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Abstract

Packing problems are common in industry and there is a large body of literature on the subject.
Two packing problems are considered in this dissertation: the strip packing problem and the
bin packing problem. The aim in both problems is to pack a specified set of small items, the
dimensions of which are all known prior to packing (hence giving rise to an offline problem),
into larger objects, called bins. The strip packing problem requires packing these items into a
single bin, one dimension of which is unbounded (the bin is therefore referred to as a strip). In
two dimensions the width of the strip is typically specified and the aim is to pack all the items
into the strip, without overlapping, so that the resulting packing height is a minimum. The bin
packing problem, on the other hand, is the problem of packing the items into a specified set of
bins (all of whose dimensions are bounded) so that the wasted space remaining in the bins (which
contain items) is a minimum. The bins may all have the same dimensions (in which case the
problem is known as the single bin size bin packing problem), or may have different dimensions,
in which case the problem is called the multiple bin size bin packing problem (MBSBPP). In
two dimensions the wasted space is the sum total of areas of the bins (containing items) not
covered by items.

Many solution methodologies have been developed for above-mentioned problems, but the scope
of the solution methodologies considered in this dissertation is restricted to heuristics. Packing
heuristics follow a fixed set of rules to pack items in such a manner as to find good, feasible
(but not necessarily optimal) solutions to the strip and bin packing problems within as short
a time span as possible. Three types of heuristics are considered in this dissertation: (i) those
that pack items into levels (the heights of which are determined by the heights of the tallest
items in these levels) in such a manner that all items are packed along the bottom of the level,
(ii) those that pack items into levels in such a manner that items may be packed anywhere
between the horizontal boundaries that define the levels, and (iii) those heuristics that do not
restrict the packing of items to levels. These three classes of heuristics are known as level
algorithms, pseudolevel algorithms and plane algorithms, respectively.

A computational approach is adopted in this dissertation in order to evaluate the performances
of 218 new heuristics for the strip packing problem in relation to 34 known heuristics from
the literature with respect to a set of 1 170 benchmark problem instances. It is found that
the new level-packing heuristics do not yield significantly better solutions than the known
heuristics, but several of the newly proposed pseudolevel heuristics do yield significantly better
results than the best of the known pseudolevel heuristics in terms of both packing densities
achieved and computation times expended. During the evaluation of the plane algorithms two
classes of heuristics were identified for packing problems, namely sorting-dependent and sorting-
independent algorithms. Two new sorting techniques are proposed for the sorting-independent
algorithms and one of them yields the best-performing heuristic overall.
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A new heuristic approach for the MBSBPP is also proposed, which may be combined with
level and pseudolevel algorithms for the strip packing problem in order to find solutions to the
problem very rapidly. The best-performing plane-packing heuristic is modified to pack items
into the largest bins first, followed by an attempted repacking of the items in those bins into
smaller bins with the aim of further minimising wasted space. It is found that the resulting
plane-packing algorithm yields the best results in terms of time and packing density, but that
the solution differences between pseudolevel algorithms are not as marked for the MBSBPP as
for the strip packing problem.
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Uittreksel

Inpakkingsprobleme kom algemeen in die industrie voor en daar is ’n aansienlike volume litera-
tuur oor hierdie onderwerp. Twee inpakkingsprobleme word in hierdie proefskrif oorweeg,
naamlik die strook-inpakkingsprobleem en die houer-inpakkingsprobleem. In beide probleme is
die doel om ’n gespesifiseerde versameling klein voorwerpe, waarvan die dimensies almal voor-
dat inpakking plaasvind, bekend is (en die probleem dus ’n sogenaamde aflyn-probleem is), in
een of meer groter houers te pak. In die strook-inpakkingsprobleem word hierdie voorwerpe
in een houer, waarvan een dimensie onbegrens is, ingepak (hierdie houer word dus ’n strook
genoem). In twee dimensies word die wydte van die strook gewoonlik gespesifiseer en is die doel
om al die voorwerpe sonder oorvleueling op só ’n manier in die strook te pak dat die totale
inpakkingshoogte geminineer word. In die houer-inpakkingsprobleem, daarenteen, is die doel
om die voorwerpe op só ’n manier in ’n gespesifiseerde aantal houers (waarvan al die dimensies
begrens is) te pak dat die vermorste of oorblywende ruimte in die houers (wat wel voorwerpe
bevat) ’n minimum is. Die houers mag almal dieselfde dimensies hê (in welke geval die probleem
as die enkelgrootte houer-inpakkingsprobleem bekend staan), of mag verskillende dimensies hê
(in welke geval die probleem as die veelvuldige-grootte houer-inpakkingsprobleem bekend staan,
afgekort as VGHIP). In twee dimensies word die vermorste ruimte geneem as die somtotaal van
daardie deelareas van die houers (wat wel voorwerpe bevat) waar daar geen voorwerpe geplaas
word nie.

Verskeie oplossingsmetodologieë is al vir die bogenoemde twee inpakkingsprobleme ontwikkel,
maar die bestek van die metodologieë wat in hierdie proefskrif oorweeg word, word beperk tot
heuristieke. ’n Inpakkingsheuristiek volg ’n vaste stel reëls waarvolgens voorwerpe in houers
gepak word om so spoedig moontlik goeie, toelaatbare (maar nie noodwendig optimale) oplos-
sings tot die strook-inpakkingsprobleem en die houer-inpakkingsprobleem te vind. Drie tipes
inpakkingsheuristieke word in hierdie proefskrif oorweeg, naamlik (i) heuristieke wat voorwerpe
langs die onderste randte van horisontale vlakke in die houers pak (die hoogtes van hierdie vlakke
word bepaal deur die hoogtes van die hoogste item in elke vlak), (ii) heuristieke wat voorwerpe
op enige plek binne horisontale stroke in die houers pak, en (iii) heuristieke waar inpakking
nie volgens horisontale vlakke of stroke beperk word nie. Hierdie drie klasse heuristieke staan
onderskeidelik as vlakalgoritmes, pseudo-vlakalgoritmes en platvlakalgoritmes bekend.

’n Berekeningsbenadering word in hierdie proefskrif gevolg deur die werkverrigting van die
218 nuwe heuristieke vir die strook-inpakkingsprobleem met die werkverrigting van 34 bekende
heuristieke uit die literatuur te vergelyk, deur al die heuristieke op 1 170 toetsprobleme toe
te pas. Daar word bevind dat die nuwe vlakalgoritmes nie ’n noemenswaardige verbetering in
oplossingskwaliteit in vergeleke met soortgelyke bestaande algoritmes in die literatuur lewer nie,
maar dat verskeie nuwe pseudo-vlakalgoritmes wel noemenswaardige verbeteringe in terme van
beide inpakkingsdigthede en oplossingstye in vergeleke met die beste bestaande algoritmes in die
literatuur lewer. Assessering van die platvlakalgoritmes het gelei tot die identifikasie van twee
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deelklasse van algoritmes, naamlik sorteringsafhanklike- en sorteringsonafhanklike algoritmes.
Twee nuwe sorteringstegnieke word ook vir die deelklas van sorteringsonafhanklike algoritmes
voorgestel, en een van hulle lewer die algeheel beste inpakkingsheursitiek.

’n Nuwe heuristiese benadering word ook vir die VGHIP ontwikkel. Hierdie benadering kan
met vlak- of pseudo-vlakalgoritmes vir die strook-inpakkingsprobleem gekombineer word om
baie vinnig oplossings vir die VGHIP te vind. Die beste platvlakheuristiek vir die strook-
inpakkingsprobleem word ook aangepas om voorwerpe eers in die grootste houers te pak, en
daarna in kleiner houers te herpak met die doel om vermorste ruimte verder te minimeer.
Daar word bevind dat die resulterende platvlakalgoritme die beste resultate in terme van
beide inpakkingsdigtheid en oplossingstyd lewer, maar dat oplossingsverskille tussen die pseudo-
vlakalgoritmes nie so opmerklik vir die VGHIP is as wat die geval met die strookinpakkings-
probleem was nie.
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CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Informal Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Cutting and packing (C&P) problems have probably existed for millennia, whether it be the
packing of animals such as camels, mules or horses (see Figure 1.1(a)), seafaring vessels or early
trains and vehicles (an example of which is shown in Figure 1.1(b)). These packing tasks would
have been performed by means of intuition and experience on the part of the packer. However,
C&P problems have evolved into a very active field of mathematical study since 1939, when
Kantorovich [88] considered the minimisation of scrap — a one-dimensional (1D) cutting stock
problem in which a number of short pieces of material are to be cut from a limited number of
longer items (of which there are two sizes), and in which the aim is to minimise the waste that
is trimmed from the cut pieces. Cutting stock problems were the most common type of C&P
problems in the early literature (a detailed survey of early trim loss problems was performed
by Hixman in 1980 [74]), with Eisemann [45] publishing work on the trim loss problem in 1957
and Gilmore and Gomory [57–59] considering the cutting stock problem in the 1960s.

(a) A pack mule circa 1876 [120]. (b) A delivery vehicle circa 1934 [29].

Figure 1.1: Early applications of packing problems in the 19th and 20th centuries.

1
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2 Chapter 1. Introduction

This dissertation is a study of selected two-dimensional rectangular packing problems. The
purpose of this chapter is to briefly introduce C&P problems in §1.1, while a more thorough
introduction to the problems, and the scope of the dissertation, appear in the following chapter.
A list of dissertation objectives is given in §1.3 and a general preview of the organisation of
material in this dissertation is presented in §1.4.

(a) Cutting metal plates circa 2004 [136]. (b) A container vessel circa 2004 [124].

Figure 1.2: Modern C&P problems in the 21st century.

1.1 Background

There are many names for C&P problems in the literature. Dyckhoff [43, p. 145] lists the
following as names that have appeared in the literature:

• cutting stock and trim loss problems (see Figure 1.2(a) for an example),

• bin packing, dual bin packing, strip packing, vector packing and knapsack (packing) prob-
lems,

• vehicle, pallet, container and car loading problems (see Figure 1.2(b) for an example),

• assortment, depletion, design, dividing, layout, nesting and partitioning problems, and

• capital budgeting, change making, line balancing, memory allocation and multiprocessor
scheduling problems.

In cutting problems, large objects typically have to be cut into smaller items with the aim of
minimising the waste that remains. This is why cutting problems are often called trim loss
problems. Packing problems are typically characterised by large empty objects that should be
filled by means of smaller items with the objective of either minimising the number of large
objects utilised, maximising the value of the small items packed, or minimising the empty space
remaining after the packing has taken place. Packing items into bins may be considered as
“cutting” the empty space inside the bins, where the remaining empty space is “trim loss.”
Conversely, one may consider cutting problems as packing small items into the space occupied
by large objects. Hence, there is a strong relationship between cutting and packing problems
due to the duality of solid objects and the space that the objects occupy [43, pp. 148–149].
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1.2. Informal Problem Description 3

1.2 Informal Problem Description

Rectangular packing problems are common and widely studied. In these problems it is required
to pack a specified set of items into one or more larger, rectangular objects (called bins) in such
a manner that the items do not overlap each other and are completely contained within the bin.
The aim is to pack these items in such a manner that the smallest amount of space remains
unused within the bin(s), or that the packing height is a minimum.

Two of these packing problems are considered in this dissertation. The first is known as the
strip packing problem and requires the packing of items into a bin of fixed width and unlimited
height (referred to as a strip) in such a manner that the resulting height of the packed items is
a minimum. The aim of the bin packing problem is to pack a specified list of items into bins,
the dimensions of which are bounded, in such a manner the remaining wasted area in the bins
that actually contain items is a minimum.

1.3 Dissertation Objectives

There are two aims of the work in this dissertation. The first is to develop new heuristics or
improve known heuristics for the strip packing problem. These new and improved algorithms
may then be used in conjunction with algorithms for bin packing problems in an attempt to
find approximate solutions to packing problems as quickly as possible with an improvement in
the utilisation of the bins. In order to realise these general aims, twelve specific objectives are
pursued in this dissertation:

I To perform a literature survey of the different types of packing problems that have been
published in order to define the family of packing problems for which the heuristics are
developed.

II To perform a brief literature survey on methods traditionally used to solve packing prob-
lems.

III To determine suitable methods for comparing the performances of packing algorithms.

IV To perform a literature survey of known heuristics for the strip packing problem. This
includes the following types of heuristics:

(a) level-packing heuristics,

(b) pseudolevel-packing heuristics, and

(c) plane-packing heuristics.

V To improve on the known heuristics documented in the literature, i.e. to find better

(a) level solutions,

(b) pseudolevel solutions, and

(c) plane solutions.

VI To implement these new and improved heuristics for the strip packing problem on a
computer.

VII To identify suitable benchmarks for the strip packing problem in terms of which the
qualities of solutions produced by the algorithms may be compared.
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4 Chapter 1. Introduction

VIII To perform an appraisal of the strip packing algorithms in terms of the solution quality
and execution times.

IX To perform a literature survey on heuristic methods for the bin packing problem; more
specifically

(a) for the general case where the bins may not be of the same size, and

(b) for the specific case where the bins are all the same size.

X To design new heuristics for the bin packing problem that may improve on the known
methods used to find solutions to these problems.

XI To implement these new and improved heuristics for the bin packing problems on a com-
puter.

XII To identify suitable benchmarks for

(a) the general bin packing problem, and

(b) the special case where all bins are of the same dimensions,

in terms of which solution qualities of the solutions produced by the algorithms may be
compared.

XIII To perform an appraisal of the algorithms in terms of their solution qualities and execution
times for

(a) the general bin packing problem, and

(b) the special case where all bins are the same size.

XIV To combine the computer implementations of the algorithms designed and/or improved
in this dissertation in order to establish a decision support system capable of solving strip
and bin packing problems approximately.

1.4 Dissertation Organisation

In the second chapter of this dissertation, the scope of the problems under investigation is
discussed in some detail. The chapter opens with an introduction to various classifications of
C&P problems, which is concluded by the scope of C&P problems that will be covered in this
dissertation. This is followed by a brief review of traditional solution methodologies for C&P
problems, with a focus on heuristics, metaheuristics and exact methods and the introduction
of the concept of pseudolevel-packing algorithms. This section is concluded by a description
of the scope of the solution methodology that will be utilised in this dissertation. Finally, a
selection of methods for the evaluation of algorithms for C&P problems, both theoretical and
computational, are presented.

The third chapter is dedicated to level-packing algorithms for the strip packing problem. After
a brief introduction, five known algorithms are described in some detail. A simple worked
example, performance bounds (if they have been described in the literature), an estimation of
the worst-case time complexity and some algorithmic variations or practical considerations to
take into account when programming the algorithms are included in each case. This is followed
by a description of two new level-packing algorithms, which are described in a similar manner
to the known algorithms.
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The fourth chapter opens with a number of practical considerations with respect to the imple-
mentation of pseudo-level algorithms. This is followed by a review of three known pseudolevel-
packing algorithms. These algorithms are described verbally, by means of a pseudocode listing
and are illustrated by means of a worked example. The worst-case time complexities of the
algorithms are estimated, followed by suggestions for practical implementation considerations
for these algorithms. Finally, five new algorithms are described in a manner similar to that of
the three known algorithms.

The purpose of the fifth chapter is to review plane-packing algorithms from the literature. These
algorithms are described in a manner similar to the descriptions of the algorithms in previous
chapters. Some modifications to selected algorithms are proposed in an attempt to improve
their packing efficiencies. The chapter is concluded by a new categorisation of plane-packing
algorithms into those that depend strongly on the order in which items are sorted, and those
algorithms that may yield good packing solutions regardless of the order in which the items
are supplied to the algorithm. This distinction of algorithms allows for two novel methods of
sorting items in an attempt to consistently find lower strip heights.

The sixth chapter contains an appraisal of all the strip packing algorithms of Chapters 3–5. The
chapter opens with a description of 1 170 benchmark problem instances that are used to compare
the algorithms. This is followed by a brief description of the statistical tests that are used to
compare the algorithms and the results for the level-packing algorithms. These results are
presented separately for related sets of algorithms, which are compared to one another, before
the best algorithm from each set is selected for a final comparison. The pseudolevel-packing
algorithms are separated into two sets, namely those that are guaranteed to yield guillotine
layouts and those that no not adhere to the guillotine constraint. The plane-packing algorithms
are separated into eight related sets and the best from each set are compared with the best
from the two sets of pseudolevel-packing algorithms.

The multiple bin size bin packing problem (MBSBPP) and single bin size bin packing problem
(SBSBPP) are introduced in the seventh chapter of the dissertation. A literature survey on
these two problems is followed by a description of a new heuristic for the MBSBPP, including
a pseudocode listing, a worked example and an estimation of the worst-case time complexity.
Finally, modifications made to a plane-packing algorithm in order for it to find solutions to the
MBSBPP are described.

The eighth chapter contains an appraisal of selected strip packing algorithms combined with
the new algorithm for the MBSBPP. Brief descriptions of a number of benchmark problem
instances for the MBSBPP are given, followed by a description of an algorithm that creates
new benchmark instances for this problem. The level-packing algorithms that performed best
in their respective sets are combined with the new algorithm for the MBSBPP in order to find
results for a total of 1 357 benchmark instances. This is followed by an appraisal of selected
guillotine and free-packing pseudolevel algorithms, and the results from the application of the
plane-packing algorithm to the benchmark instances. Finally, selected algorithms from each set
are all combined in an attempt to identify those algorithms that perform best for the MBSBP
and SBSBP problems.

A summary of the contributions of the dissertation may be found in the penultimate chapter,
as well as an appraisal of the impact of these contributions.

Various ideas for future work are presented in the final chapter.
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In this chapter the scope of C&P problems covered in this dissertation is delimited and explained.
In order to describe which C&P problems form part of this study, two typologies and two
subtypologies for C&P problems are presented in §2.1. A systematic characterisation of C&P
problems makes it possible to portray differences between problems accurately.

2.1 Classifications of Cutting and Packing Problems

In order to describe the C&P problems considered in this dissertation, three known typologies
(the organisation of objects into categories according to certain criteria) of cutting and packing
problems are reviewed. In 1990, Dyckhoff [43] attempted to sort the many forms of cutting and
packing problems in the operations research literature into a typology that would be able to
“unify the different use of notions in the literature and to concentrate further research on special
types of problems” [43, p. 145]. This became necessary due to the vast variety of applications
that had been found for C&P problems.

7
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8 Chapter 2. Dissertation Scope

2.1.1 Dyckhoff’s Typology for C&P Problems

Dyckhoff was the first person to attempt a categorisation of C&P problems into clearly-defined
groups. In his paper he lists the various applications of C&P problems [43, p. 148]. Typical
cutting applications may, for example, be found in the paper, metal, glass, wood, plastics,
textiles and leather industries, while applications of packing or loading problems may be found
in the industries dealing with vehicles, pallets of goods, containers, bins, etc. There also exist
more abstract applications of C&P problems, such as packing in terms of weight dimensions (the
knapsack problem), packing in terms of the time dimension (for scheduling problems), packing
in terms of a financial dimension (budgeting), as well as packing in other dimensions, such as
for memory allocation during data storage.

The four characteristics according to which Dyckhoff sorted C&P problems are dimensionality,
the kind of assignment, the assortment of large objects and the assortment of small items. The
dimensionality characteristic may be assigned one of four values, namely 1 for one-dimensional
problems, 2 for two-dimensional problems, 3 for three-dimensional problems, or N > 3 for
N -dimensional problems. The kind of assignment characteristic may take one of two values: B
(from the German word Beladeproblem) indicates that a selection of small items are to be used to
determine packing patterns on all large items, while V (from the German word Verladeproblem)
indicates that all small items are to be assigned to a selection of large items. There are three
possible values for the assortment of large objects characteristic. Here a value of O indicates that
only one object is to be packed, I represents the case where multiple identical large items are to
be packed, and D indicates that multiple large items of various sizes are to be packed. Finally,
for the assortment of small items characteristic, the value F indicates that there are few items
(of different shapes), M indicates that there are many items of many different shapes, R denotes
the case where there are many items with relatively few different shapes and C indicates that all
small items are congruent (identical). This means that, according to Dyckhoff, 4×2×3×4 = 96
possible types of C&P problems exist.

Example 2.1 Consider a company where various sizes of corrugated cardboard are kept in
stock. Groups of items (cardboard boxes) of the same size are ordered by customers and these
have to be cut from stock boards. The cutting problem in this situation may thus be classified as
a 2/V/D/R problem, as the boards may be cut in only two dimensions, all items are cut from
a selection of objects (boards), there are different sizes of objects and the items assortment is
many items of relatively few shapes (each order is typically many items of the same shape).

2.1.2 Wäscher’s Improved Typology for C&P Problems

In 2006, Wäscher et al. [157] attempted to improve Dyckoff’s proposed typology. Some weak-
nesses in his typology had become apparent during the fifteen years since Dyckhoff first proposed
his typology for C&P problems. For example, Dyckhoff proposed that the strip-packing problem
should be coded as 2/V/D/M, while other researchers preferred to code it as 2/V/O/M [157, p.
4]. Another problem, identified by Gradǐsar et al. [64, p. 1208], was that there was no possibility
in the assortment of large objects for few groups of identical objects. They proposed a fourth
possibility for this characteristic, labelled G (increasing the possible number of categories of
C&P problems to 128). This eliminated the ambiguous notation for the case of items being
packed into many variably-sized large objects versus the case where small items are packed into
many large items that can be sorted into few groups of identically-sized items. Now, instead of
both these problems being labelled as 1/V/D/R problems (which may be solved by means of
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2.1. Classifications of Cutting and Packing Problems 9

an item-oriented approach), the latter may be differentiated by being labelled as a 1/V/G/R
problem (which may be solved by means of a pattern-oriented approach).

Example 2.2 The addition of the labelling proposed by Gradǐsar et al. for an assortment of
large objects consisting of few groups of many identical objects to Dyckhoff’s typology allows the
case in Example 2.1 to be relabelled. In that example the large objects were few groups of many
identical boards. Thus, the cutting problem of Example 2.1 may now be labelled as a 2/V/G/R
problem.

Examples of pattern-oriented approaches to solving C&P problems are described by Eisemann
[45], Gilmore and Gomory [57,58], Haessler and Talbot [66], Pandit [132] and Yanasse et al. [159].
These pattern-oriented approaches to C&P problems are typically solved by a column generation
method. Lodi et al. [106] describe item-oriented algorithms for C&P problems as procedures
in which each item is considered individually for packing into an object. These algorithms
include, for example, the First Fit, Best Fit, Next Fit and Worst Fit algorithms, etc. and all
their derivatives. Many of these algorithms are described in more detail later in this chapter.
Other authors who have studied item-oriented packing include Coffman et al. [31], Lodi [101],
Lodi et al. [106] and Ntene [125].

Wäscher et al. [157] agreed with Dyckhoff’s dimensionality characterisation and left it un-
changed. However, they felt that the German notations Verladeproblem and Beladeproblem
should be avoided, leading to their proposal to change the problem categories to either input
minimisation (a set of small items must be assigned to a set of large objects, such that all large
objects are used), or output maximisation (a set of small items must be assigned to a set of
large objects, such that all small items are used). Although Wäscher et al. did not develop
codes for problem types in the same manner that Dyckhoff did, Ntene [125, p. 2] labelled the
problem types IM (equivalent to Dyckhoff’s V) and OM (equivalent to Dyckhoff’s B), respec-
tively. The assortment of small items characterisation was reduced to three options, namely
identical small items (denoted by IS by Ntene, corresponding to Dyckhoff’s C labelling), a
weakly heterogeneous assortment of small items (many items are identical, labelled as W by
Ntene, corresponding to Dyckhoff’s R labelling) and S for a strongly heterogeneous assortment
of small items (very few items are identical, labelled as S by Ntene, corresponding to Dyckhoff’s
M and F labels).

Although the improved typology is still similar to the original, it is in the assortment of large
objects that the major change occurs. Here Wäscher et al. [157] group C&P problems into two
categories, each with subcategories. The first set of problems is the class dealing with only one
large object (labelled as O by Ntene), and this class may be partitioned into problems where all
dimensions of the objects are fixed (subset labelled Oa by Ntene, identical to Dyckhoff’s type
O), and those where one dimension is variable (labelled Oo by Ntene, for strip packing problems)
or where more dimensions of the object are variable (subset labelled Om by Ntene). The second
set of problems are those dealing with several large objects (labelled Sf by Ntene). This set
of problems may be divided into three subsets, namely those problems where the large objects
are identical (labelled Si by Ntene, identical to Dyckhoff’s type I), those problems where the
objects are weakly heterogeneous (labelled Sw by Ntene) and those problems where the objects
are strongly heterogeneous (labelled Ss by Ntene). The final two sets make up the grouping
Dyckhoff called type D. Wäscher et al. claim that it does not seem important to differentiate
between problems that deal with variable dimensions and those that do not within the Sf group,
as only problems with fixed dimensions had been considered in literature [157, p. 8].
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Example 2.3 The case described in Example 2.1 may be characterised as a 2/IM/Sw/W prob-
lem using Ntene’s labelling of Wäscher et al.’s typology. Wäscher et al. call it a Multiple Stock
Size Cutting Stock Problem.

There are some problems that Wäscher et al. do not include in their typology. These include

• problems where large objects are non-rectangular (such as disks).

• problems where items/objects are inhomogeneous, for example, stock material with de-
fects.

• problems where items have irregular shapes (such as in the clothing industry).

These are considered problem variants. The packings in all problems of the typology by Wäscher
et al. are also all assumed to be orthogonal, i.e. the edges of the small items must be parallel
or perpendicular to the edges of the large objects into which packing occurs. Orthogonal and
non-orthogonal packings of regular items are illustrated in Figure 2.1.

(a) Orthogonal Packing (b) Non-Orthogonal Packing

Figure 2.1: A comparison of orthogonal and non-orthogonal packings (shaded areas denote empty
spaces). A packing is orthogonal if the edges of a rectangular item are parallel or perpendicular to the
sides of the large object.

Wäscher et al. named all possible problems in their typology. These names may be found in
Table 2.1 for output maximisation problems and in Table 2.2 for input minimisation problems.

2.1.3 Lodi’s Subtypology for Packing Problems

Lodi et al. [101,105] presented their own, limited typology for bin and strip packing problems.
Their typology takes the form of three fields dP |X|Y , where d is the number of dimensions and
P denotes the packing type (BP for bin packing or SP for strip packing). Later, the values
such as CBP (for contiguous bin packing [110]), LSP and LBP (for level strip packing and
level bin packing, respectively [107]) for P have been used. The value of X ∈ {O,R} where
O indicates that the items are oriented and R indicates that items may be rotated by 90◦.
More recently, Boschetti and Mingozzi [19, p. 136] suggested the addition of the letter M to
represent the problem where a subset of the items to be packed are of type O (they may not
be rotated) and the remaining items are of type R (they may be rotated). In many cases in
industry, it must be possible to disentangle items from an object by means of edge-to-edge cuts
that are either parallel or perpendicular to all edges of the object. Examples of guillotineable
and non-guillotineable packings are shown in Figure 2.2. The value of Y ∈ {G,F}, where G
indicates that the guillotine restriction applies and F indicates that the guillotine restriction
does not apply. Lodi et al. [105] adopt the convention that an asterisk denotes multiple variants
of a field.
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Characteristics Assortment of Small Items
of Large Weakly Strongly
Objects

Identical
Heterogeneous Heterogeneous

Identical Single
Single

One Large Item Large Object
Knapsack

Object Packing Placement
Problem

Problem Problem
(IIPP) (SLOPP) (SKP)

Multiple Identical Multiple
All Large Object Identical

Dimensions Identical N/A Placement Knapsack
Fixed Problem Problem

(MILOPP) (MIKP)

Multiple
Multiple

Heterogeneous
Heterogeneous

Large Object
KnapsackHeterogeneous N/A

Placement
Problem

Problem
(MHLOPP) (MHKP)

Table 2.1: Improved typology of output maximisation problem types by Wäscher et al. (enough small
items available to fill all large items) [157, p. 11]. The cases of multiple large items and identical small
items is not a separate problem, as it may be reduced to identical packing problems for each of the
objects [157, p. 10–11].

Characteristics Assortment of Small Items
of Large Weakly Strongly
Objects Heterogeneous Heterogeneous

Single Stock Size Single Bin Size
Identical Cutting Stock Problem Bin Packing Problem

(SSSCSP) (SBSBPP)

All Multiple Stock Size Multiple Bin Size
Dimensions

Weakly
Cutting Stock Problem Bin Packing Problem

Fixed
Heterogeneous

(MSSCSP) (MBSBPP)

Residual Cutting Residual Bin
Strongly

Stock Problem Packing Problem
Heterogeneous

(RCSP) (RBPP)

One Large Object Open Dimension Problem
Variable Dimension(s) (ODP)

Table 2.2: Improved typology of input minimisation problem types by Wäscher et al. (enough large
items for all small items to be packed) [157, p. 12].

2.1.4 Ntene’s Subtypology for Packing Problems

In 2007 Ntene [125, pp. 6–8] proposed a subtypology for packing problems. Her classification
consists of six properties, denoted by α β χ γ λ τ . As with the other typologies,
the first characteristic of a packing problem is the dimensionality. Thus, α ∈ {1D, 2D, 3D,HoD}
denotes how many dimensions are considered in the problem. It is clear that α = 1D indicates
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(a) Guillotineable Packing (b) Non-Guillotineable Packing

Figure 2.2: A comparison of guillotineable and non-guillotineable (free) packings. If a packing ar-
rangement is guillotineable, the items can be disentangled with edge-to-edge cuts that are parallel or
perpendicular to all edges of the object.

a one-dimensional problem (identical to the 1 of Dyckhoff and Wäscher et al.), etc., while
α = HoD indicates that the problem is in more than three dimensions (equivalent to the N of
the other typologies).

Ntene’s second characteristic is related to the shape of the small items. The items are either
regular shapes, or they may be irregular, thus β ∈ {I,R}. Dyckhoff [43, p. 151] and Hopper and
Turton [79, p. 259] define regular shapes to be those described by a few parameters (examples
include rectangles and circles), while irregular shapes exhibit asymmetries and/or concavities.
Thus, in Ntene’s subtypology β = R for the packing of exclusively regular shapes and β = I if
the problem includes the packing of irregular items. Examples of regular and irregular shapes
may be seen in Figures 2.3(a) and 2.3(b), respectively.

(a) Regular items (b) Irregular items

Figure 2.3: A comparison of regular and irregular items for cutting and packing problems (shaded
areas denote empty spaces). Regular shapes may be described by few parameters, while irregular shapes
typically exhibit asymmetries and/or concavities.

In packing problems, the assortment of large objects into which the items must be packed
consists of four possibilities. The first is that items have to be packed onto a strip. This is
known as the strip packing problem (denoted by SP). A strip is most often a two-dimensional
object (such as a roll of paper) where one dimension is unrestricted (the paper length, for
example), while the other dimension is constant (typically the width). The second possibility
is that the items have to be packed into many objects of equal fixed size (the bin packing or
single-sized bin packing problem, labelled as MFB). However, sometimes these bins may not
have the same dimensions; hence this problem is called the variable-sized bin packing problem
(labelled as MVB). The final possibility is that a subset of items should be packed into a single
bin so as to maximise the value of the items in the bin, or reduce the wasted space as much as
possible. This is called the single bin packing problem, labelled SB by Ntene. Thus, the third
characteristic χ ∈ {MFB,MVB, SB,SP}.
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The fourth characteristic indicates the nature of the information known about the items that
have to be packed. Online problems (denoted by On) are packing problems where a list of items
are packed one at a time without any prior knowledge about their size. Thus, only once an item
has been packed, do the dimensions of the next item become known. In almost-online problems
(labelled as Aon), some information may be known about the items before they are packed. An
example of such information is the knowledge that new items are no larger than the previous
item to be packed. Other information that may be known may be the number of items to be
packed, or the maximum and/or minimum dimensions of the items. The offline case (denoted
by Off) is the typical packing problem where the entire list of items is known before packing
begins. Thus, γ ∈ {Off,Aon,On}.

There are many possible objectives for a packing. One might be to maximise the number of
items to be packed (denoted by MaI), another may be to minimise the area of a packing (denoted
by MiA). A minimisation of the number of bins is denoted by MiB, whilst minimising the cost
of the packing is denoted by MiC. Furthermore, MiS indicates that the objective is to minimise
the strip height for strip packing problems. Therefore, λ ∈ {MaI,MiA,MiB,MiC,MiS}.

The final characteristic may be used to accommodate further constraints for packing problems.
Ntene split the final characteristic into four parts, so that τ = [τo, τp, τm, τg], where each unit
of the vector is a binary variable.

• The first part, τo ∈ {0, 1} indicates whether the items may be rotated or not. A fixed
orientation is represented by τo = 0, while τo = 1 indicates that rotation is allowed.

• The parameter τp ∈ {0, 1} is used to denote whether or not there are constraints on where
items may be packed. Ntene uses the example of fragile items being part of an assortment
of items. It is unwise, for example, to pack heavy items onto fragile items. If there is no
restriction on the placement of items, then τp = 0. Otherwise, τp = 1 indicates that such
a restriction on the placement of items exists.

• The third parameter τm ∈ {0, 1} indicates whether or not the shape of the small items may
be modified while keeping another property constant (such as the area or volume). This
is a phenomenon found in the scheduling of tasks on computers. The length and width
may represent the time and computational resources required to complete a certain task,
respectively. By lengthening the item, the task may take longer, but require less resources.
On the other hand, widening the item means that more resources may be required, with
the advantage of a possible reduction in the time required to complete the task. However,
the changes in time and resource allocation computations do not change the number of
computations (area) required to complete a task. For this parameter, τm = 0 indicates
that items may not be modified, while τm = 1 means that modifications to item shapes
are allowed.

• The last parameter τg ∈ {0, 1} indicates whether or not guillotineable cuts are required.
If guillotine cuts are not required τg = 0, while τg = 1 indicates that any packing pattern
must be guillotineable.

Finally, Ntene adopts the convention that an asterisk in any field indicates that the field is
not restricted to any one of its possible values. This practice allows for a class of packing
problems to be defined, rather than merely a specific packing problem. She goes on to state
that the characteristics she defined are basic, but representative of packing problems. She
purposefully constructed the classification to be flexible, so that by adding parameters to the
final characteristic, for example, it is possible to define more problem types.
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Example 2.4 The case study briefly described in Example 2.1 is further characterised by four
additional restrictions. The aim of the company is to minimise the waste remaining after the
corrugated board is cut. Only regular items are considered, as orders for boxes are converted to
orders for rectangular sheets of board and guillotineable cuts are required. Finally, orders for
boxes are known before they are packed, so all items are known allowing for the use of offline
algorithms. The fact that the board is corrugated allows for three further characterisations. Due
to the direction of the flute of a corrugated board, the items may not be rotated. The large
boards are homogeneous, so there are no restrictions on the packing of items and the shapes of
the small items may not be modified. Thus, using Ntene’s typology for packing problems, the
situation is a 2D R MVB Off MiA 0, 0, 0, 1 problem.

An attempt at a consolidation of the typologies by Dyckhoff and Wäscher et al., and Ntene’s
subtypology is shown in Table 2.3. Tables 2.4 and 2.5 attempt to indicate how Dyckhoff’s
typology (labelled D and includes the improvement by Gradǐsar et al.), Ntene’s interpretation
of the typology of Wäscher et al. (labelled NW) and Ntene’s subtypology (labelled N) fit together
with respect to the problem types defined by Wäscher et al. (labelled WHS). These typologies
may now be used to delimit the scope of C&P problems to be considered in this dissertation.

2.1.5 The Scope of C&P Problems in this Dissertation

In this dissertation, only two-dimensional C&P problems will be considered. Furthermore,
the objective will always be to minimise the wasted space when items are packed into bins.
Furthermore, a selection of small items will have to be packed into large objects (bins or strip)
which will be assumed to be sufficient in number to accommodate all small items. This means
that the problem is a Verladeproblem according to Dyckhoff [43, p. 154], or an input minimisation
problem according to Wäscher et al. [157, pp. 6–7]. The C&P problems considered in this
dissertation allow all large items to be identical, or they may vary in size. It will be assumed
that the lengths and widths of all large objects and small items may not be modified.

According to Dyckhoff, the scope of C&P problems considered in this dissertation is the class
of 2/V/*/* problems. Using Ntene’s interpretation of the typology by Wäscher et al., these
problems are rather denoted by 2/IM/Oo,Sf/* problems. More specifically, problems called the
Open Dimension Problem (ODP, commonly called the strip packing problem), the Multiple Bin
Size Bin Packing Problem (MBSBPP) and (to a limited degree) the single bin size bin packing
problem (SBSBPP) will be considered in this dissertation. According to the subtypology of Lodi
et al. [101, 105], the problems under investigation include the 2SP|O|* and 2BP|O|* problems.
Using Ntene’s subtypology for packing problems one can place further restrictions on the scope
of C&P problems to be considered. The problems in this dissertation may be represented by

2D R MFB/MVB/SP Off MiA/MiB/MiS 0, 0, 0,∗ .

This classification indicates that only two-dimensional regular items are considered, that there
are strips and multiple large objects (they may, or may not, all be the same size), that the
entire list of small items is known before they are packed, that the area/cost of the packing
should be minimised, that rotation of small items is not allowed, that there is no restriction on
the placement of items, that the shapes of the items may not be altered and that guillotine cuts
may or may not be required.
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Characteristics Assortment of Small Items
of Large Weakly Strongly
Objects Heterogeneous Heterogeneous

Identical

Single Stock Size Single Bin Size
Cutting Stock Problem Bin Packing Problem

D: ∗/V/I/(R/C)
NW: ∗/IM/Si/(IS/W)

WHS: SSSCSP

D: ∗/V/I/(F/M)
NW: ∗/IM/Si/S

WHS: SBSBPP
N: ∗ ∗ MFB ∗ MiA/MiB/MiC ∗,∗ ,∗ ,∗

Multiple Stock Size Multiple Bin Size
Cutting Stock Problem Bin Packing Problem

All
Weakly D: ∗/V/G/(R/C)

NW: ∗/IM/Sw/(IS/W)
WHS: MSSCSP

D: ∗/V/G/(F/M)
NW: ∗/IM/Sw/S

WHS: MBSBPP

Dimensions
Heterogeneous

N: ∗ ∗ MVB ∗ MiA/MiB/MiC ∗,∗ ,∗ ,∗

Fixed

Strongly

Residual Cutting Residual Bin

Heterogeneous

Stock Problem Packing Problem
D: ∗/V/D/(R/C)

NW: ∗/IM/Ss/(IS/W)
WHS: RCSP

D: ∗/V/D/(F/M)
NW: ∗/IM/Ss/S

WHS: RBPP

N: ∗ ∗ MVB ∗ MiA/MiB/MiC ∗,∗ ,∗ ,∗

Open Dimension Problem

One Large Object
D: ∗/V/O/∗

NW: ∗/IM/O(o/m)/S
WHS: ODP

Variable Dimension(s)

N: ∗ ∗ SP ∗ MiC/MiS ∗,∗ ,∗ ,∗

Table 2.5: Four typologies for input minimisation C&P problems (enough large items to accommodate
all small items). Ntene’s [125, pp. 6–8] subtypology is the same for each row as the sizes of small items
are not taken into consideration. Dyckhoff’s tyolology is denoted by D, Ntene’s interpretation of the
typology by Wäscher et al. [125, pp. 2] is denoted by NW, the typology by Wäscher et al. [157, pp. 11]
is denoted by NHS and Ntene’s subtypology is denoted by N.

2.2 Packing Problem Solution Methodologies

The purpose of this section is to provide a brief introduction to the methodology typically em-
ployed to solve packing problems. Heuristics are approximate solution techniques that typically
provide solutions in the least amount of time to the detriment of the solution quality. Exact
methods find a best possible packing, but are slow and may be unable to provide solutions
to large or realistically sized problem instances within reasonable time. The purpose of meta-
heuristics is to find a suitable compromise between heuristics and exact methods, in order to
find, within a reasonable time period, solutions that are close to optimal. A metaheuristic is
a high-level heuristic that delegates work to low-level heuristics in order to find good (but not
necessarily optimal) solutions to optimisation problems.

2.2.1 Heuristics

The word heuristic is derived from the Greek word heuristikein or heurisko, which may be
translated as “to find” or “to discover” [142]. Pearl [135, p. 3] states that “heuristics are
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18 Chapter 2. Dissertation Scope

criteria, methods, or principles for deciding which among several alternative courses of action
promises to be the most effective in order to achieve some goal. They represent compromises
between two requirements: the need to make such criteria simple and, at the same time, the
desire to see them discriminate correctly between good and bad choices.” Reeves [142, p. 6]
remarks that what is now called a heuristic “would be better described as a seeking method,
as it cannot guarantee to find anything.” His formal description of a heuristic is “a technique
which seeks good (i.e. near optimal) solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases to state how close to
optimality a particular feasible solution is.” However, this description of heuristics may include
what are now known as metaheuristics — a tighter definition is required for the purposes of this
dissertation. In this dissertation heuristics are those algorithms that pack items directly into
bins, there is no high-level heuristic guiding other heuristics, nor is more than one repacking of
items allowed. Furthermore, the solution is guaranteed to be feasible.

Consider a list L of n items. In the context of strip packing problems, heuristics consider these
items one-by-one and attempt to pack them into a bin or strip so as to achieve a near-optimal
solution without the guarantee that a solution is optimal. Two-dimensional bin/strip packing
heuristics may belong to one or more of the following classes:

Plane Algorithms The class of algorithms that pack items anywhere in that region of the
plane R2 defined by the boundaries of a bin or strip.

Pseudolevel Algorithms The sub-class of the plane algorithms where the permissible loca-
tion of items is further restricted by levels. A level is defined by two parallel lines, called
level boundaries, extending from one side of the bin or strip to the other, and perpendic-
ular to the edges of the bin or strip. No item interior in a packing may be intersected by
any level boundary.

Level Algorithms The sub-class of pseudolevel algorithms that produce packings in which at
least one edge of each item coincides with the lower level boundary.

Figure 2.4 shows the heuristic classes are related. An example of a solution obtained by means
of each class of heuristics applied to the same set of items (i.e. to the same packing instance) is
shown in Figure 2.5.

Level Algorithms

Pseudolevel Algorithms

Plane Algorithms

Figure 2.4: A diagram showing the relationship between plane, pseudolevel and level algorithms.
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Figure 2.5: Examples of solutions from the application of level, pseudolevel and plane algorithms to a
strip packing problem. Level boundaries are shown as dotted lines.

Two-dimensional offline packing heuristics typically sort the items in L in order of decreasing
height. This has its origins in the heuristic solution to the offline one-dimensional bin packing
problem (see Johnson et al. [84, 85]). Authors such as Coffman et al. [32], and Coffman and
Shor [34] have adapted heuristics for the one-dimensional bin packing problem to the two-
dimensional strip packing problem. Other strip packing algorithms, such as those by Lodi et
al. [105,106] and those by Ntene and Van Vuuren [125,127] originated from these algorithms.

Other authors have considered the two-dimensional strip packing problem from a perspective
independent of the one-dimensional bin packing problem. In this sense there are two classes
of heuristics. The first class of heuristics sort L in order of decreasing width and allocate the
items into sub-lists. These sub-lists are packed into certain regions of the strip. Coffman et
al. [32], Sleator [148], Golan [62], Baker et al. [5], Coffman and Lagaris [33] and Coffman and
Shor [34] designed such algorithms. The other class of heuristics simply pack items as far down
and to the left as possible within a bin or strip. Baker et al. [6] published the first version of
an algorithm in this class and authors such as Chazelle [25], Girkar et al. [60], Jakobs [83] and
Liu and Teng [100] have subsequently made modifications to the original algorithm.

The heuristic approach to the single-size bin packing problem began with a combination of strip
packing heuristics and heuristics for one-dimensional single-size bin packing. These algorithms
(such as those by Chung et al. [28], Berkey and Wang [16] and Lodi et al. [106]) pack the items
into a strip of width equal to the width of the bins, then pack the resulting levels of the strip
into bins. In 1999, Lodi et al. [105] developed another form of two-phase packing strategy as
an initialisation tool for a tabu search metaheuristic approach. Direct packing (or one-phase)
heuristics, where items are packed directly into bins, have also been used (see Berkey and
Wang [16] and Lodi et al. [105]), amongst other techniques.

Heuristics for the variable-sized bin packing problem are typically designed for the one-dimen-
sional problem. Friesen and Langston [54] first suggested packing strategies that filled the
largest bins first and then attempted to repack items into smaller bins. This was expanded
on by Kang and Park [87] to include the FFD and BFD packing strategies. Chu and La [27]
analysed four other packing strategies for this problem.
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20 Chapter 2. Dissertation Scope

2.2.2 Metaheuristics

The prefix Meta- may be translated from Greek as “beyond”, indicating that a metaheuristic
is an algorithm that operates at a higher level than a heuristic. It may be defined as an
algorithm “which basically tries to combine basic heuristic methods in higher level frameworks
aimed at efficiently and effectively exploring a search space” [17, p. 270]. The term was first
used by Glover [61, p. 541] and has since become widely adopted as the name for this class of
algorithms. Blum and Roli [17, pp. 270–271] outline the fundamental properties characterising
metaheuristics and summarise metaheuristics as “high level strategies for exploring search spaces
by using different methods.”

Where heuristics pack one item at a time from a list of items, metaheuristics often consider
groupings of items and collectively assign to them a position in some manner. In packing, meta-
heuristics often make use of heuristics as decoding mechanisms. For example, a metaheuristic
may find a suitable ordering of items and then some heuristic may use this ordering to pack the
items into bins in order to test the quality of the solution [75, p. 19]. There are many types of
metaheuristics and many of these algorithms are based on natural phenomena (see Reeves [142]
and Blum and Roli [17] for a description of various metaheuristics). A selection of the more
common metaheuristics specifically used in packing are briefly mentioned here.

One of the most widely used types of metaheuristics is the class of evolutionary algorithms.
These algorithms represent solutions as chromosomes and make use of biological occurrences
including reproduction, gene mutation, gene recombination and selection due to fitness in an
attempt to find good solutions to combinatorial optimisation problems. Genetic algorithms
are popular evolutionary algorithms that typically represent solutions as binary strings. These
strings typically undergo cross-over and mutation operations to produce “offspring”, which
are subsequently tested for fitness. The fittest stings (the best approximate solutions) survive
and are allowed to reproduce, while the weakest are discarded. Authors such as Falkenauer
and Delchambre [48, 49], Hwang et al. [81], Jakobs [83], Runarsson et al. [144], Dagli and
Poshyanonda [38], Liu and Teng [100], Hopper and Turton [75, 77–80], Valenzuela and Wang
[153], Bortfeldt [18], Gonçalves and Resende [63] and Burke et al. [23] have studied genetic
algorithms as a tool for solving packing problems.

Another common metaheuristic that has recently been applied to packing problems is simulated
annealing, first published by Kirkpatrick et al. [93] (see also Eglese [44]). It originates in the
annealing technique used in metallurgy, where metals are carefully heated and cooled in order
to promote a better crystalline structure in the metal. When applied to packing problems the
positions of atoms may be analogous to the positions of items in bins. The system begins
with a certain temperature at which the items are free to move around. The movement of
items becomes more constrained as the temperature decreases until they are no longer able to
move. Authors that have studied simulated annealing for two-dimensional rectangular packing
problems include Dowsland [41], Lai and Chan [95], Faina [47], Hopper and Turton [75,77–80],
Beisiegel et al. [13] and Burke et al. [23].

The third common metaheuristic in the packing problem literature is tabu search. It is a local
search technique that maintains a list of recent moves or solution modifications that have been
applied during the search and marks the reversal of these moves as “tabu”, thereby preventing
cycling during the search. Starting with an initial solution (that may be found by a heuristic),
moves are made from one solution to another until a stopping criterion is reached. Examples
of these moves may include an attempt to repack an item from one bin into another. Authors
that have evaluated the tabu search method for two-dimensional rectangular packing problems
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include Lodi et al. [101,104,105,108], Hopper and Turton [75,77–80], Alvarez-Valdes et al. [1–3],
Burke et al. [23] and Pureza and Morabito [140].

2.2.3 Exact Methods

Exact packing methods are often called deterministic methods and are guaranteed to find an
optimal solution to a problem (given sufficient time and a feasible region), while heuristics
and metaheuristics attempt to find optimal solutions, but are not guaranteed to do so. Exact
methods may often be too slow to solve large problem instances, but may typically be used
to solve smaller ones. In pattern generation methods, an exhaustive list of columns is gener-
ated that represent all possible patterns formed by items within the bins. Linear or integer
programming is then used to determine how many of each pattern to produce in order to fulfil
the demand. In 1965 Gilmore and Gomory [59] expanded their earlier work on one-dimensional
packing problems [57, 58] to two-dimensions with such a proposal. However, although this is a
valid approach, it was deemed impractical with respect to finding exact solutions rapidly due
to the difficulty of exhaustive pattern generation in two dimensions.

Gilmore and Gomory subsequently limited the number of permissible patterns by introducing
a guillotine constraint. By only allowing two-stage cutting patterns they further reduced the
number of permissible patterns by packing onto levels. If each item in the level was of the same
height no trimming was required, otherwise a third stage cut was allowed, where items were not
of the same height and trimming took place. Lodi et al. [107] designed an integer programming
approach towards the level strip/bin packing problem employing combinatorial bounds that
may be adapted to allow item rotation. Belov [11] did further work on these problems.

Martello et al. [110–112] developed a branch-and-bound algorithm that is able to solve the
two-dimensional bin packing problem and strip packing problem, respectively, to optimality.
Careful use of bounds and the use of heuristics to find good initial solutions made it possible
for them to solve some small problem instances to optimality within a one hour time limit on
a Pentium III 800 MHz computer [110, p. 318]. Scheithauer [146] made use of the equivalence
and dominance of packing patterns to reduce the number of branches that the branch-and-
bound algorithm evaluates. Pisinger and Sigurd developed a branch-and-price approach to the
two-dimensional single-size bin packing problem [138] and also for the variable-size bin packing
problem [137]. Hifi and Zissimopoulos [72] improved on the exact algorithm for the constrained
two-dimensional cutting problem by Christofides and Whitlock [26], while Cui [35] developed an
exact algorithm for the constrained two-dimensional cutting problem. Recently Cui et al. [37]
also developed a recursive algorithm incorporating branch-and-bound techniques to solve the
strip packing problem where guillotine cuts are required and rotations are allowed. A year later
Bekrar and Kacem [10] developed a dichotomic algorithm to solve the guillotine strip packing
problem to optimality, and Kenmochi et al. [90] developed exact algorithms for the strip-packing
problem that allowed for oriented and rotational packing.

2.2.4 Scope of Methodology in this Dissertation

In the remainder of this dissertation only heuristic approaches to solving packing problems will
be researched. Level, pseudolevel and plane packing algorithms will be considered that are
capable of producing approximate solutions to problems within the scope described in §2.1.5.
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2.3 Evaluation of Packing Algorithms

Two types of approaches exist that may be followed in order to evaluate the effectiveness of
a packing algorithm. One is to perform a theoretical analysis of the algorithm by comparing
an optimal solution to a hypothetical problem with the solution the algorithm provides (the
theoretical analysis may also include a time analysis). The second approach is to evaluate
implementations of the algorithms on a set of benchmark problem instances.

2.3.1 Theoretical Evaluation Methods

The complexity of an algorithm is the amount of computational resources required by a computer
to employ an algorithm. There are typically two measures that define algorithmic complexity:
the space complexity and the time complexity. The space complexity measures the amount of
memory required to execute an algorithm and the time complexity measures the number of basic
operations executed by an algorithm in order to quantify the expected time required to execute
an algorithm. Only time complexity is considered in the remainder of this dissertation1. Let
T (n) denote the number of basic operations required to execute an algorithm for a problem of
size n. If T (n) increases slowly as n increases, then the algorithm may be useful for large values
of n. However, if T (n) grows very fast as n increases (such as when T (n) is an exponential or
factorial function of n), then the algorithm may not be able to solve moderately large instances
of the problem within a realistic time span [143]. If an algorithm is known which can solve
a problem within polynomial time (such as when T (n) is a logarithmic, linear or quadratic
function), then the problem is called tractable. Otherwise the problem is called intractable [24].

It is difficult to determine the exact number of basic operations that are required by an algorithm
as it often depends on input size and conditional statements such as if-statements and while-
loops. Instead, the worst-case time complexity is used to indicate the relationship between input
size n and the time required to solve the problem in the worst case. Due to the difficulty of
calculating exact upper bounds on T (n), asymptotic upper bounds as n→∞ are preferred as a
description of the worst-case growth behaviour [68]. If g(n) is a function such that T (n) ≤ c1 g(n)
for all n larger than some n1 ∈ N (for some c1 ∈ R+), then g(n) is referred to as the asymptotic
upper bound on T (n) as n→∞. The most common form of expressing this type of bound is by
means of the so-called “Big O” notation, which takes the form T (n) = O(g (n)) [24]. Table 2.6
indicates how algorithmic time complexity may be classified.

Some authors, including Johnson et al. [84, 85], Baker et al. [5, 6], Sleator [148], Coffman et
al. [32], Brown [20], Golan [62], Chung et al. [28] and others, have theoretically evaluated the
quality of solutions produced by packing heuristics. Consider a list L of items to be packed. Let
OPT(L) denote the value of some performance measure corresponding to an optimal solution to
the problem. This measure is typically the strip height for strip packing problems, or the number
of bins required to pack items for single-sized bin packing problems. The same performance
measure evaluated for the solution provided by algorithm A is denoted by A(L). An absolute
performance bound for algorithm A is the worst possible solution for any list L and has the form

A (L) ≤ β OPT (L) ,

where β ∈ R and β ≥ 1. An asymptotic performance bound for algorithm A takes the form

A (L) ≤ β OPT (L) + γ,

1In the current technological environment memory is cheap. Time may be an expensive resource and a common
aim is to minimise the time required to complete calculations.
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Rate of Growth Name If n is doubled

O(1) Constant No change
O(log logn) Iterated logarithmic Small time increments
O(log n) Logarithmic Constant time increments
O(n) Linear Time is doubled
O(n log n) Linearithmic Slightly more than double time
O
(
n2
)

Quadratic Time increases 4-fold
O
(
n3
)

Cubic Time increases 8-fold
O(nc) Polynomial Time increases 2c-fold
O(cn) Exponential Time required is squared
O(n!) Factorial Time increases (2n)!/n!-fold
O(nn) Super-exponential Time increases extremely quickly

Table 2.6: Classifications of algorithmic time complexity [143]. The constant c ∈ R+.

where γ ∈ R. Coffman et al. [32, p. 809] remark that an asymptotic bound is of greater
interest than an absolute performance bound, because the latter often applies only to small,
very specialised examples of items. Instead, an asymptotic performance bound characterises
the performance of the algorithm as the ratio of the height of an optimal solution OPT(L) to
the height of the tallest item tends to infinity. Such a bound is often established for an item
set where the maximum item height is 1. However, any height may be used (see Sleator [148]
for an example), as it only affects the additive constant γ; the multiplicative bound β remains
unchanged [32].

2.3.2 Computational Evaluation Methods

Dowsland and Dowsland [42, p. 8] comment that while average or worst-case performance
bounds are useful guidelines, it is best to determine an algorithm’s usefulness by testing it on
data sets typical to the intended problem. Repositories are available on the internet where
benchmark data sets for packing problems are stored for the purpose of evaluating algorithms.
These include the benchmarks from the EURO Special Interest Group on Cutting and Packing
(ESICUP) [46], the instances at PackLib2 [50] or from the online repository by Van Vuuren and
Ortmann [154].

In order to measure the solution quality of a strip packing algorithm, called Algorithm A, the
packing height achieved by the algorithm (denoted by A(I), where I denotes a set of items)
may be divided by the packing height associated with an optimal solution (denoted by OPT(I)).
This result is called the strip packing accuracy αSP, and is defined as

αSP
A (I) =

A(I)
OPT(I)

.

However, optimal solutions are not known for all benchmark instances. In order to compare
algorithms by means of benchmark instances for which optimal solutions are not known, the
packing height of the algorithms may be divided by valid lower bounds (such as those by
Martello et al. [110]). In order to compare algorithms with respect to both solution quality and
the speed at which the solution is found, the strip packing efficiency ΓSP is defined as

ΓSP
A (I) =

OPT (I)
A (I)

×

(
τI

tAI

) 1
`

,
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where ` ∈ Z+, tAI denotes the time required by algorithm A to find a solution for the items in
I and where τI denotes the time required by the fastest algorithm in the comparison group
to find a solution to the same problem. The influence of time on ΓSP decreases as the value
of ` increases. An algorithm may be labelled as more efficient than a second algorithm for a
given value of ` if its efficiency is larger. If no optimal solution is known for a strip packing
benchmark instance, the packing height corresponding to an optimal solution may be replaced
with a valid lower bound (see Martello et al. [110]).

Two measures appear in the literature (see [75]) for the evaluation of packing solutions to the
multiple bin size bin packing problem. The utilisation µ of a packing is the total area of the
items in I (denoted by A(I)) divided by the area of the bins that contain items (denoted by
A(BI), where B denotes the set of bins), that is

µA (P) =
A(I)
A(BI)

.

The objective in the multiple bin size bin packing problem is to maximise µ.

The fitness ν of a solution to the multiple bin size bin packing problem is a measure that aims
to reward algorithms for dense packing of bins. This allows for the separation of algorithms
when their utilisations are equal for all solutions. A solution in which most bins are densely
packed and one bin is not, would typically achieve a higher fitness score than an algorithm that
packs bins less densely. Figure 2.6 illustrates how fitness may be used to differentiate between
two solutions where utilisation cannot. The fitness of a solution is defined as

νA (P) =

∑M
i=1

(
A(IBi )
A(Bi)

)k
M

,

where A
(
IBi
)

denotes the total area of the items packed into bin Bi, M is the number of bins
that contain items in the solution and typically k = 2 (as in Hopper [75]).

(a) Solution SB (b) Solution SG

Figure 2.6: A comparison of two solutions to a packing problem. The bins have height and width 40.
Both solutions have a utilisation of 0.479, while SB has a fitness of 0.220 and SG has a fitness of 0.317.
A higher fitness is more desirable as it indicates a higher probability of the wasted space being of such a
size that it may be used for further packing in the future. This may be important in, for example, trim
loss or stock cutting problems, where the offcuts (wasted space) may be re-employed as raw material at
a later stage.

In order to compare the algorithms in terms of both solution quality and time, the multiple bin
size bin packing efficiency ΓMS is defined as

ΓMS
A (P) = µA (P)×

(
τP
tAP

) 1
`
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for algorithm A.23

2.3.3 Scope of Algorithmic Evaluation in this Dissertation

In the remainder of this dissertation algorithms are almost entirely compared by means of
computational measures. Comparison tools such as the strip/single bin size bin packing accuracy
and efficiency, as well as the multiple bin size bin utilisation, fitness and efficiency, listed in §2.3.2,
will be employed to compare heuristics that are reviewed or introduced in this dissertation.
The worst-case time complexity of algorithms is the only theoretical evaluation method used
to evaluate the heuristics. However, other theoretical evaluation methods performed on known
heuristics will be presented if they have appeared in the literature.

2.4 Chapter Summary

The aim of this chapter has been to introduce the notion of cutting and packing problems, and to
delimit the scope of this dissertation. After a short introduction, the typologies of Dyckhoff [43],
Wäscher et al. [157], Lodi et al. [101, 105] and Ntene [125] for such problems were discussed in
some detail, in fulfilment of Dissertation Objective I as stated in §1.3. This made it possible to
clarify the scope of cutting and packing problems covered in the remainder of this dissertation.

After the discussion on typologies, a brief introduction to methods for solving packing problems
highlighted the use of three classes of methods, namely heuristics, metaheuristics and exact
methods in fulfilment of Dissertation Objective II. This was followed by a introduction to
theoretical and computational methods for the analysis of algorithms designed to solve packing
problems, in fulfilment of Dissertation Objective III as stated in §1.3. The theoretical analyses
included worst-case algorithmic time complexity and two worst-case measures for the solution
quality; the absolute performance bound and the asymptotic performance bound. Thereafter,
the methods for the computational analysis of algorithms were presented in some detail.

2If the fitness of solutions is the preferred measure of solution quality, the multiple bin size bin packing score
for algorithm A is given by

ΨMS
A (P) = νA (P)×

(
τP
tAP

) 1
`

.

This score may be employed as a tool for the comparison of algorithms in terms of both fitness and time, but
will not be used in this dissertation.

3In order to measure the solution quality of a single bin size bin packing algorithm, called Algorithm A, the
number of bins required to pack all items (denoted by A(P), where P is an abbreviation of the problem where
the set of items I are to be packed into the set of bins B) may be divided by the number of bins required to pack
the items (called packed bins) in an optimal solution (denoted by OPT(P)). This ratio is called the single bin size
bin packing accuracy αSS, and defined as

αSS
A (P) =

A(P)

OPT(P)
.

However, an optimal solution may not be known for all benchmark instances. In order to compare a number of
algorithms with respect to benchmark instances for which optimal solutions are not known, the number of bins
required to pack the items in a solution found by the algorithms may be divided by a valid lower bound. In order
to compare algorithms with respect to solution quality and the speed at which the solution is found, the single
bin size bin packing efficiency ΓSS is defined as

ΓSS
A (P) =

OPT (P)

A (P)
×
(
τP
tAP

) 1
`

for algorithm A. These will not be used in this dissertation.
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CHAPTER 3

Level Strip Packing Heuristics
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Various level-packing approaches to the two-dimensional strip packing problem are considered in
this chapter. These algorithms partition the strip by means of horizontal lines, thereby creating
levels. A new level is initialised above the topmost level if items no longer fit on lower levels.
The workings of a number of known heuristics following this approach are described and two
new heuristics are introduced. All algorithms in this chapter yield a two-stage cutting pattern.
This means that when the items are cut, the pattern will have to be turned by ninety degrees no
more than twice in order for the items to be separated by means of a hypothetical set of linear
blades. The first cut would be along the lines representing the levels and the second set of cuts
would be to separate the items in each level from each other. This method of describing the
solution pattern does not include the turn required for the trimming of waste from the items.

3.1 Introduction

An example set I of items is used to illustrate the working of the various algorithms presented
in this chapter and the next. The dimensions of the items are listed in Table 3.1 and the items
in I are shown in Figure 3.1.

27
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Figure 3.1: The item set I used for illustrative purposes.

Item, Ii 1 2 3 4 5 6 7 8 9 10 11 12 13

Height, h(Ii) 11 7 6 1 9 2 3 4 3 7 9 2 5
Width, w(Ii) 4 2 7 7 11 7 5 4 6 9 14 6 16

Table 3.1: Dimensions of the items in I.

It is often useful to sort the items before packing them. Johnson et al. [84,85] studied the next-
fit decreasing1 (NFD) algorithm [84], the first-fit decreasing (FFD) [85] and best-fit decreasing
(BFD) algorithms [85], as well as the unsorted versions of these algorithms. They concluded
that the worst-case result for each algorithm with sorted items is better than the worst-case
scenario for the corresponding algorithm with unsorted items. In two dimensions the advantage
gained from sorting the items by decreasing height before packing takes place is even more
significant. To appreciate this observation, consider a list of items where each item in the list is
taller than the item that precedes it in the list and the sum of the widths of the items is equal
to or less than the width of the strip. Then the strip height resulting from an unsorted packing
equals the sum of the items’ heights, while sorting the items results in a strip height equal to
the height of the tallest item in the list. Therefore, most offline algorithms sort the unpacked
items before an attempt is made to pack them.

3.2 Known Level-Packing Heuristics

In this section known algorithms for strip packing are presented in some detail. A brief intro-
duction to each algorithm is followed by a pseudocode listing of the procedure together with a
worked example.

3.2.1 The Next-Fit Decreasing Height Algorithm

One of the earliest two-dimensional strip packing algorithms is the next-fit decreasing height
(NFDH) algorithm published by Coffman et al. [32] in 1980. It is based on the next-fit (NF)
algorithm for one-dimensional bin packing by Johnson [84]. The algorithm begins by packing
an item into the bottom, left-hand corner of a strip. An attempt is made to pack subsequent
items into the same level, as far to the left as possible with the lower edge of the item at the

1Although not strictly correct, sorting items by non-increasing height (width) is referred to as sorting them
by decreasing height (width) from this point on, as is commonly done in the literature.
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same height as the lower edge of all other items in that level. If the item does not fit into the
current level, the level is closed and a new one is opened above it. Once a level is closed, no
further items may be packed into it. The height of the new level equals the height of the top
edge of the tallest (or leftmost) item on the level below. A pseudocode representation of the
NFDH algorithm is shown in Algorithm 3.1.

Algorithm 3.1 Next-fit decreasing height algorithm (NFDH)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: level← 1, i← 1, pack item Ii into level

3: w (level)← w (Ii), h (level)← h (Ii)
4: for i← 2 to |I| do
5: level← 1, Found← False
6: if w (Ii) + w (level) ≤ W then
7: pack Ii on level, adjacent to Ii−1
8: w (level)← w (level) + w (Ii)
9: else

10: level← level + 1, pack Ii on level

11: h (level)← h (Ii), w (level)← w (Ii)
12: end if
13: end for

Worked Example

When sorting the items in Table 3.1 by means of the merge-sort algorithm according to de-
creasing height, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item
I1 is the tallest item and initialises the first level. Item I5 is next in the list and fits adjacent
to I1; hence it is packed into the first level. The next item in the list, I11, is too wide to fit
into the first level and initialises a second level. The fourth item in the list of items is I2 and
it fits adjacent to I11 in the second level. Insufficient space remains in the second level for item
I10 and it initialises a third level. Item I3 follows I10 in the list and fits adjacent to I10 in the
same level. The space between I3 and the right-hand boundary of the strip is insufficient for
I13 to be packed there. Therefore it is the first item to be packed into a fourth level. The item
that follows it in the sorted list, item I8, fits into the remaining space in the level and is packed
adjacent to I13. Item I7 initialises a fifth level and I9 and I6 are packed into the same level.
The final level has sufficient space for items I12 and I4. The resulting strip height is 37 and a
graphical representation of the packing may be found in Figure 3.3(a).

Known Performance Bounds

Coffman et al. [32] established the absolute performance bound

NFDH (L) ≤ 3 OPT (L) ,

while an asymptotic performance bound is

NFDH (L) ≤ 2 OPT (L) + 1.
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Gu et al. [65] proved the expected packing height E [NFDH (L)] resulting from an NFDH packing
of items in a list L is

E [NFDH (L)] ≈ n

3
,

where the heights and widths of the items are independent and identically distributed in the
interval (0, 1).

Worst-case Time Complexity

The merge-sort algorithm [86], which has a worst-case time complexity of O(n log n), may be
utilised to sort the n items. The content of the for-loop spanning lines 4–13 is executed n times.
There are no further loops and each step within the for-loop has a constant time complexity.
Therefore the part of the algorithm after the sorting step has a time complexity of O(n). The
worst-case time complexity of the sorting procedure dominates the time complexity of the for-
loop; hence the NFDH algorithm has a worst-case time complexity of O(n log n).

Algorithmic Variations

The algorithm may be altered by initially sorting the items in another manner. It would
not be useful to sort the items in increasing order as each item would then initialise a new
level, unless it has the same height as the previous item in the list. However, by sorting the
items by decreasing height and then resolving any ties by additionally sorting these items by
decreasing or increasing width, it is possible that other solutions may be found for the same
problem instance [125]. The next-fit decreasing height decreasing width (NFDHDW) algorithm
is the next-fit algorithm applied to an item list that has been sorted in this manner. The next-
fit decreasing height increasing width (NFDHIW) algorithm is similar, except that it initially
sorts the items by decreasing height and increasing width. Both these variations are evaluated
alongside the NFDH algorithm in a subsequent chapter in this dissertation.

3.2.2 The First-Fit Decreasing Height Algorithm

The first-fit decreasing height (FFDH) algorithm was also developed by Coffman et al. [32]
in 1980. It is a two-dimensional adaptation of the first-fit decreasing (FFD) algorithm for
one-dimensional bin packing by Johnson et al. [85]. In this algorithm all items are sorted by
decreasing height prior to packing. A level is initialised by the tallest unpacked item in the list.
The level height equals the height of the item. Items are iteratively packed into the lowest level
into which they fit. If an item does not fit into any existing level, a new level is initialised. A
pseudocode listing of the FFDH algorithm may be found in Algorithm 3.2.

Worked Example

Sorting the example instance in Table 3.1 according to decreasing height, the list I = {I1, I5,
I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item I1 initialises the first level by being
packed into the lower left-hand corner of the strip. Item I5 is packed adjacent to I1. Item I11
is too wide to be packed into the first level and initialises a second level. However, item I2 does
fit into the first level and is packed adjacent to I5. The remaining space in the first two levels
is less than the space I10 requires; hence I10 initialises a third level. Insufficient space remains
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Algorithm 3.2 First-fit decreasing height algorithm (FFDH)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: level← 1, i← 1, NumLevels← 1, pack item Ii into level

3: w (level)← w (Ii), h (level)← h (Ii)
4: for i← 2 to |I| do
5: level← 1, Found← False
6: while level ≤ NumLevels and not Found do
7: if w (Ii) + w (level) ≤ W then
8: pack Ii on level

9: w (level)← w (level) + w (Ii), Found← True
10: else
11: level← level + 1
12: if level > NumLevels then
13: pack Ii on level, NumLevels← NumLevels + 1, Found← True
14: h (level)← h (Ii), w (level)← w (Ii)
15: end if
16: end if
17: end while
18: end for

for I3 to be packed into the first two levels and it is packed into the third level, adjacent to I10.
The spaces on all existing levels are too narrow for I13 and it initialises a fourth level. A fifth
level is initialised by I7 and items I9 and I6 are packed adjacent to it due to insufficient space
remaining for the items in the lower levels. Finally, items I12 and I4 are packed into a sixth
level, thereby completing the strip packing. The resulting strip height is 37 and a graphical
representation of the packing may be found in Figure 3.3(b).

Known Performance Bounds

Coffman et al. [32] established the asymptotic performance bound

FFDH (L) ≤ 17

10
OPT (L) + 1,

for the FFDH algorithm by expanding on the proofs for the one-dimensional FFD algorithm
by Garey et al. [56] and Johnson et al. [85]. Furthermore, Coffman et al. [32] showed that if no
rectangle has width exceeding 1/m, an asymptotic performance bound is

FFDH (L) ≤
(

1 +
1

m

)
OPT (L) + 1,

for some m ≥ 2. If the list L comprises only squares, an asymptotic performance bound is

FFDH (L) ≤ 3

2
OPT (L) + 1.

Coffman et al. [32] also established the absolute bound FFDH (L) ≤ 2.7 OPT (L) for the FFDH
algorithm, while for items that are no wider than 1/m (for m ≥ 2), an absolute performance
bound is FFDH (L) ≤

(
2 + 1

m

)
OPT (L).
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Worst-case Time Complexity

The merge-sort algorithm, which has worst-case time complexity of O(n log n), may again be
utilised to sort the items to be packed. One iteration of the for-loop spanning lines 4–18 has time
complexity O(n). The identification of a suitable level is performed by the while-loop spanning
lines 6–17. This loop attempts to fit an item into the lowest level; it therefore has complexity
O(n) in the worst case2. This forms part of the for-loop. The entire for-loop therefore has a
worst-case time complexity of O

(
n2
)
. However, the FFDH algorithm may be implemented to

require O(n log n) time by using appropriate data structures [84,102,106].

Algorithmic Variations

In the same manner that other methods of sorting items are evaluated for the NFDH algorithm,
the first-fit decreasing height decreasing width (FFDHDW) algorithm (the best-fit algorithm
where the items have been sorted by decreasing width and decreasing height) and the first-
fit decreasing height increasing width (FFDHIW) algorithm (the first-fit algorithm with items
sorted in a decreasing height, increasing width manner) are evaluated alongside the FFDH
algorithm later in this dissertation.

3.2.3 The Best-Fit Decreasing Height Algorithm

The best-fit decreasing height (BFDH) algorithm was first named and studied in detail by Coff-
man and Shor [34] in 1990, but Berkey and Wang [16, p. 425] had briefly described the al-
gorithm in a 1987 paper on the two-dimensional single bin size bin packing problem. It is a
two-dimensional adaptation of the best-fit decreasing (BFD) algorithm for one-dimensional bin
packing by Johnson et al. [85]. Here items are packed (if they fit) into the level with minimum
residual horizontal space — the unpacked space remaining width-wise in a level if the item
were to be packed there. This algorithm is similar to the FFDH algorithm in terms of allowing
previous levels to be revisited (the NFDH algorithm did not). If the item cannot be packed into
any existing levels, a new level is initialised. A pseudocode listing of the BFDH algorithm may
be found in Algorithm 3.3.

Worked Example

By sorting the items in Table 3.1 according to decreasing height by means of the merge-sort
algorithm, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item I1
is the tallest item and initialises the first level. Item I5 is next in the list and fits adjacent to
I1. Therefore it is packed into the first level. Item I11 is too wide to fit into the first level
and initialises a second level. Item I2 fits into the first two levels. However, by packing I2 into
the first level, less space remains between it and the right-hand boundary of the strip than if
it were packed into the second level. Item I10 does not fit into any of the existing levels and
initialises a third level. Only the third level has sufficient space for I3 and it is packed adjacent
to I10. Item I13 does not fit into any existing levels and initialises a fourth level. The second,
third and fourth levels have sufficient space for I8 and the third and fourth levels leave no
residual horizontal space after having packed I8. Item I8 is packed into the lower of the two

2Consider the example where all items in a list I of size n have width 1
2
W < w (Ii) < W. In this case the

algorithm will evaluate every level for a possible packing location. Only one item fits into a level; n levels will
therefore be searched for space.
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Algorithm 3.3 Best-fit decreasing height algorithm (BFDH)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: level← 1, i← 1, NumLevels← 1
3: w (level)← w (Ii), h (level)← h (Ii)
4: for i← 2 to |I| do
5: MinResSpace← W, MinResLevel← 0
6: for level← 1 to NumLevels do
7: if MinResSpace > W− w (level) and w (Ii) + w (level) ≤ W then
8: MinResSpace← W− w (level), MinResLevel← level

9: end if
10: end for
11: if MinResLevel = 0 then
12: NumLevels← NumLevels + 1, pack Ii on NumLevels

13: h (level)← h (Ii), w (level)← w (Ii)
14: else
15: pack Ii on MinResLevel, w (MinResLevel)← w (MinResLevel) + w (Ii)
16: end if
17: end for

levels, namely the third level. Only the second level has sufficient space for I7 and it is packed
adjacent to I11. The remaining four items do not fit into any of the existing levels. Items I9,
I6 and I12 are packed into a fifth level and I4 initialises a sixth level. The resulting strip height
is 36 and a graphical representation of the packing may be found in Figure 3.3(c).

Worst-case Time Complexity

In the worst case the algorithm is required to evaluate every level for a possible packing location.
This is performed in the for-loop spanning lines 6–10 in Algorithm 3.3. If only one item fits
into each level, as many levels are evaluated as items that have been packed. This procedure
is performed for each of the items by the for-loop represented by lines 4–17. The second loop
(the contents of which have constant time complexity) is nested within the first. Therefore the
worst-case time complexity for the BFDH algorithm is O

(
n2
)
.

Algorithmic Variations

In the same manner that other methods of sorting items are evaluated for the NFDH and FFDH
algorithms, the best-fit decreasing height decreasing width (BFDHDW) algorithm packs items
that have been sorted by decreasing height, resolving ties by sorting according to decreasing
width in a best fit manner. The best-fit decreasing height increasing width (BFDHIW) algorithm
packs items in a best-fit manner after they have been sorted by decreasing height, resolving
ties by sorting according to increasing width. They are both evaluated alongside the BFDH
algorithm later in this dissertation.
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3.2.4 The Knapsack Problem Algorithm

Lodi et al. [105, p. 7] described the knapsack problem (KP) group of algorithms in 1999. This
algorithm sorts the items by decreasing height. The tallest unpacked item initiates a level and
a knapsack problem is then solved in order to determine a set of unpacked items with the
greatest combined area for the remaining space width-wise in the level. The profit of the item
is its area, the cost of the item is its width and the knapsack’s capacity is the initialising item’s
width subtracted from the strip width. A new level is initialised by the tallest unpacked item.
This process is repeated until all items have been packed. The 0-1 knapsack problem may be
formulated as

maximise

u∑
i=1

h (Ui)w (Ui)xi,

subject to

u∑
i=1

w (Ui)xi ≤ W− w (If ),

xi ∈ {0, 1} , i = 1, . . . , u,

where u is the number of unpacked items remaining, U is the list of unpacked items and If is
the item that initialised the level. A pseudocode listing of the KP algorithm may be found in
Algorithm 3.4.

Algorithm 3.4 Knapsack problem algorithm (KP)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: level← 0, U ← I, P ← ∅
3: while U 6= ∅ do
4: re-index the items such that U1 is the first unpacked item and Uu is the last
5: level← level + 1, h (level)← h (U1)
6: for i = 2 to u do
7: ObjectiveFunction(i)← h (Ui)w (Ui)
8: Constraint(i)← w (Ui)
9: set x (i) binary

10: end for
11: ConstraintRHS ← W− w (U1)
12: solve the knapsack problem for x
13: P ← P

⋃
{U1}, U ← U \ {U1}

14: for i = 2 to u do
15: if x (i) = 1 then
16: pack Ui on level, P ← P ∪ {Ui}, U ← U \ {Ui}
17: end if
18: end for
19: end while

Worked Example

By sorting the items in Table 3.1 according to decreasing height by means of the merge-sort
algorithm, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item I1 is
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the tallest item and initialises the first level. The following 0-1 knapsack problem is solved:

maximise 14x2 + 42x3 + 7x4 + 99x5 + 14x6 + 15x7 + 15x8 + 18x9 + 63x10+
126x11 + 12x12 + 80x13,

subject to 2x2 + 7x3 + 7x4 + 11x5 + 7x6 + 5x7 + 4x8 + 6x9 + 9x10+
14x11 + 6x12 + 16x13 ≤ 16,

xi ∈ {0, 1} , i = 2, . . . , 16,

with the result that x2 = x11 = 1 and all other x values are zero. Therefore, items I2 and
I11 are packed into the first level. A second level is initialised by item I5, the tallest of the
remaining items. An integer program is formulated for this level with the remaining items and
x10 = 1 results, with all other x values equal to zero. Therefore I10 is packed adjacent to I5.
The tallest unpacked item is I3 and it initialises a third level. The solution to the corresponding
knapsack problem results in x8 = x9 = 1 and the other x values are zero. A fourth level is
initialised by I13 and the knapsack problems return a value of zero for all x values, because no
unpacked items fit into the space between I13 and the right-hand boundary of the strip. Item I7
is the tallest unpacked item and initialises the fifth level. The corresponding knapsack problem
yields x6 = x12 = 1 and x4 = 0. Item I4 is the last unpacked item and initialises the final level.
The resulting strip height is 35 and a graphical representation of the packing may be found in
Figure 3.3(d).

Worst-case Time Complexity

The sorting step in line 1 of Algorithm 3.4 may be performed by means of the merge-sort
algorithm, which has O(n log n) time complexity. The while-loop that spans lines 3–19 may
execute its contents n times in the worst case (such as when all items have a width greater than
half the width of the strip). The step listed in line 4 is not required in practice. However, it is
present to simplify the pseudocode in the remainder of the algorithm. The for-loop spanning
lines 6–10 has time complexity O(n) as its contents may be executed up to n − 1 times. All
lines listed within the for-loop have constant time complexity. Setting the right-hand side
of the constraint has constant time complexity, but the solving procedure on line 12 has an
exponential worst-case time complexity of O(2n). This is due to the linear programming solver
lp solve [15] making use of the simplex algorithm to solve the integer program. This time
complexity overrides the O(n) time complexity of lines 13–18. Combined with the while-loop,
the part of the algorithm spanning lines 3–19 has a time complexity of O(n2n), which is the
overall worst-case time complexity of the KP algorithm.

Practical Considerations

This is the first algorithm listed in this dissertation for which the items are not packed in the
same order in which they appear in the list. There are three methods in which items may be
removed from the list. The first method makes a copy of the list of items. If an item is packed,
the item is removed from the list by shortening the array that stores the list of items. This has
a time complexity of O(n) because if an item i is removed all n− i items after i are copied to
the position of the item that appears before it in the original list.

The second approach is to assign a boolean value to each item that is true when an item is
packed and false when an item is unpacked. Unfortunately this may lead to repeated evaluations
of the same items’ packed status during searches for unpacked items.
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Linked lists may be used to overcome the weaknesses of the two other approaches mentioned
above. The data structure that represents an item is a decuple (10-tuple) that contains, amongst
other properties, the items that appear before and after an item in a list. For example, consider
the ordered list {I1, I2, I3}. This may be represented as shown in Figure 3.2.

I (1) .prv = −1
I (1) .nxt = 2
I (2) .prv = 1
I (2) .nxt = 3
I (3) .prv = 2
I (3) .nxt = −1

Figure 3.2: The use of linked lists to represent an ordered list of items.

The properties .prv and .nxt represent the indices of the previous and next item in an ordered
list, respectively. The first item in the list has its previous item set to negative one, to avoid
any false loops that may occur (for example if I (1) .prv = 3 in the example above). The same
applies for the property of the last item in the list which represents the next item. If an item
is packed that has both its .nxt and .prv properties equal to negative one, then there are no
further items to be packed and the algorithm may terminate. One or two additional integer
variables are required to save the index values of the first and last unpacked items in the list.
This allows the algorithms that employ the linked lists to begin a packing procedure from the
first unpacked item and not from the first item in the list. The removal of an item is a simple
procedure with constant time complexity; the .prv property of the next item (if it exists) is set
equal to the .prv property of the item being removed and the .nxt property of the previous item
(if it exists) is set equal to the .nxt property of the removed item. The procedure that links the
items has a time complexity of O(n) and may be performed directly after the sorting procedure.
The advantage is that the need to identify an item’s packed status disappears, thereby saving
time during the packing procedure, especially as the number of unpacked items diminish.

In order to restrict the time required by the algorithm to find a solution for large problems, some
further restrictions may take place. The solver employed to solve linear programs throughout
this dissertation, lp solve [15], allows the user to specify a timeout period of an integer number
of seconds. Thus, it is possible to restrict the time allowed to solve the knapsack problem
for a level to one second. If an alternative solution has been found using, for example, an
FFDH strategy to fill the level with unpacked items, it may replace the solution found by the
solver if the solution is suboptimal and worse than the heuristic solution for the level. If the
solution is suboptimal after the timeout period, but better than the alternative solution, then
the suboptimal solution may be used to pack items into the level. An additional algorithm,
called the time-restricted knapsack problem (KPTR) algorithm, which makes use of the timeout
function will also be considered for comparison purposes.

3.2.5 The JOIN Algorithm

In order to solve initial solutions for their exact approaches to the strip packing problem,
Martello et al. [110] designed an algorithm called JOIN. The items are sorted by decreasing
height, then the list is scanned for pairs of consecutive items Li and Li+1 whose height difference
is no larger than a proportion δ (typically in the range [0, 10]) and the combined width of the
two is no larger than the strip width. If such an item pair exists, the pair is replaced by a
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“super-item” of height h (Si) = h (Li) and width w (Ui) = w (Li) + w (Li+1). The scan then
continues from item Li+2. At the end of the scan the new list of items is packed with one
of the NFDH, FFDH or BFDH algorithms. The algorithm may also sort the items according
to decreasing width initially, look for a pair whose difference in widths is no larger than the
proportion δ, then replace them with a “super-item” of height h (Ui) = h (Li) + h (Li+1) and
width w (Ui) = w (Li).

Algorithm 3.5 Algorithm JOIN

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items, the strip
width W, the orientation of the joining (horizontal or vertical) and the proportion γ by which
the items may differ in height or width for them to be joined.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height (if joining items horizontally)
2: or sort the items by decreasing width (if joining items vertically)
3: define S = ∅ as the list of super-items, i← 1, j ← 1
4: while i ≤ |I| do
5: if i < |I| then

6: if horizontal and
h(Ii)− h(Ii+1)

h(Ii)
× 100 ≤ δ and w(Ii) + w(Ii+1) ≤ W then

7: w(Sj)← w(Ii) + w(Ii+1), h(Sj)← h(Ii)
8: i← i+ 2

9: else if vertical and
w(Ii)− w(Ii+1)

w(Ii)
× 100 ≤ δ then

10: h(Sj)← h(Ii) + h(Ii+1), w(Sj)← w(Ii)
11: i← i+ 2
12: else
13: Sj ← Ii
14: i← i+ 1
15: end if
16: else if i = |I| then
17: Sj ← Ii
18: i← i+ 1
19: end if
20: j ← j + 1
21: end while
22: use NFDH, FFDH or BFDH to pack S
23: decode super-items back to original items

Worked Example

Set δ = 0. By sorting the items in Table 3.1 according to decreasing height using the merge-sort
algorithm, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. No items
have the same height as I1 (U1), but items I5 and I11 have the same height. However, the sum
of their widths is greater than the strip width and they are not joined. They are relabelled
items U2 and U3, respectively. Items I2 and I10 have the same height, their combined width is
less than the width of the strip and they are joined to form item U4. No items have the same
heights as I3, I13 and I8; hence these are renamed U5, U6 and U7, respectively. Items I7 and I9
have the same height and are joined to form S8. Items I6 and I12 satisfy the joining conditions
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Figure 3.3: Results obtained when packing items in I using the known level packing algorithms de-
scribed in §3.2 for the strip packing problem. The resulting packing heights H are also shown.
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and are merged into one item to form U9. Item I4 is relabelled U10. The number of items has
been reduced from thirteen to ten and may be packed by means of the NFDH, FFDH or BFDH
algorithms. The resulting strip height is 37 if the FFDH algorithm is used and a graphical
representation of the packing may be found in Figure 3.3(e).

Worst-case Time Complexity

The merge-sort algorithm, which has a worst-case time complexity of O(n log n), may be utilised
to sort the items in L either by decreasing height (for the horizontal joining of items), or
decreasing width (for the vertical joining of items). Line 3 has constant time complexity. The
while-loop spanning lines 4–21 will execute its contents n times in the worst case to create the
super-items. The contents of this loop have constant time complexity, resulting in a worst-case
time complexity O(n) for the loop. After the creation of the super-items, they may be packed
by means of either the NFDH, FFDH or BFDH algorithms. The list S need not be sorted in the
case of joining items horizontally due to the sorting in line 1. Therefore, the sorting steps in the
packing algorithms may be avoided resulting in a worst-case complexity of O(n) for the NFDH
algorithm. However, the sorting step must remain if the items are joined vertically, resulting
in a worst-case time complexity of O(n log n) for the NFDH algorithm. The time complexity
of the FFDH and BFDH algorithms remain O

(
n2
)
. The decoding of super-items back to the

original items on line 23 has time complexity O(n). If the NFDH algorithm is used to pack
the items, algorithm JOIN has a worst-case time complexity of O(n log n) due to the addition
of three (or two) O(n) steps with one (or two) O(n log n) step when joining items horizontally
(or vertically). The time complexity of the FFDH or BFDH algorithms is greater than the
worst-case time complexity of any of the other steps in algorithm JOIN. Thus, the worst-case
time complexity for algorithm JOIN when using algorithms FFDH or BFDH is O

(
n2
)
.

Algorithmic Variations

In the same manner that other methods of sorting items are evaluated for the NFDH, FFDH and
BFDH algorithms, the JOIN(DHDW) algorithm packs items that have been sorted by decreasing
height and decreasing width, the JOIN(DHIW) algorithm packs items after they have been
sorted by decreasing height and increasing width. The JOIN algorithm that joins items vertically
may also have the items sorted in three ways; decreasing width — JOIN(DW), decreasing
width, resolving ties by additionally sorting those items by decreasing height — JOIN(DWDH)
or decreasing width, resolving ties by additionally sorting those items by increasing height —
JOIN(DWIH). They are all evaluated in following chapters.

3.3 New Level-Packing Heuristics

In this section two new algorithms for strip packing are introduced in some detail. A brief
introduction to each algorithm is followed by a pseudocode listing of the procedure together
with a worked example.

3.3.1 The Worst-Fit Decreasing Height Algorithm

The origins of the worst-fit decreasing height (WFDH) algorithm may be found in the worst-fit
decreasing (WFD) algorithm for one-dimensional bin packing by Johnson [84]. In the same
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manner that Coffman et al. [32], and Berkey and Wang [16] and Coffman and Shor [34] adapted
the FFD and BFD algorithms to two-dimensions, respectively, the WFD algorithm may be
adapted to two dimensions. It is very similar to the BFDH algorithm, the only difference being
that the level with the maximum residual horizontal space is used for packing (if the item fits),
whereas the BFDH algorithm uses the minimum residual horizontal space to determine the
level best suited for packing. A pseudocode listing of the WFDH algorithm may be found in
Algorithm 3.6.

Algorithm 3.6 Worst-fit decreasing height algorithm (WFDH)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: level← 1, i← 1, NumLevels← 1
3: w (level)← w (Ii), h (level)← h (Ii)
4: for i← 2 to |I| do
5: MaxResSpace← 0, MaxResLevel← 0
6: for level← 1 to NumLevels do
7: if MaxResSpace < W− w (level) and w (Ii) + w (level) ≤ W then
8: MaxResSpace← W− w (level), MaxResLevel← level

9: end if
10: end for
11: if MaxResLevel = 0 then
12: NumLevels← NumLevels + 1, pack Ii on NumLevels

13: h (level)← h (Ii), w (level)← w (Ii)
14: else
15: pack Ii on MaxResLevel, w (MaxResLevel)← w (MaxResLevel) + w (Ii)
16: end if
17: end for

Worked Example

By sorting the items in Table 3.1 according to decreasing height by means of the merge-sort
algorithm, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item I1
initialises the first level and I5 is packed adjacent to it in the same level. There is insufficient
space in the first level for I11 and it initialises the second level. Item I2 fits into both existing
levels, but the second level has the maximum residual horizontal space and I2 is packed into
that level. The existing levels have insufficient space remaining for I10 and it initialises a third
level. This is the only level with sufficient space for I3 and the item is packed adjacent to
I10. Insufficient space remains for I13 in existing levels and it initialises a fourth level. All
four existing levels have sufficient space for I8, but the second level has the maximum residual
horizontal space and the item is packed adjacent to I11. Item I7 initialises the fifth level due
to insufficient space remaining in the existing levels. Items I9 and I6 only fit into the fifth
level and the last two remaining items, namely I12 and I4, are packed into a sixth level. The
resulting strip height is 37 and a graphical representation of the packing may be found in Figure
3.6(a).
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Worst-case Time Complexity

In order to sort the items, the merge-sort algorithm may be used and it has a time complexity
of O(n log n). The WFDH algorithm has the same structure as the BFDH algorithm, resulting
in a worst-case time complexity of O

(
n2
)

for the WFDH algorithm. The for-loop spanning lines
4–17 executes its contents n times. Within that for-loop a search is launched for a suitable level
to pack an item (lines 6–10), which in the worst-case, may be executed O(n) times. Therefore,
the algorithm has a worst-case time complexity of O

(
n2
)
, overriding the time complexity of the

sorting part of the algorithm.

Algorithmic Variations

In the same manner that other methods of sorting items are evaluated for the NFDH, FFDH
and BFDH algorithms, the worst-fit decreasing height decreasing width (WFDHDW) algorithm
packs items that have been sorted by decreasing height, resolving ties (items of equal height)
by additionally sorting those items by decreasing width, in a worst-fit manner. Similarly, the
worst-fit decreasing height increasing width (WFDHIW) algorithm packs items in a worst-fit
manner after they have been sorted by decreasing height, resolving ties by additionally sorting
those items by increasing width.

3.3.2 The Best Two Fit Deceasing Height Algorithm

The best two fit decreasing height (B2FDH) algorithm is based on the best two fit (B2F) algorithm
for one-dimensional bin packing by Friesen and Langston [55]. The B2F algorithm packs the
first bin in an FFD manner and if the bin contains more than one item, an investigation takes
place to determine whether two smaller unpacked items may replace the smallest item in the
bin (the occupant). If such items exist, the two items whose sum is greatest (and larger than
the size of the occupant) replace the occupant.

It is possible to extend this procedure to two dimensions by sorting the items by decreasing
height, then packing the first level in a first-fit manner such that the entire list is searched for
items to pack before an attempt is made to replace the last item in the level (the occupant)
with two unpacked items. Once an attempt has been made to replace the occupant, unpacked
items are packed into the next level in a similar manner. The replacement procedure is only
performed if the two smaller items have a sum of widths (or areas) greater than the width (or
area) of the occupant. If there are two or more pairs of items with the same sum of widths
(areas) that may replace the occupant, the pair with the greatest sum of areas (widths) are
chosen to replace the occupant. This process continues until all items have been packed. In
order to differentiate between the algorithm that uses the items’ widths in an attempt to achieve
an improvement and the algorithm that uses the area of items in an attempt to improve the
solution, the former is called the best two fit (by width) decreasing height (B2FWDH) algorithm
and the latter is called the best two fit (by area) decreasing height (B2FADH) algorithm.

It may prove impractical to solve large problem instances using this approach if all unpacked
items are searched for replacements for the occupant. Instead, the algorithm may be restricted
to searching for suitable pairs within a fixed range. For example, the algorithm may be restricted
to search only for pairs of items that are adjacent in an ordered list. Another option would be
to restrict the search for pairs to within k−1 items ahead of an unpacked item under investiga-
tion. This algorithm is called the best two fit k-decreasing height (B2FkDH) algorithm (or the
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B2FWkDH algorithm when the width is used as the improvement criterium, or the B2FAkDH
algorithm when the item area is used as the improvement criterium), where k indicates the
range of items that may be considered for pairing in an ordered list. The convention is that the
B2FnDH algorithm is the algorithm allowing all unpacked pairs of items to be considered for
occupant replacement, while the B2F2DH algorithm only allows adjacent pairs of items to be
evaluated for occupant replacement. A pseudocode listing of the B2FWkDH algorithm may be
found in Algorithm 3.7.

Algorithm 3.7 Best Two Fit Decreasing Height algorithm (B2FDH)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items, the strip
width W and the range of items permitted for substitution k.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height and decreasing width
2: P ← ∅, level← 0
3: while I 6= ∅ do
4: level← level + 1, w (level)← W

5: call PackFloor (I,P, level)
6: let I` be the last item packed into the level
7: if two items could exist to replace the last item packed then
8: AvSpace← w (level) + I`, B1← 0, B2← 0
9: call FindSuitable (I, k, AvSpace, B1, B2)

10: if B1 > 0 and B2 > 0 then
11: insert I` back into the correct place within I
12: I ← I ∪ {I`}, P ← P \{I`}
13: pack items IB1 and IB2 into level

14: P ← P ∪ {IB1}, I ← I \ {IB1}
15: P ← P ∪ {IB2}, I ← I \ {IB2}
16: end if
17: end if
18: end while

Procedure 3.7.1 PackFloor (I,P, level)

1: i← index of first unpacked item
2: while i ≤ index of last unpacked item and I 6= ∅ do
3: if w (Ii) ≤ w (level) then
4: w (level)← w (level)− w (Ii)
5: if it is the first item on level then
6: h (level)← h (Ii)
7: end if
8: P ← P ∪ {Ii}, I ← I \ {Ii}
9: end if

10: i← index of next unpacked item
11: end while

Worked Example

Consider the B2FWnDH algorithm. By sorting the items in Table 3.1 according to decreasing
height with the merge-sort algorithm, the list I = {I1, I5, I11, I2, I10, I3, I13, I8, I7, I9, I6,
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Procedure 3.7.2 FindSuitable (I, k, AvSpace, B1, B2)

1: i← index of item after I`, BestSpace← w (I`)
2: while i < index of the last unpacked item do
3: j ← index of item after Ii, m← 2
4: while j ≤ index of the last unpacked item and m ≤ k do
5: if w (Ii) + w (Ij) < AvSpace and BestSpace < w (Ii) + w (Ij) then
6: B1← i, B2← j, BestSpace← w (Ii) + w (Ij)
7: end if
8: j ← index of next unpacked item, m← m+ 1
9: end while

10: i← index of next unpacked item
11: end while

I12, I4} results. Item I1 initialises the first level and I5 is packed adjacent to it in the same
level. Item I11 does not fit adjacent to I5, but there is sufficient space to pack I2. No unpacked
items are narrow enough to fit between I2 and the right-hand boundary of the level. A search
for two items that yield a combined width greater than the width of I2 yields no pair that may
replace I2. Therefore the first level is closed. The second level is initiated by packing I11, and
I8 is the tallest item that fits between I11 and the right-hand boundary of the strip. No item
fits between I8 and the right-hand boundary of the strip and hence the remaining unpacked
items are searched for a pair of items that may replace I8. No such pair exists and the second
level is closed. Item I10 is the tallest unpacked item and initialises the third level. Sufficient
space remains for I3 and it is packed into the level. No unpacked items are narrow enough
to be packed between I3 and the right-hand boundary of the strip. A search of the unpacked
items is performed to find a pair of items with a combined width greater than the width of I3
that is less than or equal to the space between I10 and the right-hand boundary of the strip.
Items I7 and I9 have a combined width of 11, i.e. 4 units greater than the width of I3, and are
small enough to fit into the remaining space. Items I7 and I12 have the same combined width
as items I7 and I9, but the greater combined area of the former pair results in their placement
into the third level. Item I3 is the tallest unpacked item and initialises the fourth level. The
next unpacked item in the list is I13, but it does not fit into the remaining space. However,
there is sufficient space for items I6 and I12 and hence they are packed into the fourth level.
The right-hand edge of I12 coincides with the right-hand boundary of the strip. Therefore no
search is performed for a pair of items that provide a better fit. Items I13 and I4 remain and
are packed into their own levels, because their combined width is greater than the strip width.
The resulting strip height is 39, as illustrated in Figure 3.6(b).

Worst-case Time Complexity

In order to sort the items, the merge-sort algorithm may be used and has a worst-case time
complexity O(n log n). The contents of the while-loop spanning lines 3–18 are executed O(n)
times in the worst case. All lines contained in the loop, excluding those that call Procedures
3.7.1 and 3.7.2 (lines 6 and 9), have constant time complexity. Procedure 3.7.1 evaluates all
unpacked items for packing into a level in the worst case. Therefore it has time complexity
O(n). Procedure 3.7.2 attempts to find suitable items to replace the occupant. The while-loop
spanning lines 4–9 has time complexity O(n) when unrestricted (k = n) as its contents have
constant time complexity. This loop is contained within a while-loop spanning lines 2–11, which
also contains line 3 with constant time complexity. Subsequently, Procedure 3.7.2 has a worst-
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case time complexity of O
(
n2
)

if k = n, or O(n) if k is restricted. Therefore, for unrestricted k
the B2FDH algorithm has a worst-case time complexity O

(
n3
)
, and worst-case time complexity

O
(
n2
)

for restricted k.

Practical Considerations

Due to the selective removal of items from anywhere in the sorted list, and the addition of items
to the list, an implementation of the algorithm should preferably make use of the linked lists
discussed in the practical considerations subsection of §3.2.4. The addition of items is similar
to the deletion of items. Consider a list of two items; I1 and I3. The linked list for these two
items would have form illustrated in Figure 3.4.

I (1) .prv = −1
I (1) .nxt = 3
I (3) .prv = 1
I (3) .nxt = −1

Figure 3.4: A list of items prior to the addition of another item.

In order to add an item to the list, the changes illustrated in Figure 3.5 would be required.

I (1) .nxt = 2
I (2) .prv = 1
I (2) .nxt = 3
I (3) .prv = 2

Figure 3.5: The changes required to add an item to the list of items in Figure 3.4.

Using these tools allows the worst-case time complexity to be reduced by a factor of n, because
if sorted arrays were used instead of linked lists, a procedure of O(n) would be required to insert
an item into the list. With the linked list, the procedure of adding items to a list of items has
constant time complexity. Moreover, the additional cost of the copy procedures that occur in
computer memory during the changing of an array’s dimensions [139] are avoided.

In the same manner that other methods of sorting items are evaluated for the previously dis-
cussed algorithms, the best two fit decreasing height decreasing width (B2FDHDW) algorithm
packs items that have been sorted by decreasing height, resolving ties (items with equal height)
by additionally sorting items by decreasing width, in a best two fit manner. Similarly, the best
two fit decreasing height increasing width (B2FDHIW) algorithm packs items in a best two fit
manner after they have been sorted by decreasing height and equalities have been resolved by
sorting them by increasing width.

3.4 Chapter Summary

Published level heuristics for the strip packing problem were reviewed in this chapter, in fulfil-
ment of Dissertation Objective IV(a), as stated in §1.3. The NFDH algorithm by Coffman et
al. [32] was considered first, followed by the FFDH algorithm by the same authors. Thereafter
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Figure 3.6: Results obtained when packing items in I into a strip of width 20 using the new level strip
packing algorithms described in §3.3. The resulting packing heights H are also shown.

the BFDH algorithm by Coffman and Shor [34] was reviewed, followed by the KP algorithm of
Lodi et al. [105] and algorithm JOIN by Martello et al. [110].

The second part of the chapter contains two heuristics that have not appeared in the literature.
The WFDH algorithm was adapted from the WFD algorithm for one-dimensional bin packing
by Johnson [84]. Finally the B2FWkDH and B2FAkDH algorithms, two-dimensional adapta-
tions of the B2F algorithm by Friesen and Langston [55] for one-dimensional bin packing, were
introduced in fulfilment of Dissertation Objective V(a), as stated in §1.3.
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Pseudolevel Strip Packing Heuristics
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Various pseudolevel-packing approaches to the two-dimensional strip packing problem are con-
sidered in this chapter. Pseudolevel algorithms are similar to level algorithms in that items
are packed into levels. However, pseudolevel algorithms allow items to be packed anywhere in
the plane defined by the boundaries of levels. The workings of a number of known heuristics
following this approach are described and a number of new heuristics are introduced. Each of
the algorithms is illustrated with the aid of a figure containing the packing pattern, a region
designated as free space (for further packing) and arrows (as shown in Figure 4.1) that indicate
the allowed packing directions for items.

4.1 Practical Considerations for Pseudolevel Algorithms

The packing of items onto the ceiling of a level (as some of the algorithms in this chapter do)
renders the programmatic implementation of the algorithm more difficult than is the case with
level algorithms. It is critical that the algorithm ensures that there is no overlap of ceiling-packed
items and floor-packed items. If the item dimensions were guaranteed to be integer values, one
may construct an array that represents the height of the floor-packed items (also called the
skyline) between two consecutive horizontal integer coordinates of the strip (see Figure 4.2(a)).
This was proposed by Burke et al. [22] as a tool for their plane packing algorithm in order to
reduce the time required to find possible packing locations for unpacked items. A comparison

47
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Vertical floor stacking

Horizontal floor packing

Vertical ceiling stacking

Ceiling packing/stacking

Figure 4.1: A guide to the arrows depicting the directions in which algorithms in this chapter may
pack items in the utilised space not used by the level algorithms of §3. Arrows pointing to the right
indicate horizontal stacking from left to right, while arrows pointing left either indicate ceiling packing,
or horizontal ceiling stacking, from right to left. Vertical arrows pointing upwards indicate that stacking
may take place in an upwards fashion, while arrow pointing down indicate that stacking may take place
from the ceiling down to the floor-packed items (without overlapping those items). These figures are
employed to illustrate the differences in packing between pseudolevel algorithms and the level algorithms
of §3. Hence the arrow representing horizontal floor packing (the manner in which items are packed
by level algorithms) is omitted. Instead, a set of items is shown in the figures to represent how level
algorithms would pack them.

of the height (or vertical coordinate) of the bottom-left corner of an item under investigation
for ceiling packing with the value in the array corresponding to the space to the right of the
horizontal strip coordinate of the corner would yield either a possible overlap, or a valid position
for the item. There are two weaknesses with this approach. The array will be very large (`×m,
where m is the integer value of the strip width) as it will have to cater for every possible position
along the floor for every possible level (there may be ` levels). It is possible to reduce the size of
the array if dynamic arrays are supported by the programming language of implementation. In
that case, the array may be expanded as the number of levels increases. The second weakness is
the lack of support for non-integer rectangle dimensions. This is a significant weakness as there
are benchmark instances (such as by Wang and Valenzuela [156]) and real-world applications
(such as by Wang [155]) of packing problems in which the item dimensions are non-integer.
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(a) An integer approach to saving the height
to which items have been packed.

6

4

2

12108642

i = 3

0

2.8

L

2.4

2.8

L

4.0

L

L

Y

5.2 3.8

Y

2.0

Y

0.0

Y

9.2

X

6.8

X

2.8

X

0.0

X i

0 2

i

1

i

3

ii = 0

i = 1

i = 2

(b) A floating-point approach to saving the
height to which items have been packed.

Figure 4.2: Two approaches to preserving the height to which floor-packed items have been packed
(floor profile or skyline) without requiring a search through the entire list of items.

In order to accurately monitor the skyline when items have floating-point lengths, Burke et
al. [23] suggest the use of an array of triples (3-tuples). This data structure notes the horizontal
coordinate of a change in height, the height (or vertical coordinate) of the skyline to the right of
that point and the length of the region between subsequent changes in height (see Figure 4.2(b)).
This triple may be reduced to a pair by saving only the horizontal coordinate and height, as
the length may be determined by subtracting the horizontal coordinates of two adjacent points.
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However, this comes at the cost of an additional element in the list representing the right-hand
boundary of the strip. Some programming languages allow only one dimension of an array
to be dynamic (Visual Basic .NET, the programming language used for the purposes of this
dissertation, is an example of this [115]). This restriction does not allow the expansion of the
array as the algorithm requires more space. Hence, it may be beneficial to allow the algorithm
to alter the size of the array with each new level and use a set size for the dimension that
represents the skyline in the array. This magnitude of the dimension m may be calculated using
the formula

m = min

{
n,

⌊
W

w (IN )

⌋}
+ 1,

where W denotes the strip width and w (IN ) denotes the width of item IN . Finding the thinnest
item IN has time complexity O(n) if n is the number of rectangles and the list is not sorted
according to decreasing width. It is possible to reduce the size of the array at the expense of
computational time. By sorting the items according to increasing width, one may find the value
of m by adding the widths of the items in order until the sum is greater than the width of the
strip. The value of m is the position in the sorted list of the item whose width resulted in the
sum of widths greater than that of the strip width. This method of finding the length of one of
the dimensions of the two-dimensional array of triples has a time complexity of O(n log n).

4.2 Known Pseudolevel-Packing Heuristics

In this section known algorithms for strip packing are presented in some detail. A brief intro-
duction to each algorithm is followed by a pseudocode listing of the procedure, together with a
worked example, practical considerations when implementing the algorithm and an estimation
of its worst-case time complexity.

4.2.1 The Floor-Ceiling Algorithms

Lodi et al. [103, 105] introduced the floor-ceiling (FC) algorithm in the late 1990s for the 2D
SBSBPP. There are four variations of the algorithm, namely the oriented (O) case allowing
non-guillotineable (free — F) packing (FCOF), the oriented case where a guillotineable (G)
packing is required (FCOG), the case where 90◦ rotations (R) are allowed and a guillotineable
packing is required (FCRG) and the case where rotations and free packing are allowed (FCRF).
In these algorithm variations, the items are not only packed from left to right onto the floor (the
horizontal line below which no item in the level may be packed), as in all the other algorithms,
but also from right to left onto the ceiling of the level (a horizontal line above which no item in
the level may be packed, typically at the same height as the top edge of the item that initialises
the level). See Figure 4.3 for an illustration of the packing directions. The solution to the FCOG

algorithm is a four-stage cutting pattern in the worst case.

An item is floor-feasible for a level if it fits onto the floor of the level. The level is ceiling-
initialised if some items are packed onto the ceiling. A ceiling is only initialised if an item is not
floor-feasible. An item is ceiling-feasible when it can either initialise a ceiling, or be packed onto
a ceiling that is already initialised. An item may only initialise the ceiling of a level if it does
not fit onto the floor of any existing level. An attempt is first made to pack a new item onto
an initialised ceiling (a ceiling that already has at least one item packed on it) and then onto
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Free space

Figure 4.3: An illustration of the free space above floor-packed items that the FC algorithms attempt
to utilise. This free space is wasted by level algorithms if the items on the levels are of different heights.

a floor if it does not fit onto any initialised ceiling, unless it fits onto an uninitialised ceiling.
A new level is created if there is insufficient space for an item on the ceilings or floors of all
existing levels. All floor or ceiling packing operations occur in a best-fit manner, where the item
is assigned to the level in which the residual horizontal space (on the floor or ceiling, depending
on the targeted area) is a minimum. The FCOG algorithm ensures that the packing obeys the
guillotine rule by often leaving gaps between items on the ceiling. Only oriented packing is
considered in this dissertation — therefore the alterations required for the FCRF and FCRG

algorithms are not presented in this dissertation. A pseudocode listing of the FC algorithm
may be found in Algorithm 4.1.

Algorithm 4.1 Floor-ceiling algorithm (FC)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: for i← 1 to |I| do
3: if Ii is ceiling-feasible for a level then
4: pack Ii to the ceiling of the level with minimum residual horizontal space
5: {Here FCOG may have to leave space between items to ensure guillotine constraint

holds.}
6: else
7: if Ii is floor-feasible for a level then
8: pack Ii to the floor of the level with minimum residual horizontal space
9: else

10: initialise a new level and pack Ii in the bottom-left corner
11: end if
12: end if
13: end for

Sorting of the items may influence the results. Therefore three sorting schemes are considered:
sorting the items by decreasing height only (FCOG(DH))1, by decreasing height and decreasing
width (FCOG(DHDW)), and by decreasing height and increasing width (FCOG(DHIW)). It is
clear that sorting by increasing height would result in solutions of inferior quality; hence this
option is not considered.

1Lodi et al. [103, 105] did not consider the different methods of sorting. Instead they sorted according to
decreasing height only. Therefore, in the remainder of this dissertation the names FCOG(DH) and FCOF(DH)
algorithms will represent the original algorithms, and the names FCOG and FCOF algorithms will be used for the
set of floor-ceiling algorithms that solve the oriented guillotine and free strip packing problems, respectively.
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Worked Example

By sorting the items in Table 3.1 in order of decreasing height, the list I = {I1, I5, I11, I2,
I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Items I1 and I5 are packed onto the floor of the
first level. An attempt is made to pack item I11 onto an initialised ceiling, but none exists.
The item also does not fit onto the floor of an existing level, nor onto any uninitialised ceilings.
Therefore, I11 is packed into a new level. There are no initialised ceilings. Hence an attempt is
made to pack I2 onto the floor of an existing level. The item fits into the first level and is packed
adjacent to I5. Item I10 does not fit onto the ceiling or floor of any existing levels and initialises
a new level. The first two levels do not have sufficient space for I3 and the ceiling of the third
level is not initialised; hence I10 is packed on the floor of the third level. Item I13 is too large
to fit into any existing level. It initialises the fourth level. There are no initialised ceilings, but
I8 fits onto the ceiling of the first level. Ceiling packing takes preference over floor-packings on
higher levels; hence I8 is packed onto the ceiling of the first level and not adjacent to I3 in the
third level. Item I7 does not fit onto any initialised ceiling and the only floor onto which it fits
is the floor of the second level. There are no initialised ceilings with space for I9, nor is there
space for the item on the floor of any existing level. However, I9 does fit onto the ceiling of
the second level. During the search for a position on an initialised ceiling for I6, a space may
be found adjacent to I8 on the ceiling of the first level. The guillotine version of the algorithm
would pack I6 one unit of length further to the left in order for the solution to adhere to the
guillotine constraint. Item I12 does not fit onto any ceiling, nor any existing floor; hence it is
packed into a new level. There is sufficient space for I4 above I3 in the third level, resulting
in a packing as illustrated in Figures 4.6(a) and 4.6(b) for the FCOF and FCOG algorithms,
respectively.

Worst-case Time Complexity

Lodi et al. [106, p. 384] report that the FC algorithm requires O
(
n3
)

time to complete. The
loop spanning lines 2–13 is executed n times. In this for-loop, items are sequentially packed
either onto a ceiling, or if not there, onto a floor. The nested search for a suitable position
and the packing on lines 4 and 8 require O

(
n2
)

time in the worst case. Therefore, the overall
worst-case time complexity of the FC algorithm is O

(
n3
)
.

Practical Considerations

Implementations of the FC algorithms require the use of the triples as discussed in §4.1 in order
to ensure that the items packed onto ceilings do not overlap the items already packed onto
floors. In order to simplify the search for spaces on ceilings for unpacked items, two arrays
may be used to save the feasible packing region on the ceilings of each level. The first array
defines the left-hand boundary for feasible ceiling packing. This boundary is initialised with
the horizontal coordinate of the right-hand side of the item that initialises the level (an item
will never be packed onto the ceiling above this item as the top edge of the item defines the
ceiling). For every item that is packed onto the floor, the left-hand boundary may be moved to
the right if the space between the top edge of the item and the ceiling of the level is less than the
next item in the list. The second array represents the right-hand boundary which is initialised
at the same position as the right-hand boundary of the strip. The right-hand boundary on a
level moves to the position of the left edge of an item when it is packed to a ceiling. When
a place on a ceiling is sought for an unpacked item, the minimum residual horizontal space
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may be found by subtracting the position of the left-hand boundary from the position of the
right-hand boundary for each valid level. The updating of left-hand boundaries is unfortunately
a computationally expensive procedure with a time complexity of O(n); each previously-packed
item must be evaluated for its effect on the left boundary before the next item is to be packed.

4.2.2 Bortfeldt’s Modified Best-Fit Decreasing Height Algorithm

In order to find an initial solution for his genetic algorithmic approach to the strip packing
problem, Bortfeldt [18, pp. 825–826] modified the BFDH algorithm to make use of the space
remaining between the top of many floor-packed items and the ceiling. He named this the
BFDH* algorithm. Although the BFDH* algorithm was designed for the problem in which
rotations are allowed, Bortfeldt does list changes that may be made in order to allow for items
that may not be rotated. The solution is guaranteed to adhere to the guillotine constraint and
is a four-stage cutting pattern in the worst case.

Free space 1

Free space 3
Free space 2

Figure 4.4: An illustration of the free spaces utilised by the BFDH* algorithm for further packing of
items.

The algorithm begins as the BFDH algorithm presented in §3.2.3. If an item is packed into
a level, the remaining space on the floor is evaluated. If that space is less than the width of
the thinnest unpacked item, areas of free space are defined above the items (as illustrated in
Figure 4.4). The free spaces are then filled with unpacked items, beginning with the left-most
free space. The items are sorted by decreasing area and the first item that fits into a free space
is packed into it. The items must be packed within the boundaries of the free space. Any
unpacked items that fit into the space adjacent to the first item may be packed into the space.
Once an attempt has been made to pack items into all the free spaces in the level, the algorithm
packs the remaining unpacked items in a BFDH manner until the condition occurs again that
leads to the definition of free spaces above floor-packed items.

Worked Example

By sorting the items in Table 3.1 according to decreasing height, the list I = {I1, I5, I11, I2,
I10, I3, I13, I8, I7, I9, I6, I12, I4} results. Item I1 initialises the first level and I5, the next
item in the list, is packed adjacent to it. There is no further space in the level for I11; hence
it is initialises a new level. The two levels are evaluated for the minimum residual horizontal
space resulting from a possible packing of I2. The first level is selected for a position for I2 and
it is packed adjacent to I5. The width of the space between I2 and the right-hand boundary of
the strip is less than the width of any unpacked item in I. Therefore, two regions of free space
are defined. The first space is between the top edge of I5 and the ceiling of the first level. The
second region of free space is between the top edge of I2 and the ceiling of the level, with the
width extended to be between the right edge of I5 and the right-hand boundary of the strip.
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Algorithm 4.2 Bortfeldt’s modified best-fit with decreasing height algorithm (BFDH*)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A feasible packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height
2: make a copy A of I, sort it by decreasing area and link its items to those in I
3: NumLevels← 1, w (1)← 0
4: define IF and AF as the first unpacked items in each respective list
5: while there are unpacked items do
6: find MinResLevel, the level with minimum residual horizontal space
7: if the item does not fit onto any of the existing levels then
8: NumLevels← NumLevels + 1, pack IF on NumLevels

9: h (NumLevels)← h (IF ), w (NumLevels)← W− w (IF )
10: remove the equivalent item from A
11: else
12: pack item IF into level MinResLevel
13: w (MinResLevel)← w (MinResLevel)− w (IF )
14: determine the thinnest unpacked item IN
15: if w (MinResLevel) < w (IN ) then
16: define the regions of free space above the items in MinResLevel

17: while empty regions of free space and unpacked items remain do
18: select the left-most empty region of free space
19: pack items in A onto the floor of the region until no more fit
20: remove the corresponding items from I
21: end while
22: end if
23: end if
24: let F be the index of the first unpacked item in I
25: end while

The unpacked item with largest area is I13, but it does not fit into the first free space. Items
I10, I3, I9, I8, I7 and I2 also do not fit into the first free space. However, item I6 does fit into
the first free space and is stacked onto I5. No further items fit into this space. Items I10, I3
and I9 do not fit into the second free space. This allows I8 to be stacked onto I2. No further
items fit into this free space.

Item I10 does not fit onto any existing levels and initialises a third level. Only the third level
has sufficient space for I3 and it is packed adjacent to I10. None of the existing levels have
sufficient space for I13. It therefore initialises a fourth level. Of the existing levels, only the
second level has sufficient space for I7. It is packed adjacent to I11 resulting in a space between
the right-hand edge of I7 and the right-hand boundary of the strip that has a width smaller
than the smallest width of the unpacked items. The area above I7, to the right of the right-hand
edge of I11, to the left of the right-hand boundary of the strip and below the level’s ceiling is
designated a free space for further packing. Item I9 is the item with the largest area among
the unpacked items and it fits into the region of free space. Therefore it is packed above I7. No
further items fit into this free space. The last two remaining items, I12 and I4 do not fit into
any of the existing levels and are hence packed into a new level, resulting in a solution shown
in Figure 4.6(c).
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Worst-case Time Complexity

The sorting in this algorithm may be performed by the merge-sort algorithm which has a time
complexity of O(n log n). Line 2 of the pseudocode consists of three parts. The time complexity
of the first part, in which the item list is copied, is O(n). The second part is the sorting of the
new list by decreasing area, which has time complexity O(n log n) when performed with the
merge sort algorithm. The third part constitutes the linking of the items in the two lists. This
procedure has a time complexity of O

(
n2
)
, as a search of O(n) must be performed in the new

list in order to find the item that corresponds with each of the n items in list I. The two lines
that follow have constant time complexity. Therefore, the procedures that are performed before
the while-loop have a worst-case time complexity of O

(
n2
)
.

The while-loop spanning lines 5–25 adds a time complexity of O(n) to its contents as the loop
may be executed for each of the items in I. Line 6 has time complexity O(n), because there
may be as many levels as packed items in the worst case and each of these levels would have to
be evaluated for a possible packing location. All operations in the first part of the if-statement
spanning lines 7–23 have constant time complexity. The first two lines in the second part
have constant time complexity, while line 14 has a time complexity of O(n). The procedures
contained within the if-statement spanning lines 15–22 has a time complexity of O

(
n2
)

because
for each item packed on the floor of the level, a search of A (of time complexity O(n)) must
be performed in order to find items that may be stacked onto it. Therefore the contents of
the while-loop have a time complexity of O(n) + O(n) + O

(
n2
)

= O
(
n2
)
. Hence, the O

(
n3
)

worst-case time complexity of the while-loop overrides the O
(
n2
)

worst-case time complexity of
the steps prior to it, resulting in an overall worst-case time complexity of O

(
n3
)

for the BFDH*
algorithm.

Practical Considerations

Bortfeldt [18] designed his algorithm to allow item rotation; hence the sorting of items according
to decreasing area for the stacking procedure. It would be possible to re-sort the items when
the stacking procedure takes place, but it is more time-efficient to copy the list of items when
the algorithm begins. The list of items may be represented by an array of decuples (10-tuples).
The information contained in the decuple includes the reference number of the item, its height,
its width, its horizontal and vertical coordinates, the bin into which it is packed (used for bin
packing algorithms), the level into which it is packed, a boolean variable indicating whether or
not it is packed, the next item in an ordered list and previous item in an ordered list of items.
Before a copy of the items is sorted according to decreasing area, one of the unused properties
(for example .int, some arbitrary integer property) of the items may be set equal to the index
value of each respective item. The second list is sorted by decreasing area and two arrays, say
A2H and H2A, may be used to link the two lists of items. A for-loop, such as the one shown
below, may be used to link the two lists.

sort I by decreasing height
make a copy of I called A
for i = 1 to |I|
A (i) .int = i

end for
sort A by decreasing area
for i = 1 to |I|
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A2H (i) = A (i) .int
H2A (A2H (i)) = i

end for
link the items in each list

If an item is removed from the list I when it is floor-packed, the array H2A may be used to remove
the equivalent item in A so that it is not considered for stacking at a later stage. Similarly, if
an item from A is stacked, the array A2H may be used to remove the equivalent item from I.
For example, if an item i in I is removed from I, then the following steps would remove the
equivalent item from A (note that the algorithm makes use of linked lists, described in detail
in §3.2.4).

I (I (i) .prv) = I (i) .nxt
I (I (i) .nxt) = I (i) .prv
A (A (H2A (i)) .prv) = A (H2A (i)) .nxt
A (A (H2A (i)) .nxt) = A (H2A (i)) .prv

Similarly, if an item i in A is stacked and removed from A, the equivalent item may be removed
from I with the method described below.

A (A (i) .prv) = A (i) .nxt
A (A (i) .nxt) = A (i) .prv
I (I (A2H (i)) .prv) = I (A2H (i)) .nxt
I (I (A2H (i)) .nxt) = I (A2H (i)) .prv

4.2.3 The Size-Alternating Stack Algorithm

Ntene and Van Vuuren [125,127] developed the size-alternating stack (SAS) algorithm in 2009.
The list of items I is partitioned into two sublists, a sublist of narrow items N for which the
height is greater than the width (h (Ii) > w (Ii)), and a sublist of wide items W for which
w (Ii) ≥ h (Ii). The sublist N is sorted by decreasing height and the sublist W is sorted by
decreasing width. The first elements in each list are compared and the one with largest height
initialises a level. Then the first item from the other list is packed next to the item (if it fits).
If the item is from N, then other items from the list (of width less than or equal to the width
of the bottom-most narrow item) may be stacked on top of it (see Figure 4.5 for an illustration
of the algorithm’s attempt at space utilisation). If the item is in W, then other items from that
list may be stacked onto it until insufficient vertical space remains to continue the packing in
this manner. If the widths of the stacked items from W differ, the resulting space to the right
of the upper item, and above the lower item, may be used to pack items from N. As items are
packed, they are removed from their respective sublists. If no further items fit into a level, a
new level is created. A pseudocode listing of the SAS algorithm may be found in Algorithm
4.3. The solution to the SAS algorithm is a three-stage cutting pattern in the worst case.
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N

W N N W

Figure 4.5: An illustration of the free spaces utilised by the SAS algorithm in an attempt to pack levels
more densely than achieved by the level-packing algorithms.

Algorithm 4.3 Size-alternating stack algorithm (SAS)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: partition the list of items I = N ∪W such that N is a list of items where h (Ni) > w (Ni)
for all 1 ≤ i ≤ |N|, while W is a list of items where w (Wj) ≥ h (Wj) for all 1 ≤ j ≤ |W|

2: sort N by decreasing height and sort W by decreasing width
3: define P as the set of packed items, P ← ∅, level← 1
4: while N 6= ∅ or W 6= ∅ do
5: define NF and WF to be the first unpacked item in either set
6: if W = ∅ or (N 6= ∅ and h (NF ) ≥ h (WF )) then
7: pack NF onto level, P ← P ∪ {NF }, N ← N \{NF }
8: h (level)← h (NF ), w (level)← W− w (NF )
9: pack any other items in N with the same height

10: else if N = ∅ or (W 6= ∅ and h (NF ) < h (WF )) then
11: pack WF onto level, P ← P ∪ {WF }, W ←W \{WF }
12: h (level)← h (WF ), w (level)← W− w (WF )
13: pack any other items in W with the same height
14: end if
15: while an item from N or W fits on level do
16: if previous packed item ∈ W or no W fit on level or W = ∅ then
17: call PackNarrow (N,P, h (level) , w (level))
18: else if previous packed item ∈ N or no N fit on level or N = ∅ then
19: call PackWide (N,W,P, level, h (level) , w (level))
20: end if
21: end while
22: level← level + 1
23: end while

Worked Example

The list of items I in Table 3.1 is partitioned into a list N of narrow items and a list W of wide
items and sorted according to decreasing width and decreasing height, respectively. The lists
N = {I1, I2} and W = {I13, I11, I5, I10, I3, I4, I6, I9, I12, I7, I8} result. Item I1 is the
taller of the first items in each list; hence it initialises the first level. The first item packed was
an item from N — therefore an item from W is packed next. The first item in W fits into the
level; hence I13 is packed adjacent to I1. At this point the stacking procedure begins. There is
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Procedure 4.3.1 PackNarrow (N,P, Height, Width)

1: pack first item Ni where h (Ni) ≤ Height and w (Ni) ≤ Width

2: Height← Height− h (Ni)
3: P ← P ∪ {Ni}, N ← N \{Ni}
4: define L and N as the indices of the last and thinnest items in N, respectively
5: let Nj be the item that follows Ni in the list
6: while Height ≥ h (NL) and Width ≥ w (NN ) and N 6= ∅ and j ≤ L do
7: if h (Nj) ≤ Height and w (Nj) ≤ Width then
8: stack Nj , P ← P ∪ {Nj}, N ← N \{Nj}
9: end if

10: set j to be the index of the item that follows Nj in the list N
11: end while

Procedure 4.3.2 PackWide (N,W,P, level, Height, Width)

1: pack the first item Wi for which h (Wi) ≤ Height and w (Wi) ≤ Width

2: Height← Height− h (Wi), Width← w (Wi), w (level)← w (level)− w (Wi)
3: P ← P ∪ {Wi}, W ←W \{Wi}
4: while there is sufficient vertical space and W 6= ∅ do
5: search W for an item j for which Width ≥ w (Wj)
6: if such an item exists and Height ≥ h (Wj) then
7: if Width 6= w (Wj) then
8: call PackNarrow (N,P, Height, Width− w (Wj))
9: end if

10: stack Wj , Height← Height− h (Wj), Width← w (Wj)
11: P ← P ∪ {Wj}, W ←W \{Wj}
12: end if
13: end while

insufficient space between I13 and the ceiling of the level for items I11, I5 and I10. However,
item I3 does fit and is stacked onto I13. There is no further space between I3 and the ceiling,
nor is there any space remaining on the floor of the level adjacent to I13, nor is there sufficient
space between I13 and the level’s ceiling for the stacking of any items from N. Therefore, a new
level is initialised and the taller of the first items of the two lists, item I11, is packed into the
level first. The last item that was packed on the floor was an item from W; hence an item from
N is packed next. Item I2 is the only remaining item in N and it is packed adjacent to I11. No
unpacked narrow items remain that may be stacked onto it. The widest item that fits into the
remaining space on the level is I8 and it is packed between I2 and the right-hand boundary of
the strip. No items with a width less than the width of I8 remain inW; hence no stacking takes
place and a new level is initialised. Item I5 is the first item to be packed into the third level.
There are no remaining narrow items; hence I10 is packed adjacent to I5. There is sufficient
space above I10 for the stacking of some unpacked items. Thus item I4, the widest unpacked
item, is stacked onto I10. Insufficient space remains for further unpacked items inW and a new
level is initialised with the first unpacked item in W, namely item I6. Item I9 follows I6 in the
list of wide items, but it is taller than I6 and is skipped. Item I12 does fit adjacent to I6 and
is packed there. Item I9 initialises a fifth level and I7 is packed adjacent to it. The result is
represented graphically in Figure 4.6(d).
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Worst-case Time Complexity

The sorting in this algorithm may again be performed by the merge-sort algorithm which has
a time complexity of O(n log n). Procedure 4.3.1 has worst-case time complexity O(n), as the
entire list of unpacked narrow items is first searched for the thinnest item, and then for an item
to pack. Procedure 4.3.2 has worst-case time complexity O

(
n2
)

because the list of unpacked
wide items is searched for stacking and Procedure 4.3.1 is called for every wide item that is
stacked. These procedures are nested within a while-loop in Algorithm 4.3. Therefore the overall
worst-case time complexity2 of the SAS algorithm is O

(
n3
)
.

Practical Considerations

The advantage that the SAS algorithm holds over the other algorithms is the fact that levels
are treated one at a time. This saves the O(n) time taken to search for a suitable level for
packing that algorithms such as FFDH, BFDH, JOIN, WFDH, B2FDH, FCOF, FCOG and
BFDH* require. Furthermore, the approach of stacking items onto one another means that the
triples discussed in §4.1 are not required to prevent the overlap of floor-packed items with items
packed onto the ceiling (as seen in §4.2.1). The use of linked lists (described in detail in §3.2.4)
to represent the two lists of items contributes to the speed of the algorithm.

4.3 New Pseudolevel-Packing Heuristics

In this section a number of improvements to existing algorithms and a number of entirely new
algorithms for the strip problem are presented in some detail. A brief introduction to each
algorithm is followed by a pseudocode listing of the procedure, together with a worked example,
practical considerations when implementing the algorithm and an estimation of the worst-case
time complexity of the algorithm.

4.3.1 The Modified Size-Alternating Stack Algorithm

While studying the results of the SAS algorithm, it became clear that some improvements
could be made to the algorithm. Sorting the items in N (W) by decreasing height (width) and
resolving any equalities by additionally sorting by decreasing width (height) leads to a small
improvement, on average (if wider items were to be packed first, it is more likely that more
items may be stacked onto it). Secondly, by searching through the entire list W for the tallest
item WT and comparing that to the first item in N (instead of the first item in W) when
initialising a level, an additional gain can be made as a new level will not necessarily have to
be created if, say, the second item in W is taller than the first item of both lists. The SAS
algorithm allows wide items to be stacked on top of one another and narrow items next to the
wide items if there is sufficient space. By additionally allowing narrow items to be stacked on
top of the last wide item on a stack, it is possible that more space may be utilised than before.
The final improvement allows narrow items to be placed next to each other while stacking. The
SAS algorithm only allows one narrow item to be stacked onto another. The modified space
usage is illustrated in Figure 4.7 and Algorithm 4.4 contains a pseudocode listing for the SASm
algorithm. The SASm algorithm produces a four-stage cutting pattern in the worst case.

2Ntene [125, p. 49] mistakenly notes that the worst-case time complexity of the SAS algorithm is O
(
n2
)
.
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Figure 4.6: Results obtained when packing items in I into a strip of width 20 using the known
pseudolevel strip packing algorithms described in §4.2. The resulting packing heights H are also shown.

Worked Example

The list of items I in Table 3.1 is partitioned into a list N of narrow items and a list W of
wide items, sorted according to decreasing width and decreasing height, respectively. The lists
N = {I1, I2} andW = {I13, I11, I5, I10, I3, I6, I4, I9, I12, I7, I8} result. Item I1 is the tallest
item and initialises the first level. The first item packed was an item from N; hence an item from
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N

W then N

N

N

Figure 4.7: An illustration of the free spaces utilised by the SASm algorithm in an attempt to pack
levels more densely than the SAS algorithm.

Algorithm 4.4 Modified size-alternating stack algorithm (SASm)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: partition the list of items I = N ∪W such that N is a list of items where h (Ni) > w (Ni)
for all 1 ≤ i ≤ |N|, while W is a list of items where w (Wj) ≥ h (Wj) for all 1 ≤ j ≤ |W|

2: sort N by decreasing height and decreasing width
3: sort W by decreasing width and decreasing height
4: define P as the set of packed items, P ← ∅, level← 1
5: while N 6= ∅ or W 6= ∅ do
6: define NF to be the first item in N and WT to be the tallest item in W
7: if W = ∅ or (N 6= ∅ and h (NF ) ≥ h (WT )) then
8: pack NF onto level, P ← P ∪ {NF }, N ← N \{NF }
9: h (level)← h (NF ), w (level)← W− w (NF )

10: pack any other items in N with the same height
11: else if N = ∅ or (W 6= ∅ and h (NF ) < h (WT )) then
12: pack WT onto level, P ← P ∪ {WT }, W ←W \{WT }
13: h (level)← h (WT ), w (level)← W− w (WT )
14: pack any other items in W with the same height
15: end if
16: while an item from N or W fits on level do
17: if previous packed item ∈ W or no W fit on level or W = ∅ then
18: call PackNarrowMod (N,P, level, h (level) , w (level))
19: else if previous packed item ∈ N or no N fit on level or N = ∅ then
20: call PackWideMod (N,W,P, level, h (level) , w (level))
21: end if
22: end while
23: level← level + 1
24: end while

W is packed next. The first item in W fits into the existing level; hence I13 is packed adjacent
to I1. The stacking procedure begins at this point. There is insufficient space between I13 and
the ceiling of the level for items I11, I5 and I10. However, item I3 does fit and is stacked onto
I13. There is no further space between I3 and the ceiling, nor does any space remain on the
floor of the level adjacent to I13, nor is there sufficient space between I13 and the level’s ceiling
for the stacking of any items in N. Therefore, a new level is initialised and the tallest unpacked
item (I11) is packed into the level first. The last item that was packed on the floor was an item
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Procedure 4.4.1 PackNarrowMod (N,P, level, Height, Width)

1: pack first item Ni where h(Ni) ≤ Height and w(Ni) ≤ Width

2: Height← Height− h (Ni)
3: if the item is being packed on the floor then
4: Width← w (Ni), w (level)← w (level)− w (Ni)
5: else {the item is being stacked}
6: RemainingW← Width− w (Ni)
7: while there is sufficient space next to Ni and N ) Ni do
8: search N for an item j for which w (Nj) ≤ RemainingW

9: if such an item exists and h (Nj) ≤ h (Ni) then
10: RemainingW← RemainingW− w (Nj)
11: P ← P ∪ {Nj}, N ← N \{Nj}
12: end if
13: end while
14: end if
15: P ← P ∪ {Ni}, N ← N \{Ni}
16: while there is sufficient vertical space and N 6= ∅ do
17: call PackNarrowMod (N,P, level, Height, Width)
18: end while

Procedure 4.4.2 PackWideMod (N,W,P, level, Height, Width)

1: pack the first item Wi for which h (Wi) ≤ Height and w (Wi) ≤ Width

2: Height← Height− h (Wi), Width← w (Wi), w (level)← w (level)− w (Wi)
3: P ← P ∪ {Wi}, W ←W \{Wi}
4: while there is sufficient vertical space and W 6= ∅ do
5: search W for an item j for which w (Wj) ≤ Width

6: if such an item exists and h (Wj) ≤ Height then
7: if w (Wj) 6= Width then
8: call PackNarrowMod (N,P, level, Height, Width− w (Wj))
9: end if

10: stack Wj , Height← Height− h (Wj), Width← w (Wj)
11: P ← P ∪ {Wj}, W ←W \{Wj}
12: end if
13: end while
14: if there is sufficient vertical and horizontal space and N 6= ∅ then
15: call PackNarrowMod (N,P, level, Height, Width)
16: end if

fromW; hence an item from N is packed next. Item I2 is the only remaining item in N; hence it
is packed adjacent to I11 and no narrow items remain that may be stacked onto it. The widest
item that fits into the remaining space on the level is I8 and it is packed between I2 and the
right-hand boundary of the strip. There are no unpacked items in W or N with a width less
than the width of I8; hence no stacking takes place and a new level is initialised. Item I5 is the
tallest of the unpacked items and it initialises the third level. There are no remaining narrow
items. Thus I10 is packed adjacent to I5. There is sufficient space above I10 for the stacking
of items. Therefore item I6, the widest unpacked item, is stacked onto I10. Insufficient space
remains for further unpacked items inW and a new level is initialised with the tallest unpacked
item in W, namely item I9. Item I7 is packed adjacent to I9 because it has the same height
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as I9. Item I4 is the first item remaining in the list of unpacked items and is packed onto the
floor of the fourth level, adjacent to I7. There is sufficient space above I4 for the stacking of
I12, and hence I12 is stacked onto I4. The result is represented graphically in Figure 4.11(a).

Worst-case Time Complexity

Now that the procedure pack narrow allows stacked items to be packed adjacent to each other,
Procedure 4.4.1 has an O

(
n2
)

worst-case time complexity. Due to this fact, the modified pack
wide procedure has time complexity O

(
n3
)

which, in turn, means that the SASm algorithm has
an overall worst-case time complexity of O

(
n4
)
.

It is possible to improve the SAS algorithm while preserving the worst-case time complexity of
O
(
n3
)
. By calling Procedure 4.3.1 from both Algorithm 4.4 and Procedure 4.4.2, the additional

complexity of packing adjacent narrow items during the stacking phase is avoided.

Practical Considerations

The practical implementation considerations for the SASm algorithm are the same as for the
SAS algorithm. The use of linked lists (see §3.2.4) increases the speed of the algorithm as the
items are not packed in the same order in which they appear in the two lists. The fact that
items are stacked onto one another in an upward direction removes the need for data structures
(and the related calculations) that monitor the skyline of the level (as discussed in §4.1).

4.3.2 The Best-Fit with Stacking Algorithm

The best-fit with stacking (BFS) algorithm is an attempt at improving the BFDH* algorithm by
Bortfeldt [18]. It follows the same ideas as the BFDH algorithm, the major difference being that
stacking (as seen in the packing of narrow items in the SASm algorithm) is allowed. Initially,
instead of only sorting by decreasing height, the items are sorted by decreasing height and any
equalities are resolved by sorting according to decreasing width. When the algorithm packs an
item onto a floor, a procedure similar to Procedure 4.4.1 is used to stack any unpacked items
that fit in order to adhere to the guillotine constraint. The change allows the stacking width to
exceed the floor-packed item’s width, if the space between the item and the right-hand side of
the strip is less than the width of the thinnest unpacked item. The algorithm is represented in
pseudocode form as Algorithm 4.5. The BFS algorithm produces a four-stage cutting pattern
in the worst case.

Figure 4.8: An illustration of the free spaces utilised by the BFS algorithm in an attempt to pack levels
more densely than the level packing algorithms in §3.
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Algorithm 4.5 Best-fit with stacking algorithm (BFS)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height and decreasing width
2: level← 1, w (level)← 0, NumLevels← 1
3: while there are unpacked items do
4: let IF be the first unpacked item in the list I
5: find MaxResLevel, the level with the minimum residual horizontal space
6: if the item does not fit onto any existing levels then
7: NumLevels← NumLevels + 1, pack IF on NumLevels

8: h (NumLevels)← h (IF ), w (NumLevels)← W− w (IF )
9: else

10: call StackingBF (I, MinResLevel, F, h (MinResLevel) , w (MinResLevel))
11: end if
12: end while

Procedure 4.5.1 StackingBF (I, level, i, Height, Width)

1: define N as the index of the thinnest item in I
2: if the item is being packed on the floor then
3: pack Ii to the floor, w (level)← w (level)− w (Ii)
4: if w (level) < w (IN ) then
5: Width← w (level) + w (Ii)
6: else
7: Width← w (Ii)
8: end if
9: else {the item is being stacked}

10: stack Ii, RemainingW← Width− w (Ii)
11: while RemainingW ≥ w (IN ) do
12: search I for the tallest item j for which w (Ij) ≤ RemainingW

13: if such an item exists and h (Ij) ≤ h (Ii) then
14: pack Ij next to Ii, RemainingW← RemainingW− w (Ij)
15: end if
16: end while
17: end if
18: if there exists an unpacked item Ij that may be stacked onto Ii then
19: call StackingBF (I, level, j, Height− h (Ii) , Width)
20: end if

Worked Example

Once sorted according to decreasing height and decreasing width, the list I = {I1, I11, I5,
I10, I2, I3, I13, I8, I9, I7, I6, I12, I4} results for the example instance in Table 3.1. Item
I1 initialises the first level and I11 is packed next to it. There is sufficient space between I11
and the ceiling of the level for some items to be stacked. The tallest item that fits is I6 and
I12 is packed adjacent to it. No further items fit in the space between I11 and the ceiling of
the level. Item I5 is too wide to be packed adjacent to I11 and initialises the second level.
There is insufficient space in the first level for I10, but it does fit into the second level and is
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packed there. There is sufficient space between the ceiling and I10 for item I4 to be stacked
and I4 is stacked there. Insufficient space remains for further items to be stacked onto I10.
The tallest unpacked item is I2 and it only fits into the first level and is packed between I11
and the right-hand boundary of the strip. There are no unpacked items that fit above I2. The
next item in the list is I3, which does not fit into any of the existing levels and initialises the
fourth level. The third and fourth levels have sufficient space to pack I8, but the fourth level
is the level with minimum residual horizontal space. Therefore I8 is packed adjacent to I13 in
the fourth level. Item I9 only fits into the third level and is packed adjacent to I3. There is
sufficient space between I9 and the ceiling of the level for I7 to be stacked. Hence I7 is stacked
onto I9. The resulting packing is shown in Figure 4.11(b).

Worst-case Time Complexity

The merge-sort algorithm may be used to sort the items and has complexity O(n log n). Pro-
cedure 4.5.1 begins with the identification of the thinnest item in the list I, an operation with
a time complexity of O(n). The first part of the if-statement spanning lines 2–17 has constant
time complexity, while the second part has a worst-case time complexity of O(n) due to the
while-loop spanning lines 11–16 attempting to stack items adjacent to each other before the pro-
cedure is called again on line 19 to stack items on a higher sub-level. Therefore, Procedure 4.5.1
has a worst-case time complexity of O

(
n2
)
, because it may potentially call itself O(n) times.

Furthermore, the while-loop spanning lines 3–12 of Algorithm 4.5 is executed O(n) times. The
overall worst-case time complexity for the BFS algorithm is therefore O

(
n3
)
, overriding the

time complexity of the sorting algorithm.

Practical Considerations

The items may not be packed in the same order in which they appear in the sorted list; hence
the use of linked lists (see a detailed discussion in §3.2.4) may reduce the time required to
search for unpacked items as the number of packed items increases. The upward direction of
the stacking removes the need for the data structures that monitor the height of floor-packed
items (discussed in §4.1) and the associated calculations (as seen in §4.2.1).

4.3.3 The Stack Level Algorithm

One advantage that the ceiling-stacking algorithms have over the floor-stacking algorithms is
that items packed onto the ceiling are not restricted by the location of horizontal coordinates
at which two floor-packed items meet. Consider the following example. There is a list of
four items which are to be packed into a strip of width 3. The first item has dimensions
〈w (L1) , h (L1)〉 = 〈1, 3〉 and the others have dimensions 〈1, 2〉, 〈1, 2〉 and 〈2, 1〉. An algorithm
such as BFS initialises the first level with L1 and packs L2 adjacent to it. Items L3 (too tall)
and L4 (too wide) may not be stacked onto L2; hence L3 is packed adjacent to L2. Item L4 does
not fit onto L3 and initialises a second level. Algorithms such as the FC group are able to pack
L4 on the ceiling of the first level, thereby reducing the strip height, because the procedure
that packs the items to the ceiling is not restricted by the horizontal boundaries of a single
item (unless, of course, that floor-packed item overlaps with the ceiling-packed item). The stack
level (SL) algorithm was developed in an attempt to relax the restriction on other floor-stacking
algorithms, while returning a guillotineable solution. By borrowing the idea of linking items
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from the JOIN algorithm by Martello et al. [110] (see §3.2.5), sublevels of greater width may be
used for stacking. The stacking procedure is the same procedure used by the BFS algorithm.

The algorithm begins by sorting the list of items by decreasing height and decreasing width.
The first unpacked item in the list is selected and initialises the level. The items that follow are
packed in the same best-fit manner as in the BFDH and BFS algorithms. The difference in the
SL algorithms is the comparison that occurs between the packed item and the item that follows
in the list. If the difference in heights is within a proportion δ of the height of the packed item,
and if sufficient space remains on the level, the item is packed next to the first item. If the
item after the second item is also within the same height range, it too is packed adjacent to
the second item. This process continues until there is either insufficient space remaining on the
level, or the next item in the list is not close enough in height to the first item of this height
group that was packed. Once this packing of similar items is complete, the stacking procedure
begins. A region of free space above the items of similar height is defined and this is filled in
a FFDH manner. The algorithm is represented in pseudocode form as Algorithm 4.6. The SL
algorithm produces a four-stage cutting pattern in the worst case.

Figure 4.9: An illustration of the free spaces utilised by the SL algorithm in an attempt to pack levels
more densely than the level packing algorithms in §3.

Algorithm 4.6 Stack level algorithm (SL)

Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items, the strip
width W and the percentage δ by which the heights of the items may differ.
Output: A feasible packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height and decreasing width
2: NumLevels← 1, w (1)← W

3: define IF as the first unpacked item in the list of items I
4: while there are unpacked items do
5: find MinResLevel, the level with minimum residual horizontal space
6: if the item does not fit into any existing levels then
7: NumLevels← NumLevels + 1, pack IF on level NumLevels
8: h (NumLevels)← h (IF ), w (NumLevels)← W− w (IF )
9: else

10: call StackingSL (I, F, δ, h (MinResLevel) , w (MinResLevel) , MinResLevel)
11: end if
12: let F be the index of the first unpacked item in the list I
13: end while
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Procedure 4.6.1 StackingSL (I, i, δ, Height, Width, level)

1: determine N , the index of the thinnest item in the list I
2: if the item is being packed on the floor then
3: pack Ii to the floor, w (level)← w (level)− w (Ii), Width← w (Ii)
4: define i+ j to be the jth item after item i in the list of items, j ← 1

5: while
h(Ii)−h(Ii+j)

h(Ii) × 100 ≤ δ and w (level) ≥ w (Ii+j) do

6: pack item adjacent to Ii+j−1, Width← Width + w (Ii+j), j ← j + 1
7: end while
8: if w (level) < w (IN ) then
9: Width← Width + w (level)

10: end if
11: else {the item is being stacked}
12: stack Ii, RemainingW← Width− w (Ii)
13: let j be the index after i in the list of unpacked items I
14: while RemainingW ≥ w (IN ) do
15: if w (Ij) ≤ RemainingW and h (Ij) ≤ h (Ii) then
16: pack Ij into the remaining space, RemainingW← RemainingW− w (Ij)
17: end if
18: let j be the next unpacked item in the list I
19: end while
20: end if
21: if an unpacked item Ij exists that may be stacked into the remaining space then
22: call StackingSL (I, j, δ, Height− h (Ii) , Width, level)
23: end if

Worked Example

Let δ = 0, meaning that a collection of items will only allow stacking across their combined
top edges if the heights of the items in the collection are the same. Once sorted according to
decreasing height and decreasing width, the list I = {I1, I11, I5, I10, I2, I3, I13, I8, I9, I7,
I6, I12, I4} results for the example instance in Table 3.1. Item I1 initialises the first level and
I11 is packed next to it. Item I5 has the same height as I11 and would be packed next to it
if sufficient space remained, but the space remaining in the level is smaller than the width of
I5; hence I5 remains unpacked. There is sufficient space between I11 and the ceiling of the
first level for the stacking of items. The first two items that fit into this space are I6 and I12.
Item I5 does not fit into the first level and initialises the second level. The next item in the
list is I10. It does not fit into the first level, but it does fit adjacent to I5 and is packed there.
Item I2 has the same height as I10, but there is insufficient space in the level for I2. However,
there is sufficient space between I10 and the ceiling of the second level for the stacking of I4.
The existing levels are evaluated for space for I2, and sufficient space is found in the first level.
There are no unpacked items that have the same height as I2, nor do any items fit between I2
and the ceiling of the first level. The tallest remaining unpacked item is I3 and it initialises a
third level. Item I13 is the tallest unpacked item. It does not fit into any of the existing levels
and initialises a fourth level. Item I8 fits into the third and fourth levels, but is packed into
the fourth level, because the horizontal space remaining on the fourth level after the packing
of I8 is less than the space that would have remained on the third level had the item been
packed there. Item I9 may only be packed into the third level, because the other levels do not
contain sufficient space for it. Item I7 has the same height as I9 and is packed adjacent to I9,
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resulting in a space of width 11 for possible stacking. However, no items remain unpacked and
the algorithm terminates. The resulting strip height is 31 and the solution is shown in Figure
4.11(c).

Worst-case Time Complexity

Procedure 4.6.1 begins with a search for the width of the thinnest item in the list I, a step that
has a time complexity of O(n). Thereafter the procedure executes a number of steps that have
constant time complexity. The while-loop spanning lines 5–7 has a time complexity of O(n), as
all items in the list may be tested for suitability. The second part of the if-statement that spans
lines 2–20 also has a worst-case time complexity of O(n), because all unpacked items may be
evaluated for possible packing adjacent to each other. Once the if-statement has been executed,
the procedure calls itself again (see line 22) in an attempt to pack more items adjacent to each
other above those that have just been packed. The combined work of Procedure 4.6.1 thus has
an overall worst-case time complexity of O

(
n2
)
, as the procedure may call itself O(n) times.

The SL algorithm begins by sorting the items using the merge-sort algorithm, which has
O(n log n) running time. A while-loop is entered after some steps that have constant time
complexity. The search for the level with minimum residual horizontal space is a step with a
O(n) time complexity. If a level exists in which the item may be packed, Procedure 4.6.1 with
O
(
n2
)

time complexity is called. Therefore the while-loop, and hence the entire SL algorithm,
has a time complexity of O

(
n3
)
, overriding the time complexity of the sorting algorithm.

Practical Considerations

The SL algorithm uses the same approach as the other floor-stacking algorithms (such as the
BFDH*, SAS and BFS algorithms). The linked lists used to preserve the order of items and
their packed status improves the performance of the algorithm. The upward stacking improves
the use of the space of the levels without the need to use the triples discussed in §4.1 in order
to ensure items do not overlap.

4.3.4 The Stack Ceiling Algorithms

The newly proposed stack ceiling (SC) and stack ceiling with re-sorting (SCR) algorithms make
use of the concept of packing onto ceilings as in the FC algorithms, and the stacking of items as
in the SAS and floor-stacking algorithms. However, in these algorithms items are not stacked
on the floor-packed items, instead they are stacked downwards from ceiling-packed items. Items
are first sorted in order of decreasing height and any equalities are resolved by decreasing width.
The entire list of items is sequentially searched to determine whether any items fit onto the floor.
Those that fit onto the floor are removed from the list of unpacked items and added to the list
of packed items.

When no further items fit onto the floor of a level, as many items as possible are placed onto the
ceiling (the SCR algorithm first re-sorts the items according to decreasing width and height).
This happens in the following manner. First, the tallest (widest for SCR) item is packed onto
the ceiling. Thereafter, the list of unpacked items is searched for a rectangle that may be stacked
below the ceiling-packed item. If one is found, it is stacked below the first item and if there is
sufficient space next to the stacked item, further items may be stacked next to it (and further
stacking may take place on those items). The list of unpacked items is then searched again for
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an item that may fit onto the second item. Once no further items may be stacked below the
first ceiling-packed item, the list is searched for the first item that will fit next to the first item
that was packed onto the ceiling. Then an attempt is made to stack downwards onto that item.
This process continues until no further items may be packed onto the ceiling. At this point
the SCR algorithm re-sorts the items in order of decreasing height, resolving equalities in order
of decreasing width. If any items remain, a new level is created and the process is repeated.
Pseudocode listings for these two algorithms may be found in Algorithm 4.7. Packings produced
by the SC algorithms are not guaranteed to be guillotineable.

Free space

Figure 4.10: An illustration of the free space utilised by the SC(R) algorithms in an attempt to pack
levels more densely than the level packing algorithms in §3 and the FC algorithms described in §4.2.1.

Algorithm 4.7 Stack ceiling {with re-sorting} algorithm (SC{R})
Input: A list I of items to be packed, the dimensions 〈w(Ii), h(Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the list of items I by decreasing height and decreasing width
2: define P as the set of packed items, P ← ∅, level← 0
3: while I 6= ∅ do
4: level← level + 1, w (level)← W

5: {Here SCR would re-sort the items by decreasing height and decreasing width}
6: call PackFloor (I,P, level)
7: if I 6= ∅ then
8: {Here SCR would re-sort the items by decreasing width and decreasing height}
9: call PackCeiling (I,P, level, W, h (level))

10: end if
11: end while

Worked Example

Consider, as an example, the list I = {I1, I11, I5, I10, I2, I3, I13, I8, I9, I7, I6, I12, I4}
from Table 3.1 sorted according to decreasing height and decreasing width. The SC algorithm
attempts to fill the floor of the first level in a first-fit manner. Therefore, items I1, I11 and I2
are packed onto the floor. At this point the algorithm attempts to pack items onto the ceiling.
Item I6 is the first item that fits and is packed into the top right-hand corner of the first level.
No items exist in the list I that may be stacked below I6. Therefore, an attempt is made to
pack items on the ceiling to the left of I6. Item I12 is the first item that fits and is packed into
the level. No items in the list fit below or adjacent to I12, which results in the initialisation of
a new level. Item I5 is the tallest unpacked item and is the first item to be packed into the
second level. Item I10 is the next item in the list and fits adjacent to I5. No further items fit
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Procedure 4.7.1 PackFloor (I,P, level)

1: define F as the index of the first unpacked item in I, i← F
2: define N as the index of the thinnest unpacked item in I
3: while w (level) ≤ w (IN ) and I 6= ∅ do
4: if w (Ii) ≤ w (level) then
5: w (level)← w (level)− w (Ii)
6: if it is the first item on level then
7: h (level)← h (Ii)
8: end if
9: P ← P ∪ {Ii}, I ← I \ {Ii}

10: end if
11: let i be the index of the next unpacked item in the list I
12: end while

Procedure 4.7.2 PackCeiling (I,P, level, Width, CeilingH)

1: RemainingW← Width

2: while items fit onto the ceiling with their top edges at height CeilingH and I 6= ∅ do
3: find Ii such that w (Ii) ≤ RemainingW and there is no overlap with floor-packed items
4: if such an item exists then
5: pack item Ii, P ← P ∪ {Ii}, I ← I \ {Ii}
6: call PackCeiling (I,P, level, w (Ii) , CeilingH− h (Ii))
7: RemainingW← RemainingW− w (Ii)
8: end if
9: end while

onto the floor of the level and the ceiling packing procedure begins. The only item that fits onto
the ceiling is I4 and no unpacked items fit below or adjacent to it. The third level is initialised
by I3, after which items I8 and I9 are packed onto the floor. No further items fit onto the
ceiling and only I7 fits onto the ceiling. No unpacked items fit below or adjacent to I7 and the
final level is initialised by I13. No items remain unpacked and the algorithm terminates. The
resulting packing is shown in Figure 4.11(d).

The SCR algorithm makes copies of the items in I into a list W and sorts them according to
decreasing width, resolving equalities according to decreasing height. The list W = {I13, I11,
I5, I10, I3, I6, I4, I9, I12, I7, I1, I8, I2} if formed from Table 3.1. Items I1, I11 and I2 are
packed as in the SC algorithm. The ceiling packing is now performed with the order of items
in the list W. Item I6 is the first item that fits and is packed as in the SC algorithm. Item I4
is the next item in the list and is packed adjacent to I6. No further unpacked items fit onto
the ceiling of the first level. The second level is filled in a first-fit manner with the item order
in list I. Items I5 and I10 are packed onto the floor and I12 is the first item that fits onto the
ceiling. The remaining items are packed as in the SC algorithm. The resulting packing is shown
in Figure 4.11(e).

Worst-case Time Complexity

Initially both algorithms use the merge-sort algorithm to sort the list of items. Procedure
4.7.1 has time complexity O(n). The first line has constant time complexity, while finding the
thinnest item in a list is a step with a time complexity of O(n). Thereafter, the while-loop
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evaluates every item for floor packing in the worst case; a step that has a time complexity
of O(n). Procedure 4.7.2 has time complexity O

(
n4
)
, as for every item that is packed onto

the ceiling, an attempt is made to stack the remaining items below it and next to it, and the
floor-packed items must be considered for overlapping for every item packed. In the worst case,
Procedure 4.7.2 has higher time complexity than Procedure 4.7.1 and the merge-sort algorithm.
The total worst-case time complexity of the SC and SCR algorithms is therefore O

(
n5
)

due to
the additional time complexity of the while-loop in Algorithm 4.7.

Practical Considerations

The SC and SCR algorithms stack items from the ceiling in a downward manner. Therefore,
the use of the triples presented in §4.1 is crucial. The ceiling packing and stacking procedures
may pack items different from their initial order in the list of items. The use of linked lists
(see the practical considerations subsection of §3.2.4) to represent the sorted list of items may
improve the running time. The use of an additional copy of the items to represent the list when
sorted by width improves the execution time of the SCR algorithm dramatically. This is the
same approach as discussed in §4.2.2.

4.4 Chapter Summary

Published pseudolevel heuristics for the strip packing problem were reviewed in this chapter, in
fulfilment of Dissertation Objective IV(b), as stated in §1.3. The floor-ceiling algorithms were
discussed first, followed by the oriented version of the BFDH* algorithm that Bortfeldt [18]
developed for metaheuristics. Thereafter the SAS algorithm of Ntene and Van Vuuren [125,127]
was discussed in some detail.

The second section of the chapter contains five improvements on the heuristics presented in the
first section. The SAS algorithm was improved to arrive at the SASm algorithm. The BFS
algorithm allows for more stacking in an attempt to improve on Bortfeldt’s original algorithm.
The SL algorithm makes use of the stacking principle found in the BFS algorithm and combines
it with the joining principle of algorithm JOIN (see §3.2) in an attempt to pack items more
densely. Finally, the SC and SCR algorithms were introduced with the aim of improving on the
FC algorithms. These algorithms were introduced in fulfilment of Dissertation Objective V(b),
as stated in §1.3.
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Figure 4.11: Results obtained when packing the items in I (Table 3.1) into a strip of width 20 by
means of the four new strip packing algorithms introduced in §4.3. The respective strip heights H are
also shown.
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The strip packing algorithms considered in the two previous chapters packed items into levels.
The heights of the levels generated by those algorithms were defined by the heights of the tallest
items in the levels. Level algorithms (see §3) restrict the items to be packed on the floor, while
pseudolevel algorithms (see §4) pack items anywhere within the boundaries of the levels. Plane
algorithms pack items into a strip without the restriction of levels. Instead, plane algorithms
may pack items anywhere within the boundaries of the strip subject only to the constraint that
none of the items overlap.

5.1 Known Plane-Packing Algorithms

In this section nine known plane-packing algorithms for strip packing are reviewed in some de-
tail. A brief introduction to each algorithm is followed by a pseudocode listing of the procedure
together with a worked example, the algorithm’s performance bounds (if they have been estab-
lished), an analysis of the worst-case time complexity and a note on practical considerations
associated with the programming of the algorithms.
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5.1.1 Sleator’s Algorithm

In 1980 Sleator [148] published his strip packing heuristic in the first of many papers on the
topic to appear that year. In Sleator’s algorithm (abbreviated as the S algorithm) all items of
width larger than half the strip width are packed on top of one another. The remaining items
are sorted according to decreasing height. The height of the top edge of the final item to be
packed is denoted h0. One level of items are packed at a height of h0 until insufficient space
remains for any unpacked items to be packed. A line is drawn that divides the strip into two
half-strips. The top of the tallest items in either half-strip define the left and right baselines.
At this stage, the right baseline is no taller than the left baseline.

The half with the lower baseline is selected. The unpacked items, in order of decreasing height,
are packed onto this line until no further items may be packed into the half-level. Then the
ceiling of the half-level becomes the baseline. The algorithm continues selecting the lower
baseline and packs items onto it until no unpacked items remain. The result of the packing
is not guaranteed to be guillotineable. If the line dividing the strip into two halves divides an
item and the item is not of the same height as the tallest item in the level, the result is not
guillotineable. A pseudocode listing of Sleator’s algorithm may be found in Algorithm 5.1.

Algorithm 5.1 Sleator’s algorithm

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort items according to decreasing height
2: stack all items of width > 0.5× W

3: let i be the index of the first unpacked item, RemainingW← W

4: while w (Ii) ≤ RemainingW do
5: pack Ii at a height of h0
6: RemainingW← RemainingW− w (Ii)
7: let i be the index of the next unpacked item in I
8: end while
9: determine the height of the left and right columns

10: while there are unpacked items do
11: RemainingW← 0.5× W

12: if height of the left column ≤ height of the right column then
13: while w (Ii) ≤ RemainingW do
14: pack Ii into the left-hand column
15: RemainingW← RemainingW− w (Ii)
16: let i be the index of the next unpacked item
17: end while
18: else
19: while w (Ii) ≤ RemainingW do
20: pack Ii into the right-hand column
21: RemainingW← RemainingW− w (Ii)
22: let i be the index of the next unpacked item
23: end while
24: end if
25: end while
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Worked Example

By sorting the items in Table 3.1 in order of decreasing height, the list I = {I1, I5, I11, I2, I10,
I3, I13, I8, I7, I9, I6, I12, I4} results. The algorithm stacks those items that are wider than
half the strip width onto each other; that is items I5, I11 and I13. The tallest remaining item
is I1 and it is packed above I13. Items I2 and I10 follow in the list and are packed to the right
of I1. No further packing takes place at this height, because the next item does not fit into the
space between I10 and the right-hand boundary of the strip. The strip is split into two halves
at a horizontal coordinate of 10; half of the strip width. The height of the left-hand half is 11
and the right-hand half has a height of 7. Item I3 follows and is packed into the right-hand half
of the strip, the lower of the two halves.

The height of the right-hand half is now 13 and no further items fit between I3 and the strip
boundary. The tallest unpacked item is I8 and it is packed into the left-hand side of the strip
(the lower of the two halves), resulting in a left-hand half height increase to 15. Item I7 fits
in the remaining space in that half and is packed adjacent to I8. The right-hand side is now
the lower half; hence item I9 is packed onto I3, resulting in a height of 16 for the right-hand
half. Therefore, I6 is packed into the lower left-hand half, which is then taller than the right-
hand half. This means that I12 is packed into the right-hand side, while I4 is packed into the
left-hand side to result in a final strip height of 41. The result is shown graphically in Figure
5.1(a).
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Figure 5.1: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
known plane strip packing algorithms described in §5.1.1–§5.1.3. The resulting packing heights H are
also shown.
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Known Performance Bounds

Sleator [148] proved that a worst-case performance bound of his algorithm is

S (L) ≤ 2 OPT (L) +
1

2
htall,

where S (L) denotes the packing height achieved by the algorithm for a list of items L, where
OPT (L) denotes the optimal packing height for that list of items and where htall is the height
of the tallest item. Since htall ≤ OPT (L), this may be rewritten as

S (L) ≤ 2.5 OPT (L) .

Sleator showed that the time complexity of his algorithm is dominated by the sorting step
because the time required for item placement has constant time complexity. Therefore, the
time complexity of the algorithm is O(n log n) if an algorithm such as merge-sort is used to
perform the sorting procedure.

5.1.2 The Split-Fit Algorithm

Coffman et al. [32] introduced the split-fit (SF) algorithm in addition to the NFDH and FFDH
algorithms described in §3.2. They define a parameter m as the largest integer for which all
items have width 1/m or less (for a normalised item list). The list of items L is then split into
two sublists. Sublist W (for wide) contains all items in L for which w (Li) > W / (m+ 1), while
sublist N (for narrow) contains all items for which w (Li) ≤ W / (m+ 1). All items in W are
packed according to the FFDH algorithm. Then all levels are rearranged such that the levels
for which w (level) > W × (m+ 1) / (m+ 2) (the first set of levels) are below those for which
w (level) ≤ W × (m+ 1) / (m+ 2) (the second set of levels). An area thus emerges above the
first set of levels and to the left of the second set of levels. This region R has a height equal to
the sum of the heights of the “narrow” levels resulting from the FFDH packing of the W items,
and a width of w (R) = W / (m+ 2). This region may be filled with items from N such that
no items exceed the boundaries of region R. All remaining items in N may be packed above
the top-most level packed with items from W by means of the FFDH algorithm. The resulting
packing is guillotineable. A pseudocode listing of the algorithm may be found in Algorithm 5.2.

Worked Example

The algorithm begins by finding m = 1 for the items in Table 3.1, because the widest item has
a width of 16. Therefore sublist W is populated with the items I5, I11 and I13, while sublist N
is populated with the remaining items. These items are packed by the FFDH algorithm; hence
I5 is packed first and is followed by I11 and I13. Items I11 and I13 have a width greater than
2/3× W and I5 has a width less than this; hence the levels are rearranged, resulting in I5 being
packed above I11 and I13. A space R of width 1/3 × W and height equal to the height of I5
remains between I5 and the right-hand strip boundary. This space may be filled from items in
N.

An attempt is made to fill this space according to the FFDH algorithm. The first item, I1,
is too tall to be packed into the space, but I2 is small enough to fit and is the first item to
be packed. Items I10 and I3 are too wide to fit into R, allowing I8 to be packed adjacent to
I2. The remaining space is too narrow for any of the remaining items to be packed and a new
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Algorithm 5.2 Split-fit algorithm (SF)

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: find the widest item IW
2: m← bW /w (Iw)c, NumW← 0, NumN← 0
3: for i← 1 to |I| do
4: if w (Ii) > W / (m+ 1) then
5: W ←W ∪ {Ii}
6: else if w (Ii) ≤ W / (m+ 1) then
7: N ← N ∪ {Ii}
8: end if
9: end for

10: if N = ∅ or W = ∅ then
11: pack the items using the FFDH algorithm
12: else
13: pack the items in W with the FFDH algorithm
14: for all levels do
15: if w (level) > W× (m+ 1) / (m+ 2) then
16: move level to the bottom
17: else if w (level) ≤ W× (m+ 1) / (m+ 2) then
18: move level to the top
19: end if
20: end for
21: create the region R above the wide levels and to the right of the narrow levels
22: w (R)← W / (m+ 2), h (R)←

∑
narrow level heights

23: pack items from N into region R with the FFDH algorithm
24: if N 6= ∅ then
25: redefine R as the space above the packed items, w (R)← W, h (R)←∞
26: pack items remaining in N into region R with the FFDH algorithm
27: end if
28: end if

level is generated within the area. This level is large enough to accommodate I12, but no other
items may be packed into the region. Therefore, items I1, I10, I3, I7, I9, I6 and I4 are packed
into the strip above I5 by means of the FFDH algorithm, resulting in a strip height of 38. The
packing is shown graphically in Figure 5.1(b).

Known Performance Bounds

Coffman et al. [32] established the asymptotic performance bound

SF (L) ≤ 3

2
OPT (L) + 2

for the SF algorithm, where SF (L) denotes the packing height achieved by the SF algorithm and
OPT (L) denotes the optimal packing height for a list of items L. However, the best available
worst-case performance bound is

SF (L) ≤ 3 OPT (L) ,
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which is worse than the worst-case performance bound of the FFDH algorithm.

Worst-case Time Complexity

Finding the widest item in the list (see line 1) is an operation of order O(n) time complexity,
because the widths of each of the items in the packing list are compared to the widest item
that had been found prior to it. The operations on the line that follows have constant time
complexity. The for-loop spanning lines 3–9 has a time complexity of O(n), because each item
is sorted into either the wide or narrow sublists. If either of the two sublists of items is empty,
then line 11 is executed with a worst-case time complexity of O

(
n2
)
. If there are items in both

sublists, then line 13 is executed with a worst-case time complexity of O
(
n2
)
. This is followed by

the sorting of levels and their shift either up or down in the for-loop spanning lines 14–20. This
procedure has a worst-case time complexity of O(n) because each level may potentially contain
only one item. The creation of the region R in lines 21 and 22 has constant time complexity,
but the packing of narrow items into this region (see line 23) has a worst-case time complexity
of O

(
n2
)
. If unpacked narrow items remain, then the remaining items are packed into a new

region. This last packing procedure also has a worst-case time complexity of O
(
n2
)
. Therefore,

the SF algorithm has a worst-case time complexity of O
(
n2
)
.

Practical Considerations

In order to move the wide levels to the bottom of the packing, a for-loop is entered that packs
the levels from the floor of the strip upwards. This is achieved by maintaining a new array of
quintuples that represents the levels. A quintuple contains the vertical coordinate of a level in
a strip or bin, the height of the level, the width of the level (this may represent the sum of
widths of the items in the level, or the horizontal space remaining in the level), the bin into
which it is packed, and a boolean variable assuming the value true if the level has been packed
into a bin, or the value false if it has not been packed into a bin. One of the output parameters
of the algorithms programmed in the decision support system (described in detail later in this
dissertation) is the array of quintuples representing the levels. The levels are moved according
to the method shown in Figure 5.2. First the wide levels from the set of levels L are moved to
a new set of levels, F (say).

NumLevels← 0

Height← 0

for i = 1 to UBound(L)
if L (i) .W > W× (m + 1) / (m + 2) then

NumLevels← NumLevels + 1

F (NumLevels) .H← L (i) .H
F (NumLevels) .Y← Height

Height← Height + L (i) .H
L (i) .bin← NumLevels

L (i) .packed← True
end if

end for

Figure 5.2: The assignment of wide levels to their correct place during execution of the SF algorithm.
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Once the for-loop is completed the boundaries of the region R may be defined. The region
is represented by a quadruple, where one element represents the horizontal coordinate of the
bottom, left-hand corner of the region, another represents its vertical coordinate and the re-
maining two represent the height and width of the region. After three of the properties of R
have been defined, the narrow levels are packed according to a for-loop, as shown in Figure 5.3.
The height of the region R is calculated during the loop and this property is defined once the
loop is completed.

R.W← W / (m + 2)
R.X← W− R.W
R.Y← Height

for i = 1 to UBound(L)
if L (i) .W ≤ W× (m + 1) / (m + 2) then

NumLevels← NumLevels + 1

F (NumLevels) .H← L (i) .H
F (NumLevels) .Y← Height

Height← Height + L (i) .H
L (i) .bin← NumLevels

L (i) .packed← True
end if

end for
R.H← Height− R.Y

Figure 5.3: The assignment of narrow levels during an execution of the SF algorithm.

The items may then be packed into their new positions according to the steps outlined in Figure
5.4. The items in N may then be packed into the region R. Any unpacked items may finally
be packed into a region above the items in W. During this part of the algorithm the linked
lists implementation discussed in the practical considerations section of §3.2.4 is used to remove
items from N.

Height← 0

for i = 1 to UBound(W)
I (W (i) .int) .X← W (i) .X
I (W (i) .int) .lvl← L (i) .lvl
I (W (i) .int) .Y← F (L (W (i) .lvl) .bin) .Y
I (W (i) .int) .packed← True

end for

Figure 5.4: The packing of items after their level assignment during an execution of the SF algorithm.

5.1.3 The Bottom-Up Left-Justified Algorithm

The bottom-up left-justified (BL) class of algorithms was first published by Baker et al. [6] in
1980. An algorithm in this class packs an item as low as possible and then as far left as possible
at that height. Some variations Baker et al. considered include those where items are sorted by
increasing or decreasing width, and where items are sorted by increasing or decreasing height.
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Unfortunately Baker et al. [6] do not provide a detailed explanation on a method that may
be used to perform such packings computationally. Therefore, the pseudocode and subsequent
time complexity analysis are according to the author’s understanding of this class of algorithms.
The concept of a skyline, as defined by Burke et al. [23] and discussed in some detail in §4.1,
makes it possible to represent the shape of the packing at any time during execution of the
heuristic.

The first step in a BL algorithm is to sort the items. However, this is not as important a step for
the plane algorithms that do not split the items into groups as it is for the level and pseudolevel
algorithms. The items are packed sequentially. First, the lowest point that can accommodate
an item must be found. This is trivial when the lowest segment of the skyline is wide enough
for the item. However, if the lowest segment is shorter than the item is wide, then the segments
are raised to the height of their shortest neighbours until the lowest segment is wide enough
to accommodate the item. The item is placed left-justified on the lowest segment (of sufficient
width) of the strip. This procedure is illustrated in Figure 5.5.

After an item has been packed, the skyline is updated and the next item in the list is considered
for packing. This process continues until all items have been packed. The resulting packing is not
guaranteed to be guillotineable. Other versions of the BL class of algorithms exist. Chazelle [25],
Jakobs [83], Liu and Teng [100] and Hopper and Turton [75,77,78] all investigated some of these
variations. A pseudocode listing of the general algorithm may be found in Algorithm 5.3.

Algorithm 5.3 Bottom-Up Left-Justified (BL) algorithm

Input: A list I of n items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the
strip width W.
Output: A packing of the items in I into a strip of width W.

1: sort the items in any manner, if required
2: initialise a skyline S to monitor the space available for packing
3: for i = 1 to n do
4: call FindLowestPoint (I, i,S, s, Height)
5: move Ii as far to the left as possible at height Height
6: update the skyline in order to reflect the additional item
7: end for

Worked Example

By sorting the items in Table 3.1 in order of decreasing width, the list I = {I13, I11, I5, I10,
I3, I4, I6, I9, I12, I7, I1, I8, I2} results. The first item, I13, is placed in the bottom-left corner
of the strip and the skyline is updated to consist of two parts; the part above I13 and the part
on the bottom boundary of the strip. The lowest part of the strip is to the right of I13, but it
is too narrow for I11 which results in that part of the skyline being raised to the height of the
left-hand section of the skyline. Now the lowest skyline segment has the width of the strip and
wide enough to accommodate I11, resulting in its packing on top of I13 against the left-hand
boundary of the strip. The skyline is updated to consist of three sections; the top edge of I11,
the part of the top edge of I13 that is not below I11, and the bottom boundary of the strip.
The right-hand section of the skyline is the lowest segment, but its width is less than that of
I5; the segment is therefore raised to the height of the middle section. This combined skyline
segment is now the lowest, but is still too narrow to accommodate I5, resulting in the segment
being raised to the height of the top edge of I11. This new temporary segment spans the width
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(a) The lowest possible location is sought in order
to pack the item

(b) The lowest temporary skyline segment is raised
to the height of its lowest neighbour

(c) The item does not fit onto the new lowest tem-
porary skyline segment; hence the lowest segment is
raised to the height of its lowest neighbour

(d) The lowest temporary skyline segment remains
too narrow for the item and the lowest segment is
raised to the height of its lowest neighbour

(e) The lowest temporary skyline segment is wide
enough to accommodate the item

(f) The skyline is updated to reflect the position of
the new item

Figure 5.5: The process used to pack an item during execution of the BL algorithm. A copy is made
of the skyline (represented by the dotted line) and this copy is modified until the lowest segment is wide
enough for the item to be packed onto it.

of the strip; hence I5 is packed on top of I11, against the left-hand boundary of the strip. There
are now four skyline segments.

Item I10 is the next item in the list and is wider than the lowest skyline segment, but wider
than the combined width of the two lowest segments. However, it has the same width as the
combined width of the three lowest linked segments and is placed adjacent to I5. This results in
a skyline reduced to two segments, the segment above I5 and the segment above I10. The next
item in the list, I3, is placed in the lowest position, on top of I10. The space between I3 and
the right-hand strip boundary is too narrow for I4, which is packed onto I5. The same applies
for I6, which is also wider than the space between I4 and I3, resulting in its placement on top
of I4. The same arguments apply for the placement of I9 on top of I6. Item I12 is too wide to
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Procedure 5.3.1 FindLowestPoint (I, i,S, s, Height)

1: make a copy K of the skyline S, Found← False
2: while not Found do
3: let s be the index of the skyline segment with the lowest height
4: if w (Ks) ≥ w (Ii) then
5: Height← h (Ks), Found← True
6: else
7: let p be the index of the left-hand skyline segment
8: let n be the index of the right-hand skyline segment
9: if h (Kp) ≤ h (Kn) then

10: w (Kp)← w (Kp) + w (Ks), remove index s from the skyline K
11: else
12: w (Ks)← w (Ks) + w (Kn), remove index n from the skyline K
13: end if
14: end if
15: end while
16: discard the temporary skyline K

be packed on the right-hand side of I3, but the top edge of I3 is lower than the top edge of I9
and the space between I4, I6 and I9 is narrower than I12, resulting in its packing on top of I3,
but against the right-hand edge of I9. The skyline now consists of a segment spanning the top
edges of I9 and I12, a segment spanning the part of the top edge of I3 that is not below I12
and a segment spanning the part of the top edge of I10 that is not below I3.

The lowest part of the skyline on which I7 fits is that part above I3. Item I1 finds its best
position on top of I9 against the left-hand strip boundary. Item I8 is at its lowest position
adjacent to the left-hand edge of I1. The final item, I2, is narrow enough to be packed onto
the lowest skyline segment, the segment above I10 and to the right of I3. The final strip height
is 40 and a graphical representation of the packing may be found in Figure 5.1(c).

Known Performance Bounds

Baker et al. [6] established the worst-case performance bound

BL (L) ≤ 3 OPT (L) ,

where BL (L) is the packing height of the BL algorithm for a list of items L, and OPT (L) is the
optimal packing height for those items. This bound is the same as the worst-case performance
bound for the SF algorithm, but worse than the bounds for Sleator’s algorithm and the FFDH
algorithm. If the items are all squares, then the worst-case performance bound may be improved
to

BL (L) ≤ 2 OPT (L) .

Worst-case Time Complexity

Copying the skyline in line 1 of Procedure 5.3.1 has a worst-case time complexity of O(n)
as there are up to n + 1 segments in the skyline. Determining the lowest skyline segment
in line 3 also has a worst-case time complexity of O(n), because each segment’s height is
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investigated. The contents of the if-statement spanning lines 4–14 has constant time complexity.
The deletion of a skyline segment has a constant time complexity due the use of linked lists.
Finding an appropriate position for the item may take O(n) computations in the while-loop
spanning lines 2–15. Therefore, the overall time complexity of Procedure 5.3.1 is O(n)+O(n)×
(O(n) +O(1)) = O

(
n2
)
.

The sorting in Algorithm 5.3 may be performed by the merge-sort algorithm, which has a time
complexity of O(n log n). The skyline initialisation in line 2 has a time complexity of O(n), as
there may be n+1 skyline segments. The for-loop spanning lines 3–7 contains a call to Procedure
5.3.1 (which has a time complexity of O

(
n2
)
), an attempt to move the item further left and an

update of the skyline. The attempt to move the item further left has a time complexity of O(n),
as the location of the right-hand edge of every item packed before Ii is compared to the left-hand
boundary of Ii. If there is no item that has a right-hand edge coinciding with the left-hand edge
of Ii, then Ii may be moved left until its left-hand edge does coincide with the right-hand edge
of another item or the left-hand boundary of the strip. Updating the skyline has a worst-case
time complexity of O(n) as either a number of skyline segments are deleted from the skyline (if
the item is longer than any skyline segment), or an index value must be found for the additional
segment generated by the item that has been packed. Therefore, the BL algorithm has a time
complexity of O(n log n) +O(n) +O(n)×

(
O
(
n2
)

+O(n) +O(n)
)

= O
(
n3
)
. This corresponds

to the claim by Chazelle [25, p. 697] that the BL algorithm has a näıve O
(
n4
)
, or at best a

O
(
n3
)

worst-case time complexity.

Practical Considerations

Due to the sequential approach of the algorithm (the items are packed in the order in which
they are sorted), there is no need to use a linked list representation of the items. However, the
use of linked lists is useful for the representation of the skyline since skyline segments may thus
be added or deleted during the packing procedure. The skyline is represented by a sextuple
with attributes representing the vertical and horizontal coordinates, the width of the skyline
segment, the index value of the previous segment, the index value of the next skyline segment
and the status of the segment. The status component is used to determine whether the index
in the array is active in representing the skyline. In this manner it is easy to determine which
indices in the array have to be inspected when searching for a packing location. The use of
linked lists allows for the addition and deletion of segments to the skyline. This may happen
when a skyline is updated after an item is packed. If an item i is packed onto a skyline segment
o and the item is not as wide as the segment, then an addition must be made to the skyline.
Once an index value n has been found in the skyline array that is not in use, the procedure in
Figure 5.6 may be used to add the segment to the skyline and modify the skyline accordingly.

It is important to ensure that the skyline is reflected accurately in the array of sextuples.
If an item is packed onto a skyline segment, it is not sufficient to simply raise the skyline
segment. If the new height of the skyline segment has the same height as any of its neighbours,
then the segments should be combined such that all adjacent segments of the same height are
represented by one segment in the array. This prevents the algorithm from packing a narrow
item into a narrow low segment, when the adjacent segments are the same height and could
have accommodated a wider item. Therefore, after every skyline modification, the left-hand
(see Figure 5.7) and perhaps right-hand neighbours (see Figure 5.8) of the changing skyline
segment are inspected to determine whether their heights are the same. The right-hand side
only needs to be inspected if the right-hand edge of the item coincides with the right-hand side
of a skyline segment.
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S (n) .active← True
S (n) .Y← S (o) .Y
S (n) .X← S (o) .X + I (i) .W
S (n) .W← S (o) .W− I (i) .W
S (n) .nxt← S (o) .nxt
S (n) .prv← o

if S (n) .nxt > −1 then
S (S (n) .nxt) .prv← o

end if
S (o) .W← I (i) .W
S (o) .Y← S (c) .Y + I (i) .H
S (o) .nxt← n

Figure 5.6: Adding to the skyline during execution of the BL algorithm when an item has been packed
in the left-hand corner of a skyline segment.

if S (i) .prv > −1 then
p← S (i) .prv
if S (p) .Y = S (i) .Y then

S (p) .W← S (p) .W + S (i) .W
S (p) .nxt← S (i) .nxt
S (p) .active← false

if S (i) .nxt > −1 then
S (S (i) .nxt) .prv← p

end if
end if

end if

Figure 5.7: Updating the skyline on the left-hand side during execution of the BL algorithm.

The packing of items is complicated by the possibility of overhangs (see Figure 5.9) occurring
during the packing process. Baker et al. [6] do not deal with this specific case in their paper.
However, they do state that the item “is first placed into the lowest possible location, and then
it is left-justified at this vertical position” [6, p. 847]. Although the packing of items into the
left-hand corner will generally yield a left-justified packing, the possibility of overhangs requires
an additional step attempting to move the item further left. In order to determine how far to
the left an item may be moved, the location of all i − 1 previously packed items have to be
inspected for possible overlapping. This is achieved by the procedure shown in Figure 5.10.

If the item may move further toward the left-hand side of the strip, this must be taken into
account during the update of the skyline. If the item has moved further left than the item is
long, then the skyline requires no updating. The item now finds itself completely under the
overhang and hence under an existing skyline segment. However, in the case where packing the
item causes a change to the skyline and the difference between the item width and the move
space is greater than any single skyline segment over which it appears, some segments of the
skyline may be deleted, and some may require modification. Once the leftmost skyline segment
s has been identified where the item i will change the skyline, the procedure in Figure 5.11 may
be used to alter the skyline appropriately.
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if S (i) .nxt > −1 then
n← S (i) .nxt
if S (n) .Y = S (i) .Y then

S (i) .W← S (i) .W + S (n) .W
S (i) .nxt← S (n) .nxt
S (n) .active← false

if S (n) .nxt > −1 then
S (S (n) .nxt) .prv← i

end if
end if

end if

Figure 5.8: Updating the skyline on the right-hand side during execution of the BL algorithm.

overhang

Figure 5.9: An illustration of an overhang.

5.1.4 Golan’s Split Algorithm

In 1981 Golan [62] published the split (SP) algorithm. In this algorithm items are first ordered
according to decreasing width. The strip is segmented into various regions Rj , depending on
which items have been packed. A list J contains the regions that contain an item Zj (the last
item packed into that region) that may accommodate the next item in the list on its right-hand
side. If there are no such regions, the region with the lowest height is chosen and the item is
packed above the item already in it. The heights of the regions are stored in variables aj and bj ,
where bj is the height from the bottom of the strip to the bottom edge of Zj and aj = bj+h (Zj).
The bottom edge of region Rj is raised to the height of the bottom edge of the recently packed
item and the region below that is relabelled Mj (the inactive regions of the strip). If J is not an
empty set, the item is packed in the lowest region in J and the packing results in the splitting
of the region Rj into two further regions Rj+1 and Rj+2. This process continues until all items
have been packed. The result is a guillotineable packing and a pseudocode listing of the SP
algorithm may be found in Algorithm 5.4.

Worked Example

By sorting the items in Table 3.1 in order of decreasing width, the list I = {I13, I11, I5, I10, I3,
I4, I6, I9, I12, I7, I1, I8, I2} results. The algorithm begins with only one region; R1, the entire
strip. There are no regions in which I13 may be packed next to another item; hence J = ∅.
Therefore, item I13 is packed in the bottom left corner of the lowest region R1. Now that I13
is packed into R1, a1 = 5 and Z1 = I13, but the set J of regions in which the current item I11
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if i = 0 then
MoveSpace← 0

Exit
end if
MoveSpace← W

for j = 1 to i

if I (j) .X + I (j) .W ≤ I (i) .X and I (j) .Y < I (i) .Y + I (i) .H
and I (j) .Y + I (j) .H > I (i) .Y then

if MoveSpace > I (i) .X− (I (j) .X + I (j) .W) then
Found← True
MoveSpace← I (i) .X− (I (j) .X + I (j) .W)
if MoveSpace = 0 then

Exit
end if

end if
end if

next

Figure 5.10: Determining how far left an item may be moved from its current position during execution
of the BL algorithm.

Algorithm 5.4 Split (SP) algorithm

Input: A list I of n items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the
strip width W.
Output: A packing of the items in I into a strip of width W.

1: sort the items according to decreasing width
2: initialise the first region R1, r ← 1, a1 ← 0, b1 ← 0
3: for i = 1 to n do
4: let J = {Rj | w (Rj) ≥ w (Zj) + w (Ii)}
5: if J 6= ∅ then
6: determine R`, such that b` ≤ bj for all Rj ∈ J
7: r ← r + 1, br ← b`, ar ← b` + h (Ii), w (Rr)← w (R`)− w (Ii)
8: w (R`)← w (Z`), b` ← a`, Z` ← Ii
9: else

10: determine R`, such that a` ≤ aj for all 1 ≤ j ≤ r
11: b` ← a`, a` ← a` + h (Ii), Z` ← Ii
12: end if
13: end for

fits next to the last item packed into it remains empty. Therefore, I11 is packed into the region
with the lowest a value, namely region R1, and a1 = 14 and b1 = 5. The same procedure is
performed for I5 with similar results; it is packed onto I11 in R1, resulting in the values b1 = 14,
a1 = 23 and Z1 = I11.

There is still only one region, but this is added to the set J, because I10 has the same width
as the space between I5 and the boundary of the strip. Item I10 is placed into the space which
results in the splitting of the region into two regions. That part of the strip below the top edge
of I11 is used to generate the region M1 and two new regions are generated: R2 is the region
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RemainingW← I (i) .W− MoveSpace− S (s) .W
n← s

do while RemainingW ≥ 0 and n <> −1
n← S (n) .nxt
if n > −1 then

RemainingW← RemainingW− S (n) .W
if RemainingW ≥ 0 then

S (n) .active← False
end if

end if
loop
if n > −1 then

S (n) .prv← s

S (n) .X← S (n) .X + S (n) .W + RemainingW

S (n) .W← −1× RemainingW

end if
S (s) .Y← I (i) .Y + I (i) .H
S (s) .nxt← n

S (s) .W← I (i) .W− MoveSpace

Figure 5.11: Modifying the skyline after an item has been packed, such that the difference between its
width and any movement to the left is greater than a number of low skyline segments.

above I5 and R3 is the region above I10. Now b2 = b3 = 14, a2 = 23, a3 = 21, Z2 = I5 and
Z3 = I10. Neither region has any space to the right of the last item packed into it, with the
result that J = ∅. Therefore, I3 is packed into the region with the lowest a value, namely R3.
Now b3 = 21, a3 = 27 and Z3 = I3, while the corresponding values for R2 remain unchanged.

Continuing in this manner, I4, I6 and I9 are packed into R2 and I12 is packed into R3, resulting
in the values b2 = 26, a2 = a3 = 29, b3 = 27, Z2 = I9 and Z3 = I12. The item I7 has a width
equal to the space remaining to the left of I9 in R2, which leads to the nonempty set J = {R2}.
Therefore, item I7 is packed adjacent to I9 and the region R2 is split into two regions: R4 and
R5, with values b4 = b5 = 26, a4 = a5 = 29, Z4 = I9 and Z5 = I7. The area of R2 below
items I9 and I7 becomes the area M2. Item I1 does not fit into the space between I12 and the
right-hand boundary of R3, resulting in its location1 in R4. Item I8 is packed onto I7, while I2
fits adjacent to I1 in R4 and is packed there, resulting in the packing shown in Figure 5.12(a).

Known Performance Bounds

Golan [62] established the asymptotic performance bound

SP (L) ≤ 2 OPT (L) + 1

for a list L containing items with a maximum width and height of 1, where SP (L) is the packing
height of the SP algorithm for a list of items L, and OPT (L) denotes the optimal packing height
for those items. He also established the worst-case performance bound

SP (L) ≤ 3 OPT (L)

1Golan [62, p. 572] remarks that ties in height may be resolved in any manner. In this example ties were
resolved by packing the item into the leftmost region of that height.
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Figure 5.12: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
known plane strip packing algorithms described in §5.1.4–§5.1.6. The resulting packing heights H are
also shown.

for the SP algorithm. If the list L contains only squares, the worst-case performance bound
may be improved to

SPS (L) ≤ 2 OPT (L) .

Worst-case Time Complexity

The sorting procedure in line 1 of Algorithm 5.4 may be performed by the merge-sort algorithm
which has a worst-case time complexity of O(n log n). The initialisation of the regions in line 2
has a constant time complexity. The search for regions that may be added to the list J in line
4 has a time complexity of O(n). So too does the subsequent search for the lowest appropriate
packing region (see lines 6 and 10). All other operations within the for-loop spanning lines
3–13 have a constant time complexity. Therefore the algorithm has an overall worst-case time
complexity of O(n log n) +O(1) +O(n)× (O(n) + max {O(n) +O(1) ,O(n) +O(1)}) = O

(
n2
)
.

Algorithmic Variations and Practical Considerations

Golan’s algorithm wastes some space when the set J is empty. In this case the algorithm packs
an item onto the incumbent item Zi in Ri and raises the value of bi in order to allow items to
be packed adjacent to the new item. A space as wide as the difference in widths of Zi and Ri
and as tall as the height of Zi remains unused.
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This space may be filled by means of a recursive subroutine that attempts to stack items that
remain unpacked into the space. The first unpacked item that fits may be packed into the
bottom-left corner of the space. The procedure may call itself with the remaining width and
the same height. If all unpacked items are wider than the space that remains after an item
is packed, then an attempt may be made to stack the remaining items. During the stacking
procedure the algorithm should reject unpacked items that are either too wide or whose height
would yield a stack of items taller than the height of the item next to which the items are being
stacked. This concept is illustrated in Figure 5.13.

Wasted Space

Ri

(a) A large space may remain empty if the SP al-
gorithm is used to pack consecutive items with a
combined width larger than w (Ri)

Ri

(b) The resulting SPm algorithms attempt to fill
this space with smaller items before the next item
is packed

Figure 5.13: An illustration of the proposed modification to the SP algorithm. An attempt is made to
pack smaller items adjacent to an item before another item is packed above it.

In order to achieve the modification mentioned above, a subroutine such as the one listed in
Procedure 5.4.1 is required. This subroutine is to be called after line 10 of Algorithm 5.4.
The for-loop spanning lines 3–13 of Algorithm 5.4 should be changed to a while-loop that
terminates when no unpacked items remain. In order to render the algorithm more efficient
when items may be packed out of sequence, linked lists may again be used to represent the order
of items. The resulting modified SP algorithm is labelled the SPmG algorithm, because the
results are guaranteed to be guillotineable. This additional procedure increases the worst-case
time complexity for the SPmG algorithm to O

(
n4
)
, because Procedure 5.4.1 has a worst-case

time complexity of O
(
n3
)
. For every item that is packed, an attempt is made to pack the

remaining items above it and next to it.

In an attempt to pack items more densely according to an SP-like algorithm, further changes
may be made to the SPmG algorithm. Before any item is packed, the positions of all previously
packed items may be noted so that the lowest possible location for the new item may be found.
This “gravity” effect may render the solution non-guillotinable. The resulting algorithm is
therefore named the SPmF algorithm. An attempt to lower the item is not made when an item
is packed due to an empty set J, because the item is packed such that its lower edge is coincident
with the incumbent item Zj in the region Rj. When the procedure was first programmed, the
subroutine used a for-loop that inspected every item in the list in order to determine whether
it was to be packed. If the item was packed, then the procedure would investigate whether the
item had an influence on the item that was to be packed. However, it proves faster to maintain
a list of packed items A, noting the index value that was the last to be entered. A search of the
entire list of items is then no longer required. Instead, only those items that are already packed
are inspected, thereby increasing the speed of the algorithm when the few items are packed.
The pseudocode required to perform this task is shown in Figure 5.14, increasing the worst-case
time complexity of the entire procedure to O

(
n5
)
.
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Procedure 5.4.1 FillNoJ(I, i, t,X, Y, Width, Height)

1: let t be the index value of the thinnest unpacked item
2: let Ij be the first unpacked item after Ii
3: PackedH← 0
4: while unpacked items remain and Width ≥ w (It) do
5: if h (Ij) ≤ Height− PackedH and w (Ij) ≤ Width then
6: pack Ij with coordinates X and Y + PackedH

7: if no unpacked items remain then
8: exit
9: end if

10: if Width− w (Ij) ≥ w (It) then
11: call FillNoJ (I, j, t,X + w (Ij) , Y + PackedH, Width− w (Ij) , Height− PackedH)
12: end if
13: if an item was packed to the right of Ij then
14: Width← w (Ij)
15: end if
16: PackedH← PackedH + h (Ij)
17: end if
18: let Ij be the next unpacked item
19: end while

MoveSpace← Y

for j = 0 to NumPacked

k← A (j)
if I (k) .Y + I (k) .H <= I (i) .Y and I (k) .X < I (i) .X + I (i) .W and

I (k) .X + I (k) .W > I (i) .X then
if MoveSpace > I (i) .Y− (I (k) .Y + I (k) .H) then

MoveSpace← I (i) .Y− (I (k) .Y + I (k) .H)
if MoveSpace = 0 then

exit
end if

end if
end if

next

Figure 5.14: Determining how far items may be moved down during execution of the SPmF algorithm.

5.1.5 Golan’s Mixed-Algorithm

Golan [62] also designed the mixed algorithm (M algorithm). Consider a list of items L, each
with a maximum width and height one. Initially the items are sorted into five groups, namely

A =

{
Li | w (Li) >

1

2

}
, B =

{
Li | 1

3
< w (Li) ≤

1

2

}
, C =

{
Li | 1

4
< w (Li) ≤

1

3

}
,

D1 =

{
Li | 5

24
< w (Li) ≤

1

4

}
and D2 =

{
Li | w (Li) ≤

5

24

}
.

All items in A are sorted by decreasing width. All items are stacked on top of one another
until no unpacked items remain in A. The height to which they are packed is labelled L2. The
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w ≤ 7
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R2

R1

R3

C items

D1 items

D2 items

B items

D1 & D2 items

C, D1 & D2 items

Figure 5.15: An illustration of the regions packed by the M algorithm.

items in B are sorted by decreasing width and an attempt is made to pack these items next
to the items from A. This is achieved by stacking the items from L2 downwards so that the
bottom edge of the last item in B that fits is at a height of L1. The space below the packed
items in B and to the right of the items in A is then split into further regions. The first region
is between the heights of the top edges of the highest items in A of width greater than 3/4 (this
height is labelled H1) and the highest item of width greater than 2/3 (this height is labelled
H2). This region (labelled R1) has a width of 1/4 and is filled with items in D1 and D2 using
the FFDH algorithm (see §3.2.2). The height H3 is defined as the minimum of L1 and the
height of the top edge of the highest item of width greater than 7/12. If H2 and H3 are distinct,
then a region R2 of width 1/3 is created between these heights in which items from C, D1 and
D2 are packed according to the FFDH algorithm. If H3 is lower than L1 then any unpacked
items in C are stacked into this region, such that their right-hand edges are adjacent to the
right-hand boundary of the strip. The height of the top edge of those items in C is labelled H4.
If there is sufficient space between H4 and L1 for any unpacked items from D1, then these are
packed in that space by means of the bottom-up right-justified algorithm (an adaption of the
BL algorithm presented in §5.1.3). The height of the highest point of these items is labelled
H5. If sufficient space remains between H5 and L1 for unpacked items in D2, then a region R3

of width 5/12 is created into which items in D2 are packed by means of the FFDH algorithm.
A graphical representation of such a packing may be found in Figure 5.15.

Any unpacked items from B are packed above the items in A. The levels are rearranged so
that any levels with width greater than 3/4 are below the others. The height of the top edge of
the highest item from B is labelled L4 and the vertical coordinate of the lowest level of width
at most 3/4 is labelled L3. The remaining space between L3 and L4, with a width of 1/4, is
filled with any unpacked items by means of the FFDH algorithm. If any items from C, D1 or
D2 remain unpacked, they are packed above L4 in an FFDH manner. A pseudocode listing of
the M-algorithm may be found in Algorithm 5.5.
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Worked Example

After partitioning the items in Table 3.1 into their respective sets and sorting those sets in the
appropriate order, the lists A = {I13, I11, I5}, B = {I10, I3, I4, I6}, C = {I9, I12}, D1 = {I7}
and D2 = {I1, I2, I8} result. The items in A are stacked onto one another, so that their left-

Algorithm 5.5 Mixed-algorithm

Input: A list I of n items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the
strip width W.
Output: A packing of the items in I into a strip of width W.

1: place all items where w (Ii) > W/2 in A, let nA denote the number of items in A
2: place all items where W/3 < w (Ii) ≤ W/2 in B, let nB = |B|
3: place all items where W/4 < w (Ii) ≤ W/3 in C, let nC = |C|
4: place all items where W× 5/24 < w (Ii) ≤ W/4 in D1, let nD1 =

∣∣D1
∣∣

5: place all items where w (Ii) ≤ W× 5/24 in D2, let nD2 =
∣∣D2
∣∣

6: if nA > 0 then
7: sort all items in A according to decreasing width
8: stack all items in A adjacent to the left-hand boundary of the strip
9: let L2 denote the height to which items in A have been packed

10: stack items from B in a downward manner from L2, update nB
11: let L1 denote the height at which the bottom-most item from B is packed
12: let j = max1≤j≤nA (0, j | w (Aj) > W× 3/4)
13: set H1 equal to the vertical coordinate of the top edge of Aj , if H1 > L1 then H1 ← L1

14: let k = max1≤k≤nA
(0, k | w (Ak) > W× 2/3)

15: set H2 equal to the vertical coordinate of the top edge of Ak, if H2 > L1 then H2 ← L1

16: let m = max1≤m≤nA (m | w (Am) > W× 7/12)
17: set H3 equal to the vertical coordinate of the top edge of Am, if H3 > L1 then H3 ← L1

18: if H1 < H2 and (nD1 > 0 or nD2 > 0) then
19: w (R1)← W/4, h (R1)← H2 −H1, locate R1 as shown in Figure 5.15
20: pack items from D1 and D2 into R1 with the FFDH algorithm, update nD1 and nD2

21: end if
22: if H2 < H3 and (nC > 0 or nD1 > 0 or nD2 > 0) then
23: w (R2)← W/3, h (R2)← H3 −H2, locate R2 as shown in Figure 5.15
24: pack items from C, D1 and D2 into R2 by means of the FFDH algorithm
25: update nC , nD1 and nD2

26: end if
27: if nC > 0 then stack unpacked items from C right-aligned above H3, update nC
28: let H3 ≤ H4 ≤ L1 be the height to which the items in C are stacked
29: if H4 < L1 and nD1 > 0 then
30: pack D1 items in the remaining space with the bottom-up right-justified algorithm
31: update nD1

32: end if
33: let H4 ≤ H5 ≤ L1 be the height to which items are packed in the right-hand column
34: if H5 < L1 and nD2 > 0 then
35: w (R3)← W× 5/12, h (R2)← L1 −H5, locate R3 as shown in Figure 5.15
36: pack items from D2 into R3 by means of the FFDH algorithm, update nD2

37: end if
38: end if{continued...}
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Algorithm 5.5 (continued...) Mixed-algorithm

39: if nB > 0 then
40: pack any unpacked items in B beginning at L2 by means of the FFDH algorithm
41: let L4 be the height of the topmost item in B
42: rearrange the levels such that those of width > W× 3/4 are below the others
43: let L3 be the height of the boundary between the two groups of levels
44: create a region R4 of width W× 3/4 between L3 and L4

45: if nD1 > 0 or nD2 > 0 then
46: pack the items into R4, update nD1 and nD2

47: end if
48: end if
49: if nC > 0 or nD1 > 0 or nD2 > 0 then
50: pack the remaining items above L4 with the FFDH algorithm
51: end if

hand edges coincide with the left-hand boundary of the strip. The resulting heights are H1 = 5,
H2 = H3 = 14 and L2 = 23. An attempt is made to stack the items in B in a downward manner
from L2. Items I10 and I4 fit into the space between the items in A and the left-hand strip
boundary and result in L1 = 15, but I3 and I6 do not fit and hence remain unpacked.

Now a region R1 of width W/4 is created between H1 and H2, and is right-justified against
the right-hand boundary of the strip. Of the items in D1 and D2 only I2 fits into R1 and is
packed there. The heights H2 and H3 are equal; hence region R2 is not created. The heights
H4 = H3 = 14 result and an attempt is made to pack items from C into the space between H4

and L1. None of the items fit into the space, nor do any of the items in D1 or D2.

The unpacked items in B are packed above L2 by means of the FFDH algorithm. This means
that I3 is packed against the left-hand strip boundary and I6 is packed adjacent to the right-
hand edge of I3. There is only one level of items from B and the width of the level is less than
three quarters of the strip width; hence L3 = L2 = 23 and L4 = 29. Therefore, a region R4 of
width W/4 is created between L3 and L4 and an attempt is made to pack some of the remaining
items into that region. Only I8 fits and is packed there. The remaining items are packed into
the strip above L4 by means of the FFDH algorithm, resulting in the packing shown in Figure
5.12(b).

Known Performance Bounds

Golan [62] established the asymptotic performance bound

M (L) ≤ 4

3
OPT (L) + 7

1

18

for the M-algorithm (packing a list with a maximum item width and height of 1), where M (L)
denotes the packing height of the M algorithm for a list of items L, and OPT (L) denotes the
optimal packing height for those items.

Stellenbosch University  http://scholar.sun.ac.za



94 Chapter 5. Plane-Packing Strip Packing Heuristics

Worst-case time complexity

The assignment of an item to its respective set, spanning lines 1–5 in Algorithm 5.5, has a time
complexity of O(n). If there are items wider than half the strip width, then these items are
sorted in line 7. This step has a time complexity of O(n log n) if an algorithm such as merge-sort
is used. The stacking of the items in line 8 has a linear time complexity. In order for the items
in B to be stacked in a downward manner, care must be taken that no items overlap. Hence, for
each attempt at packing an item from B, the list of items in A is searched for an item that may
overlap with the item from B. Therefore the step in line 10 has a quadratic time complexity
in the worst case. Determining the heights of the parameters L and H in lines 9 and 11–17
may be performed during the packing procedures and therefore only contribute operations of
constant time complexity to the algorithm. The creation of regions in the if-statement spanning
lines 18–21 has a constant time complexity, while the FFDH algorithm used to pack the items
in D1 and D2 in line 20 has a worst-case time complexity of O

(
n2
)
. The same applies to the

if-statement spanning lines 22–26. The stacking of items from C between H3 and L1 in line 27
has a linear time complexity. Line 30 contains a call to the bottom-up right-justified algorithm,
which has been shown in §5.1.3 to have a worst-case time complexity of O

(
n3
)
. Region R3 is

filled by means of the FFDH algorithm in line 36. This step has a worst-case time complexity
of O

(
n2
)
. If any unpacked items remain in B, then they are packed above L2 according to

the FFDH algorithm in line 40 (which has a O
(
n2
)

worst-case time complexity). Once all the
items in B have been packed, the levels are rearranged in line 42 by means of a procedure that
has a linear time complexity. If there are levels of items from B that have a width of at most
three quarters of the width of the strip, region R4 is created (constant time complexity) and is
filled with any remaining items from D1 and D2 by means of the FFDH algorithm, which has
a quadratic time complexity. Finally, all remaining items are packed above L4 by means of the
FFDH algorithm. Thus, the overall time complexity of the M-algorithm is O

(
n3
)
.

Practical Considerations

The items in the set A are the only items that are not packed into a restricted area throughout
execution of the algorithm. If there are items in A, then the items in B, C, D1 and D2 may be
packed into restricted regions. Therefore, items may not be packed in the order in which they
appear once sorted, as some items may not fit into one of these regions. The use of a linked list
implementation allows for fast removal of items from the various sets.

The fact that items from up to three groups may be packed into a single region (R2, for example)
means that the FFDH algorithm should be modified to accept items from three groups. This
reduces the number of computationally expensive generations of new item lists of combined
sets of items that must be re-sorted into their respective sets when the FFDH algorithm has
completed filling a region. The first part of the algorithm sorts the three sets of items according
to decreasing height and places the tallest item in the three sets that fits into the region into
the bottom-left corner of the region. In the second part of the algorithm, the items are packed
according to a procedure of the form illustrated in Procedure 5.5.1.

The purpose of Procedure 5.5.1 is to determine which item should be packed into the region.
There are two conditions according to which a list of items is no longer considered for packing.
The first occurs when there are no unpacked items in the list (when the variables NumC, NumD1
and NumD2 are zero). The second condition occurs when all items in a list have been considered
for packing, but some items have not been packed because they do not fit into the region. This
is indicated by the indices i, j and k being equal to −1. They will be −1 because of the way the
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Procedure 5.5.1 FFDH3 (Part 2)

1: Packed← False, NumLevels← 1
2: L1 ← W− width of the first item packed (in Part 1)
3: RemainingH← height of the region − height of the first item packed (in Part 1)
4: while not Packed and (i or j or k <> −1) and (NumC or NumD1 or NumD2 > 0) do
5: if (NumC < 1 or i < 0) and (NumD1 < 1 or j < 0) and (NumD2 < 1 and k < 0) then
6: exit
7: else if (NumD1 < 1 or j < 0) and (NumD2 < 1 or k < 0) then
8: call PackMain (I,L, C, R, i, RemainingH, NumC, NumLevels, FirstC)
9: else if (NumC < 1 or i < 0) and (NumD2 < 1 or k < 0) then

10: call PackMain
(
I,L,D1, R, j, RemainingH, NumD1, NumLevels, FirstD1

)
11: else if (NumC < 1 or i < 0) and (NumD1 < 1 or j < 0) then
12: call PackMain

(
I,L,D2, R, k, RemainingH, NumD2, NumLevels, FirstD2

)
13: else if (NumD2 < 1 or k < 0) and i > −1 and j > −1 then
14: if h(Ci) < h(D1

j ) then

15: call PackMain
(
I,L,D1, R, j, RemainingH, NumD1, NumLevels, FirstD1

)
16: else
17: call PackMain (I,L, C, R, i, RemainingH, NumC, NumLevels, FirstC)
18: end if
19: else if (NumD1 < 1 or j < 0) and i > −1 and k > −1 then
20: if h(Ci) < h(D2

k) then
21: call PackMain

(
I,L,D2, R, k, RemainingH, NumD2, NumLevels, FirstD2

)
22: else
23: call PackMain (I,L, C, R, i, RemainingH, NumC, NumLevels, FirstC)
24: end if
25: else if (NumC < 1 or i < 0) and j > −1 and k > −1 then
26: if h(D1

j ) < h(D2
k) then

27: call PackMain
(
I,L,D2, R, k, RemainingH, NumD2, NumLevels, FirstD2

)
28: else
29: call PackMain

(
I,L,D1, R, j, RemainingH, NumD1, NumLevels, FirstD1

)
30: end if
31: else
32: if h(Ci) ≥ h(D1

j ) and h(Ci) ≥ h(D2
k) then

33: call PackMain (I,L, C, R, i, RemainingH, NumC, NumLevels, FirstC)
34: else if h(D1

j ) > h(Ci) and h(D1
j ) ≥ h(D2

k) then

35: call PackMain
(
I,L,D1, R, j, RemainingH, NumD1, NumLevels, FirstD1

)
36: else if h(D2

k) > h(Ci) and h(D2
k) > h(D1

j ) then

37: call PackMain
(
I,L,D2, R, k, RemainingH, NumD2, NumLevels, FirstD2

)
38: end if
39: end if
40: end while

linked lists are created. The ends of the list are noted by values of −1 in order to prevent looping,
as discussed in the Practical Considerations section of §3.4. The many if-statements ensure that
no index values violate the bounds of the array. A pseudocode listing of the procedure labelled
PackMain may be found in Procedure 5.5.2.

If there are unpacked items in B that are to be packed above L2, they are packed according to
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Procedure 5.5.2 PackMain(I,L,D, R, i, RemainingH, NumD, NumLevels, FirstD)

1: j ← 1, Packed← False
2: while not Packed do
3: if w (Di) ≤ w (Lj) then
4: pack Di into level j, Packed← True
5: NumD← NumD− 1, w (Lj)← w (Lj)− w (Di)
6: else if w (R) < w (Di) then
7: Packed← True
8: else
9: j ← j + 1

10: if j > NumLevels and RemainingH ≤ w (Di) then
11: NumLevels← NumLevels + 1, RemainingH← RemainingH− h (Di)
12: w (Lj)← w (R)− w (Di), h (Lj)← h (Di), Packed← True, NumD← NumD− 1
13: else if j > NumLevels and RemainingH > w (Di) then
14: Packed← True
15: end if
16: end if
17: end while
18: set i equal to the index of the next unpacked item in D

the FFDH algorithm. In order for this to be possible, the array representing the set B must
be sorted according to decreasing height. However, in such a case the linked list will no longer
be valid after the sorting procedure; hence a procedure is required to repair the linked list.
The level into which an item is packed is saved in the .lvl characteristic of the decuple that
represents an item. Therefore, it is possible to rearrange the levels according to a procedure
such as the one in Figure 5.16.

In addition to rearranging the levels of the items in B that remain unpacked, the procedure
determines the heights L3 and L4. This is important for the penultimate step, during which
any remaining unpacked items are packed into the region R4.

5.1.6 The Up-Down Algorithm

In 1981 Baker et al. [5] described the Up-Down (UD) algorithm for two-dimensional strip pack-
ing. It partitions the strip into five regions R1, . . . , R5 of heights h1, . . . , h5. Items with a width
in the range (1/ (i+ 1) , 1/i] are assigned into their respective sets Li where 1 ≤ i ≤ 4, and
packed into the regions R1 to R4 using a combination of simple stacking and the BL algorithm.
Once all items allocated to a region Ri have been packed, items of Lj , i+ 1 ≤ j ≤ 4 are packed
in a column from hi towards hi−1 in order of decreasing width before they are packed into
their region by means of the BL algorithm. Once this part of the algorithm is completed, the
remaining items in L5 (the set of items of width no greater than 1/5) are packed into the spaces
between the items on the right and the items on the left, using a generalised version of the
NFDH algorithm. The generalised next-fit decreasing height (GNFDH) algorithm allows items
to be packed into a region with left and right boundaries that may change with height. Any
remaining items in L5 are packed into R5 using the NFDH algorithm. The resulting packing is
not guaranteed to be guillotineable and a pseudocode listing of the UD algorithm may be found
in Algorithm 5.6.

Stellenbosch University  http://scholar.sun.ac.za



5.1. Known Plane-Packing Algorithms 97

Height← 0

for i = 1 to NumLevels

if L (i) .W > 3 ∗ W/4 then
LY (i)← Height

Height← Height + L (i) .H
end if

end for
L3← Height

for i = 1 to NumLevels

if L (i) .W ≤ 3 ∗ W/4 then
LY (i)← Height

Height← Height + L (i) .H
end if

end for
L4← Height

i← FirstB

do while i <> −1
B (i) .Y← LY (B (i) .lvl)
NumB← NumB− 1

i← B (i) .nxt
end while

Figure 5.16: Rearranging levels and items during execution of the M algorithm.

Worked Example

After partitioning the items in Table 3.1 into their respective sets and sorting those sets appro-
priately, the lists L1 = {I13, I11, I5}, L2 = {I10, I3, I4, I6}, L3 = {I9, I12}, L4 = {I7} and
L5 = {I1, I2, I8} result. The algorithm begins by packing the items in L1 into the strip in a
BL manner, i.e. I13 is packed into the bottom-left corner, and I11 and I5 are packed onto it,
their left-hand edges coinciding with the left-hand strip boundary. An attempt is now made to
stack items from the other sets (excluding L5) down from the ceiling at a height of H1 = 23.
Items I10 and I4 from L2, I9 and I12 from L3 and I7 from L4 all fit into the space between
the items in L1 and the right-hand boundary of the strip. Items I3 and I6 are packed into a
new level by means of the BL algorithm to a height of H2 = 29. No items remain in L3 and
L4; hence no items are packed from the ceiling. The only items remaining are in the list L5 and
an attempt is made to pack them into the free space in the two existing levels. Item I1 does
not fit into any of the spaces; hence the items are all packed above H2 by means of the NFDH
algorithm, yielding the packing in Figure 5.12(c).

Known Performance Bounds

Baker et al. [5] established the performance bound

UD (L) ≤ 5

4
OPT (L) +

53

8
H

for the UD algorithm, where UD (L) denotes the packing height of the UD algorithm for a list of
items L, OPT (L) denotes the optimal packing height for those items, and H denotes the height
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Algorithm 5.6 Up-down algorithm

Input: A list I of n items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the
strip width W.
Output: A packing of the items in I into a strip of width W.

1: place all items where w (Ii) > W/2 in L1, let n1 denote the number of items in L1
2: place all items where W/3 < w (Ii) ≤ W/2 in L2, let n2 =

∣∣L2∣∣
3: place all items where W/4 < w (Ii) ≤ W/3 in L3, let n3 =

∣∣L3∣∣
4: place all items where W/5 < w (Ii) ≤ W/4 in L4, let n4 =

∣∣L4∣∣
5: place all items where w (Ii) ≤ W/5 in L5, let n5 =

∣∣L5∣∣
6: define Left to be the left-hand boundary of each level L
7: Left (`, h) is the horizontal coordinate of the boundary for level L` at height h
8: define Right to be the right-hand boundary of each level L
9: h0 ← 0, h1 ← 0

10: if n1 > 0 then
11: sort all items in L1 according to decreasing width
12: stack all items in L1 adjacent to the left-hand boundary of the strip
13: let h1 denote the height to which items in L1 have been packed
14: end if
15: for sets L2, L3 and L4 do
16: if n2/n3/n4 > 0 then
17: sort all items in L2/L3/L4 according to decreasing width
18: for i = 1 to n2/n3/n4 do
19: Packed← False
20: while not Packed and j ≤ 1/2/3 do
21: if hj > hj−1 then
22: attempt to stack L2i /L3i /L4i in a downward manner from hj
23: if successful then
24: Packed← True, update Right (j)
25: end if
26: end if
27: end while
28: if not Packed then
29: pack L2i /L3i /L4i into level L2/L3/L4 by means of the BL algorithm
30: update h2/h3/h4 and Left (2) /Left (3) /Left (4) if necessary
31: end if
32: end for
33: end if
34: end for
35: if n5 > 0 then
36: call GNFDH

(
L5, L, Left, Right, n5

)
37: pack any unpacked items in L5 above h4 by means of the NFDH algorithm
38: end if

of the tallest item in the list L. Moreover, they proved that the asymptotic bound of 5/4 is
tight.
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Procedure 5.6.1 GNFDH (E, L, Left, Right, n5)
1: sort the items in L5 according to decreasing height
2: i← 1, `← 1
3: while ` ≤ 4 and i ≤ n5 do
4: if h (L`) > 0 then
5: Lower← 0, Upper← h (L`), Top← Lower + h

(
L5i
)
, Current← Left (Lower)

6: while i ≤ n5 and Top ≤ Upper do
7: if Current + w

(
L5i
)
≤ Right (Top) then

8: pack L5i into the space, Current← Current + w
(
L5i
)
, i← i+ 1

9: else
10: if Left (Upper) < Current then
11: H← min {H̄ | Left (H̄) < Current}
12: else
13: H← Upper

14: end if
15: Lower← max (Top, H), Top← Lower + h

(
L5i
)
, Current← Left (Lower)

16: end if
17: end while
18: end if
19: `← `+ 1
20: end while

Worst-case Time Complexity

The UD algorithm begins by assigning each item in L to one of five sets of items according to the
item’s width (see lines 1–5). If there are items in L1, then they are sorted in line 11 according to
decreasing width by means of the merge-sort algorithm, which has a worst-case time complexity
of O(n log n). The items are then stacked onto each other (see line 12) according to a procedure
that has a time complexity of O(n). If there are items in L2, L3 and L4 then they too are
sorted according to decreasing width by means of the merge-sort algorithm (see line 17). If
the difference between the heights of the lower levels is greater than zero, then an attempt is
made to stack items into these levels. In order to determine whether an item fits below the
ceiling stack of a lower level, a procedure with a linear worst-case time complexity is required
for each of the levels. If the item fits into such a lower level, then the right-hand boundary
must be updated. This step (see line 24) has a constant time complexity. If the item does not
fit into a lower level, line 29 dictates that it must be packed into the current level j by means
of the BL algorithm [6] presented in §5.1.3. In the worst-case time complexity section of §5.1.3
it was found that the worst-case time complexity of the BL algorithm is O

(
n3
)
. Therefore,

the for-loop spanning lines 15–32 has a worst-case time complexity of O
(
n4
)
. Thereafter, the

GNFDH algorithm is called.

The GNFDH algorithm, the pseudocode of which may be found in Procedure 5.6.1, begins by
sorting all items in L5 according to decreasing height. If this is done by means of the merge-
sort algorithm, the time complexity of line 1 is O(n log n). The algorithm enters a while-loop
spanning lines 3–20, the contents of which is executed at most 4 times; once for each of the
lower levels. Determining the value for Current in line 5 has constant time complexity, because
the horizontal coordinate of the lowest left-hand boundary is simply the last item in the list of
boundary values. The contents of the while-loop spanning lines 6–17 is executed O(n5) = O(n)
times. In order to determine the horizontal position of the right-hand boundary in line 7, an
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operation with a worst-case time complexity of O(n) is required. If all item sizes are guaranteed
to be integer, then this may be performed in constant time. If the item does fit, then it may
be packed in constant time (see line 8), but if it is not packed, then the left-hand boundary at
the height Upper must be investigated. This may be found in linear time for non-integer data
sets. If the left-hand boundary is less than the current horizontal coordinate of the left-hand
boundary, then the lowest relevant boundary position (see line 11) may be found in linear time.
Once the relevant value for H has been found there are some constant-time computations and
another search for the horizontal coordinate of the left-hand boundary at a specific height (linear
time for non-integer data). Therefore, the combined time complexity of the GNFDH algorithm
is O

(
n2
)
.

Any remaining items are packed by means of the NFDH algorithm. No further sorting is
required as this has been done during the GNFDH algorithm. Thus the time complexity of line
37 of Algorithm 5.6 is O(n). The time complexity of O

(
n4
)

of the for-loop spanning lines 15–32
dominates the time complexity of the other steps of the UD algorithm, giving it a worst-case
time complexity of O

(
n4
)
.

Practical Considerations

In the previous section it was claimed that the search for the horizontal coordinate of a boundary
at a specific height is linear if the item sizes are integer values. If this is the case, then an array
such as the one in Figure 4.2(a) may be used to represent the boundaries. However, in order to
accommodate noninteger item dimensions, arrays such as those used for the skylines of the BL
and BF algorithms, are rather used to represent the two boundaries for each level. In order to
create an integer array representing the boundaries, a total of O(nHave) operations would be
required to create the boundary, where Have is the average item height. Instead, the use of a
skyline construct allows for linear time boundary construction and a linear time search for the
horizontal coordinate at a fixed height.

5.1.7 Chazelle’s Bottom-Left Bin Packing Algorithm

In 1983, only two years after Baker et al. [6] published their BL algorithm, Chazelle [25] sug-
gested improvements to the algorithm. He identified an opportunity in the BL algorithm to
pack the items more densely. The BL algorithm attempts to pack items from above, possibly
leaving empty spaces (called holes) under some items that remain empty during the entire pack-
ing. Chazelle’s algorithm (called the bottom-left fill algorithm by Hopper [75], and therefore
abbreviated as BLF in the remainder of this dissertation) attempts to pack items into the lowest
of these holes (if they fit), before packing onto the packed items in the strip (if they do not
fit). The algorithm begins by initialising the strip, making it a dynamic hole. As items are
packed into this hole, the topmost two points of the hole are moved upwards as the height of the
strip increases, in order to remain twice the height of the tallest item above the height of the
items packed into the strip. As items are packed, new holes may form. All holes are searched
for a valid packing position for each subsequent item. The hole that yields the lowest packing
position, or in the case of equal packing heights, the packing position furthest to the left is
selected as the location for the item.

There are some structures in a hole that affect how the algorithm finds possible packing positions
in a hole. The first is the leftmost edge (see Figure 5.17), which is common to all holes. It is
defined as a vertical edge with two horizontal edges on either end that are to the right of the
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Lower notch

Left notch

Falling corner

Right notch

Leftmost edge

Upper notch

Figure 5.17: Important edges for the BLF algorithm (adapted from Fig. 4 in [25]).

edge. The rightmost edge is similar, but the horizontal edges are to the left of the vertical edge.
There are no edges in a hole that are further to the right than the rightmost edge. All holes have
these two structures. A lower notch is a horizontal edge that has two vertical edges adjacent to
it that are below it. A left notch is an edge that has its two adjacent edges to the left. There
is one more leftmost edge than left notch. The final important structure is a so-called falling
corner. This is formed by a vertical edge that drops down from the ceiling, and a horizontal
edge that is to the right of the vertical edge and is the top horizontal edge of the structure that
defines a rightmost edge.

Two of the structures shown in Figure 5.17 cannot occur when holes appear during the packing
process. Chazelle [25, p. 698] proved that an upper notch cannot occur, because it would break
the rule of the algorithm that forces items to be packed as low as possible. More specifically,
an item that creates an upper notch may be packed lower; its lower edge may be located at the
same height as the highest point of the floor of the hole directly below the item. Furthermore,
there can be no right notch, as it would break the rule stating that items are to be packed as
far to the left as possible. Any item creating a right notch may be moved further left until
it encounters an edge that forms part of a lower notch or the left-hand boundary. The same
reasoning may be used to prove that there may be only one falling corner. Consider a packing
with two falling corners. The upper falling corner may be restricted from being shifted to the
left by the item that forms the ceiling of the hole. The item forming the lower falling corner has
no such restriction and may be moved left until its left edge encounters another vertical edge.

Due to the fact that there are no right notches, there may be only one rightmost edge. However,
there may be more than one leftmost edge and each leftmost edge requires the creation of a
subhole. A subhole is a region of a hole that is treated as a individual hole when investigating
possible locations for packing. Subholes are created in the following manner: the top corner of
each left notch Qi is used as a starting point from which two further points are identified. The
point QNi is the point on the boundary directly above the left notch Qi and QWi is defined
as the point on the right-hand boundary immediately to the right of the notch (see Figure
5.18). The edges created by the QiQNi and QiQWi pairs may be combined with the existing
boundaries to create subholes with only one leftmost edge each and no left notches. The QiQWi

edges form part of the the lower boundary for the leftmost edge Li, while the QiQNi edges form
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part of the boundary for the subhole related to the leftmost edge Li−1.

QW2

QN2

L2

L1

QW3

L3

Q2

Q3

QN3

Figure 5.18: The points used in the BLF algorithm to split a hole into subholes.

A horizontal bar of length `b equal to the width of the item to be packed may be used to traverse
the lower and upper boundaries of these subholes, and the holes that have a single leftmost edge.
The process begins with the bar being placed a distance `b away along the horizontal axis from
the bottom corner of the leftmost edge. The bar is moved to the right until either a vertical
edge is encountered, the top end of which is higher than the horizontal edge on which the bar
is sliding, or the bar drops to a lower height. A note is made at each change of height of the
bar. This process is described in further detail by Chazelle [25, p. 703] and continues until the
right-hand point of the bar encounters the rightmost edge. In order to find points along the
top boundary of the hole that define permitted locations for packing an item, the same bar is
allowed to slide along the boundary, moving upwards with each increase in boundary height,
while the right-hand side of the bar does not come into contact with the rightmost edge or
vertical edge of the falling corner. This process is described in further detail by Chazelle [25, p.
705]. It is possible that the two lines created by joining all the points in each list may overlap
(see Figure 5.19). Once all points have been found, another array of points is created from the
two lists of points. This list comprises x and y values of the lists describing the valid packing
points along the bottom and top edges of the hole, and a boolean value for each point that
is true if there is sufficient space between the top and bottom boundaries for the item to be
packed. The algorithm that generates this list is described in detail by Chazelle [25, p. 701].

Once every subhole and hole has been investigated for the valid packing location, the item is
packed into the hole with the lowest packing position. If there are two or more holes that have
a packing location at the same height, the leftmost hole is selected in which to pack the item.
A pseudocode listing of the algorithm may be found in Algorithm 5.7.

Worked example

By sorting the items in Table 3.1 in order of decreasing width, the list I = {I13, I11, I5, I10, I3,
I4, I6, I9, I12, I7, I1, I8, I2} results. The strip is initialised as a hole by setting the following
corners to the hole: (0, 0), (20, 0), (20, 22), (0, 22). The value 22 is twice the height of the tallest
item I11. The left edge is identified as ((0, 0) , (0, 22)) and there is no falling corner. The search
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ℓb

Figure 5.19: Determining valid packing positions in a hole in the BLF algorithm. The dashed line
indicates valid positions for a bar of length `b along the bottom boundary, while the light grey line
indicates all valid positions below which the top of an item may be located.

for valid packing points yields two locations: (0, 0) and (4, 0). The lowest, leftmost position is
selected and I13 is packed with its bottom-left corner at (0, 0). The hole is updated to yield the
corners (0, 5), (16, 5), (16, 0), (20, 0), (20, 27), (0, 27) and the leftmost edge at ((0, 5) , (0, 27)).

The search for valid packing locations for I11 yields two locations: (0, 5) and (14, 5). Therefore,
I11 is packed onto I13, its left-hand edge coinciding with the left-hand strip boundary. The hole
is updated to yield the corners (0, 14), (14, 14), (14, 5), (16, 5), (16, 0), (20, 0), (20, 36), (0, 36)
and the leftmost edge at ((0, 14) , (0, 36)). A similar process is undertaken to locate I5 on top
of I11. The search for valid packing locations for I10 yields three positions: (0, 23), (11, 23) and
(11, 14). The last location is the lowest position and I10 is packed there to yield two holes. The
first has the corners (0, 23), (11, 13), (11, 21), (20, 21), (20, 45) and (0, 45), and the leftmost edge
((0, 23) , (0, 45)), while the second hole has the corners (14, 5), (16, 5), (16, 0), (20, 0), (20, 14)
and (14, 14), and the leftmost edge ((14, 5) , (14, 14)).

Item I3 does not fit into the smaller, lower hole and is therefore located at the lowest position
in the top hole; left-aligned on top of I10. Similarly, items I4 finds its lowest location on top of
I5 and I6 is packed onto I4. Item I9 fits into the lower hole and is packed onto I13, adjacent to
I11, thereby creating two new square holes; one below I9 and to the right of I13, and the other
above I9, below I10 and to the right of I11. Item I12 is too wide to fit into the lowest hole, but
it does fit into the middle hole and is packed there. The same applies to I7. Item I1 is too tall
to fit into the two lower holes and is packed in the lowest possible position within the top hole,
above I5 in the space between I4 and I3. Item I8 is both narrow and short enough to fit into
the lowest hole and is packed there. The final item, I2, is too tall to fit into either of the lower
holes and is packed into the lowest position into which it fits in the top hole, the space above
I10 and to the right of I3. The final packing height is 34 and a graphical representation of the
packing may be found in Figure 5.20(a).

Worst-case Time Complexity

The BLF algorithm begins by sorting all items according to decreasing width by means of the
merge-sort algorithm, which has a worst-case time complexity of O(n log n) (see line 1). The
step in line 2 is required to determine the height at which the top boundary of the topmost hole
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Algorithm 5.7 Chazelle’s algorithm

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort items according to decreasing width
2: determine the maximum item height in the list I
3: initialise the strip as a hole
4: for all items do
5: for all holes do
6: if the hole has two or more leftmost edges then
7: for all subholes do
8: attempt to find a valid packing position for the item in the subhole
9: if the subhole has a valid packing position then

10: let X and Y be the coordinates at which the item may be packed
11: if Y < BestY or (X < BestX and Y = BestY) then
12: BestX← X, BestY← Y, set BestH equal to the index of the hole
13: end if
14: end if
15: end for
16: else
17: attempt to find a valid packing position for the item in the hole
18: if the hole has a valid packing position then
19: let X and Y be the coordinates at which the item may be packed
20: if Y < BestY or (X < BestX and Y = BestY) then
21: BestX← X, BestY← Y, set BestH equal to the index of the hole
22: end if
23: end if
24: end if
25: end for
26: pack the item into hole BestH at the coordinates (BestX, BestY)
27: fix the list of points that represent the hole, create new holes if necessary
28: if the packing has increased the height of the strip then
29: change the position of the top boundary of the topmost hole to reflect this
30: end if
31: update the lists describing the horizontal and vertical edges of the holes and subholes
32: end for

must be placed after an item has been packed into that hole. The height of each item must
be investigated in this step in order to find the maximum height; hence this line has a time
complexity of O(n). The initialisation of the strip as a hole has a constant time complexity,
because the number of steps required to perform this procedure is independent of the number
of items in the list.

In order to find a packing location for an item in a hole or subhole, the list of packing locations
along the bottom and top boundaries must be determined. A procedure of O(eb) complexity,
where eb is the number of vertical edges along the bottom boundary, is required in order to
determine the valid packing locations along the boundary (see Chazelle [25, p. 704] for further
details). Similarly, a procedure of O(et) complexity, where et is the number of vertical edges
along the top boundary, is required to determine the valid points along the boundary. Once
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(H = 29)

Figure 5.20: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
known plane strip packing algorithms described in §5.1.7–§5.1.9. The resulting packing heights H are
also shown.

the valid points along each boundary have been found, a procedure with a worst-case time
complexity of O(eb + et) is employed to find the points below which the item may be packed.
The number of edges along the top and bottom boundaries is proportional to the number of
points p that describe a hole or subhole. Therefore, the time complexity of the procedure to
find a suitable location for the item has a worst-case time complexity of O(p).

Saving the best location has a constant time complexity, so too does the packing procedure
(line 26). Unfortunately, Chazelle does not provide detail on how he updates the points in a
hole once an item has been packed. In this implementation the first step is a search for the first
point along the boundary that has a larger horizontal coordinate than the right-hand edge of
the item (a worst-case time complexity of O(p)). This is followed by an anti-clockwise search
for the first point on the boundary that comes into contact with any of the item’s edges (O(p)
time complexity). Once that point is known, the next point to coincide with the item is sought
(another O(p) operation). If the two points are adjacent, the search for the next point coinciding
with the item begins from the second point. If the two points are not adjacent, the new hole
that has been created is saved (an O(p) operation). This process continues until the search
has yielded a point either equal to the first starting point, or a point with a vertical coordinate
larger than the vertical coordinate of the top edge of the item. The hole is then updated with
the new item in place (another O(p) operation). This is followed by updating the list of vertical
and horizontal edges that constitute the top and bottom boundaries of the new holes and/or
subholes (line 31), an O(s p) operation. The process of fixing a hole by finding the new list of
points that describe its shape is therefore a sum of many O(p) operations for a total worst-case
time complexity of O(p).

Therefore, the combined worst-case time complexity of the BLF algorithm is O(n(s p+ p+ s p))
= O(s p n), where s is the combined number of holes and/or subholes that are investigated for

Stellenbosch University  http://scholar.sun.ac.za



106 Chapter 5. Plane-Packing Strip Packing Heuristics

a packing position (contributed in the first term by the for-loop spanning lines 5–25). The
factor n outside the inner set of parentheses is due to the for-loop spanning lines 4–32. If there
are no subholes, then a function of O(s p) is O(n), because no point in a hole may appear in
more than one other hole. This means that the searches for packing locations in all the holes
will not require more than a number of operations that is a linear function of n. In this case
the time complexity of the algorithm would be O

(
n2
)
. However, if there are many subholes,

then a function of O(s p) will be at worst O
(
n2
)
, as the same points may be investigated for

each subhole within a hole. Therefore, Chazelle’s algorithm has a worst-case time complexity
of O

(
n3
)

if one investigates the same points in the hole for each subhole, or O
(
n2
)

if one can
prevent this search for the right-hand boundary from requiring such a search. Chazelle claims
a worst-case time complexity of O

(
n2
)

[25, p. 697].

Practical Considerations

An important aspect of this algorithm is its memory management. There is a large amount
of data that requires efficient storage during execution of the algorithm. In order to store the
holes, an approximately n/2 × 2n array is required. The first dimension is used to store the
number of holes, while the second dimension is used to store the points that represent each
hole. Furthermore, an array of the same size is required to save the details of the subholes. It is
impossible for the entire array to be used, but the array must be large enough to accommodate
many holes with few points per hole, or few holes with many points per hole. Another four
approximately n/2 × n arrays are required to save the vertical and horizontal edges along the
top and bottom boundaries of each hole, and four more for the same edges in each subhole.
Further O(n) arrays are required to save information such as the number of leftmost edges in
each hole, the occurrence of a falling corner in a hole/subhole, etc. If one considers that the
data in an array may consist of quintuples (as the structures that save points and edges are),
the amount of memory required grows quickly as n increases.

It would be possible to reduce the volume of data that have to be stored by recalculating the
falling corners, subholes and horizontal/vertical edges of each hole/subhole before finding a suit-
able packing location. However, this would require more processing time. Instead, it is possible
to use dynamic arrays whose dimensions change as required. In Visual Basic .NET [118] this is
achieved by employing the ArrayList class [116]. These are dynamic arrays which may contain
any data type. This is useful, because two-dimensional ArrayLists may be created by adding an
existing ArrayList to another, so that the first ArrayList occupies a single location in the second
ArrayList. In this manner only the space actually required by the data structures representing
the packed items as they are at any stage of the packing is required. This reduces the memory
footprint considerably, making it possible to solve large problem instances (containing 5 000
items) that could not be solved with the use of static arrays.

5.1.8 The Guillotine Cutting Stock Algorithm

Ten years after Chazelle put forward his bottom-left packing algorithm [25], MacLeod et al. [109]
published an algorithm that may be used to solve guillotine cutting stock problems. The aim
of their work was to find an algorithm that would find a layout of items on a stock sheet with
minimum waste, where the items are a subset of a finite set of items. The authors approached
the problem by randomly sorting the list of items and packing those that fit onto the stock
sheet by means of their guillotine cutting stock (GCS) algorithm. They compared the solutions
obtained when this was done 100 and 500 times and the minimum waste solution was retained
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as the final layout. The algorithm is a plane-packing algorithm and is suitable for finding
guillotineable solutions for strip packing problems.

At the heart of the algorithm lies a procedure that determines whether a given layout of items
on a stock sheet may be disassembled by means of guillotine cuts. During the packing process
three lists maintain the cuts that are required to remove items from the sheet. The first of these
cuts are horizontal cuts and the data structure that describes these cuts contains the horizontal
and vertical coordinates of the blocking point (the point at which the cut is interrupted by the
perpendicular edge of an item), an indicator that saves the position of the blocking point (i.e.
whether it is a blocking point on the left-hand or right-hand side of the cut), the item that is
removed from the layout by the cut, the edge of the item that is cut and a pointer to the blocking
point on the other side of the cut (if it exists). This list of blocking points of horizontal cuts
is labelled H and the items in the list are sorted according to increasing horizontal coordinate.
The data structure that describes vertical cuts is similar, but instead of left and right blocking
points, they are top or bottom blocking points. This list of blocking points of horizontal cuts is
labelled V and are sorted according to vertical coordinate. The third list of cuts, called minimal
cuts by MacLeod et al. [109, p. 402], saves those cuts that have no blocking points, i.e. cuts that
are guillotine cuts. These cuts have a simpler structure, namely the position, the relevant item
removed and edge of the cut and its orientation (horizontal or vertical). The list of minimal
cuts is labelled M and the cuts are not sorted.

The guillotine slicing (GS) procedure is employed for each possible location for a new item
and cuts along all minimal cuts, deleting any invalid blocking points as it does so. To clarify
the deletion process, MacLeod et al. [109, p. 404] use the example of a vertical minimal cut,
with the item anywhere to the left of the cut. A similar procedure is used for horizontal cuts.
Consider a horizontal cut anywhere below the possible item location. The list of cuts in V is
investigated from the front to the back until the horizontal coordinate of a horizontal blocking
point is greater than the coordinate of the minimal cut. The cut separates the layout into two
regions; an active region and an inactive region. The active region is the layout on the same
side of the cut as the item to be packed. One of four cases may occur:

1 If the blocking point is a top blocking point, the point and its partner may be temporarily
deleted. The entire cut is in the inactive region and may be ignored.

2 If it is a bottom blocking point and has no partner, the cut is added to the list of minimal
cuts.

3 If it is a bottom blocking point and the partner blocking point is below the minimal cut,
both blocking points may be deleted temporarily as they are both in the inactive region.

4 If it is a bottom blocking point that has a partner blocking point above the minimal cut,
the lower blocking point may be deleted, noting the change in the top blocking point. The
top blocking point may not be deleted because it is in the active region.

This procedure continues until all minimal cuts have been performed. If no cuts remain, then
the tentative location of the item results is guillotine feasible. However, if either of the sets H
or V are nonempty, then the location of the item does not yield a guillotine layout and should
be ignored.

MacLeod et al. [109, p. 405] observed that every waste piece in a layout, into which subsequent
items may be packed, “must completely contain, along one of its four borders, the entire face
of some already placed rectangle.” They define an exposed border of a layout to be an edge of
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a packed item that does not coincide with an item of any other edge anywhere along its edge.
Therefore, the GCS algorithm investigates all exposed borders of the items already packed as
possible locations for an item. It does this by creating a critical region adjacent to the exposed
border, using the GS procedure to determine whether the placement of the critical region results
in a guillotine feasible layout. The size of the critical region is determined by the new item’s
dimensions and the items that have already been packed. If the exposed border is horizontal
(top or bottom edge of the item), then the critical region’s height is equal to the height of
the new item. If the exposed border is vertical (left or right edge of the packed item), then
the width of the new item determines the width of the critical region. The other dimension is
determined by the other items that have already been packed (see Figure 5.21). If the critical
region is too small for the new item to fit into, then this location for the item is ignored and
the next exposed border is considered.

R′ h (R)

(a) Top border exposed

R′

w (R)

(b) Left-hand border
exposed

R′ h (R)

(c) Bottom border exposed

R′

w (R)

(d) Right-hand border
exposed

Figure 5.21: Construction of the critical region during execution of the GCS algorithm.

If the critical region is large enough for the item to fit into it, then the GS procedure is used to
determine whether the critical region may be disassembled from the layout by means of guillotine
cuts. If the result is true, then the item may be packed in the bottom-left corner of the critical
region. However, if the critical region is larger than the item to be packed, but is not guillotine
feasible, then a list E of cuts is created passing through the critical region before it was created
in order of increasing horizontal (vertical) coordinates. First, an attempt is made to pack the
item on the left-hand (bottom) border. If the GS procedure returns the result that the location
is guillotine infeasible, then the item is packed so that its left-hand (bottom) edge coincides
with the first cut in E. This process continues until a guillotine feasible location is found or the
horizontal (vertical) coordinate plus the width (height) of the item exceeds the right-hand (top)
boundary of the critical region. If no guillotine feasible location has been found, the algorithm
continues by temporarily packing the item so that its right-hand (top) edge coincides with the
right-hand (top) boundary of the critical region. The item is temporarily packed so that its
right-hand (top) edge coincides with each of the cuts in E until either there are no more cuts,
or the horizontal (vertical) coordinate of the left-hand (bottom) edge is less than the horizontal
(vertical) coordinate of the left-hand (bottom) boundary of the critical region. If one or more
of the positions yield a guillotine feasible location, the leftmost (lowest) position is chosen as
the final best location for the new item alongside the current exposed border. Once the lowest
leftmost location is found for the item, the exposed borders of the items are updated; the edges
of items that coincide with the edges of the new item are marked as unexposed, as are those
edges on the new item. This process continues until all items have been packed into guillotine
feasible locations. A pseudocode listing of the GCS algorithm may be found in Algorithm 5.8.
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Algorithm 5.8 Guillotine cutting stock (GCS) algorithm

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort the items if desired
2: pack the first item in the bottom-left corner and add the first two M cuts
3: initialise the top and left-hand edges as exposed borders
4: for i = 1 to n do
5: for j = 1 to i− 1 do
6: for each exposed border do
7: create the critical region CritRegion adjacent to the exposed border of Ij
8: if CritRegion is large enough for Ii and may yield a lower packing then
9: call GS (H,V,M, CritRegion)

10: if layout is guillotine feasible and location is lower than current best then
11: save the current position as the best to this point
12: else if layout is not guillotine feasible then
13: if packing Ii against the left-hand/bottom boundary is guillotine feasible then
14: pack the item in the bottom-left corner of the critical region
15: else
16: call GCS-E (I,H,V,M, CritRegion)
17: end if
18: end if
19: end if
20: end for
21: end for
22: save the cuts associated with the best location to the list of cuts
23: pack the item into its best location and update the exposed borders
24: end for

Worked example

By sorting the items in Table 3.1 in order of decreasing width, the list I = {I13, I11, I5, I10,
I3, I4, I6, I9, I12, I7, I1, I8, I2} results. The first item, I13, initialises the strip by being
packed in the bottom-left corner. The top and right-hand edges are marked as exposed borders,
one horizontal minimal cut is created at a vertical coordinate of 5 and a vertical minimal cut is
created at a horizontal coordinate of 16. The list M = {(5, H, T, 13) , (16, V,R, 13)} results2.

Item I11 follows in the list and the first exposed border that is investigated is the top edge
of I13. A tentative critical region is created at a vertical coordinate of five and a horizontal
coordinate of zero, with a height equal to the height of I11 and a width equal to the strip
width. No packed items occur in this critical region; hence the tentative critical region becomes
the final critical region. The list of cuts is updated: M1 remains, while M2 is deleted with
the addition of the blocking point3 (16, 5, R, 1, T,−1) to V. Moreover, two cuts are added to
the list M: one for the bottom edge of the critical region and another for its top edge. Once

2The data structure for minimal cuts takes the following form: coordinate, Horizontal/Vertical, edge cut
(Top, Bottom, Left or Right), item (or item index) cut.

3The notation for blocking points takes the following form: horizontal coordinate, vertical coordinate, edge
cut (Top, Bottom, Left or Right), item (or item index) cut, location of the blocking point (Top, Bottom, Left
or Right), partner blocking point (or its index, −1 if there is no partner point).
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Procedure 5.8.1 GS(H,V,M, CritRegion)

1: update the cuts with the critical region in place
2: letfh and lh (fv and lv) be the first and last H (V) cuts, respectively
3: let m be the number of M cuts, i← 1
4: while i ≤ m do
5: if Mi is a vertical cut and to the left of CritRegion then
6: j ← fh
7: while horizontal coordinate of Hj < horizontal coordinate of Mi do
8: process the cut in a manner as described in the text
9: j ← the item after j in H, add to M and m if necessary

10: end while
11: else if Mi is a vertical cut and to the right of CritRegion then
12: j ← lh
13: while horizontal coordinate of Hj > horizontal coordinate of Mi do
14: process the cut in a manner as described in the text
15: j ← the item before j in H, add to M and m if necessary
16: end while
17: else if Mi is a horizontal cut and below CritRegion then
18: j ← fv
19: while vertical coordinate of Vj < vertical coordinate of Mi do
20: process the cut in a manner as described in the text
21: j ← the item after j in V, add to M and m if necessary
22: end while
23: else if Mi is a horizontal cut and above CritRegion then
24: j ← vl
25: while vertical coordinate of Vj > vertical coordinate of Mi do
26: process the cut in a manner as described in the text
27: j ← the item before j in V, add to M and m if necessary
28: end while
29: end if
30: end while

Procedure 5.8.2 GCS-E(I,H,V,M, CritRegion)

1: find the set E of e cuts that pass through the critical region, k ← 1
2: while no packing has been found and k ≤ e do
3: update the cuts H, V and M for the new critical region
4: test guillotine feasibility if Ii is packed left-aligned at Ek, k ← k + 1
5: if a potentially better packing location has been found, save it
6: end while
7: if no feasible location has been found then
8: reset the cuts in E
9: for k = e to 1 do

10: update the cuts for the new critical region
11: test guillotine feasibility if Ii is packed right-aligned at Ek
12: if there is a potential better packing location, save it
13: end for
14: end if
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the cuts have been updated, the GS procedure in employed to determine whether the critical
region in its current location yields a guillotine feasible layout. The first cut in M is the cut
along the top edge of I13. There is only one blocking point that forms part of a vertical cut:
it is a top blocking point and the critical region is above M1 — hence it is deleted, because
the cut is in the inactive region. No further cuts remain in the lists H and V. Therefore, the
location of the critical region yields a guillotine layout and I11 may tentatively be packed with
its bottom-left edge at the coordinates (0, 5), followed by an update of the cuts for the item
at this location (the change yields a blocking point (14, 5, R, 11, B,−1) and the return of the
minimal cut (16, V,R, 13) as the critical region no longer blocks the cut). The right-hand edge
of I13 is the last remaining exposed border, but there is insufficient space for the item to be
packed there, which results in I11 being packed permanently at its tentative location. The top
edge of I13 is removed from the list of exposed borders and the top and right-hand edges of I11
are added to the list.

The right-hand edge of I13 is the first location for a critical item based on the dimensions of I5.
However, the space between I13 and the right-hand boundary of the strip is too small for I5.
This is followed by an attempt to place I5 on top of I11 which yields a guillotine feasible layout.
The space between I11 and the boundary of the strip is insufficient for I5 to be packed; hence
its final location is on top of I11. This results in the removal of the top edge of I11 from the list
of exposed edges, and the addition of the top and right-hand edges of I5 to the list. Item I10
does not fit adjacent to the exposed borders of I13 or I11, but it does produce guillotine feasible
layouts when placed adjacent to the top and right-hand edges of I5. Placing I10 adjacent to the
right-hand edge of I5 yields the lowest packing; hence its temporary placement there is made
permanent. The remaining exposed borders are the right-hand edges of I13 and I11 and the
top edges of I5 and I10.

An attempt is made to pack I3 adjacent to I13 and I11, but there is insufficient space between
those items and the right-hand boundary of the strip. The top edge of I5 is the next exposed
border in the list and the creation of a critical region above the item yields a guillotine feasible
layout. Therefore I3 is temporarily packed onto I5. However, placing I3 on top of I10 also
yields a guillotine layout; this packing location is lower than the top of I5 and it is the final
exposed border; hence I3 is permanently packed onto I10, as far to the left as possible. The list
of exposed borders is now (13, R), (11, R), (5, T ), (3, T ) and (3, R), where the first entry of a
pair is the item and the second entry is the edge that is an exposed border (Top, Bottom, Left
or Right).

Item I4 is too wide to be packed adjacent to I13 and I11, but it does yield a guillotine feasible
layout when packed onto I5. The exposed border on top of I3 is ignored because it would yield
a packing higher than the current best position on I5. The final exposed border is also ignored
because I4 does not fit into the space between I3 and the right-hand boundary of the strip.
Thus I5 remains on top of I5. The list of exposed borders increases to (13, R), (11, R), (3, T ),
(3, R), (4, T ) and (4, R). Item I6 has the same width as I4 and hence does not fit to the right of
I13, I11 and I3. Packing it on top of I3 yields a guillotine feasible layout, but packing it on top
of I4 yields a guillotine layout that is lower; hence its final position there. The list of exposed
borders is now (13, R), (11, R), (3, T ), (3, R), (4, R), (6, T ) and (6, R).

The widest unpacked item is I9 and it too does not fit between I13 and the right-hand boundary
of the strip. However, it does yield a guillotine feasible, non-overlapping layout when the second
exposed border is investigated. It also fits onto items I6 and I3, but these are at higher vertical
coordinates and are thus ignored. The remaining exposed borders are all right-hand edges that
do not yield a critical region large enough to accommodate I9. Therefore I9 is permanently
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packed to the right of I11. This requires the removal of the edge from the list of exposed borders
and only the top edge of I9 is added as the left-hand edge coincides with item I11, the bottom
edge coincides with I13 and the right-hand edge coincides with the right-hand boundary of the
strip. Item I12 has the same width and fits onto I9. For similar reasons as for I9, this is where
I12 is best packed, and I7 is best packed on top of I12. The exposed borders that remain are
(13, R), (3, T ), (3, R), (4, R), (6, T ), (6, R), (7, T ) and (7, R).

Item I1 may be narrow enough to fit between I13 and the strip boundary, but the critical
region is bound from above by I9, which yields a critical region too short for I1. Item I1 does
fit onto I3, yields a guillotine packing in that position and is tentatively packed there. The
space between I3 and the strip boundary is not wide enough for I1 to be packed there, but
the creation of a critical region adjacent to the right-hand edge of I4 yields a guillotine feasible
layout and a packing lower than on I3. Therefore I1 is tentatively packed between I4 and I3.
The item does yield a guillotine feasible layout when packed adjacent to the two remaining
exposed borders (the top and right-hand sides of I6). However, these are locations higher than
when packed adjacent to I4 and the location there is made permanent. This leaves the exposed
borders (13, R), (3, T ), (3, R), (6, T ), (7, T ), (7, R) and (1, T ).

Item I8 is the first item that may be packed adjacent to I13 and is tentatively placed there.
If placed onto items I3, I6 or I1 it would also yield guillotine feasible results, but these are at
higher vertical coordinates and are therefore ignored. The item does not fit between I3 and
the strip boundary, nor does it fit above or to the right of I7. Therefore its location adjacent
to I13 is made permanent. The list of exposed borders is now (3, T ), (3, R), (6, T ), (7, T ),
(7, R), (1, T ) and (8, T ). Item I2 yields a guillotine feasible layout when packed onto I3 and
is tentatively placed there. However, it is narrow enough to fit between I3 and the right-hand
strip boundary and is tentatively placed there due to a lower packing location. Although it
could have been packed onto I6 or I1, those positions are ignored as they are located at a
higher vertical coordinate. Moreover, the item is too large to be packed adjacent to either of
I7’s exposed borders, or onto I8; hence its position to the right of I3 is finalised, resulting in
the packing shown in Figure 5.20(b).

Worst-case Time Complexity

MacLeod et al. [109, p. 404] proved that the GS procedure has O(n) worst-case time complexity.
Initially the procedure updates all the cuts with a critical region or item in place (see line 1),
which is an O(n) operation. There are O(n) cuts in total, spread over at most three lists: M,
H and V. Each cut comprises at most two blocking points and none of these blocking points
are considered more than three times. The largest number of operations that can take place on
a cut is when its partner blocking point is deleted, when the cut is made a minimal cut and
when the minimal cut is applied.

The part of the algorithm that moves the new item along the list E of cuts (Procedure 5.8.2 here)
is claimed to have linear time complexity by MacLeod et al. [109, p. 407]. First the cuts that
are passing through the critical region have to be found (see line 1); this has a time complexity
of O(n) because the location of each existing cut has to be compared to the location of the
critical region. Thereafter, the item is placed left-aligned against each cut in E until either a
guillotine feasible packing location has been found, or insufficient space remains for the item.
As the procedure moves the item from one cut in E to the next, MacLeod et al. [109] claim
that the number of cuts that the GS procedure needs to evaluate diminishes accordingly and
the blocking points that are covered as the item is moved will only be changed once. Therefore,
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the while-loop that spans lines 2–6 has a linear time complexity. For the same reasons the
for-loop spanning lines 9–13 has a linear time complexity. Thus, the overall time complexity
for Procedure 5.8.2 is O(n).

The GS algorithm begins by sorting the list of items (see line 1). If this is done by means of
the merge-sort algorithm, the time complexity is O(n log n). The packing of the first item in
line 2 has a constant time complexity, as does the initialisation of the exposed borders in line
3. The two for-loops spanning lines 4–24 and 5–21 contain the creation of the critical region
in line 7; an O(n) operation. If the region is large enough, then Procedure 5.8.1 is called in
line 9, which has been shown to have a time complexity of O(n). If the layout is guillotine
feasible, the item’s position is saved by a procedure that has a constant time complexity. If
the layout is not guillotine feasible, then Procedure 5.8.2, which has been shown to have an
O(n) time complexity, is called. Once all exposed borders have been investigated (i.e. when the
for-loop spanning lines 5–21 is exited), the item is packed into the best position (constant time
complexity), the lists of cuts are updated (linear time complexity) and the exposed borders
of the items are updated (linear time complexity). Therefore, the GCS algorithm has a time
complexity of

O(n log n) +O(1) +O(n)× (O(n)× (O(n) +O(n) +O(n)) +O(n) +O(n)) = O
(
n3
)
.

Practical Considerations

Linked lists are useful when applied to the GCS algorithm. Many cuts are generated and deleted
(when moved from one list to another) throughout execution of the algorithm, and linked lists
prevent unnecessary investigations of cuts that are no longer valid. The list of exposed borders
may be linked by means of a linked list data structure, since there are typically many edges
that are not exposed and checking them may waste much time. The flexibility of the ArrayList
class [116] in Visual Basic .NET [118] is useful when attempting to keep the memory use as
low as possible in implementations of the GCS algorithm. A cut is represented by a structure
consisting of many variables which take up a large amount of space. When this cut is deleted,
the ArrayList location may be set equal to Nothing, thereby freeing the memory.

5.1.9 The Best-Fit Algorithm

In 2004 Burke et al. [22] introduced the best-fit (BF) algorithm. Although it was originally
created for packing problems allowing rotation, Ntene [125] showed how it can be applied to
oriented strip packing. Initially the items are sorted according to decreasing width. The algo-
rithm finds the lowest gap, finds the widest item that fits into the gap, and packs it according
to the packing policy decided upon. The BF algorithm either packs the item into the gap in
the leftmost (LM) position, adjacent to the tallest neighbour (TN) or adjacent to the shortest
neighbour (SN). An array records the height at each unit interval after each packing in order
to accelerate the identification of the lowest point. The weakness of this method is that the
dimensions of all rectangles included in the problem (including the strip width) must be in-
teger values. This was discussed in greater detail in §4.1. The result is not guaranteed to be
guillotineable. A pseudocode listing of the BFLM algorithm may be found in Algorithm 5.9.
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Algorithm 5.9 Best-Fit Left-Most (BFLM) algorithm

Input: A list I of items to be packed, the dimensions 〈w (Ii) , h (Ii)〉 of the items and the strip
width W.
Output: A packing of the items in I into a strip of width W.

1: sort items according to decreasing width, resolving equalities by sorting according to de-
creasing height

2: initialise the skyline
3: while there are unpacked items do
4: identify the lowest part of the skyline
5: if there is an item that fits into the space then
6: pack the first item that fits into the space
7: update the skyline
8: else
9: raise that skyline part to the height of the lowest of its neighbours

10: end if
11: end while

Worked Example

By sorting the items in Table 3.1 in order of decreasing width, the list I = {I13, I11, I5, I10,
I3, I4, I6, I9, I12, I7, I1, I8, I2} results for the BFLM algorithm. There is only one skyline
segment, that part that spans the floor of the strip. The best item to fill this space is I13 and
it is packed into the bottom-left corner of the strip creating two sections of skyline: the first
spanning the top edge of I13 and the other spanning the length of the floor not under I13. The
lowest skyline segment has a width of 4. The first item in the list that has the same width is
I1 and it is packed into the space, resulting in two skyline segments; one above I13 at a height
of 5 and another above I1 at a height of 11. The lowest skyline segment has a width of 16
and the first item to fit into this space is I11. Therefore I11 is packed left-justified onto I13
yielding three skyline segments; the lowest of which has a width of 2 and is at a height of 5.
The only item that fits into this space is I2 and it is packed between I11 and I1. The lowest
skyline segment is the top edge of I1 and has a width of 4. Item I8 has the same width as is
packed onto I1, yielding a new skyline profile in which the top edge of I2 is the lowest segment.
This segment is narrower than any unpacked item. Therefore the skyline segment is raised to
the same height as the skyline segment above I11. This segment now has a width of 16 and is
large enough to accommodate I5. The packing now consists of four segments and the lowest
segment remains the section above I2. No items fit into the space between I11 and I8, resulting
in the raising of the segment to the same height as the segment immediately to the right of I5.
This segment has the same width as I7, which results in its packing there. At this stage the
skyline consists of three segments: the top edges of I5, I7 and I8. The segment above I8 is
the lowest, but narrower than any of the unpacked items. Raising the segment to the height of
the segment above I7 yields a segment of the same width as I10. Once I10 is packed onto this
segment, the skyline is reduced to two segments. The segment above I5 is the lowest and wide
enough to accommodate I3. This yields a segment too narrow for any unpacked items. Once
the segment is raised to the height of the top edge of I10, items I6 and I9 may be packed into
the remaining space. Item I4 may be packed onto I6 and finally I12 is packed onto I4 to yield
a packing height of 29; the lowest packing height achieved by any reviewed algorithm for this
set of items. The packing is shown graphically in Figure 5.20(c).
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Worst-case Time Complexity

If the merge-sort algorithm is used to sort the items, then the time complexity of line 1 is
O(n log n). The skyline initialisation step in line 2 has a time complexity of O(n), as a skyline
segment is required for every item. The contents of the while-loop spanning lines 3–11 is executed
at least once for every item and for instances where the lowest skyline segment is too narrow for
the remaining unpacked items to be packed. The identification of the lowest skyline segment
in line 4 has a time complexity of O(n). A constant time operation exists to discover whether
there is an item that may fit onto the skyline segment. This may be achieved by comparing
the width of the skyline segment to the width of the last unpacked item. If the item width
is less than the width of the skyline segment, then at least one item fits into this space. The
identification of a suitable item for packing in line 6 has a worst-case time complexity of O(n)
as every unpacked item may be compared for suitability if the last unpacked item is the only
one that does fit. When an item has been packed, the skyline must be updated (see line 7).
This operation has a worst-case time complexity of O(n) as a suitable index value in the skyline
must be found to represent the new segment of the skyline. If there is no item that fits into
the skyline segment, the skyline is raised by means of a procedure that has a constant time
complexity. Therefore, the overall worst-case time complexity of the BF algorithm is

O(n log n) +O(n)× (O(n) + max {O(n) +O(1) ,O(1)}) = O
(
n2
)
.

Algorithmic Variations

Burke et al. [22, 23] designed the algorithm to take into account rotations of items during the
packing process. Their algorithm rotates the items in such a way that the width is greater than,
or equal to the height before the sorting takes place. During the packing process the items may
be rotated in order to fill the low spaces in the skyline in such as manner as to fill the gap or
leave the smallest gap possible after having been packed. After all the items have been packed,
the algorithm calls Procedure 5.9.1 in an attempt to reduce the impact of the items that were
packed such that their heights are greater than their widths.

Procedure 5.9.1 Postprocessing stage of the BF algorithm

1: while optimisation is not complete do
2: find the item Ih whose top edge is highest
3: if w (Ih) ≥ h (Ih) then
4: optimisation is complete
5: else
6: remove Ih and rotate it by 90◦

7: fix the skyline until the lowest space is large enough for Ih
8: pack the item into this space according to the placement policy
9: if the packing is not better then

10: return the item to its previous orientation and position
11: the optimisation is complete
12: end if
13: end if
14: end while

It became clear to the author during the testing phase that the algorithm does not convert
well to the oriented packing problem. The algorithm does not pack very efficiently if there
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are tall items that are very thin. These would often be packed last as the items are sorted
according to their width. In an attempt to improve the results, a new version of the algorithm
was designed by the author where the items are sorted according to decreasing area, resolving
any equalities by sorting those items according to decreasing width. When a low segment of
skyline is identified, the first unpacked item in the list is packed in an attempt to fill the space.
No attempt is made to pack in a best-fit manner. Although the name is perhaps no longer
appropriate as the algorithm no longer makes use of the best-fit practice of leaving the smallest
gap possible after a packing, these forms of the best-fit leftmost, best-fit tallest neighbour and
best-fit shortest neighbour algorithms are denoted as BFmLM(DADW), BFmTN(DADW) and
BFmSN(DADW), respectively.

Practical Considerations

These algorithms may be implemented efficiently by making use of linked lists for both the
items and the skyline. The BFLM algorithms will always pack items in the left-hand corner of
a skyline segment by means of the procedure illustrated in Figure 5.6. However, unlike in the
BL and BFLM algorithms, the BFTN and BFSN algorithms may pack items in the right-hand
corner of a skyline segment. The procedure to correct the skyline in this case has the form
illustrated in Figure 5.22. Once the item has been added to the skyline, the same procedures
as those shown in Figures 5.7 and 5.8 may be used to ensure that any two segments are joined
if they are adjacent and have the same height.

S (n) .active← True
S (n) .Y← S (o) .Y.I (i) .H
S (n) .X← S (o) .X + S (o) .W− I (i) .W
S (n) .W← I (i) .W
S (n) .nxt← S (o) .nxt
S (n) .prv← o

if S (o) .nxt > −1 then
S (S (o) .nxt) .prv← n

end if
S (o) .W← S (o) .W− I (i) .W
S (o) .nxt← n

Figure 5.22: Adding to the skyline during execution of the BF algorithms when an item has been
packed in the right-hand corner of a skyline segment.

5.2 A New Categorisation of Plane-Packing Heuristics

If one compares the algorithms in §5.1, it becomes clear that the algorithms may be partitioned
into two classes. The first class of algorithms is sorting-dependent, while the second class is
sorting-independent.
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5.2.1 Sorting-Dependent Algorithms

The class of sorting-dependent algorithms includes all level and pseudolevel algorithms, Sleator’s
algorithm, the split-fit algorithm, the split algorithm, the mixed algorithm and the up-down
algorithm. These are called sorting-dependent, because their packing efficiency either depends
heavily on the manner in which the items are sorted, or because the items are sorted into
groups and each group is sorted in a specific manner. For example, consider any level-packing
algorithm. If the items are not sorted according to decreasing height, the result necessarily will
be worse than if they were sorted according to decreasing height. If an item initialises a level
and the following item is taller, a new level must be created. This new level may have been
avoided if the taller item appeared first in the list.

Next, consider the M algorithm. The items are assigned into groups, and each of these groups
are sorted in their own manner. If the items were not sorted in the manner that the algorithm
dictates, the resulting regions may not have the correct size, shape or location for the regions
that are filled with items from subsequent groups. The SP algorithm requires that all items are
no wider than the item preceding them in the packing order. If this were not the case, then it
would be difficult to create regions when later items are wider than any of the regions.

5.2.2 Sorting-Independent Algorithms

The second class of algorithms is sorting-independent and includes the BL algorithm, Chazelle’s
algorithm, the GCS algorithm and the modified versions of the BF group of algorithms. These
algorithms may be given a list of items that is sorted in any manner, including randomly sorted
lists of items. While sorting the items according to increasing height or width has a high
probability of yielding a bad result, the items may be sorted according to decreasing height,
decreasing width or decreasing area, with ties resolved in any manner deemed appropriate.
These algorithms may even be given lists of randomly arranged items in order to find the best
packing after many packings of the same items in different orders, as MacLeod et al. [109] did
for their cutting stock problem.

The fact that these algorithms can find a packing independently of the sorting order of the
items allows one to experiment with the manner in which items are sorted. Lists that are sorted
according to decreasing height may result in a packing that is sparse below a single wide item,
thereby preventing further packing below it, particularly for the BL algorithm which does not
allow packing to occur below a packed item, as Chazelle’s algorithm and the GCS algorithm do.
Lists sorted according to decreasing width may pack tall items last, yielding a packing with,
say, one single pronounced vertical spike that results in a bad packing. If the item had been
packed earlier, the resulting packing may have been lower. An attempt is made to clarify this
point in Figure 5.23.

The solution shown in Figure 5.23(c) is the result of an attempt to rectify the problem encoun-
tered in the cases shown in Figure 5.23(a) and Figure 5.23(b), where sorting items according
to decreasing height or width, respectively, yields an inefficient packing when the items are
packed according to the BL algorithm. The idea is inspired by algorithms such as Sleator’s
algorithm [148], the SF algorithm by Coffman et al. [32], Golan’s M algorithm [62] and the SAS
algorithm by Ntene and Van Vuuren [125, 127]. In order to achieve this result, the items were
first sorted according to decreasing width and then partitioned into two groups; those items
W that are wider than half the strip width, and the remaining items N. The list W is sorted
according to decreasing width and the list N is sorted according to decreasing height, with ties
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Figure 5.23: An illustration of a new sorting method for sorting independent algorithms; in this case
the BL algorithm. Note that the items shown in these figures are not those listed in Table 3.1.

resolved by sorting the items of equal height according to decreasing width. This sorting is de-
noted by 1

2WDWDH (or 50WDWDH), where the fraction (or percentage) denotes the fraction
(or percentage) of the strip width (W) at the splitting point, i.e. the width at which the two
groups are separated. In this case, the items that are more than half (or 50%) the width of the
strip width are sorted according to decreasing width (DW), and the remaining items are sorted
according to decreasing height (DH). This may, for example, be changed to read 9

20WDWDA
which indicates that those items that have a width wider than 45% of the strip width are sorted
according to decreasing width, while the remaining items are sorted according to decreasing
area.

A natural modification would be to split the items into groups according to the number of
items in the list. For example, one could sort the list of items by width and sort the last half of
the items according to height. This would be denoted by 1

2RDWDH or 50RDWDH, where the
fraction or number represents the fraction or percentage of items that are, in this case, sorted
by decreasing width. The remaining items would be sorted according to decreasing height in
this example. The abbreviation R (for “rectangle”) is used instead of I to prevent the possible
confusion between the letter “I” and the number “1”.
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5.3 Chapter Summary

Previously known pseudolevel heuristics for the strip packing problem were reviewed in this
chapter, in fulfilment of Dissertation Objective IV(c), as stated in §1.3. The algorithms were
presented in chronological order, beginning with Sleator’s algorithm in §5.1.1. This was followed
by the split-fit algorithm in §5.1.2, for which two modifications were presented (one guarantee-
ing a guillotine solution, the other not), and the BL algorithm by Baker et al. [6]. Golan’s
two algorithms [62] were presented next, namely the split algorithm in §5.1.4, and the mixed
algorithm in §5.1.5. Golan’s algorithms were followed by the up-down algorithm in §5.1.6 and
Chazelle’s BLF algorithm in §5.1.7. The final two plane-packing algorithms considered in this
chapter were the guillotine cutting stock algorithm in §5.1.8 and the best-fit algorithm (and its
modifications) in §5.1.9. A summary of these algorithms may be found in Table 5.1.

Algorithm Year Source G Performance Bound Complexity H

Sleator 1980 [148] × S (L) ≤ 2 OPT (L) + 1
2htall O(n log n) 41

SF 1980 [32] X SF (L) ≤ 3
2 OPT (L) + 2 O

(
n2
)

38
BL 1980 [6] × BL (L) ≤ 3 OPT (L) O

(
n3
)

40
SP 1981 [62] X SP (L) ≤ 2 OPT (L) + 1 O

(
n2
)

40
M 1981 [62] × M (L) ≤ 4

3 OPT (L) + 7 1
18 O

(
n3
)

42
UD 1981 [5] × UD (L) ≤ 5

4 OPT (L) + 53
8 H O

(
n4
)

40
BLF 1983 [25] × unknown O

(
n2
)

34
GCS 1993 [109] X unknown O

(
n3
)

34
BF 2004 [22] × unknown O

(
n2
)

29

Table 5.1: A summary of the plane-packing heuristics considered in this chapter. The column labelled
G indicates whether or not the solution is guaranteed to be a guillotine layout. The complexity column
shows the worst-case time complexity if n items are packed, and the column labelled H contains the
packing heights achieved by the algorithms for the simple example item set listed in Table 3.1.

In an attempt to improve on the known plane-packing algorithms in fulfilment of Disserta-
tion Objective V(c), the known algorithms of §5.1 were partitioned into two classes; sorting-
dependent algorithms and sorting-independent algorithms. There is a possibility that the
new sorting procedures discussed in §5.2.2 may improve the packing densities of the sorting-
independent algorithms. This will be investigated in the following chapter.
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A set of benchmark problem instances used to test the algorithms of §3–§5 are presented in this
chapter, followed by a summary and interpretation of the results obtained by the various strip
packing algorithms when applied to these benchmark instances.

6.1 Benchmark Problem Instances

In order to evaluate the effectiveness of the new algorithms for the strip packing problem (see
§3.3 and §4.3), the results obtained by these algorithms are compared to the results obtained by
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applying the known algorithms (described in §3.2, §4.2 and §5.1) to a large number of benchmark
problem instances. The benchmark problem instances used for this purpose are introduced in
this section.

A number of repositories containing benchmark problem instances for various packing problems
are available online. These include Beasley’s OR-library [9], Cui’s CutWeb [36], the DEIS
Operations Reseach Group’s library of instances [39], the EURO Special Interest Group on
Cutting and Packing (ESICUP) repository [46], Fekete and Van der Veen’s PackLib2 [50], Hifi’s
library of instances [71], the test instances by Scheithauer et al. [147] and the repository for
strip packing problems by Van Vuuren and Ortmann [154]. The benchmark problem instances
used in this dissertation to evaluate the strip packing algorithms are listed in Table 6.1.

Authors Year Reference Number Guillotineable Optimal

Christofides & Whitlock 1977 [26] 3 Random 1 Known
Bengtsson 1982 [14] 10 Random All Known
Beasley 1985 [7] 13 Random 2 Known
Beasley 1985 [8] 12 Random All Known
Berkey & Wang 1987 [16] 300 Random None known
Jakobs 1996 [83] 2 0 Guillotineable Both Known
Dagli & Poshyanonda 1997 [38] 11 Random None Known
Martello & Vigo 1998 [112] 200 Random None Known
Ratanapan & Dagli 1998 [141] 1 Random Not Known
Hifi 1998 [69] 25 Random 10 Known
Hifi 1999 [70] 9 Random None Known
Burke & Kendall 1999 [21] 1 1 Guillotineable Known
Hopper & Turton 2000 [75,79] 21 14 Guillotineable All Known
Hopper & Turton 2000 [75,80] 70 35 Guillotineable All Known
Wang & Valenzuela 2001 [156] 480 All All Known
Burke, Kendall & Whitwell 2004 [22] 12 All All Known

Total 1 170 621 Known

Table 6.1: Benchmark problem instances used to evaluate the strip packing algorithms in §3, §4 and
§5. The Guillotineable column indicates whether the benchmarks were designed such that an optimal
packing can be disassembled by means of guillotine cuts. Ten of the benchmark sets [7, 8, 14, 16, 26, 38,
69, 70, 112, 141] were randomly generated subject to certain area and dimensional constraints, but not
from an initial rectangle in the same manner that the the others [22, 75, 79, 80, 83, 156] were generated
(which allows one to deduce an optimal packing). Known optimal solutions to some of these instances
are listed by Martello et al. [110] and Kenmochi et al. [90].

1977 Christofides and Whitlock (cgcut)

Christofides and Whitlock [26] generated their benchmark problem instances from an initial
rectangle R0 of area A (R0). A further m random rectangles R1, . . . ,Rm were generated by
drawing A (Ri) from a uniform distribution in the range (0, A (R0) /4) where h (Ri) is an integer
from a uniform distribution in the range (0, A (Ri)) and w (Ri) = dA (Ri) /h (Ri)e. These
rectangles were initially generated as a test case for the constrained cutting problem, where a
limited number of each rectangle may be used to find a layout in a single bin that minimises the
wasted area. These benchmark instances have previously been used in the context of the strip
packing problem by Monaci [119], Martello et al. [110], Ntene [125], Alvarez-Valdes et al. [4],
Bekrar and Kacem [10], Ntene and Van Vuuren [127], Wei et al. [158] and Kenmochi et al. [90],
and were obtained from [46].
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1982 Bengtsson (beng)

Bengtsson [14] generated his benchmark problem instances by taking rectangle lengths as the
nearest integer of the form 12r + 1 and widths equal to the nearest integer of the form 8r + 1,
where r is a random number drawn from a uniform distribution in the range (0, 1). These
instances have previously been used by various authors, including Monaci [119], Martello et
al. [110], Ntene [125], Alvarez-Valdes et al. [4], Bekrar and Kacem [10], Wei et al. [158] and
Kenmochi et al. [90] to test algorithms designed for the strip packing problem.

1985 Beasley (gcut and ngcut)

Beasley’s first set of benchmark problem instances (gcut) [7] was generated in a manner sim-
ilar to that of Christofides and Whitlock [26] and was intended for the unconstrained, two-
dimensional, guillotine cutting problem. The height and width distributions are different to
those employed by Christofides and Whitlock. The height is an integer taken from a uniform
distribution in the range [h (R0) /4, 3h (R0) /4] and the width is taken from a uniform distri-
bution in the range [w (R0) /4, 3w (R0) /4]. The second set of benchmark problem instances
(ngcut) [8] was generated using the same restrictions as implemented by Christofides and Whit-
lock, except that the height of a rectangle was taken as an integer from a uniform distribution in
the range [1, h (R0)]. These benchmark instances have been used for the strip packing problem
by various authors, including Monaci [119], Martello et al. [110], Ntene [125], Alvarez-Valdes et
al. [4], Bekrar and Kacem [10], Ntene and Van Vuuren [127], Wei et al. [158] and Kenmochi et
al. [90]. These benchmark instances were obtained from [46].

1987 Berkey and Wang

Berkey and Wang [16] generated their benchmark problem instances in order to test their
algorithms for the single bin size bin packing problem. The items were generated in three
groups with the heights and widths of rectangles randomly selected from a uniform distribution
of integer values. The dimensions of the items in the first group were generated in the range
[1, 10], while the range for the second group was [1, 35] and the range for the third group was
[1, 100]. Items in the first group are to be packed into two bin sizes; namely 10× 10 and 30× 30
bins, while items in the second group are to be packed into bins of dimensions 40 × 40 and
100 × 100, and items in the third group were used to test the two cases where the bins have
dimensions 100×100 and 300×300. This means that there are a total of six problem instances,
each containing 100 items.

Martello and Vigo [112] expanded these problem instances for use in the context of bin packing
algorithms. Ten sets of 20, 40, 60, 80 and 100 items were generated for each size range/bin size
pair. This resulted in a total of 300 test instances. Monaci [119] adapted these instances for
the strip packing problem by taking the strip width equal to the bin width. These instances
have been used by Lodi et al. [107], Bortfeldt [18], Alvarez-Valdes et al. [4], Belov et al. [12]
and Bekrar and Kacem [10] in the context of the strip packing problem, and were obtained
from [39].

1996 Jakobs

Jakobs [83] began with a stock rectangle of height 15 and width 40, and randomly cut it into
smaller pieces. One problem instance comprises 25 rectangles and the other 50 rectangles.
Optimal solutions to these problem instances are not guillotineable. Monaci [119] and Bortfeldt
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[18] have used these instances in the context of the strip packing problem. These benchmark
instances were obtained from [46].

1997 Dagli and Poshyanonda

Dagli and Poshyanonda [38] and Ratanapan and Dagli [141] provide no detail regarding the
generation of their problem instances and optimal solutions are not known for any of their
benchmark problem instances, which were obtained from [46].

1998 Burke and Kendall

The benchmark instance of Burke and Kendall [21] is based on Figure 4 in the paper by
Christofides and Whitlock [26, p. 42], which was declared an optimal cutting pattern for one
of their problems. Burke and Kendall [21] simply doubled the dimensions of the items in the
figure. This benchmark instance was obtained from [46].

1998 Martello and Vigo

Martello and Vigo [112] generated four classes of instances to accompany those of Berkey and
Wang [16] described in §6.1. They generated ten problem instances for each value of n ∈
{20, 40, 60, 80, 100} in each class, considering 100× 100 bins for each class. The four classes of
items were selected from four types of times. The first type of item was generated choosing a
rectangle height from a uniform distribution in the range [1, 50], and a rectangle width from
the range [67, 100]. The heights for the second type of item was selected from a uniform
distribution in the range [67, 100] and the widths were selected from a uniform distribution in
the range [1, 50]. For the third type the item heights were selected from a uniform distribution
in the range [50, 100] and widths from a uniform distribution in the range [50, 100]. The final
type of item had heights selected from a uniform distribution in the range [1, 50] and widths
were selected from a uniform distribution in the range [1, 50]. The first class of items consists of
70% type 1 items and 10% each of the remaining types. The second class of items is comprised
of 70% of type 2 items and 10% each of the other item types. The third class of items consists
of 70% type 3 items and 10% of each of the remaining item types. Finally, the fourth class of
items is comprised of 70% type 4 items and 10% of each of the remaining item types.

Monaci [119] adapted these instances for the strip packing problem by taking the strip width
equal to 100 throughout. These instances have been used for the strip packing problem by Lodi
et al. [107], Bortfeldt [18], Alvarez-Valdes et al. [4], Belov et al. [12] and Bekrar and Kacem [10],
and were obtained from [39]; no optimal solutions are known.

1998 Hifi (SCP and SCPL)

Hifi does not give any details regarding the construction of the 25 problem instances (often
labelled SCP) that he generated, other than to state that they are “random problem instances”
[69, p. 935]. The second set (1999) was generated in a similar manner (often labelled SCPL) and
are simply larger instances. These benchmark instances were obtained from Hifi [71] together
the optimal packing heights for the SCP set of instances computed by him. Optimal solutions
to the guillotine packing/cutting problem are known, but algorithms that do not adhere to the
guillotine constraint may find a better packing solution. These instances have been used by
Monaci [119] and Bekrar and Kacem [10] in the context of the strip packing problem.
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2000 Hopper and Turton (T, N and C)

The methods used by Hopper [75] and by Hopper and Turton [79,80] to generate their benchmark
problem instances are described in detail by Hopper [75]. Three algorithms were used to generate
each problem instance subset. The first algorithm chooses a rectangle, assigns a random point
in the rectangle, then splits the rectangle into four parts by means of a horizontal cut and a
vertical cut through the point. The second algorithm randomly chooses an edge of an initial
rectangle, assigns a random point on the edge, mirrors the point on the opposite edge and splits
the rectangle though the line between the two points. Finally, the non-guillotineable benchmark
generator selects an initial large rectangle, randomly assigns two points in the rectangle and
generates a pattern of five smaller rectangles in a non-guillotine manner. Half of the instances
in the larger benchmark set [75, 80] were generated by one of the guillotineable algorithms
(the set often labelled T), and the other half by the non-guillotineable algorithm (the set often
labelled N). The aspect ratios of rectangle Ri satisfies the constraint 1/7 ≤ h (Ri) /w (Ri) ≤ 7.
The smaller benchmark set [75, 79] (often labelled C or CP) consists of an equal number of
instances generated by each of the three algorithms. Lesh et al. [99], Burke et al. [22, 23],
Bortfeldt [18], Ntene [125], Belov et al. [12], Cui et al. [37], Alvarez-Valdes et al. [4], Ntene
and Van Vuuren [127], Wei et al. [158] and Kenmochi et al. [90] have used these benchmark
instances to test their algorithms for the strip packing problem and the optimal packing heights
are known in each case.

2001 Wang and Valenzuela (Nice and Path)

Wang and Valenzuela’s [156] benchmark generator allows one to place restrictions on the size
(area ratio) and shape (aspect ratio) of rectangles generated. They randomly generated half
of their benchmark instances (which they call the “pathological” set), placing restrictions on
neither the aspect ratio, nor the area ratio. For the other half (the “nice” set), they enforced
two constraints. The first is an area ratio constraint, restricting the largest rectangle to be
no larger then 7 times the area of the smallest. The second is an aspect ratio restriction,
requiring that 1/4 ≤ h (Ri) /w (Ri) ≤ 4. In this manner they generated benchmark problem
instances containing rectangles that are possibly either vastly different (“pathological” set) or
fairly similar (“nice” set). One significant difference between this data set and the others, is
that the item dimensions are all real numbers, while the other benchmark instances consist of
rectangles having integer-valued dimensions. All the Wang and Valenzuela [156] benchmark
instances have a strip width of 100 and optimal packing height of 100. Burke et al. [22, 23],
Bortfeldt [18], Ntene [125], Alvarez-Valdes et al. [4] and Ntene and Van Vuuren [127] have made
use of these benchmark instances in the context of the strip packing problem.

2004 Burke, Kendall and Whitwell

Burke et al. [22] used a benchmark generating algorithm that begins with a large rectangle
(an optimal solution is therefore known), then randomly makes random horizontal or vertical
cuts to randomly selected rectangles, such that some minimum dimension constraint is not
violated. This process continues until the required number of rectangles has been produced.
These benchmark instances have been used by Burke et al. [23], Ntene [125], Alvarez-Valdes et
al. [4], Ntene and Van Vuuren [127] and Kenmochi et al. [90] in order to test their strip packing
algorithms.
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6.2 Results Obtained by Level-Packing Heuristics

In this section the results obtained via the level-packing algorithms will be presented. In the
first subsection those algorithms are considered that pack items individually in the order that
they are sorted. This includes the NFDH, FFDH, BFDH and WFDH algorithms and their
variations. Thereafter, the results of those algorithms that perform further refinements (joining
items, solving the knapsack problem or item substitution) are reported. Finally, a comparison
of the best algorithms from each group is performed in order to find the best of the algorithms.

A few significance tests are used to test whether the new algorithms are significantly better
than the algorithms from the literature. An analysis of variance1 (ANOVA) may be performed
in order to test whether the results obtained by algorithms are significantly different. The SAS
software suite [145] is used to perform the ANOVA. However, the weakness of the ANOVA
for these types of results is that it assumes that the data are normally distributed. This is
not the case for the packing results, as may be seen in the box plots2 in the remainder of this
chapter. Therefore a nonparametric Friedman test [53], as recommended by Demšar [40], may
be used to test for significance if the input is not normally distributed (it was implemented in
MATLAB [113]). The Friedman test ranks the columns (algorithms) for each row (benchmark
instance) and uses these ranks to test for significance.3 Demšar goes on to recommend and
describe the Nemenyi test as a post-hoc test for comparing all algorithms to one another, in
order to discover which algorithms are not significantly different from one another. When the
Friedman test has found the mean ranks of the algorithms, the Nemenyi test finds significance
by means of a critical distance

CD = qα

√
k (k + 1)

6N

between the ranks, where k is the number of columns (algorithms) and N is the number of rows
(benchmark instances). The “critical values qα are based on the Studentised range statistic
divided by

√
2” [40, p. 12] and were provided to the author by Kourentzes [94]. The Nemenyi

test was implemented in a spreadsheet and validated by means of a MATLAB implementation
supplied by Kourentzes. For interest sake, the Bonferroni t test (as suggested by Nel [123])

1An analysis of variance may be used to compare the means of more than two data sets [73] in order to test
whether these means are significantly different, and has previously been used to compare the results of strip
packing algorithms by Ntene [125]. The F-distribution [73, Table A.3] is used for the ANOVA. A variance ratio
F is calculated by dividing the variance between sets by the variance within sets. There are significant differences
between the means when F > Fc, where F c is the critical value at a chosen significance level (typically 95%).
Many software suites may return a P -value (the significance level is 1− P ), denoting the confidence with which
F > Fc. The lower the value of P , the more significant the differences between the observed means.

2A box plot, first proposed by Tukey [152, pp. 39–41], is a method of graphically representing the distribution
of a set of observations. In MATLAB [114], the box is created by drawing a line at the 25th percentile (also called
the first or lower quartile) and a line at the 75th percentile (also called the third or upper quartile) and then
joining the end points of these lines. Half of the points are distributed between these two lines and the difference
between the upper and lower quartile is known as the interquartile range (IQR). A line is drawn through the box
at the location of the median value. The lines extending past the box are known as whiskers and they are no
longer than 1.5 times the IQR from the upper or lower quartile, and would not extend past the lowest or highest
point if it fell within the range of the whisker. Any points that lie past the end of the whisker are called outliers
as they would fall outside approximately 99.3% of the coverage if the data were normally distributed.

3The Friedman statistic,

χ2
F =

12N

k(k + 1)

[∑
j

r2j −
k(k + 1)2

4

]
,

is distributed according to the χ2
F distribution with k − 1 degrees of freedom, where rj is the mean rank for

algorithm j, k is the number of columns (algorithms) and N is the number of rows (benchmark instances) [40,
p. 11].

Stellenbosch University  http://scholar.sun.ac.za



6.2. Results Obtained by Level-Packing Heuristics 127

was implemented in SAS as the post-hoc test for the ANOVA for the packing heights and the
computational solution times (the Tukey test [73] was also included for comparison purposes for
the computational times on the suggestion of Lamont [96] and was also implemented in SAS).
All tests were performed for a confidence interval of 95%.

6.2.1 The NFDH, FFDH, BFDH and WFDH Algorithms

In this subsection the results from the NFDH, FFDH, BFDH and WFDH are presented. These
algorithms are grouped together, because they pack items in a very similar manner. The
difference between the algorithms lies in the selection of the levels into which the items may be
packed. The NFDH algorithms pack items into the topmost level only, the FFDH algorithms
pack items into the lowest possible level, the BFDH algorithms pack items into the level with
the least remaining horizontal space, and the WFDH algorithms pack items into the level with
the largest remaining space.
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Figure 6.1: Box plot of the distribution of results for the various NFDH, FFDH, BFDH and WFDH
algorithms described in §3.2 and §3.3.1 when applied to the 1 170 strip packing problem benchmark
instances described in §6.1.

Figure 6.1 is a box plot of the solutions obtained by various algorithms. The bottom edge of the
box is the location of the lower quartile and the top edge is located at the value of the upper
quartile. The line passing through the box is the median of the packing heights relative to the
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optimal packing height. Table 6.2 contains a summary of the results for these algorithms and
their variations. It is clear from the box plots that the NFDH and WFDH algorithms pack the
majority of benchmark instances to a higher relative packing height than do the FFDH and
BFDH algorithms. This is also clear from Table 6.2, where the values of the lower quartiles
of the NFDH and WFDH algorithms are higher than the corresponding values for the FFDH
and BFDH algorithms. The median values of the BFDH and FFDH algorithms are lower than
those of the other algorithms, as are the upper quartile values.

Applying ANOVA with a confidence level of 95% to the data yields P < 0.0001, suggesting
that the null hypothesis of all algorithms being equal may be rejected. This is supported by
the Friedman test which yields a P -value of 0. A Bonferroni t test performed on the four
groups (NF, FF, BF and WF) indicates that the next-fit class of algorithms are significantly
different from the other algorithms. The WFDH algorithms are the second worst group of
algorithms in this set and the average packing heights of this class of algorithms are significantly
different to the first-fit and best-fit algorithms (excluding the FFDHIW algorithm). The average
rankings of the algorithms reflect the distributions shown in Figure 6.1. The Bonferroni t test
indicates no significant difference between the six FFDH and BFDH algorithms (they all belong
to group D). However, the BFDHDW has the lowest average ranking, followed by the BFDH
and FFDH algorithms, which suggests that the BFDHDW algorithm may be the best choice of
the algorithms reviewed in this section. This is supported by the nonparametric Nemenyi test,
which ranks the BFDHDW algorithm as the best of the group, but with no significant difference
to the FFDHDW and BFDH algorithms. In the row labelled Sig. Class in Table 6.2, the letters
assigned to the algorithms indicate their rank. If the letters are different, then the Nemenyi
test suggests that they are significantly different. The worst algorithm is assigned to class “A”
and the algorithms are ranked alphabetically, the best algorithm in the group is labelled with
the letter furthest from “A”.

Performing the same significance test on the various algorithmic solution times for the bench-
mark instances with 5 000 items yields a significant difference (P < 0.0001 for only the “nice”
items, only the “pathological” items and for the two sets combined at a confidence level of
95%) between the time it takes the NFDH algorithms to find solutions to such large problems,
and the time it takes the FFDH, BFDH and WFDH algorithms to find solutions to the same
problems (the time associated with the FFDH algorithm are not significantly different from the
times required by the NFDHDW and NFDHIW algorithms). This result is expected due to
the NFDH algorithms’ better worst-case time complexity of O(n log n) versus a worst-case time
complexity of O

(
n2
)

for the other algorithms in this set. The BFDHDW algorithm will be used
for the purpose of further comparisons due to its performance in terms of packing height.

6.2.2 The KP Algorithms

In this subsection the results obtained via the KP and time-restricted KP algorithms described
in §3.2.4 are presented. Fewer data sets are used for comparison purposes due to the time it
requires to solve the integer programming knapsack problem. The nice data sets of 5 000 items
by Wang and Valenzuela [156] are ignored, as is the twelfth instance by Burke et al. [22] of 500
items, due to the KP algorithm reaching the timeout restriction of an hour. Therefore 1 159
benchmark instances were used to compare these algorithms. A summary of the results may be
found in Table 6.3.

The box plots of the corresponding results in Figure 6.2 do not show a clear difference between
the solutions obtained by the various algorithms. The quartiles and medians listed in Table 6.3
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Figure 6.2: Box plot of the distribution of results for the KP algorithm and the time-restricted KP
algorithms described in §3.2.4 when applied to the 1 170 strip packing problem benchmark instances
described in §6.1.

also do not yield figures that indicate that any of these algorithms is better than the others.
The KP algorithm shows a small advantage in average rank, but an ANOVA yields P = 0.6563,
suggesting that the differences in average height are not significant at a confidence of 95%.
However, the Friedman test yields P = 1.51 × 10−11, suggesting that there is a significant dif-
ference between the algorithms. The Nemenyi test suggests that there is a significant difference
between the KP and KPTRDHDW algorithms, but the test is not strong enough to determine
whether the other two algorithms are significantly different from either the KP or KPTRDHDW
algorithms.

There is a significant difference between the KP algorithm and the time-restricted algorithms
in terms of time taken to solve problems containing 2 000 items (P < 0.0001 for only the “nice”
items, only the “pathological” items and for the two sets combined at a confidence level of 95%),
with the time-restricted algorithms showing a clear advantage over the original algorithm. One
would expect this for large data sets, but for small data sets the one second time restriction on
the solution of the knapsack problem does not make a difference to the times. In fact, there
are 673 benchmark instances (345 of 50 items or fewer, 283 of more than 50 items but fewer
than 100 items, 37 of between 100 and 200 items and 8 of between 200 and 500 items) for
which the KP algorithm was faster than the average of the time-restricted algorithms. The
fact that there are cases where the KP algorithm finds solutions in less time than the time-
restricted algorithms may be attributed to the fact that the time-restricted algorithms attempt
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KP KPTRDH KPTRDHDW KPTRDHIW

Low. Q. H/OPT 108.2% 108.2% 108.2% 108.2%
Med. H/OPT 115.9% 116.2% 116.2% 116.0%
Up. Q. H/OPT 133.7% 134.0% 134.0% 133.8%
IQR 25.5% 25.9% 25.8% 25.6%
Max. H/OPT 237.5% 256.9% 256.9% 256.9%
Mean Rank 2.40 (1) 2.53 (3) 2.55 (4) 2.51 (2)
Nem. Class B AB A AB
Nice 2 000 t 355.24A 43.484B 43.449B 43.540B

Path 2 000 t 140.91A 31.000B 30.965B 31.194B

Bon. Class A B B B

Table 6.3: A summary of the results for the KP algorithm and its variations described in Chapter
3 when applied to the 1 170 strip packing benchmark problem instances described in §6.1. The row
labelled ‘Median H/OPT’ contains the median packing height for all benchmark instances listed in Table
6.1 as a percentage of the optimal packing height, or its lower bound if the optimal is not known. The
row labelled ‘Low. Q. H/OPT’ contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’
contains the values of the upper quartile and the interquartile range (in the row labelled ‘IQR’) is the
difference between the two. The row labelled ‘Max. H/OPT’ contains the worst result achieved by the
algorithms for all benchmark instances. The row labelled ‘Nem. Class’ are results obtained by means
of a Nemenyi test. Algorithms in the same group (indicated by letters) do not produce results that are
significantly different. The row labelled ‘Bon. Class’ contains results obtained by means of a Bonferroni
t test on the average times required to solve all instances of 2 000 items. The row labelled ‘Mean Rank’
contains the mean rank achieved by the algorithms in this set (a rank of 1 indicates that the algorithm
packed to the lowest height for an instance), with their ranks shown in parentheses. If algorithms yielded
the same packing height for an instance, the mean of the ranks that would have been awarded is used.
The rows labelled ‘Nice 2 000 t’ and ‘Path 2 000 t’ show the time (in seconds) required for instances of
2 000 items (for the “nice” and “pathological” benchmark problem instances [156]). The 10 benchmark
instances containing 5 000 “nice” items by Wang and Valenzuela [156] and the 500-item instance by
Burke et al. [22] are excluded because the KP algorithm timed out for these.

to find an approximate solution to the knapsack problem before the problem is solved as an
integer programming problem. The KP algorithm does not require this step as it only exits
the solver if it requires more than an hour to solve the knapsack problem. Because of the risk
of having to solve large problems and their superior time performance for these problems, any
of the time-restricted algorithms may be used for further comparisons with other strip packing
heuristics.

6.2.3 The JOIN Algorithms

The results from the JOIN algorithms described in §3.2.5 are presented in this subsection. A
Friedman test on the data yields P = 0 (and an ANOVA yields P < 0.0001), suggesting that all
algorithms do not necessarily perform similarly. If one compares the upper and lower parts of
Table 6.4, or the left and right halves of Figure 6.3 it becomes clear that the horizontal joining
of items is typically the more successful joining method of the two. Not only are the median
values lower for the algorithms (with the same δ value) that join the items horizontally, but
so too are the third quartile values and the interquartile ranges (IQR). The difference between
the horizontal and vertical joining strategies is duplicated in the row indicating significantly
different groups. The algorithms that join items horizontally and the algorithms that join items
vertically for δ = 0 are all not significantly different, but they are significantly different to the
algorithms that join items vertically and have δ ≥ 5. The box plots indicate that an increase
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in the value of δ causes a shift in the majority of the results further away from the optimum.
This is common to all sorting strategies.

D
H
(0
)

D
H
(5
)

D
H
(1
0)

D
H
(1
5)

D
H
D
W

(0
)

D
H
D
W

(5
)

D
H
D
W

(1
0)

D
H
D
W

(1
5)

D
H
IW

(0
)

D
H
IW

(5
)

D
H
IW

(1
0)

D
H
IW

(1
5)

D
W

(0
)

D
W

(5
)

D
W

(1
0)

D
W

(1
5)

D
W

D
H
(0
)

D
W

D
H
(5
)

D
W

D
H
(1
0)

D
W

D
H
(1
5)

D
H
IW

(0
)

D
H
IW

(5
)

D
H
IW

(1
0)

D
H
IW

(1
5)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

H
/
O
P
T

Figure 6.3: Box plot of the distribution of results for the JOIN algorithms described in §3.2.5 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

This observation is confirmed by the values of the mean ranks. The lower the value of δ, the
lower the mean rank for the same sorting type. If one compares the mean ranks for algorithms
with the same values for δ, the average rank is always lower for algorithms that join items
horizontally than for algorithms that join items vertically. Therefore, one may deduce that an
algorithm that would pack to the lowest height most consistently is likely to be an algorithm
which joins items horizontally and uses δ = 0. Of the three algorithms that conform to these
restrictions, the JOIN(DHDW) algorithm achieves the best mean rank, and the JOIN(DHIW)
algorithm achieves the worst mean rank. The Nemenyi test suggests that the three horizontally
joining JOIN algorithms for δ = 0 are not significantly different.

Performing an ANOVA on the large instances yields P < 0.0001 for only the “nice” item
instances, only the “pathological” item instances and for the two sets combined at a confidence
level of 95%, suggesting that the null hypothesis of all algorithms requiring similar times to
find solutions may be rejected. The time required to solve the 5 000-item benchmark instances
is not significantly different between the algorithms that join items horizontally. However, the
improved packing achieved by algorithms with δ = 0 and which join items vertically is at
the cost of significantly longer solution times according to the Bonferroni and Tukey post-hoc
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tests.4 The algorithms joining items vertically are significantly slower than those that join items
horizontally, strengthening the argument that the best JOIN algorithm is one that joins items
horizontally.

6.2.4 The B2F Algorithms

Results obtained via the B2F algorithms described in §3.3.2 are presented in this subsection.
The results are shown in Tables 6.5 and 6.6, which were not treated separately when determin-
ing whether differences in packing heights and solution times for instances of 5 000 items are
significant. A box plot representation of the solution data may be found in Figures 6.4 and 6.5.
These figures show that the results obtained via the various B2F algorithms are very similar.
A Friedman test on the results yields P = 0, suggesting that there are significant differences
between some algorithms. Applying an ANOVA to the results yields P = 0.5934, which would
suggest that the algorithms are not significantly different, but the Friedman test is better suited
to the nature of these results and therefore more likely to be accurate.
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Figure 6.4: Box plot of the distribution of results for the B2FA algorithms described in §3.3.2 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

4These two tests did yield one difference; the Bonferroni t test suggests that the JOIN10DHDW and JOIN15DH
algorithms require equivalent times to find solutions for “nice” data, while the Tukey test suggests that these
solution times are not equivalent.
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DH(n) DH(2) DH(4) DH(6) DH(8) DH(10)

Low. Q. H/OPT 108.8% 108.8% 108.8% 108.8% 108.8% 108.8%
Med. H/OPT 116.3% 116.4% 116.3% 116.3% 116.3% 116.3%
Up. Q. H/OPT 130.6% 130.7% 130.6% 130.6% 130.6% 130.6%
IQR 21.9% 22.0% 21.9% 21.9% 21.8% 21.9%
Max. H/OPT 182.8% 182.8% 182.8% 182.8% 182.8% 182.8%
Mean Rank 14.23 (8) 14.94 (12) 14.62 (11) 14.37 (10) 14.37 (9) 14.22 (7)
Nem. Class JKL J JK JKL JKL JKLM
Nice 5 000 t 19.1291A 2.1593C 2.1947C 2.2037C 2.2384C 2.2603C

Path 5 000 t 5.9836B 2.1593C 2.1816C 2.1765C 2.1985C 2.2073C

Bon. Class A B B B B B

DHDW(n) DHDW(2) DHDW(4) DHDW(6) DHDW(8) DHDW(10)

Low. Q. H/OPT 108.5% 108.5% 108.5% 108.5% 108.5% 108.5%
Med. H/OPT 115.9% 116.0% 116.0% 116.0% 116.0% 115.9%
Up. Q. H/OPT 130.8% 131.0% 130.8% 130.8% 130.8% 130.8%
IQR 22.3% 22.5% 22.3% 22.3% 22.3% 22.3%
Max. H/OPT 182.8% 182.8% 182.8% 182.8% 182.8% 182.8%
Mean Rank 12.73 (2) 13.39 (6) 13.08 (5) 12.90 (4) 12.84 (3) 12.69 (1)
Nem. Class LM JKLM KLM LM LM M
Nice 5 000 t 19.1329A 2.1623C 2.1979C 2.2070C 2.2423C 2.2636C

Path 5 000 t 5.9757B 2.1616C 2.1845C 2.1792C 2.2018C 2.2107C

Bon. Class A B B B B B

DHIW(n) DHIW(2) DHIW(4) DHIW(6) DHIW(8) DHIW(10)

Low. Q. H/OPT 109.3% 109.4% 109.3% 109.3% 109.3% 109.3%
Med. H/OPT 116.7% 116.7% 116.7% 116.7% 116.7% 116.7%
Up. Q. H/OPT 131.5% 131.5% 131.4% 131.5% 131.5% 131.5%
IQR 22.2% 22.1% 22.1% 22.2% 22.2% 22.2%
Max. H/OPT 182.8% 182.8% 182.8% 182.8% 182.8% 182.8%
Mean Rank 17.40 (13) 17.48 (17) 17.55 (18) 17.46 (16) 17.40 (14) 17.43 (15)
Nem. Class I I I I I I
Nice 5 000 t 18.5926A 2.1637C 2.2034C 2.2077C 2.2402C 2.2621C

Path 5 000 t 5.5692B 2.1646C 2.1861C 2.1808C 2.2021C 2.2093C

Bon. Groups A B B B B B

Table 6.5: A summary of the results for the variations of the B2FA algorithm described in §3.3.2 when
applied to the 1 170 strip packing benchmark problem instances described in §6.1. The row labelled
‘Median H/OPT’ contains the median packing height for all benchmark instances listed in Table 6.1 as
a percentage of the optimal packing height, or its lower bound if the optimal is not known. The row
labelled ‘Low. Q. H/OPT’ contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’ contains
the values of the upper quartile and the interquartile range (in the row labelled ‘IQR’) is the difference
between the two. The row labelled ‘Max. H/OPT’ contains the worst result achieved by the algorithms
for all benchmark instances. The row labelled ‘Nem. Class’ are results obtained by means of a Nemenyi
test. Algorithms in the same group (indicated by letters) do not produce results that are significantly
different. The row labelled ‘Bon. Class’ contains results obtained by means of a Bonferroni t test on the
average times required to solve all instances of 5 000 items. The row labelled ‘Mean Rank’ contains the
mean rank achieved by the algorithms in this set (a rank of 1 indicates that the algorithm packed to the
lowest height for an instance), with their ranks shown in parentheses. If algorithms yielded the same
packing height for an instance, the mean of the ranks that would have been awarded is used. The rows
labelled ‘Nice 5 000 t’ and ‘Path 5 000 t’ show the time (in seconds) required for instances of 5 000 items
(for the “nice” and “pathological” benchmark problem instances [156]), with results from a Bonferroni
t test for each set presented as superscripts. Note that this table is not independent of Table 6.6. The
algorithm rankings include those of the algorithms in Table 6.6.
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DH(n) DH(2) DH(4) DH(6) DH(8) DH(10)

Low. Q. H/OPT 110.0% 109.6% 110.0% 110.0% 110.0% 110.1%
Med. H/OPT 117.5% 116.7% 117.3% 117.5% 117.6% 117.6%
Up. Q. H/OPT 131.8% 131.6% 131.6% 132.0% 132.0% 131.9%
IQR 21.8% 22.0% 21.6% 22.0% 22.0% 21.9%
Max. H/OPT 188.8% 183.5% 182.8% 188.0% 188.0% 188.0%
Mean Rank 22.93 (31) 19.81 (20) 21.63 (26) 22.00 (28) 21.89 (27) 22.07 (29)
Nem. Class BCD GH DEF DEF DEF DEF
Nice 5 000 t 14.9448B 2.1559C 2.1880C 2.1898C 2.2205C 2.2369C

Path 5 000 t 9.5525A 2.1644C 2.1928C 2.1926C 2.2209C 2.2330C

Bon. Class A B B B B B

DHDW(n) DHDW(2) DHDW(4) DHDW(6) DHDW(8) DHDW(10)

Low. Q. H/OPT 109.8% 109.1% 109.6% 109.6% 109.8% 109.8%
Med. H/OPT 117.2% 116.3% 116.7% 116.9% 117.1% 117.1%
Up. Q. H/OPT 131.8% 131.4% 131.8% 132.0% 132.0% 131.9%
IQR 22.0% 22.3% 22.1% 22.4% 22.2% 22.1%
Max. H/OPT 188.0% 182.8% 182.8% 188.0% 188.0% 188.0%
Mean Rank 21.62 (25) 18.35 (19) 19.94 (21) 20.50 (22) 20.76 (23) 20.81 (24)
Nem. Class DEF HI GH FG EFG EFG
Nice 5 000 t 14.9535B 2.1608C 2.1918C 2.1938C 2.2241C 2.2409C

Path 5 000 t 9.5555A 2.1695C 2.1971C 2.1965C 2.2252C 2.2371C

Bon. Class A B B B B B

DHIW(n) DHIW(2) DHIW(4) DHIW(6) DHIW(8) DHIW(10)

Low. Q. H/OPT 110.6% 110.2% 110.6% 110.8% 110.7% 110.7%
Med. H/OPT 117.7% 117.3% 117.7% 117.7% 117.7% 117.7%
Up. Q. H/OPT 132.2% 131.8% 132.4% 132.6% 132.5% 132.5%
IQR 21.6% 21.6% 21.8% 21.8% 21.8% 21.8%
Max. H/OPT 182.8% 182.8% 182.8% 182.8% 182.8% 182.8%
Mean Rank 25.06 (36) 22.42 (30) 23.96 (32) 24.31 (33) 24.50 (35) 24.35 (34)
Nem. Class A CDE ABC AB AB AB
Nice 5 000 t 14.3837B 2.1610C 2.1924C 2.1918C 2.2210C 2.2320C

Path 5 000 t 9.9444A 2.1706C 2.1990C 2.1982C 2.2244C 2.2396C

Bon. Class A B B B B B

Table 6.6: A summary of the results for the variations of the B2FW algorithm described in §3.3.2 when
applied to the 1 170 strip packing benchmark problem instances described in §6.1. The row labelled
‘Median H/OPT’ contains the median packing height for all benchmark instances listed in Table 6.1 as
a percentage of the optimal packing height, or its lower bound if the optimal is not known. The row
labelled ‘Low. Q. H/OPT’ contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’ contains
the values of the upper quartile and the interquartile range (in the row labelled ‘IQR’) is the difference
between the two. The row labelled ‘Max. H/OPT’ contains the worst result achieved by the algorithms
for all benchmark instances. The row labelled ‘Nem. Class’ are results obtained by means of a Nemenyi
test. Algorithms in the same group (indicated by letters) do not produce results that are significantly
different. The row labelled ‘Bon. Class’ contains results obtained by means of a Bonferroni t test on the
average times required to solve all instances of 5 000 items. The row labelled ‘Mean Rank’ contains the
mean rank achieved by the algorithms in this set (a rank of 1 indicates that the algorithm packed to the
lowest height for an instance), with their ranks shown in parentheses. If algorithms yielded the same
packing height for an instance, the mean of the ranks that would have been awarded is used. The rows
labelled ‘Nice 5 000 t’ and ‘Path 5 000 t’ show the time (in seconds) required for instances of 5 000 items
(for the “nice” and “pathological” benchmark problem instances [156]), with results from a Bonferroni
t test for each set presented as superscripts. Note that this table is not independent of Table 6.5. The
algorithm rankings include those of the algorithms in Table 6.5.
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Figure 6.5: Box plot of the distribution of results for the B2FW algorithms described in §3.3.2 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

By grouping together the algorithms using the same sorting method, applying ANOVA to the
data yields a P -value of 0.0068, indicating that there is a significant difference between the
sorting groups. Performing Bonferroni t tests on the groups suggests that there is a significant
difference between the DHIW and DHDW sorting methods, but that there is no significant
difference between the algorithms that sort according to the DH method and the other two
methods. If one creates two sets, one for the algorithms that replace items according to area
and another set for the algorithms that replace items according to their width, and performs an
ANOVA on these two groups, a P -value smaller than 0.0001 is found, suggesting that the algo-
rithms which replace items according to their width are, on average, better than the algorithms
that replace items according to their width. Combining all algorithms according to the number
of items that may be replaced and applying an ANOVA yields a P -value of 0.9905, suggesting
that the number of items that may be searched does not result in a significant difference with
respect to the mean packing height.

The mean ranks appear to support some of the findings. The maximum mean rank for al-
gorithms which replace items according to area (B2FA algorithms) is 17.55, achieved by the
B2FA6DHIW algorithm, while the minimum mean rank for the B2F algorithms which replace
items according to their width (B2FW algorithms) is 18.35, achieved by the B2FW2DHDW
algorithm. The minimum mean rank may be attributed to the B2FA10DHDW algorithm, while
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138 Chapter 6. An Appraisal of the Strip Packing Algorithms

the maximum mean rank of 25.06 may be attributed to the B2FWnDHIW algorithm. The mean
ranks may be compared between sorting types. The average of the mean ranks for the B2FADH
algorithms is 14.46; for the B2FADHDW algorithms it is 12.94 and for the B2FADHIW algo-
rithms it is 14.95. A similar pattern emerges for the B2FW algorithms. The average for the
mean ranks of the B2FWDH algorithms is 21.72; for the B2FWDHDW algorithms it is 20.33
and for the B2FWDHIW algorithms it is 24.10.

The times that the algorithms require to pack 5 000 items are significantly different (applying
an ANOVA yields P < 0.0001 for only the “nice” item instances, only the “pathological” item
instances and for the two sets combined at a confidence level of 95%), but only between those
algorithms that allow all items to be searched and the algorithms that restrict the search to
a limited number of items. The algorithms that allow all items to be searched do not require
significantly different times to find solutions to the large benchmark instances. The algorithms
that restrict the search to a limited number of items do not require a significantly different ex-
ecution time. Interestingly, the B2Fn algorithms require significantly more computational time
than the B2FWn algorithms for “nice” instances, but are significantly faster for “pathological”
instances. The results in Tables 6.5 and 6.6 show a large time difference between the algorithms
that allow unrestrained searching, and the others. Therefore, the results in Tables 6.5 and
6.6 suggest that the best algorithm (in terms of packing height) will sort items according to
decreasing height and decreasing width, compare items according to their areas, and restrict
the search of the unpacked items to a limited number. The B2FA10DHDW algorithm has the
lowest mean rank and is therefore used in further comparisons.

6.2.5 A Comparison of the Level-Packing Algorithms

All the best algorithms of the previous subsections are compared in this subsection in order to
identify the best level-packing algorithm. A comparison of the algorithms in the first subsection
revealed that the BFDHDW algorithm yielded the best results most often. In the subsection
on the KP algorithms the original algorithm was found to be too slow for large data sets, while
the KPTRDHIW achieved the second lowest mean rank; therefore it will represent that set of
algorithms in the remainder of the chapter. An analysis of the JOIN algorithms led to the
conclusion that the JOIN0(DH) and JOIN0(DHDW) algorithms are the best in the set, but
only the JOIN0(DHDW) algorithm will represent that set of algorithms in the remainder of
the chapter as it yielded the lowest mean rank. A comparison of the B2F algorithms led to
the conclusion that the B2FA10DHDW algorithm would represent that set. The results are
plotted as box plots in Figure 6.6 and are also listed in Table 6.7. A Friedman test yields P = 0
and an ANOVA on the results yields P = 0.0031, suggesting that the null hypothesis (that all
algorithms are equivalent) may be rejected.

The KPTRDHIW algorithm is the worst algorithm in this set of representative algorithms,
with the largest IQR, the highest upper quartile and the worst maximum packing height. The
Nemenyi test suggests that it is significantly worse than two of the algorithms in this set,
but significantly better in terms of packing height in comparison to the JOIN algorithm. It
is also close to 40 times slower than the other algorithms for benchmark instances containing
5 000 items. The JOIN algorithm is ranked as the worst algorithm in terms of packing height,
achieving the lowest mean packing height and is significantly worse according to the Nemenyi
test. However, it is not significantly worse than the BFDHDW and B2FA10DWDH algorithms in
terms of packing time. The BFDHDW and B2FA10DWDH algorithms are neither significantly
different in terms of packing height nor solution time for large instances and are the best level-
packing algorithms of those tested in this dissertation.
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Figure 6.6: Box plots of the results for the best level-packing algorithms described in §3.2 when applied
to the 1 170 strip packing problem benchmark instances described in §6.1.

6.3 Results Obtained by Pseudolevel-Packing Heuristics

The results obtained by applying the pseudolevel-packing algorithms to the benchmark problem
instances in §6.1 are presented in this section. In the first subsection the known BFDH* and
FCOG algorithms and their variations, the SAS algorithm and the new algorithms that yield
guillotine packings, namely the SASm, BFS and SL algorithms are considered. This is followed
by a comparison of the free-packing pseudolevel algorithms; namely the FCOF, SC and SCR
algorithms.

6.3.1 Guillotine Pseudolevel Heuristics

In this subsection the FCOG algorithm by Lodi et al. [106], as described in §4.2.1, and the
BFDH* algorithm by Bortfeldt [18], as described in §4.2.2 are compared to the SAS algorithm
by Ntene and Van Vuuren [125,127] and the new algorithms presented in §4.3. Four variations
of the SL algorithm are considered, each for different values of δ which are shown in parenthesis
in the first row of Table 6.8. The value of δ determines the maximum height difference allowed
between two items for them to be considered joined for stacking purposes. Figure 6.7 contains
box plots of the results achieved by these algorithms and further results are tabulated in Table
6.8. A Friedman test on the packing heights results in P = 0, suggesting that the algorithms
are significantly different in terms of packing height. A Nemenyi test on the results yield a
critical distance of 0.53. An ANOVA performed on the results yields P < 0.0001.
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140 Chapter 6. An Appraisal of the Strip Packing Algorithms

BFDHDW KPTRDHIW JOIN0(DHDW) B2FA10DHDW

Low. Q. H/OPT 108.1% 108.1% 111.7% 108.5%
Med. H/OPT 116.0% 115.8% 118.5% 115.9%
Up. Q. H/OPT 131.0% 133.6% 132.7% 130.8%
IQR 22.9% 25.5% 20.9% 22.3%
Max. H/OPT 182.7% 256.9% 182.7% 182.8%
Mean Rank 2.02 (1) 2.84 (3) 3.05 (4) 2.09 (2)
Sig. Class C(B) B(AB) A(A) C(B)
Nice 5 000 t 2.3164B 76.475A 2.3166B 2.2636B

Path 5 000 t 2.2992B 81.418A 2.2797B 2.2107B

Bon. Class B A B B

Table 6.7: A summary of the results for the best level algorithms described in Chapter 3 when applied to
the 1 170 strip packing benchmark problem instances described in §6.1. The row labelled ‘Median H/OPT’
contains the median packing height for all benchmark instances listed in Table 6.1 as a percentage of the
optimal packing height, or its lower bound if the optimal is not known. The row labelled ‘Low. Q. H/OPT’
contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’ contains the values of the upper
quartile and the interquartile range (in the row labelled ‘IQR’) is the difference between the two. The row
labelled ‘Max. H/OPT’ contains the worst result achieved by the algorithms for all benchmark instances.
The row labelled ‘Sig. Class’ are results obtained by means of a Nemenyi test, with the results from a
Bonferroni t test in parentheses. Algorithms in the same group (indicated by letters) do not produce
results that are significantly different. The row labelled ‘Bon. Class’ contains results obtained by means
of a Bonferroni t test on the average times required to solve all instances of 5 000 items. The row labelled
‘Mean Rank’ contains the mean rank achieved by the algorithms in this set (a rank of 1 indicates that
the algorithm packed to the lowest height for an instance), with their ranks shown in parentheses. If
algorithms yielded the same packing height for an instance, the mean of the ranks that would have been
awarded is used. The rows labelled ‘Nice 5 000 t’ and ‘Path 5 000 t’ show the time (in seconds) required
for instances of 5 000 items (for the “nice” and “pathological” benchmark problem instances [156]), with
results from a Bonferroni t test for each set presented as superscripts.

The SASm algorithm is a significant improvement on the SAS algorithm, the median packing
height is approximately 2% better for the new algorithm than for the original. The box plot
in Figure 6.7 suggests that the distribution of the relative packing heights for the modified
algorithm is closer to the optimal packing height for the new SAS algorithm than for the
original by Ntene [125,127]. The new algorithm finds the minimum packing height between the
two more often (a mean ranking of 10.70 versus 9.39), but both variations of the SAS algorithm
result in the worst packing height of the algorithms listed in Table 6.8.

The BFDH* algorithms are better in terms of the distribution of their relative packing heights,
with the BFDH*(DW) as the best of the three variations. It achieves lower first quartile, median
and third quartile values than the other two BFDH* algorithms. This better performance is
mirrored in the mean ranking, which is significantly lower for the BFDH*(DW) algorithm,
compared to the BFDH* and BFDH*(IW) algorithms. However, these algorithms are worse
than the FCOG algorithms, which result in a better distribution of packing heights for the 1 170
benchmark instances used in this dissertation. The results for the FCOG algorithms show lower
median, upper quartile and IQR values and this is mirrored by the lower mean ranking values
for the FCOG algorithms compared to those of the BFDH* rankings. Once again the DHDW
sorting procedure proves to result in the best packing heights, on average.

However, the SAS, BFDH* and FCOG algorithms perform worse in terms of packing density
when compared to the stacking algorithms, namely the BFS and SL algorithms. Of these
stacking algorithms the SL algorithm with δ = 5 proves to achieve the lowest packing height
of these algorithms most consistently (as suggested by the mean rank values). Allowing floor-
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Figure 6.7: Box plot of the distribution of results for the guillotine pseudolevel algorithms described
in §4.2 and §4.3 when applied to the 1 170 strip packing problem benchmark instances described in §6.1.

packed items to be joined for the purposes of stacking means that the SL algorithms perform
better than the BFS algorithm, on average, resulting in a distribution of relative packing heights
that is closer to the optimum for the SL algorithms than for the BFS algorithm. The mean ranks
suggest that the SL5 algorithm is not significantly better than the FCOGDHDW algorithm.

Performing an ANOVA (at a 95% confidence level) on the solution times required by the al-
gorithms to solve benchmark instances containing 5 000 items yields P < 0.0001 when applied
to only “nice” instances, when applied to only “pathological” benchmark instances, and when
applied to both sets of benchmark instances, suggesting that the algorithmic times are signif-
icantly different.5 Performing a Bonferroni t test on the algorithmic times yields results that
suggest that the BFDH* algorithms are slower than the FCOG algorithms for “pathological”
items (the roles are reversed for “nice” items), which are significantly slower than the BFS and
SL algorithms. However, the test suggests that the SAS algorithms are significantly faster than
the BFS and SL algorithms, sacrificing packing density for speed. The fact that the SL algo-

5The results from the Bonferroni t test and the Tukey test when applied to the combined sets of benchmark
instances appear very different at first glance, but the only difference is that the Tukey test found a signifi-
cant difference between the algorithmic times of the FCOGDHDW algorithm and the BFDH* and BFDH*IW
algorithms, which the Bonferroni t test did not find.
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rithms are significantly faster and yield a better density than the FCOG and BFDH* algorithms
(against which the SL5 algorithm is significantly better), suggests that the SL5 algorithm would
be the best choice of algorithms from this set, except if the speed of the SASm algorithm is
preferred over the packing density of the SL5 algorithm.

6.3.2 Non-Guillotine Pseudolevel Heuristics

In this subsection the single known non-guillotine pseudolevel algorithm, the FCOF algorithm
and its variations (see §4.2.1), is compared to the two new non-guillotine algorithms, the SC and
SCR algorithms described in §4.3.4. Table 6.9 contains a summary of the results of applying
these algorithms to the 1 170 benchmark instances and Figure 6.8 contains box plots of the
results obtained by the algorithms. Three variations of the FCOF algorithm are considered;
all three sort items by decreasing height, but one variant does not resolve equalities in height
(DH), one resolves the equalities by sorting them according to decreasing width and the final
variant resolves ties by sorting the items according to increasing width. Performing an ANOVA
on these algorithms’ results yields P = 0.1448, suggesting that the results are not significantly
different. However, performing a nonparametric Friedman test yields P = 0, suggesting that
the results are significantly different. Due to the fact that the parametric ANOVA assumes a
normal distribution of results, which does not necessarily apply to the packing height results,
suggests that the nonparametric Friedman test is better suited to test the significance of the
differences in results. The critical distance for the Nemenyi test is 0.18.

FCOFDH FCOFDHDW FCOFDHIW SC SCR

Low. Q. H/OPT 106.4% 106.0% 106.8% 105.7% 105.9%
Med. H/OPT 110.4% 110.0% 110.6% 109.0% 109.2%
Up. Q. H/OPT 117.8% 117.6% 117.9% 114.5% 116.1%
IQR 11.4% 11.6% 11.1% 8.8% 10.2%
Max. H/OPT 167.8% 167.8% 168.6% 153.2% 153.2%
Mean Rank 3.10 (4) 2.87 (2) 3.38 (5) 2.56 (1) 3.09 (3)
Nem. Class B C A D B
Nice 5 000 t 4.7894A 4.8053A 4.8492A 2.4533B 4.9581A

Path 5 000 t 5.6337B 5.6373B 5.6435B 2.8171C 6.4660A

Bon. Class B AB(B) AB C A

Table 6.9: A summary of the results for the non-guillotine pseudolevel algorithms described in Chapter
4 when applied to the 1 170 strip packing benchmark problem instances described in §6.1. The row
labelled ‘Median H/OPT’ contains the median packing height for all benchmark instances listed in Table
6.1 as a percentage of the optimal packing height, or its lower bound if the optimal is not known. The
row labelled ‘Low. Q. H/OPT’ contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’
contains the values of the upper quartile and the interquartile range (in the row labelled ‘IQR’) is the
difference between the two. The row labelled ‘Max. H/OPT’ contains the worst result achieved by the
algorithms for all benchmark instances. The row labelled ‘Nem. Class’ are results obtained by means
of a Nemenyi test. Algorithms in the same group (indicated by letters) do not produce results that are
significantly different. The row labelled ‘Bon. Class’ contains results obtained by means of a Bonferroni
t test (results obtained by means of a Tukey test are shown in parentheses if they differ) on the average
times required to solve all instances of 5 000 items. The row labelled ‘Mean Rank’ contains the mean
rank achieved by the algorithms in this set (a rank of 1 indicates that the algorithm packed to the lowest
height for an instance), with their ranks shown in parentheses. If algorithms yielded the same packing
height for an instance, the mean of the ranks that would have been awarded is used. The rows labelled
‘Nice 5 000 t’ and ‘Path 5 000 t’ show the time (in seconds) required for instances of 5 000 items (for the
“nice” and “pathological” benchmark problem instances [156]), with results from a Bonferroni t test for
each set presented as superscripts.
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Figure 6.8: Box plot of the distribution of results for non-guillotine pseudolevel algorithms described
in §4.2.1 and §4.3.4 when applied to the 1 170 strip packing problem benchmark instances described in
§6.1.

The comparison of the FCOF algorithms yields familiar results. The lower quartile, median,
upper quartile and IQR values are similar, but the mean rank value for the DHDW sorting
is lowest, suggesting that it is the best of the three sorting methods for the FCOF algorithm,
and the Nemenyi test suggests that the DHDW sorting approach is significantly better than
the other two approaches. The SC and SCR algorithms yield better lower quartile, median,
upper quartile and IQR values than the FCOF algorithms, suggesting that they are the better
algorithms in general. This is reflected in the lower mean rank values for the SC algorithm,
but the mean rank for the FCOFDHDW is better than that of the SCR algorithm and the
Nemenyi test suggests that the FCOFDHDW algorithm is significantly better than the SCR
algorithm. The results suggest that the SC algorithm is the better of the two ceiling-stacking
algorithms. The SC algorithm manages to pack three quarters of the instances to within 14.5%
if the optimal, while the SCR algorithm packs the same number of benchmark instances to
within 16.1% of the optimal packing height.

A Bonferroni t test on the time required by the algorithms to solve problem instances containing
5 000 items suggests that the SCR algorithm is significantly slower than the FCOFDH algorithm
(a Tukey test suggests that the FCOFDHDW algorithm is also significantly faster, but the
Bonferroni t test was unable to detect this significant difference between the two algorithms).
Results from both the Bonferroni t test and the Tukey test suggest that the SCR algorithm
is significantly slower for instances containing “pathological” items, but that there was no
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significant difference between the algorithms for instances containing “nice” data. However,
the SC algorithm is significantly faster than the other algorithms in this comparison set for all
instances, combined or separated. The fact that the SC algorithm is both significantly faster,
and packs significantly better than the FCOF and SCR algorithms, suggests that it is the best
of the non-guillotine pseudolevel algorithms considered in this dissertation for the strip packing
problem.

6.4 Results Obtained by Plane-Packing Heuristics

The results obtained by the plane-packing algorithms, when applied to the 1 170 benchmark
problem instances of §6.1, are presented in this section. This section is organised in a similar
fashion to the previous sections. First, the algorithms are separated into groups of similar
procedures and the best algorithm in the group will be selected. The first group comprises
the Sleator (see §5.1.1), SF (see §5.1.2), M (see §5.1.5) and UD algorithms (see §5.1.6). The
second group comprises the BL algorithm (described in §5.1.3) with its variants, followed by the
variants of the SP algorithm (presented in §5.1.4), then the BLF variations (see §5.1.7) and the
variations of the GCS algorithm (presented in §5.1.8). Next, each of the three variations of the
BF algorithm by Burke et al. [22] and their modifications are each compared separately. Finally,
the best algorithms from these groups are compared in order to identify the best plane-packing
algorithm.

6.4.1 The Free-Packing Sorting-Dependent Algorithms

In this subsection some of the known algorithms (of which one is modified) that do not guarantee
guillotine layouts are compared. This includes Sleator’s algorithm [148], the modified version
of the SP algorithm by Golan et al. [62] that does not guarantee a guillotine layout, the M
algorithm by Golan [62] and the UD algorithm by Baker et al. [5]. There are three versions of
Sleator’s algorithm and the SPmF algorithm. Items are sorted according to decreasing height
for all three versions, but the first does not resolve any equalities, the second resolves equalities
by sorting them according to decreasing width, and the third resolves equalities by sorting
them according to increasing width. A summary of the results may be found in Table 6.10.
A Friedman test performed on the data yields P = 0, suggesting that the algorithms pack
the benchmark data to significantly different heights. An application of an ANOVA yields
P < 0.0001, and the critical distance for the Nemenyi test is 0.31.

The results in Table 6.10 suggest that the UD algorithm is the worst in this set of algorithms.
The box plot in Figure 6.9 shows that the packing heights are distributed over a larger range for
the UD algorithm than for the other algorithms. It may yield lower first quartile and median
values than Sleator’s algorithm, but its upper quartile is located at a greater relative height
and its IQR is more than double that of Sleator’s algorithm. The mean rankings in Table 6.10
and the rankings that are obtained when applying the Nemenyi test to the results suggest that
Sleator’s algorithms are the worst, on average, after the UD algorithm. There appears to be
no significant differences within the Sleator set. This observation also holds for the sets of
SPmF and M algorithms. The SPmF algorithms yield similar upper quartile and maximum
packing height values to the variations of Sleator’s algorithm, but the differences between the
lower quartile and median values for the SPmF and Sleator’s algorithms are larger, suggesting
that the majority of the SPmF packing heights are closer to the optimum than for Sleator’s
algorithm. This observation is corroborated in the results for the mean rank values, where
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Figure 6.9: Box plot of the distribution of results for non-guillotine plane-packing algorithms described
in §5.1 when applied to the 1 170 strip packing problem benchmark instances described in §6.1.

the SPmF algorithms yield better mean rankings. The M algorithm proves to yield the lowest
median value and the second best mean rank (not significantly different to the algorithm with
the worst mean rank).

The SPmF algorithms may be ranked above Sleator’s algorithm and the UD algorithm, but
it is two orders of magnitude slower, which makes it an inappropriate heuristic to include
in further comparisons. A Bonferroni t test on the times required to solve the benchmark
instances containing 5 000 items suggest no significant difference between Sleator’s algorithms
and the UD and M algorithms, suggesting that the M algorithm is the best of the algorithms in
this comparison because it performs significantly better than Sleator’s algorithms and the UD
algorithm in terms of packing height.

6.4.2 The Guillotine-Packing Sorting-Dependent Algorithms

In this subsection some of the known algorithms that yield guillotine layouts (of which one
is modified) are compared. This includes the SF algorithm by Coffman et al. [32], the SP
algorithm by Golan et al. [62] and the modified version of the SP algorithm that attempts to
find a packing that is more dense. There are three versions of each of the algorithms. Items
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are sorted according to decreasing height for the three versions of the SF algorithm, but the
first does not resolve any equalities, the second resolves equalities by sorting them according
to decreasing width, and the third resolves equalities by sorting them according to increasing
width. Similarly, the SP algorithm and the modified version are each given three packing types
that all sort the items according to decreasing width; the first does not resolve ties, the second
resolves ties by sorting those items according to decreasing height, and the third resolves the
ties by sorting them according to increasing height. A summary of the results may be found in
Table 6.11 and box plots of the results may be found in Figure 6.10. A Friedman test on the
results yield P = 0, suggesting that there are significant differences in the results produced by
the various algorithms. An application of an ANOVA yields a similar result, with P < 0.0001.
The critical distance between ranks for the Nemenyi test is 0.35.
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Figure 6.10: Box plot of the distribution of results for guillotine plane-packing algorithms described in
§5.1 when applied to the 1 170 strip packing problem benchmark instances described in §6.1.

The box plots in Figure 6.10 suggest that the SP algorithms are the worst group of algorithms
in this comparison set. Their lower quartile, median and upper quartile values are higher than
those of the other six algorithms. The argument is further strengthened by the mean rank
values, which are larger for the SP algorithms than for the SF or SPmG algorithms. Both the
Nemenyi test and the Bonferroni t test suggest that the SP algorithms are not significantly
different from one another, but both tests rank them the worst algorithms in this set. The
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Bonferroni t test and the Nemenyi test find the same results. The SPmG algorithms are the
highest-ranked algorithms in this set, with the SPmG(DHDH) algorithm yielding the best mean
rank.

However, these good rankings for the SPmG algorithms come at the cost of increased computa-
tion time. A Bonferroni t test on the times required to solve large problem instances (containing
5 000 items) suggest significant differences between the groups, with the algorithm group’s time
ranks inversely proportional to their packing height ranks. This makes for a difficult choice with
respect to which algorithm in this set is the best. If one requires a guillotine packing, then these
algorithms are all bettered by the SL5 algorithm, the application of which yielded a median
packing height for the 1 170 benchmark instances which is lower than the lower quartile of any
algorithm in this set, and an upper quartile value that is lower than any of the median values in
this set. The better packing density is not achieved at the cost of increased computation time,
with the SL5 algorithm requiring similar times to the SP algorithms, the fastest algorithms in
this set. This observation is reflected in the mean rank values over all algorithms, with the
best algorithm in this set achieving a mean rank of 184.05 compared to the SL5 algorithm’s
mean rank of 72.62 when taken over all strip packing algorithms in this chapter. Therefore, the
algorithms in this set will not be used in any further comparisons.

6.4.3 The BL Algorithm

This subsection is dedicated to the results obtained when applying the 23 variations of the BL
algorithm by Baker et al. [6], discussed in §5.1.3, to the 1 170 benchmark instances. There
are three versions of items sorted according to decreasing height, width and area each, and 7
variations of the xWDWDH and xRDWDH sorting methods. The distribution of the results for
each of the sorting methods may be found in the form of box plots in Figure 6.11 and further
results may be found in Table 6.12. A Friedman test yields P = 0.000 and an ANOVA yields
P < 0.0001, suggesting that the algorithms are significantly different. The Nemenyi test yields
a critical distance of 1.01.

The box plots in Figure 6.11 suggest that the DW, DA and xRDWDH sorting methods typically
yield greater packing heights than the DH and xWDWDH sorting methods. The plots suggest
that the xRDWDH sorting methods yield better solutions as the number of items sorted ac-
cording to decreasing width decreases. The algorithms that sort items according to decreasing
height appear to yield very good solutions, but the algorithms that sort items according to
their relative width yield the best results, on average, with the algorithm that only sorts by
width those items that are wider than half the strip width yielding the best results. This may
be seen in the mean rank values, which prove to be lower for the worst xWDWDH algorithm
than the best of the other sorting methods. In fact, the upper quartile value of the results for
the 1

2DHDW variation is similar to the lower quartile value of the DWIH variation. The mean
ranking suggests that this is the best of the algorithms in the comparison set and performing
a Nemenyi test on the results confirms that the 1

2DHDW variation is significantly better than
18 of the other algorithms in this set. The parametric Bonferroni t test does not yield as fine a
ranking as the nonparametric Nemenyi test, suggesting that all xWDWDH algorithms are not
significantly different from one another.

However, the better performance of the xWDWDH algorithms comes at the cost of increased
computation time for benchmark instances containing “nice items.” Applying an ANOVA
at a confidence level of 95% on the results for algorithmic time yields P < 0.0001 for only
the instances containing “nice” items, only the instances containing “pathological” items and
both sets combined. For large benchmark instances consisting of 5 000 items, the xWDWDH
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Figure 6.11: Box plot of the distribution of results for the BL algorithms described in §5.1.3 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

algorithms require, on average, more than 2 seconds additional time to find a solution than
do the DH packing variations (which are significantly faster than the other algorithms for
“nice” and “pathological” items). The DH, DHDW and DHIW algorithms are not significantly
different in terms of time; hence the DHDW variation, which yielded a better mean rank than
the DH and DHIW variations, would be the better algorithm to use if computation time played
a significant role in the algorithm selection. All algorithms that are not significantly different
in terms of time were significantly worse in terms of packing height.

6.4.4 The BLF Algorithm

This subsection is dedicated to the results obtained by applying the 23 variations of the BLF
algorithm by Chazelle [25], discussed in §5.1.7, to the 1 170 benchmark instances in §6.1. There
are three versions in which items sorted according to decreasing height, width and area each,
and 7 variations of the xWDWDH and xRDWDH sorting methods. The distribution of the
results for each of the sorting methods may be found in the form of box plots in Figure 6.12 and
further results may be found in Table 6.13. A Friedman test yields P = 0.000 and an ANOVA
yields P < 0.0001, suggesting that the algorithms are significantly different. The Nemenyi test
requires a critical difference of 1.01 between the mean rankings of algorithms for them to be
significantly different.
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Figure 6.12: Box plot of the distribution of results for the BLF algorithms described in §5.1.7 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

The distributions of the results for the algorithms, as shown in the box plots in Figure 6.12,
again suggest a familiar pattern in packing height results for the various sorting methods. The
algorithms that sort all of the items according to decreasing width yield the worst results, and
the results of the sorting methods that sort a fixed number of items according to decreasing
width (and the remainder according to decreasing height) improve as the number of items that
are sorted according to decreasing width diminishes. The algorithms that sort items according
to decreasing area yielded similar results to the DW algorithms for the BL algorithm. However,
for the BLF algorithm the majority the DA algorithms’ results are distributed closer to the
optimum than for the DW algorithm. Once again the DH algorithms yield a good distribution
of results, but the algorithms that sort items according to their relative width yield the best
results, as was found for the BL algorithm. However, a Nemenyi test performed on the results
suggests that the 1

2WDWDH, the 9
20WDWDH and the 2

5WDWDH algorithms do not yield
significant differences in packing height, but these three algorithms are significantly better than
the remainder of the algorithms.

The 1
2WDWDH algorithmic variation may have sacrificed speed in order to pack more densely

than the DHDW variation for the BL algorithm, but for the BLF algorithm a Bonferroni t test
suggests that the time required for the two algorithms to solve large problems is not significantly
different, even though the mean times for the 1

2WDWDH variation are more than two seconds
slower than for the DHDW variation. Sorting the items according to decreasing width yields the
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slowest solution times which, when combined with the poor results in terms of packing height
distribution relative to the other sorting methods, suggest it is the worst sorting method for the
BLF algorithm. There are a few differences in the results generated when a Bonferroni t test
and a Tukey test is applied to the solution times. When the instances containing “nice” and
“pathological” items are combined, the Tukey test suggests a significant difference between the
2
5RDWDH variation and the DW and DWDH variations, and between the 1

2RDWDH and DHIH
variations, while the Bonferroni t test did not find significant differences. When considering only
the “pathological” items, the Tukey test suggests a significant difference between the DW and
2
3RDWDH variations, and between the 11

20RDWDH and DH, DHDW and DHIW variations,
which the Bonferroni t test did not.

6.4.5 The GCS Algorithm

This subsection is dedicated to the results obtained by applying the 23 variations of the GCS
algorithm by MacLeod et al. [109], discussed in §5.1.8. Only 1 150 benchmark instances were
used for comparison purposes for the GCS algorithm as it did not find solutions within an
hour for the benchmark instances which contain 5 000 items. There are three versions in which
items are sorted according to decreasing height, width and area each, and 7 variations of the
xWDWDH and xRDWDH sorting methods. The distribution of the results for each of the
sorting methods may be found in the form of box plots in Figure 6.13 and further results may
be found in Table 6.14. A Friedman test yields P = 0.000 and an ANOVA yields P < 0.0001,
suggesting that the algorithms are significantly different. The critical distance for Nemenyi’s
test is 1.02 for 23 algorithms and 1 150 benchmark instances.

The variations on the GCS algorithm that sort all items according to decreasing width are, as
for the BL and BLF algorithms, the worst performing of the variations in this comparison set
in terms of packing height. For the previous two algorithms considered in §6.4.3 and §6.4.4
the variations that sort according to decreasing area were the second worst subset in terms of
packing height. However, for the GCS algorithm the decreasing area sorting method is not
significantly worse than the DH and DHIW sorting variations. As with the other algorithms,
the variations that sort items according to DHDW are bettered only by those algorithms that
sort items according to their relative width. The 1

2WDWDH variation is the highest ranked
algorithm (in terms of packing height) in this comparison set, and is significantly better than
17 of the other algorithms.

Applying an ANOVA to the solution times the algorithm requires to pack all benchmark in-
stances of 2 000 items results in P -value of 0.3118, suggesting that the difference in computation
times is not significant. However, performing an ANOVA on the “nice” items yields P = 0.0038,
and when applied to the “pathological” items it yields P < 0.0001, suggesting that the hypoth-
esis that all algorithms are equivalent in terms of solution time may be rejected. The Bonferroni
t test and the Tukey test are both not powerful enough to distinguish between the algorithms
when applied to “nice” benchmark instances, but they did find significant differences between
the algorithms when applied to the benchmark instances containing “pathological” items. The
Tukey test detected a significant difference between the DHIW variation and the 3

5RDWDH
and 2

3RDWDH variations which the Bonferroni t test did not.

6.4.6 The BFLM Algorithm

The results obtained by applying the BFLM algorithm by Burke et al. [22], and its modifications
presented in §5.1.9, to the 1 170 benchmark instances are reported in this section. There are
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Figure 6.13: Box plot of the distribution of results for the GCS algorithms described in §5.1.8 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

three versions in which items are sorted according to area, and 7 variations of the xWDWDH
and xRDWDH sorting methods. The distribution of the results for each of the sorting methods
may be found in the form of box plots in Figure 6.14 and further results may be found in
Table 6.15. A Friedman test yields P = 0.000 and an ANOVA yields P < 0.0001 (both tests
are performed at a confidence interval of 95%), suggesting that the null hypothesis (that all
algorithms yield similar results) may be rejected. The critical distance between algorithm’s
mean ranks is 1.06 for 24 algorithms, 1 170 benchmark instances and a confidence interval of
95%.

It is clear from the box plots in Figure 6.14 and the results listed in Table 6.15 that the
oriented version of the BFLM algorithm typically packs items less densely than does the modified
version for other sortings, excluding those sorting according to decreasing width (the BFLM
algorithm is equivalent to the BFmLM(DWDH) algorithm). Sorting the items by decreasing
area yields a better result for the BFmLM algorithm than it had for the BL, BLF and GCS
algorithms. The BFmLM algorithms which sort items according to decreasing area yield the
lowest upper quartile values and the lowest IQR. However, some of the xWDWDH algorithms
yield better lower quartile values and maximum packing heights than the algorithms sorting
according to decreasing area. The xRDWDH sorting method is not as effective as the other
sorting methods, also yielding the worst upper quartile values and the maximum packing heights
in this comparison set, better only than the oriented version of the original algorithm and the
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Figure 6.14: Box plot of the distribution of results for the BFLM algorithms described in §5.1.9 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

version that sort according to decreasing width. The variations sorting according to decreasing
height, or decreasing width, yield the worst results. The poor mean rank achieved by the
BFmLM2

3WDWDH algorithm is surprising considering that its distribution of results (see Figure
6.14) appears to be better than that of many of the xRDWDH algorithms.

The xWDWDH algorithms may yield a slightly better packing than the DA algorithms (not
significantly better according to the Nemenyi test), but this comes at the expense of increased
computation time. Applying an ANOVA at a 95% confidence level to the times results in
P < 0.0001 for instances containing “nice” items, instances containing “pathological” items, and
when the two are combined. The times required to solve benchmark instances containing 5 000
items may not be significantly different for the xWDWDH algorithms when compared to each
other by means of a Bonferroni t test at a confidence level of 95%, but they are all significantly
slower than the other algorithms in this comparison set. The xRDWDH algorithms all require
significantly different solution times when compared to one another, with the solution inversely
proportional to the fraction x. The DA, DH and original algorithms are not significantly different
from one another (when instances containing “nice” and “pathological” items are combined),
but they are significantly faster than the other algorithms. This suggests that the DADH (or
DADW) version of the modified algorithm may be the best choice from this list due to the fact
that it typically yields a packing height close to that of the 1

3WDWDH variation, but requiring
only half the computation time.
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160 Chapter 6. An Appraisal of the Strip Packing Algorithms

6.4.7 The BFTN Algorithm

This subsection is dedicated to the results obtained by applying the tallest neighbour variation
of the BF algorithm by Burke et al. [22], and the modifications presented in §5.1.9, to the 1 170
benchmark instances of §6.1. There are three versions in which items are sorted according to
area, and 7 variations of the xWDWDH and xRDWDH sorting methods. The distribution of
the results for each of the sorting methods may be found in the form of box plots in Figure 6.15
and further results may be found in Table 6.16. A Friedman test yields P = 0 and an ANOVA
yields P < 0.0001, suggesting that the null hypothesis (that all algorithms yield similar results)
may be rejected. The critical distance between mean ranks for the Nemenyi test is 1.06.
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Figure 6.15: Box plot of the distribution of results for the BFTN algorithms described in §5.1.9 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

These results are very similar to those for the BFLM algorithm when taking a broad view. The
oriented version of the original algorithm performs the worst in most cases, as do the modified
versions where items are sorted according to decreasing width (the BFTN and BFmTN(DWDH)
algorithms are equivalent), clearly visible when comparing the distributions of the results in
Figure 6.15. Table 6.16 shows that the median for the BFTN algorithm is larger than the upper
quartile values of the DA and xWDWDH algorithms. It also achieves the largest IQR of all
algorithms in this comparison set and the highest maximum packing height. The xRDWDH
algorithms follow the BFTN algorithm in the rankings. The 2

3RDWDH variation is the worst,
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162 Chapter 6. An Appraisal of the Strip Packing Algorithms

with the rankings improving as x decreases (excluding the case where x = 1
3). The three DA

algorithms are significantly better than the xRDWDH algorithms, and are also significantly
better than the 2

3WDWDH algorithm, but they are not significantly different compared to the
remaining xWDWDH algorithms, excluding the 1

3WDWDH variation which achieves the best
rank in this comparison set. The DA algorithms yield upper quartile values that are lower than
the median of the BFTN algorithm, the lowest IQR and maximum packing heights lower than
those of the original algorithm and the xRDWDH algorithms. However, some of the xWDWDH
algorithms yield lower first quartile values than the DA algorithms, and lower maximum packing
heights, resulting in them achieving the best rankings. The 1

3WDWDH algorithm yields the
best ranking of all algorithms in this comparison set and is significantly better than 14 of the
other algorithms in this set.

As was shown in the previous section on the results for the BFLM algorithm and its variations,
the improved packing by the xWDWDH algorithm comes at the expense of increased compu-
tation time. An ANOVA applied to the computation times yields P < 0.0001 for the instances
containing only “nice” items, only “pathological” items and when the two sets are combined
(suggesting that the algorithms do not all require similar computation times to solve large prob-
lem instances). A Bonferroni t test6 on the times suggests that the xWDWDH algorithms are
not significantly different in terms of computation time, but that the xRDWDH algorithms are
significantly faster, becoming faster as the value of x increases. The original and nine DA, DH
and DW algorithms are not significantly different in terms of the computation time required
to solve large problem instances (when “nice” and “pathological” items are combined, the DH
algorithms are significantly faster for “pathological” items) and are the ten fastest algorithms
in this comparison set, by a significant margin. This makes for a difficult decision in deciding
between the DADW or 1

3WDWDH algorithms as the best in the comparison set because the
DADW algorithm yields very good results. Therefore, both algorithms will be compared to the
algorithms from other sets in order to determine which is the best free plane-packing heuristic.

6.4.8 The BFSN Algorithm

The results obtained when applying the BFSN algorithm by Burke et al. [22] (see §5.1.9) to
the benchmark instances described in §6.1 are reported in this subsection. There are three
variations of the modified BFSN algorithm that sort items according to decreasing area and
seven variations of the xWDWDH and xRDWDH algorithms each. The distribution of the
results for each of the sorting methods may be found in the form of box plots in Figure 6.16 and
further results may be found in Table 6.17. An ANOVA applied to the results yields P < 0.0001
and a Friedman test applied to the data yields P = 0, suggesting that the null hypothesis (that
all algorithms yield similar packings) may be rejected.

The box plots in Figure 6.16 show a pattern similar to that of the box plots of the results for
the BFLM and BFTN algorithms and their variations. The original oriented version of the
algorithm yields the worst result, with the xRDWDH algorithms performing slightly better. In
this case, the DA algorithms perform better in relation to the xWDWDH algorithms than for the
BFLM and BFTN algorithms. In fact, the DA algorithms yield better median, upper quartile
and IQR values than the xWDWDH algorithms. A Nemenyi test performed on the algorithms
in this comparison set suggests that the DA algorithms are not significantly different from each

6There is a single discrepancy between the Bonferroni t test and the Tukey test. The Tukey test found a
significant difference between the DWIH and 2

3
RDWDH variations that the Bonferroni t test was not able to

find.
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Figure 6.16: Box plot of the distribution of results for the BFSN algorithms described in §5.1.9 when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

other, nor from five of the seven xWDWDH variations (they are significantly better than the
2
3WDWDH and 3

5WDWDH variations). The Nemenyi test suggests that the BFSN algorithm
is significantly worse than the other algorithms (excluding the three related DW algorithms) in
this comparison set. It also suggests that the three DA algorithms are significantly better than
10 of the other algorithms in this comparison set.

An ANOVA on the computation time results yields P < 0.0001 for the data sets of 5 000 items
when “nice” items are separated from “pathological” items and when they are combined, sug-
gesting that one may reject the null hypothesis that all algorithms require similar computation
times to find solutions. The original oriented algorithm proves to be significantly faster than the
new algorithms. The results are similar to the results of the other modified BF algorithms, with
the DA algorithms significantly faster for a similar packing height to the xWDWDH algorithms.

6.4.9 Identification of the Best Plane-Packing Heuristic

In order to identify the best plane-packing algorithm, the best algorithm from each comparison
set from the previous subsections are compared to one another. This may include the fastest
algorithm and/or the algorithm that packs the most densely. While pseudolevel algorithms
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adhere to an additional restriction (the packing of levels), the best of these are included for the
sake of interest.

The fastest algorithms from the pseudolevel algorithms that yield guillotine feasible layouts in
§6.3.1 are the SAS algorithms (they are not significantly different in speed), of which the SASm
algorithm yields significantly better results. The algorithm that typically yields the best packing
heights for the benchmark instances is the SL5 algorithm. Of those pseudolevel algorithms in
§6.3.2 that do not guarantee a guillotine feasible layout, the SC algorithm yields the best results
in terms of time and packing density.

During a search for the best free-packing plane algorithms in §6.4.1, the M algorithm was shown
to yield the best packing results, not significantly better than the SPmF algorithms in terms of
packing height, but two orders of magnitude faster in terms of computation time. The plane
algorithms that yield a guillotine layout (excluding the GCS algorithm) in §6.4.2 were shown
to be worse in terms of both packing quality and computation time when compared to the SL5

algorithm and may thus be ignored.

The BL1
2WDWDH algorithm was shown to yield the best packing results, achieving a signifi-

cant difference with respect to the second best algorithm, but the BL(DHDW) algorithm does
yield good results at a significantly better computation time and is therefore included in this
comparison. The BLF algorithm yields five algorithms that showed no significant difference
for the position as typically yielding the best packing heights. The BLF2

5WDWDH algorithm
is selected to represent these three algorithms as its output results in the lowest mean rank.
In this comparison set the algorithms typically yielding the best packing height belong to the
subset yielding the fastest computation times. Therefore, no other algorithm needs to be se-
lected to represent the fastest of the set. Of the GCS algorithms in §6.4.5, the GCS1

2WDWDH
algorithm yields the best packing results. The BFmLM1

3WDWDH algorithm typically yields
the best packing height of the algorithms in §6.4.6, but the BFmLM(DADW) yields good pack-
ing results at significantly lower computation times; hence both algorithms are included in
this comparison. The results are similar for the BFmTN algorithms in §6.4.7, and hence the
BFmTN1

3WDWDH and BFmTN(DADW) algorithms are included in the comparison. Finally,
the Nemenyi test ranked the fastest algorithms as the best in terms of packing height by their
mean rank in §6.4.8 and the BFmSN(DADW) algorithm is selected to represent this set of
algorithms.

A Friedman test on the results yields a zero P -value (and so does an ANOVA), suggesting that
the null hypothesis that all algorithms yield similar results may be rejected. Two observations
are immediately apparent. The results depicted in Figure 6.17 show that the M algorithm
does not pack well in comparison with the remaining algorithms, and the GCS algorithm is
prohibitively slow (it is the reason no benchmark instances with more than 2 000 items could
be used for comparative purposes). Fortunately the M algorithm is not faster than some of
the remaining algorithms that also pack more densely; hence the M algorithm may be ignored
for further comparison purposes. The Nemenyi test suggests that the SL5 and GCS1

2WDWDH
algorithms are not significantly different in terms of packing heights achieved. Thus the GCS
algorithm will be ignored in further comparisons, leaving the SASm and SL5 as the two guillotine
algorithms, the former for its speed and the latter for its packing density.

Table 6.19 aids in the elimination of algorithms. For example, the SC algorithm is ranked
higher than the M algorithm in terms of both time and mean rank and therefore the M algo-
rithm may be eliminated from further consideration. The BFmTN(DADW) algorithm is both
significantly faster and packs significantly better than the M, BFmLM1

3WDWDH, BL(DHDW)
and BL1

2WDWDH algorithms, and is not significantly slower than the BFmLM(DADW) or
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Figure 6.17: Box plot of the distribution of results for the best algorithms from each subsection when
applied to the 1 170 strip packing problem benchmark instances described in §6.1.

BFmSN(DADW) algorithms, but packs significantly better than them. It is not significantly
better than the BLF2

5WDWDH algorithm in terms of packing height, but it is significantly
faster. Therefore, the BFmTN(DADW) algorithm is better than all other plane-packing al-
gorithms, excluding the BFmTN1

3WDWDH algorithm (which typically yields a significantly
better packing).

The results in Table 6.20 may be used by a decision maker to come to a similar conclusion.
The SASm algorithm is ranked best according to the strip packing efficiency for low values of `
(when computation time is important), and is followed by the SL5 algorithm and the modified
BF algorithms that sort items according to decreasing area. For high solution time importance
the BL and BLF algorithms have poor ranks and the M and BL algorithms continue to perform
poorly as the importance of time decreases. With an increase in computation time importance
the rank of the SASm algorithm worsens, while the ranks of the BLF algorithm and that of
the modified BF algorithms sorting items according to the strip width improves at the cost of
a poorer rank for the pseudolevel algorithms. For very low computation time importance the
ranks of the algorithms according to their efficiency approaches their ranks according to their
mean packing height.
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Algorithm Mean t Sig. Set Rank Sig. Set Mean Rank Algorithm

SASm 1.11 F 1 H 3.43 BFmTN 1
3
WDWDH

SL5 2.35 EF 2 G 3.94 BFmTN(DADW)
BFmLM(DADW) 2.41 EF 3 G 4.26 BLF 2

5
WDWDH

BFmSN(DADW) 2.43 EF 4 F 5.18 BFmLM 1
3
WDWDH

BFmTN(DADW) 2.43 EF 5 F 5.46 BFmLM(DADW)
SC 2.64 E 6 F 5.47 SC
M 4.41 D 7 E 6.08 SL5

BFmLM 1
3
WDWDH 4.82 D 8 D 7.44 BFmSN(DADW)

BFmTN 1
3
WDWDH 4.83 D 9 C 8.46 BL 1

2
WDWDH

BL(DHDW) 9.22 C 10 B 9.02 SASm
BL 1

2
WDWDH 11.66 B 11 A 9.51 BL(DHDW)

BLF 2
5
WDWDH 30.81 A 12 A 9.74 M

Table 6.19: Ranks of the best algorithms for both time (for instances with 5 000 items) and mean rank
due to packing height. The mean ranks were calculated for the packing heights over all 1 170 benchmark
instances. The GCS algorithm is excluded due to its slow solution times. The significance sets were
calculated by means of the Bonferroni t test (and confirmed by means of a Tukey test) for the times and
the Nemenyi test for the mean ranks. The critical distance for the Nemenyi test for these algorithms is
0.49.
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t Rank 1 2 6 7 10 11 12 3 8 5 9 4
` = 1 1 2 6 9 10 11 12 4 8 3 7 5
` = 2 1 3 6 9 10 11 12 4 8 2 7 5
` = 3 1 4 6 9 10 11 12 3 8 2 7 5
` = 4 1 4 6 9 10 11 12 3 8 2 7 5
` = 5 1 4 5 9 10 11 12 3 8 2 7 6
` = 10 1 4 5 9 11 10 12 3 8 2 7 6
` = 20 6 4 3 12 11 10 9 2 8 1 5 7
` = 50 9 6 4 12 11 10 8 3 5 1 2 7
` = 100 10 7 5 12 11 9 6 3 4 2 1 8
` = 201 10 7 6 12 11 9 3 5 4 2 1 8
α Rank 10 7 6 12 11 9 2 5 4 3 1 8

Table 6.20: Ranks of the best algorithms, based on the strip packing efficiency defined in §2.3.2. The
row labelled ‘t Rank’ contains the algorithms’ ranks with respect to the mean solution time over the
1 170 strip packing benchmark instances. The row labelled ‘α Rank’ contains the algorithms’ ranks with
respect to the relative packing heights over the 1 170 benchmark instances.

6.5 Chapter Summary

In this chapter the results of applying the algorithms presented in Chapters 3–5 on the bench-
mark instances in §6.1 were presented. First a brief description of the benchmarks was given in
§6.1, in which the sources were listed, along with the other authors that have used the bench-
mark instances in order to test their algorithms. This was followed by a comparison of the
NFDH, FFDH, BFDH and WFDH algorithms in §6.2.1 by means of box plots and the non-
parametric Friedman and Nemenyi tests (as suggested by Demšar [40] for the comparison of
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algorithms). These same tests were used to compare the KP algorithms in §6.2.2, the JOIN
algorithms in §6.2.3 and the B2F algorithms in §6.2.4. This was followed by a comparison
of the best algorithms from each subsection in order to find the best level-packing algorithm.
There was no significant difference between the best two algorithms, namely the BFDHDW and
B2FA10DWDH algorithms, in terms of packing height (as measured by the mean ranks), nor in
terms of time (when measured on benchmark instances with 5 000 items).

The known guillotine pseudolevel algorithms (the FCOG, BFDH* and SAS algorithms) were
compared to the new SASm, BFS and SL algorithms in §6.3.1. The SASm is an improvement
on the SAS algorithm by Ntene [125, 127] and was found to be the fastest algorithm. The SL5

algorithm yields the best results in terms of packing height, though not significantly better
than the FCOGDHDW algorithm, which is significantly slower. The comparison of free-packing
pseudolevel algorithms in §6.3.2 suggested that the new SC algorithm is the best algorithm of
this type in terms of both packing height and computation time.

The comparison of plane-packing algorithms began within each algorithm set. The first compar-
ison in this section (see §6.4.1) was made between some free-packing algorithms, of which the M
algorithm yields the best packing results within a reasonable time. The new SPmF algorithm
is too slow to be considered useful when the M algorithm yields similar packing performance
at significantly less time. The results of the guillotine-packing algorithms in §6.4.2 show how
the speed and packing density are inversely proportional. However, these algorithms do not
yield results that are better than the new SL5 pseudolevel algorithm. The comparison of the
various sorting methods for the BL algorithm in §6.4.3 suggest that the original decreasing
width approach is significantly worse than the new xWDHDW sorting methods. The same was
found for the BLF algorithm in §6.4.4 and the GCS algorithm in §6.4.5. The GCS algorithm,
as programmed by the author, was shown to be prohibitively slow when solving large problem
instances. The three oriented versions of the BF algorithm in §6.4.6–6.4.8 were outperformed
significantly by modified versions of the algorithms that allowed them to be sorting-independent.
In §6.4.9 the BFmTN algorithm was shown to yield the best results of all the plane-packing
algorithms in terms of packing density.
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The Bin Packing Problem
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In this chapter a brief introduction to the bin packing problem is given, followed by an intro-
duction to the heuristics that have been developed for the two-dimensional single bin size bin
packing problem (SBSBPP) in §7.1.1. This is followed by an introduction to the multiple bin
size bin packing problem (MBSBPP) in §7.1.2 and a discussion on the algorithms that have been
developed for this problem. Finally, a new heuristic approach towards solving the 2D MBSBPP
is presented in §7.2.

7.1 Introduction

The bin packing problem is the problem of packing small items into larger bins, as opposed
to the packing of small items into a single large bin with an unlimited height (which formed
the basis of the previous four chapters). The aim is to pack the items in such a manner that
the smallest bin area is required to accommodate them. Wäscher et al. [157, p. 1120] have six
names for this problem, which are covered in detail in Table 2.2 in Chapter 2. The literature
on packing problems is vast and presented in further detail in surveys such as those by Sweeney
and Paternoster [151], Coffman et al. [31], Lodi et al. [106] and Wäscher et al. [157]. Some of
the literature on the subject has been presented in §2.2.

In the remainder of this section selected work that has been done on solving these problems by
means of heuristics are presented in order to provide the context of the new heuristic which is
proposed for the MBSBPP later in this chapter. First, the relevant literature on the heuristics
for the SBSBPP are presented and this is followed by selected literature on the MBSBPP.

171
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7.1.1 Single Bin Size Bin Packing

In 1982, Chung et al. [28] published their work on the 2D bin packing problem (now called
the SBSBPP since the paper by Wäscher et al. [157]) as a problem related to the “well-studied
packing problems” [28, p. 67], namely the 1D bin packing problem and the 2D strip packing
problem. They combined the two problems to solve the 2D SBSBPP by first packing all items
into a strip of width equal to the width of the bins. They then treated the levels created by the
FFDH algorithm (see 3.2.2) as 1D items that required packing into 1D bins (the width could
now be ignored as they were all equal). This problem was solved via the first-fit decreasing
algorithm by Johnson et al. [85] who called this two-phase algorithm the hybrid first fit (HFF)
algorithm.

In the same year Bengtsson [14] published his packing algorithm for the case where items were
allowed to be rotated and free packing was allowed. The algorithm begins by generating a
list of items of size 2n consisting of the n items to be packed and their rotated versions. The
algorithm then packs the first item in the list that is unpacked on the boundary of the bin,
forming sections of items, where the items that follow are the tallest available items that, when
packed and moved as low as possible, do not extend past the height of the first item in the
section. This process continues until no further items fit into the bin. Then a new bin is opened
and the process continues until all items have been packed. The bin with the most waste is
selected and its items are returned to the unpacked pool of items. The remaining bin with the
most waste is selected and an iterative packing procedure takes place that attempts to pack the
unpacked items into the bin. If the result is no better than before, the bin is ignored for further
repackings. If the waste decreases, but the bin is still the one with the most wasted space, it is
ignored for further repackings. If a new packing is found that is better and results in the bin
no longer containing the most wasted space, then the search procedure stops and the bin with
the largest wasted space is selected for further packing.

In 1987 two papers were published on this problem, one that presented algorithms for packing
items directly into bins and another using the idea of the hybrid approach to solve 2D SBSBP
problems. Frenk and Galambos [52] adapted the NFD algorithm to pack items directly into
bins and named the algorithm the hybrid next-fit (HNF) algorithm. Instead of first packing the
items into a strip and then packing the strip levels into the bins, Frenk and Galambos packed
the items directly into the last level to have been started, or started a new level in the bin if
the item did not fit between the last packed item and the right-hand boundary of the bin, or
started a new level in an empty bin if the item could not be packed into the current bin due to
height restrictions. They did not use the two-phase packing strategy of Chung et al. [28].

The second paper took a more quantitative approach to the evaluation of a number of new
algorithms for the SBSBPP. Berkey and Wang [16] designed the finite next-fit (FNF) algorithm,
which also packs items directly into bin levels in a next-fit manner. They also designed the finite
first-fit (FFF) algorithm which packs items directly into the bins in such a way that the item is
placed into the first level of the first bin that has enough horizontal space to accommodate it.
The finite best-strip (FBS) algorithm1 is another hybrid approach which packs items into a strip
by means of what Coffman and Shor [34] would later call the BFDH algorithm. The resulting
levels are then packed into the bins in a BFD manner. Finally, Berkey and Wang suggested the
finite bottom-left (FBL) algorithm which adapted the BLF algorithm by Chazelle [25] in order
to pack the items into bins. They treated each bin as a hole, creating a new hole by allowing
a new bin to accept items for packing when an item did not fit into existing holes or subholes.

1As Monaci [119, p. 37] and Lodi et al. [102, pp. 246] note, this should be called the hybrid best-fit (HBF)
algorithm for the sake of uniformity.
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However, due to the computational limitations of the time, they were unable to solve problem
instances with more than 175 items. In order to overcome this problem, they proposed the
next bottom-left (NBL) heuristic in which a new bin was considered when an item could not
be packed into the current bin, and all previous bins were ignored for further packing. This
next-fit approach reduced the number of subholes that their algorithm had to track, thereby
reducing the memory required. They found that the FBS algorithm yielded the best results for
their benchmark instances.

In 1999 Lodi et al. [103, 105] applied the two-phase approach to their floor-ceiling (FC) algo-
rithms to effectively design the hybrid floor-ceiling (HFC) algorithm (although they did not call
it such). These hybrid algorithms pack items into a strip using a level algorithm, and then
repack the levels into bins using one of the NFD, FFD or BFD algorithms for 1D bin packing.
They also approach the problem as a knapsack problem (previously mentioned in §3.2.4). The
items are sorted according to decreasing height and the tallest item initialises a level. The
remaining width of the strip is then filled according to an algorithm for the knapsack problem,
where the aim is to maximise the area of items packed into the remaining space in the level,
with the widths of the items used as the restricting factor (the total width of items may not
exceed the width of the space remaining in the level). The 1D bin packing problem of packing
the levels into bins is then solved to find the final packing. A third phase may be adopted to
pack the items when some have been rotated. The alternate directions algorithm by Lodi et al.
was designed to solve the SBSBPP when free packing is allowed. The algorithm packs items
into bands as low as possible, alternating the direction of packing from “left to right” to “right
to left” and back until the bin is either full or no further items remain. If a bin is full and items
remain unpacked, then the same procedure is used to fill a new bin.

In 2003 Boschetti and Mingozzi [19] put forward an algorithm they called the HBP algorithm
for solving the SBSBPP for items that are mixed in terms of being oriented or allowing rotation.
It is an algorithm that iterates until a maximum number of iterations has been reached, or the
solution requires a number of bins that is equal to a lower bound and is therefore optimal.
The items are initially assigned a price according to their area, width, height or perimeter.
During the iterations these prices are increased or decreased, according to the bins in which
they were packed. These prices determine the initial order of items and the algorithm packs
each bin until no further items may be added, before a new bin is considered. Once the items
have been packed, the prices of those items in the second half of items are increased, while the
prices of those in the first half are decreased by either a fixed (10% in their experiments) or
random percentage. While Boschetti and Mingozzi call the HBP algorithm a heuristic [19, p.
138] its iterative nature combined with the changing of the prices of items is closer to that of a
metaheuristic.

El Hayek et al. [67] published a heuristic called IMA in 2008. The algorithm determines all
maximal areas in a bin, where maximal areas are rectangular empty regions in the bin that
are not completely included in any other empty rectangular regions. These regions have the
following two properties: each of the four edges of the maximal region coincides with either the
boundary of the bin, or at least one edge of a packed item, and if the bottom-left corners of
two maximal areas have the same location, then one area will have a greater width than the
other, which in turn will have a greater height. The algorithm packs the items into the maximal
areas in a best-fit manner, where the criterion for best fit is not only the width or area, but
a weighted combination of four factors (utilising four weights q1, q2, q3 and q4 satisfying the
constraint q1 + q2 + q3 + q4 = 1), including the ratio of the area of the item to the area of the
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maximal area, the ratio of the horizontal length2 of the item to the width of the maximal area,
the ratio of the vertical length of the item to the height of the maximal area and the ratio of the
sum of the squares of the horizontal and vertical lengths of the item to the sum of the squares
of the width and height of the maximal area. The item/maximal area (that can accommodate
the item) couple that yield the best score are then adopted for packing. A new bin is opened
when no further items may be packed into the current bin. This process is completed for various
values for the q1, q2, q3 and q4 weights and the best results are stored.

7.1.2 Multiple Bin Size Bin Packing

Friesen and Langston [54] introduced the repacking strategy called first fit decreasing using
largest bins, at end repack to smallest possible bins (FFDLR) for 1D bin packing in 1986. In
an attempt to minimise the wasted space in bins occupied by items, the strategy is to pack
all items into the largest bins first and then to attempt repacking the items in these bins into
smaller bins in the same order in which the bins were filled. They claim that this algorithm has
a time complexity of O(n log n+ f log b), where f is the number of bins that are filled after the
initial packing, where b is the total number of bins and where n denotes the number of items
packed, and established the asymptotic bound

FFDLR (L) ≤ 3

2
OPT (L) + 1,

where FFDLR(L) is the bin consumption3 for the normalised item list L (where the maximum
bin size and perhaps item size is 1) after the FFDLR procedure and OPT(L) is the optimal
bin consumption. They also introduced the first fit decreasing using largest bins, but shifting
as necessary (FFDLS) strategy. Here, all items in a bin are shifted to the smallest bin that
will hold them when items are packed into a bin containing another item larger than 1

3 of the
largest bin in size, such that the total size of the items is greater than or equal to 3/4 of the
size of the smaller bin. This shifting procedure is followed by the repacking strategy of the
FFDLR algorithm once all items have been packed. They claim that the FFDLS strategy has
an O(n log n+ n log b) time complexity and established the asymptotic bound

FFDLS (L) ≤ 4

3
OPT (L) + 3

for the strategy, where FFDLS(L) is the sum of the sizes of the bins containing items from the
list L after the FFDLS procedure and OPT(L) denotes the optimal bin consumption.

In 2001 Chu and La [27] found worst-case performance ratios for four approximation algorithms
for the 1D MBSBPP. The packing strategies are called the largest object first with least absolute
waste (LFLAW), the largest object first with least relative waste (LFLRW), the least absolute
waste (LAW) and the least relative waste (LRW) algorithms. The two largest object first (LF)
algorithms allow only the bins of largest size to be packed before smaller bins are considered,
while the other two algorithms consider any size of bin during the packing phase. The algorithms
that pack according to the absolute waste choose the appropriate bin that would leave the least
waste after packing an item, while the algorithms that pack according to relative waste pack
into the bin for which the ratio of the waste to the bin size is smallest. Chu and La [27, p. 2072]

2The term horizontal length is used here instead of width, because if the item is rotated, then the width
becomes the height. In this way confusion between the widths of rotated and oriented items may be avoided.

3This is the term coined by Chu and La [27, p. 2070] for the sum of the sizes (length, area, volume, etc.) of
the bins that contain items after the packing is completed.
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claim that the time complexity of the algorithm is O
(
n2M

)
, where M is the number of sizes of

bins and n denotes the number of items packed.

Kang and Park [87] combined the FFDLR strategy with the FFD and BFD algorithms to design
the iterative first-fit decreasing (IFFD) and iterative best-fit decreasing (IBFD) algorithms in
2003. The algorithms first pack the largest bins according to the FFD (BFD, respectively)
algorithm and then attempt to repack the items in each bin into smaller bins. These algorithms
achieve an optimal packing when the sizes of items and bins are exactly divisible.

Similar 2D problems have been solved via non-heuristic methods. Hopper [75] used the BLF al-
gorithm in combination with a genetic algorithm to solve the MBSBPP, Yanasse et al. [159] used
a pattern-generation algorithm to solve the similar multiple stock size stock cutting problem,
and Pisinger and Sigurd [137] have used a branch-and-price algorithm to find exact solutions to
the 2D MBSBPP with variable bin costs. However, there appear to be no simple heuristics to
solve this problem. Therefore, the concept of packing large bins first and then repacking them
into smaller bins is combined here with the hybrid packing approach to 2D bin packing in order
to design a heuristic to solve this problem in a short time.

7.2 A New Heuristic for the MBSBPP

It is clear that the level and pseudolevel algorithms of §3 and §4 may be combined with any
algorithm for the 1D SBSBPP to design hybrid algorithms for the 2D SBSBPP. However, the
bin width may not be the same for all bins in the 2D MBSBPP. Hence the first fit procedure is
used to pack the levels resulting from most level and pseudolevel strip packing heuristics into
bins. Almost all algorithms yield levels that are decreasing in height as the height of the strip
increases. The only algorithm that may not result in levels packed in order of decreasing height
is the SAS algorithm4 by Ntene and Van Vuuren [125, 127]. Therefore the levels are typically
packed into bins in a FFD manner, except for the SAS algorithm where the levels are packed in
a first-fit manner. The two-phase approach combined with the FFDLR strategy allows for the
packing of multiple-size bins with the aim of minimising the bin consumption. This strategy
consists of two stages.

During the first stage of the algorithm the bins are sorted by decreasing area, with equalities
resolved by sorting by increasing perimeter. A strip packing is performed with the strip width
taken as the width of the first bin in the list. The levels of the strip are then packed into the bin
from the bottom upwards until no further levels fit. If the next bin in the list has the same bin
width, the remaining strip levels may be packed into that bin. If there are unpacked levels and
the next empty bin has a different width, another strip packing is performed with the unpacked
items, taking the strip width as the width of the new bin. This process of packing one bin at a
time continues until all items have been packed into bins.

During the second stage the bin with the lowest bin consumption is selected for repacking. This
is different from the FFDLR algorithm which attempts to repack the bins in the same order in
which they were packed. The reason for this change is the desire to allow the possibly smaller
bins that are likely to contain a lower area of items to be emptied in order that these bins may
be filled by the items of larger bins. If one were to repack the bins according to the order in
which they were packed, an opportunity may be lost to repack the set of items in a large bin

4Consider the following situation. A new level is to be initialised and two wide items remain. One item is
shorter, but wider than the other. The SAS algorithm would initialise the level with the shorter item, necessitating
the creation of a new level of greater height for the taller item.
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into a smaller bin, which may be emptied at a later stage. Therefore, when the bin with the
lowest area of items is found, the list of bins is searched for the smallest empty bin whose area
is at least the area of the items in the packed bin. A strip packing is performed for these items,
setting the strip width equal to the width of the empty bin. If the strip height is not greater
than the bin height, the items may be packed into the empty bin. The previously packed bin
is now empty. However, if the strip height is greater than the bin height, the suitability of the
previous bin in the bin list is investigated. Once an attempt has been made to repack the items,
the process is repeated with the bin corresponding to the next largest item area. This process
continues until all bins have been investigated for repacking. A pseudocode listing of this novel
two-stage algorithm for the MBSBPP (2SMBSBP) may be found in Algorithm 7.1.

Algorithm 7.1 Two-stage algorithm for the MBSBPP (2SMBSBP)

Input: The list of items to be packed I, the dimensions of the items 〈w(Ii), h(Ii)〉, the list of
bins B and the dimensions of the bins 〈w(Bi), h(Bi)〉.
Output: A feasible packing of the items into the bins with the aim to minimise unutilised
space in bins containing items.

1: sort B by decreasing area and increasing perimeter
2: call StageOne (I,B)
3: call StageTwo (I,B)

Procedure 7.1.1 StageOne (I,B)

1: i← 1
2: while I 6= ∅ do
3: if w (Bi) 6= W then
4: W← w (Bi)
5: perform a strip-packing with a strip packing algorithm from §3 or §4
6: let L be the list of unpacked levels and PL ← ∅
7: end if
8: j ← 1

9: while h(Bi)−
∑|PL|

k=1 h (PLk) >= h
(
L|L|

)
and L 6= ∅ do

10: if h (Bi)−
∑|PL|

k=1 h (PLk) >= h (Lj) then
11: P ← P ∪ Ik ∀ Ik ∈ Lj , I ← I \ Ik ∀ Ik ∈ Lj
12: PL ← PL ∪ Lj , L ← L \ Lj
13: else
14: j ← j + 1
15: end if
16: end while
17: i← i+ 1
18: end while

7.2.1 Worked Example

In order to illustrate the 2SMBSBP algorithm, the SAS algorithm is used to pack the items
in I (Table 7.1) into the bin set B, shown in Table 7.2. The bins are sorted by decreasing
area. Hence a strip packing of the items in I is performed first with W = w (B1) = 15. The
bottom-most level has height h (I1) = 15. Therefore the items in the first level may be packed
into B1. As none of the other levels may be packed into the bin, a strip packing is performed for
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Procedure 7.1.2 StageTwo (I,B)

1: let F be the set of bins containing items for which repacking has not been attempted
2: let E be the set of empty bins, i.e. E ← B \ F
3: let R be the set of new, previously empty bins whose items have been repacked
4: while F 6= ∅ do
5: i← 1, Found← false
6: let Fs be the bin in F containing the smallest area of items
7: while i ≤ |E| and not Found do
8: if Areab(Ei) ≥ Areai(Fs) then
9: W← w (Ei)

10: perform a strip-packing with an algorithm from §3 or §4
11: if H ≤ h (Ei) then
12: Found← true
13: R ← R ∪ Ei, E ← E ∪ Fs
14: F ← F \ Fs, E ← E \ Ei
15: i← |E|
16: else
17: i← i+ 1
18: end if
19: end if
20: end while
21: if i > |E| and not Found then
22: R ← R ∪Fs, F ← F \ Fs
23: end if
24: end while

the remaining items with W = w (B2) = 10. Items I3 and I4 fit into the first level and I10 fits
into the second. The bottom level fits into B2, hence the items are packed into that bin and,
because w (B3) = w (B2) = 10, no further strip packing is required and the second level (I10)
may be packed into B3. This intermediate packing is shown in Figure 7.1(a).

Item, Ii 1 2 3 4 5 6 7 8 9 10

Height, h(Ii) 15 9 8 7 1 6 6 1 3 4

Width, w(Ii) 4 4 4 4 6 6 4 4 2 3

Table 7.1: Dimensions of the items in I.

Bin, Bi 1 2 3 4 5

Height, h(Bi) 15 10 8 7 4

Width, w(Bi) 15 10 10 8 4

Table 7.2: Dimensions of the bins in the bin set B.

Bin B3 has the smallest area of items, A (I (B3)) = 12, which is less than the area of the
smallest bin A (B5) = 16. Thus, a strip packing is performed for the items in B3 (i.e. I10) with
W = w (B5) = 4. Item I10 fits into B5 and therefore remains in it. Bin B3 is now empty and an
attempt is made to pack the contents of B2 (A (I (B2)) = 60) into a smaller bin. Bin B4 is the
smallest empty bin, but has an area smaller than that of the items in B2, thus the strip width
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is set equal to the width of B3. The resulting strip height is less than h (B3) = 8. Therefore the
items remain in B3, and B2 is empty. The area of the items in B1 is A (I (B1)) = 172, which is
larger than A (B2) = 100. Hence no further repacking takes place. The final packing is shown
in Figure 7.1(b).

6
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2 3
4

10

5

1 8

(a) Intermediate Packing
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7
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1

5

8

(b) Final Packing

Figure 7.1: Results obtained by the two-stage algorithm for the MBSBPP (2SMBSBP-SAS), using the
SAS algorithm for strip packing.

7.2.2 Worst-Case Time Complexity

The algorithm begins by sorting the bins according to decreasing area in line 1, resolving ties
by sorting the bins according to increasing perimeter. If the sorting is performed by means of
the merge sort algorithm, the time complexity of this step is O(b log b), where b is the number
of bins. The next step is to call Procedure 7.1.1, which performs the initial packing of items
into bins. In the worst case every bin has a different size and only one item may be packed per
bin. In that case the algorithm will attempt to pack a strip n times (the while-loop spanning
lines 2–18), once for each new bin. Let the time complexity of the strip packing algorithm be
O(s). The while-loop spanning lines 9–16 will attempt to pack every level into the bin, but in
the worst case only one will fit. Therefore, this loop will have a worst-case time complexity of
O(n), which is dominated by the time complexity of the strip packing algorithm. Hence, the
time complexity of Procedure 7.1.1 is O(n s).

The second stage (Procedure 7.1.2), will execute the while-loop spanning lines 4–24 O(n) times.
Finding the bin with the lowest area of items in line 6 is an O(n) step. This is followed by
the search for the smallest bin that has the same or larger area than the items that are to be
repacked. A while-loop spanning lines 7–20 is entered that attempts to pack the items into
smaller bins. This loop may be executed O(b) times and contains a call to a strip packing
algorithm (in line 10) which has a worst-case time complexity of O(s). If the packing allows the
items to be packed into a new bin, then the items are moved into the new bin via a step that
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has a time complexity of O(n). Therefore, Procedure 7.1.2 has a worst-case time complexity
of O(n (n+ b s+ n)) = O(nmax {n, b s}). The time complexity of O(s) is no less than O(n)
(sorted items may be packed in O(n) time by the NFDH algorithm), resulting in a worst case
time complexity of O(b n s) for the second stage of the algorithm. Thus, the worst-case time
complexity of the 2SMBSBP heuristic is

O(b log b+ n s+ b n s) = O(bmax {log b, n s}) .

7.2.3 Adapting the 2SMBSBP Algorithm for Plane Algorithms

In §6.4.9, it was found that certain sorted lists of items yielded the best results for the 1 170
benchmark instances when packed by means of the new BFmTN algorithm of §5. It is desirable
to adapt the 2SMBSBP algorithm for use by the sorting-independent BFmTN algorithm in
an attempt to find better packings than level and pseudolevel algorithms would. Due to the
level-packing nature of the algorithms in §3 and §4 it is possible to design a procedure that
calls the existing strip packing algorithms with no modifications, because the packing of levels
takes the bin ceiling into account. However, the plane-packing algorithms do not pack items
into levels and this requires modifications to be made to the BFmTN algorithm in order for it
to pack items into the bins of multiple sizes. The new algorithm must take into account the
fact that there is a height limit to which items may be packed.

This algorithm has a structure very similar to that of Algorithm 7.1, but instead of calling the
BFmTN algorithm, a new, but very similar, algorithm is called. This algorithm is modified to
pack items only if their top edges are at the same height as or lower than the height of the
bin ceiling. A small modification packs the item into a specific bin (items are no longer all
packed into the same bin as in the strip packing problem) and the appropriate item is found by
searching for the first item that fits onto the skyline segment, and is short enough to fit between
the skyline segment and the top edge of the bin. If no item is found that is both narrow and
short enough, the skyline segment is raised to the height of the lowest neighbour and a new
search is performed in the hope that a wider (too wide to be packed onto the previous skyline
segment), but short enough unpacked item exists. The fact that the BFmTN algorithm does
not necessarily pack items in the same order in which they appear in the sorted list of items
means that the items have to be re-sorted for every repacking. This is also necessary due to
the bin width possibly changing, thereby changing the order in which the xWDWDH algorithm
would sort items. Algorithms such as the BL, BLF and GCS algorithms pack items in the
order in which they appear in the item list, which means that a list of items packed into a bin
would remain in the order in which they were originally sorted, thereby eliminating the need
for re-sorting during the repacking phase, except for the xWDWDH variations.

In an attempt to make the algorithm faster, the items are doubly linked when they are packed.
The data structure describing the bin stores the index values of the first and last items to be
packed into the bin. Therefore, when a temporary list of items is created to be repacked into
the smaller bin, the algorithm may find all relevant items by means of a procedure that has a
time complexity which is linear in terms of the number of items packed in the bin, and does not
need to search all items for items that are packed in the current bin (which would have a time
complexity O(n)). This makes a significant difference, because the use of linked lists allows
the items in all bins to be copied into individual lists for each bin in O(n) time, while the lack
of linked-lists would result in a procedure of O(n p), where p denotes the number of bins that
contain items.
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7.3 Chapter Summary

In this chapter a brief overview of the literature on heuristic solutions to the SBSBPP was given
in §7.1.1 in fulfilment of Dissertation Objective IX(a), followed by a review of the literature on
heuristics for the MBSBPP in §7.1.2 in fulfilment of Dissertation Objective IX(b). A new
algorithm for the 2D MBSBPP was presented in §7.2 in fulfilment of Dissertation Objective
X, together with a worked example in §7.2.1 and an analysis of its worst-case time complexity
in §7.2.2. Finally, the modifications required for the BFmTN algorithm in order for it to pack
multiple bin sizes were presented in §7.2.3.
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In this chapter the results from a combination of the strip packing algorithms of §3–§5 and the
best algorithm from §6.4 with the new 2SMBSBP heuristic will be presented. First, the known
benchmarks that are used to compare the algorithms are described in §8.1.1, and this is followed
by a discussion of the new benchmark instances that have been created for the MBSBPP in
§8.1.2. The results of the various 2SMBSBP algorithms applied to these instances follow in
§8.2–§8.4.

8.1 Benchmarks for the MBSBPP

In this section the benchmark instances used to compare the bin packing algorithms later in
the chapter are described briefly. The data sets by Hopper and Turton [75, 79] are described
first and this is followed by a description of the instances by Pisinger and Sigurd [137]. The
benchmark instances by Berkey and Wang [16] and by Martello and Vigo [112] for the SBSBPP
are added for interest sake. Finally, a new set of benchmark instances is generated for the
MBSBPP.

8.1.1 Benchmark Instances from the Literature

Although there are many benchmarks available for strip packing or SBSBP problems, there are
not many available for the MBSBPP. Some industry data are available (such as those supplied
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by Wang [155, p. 585]), but the benchmark sets by Hopper and Turton [75,79] and Pisinger and
Sigurd [137] appear to be the only algorithm-generated benchmark instances available for this
problem.

2000 Hopper and Turton

Hopper and Turton [75, 79] created three classes of benchmark instances (named M1, M2 and
M3), each containing five problem instances, with one bin set per group. The sets M1 and M2
each contains 100 items and M3 contains 150 items, with six different sizes of bins for each
group, a total of 16 bins in M1, 18 bins in M2 and 20 bins in M3. The item sizes were generated
randomly, where the larger dimension ranges between 10% and 100% of the width of the bins.
The set M1 was generated by means of an algorithm that placed a point randomly within a
randomly-selected rectangle and split the rectangle into four parts by means of a horizontal
and vertical cut through the point [75, p. 95–96]. The second set was generated by selecting an
existing rectangle, randomly selecting an edge on the rectangle, randomly placing a point on
that edge, mirroring that point on the opposite edge and cutting the rectangle along the straight
line that joins the two points [75, pp. 96–97]. The final set, M3, was generated by means of an
algorithm that randomly selects an existing rectangle and randomly places two points in the
rectangle. These two points are then used to generate a small rectangle, the two points forming
diagonally opposing corners. Further cuts are then made from the edges of this small rectangle
to generate four further rectangles [75, pp. 98–99]. The items were finally scaled by a factor
(> 1) in an attempt to render the total item area in each group similar. Optimal solutions to
these benchmark instances are as yet unknown.

2005 Pisinger and Sigurd

Pisinger and Sigurd [137] based their benchmark instances on those by Berkey and Wang [16],
and those by Martello and Vigo1 [112]. These have been presented in some detail in §6.1.
Pisinger and Sigurd follow the same process in generating their benchmark instances and each
class is assigned a set of five different sizes of bins, the dimensions of which were selected
uniformly from the ranges [W/2,W ] × [H/2, H], where W and H are the width and height,
respectively, of the original bins from the SBSBPP benchmark instances. Each bin is given a
cost (which is ignored for the purposes of this dissertation) and 10 instances of 20, 40, 60, 80 and
100 items exist for each problem class, resulting in a total of 500 instances. The 500 benchmark
instances by Berkey and Wang [16] and Martello and Vigo [112] are included in order to test
the effectiveness of the algorithms for the special case of the MBSBPP when it reduces to the
SBSBPP.

8.1.2 New Benchmark Instances for the MBSBPP

Additional benchmark instances were also generated. The benchmarks were generated in a
manner similar to that of Wang and Valenzuela [156] with the constraint that the dimensions are
integer values, and detailed pseudocode of the benchmark generation procedure may be found
in Algorithm 8.1. The algorithm begins with a square rectangle of dimensions 1 000×1 000. An
optimal solution is therefore known in each case. It can generate “pathological” benchmarks, or

1Pisinger and Sigurd incorrectly reference these benchmark sets as originating from the paper by Lodi et
al. [105], which references the paper by Martello and Vigo [112] as the source of the benchmark sets.
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“nice” benchmarks for which the area ratio constraint is γ = 7 and the aspect ratio constraint
is ρ = 4, the same values used by Wang and Valenzuela for the two constraints. The item
dimensions are restricted such that no item height is larger than the smallest bin height, and
no item width is larger than the smallest bin width.

Algorithm 8.1 MBSBPP Benchmark Generator

Input: A vector B containing the number of bins to be created, a vector I containing the
number of items to be created, the required number of sets of each B/I pair R, an area ratio
constraint γ and an aspect ratio constraint parameter ρ.
Output: A set benchmarks containing dimensions of bins and items with an optimal packing
area of 1 000 000 units.

1: for i = 1 to |I| do
2: for j = 1 to |B| do
3: k ← 1
4: while k ≤ R do
5: h (B1)← 1 000, w (B1)← 1 000
6: for ` = 2 to B(j) do
7: determine the largest bin by area — BL
8: if pathological bins are required then
9: split BL randomly through its largest dimension

10: else if nice bins are required then
11: find a random suitable bin Bs for which A (Bs) ≥ 2A (BL) /γ
12: call SplitRec (B, s, `)
13: end if
14: end for
15: call CreateItems (B, I (i) , I)
16: if the item set is valid then
17: for ` = 1 to B(j) do
18: assign random numbers of copies to B(j)
19: end for
20: k ← k + 1
21: end if
22: end while
23: end for
24: end for

A rectangle is split by choosing a random integer point within the rectangle, and is then ran-
domly cut horizontally or vertically through the chosen point. In an attempt to find valid
benchmark instances faster, the cut direction was not always decided randomly. Instead, the
dimension that exceeds the minimum bin dimension by the greatest margin was split in two. If
a “nice” data set was required, the point was assigned randomly within limitations discussed in
detail by Wang and Valenzuela [156].

Initially, cuts were made into the original rectangle to determine the bin sizes. These bins were
subsequently used as initial items, which were further split until the required number of items
resulted. A random number of copies of each bin size was created using a uniform distribution
in the range [2, 5]. Once the required number of items had been cut, the validity of the result
was determined. The item and bin sets were only valid if the total area of bins was greater than
three times the area of the items, the longest item height was less than or equal to the shortest
bin height and the longest item width was less than or equal to the shortest bin width.
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Procedure 8.1.1 SplitRec (R, InRec, OutRec)

1: {When splitting a rectangle, save one resulting rectangle in RInRec, and save the other in
ROutRec.}

2: hi ← h (RInRec), wi ← w (RInRec), m← Area (RL)
3: if 2hi/ρ ≤ wi ≤ ρhi/2 then
4: if RandomNumber > 0.5 then
5: split vertically at random x, if possible, such that:
6: dmax (hi/ρ, wi − ρhi,m/γhi)e ≤ x ≤ bmin (hiρ, wi − hi/ρ, wi/2)c
7: else
8: split horizontally at random y, if possible, such that:
9: dmax (wi/ρ, hi − ρwi,m/γwi)e ≤ y ≤ bmin (wiρ, hi − wi/ρ, hi/2)c

10: end if
11: else if 2hi/ρ ≤ wi ≤ 2ρhi then
12: split vertically at random x, if possible, such that:
13: dmax (hi/ρ, wi − ρhi,m/γhi)e ≤ x ≤ bmin (hiρ, wi − hi/ρ, wi/2)c
14: else if 2wi/ρ ≤ hi ≤ 2ρwi then
15: split horizontally at random y, if possible, such that:
16: dmax (wi/ρ, hi − ρwi,m/γwi)e ≤ y ≤ bmin (wiρ, hi − wi/ρ, hi/2)c
17: end if

Five copies of each of a combination of 2, 3, 4, 5 and 6 bins, and 25, 50, 100, 200, 300, 400
and 500 items were created (not for the 25 item and 6 bin combination), resulting in a total of
340 benchmark instances for the MBSBPP. These benchmarks may be found online [154]. This
results in a total of 1 357 benchmark instances.

8.2 Results of Level-Packing MBSBP Heuristics

In this section the best level-packing algorithms in each set identified in §6.2, i.e. those listed
in §6.2.5, are be compared. The BFDHDW algorithm for the MBSBPP applied to the 857
benchmark instances yields the best mean rank of the NF, FF,BF and WF algorithms. Of the
KPTR algorithms, the KPTRDHDW algorithm yields the best mean rank for bin utilisation (it
was not significantly different from the KPTRDHIW algorithm for the strip packing problem,
see Table 6.3) and is used for comparison purposes in this section. It was found that the
JOIN algorithms that joined items vertically would yield super-items that are taller than some
of the instances’ bins, yielding infeasible packings. Combined with these algorithms’ poor
packing densities for the strip packing problem (see §6.2.3), it was decided to remove them from
consideration for the MBSBPP. It was also found that changes to δ, where δ ∈ {0, 5, 10, 15} did
not affect the result. All JOINδDH algorithms yield an overall mean rank of 40.19, while all
JOINδDHDW algorithms yielded a mean rank of 39.74 and the JOINδDHIW algorithms yield a
mean rank of 41.60. Of the B2FA algorithms, the B2FA10DHDW yields the best mean rank and
of the B2FW algorithms, the B2FW2DHDW algorithm yields the best mean rank. A Friedman
test [40] performed in MATLAB [113] on the utilisation and fitness scores for the 857 MBSBPP
benchmark instances, and the number of bins (for the 500 SBSBPP benchmark instances) each
yielded P = 0, suggesting that the null hypothesis that all algorithms are equivalent may be
rejected. Table 8.1 contains an overview of the results and Figure 8.1 contains box plots of
the utilisation results. Table 8.2 contains results for the various classes of benchmark instances
for the MBSBPP. The Nemenyi critical distance for 5 items and 857 benchmark instances
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Procedure 8.1.2 CreateItems (B, r, I)
1: find MinH and MinW, the minimum height and width of the existing bins, respectively
2: set the first |B| items’ dimensions equal to those of the bins’
3: i← |B|
4: while i < r do
5: determine the largest item by area — IL
6: i← i+ 1
7: if pathological items are required then
8: {When splitting a rectangle, save one rectangle in IL, and the other in Ii.}
9: if h (IL) > MinH and w (IL) > MinW then

10: if h (IL)− MinH > w (IL)− MinW then
11: split horizontally randomly
12: else if h (IL)− MinH < w (IL)− MinW then
13: split vertically randomly
14: else
15: randomly split the item randomly horizontally or randomly vertically
16: end if
17: else if h (IL) > MinH then
18: split horizontally randomly
19: else if w (IL) > MinW then
20: split vertically randomly
21: else
22: randomly split the item randomly horizontally or randomly vertically
23: end if
24: else if nice items are required then
25: find a random suitable item Is for which A (Is) ≥ 2A (IL) /γ
26: call SplitRec (I, s, i)
27: end if
28: end while

at a confidence level of 95% with respect to the utilisation µ and the fitness ν is 0.27. The
critical distance between the mean ranks for significance with respect to 5 algorithms and 500
benchmark instances is 0.21.

The box plots in Figure 8.1 show that the distribution of utilisations achieved by the JOIN0-
DHDW algorithm combined with the 2SMBSBP heuristic is lower than the utilisations for the
four other algorithms. This is reflected in the summary in Table 8.1, where the upper and lower
quartiles, the median and maximum utilisations are lower than the four remaining algorithms.
The total number of bins used is larger than for the remaining algorithms and the number of bins
that were not repacked is largest. This results in its mean rank being the worst of all algorithms
and the Nemenyi test suggests that it is significantly worse than the remaining algorithms. This
result is expected when considering the results that the JOIN algorithm yielded for the strip
packing problem in §6.2.5.

The distributions of the four other algorithms are too similar to compare by means of the box
plots in Figure 8.1 or the quartile values in Table 8.1. Instead, the mean ranks aid in the
distinction of one of the algorithms from the others, because the mean rank of 2.99 for the
B2FW2DHDW algorithm suggests it is significantly different from the three other algorithms
according to the Nemenyi test. It is also the algorithm that packed items into the second
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Figure 8.1: Box plot of the results for the best of the level-packing heuristics from each set in §6.2 for
the MBSBPP for all MBSBPP benchmark instances described in §8.1.

largest number of bins, after the JOIN0DHDW algorithm. However, the Nemenyi test was
unable to distinguish between the remaining three algorithms. The B2FA10DHDW algorithm
yields the highest mean rank, a difference of only 0.04 to the BFDHDW algorithm which yields
the best mean rank (the critical distance is 0.21 for five algorithms and 857 instances). The
BFDHDW algorithm was able to utilise the smallest number of bins in total (2 fewer than the
KPTRDHDW algorithm, 28 fewer than the B2FA10DHDW algorithm) and repack 14 more bins
than the KPTRDHDW algorithm, while the B2FA10DHDW algorithm was able to repack 68
more, thereby achieving the smallest number of bins that were not repacked.

In an attempt to further differentiate between the algorithms, the fitness ν as proposed by
Hopper [75] may be used as a measure of packing density (see §2.3.2). The mean ranks yield
the same order as for µ, but subjecting the algorithms’ fitness results to the Nemenyi test
yields classes suggesting that the BFDHDW algorithm is significantly better than the other
algorithms. However, the test is not powerful enough to distinguish between the KPTRDHDW
and B2FA10DHDW algorithms. However, the weakness of the KPTRDHDW algorithm is the
time required to find solutions to large problems, requiring two orders of magnitude more time
to find a solution to the 2 900 item problem by Wang [155]. Therefore, the results suggest that
the BFDHDW algorithm is the best level-packing algorithm to use in conjunction with the
2SMBSBP algorithm in order to solve the MBSBPP.

The mean ranks in Table 8.2 confirm the JOIN0DHDW algorithm’s poor performance — the
algorithm consistently yields the worst rank. For 5 algorithms and 170 benchmark instances
the Nemenyi CD increases to 0.47. This means that the Nemenyi test does not find a significant
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BFDHDW KPTRDHDW JOIN0DHDW B2FA10DHDW B2FW2DHDW

Min. µ 47.4% 47.4% 47.4% 47.4% 47.4%
Low. Q. µ 76.9% 76.7% 74.3% 76.8% 76.7%
Med. µ 83.1% 83.0% 79.3% 83.0% 82.2%
Up. Q. µ 87.2% 87.0% 83.7% 87.2% 86.5%
Max. µ 96.9% 95.6% 92.7% 96.9% 96.9%
IQR 10.3% 10.3% 9.4% 10.4% 9.8%
Wang P1 t (s) 5.9768 916.58 6.1197 7.0358 5.8858
Total Bins 9306 9308 9789 9334 9397
Repacked Bins 1503 1491 1772 1559 1581
% Repacked 16.2% 16.0% 18.1% 16.7% 16.8%
Stationary Bins 7 803 7 817 8 017 7 775 7 816
Mean µ Rank 2.68 (1) 2.72 (2) 3.86 (5) 2.74 (3) 2.99 (4)
Nem. µ Class C C A C B
Mean ν Rank 2.46 (1) 2.69 (2) 4.11 (5) 2.74 (3) 3.00 (4)
Nem. ν Class D C A C B

Table 8.1: Overview of the level-packing algorithmic results for the MBSBPP. The row labelled ‘Min.
µ’ contains the minimum bin utilisation over the 857 MBSBP benchmark instances, while the rows
labelled ‘Low. Q. µ’, ‘Med. µ’, ‘Up. Q. µ’, ‘Max. µ’ and ‘IQR’ contain the lower quartile, median, upper
quartile, maximum and interquartile range of the results for the instances, respectively. The row labelled
‘Wang P1 t (s)’ contains the time taken (in seconds) for the algorithms to complete the packing of the
first problem by Wang [155], the largest benchmark instance. The row labelled ‘Total Bins’ is the total
number bins used over all MBSBP benchmark instances, the row labelled ‘Repacked Bins’ documents
the total number of bins that were repacked during the repacking phase of the 2SMBSBP algorithm,
the row labelled ‘% Repacked’ indicates what percentage of the total number of bins this repack value
is, and the row labelled ‘Stationary Bins’ lists the number of bins that were not repacked. The row
labelled ‘Mean µ Rank’ documents the mean ranks of the algorithms when applied to the utilisation (the
ranks are given in parentheses), while the row labelled ‘Nem. µ Class’ shows which algorithms are not
significantly different according to the Nemenyi test [40] by assigning them the same letter. The same
tests are performed for the fitness ν in the two rows that follow.

BFDHDW KPTRDHDW JOIN0DHDW B2FA10DHDW B2FW2DHDW

Wang P1 µ 84.4% 84.4% 73.4% 85.3% 85.3%
Wang P2 µ 88.2% 88.2% 79.9% 88.2% 84.1%
Hopper M1 2.20 3.00 5.00 2.20 2.60
Hopper M2 2.20 3.00 5.00 2.20 2.60
Hopper M3 2.20 2.00 4.90 2.50 3.40
PS 1 2.25 2.78 4.64 2.60 2.73
PS 2 2.87 2.77 3.72 2.82 2.82
PS 3 2.26 2.63 4.47 2.44 3.20
PS 4 2.78 2.86 3.59 2.78 2.99
PS 5 2.28 2.27 4.31 2.83 3.31
PS 6 2.82 2.82 3.58 2.82 2.96
PS 7 2.76 2.63 3.42 3.08 3.11
PS 8 2.37 2.32 4.74 2.57 3.00
PS 9 3.12 2.36 3.75 2.77 3.00
PS 10 2.41 2.31 4.20 2.62 3.46
Nice 2.95 2.76 3.61 2.72 2.95
Path 2.74 3.13 3.47 2.81 2.86

Table 8.2: Level-packing algorithmic results for the MBSBPP for various sets of benchmark instances.
The utilisation achieved for the two problems by Wang are followed by the mean ranks of the algorithms
for the Hopper and Turton (labelled M), Pisinger and Sigurd (labelled PS) and new benchmark instances
(split into Nice and Path instances).
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difference between the best four algorithms for the nice and path data sets, but the mean
ranks suggest that the KPTRDHDW and B2FA10DHDW algorithms may be better than the
BFDHDW algorithm for nice data. However, the positions may be reversed for pathological
input, particularly between the BFDHDW and KPTRDHDW algorithms.

BFDHDW KPTRDHDW JOIN0DHDW B2FA10DHDW B2FW2DHDW

Mean p Rank 2.67 (2) 2.65 (1) 3.81 (5) 2.84 (3) 3.04 (4)
Nem. p Class C C A BC B
100 t (ms) 1.8920 108.73 1.8169 1.9134 1.7623
BW 1 20.62 20.64 22.22 20.66 20.72
BW 2 2.64 2.62 2.72 2.64 2.64
BW 3 14.72 14.84 16.14 14.88 15.14
BW 4 2.60 2.64 2.70 2.60 2.64
BW 5 18.70 18.70 19.74 18.92 19.06
BW 6 2.36 2.38 2.40 2.36 2.36
MV 7 17.18 17.10 17.36 17.26 17.28
MV 8 17.52 17.32 19.14 17.54 17.72
MV 9 42.78 42.76 43.16 42.92 42.98
MV 10 10.74 10.72 11.42 10.82 11.00
Total Bins 7 493 7 486 7 850 7 530 7 577

Table 8.3: Level-packing algorithmic results for the SBSBPP for various sets of benchmark instances.
The row labelled ‘Mean p Rank’ shows the mean rank over the 500 benchmark instances in terms of
the number of bins packed, while the row ‘Nem. p Class’ shows which algorithms are not significantly
different by placing them in the same class, indicated by a letter. Finally, the row labelled ‘100 t (ms)’
shows the mean time (in milliseconds) that the algorithms required to solve the SBSBP benchmark
instances with 100 items. The results below these rows are the mean numbers of bins for each problem
class.

The same algorithms, combined with the 2SMBSBP algorithm, were applied to a 500 instance
benchmark set of a special case of the MBSBPP, namely the SBSBPP, and the results are
shown in Table 8.3. The JOIN0DHDW algorithm was the worst again, and the B2FW2DHDW
algorithm yielded the second worst set of results for this problem. The B2FA10DHDW algorithm
yields the third best mean rank, but the Nemenyi test was not powerful enough to distinguish
between it and the other algorithms, excluding the JOIN0DHDW algorithm. However, the
Nemenyi test suggests that the BFDHDW and KPTRDHDW algorithms are significantly better
than those with the worst two ranks. The KPTRDHDW algorithm may yield the best mean
rank (by 0.02) in this set and the lowest number of bins in total, but it is slow, requiring a mean
time of 108.7 milliseconds to find a solution to the instances of 100 items, while the BFDHDW
algorithm required a mean of 1.892 milliseconds to solve the same problems.

8.3 Results of Pseudolevel-Packing MBSBP Heuristics

This section consists of two subsections: one in which the results for the pseudolevel algo-
rithms that yield guillotine results are reported and one in which those algorithms that cannot
guarantee a guillotine layout are considered. In §8.3.1 the best of the FCOG algorithms (the
FCOGDHDW algorithm) are compared with the best BFDH* algorithm (the BFDH*(DW) al-
gorithm), the best of the SAS algorithms (the new, modified SASm algorithm), the new BFS
algorithm and the best of the SL algorithms for the strip packing problem, SL5 (it is interesting
to note that the SLδ, δ ∈ {0, 5, 10, 15} algorithms yield the same results for all 1 357 bench-
mark instances). The results obtained by these algorithms, when applied to the strip packing
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problem, may be found in §6.3.1. In §8.3.2 certain non-guillotine pseudolevel algorithms are
compared, including the FCOFDHDW algorithm (found to be the best of the FCOF algorithms
in 6.4.1), the SC algorithm and the SCR algorithm.

8.3.1 Results for the Guillotine Heuristics

This subsection is dedicated to the results of the pseudolevel-packing algorithms that are guar-
anteed to yield guillotine layouts. A box plot of the distribution of results for the utilisation
measure may be found in Figure 8.2, while Table 8.4 contains a summary of the various al-
gorithmic results for the MBSBPP. Further details may be found in Table 8.5, in which mean
results for the various sets of benchmark instances are listed. A Friedman test performed on
the utilisation and fitness scores yields P = 0, suggesting that the null hypothesis that all algo-
rithms are equivalent may be rejected. The Nemenyi CD for five algorithms and 857 benchmark
instances at a 95% confidence level is 0.21.
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Figure 8.2: Box plot of the results for the best of the guillotine pseudolevel-packing heuristics in §6.3.1
for the MBSBPP for all MBSBPP benchmark instances described in §8.1.

The box plots in Figure 8.2 show how the application of the SASm algorithm, in combination
with the 2SMBSBP algorithm, yields a distribution of results that are shifted lower than those
of the other algorithms, suggesting that it would not be the best choice of algorithm for finding
a dense packing. There is further evidence of this in Table 8.4 and Table 8.5. The SASm
algorithm yields lower quartile, median and upper quartile values that are approximately 4%
worse than the best values. The best utilisation it achieves is 2% lower than that of the next
best algorithm. Its poor performance is reflected in the number of bins required to pack all
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FCOGDHDW BFDH*(DW) SASm BFS SL5

Min. µ 56.1% 56.1% 47.4% 47.4% 47.4%
Low. Q. µ 78.4% 77.6% 74.0% 78.0% 78.1%
Med. µ 84.3% 83.8% 80.0% 84.1% 84.1%
Up. Q. µ 89.1% 88.5% 84.4% 88.9% 88.9%
Max. µ 97.6% 96.9% 94.6% 97.1% 97.3%
IQR 10.7% 11.0% 10.4% 10.9% 10.8%
Wang P1 t (s) 16.082 6.6837 5.4528 5.9540 5.9386
Total Bins 9 248 9 268 9 642 9 254 9 259
Repacked Bins 1 538 1 536 1 840 1 549 1 561
% Repacked 16.6% 16.6% 19.1% 16.7% 16.9%
Stationary Bins 7 710 7 732 7 802 7 705 7 698
Mean µ Rank 2.70 (1) 2.86 (4) 3.98 (5) 2.74 (3) 2.71 (2)
Nem. µ Class B B A B B
Mean ν Rank 2.56 (1) 2.93 (4) 4.19 (5) 2.67 (3) 2.65 (2)
Nem. ν Class C B A C C

Table 8.4: Overview of the guillotine pseudolevel-packing algorithmic results for the MBSBPP. The
row labelled ‘Min. µ’ contains the minimum bin utilisation over the 857 MBSBP benchmark instances,
while the rows labelled ‘Low. Q. µ’, ‘Med. µ’, ‘Up. Q. µ’, ‘Max. µ’ and ‘IQR’ contain the lower quartile,
median, upper quartile, maximum and interquartile range of the results for the instances, respectively.
The row labelled ‘Wang P1 t (s)’ contains the time taken (in seconds) for the algorithms to complete the
packing of the first problem by Wang [155], the largest benchmark instance. The row labelled ‘Total Bins’
is the total number bins used over all MBSBP benchmark instances, the row labelled ‘Repacked Bins’
documents the total number of bins that were repacked during the repacking phase of the 2SMBSBP
algorithm, the row labelled ‘% Repacked’ indicates what percentage of the total number of bins this
repack value is, and the row labelled ‘Stationary Bins’ lists the number of bins that were not repacked.
The row labelled ‘Mean µ Rank’ documents the mean ranks of the algorithms when applied to the
utilisation (the ranks are given in parentheses), while the row labelled ‘Nem. µ Class’ shows which
algorithms are not significantly different according to the Nemenyi test [40] by assigning them the same
letter. The same tests are performed for the fitness ν in the two rows that follow.

FCOGDHDW BFDH*(DW) SASm BFS SL5

Wang P1 µ 84.4% 84.4% 77.7% 84.4% 84.4%
Wang P2 µ 90.5% 90.5% 90.5% 90.5% 90.5%
Hopper M1 2.60 2.60 4.60 2.60 2.60
Hopper M2 2.50 2.90 4.20 2.90 2.50
Hopper M3 2.70 2.70 5.00 2.30 2.30
PS 1 2.74 2.70 4.14 2.74 2.68
PS 2 2.85 2.85 3.60 2.85 2.85
PS 3 2.54 2.53 4.81 2.50 2.62
PS 4 2.71 2.81 3.86 2.81 2.81
PS 5 2.58 2.88 4.24 2.59 2.71
PS 6 2.76 2.81 3.75 2.86 2.82
PS 7 2.84 3.03 3.18 2.98 2.97
PS 8 2.81 2.80 4.24 2.64 2.51
PS 9 3.43 2.87 3.10 2.80 2.80
PS 10 2.38 2.89 4.68 2.47 2.58
Nice 2.70 2.84 3.83 2.88 2.75
Path 2.53 3.04 4.13 2.66 2.64

Table 8.5: Guillotine pseudolevel-packing algorithmic results for the MBSBPP for various sets of
benchmark instances. The utilisation achieved for the two problems by Wang are followed by the mean
ranks of the algorithms for the Hopper and Turton (labelled M), Pisinger and Sigurd (labelled PS) and
new benchmark instances (split into Nice and Path instances).
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items in all the benchmark instances. It requires 9 642 bins compared to the 9 268 bins required
by the next best algorithm, the BFDH*(DW) algorithm, which requires only 20 bins more than
the FCOGDHDW algorithm, the best of the set in this regard. However, the SASm algorithm
does yield the fastest solution for the largest problem instance.

It is difficult to distinguish between the remaining four algorithms in this set; the distribution
details in Table 8.4 are useless in this regard. The difference between mean ranks for the four
algorithms is approximately 0.16, a value lower than the CD that would suggest a significant
difference between the algorithms. Using the mean ranks for the fitness test allows for differ-
entiation of the BFDH*(DW) algorithm from the four other algorithms, a result which would
have been expected from the results of the strip packing problem (see §6.3.1). This is evident
for pathological data sets, for which the BFDH*(DW) algorithm is significantly worse than the
FCOGDHDW algorithm (the CD is 0.47 and the mean rank gap between the two is 0.50). For
nice data sets they are not significantly different according to the Nemenyi test. The packing
performance of the FCOGDHDW, BFS and SL5 algorithms are not significantly different ac-
cording to the Nemenyi test, but the FCOGDHDW algorithm does require more than double the
time required by the BFS and SL5 algorithms to find solutions to the largest problem instance,
suggesting that one of the two new algorithms may be the best algorithm in this set for the
MBSBPP.

FCOGDHDW BFDH*(DW) SASm BFS SL5

Mean p Rank 2.79 (1) 2.82 (3) 3.78 (5) 2.80 (2) 2.82 (4)
Nem. p Class B B A B B
100 t (ms) 4.2915 2.5469 1.6787 2.0792 2.0243
BW 1 20.60 20.60 21.24 20.60 20.62
BW 2 2.60 2.60 2.70 2.60 2.60
BW 3 14.72 14.72 16.26 14.72 14.80
BW 4 2.56 2.56 2.70 2.58 2.56
BW 5 18.70 18.70 19.66 18.70 18.70
BW 6 2.36 2.36 2.44 2.36 2.36
MV 7 17.10 17.14 17.22 17.12 17.12
MV 8 17.50 17.52 18.08 17.50 17.54
MV 9 42.78 42.78 43.00 42.78 42.78
MV 10 10.52 10.60 11.42 10.52 10.54
Total Bins 7 472 7 479 7 736 7 474 7 481

Table 8.6: Guillotine pseudolevel-packing algorithmic results for the SBSBPP for various sets of bench-
mark instances. The row labelled ‘Mean p Rank’ shows the mean rank over the 500 benchmark instances
in terms of the number of bins packed, while the row ‘Nem. p Class’ shows which algorithms are not
significantly different by placing them in the same class, indicated by a letter. Finally, the row labelled
‘100 t (ms)’ shows the mean time (in milliseconds) that the algorithms required to solve the SBSBP
benchmark instances with 100 items. The results below these rows are the mean numbers of bins for
each problem class.

The same algorithms, combined with the 2SMBSBP algorithm, were applied to the 500 bench-
mark instances by Berkey and Wang [16] and Martello and Vigo [112], and the results are listed
in Table 8.9. The SASm algorithm was once again the worst of the set, consistently requiring
the largest number of bins to accommodate all items. However, the four other algorithms are
very similar, yielding a range of mean ranks of 0.04 for a CD of 0.27, as was the case for the
MBSBPP. The FCOGDHDW algorithm requires approximately double the time required by the
BFS and SL5 algorithms to find a similar packing for the benchmark instances where 100 items
were packed into bins.
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8.3.2 Results for the Free-Packing Heuristics

This subsection is dedicated to the results of the pseudolevel-packing algorithms that are not
guaranteed to yield guillotine layouts. A box plot of the distribution of results for the utilisation
measure may be found in Figure 8.2, while Table 8.4 contains a summary of the algorithmic
results for the MBSBPP. Further details may be found in Table 8.5, in which mean results for
the various sets of benchmark instances are shown. A Friedman test performed on the utilisation
yields P = 0.0044, while the same test applied to the fitness scores yields P = 0.0011, suggesting
that the null hypothesis that all algorithms are equivalent may be rejected. The Nemenyi CD
for three algorithms and 857 benchmark instances at a 95% confidence level is 0.11.
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Figure 8.3: Box plot of the results for the best of the non-guillotine pseudolevel-packing heuristics in
§6.3.2 for the MBSBPP for all MBSBPP benchmark instances described in §8.1.

The box plots in Figure 8.3 do not suggest a large difference between the algorithms, and the
distribution figures in Table 8.7 confirm this, with the difference between the best and worst
algorithms being approximately 0.3% (absolute) for the lower quartile, the median and the
upper quartile values. The FCOFDHDW algorithm utilises fewer bins in total than the SC and
SCR algorithms, but the SC and SCR algorithms are able to repack a larger number of bins
than the FCOFDHDW algorithm, yielding smaller numbers of bins that were not repacked for
the SC and SCR algorithms than for the FCOFDHDW algorithm. The Nemenyi test (at a 95%
confidence level) is not powerful enough to distinguish between the three algorithms based on
utilisations, but finds a significant difference between the FCOFDHDW and SCR algorithms
when the fitness measure is used to compare the algorithms. The better packing performance
(though not significantly different from the SC algorithm) of the FCOFDHDW algorithm is
balanced by the time it requires to solve the largest benchmark instance — it requires more
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FCOFDHDW SC SCR

Min. µ 56.1% 56.1% 55.2%
Low. Q. µ 78.5% 78.3% 78.2%
Med. µ 84.3% 84.1% 84.0%
Up. Q. µ 89.2% 89.1% 88.9%
Max. µ 97.6% 97.6% 97.6%
IQR 10.7% 10.8% 10.7%
Wang P1 t (s) 16.328 5.8691 6.5102
Total Bins 9 246 9 280 9 286
Repacked Bins 1 535 1 610 1 610
% Repacked 16.6% 17.3% 17.3%
Stationary Bins 7 711 7 670 7 676
Mean µ Rank 1.96 (1) 2.01 (2) 2.03 (3)
Nem. µ Class A A A
Mean ν Rank 1.92 (1) 2.00 (2) 2.08 (3)
Nem. ν Class B AB A

Table 8.7: Overview of the non-guillotine pseudolevel-packing algorithmic results for the MBSBPP. The
row labelled ‘Min. µ’ contains the minimum bin utilisation over the 857 MBSBP benchmark instances,
while the rows labelled ‘Low. Q. µ’, ‘Med. µ’, ‘Up. Q. µ’, ‘Max. µ’ and ‘IQR’ contain the lower quartile,
median, upper quartile, maximum and interquartile range of the results for the instances, respectively.
The row labelled ‘Wang P1 t (s)’ contains the time taken (in seconds) for the algorithms to complete the
packing of the first problem by Wang [155], the largest benchmark instance. The row labelled ‘Total Bins’
is the total number bins used over all MBSBP benchmark instances, the row labelled ‘Repacked Bins’
documents the total number of bins that were repacked during the repacking phase of the 2SMBSBP
algorithm, the row labelled ‘% Repacked’ indicates what percentage of the total number of bins this
repack value is, and the row labelled ‘Stationary Bins’ lists the number of bins that were not repacked.
The row labelled ‘Mean µ Rank’ documents the mean ranks of the algorithms when applied to the
utilisation (the ranks are given in parentheses), while the row labelled ‘Nem. µ Class’ shows which
algorithms are not significantly different according to the Nemenyi test [40] by assigning them the same
letter. The same tests are performed for the fitness ν in the two rows that follow.

FCOFDHDW SC SCR

Wang P1 µ 84.4% 84.4% 84.4%
Wang P2 µ 90.5% 90.5% 90.5%
Hopper M1 2.00 2.00 2.00
Hopper M2 2.17 1.92 1.92
Hopper M3 1.69 2.15 2.15
PS 1 1.82 2.06 2.12
PS 2 2.02 1.99 1.99
PS 3 1.87 2.08 2.05
PS 4 1.96 1.96 2.08
PS 5 1.81 2.08 2.11
PS 6 2.00 2.00 2.00
PS 7 1.87 2.08 2.05
PS 8 2.02 1.99 1.99
PS 9 2.33 1.85 1.82
PS 10 1.91 1.99 2.10
Nice 1.97 1.99 2.04
Path 1.96 2.01 2.03

Table 8.8: Non-guillotine pseudolevel-packing algorithmic results for the MBSBPP for various sets of
benchmark instances. The utilisation achieved for the two problems by Wang are followed by the mean
ranks of the algorithms for the Hopper and Turton (labelled M), Pisinger and Sigurd (labelled PS) and
new benchmark instances (split into Nice and Path instances).
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than double the time of the SC algorithm to find a solution. The results in Table 8.8 show
that there does not appear to be a large difference between the three algorithms for nice or
pathological data.

FCOFDHDW SC SCR

Mean p Rank 1.93 (1) 2.03 (2) 2.04 (3)
Nem. p Class A A A
100 t (ms) 3.9288 2.1285 2.5725
BW 1 20.60 20.62 20.64
BW 2 2.60 2.60 2.60
BW 3 14.72 14.86 14.86
BW 4 2.54 2.54 2.56
BW 5 18.70 18.88 18.88
BW 6 2.36 2.36 2.36
MV 7 17.10 17.18 17.18
MV 8 17.50 17.52 17.52
MV 9 42.78 42.90 42.90
MV 10 10.52 10.58 10.62
Total Bins 7 471 7 502 7 506

Table 8.9: Non-guillotine pseudolevel-packing algorithmic results for the SBSBPP for various sets of
benchmark instances. The row labelled ‘Mean p Rank’ shows the mean rank over the 500 benchmark
instances in terms of the number of bins packed, while the row ‘Nem. p Class’ shows which algorithms
are not significantly different by placing them in the same class, indicated by a letter. Finally, the row
labelled ‘100 t (ms)’ shows the mean time (in milliseconds) that the algorithms required to solve the
SBSBP benchmark instances with 100 items. The results below these rows are the mean numbers of bins
for each problem class.

A Friedman test, at a 95% confidence level, on the number of bins packed for the SBSBPP
yields P = 1.74× 10−10, suggesting that the null hypothesis that all algorithms are equivalent
may be rejected. However, the Nemenyi test is again not powerful enough (at a confidence
level of 95%) to distinguish between the algorithms in this case. The FCOFDHDW algorithm
does appear to yield either an equal mean number of bins per class, or less than that achieved
by the SC or SCR algorithms. Comparing the total number of bins utilised suggests that the
FCOFDHDW algorithm is the best of this set, but the time is takes to solve problems is its
weakness, requiring almost double the time required by the SC algorithm.

8.4 Results of the BFmTN Heuristic for the MBSBPP

This section is dedicated to the presentation of the three variations on the modified version of
the BFTN algorithm when combined with the 2SMBSBP algorithm. A box plot of the results
may be found in Figure 8.4 and an overview of the algorithmic results may be found in Table
8.10. Further detail of the algorithms’ performances for the various benchmark sets may be
found in Table 8.11. A Friedman test applied to the utilisation and fitness results for the 857
MBSBPP benchmark instances yielded P = 0 for both cases, suggesting that the null hypothesis
that all algorithms are equivalent may be rejected.

The box plot for the BFmTN algorithm with items sorted according to decreasing area appears
to indicate a distribution that is shifted further toward full utilisation than do the sorting
methods that sort according to a user-defined fraction. These observations are shown to be
accurate by the summary of the results in Table 8.10, with the utilisation values consistently
decreasing from left to right. The mean rank of the BFmTN(DA) algorithm is the lowest for
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Figure 8.4: Box plot of the results for the best of the plane-packing heuristics in §6.4.7 for the MBSBPP
for all MBSBPP benchmark instances described in §8.1.

both utilisation and fitness scores and the algorithm is significantly better than the remaining
algorithms according to the Nemenyi test which yields a CD of 0.11 for three algorithms and
857 benchmark instances. The better performance of the BFmTN(DA) algorithm is evident
in the total number of bins packed. It only requires 9 158 bins in total to pack all the items
in the benchmark instances for the MBSBPP, while the BFmTN1

3WDWDH algorithm requires
123 more and the BFmTN2

5RDWDH algorithm requires 150 more bins to pack all of the items.
However, the BFmTN2

5RDWDH algorithm is able to repack more bins than the other two
algorithms, resulting in it having the lowest number of stationary bins. A significant difference
between the two algorithms is the time required to solve the largest of the problem instances.
The DA variation requires almost 5 seconds to solve the problem, while the 1

3WDWDH variation
requires over 140 seconds and the 2

5RDWDH algorithm requires approximately 130 seconds.
This is likely to be due to the many re-sorting steps for each bin packing as either the bin width
(and therefore the items that should by sorted by width and not height), or the fraction of items
sorted by width, may change often. However, the two slower algorithms yield better utilisations
for the problem (see Table 8.11).

Table 8.11 shows the mean ranks for the various sets of benchmark instances. The results suggest
that the M1 and M3 sets of instances are best solved by means of the BFmTN1

3WDWDH
algorithm, which achieves mean utilisations of 96.3% and 94.7% for the two problem sets,
respectively, compared with the 94.9% and 93.3% by the BFmTN(DA) algorithm and the 95.5%
and 93.9% by the BFmTN2

5RDWDH algorithm. The results for the M2 set is closer, with a
mean of 87.5% for the BFmTN(DA) algorithm, and 87.1% for the other two algorithms. The
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BFmTN(DA) BFmTN( 1
3
W) BFmTN( 2

5
R)

Min. µ 56.3% 47.4% 47.4%
Low. Q. µ 79.4% 78.2% 78.0%
Med. µ 85.3% 84.1% 84.0%
Up. Q. µ 90.1% 89.5% 89.1%
Max. µ 98.8% 98.8% 98.4%
IQR 10.7% 11.2% 11.1%
Wang P1 t (s) 4.8691 142.50 129.26
Total Bins 9 158 9 281 9 308
Repacked Bins 1 541 1 662 1 709
% Repacked 16.8% 17.9% 18.4%
Stationary Bins 7 617 7 619 7 599
Mean µ Rank 1.83 (1) 2.08 (2) 2.09 (3)
Nem. µ Class B A A
Mean ν Rank 1.68 (1) 2.12 (2) 2.19 (3)
Nem. ν Class B A A

Table 8.10: Overview of the plane-packing algorithmic results for the MBSBPP. The row labelled
‘Min. µ’ contains the minimum bin utilisation over the 857 MBSBP benchmark instances, while the rows
labelled ‘Low. Q. µ’, ‘Med. µ’, ‘Up. Q. µ’, ‘Max. µ’ and ‘IQR’ contain the lower quartile, median, upper
quartile, maximum and interquartile range of the results for the instances, respectively. The row labelled
‘Wang P1 t (s)’ contains the time taken (in seconds) for the algorithms to complete the packing of the
first problem by Wang [155], the largest benchmark instance. The row labelled ‘Total Bins’ is the total
number bins used over all MBSBP benchmark instances, the row labelled ‘Repacked Bins’ documents
the total number of bins that were repacked during the repacking phase of the 2SMBSBP algorithm,
the row labelled ‘% Repacked’ indicates what percentage of the total number of bins this repack value
is, and the row labelled ‘Stationary Bins’ lists the number of bins that were not repacked. The row
labelled ‘Mean µ Rank’ documents the mean ranks of the algorithms when applied to the utilisation (the
ranks are given in parentheses), while the row labelled ‘Nem. µ Class’ shows which algorithms are not
significantly different according to the Nemenyi test [40] by assigning them the same letter. The same
tests are performed for the fitness ν in the two rows that follow.

BFmTN(DA) BFmTN( 1
3
W) BFmTN( 2

5
R)

Wang P1 µ 83.4% 86.3% 86.8%
Wang P2 µ 90.5% 90.5% 90.5%
Hopper M1 2.30 1.70 2.00
Hopper M2 1.80 2.40 2.40
Hopper M3 2.40 1.50 2.10
PS 1 1.55 2.40 2.05
PS 2 2.01 1.86 2.13
PS 3 1.52 2.34 2.14
PS 4 1.92 2.04 2.04
PS 5 1.38 2.43 2.19
PS 6 1.85 2.06 2.09
PS 7 2.05 2.06 1.89
PS 8 2.07 1.86 2.07
PS 9 1.39 2.17 2.44
PS 10 1.73 2.26 2.01
Nice 1.91 2.00 2.09
Path 1.95 1.99 2.06

Table 8.11: Plane-packing algorithmic results for the MBSBPP for various sets of benchmark instances.
The utilisation achieved for the two problems by Wang are followed by the mean ranks of the algorithms
for the Hopper and Turton (labelled M), Pisinger and Sigurd (labelled PS) and new benchmark instances
(split into Nice and Path instances).
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mean ranks for the algorithms suggest that the BFmTN(DA) algorithm performs very well for
the PS 1, PS 3, PS 5 and PS 9 sets. These differences are, in fact, significant according to
the Nemenyi test which yields a CD of 0.47 for 3 algorithms and 50 benchmark instances at a
confidence level of 95%. The common theme to these benchmark instances is that the items
are large relative to the bins. Instances PS 1 and PS 5 are created by setting item widths and
heights equal to uniformly random values in the range [1, D], while bin dimensions are selected
uniformly in the range [D/2, D], where D = 10 for PS 1 and D = 100 for PS 5. For PS 3 the item
dimensions are selected in the range [1, 35] and the bin dimensions in the range [20, 40]. The set
PS 9 belongs to this group of instances containing large items relative to their bins, because the
dimensions of 70% of the items are selected within the range [50, 100], which is the same range
used to select the dimensions for the bins. The BFmTN(DA) algorithm yields significantly
better results than the BFmTN1

3WDWDH algorithm for the benchmark instance set PS 10
(where the dimensions of 70% of the items are selected uniformly within the range [1, 50]), but
it is not significantly better than the BFmTN2

5RDWDH algorithm for these instances.

BFmTN(DA) BFmTN( 1
3
W) BFmTN( 2

5
R)

Mean p Rank 1.77 (1) 2.15 (3) 2.08 (2)
Nem. p Class B A A
100 t (ms) 1.6618 7.1294 8.1977
BW 1 20.20 20.58 20.44
BW 2 2.56 2.52 2.58
BW 3 14.54 15.00 14.94
BW 4 2.52 2.54 2.56
BW 5 18.34 19.12 19.02
BW 6 2.32 2.32 2.32
MV 7 16.88 17.48 17.48
MV 8 17.22 17.36 17.38
MV 9 42.74 42.90 42.76
MV 10 10.42 10.68 10.56
Total Bins 7 387 7 525 7 502

Table 8.12: Plane-packing algorithmic results for the SBSBPP for various sets of benchmark instances.
The row labelled ‘Mean p Rank’ shows the mean rank over the 500 benchmark instances in terms of
the number of bins packed, while the row ‘Nem. p Class’ shows which algorithms are not significantly
different by placing them in the same class, indicated by a letter. Finally, the row labelled ‘100 t (ms)’
shows the mean time (in milliseconds) that the algorithms required to solve the SBSBP benchmark
instances with 100 items. The results below these rows are the mean numbers of bins for each problem
class.

The results for the SBSBPP in Table 8.12 suggest similar results for the algorithms when
compared to the results for the MBSBPP. The BFmTN(DA) algorithm, with a mean rank
of 1.77, proves to be significantly better than the BFmTN1

3WDWDH and BFmTN2
5RDWDH

algorithms when considering all 500 instances (the CD is 0.15 for three algorithms and 500
benchmark instances at a confidence level of 95%). However, the Nemenyi test suggests that
there is no significant difference between the BFmTN1

3WDWDH and BFmTN2
5RDWDH algo-

rithms. The result of the ranking is expected if one compares the number of bins required by the
algorithms to pack the items. The BFmTN(DA) algorithm requires only 7 387 bins while the
BFmTN1

3WDWDH and BFmTN2
5RDWDH algorithms require 138 and 115 more bins, respec-

tively. The Nemenyi test suggests that the BFmTN(DA) algorithm is significantly better than
the BFmTN1

3WDWDH algorithm for the BW 1 set of instances and significantly better than
both other algorithms for the BW 3, BW 5 and MV 7 instances, corroborating the evidence
from the results for the MBSBPP that the BFmTN(DA) algorithm is significantly better than
the other algorithms for problem instances where the items are large relative to the bin sizes.
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There does not appear to be a significant difference between the three algorithms for the other
benchmark instances. The BFmTN(DA) algorithm was able to solve the problems significantly
faster than the other algorithms — in approximately a quarter of the time for instances of 100
items.

8.5 Comparison of the Best Heuristics from each Class

In this section the best algorithms from each class are compared with one another. Of the
level-packing algorithms the BFDHDW algorithm was shown to yield the best results, or to be
part of the set of algorithms that were not significantly different from one another but yielded
the best results, for the MBSBPP and the SBSBPP. It was also the second fastest algorithm for
the largest problem instance (1.5% slower than the fastest algorithm), but third fastest for the
SBSBPP (7.4% slower than the B2FW2DHDW algorithm). Deciding on a single representative
from the set of guillotine pseudolevel algorithms is difficult. The FCOGDHDW, BFS and SL5

algorithms cannot be separated in terms of performance by the Nemenyi test. The FCOGDHDW
algorithm consistently yields the lowest mean rank for the utilisation and fitness scores for the
MBSBPP, and results in the smallest number of total bins packed for both problems. However,
this performance comes at a time cost — the FCOGDHDW requires more than double the
time required by the other two algorithms to find solutions to the same problems. Therefore,
the FCOGDHDW, SL5 (the best in §6.3.1) and SASm (for its speed) algorithms are included
in the comparisons of this section. The free-packing pseudolevel algorithms yield very similar
results (a significant difference between the FCOFDHDW and SCR algorithms could only be
found by comparing their fitness scores), with the FCOFDHDW consistently yielding the lowest
mean rank and the smallest number of bins packed. However, this comes at a cost to the
solution time — the SC algorithm requires less than half the time required by the FCOFDHDW
algorithm to find a solution to the largest MBSBPP instance. The SCR algorithm is slower
than the SC algorithm and has a lower mean rank with respect to all solution measures and
may be eliminated from consideration. Finally, the BFmTN(DA) algorithm finds significantly
better solutions than the other algorithms in the set and does so in the least time. Performing
a Friedman test on the utilisation and fitness scores yields P = 0, suggesting that the null
hypothesis that the algorithms are all equivalent may be rejected. Figure 8.5 contains box
plots of the utilisation results for the selected algorithms with respect to the 857 benchmark
instances, and Tables 8.13 and 8.14 contain further details regarding the results.

The box plot in Figure 8.5 shows that the performance of the pseudolevel-packing SASm algo-
rithm typically yields results that are worse than those of the level-packing BFDHDW algorithm,
a result that is unexpected when taking into consideration that the SASm algorithm may pack
items anywhere within a level and not only on the floor as the BFDHDW algorithm is restricted
to doing. The strip packing results suggest that the SASm algorithm would have been better
yielding lower median and upper quartile values (see Tables 6.7 and 6.8). However, the BFD-
HDW algorithm yields a distribution of results that is lower than the distribution of the other
pseudolevel-packing algorithms in this set, which is an expected result. The FCOGDHDW,
SL5, FCOFDHDW and SC algorithms yield very similar distributions, while the BFmTN(DA)
algorithm yields a distribution of utilisation scores that is shifted closer to the 100% mark.

These observations are supported by the results in Table 8.13. The SASm algorithm yields the
lowest lower quartile, median, upper quartile and maximum utilisation values. It requires the
largest number of bins to pack all the items and the result is the worst ranking, the Nemenyi
test (with a CD of 0.31 for seven algorithms and 857 instances for a 95% confidence interval)
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Figure 8.5: Box plot of the results for the best of heuristics in for the MBSBPP in this chapter when
applied to all MBSBPP benchmark instances described in §8.1.

suggesting that it is significantly worse than the other algorithms in the set. The quartile,
median and total bins packed values for the BFDHDW confirm that it is worse than the five
remaining algorithms in the set and the Nemenyi test suggests that it is significantly worse
than these algorithms with respect to utilisation and fitness results. The test also suggests
that there is no significant difference between the pseudolevel-packing algorithms, regardless
of whether they pack guillotine feasible solutions or not. However, it is interesting that the
FC algorithms yield better mean ranks than the new algorithms. The BFmTN(DA) algorithm
yields results that are significantly better than those of the other algorithms in this set. This is
an expected result, because the BFmTN(DA) algorithm is not restricted to packing items into
levels as the other algorithms are. The BFmTN(DA) algorithm is also faster than all the other
algorithms, almost half a second faster than the next fastest algorithm, the SASm algorithm.2

The BFDHDW, SL5 and SC algorithms achieve very similar solution times — in the range
[5.87, 5.98]. The two FC algorithms required the most time to find a solution to the largest
MBSBPP — more than double the time of any of the other algorithms in this set.

A closer look at the results show that even though the BFmTN(DA) may be the best algorithm
overall, it still can yield worse results than the remaining algorithms for some problem instances.

2The SASm algorithm was shown to be twice as fast for the strip packing problem (see Table 6.18) and
the speed of the BFmTN(DA) algorithm may be due to the fact that the level and pseudolevel algorithms
were accessed by the 2SMBSBP algorithm, which was written generically in order to access any of the level or
pseudolevel strip packing algorithms. The BFmTN(DA) algorithm, due to its plane-packing nature, required a
more integrated programming approach (in which a new algorithm was programmed that combined the BFmTN
and 2SMBSBP algorithms into one) which may have given it a performance advantage to the other algorithms.

Stellenbosch University  http://scholar.sun.ac.za



202 Chapter 8. An Appraisal of the Bin Packing Algorithms

For example, the mean rank of the algorithm is better only than that of the SASm algorithm
for all three of the benchmark instances by Hopper [75], and worse than the SASm algorithm
for M2. However, it is significantly better than the other algorithms for the PS 1 and PS 9
instances (the CD is 1.27 for a 95% confidence interval) and significantly better than all the
algorithms excluding the FC algorithms for the PS 5 and PS 7 instances (for which the SL5

algorithm was also not significantly different). The BFmTN(DA) algorithm achieved the second
worst ranking for the PS 8 benchmark instances (70% of the items have their height uniformly
selected in the range [67, 100] and their widths in the range [1, 50]). The SL5 algorithm achieved
the best mean rank for this set of instances. The BFmTN(DA) algorithm has the best mean
rank for the nice instances, but is only ranked fifth by mean rank for the pathological instances.
This is an unexpected result, because of the fact that the algorithm does not require the items
to be packed into levels.

The results for the SBSBPP benchmark instances are similar to those for the MBSBPP. The
SASm algorithm, when combined with the 2SMBSBP algorithm, yields results that are signif-
icantly worse than the remaining algorithms according to the Nemenyi test (the CD is 0.40
for 7 algorithms and 500 instances for a 95% confidence interval), while the BFmTN(DA)
algorithm yields significantly better results than the other algorithms in this set. However,
the Nemenyi test suggests that the BFDHDW algorithm is not significantly worse than the
pseudolevel-packing algorithms for these benchmark instances, even though this was the case
for the MBSBPP instances. The BFmTN(DA) algorithm is significantly better than all algo-
rithms for the BW 1 set (the CD is 1.27 for 50 instances at a 95% confidence level), significantly
better than the SC algorithm for the BW 5 set of instances and significantly better than the
SASm algorithm for the BW3, BW 5, MV 8 and MV 10 sets of benchmark instances.

In an attempt to find a ranking for the algorithms in terms of both utilisation and time, the
multiple bin size bin packing efficiency Γ presented in §2.3.2 may be used to compare the
algorithms. The results are shown in Table 8.16. The BFmTN(DA) algorithm is ranked first in
terms of mean utilisation and mean time over all benchmark instances and is hence ranked first
for all values of `. The SASm algorithm begins at second place due to its speed, but rapidly
looses its ranking as the utilisation becomes more important (as ` increases), ranked fifth by
the time ` = 10. At this stage the SC algorithm has moved up the rankings to second place,
overtaking the SASm and SL5 algorithms. The SL5 algorithm is ranked third at this stage,
followed by the BFDHDW algorithm in fourth place. However, as the value of ` increases and
solution time becomes less important, the ranks of the FC algorithms increase, relegating the
SASm and BFDHDW algorithms to last place. This suggests that one would typically use the
SL5 algorithm to find solutions to the guillotine multiple bin size bin packing problem rapidly,
unless time is not a factor, in which case use of the FCOG algorithm is desirable. If the guillotine
constraint is not required, then the BFmTN(DA) algorithm would typically be the best choice.

8.6 Chapter Summary

In this chapter a comparison was performed between the various algorithms for the MBSBPP.
First, a brief overview of the benchmarks available for the MBSBPP was given in §8.1.1 and
the method used to generate a new set of benchmark instances was described in §8.1.2. These
sections were included in fulfilment of Dissertation Objective XII(a), and also included a set of
benchmark instances for the SBSBPP in fulfilment of Dissertation Objective XII(b). This was
followed by an appraisal of selected level-packing algorithms when combined with the 2SMBSBP
algorithm in §8.2, of pseudolevel algorithms in §8.3 (which were split into guillotine algorithms in
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204 Chapter 8. An Appraisal of the Bin Packing Algorithms

` BFDH FCOG SASm SL5 FCOF SC BFmTN

t Rank 5 7 2 3 6 4 1
` = 1 5 7 2 3 6 4 1
` = 2 5 7 3 2 6 4 1
` = 3 5 7 4 2 6 3 1
` = 4 4 7 5 2 6 3 1
` = 5 4 7 5 2 6 3 1
` = 10 4 7 5 3 6 2 1
` = 20 4 6 7 3 5 2 1
` = 50 6 5 7 3 4 2 1
` = 300 6 5 7 4 3 2 1
` = 500 6 4 7 5 2 3 1
µ Rank 6 3 7 5 2 4 1

Table 8.16: Ranks of the best algorithms, based on the multiple bin size bin packing efficiency. The
row labelled ‘t Rank’ contains the algorithms’ ranks with respect to the mean solution time over the 857
MBSBPP benchmark instances. The row labelled ‘µ Rank’ contains the algorithms’ ranks with respect
to the mean utilisation over the 857 benchmark instances.

§8.3.1 and free-packing algorithms in §8.3.2) and of selected variations of the BFmTN algorithm
in §8.4, in fulfilment of Dissertation Objectives XIII(a) and XIII(b). Finally, the best algorithms
from each set were compared in §8.5.
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Conclusion
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The purpose of this chapter is to summarise work contained in this dissertation. In §9.1 a
detailed dissertation summary is provided, followed by a presentation of the main contributions
of this dissertation to the field of C&P problems in §9.2. Finally, an appraisal of the dissertation
contributions is performed in §9.3.

9.1 Dissertation Summary

A brief introduction to the history of C&P problems was given in the first chapter of this
dissertation. This was followed by a brief consideration of the various names that have been
given to C&P problems in the literature and some of the applications of these problems. The
objectives pursued in this dissertation were outlined and the chapter closed with a presentation
of the structure of the dissertation.

The second chapter contained a more detailed study of C&P problems. It began with a presen-
tation of two typologies of C&P problems by Dyckhoff [43] and Wäscher et al. [157] in §2.1.1 and
§2.1.2, respectively, which were followed by the subtypologies of Lodi et al. [101, 105] in §2.1.3
and Ntene [125] in §2.1.4, during which the concepts of orthogonality and guillotine packings,
as well as regular versus irregular shapes were introduced. An attempt was made to clarify
how the typologies are related, and they were then used to describe the scope of C&P problems
considered in this dissertation in fulfilment of Dissertation Objective I, as described in §1.3.
A discussion on available packing problem solution methodologies followed in §2.2 with brief
descriptions of the notions of heuristic, metaheuristic and exact methods, and to which C&P
problems they have been applied in the past, in fulfilment of Dissertation Objective II. This was
followed by a description of the scope of the solution methodologies considered in the remain-
der of the dissertation. Finally, a description of various methods of evaluating algorithms was
provided, including both theoretical evaluation methods (such as worst-case time complexity
estimates and performance bounds in §2.3.1), and computational evaluation methods in §2.3.2,
in fulfilment of Dissertation Objective III.

205
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206 Chapter 9. Conclusion

Chapter 3 was dedicated to a detailed description of various level-packing algorithms for the
strip packing problem in the literature, in fulfilment of Dissertation Objective IV(a). After a
brief introduction, the NFDH algorithm [32] was described in §3.2.1 and a pseudocode listing
was given, before an example of the working of the algorithm was given in some detail. This
was followed by the performance bounds for the NFDH algorithm that had been established by
Coffman et al. [32], and a calculation of the worst-case time complexity of the algorithm. The
NFDH algorithm was followed by the FFDH algorithm in §3.2.2, another algorithm proposed
by Coffman et al. [32], and was studied in the same manner as the NFDH algorithm. The
BFDH algorithm first described by Berkey and Wang [16], but subsequently studied in detail
by Coffman and Shor [34], was described in a similar manner in §3.2.3. The KP algorithm by
Lodi et al. [105] was also described in §3.2.4 by means of a written description, a pseudocode
listing, a worked example and a calculation of the worst-case time complexity, but was further
described by means of practical considerations for the computational implementation of the
algorithm. This led naturally to a brief description of the time-restricted KPTR algorithm. The
JOIN algorithm (described in §3.2.5) proposed by Martello et al. [110] as a heuristic to find
feasible solutions for their exact method was included in the description of the algorithms and
some variations were proposed. This concluded the descriptions of the known level-packing
algorithms.

Two new level algorithms were additionally proposed in Chapter 3 in fulfilment of Dissertation
Objective V(a). The new WFDH algorithm (see §3.3.1) is based on the WFD algorithm for 1D
packing by Johnson [84] and expands the principle of selecting the bin (level in the case of strip
packing) with the largest remaining space. The novel B2FDH algorithm described in §3.3.2 is
based on another 1D bin packing heuristic, the B2F algorithm by Friesen and Langston [55].
The algorithm packs levels until no unpacked items fit into the remaining space (if such a space
exists). An attempt is then made to repack the last item to be packed into the level. This may
happen in one of two ways: either two items replace the occupant if their combined width is
greater than that of the occupant’s width (and no greater than the space remaining when the
last item is removed), or if their combined area is greater than that of the occupant.

The largest number of new algorithms appeared as a collection of novel pseudolevel algorithms
in Chapter 4 (in fulfilment of Dissertation Objective V(b)), but a number of known pseudolevel
algorithms were first described in fulfilment of Dissertation Objective IV(b). Practical consider-
ations for the computational implementation of these algorithms were first proposed, including
a method of implementation of a so-called skyline of the items that have been packed. The
first known pseudolevel algorithms considered were the FC algorithms by Lodi et al. [106] de-
scribed in §4.2.1, of which the guillotine and free-packing versions of the oriented variation were
described in some detail. Bortfeldt [18] also proposed a pseudolevel-packing algorithm (and
named it the BFDH* algorithm) that allows rotations, but the algorithm described in some
detail in §4.2.2 was the variation that he designed for the oriented problem. In order to pack
the items efficiently, two lists were generated that allow the packing of items sorted by height
to be removed efficiently from the list of items sorted according to decreasing area. The section
on the known pseudolevel-packing algorithms was concluded by a review of the SAS algorithm
by Ntene and Van Vuuren [125,127] in §4.2.3.

A modification to the SAS algorithm initiated the section describing the new pseudolevel algo-
rithms in Chapter 4. Ntene and Van Vuuren did not exploit certain opportunities for improving
the packing density and those identified by the author were added to the algorithm, as described
in §4.3.1. This includes a change to the method of sorting items, a change to the method of com-
paring wide and narrow items when initialising a level, and two changes to the stacking rules. In
addition a new BFS algorithm was proposed in an attempt to improve on the BFDH* algorithm
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proposed by Bortfeldt [18] and was presented in §4.3.2. The spaces defined by Bortfeldt are
filled by stacking as many items as possible, instead of only packing the largest items by area
along the floor of those spaces. The novel SL algorithm described in §4.3.3, was proposed in an
attempt to utilise the stacking strategy for the BFS algorithm with the added advantage of a
wider stacking platform gained by the joining of items in a manner similar to that in the JOIN
algorithm by Martello et al. [110]. This concluded the presentation of new pseudolevel-packing
algorithms that guarantee a guillotine layout. The chapter was concluded in §4.3.4 by the de-
scription of two new non-guillotine algorithms that attempt to stack items from the ceiling,
with the aim of utilising some advantages of the FC and stacking algorithms. The SC algorithm
fills the floor of a level as much as it can before stacking items downwards from the ceiling.
The SCR algorithm performs the same procedure, with the items being re-sorted according to
decreasing width before the ceiling packing takes place. The unpacked items are then re-sorted
according to decreasing height for the floor-packing of the next level.

Plane-packing algorithms do not follow the rule of packing items into levels in the manner of
the level-packing algorithms of Chapter 3 and the pseudolevel-packing algorithms of Chapter 4.
Chapter 5 contained descriptions of a number of the plane-packing algorithms in the literature,
in fulfilment of Dissertation Objective IV(c). Sleator’s algorithm [148], described in §5.1.1, was
the first known algorithm reviewed. It packs all items wider than half the strip width first,
before packing one level of the remaining items sorted according to decreasing height. The level
is then split vertically in half and the two halves become substrips which are filled in a FFDH
manner, where the substrip with the lowest height relative to the main strip is filled first.

The SF algorithm by Coffman et al. [32], described in §5.1.2, splits the items into two groups;
namely wide and narrow items. The wide items are packed according to the FFDH algorithm,
and the resulting levels are shifted in the hope of opening up a space, which may be filled with
narrow items by means of the FFDH algorithm. The unpacked items may be packed above the
wide items in an FFDH manner. The description of the algorithm was followed by a section
on practical considerations regarding the implementation of shifting levels in a computationally
efficient manner.

The BL algorithm by Baker et al. [6] is a famous plane-packing algorithm that, as described in
§5.1.3, sorts items according to decreasing width and packs them as low, and far to the left as
possible. The description of the algorithm was followed by a detailed discussion on how one may
keep track of packed items with the use of skylines, and how to solve the problem of possible
overhangs.

Two algorithms proposed by Golan [62] were reviewed in some detail in §5.1.4 and §5.1.5.
The SP algorithm begins by sorting the items according to decreasing width and with the
packing of items the strip is split into regions that become narrower as the packed items become
narrower. Items are packed into regions that are lowest and wide enough to accommodate them.
Two improved variations of the algorithm were proposed in partial fulfilment of Dissertation
Objective V(c). The first variation packs items into spaces that would be wasted by the original
algorithm in a stacking manner similar to that in the BFS and SL algorithms, yielding a
guillotine feasible layout. The second proposed variation moves items downward until they
encounter another item. This variation does not guarantee a guillotine feasible layout. Golan’s
M algorithm partitions the items into five sets, which are all packed into various regions by
means of the FFDH algorithm.

The UD algorithm by Baker et al. [5], as described in §5.1.6, also partitions the items into five
sets according to their sizes. These sets of items are then packed into specific regions by means
of the BL algorithm, or a generalised NFDH algorithm that packs items into a space that is not
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necessarily rectangular.

Chazelle’s BLF algorithm [25], described in §5.1.7, was originally proposed in an attempt to
improve the BL algorithm by storing the locations of empty spaces in the strip or bin, and
packing items into the lowest, leftmost spaces that are large enough to accommodate them.
The description of the algorithm was followed by a note on the management of memory when
implementing the algorithm computationally (a problem previously encountered by Berkey and
Wang [16] when they proposed algorithms for the SBSBPP).

The GCS algorithm by MacLeod et al. [109], while designed for the cutting stock problem,
was described in §5.1.8 as an example of a plane-packing algorithm that guarantees a guillotine
feasible layout. This required careful control of the placement of items, including repeated
investigations of existing cuts for various item locations in order to find the lowest, leftmost
position for the item that would yield a guillotine feasible layout of items.

The final algorithm described in Chapter 5 was the BFLM algorithm by Burke et al. [22,23] in
§5.1.9. The original BFLM algorithm allowed for item rotations, but Ntene [125] had previously
demonstrated how the algorithm may be applied to oriented strip packing. After a description
of the algorithm as well as two variations of the algorithm, a modification to the algorithm was
proposed that would allow the items to be sorted in any manner, not only decreasing width,
and would pack the first item in the list that fits into the lowest skyline segment. This was done
in partial fulfilment of Dissertation Objective V(c).

Chapter 5 was concluded with a proposal of a new classification of algorithms in terms of
their dependence on the order in which the items have been sorted in §5.2. Sorting-dependent
algorithms yield poor results when items are not sorted in a specific order, or they assign items
into groups which may then be sorted according to a specific manner. Sorting-independent
algorithms, described in §5.2.2, may yield very good results if a randomly-sorted list of items is
packed. Two new sorting strategies were proposed for these algorithms with the aim of finding
lower packing heights.

An appraisal of the various known and new strip packing algorithms of Chapters 3–5 was pre-
sented in Chapter 6, in fulfilment of Dissertation Objective VIII. The sources of the benchmark
problem instances used to test the algorithms were listed in §6.1 in fulfilment of Dissertation
Objective VII, and the methods used to generate these instances were described in some detail.
Thereafter, a brief description of a number of statistical methods used to compare the algo-
rithms was given. The following conclusions were reached during a numerical comparison of the
algorithms at a 95% level of significance with respect to the benchmark problem instances:

• The NFDH, FFDH, BFDH and WFDH algorithms and their variations were the first set of
algorithms to be described (see §6.2.1). The distributions of the results for the FFDH and
BFDH algorithms were closer to optimal than those of the NFDH and WFDH algorithms,
and of these algorithms, the BFDHDW algorithm resulted in the best mean rank and was
shown to be significantly better than nine of the eleven other algorithms.

• In §6.2.2 the results of applying the KP family of algorithms to the benchmark instances
were summarised, with the conclusion that two of the three time-restricted algorithms are
not significantly different from the algorithm that has no time restriction on the solution
of knapsack problems (only incorporating a one-hour time-out restriction). However, the
time-restricted algorithms were shown to find solutions in significantly shorter times.

• In §6.2.3 it was demonstrated that the JOIN algorithm variants joining items horizontally
performed better than those that joined items vertically, that the lower values of δ are
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likely to yield better packing heights more often than larger values of δ, and that the
JOIN0DHDW algorithm yields the best mean rank and belongs to the subset of fastest
algorithms within the set of JOIN algorithms.

• The results from the B2F algorithms, presented in §6.2.4, comprise the largest set of algo-
rithms compared to one another. It was shown that the B2FA algorithms outperformed
the B2FW algorithms by a significant margin, and that of these algorithms, those that
sorted the items according to DHDW yielded the best results on average. The algorithm
with the best mean ranking was the B2FA10DHDW algorithm.

• The section on the results of the level-packing algorithms was concluded with a section
comparing the best algorithms from each set in §6.2.5. No significant difference could be
found between the BFDHDW algorithm and the B2FA10DHDW algorithm in terms of
packing density and time.

The pseudolevel algorithms were separated into two groups in §6.3; those that are guaranteed
to yield a guillotine feasible layout, and those that do not adhere to the guillotine constraint.
In §6.3.1, the guillotine pseudolevel algorithms were compared, and it was found that:

• The SL5 algorithm yielded the best mean ranking, but it was not significantly different to
the FCOGDHDW, SL0 and SL10 algorithms.

• The two SAS algorithms yielded the worst results in terms of packing height for this set,
but they were the two fastest algorithms tested in this dissertation for large problems.

• The BFS algorithm was shown to be significantly better than the BFDH* algorithms for
these benchmark instances. However, it was not significantly different to the FCOGDH,
FCOGDHIW and SL15 algorithms in terms of packing height, but it is faster than the
FCOG algorithms for large data sets.

The results for the free-packing pseudolevel algorithms in §6.3.2 suggest that:

• The SC algorithm finds significantly better solutions than the FCOF algorithms, and finds
these solutions in approximately half the time for large instances.

• The SCR algorithm yielded significantly worse results than the FCOFDHDW algorithm,
but significantly better results than the FCOFDHIW algorithm, which was the worst in
the set by a significant margin. The SCR algorithm was shown to be the slowest algorithm
in the set by a significant margin.

The comparison of plane-packing algorithms began in §6.4. The purpose of this section was to
determine which algorithms, in a number of sets, were the best in terms of packing height and
execution time.

• First, the smaller set of algorithms that are not guaranteed to yield guillotine results were
compared to one another, including the M and UD algorithms, the modified version of
the SP algorithm and Sleator’s algorithm. It was found that the SPmF and M algorithms
yield significantly better results than the other algorithms, but the M algorithm was the
best of the algorithms, because it required significantly less time to find a solution than
did the SPmF algorithms.
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• The guillotine algorithms, including the SF and SP algorithms, and the modified versions
of the SP algorithms, were compared in §6.4.2. It was found that the SPmG algorithms
yielded significantly better results than the other algorithms, but they required signifi-
cantly more execution time. The SP algorithms were significantly faster than the other
algorithms, but were significantly worse in terms of packing height achieved.

• The application of 23 sorting methods to the BL algorithm (see §6.4.3) was performed
with the aim of finding a good sorting strategy for this sorting-independent algorithm. It
was found that the item lists sorted by height, or according to the new xWDWDH sorting
strategy yielded the best results, with the BL1

2WDWDH algorithm yielding the lowest
mean ranking.

• The results for the BLF and GCS algorithms, presented in §6.4.4 and §6.4.5, respectively,
showed a similar pattern with the BLF2

5WDHDW algorithm resulting in the lowest mean
ranking of the BLF algorithms, and the GCS1

2WDWDH yielding the best mean rank of
the various GCS algorithms.

• The results of the leftmost variation of the 2D BF algorithm were the first of the three vari-
ations to be presented (see §6.4.6). The BFmLM1

2WDWDH algorithm may have yielded
the best mean rank, but the Nemenyi test suggested that sorting the items according to
decreasing area yields results that are not significantly different, but in significantly less
time.

• The results of the BFmTN algorithm were presented in §6.4.7, and it was found that the
BFmTN1

3WDWDH algorithm yielded the best results in terms of packing height, but at
the cost of slower execution time. The variations that sorted items according to decreasing
area yielded close (yet significantly different) results in significantly better times.

• The results for the BFmSN algorithm, presented in §6.4.8, were different in that the
sortings according to decreasing area yielded the best mean ranks and the fastest solution
times. It was demonstrated that the xRDWDH sorting method is not an efficient packing
strategy for the 2D BF algorithms.

The chapter closed with a comparison of the best algorithms from the pseudolevel and plane-
packing sets in §6.4.9. The results suggested that the SASm algorithm yields the fastest so-
lutions, but it is also one of the worst algorithms in terms of packing height achieved. An
unexpected result was that the pseudolevel algorithms SL5 and SC yielded better mean ranks
in this set than did plane-packing algorithms such as the M algorithm, the BL(DHDW) and
BL1

2WDWDH algorithms, and the BFmSN(DADW) algorithm, which was already an improve-
ment on the original oriented BFSN algorithm. These pseudolevel algorithms were able to find
results in less time than the plane-packing algorithms, excluding the modified BF algorithms
which sorts items according to decreasing area. The BFmTN1

3WDWDH algorithm was demon-
strated to yield the best mean rank and the Nemenyi test suggested that it was significantly
better than the other algorithms. The BFmTN(DADW) and BLF2

5WDWDH algorithms were
shown to be the next best algorithms and not significantly different from one another, but the
BFmTN(DADW) found results in less time.

Chapter 7 contained a summary of relevant literature on the use of heuristics for solving the
2D SBSBPP (in fulfilment of Dissertation Objective IX(b), as described in §1.3) and the 1D
MBSBPP, as well as non-heuristic methods with which the 2D MBSBPP has been solved in
fulfilment of Dissertation Objective IX(a). The literature on the 2DSBSBPP was presented in
§7.1.1, with a brief description of the HFF algorithm proposed by Chung et al. [28] in which the
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FFDH algorithm (to solve the strip packing problem) was combined with the FFD algorithm
to pack the levels into bins (a 1D SBSBPP). This was followed by description of the algorithm
proposed by Bengtsson [14], who developed a packing algorithm that iteratively repacked items
in an attempt to use fewer bins. The HNF algorithm by Frenk and Galambos [52] packs items
into bins in a next-fit manner, while Berkey and Wang [16] developed a number of heuristics for
the SBSBPP, the best of which appeared to be the FBS (HBF) algorithm. Lodi et al. [101,105]
developed three new algorithms for the oriented problem, including the FC (packing items
from the ceiling into levels in a strip, then repacking the levels), KP (which packs items into
levels of a strip by means of a knapsack problem for each level) and AD (which packs items as
low as possible from left-to-right and right-to-left, alternating until no items remain unpacked)
algorithms. The HBP algorithm by Boschetti and Mingozzi [19] was designed to pack items of
which some may be rotated and others may not, and included an iterative process of changing
item prices for each iteration in the hope of finding better solutions. The final algorithm
described in this section was the IMA algorithm by El Hayek et al. [67]. This algorithm divided
the spaces in bins into rectangles that were then filled by means of a best-fit approach which
assigned a score to the item/space pair, and packed the item into the space where the score of
the pair was largest.

The description of heuristics for the MBSBPP commenced in §7.1.2. First, the FFDLR strategy
by Friesen and Langston [54] was described in which items are packed into the largest bins first
before an attempt is made to repack the items in those bins into smaller bins. This was followed
by a description of their FFDLS algorithm in which items were shifted into smaller bins under
certain conditions. The four packing strategies by Chu and La [27], in which items are packed
according to relative or absolute waste, using only the largest available, or any bins, were
briefly described, before summarising the work by Kang and Park [87] on the MBSBPP. They
developed the IFFD and IBFD algorithms in which items are packed into bins by means of the
BFD or FFD strategies, before being repacked into smaller bins. The section was concluded
with a brief summary of various non-heuristic methods that other researchers have used to solve
the 2D MBSBPP.

A new heuristic for the 2D MBSBPP was presented in §7.2 in fulfilment of Dissertation Objective
X. The design of the algorithm utilised the idea of repacking from the FFDLR strategy by Friesen
and Langston [54]. The algorithm packs items into a strip, before repacking the resulting levels
into bins (that have been sorted according to decreasing area) in a manner similar to the hybrid
packing algorithms for the 2D SBSBPP. If a bin has been filled by the levels, then the remaining
levels are packed into the next bin, if the bin has the same width as the previous bin. If the
bin width changes, then the items are packed into a new strip of the same width as the width
of the new bin, before the new levels are packed into bins. Once all the items are packed,
the bin with the smallest combined area of items is selected and the smallest bin of area no
smaller than the area of the items is selected. An attempt is made to repack those items into
the smaller bin and if they fit they remain in the smaller bin. If the items do not fit, then
an attempt is made to repack the items into another bin. Once the items have been repacked,
or if they could not be repacked, then the bin with the next smallest area of items is selected
for repacking. This process continues until an attempt has been made to repack all bins. The
detailed description of the algorithm was followed by a worked example and a calculation of
its worst-case time complexity. The chapter closed with a brief description of modifications
made to the best strip packing algorithm of Chapter 6, the BFmTN algorithm, for it to solve
instances of the MBSBPP.

The results obtained by applying the 2SMBSBP algorithm in conjunction with the strip pack-
ing algorithms were provided in Chapter 8, in fulfilment of Dissertation Objective XIII(a). The
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chapter opened with a description of the benchmark instances that were available in the lit-
erature for the MBSBPP, in fulfilment of Dissertation Objective XII(a), including those by
Wang [155], Hopper [75] and Pisinger and Sigurd [137]. Sets of instances regularly used for
the SBSBPP by Berkey and Wang [16] and by Martello and Vigo [112] were also included in
fulfilment of Dissertation Objective XII(b). A new generator of benchmark instances was pro-
posed in §8.1.2 which uses the principles of “nice” and “pathological” data from Wang and
Valenzuela [156] in order to test the 2SMBSBP algorithm on a greater variety of problems. It
was used to generate 340 new benchmark instances; half of which are “nice” instances and the
other half are “pathological” instances.

These benchmark instances were used to evaluate the algorithms and the results were provided
in the remainder of Chapter 8. First, the results from the level-packing algorithms combined
with the 2SMBSBP algorithm were discussed in some detail in §8.2. Mean ranks were found
for all algorithms and the best from each family of algorithms were selected to be compared to
one another. This included the BFDHDW, KPTRDHDW, JOIN0DHDW, B2FA10DHDW and
B2FW2DHDW algorithms. It was found that the JOIN algorithm performed worst within the
set in terms of packing density, followed by the new B2FW2DHDW algorithm. Of the remaining
algorithms the BFDHDW algorithm was found to be significantly better than the others only by
means of the mean rank of the fitness scores. No significant difference could be found between
the KPTRDHDW and B2FA10DHDW algorithms in terms of either utilisation or fitness scores.
However, the KPTRDHDW algorithm was more than one hundred times slower than the other
algorithms for the largest instance, which was an expected result. The results were very similar
for the SBSBPP.

The results obtained via the pseudolevel algorithms when combined with the 2SMBSBP al-
gorithm were presented in §8.3, with the guillotine algorithms being separated from the free-
packing algorithms into §8.3.1 and §6.3.2, respectively. The worst of the guillotine algorithms
was the SASm algorithm, which was an expected result considering its performance for the strip
packing problem (see §6.3.1). The mean ranks for the fitness scores were able to show a signif-
icant difference between the BFDH*(DW) algorithm and the three other algorithms, between
which there was no significant difference. Of these three algorithms the FCOGDHDW achieved
the lowest mean rank, followed by the SL5 and the BFS algorithms. However the FCOGDHDW
algorithm required more time to find a solution to the largest benchmark instance than did the
BFS or SL5 algorithms, while the SASm algorithm remained the fastest. Of the free-packing
pseudolevel algorithms, the FCOFDHDW algorithm achieved the lowest mean rank, but was not
significantly different from the other algorithms in terms of utilisation. However, it was signifi-
cantly better than the SCR algorithm when using the fitness scores to calculate the mean rank.
As expected, the FCOFDHDW required more time than did the SC algorithm to find a solution
to the largest benchmark instance. The results for the SBSBPP yielded the same pattern, with
no significant difference between algorithms in terms of the numbers of bins packed, but with
the FCOFDHDW algorithm yielding the best mean rank (at a greater time cost).

The results of the BFmTN algorithm combined with the 2SMBSBP algorithm were presented
in §8.4. An unexpected result was encountered when the DA sorting yielded significantly bet-
ter results than the 1

3WDWDH sorting method for the MBSBPP benchmark instances, which
had been demonstrated to be significantly better than the DA sorting method in §6.4.7. The
BFmTN(DA) algorithm was also the fastest of the three sorting methods for the largest bench-
mark instance by a large margin. The same result was found for the SBSBPP instances.

The chapter closed with a comparison of some of the best algorithms from each class. As
expected, the representative algorithm from the set of BFmTN algorithms yielded the best
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results. The FCOFDHDW algorithm may have achieved the second best mean rank, but it was
not significantly different from the FCOGDHDW, SL5 and SC algorithms. In order to compare
the algorithms to one another in terms of utilisation and solution time, the multiple bin size
bin packing score Γ was used to show that the BFmTN(DA) would be the best algorithm to
use if a guillotine layout is not desired, while the SL5 algorithm finds a good balance between
speed and packing density if a guillotine feasible layout is desired.

9.2 Main Contributions of this Dissertation

An attempt is made in this section to clarify the contributions made in this dissertation to the
field of C&P problems. The contributions are listed in the order in which they appear in the
dissertation.

Contribution 1 A summary of typologies for C&P problems in §2.1.

The first contribution that is made in this dissertation is the summary of the four typologies
and subtypologies from the literature. These typologies were used to define an aspect of the
scope of the problems that are addressed in this dissertation, but this contributed to the most
complete summary of typologies that has been done since Ntene [125], who summarised the
Dyckhoff [43] and Wäscher et al. [157] typologies and proposed a typology of her own. She did
not consider the typology by Lodi et al. [101,105].

Contribution 2 The definition of a pseudolevel packing in §2.2.1.

The difference between level and pseudolevel algorithms was explained in order to differentiate
between those level or shelf algorithms that pack all items along the floor, and those that may
pack items anywhere within levels. It was shown how the pseudolevel algorithms are a subset
of plane-packing algorithms, and how level-packing algorithms are a subset of pseudolevel algo-
rithms. Pseudolevel-packing algorithms include the FCOG, FCOF, BFDH* and SAS algorithms
from the literature. Five new pseudolevel algorithms were proposed, namely the SASm, BFS,
SL, SC and SCR algorithms.

Contribution 3 The definition of the strip packing efficiency ΓSP and the multiple bin packing
efficiency ΓMS in §2.3.2.

These two measures were introduced so that the packing performance of an algorithm (strip
height for the SP problem, and utilisation for the MBSBPP) could be combined with computa-
tion time in order to compare algorithms to one another in terms of two measures. The scores
resulting from the application of the efficiency formula to the results of the algorithms may be
used to rank algorithms. The higher the score, the better the algorithm. The ranks for the
algorithms being compared may be used by a decision maker to decide which algorithms to use
for certain applications.

Contribution 4 The WFDH algorithm described in §3.3.1, and the variations thereof.

While well-known algorithms such as the NFD, FFD and BFD algorithms for 1D SBSBP prob-
lems were adapted for the strip packing problem, the author was unable to find any references
to a strip packing adaptation of the WFD algorithm by Johnson [84]. The algorithm was shown
to yield worse results than the FFDH and BFDH algorithms, and their variations.
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Contribution 5 The B2FAkDH and B2FWkDH algorithms and their variations, as described
in §3.3.2.

In an attempt to find an algorithm that would find better solutions than the BFDHDW al-
gorithm, the method of replacing an incumbent item in a level with two smaller items from
the B2F algorithm by Friesen and Langston [55] was introduced. The poor performance of
the B2FW family of algorithms was perhaps not surprising, because the items following the
incumbent in the sorted list are often likely to be shorter than the incumbent. This means
that while some space may have been used width-wise that had been wasted before the swap,
a taller item (the incumbent) may initialise the next level, thereby possibly wasting vertical
space. The B2FA family of algorithms are expected to yield better results, because they only
make an attempt to replace an item if the combined area of the new items is larger than that
of the incumbent. This may reduce the likelihood of an unnecessarily tall item initialising the
next level, while preventing the wasting of horizontal space. Unfortunately the new algorithm
was unable to find significantly better solutions than the BFDHDW algorithm over all 1 170
benchmark instances. The B2FA10DHDW algorithm was able to find a better solution than the
BFDHDW algorithm for 234 benchmark instances, and the BFDHDW algorithm found better
solutions 285 times (the two algorithms found the same solutions for 651 benchmark problem
instances).

Contribution 6 The improvements to the SAS algorithm by Ntene and Van Vuuren [125,127],
as described in §4.3.1.

During the design of the SAS algorithm a few improvement opportunities remained unexploited
and an attempt was made to include these in the SASm algorithm. The results for the strip
packing problem suggested that the new algorithm is significantly better (see §8.3.1), and the
time results suggest that the SASm algorithm is also faster than the SAS algorithm. How-
ever, the significance test could not distinguish between the solution times at a 95% level of
significance. The SASm algorithm was the fastest of all the algorithms for large strip pack-
ing problem instances and the large instances of the MBSBPP. However, the improvements to
the SAS algorithm were not sufficient for finding better solutions than the other pseudolevel
algorithms, relegating the two algorithms to last place in terms of packing height for the strip
packing problem.

Contribution 7 The BFS algorithm presented in §4.3.2.

In an attempt to make more use of the space between the floor and ceiling, and ensure the
best-fit principle was used, the BFS algorithm was designed to stack items onto an item when
it is packed onto the floor of a level. It resembles the BFDH* algorithm by Bortfeldt [18], but it
was shown to be significantly better for the strip packing, MBSBP and SBSBP problems. This
is an expected result because the BFS algorithm may stack items any number of times until
the stacking height is constrained by the ceiling of the level, while the BFDH* algorithm only
packs one layer of items onto the floor-packed items. The FCOGDHDW algorithm was shown
to be significantly better than the BFS algorithm, while the original FCOGDH algorithm was
not.

Contribution 8 The SL algorithm presented in §4.3.3.
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One weakness of the BFS algorithm is that the stacking procedure limits the width within which
items may be stacked to the width of the floor-packed item. The design of the SL algorithm
was an attempt at allowing a larger width for items to be stacked in, thereby allowing for the
possibility of short and wide items being stacked onto taller, but narrower items. By allowing
the items that are “joined” to have a slightly different height, some vertical space is sacrificed
in order to waste less horizontal space during the stacking procedures. The SL5 algorithm was
shown to result in the lowest mean rank in its class for the strip packing problem, with results
that are significantly better than the original FCOGDH algorithm, but not significantly better
than the FCOGDHDW algorithm. However, it required significantly less computation time than
the FCOG algorithms to find solutions to large problems, and was only slower than the two SAS
algorithms in this class.

Contribution 9 The SC and SCR algorithms presented in §4.3.4.

The SC algorithms were designed in an attempt to make use of the space between items packed
on the floors and ceilings of levels when implementing the FCOF algorithms. The attempt was
successful, because the SC algorithm was shown to yield significantly better results than the
FCOF algorithms for the strip packing problem. The SC algorithm also required approximately
half the time of the FCOF algorithms to find solutions to the largest strip packing problem
instances. However, the SCR algorithm was not as successful, yielding results significantly better
than the FCOFDHIW algorithm, but significantly worse than the FCOFDHDW algorithm. The
computation time it required to find solutions to the largest benchmark problem instances was
significantly more than the corresponding computation times of the FCOF algorithms. The SC
algorithm was shown not to be significantly better than the FCOFDHDW algorithm for the
MBSBPP and the SBSBPP, with the mean rank of the FCOFDHDW algorithm being better for
both problems. The SCR algorithm appears to be significantly worse than the FCOFDHDW
algorithm for the MBSBPP when using the fitness score to determine the ranks. However, the
SC and SCR algorithms were shown to require less computation time than the FCOFDHDW
algorithm for large benchmark instances of both problems.

Contribution 10 The SPmG and SPmF modifications to the SP algorithm by Golan [62], as
described in §5.1.4.

The SP algorithm wastes some space when an item does not fit adjacent to the previous item in
a region, because the height of the closed space is raised to the bottom of the newly-packed item.
The SPmG algorithm attempts to improve the utilisation of space by packing items into the
space that would remain empty in the original algorithm, while still guaranteeing a guillotine
feasible layout. The SPmF algorithm does the same, but attempts to drop any packed item as
low as possible in an attempt to make further use of space that may be wasted. The SPmF
algorithm yields significantly better results than Sleator’s algorithm and the UD algorithm, but
is not significantly better than the M algorithm (see Table 6.10). The new algorithm is very
slow due to the search for lower packing positions and hence would not be desirable for use
when other algorithms find better solutions in less time. The SPmG algorithm is significantly
better than the SF and original SP algorithms in terms of strip packing heights achieved, but
this improved performance is gained at a cost to the solution time.

Contribution 11 The BFmLM, BFmTN and BFmSN modifications to the BF algorithm by
Burke et al. [22], as described in the Algorithmic Variations section of §5.1.9.
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These algorithms were designed with the aim of improving on the oriented versions of the BFLM,
BFTN and BFSN algorithms. The original algorithms sort items according to decreasing width
(resolving ties by sorting the items according to decreasing height) and pack the first item in
the list into the lowest skyline segment in a best-fit manner. The modifications, on the other
hand, allow the first item that fits onto a skyline segment to be packed, thereby sacrificing the
best-fit manner of packing, but gaining the ability to pack items in any order. The changes made
yield successful results when comparing the modified algorithms with the original algorithms
for oriented problems. The best BFmLM algorithm yields a median (upper quartile) packing
height of 109.3% (114.0%), compared to the median (upper quartile) value of 113.5% (123.9%)
for the oriented original (see Table 6.15). The results for the BFTN and BFSN algorithms were
similar.

Contribution 12 The identification of sorting-dependent and sorting-independent algorithms,
as described in §5.2.

Sorting-dependent algorithms are very rigid in their approach to packing problems. If the items
are not sorted in a particular manner, the algorithm is either not able to pack all items, or the
resulting packing is poor. Sorting-independent algorithms may yield good results for items that
are randomly sorted. These algorithms are useful when comparing various sorting methods and
would be the family of algorithms of choice for decoders of metaheuristics [75]. They may also
prove useful when provided with multiple random sortings of a set of items until a timeout is
reached (in a manner similar to that of MacLeod et al. [109]) and saving the best solution found.

Contribution 13 Two new sorting methods: xWDWDH and xRDWDH, as described in §5.2.2.

These are two new sorting methods designed to eliminate the weaknesses of sorting according
to decreasing height (short and wide items packed last may waste some space) or decreasing
width (the last item may be thin, but very tall, thereby wasting unnecessary space). The
xWDWDH sorting method sorts the items that are wider than a fraction x of the strip width
according to decreasing width (resolving ties by sorting them according to decreasing height),
and the remaining items according to decreasing height (resolving ties by sorting them according
to decreasing width). The xRDWDH sorting method sorts the items according to decreasing
width — a fraction x of the widest items remain in that order, while the remaining items are
sorted according to decreasing height. The xWDWDH sorting method proved to be successful
for the strip packing problem. Its use yields the best results in terms of packing height for the
BL, BLF, GCS, BFmLM and BFmTN algorithms.

Contribution 14 The number and nature of algorithmic comparisons made for the strip pack-
ing problem in Chapter 6.

A total of 252 algorithms or variations thereof (24 distinct algorithms) were compared to one
another with respect to a total of 1 170 benchmark instances for the strip packing problem. This
is, to the author’s knowledge, the largest comparison of heuristics for the 2D oriented offline
strip packing problem (previously 27 offline heuristics had been compared for 542 benchmark in-
stances [125]). It appears that this dissertation may be one of few examples where the Friedman
test was used to test for significance (other examples include those by Parreño et al. [133,134]),
and one of the first applications of the Nemenyi test as a post-hoc test for significant differences
between packing algorithms. It was found that the BFmTN1

3WDWDH algorithm yields the
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best results in terms of packing height. If the minimum packing height achieved by the 252
algorithms is taken over all benchmark instances, then the first quartile is located at 102.5%,
the median at 104.6%, the third quartile at 107.0% (the IQR is 4.5%) and the maximum at
125.8%.

The results in Table 9.1 and Table 9.2 show that metaheuristics, or algorithms that allow
rotations, will typically yield better results than heuristics, but heuristics find solutions very
quickly. The BF algorithm [23] allows items to be rotated and is hence expected to pack items
more densely than the new algorithms. The other algorithms are metaheuristics and provide
better solutions than the heuristics, with the disadvantage of requiring more computational
time. The results by Cui et al. [37] are not exact, because they introduced relaxations in order
to find faster solutions. Burke et al. timed their algorithm on a PC with an 850 MHz CPU and
128 MB RAM [22, p. 664], Bortfeldt [18, p. 829] timed his algorithms on a PC with a 2 GHz
CPU, Alvarez-Valdes et al. [4, p. 1075] used a 2 GHz Pentium 4 Mobile CPU, Belov et al. [12, p.
829] used Linux workstations with 2 × 2.4 GHz CPUs and 4 GB RAM, and Cui et al. [37, p.
1287] used a 2.8 GHz Pentium 4 CPU and 512 MB RAM.

Contribution 15 The 2SMBSBP algorithm presented in §7.2.

While heuristics exist for the 1D MBSBPP and for the 2D SBSBPP, the author was unable
to find examples of heuristics for the 2D MBSBPP. Therefore, the 2SMBSBP algorithm was
proposed in order to solve the 2D MBSBPP quickly. It was designed in a manner that any
level or pseudolevel algorithm may be incorporated into it without modification. A modified
version of the BFmTN algorithm was designed to incorporate the mechanism of the 2SMBSBP
algorithm in order to solve the 2D MBSBPP, but there was no packing of levels, because of the
plane-packing nature of the BFmTN algorithm.

Contribution 16 The benchmark generator for the MBSBPP presented in §8.1.2.

There are many benchmark instances for the strip packing problem (see Table 6.1), but very
few benchmark instances for the MBSBPP (see §8.1). Hence, a new set of benchmark instances
were generated for the problem in a manner similar to that of Wang and Valenzuela [156], who
generated a popular set of benchmark instances for the strip packing problem. There are 340
instances in total, half of which are “nice” items and the other half are “pathological” items.

Contribution 17 The comparisons in Chapter 8 of the algorithms when combined with the
2SMBSBP algorithm to solve the 2D MBSBPP and the 2D SBSBPP.

It was found that the FC algorithms yield the best mean ranks of the algorithms that pack
items into levels, but these algorithms were not significantly better than most of the new
pseudolevel-packing algorithms according to the Nemenyi test. As expected, the plane-packing
algorithm yields the best results. The multiple bin size bin packing score was used to show
that while the BFmTN(DA) algorithm would be the algorithm of choice for problems in which
a guillotine layout is not required, the speed of the SL5 algorithm makes it attractive as the
algorithm of choice when the guillotine constraint applies. A comparison of the FCOGDHDW
and BFmTN(DA) algorithms when combined with the 2SMBSBP algorithm to some of the
algorithms from the literature in Table 9.3 show that the more specialised algorithms yield
better solutions. However, the difference in mean solution times is large, and some of the speed
differences are attributable to the difference in computers used. The results in this dissertation
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SL5 BFmTN( 1
3
W) Min BF SPGAL GRASP SVC BS HRBB

Source New New New [23] [18] [18] [4] [12] [12] [37]
Alg T H H H H MH MH MH MH MH E
Packing PL P P P P P P P P P
Problem OG OF OF RF OG OF OF OF OF RG

C1 15.0 6.7 3.3 11.7 3.2 1.6 0.0 1.7 1.7 1.7
C2 8.9 6.7 4.4 13.3 3.3 3.3 0.0 0.0 0.0 0
C3 14.4 8.9 5.6 10.0 3.9 3.2 1.1 1.1 1.1 1.1
C4 10.6 5.6 3.9 5.0 3.8 3.5 1.6 1.7 1.7 2.2
C5 8.1 5.2 3.0 4.1 2.4 2.0 1.1 1.1 1.1 1.9
C6 7.5 4.2 2.5 3.3 1.9 1.7 1.6 0.8 1.4 1.4
C7 5.1 3.9 2.2 2.4 1.7 1.5 1.4 0.8 1.1 1.4
Mean t 0.593 ms 0.983 ms 4.28 s ±0.01 s 143 s 159 s 60 s 50 s 50 s 1.86 s

T1 36.8 25.2 12.8 — — — 0.0 0.9 1.0 —
T2 26.2 13.2 8.3 — — — 3.2 3.5 4.0 —
T3 21.0 10.2 8.3 — — — 3.7 3.3 4.3 —
T4 11.8 12.8 6.8 — — — 3.0 2.5 3.2 —
T5 11.4 8.4 6.0 — — — 2.4 2.1 2.7 —
T6 8.6 8.0 4.1 — — — 2.1 1.6 2.1 —
T7 5.9 5.6 2.2 — — — 1.5 1.0 1.4 —
Mean t 0.596 ms 1.035 ms 4.69 s — — — 60 s 50 s 50 s —

N1 23.9 15.8 9.3 — — — 0.9 3.3 4.4 —
N2 18.7 12.7 8.4 — — — 3.3 3.4 4.2 —
N3 20.3 11.6 8.4 — — — 3.6 3.5 4.2 —
N4 13.5 12.2 6.6 — — — 3.0 2.5 3.1 —
N5 10.1 8.0 6.1 — — — 2.6 2.1 2.7 —
N6 7.8 7.2 4.3 — — — 2.2 1.7 2.2 —
N7 5.3 5.5 2.4 — — — 1.3 1.0 1.0 —
Mean t 0.598 ms 1.052 ms 4.35 s — — — 60 s 50 s 50 s —

Table 9.1: Comparison of the results by the best heuristics in this dissertation with other algorithms
from the literature for the benchmark instances by Hopper and Turton [75, 79, 80]. The Min column is
the minimum packing height achieved by the 252 algorithms for each instance and its mean times are
the sum of the mean packing times achieved by the 252 algorithms. The Alg T row indicates whether
the algorithm is a heuristic (H), metaheuristic (MH) or an exact (E) method. The Packing row indicates
which algorithms result in pseudolevel (PL) or plane (P) solutions. The Problem row indicates the
problem type, as defined by Lodi et al. [105] and described in §2.1.3. The HRBB algorithm does not
find an optimal solution even though it is labelled an exact method, because Cui et al. [37] introduced
relaxations.

were obtained on a Windows XP PC with a 3.0 GHz Intel Core 2 Duo CPU and 4 GB RAM,
while Boschetti and Mingozzi used a Pentium III 933 MHz PC [19, p. 146] and El Hayek et al.
used a Pentium 4 2.66 GHz PC [67, p. 3195].

9.3 An Appraisal of the Dissertation Contributions

A large number of novel algorithms, and variations on these novel algorithms as well as on known
algorithms were proposed in this dissertation in an attempt to further the knowledge in the field
of solution heuristics for the 2D oriented, offline, regular strip packing problems. Attempts at
finding a level-packing heuristic that consistently outperforms the BFDHDW algorithm were
unsuccessful. The best of the novel level-packing heuristics, the B2FA10DHDW algorithm,
yields results that are equivalent to the BFDHDW algorithm in terms of achieved packing
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SL5 BfmTN( 1
3
W) Min BF BF+SA GRASP

Source New New New [23] [23] [4]
Alg T H H H H MH MH
Packing PL P P P P P
Problem OG OF OF RF RF OF

Nice25 21.0 14.5 10.2 8.0 4.0 3.7
Nice50 16.3 12.3 9.1 9.7 4.4 4.6
Nice100 11.1 10.0 7.7 7.9 5.0 4.0
Nice200 8.6 8.4 6.3 6.9 4.7 3.6
Nice500 5.8 6.5 4.7 3.4 3.5 2.2
Nice1t 4.3 5.3 3.5 3.8 2.9 2.2
Nice2t 3.0 4.0 2.6 — — —
Nice5t 2.0 3.6 1.8 — — —
Mean t 0.111 s 0.230 s 2 202 s — — 60 s

Path25 29.1 18.5 10.1 10.2 3.1 4.2
Path50 25.1 12.9 6.7 13.7 3.4 1.8
Path100 17.7 10.2 5.1 6.8 3.0 2.6
Path200 10.9 8.4 4.5 4.1 3.4 2.0
Path500 6.3 7.1 4.5 3.8 3.5 3.1
Path1t 5.1 6.3 3.8 3.1 2.9 2.5
Path2t 3.7 4.3 3.2 — — —
Path5t 2.8 3.8 2.5 — — —
Mean t 0.113 s 0.229 s 1 437 s — — 60 s

Table 9.2: Comparison of the results by the best heuristics in this dissertation with other algorithms
from the literature for the instances by Wang and Valenzuela [156]. The Min column is the minimum
packing height achieved by the 252 algorithms for each instance and its mean times are the sum of the
mean packing times achieved by the 252 algorithms. The Alg T row indicates whether the algorithm
is a heuristic (H) or metaheuristic (MH) method. The Packing row indicates which algorithms result
in pseudolevel (PL) or plane (P) solutions. The Problem row indicates the problem type, as defined by
Lodi et al. [105] and described in §2.1.3.

FCOGDHDW BFmTN(DA) HBP IMA

Source New/ [101,105] New [19] [67]
Alg T H H H H
Packing PL P P P
Problem OG OF OF RF RF

BW 1 20.60 20.20 19.46 19.46 19.46
BW 2 2.60 2.56 2.48 2.48 2.48
BW 3 14.72 14.54 14.06 13.64 13.64
BW 4 2.56 2.52 2.50 2.48 2.44
BW 5 18.70 18.34 17.98 17.38 17.30
BW 6 2.36 2.32 2.26 2.24 2.20
MV 7 17.10 16.88 16.64 15.70 15.36
MV 8 17.50 17.22 16.78 15.76 15.44
MV 9 42.78 42.74 42.60 42.38 42.38
MV 10 10.52 10.42 10.22 10.04 10.02
Mean t 4.292 ms 1.679 ms 2.102 s 1.824 s 0.319 s

Table 9.3: A comparison of the new algorithms with algorithms from the literature for the SBSBPP.
The Alg T row indicates that the algorithms are all heuristics (H). The Packing row indicates which
algorithms result in pseudolevel (PL) or plane (P) solutions. The Problem row indicates the problem
type, as defined by Lodi et al. [105] and described in §2.1.3.
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heights and solution times. The WFDH family of algorithms were shown to yield results that
had a distribution shifted further from the optimal packing heights than the results of the BFDH
and FFDH families of algorithms.

The search for pseudolevel-packing algorithms proved more successful. For the problem where
a guillotine feasible layout was required, two sorting modifications were proposed for the FCOG

and BFDH* algorithms and the DHDW variations proved to yield consistently better mean
ranks of packing heights than the original algorithms that do not resolve ties in height during the
sorting procedure. The modifications proposed for the SAS algorithm resulted in an algorithm
that yields significantly better results with respect to packing height, and yielded results for
large benchmark problem instances consisting of “nice” items in significantly less time. The
newly proposed BFS algorithm was able to find significantly better solutions than the BFDH*
algorithms, but these results were significantly worse than those of the FCOGDHDW algorithm.
However, the BFS algorithm was shown to be significantly faster than the FCOG and BFDH*
algorithms. The SL algorithm was shown to yield results significantly better than all other
algorithms in the set, excluding the FCOGDHDW algorithm, and in a time that was significantly
faster than that of the FCOG and BFDH* algorithms. The search for a better pseudolevel-
packing heuristic that does not guarantee a guillotine layout proved successful. The application
of the novel SC algorithm to the 1 170 benchmark problem instances yields significantly better
results than the FCOF algorithms with respect to both packing height and execution time for
large problem instances.

The search for improved plane-packing heuristics also proved successful. The proposed modifi-
cations to the SP algorithm yield results that are significantly better than the original algorithm,
but at the cost of additional solution time (the free-packing version is prohibitively slow). The
new xWDWDH and xRDWDH sorting methods were shown to yield significantly better results
with respect to packing heights than the original DW (respectively DA) sorting methods for the
BL and BLF (respectively GCS) algorithms. The proposed modifications to the BFLM, BFTN
and BFSN algorithms also proved to yield better solutions than the original algorithms when
combined with the new sorting methods, or when combined with a sorting method that sorted
according to decreasing area. In fact, the BFmTN1

3WDWDH algorithm was shown to yield the
best results with respect to packing height of all algorithms in this dissertation, better even
than the BLF2

5WDWDH algorithm, which was shown to be the best of the BLF algorithms,
one of the “most documented heuristic approaches” for this problem [22, p. 656]. Table 9.4 is a
summary of the best guillotine and free-packing algorithms for the strip packing problem with
respect to packing height and solution time.

Priority Guillotine Free

Speed SASm SASm
Speed & Packing Height SL5 BFmTN(DADW)
Packing Height GCS 1

2
WDWDH BFmTN 1

3
WDWDH

Table 9.4: Algorithms recommended for the strip packing problem.

The 2SMBSBP algorithm, designed to be combined with the level and pseudolevel-packing al-
gorithms in order to find fast feasible solutions to the MBSBPP, appears to be the first heuristic
for the 2D MBSBPP. The level and pseudolevel strip packing algorithms were successfully com-
bined with the 2SMBSBP algorithm to yield good solutions to the MBSBPP and the SBSBPP.
It was shown that the FCOGDHDW algorithm yields the best guillotine solutions and a mod-
ification to the BFmTN algorithm yields the best (and fastest) solutions to these bin packing
problems. The novel pseudolevel-packing algorithms yield solutions that are not significantly
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different according to the Nemenyi test (yet the FC algorithms yield a better mean rank for
both bin packing problems), but they are faster. Table 9.5 is a summary of the best guillo-
tine and free-packing algorithms for the MBSBPP with respect to packing density and solution
time. It is hoped that this approach to the MBSBPP may prove useful to researchers requiring
initial feasible solutions or bounds for other, more accurate solution methods for this problem,
including metaheuristics.

Priority Guillotine Free

Speed SASm BFmTN(DA)
Speed & Packing Density SL5 BFmTN(DA)
Packing Density FCOGDHDW BFmTN(DA)

Table 9.5: Algorithms recommended to be combined with the 2SMBSBP algorithm.

Many researchers have compared their 2D strip or bin packing algorithms to known algorithms
by means of benchmark problem instances in the past, but this has typically been done on an
instance-by-instance manner, or by means of averages of related instances. If one algorithm
resulted in lower packing heights than another algorithm for these individual instances for the
strip packing problem, or fewer bins for the SBSBPP, then the former was declared a better
algorithm. However, this approach is limited, because the number of comparisons that can be
made in this manner is small. If one wanted to perform a large-scale comparison of algorithms,
this method of presenting the results becomes impractical. It would require many lists of results
and it would be very difficult to reach a conclusion, or see a pattern, from the large amount of
data.

In an attempt to determine which algorithms performed well, algorithmic results were presented
in this dissertation by means of box plots and in terms of quartiles. One would reasonably expect
strip packing algorithms resulting in low quartile values to typically yield better results than
algorithms with higher quartile values. In an attempt to find further clarity when comparing
items, the algorithms were ranked relative to each other for each benchmark instance. One may
reasonably expect that the algorithm yielding the best mean rank over the set of benchmark
instances would typically result in better packings than the algorithms with worse mean ranks.
However, in order to ascertain whether these rank differences were significant, the Friedman
and Nemenyi tests, as described by Demšar [40], were employed. Using these various methods
of comparison allowed for the testing of a large number of algorithms over a large number of
benchmark instances at a 95% level of significance. These comparisons should prove useful to
researchers in search of efficient algorithms for the strip and MBSBP problems.

These tests were performed on a large number of novel algorithms, many of which outperformed
equivalent algorithms in the literature in terms of speed and/or packing height. Many of the
new algorithms did not perform better than the known algorithms and it is hoped that these
investigations may serve as a discouragement to other researchers with respect to following the
same routes of investigation in an attempt to find good heuristics. An article [130] published on
some of these strip packing algorithms and the 2SMBSBP algorithm, as well as papers presented
at local [126,128,131] and international [129] conferences, yielded positive feedback from peers,
and the independent, anonymous reviewers of the article.

Stellenbosch University  http://scholar.sun.ac.za



222 Chapter 9. Conclusion

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 10

Possible Future Work

During the process of compiling this dissertation, the author became aware of some possibilities
for further work that may be done in the field of packing problem heuristics. This chapter
contains brief descriptions of some of these possibilities for further research. First, a modification
to the GCS algorithm is proposed, and this is followed by a new packing strategy. Then a
combination of the BFmTN algorithm with a metaheuristic is proposed, followed by a proposal
for the use of pricing strategies for the MBSBPP. Finally, a brief description is given of possible
changes to the novel algorithms presented in this dissertation for problems that allow item
rotations.

Proposal 1 Reducing the GCS algorithm to a pseudolevel algorithm.

The GCS algorithm described in §5.1.8 proved to be slow in comparison to many of the other
algorithms, as was shown in Tables 6.14 and 6.18. This may be due to the author’s lack of
programming prowess, or because the number of cuts that have to be stored and tested for
guillotine feasibility, and the number of locations at which items may be packed due to existing
cuts, result in a large number of calculations that must be carried out in order to find the best
location for an item. In an attempt to reduce the complexity of the problem, the GCS packing
algorithm may be converted to a pseudolevel algorithm. The horizontal lines representing level
separators are minimal cuts, separating the cuts and items in the levels from each other, as if
the items in the levels were in separate bins. The algorithm would remain sorting-independent,
which is likely to give it an advantage over the BFS, SL and SC algorithms.

The newly proposed, converted algorithm may begin by finding the tallest item in the set and
packing it onto the floor of the strip. A dummy item of zero height and a width equal to
the strip width should be placed onto this item, creating a rectangular area into which items
may be packed. The only exposed border is the left-hand edge of the item that initialised the
level; hence an attempt should be made to pack the first item in the list against this edge in a
bottom-left manner. If enough space were to remain for the item, it is placed there, otherwise
the next item in the list should be investigated for packing. There may now be two exposed
borders adjacent to which items may be located. This process should continue until an attempt
has been made to pack all items into the level. If any items were to remain unpacked, a new
level should be initialised by the tallest remaining unpacked item. This level should then be
filled according to the method described, and the process should continue until all items are
packed.

223
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For example, consider using the GCSPL(DWDH) algorithm to pack the items listed in Table 3.1.
When using the merge-sort algorithm to sort the set of items according to decreasing width,
and resolving any ties by sorting them according to decreasing height, the list I = {I13, I11, I5,
I10, I3, I6, I4, I9, I12, I7, I1, I8, I2} results. The tallest item in the set is I1 and it initialises
the first level. Its right-hand edge is the only exposed border, and the space between it and the
right-hand boundary of the strip is wide enough for the first item in the list, namely I13. The
top edge of I13 is the only exposed border and items I11, I5 and I10 are too large to fit into
the space between the top edge of I13 and the ceiling of the level. The first item that fits into
this space is I3 and it fills the space to the ceiling of the level, rendering its right-hand edge the
only exposed border. Item I6 follows in the list and it fits adjacent to I3, creating two exposed
borders: the right-hand and top edges of I6. The right-hand edge is likely to yield a lower
packing than the top edge, and is investigated first as a packing location for an item. The only
item that fits into this space width-wise is I2, but it is too tall; its height combined with that of
I13 is larger than the height of I1 (and hence the level). Item I4 follows I6 in the list and may
be packed onto it. The item that follows, I9, may be packed onto I4, as the right-hand edge of
I4 is at the same horizontal coordinate as the right-hand edge of I6, rendering it an unsuitable
exposed border for any unpacked items. The only remaining exposed border is the right-hand
edge of I9 and the space is too small for any of the remaining items to be packed.

Of the remaining items, I11 is the tallest and it initialises the second level. The only exposed
border is the right-hand edge of I11, and I12 is the first item in the list that fits into the
remaining space in the level. The top edge of I12 is now the only exposed border because its
right-hand edge is adjacent to the right-hand boundary of the strip. Item I7 follows in the list
and may be packed onto I12. Two exposed borders are established due to this packing, namely
the top and right-hand edges of I7. None of the items are narrow enough to fit between the
right-hand edge of I7 and the boundary of the strip; only I8 fits onto I7. The space between
the right-hand edge of I8 (the only remaining exposed border) and the boundary of the strip
is wide enough to accommodate I2, but the space is not tall enough, resulting in the closing of
the level.

Item I5 is the tallest remaining item and it initialises the third level. Item I10 fits into the
space to the right of I5, leaving only its top edge as an exposed border. The remaining space is
too small for I2 and it initialises a fourth level. The resulting strip height is 36 and the packing
is shown in Figure 10.1(a).

Proposal 2 Design of a double-sided (DS) strip packing algorithm.

The newly proposed algorithm should ignore the location of the bottom of the strip and pack
the first item adjacent to the left-hand side boundary. The remaining items should be packed
to the right of the item, or above it, or below it in such a manner that the strip height increases
by the smallest distance for each item packed. If the packing of an item does not change the
height of the strip overall, then packing from the top is preferable.

For example, consider combining the BFmLM(DWDH) heuristic with the DS approach to pack
the items listed in Table 3.1. When using the merge-sort algorithm to sort the set of items
according to decreasing width, and resolving any ties by sorting them according to decreasing
height, the list I = {I13, I11, I5, I10, I3, I6, I4, I9, I12, I7, I1, I8, I2} results. First, I13 is
packed adjacent to the left-hand boundary of the strip. The space remaining between I13 and
the right-hand boundary of the strip is wide enough to accommodate I1, which is packed in
such a manner that it protrudes on either side of I13 by the same distance.1 No further items

1If the item dimensions are integer and the protrusions (which may have a negative length if the second item
is shorter than the first) are not of integer length, then the item may be moved up or down by the distance
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Figure 10.1: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
newly proposed algorithms described in Proposals 1 and 2. The resulting packing heights H are also
shown.

fit between those items that initialised the strip and the right-hand boundary; hence two sets
of skyline segments are established, one describing the top boundary and another along the
bottom of the packed items.

The skyline segments along the top and bottom of I13 both have the same distance from the
centre of I13, thus the top skyline segment is selected for further packing. The first unpacked
item in the sorted list that fits into this skyline segment is I11 and it is packed there, yielding
three skyline segments along the top of the packed items. The two skyline segments on either
side nearest the centre have the same distance from the centre; the top one is wide enough to
accommodate I2 and the bottom one is wide enough to accommodate I5. Item I2 is packed
onto the top skyline segment because it does not contribute to the length of the strip (the top
edge of I11 is further from the centre than the top edge of I2). The lowest skyline segment along
the top is above I1, while the best skyline segment along the bottom is below I13. The top
segment may accommodate I8, which, when packed, does not contribute to the height of the
strip, while packing I5 along the bottom would contribute more to the strip height. Therefore,
I8 is packed above I1 and the lowest skyline segment at the top becomes the conjoined top
edges of I2 and I8. This is wide enough to accommodate I9, which is packed there due to its
small contribution to the strip height.

The best skyline segments on either side of the strip are wide enough to accommodate I5 (the
first item in the list) and it is packed along the bottom because it contributes a length of 6 to the
strip height when packed there, as opposed to a height of 8 when packed on the top. The best
top segment is wide enough for I10, which would contribute a length of 6 if packed there, while

necessary to render the protrusion lengths integer values.
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the best skyline segment on the bottom may accommodate I7, which does not contribute to the
current strip height. Its location there yields a skyline segment wide enough to accommodate
I10 and its location there would result in a smaller increase in strip height than if it were packed
along the top (a distance of 1 compared to 6 if it were packed along the top).

If I3 were packed onto either of the best skylines on either side of the centre, it would result in
the same increase in strip height. Therefore, it is packed onto the top segment. The resulting
best skyline segment above the centre has the same width as I6, which does not add to the strip
height when packed there. For similar reasons, I12 is packed onto I9 and I4 is packed onto I6,
yielding the solution shown in Figure 10.1(b).

It may be possible to further improve the algorithm if one were to implement a form of best-fit
strategy when packing the items. For example, consider the packing in Figure 10.1(b) as an
intermediate packing, and suppose that the next item has a height of 1 and a length of no more
than the width of I5. It may be packed on either side of the centre and the algorithm, as it is
currently described, would pack it onto the best skyline above the centre. However, it would
be more desirable to pack the item below I5 because the difference in distances from the centre
to the nearest and furthest skyline segments for the bottom skyline is smaller than for the top
skyline. It is a vertical equivalent of the minimum residual horizontal space that is made use of
in the best-fit algorithms.

Proposal 3 Use a metaheuristic to order the items before they are packed into a strip (or into
multiple-size bins) by the BFmTN (or the 2SMBSBP-BFmTN) algorithm.

There are many examples of hybrid algorithms where a metaheuristic is used to order sets
of items (often called permutations) and a heuristic is used to decode these permutations (for
example, see Hopper and Turton [75–79]). The algorithm may begin by sorting the list of items
according to various methods; such as the DA, DH, DW, 1

2WDWDH and 1
2RDWDH sorting

methods. These lists of items may be used as the initial population of permutations for a genetic
algorithm. The new BFmLM, BFmTN or BFmSN algorithm may be used to pack these lists of
items and determine their quality in terms of packing height. These lists of items may then be
crossed where, for example, a number 0 < x < n of the better of two lists forms the first part of
the new list, and the remaining n− x items are inserted into the new list in the same order in
which they appear in the second list. A mutation, with a small probability of occurring, may
then swap the location of two randomly-selected items. The BFm algorithms will then continue
to decode the ordered lists of items created by the genetic algorithm. The best solution is saved
and replaced when a better solution is found. The algorithm may be stopped when a time limit
is reached.

This method may also be used to sort the items for packing by the 2SMBSBP-BFmTN algo-
rithm, for example, or the genetic algorithm may determine the bins into which the items should
be packed, while the BFmTN algorithm may decode the item/bin pairs to determine whether
the items all fit into their assigned bins. If items are assigned to a bin, but do not all fit into the
bin, the items could either be repacked, or selected items may be repacked into bins that have
sufficient space (these bins may contain other items). In this manner feasible solutions may be
guaranteed.

One possible drawback of the BFm family of algorithms, when using them in combination with
a metaheuristic, is the fact that they are not guaranteed to pack items in the order in which
they are found in the list passed to the algorithm. If the lowest skyline segment is short, then
many large or wide items may be overlooked for packing, while a smaller item is packed onto
the segment because it fits there. This may interfere with the order of items supplied by the
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metaheuristic. Heuristics such as the BL, BLF and GCS algorithms pack items in the order in
which they appear in the list. This may give them an advantage over the BFmLM, BFmTN
and BFmSN algorithms when used in this manner.

Proposal 4 Use the pricing scheme by Boschetti and Mingozzi [19] to solve the MBSBPP.

This may be done in one of two ways. The HBP algorithm may either be modified to pack the
largest bins first and then attempt to repack them in the manner of the 2SMBSBP algorithm, or
one may use the strategy of changing item prices to yield different packing solutions for various
iterations of the 2SMBSBP-BFmTN algorithm. For example, one could assign all the items a
price equal to their height, area or width, or a weighted combination of these dimensions. The
items may then be sorted according to their price and the 2SMBSBP-BFmTN algorithm may
pack these items into the relevant bins. Once the packing is complete, the items that are in
densely-packed bins may have their prices adjusted up/down, while those items in bins that are
less densely filled may have their prices adjusted down/up. The packing may then be performed
again, with the items sorted according to these new prices, saving the best solution of all the
iterations and continuing until some timeout condition is reached.

Proposal 5 Adapt the BFS, SL and SC algorithms to pack items that may be rotated.

There are a number of options as to how rotation may be incorporated in packing heuristics.
The items could either all be rotated in such a manner that their longest dimension becomes
the item heights (called vertical packing), or they may be rotated in such a manner that their
shortest dimension becomes the item heights (as proposed by Lodi et al. [103], and called
horizontal packing). Lodi et al. also propose initialising a level with the item with the longest
short dimension by packing it horizontally before packing the remaining items. If an item can
be packed vertically, then it should be; otherwise it should be packed horizontally. This may
be achieved with some efficiency if the items were stored in a list in which both orientations
are represented, but only the horizontal orientation is selected for level initialisations and both
orientations are removed from the list when an item is packed (this may be done efficiently via
linked-lists). This suggestion is based somewhat on the strategy of Bengtsson [14, p. 354] to list
all dimensions of the items in a single list, guaranteeing that both orientations of the item will
be tested.2 Examples of these rotation strategies, when applied to the SL algorithm (called the
SLRG algorithm), may be found in Figure 10.2 and, when applied to the SC algorithm (called
the SCRF algorithm), in Figure 10.3.

The BFmLM, BFmSN and BFmTN algorithms may also be adapted to pack items that may
be rotated. In a manner similar to Bengtsson’s method of sorting items, a list of items of size
2n may be generated, containing both orientations of each item. The items may then be sorted
according to decreasing height (see Figure 10.4) or according to decreasing width, as shown in
Figure 10.5, and packed into the strip, or into bins. These algorithms may benefit from the
repacking strategy employed by the original BFLM, BFTN and BFSN algorithms by Burke et
al. [22] which attempts to rotate those items that are tall (this is described in the Algorithmic
Variations section of §5.1.9).

2Bengtsson [14] allowed iterative improvements to the solutions, thereby guaranteeing that both orientations
would be tested. In the algorithms in this dissertation the orientation best suited to the current packing location
is selected. If the item is initialising a level or packing into a space that is shorter than the item’s longest
dimension, then the item is packed horizontally. The item is packed vertically in other cases.
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Figure 10.2: Results obtained when packing the items in Table 3.1 into a strip of width 20 using
the newly suggested versions of the SL algorithm that allow rotation as described in Proposal 5. The
resulting packing heights H are also shown.
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(H = 32)
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Figure 10.3: Results obtained when packing the items in Table 3.1 into a strip of width 20 using
the newly suggested versions of the SC algorithm that allow rotation as described in Proposal 5. The
resulting packing heights H are also shown.
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(H = 34)

5

10

15

20

25

30

35

13

11

1

2

6

8

12

4

7

59

3

10

(c) BFmSNRF(DH)
(H = 34)

Figure 10.4: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
newly suggested versions of the BFmRF(DH) algorithms that allow rotation as described in Proposal 5.
The resulting packing heights H are also shown.
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Figure 10.5: Results obtained when packing the items in Table 3.1 into a strip of width 20 using the
newly suggested versions of the BFmRF(DW) algorithms that allow rotation as described in Proposal 5.
The resulting packing heights H are also shown.
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[63] Gonçalves JF & Resende MGC, 2006, A hybrid heuristic for the constrained two-
dimensional non-guillotine orthogonal cutting problem, INFORMS Journal on Computing
(Submitted), [Online], [Cited on April 22nd, 2008], Available from http://www.research.

att.com/%7Emgcr/doc/2d-cutting.pdf
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APPENDIX A

Packing Software

Contents
A.1 A Decision Support System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.2 An MBSBPP Benchmark Generator . . . . . . . . . . . . . . . . . . . . . . . . 248

In order to test all the algorithms listed in Chapters 3–5, and those in Chapter 7, it was necessary
to write a software program to read the benchmark instances from a file, perform the packing
tasks and report the results. This was done in fulfilment of Dissertation Objectives VI, XI and
XIV. The resulting packing software is described in the first section of this appendix. In the
second section the benchmark generator for the MBSBPP (see §8.1.2), which was designed in
partial fulfilment of Dissertation Objective XII(a), is briefly described.

A.1 A Decision Support System

When starting the program the user is greeted by the window shown in Figure A.1. In the top-
left corner the user may select one of three options. Selecting the Strip Packing radio button
(selected by default) allows the user access to all the algorithms described in Chapters 3–5, and
the benchmark instances used to arrive at the results reported in Chapter 6. Selecting the Bin
Packing radio button gives the user access to all the strip packing algorithms combined with
the 2SMBSBP algorithm described in §7.2, and the benchmark instances listed in §8.1. If the
radio button labelled Other is selected, the user is given the choice of executing all strip/bin
packing algorithms on all strip/bin packing benchmark instances, either to determine only the
strip height or bin utilisation, or to find a packing and measure the time required by every
algorithm to find a solution to each problem instance.

The top-right corner of the window contains three check boxes. The first, labelled Guillotine,
restricts the algorithms available to the user to the set of algorithms that guarantee a guillotine
packing. This check box is not ticked by default in order to allow the user to select any of
the algorithms. The second check box is labelled Display Time. If this box is checked, then a
window appears when an algorithm has found the solution to a problem. This window contains
the time required by the algorithm to find a solution to the problem. Finally, the check box
labelled Keep Aspect Ratio, which is checked by default, restricts the picture box displaying
a packing solution to showing the solution with items and a strip/box that has the correct
height/width ratio. If this box is not checked, then the heights and widths of the items may
change to fill the picture box maximally, thereby changing the height/width ratio of the items.

243
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Figure A.1: The first window that opens when the packing software is executed.

The bottom half of the window has four text boxes (which remain hidden until required), two
combo boxes and a single button. The top combo box may be used to select the algorithm
(as shown in Figure A.2(a)), and the bottom combo box may be used to select the benchmark
instance to which the algorithm should be applied (see Figure A.2(b)). The user’s choice is
recorded by a mouse-click. Depending on the choice of algorithm, the upper text box shown
in Figure A.2(c) may appear. This text box is used to input the necessary parameters for the
algorithms: the join percentage for algorithms JOIN and SL, the search space for the B2F
algorithms or the split point for the xW and xR sorting algorithms. The bottom three text
boxes appear, or disappear, depending on the selected set of benchmark instances. For example,
selecting the benchmark instances by Christofides and Whitlock [26] would cause a single text
box to appear. Selecting the benchmark instances by Hopper and Turton [75, 79, 80] would
cause the appearance of two text boxes, while selecting the instances by Berkey and Wang [16],
or Martello and Vigo [112] would result in the appearance of three text boxes.

Once the algorithm and benchmark instance have been selected, the button labelled Pack Items
may be clicked. When the algorithm has completed the necessary calculations a new window
opens. It has the appearance of the screen shot in Figure A.3(a). The title of the window
contains the name of the algorithm selected, followed by the name of the benchmark instance
to which it was applied. The packing is shown in a picture box in the centre of the new window,
and resizes with resizing of the window. The items retain their aspect ratios if the Keep Aspect
Ratio check box was checked, or change shape to fill the picture box maximally if the check box
was not checked. Above the picture box is a text label that shows the width of the packing.
Below the bottom-right corner of the picture box is another text label containing the height of
the strip. Below the bottom-left corner of the picture box are a number of labels. The topmost
label contains the name of the algorithm that was used to perform the packing and the label
under that contains the name of the benchmark instance represented in the picture box. Below
the instance name is the number of items in the instance, followed by the number of bins used
(the text Strip Packing appears here in the case of the strip packing problem). The routine that
displays the packing calculates the sum of the items’ areas and displays it in the third row from
the bottom. The row below that is a display of the area of the strip that is used, calculated by
multiplying the strip width by the strip height. Finally, the utilisation is presented in the final
row and is calculated by dividing the total item area by the strip area. Every packing causes a
new window to be opened, allowing the user to view multiple packings at the same time.

Stellenbosch University  http://scholar.sun.ac.za



A.1. A Decision Support System 245

(b) Benchmark combo box

(a) Algorithm combo box (c) Text boxes

Figure A.2: Screen shots of the combo and text boxes on the main window.
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(a) Strip packing results window (b) Bin packing results window

Figure A.3: Screen shots of the results windows for strip and bin packing.

The results window has a very similar appearance in the case of bin packing, with some minor
differences (see Figure A.3(b)). The window title takes the same form as for the strip packing
problem; the bin packing algorithm is followed by the name of the benchmark instance. Above
the picture box the width of the bin is given, while the bin height is given below the bottom-
right corner of the picture box. Two buttons with arrows are located below the bin height label.
Clicking on the left-hand button results in a display of the previous bin containing items in the
sorted bin list. If the current bin is the first in the list, clicking on the left-hand button will
show the packing in the last item-containing bin in the list. Clicking on the right-hand button
shows the next item-containing bin in the list. The name of the bin is shown below the centre of
the picture box. If there are many bins with the same reference name, then the number of the
copy is shown in parentheses. The name of the algorithm may be found below the bottom-left
corner of the picture box. Directly below the algorithm name is the name of the benchmark
instance, followed by the number of items in that instance. The fourth row shows how many
bins have been used of the total number available. The next two rows contain the total area
of items and the sum of the areas of the bins that contain items. These two values are used to
calculate the utilisation, shown in the last row. To the right of the final row is the utilisation
of the bin that is currently shown in the picture box. In the example in Figure A.3(b), 93.3%
of the current bin is covered by items, while the overall utilisation is only 90.35%.

If the user selects the options All SP Algorithms (SH) or All SP Algorithms (T) in conjunction
with any benchmark instance, or the All SP Data Sets (SH) or All SP Data Sets (SH) options
in conjunction with an algorithm, and clicks on the Pack Items button, a new window appears.
This window is shown in Figure A.4 and is labelled Comparison Running in order to indicate that
multiple packings are taking place. The same window appears when Compare All SP Algorithms
(SH), Compare All SP Algorithms (T), Compare All BP Algorithms (T) or Compare All BP
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Figure A.4: A screen shot of the window that appears when multiple packings are taking place.

Algorithms (U) are selected. These options become available when the radio button labelled
Other is selected. There are two labels in the window. The upper one lists the name of the
benchmark instance currently being packed, while the lower one lists the name of the algorithm
that is performing the packing. The button labelled Stop allows the user to interrupt the packing
procedure. If the user had selected an option that only finds the strip packing height (SH) or
bin utilisation (U), then all the calculations are performed in a new thread that is given a very
low priority on the CPU in order to allow the user to use the computer resources with minimal
interference from the packing program. If the user selected any of the options that measure
time (T), then the calculations are performed by a thread that runs at the highest priority.
This is done in an attempt to minimise any interference from any other processes running on
the CPU at the same time. If there are other processes running, then they may interfere with
the completion time of the algorithms.1

(a) Output in a text editor (b) Output in spreadsheet software

Figure A.5: Screen shots of the results output for text editors and spreadsheet software.

The results of these comparative runs are written to a file. These files are comma-separated
values (CSV) files that may be opened in most text editors (see Figure A.5(a)) or spread-
sheet programs (see Figure A.5(b)). All numerical values or text are separated by means of
commas, and these commas may be interpreted as column separators. If an algorithm was
tested on all benchmark instances, then the resulting file name consists of the name of the
algorithm, plus (SP) (or (U)) if the packing height (or utilisation) was sought, or (T) if the
packing height (or utilisation) and execution time were to be found. The date that the com-

1The tests were completed on a dual-core CPU, which further minimised the chances of interference from the
other processes, as they could run on the core not being used by the packing software. No attempt was made to
allow the packing software to use both cores.
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parison began is added to the end of the file name. Therefore, if the BLF(DA) algorithm
was applied to all benchmark instances in order to find only the resulting packing heights, the
file name should read BLF(DA)(SH)2010-01-01.csv. If the packing heights (and times) were
sought for a specific benchmark instance, the file name begins with the name of the bench-
mark instance. For example, if all the algorithms were applied to the benchmark instance N12
by Burke et al. [22] in order to find both the packing height and execution time, then the
file name should read 2004BurkeKendallWhitwellN12(T)2010-01-01.csv. If all strip pack-
ing algorithms were applied to all benchmark instances, then the resulting file name would be
ComparoSP(SH)2010-01-01.csv, while the multiple bin size bin packing algorithms and bench-
mark instances would yield a file name resembling ComparoMBSBP(U)2010-01-01.csv. The files
typically have the following structure. The first row contains the names of the algorithms, while
the first column contains the names of the benchmark instances. The second column contains
the number of items that are packed. This is followed by rows of strip packing heights, or bin
packing utilisations. If the time was required, these columns are followed by further columns
that contain the running times for each algorithm/instance pair.

A.2 An MBSBPP Benchmark Generator

The software was designed to be able to generate benchmark instances for the MBSBPP. When
the program is started, the window shown in Figure A.6(a) welcomes the user. It allows the
user to choose the area ratio restriction (the ratio between the largest and smallest items by
area), and the aspect ratio constraint (the ratio between the item’s height and width), for “nice”
items. The default values are set to the values used by Wang and Valenzuela [156] for their
benchmark instances for the strip packing problem. The window also allows the user to enter
the number of replicates that are required for each n/M pair, where n denotes the number of
items and M denotes the number of bin sizes. The second row of text boxes allows the user to
set the initial size of the rectangle from which the bins and items are cut, and the seed of the
random number generator. The text boxes in the third and fourth rows are not for user input;
these text boxes are reserved for data output. The third row of text boxes shows the user which
instance the software is attempting to generate. The left-hand text box shows the number of
bin sizes, the centre box shows the number of items for the problem, and the right-hand box
shows which replicate is sought.

The two text boxes in the final row list the number of problems that occur, or the number of
invalid instances that are found. There are four reasons why an instance may be labelled not
valid:

• The tallest item has a larger height than the shortest bin.

• The widest item has a width larger than the smallest bin width.

• Any of the items have a dimension of length 0.

• The area of the bins (before multiple copies are generated) does not add up to the area of
the original bin from which the bins were cut. This should not happen, but was included
as a safety measure.

There are constraints on where the item may be cut in order to result in two “nice” items, if
such items are required. In their paper on the creation of such benchmark instances, Wang and
Valenzuela proved that an item of width W cannot be sliced vertically into two items that both
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(a) Initial window (b) Window when finding benchmarks

Figure A.6: Screen shots of the main window for the benchmark generator.

have the correct aspect ratio when W > 2ρH, where ρ denotes the maximum aspect ratio and
H denotes the item height. The same is true when W < 2H/ρ. Similarly, items may not have
a height H > 2ρW or H < 2W/ρ in order for it to be split horizontally into two valid items.
If any such items are found during the generation of a benchmark instance, the generation of
the instance is aborted and a new search for an instance is initiated. These problems are added
together to give the value shown in text box labelled Problems.

Figure A.7: A screen shot of the window that appears to show a newly-created benchmark instance
for the MBSBPP.

There are three buttons on the main window. The button in the top-left corner initiates the
search for “pathological” benchmark instances. Selecting the button in the top-right corner
initiates the search for “nice” benchmark instances. If the check box between the two items
is ticked, then a window resembling the example in Figure A.7 will appear and show each of
the benchmark instances as they are generated. The button in the bottom-left corner of the
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window may be clicked during the benchmark generation process in order to stop the search
for these instances. The output is written to CSV files in the path “C:\MBSBPdata\”. Each
instance consists of two files, one containing the items’ dimensions and another containing the
dimensions of the bins. The files take the form MBSBPx.ni.Mb.yz.csv, where x may be either
nice or path, the variable n is the number of items in the instance, M denotes the number of
bin sizes, y is the replicate number and z is either i or b, indicating that the file contains either
the items’ or bins’ dimensions. The files for the “nice” data have the values used for the area
and aspect ratio constraints in parentheses before the file extension.
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APPENDIX B

Contents of the Compact Disc Accompanying
this Dissertation

Included with this dissertation is a compact disc containing some results and source code for
the software presented in Appendix A. In this appendix the information on this disc is clarified.
There are five directories on this compact disc, namely Electronic Dissertation, Packing Soft-
ware, Required Software, Results and Source Code. The contents of these folders are described
below.

Electronic Dissertation. This folder contains electronic copies of this dissertation in Post-
Script and PDF formats.

Packing Software. This folder contains the software described in §A.1. Before this software
is used, the folder should be copied to a convenient location on a hard disk drive. The
software may be started by double-clicking on the file named Packing.exe. Any results
from multiple comparisons will be written into the subfolder labelled Data. This subfolder
contains the benchmark problem instances used in this dissertation in folders labelled with
the name of the problem, i.e. MBSBPP Data Sets, SBSBPP Data Sets and SP Data Sets.
The file labelled lpsolve.dll, supplied by Berkelaar et al. [15], is required by the packing
software to solve knapsack problems during the execution of the KP family of algorithms.
This program may require the Microsoft .NET 3.5 Framework [117] to be installed on the
computer on which it is executed.

Required Software. This folder contains the software used to compile the source code (sup-
plied in the folder labelled Source Code), and the software required to view the spread-
sheets of data. The software was written in the SharpDevelop Integrated Development
Environment [82] and the data was analysed in OpenOffice.org [150].

Results. This folder contains three subfolders. The folder labelled Bin Packing Results con-
tains the results achieved by the 2SMBSBP algorithm when applied to the MBSBPP and
SBSBPP. The folder labelled SAS Files contains all the input and output files for the
statistical tests that were performed by means of the SAS Software Suite [145] on the
packing results. The folder labelled Strip Packing Results contains the results obtained
by the packing software when applied to the strip packing benchmark instances.

Source Code. This folder contains the source code for the MBSBPP benchmark generator
described in §A.2, and the source code for the packing software described in §A.1. The
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corresponding projects may be opened in SharpDevelop [82] by opening the files with the
.vbproj extension. These software projects were compiled on a 32bit Windows XP (SP3)
PC.
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