilized to effectively determine which 

variables are predictors of glucose concentration (i.e. CGM data). Figure 4-15 

demonstrates the frequency of variable utilization at the 36th generation of this genetic 

algorithm. Variables used in each of the models/generations likely impact or are 

indicators of future glucose concentration. The variables utilized most frequently for 

prediction of glucose concentration as determined from genetic algorithm implementation 

are included in Table 4-19.  

 
Figure 4-15. Number of MLR Based Genetic Algorithm Models Utilizing Each Variable   
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Table 4-19. Variables Determined as Predictors of Glucose (MLR based) Genetic 

Algorithm  

Variable Number of Models Utilizing Variable 
Temperature 5 
Heart Rate 24 

Blood/Colloids 15 
Packed Red Blood Cells 24 

D5W 24 
D5NS 24 

NS 3 
D5LR 4 

NG (Resid) 6 
Lab Category 11 
Lab Results 24 
Num Labs 24 

PCWP 3 
SVO2 24 
SPO2 24 

Med Class 4 
Med Type 24 
Med Dose 24 

PAO2 12 
PACO2 24 

Gen. Phys Cond 24 
POC Blood Glucose 24 
CGM Sensor Current 24 

Glycemic State 24 
 

A second genetic algorithm implementing partial least squares (PLS) regression 

was generated for variable selection. In this genetic algorithm, the comprehensive 73 

variable set was used as the x-block and the y-block was defined as CGM data. Figure 4-

16 demonstrates the frequency of variable utilization at the 29th generation of this genetic 

algorithm. Variables used in each of the models/generations likely impact or are 

indicators of glucose concentration.  The variables utilized most frequently for prediction 
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of glucose concentration as determined from genetic algorithm implementation are 

included in Table 4-20. 

 
 
Figure 4-16. Number of PLS Based Genetic Algorithm Models Utilizing Each Variable   
 
 
Table 4-20. Variables Determined As Predictors of Glucose (PLS based) Genetic 
Algorithm 

Variable 
Number of Models Utilizing 

Variable 
HR 14 
RR 14 

SPO2 14 
5% Alb 15 
D5W 15 
D5NS 15 
D5LR 13 

Time Period Collected 15 
NG (Resid) 4 

Lab Category 15 
Lab Results 15 
Num Labs 15 

PCWP 15 
SVR 15 
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SPO2 15 
Med Class 4 

Rate 2 
PAO2 3 

PACO2 3 
pH 15 

Conciousness 9 
Activity 15 
Nutrition 15 

BG Test Time 15 
POC BG(mg/dl) 15 

Insulin 15 
Pain Level 15 

CGM Sensor Current 15 
GS 15 

 
 
4.2.3 Real-time Prediction of Glucose in Critical Care Patients Using Initial Model 
Weights 
 
 A neural network model implementing a reduced complexity feed forward neural 

network architecture was developed/trained with 6,188 (515.7 hours) data points from 5 

critical care patients. Inputs/predictors to the neural network model included, CGM 

results, classified glycemic states, CGM device sensor current, POC glucose test times 

and results, insulin delivery type (infusion or subcutaneous), and units of insulin 

delivered. The neural network model’s performance was tested on 5,444 data points 

(453.7 hours) from 4 patients not included in the original model training set.   Model 

weights generated during initial model training/development were utilized during each 

iteration of the real-time predictive application. 

 
 Figure 4-17 contains the Clarke Error Grid containing the real-time predictions in 

4 critical care patients. In this dataset, 81,660 predicted values were generated (15 

predicted values for every CGM value). CEGA indicated that 97.5% of predicted values 
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were clinically acceptable with 67.9% and 29.6% falling within regions A and B of the 

error grid respectively. CEGA also indicated that .3%, 1.8%, and .3% of predicted values 

were in regions C, D, and E respectively, which would have resulted in predictions that 

would lead to inaccurate/adverse therapy. 

                   Figure 4-17. Clarke Error Grid of Predictions in 4 Critical Care Patients 

 Figure 4-18 contains the actual CGM and predicted CGM values generated by the 

real-time application for various glycemic extremes. Figure 4-18A demonstrates 

predictive accuracy at normal and near hypoglycemic extremes. Figure 4-18B includes 

predictions at hypoglycemic (<70 mg/dl), normal, and elevated (>150 mg/dl) glycemic 

extremes. Due to the large dataset of 81,660 predicted glucose values (i.e. 15 CGM 

values predicted for every CGM value in the test dataset) the data was re-sampled to 

demonstrate predictive accuracy in Figure 4-18. Re-sampling was completed via plotting 
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every 20th predicted CGM value and corresponding actual glucose value in the predictive 

dataset.  The glycemic predictions track trends of the actual CGM values accurately. In 

calculating the overall error between actual and predicted CGM values, the MAD% was 

calculated as 17.3%. In this dataset, 86.7% of the hyperglycemic (elevated glucose > 150 

mg/dl) were predicted. In addition to this, 83.4% of normal glucose values (>70 and <150 

mg/dl) were successfully predicted. A relatively small proportion of the test dataset was 

hypoglycemic (2.6%) and real-time prediction resulted in 14.7% of hypoglycemic 

glucose values (<70 mg/dl) predicted.      

 

Figure 4-18. Real-time Prediction of Glucose at Various Glycemic Extremes in Critical 

Care Patient Data not Utilized for Model Training 
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4.2.4 Performance Analysis of a Patient Specific Neural Network Model  

 Figure 4-19 includes the real-time predictions on the test dataset using a patient 

specific neural network model. Due to the large dataset of 7,260 predicted glucose values 

(i.e. 15 CGM values predicted for every CGM value in the test dataset) the data was re-

sampled to demonstrate predictive accuracy demonstrated in Figure 4-19. Re-sampling 

was completed by plotting every 20th predicted CGM value and corresponding actual 

glucose value in the predictive dataset. The overall error (MAD%) of the predictions 

generated using the patient specific model was calculated as 7.9%.  

 

Figure 4-19. Prediction of Glucose Using Patient Specific Neural Network Model  

 

Figure 4-20 includes the real-time predictions generated using the general neural 

network model analyzed in section 4.2.2. The overall error (MAD%) of the predictions 

generated using this general neural network model was calculated as 15.9%. The patient 
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specific model therefore generates more accurate predictions with a decrease in overall 

error of 8.0%. 

 

Figure 4-20. Prediction of Glucose Using General Neural Network Model  

Figure 4-21 contains the Clarke Error Grid containing the real-time predictions 

generated via the patient specific neural network model. CEGA revealed that 95.1% of 

the predictions fell within region A of the error grid and 4.9% fell within region B of the 

error grid. Figure 4-22 contains the Clarke Error Grid containing the real-time predictions 

generated via the general neural network model. CEGA revealed that 69.8% of the 

predictions fell within region A of the error grid and 30.2% fell within region B of the 

error grid.  In both instances 100% of the predicted CGM values could be considered 

clinically acceptable with no predicted values falling within regions C,D, or E of the error 
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grid. CEGA also revealed that the patient specific model generated predictions with a 

high degree of accuracy, as 95.1% of the values fell within region A of the error grid and 

had values within 20% of the reference glucose concentration. 

 

Figure 4-21. Clarke Error Grid of Predictions Generated by Patient Specific Model 

 

Figure 4-22. Clarke Error Grid of Predictions Generated by General Neural Network 

Model 
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4.2.5 Comparison of Predictive Performance in Models With Variable Prediction 

Horizons 

 Three feed forward neural network models were developed using the initial 

comprehensive model training set which included 19,989 data points. These models were 

developed with the optimized training set determined via genetic algorithm 

implementation presented in section 4.2.3. These neural network models were developed 

and configured to implement 30, 60, and 75 minute prediction horizons. Figure 4-23 

demonstrates model predictive accuracy across the variable prediction horizons of 30, 60, 

and 75 minutes in three patients (A, B, and C) which were not utilized for model training. 

The models accurately predict trends in glucose concentration across various glycemic 

extremes. Figure 4-24 includes the Clarke Error Grid Analysis (CEGA) to assess clinical 

acceptability of each of the 30 (Figure 4-24-1), 60(Figure 4-24-2), and 75 (Figure 4-24-3) 

minute predictive models.  

Table 4-21. Summary of Model Performance Given Variable Prediction Horizons 

 
 
 
 
 
 
 
 

Prediction 

horizon (min) 

Overall Model 

Error (MAD%) 

% of Normal 

Glucose Predicted 

% of Hyperglycemia 

Predicted 

30 4.7 97.0 85.2 

60 7.5 94.0 79.8 

75 8.0 96.1 66.3 
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Figure 4-23. Models Implementing Variable Prediction horizons in 3 Critical Care 

Patients  

A 

 
 

B 

 
 

C 
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 Table 4-21 includes a summary of model performance given variable prediction 

horizons. As hypothesized, overall model error increases with an increase in prediction 

horizon. Furthermore, the percentage of hyperglycemic extremes decreases with an 

increase in prediction horizon. Percentage of normal glycemic extremes decreases 

between models implementing 30 and 60 minute prediction horizons, however, the model 

implementing a prediction horizon of 75 minutes predicts a higher percentage of normal 

glycemic extremes than the 60 minute predictive model.  CEGA of the model predictions 

is summarized in Table 4-22.  A majority of predictions generated by the predictive 

models fell within regions A and B and were considered clinically acceptable. The 

percentage of predictions in region A of the error grid decreased with an increase in 

prediction horizon. This correlates to an overall decrease in model accuracy with an 

increase in prediction horizon as hypothesized. 

 

Table 4-22. Summary of Clarke Error Grid Analysis: Variable Prediction horizons 

Prediction 

horizon 

(min) 

% 

Predictions 

in Region A 

% 

Predictions 

in Region B 

%  

Predictions 

in Region C 

%  

Predictions 

in Region D 

%  

Predictions 

in Region E 

30 98.6 1.40 0.00 0.00 0.00 

60 91.5 8.20 0.20 0.00 0.10 

75 91.0 9.00 0.00 0.00 0.00 
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Figure 4-24. Clarke Error Grids of Models Implementing Variable Prediction Horizons 
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112 
 

4.2.6 Comparison of Predictive Accuracy of Complex and Feed Forward Neural Network 

Model Architectures in Critical Care Patients 

 Figure 4-25 includes the comparison of predictive accuracy between 

multifunctional neural network (MFNN) models (with prediction horizons of 75 minutes) 

implementing time-lagged feed forward (TLFF) neural network (complex) architectures, 

and a reduced complexity feed forward neural network architecture. Performance 

analysis is completed on data from two patients (A and B) not included in the initial 

model training set.  TLFF model architectures varied in terms of the forward and 

backpropagation trajectories, as well as the number of exemplars experienced before 

neural network model weights were updated. One TLFF neural network model was 

configured with a forward trajectory of 5, a backpropagation trajectory of 2 and 

configured to update model weights after 10 exemplars (5-2-10). A second TLFF neural 

network model was configured with a forward trajectory of 5, a backpropagation 

trajectory of 2 and configured to update model weights after 100 exemplars (5-2-100). A 

third TLFF neural network model was configured with a forward trajectory of 10, a 

backpropagation trajectory of 5 and configured to update model weights after 100 

exemplars (10-5-100). A feed forward (FF) neural network model was developed and 

was configured with a forward trajectory of 1, a backpropagation trajectory of 1 and 

configured to update model weights after 100 exemplars (1-1-100). Overall, model 

predictions generated by TLFF (complex) neural networks architectures did not differ 

between the various configurations of forward and backpropagation trajectories, and 

exemplars per update as demonstrated in Figure 4-25A and 4-25B. Table 4-23 

summarizes predictive accuracy of TLFF and reduced complexity feed forward (FF) 
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neural network architectures. Performance measures which were calculated include 

overall model error (MAD%), and percentage of hypoglycemic, hyperglycemic, and 

normal glycemic extremes predicted by each model implementation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-25. Predictive Accuracy: Complex and Reduced Complexity Model 

Architectures 

A 

 
 

B 
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Table 4-23. Summary of Predictive Accuracy Between TLFF and FF Model 

Architectures 

Model 
Architecture 

Overall Model Error  
(MAD%) 

% 
Normal 
Glucose 

Predicted 

% 
Hyperglycemia 

Predicted 

TLFF 8.7 72.8 88.1 
FF 7.4 93.8 67.6 

 

 Table 4-24 demonstrates the MFNN model predictive abilities of the TLFF and 

FF model architectures in prediction of general glycemic states in the two patients used 

for model performance analysis. Table 4-25 demonstrates model MFNN model predictive 

abilities of the TLFF and FF model architectures in prediction of specific glycemic states 

(1-7) in the two patients included for model performance analysis. Overall, a significant 

percentage of normal (>99.0%) and high general glycemic (88.6%) states were predicted 

via both modeling approaches. The performance of both model architectures in prediction 

of specific glycemic states demonstrated that performance varies between model 

architectures. The TLFF neural network model architecture performs more accurately 

overall at prediction of specific glycemic states than the FF modeling approach.  

 

Table 4-24. Prediction of General Glycemic States in TLFF and FF Model Architectures  

Glycemic State Low Normal High 
TLFF Model Architecture N/A 99.6 88.6 

FF Model Architecture N/A 100 88.6 
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Table 4-25. Prediction of Specific Glycemic States in TLFF and FF Model Architectures 

Glycemic State 
1 

(<70) 
2 

(>70&<=100) 
3 

(>100&<=140) 
4 

(>140<=179) 
TLFF Model Architecture N/A 49.1 77.3 72.7 

FF Model Architecture N/A 47.4 80.8 74.6 
 

5 
(>=180&<=220) 

6 
(>220&<=300) 

7 
(>300) 

70.6 N/A N/A 
42.2 N/A N/A 

 
 

Figure 4-26A and 4-26B includes the Clarke Error Grids containing predicted 

values obtained for TLFF (4-26A) and FF (4-26B) neural network model 

implementations applied in the two test patients. Table 4-26 summarizes Clarke Error 

Grid Analysis (CEGA) (in the two test patients) for both complex TLFF and FF neural 

network models.   In both implementations 100% of predictions were clinically 

acceptable as indicated via CEGA. The FF neural network architecture had a higher 

percentage (94.2%) of its predictions which were more accurate and fell within region A 

of the error grid.  Conversely, 90.7% of the predictions generated via TLFF neural 

network architecture fell within region A of the error grid.  

 

Table 4-26. Summary of CEGA for TLFF and FF Model Implementations 

Model 

Architecture 

%  

Predictions 

in Region A 

%  

Predictions 

in Region B 

%  

Predictions 

in Region C 

%  

Predictions 

in Region D 

%  

Predictions 

in Region E 

TLFF 90.7 9.30 0.00 0.00 0.00 

FF 94.2 5.8 0.00 0.00 0.00 
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Figure X. Clarke Error Grid of TLFF (A) and FF (B) Model Predictions 

Figure 4-26. CEGA of Glycemic Predictions: TLFF(A) and FF(B) Neural Network 

Architecture 
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4.2.7 Preliminary Weight Analysis: Occurrence of Real-Time Events and Correlation to 

Neural Network Model Performance 

 This section contains the results obtained from the preliminary analysis of neural 

network model weights which were adapted using the neural network model 

implementing real-time training as outlined in section 3.3.7. In this analysis, weights 

from the output bias axon (main processing component in the output layer) are analyzed 

with respect to the reception of new neural network input data (CGM and medical records 

used for prediction) in real-time. Real-time input data was categorized according to the 

current real-time glucose threshold, historical insulin delivery, and occurrence of 

tachycardia. Output bias axon weights are grouped based on the occurrence of these real-

time input data categories and performance of the neural network model in prediction of 

glucose (implementing a prediction horizon of 75 minutes) is correlated with these 

weight values. Model performance is divided into four categories: short term error 

(MAD% between first five actual and predicted glucose values), midterm error (MAD% 

between second five actual and predicted glucose values), long term error (MAD% 

between last five actual and predicted glucose values), and overall MAD% (MAD% 

across entire prediction horizon). Tables 4-27 through 4-33 contain the results of 

correlation analysis to calculate Pearson correlation coefficient values between the first 

output bias axon weight (offset value to calculate predicted glucose value) and each 

model performance category. The correlation analysis is focused on this only weight 

value as it is directly associated with the determination of the final predicted glucose 

concentration value of the neural network model.  
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 The correlation analysis included in Table 4-27 reveals that there appears to be an 

increase in correlation with output axon weight values and model performance across the 

model prediction horizon (short term to long term MAD%) which is observed with the 

occurrence of tachycardia. This is indicative that adaptation of model weights in the 

output layer which occur with tachycardia will have more of an effect on predicting 

glucose in the long term than in the short term. This indicates that tachycardia may be an 

event which has effects on glucose which are seen in the time period 55-75 minutes after 

the detection of tachycardia in real-time.   

 

Table 4-27. Tachycardia: Correlation of Output Axon Weights to Model Performance   

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 -0.14 -0.20 -0.23 -0.19 

2 0.10 0.12 0.13 0.12 

3 0.36 0.34 0.36 0.35 

4 0.03 0.05 0.08 0.06 

5 N/A N/A N/A N/A 

All 0.56 0.56 0.58 0.57 

 

The correlation analysis included in Table 4-28 reveals that there appears to be a 

decrease in correlation with output axon weight values and model performance across the 

model prediction horizon (short term to long term MAD%) which is observed with the 

occurrence of a real-time glucose value (>70 and <150 mg/dl) and no historical insulin 



119 
 

delivery. This occurs in 3 of 5 test patients and is the trend in the 5 patients overall. This 

is indicative that adaptation of model weights in the output layer which occur with this 

glycemic threshold and no historical insulin delivery will have more of an effect on 

predicting glucose in the short term than in the long term. The occurrence of this 

glycemic threshold and no historical insulin delivery may be an event which has effects 

on glucose which are seen in the time period 5-25 minutes after its occurrence in real-

time.  

Table 4-28. Glycemic Threshold 2 (No Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 -0.26 -0.13 -0.09 -0.16 

2 0.02 -0.00 0.13 0.03 

3 0.08 0.53 0.62/ 0.58 

4 -0.12 -0.08 -0.02 -0.08 

5 -0.21 -0.12 -0.15 -0.16 

All 0.61 0.53 0.52 0.57 

 

The correlation analysis included in Table 4-29 reveals that there appears to be an 

increase in correlation with output axon weight values and model performance across the 

model prediction horizon (short term to long term MAD%) which is observed with the 

occurrence of a real-time glucose value (>70 and <150 mg/dl) and historical insulin 

delivery. This occurrence is dominant in 1 of 2 test patients and is the overall trend 
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observed in both patients. This is indicative that adaptation of model weights in the 

output layer which occur with this glycemic threshold and historical insulin delivery will 

have more of an effect on predicting glucose in the long term than in the short term. The 

occurrence of this glycemic threshold and historical insulin delivery may be an event 

which has effects on glucose which are seen in the time period 55-75 minutes after its 

occurrence in real-time.   This is likely attributed to the activity of the historical insulin 

dose. 

Table 4-29. Glycemic Threshold 2 (Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall MAD% 

1 N/A N/A N/A N/A 

2 N/A N/A N/A N/A 

3 N/A N/A N/A N/A 

4 -0.21 -0.21 -0.40 -0.34 

5 -0.02 -0.01 -0.01 -0.01 

All -0.09 -0.01 0.10 -0.01 

 

The correlation analysis included in Table 4-30 reveals that there is a decrease in 

correlation with output axon weight values and model performance across the model 

prediction horizon (short term to long term MAD%) which is observed with the 

occurrence of a real-time glucose value (>150 and <190 mg/dl) and no historical insulin 

delivery. This correlation is observed in 2 of 3 test patients but is not established as the 
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overall trend in all patients. This is indicative that adaptation of output axon model 

weights in the output layer which occurs with this glycemic threshold and lack of 

historical insulin delivery may have more of an effect on predicting glucose in the short 

term than in the long term. The occurrence of this glycemic threshold and lack of 

historical insulin delivery may be an event which has effects on glucose which are seen in 

the time period 5-25 minutes after its occurrence in real-time. 

 

Table 4-30. Glycemic Threshold 3 (No Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 -0.05 -0.07 -0.00 -0.04 

2 N/A N/A N/A N/A 

3 0.23 0.24 0.25 0.24 

4 N/A N/A N/A N/A 

5 0.03 0.02 0.01 0.02 

All 0.10 0.11 0.10 0.10 

 

The correlation analysis included in Table 4-31 reveals that there appears to be an 

increase in correlation with the output axon weight values and model performance across 

the model prediction horizon (short term to long term MAD%) which is observed with 

the occurrence of a real-time glucose value  (>150 and <190 mg/dl) and historical insulin 

delivery. This occurrence is dominant in 1 of 2 test patients and is the trend across the 2 
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patients overall. This is indicative that adaptation of output axon model weights in the 

output layer which occurs with this glycemic threshold and historical insulin delivery will 

have more of an effect on predicting glucose in the long term than in the short term. The 

occurrence of this glycemic threshold and historical insulin delivery may be an event 

which has effects on glucose which are seen in the time period 55-75 minutes after its 

occurrence in real-time.   This is likely attributed to the activity of the historical insulin 

dose.  

 

Table 4-31. Glycemic Threshold 3 (Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 -0.10 -0.14 -0.22 -0.15 

2 N/A N/A N/A N/A 

3 0.13 0.06 0.05 0.09 

4 N/A N/A N/A N/A 

5 N/A N/A N/A N/A 

All -0.10 -0.14 -0.21 -0.15 

 

The correlation analysis included in Table 4-32 reveals that there appears to be an 

increase in correlation with the output axon weight values and model performance from 

short term to midterm MAD% which is observed with the occurrence of a real-time 

glucose value  (>190 and <240 mg/dl) and no historical insulin delivery. After this 
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increase in correlation, the correlation coefficient returns to a similar value in long term 

MAD% as seen with short term MAD%.  This increase in correlation is dominant in the 

only test patient which experienced this glycemic threshold and lack of insulin delivery. 

This is indicative that adaptation of output axon model weights in the output layer which 

occurs with this glycemic threshold and no historical insulin delivery will have more of 

an effect on predicting glucose in the midterm than in the short and long term. The 

occurrence of this glycemic threshold and historical insulin delivery may be an event 

which has effects on glucose which are seen in the time period 30-50 minutes after its 

occurrence in real-time.   

 

Table 4-32. Glycemic Threshold 4 (No Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 N/A N/A N/A N/A 

2 N/A N/A N/A N/A 

3 0.22 0.40 0.28 0.29 

4 N/A N/A N/A N/A 

5 N/A N/A N/A N/A 

All 0.22 0.40 0.28 0.29 

 

The correlation analysis included in Table 4-33 reveals that there appears to be a 

decrease in correlation with the output axon weight values and model performance from 
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short term to long MAD% which is observed with the occurrence of a real-time glucose 

value  (>190 and <240 mg/dl) and historical insulin delivery. This decrease in correlation 

is dominant in 1 of 2 test patients which experienced this glycemic threshold and 

historical insulin delivery. This trend is highly correlated when output weights are 

correlated to model performance in both patients. This is indicative that adaptation of 

output axon model weights in the output layer which occurs with this glycemic threshold 

and historical insulin delivery will have more of an effect on predicting glucose in the 

short term than in the long term. The occurrence of this glycemic threshold and historical 

insulin delivery may be an event which has effects on glucose which are seen in the time 

period 5-25 minutes after its occurrence in real-time.  This may be attributed to glycemic 

responses following aggressive insulin delivery which occurs at this extremely elevated 

glycemic threshold.  

 

Table 4-33. Glycemic Threshold 4 (Historical Insulin): Correlation of Output Axon 

Weights to Model Performance 

Patient Short Term 

MAD% 

Midterm 

MAD% 

Long Term 

MAD% 

Overall 

MAD% 

1 -0.67 -0.60 -0.55 -0.62 

2 N/A N/A N/A N/A 

3 -0.64 -0.67 -0.67 -0.66 

4 N/A N/A N/A N/A 

5 N/A N/A N/A N/A 

All -0.93 -0.90 -0.85 -0.91 
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4.2.8 Real-time Prediction of Glucose in Five Critical Care Patients 

 This section includes the results of real-time prediction of glucose in five critical 

care patients not included in the comprehensive model training set. The neural network 

models were trained via methodology outlined in section 3.3.7 of this document. In this 

investigation, the real-time predictive application was configured for real-time training 

(updating and optimization of model weights) and prediction of glucose implementing a 

prediction horizon of 75 minutes. In addition to utilization of the real-time predictive 

system for weight adapation (hereafter referred to as the weight update method) the 

performance of neural network model (also implementing a prediction horizon of 75 

minutes) which implements weights obtained via comprehensive model training 

(hereafter referred to as original weights) is compared with the weight update method. 

The real-time prediction of glucose (in the five critical care patients) for the weight 

update and original weights methodologies is included in Figure 4-27 [Figure 4-27A 

(weight update method) and Figure 4-27B (original weights method)].  Figure 4-27 

demonstrates that the model implementing the original model weights is more accurate at 

prediction of glucose. The weight update method routinely overestimates glucose 

concentration values as well as overcompensates during rapid rates of change in glucose 

concentration. NOTE: The data was resampled to plot every 40th actual and predicted 

value to better demonstrate predictive accuracy of the model with respect to changing 

glucose values. Clarke Error Grid Analysis (CEGA) and other methods of performance 

analysis was completed on all model predicted values.  
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Figure 4-27. Real-time Prediction of Glucose in Five Critical Care Patients 
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Figure 4-28. Clarke Error Grids: Real-Time Prediction of Glucose in Five Critical Care 

Patients 
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Clarke Error Grids containing real-time predictions are included in Figure 4-28. 

Figure 4-28A contains the Clarke Error Grid for the weight update model, and Figure 4-

28B contains the Clarke Error Grid for the original weight method. Tables 4-34 and 4-35 

summarize the CEGA and predictive accuracy of the weight update and original weight 

based models respectively. The model implementing original model weights was 

significantly more accurate than the weight update model (9.0 versus 18.0 MAD%). 

Furthermore, CEGA revealed that implementation of original model weights resulted in a 

significantly higher percentage of predictions falling within region A of the error grid 

(87.3% versus 62.1%). A higher percentage of normal glycemic extremes were predicted 

using the original model weights (96.7% versus 77.7%). The weight update model 

however, resulted in a significantly higher percentage of elevated/hyperglycemic glucose 

extremes (>150 mg/dl) predicted successfully (80.0% versus 53.6%). This is due to the 

fact that the weight update model will update model weights when rapid rates of change 

in glucose are experienced which leads to detection of subsequent elevated glycemic 

excursions.  

Table 4-34. Summary of CEGA and Predictive Accuracy (Weight Update Model) 

Zone A B C D E 
Total in Zone 5617 3420 8 0 0 
Percentage Of Data in 
Zone 62.1 37.8 0.1 0.0 0.0 
Total in Dataset 9045 

    Overall MAD% 18.0 
    % data Hypo 0 
    % Hypo Predicted N/A 
    % data Norm 76.6 
    % Norm Predicted 77.7 
    % data Hyper 23.4 
    % Hyper Predicted 80.0 
     



129 
 

Table 4-35. Summary of CEGA and Predictive Accuracy (Original Model Weights) 

Zone A B C D E 
Total in Zone 7900 1145 0 0 0 
Percentage Of Data in 
Zone 87.3 12.7 0.0 0.0 0.0 
Total in Dataset 9045 

    Overall MAD% 9.0 
    % data Hypo 0 
    % Hypo Predicted N/A 
    % data Norm 76.6 
    % Norm Predicted 96.7 
    % data Hyper 23.4 
    % Hyper Predicted 53.6 
     

4.2.9 Development and Utilization of a Preliminary Post-Processing Algorithm to 

Increase Model Accuracy  

 Analysis of the data collected during the clinical investigation indicated the 

presence of patterns in future glycemic excursions in response to certain events. One such 

event was tachycardia, or an abnormal increased heart rate. Figure 4-29 demonstrates 

patterns in 15 critical care patients after a documented occurrence of tachycardia (>90 

bpm). In these patients, no insulin was delivered 75 minutes before the occurrence of 

tachycardia and resulted in each patient having an overall increase in glucose 

concentration in the time domain 75 minutes after the detected occurrence of tachycardia. 

Patterns such as those included in Figure 4-29 provided the hypothetical construct for the 

development of an event-based post-processing algorithm for increasing overall model 

predictive accuracy.  
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Figure 4-29. Patterns in Glucose in 15 Critical Care Patients Following Tachycardia 

  

The post-processing algorithm generated in this investigation is outlined in 

section 3.3.10 of this document. This post-processing algorithm consisted of two post-

processing implementations. The first method of post-processing consisted of an event-

based post-processing algorithm, which modified neural network model output given 

occurrence of tachycardia, the current real-time glucose value (glycemic threshold), and 

whether or not historical insulin was delivered (within the time period 75 minutes before 

detected occurrence of tachycardia). There were a total of 10 detected occurrences of 

tachycardia in the 5 critical care patients utilized for real-time prediction of glucose 

concentration (presented in section 4.2.8). The post-processing algorithm was applied 

following these detected occurrences of tachycardia and model performance of the 
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unprocessed predictions was compared with the post-processed predictions. Figure 4-30 

contains neural network model predictions (implementing a prediction horizon of 75 

minutes) before and after post-processing.  

Post-processed model predictions are more accurate but do not model the extent 

of glycemic variability (peaks and valleys) in the data. This is due to the limited nature of 

utilizing a third order polynomial model fit. The post-processed predictions estimate the 

final glucose value (glucose value 75 minutes after tachycardia) relatively accurately.  

Tables 4-36 and 4-37 summarize CEGA and predictive performance of the neural 

network predictions before and after post-processing in response to tachycardia. These 

results demonstrate that model accuracy is significantly higher after implementation of 

the post-processing algorithm with an MAD% of 12.1 whereas a MAD% of 26.7 was 

obtained without post processing. Prediction of glycemic extremes also improved after 

post-processing as 100.0% of normal (>70 and <150 mg/dl) and elevated (>150 mg/dl) 

glycemic extremes were predicted. Conversely, 63.7% and 53.3% of normal and elevated 

extremes were predicted before post-processing. Predictions with and without post-

processing were all clinically acceptable as indicated by CEGA. CEGA revealed 

however, that post-processing implementation resulted in predictions with higher 

accuracy with 86.7% of predictions falling within region A of the error grid. In 

comparison only 27.3% of predictions fell within region A before post-processing.    
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Figure 4-30. Application of Event-Based (Tachycardia) Post-Processing Algorithm 

 

Table 4-36. CEGA and Predictive Accuracy: After Tachycardia (Before Post-Processing) 

Zone A B C D E 
Total in Zone 41 109 0 0 0 
Percentage Of Data in 
Zone 27.3 72.7 0.0 0.0 0.0 
Total in Dataset 150 

    Overall MAD% 26.7 
    % data Hypo 0 
    % Hypo Predicted N/A 
    % data Norm 90.0 
    % Norm Predicted 63.7 
    % data Hyper 10.0 
    % Hyper Predicted 53.3 
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Table 4-37. CEGA and Predictive Accuracy: After Tachycardia (After Post-Processing) 

Zone A B C D E 
Total in Zone 130 20 0 0 0 
Percentage Of Data in 
Zone 86.7 13.3 0.0 0.0 0.0 
Total in Dataset 150 

    Overall MAD% 12.1 
    % data Hypo 0 
    % Hypo Predicted N/A 
    % data Norm 90.0 
    % Norm Predicted 100.0 
    % data Hyper 10.0 
    % Hyper Predicted 100.0 
     

 The second method of post-processing included utilization of the offset existent 

between the current real-time glucose value and the first value in the neural network 

predicted output vector which was outlined in section 3.3.10. This post-processing 

algorithm was implemented when instances of tachycardia were not detected during the 

real-time prediction of glucose (implementing a prediction horizon of 75 minutes) in the 

five critical care patients presented in section 4.2.8. Figure 4-31 includes the real-time 

prediction of glucose before and after post-processing after post-processing (including 

tachycardia event-based post-processing) in the five critical care patients. NOTE: Data 

was resampled to plot every 40th actual and predicted value to better demonstrate model 

predictive accuracy. Post-processing results in predictions which are significantly more 

accurate than model predictions generated before post-processing.  
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Figure 4-31. Real-time Prediction of Glucose: Before and After Post-Processing 

 

Figure 4-32 contains the Clarke Error Grids generated for model predictions 

generated before (Figure 4-32A) and after post-processing (Figure 4-32B). Table 4-38 

summarize CEGA and predictive accuracy of the model performance after post-

processing in the complete five patient test dataset. Model performance before post-

processing was previously included in Table 4-36. As is demonstrated in Figure 4-32, 

model predictions after post-processing are significantly more accurate with an overall 

MAD% of 7.1 in contrast to the MAD% of 18.0 obtained before post-processing. 

Furthermore, CEGA supported the observed increase in model accuracy after post-

processing as 93.2% and 6.7% of predictions fell within regions A and B of the error 

grid. Before post-processing, only 62.1% and 37.8% of predictions fell within regions A 

and B of the error grid. Post-processing implementation is also correlated to an increase 



135 
 

in percentage of glycemic extremes predicted. After post-processing 94.5% and 86.8% of 

normal and elevated extremes were predicted, whereas only 77.7% and 80.0% of these 

extremes were predicted before post-processing. No hypoglycemia occurred in the five 

critical care patients used for model performance analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-32. Clarke Error Grids: Glucose Prediction Before (A) and After Post-

Processing (B) 

A 
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Table 4-38. CEGA and Predictive Accuracy: After Post-Processing Implementation 

Zone A B C D E 
Total in Zone 8430 609 3 0 3 
Percentage Of Data in 
Zone 93.2 6.7 0.03 0.00 0.03 
Total in Dataset 9045 

    Overall MAD% 7.1 
    % data Hypo 0 
    % Hypo Predicted N/A 
    % data Norm 76.6 
    % Norm Predicted 94.5 
    % data Hyper 23.4 
    % Hyper Predicted 86.8 
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CHAPTER 5  

DISCUSSION 

5.1 Goals    

 The goal of this research was the development and performance evaluation of 

predictive models for glucose in insulin dependent diabetic and critical care patient 

populations. Literature review has established that tight glycemic control in both 

populations correlates to enhancement of patient outcomes. The decreased occurrence of 

complications such as but not limited to: retinopathy, neuropathy, and nephropathy in 

diabetic patients is an observed benefit of tight glycemic control.  In the critical care 

patient population, observed decreases in morbidities, mortality, infections, and length of 

stay in the intensive care unit have been correlated to tight glycemic control. Neural 

network models for prediction of glucose and the performance of these models was the 

goal of this research investigation. To be defined as a clinically acceptable predictive 

model, an overall error (MAD%) of 14.0-21.0% (error of CGM device with respect to 

serum glucose values obtained via reference handheld glucose meter) is desired as well. 

Furthermore, Clarke Error Grid Analysis (CEGA) of the predictions should yield a 

majority of predictions with regions A and B of the error grid. A majority of predictions 

within region A is most desirable as it would indicate that predictions are clinically 

acceptable and have error less than 20% with respect to reference CGM device glucose 

measurements. 
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 To date, glycemic predictive models in patients with diabetes have had limited 

prediction horizons of 30-60 minutes. These predictive models have variable complexity 

and range from simple rate of change based models to more complex models 

incorporating the effect of various variables on future glucose concentration. Historically, 

a majority of these predictive models predict discrete handheld metered glucose values 

which limit the accuracy and efficacy of predictions. Furthermore, most models which 

incorporate the effect of other variables on future glucose concentration have utilized 

insulin, exercise, and nutritional intake as input variables. In this investigation, the 

utilization of continuous glucose monitoring (CGM) enables the prediction of a complete 

vector of glucose values up to the length of the prediction horizon. Additionally, the 

utilization of CGM and more frequently sampled glucose values enables the prediction of 

glucose using significant prediction horizons.  Furthermore, the effect of other variables 

known to effect glucose concentration such as emotional factors (e.g. stress, depression, 

etc), and lifestyle factors (e.g. sleep-wake cycles, work schedules, etc) were utilized as 

inputs into the neural network model.  In this investigation, initial neural network model 

development implementing a time-lagged feed forward neural network architecture for 

prediction of glucose using prediction horizons/horizons of 50-180 minutes are 

demonstrated.  Real-time prediction of glucose using a multifunctional feed forward 

neural network architecture implementing a prediction horizon of 75 minutes is also 

demonstrated.  

The goal of this research was to substantiate that prediction of a complete vector 

of glucose values using a significant prediction horizon is possible. A further goal of this 

investigation was the evaluation of the clinical acceptability and accuracy of these models 
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in real-time is within the error of CGM devices and within regions of acceptability based 

on Clarke Error Grid Analysis (CEGA).     

 To date there has been little glycemic predictive model development for the 

critical care population. Furthermore, there has been relatively limited utilization of CGM 

in the critical care setting.  Models have been developed for prediction of insulin delivery 

requirements for maintaining tight glycemic control and applied in a critical care setting. 

[68,70,71] While these models have experienced some success, most of these models 

base insulin delivery requirements on discrete point of care (POC) glucose values. A PID 

control algorithm for use in critical care patients was one of the few insulin delivery 

estimation algorithms which has been integrated with a CGM device. [70,85] Utilization 

of a PID control algorithm is reactive as insulin dosage estimates are based off of current 

(proportional), area under glucose curve (integral), and rate of change in glucose 

(derivative). These algorithms and the previous insulin estimation algorithms previously 

discussed do not take into account other factors such as but not limited to medications, 

vital signs, ventilation data, special clinical events and nutritional intake which may 

impact or be indicators of future glycemic excursions. A futher goal of this investigation 

is the development of neural network models for prediction of glucose in the critical care 

patient population. Neural network models have the ability to quantify the effect of a 

variety of input variables on future glycemic excursions. A secondary goal of this 

investigation is the performance analysis and determination of the clinical 

acceptability/applicability of the developed neural network models based on the criteria 

previously outlined in this section.  Furthermore, analysis of neural network model 

weight adaptation based on changing input variables (temperature, heart rate, respiratory 
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rate, real-time CGM data, and insulin delivery) and the subsequent effect on glycemic 

predictions is evaluated. The utilization of these results for preliminary development of 

post-processing algorithms to enhance model accuracy is also investigated.      

 

5.2 Limitations of the Developed Neural Network Models for Diabetic Patients 

 Neural network models developed and applied in patients with insulin dependent 

diabetes had various limitations. One such limitation was overestimation of hypoglycemic 

extremes observed in model predictions. This was due to the percentage of hypoglycemic 

data present in the initial model training set. The CGM dataset used for the training of the 

neural network models had a relatively low incidence of hypoglycemia (1460 CGM 

values ≤70 mg/dl), which corresponded to approximately 7.9% of the dataset. On the 

contrary, hyperglycemia comprised approximately 35.7% of the dataset (6560 CGM 

values ≥180 mg/dl), and euglycemic (normal) values allotted for 56.4% of the dataset 

(10,380 CGM values >70 and <180 mg/dl). This inadequacy in hypoglycemic training 

data can be correlated directly to the observed decrease in neural network performance 

for predictions at hypoglycemic extremes. Further data acquisition with an increased 

quantity of hypoglycemic data is a necessary step in future investigation and will likely 

correlate to improvement in the neural network model’s ability to predict hypoglycemia.   

 Another limitation of the developed neural network models for diabetic patients 

was the possible inaccuracy of input variables documented using the handheld data-

logger included in Figure 3-1. It is also important to note that data logged via the use of 

the electronic data-logger may have been entered incorrectly by patients involved in the 

study; however, it was difficult to identify such instances if they occurred. To mitigate 
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errors of this type, patients were instructed and trained on the methods to record data 

prior to their involvement in the study. If an input in the final patient dataset appeared to 

be inaccurate (e.g. an uncharacteristically large insulin dosage) the data was removed 

from the dataset and set to zero (i.e. no input). Given that patients with diabetes would 

need to utilize the glycemic predictive model in an outpatient setting, it is difficult to 

provide a ―controlled‖ setting in which parameters logged using the data-logger can be 

deemed accurate. In this investigation patients were not instructed to use the data-logger 

at a specific frequency therefore the utilization of the data-logger varied amongst the 

patients enrolled in the investigation. Future investigation is warranted in which the 

patients are instructed to use the data-logger at a frequency of every 1-3 hours. The more 

intensive documentation of input variables utilizing the data-logger would likely provide 

a means for enhancement of model accuracy.      

5.3 Limitation of Developed Neural Network Models for the Critical Care Patient 

Population  

 Neural network models developed in this investigation for prediction of glucose in 

the critical care patient population predict trends in future glycemic excursions 

accurately. Throughout the course of the clinical investigation however, various 

occurrences led to modification of methodologies involving patient 

recruitment/enrollment, conversion of paper based medical records to electronic medical 

records via the developed clinical intensive data-logger, and neural network model 

optimization/development.  

 Patient enrollment in the clinical investigation did not reach original expectations 

which were outlined in the initial project proposal. Various factors contributed to 
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decreased patient enrollment. One such factor was the departure from the University of 

Toledo Medical Center (UTMC) of our initial principal investigator for the clinical side 

of the investigation. This departure occurred during initial IRB approval phase, which 

resulted in a significant delay in achieving IRB approval for the clinical investigation. 

This delay in clinical investigation therefore contributed directly to a decrease in patient 

enrollment. Another factor which contributed to decreased patient enrollment in the 

investigation included the decreased incidences of trauma at UTMC. The decreased 

incidences of trauma are hypothesized to be due to the ongoing economic crisis in the 

United States. The majority of trauma patients admitted to UTMC are motor vehicle 

accident (MVA) victims. Due to the ongoing economic crisis and increasing prices of 

gasoline it is hypothesized that the incidences of MVAs were decreased and limited.  

 Due to the decreased enrollment of trauma patients in the clinical investigation, 

the IRB document was amended to include cardiothoracic surgical patients with elevated 

glucose (>150 mg/dl). The inclusion of this patient population resulted in increased 

patient enrollment, however, postoperative cardiothoracic patients have a decreased 

length of stay in the intensive care unit of 2-3 days relative to trauma patients which have 

an average length of stay of approximately 1-2 weeks. Although there was increased 

patient enrollment following inclusion of cardiothoracic surgical patients, the data derived 

from this patient population was not near original expectations. During the course of the 

clinical investigation the main cardiothoracic surgeon at UTMC departed the institution 

which also resulted in decreased patient enrollment.  

 Although patient enrollment did not reach expectations, neural network models 

developed in the investigation predict and follow trends in glucose accurately. It is 
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important to note however, that although neural network models developed in this 

investigation accurately predicted glycemic excursions, accuracy could have been 

dramatically improved with a larger and more extensive dataset on which to train neural 

network models. As encountered in the diabetes clinical investigation, neural network 

models were developed with a training set which contained a limited quantity of 

hypoglycemic data. The lack of a sufficient quantity of hypoglycemic data resulted in the 

neural network models routinely overestimating hypoglycemic extremes. Neural network 

models optimize predictive success via recognition of patterns, and trends in model 

training set, and a more extensive training set (including more CGM data at various 

hypoglycemic, normal, and hyperglycemic extremes) would provide a means for the 

model to determine more patterns/trends in data.  This would directly result in an increase 

in overall model accuracy. 

 Data collected for the investigation was collected in a controlled setting in which 

the paper based medical records documented by clinical staff in the intensive care unit 

were presumed accurate.  Various medical students, and graduate students at the 

University of Toledo Health Science Campus were recruited to utilize the developed 

electronic clinical intensive data-logger (eCIDL) to convert the paper medical records 

into an electronic format.  All investigative personnel were initially trained in operation 

of the eCIDL, as well as merging data into a cumulative electronic spreadsheet for use in 

neural network model development. Investigative personnel were instructed to monitor 

that the data logged using the developed eCIDL was the same as documented in the paper 

based medical records. Although investigative personnel were heavily trained in this 

process, there still exists a significant possibility that data may have been logged 
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inaccurately.  A factor leading to significant inaccurate data-logging included lack of 

uniformity by clinical staff in terms of how paper based medical records are documented. 

For example, some nursing staff members circle and date medications which are 

delivered, while others place a line through and date the medication to signify delivery. 

Another example of this includes nursing staff documentation of insulin delivery in the 

critical care patient population. Insulin infusion is recorded in a diabetic flowsheet where 

some nursing staff signify an increase/decrease in insulin infusion rate with an 

upwards/downwards arrow and the new insulin infusion rate next to the arrow. On the 

contrary, other nursing staff members log insulin infusion with an arrow and the number 

of units per hour increased/decreased from the previously implemented insulin infusion 

rate next to this arrow. These are only a few examples of the diversity existent in medical 

records documentation by clinical and nursing staff at UTMC, which may have lead to 

inaccurate recording of electronic medical records via the developed eCIDL. Another 

factor possibly leading to inconsistencies in electronic medical records obtained via 

utilization of the eCIDL included the legibility of the handwriting in the paper based 

medical records.   Furthermore, delays in the data logging process due to missing medical 

records, and medical student/graduate student availability also resulted in delays in neural 

network model development/design.  

 A large number of clinical staff were involved in the investigation at the 

University of Toledo Medical Center. The clinical staff including nurses, residents, and 

attending physicians was constantly changing. Efforts were made to alert clinical staff 

about the research investigation such that patients who met eligibility requirements were 

approached for study consent. To facilitate this process, two large posters were generated 
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which included patient eligibility characteristics, investigation design, and contact 

information for obtaining consent. These posters were placed within the surgical intensive 

care unit, and the trauma bay at UTMC such that a majority of patients meeting eligibility 

requirements could be approached for consent. Although this process was completed, 

some patients meeting eligibility were not appropriately and timely identified for 

subsequent consent and enrollment in the clinical investigation. As previously discussed, 

if more of the eligible patients were recruited for the investigation this would result in a 

more extensive dataset and increased model accuracy.   

5.4 Performance of Neural Network Models: Prediction of Glucose in Patients with 

Diabetes 

 Neural network modeling for the prediction of glucose in patients with insulin 

dependent diabetes as presented in this document represents a novel and unique 

methodology. Neural network modeling is well suited for modeling such a complex 

system in which multiple variables such as but not limited to physiologic, lifestyle, and 

emotional factors impact future glycemic excursions. Literature review and discussion 

with endocrinologists lead to the determination of inputs to be utilized by the neural 

network model for prediction of glucose in the diabetic patient population.  This section 

will focus on the performance analysis of the neural network models developed for 

prediction of glucose in prediction of patients with diabetes. Furthermore, comparison of 

the models generated in this investigation with previously developed predictive models 

and models used for determination of insulin requirements to maintain a normal glucose 

concentration is discussed.  

 Prediction of glucose using various approaches has been the subject of many 
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historical research attempts. These predictive models have ranged in complexity from 

autoregressive models to model predictive control based algorithms. [35-37] In these 

modeling approaches prediction of glucose using prediction horizons of 30-120 minutes 

were obtained. Even though CGM was utilized in the development of autoregressive 

models, the prediction horizons of 30-60 minutes obtained via these modeling techniques 

limit their clinical and patient applications. In patients with diabetes, prediction of 

glucose 120 minutes ahead of time is extremely advantageous. Following a meal and 

insulin bolus to cover nutritional intake, a diabetic patient commonly experiences 

elevated glucose within the two hour time frame following this event if insulin dosages 

are not adequate. Two hour post prandial glycemic control is thus an extremely important 

measure in determining overall glycemic control a diabetic patient can achieve. The 

autoregressive model generated by Reifman et al was also designed to implement a 

prediction horizon of 120 minutes. This resulted in considerably less accuracy in overall 

model error and prediction of hyperglycemic and hypoglycemic extremes than the 30-60 

minute predictive models. [37] A further limitation of the modeling techniques using 

CGM and prediction horizons of 30-60 minutes is the lag which exists between interstitial 

fluid and serum glucose concentration. [99-102] The time lag between interstitial glucose 

and serum glucose has been determined to range between 5 and 15 minutes. Therefore, 

given the prediction horizons of 30-60 minutes, the actual prediction of glucose can range 

from 15-45 minutes given a maximum time lag of 15 minutes. It is also important to note 

that in the modeling techniques discussed previously, meal intake, activity, lifestyle 

factors (e.g. sleep-wake cycles), emotional factors (e.g. stress, depression), time of day, 

etc were not fully incorporated into the predictive models. 
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 Performance analysis of the initial time-lagged feed forward neural network 

models demonstrate that models accurately predict trends and patterns in glucose values 

across prediction horizons of 50-180 minutes. Accuracy of the models in prediction of 

glucose decreases with an increase in prediction horizon. An overall error (MAD%) of 

6.9-18.9% across the prediction horizons of 50-180 minutes was achieved. The ability of 

the neural network model to predict the extent (overall magnitude) of hyperglycemia 

decreases as the prediction horizon is increased. This is an expected outcome, as large 

rates of change which lead to hyperglycemic extremes >250 mg/dl are not readily 

predictable given such large prediction horizons. In most cases however, although the 

overall magnitude of hyperglycemia is not predicted, the prediction of hyperglycemic 

extremes (>180 mg/dl) is accomplished. This is of direct benefit to clinician and patient in 

terms of therapeutic direction and support. 

 Neural network models generated in this investigation were demonstrated to 

predict glucose using prediction horizons of 50-180 minutes. In comparing the 

performance of the neural network models across the various prediction horizons, there is 

an observed increase in overall model error (MAD%) associated with an increase in 

model prediction horizon from 6.7% to 14.5%. It is important to note however, that the 

neural networks ability to predict hyperglycemic extremes (>180 mg/dl) remains 

relatively consistent across prediction horizons of 50-120 minutes. Using a prediction 

horizon of 120 minutes resulted in the prediction of 97.2% of hyperglycemic extremes. 

This is an important result which demonstrates that prediction of hyperglycemia remains 

consistent and performance does not decrease given an increase in prediction horizon.  

Previous autoregressive model development by Reifman and colleagues did not 



148 
 

provide in depth predictive results obtained using a 120 minute prediction horizon and 

instead focused on 30-60 minute predictions. [37] There is no basis to compare model 

predictive ability between the neural network models generated in this investigation with 

previously developed modeling techniques as reported performance measures differ 

between each approach. It is important to note however, that utilizing the neural network 

model approach developed in this investigation results in consistent performance in 

prediction of hyperglycemia up to a prediction horizon 120 minutes. Using large 

prediction horizons of 120, 150, and 180 minutes resulted in the prediction of 97.2, 79.0, 

and 71.6% of hyperglycemic extremes, therefore, a majority of hyperglycemic extremes 

are successfully predicted implementing these significant prediction horizons. 

   Using a neural network model for prediction of glucose enables the assessment of 

multiple variables on future glycemic excursions and trends. This approach is 

advantageous due to the effect of many factors on glycemic excursions such as but not 

limited to: lifestyle, emotional, nutritional intake, and medication/insulin dosages. These 

factors being incorporated into a predictive model enabled the prediction of glucose using 

extended prediction horizons as demonstrated in this investigation. Prediction of glucose 

using such expanded prediction horizons may enable patients with diabetes to more 

accurately optimize therapy in anticipation of hypoglycemic or hyperglycemic 

excursions. Furthermore, the prediction of a complete vector of glucose values up to the 

prediction horizon will enable the assessment of trends in glucose in response to the 

various factors and therapy of the patient which has not yet been completed in research 

endeavors to date. 

 A majority of today’s diabetes research is aimed at the development of a closed 
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loop artificial pancreas for maintaining tight glycemic control. A well known approach in 

development of a closed loop artificial pancreas for maintaining normal glucose 

concentration includes implementation of a classic control algorithm: the proportional 

integral derivative (PID) controller.  [32-34]  The classic PID control algorithm is used to 

control a system based on proportional, integral, and derivative values. In terms of 

glycemic control, the proportional value determines the reaction to the current glucose 

value, the integral value determines the reaction based on the sum of recent glucose 

values, and the derivative value determines the reaction based on the rate of change of 

glucose. The weighted sum of these three actions is used to adjust the process via a 

control element. The PID controller was chosen to be implemented in closed loop control 

due to the fact that it mimics physiologic  cell insulin secretion.[116]  The  cell is 

responsible for secreting insulin in response to increases in glucose concentration to 

obtain normal glucose concentration.  

 While the PID control algorithm has been subject of many research attempts to 

develop a closed loop artificial pancreas, such a control algorithm is limited in 

functionality. The PID control algorithm cannot appropriately integrate the occurrence of 

the multiple factors which may impact or are indicators of future glycemic trends. 

Patients who have diabetes often have a degree of autonomic insufficiency in which the 

counter-regulatory hormonal response is delayed or in some circumstances inexistent. 

[117,118] Given utilization of a PID control algorithm there is no input or ability to 

quantify the occurrence of lifestyle and emotional factors such as exercise or stress which 

have a known effect on increasing adrenal response and a corresponding elevation of 

glucose. Utilization of a PID control algorithm would respond to this ―perceived‖ 
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elevation of glucose via delivery of insulin. This would be an inappropriate response, 

which may lead to the occurrence of hypoglycemia. Given the degree of autonomic 

insufficiency that patients with diabetes commonly experience, this would be a very 

dangerous occurrence. Patients with diabetes often experience hypoglycemic 

unawareness a condition in which the patient does not realize they are in a hypoglycemic 

state, which combined with autonomic insufficiency would lead to prolonged occurrences 

of hypoglycemia.[119-121] 

 A further limitation of implementing a PID algorithm for closed loop glycemic 

control is the inability to account for nutritional intake. A PID control algorithm would 

not be able to distinguish meal content and insulin dosage needed to maintain a normal 

glycemic state.  While an observed increase in glucose concentration following a meal 

would be accounted for, the overall insulin to cover total nutritional intake could not be 

determined via utilization of the PID controller. A system which takes into account 

approximation of carbohydrate/caloric intake would be more capable of maintaining tight 

glycemic control in response to a meal. A closed loop PID controller would therefore 

need to have at least a ―meal button‖ to initiate to account for nutritional intake.  Even in 

the presence of such a ―meal button‖, the meal content at specific meals and times of day 

would need to be consistent for optimizing glycemic control given the utilization of such 

a control algorithm. 

 To address the potential limitations of the PID controller algorithm and other 

previously employed modeling techniques, the neural network modeling approach 

outlined in this document was designed and investigated as an alternative modeling 

approach. A neural network model based predictive system is well suited to model the 
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effect of various factors on future glycemic excursions and trends. An implementation of 

a semi-closed loop system with automated therapy based on patient input of factors 

affecting glucose would be able to identify factors which correlate to a temporary 

elevation in glucose such as exercise and stress and not result in overly aggressive 

treatment in response to the perceived elevation in glucose. Research into the 

development of such a semi-closed loop system has been subject of research endeavors of 

Skevofilakas and colleagues. [122] In this investigation, Skevofilakas developed a system 

which integrates various factors on prediction of glucose and subsequent insulin needed 

for maintaining a normal glycemic control. Prediction of glucose and optimal insulin 

dosage was completed via utilization of a neural network model for short term glucose 

prediction as well as a compartmental model to model glucose absorption in the gut in 

response to nutritional intake.  While such an implementation involves a more 

comprehensive model for glucose, the short term prediction of glucose, as well as lack of 

incorporating factors such as lifestyle and emotional state which impact glucose may 

limit this approach. A neural network approach such as the models developed in this 

investigation with prediction horizons of 50-180 minutes would provide more insight on 

which therapeutic guidance and automation may be optimized.  

 The accuracy of the neural network models developed in this investigation ranged 

from 6.7-27.0 MAD%. Real-time implementation of the neural network based predictive 

model with a prediction horizon of 75 minutes had MAD% values ranging from 19.0-

27.0%. Lack of hypoglycemic data of which to train and develop the neural network 

models result in the overestimation of hypoglycemic extremes. If error was recalculated 

at non-hypoglycemic extremes, overall model error (MAD%) is considerably reduced. 
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Error of CGM devices with respect to serum glucose values has been reported to be 

between 14.0-21.0% (MAD%).  [123] Therefore, the model accuracy and overall MAD% 

of the models generated in this investigation fall within this reported error range which 

makes them acceptable models for prediction and forecasting glucose concentration in the 

diabetic patient population. Furthermore, utilization of Clarke Error Grid Analysis 

(CEGA) revealed that real-time application of the neural network based models resulted 

in >90.0% of predicted values falling within regions A and B of the error grid.  This 

result is indicative of the clinical acceptability of the predicted glucose values. Given that 

the error of the predictions falls within the reported error range of the CGM device and 

>90.0% of predictions could be regarded as clinically acceptable based on CEGA, such a 

predictive system has a significant degree of clinical applicability in its current state.   

 Although the predictive models in their current state provide significant accuracy, 

future research will be directed at optimization. A unique feature of the developed models 

is the multifunctional neural network approach in which the prediction of two outputs 

related to glucose concentration is achieved. The prediction of numerical glucose 

concentration values is often associated with considerable error. The models are 

configured to predict classified ranges of glucose concentration or glycemic states in 

addition to numerical concentration. This multifunctional approach can accomplish two 

tasks. First, the prediction of glycemic states may provide just as useful information to the 

patient/caregiver as prediction of numerical concentration values. Secondly, prediction of 

two variables will provide a means to gauge accuracy of predictions. If the two predicted 

values coincide with each other, the predictions are likely accurate. Preliminary 

multifunctional neural network model application in the diabetes patient population 
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resulted in successful prediction of a majority of general glycemic states predicting 88.0-

94.0% of normal glycemic states, and 70.6-80.5% of hyperglycemic glucose states. Due 

to limited quantity of hypoglycemic training data models routinely overestimated 

hypoglycemic states.   Prediction of specific glycemic states resulted in accuracy ranging 

from 10.2-73.0%. The reduced prediction of lower normal glycemic states was also 

attributed to the quantity of lower normal glycemic states (>70 and <100 mg/dl) present 

in the initial model training set. Further research aimed at enhancing the accuracy of 

model predictions such as development of post-processing algorithms will be subject of 

future research and will discussed in a later section of this document.  

 The neural network models developed in this investigation also predict a high 

percentage of normal (>70 and <180 mg/dl) and hyperglycemic (>180 mg/dl) extremes. 

Model performance in terms of the real-time prediction of normal glucose extremes is > 

75.0%, and >80.0% in prediction of hyperglycemic extremes. Utilization of such 

predictive models for therapeutic direction/assistance would therefore directly benefit 

patients with diabetes in gauging if insulin doses are adequate for maintaining normal 

glycemic control.  The prediction of glucose using the extensive prediction horizons >60 

minutes as demonstrated in this investigation may provide a construct for semi-closed 

loop and perhaps eventually closed loop automated and optimized therapy leading to tight 

glycemic control in patients with diabetes.    
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5.5 Prediction of Glucose in the Critical Care Patient Population 

 Point of care (POC) glucose monitoring of critical care patients and 

implementation of an insulin infusion protocol is the current standard of care to obtain 

tight glycemic control. This approach is limited in that POC glucose monitoring only 

provides discrete glucose values every 1-4 hours throughout a patient’s length of stay in 

the ICU. Research has been completed to develop models to predict glucose and/or 

insulin requirements to maintain normal glucose concentration in critical care patients. 

[68,71] While these models have experienced success, it is hypothesized that modeling of 

glucose and insulin requirements for maintaining normal glucose concentration in the 

critical care patient population can be enhanced via the neural network model approach 

outlined in this dissertation. Neural network models have the ability to incorporate the 

effect of a variety of factors routinely documented in a critical care patient’s medical 

record which may be predictors or indicators of future glycemic excursions.  

Furthermore, CGM technologies are only recently being investigated for their potential as 

a diagnostic/assistive tool in the ICU. [89] Based on the review of the current literature, 

the neural network model approach outlined in this investigation is one of the first 

predictive models utilizing CGM for prediction of glucose in this critical care patient 

population. Furthermore, utilization of this modeling approach (as will be outlined in this 

section) enables the ability to predict a complete vector of glucose values with large 

prediction horizons which have not be obtained in previous research investigations.    

The neural network models developed in this investigation for glycemic 

forecasting in critical care patients accurately predict trends in glycemic excursions. 

Performance analysis revealed that a majority of predictions generated via this neural 
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network modeling approach were clinically acceptable as determined via Clarke Error 

Grid Analysis. Prediction of glucose via the developed approach can be utilized for 

intelligent therapy direction and ultimately automation given future development and 

increased model accuracy. Given the degree of accuracy of models generated in this 

investigation, models may be used in their current state by clinical staff to support their 

clinical judgments and assist in therapeutic direction for maintaining tight glycemic 

control in the critical care setting.   

5.5.1 Patterns in Glucose in the Critical Care Population: A Foundation for Model 

Development 

 Previous research has eluded to patterns in glucose in critical care patients. [57-

59] These patterns were identified via utilization of discrete POC glucose measurements 

which are routinely collected during a patient’s length of stay in the ICU. In this 

investigation, similar patterns in response to insulin infusion were identified using CGM. 

CGM makes it possible to further identify trends in glucose in response to insulin 

infusion and other factors, which makes modeling glycemic excursions using the neural 

network model approach outlined in this document well suited for prediction of glucose.  

 Figure 4-14 demonstrates patterns in glucose in response to insulin infusion when 

glucose values of critical care patient reach a threshold of approximately 180 mg/dl.  

Most of the glycemic responses in these patients follow the expected trend of a decrease 

in glucose as the glycemic threshold is reached. Furthermore, most of the glycemic 

responses follow a similar rate of change in glucose over the 6 hour time period after the 

glycemic threshold was reached. This observed pattern in subsequent glucose may be 

correlated to a variety of factors such as but not limited to patient insulin sensitivity and 
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insulin requirements for maintenance of a normal glycemic state. For this reason, the 

hypothetical construct for development of the neural network models in this investigation 

is supported. The acquisition of a variety of factors and medical records which may be 

indicative of subsequent glycemic trends combined with CGM provides a significant 

source of data from which development of models for prediction of glucose was 

completed. Such an intensive dataset has previously not been collected and utilized for 

predictive model development.       

5.5.2 Utilization of a Genetic Algorithm to Optimize Neural Network Model Training Set 

 A total of 131 possible medical records and variables acquired from CGM were 

acquired throughout the course of clinical investigation. Given this large quantity of 

variables, it is important to distinguish which variables are predictors/indicators of 

glucose concentration. Utilization of a genetic algorithm for determination of the medical 

records to be utilized for prediction of glucose was chosen as the best method of 

optimizing neural network model inputs. The utilization of the genetic algorithm 

approach was chosen based on literature review and genetic algorithm theory. [112,113] 

 Two renditions of the genetic algorithm implementation were used as subtle 

differences between multiple linear regression and partial least squares linear regression 

based genetic algorithms may lead to different results. The major difference between 

these approaches is the utilization of actual variable values and latent variable values 

would lead to different results. Due to these differences, results of both genetic algorithm 

implementations were combined and the optimal model input variables were finalized. 

These 131 variables were minimized to 40 variables which are included in Table 3-2.   

 To justify results obtained via genetic algorithm implementation, literature review 
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and discussion with clinical staff was completed. For example, increased heart rate or 

tachycardia has been correlated in the literature with increased glucose concentration. 

[124] Furthermore, research has substantiated that body temperature is an indicator of 

glucose concentration specifically the occurrence of hypoglycemia. [125] Other 

factors/inputs such as dextrose solutions (D5, D5W, etc) which are infused in critical care 

patients contain dextrose (glucose) which would correlate to an increase in glucose 

concentration. Therefore the optimized input set determined via implementation of the 

genetic algorithm coincides with literature review and discussion with clinical 

investigators. 

5.5.3 Real-time Prediction of Glucose Using Initial Model Weights 

 A feed forward neural network model was developed using CGM results and data 

recorded in the diabetic flow sheet of the ICU. The model was trained using data from 

five critical care patients, and subsequently integrated into a real-time predictive 

application. Using data from four patients not included in the model training set, model 

performance was tested using original weights determined via comprehensive model 

training.  

 Overall, the model performed accurately at predicting trends in glucose in the test 

dataset. A majority of the predictions generated by the real-time application were 

clinically acceptable (97.5%) as indicated by Clarke Error Grid Analysis (CEGA). CEGA 

demonstrated that 67.9% and 29.6% of model predictions fell within regions A and B of 

the error grid respectively. CEGA also indicated that .3%, 1.8%, and .3% of predicted 

values fell within regions C, D, and E respectively, which would have resulted in 

predictions that would lead to inaccurate/adverse therapeutic direction.  
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A majority of normal and hyperglycemic extremes were predicted by the neural 

network model.  In this test dataset, 86.7% of the hyperglycemic extremes (elevated 

glucose > 150 mg/dl) were predicted and 83.4% of normal glucose values (>70 and <150 

mg/dl) were successfully predicted. Overall model error (MAD%) was calculated as 

17.3%. Model predictive accuracy is thus within the reported error range of the CGM 

device and a majority of predictions are within regions A and B of the Clarke Error Grid 

indicating overall model clinical acceptability. [114,123,126] Given the degree of 

accuracy, model predictions could therefore be utilized by clinical staff for intelligent 

therapeutic direction, and given future model development automation of insulin delivery 

for maintenance of tight glycemic control. 

  A limitation of the neural network model included the ability to predict 

hypoglycemic extremes. The model only predicted 14.7% of the hypoglycemic glucose 

values (<70 mg/dl). The predictions generated by the real-time application routinely 

overestimated hypoglycemic glucose values. This can be attributed to the lack of 

hypoglycemic training data. In the dataset used for training the neural network model, 

93.6% of training data was normal and 6.4% of the training set was hyperglycemic. There 

was no hypoglycemic data present in the training set which can be directly attributed to 

the routine overestimation of hypoglycemic extremes in the test dataset.  

The reduced complexity feed forward neural network model design enables the 

prediction of glucose within the sampling rate of the CGM device (five minutes).  

Furthermore, the results of this investigation indicate that prediction of glucose using 

original model weights generated via comprehensive model training for prediction result 

in accurate and clinically acceptable glycemic predictions. Utilization of such a neural 
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network based approach for glycemic forecasting is a promising concept and well suited 

to model glucose in this patient population.   

Utilization of CGM in the critical care setting is only recently becoming part of 

research endeavors for establishing glycemic control. [85,89] The goal of this 

investigation was the development and optimization of a predictive system which 

integrates electronic medical records and CGM for prediction of glucose in real-time in 

the intensive care unit. The results of this investigation substantiate that utilization of 

CGM and a predictive model as developed in this investigation could be integrated into a 

routine bedside monitoring system. Such a bedside monitoring system could become as 

commonplace as an electrocardiograph system which is routinely implemented bedside in 

critical care patients. 

 

 5.5.4 Performance Analysis of a Patient Specific Neural Network Model 

 Models outlined in this document were primarily focused on the development of 

general neural network models, i.e. models developed/trained with data from multiple 

patients. While many of these general models have predictive accuracy within the error of 

CGM monitoring devices, and CEGA reveals that a large majority (>90%) of predicted 

values are clinically acceptable, it is hypothesized that a patient specific model may result 

in more accurate predictions. Neural network theory substantiates that performance 

increases given larger training sets covering a wide range of values to be predicted. The 

availability of a significant training set provides a basis for detecting more trends and 

patterns in data. Throughout the duration of the clinical investigation there was only a 

single patient who had an extended length of stay in intensive care suitable enough to 
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generate and test the performance of a patient specific neural network model. 

     In this investigation, a patient specific neural network model was 

developed/trained with data from a single patient who was in the intensive care unit for 

16 days. This patient was a 38 year old trauma patient who was a motor vehicle accident 

victim, was intubated, and suffered multiple blunt force injuries. Performance of the 

patient specific model was compared against the performance of the general neural 

network (discussed in section 5.5.3) model on a segment of data from the 38 year old 

trauma patient which was not included in either model training set.  

 Performance analysis and comparison of the two modeling approaches 

demonstrated that the patient specific model was significantly more accurate at prediction 

of glucose than the general model approach. Overall model error (MAD%) of the patient 

specific model approach was calculated as 7.9% versus 15.9% using the general model. 

Furthermore, CEGA revealed that 100% of predictions generated by both modeling 

approaches were located within regions A and B of the error grid and could be classified 

as clinically acceptable. The patient specific modeling approach however, resulted in a 

larger majority of its predictions (95.1%) falling within region A of the error grid. On the 

contrary, the general model resulted in only 69.8% of prediction values falling within 

region A of the error grid. The patient specific model had 4.9% of predicted values falling 

within region B of the error grid. Conversely, the general model resulted in 30.2% of 

predictions falling within region B of the error grid. The patient specific modeling 

approach is the more desireable approach as 95.1% of the values fell within region A (the 

region of highest accuracy in CEGA) of the error grid which contains predicted values 

within 20% of the reference glucose concentration. 
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 The patient specific modeling approach is more accurate due to the fact that it is 

tailored to model specific responses in a single patient. This makes the modeling 

approach more adapted to accommodating for a particular patient’s insulin sensitivity, 

any insulin resistance a patient may have, as well as patient responses to particular events. 

The general modeling approach has a larger overall error due to the overestimation of 

glycemic responses when large rates of change in glucose are experienced as 

demonstrated in Figure 4-20. This does not occur in the patient specific model as 

demonstrated in Figure 4-19. This patient was subjected to IV insulin infusion throughout 

their stay in intensive care, and the difference in performance between the general and 

patient specific modeling approaches is likely correlated to fact that the general model is 

trained with glycemic responses to the insulin infusion protocol from a variety of 

critically ill patients, whereas the patient specific model is trained with glycemic 

responses to insulin infusion protocol in a single patient (test patient).   

It is further hypothesized that increased model performance of the patient specific 

model would be achieved given the utilization of the optimized training set determined 

via the genetic algorithm. The patient specific model only utilized inputs which included 

point of care glucose test times and results, insulin delivered, insulin delivery type, and 

CGM data. Utilization of the optimal training set would enable the neural network to 

determine and quantify the effect of various other inputs within the patient medical 

records on future glucose concentration.    These results indicate that a patient specific 

model may be a more desireable approach in patients who have an extended length of 

stay in the intensive care unit. The increased accuracy of a patient specific model would 

be of direct benefit when utilized for intelligent therapeutic direction/automation.   
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5.5.5 Comparison of Neural Network Performance Given Variable Prediction Horizons 

 Most neural network models developed in this investigation for prediction of 

glucose in the critical care patient population implemented a prediction horizon of 75 

minutes. This prediction horizon was chosen due to the percentage of hypoglycemic and 

hyperglycemic reactions detected via conventional POC testing at the University of 

Toledo Medical Center. Table 3-3 summarizes this analysis and demonstrates that 83.9% 

of hyperglycemia and 58.4% of hypoglycemia is detected within an 80 minute window 

(40 minutes before and 40 minutes after detected hypoglycemic or hyperglycemic 

occurrence) via POC testing. Therefore, implementation of a prediction horizon of 75 

minutes will be near optimal in providing insight on glycemic excursions during regions 

where POC glucose measurements are not acquired. The implementation of a prediction 

horizon of 75 minutes will provide a means for prediction of a majority of 

elevated/hyperglycemic glycemic extremes (>150 mg/dl) in this critical care patient 

population.  

 Although this clinical investigation primarily focused on development and 

optimization of neural network models implementing a prediction horizon of 75 minutes, 

neural network models were also developed with prediction horizons of 30 and 60 

minutes. Performance of these neural network models in prediction of glucose in data 

from three critical care patients not utilized for model training was compared. Given 

results acquired previously in the diabetes investigation, it was hypothesized that an 

increase in prediction horizon would correlate to a increase in overall model error 

(MAD%).[127]  
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 As hypothesized, an increase in the model prediction horizon is correlated with an 

increase in overall model error. Error was calculated as 4.8% , 7.5%, and 8.0% for models 

implementing 30, 60, and 75 minute prediction horizons respectively. The percentage of 

hyperglycemic glucose values (>150 mg/dl) predicted by the models also decreases with 

an increase in prediction horizon. Percentage of hyperglycemic extremes predicted by the 

models was calculated as 85.2%, 79.8%, and 66.3% for 30, 60, and 75 minute predictive 

models respectively.   Percentage of normal glucose values (>70 and <150 mg/dl) 

predicted decreased when comparing 30 minute predictive models with 60 and 75 minute 

predictive models. There was not a decrease in percentage of normal values predicted 

between 60 and 75 minute predictive models. The percentage of normal glucose values 

predicted by the 30, 60, and 75 minute models was calculated as 97.0%, 94.0%, and 

96.1% respectively. It is hypothesized that the model implementing the 75 minute 

prediction horizon predicted a higher number of normal glycemic extremes due to the 

increase in prediction horizon with respect to the 60 minute model. Given large rates of 

change which lead to hyperglycemia, the 75 minute prediction horizon does not always 

predict subsequent hyperglycemic states and predicts a normal glycemic state. Once 

glucose returns to a normal glycemic state the 75 minute predictive model successfully 

predicts the normal glucose values. Conversely, the 60 minute predictive model predicts 

more hyperglycemia then the 75 minute predictive model however predicts 

hyperglycemia when glucose returns to a normal glucose value resulting in the 

discrepancy in percentage of normal glucose values predicted by the 60 and 75 minute 

predictive models. Figures 4-23A, 4-23B, and 4-23C demonstrate this observed 

phenomena and model performance given the variable prediction horizons in three critical 
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care patients (A, B, and C). 

 CEGA of the predictions generated by each of the models implementing variable 

prediction horizons is included in Table 4-21. Overall, a large majority of the model 

predictions were clinically acceptable and fell within regions A and B of the error grid. 

Each model generated > 91.0% of predicted values within region A of the error grid and 

had predicted values within 20% error of the reference CGM device measured interstitial 

glucose concentration.  The 60 minute predictive model had 0.20% and 0.10% of 

predicted values within regions C and E of the error grid which would have lead to 

adverse therapeutic direction. This is a relatively small proportion of predictions and 

would likely not significantly limit the clinical acceptability of this model. Models 

implementing 30, and 75 minute prediction horizons had 100% of predicted values which 

could be considered clinically acceptable and were located within regions A and B of the 

error grid.   

 Although a 75 minute prediction horizon is the most well suited prediction 

horizon for critical care patients given the frequency of POC glucose monitoring 

maintained by clinical staff, models implementing smaller prediction horizons are more 

accurate overall. The implementation of models with reduced prediction horizons provide 

a foundation in which intelligent therapeutic direction and automation may be achieved. 

Given future development of a bedside monitoring and glycemic predictive system for 

critical care patients, multiple predictions implementing variable prediction horizons can 

be made available for caregivers. Caregivers can utilize the model predictions given 

implementation of variable prediction horizons for intelligent therapeutic direction, and 

give greater weight to predictions by the models implementing the smaller prediction 
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horizons as they area associated with higher accuracy.     

 

5.5.6 Comparison of Performance in Complex and Reduced Complexity Neural Network 

Models     

   Various pros and cons exist based on choice of neural network model 

architecture/design. In this investigation, the performance of multifunctional neural 

network model implementing a complex time-lagged feed forward (TLFF) neural 

network architecture is compared with performance of a reduced complexity neural 

network model implementing a feed forward (FF) neural network architecture.  The TLFF 

neural network model was configured with the variable forward and back propagation 

trajectories and the number of exemplars per weight update of the neural network model.  

 The model performance of the TLFF neural network model did not differ 

regardless of configuration of forward and back propagation trajectory. The prediction of 

glucose achieved via the complex TLFF architecture however, was different than the 

reduced complexity FF neural network model. Prediction of glucose in data from two 

critical care patients (A and B) not utilized for model training is included in Figure 4-25A 

and 4-25B. The TLFF neural network model architecture appears to overestimate normal 

glycemic extremes, which is most apparent in Figure 4-25A. On the contrary, the FF 

neural network model has the tendency to underestimate elevated glycemic extremes 

(>150 mg/dl). Due to these tendencies, the TLFF model predicted more elevated 

glycemic extremes (88.1%) than the FF neural network model (67.6%). Further 

performance analysis revealed that the FF neural network model predicted a higher 

percentage of the normal glycemic extremes (93.8%) than the TLFF model (72.8%).  
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Overall, the FF neural network model architecture generated more accurate 

predictions with an overall error (MAD%) of 7.4%. The TLFF neural network model had 

a higher overall error of 8.7%.   CEGA revealed that 100% of predicted glucose values by 

each model approach were clinically acceptable with all predictions contained within 

regions A and B of the error grid. CEGA further substantiated that the FF model 

architecture generated more accurate predictions than the TLFF model. In comparing the 

two modeling approaches, the FF model had 94.2% of predicted values within region A 

of the error grid and 5.8% of predicted values within region B of the error grid. 

Conversely, the TLFF model had only 90.7% of predicted values within region A of the 

error grid and the remaining 9.3% of predictions within region B.   

 Comparison of the multifunctional model performance in predicting general and 

specific glucose states revealed that models perform similarly in prediction of general 

glycemic states with >99% of normal glycemic states being predicted by both modeling 

approaches. Furthermore, models predict the same percentage of general hyperglycemic 

(elevated glucose) states (88.6%). In comparing model predictive accuracy in prediction 

of specific glycemic states, prediction of the lower normal glycemic state 2 was slightly 

higher in the TLFF model (49.4%) versus the FF model (47.4%). Prediction of the normal 

glycemic state 3 was slightly higher in the FF model (80.8%) versus the TLFF model 

(77.3%). Prediction of the upper normal and elevated glycemic state 4 was slightly higher 

in the FF model (74.6%) versus the TLFF model (72.7%). The prediction of elevated 

glycemic state 5 was significantly higher in the TLFF model (70.6%) versus the FF model 

(42.2%).   

A plausible explanation for the overestimation of normal glycemic extremes by 
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the TLFF and underestimation of the hyperglycemic extremes by the FF neural network 

model are the differences existent between model architectures. The TLFF architecture 

contains memory structures to store historical neural network input values which give the 

model the ability to process information in time. The glucose data from the two critical 

care patients utilized to test model performance contained regions where there were 

sustained incidences of elevated glycemic extremes. The TLFF modeling approach 

performs more accurately at prediction of such sustained elevated glucose extremes in 

that memory structures and variable forward and back propagation trajectories help 

identify that glucose concentrations have been sustained over time. On the contrary, the 

FF neural network model does not contain such memory structures or variable trajectories 

and therefore are more ―reactive‖ to only recent changes in glucose.  Overall, both model 

approaches have reduced accuracy when large rates of change in glucose are experienced. 

This is due to the implementation of a significant prediction horizon of 75 minutes. 

Larger prediction horizons are associated with reduced model predictive accuracy as 

demonstrated in section 4.2.5 and Figures 4-24A, 4-24B, and 4-24C.        

Implementation of a complex TLFF model architecture is associated with an 

increased ability to predict elevated (hyperglycemic) glucose extremes. The 

implementation of a reduced complexity FF neural network model architecture resulted in 

an increased ability to predict normal glycemic extremes and had more accurate 

predictions overall. There are other pros and cons in regards to the implementation of 

TLFF or FF neural network models.  

The existence of memory structures in the TLFF model design can have positive 

and negative implications. The utilization of memory structures to track changes in past 
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neural network inputs, is of significant benefit when changes in past neural network 

inputs are indicative of real-time changes in glucose. These memory structures can be 

detrimental to model predictive accuracy if past glucose values are stable and sustained 

and there is a sudden rapid increase or decrease in glucose. The memory provided to the 

model for predictions would not include this rapid change in glucose in subsequent 

predictions until the trend in glucose is integrated into model memory.   Implementation 

of complex TLFF neural network models require more computation time in terms of 

training, and real-time prediction of glucose in the developed real-time application. The 

increased computation time is due to the more complex architecture containing more 

weights, hidden layers, and the existence of memory structures which require further 

processing time for weight adaptation and optimization.  Implementation of such a TLFF 

model due to increased computational time does not easily generate predictions within the 

sampling rate (5 minutes) of the CGM device. Given further advances in computational 

technology the advent of portable computer technologies with higher processing power 

would likely be able to accommodate the implementation of complex TLFF models in 

real-time.  

Implementation of reduced complexity FF models are associated with a higher 

degree of accuracy, and resulted in the prediction of a higher percentage of normal 

glucose values. These models are however limited in that lack of memory structures in 

the design do not enable the processing of data in time and pattern recognition in 

historical neural network input data. These neural network models are perhaps the most 

suitable model architecture in real-time applications (due to the reduced complexity of the 

model architecture) as the computation time required for training and real-time prediction 
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is much less than the complex TLFF model. These models are capable of generating 

predictions well within the sampling rate of a CGM device and allow additional time for 

post-processing of model output such that increased model accuracy can be achieved. FF 

models generated in this investigation also implement a forward and back propagation 

trajectory of a single sample which enables the adaptation of model weights based on the 

most recent changes in glucose, which allows the model to track rapid changes in glucose 

more accurately. There are limitations to this FF model architecture as well.  When past 

glucose values remain stable and there is a sudden increase or decrease in glucose, the FF 

model predictions will react to this recent change. If this recent change does not persist 

and glucose returns to values near its previously sustained state, the generated model 

predictions may overcompensate for the sudden change in glucose and model accuracy 

will decrease. 

In both model implementations overall model accuracy is well within the reported 

error range of the CGM device of 14.0-21.0%. [123] Furthermore, CEGA of the 

predictions generated by the modeling approaches indicated that 100% of predictions 

were clinically acceptable and fell with regions A and B of the error grid. [114,126] In 

both model implementations, a majority of the predictions (>90%) fell within region A of 

the error grid and had error within 20.0% of the reference CGM device glucose 

measurement. Further investigation into optimization of both TLFF and FF model 

implementations for glucose prediction is warranted. These preliminary results indicate 

that utilization of such a predictive system for intelligent therapeutic direction and 

automation for maintaining tight glycemic control in the critical care patient population 

may be possible within the near future. 
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5.5.7 Preliminary Weight Analysis: Correlation to Neural Network Model Performance 

 The preliminary weight analysis completed in this investigation and summarized 

in section 4.2.7 of this document provides insight which can be used for future model 

optimization, as well as insight into how real-time CGM values and medical records may 

impact future glycemic excursions and neural network model performance. This 

preliminary weight analysis focuses only on the first of two output bias axon weights. 

This output axon weight value acts as an offset value to determine the final predicted 

glucose concentration value via adding the weight value to the neural network value 

output from the hidden layer and after output synapse weights are applied. Weight values 

were updated during real-time model training and prediction of glucose was obtained 

using the developed real-time predictive application. 

 Weight analysis revealed that the detected occurrence of tachycardia in real-time 

has an increased correlation with model performance across the model prediction horizon 

(from short term to long term MAD%). This result indicates that adaptation of model 

weights in the output layer which occur with detection of tachycardia in real-time will 

have more of an effect on predicting glucose in the long term than in the short term. This 

finding is important to gauge the overall effect of tachycardia on future glucose 

concentration. Results acquired via weight analysis demonstrate that tachycardia has 

effects on glucose which are seen in the time period 55-75 minutes after the detection of 

tachycardia in real-time. As identified in Figure 4-29, there are patterns in glucose which 

occur after tachycardia and no insulin delivery in critical care patients.  An overall 

increase in glucose is observed in the time period 75 minutes after this detected 

occurrence of tachycardia. Preliminary weight analysis determined that output axon 
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weight values will have more of an impact on predictions in the 55-75 minute range of 

the model prediction horizon. This time frame is therefore warranted of future 

investigation to determine the overall effect of tachycardia on glucose such that model 

accuracy can be optimized.    

 Correlation analysis of output axon weights with respect to the occurrence of 

various real-time glucose concentrations with and without delivery of insulin also alluded 

to various time domains with which model performance and weight values were 

associated. Insulin delivery and occurrence of various glycemic thresholds was correlated 

with model performance in the long term (55-75 minutes into the prediction horizon). It is 

hypothesized that this is due to the delivery of insulin which will is usually correlated to a 

reduction in glucose concentration. This reduction in glucose will likely occur across the 

model prediction horizon, and results of weight analysis indicate that modification of 

output axon weight values will affect performance in the latter duration of the model 

prediction horizon. Future research needs to be completed to identify glycemic responses 

after insulin delivery given the occurrence of real-time CGM at the various glycemic 

thresholds defined in this investigation.  

 Real-time occurrence of extremely elevated glucose concentrations (>190 and 

<240 mg/dl) and insulin delivery is highly correlated with model performance and output 

axon weight values in the short term time domain (5-25 minutes) of the model prediction 

horizon. This is hypothesized to be due to the aggressive delivery of insulin which is 

routinely administered via the University of Toledo Medical Center insulin infusion 

protocol. The delivery of this insulin will likely cause glucose concentration to rapidly 

decrease during the initial 5-25 minutes after the elevated glucose and corresponding 
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insulin delivery. This is hypothesized as the reason why model performance has a higher 

correlation during the short term duration of the model prediction horizon as insulin 

delivery dominates in this time domain. This preliminary weight analysis effectively 

identifies the time domain in which identification of glycemic responses following 

extremely elevated glucose concentration and insulin delivery needs to be completed such 

that model weights and overall predictive accuracy can be optimized.    

 Overall, the various time domains identified via weight analysis will need to be 

subjected to further investigation to determine patterns or trends in glucose which occur. 

After determining these patterns, weight values and consequently model performance 

during these time domains can be optimized. The determination of optimal model weights 

depending on the real-time occurrence of CGM values, and events such as insulin 

dosages, or tachycardia as utilized in this preliminary analysis will lead to development of 

algorithms which can be used to assist real-time training/prediction in the neural network 

models developed in this investigation. Further expansion of this weight analysis to 

analyze weight values in other neural network model layers and their correlation to real-

time input data and model performance will be the subject of future research endeavors.   

 

5.5.8 Real-time Prediction of Glucose: Testing Model Performance in Five Critical Care 

Patients  

 In this investigation, the model performance of the neural network models 

implementing a prediction horizon of 75 minutes were tested in real-time using data from 

five critical care patients not utilized for model training. The real-time predictive 

application was configured for two different implementations. The first implementation 
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included utilization of the real-time predictive application for real-time training (updating 

of model weights via backpropagation training with gradient descent with momentum 

training algorithm) and prediction of glucose. The second implementation was the 

prediction of glucose using original model weights determined via model training and no 

real-time training.  

 The prediction of glucose using the original model weights resulted in higher 

predictive accuracy than the implementation of the real-time training (weight update) 

method. Utilization of original model weights resulted in predictions with an overall error 

(MAD%) of 9.0%. Conversely, implementation of the weight update method resulted in 

predictions with an overall error (MAD%) of 18.0%. The error achieved via the weight 

update method therefore had double the predictive error of the model implementing 

original weights.   Figure 4-27 demonstrates the prediction of each implementation. 

Figure 4-27A includes the prediction of glucose utilizing the real-time training (weight 

update) method. Glycemic predictions generated by the weight update method track 

trends and rate of change in glucose concentration accurately, however, there are 

numerous instances where overestimation of glucose values occur.  Overestimation of 

glucose values generally occurs at normal glucose values (>90 & < 120 mg/dl). This 

observed overestimation can be attributed to the fact that real-time training and prediction 

was completed using a training set of only 800 values. Models trained using such a 

limited training set would result in decreased model performance which may explain the 

overestimation and error experienced in predicting glucose at these glycemic extremes. It 

is important to note that this training set length was selected as it was the maximum 

length in which model predictions could be generated within the sampling rate of the 
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CGM device given implementation of real-time model training. Implementation of this 

training set length would therefore be ideal for a real-time predictive application in its 

current state.  

 Predictions derived from real-time model training sometimes overcompensate for 

real-time rates of change in glucose. This phenomena is demonstrated in Figure 4-27A.  

This is due to the fact that model weights are updated after each CGM value (exemplar) 

in the training set. Weights updated after the 800th (current real-time) CGM value will 

incorporate the current real-time rate of change into model predictions. The 

overcompensation for real-time rates of change in glucose does not occur frequently, and 

the ability of the neural network model to accommodate for real-time rates of change in 

glucose may be more beneficial to overall model performance.  

Although overestimation of glucose values within the normal glycemic range (>90 

&< 120 mg/dl) was experienced, real-time training/prediction resulted in the prediction of 

a large majority of both normal (>70 and <150 mg/dl) and elevated (>150 mg/dl) 

glycemic extremes (77.7% and 80.0% respectively). Implementation of original model 

weights predicted a significantly higher percentage of normal extremes, but predicted less 

hyperglycemia than the weight update method. The original model weight method 

predicted 96.7% of normal glycemic extremes but only 53.6% of elevated glycemic 

extremes. The reduced ability of the original weight method to predict elevated glycemic 

extremes is likely due to the fact that weight values are maintained during prediction. 

Conversely, in the weight update method, weights are updated due to real-time rates of 

change in glucose and would result in the model to have an increased ability to predict 

elevated glycemic extremes. This is an excellent example where real-time model training 
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for prediction of glucose is beneficial to model performance.   

CEGA of predictions generated via both model implementations indicated that 

greater than 99.8% of predicted glucose values were clinically acceptable and fell within 

regions A and B of the error grid. The original weight method had 100% of predictions 

which could be considered as clinically acceptable determined via CEGA, with 87.3% 

and 12.7% of predictions falling within regions A and B respectively. The real-time 

training method resulted in 99.9% of model predictions which could be considered as 

clinically acceptable determined via CEGA, with 62.1%, 37.8% predictions falling within 

regions A and B of the error grid respectively. There were a small number 8 predicted 

values (0.1%) which fell within region C of the error grid which could lead to inaccurate 

and adverse therapeutic direction. 

The data from the five patients utilized for model performance analysis did not 

contain any hypoglycemic extremes (CGM <70 mg/dl). The models generated in this 

investigation were not developed with training sets which contained a significant quantity 

of hypoglycemia. The training sets utilized for model development contained only 901 

hypoglycemic glucose values which corresponded to only 4.5% of the comprehensive 

model training sets. There were however, a significantly larger number of elevated and 

normal glycemic extremes in the model training sets.  The model training sets consisted 

of 83.8% of normal and 11.7% of elevated glycemic extremes. It is hypothesized that the 

developed neural network models would overestimate hypoglycemic extremes due to this 

training set composition.  This reduced ability to predict hypoglycemic extremes was 

observed in preliminary neural network model development for prediction of critical care 

patients included in section 4.2.3 and in insulin dependent diabetic patients. [127] 
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Overall, implementation of both modeling implementations exhibited 

considerable predictive accuracy with errors falling within the reported range of CGM 

devices of 14.0-21.0%.[123] CEGA of the predictions generated via each implementation 

indicated that >99.8% of model predictions could be considered clinically acceptable and 

not lead to inaccurate therapeutic direction. Neural network modeling is well suited for 

prediction of glucose in a real-time critical care setting given the model’s ability to adapt 

to trends/patterns observed in medical records and CGM data. Given changes to patient 

state which correlate to future changes in glucose, a neural network model such as the 

model implementing real-time training developed in this investigation may be ideal for 

prediction of glucose and intelligent therapeutic direction and automation. Future research 

will be completed to optimize such model implementations. Techniques to enhance 

model predictive accuracy include the development of post-processing algorithms which 

will modify neural network model output given the occurrence of certain events, real-time 

medical records, and given changes in real-time CGM data. Preliminary post-processing 

algorithm implementation will be discussed in the next section of this chapter (5.5.9).             

 

5.5.9  Preliminary Post-Processing Algorithm Implementation to Enhance Predictive 

Accuracy 

   The models developed in this investigation successfully predict trends/patterns 

in glycemic excursions within various critical care patients. The models were configured 

with a significant prediction horizon of 75 minutes, which leads to a reduction of model 

accuracy at times. Improvement of modeling accuracy can be achieved via generation of 

a post-processing algorithm which modifies neural network predictive output given the 
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detection of events and CGM values in real-time. In this investigation, the development 

and testing of a preliminary post-processing algorithm which modifies neural network 

output given the occurrence of various levels of tachycardia (near, onset, moderate, and 

severe) at a variety of CGM values (glycemic thresholds) was completed. In addition to 

post-processing based on the occurrence of tachycardia, a post-processing algorithm 

which accommodates for differences in real-time and predicted CGM values is assessed. 

Research completed by Palatini et al demonstrated that high blood pressure and 

corresponding tachycardia can be linked to increased glucose concentration. [128] The 

current literature does not fully correlate the occurrence of tachycardia with future 

glycemic responses. The utilization of CGM provides a significant source of data in 

which trends in glucose following tachycardia can be identified.   Figure 4-29 includes 

patterns in CGM results in 15 critical patients with elevated glucose and tachycardia who 

did not receive any insulin and resulted in an overall increase in glucose concentration in 

the time period 75 minutes after the detected occurrence of tachycardia (>90 bpm). 

Patterns such as these provide the hypothetical construct for development of an event 

based post-processing algorithm to adjust model predicted output due to real-time 

occurrence of tachycardia.  

The event based post-processing algorithm implemented various third order 

polynomial functions to model future glycemic responses at various CGM glycemic 

thresholds and degrees of tachycardia. A third order polynomial function was chosen to 

model these responses as such a function would be able to model some of the variability 

in glycemic responses which occur in this patient base more effectively than first or 

second order models. Further investigation into generating higher order models or 
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alternative modeling techniques to estimate these glycemic responses will be subject of 

future investigation.  

There were a total of 10 detected occurrences of tachycardia in the 5 critical care 

patients utilized for model performance analysis. The post-processing algorithm was 

applied following these detected occurrences of tachycardia and model performance of 

the unprocessed predictions was compared with the post-processed predictions. Figure 4-

30 contains neural network model predictions (implementing a prediction horizon of 75 

minutes) before and after event-based post-processing. It is demonstrated that post-

processing results in increased accuracy. The post-processed model output does not 

model the overall extent of glycemic variability (peaks and valleys). This performance is 

due to the limited nature of utilizing a third order polynomial model fit as previously 

discussed. The post-processed predictions provide an accurate estimation of the final 

glucose value in model prediction horizon (glucose value 75 minutes after tachycardia).  

Tables 4-36 and 4-37 summarize CEGA and predictive performance of the neural 

network predictions before and after post-processing. These results demonstrate that 

model accuracy is significantly higher after implementation of the post-processing 

algorithm as a MAD% of 12.1% is obtained in comparison to the MAD% of 26.7 

obtained without application of the post processing algorithm.  

Prediction of glycemic extremes also improved after post-processing as 100.0% 

of normal (>70 and <150 mg/dl) and elevated (>150 mg/dl) glycemic extremes were 

predicted. Conversely, 63.7% and 53.3% of normal and elevated extremes were predicted 

without post-processing implementation. Predictions with and without post-processing 

were all clinically acceptable as indicated by CEGA. CEGA revealed however, post-



179 
 

processing implementation resulted in predictions with significantly higher accuracy as 

86.7% of predictions falling within region A of the error grid. In contrast, only 27.3% of 

predictions fell within region A without post-processing.    

The data set utilized for neural network model training and prediction contains a 

variety of factors/events in patient medical records which are indicators or impact future 

glycemic trends. Development of further event based post-processing such as the 

tachycardia based post-processing algorithm outlined in this dissertation will lead to 

enhancement in model performance. For example, post-processing algorithms can be 

generated which account for the effect of certain medications on future glucose 

concentrations. As demonstrated in this investigation, the utilization of such event-based 

post-processing algorithms may lead to enhancement and increased applicability of the 

neural network based models for glycemic forecasting in the critical care setting. 

     Predictions generated by the neural network model implementing real-time 

training and weight adaptation track the overall trends in glycemic excursions across the 

model prediction horizon accurately. A major source of error in model predictions is the 

existence of an offset between actual and predicted glucose values which occurs when 

overestimation of glucose occurs. CGM provides a tremendous advantage in that it 

provides glucose measurements every five minutes. Using the frequent sampling of 

glucose concentration by the CGM device can provide a secondary method of post-

processing. During time periods where model predictions overestimate or underestimate 

glucose concentration, the offset existent between the current real-time CGM 

measurement and the first predicted CGM in the neural network model output can be 

calculated. The addition of this offset to the initial predicted glucose value may be 
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utilized to enhance model predictive accuracy. If this calculated offset is not large and the 

model predictions are accurate, model accuracy will not be affected.  Due to the fact that 

model predictions accurately follow rates of change in glucose across the model 

prediction horizon, the rate of change in the predicted glucose concentration is 

maintained. Given the threshold of the current real-time glucose concentration, the rate of 

change in predicted concentration is weighted as outlined in section 3.3.10 of this 

document. This weighting is completed as glucose values will have more potential to 

change at elevated glucose extremes than at hypoglycemic or lower normal glucose 

concentrations. The implementation of this glycemic offset based post-processing 

algorithm was applied to the predictions generated using the five critical care patient data 

set for model performance analysis.            

 Implementation of both event-based (tachycardia) and glycemic offset based 

post-processing algorithms significantly increased model predictive accuracy. Figure 4-

31 demonstrates the increased accuracy obtained via implementation of the post-

processing algorithm implementations. Regions where overestimation or underestimation 

of glucose values occur are compensated for via post-processing algorithm 

implementation. In terms of overall model performance, post-processing resulted in 

reduction of overall model error (MAD%) from 18.0% to 7.1% (an improvement of 

10.9%). Furthermore, CEGA of post-processed model predictions supported the observed 

increase in model accuracy as 93.2% and 6.7% of predictions fell within regions A and B 

of the error grid. Before post-processing implementation 62.1% and 37.8% of predictions 

fell within regions A and B of the error grid. Post-processing did result in 0.06% of 

predicted values falling within regions C and E of the error grid which would have led to 
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adverse therapeutic direction. These undesirable predictions are infrequent and occur 

when model predictions overcompensate for a positive (increasing) rate of change in 

glucose. The addition of the offset incurred via post-processing therefore results in 

overestimation of glucose concentration and prediction of a false elevated glucose 

concentration.     Post-processing implementation was also correlated with an increase in 

percentage of glycemic extremes predicted. After post-processing 94.5% and 86.8% of 

normal (>70 and <150 mg/dl) and elevated extremes (>150 mg/dl) were predicted, 

whereas only 77.7% and 80.0% of these extremes were predicted before post-processing.   

Preliminary implementation of event-based and glycemic offset based post-

processing algorithms resulted in a significant increase in model performance. Overall 

model error and the percentage of predictions which could be regarded as clinically 

acceptable were well within desired ranges. [114,123,126]  The application of neural 

network models coupled with post-processing for prediction of glucose in real-time for 

intelligent therapeutic direction/guidance and ultimately automation in the critical care 

setting is therefore, an extremely promising concept. These results warrant future 

investigation and optimization of post-processing implementations such that further 

enhancement in model performance may be achieved.   

 

5.6 Summary of Neural Network Models for Prediction of Glucose 

 While previous modeling techniques for prediction and control of glucose in 

critical care patients, and patients with diabetes have had considerable success, it is 

hypothesized that a modeling technique which can account for the effect of a variety of 

factors on future glycemic excursions may be a useful alternative modeling approach. 
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Neural network models are modeling techniques capable of determining the effect of 

various input/predictor variables on a variable to be predicted. The application of neural 

network modeling toward prediction of glucose in these patient populations is therefore 

well suited.    

 Neural network models generated in this investigation and utilized for real-time 

prediction of glucose in critical care patients, and patients with insulin dependent diabetes 

provide a promising technique for providing therapeutic direction/guidance. Future 

research leading to increased predictive accuracy will result in a predictive system which 

can be used for therapeutic automation via semi-closed loop and closed loop insulin 

infusion. Models generated in this investigation in their current state can be potentially 

utilized (using clinical judgement) for intelligent therapeutic guidance. Models have 

accuracy which fall within the reported error ranges of CGM devices with respect to 

serum glucose concentration, and CEGA established that >90.0% of model predictions 

can be regarded as clinically acceptable and not lead to adverse therapeutic direction.  

 Results of this investigation substantiate that utilization of a patient specific model 

(i.e. neural network model trained for prediction in single patient) results in more accurate 

predictions than a general model (trained using data from multiple patients). Such a 

patient specific model would be beneficial for both patient populations, however, may be 

of more significant benefit in patients with diabetes. These outpatients have considerable 

variability in daily glycemic excursions which can be attributed to day to day differences 

in factors such as but not limited to: lifestyle/activities (sleep-wake cycles, exercise, etc), 

nutritional/dietary intake, and emotional states (i.e. stress, depression, etc). Patients with 

diabetes only monitor glucose 3-6 times daily therefore, utilization of CGM and 
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predictive models for glucose would be of direct benefit. Conversely, critical care patients 

are monitored in a hospital setting where such factors are controlled. For example, POC 

glucose values are obtained more frequently every 1-4 hours. Due to this increased 

monitoring and utilization of aggressive insulin infusion protocols, glycemic variability in 

critical care patients is much less than the variability present in insulin dependent 

diabetic.   While a patient specific model in critical care has been shown to have 

increased accuracy, a general model would have more applicability than in insulin 

dependent diabetic patients.     

 Neural network models developed in this investigation were configured as 

multifunctional neural network models i.e. the models predict two outputs: glucose 

concentration and classified ranges of glycemic states. A majority of general glycemic 

states (normal, and high/hyperglycemic) were predicted in both patient populations. In the 

diabetic patient population >88.0% of general normal and >70.0% of general 

hyperglycemic states were predicted. In the critical care population, >99.0% and >88.0% 

of general normal and hyperglycemic extremes were predicted successfully. The 

predictions of specific glycemic states 1-7, were not as accurate as prediction of general 

glycemic states, but more accurate in the critical care patient population. A 

multifunctional neural network model as implemented in this investigation will provide a 

means of assessing accuracy of model predictions. If both predicted glucose 

concentration and glycemic state values coincide with each other, the generated model 

predictions are likely accurate. Further development and optimization of these 

multifunctional neural network models will result in increased model performance. 

 While various modeling techniques such as but not limited to: autoregressive 
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models, control algorithms, and neural network modeling have been implemented for 

prediction and optimization of glycemic control, the neural network models designed in 

this investigation differ from previous modeling techniques. These neural network models 

incorporate the effect of various factors to predict future glycemic trends, and provide a 

unique alternative modeling approach with the ability to predict glucose using significant 

prediction horizons >60 minutes.  Modeling is completed using CGM technology which 

provides glucose measurements every 1-5 minutes depending on technology. The 

utilization of neural network modeling utilizing CGM technology is a promising 

technique and an innovate concept, and has only recently been addressed in the 

literature.[127] Sparacino and colleagues who previously developed an autoregressive 

model for prediction of glucose have recently shifted focus of their research efforts 

towards development of a neural network approach for real-time prediction of glucose 

(implementing prediction horizons of 15,30, and 45 minutes) using CGM technology. 

[36,129] Neural network model development and application in the critical care patient 

population has not been addressed in the literature to date, and the investigation outlined 

in this document is an innovative concept. Research regarding development and 

optimization of such predictive models is warranted and will be subject of future 

investigation for optimization of therapy and outcome in the diabetic and critical care 

patient populations. 

There is no controversy that optimized and tight glycemic control in patients with 

diabetes is needed to avoid adverse outcomes and complications such as but not limited to 

nephropathy, neuropathy, and retinopathy. [1-4] A current study (NICE-SUGAR) is being 

completed to determine if tight glycemic control in hosptial/critical care patients is 
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beneficial or not, and has led to controversy in the field. [130] Preliminary results of this 

study indicate that tight glycemic control is linked to adverse outcomes in critical care 

patients. This may be associated with an increased occurrence of a significant number of 

incidences of hypoglycemia in the patient populations studied due to aggressive insulin 

therapy. Hypoglycemia has been linked to adverse outcomes in critically ill patients as 

well. [110]  Although the advent of the NICE-SUGAR study has raised questions in terms 

of whether tight glycemic control is beneficial, more research exists which affirms there 

is improvement in patient outcomes (i.e. reduction of morbidities and mortality) 

associated with tight glycemic control.[49-52,54,56,65,131]  

 Models for prediction of glucose and optimization of tight glycemic control has 

been a common focus of research efforts in patients with diabetes, but has not received 

considerable attention in the critical care patient population. The utilization of the neural 

network models developed in this investigation for real-time prediction of glucose is a 

promising technique. Models generated in this investigation predict glucose concentration 

using significant prediction horizons (>60 minutes) which have not been obtained in 

many modeling techniques to date. Given the accuracy of the developed models, the 

utilization of these models for intelligent therapeutic direction/guidance for patients and 

clinicians may be within the near future.  Optimization of model accuracy will enable 

model predictions to be used for automation of therapy to obtain tight glycemic control 

and avoid unwanted hypoglycemic and hyperglycemic excursions.   
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5.7 Future Research 

 This dissertation has focused on the development and optimization of neural 

network models for prediction of glucose in diabetic and critical care patients. While the 

models generated in this investigation are accurate in predicting glycemic excursions in 

both patient populations, future research will be focused on further optimization of these 

models and applications to implement these models for intelligent therapeutic guidance, 

recommendation, and automation.  

 The development of patient specific neural network models for prediction of 

glucose will be a major focus of future research. In this investigation, comparison of a 

patient specific model was compared with a general model. The patient specific model 

was significantly more accurate than the general model in predicting glucose 

concentration. Patient specific models will only be possible and beneficial in the critical 

care setting when patients have an extended length of stay in the intensive care unit. A 

significant quantity of CGM and medical records data from a single patient is needed to 

train an accurate neural network model. Therefore, patients with lengths of stay >10 days 

would be candidates for development of patient specific modeling.  

Patient specific modeling would be extremely beneficial in diabetic patients who 

experience significant glycemic variability on a daily basis. Patients with insulin 

dependent diabetes are required to routinely measure glucose concentration and deliver 

insulin to maintain a normal glucose concentration. Various factors impact and are 

indicators of a patient’s daily glycemic variability. These factors include but are not 

limited to lifestyle/activities (e.g. sleep-wake cycles, exercise), emotional states (e.g. 

stress, depression), and nutritional intake. A patient specific neural network model would 
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be able to determine patterns and trends in response to such factors which correlate to 

future trends in glucose.  Due to the routine monitoring of glucose in patients with 

diabetes, large datasets containing CGM data and factors which impact future glycemic 

excursions will be easily acquired. Given availability of such large datasets, training and 

development of patient specific models is an attainable goal for patients with diabetes and 

warranted of future investigation.  

 Neural network models generated in the clinical investigations were 

multifunctional neural network models. These neural network models were configured to 

predict two outputs: actual numerical glucose concentration values and classified ranges 

of glucose values (glycemic states). Preliminary analysis of the predictive accuracy of the 

models in prediction of glycemic states demonstrated that models predict general 

glycemic states (hypoglycemic, normal, and hyperglycemic) accurately. Prediction of 

specific glycemic states (glucose concentration ranges classified from 1-7) was not as 

accurate as prediction of general glycemic states. The reduced accuracy in prediction of 

specific glycemic states is likely due to the limited number of each of the glycemic states 

present in the model training sets. Future research will be aimed at data collection in both 

patient populations, and the acquisition of more CGM data with significant quantities of 

each specific glycemic state. Models generated via larger training sets should result in 

enhancement of model performance in prediction of specific glycemic states.        

 Another focus of future research will be the optimization of predictive accuracy of 

the neural network models in predicting actual numerical glucose concentration values.  

Models generated in this investigation were developed with training sets which did not 

contain a significant number of hypoglycemic reactions. As a result of these limited 
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training sets, model predictions have the tendency to overestimate hypoglycemic 

extremes. Further research will be dedicated to CGM data acquisition in both patient 

populations such that training sets with adequate hypoglycemic data may be achieved. 

The acquisition of further data in both patient populations will provide considerably more 

training data containing hypoglycemic, normal, and hyperglycemic extremes. These 

training sets will result in development of models which should be able to predict each 

glycemic extreme more effectively.  

 The development and implementation of the preliminary post-processing 

algorithm which modified neural network output in response to tachycardia and 

occurrence of real-time CGM data resulted in a significant increase in model 

performance. These results warrant future investigation aimed at development and 

optimization of similar post-processing algorithms. There are many factors in both 

populations which are predictors of future glycemic trends. The analysis of glycemic 

responses in the time periods after occurrence of these various factors will be subject of 

future investigative efforts. The development of post-processing algorithms which predict 

glycemic responses due to the detection of various real-time data presented to the neural 

network model will lead to increased model performance. Furthermore, the analysis of 

trends in real-time CGM data such as rate of change, glycemic thresholds, and offset 

values existent between actual and predicted glycemic responses will enable further post-

processing for enhancement of model accuracy.   

 The key feature of neural network models is the ability to update and optimize 

model weights based on trends and patterns in data presented to the model. The real-time 

predictive application generated in this investigation for prediction of glucose requires 
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further optimization such that real-time training can be optimized. Future research will be 

dedicated to optimization of real-time model training, and analysis of model weights and 

how they are updated in response to various neural network model inputs. Preliminary 

weight analysis completed in this investigation identified time periods within the model 

prediction horizon with which model weight values and predictive accuracy of the model 

are correlated. Analysis of trends in glucose during these identified time domains in 

response to various neural network model inputs will provide a means for optimization of 

real-time model training. 

 A major limitation of the clinical investigations was the data acquisition using the 

developed data-logging software applications. Certain data logged by the patients 

(diabetes investigation) and co-investigators (critical care investigation) may have been 

erroneous due to a variety of factors discussed in sections 5.2 and 5.3 of this dissertation. 

The limitations of these investigations will be addressed in future studies. Future 

collaboration with various institutions is planned to optimize results. Future investigation 

at institutions where electronic medical records are present will enable the optimization of 

the data collection process as well as integrity of the data collected. 

 The models generated in this investigation have predictive error within the 

reported error range of the CGM device. Furthermore, Clarke Error Grid Analysis 

revealed that a majority of predictions generated by the models were clinically acceptable 

and would not lead to adverse therapeutic direction. Given this accuracy, the real-time 

predictive system can be implemented for intelligent therapy assistance, recommendation, 

and ultimately automation. The utilization of the real-time predictive system for such 

therapeutic interventions will be subject of future research endeavors.  Glycemic control 
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obtained via the real-time prediction of glucose will be subjected to future analysis to 

determine the benefit in patient outcome of utilizing the developing modeling approach. 

 The goal of all future research will be the generation of real-time predictive 

systems for diabetic and critical care patients for intelligent therapeutic assistance, 

recommendation, and automation. In patients with diabetes, such a real-time predictive 

system would be incorporated into CGM devices and/or insulin infusion pumps such that 

prediction of glucose will be utilized by patient for therapeutic direction. Given increased 

model accuracy, model predictions can be utilized for semi-closed loop and closed loop 

insulin delivery. In the critical care patient population, a real-time predictive system will 

be a routinely implemented in bedside monitoring (such as an ECG monitor). This system 

will be integrated with electronic medical records and utilization of CGM. Prediction of 

glucose will be available to clinical staff, and ultimately used for closed loop insulin 

delivery for automated tight glycemic control.   Implementation of these predictive 

modeling approaches will result in better glycemic control in both patient populations and 

enhancement of patient safety and care.  
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APPENDIX B 

B.1 Neural Network Model Source Code for Real-time Training/Prediction 

(Dynamic Linked Library Implementation) 

// Create Neural Network Model Components 
LaguarreAxon inputAxon; //Input Axon 
BackLaguarreAxon inputAxonBackprop; //Input Axon Backpropagation Element 
//Backpropagation Element For Calculating Weights Via Gradient Descent With 
Momentum (Input Axon) 
Momentum inputAxonBackpropGradient;  
DataFile inputFile; //Input File Containing Neural Network Input Data 
FullSynapse hidden1Synapse; //Hidden 1 Layer Synapse 
BackFullSynapse hidden1SynapseBackprop; // Backpropagation Element (Hidden Layer 
1 Synapse) 
Momentum hidden1SynapseBackpropGradient; //Backpropagation Element For 
Calculating Weights Via Gradient Descent With Momentum (Hidden Layer 1 Synapse) 
TanhAxon hidden1Axon; //Hidden Layer 1 Tanh Axon 
BackTanhAxon hidden1AxonBackprop; //Backpropagation Element (Hidden Layer 1 
Tanh Axon) 
Momentum hidden1AxonBackpropGradient; //Backpropagation Element For Calculating 
Weights Via Gradient Descent With Momentum (Hidden Layer 1 Tanh Axon) 
FullSynapse outputSynapse; //Outpu Layer Synapse 
BackFullSynapse outputSynapseBackprop; //BackPropagation Element (Output Synapse) 
Momentum outputSynapseBackpropGradient; //Backpropagation Element For 
Calculating Weights Via Gradient Descent With Momentum (Output Layer Synapse) 
BiasAxon outputAxon; //Output Bias Axon 
BackBiasAxon outputAxonBackprop; // Output Axon Backpropagation Element 
Momentum outputAxonBackpropGradient; //Backpropagation Element For Calculating 
Weights Via Gradient Descent With Momentum (Output Bias Axon) 
DataFile outputDesiredDataGraph; //Output Desired File (Neural Network Predicted 
Output and Desired Data) 
DataFile CVOutputDesiredDataGraph; //Output Desired File (Neural Network Predicted 
Output and Desired Data) for Cross Validation 
L2Criterion criterion; //Error Element 
BackCriteriaControl criterionBackprop; //Backpropagation of Model Error from Error 
Element 
DataFile desiredFile; //File Containing Desired Response for Network to Model 
DataFile desiredViewer; //Desired Response Viewer 
DataFile CVDesiredViewer;//Desired Response Viewer for Cross Validation 
DataFile learningCurveDataGraph; // Learning Curve For Neural Network Model  
DataFile MSEViewer; //Mean Squared Error of Model Output 
DataFile CVMSEViewer;//Mean Squared Error of Model Output for Cross Validation 
DynamicControl control; 
BackDynamicControl controlBackprop; 
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DataFile bestFitnessGraph; //Best error for Neural Network Model 
 
//Source Code to Initialize Neural Network Model Configuration  
extern void __cdecl set_pstrauma_params(void) 
{ 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 srand((unsigned)time(NULL)); 
// Component Initialization Within Neural Network Model 
 inputAxon.setTemporalDimension(2); 
 inputAxon.setRows(40); //Set Number of Neural Network Inputs 
 inputAxonBackprop.setTemporalDimension(2); 
 inputAxonBackprop.setRows(40); 
 inputAxonBackpropGradient.setDefaultMomentum(0.0000000000000000e+000); 
 inputAxonBackpropGradient.setDefaultStepSize(0.0000000000000000e+000); 
 inputAxonBackpropGradient.setStepDivisor(200); //Set Divisor for Step Size  
 inputFile.setFilePath("inputFile.asc"); //Set Path for Input File 
 inputFile.setMode(READ,ASCII); 
 inputFile.setSpatialDimension(40,1); 
 hidden1Synapse.setWeightVariance(2.0000000000000000e-002); 
 hidden1SynapseBackpropGradient.setDefaultMomentum(2.413e- 003); 
 hidden1SynapseBackpropGradient.setDefaultStepSize(9.9999998e-003); 
 hidden1SynapseBackpropGradient.setStepDivisor(200); 
 hidden1Axon.setRows(5); //Set Inputs to Hidden Layer 1 
 hidden1AxonBackprop.setOffset(1.000000000e-003); //Offset  Hidden Layer 1 
 hidden1AxonBackprop.setRows(5); 
 hidden1AxonBackpropGradient.setDefaultMomentum(1.668e-001); 
 hidden1AxonBackpropGradient.setDefaultStepSize(1.5714603662490845e-001); 
 hidden1AxonBackpropGradient.setStepDivisor(200); 
 outputSynapse.setWeightVariance(2.3999999999999999e+000); 
 outputSynapseBackpropGradient.setDefaultMomentum(7.7313e-002); 
 outputSynapseBackpropGradient.setDefaultStepSize(2.7087e-001); 
 outputSynapseBackpropGradient.setStepDivisor(200); 
 outputAxon.setRows(2); //Inputs to Output Axon 
 outputAxonBackprop.setRows(2); 
 outputAxonBackpropGradient.setDefaultMomentum(1.384e-002); 
 outputAxonBackpropGradient.setDefaultStepSize(2.8379e-002); 
 outputAxonBackpropGradient.setStepDivisor(200); 
 outputDesiredDataGraph.setFilePath("outputDesiredDataGraph.asc"); 
 outputDesiredDataGraph.setMode(WRITE,ASCII); 
 outputDesiredDataGraph.setSpatialDimension(2,1); 
 CVOutputDesiredDataGraph.setAccessTesting(TRUE); 
 CVOutputDesiredDataGraph.setFilePath("CVOutputDesiredDataGraph.asc"); 
 CVOutputDesiredDataGraph.setMode(WRITE,ASCII); 
 CVOutputDesiredDataGraph.setSpatialDimension(2,1); 
 criterion.setAutoSave(TRUE); 
 criterion.setCheckCostEvery(1000); //Check Error After Every 1000 epochs 
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 criterion.setConfusionThreshold(0.0000000000000000e+000); 
 criterion.setOnIncrease(TRUE); 
 criterion.setBestCost(1.0224302723032389e-002); //Initial Best Error For Model  
 criterion.setTotalNetworkWeights(257); //Total # of Model Weights 
 criterion.setRows(2); 
 criterionBackprop.setRows(2); 
 desiredFile.setFilePath("desiredFile.asc"); 
 desiredFile.setMode(READ,ASCII); 
 desiredFile.setSpatialDimension(2,1); 
 desiredViewer.setFilePath("desiredViewer.asc"); 
 desiredViewer.setMode(WRITE,ASCII); 
 desiredViewer.setSpatialDimension(2,1); 
 CVDesiredViewer.setAccessTesting(TRUE); 
 CVDesiredViewer.setFilePath("CVDesiredViewer.asc"); 
 CVDesiredViewer.setMode(WRITE,ASCII); 
 CVDesiredViewer.setSpatialDimension(2,1); 
 learningCurveDataGraph.setFilePath("learningCurveDataGraph.asc"); 
 learningCurveDataGraph.setMode(WRITE,ASCII); 
 learningCurveDataGraph.setSpatialDimension(1,1); 
 MSEViewer.setFilePath("MSEViewer.asc"); 
 MSEViewer.setMode(WRITE,ASCII); 
 MSEViewer.setSpatialDimension(1,1); 
 CVMSEViewer.setAccessTesting(TRUE); 
 CVMSEViewer.setFilePath("CVMSEViewer.asc"); 
 CVMSEViewer.setMode(WRITE,ASCII); 
 CVMSEViewer.setSpatialDimension(1,1); 
 control.setTerminateWOImprovement(FALSE); 

control.setMaxEpochsWOImprovement(100);  
 control.setPhases(1); 
 control.setCostOfBestWeights(1.0000000000000000e+009); 
 control.setEpochOfBestWeights(0); //First Epoch Cotains Best Model Weights 
 control.setLearningType((NLearningType)0); 
 control.allocateNewLearningGlobals(); 
 control.setWeightsRandomized(FALSE); 
 control.setOptimizeInitialWeights(FALSE); 
 control.setInitialLambda(1.0000000000000000e-002); 
 controlBackprop.setGradientClassName("Momentum"); 
 bestFitnessGraph.setFilePath("bestFitnessGraph.asc"); 
 bestFitnessGraph.setMode(WRITE,ASCII); 
 bestFitnessGraph.setSpatialDimension(1,1);  
 
} 
 
//Source Code to Connect Various Processing Elements Within Feed Forward Neural 
Network Architecture 
extern void __cdecl pstrauma_connect_components(void) 
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 { 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 // Connect Various Elements Within Neural Network Architecture 
 inputAxon.setPreActivityAccess(&inputFile); 
 inputAxonBackprop.setDual(&inputAxon); 
 hidden1SynapseBackprop.setDual(&hidden1Synapse); 
 hidden1AxonBackprop.setDual(&hidden1Axon); 
 outputSynapseBackprop.setDual(&outputSynapse); 
 outputAxon.setActivityAccess(&outputDesiredDataGraph); 
 outputAxonBackprop.setDual(&outputAxon); 
 outputDesiredDataGraph.setStackedAccess(&CVOutputDesiredDataGraph); 
 outputDesiredDataGraph.setPerformNormalization(TRUE); 
 CVOutputDesiredDataGraph.setPerformNormalization(TRUE); 
 criterion.setCostAccess(&learningCurveDataGraph); 
 criterion.setDesiredAccess(&desiredFile); 
 criterionBackprop.setDual(&criterion); 
 desiredFile.setStackedAccess(&desiredViewer); 
 desiredViewer.setStackedAccess(&CVDesiredViewer); 
 desiredViewer.setPerformNormalization(TRUE); 
 CVDesiredViewer.setPerformNormalization(TRUE); 
 learningCurveDataGraph.setStackedAccess(&MSEViewer); 
 MSEViewer.setStackedAccess(&CVMSEViewer); 
 inputAxon.setNext(&hidden1Synapse); 
 inputAxonBackprop.setLast(&hidden1SynapseBackprop); 
 hidden1Synapse.setLast(&inputAxon); 
 hidden1Synapse.setNext(&hidden1Axon); 
 hidden1SynapseBackprop.setLast(&hidden1AxonBackprop); 
 hidden1SynapseBackprop.setNext(&inputAxonBackprop); 
 hidden1Axon.setLast(&hidden1Synapse); 
 hidden1Axon.setNext(&outputSynapse); 
 hidden1AxonBackprop.setLast(&outputSynapseBackprop); 
 hidden1AxonBackprop.setNext(&hidden1SynapseBackprop); 
 outputSynapse.setLast(&hidden1Axon); 
 outputSynapse.setNext(&outputAxon); 
 outputSynapseBackprop.setLast(&outputAxonBackprop); 
 outputSynapseBackprop.setNext(&hidden1AxonBackprop); 
 outputAxon.setLast(&outputSynapse); 
 outputAxon.setNext(&criterion); 
 outputAxonBackprop.setLast(&criterionBackprop); 
 outputAxonBackprop.setNext(&outputSynapseBackprop); 
 criterion.setLast(&outputAxon); 
 criterionBackprop.setNext(&outputAxonBackprop); 
 inputAxonBackpropGradient.setErrorSoma(&inputAxonBackprop); 
 inputAxonBackpropGradient.setForwardSoma(&inputAxon); 
 inputAxonBackpropGradient.setIndividualSteps(FALSE); 
 hidden1SynapseBackpropGradient.setErrorSoma(&hidden1SynapseBackprop); 
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 hidden1SynapseBackpropGradient.setForwardSoma(&hidden1Synapse); 
 hidden1SynapseBackpropGradient.setIndividualSteps(FALSE); 
 hidden1AxonBackpropGradient.setErrorSoma(&hidden1AxonBackprop); 
 hidden1AxonBackpropGradient.setForwardSoma(&hidden1Axon); 
 hidden1AxonBackpropGradient.setIndividualSteps(FALSE); 
 outputSynapseBackpropGradient.setErrorSoma(&outputSynapseBackprop); 
 outputSynapseBackpropGradient.setForwardSoma(&outputSynapse); 
 outputSynapseBackpropGradient.setIndividualSteps(FALSE); 
 outputAxonBackpropGradient.setErrorSoma(&outputAxonBackprop); 
 outputAxonBackpropGradient.setForwardSoma(&outputAxon); 
 outputAxonBackpropGradient.setIndividualSteps(FALSE); 
 } 
 
 
 
 
//Source Code for Setting Up Neural Network Model for Training/Prediction Via 
Backpropagation  
extern void __cdecl pstrauma_setup_run(void) 
 { 
    AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 // Get Ready to Run Network 
 control.prepareToFire(&controlBackprop); 
 inputAxon.setStaticControl(&control); 
 inputAxon.preFireGetReady(); 
 inputAxonBackprop.setStaticControl(&control); 
 inputAxonBackprop.preFireGetReady(); 
 inputAxonBackpropGradient.setStaticControl(&control); 
 inputAxonBackpropGradient.preFireGetReady(); 
 inputFile.setStaticControl(&control); 
 inputFile.preFireGetReady(); 
 hidden1Synapse.setStaticControl(&control); 
 hidden1Synapse.preFireGetReady(); 
 hidden1SynapseBackprop.setStaticControl(&control); 
 hidden1SynapseBackprop.preFireGetReady(); 
 hidden1SynapseBackpropGradient.setStaticControl(&control); 
 hidden1SynapseBackpropGradient.preFireGetReady(); 
 hidden1Axon.setStaticControl(&control); 
 hidden1Axon.preFireGetReady(); 
 hidden1AxonBackprop.setStaticControl(&control); 
 hidden1AxonBackprop.preFireGetReady(); 
 hidden1AxonBackpropGradient.setStaticControl(&control); 
 hidden1AxonBackpropGradient.preFireGetReady(); 
 outputSynapse.setStaticControl(&control); 
 outputSynapse.preFireGetReady(); 
 outputSynapseBackprop.setStaticControl(&control); 
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 outputSynapseBackprop.preFireGetReady(); 
 outputSynapseBackpropGradient.setStaticControl(&control); 
 outputSynapseBackpropGradient.preFireGetReady(); 
 outputAxon.setStaticControl(&control); 
 outputAxon.preFireGetReady(); 
 outputAxonBackprop.setStaticControl(&control); 
 outputAxonBackprop.preFireGetReady(); 
 outputAxonBackpropGradient.setStaticControl(&control); 
 outputAxonBackpropGradient.preFireGetReady(); 
 outputDesiredDataGraph.setStaticControl(&control); 
 outputDesiredDataGraph.preFireGetReady(); 
 CVOutputDesiredDataGraph.setStaticControl(&control); 
 CVOutputDesiredDataGraph.preFireGetReady(); 
 criterion.setStaticControl(&control); 
 criterion.preFireGetReady(); 
 criterionBackprop.setStaticControl(&control); 
 criterionBackprop.preFireGetReady(); 
 desiredFile.setStaticControl(&control); 
 desiredFile.preFireGetReady(); 
 desiredViewer.setStaticControl(&control); 
 desiredViewer.preFireGetReady(); 
 CVDesiredViewer.setStaticControl(&control); 
 CVDesiredViewer.preFireGetReady(); 
 learningCurveDataGraph.setStaticControl(&control); 
 learningCurveDataGraph.preFireGetReady(); 
 MSEViewer.setStaticControl(&control); 
 MSEViewer.preFireGetReady(); 
 CVMSEViewer.setStaticControl(&control); 
 CVMSEViewer.preFireGetReady(); 
 controlBackprop.setStaticControl(&control); 
 controlBackprop.preFireGetReady(); 
 bestFitnessGraph.setStaticControl(&control); 
 bestFitnessGraph.preFireGetReady(); 
 control.preFireGetReady(TRUE); 
 control.setCrossValidationEnabled(FALSE); 
 control.clearEnginesToFire(); 
 control.addToEnginesToFireList(&inputAxon, FALSE); 
 control.determineFiringSequence(); 
 control.fireConfirmReady(); 
 if (control.phases() > 1) { 
 if (control.backpropLearningOn()) { 
  outputDesiredDataGraph.m_bAccessEnabled = FALSE; 
  CVOutputDesiredDataGraph.m_bAccessEnabled = FALSE; 
  desiredViewer.m_bAccessEnabled = FALSE; 
  CVDesiredViewer.m_bAccessEnabled = FALSE; 
  learningCurveDataGraph.m_bAccessEnabled = FALSE; 
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  MSEViewer.m_bAccessEnabled = FALSE; 
  CVMSEViewer.m_bAccessEnabled = FALSE; 
  bestFitnessGraph.m_bAccessEnabled = FALSE; 
 } 
 else { 
  outputDesiredDataGraph.m_bAccessEnabled = TRUE; 
  CVOutputDesiredDataGraph.m_bAccessEnabled = TRUE; 
  desiredViewer.m_bAccessEnabled = TRUE; 
  CVDesiredViewer.m_bAccessEnabled = TRUE; 
  learningCurveDataGraph.m_bAccessEnabled = TRUE; 
  MSEViewer.m_bAccessEnabled = TRUE; 
  CVMSEViewer.m_bAccessEnabled = TRUE; 
  bestFitnessGraph.m_bAccessEnabled = TRUE; 
 } 
 } 
  inputAxonBackpropGradient.fireGetReady(); 
  hidden1SynapseBackpropGradient.fireGetReady(); 
  hidden1AxonBackpropGradient.fireGetReady(); 
  outputSynapseBackpropGradient.fireGetReady(); 
  outputAxonBackpropGradient.fireGetReady(); 
  criterion.fireGetReady(); 
 int updateCounter=0; 
 FILE *loadStream = fopen("PSNNET75.nsw","r"); 
 if (!loadStream) { 
  fprintf(stderr, "Could not open weight file PSNNET75.nsw"); 
  exit(1); 
 } 
 weightFileVersion = getWeightFileVersion(loadStream); 
 
 } 
 
 
 
//Load Neural Network Input File Normalization Coefficients  
extern void __cdecl pstrauma_load_norm_coeff(void) 
{ 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 loadStream = fopen("PSNNet75.nsw","r"); 
 weightFileVersion = getWeightFileVersion(loadStream); 
 //weightFileVersion=243; 
  
 // Load Normalization Coefficients of Files 
 inputFile.loadWeights(seekComponent(loadStream, "File", 
"inputFile"),weightFileVersion); 
 desiredFile.loadWeights(seekComponent(loadStream, "File", 
"desiredFile"),weightFileVersion); 
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 outputDesiredDataGraph.loadWeights(seekComponent(loadStream, "DataGraph", 
"outputDesiredDataGraph"),weightFileVersion); 
 CVOutputDesiredDataGraph.loadWeights(seekComponent(loadStream, 
"DataGraph", "CVOutputDesiredDataGraph"),weightFileVersion); 
 desiredViewer.loadWeights(seekComponent(loadStream, "MatrixViewer", 
"desiredViewer"),weightFileVersion); 
 CVDesiredViewer.loadWeights(seekComponent(loadStream, "MatrixViewer", 
"CVDesiredViewer"),weightFileVersion); 
 
} 
 
 
 
//Load Model Weights for Axons/Processing Elements Within Neural Network 
Architecture 
 extern void __cdecl pstrauma_load_axon_coeff(void) 
 { 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 loadStream = fopen("PSNNet75.nsw","r"); 
 weightFileVersion = getWeightFileVersion(loadStream); 
 //weightFileVersion=243; 
 
 // Load Axon Weights 
 inputAxon.loadWeights(seekComponent(loadStream, "LaguarreAxon", 
"inputAxon"),weightFileVersion); 
 hidden1Axon.loadWeights(seekComponent(loadStream, "TanhAxon", 
"hidden1Axon"),weightFileVersion); 
 outputAxon.loadWeights(seekComponent(loadStream, "BiasAxon", 
"outputAxon"),weightFileVersion); 
 criterion.loadWeights(seekComponent(loadStream, "L2Criterion", 
"criterion"),weightFileVersion); 
 
} 
 
//Load Model Weights (Synapses of Neural Network Model)  
 extern void __cdecl pstrauma_load_synapse_coeff(void) 
 { 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 loadStream = fopen("PSNNet75.nsw","r"); 
 weightFileVersion = getWeightFileVersion(loadStream); 
 //weightFileVersion=243; 
  
 // Load Synapse Weights 
 hidden1Synapse.loadWeights(seekComponent(loadStream, "FullSynapse", 
"hidden1Synapse"),weightFileVersion); 
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 hidden1SynapseBackprop.loadWeights(seekComponent(loadStream, 
"BackFullSynapse", "hidden1SynapseBackprop"),weightFileVersion); 
 outputSynapse.loadWeights(seekComponent(loadStream, "FullSynapse", 
"outputSynapse"),weightFileVersion); 
 outputSynapseBackprop.loadWeights(seekComponent(loadStream, 
"BackFullSynapse", "outputSynapseBackprop"),weightFileVersion); 
 inputAxonBackpropGradient.loadWeights(seekComponent(loadStream, 
inputAxonBackpropGradient.className(), 
"inputAxonBackpropGradient"),weightFileVersion); 
 hidden1SynapseBackpropGradient.loadWeights(seekComponent(loadStream, 
hidden1SynapseBackpropGradient.className(), 
"hidden1SynapseBackpropGradient"),weightFileVersion); 
 hidden1AxonBackpropGradient.loadWeights(seekComponent(loadStream, 
hidden1AxonBackpropGradient.className(), 
"hidden1AxonBackpropGradient"),weightFileVersion); 
 outputSynapseBackpropGradient.loadWeights(seekComponent(loadStream, 
outputSynapseBackpropGradient.className(), 
"outputSynapseBackpropGradient"),weightFileVersion); 
 outputAxonBackpropGradient.loadWeights(seekComponent(loadStream, 
outputAxonBackpropGradient.className(), 
"outputAxonBackpropGradient"),weightFileVersion); 
 control.loadWeights(seekComponent(loadStream, control.className(), 
"control"),weightFileVersion); 
 fclose(loadStream); 
 } 
 
 
 
 
 
//Source Code to Save Neural Network Model Weights After Updating Via Gradient 
Descent Algorithm 
extern void _cdecl saveAllWeights(char *weightsFilePath) 
{  
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 
 
 //Save Neural Network Model Weights at Each Layer to Path char 
*WeightsFilePath 
 
 FILE *saveStream = fopen(weightsFilePath,"w"); 
 if (!saveStream) { 
  fprintf(stderr, "Could not open weight file %s\n", weightsFilePath); 
  exit(1); 
 } 
 writeWeightFileVersion(saveStream); 



232 
 

 inputFile.saveWeights(putComponent(saveStream, "File", "inputFile")); 
 desiredFile.saveWeights(putComponent(saveStream, "File", "desiredFile")); 
 outputDesiredDataGraph.saveWeights(putComponent(saveStream, "DataGraph", 
"outputDesiredDataGraph")); 
 CVOutputDesiredDataGraph.saveWeights(putComponent(saveStream, 
"DataGraph", "CVOutputDesiredDataGraph")); 
 desiredViewer.saveWeights(putComponent(saveStream, "MatrixViewer", 
"desiredViewer")); 
 CVDesiredViewer.saveWeights(putComponent(saveStream, "MatrixViewer", 
"CVDesiredViewer")); 
 inputAxon.saveWeights(putComponent(saveStream, "LaguarreAxon", 
"inputAxon")); 
 hidden1Synapse.saveWeights(putComponent(saveStream, "FullSynapse", 
"hidden1Synapse")); 
 hidden1SynapseBackprop.saveWeights(putComponent(saveStream, 
"BackFullSynapse", "hidden1SynapseBackprop")); 
 hidden1Axon.saveWeights(putComponent(saveStream, "TanhAxon", 
"hidden1Axon")); 
 outputSynapse.saveWeights(putComponent(saveStream, "FullSynapse", 
"outputSynapse")); 
 outputSynapseBackprop.saveWeights(putComponent(saveStream, 
"BackFullSynapse", "outputSynapseBackprop")); 
 outputAxon.saveWeights(putComponent(saveStream, "BiasAxon", 
"outputAxon")); 
 criterion.saveWeights(putComponent(saveStream, "L2Criterion", "criterion")); 
 inputAxonBackpropGradient.saveWeights(putComponent(saveStream, 
inputAxonBackpropGradient.className(), "inputAxonBackpropGradient")); 
 hidden1SynapseBackpropGradient.saveWeights(putComponent(saveStream, 
hidden1SynapseBackpropGradient.className(), "hidden1SynapseBackpropGradient")); 
 hidden1AxonBackpropGradient.saveWeights(putComponent(saveStream, 
hidden1AxonBackpropGradient.className(), "hidden1AxonBackpropGradient")); 
 outputSynapseBackpropGradient.saveWeights(putComponent(saveStream, 
outputSynapseBackpropGradient.className(), "outputSynapseBackpropGradient")); 
 outputAxonBackpropGradient.saveWeights(putComponent(saveStream, 
outputAxonBackpropGradient.className(), "outputAxonBackpropGradient")); 
 control.saveWeights(putComponent(saveStream, control.className(), 
"control")); 
 fclose(saveStream); 
 
} 
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//Source Code for Real-Time Training and Prediction of Glucose  
extern void _cdecl predictGlucose(int infile_length, int outfile_length, int epochs) 
{ 
 //Log Initial Model Weights for Weight Analysis 
    //acquire_weights(); 
 
 // Run Network 
 int samples = 1; //Forward Trajectory 
 int samplesBackprop = 1; //Backpropagation Trajectory 
 //int epochs = 1000; //Number of Epochs 
 int exemplars = infile_length; // Number of Exemplars  
 int exemplarsPerUpdate = 1; //Number of Exemplars Before Weight Update 

//Counter to Determine Number of Exemplars Before Acquiring Weights for 
Weight Analysis 
int wtcount=0;  

  
 //Set up Neural Network Model Training Configuration   

control.setBackpropLearningOn(TRUE);  //Enable Backpropagation Training 
 control.setActiveNumberOfExemplars(infile_length); / 
 control.postFireGetReady(); 
 control.setEpochs(epochs); 
 control.setExemplars(exemplars); 
 control.setEpochCounter(0); 
 for (; control.epochCounter()<control.epochs();) {  
  int phases = control.backpropLearningOn() ? control.phases() : 1; 
  control.setPhaseCounter(0); 
  while (control.phaseCounter()<phases) {  
   control.setExemplarCounter(0); 
for (; control.exemplarCounter()<control.exemplars(); 
control.incrementExemplarCounter())  
{  
    control.setSampleCounter(0); 
 for (; control.sampleCounter()<samples; control.incrementSampleCounter())  

{  
  control.fireEngines(); 
 } 
 if (control.backpropLearningOn() || forceBackpropLearning)  

{ 
  inputAxonBackprop.backpropStarting(); 
  hidden1SynapseBackprop.backpropStarting(); 
  hidden1AxonBackprop.backpropStarting(); 
  outputSynapseBackprop.backpropStarting(); 
  outputAxonBackprop.backpropStarting(); 
  criterionBackprop.backpropStarting(); 
for (int backOffset=0; backOffset<samplesBackprop; backOffset++)  
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{ 
 criterionBackprop.fire(); 
} 
 inputAxonBackprop.backpropComplete(); 

hidden1SynapseBackprop.backpropComplete(); 
hidden1AxonBackprop.backpropComplete(); 

 outputSynapseBackprop.backpropComplete(); 
outputAxonBackprop.backpropComplete(); 

 criterionBackprop.backpropComplete(); 
 control.backpropComplete(); 
 wtcount=wtcount+1; 
 if (++updateCounter >= exemplarsPerUpdate) { 
  //Update Weights Via Gradient Descent With Momentum 

control.updateNetworkWeights(); 
           
inputAxonBackpropGradient.updateWeights(&inputAxon); 
           
hidden1SynapseBackpropGradient.updateWeights(&hidden1Synapse); 

            
    hidden1AxonBackpropGradient.updateWeights(&hidden1Axon); 

       
outputSynapseBackpropGradient.updateWeights(&outputSynapse); 
       
outputAxonBackpropGradient.updateWeights(&outputAxon); 

  control.networkWeightsUpdated(); 
  updateCounter = 0; 
  if(wtcount==800) 
  { 
   //After 800 Exemplars Acquire Weights for Weight Analysis 
   saveAllWeights("PSNNet75.nsw"); // Save Model Weights 
   acquire_weights(); 
   wtcount=0; 
   } 
  } 
    forceBackpropLearning = FALSE; 
  } 
   if (control.networkPaused())  

{ 
    criterion.reportCost(); 
    goto ConcludeFiring; 
     } 
   } 
   control.incrementPhaseCounter(); 
   if (control.phaseCounter() < phases) { 
   if (control.phases() > 1) { 
    control.phaseEnded(control.phaseCounter()); 
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    outputDesiredDataGraph.m_bAccessEnabled = TRUE; 
    CVOutputDesiredDataGraph.m_bAccessEnabled = TRUE; 
    desiredViewer.m_bAccessEnabled = TRUE; 
    CVDesiredViewer.m_bAccessEnabled = TRUE; 
    learningCurveDataGraph.m_bAccessEnabled = TRUE; 
    MSEViewer.m_bAccessEnabled = TRUE; 
    CVMSEViewer.m_bAccessEnabled = TRUE; 
    bestFitnessGraph.m_bAccessEnabled = TRUE; 
   } 
   } 
  } 
  control.incrementEpochCounter(); 
  if(control.epochCounter()==control.epochs()) 
    { 
     
    } 
    else 
    { 
     //Delete Predictions Until Last Epoch  
     desiredViewer.deleteData(); 
     outputDesiredDataGraph.deleteData(); 
      
    } 
 
  NSFloat cost5 = criterion.reportCost(); 
   criterion.m_bIgnoreNextError = FALSE; 
  if (criterion.checkForSaveBest(cost5, FALSE)) 
  { 
   //If Cost Function (Model Error Improves) 
        //Save Best Model Weights 
   saveAllWeights("PSNNet75.bst"); 
   acquire_bstweights(); 
  } 
  criterion.epochEnded(); 
  control.epochEnded(); 
  if ((control.phases() > 1) && control.backpropLearningOn()) { 
   outputDesiredDataGraph.m_bAccessEnabled = FALSE; 
   CVOutputDesiredDataGraph.m_bAccessEnabled = FALSE; 
   desiredViewer.m_bAccessEnabled = FALSE; 
   CVDesiredViewer.m_bAccessEnabled = FALSE; 
   learningCurveDataGraph.m_bAccessEnabled = FALSE; 
   MSEViewer.m_bAccessEnabled = FALSE; 
   CVMSEViewer.m_bAccessEnabled = FALSE; 
   bestFitnessGraph.m_bAccessEnabled = FALSE; 
  } 
  if (control.networkPaused()) 
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   goto ConcludeFiring; 
 } 
  
 ConcludeFiring: 
  control.fireConclude(); 
  if (criterion.checkForSaveBest(criterion.lastUncheckedCost(), TRUE)) 
  { 
   //If (Model Error Improves) 
        //Save Best Model Weights 
   saveAllWeights("PSNNet75.bst"); 
   acquire_bstweights(); 
  } 
   
  //After Training/Prediction Save Model Weights for  
  
  saveAllWeights("PSNNet75.nsw"); 
   
  //Final Weights State Acquired for Weight Analysis 
  //acquire_weights(); 
  
//Close Access to Neural Network Input and Desired Files 
inputFile.closeFile(); 
desiredFile.closeFile(); 
} 
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B.2 MATLAB® Source Code for Post-Processing Algorithm Implementation  
 
%%%%Post Processing Algorithm for Enhancement of NNet Model Accuracy  
%%%%Critical Care Patients 
 
clear all; 
clc; 
 
 
%Load Actual and Neural Network Model Predictions 
 
predict_results = dlmread('PredictCGM1.xls','\t'); 
 
actual_cgm = predict_results(:,1); 
 
predict_nnet = predict_results(:,2); 
 
 
%Load Real-Time Data  
 
rtdata = csvread('inputdatart.csv'); 
 
 
 
rt_hr = rtdata(:,3); 
 
insulin_rt = rtdata(:,35); 
 
rt_cgm = rtdata(:,38); 
 
 
beg_file_length = 800;  
 
%num_iter = length(rt_data)-beg_file_length;  
 
 
 
 
%Predictive Horizon  
 
pw = 15; 
 
num_iter = length(predict_nnet)/pw; 
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%Define Tachycardic Extremes 
 
near_tachy= 90; 
 
onset_tachy = 100; 
 
mod_tachy = 110; 
 
severe_tachy = 120;  
 
 
%Define Glycemic Extremes 
 
hypo_thresh = 70; 
 
norm_thresh = 149; 
 
hyper_thresh1 =  190; 
 
hyper_thresh2 = 240;  
 
hyper_thresh3 = 300;  
 
 
 
 
 
 
%Cycle Through Real-Time CGM Data and Apply Post Processing Algorithm 
%Initial Start and End Indices  
start_ind = 1; 
end_ind = pw;  
 
start_ind_rt = beg_file_length; 
 
%Keep track of historical ROC of CGM 
hist_roc_cgm=[]; 
 
%Cumulative PP results 
 
pp_cum=[]; 
 
 
%Cumulative PP Values Due to TachyCardia 
tachy_pp=[]; 
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tachy_iter=[]; 
 
tachy_nnet =[]; 
 
for i=1:num_iter 
 
    %Real-Time CGM Value 
    rt_cgm_val = rt_cgm(start_ind_rt); 
 
    %Real-Time Insulin Dosage 
    rt_insulin_val = insulin_rt(start_ind_rt); 
     
    predicted_cgm = predict_nnet(start_ind:end_ind); 
 
    if(i>1) 
        rt_roc_cgm = (rt_cgm(i)-rt_cgm(i-1))/5; 
        hist_roc_cgm = [hist_roc_cgm;rt_roc_cgm]; 
         
        if(length(hist_roc_cgm)==pw-1) 
            for j=1:length(hist_roc_cgm) 
                if(j<length(hist_roc_cgm)) 
                hist_roc_cgm(j)=hist_roc_cgm(j+1); 
                else 
                    hist_roc_cgm(j)=rt_roc_cgm; 
                end 
            end 
        end 
         
    end 
    
    %Determine Tachycardic extreme 
 
    near_tachy_ind=0; 
    onset_tachy_ind=0; 
    mod_tachy_ind=0; 
    severe_tachy_ind=0; 
 
    %Near Tachycardia 
    if(rt_hr(start_ind_rt)>=near_tachy&rt_hr(start_ind_rt)<onset_tachy) 
        near_tachy_ind=1; 
    end 
 
    %Onset Tachycardia 
    if(rt_hr(start_ind_rt)>=onset_tachy&rt_hr(start_ind_rt)<mod_tachy) 
        onset_tachy_ind=1; 
    end 
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    %Moderate Tachycardia 
    if(rt_hr(start_ind_rt)>=mod_tachy&rt_hr(start_ind_rt)<severe_tachy) 
        mod_tachy_ind=1; 
    end 
 
    %Severe Tachycardia 
    if(rt_hr(start_ind_rt)>=near_tachy&rt_hr(start_ind_rt)<onset_tachy) 
        severe_tachy_ind=1; 
    end 
 
 
    %Determine Which Post Processing Algorithm Implementation to Implement 
 
 
    %If Tachycardia Detected Implement Event Based PP Algorithm 
 
    if(near_tachy_ind==1|onset_tachy==1|mod_tachy==1|severe_tachy==1) 
 
        if(near_tachy_ind==1) 
 
            hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
 
            %If Hypoglycemic Extreme 
            if(rt_cgm_val<=hypo_thresh) 
 
                %Model Fit Coefficients 
                c1 =  5.53E-05; 
                c2 = -5.35E-03; 
                c3 = 2.11E-01; 
                c4 = 6.55E+01; 
 
                time = 5:5:pw*5; 
                pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
            end 
 
 
 
            %Normal Glycemic Extremes 
            if(rt_cgm_val>hypo_thresh&rt_cgm_val<=norm_thresh) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
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                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -2.67E-05; 
                    c2 = 3.01E-03; 
                    c3 = -2.00E-01; 
                    c4 = 1.18E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.35E-05; 
                    c2 = -1.81E-03; 
                    c3 = -6.22E-02; 
                    c4 = 1.13E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -5.11E-05; 
                    c2 = 5.69E-03; 
                    c3 = 6.44E-02; 
                    c4 = 1.08E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
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                    c1 =  -1.96E-05; 
                    c2 = 2.97E-03; 
                    c3 = -8.92E-04; 
                    c4 = 1.11E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
            end %End Normal Extreme 
 
 
            %Hyperglycemic Extreme 1 
            if(rt_cgm_val>norm_thresh&rt_cgm_val<=hyper_thresh1) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -1.55E-05; 
                    c2 = 2.97E-03; 
                    c3 = -3.38E-01; 
                    c4 = 1.72E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  5.63E-06; 
                    c2 = -5.62E-05; 
                    c3 = -2.3E-1; 
                    c4 = 1.68E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
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                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -2.16E-05; 
                    c2 = 1.31E-04; 
                    c3 = 1.74E-01; 
                    c4 = 1.60E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.63E-06; 
                    c2 = 3.07E-03; 
                    c3 = -1.13E-01; 
                    c4 = 1.654E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
            end %End Hyper1 Extreme 
 
 
 
 
 
            %Hyperglycemic Extreme 2 
            if(rt_cgm_val>hyper_thresh1&rt_cgm_val<=hyper_thresh2) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
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                    %Model Fit Coefficients 
                    c1 =  -2.08E-05; 
                    c2 = 9.31E-03; 
                    c3 = -9.81E-01; 
                    c4 = 1.994E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.24E-06; 
                    c2 = -7.2E-04; 
                    c3 = -2.16E-1; 
                    c4 = 2.14E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  3.92E-04; 
                    c2 = -6.61E-02; 
                    c3 = 3.28; 
                    c4 = 1.90E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %No Model Data Run ROC/Offset PP 
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                end 
 
            end %End Hyper2 Extreme 
 
 
 
 
            %Hyperglycemic Extreme 3 
            if(rt_cgm_val>hyper_thresh2&rt_cgm_val<=hyper_thresh3) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  3.15E-04; 
                    c2 = -4.22E-02; 
                    c3 = 1.25; 
                    c4 = 2.574E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -3.17E-05; 
                    c2 = -3.88E-03; 
                    c3 = -4.98E-1; 
                    c4 = 2.62E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
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                    %Model Fit Coefficients 
                    c1 =  -4.7E-04; 
                    c2 = 6.3E-02; 
                    c3 = -2.32; 
                    c4 = 3.04E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %No Model Data Run ROC/Offset PP 
 
 
 
                end 
 
            end %End Hyper3 Extreme 
 
        end %End Near Tachycardia 
 
 
 
        %%Onset Tachycardia 
        if(onset_tachy_ind==1) 
 
 
            hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
            %If Hypoglycemic Extreme 
            if(rt_cgm_val<=hypo_thresh) 
 
 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  5.53E-06; 
                    c2 = -2.5E-04; 
                    c3 = -1.03E-01; 
                    c4 = 6.96E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
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                end 
 
            end 
 
 
 
            %Normal Glycemic Extremes 
            if(rt_cgm_val>hypo_thresh&rt_cgm_val<=norm_thresh) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  6.01E-05; 
                    c2 = -6.32E-03; 
                    c3 = -3.85E-02; 
                    c4 = 1.19E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  3.86E-05; 
                    c2 = -4.44E-03; 
                    c3 = -8.72E-03; 
                    c4 = 1.16E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
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                    c1 =  1.19E-05; 
                    c2 = -7.46-04; 
                    c3 = 1.27E-01; 
                    c4 = 1.09E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -1.62E-05; 
                    c2 = 2.42E-03; 
                    c3 = 3.64E-02; 
                    c4 = 1.09E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
            end %End Normal Extreme 
 
 
            %Hyperglycemic Extreme 1 
            if(rt_cgm_val>norm_thresh&rt_cgm_val<=hyper_thresh1) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  7.47E-05; 
                    c2 = -5.37E-03; 
                    c3 = -3.96E-01; 
                    c4 = 1.62E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
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                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -1.76E-05; 
                    c2 = 2.78E-03; 
                    c3 = -3.59E-1; 
                    c4 = 1.71E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  2.3E-05; 
                    c2 = -2.93E-03; 
                    c3 = 4.61E-01; 
                    c4 = 1.572E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -5.30E-05; 
                    c2 = 7.69E-03; 
                    c3 = -1.9E-01; 
                    c4 = 1.61E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
            end %End Hyper1 Extreme 
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            %Hyperglycemic Extreme 2 
            if(rt_cgm_val>hyper_thresh1&rt_cgm_val<=hyper_thresh2) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -1.1E-04; 
                    c2 = 1.78E-02; 
                    c3 = -8.82E-01; 
                    c4 = 1.994E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %No Model Fit Implement ROC and Offset Based PP 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  2.35E-04; 
                    c2 = -1.93E-02; 
                    c3 = .332; 
                    c4 = 2.12E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
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                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -9.18E-05; 
                    c2 = 9.80E-03; 
                    c3 = .455; 
                    c4 = 2.061E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
 
 
                end 
 
            end %End Hyper2 Extreme 
 
 
 
 
            %Hyperglycemic Extreme 3 
            if(rt_cgm_val>hyper_thresh2&rt_cgm_val<=hyper_thresh3) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %No Model Fit Implement ROC and Offset Based PP 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -6.00E-04; 
                    c2 = 4.63E-02; 
                    c3 = -1.81; 
                    c4 = 2.532E+02; 
 
                    time = 5:5:pw*5; 
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                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %%No Model Fit Implement ROC/Offset PP 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.51E-05; 
                    c2 = -1.13E-02; 
                    c3 = .959; 
                    c4 = 2.43E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
 
 
                end 
 
            end %End Hyper3 Extreme 
 
 
 
        end %End Near Tachycardia 
 
 
 
 
        %%Moderate Tachycardia 
        if(mod_tachy_ind==1) 
 
 
            hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
            %If Hypoglycemic Extreme 
            if(rt_cgm_val<=hypo_thresh) 
 
                if(hist_insulin>0&rt_roc_cgm<0) 



253 
 

 
                    %Model Fit Coefficients 
                    c1 =  1.74E-05; 
                    c2 = 9.01E-04; 
                    c3 = -4.22E-01; 
                    c4 = 5.9E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -9.2E-04; 
                    c2 = .109; 
                    c3 = -2.73; 
                    c4 = 78.8E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.17E-04; 
                    c2 = -1.433E-04; 
                    c3 = .702; 
                    c4 = 6.3E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
 
 
            end 
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            %Normal Glycemic Extremes 
            if(rt_cgm_val>hypo_thresh&rt_cgm_val<=norm_thresh) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -4.67E-06; 
                    c2 = 4.60E-03; 
                    c3 = -.619; 
                    c4 = 1.29E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.77E-05; 
                    c2 = -2.15E-03; 
                    c3 = -1.1E-01; 
                    c4 = 1.19E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 = 2.91E-05; 
                    c2 = -3.22E-03; 
                    c3 = 2.87E-01; 
                    c4 = 1.20E+02; 
 
                    time = 5:5:pw*5; 
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                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  8.71E-06; 
                    c2 = -3.97E-04; 
                    c3 = 1.55E-01; 
                    c4 = 9.99E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
            end %End Normal Extreme 
 
 
            %Hyperglycemic Extreme 1 
            if(rt_cgm_val>norm_thresh&rt_cgm_val<=hyper_thresh1) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  5.71E-05; 
                    c2 = 3.87E-03; 
                    c3 = -8.64E-01; 
                    c4 = 1.59E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
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                    %Model Fit Coefficients 
                    c1 =  3.66E-06; 
                    c2 = 1.29E-04; 
                    c3 = -3.13E-01; 
                    c4 = 1.76E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.48E-04; 
                    c2 = -1.77E-02; 
                    c3 = 7.6E-01; 
                    c4 = 1.73E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -5.13E-05; 
                    c2 = 1.01E-02; 
                    c3 = -3.26E-01; 
                    c4 = 1.80E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
            end %End Hyper1 Extreme 
 
 
 
            %Hyperglycemic Extreme 2 
            if(rt_cgm_val>hyper_thresh1&rt_cgm_val<=hyper_thresh2) 
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                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
 
                    %No Model Fit Implement ROC and Offset PP 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  6.67E-05; 
                    c2 = -4.08E-03; 
                    c3 = -.323; 
                    c4 = 2.15E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %No Model Fit Implement ROC and Offset Based PP 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -6.6E-04; 
                    c2 = 9.24E-02; 
                    c3 = -2.91; 
                    c4 = 2.218E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 



258 
 

                end 
 
            end %End Hyper2 Extreme 
 
 
 
 
            %Hyperglycemic Extreme 3 
            if(rt_cgm_val>hyper_thresh2&rt_cgm_val<=hyper_thresh3) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %No Model Fit Implement ROC and Offset Based PP 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  7.23E-05; 
                    c2 = -6.73E-03; 
                    c3 = -.189; 
                    c4 = 2.69E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %%No Model Fit Implement ROC/Offset PP 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                end 
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            end %End Hyper3 Extreme 
 
        end %End Moderate Tachycardia 
 
 
        %%Severe Tachycardia 
        if(severe_tachy_ind==1) 
 
 
            hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
            %If Hypoglycemic Extreme 
            if(rt_cgm_val<=hypo_thresh) 
 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %No Model Fit Implement ROC/Offset Based PP 
 
                end 
 
 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %No Model Fit Implement ROC/Offset Based PP 
 
                end 
 
 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %No Model Fit Implement ROC/Offset Based PP 
 
                end 
 
 
 
 
            end 
 
 
 
            %Normal Glycemic Extremes 
            if(rt_cgm_val>hypo_thresh&rt_cgm_val<=norm_thresh) 
 
                %Historical Insulin 
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                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -1.1E-04; 
                    c2 = 1.1E-02; 
                    c3 = -2.54E-01; 
                    c4 = 1.33E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  2.56E-05; 
                    c2 = -3.16E-03; 
                    c3 = -1.96E-01; 
                    c4 = 1.22E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 = -1.46E-05; 
                    c2 = 2.80E-03; 
                    c3 = -2.46E-02; 
                    c4 = 1.09E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
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                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  5.37E-05; 
                    c2 = -7.03E-03; 
                    c3 = 3.89E-01; 
                    c4 = 1.16E+01; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
 
            end %End Normal Extreme 
 
 
            %Hyperglycemic Extreme 1 
            if(rt_cgm_val>norm_thresh&rt_cgm_val<=hyper_thresh1) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.40E-04; 
                    c2 = -6.55E-03; 
                    c3 = -6.44E-01; 
                    c4 = 1.94E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.78E-05; 
                    c2 = -2.66E-04; 
                    c3 = -4.11E-01; 
                    c4 = 1.68E+02; 
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                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  -2.09E-04; 
                    c2 = 1.64E-02; 
                    c3 = 1.07E-02; 
                    c4 = 1.64E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.82E-04; 
                    c2 = -1.45E-02; 
                    c3 = 2.95E-01; 
                    c4 = 1.57E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
            end %End Hyper1 Extreme 
 
 
 
            %Hyperglycemic Extreme 2 
            if(rt_cgm_val>hyper_thresh1&rt_cgm_val<=hyper_thresh2) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
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                if(hist_insulin==0&rt_roc_cgm<0) 
 
 
                    %No Model Fit Implement ROC and Offset PP 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  -3.69E-05; 
                    c2 = 3.22E-03; 
                    c3 = -2.80E-01; 
                    c4 = 2.09E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.98E-04; 
                    c2 = -2.58E-02; 
                    c3 = 1.85; 
                    c4 = 1.95E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  1.28E-04; 
                    c2 = -2.27E-02; 
                    c3 = 1.18; 
                    c4 = 2.15E+02; 
 
                    time = 5:5:pw*5; 
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                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
            end %End Hyper2 Extreme 
 
 
 
            %Hyperglycemic Extreme 3 
            if(rt_cgm_val>hyper_thresh2&rt_cgm_val<=hyper_thresh3) 
 
                %Historical Insulin 
 
                hist_insulin = sum(insulin_rt(start_ind_rt-15:start_ind_rt)); 
 
                %No Insulin Delivery and Decrease in Glucose 
                if(hist_insulin==0&rt_roc_cgm<0) 
 
                    %No Model Fit Implement ROC and Offset Based PP 
 
                end 
 
                %Insulin Delivery and Decrease in Glucose 
                if(hist_insulin>0&rt_roc_cgm<0) 
 
                    %Model Fit Coefficients 
                    c1 =  9.74E-05; 
                    c2 = -1.61E-02; 
                    c3 = -.600; 
                    c4 = 2.59E+02; 
 
                    time = 5:5:pw*5; 
                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
 
                end 
 
                %No Insulin Delivery and Increase in Glucose 
                if(hist_insulin==0&rt_roc_cgm>0) 
 
                    %Model Fit Coefficients 
                    c1 =  2.51E-04; 
                    c2 = -3.44E-02; 
                    c3 = 1.44; 
                    c4 = 2.56E+02; 
 
                    time = 5:5:pw*5; 
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                    pp_predict_fix = c1.*time.^3+c2.*time.^2+c3.*time+c4; 
                end 
 
                %Insulin Delivery and Increase in Glucose 
                if(hist_insulin>0&rt_roc_cgm>0) 
 
                    %No Model Fit Implement ROC/Offset Based PP 
 
                end 
 
            end %End Hyper3 Extreme 
 
        end %End Severe Tachycardia 
 
        for j=1:length(pp_predict_fix) 
             
        pp_cum=[pp_cum;pp_predict_fix(j)]; 
        end 
         
        tachy_iter= [tachy_iter;actual_cgm((i*15-14):(i*15))]; 
         
        tachy_nnet= [tachy_nnet;predict_nnet((i*15-14):(i*15))]; 
         
        for j=1:length(pp_predict_fix) 
             
        tachy_pp=[tachy_pp;pp_predict_fix(j)]; 
        end 
         
 
    else 
        %Implement ROC/Offset Based PP Algorithm 
         
        %Calculate Offset Between First Predicted Value and Current RT CGM 
        offset = rt_cgm_val-predicted_cgm(1); 
         
        roc_predict_cgm = diff(predicted_cgm)./5; 
         
         
       %%%%Based on Glycemic Threshold set ROC Threshold Weight 
        
       w_roc = 1.0; 
        
       if(rt_cgm_val<=hypo_thresh) 
           w_roc=.2; 
       end 
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       if(rt_cgm_val>hypo_thresh&rt_cgm_val<=100) 
           w_roc=.3; 
       end 
        
       if(rt_cgm_val>100&rt_cgm_val<=140) 
           w_roc=.5; 
       end 
        
       if(rt_cgm_val>140&rt_cgm_val<=180) 
           w_roc=.7; 
       end 
        
       if(rt_cgm_val>180) 
           w_roc=.9; 
       end 
        
        
        
        
        
           
        for j = 1:length(predicted_cgm) 
            if(j==1) 
            pp_predict_fix(j)=predicted_cgm(j)+offset; 
            else 
                pp_predict_fix(j) = 5*w_roc*roc_predict_cgm(j-1)+pp_predict_fix(j-1); 
            end 
        end 
 
        for j=1:length(pp_predict_fix)     
        pp_cum=[pp_cum;pp_predict_fix(j)]; 
        end 
             
        
    end 
     
     
     
    start_ind_rt = start_ind_rt+1; 
     
    start_ind = start_ind+pw; 
    end_ind = end_ind+pw; 
     
end 
 
%%% Comparison of PP and Predicted Results 
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ad_predict = abs(actual_cgm-predict_nnet)./actual_cgm*100; 
 
mad_predict = mean(ad_predict);  
 
 
ad_pp = abs(actual_cgm-pp_cum)./actual_cgm*100; 
 
mad_pp = mean(ad_pp); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 


