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INTRODUCTION 

One of the most fundamental challenges in modern drug discovery is obtaining 
satisfactory pharmacokinetic properties of candidate molecules which in turn depend 
mainly on the ability of the compounds to withstand the metabolism of intestinal and 
hepatic enzymes. Among these the superfamily of cytochrome P450 enzymes and its two 
main isoforms CYP3A4 and CYP2D6 play a major role, being responsible for more than 
50% of metabolism of marketed drugs [1]. The susceptibility of a new drug candidate to 
CYP3A4 or CYP2D6 metabolism may compromise its ability to reach the target at a 
required effective concentration or facilitate the induction of drug-drug interactions if 
administered with other substrates or inhibitors of these enzymes [2]. With the increasing 
pressure on the pharmaceutical industry to reduce the time and cost of new drug 
development there is a growing need to improve the success rate and optimize the whole 
process by enabling researchers to pick molecules that will successfully pass the various 
stages of drug development and testing as early as possible in advance [3]. These 
challenges lie at the origins of computational in silico methods aimed at theoretical 
predictions of various ADME (Absorption, Distribution, Metabolism, and Excretion) and 
toxicological endpoints. The regioselectivity of metabolism enzymes is no exception in 
this field as numerous methods have been proposed for the computational assessment of 
this important factor. It is possible to predict metabolism sites of these enzymes using 
quantum mechanical methods alone or in combination with simulated substrate – 
enzyme interactions utilizing known crystal structures of CYP3A4 and CYP2D6 [4-6]. 
However, these methods are usually time consuming and low throughput because of the 
time required to optimize the 3D structure of the query compound and all subsequent 
calculations and suffer from well known flaws of the docking methods if they are used. 
Alternatively the methods and programs also exist that allow identifying all parts of the 
molecule bearing the features that are known to be a prerequisite of the cytochrome P450 
metabolism and therefore obtain a list of all theoretically possible metabolites of 
multiple enzymes. Quite obviously careful and intelligent application of structure based 
regioselectivity prediction methods utilizing the information about enzyme’s active site 
can yield very good results, however, they require more experimental data and are best 
used at later stages of drug development [7]. For cytochrome P450 regioselectivity 
predictions at the earliest possible stage, including virtual library screening, purely 
empirical ligand based methods are the most suitable ones. They are fast, require no a 
priori knowledge about compound metabolism, and provide the simplest way to utilize 
constantly increasing amounts of experimental cytochrome P450 regioselectivity data. 
Up to date several papers have been published describing the prediction of reaction sites 
for some cytochrome P450 superfamily enzymes using fingerprints of know substrates or 
by QSAR models. However, this field of empirical in silico enzyme regioselectivity 
prediction is relatively new and there is still plenty of room for improvement. 

Cytochrome P450 enzymes play a major role in the protection of the organism 
from foreign chemicals (xenobiotics) by facilitating their detoxification and elimination. 
Ironically, sometimes such transformations lead to the intermediates that are more toxic 
than the parent compound being metabolized, resulting in the induction of chemical 
toxicity as well as carcinogenicity. As a result the evaluation of the compound 
metabolism always goes hand-in-hand with the assessment of the toxicological 
properties of the identified metabolites. One of the parameters indicating the potential 
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toxicity of a chemical compound is the median lethal dose (LD50) which indicates the 
dose that kills 50% of animals within 24 hours of administration. This value has been 
within the scope of researchers working in the field of QSAR model development for a 
very long time and a great number of various methods for in silico LD50 predictions have 
been proposed over the years. Many alternative ways for the estimation of acute toxicity 
have been investigated as well, including but not limited to combinations of “expert 
systems” and individual class QSARs, various correlations with in vitro data as well as 
analysis of interspecies dependencies of acute toxicity. However, each one of them has 
its own problems and shortcomings significantly limiting their role as a practical solution 
to the problem of acute toxicity estimation. As a result, despite all the criticism towards 
QSAR models of LD50 and even doubts expressed regarding the feasibility of such 
predictions in general [8, 9], no other methods exist at the moment allowing fast 
estimation of LD50 values for any larger compound set. Recent reviews of the existing 
QSAR methods strongly suggest that they must address the problems of high data 
variability (complex mechanisms and errors) and data gaps (uncharacterized chemical 
spaces). These requirements conform with the latest OECD principles for QSAR 
validation, according to which any such models should be associated with a defined 
“Applicability Domain” (AD) [10], or the “response and chemical structure space in 
which the model makes predictions with a given reliability” [11]. 

The ultimate complexity and variability of both CYP450 enzyme regioselectivity 
and LD50, governed by the huge number of possible mechanisms underlying these 
phenomena, turns them into a very likely subject to various local non-linear effects. All 
these facts make those two properties a very special case as well as an excellent 
challenge for the validation of a methodology capable of QSAR AD assessment, such as 
GALAS (Global, Adjusted Locally According to Similarity) modeling method used in 
this work. The analysis of the acute toxicity has been included among the objectives of 
this work as both being a topic very closely related to the compound metabolism in the 
organism and an intermediate step in complexity between regioselectivity of metabolism 
enzymes and the simple physicochemical properties for which the successful application 
of the GALAS methodology has been already reported. 

Specific aims: 
1. Develop individual acute toxicity (LD50) models using GALAS modeling method 

for the following systems of rodent species and administration routes: mouse 
(oral, intraperitoneal, intravenous, and subcutaneous) and rat (oral and 
intraperitoneal). 

2. Assess the possibilities of the GALAS modeling method application for the 
prediction of atom-centered properties by developing the GALAS regioselectivity 
models for the main metabolic reactions (N-dealkylation, O-dealkylation, 
aromatic and aliphatic hydroxylation) mediated by two major CYP450 isoforms 
(CYP3A4 and CYP2D6). 

3. Evaluate the performance of the main GALAS methodology features (local 
corrections according to similarity, model applicability domain assessment via the 
estimation of prediction reliability and the ability to adapt to the experimental data 
for new compounds) in the context of significantly increased complexity of the 
modeled objects. 
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Scientific novelty: 
Acute toxicity models presented in this work have been developed using one of 

the largest LD50 dataset published up to date and the whole work in this field represents 
one of the most extensive studies on LD50 prediction. 

Both the acute toxicity and regioselectivity models derived during this work 
provide the quantitative estimates of their prediction reliability allowing the effective and 
accurate assessment of the applicability domain of those models 

In addition, the reported regioselectivity models are the first example of the 
GALAS modeling methodology application for the prediction of atom-centered 
properties. 

Practical value: 
All of the reported models conform to one of the main requirements for the 

regulatory acceptance of QSAR models as alternative research methods – the ability to 
evaluate their domain of applicability. This work also serves as a demonstration that 
meeting this requirement of QSAR AD assessment is no longer an ambiguous task. 
Since the GALAS methodology successfully copes with this task in the analysis of such 
complicated properties as acute toxicity or enzyme regioselectivity it may be as well 
adapted to do the same for any properties of similar or lesser complexity. 

The presented possibility to subdivide all the results of the GALAS model into 
several classes that provide information about the expected error of the prediction can be 
used for compound prioritization before experimental testing and even help reduce the 
number of such measurements. 

The illustrated ability of the GALAS model to adapt itself to the new 
experimental data allows the expansion of the applicability domain of the reported 
models to any region of the chemical space. This opens wide possibilities for the 
practical industry ‘in-house’ applications of the reported models based on publicly 
available data. 

Findings presented for defense: 
Individual models have been created for the estimation of the acute toxicity 

towards two rodent species following a number of different administration routes as well 
as for the prediction of CYP3A4 and CYP2D6 regioselectivity in the main metabolic 
reactions mediated by these enzymes (13 individual models in total). 

Each model features the ability of its applicability domain assessment and 
expansion utilizing user-defined new experimental data. 

GALAS modeling methodology has been expanded and adapted for the prediction 
of binary atom-centered properties, i.e. the enzyme regioselectivity. 

Scientific approbation and publication of the presented work: 
The results of this doctoral study have served as the basis for 2 publications in the 

journals included in the Thomson Reuters ISI database, as well as 1 oral and 15 poster 
presentations at the international conferences. 

Content of the dissertation: 
The dissertation has been written in Lithuanian language on 139 pages including 

16 tables, 21 figures, and 144 citations as well as 2 appendices. 
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RESULTS AND DISCUSSION 

1 Data compilations used in the modeling 

1.1 Acute toxicity (LD50) dataset 

LD50 values were taken mainly from the Registry of Toxic Effects of Chemical 
Substances (RTECS®) database [12]. This database was rigorously reviewed and 
“cleaned” by removing any non-covalent complexes, salts, compounds with incorrect 
structures (identified automatically), and unusually high deviations in interspecies 
correlations (animal vs. animal, and administration vs. administration). Whenever 
available, the acute toxicity data from the IUCLID Chemical Data Sheets was used to 
validate, correct or exclude entries of RTECS®. The IUCLID database (accessible on line 
via ESIS, the European chemical Substances Information System) provides information 
on 2,604 high production volume chemicals reported by the European industry in the 
frame of the existing chemicals risk assessment program [13]. Additionally, this database 
provided some new compounds that were not available in RTECS®. The final database 
contained nearly 75,000 compounds in several animal/administration systems, as 
summarized in Table 1. Each data set was randomly dissected into the training (70%) 
and validation (30%) sets. 

 
Table 1. Numbers of compounds in the analyzed acute toxicity (LD50) data sets 

N 
Species Administration 

route Total Training Set Test Set 
Oral (OR) 8,631 6,464 2,167

Rat 
Intraperitoneal (IP) 5,002 3,751 1,251

Oral (OR) 19,571 14,678 4,893
Intraperitoneal (IP) 36,031 27,004 9,027
Intravenous (IV) 19,963 14,972 4,991

Mouse 

Subcutaneous (SC) 8,577 6,432 2,145
 
A recent study on the acute toxicity modeling, involving the analysis of an 

extensive dataset of LD50 values for oral exposure in rats [14], emerged as a source of 
additional valuable data during the course of this work. Upon request, a collection of 
7,385 compounds featured in this publication has been kindly provided by the authors in 
its full format – i.e. including all the structures and experimental LD50 values†. The 
analysis of this data revealed that it contains 2,718 compounds not present in the dataset 
of the rat acute oral toxicity model (one of the six models presented here), consequently 
providing the basis for an external validation study in this particular case. 
                                              
† The author of this dissertation is particularly thankful to Todd M. Martin, Alexander Tropsha 
and their colleagues for kindly providing the complete dataset, utilized in their recent study of 
rat acute toxicity by oral exposure [14]. 
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1.2 Metabolism regioselectivity data 

The regioselectivity models for the two metabolism enzymes described here were 
built using experimental CYP3A4 and CYP2D6 metabolism data from scientific 
publications for 560 and 526 compounds, respectively. In each molecule every carbon 
atom with at least one hydrogen atom attached was assigned whether it is a site of 
metabolism mediated by a corresponding enzyme. The datasets of >5,500 marked atoms 
for the two enzymes were divided into aromatic hydroxylation, N-dealkylation, O-
dealkylation and aliphatic hydroxylation subsets according to atom type and position in 
the molecule [15]. The structure of the obtained subsets is outlined in Table 2. Each 
subset was further divided into training (70%) and test (30%) sets and individual models 
were built for all types of reactions. 

 
Table 2. Summary of experimental data used for CYP3A4 and CYP2D6 regioselectivity 
modeling 

Subset N No. of 
metabolism sites 

Total No. of 
marked atoms 

CYP3A4 

N-dealkylation 345 199 824
O-dealkylation 310 104 688
Aliphatic hydroxylation 475 172 2,057
Aromatic hydroxylation 462 111 2,087

CYP2D6 

N-dealkylation 357 73 849
O-dealkylation 296 61 610
Aliphatic hydroxylation 456 27 1,901
Aromatic hydroxylation 458 86 2,110

 

2 Descriptor generation 

2.1 Fragmental descriptors in acute toxicity (LD50) modeling 

In case of the acute toxicity modeling the training set compounds were 
characterized in terms of fragments as structural descriptors because of their clear 
relation to the chemical structure of the molecule, leading to the ease of interpretation of 
the resulting model. The defined set of 404 fragmental descriptors can be considered as a 
combination of two parts serving different purposes. The major part of the utilized 
fragment set was intended for the description of the general chemical constitution of any 
compound and was comprised of conventional fragmental descriptors, such as atoms, 
functional groups, molecular ‘shape fragments’, etc. This descriptor set has been 
obtained by expanding the list of fragments successfully used by J. A. Platts and his co-
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workers in their studies [16]. This initial set was expanded with a group of more 
complex fragments, generally called toxicophores – substructures identified to be 
responsible for the toxic action of the molecules possessing them. This part of the set 
was added in order to account for, at least, the most widely-known specific mechanisms 
and interactions leading to the manifestation of high acute toxicity that have been already 
identified and confirmed in the previous Outlier-based [17] and Classification-SAR 
studies. E.g., phosphates, thiophosphates, and carbamates (cholinesterase inhibition), 
methylene fluorides (Krebs cycle inhibition), mustard derivatives, activated methylene 
halides, aziridinium and aziridine derivatives (alkylation of macromolecules), activated 
nitriles (respiratory chain inhibition), activated double bonds (alkylation through the 
Michael type addition), bicyclophosphates, orthocarboxylates, and silatranes (non 
competitive GABA receptor inhibition), etc. 

 

2.2 Atom-centered layer fragmentation 

As it was mentioned previously the regioselectivity of any enzyme is a feature 
associated with each individual atom in a molecule. In this case a special fragmentation 
method has to be used that yields different unique molecule representations in the 
variable matrix depending on the selected central atom as opposed to the traditional 
fragmentation techniques providing one general “digital image” of the whole molecule. 
As a result, molecules have been fragmented using atom-centered fragmentation scheme. 
This method provides information about the atom types present at equidistant positions 
(called Layers) from the atom marked as a positive or negative metabolism center. 
Schematically the whole process of molecule fragmentation in this way starting from a 
selected starting atom is illustrated in Figure 1. The first three layers including the 
metabolism site itself were described in detail. The merging scheme was applied to the 
following layers allowing them to overlap to a certain extent, e.g. 3-rd and 4-th layers 
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were merged and used as a single variable in the statistical analysis followed by merged 
4-th, 5-th and 6-th layers, etc. In case of the aromatic carbon hydroxylation modeling the 
exact description was extended to the first five layers in order for it to cover the first 
layer of all possible substituents in a six-membered aromatic ring. Furthermore, a 
number of classical representatives of functional groups with strong electronic effects 
(e.g., -NO2, -CF3, etc.) were used in the model development. The significance of 
presence of such groups depending on the distance from the marked atom was assigned 
in analogy with the known extent of the electronic interaction propagation over the 
distance in the molecule. 

3 Statistical methods 

3.1 GALAS modeling methodology 

Schematically the GALAS model can be viewed as a combination of two systems: 
• A structure based QSAR model for the prediction of the property of interest 

– baseline model; 
• A similarity based routine which identifies the most similar compounds 

contained in the training set and considering their experimental values 
calculates systematic deviations produced by the baseline QSAR model for 
any submitted test compound. 

 
The first part is a global model. In this particular instance it is based on either PLS 

[18] or BPLS – linear, additive methods. It learns general trends and also defines what is 
“similar” when comparing compounds in terms of a particular analyzed property. On the 
other hand, the second layer of the methodology can be considered as a local model. It 
adds non-linearity by making corrections to the global predictions after the analysis of 
the baseline model performance in a local chemical environment of a query molecule. 

 

3.2 Global QSAR 

Fragmental QSARs for the prediction of acute toxicity for every species and route 
of administration analyzed as well as regioselectivity for each enzyme and reaction type 
under consideration were developed using PLS [18] and BPLS methods, respectively, in 
combination with bootstrapping [19] technique. BPLS is a variation of PLS, possessing 
all the useful features of the latter method in combination with the ability to analyze 
binary data. The bootstrapping method implies random compound sampling from the 
initial training set, i.e. generation of new “training sub-sets” and derivation of 
independent model for each sub-set. This procedure is performed 100 times in all cases. 
Each of the sampled sub-sets is of the same size as the initial training set, however, 
random manner of their population results in some compounds being selected more than 
once, others being omitted. Therefore, each global QSAR model in this study actually 
represents an ensemble of 100 PLS or BPLS models, providing each compound with a 
vector of 100 corresponding property predictions, each based on a slightly different sub-
set of the initial training set. By definition, two compounds with similar trends in the 
variation patterns of those 100 value vectors predicted by a set of bootstrap PLS (BPLS) 
models are considered similar in terms of the analyzed property, i.e. the differences in 
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the compound sets used to parameterize each of 100 models, constituting a baseline 
QSAR, affect estimations for the two compounds in a similar way. Quantitatively the 
information about the similarity of two compounds is expressed in terms of their 
individual Similarity Index (SIi) calculated from the correlation of the corresponding two 
predicted property value vectors. 

 

3.3 Local corrections (∆) of the baseline predictions 

Global predictions alone may not be very useful, as most of acute effects occur in 
highly localized chemical spaces that deviate from linear trends. In an attempt to 
“capture” such effects, each global prediction is further subjected to the local similarity 
correction procedure. It is based on the analysis of the performance of the global PLS or 
BPLS QSAR model in the local environment of the query compound, i.e. the comparison 
of the experimental data and baseline predictions of the QSAR model for the most 
similar compounds from the training set. If baseline predictions for these compounds 
show any systematic deviations from their reported measured values, the same is 
expected to happen with the considered similar query structure, i.e. its baseline 
prediction requires local adjustments. The required correction (∆) is calculated as a 
weighted average from the differences between global QSAR predictions and 
experimental data for the most similar compounds in the training set: 

∑
= =

−− ⋅⋅=
n

i

n

i

i
ii

i a∆SIa∆
1 1

11 /∑  (1) 

where ∆ – correction that should be applied for the given prediction from the 
global model; a – a constant, influencing calculation of the weighted average, the 
simple average value will be calculated if this constant is set to 1; SIi – similarity 
(individual Similarity Index) between given compound and the i-th most similar 
compound in the training set, calculated as correlation coefficient between 
corresponding vectors, made of multiple estimated values from baseline 
bootstrapping models; ∆i – difference between measured value and value 
predicted by global model for the i-th most similar compound: YY∆ ii

ˆ−= ; n – a 
constant, that determines how many similar compounds should be taken into 
consideration while estimating correction. 

Obviously, the result depends on the number of similar compounds considered (n 
in Eq. 1). Empirically it has been observed that optimum result is obtained when 
considering five most similar compounds. Using a smaller number of similar structures 
increases the risk of erroneous corrections, whereas using a higher number makes 
corrections overly “conservative”. 

 

3.4 Evaluation of the model applicability domain 

As it was mentioned previously, the GALAS modeling methodology allows 
quantitative estimation of the applicability domain of each created model. This essential 
feature takes into account the following two aspects: 

 13



• Similarity of the tested compound to the training set. No reliable predictions 
can be made if there are no similar compounds in the training set. 
Quantitative criterion – Similarity Index (SI). 

• Consistence of the experimental values for similar compounds. Even if 
similar compounds are present in the dataset the quality of prediction could 
be lower if that data is inconsistent with regard to the baseline model. 
Quantitative criterion – Data-Model Consistency Index (DMCI) 

 
The aforementioned Similarity Index is calculated by weighted averaging of all 

the individual Similarity Indices (SIi) for the test molecule and each of the n most similar 
compounds from the training set. On the other hand, the DMCI value basically compares 
the individual differences between experimental and predicted baseline property values 
(∆i) for the same most similar compounds from the training set with the overall local 
correction for the compound of interest calculated by the Equation 1. The more 
individual differences are scattered around the calculated average (∆), the more 
inconsistent are the data for the similar compounds with regards to the global baseline 
model and vice versa: 

∑ ∑
= =

−− ⋅=
n

i

n

i

i
i

i aSIaSI
1 1

11 /  (2) 

where SI – Similarity Index to the compounds in the training set; 

ba∆∆SIa
n

i

n

i

i
ii

i

eDMCI
/)/)((

1

121∑ ∑
= = =

−− −⋅⋅−
1  (3) 

where DMCI – Data Model Consistency Index; b – empirical constant, which is 
used as a threshold of unacceptable data scattering, indicating when DMCI should 
approach 0, e.g. 1/10th of the full range of values that the property under 
consideration obtains for the training set compounds. 

Number of the most similar compounds (n) considered here is the same as in the 
calculation of the similarity based correction to the baseline predicted property values (∆ 
in Eq. 1) outlined in the previous section, i.e. five. 

The final prediction Reliability Index characterizing the applicability domain of 
the model is calculated in the following manner: 

DMCISIRI ⋅=  (4) 

Both SI and DMCI were scaled to vary from 0 to 1, so the resulting RI also varies 
in this range. If RI approaches zero, then a given compound is far from the model 
applicability domain and the respective prediction is unreliable. This is observed when 
either SI or DMCI approach zero, i.e., when either no similar structures are present in the 
training set or such structures have inconsistent experimental data (respectively to 
baseline model). If RI approaches 1, then a given compound is within the model 
applicability domain and the respective prediction is highly reliable. This is only 
observed if both SI and DMCI approach 1, i.e., very similar compounds are found in the 
training set and their experimental values are consistent with global predictions. 
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4 Acute toxicity (LD50) modeling results 

4.1 Global vs. local models 

Table 3 lists the results of predictions for all acute toxicity test sets that were not 
used in corresponding QSAR development. Compounds with unreliable predictions 
(RI < 0.3) were excluded from considerations (ca. 5-10% of each test set), as by 
definition they fall outside of the model applicability domain and hence provide no 
meaningful information about the models’ performance. “Baseline” indicates global PLS 
predictions (mean values of 100 bootstraps), whereas “Final” indicates the results after 
local similarity corrections (∆). 

 
Table 3. Prediction results for the acute toxicity test sets after excluding compounds 
outside the applicability domains of corresponding models (with RI < 0.3) 

Baseline Final 
Species Administration 

route NRI>0.3
R2 RMSE R2 RMSE

Oral (OR) 1,976 (91%) 0.45 0.66 0.56 0.59
Rat 

Intraperitoneal (IP) 1,130 (90%) 0.31 0.62 0.42 0.58

Oral (OR) 4,545 (93%) 0.30 0.47 0.49 0.40
Intraperitoneal (IP) 8,568 (95%) 0.35 0.50 0.56 0.41
Intravenous (IV) 4,754 (95%) 0.47 0.48 0.61 0.41

Mouse 

Subcutaneous (SC) 2,056 (96%) 0.40 0.59 0.54 0.52
 

As expected, in all cases local corrections made a notable impact (R2 increased by >0.1, 
RMSE decreased by >0.05), confirming a significant influence of various non-linear 
effects that were considered above. Yet, even after such corrections have been made, the 
“Final” results are still “far from perfect”. This could also be anticipated, as there were 
good reasons why earlier reviewers insisted on any QSAR applicability domain 
assessment. Thus the primary interest of this work lays not in R2 or RMSE values by 
themselves, but rather in their dependence on RI. 

 

4.2 RMSE vs. RI 

Figure 2 shows that in all cases RMSE continuously decreases as RI increases. 
When RI exceeds a certain threshold (0.5 or 0.75) RMSE falls well below 0.5 log units, 
approaching typical accuracy of LD50 determination in different laboratories. These two 
observations alone clearly indicate that the objective of accurate assessment of the 
applicability domain of the model has been achieved. The only area where RMSE doesn’t 
correlate with RI is under RI < 0.3. The fluctuations of RMSE values for these 
predictions, observed in a few cases in Figure 2 (parts (b), (d), and (f)), can be explained 
by the fact that sometimes the number of compounds falling into certain RI ranges is so 
low that it even distorts the statistical results. However, such distortions are of minor 
importance, as they only concern 5-10% compounds (depending on the set) and in any
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case corresponding RMSE values are large enough to justify the labeling of all such 
predictions as “unreliable”. Another important observation is that when compounds 
closely approach (or are within) the QSAR AD (RI > 0.3), all RMSE vs. RI dependences  

Figure 2. RMSE vs. RI dependences obtained for the presented acute toxicity models 
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 Figure 2 (continued). RMSE vs. RI dependences obtained for the presented acute 

toxicity models  
 
are more or less uniform, providing a good basis for subdividing compounds into 
reliability categories. The significance of such classification can be seen from Figure 3 
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that compares observed vs. predicted values with RI > 0.3 and RI > 0.75 (using test set of 
mouse under IP administration, NRI>0.3 = 8,568 and NRI>0.75 = 2,537). While the first plot 
(RI > 0.3) resembles a “distorted cloud” with nearly 5% deviations exceeding 1 log unit, 
the second plot (RI > 0.75) is more like a “typical QSPR” (as if LD50 was replaced with 
log P) with R2 and RMSE values approaching 0.74 and 0.26 respectively, and only 
~0.5% deviations exceeding 1 log unit. (Note however, that even under RI > 0.75 such 
deviations still occur, meaning that care should be taken when using it in practice). 
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Figure 3. Experimental vs. calculated log LD50 for one of internal test sets 
(mouse, IP) under two RI cutoffs 
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4.3 External model validation 

A 7,385 compound dataset with LD50 (rat, OR) values received from the authors 
of a recent publication [14] provided the possibility to subject the corresponding model 
presented in this work to an external validation procedure. Statistical results obtained for 
the fraction of this set, containing 2,718 compounds not present in the training set of 
LD50 (rat, OR) model presented here, are provided in the Table 4. Mean Absolute Error 
(MAE) values, being a primary measure of average prediction error in the original study 
involving this dataset [14], have been also determined in this case and are included in 
Table 4 along with RMSE for the result comparison purposes. 

 
Table 4. Statistical results obtained following the application of the LD50 (rat, OR) 
model on the external validation set of 2,718 compounds 

RI range N R2 RMSE MAE 
RI > 0.3 2,501 (92%) 0.63 0.60 0.44 
RI > 0.5 1,804 (66%) 0.70 0.55 0.40 
RI > 0.75 430 (16%) 0.81 0.44 0.30 

 
Notably, the R2 and RMSE values for the compounds within model AD (RI > 0.3) are 
almost identical to the analogous characteristics of the “Final” model for the acute oral 
rat toxicity in case of internal test set, reported in Table 3. In their paper [14], H. Zhu and 
his co-workers attempt to compare five different types of acute oral rat toxicity models 
to a popular TOPKAT® program, using a 3,913 out of 7,385 compounds that were not 
used in the development of TOPKAT® predictive algorithms. The best results are 
reported for the consensus predictor, merging all five individual LD50 models, namely R2 
and MAE values of correspondingly 0.42 and 0.52 (at 74% coverage), 0.48 and 0.51 
(66% coverage), and finally 0.71 and 0.39 (19% coverage). Here, the term “coverage” 
corresponds to the fraction of the external validation set compounds considered, 
depending on the model AD definition rules. In this respect it is analogous to the 
percentages of compounds falling within certain RI ranges for the models presented in 
this work. Obviously this cannot be called a direct comparison, since the size of the 
external validation set used is different, as is the absolute number of compounds within 
its fractions considered and their chemical structures, hence no categorical and far 
reaching conclusions as to which model is better should be made. However, the results 
from Table 4 can be treated as an indication that the acute oral rat toxicity model 
presented here is of similar accuracy to the reported consensus LD50 (rat, OR) predictor 
[14]. The latter, in its own turn, has been found consistently superior to the TOPKAT® 
model, yielding the following R2 and MAE results: 0.35 and 0.59 (74% coverage), 0.25 
and 0.70 (66% coverage), 0.54 and 0.52 (19% coverage) [14]. 

 

4.4 Reliability classification 

The good quality of RMSE vs. RI dependencies from Figure 2 suggests the 
possibility of automated compound screening and/or prioritization before in vitro and 
even in vivo animal acute toxicity studies (depending on the stage of drug development). 
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E.g., compounds with predicted low LD50 (presumably toxic) and high RI (good 
reliability) may be discarded from consideration without any in vitro testing at the 
earliest convenience, whereas compounds with high LD50 (presumably non-toxic) and 
low RI (questionable prediction) should be tested in the first place. As illustrated in 
Figure 2, three RI cut-offs have been set forth (0.3, 0.5, and 0.75) to subdivide all 
compounds into four categories (unreliable, borderline, moderate, and reliable). Table 5 
shows compound and RMSE distributions in all such categories for one of internal test 
sets (mouse, intraperitoneal administration, N = 9,025). 

 
Table 5. Compound distribution with respect to reliability classes assigned according to 
the prediction Reliability Index. Here, Set 1 – PubChem database (N = 24,857) [20], Set 
2 – World Drug Index (N = 4,246) [21] 

LD50 Test Set (mouse, IP) Set 1 Set 2 Reliability 
classification RI N RMSE N N 
Not reliable 0.00 ÷ 0.30 459 (5%) 0.91 4,658 (19%) 960 (23%)

Borderline 0.30 ÷ 0.50 1,482 (16%) 0.60 13,144 (53%) 1,482 (35%)

Moderate 0.50 ÷ 0.75 4,549 (50%) 0.41 6,854 (28%) 1,515 (36%)

High 0.75 ÷ 1.00 2,537 (28%) 0.26 201 (1%) 289 (7%)
 
As expected, RMSE gradually decreases as RI increases, whereas compound 

distribution reaches maximum at RI = 0.5 ÷ 0.75. The latter corresponds to RMSE < 0.5 
that is good enough for the crude estimation of LD50 without any in vitro testing (in the 
early stages of drug development). Since RI > 0.5 represents 75% of entire data set, only 
25% of compounds would require in vitro testing (which may be further reduced by 
setting forth LD50 cutoff). Obviously one should use different criteria depending on the 
goals, e.g., during later stages of drug optimization different RI (and LD50) cut-offs may 
be adopted. 

 

4.5 RI distribution in various datasets 

The last two columns in Table 5 show compound distribution in RI classes for two 
independent compound sets. Set 1 comes from the PubChem database [20] (N = 24,857), 
whereas Set 2 is a sample (N = 4,246) from World Drug Index [21]. The construction of 
Set 1 was performed by cleaning a part of the complete PubChem collection with 
compound IDs ranging from 42575001 to 42600000 of any inorganic molecules or 
mixtures as well as converting any compounds represented in the ionized form to neutral 
species. Since both sets are not related to LD50, they may provide a more realistic 
estimate of RI performance in “real-life” computations in the datasets of various 
structural complexities. One can see that RI > 0.5 corresponds to ca. 35% of all 
compounds (average of both sets), meaning that in the early stages of drug design up to 
one third of valid lead candidates could avoid respective in vitro testing (recall that in 
vitro tests have limitations, whereas animal tests are only conducted during pre-clinical 
stage, when substantial investment has already been made and neither developers nor 
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investors are eager to face any acute effects). On the other hand, RI > 0.75 corresponds 
to as low as 1% of compounds (PubChem), meaning that in pre-clinical stage virtually 
all compounds should be tested (though it often means only one or two candidates). This 
is no surprise, keeping in mind the intrinsic complexity of LD50 and the fact that similar 
applications of acute toxicity predictions were not even considered possible so far. 

5 CYP3A4 and CYP2D6 regioselectivity modeling results 

5.1 Comparison of the baseline and locally corrected GALAS model 
regioselectivity predictions 

As it was mentioned in the Chapter 1.2 the internal validation of the resulting 
regioselectivity models has been performed using test sets constituting 30% of the initial 
subsets for each of the four considered metabolic reactions mediated by CYP3A4 and 
CYP2D6 enzymes. Table 6 below presents detailed results obtained for such test sets in 
case of the CYP3A4 N-dealkylation and CYP2D6 O-dealkylation which can be 
considered as the most typical reactions for the corresponding enzymes. Although the 
predictions obtained from the baseline models can already be considered as satisfactory, 
the presented results also indicate certain problems associated with them, e.g., a lack of 
specificity. Indeed, considerable number of atoms is classified as ‘False Positives’ 
(14.2% and 6.6% by the corresponding models). Given the number of ‘True Positive’ 
predictions this results in a positive prediction accuracy of only around 50%. In other 
words, for each atom classified as the positive metabolism site by the baseline model 
there is roughly a 50% possibility that the prediction is wrong – clearly a significant 
problem. The situation noticeably improves after the application of local adjustments 
using similarity and the problem becomes virtually non-existent when considering only 
moderate or above reliability predictions (RI > 0.5), which still constitute ca. 50% of the 
test set. Another important observation relates to the amounts of inconclusive predictions 
(p in the range of 0.4 ÷ 0.6). In case of both models these numbers decrease significantly 
for predictions of moderate or high reliability (RI > 0.5 and RI > 0.7). These results 
prove that Reliability Indices allow recognizing most predictions in the intermediate 
range as unreliable. 

 
Table 6. Regioselectivity prediction results for the test sets of the CYP3A4 N-
dealkylation and CYP2D6 O-dealkylation reactions 

 Calculated probability (p) 
 CYP3A4 N-dealkylation  CYP2D6 O-dealkylation

Considered 
model and 

dataset  < 0.4 0.4 ÷ 0.6 > 0.6  < 0.4 0.4 ÷ 0.6 > 0.6 

Negative 116 13 30  128 11 11 Baseline 
predictions 
Test Set* Positive 10 7 35  1 1 15 

Negative 136 8 15  141 7 2 GALAS model 
Test Set*

Positive 8 5 39  2 1 14 
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Table 6 (continued). Regioselectivity prediction results for the test sets of the CYP3A4 
N-dealkylation and CYP2D6 O-dealkylation reactions 

 Calculated probability (p) 
 CYP3A4 N-dealkylation  CYP2D6 O-dealkylation

Considered 
model and 

dataset  < 0.4 0.4 ÷ 0.6 > 0.6  < 0.4 0.4 ÷ 0.6 > 0.6 

Negative 77 2 2  128 3 1 GALAS model 
RI > 0.5 Positive 2 2 27  2 0 11 

Negative 30 0 0  96 0 0 GALAS model 
RI > 0.7 Positive 1 1 10  0 0 7 

* Unreliable predictions (RI < 0.3) were not considered in this case which led to the 
exclusion of 37 marked atoms (10 positive metabolism sites) from the initial test set in 
case of CYP3A4 N-dealkylation and 10 marked atoms (2 positive sites) in case of the 
CYP2D6 O-dealkylation. 

5.2 Regioselectivity prediction results for the rest of considered metabolic 
reactions 

Regioselectivity of any enzyme (including CYP3A4 and CYP2D6) is related to 
individual atoms and their environment in the molecule which in its own turn is subject 
to far greater variability than the chemical constitution of the whole molecule. In other 
words, the similarity of two molecules possessing identical functional groups arranged 
differently in the molecule, in most cases will be considerably lower in terms of 
particular atom related property than it would be in terms of, let’s say, log P. As a result, 
this property is expected to be more susceptible to the issues regarding the applicability 
domain of the predictive models compared to the whole-molecule properties, i.e., the AD 
of metabolism site models depends more tightly on the training set. That is why it is 
more unlikely for such a model to perform satisfactory outside of it. In the light of these 
assumptions, Reliability Index estimation becomes particularly relevant and it is 
proposed that only predictions of at least moderate reliability should be taken into 
account. With such considerations in mind, the presentation of the statistical results for 
the remaining CYP3A4 and CYP2D6 reaction types analyzed has been limited to a 
condensed summary of moderate or above reliability (RI > 0.5) prediction results 
presented in Table 7. It can be just added that the trends of model results improvement 
following the application of the similarity based local adjustments for the models 
presented in Table 7 are the same as for the CYP3A4 N-dealkylation and CYP2D6 O-
dealkylation examples that have been previously analyzed in full detail, i.e., the 
problems with both the number of ‘False Positive’ and inconclusive predictions are 
gradually eliminated. 
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Table 7. Moderate and above reliability predictions (RI > 0.5) for the test sets of the 
remaining considered reactions 

 Calculated probability (p) 
Reaction  < 0.4 0.4 ÷ 0.6 > 0.6 

Negative 347 3 2 
CYP3A4 aliphatic hydroxylation 

Positive 5 0 17 

Negative 394 8 2 
CYP3A4 aromatic hydroxylation 

Positive 4 1 6 

Negative 108 2 0 
CYP3A4 O-dealkylation 

Positive 1 0 4 

Negative 825 10 2 
CYP2D6 hydroxylation*

Positive 3 1 6 

Negative 177 0 1 
CYP2D6 N-dealkylation 

Positive 6 1 4 
* When analyzing experimental data for CYP2D6 aliphatic and aromatic hydroxylation, 
an assumption was made that requirements for being a CYP2D6 hydroxylation site 
depend more on binding to enzyme and are less dependent on properties of exact atom, 
therefore the data were merged and one general model for CYP2D6 hydroxylation was 
built. 

While looking at the results in Table 7, a very small number of identified positive 
metabolism sites (‘True Positives’) can hardly go unnoticed in most cases. This 
observation can be attributed to the fact that for some reaction types the number of 
experimentally identified metabolism sites is generally very low in the starting datasets 
(see Table 2). In the field of cytochrome P450 metabolism the scientific literature mostly 
focuses on major reactions typical for each enzyme (e.g., N-dealkylation for CYP3A4) 
consequently these reactions are represented best in the compiled training sets. 
Noticeably lower amounts of experimental data available on identified metabolism sites 
for less typical (secondary) enzyme reactions result in significantly smaller applicability 
domains of corresponding models. All this result in a general drawback of the whole 
presented ensemble of regioselectivity models based on publicly available data – they are 
much less likely to identify minor metabolites with high reliability. This is clearly 
illustrated by the total lack of high reliability positive metabolism site predictions 
(p > 0.6, RI > 0.7) for some reactions that cannot be called the most typical for that 
particular enzyme, e.g. CYP3A4 aromatic hydroxylation or O-dealkylation. Application 
of such models, even with the ability to evaluate their applicability domains, would be 
limited for scientists, focused on characterization of all possible metabolic pathways. 
However, with the ability to add user-defined data to the model and expand its AD to the 
desired regions of chemical space provided by the GALAS methodology, presented 
models have the potential for practical application even in their current state. 
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5.3 CYP3A4 and CYP2D6 regioselectivity model training 

The possibility to train presented GALAS regioselectivity models was 
investigated using two example scenarios. In each case special regioselectivity models 
were built after all the atoms belonging to the compounds of a certain chemical class 
have been excluded from the training sets. Four random compounds were selected from 
the excluded class. Three are intended for a one-by-one stepwise addition to the local 
similarity correction routine of the model, whereas the last one is reserved for the testing 
of resulting four models. The first model has absolutely nothing similar in its training set 
used both to train the baseline model and to calculate local similarity corrections. All of 
the subsequent three models use the same baseline predictions derived from the same 
training set, however each one of them is increasingly aware of the baseline model 
performance for the compounds of the selected class and can compensate for any errors 
if necessary via local similarity corrections. 

In case of CYP3A4 regioselectivity the initial example models have been derived 
from the training sets cleaned from atoms belonging to benzodiazepine class compounds 
or similar. Among the compounds containing excluded atoms, a group of molecules 
possessing azole ring and two experimental aliphatic hydroxylation sites was chosen [22-
25]. Three randomly selected molecules from this group (brotizolam, triazolam, and 
alprazolam) were reserved for model training while one (a standard CYP3A4 substrate 
midazolam) was used for testing. Analogous preparation and testing steps in case of the 
CYP2D6 metabolism regioselectivity models involved removal of any atoms belonging 
to the propranolol analogues. Out of these the propranolol itself has been chosen to test 
this initial model as well as three subsequent ones trained with the data for propranolol 
analogues – all possessing three experimentally determined metabolism sites (one for N-
dealkylation and two for aromatic hydroxylation reactions) [26]. For the structures of all 
the compounds mentioned, see Figure 4. Figures 5 and 6 illustrate the dynamics of the 
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predictions for the test compounds (midazolam and propranolol) during the course of 
this virtual experiment. None of experimental metabolism sites are found within query 
compounds using the initial example models. A few potentially metabolized atoms 
(p > 0.5 – indicated in larger font) are found in the aromatic system of a propranolol; 
however the reliability of these results and all the predictions in general is very low. 
Adding 3 selected analogues one-by-one to the similarity correction part of the model 
gradually improves the predictions. Following the addition of a second similar 
compound all experimentally confirmed metabolism sites are correctly identified in both 
cases and the reliability of most predictions reaches moderate levels (RI > 0.5 – indicated 
in darker ink). Finally, the last analogue added further improves the predictions – the 
probabilities to be metabolized for almost all atoms are predicted with very high 
reliability (RI > 0.7).  
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Figure 5. GALAS model predictions of CYP3A4 regioselectivity towards midazolam
using initial model (A), after the addition of experimental data for brotizolam (B), 

brotizolam and triazolam (C), and all three benzodiazepines (D) to the local similarity 
assessment routine of the model 
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Figure 6. GALAS model predictions of CYP2D6 regioselectivity towards propranolol 
using initial model (A), after the addition of experimental data for one (B), two (C), and 
all three structural analogues (D) to the local similarity assessment routine of the model

This example clearly demonstrates the potential for practical applications of such 
trainable cytochrome P450 regioselectivity models, especially given the fact that the 
described improvements in predictions following the addition of similar compounds was 
instant and required no rebuilding of the baseline models.  
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CONCLUSIONS 

1. The statistical models have been created for the estimation of the acute toxicity 
towards two rodent species following a number of different administration routes 
as well as for the prediction of CYP3A4 and CYP2D6 regioselectivity in the main 
metabolic reactions mediated by these enzymes (13 individual models in total). In 
every case the employed GALAS methodology has been shown to be superior 
compared to the corresponding linear baseline PLS or BPLS model. This fact 
confirms the significant influence of various local non-linear effects in case of the 
considered properties. 

2. Results of the acute oral rat toxicity model external validation study suggest that 
purely accuracy-wise, i.e., disregarding all the additional benefits resulting from 
the GALAS modeling methodology application, the results obtained are 
comparable to the recent achievements of other authors in the field and notably 
are superior to TOPKAT® – one the most popular acute toxicity estimation 
methods often considered to be the benchmark of toxicology related predictions. 

3. A uniform trend of significant reduction in prediction errors or the number of 
mispredictions with the increase of calculated Reliability Index of the prediction 
was observed for each of the analyzed models. This fact clearly indicates that the 
ability of the GALAS methodology to quantitatively assess the applicability 
domain of the model has been retained despite the significant increase in the 
complexity of the considered properties. As a result all of the presented models 
conform to one of the main requirements for the QSAR model acceptance by the 
EU and other regulatory institutions. 

4. Evident correlation between prediction reliability and its accuracy allowed the 
classification of each model result into one of the several qualitative classes 
according to the calculated RI values. Such information, providing a clue 
regarding the error that model is most likely to produce in each case, enables 
compound prioritization before experimental testing and, depending on the stage 
and objectives of the development, can help achieving a bigger or lesser reduction 
in the number of necessary measurements. 

5. The ability of the obtained GALAS regioselectivity models to adapt themselves to 
the new experimental data has been demonstrated. This feature allows expanding 
the applicability domains of the models to any chemical space region being of 
interest to the research and opens wide possibilities for their practical application. 

6. The results obtained in the enzyme regioselectivity modeling show promising 
perspectives for the utilization of the GALAS modeling technique in the analysis 
of regioselectivity for other important biotransformation enzymes (e.g., CYP2C9, 
CYP2C19, CYP1A2, etc.). 

7. GALAS modeling methodology forming the basis of all the discussed models 
provides additional opportunities for somewhat unconventional ways of their 
application, e.g. the outlier based analysis indicating interesting compound classes 
for further investigations potentially leading to the generation of new mechanistic 
knowledge, automatic identification of experimental errors and other. 
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REZIUMĖ 

Vienas pagrindinių naujų vaistinių medžiagų paieškos iššūkių yra priimtinų 
galimo kandidato farmakokinetinių savybių užtikrinimas, didele dalimi nulemiantis 
būsimojo vaisto efektyvumą. Tarp nagrinėjamų kinetinių veiksnių, nulemiančių junginio 
pasiskirstymą organizme labai svarbų vaidmenį atlieka metabolinis junginio stabilumas, 
apsprendžiantis ar vaisto molekulės apskritai turi galimybių pasiekti savo taikinį 
organizme chemiškai nepakitusios. Savo ruožtu pastaroji savybė daugiausia priklauso 
nuo to, ar junginys bus metabolizuojamas CYP450 fermentų šeimos ir ypač dviejų 
pagrindinių jos izoformų – CYP3A4 bei CYP2D6, kartu nulemiančių daugiau kaip 50% 
šiuo metu rinkoje esančių vaistų metabolizmą. Pastaroji aplinkybė potencialiai gali 
sukelti visą eilę problemų, įskaitant nesusidarančią ar labai trumpam laikui susidarančią 
efektyvią junginio koncentraciją ties taikiniu, įvairias vaisto sąveikas su kitais kartu 
vartojamais tos pačios CYP450 izoformos substratais arba inhibitoriais ir pan. 
Paradoksalu, kad šie fermentai, visų pirma skirti organizmo apsaugai nuo svetimų 
cheminių medžiagų poveikio, neretai dalyvauja daugelį kartų už pradinius substratus 
pavojingesnių metabolitų susidaryme, sukeldami ūmaus ar chroniško apsinuodijimo 
simptomus, kancerogeniškumo pasireiškimą ir netgi mirtį. Dėl šių priežasčių detalus visų 
stebimų junginio metabolitų identifikavimas bei jų toksiškumo įvertinimas yra praktiškai 
neatsiejami ir dažniausiai lygiagrečiai atliekami bet kokio vaistinio junginio kandidato 
tyrimo žingsniai. 

Tiek junginio metabolizmas, tiek toksiškumas patenka į sąrašą esminių savybių, 
galiausiai nulemiančių, ar junginys sėkmingai įveiks visas vaisto kūrimo, bandymo bei 
licenzijavimo pakopas. Tuo būdu būtent tokių savybių bei biologinių aktyvumų 
efektyvus prognozavimas įvairiais kompiuteriniais in silico metodais įgalintų 
perspektyvių molekulių pasirinkimą jau pačiuose pirmuosiuose tyrimo žingsniuose, 
įskaitant virtualių bibliotekų analizę. Tai savo ruožtu sudarytų bene pačias didžiausias 
prielaidas optimizuoti naujų vaistų kūrimo procesą, siekiant pastarąjį sutrumpinti bei 
atpiginti. Galimybė iš anksto numatyti bent jau pagrindinius junginio metabolitus 
suteikia informaciją apie jo struktūroje esančius lengviausiai metabolizuojamus centrus. 
Pastarųjų blokavimas arba tiesiog pašalinimas leistų stipriai sulėtinti ir netgi visiškai 
sustabdyti CYP450 katalizuojamas metabolizmo reakcijas. Tais atvejais, kuomet 
neįmanoma panaikinti visų metabolizuojamų centrų molekulėje, tie patys in silico 
modeliai galėtų padėti identifikuoti pagrindinę CYP450 izoformą metabolizuojančią 
vieną ar kitą konkretų centrą. Selektyvių modifikacijų pagalba tokioje situacijoje galima 
būtų pamėginti užtikrinti, kad už visą junginio metabolizmą būtų atsakinga vienintelė 
konkreti CYP450 izoforma. Toks pasiekimas taip pat gali turėti didžiulę praktinę naudą. 
Planuojant kuriamo vaisto vartojimą kartu su kitais preparatais, skirtingų CYP450 
izoformų nulemiamas kiekvieno iš jų metabolizmas minimizuoja galimos vaistų sąveikos 
pavojų. Taip pat netgi preliminarūs CYP450 fermentų regioselektyvumo modeliai galėtų 
pagelbėti analizuojant eksperimentinio molekulės metabolitų nustatymo metu gaunamas 
sudėtingas chromatogramas bei spektrus. Tuo tarpu toksiškumo prognozavimo modeliai 
leistų iš anksto įvertinti tiek paties pradinio junginio, tiek jo metabolitų keliamą pavojų 
šiuo požiūriu. 

Šiame darbe pristatomi GALAS metodika paremti ūmaus toksiškumo modeliai 
dviems graužikų rūšims bei visai eilei skirtingų medžiagos patekimo į organizmą būdų. 
Analogiškas metodas, keleto modifikacijų pagalba pritaikytas kokybinių atomo-centrinių 
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savybių prognozavimui, buvo panaudotas modeliuojant CYP3A4 bei CYP2D6 fermentų 
regioselektyvumą pagrindinėse jų katalizuojamose metabolinėse reakcijose. Iš viso darbe 
pristatomi 13 individualių modelių. 

Visi darbe nagrinėjami modeliai kokybiškai išsiskiria iš anksčiau publikuotų 
analogų dėl gebėjimo kartu su prognozuojama savybės verte pateikti prognozės 
patikimumo indekso (RI) reikšmę. Pademonstruota akivaizdi prognozės paklaidų (ar 
klaidingų prognozių skaičiaus) priklausomybė nuo RI parodė, jog, nepaisant 
modeliuojamųjų objektų sudėtingumo, šis dydis leidžia efektyviai kiekybiškai įvertinti 
junginio priklausymą modelio pritaikomumo sričiai bei su tuo susijusią jo prognozės 
kokybę. Šis ypatumas nulemia gautų modelių atitikimą vienam pagrindinių ES institucijų 
reikalavimų, keliamų alternatyviems tyrimo metodams, kuris formuluojamas kaip 
galimybė įvertinti modelio pritaikomumo sritį. Be to, aiški prognozių tikslumo 
priklausomybė nuo jų patikimumo įvertinimo suteikia galimybę jas suskaidyti į 
kokybines klases pagal apskaičiuotąsias RI reikšmes. Tai savo ruožtu įgalina junginių 
prioritetizavimą prieš bet kokius eksperimentinius matavimus bei priklausomai nuo 
vaisto kūrimo pakopos bei keliamų uždavinių daugiau ar mažiau sumažinti pastarųjų 
skaičių. Pavyzdžiui, išnagrinėtas ūmaus toksiškumo prognozių pasiskirstymas pagal 
apibrėžtas kokybines tikslumo klases kelioms išorinėms duomenų bazėms rodo, kad bent 
jau ankstyviausiuose tyrimų žingsniuose, vadovaujantis siūlomais kriterijais galima būtų 
išvengti iki trečdalio eksperimentų. 

Disertacijoje taip pat pademonstruotas gautųjų GALAS modelių gebėjimas greitai 
bei efektyviai apsimokyti naujais eksperimentiniais duomenimis, išplečiant jų 
pritaikomumo sritį. Ši savybė suteikia parengtiems modeliams didžiulį praktinio 
panaudojimo farmacijos pramonėje potencialą, juolab, kad visi jie yra paremti viešai 
prieinamų duomenų rinkiniais, kaip taisyklė neapimančiais pramonėje nagrinėjamų 
junginių užimamos srities cheminės įvairovės erdvėje. Kartu su prognoze GALAS 
modelių pateikiama papildoma informacija (panašumo ir patikimumo indeksai, ∆ 
korekcijos ir pan.) taip pat atveria kai kurias ne visai tradicines jų panaudojimo 
galimybes. Pavyzdžiui, iškrentančių prognozių analizė bei naujų mechanistiniu požiūriu 
įdomių junginių klasių paieška, eksperimentinių matavimų klaidų identifikavimas ir kt. 
Apibendrinant galima konstatuoti, kad darbe pristatomų modelių savybių tyrimas bei 
gauti rezultatai atveria perspektyvą analogišką modeliavimo strategiją taikyti kitų 
svarbių metabolizmo fermentų (pvz., CYP2C9, CYP2C19, CYP1A2 ir kitų) 
regioselektyvumo duomenų analizei, tęsiant šios temos nagrinėjimą ateityje. 
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