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Abstract

Computerised sugarcane harvest scheduling decision support is an active field of research which
ties in closely with the broader problem of automating and streamlining the various activities
in the sugar supply chain. In this dissertation, the problem of providing decision support with
respect to sugarcane harvesting decisions is defined within a number of contexts, each represent-
ing a typical kind of organisation of sugarcane farmers into a cohesive decision making unit with
its specific requirements and limitations that exist in practice. A number of variations relevant
to these contexts of an overarching tactical sugarcane harvest scheduling problem (THSP) are
considered and solved in this dissertation. The THSP is the problem of providing objective,
responsible decision support to persons charged with the task of determining optimal harvesting
dates for a set of sugarcane fields across an entire season.

Sugarcane fields typically differ in terms of the age, variety, life-cycle stage and in many other
properties of the cane grown on them. The growth of sugarcane crops may also be affected
by environmental conditions such as accidental fires, frosts or storms which have a detrimental
effect on crop-value. Since sugarcane is a living organism, its properties change over time,
an so does the potential profit associated with it. The practicalities of farming cause further
complication of the problem (for example, seasonal changes alter the conditions under which
the crop is harvested and transported). The rainy season carries with it the added cost of
disallowing long-range vehicles to drive into the fields, forcing the unloading and reloading of
cane at so-called loading zones. Other considerations, such as the early ploughing out of fields to
allow them to fallow before being replanted, compounds the THSP into a multi-faceted difficult
problem requiring efficient data management, mathematical modelling expertise and efficient
computational work.

In the literature the THSP has been viewed from many different standpoints and within many
contexts, and a variety of operations research methodologies have been employed in solving
the problem in part. There is, however, no description in the literature of a solution to the
THSP that takes the negative effects of extreme environmental conditions on the quality of
a harvesting schedule into account in a scientifically justifiable manner; most models in the
literature are based on optimising sucrose yield alone under normal conditions, rendering weak
schedules in practice. The scope of the modelling and solution methodologies employed in this
dissertation towards solving the THSP is restricted to integer programming formulations and
approximate solution methods. The parameters associated with these models were determined
empirically using historical data, as well as previous work on deterioration of sugarcane following
environmental and other events.

The THSP is solved in this dissertation by designing a generic architecture for a conceptual
decision support system (DSS) for the THSP in the various contexts referred to above, which
is capable of accommodating the effects of extra-ordinary environmental conditions, as well as
the introduction of a computer-implemented version of a real DSS for the THSP conforming
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to the framework of this generic architecture. The DSS building blocks include prediction
models for sugarcane yield, sugarcane recoverable value under normal circumstances, the costs
associated with a harvesting schedule and the negative effects on sugarcane recoverable value of
extraordinary environmental conditions. The working of the DSS is based on a combinatorial
optimisation model resembling the well-known asymmetric travelling salesman problem with
time-dependent costs which is solved approximately by means of an attribute-based tabu search
in which both local and global moves have been incorporated. The DSS is also validated by
experienced sugarcane industry experts in terms of the practicality and quality of the schedules
that it produces.
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Uittreksel

Gerekenariseerde besluitsteun vir die skedulering van suikerriet-oeste is ’n aktiewe navorsings-
veld wat nou verwant is aan die breër probleem van die outomatisering en vaartbelyning van ’n
verskeidenheid aktiwiteite in die suikervoorsieningsketting. Die probleem van die daarstelling
van steun rakende suikkerriet oestingsbesluite word in hierdie proefskrif in ’n aantal kontekste
oorweeg, elk met betrekking tot ’n tipiese soort organisasie van suikerrietboere in ’n samehorige
besluitnemingseenheid met sy spesifieke vereistes en beperkings in die praktyk. Verskeie variasies
van ’n oorkoepelende taktiese suikerriet-oesskeduleringsprobleem (TSOSP) wat in hierde konteks-
te relevant is, naamlik die probleem om objektiewe, verantwoordbare steun aan besluitnemers
te bied wat verantwoordelik is vir die bepaling van optimale oesdatums vir ’n versameling
suikerrietplantasies oor die bestek van ’n hele seisoen, word in hierdie proefskrif bestudeer en
opgelos.

Suikerrietplantasies verskil tipies in terme van ouderdom, gewastipe, posisie in die lewensiklus,
en vele ander eienskappe van die suikerriet wat daar groei. Omgewingstoestande, soos onbe-
plande brande, ryp of storms, het verder ook ’n negatiewe impak op die waarde van suikerriet op
sulke plantasies. Omdat suikerriet ’n lewende organisme is, verander die eienskappe daarvan oor
tyd, en so ook die potensiële wins wat daarmee geassosieer word. Boerderypraktyke bemoeilik
verder die skeduleringsprobleem onder beskouing (seisoenale veranderings bëınvloed byvoorbeeld
die wyse waarop suikerriet ge-oes en vervoer word). Addisionele koste gaan voorts met die
reënseisoen gepaard, omdat die plantasies dan nie toeganklik is vir langafstand transportvoertuie
nie en suikerriet gevolglik na spesiale laaisones gekarwei moet word voordat dit op hierdie
voertuie gelaai kan word. Ander oorwegings, soos die vroeë uitploeg van plantasies sodat die
grond kan rus voordat nuwe suikerriet aangeplant word, veroorsaak dat die TSOSP ’n moeilike
multi-faset probleem is, wat goeie databestuur, wiskundige modelleringsvernuf en doeltreffende
rekenaarwerk vereis.

Die TSOSP word in die literatuur vanuit verskillende standpunte en in verskeie kontekste oor-
weeg, en ’n aantal uiteenlopende operasionele navorsingsmetodologieë is al ingespan om hier-
die probleem ten dele op te los. Daar is egter geen poging in die literatuur om ’n oplossing
vir die TSOSP daar te stel waarin daar op ’n wetenskaplik-verantwoordbare wyse voorsiening
gemaak word vir die negatiewe effekte wat uitsonderlike omgewingstoestande op die kwaliteit
van oesskedules het nie; die meeste modelle in die literatuure is op slegs sukrose-opbrengs onder
normale omstandighede gebaseer, wat lei na swak skedules in die praktyk. Die bestek van die
wiskundige modellerings- en gepaardgaande oplossings-metodologieë word in hierdie proefskrif
vir die TSOSP beperk tot onderskeidelik heeltallige programmeringsformulerings en die bepaling
van benaderde oplossings deur lokale soekprosedures. Die parameters wat met hierdie modelle
en soekmetodes geassosieer word, word empiries bepaal deur gebruikmaking van historiese data
asook bestaande werk oor die degradering van suikerriet as gevolg van omgewings- en ander
eksterne faktore.
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Die TSOSP word in hierdie proefskrif opgelos deur die ontwerp van ’n generiese argitektuur
vir ’n konseptuele besluitsteunstelsel (BSS) vir die TSOSP in die onderskeie kontekste waarna
hierbo verwys word en wat die effekte van uitsonderlike omgewingsfaktore in ag neem, asook
die daarstelling van ’n rekenaar-gëımplementeerde weergawe van ’n daadwerklike BSS vir die
TSOSP wat in die raamwerk van hierdie generiese argitektuur pas. Die boustene van hierdie
BSS sluit modelle in vir die voorspelling van suikerrietopbrengs, die herwinbare waarde van
suikerriet onder normale omstandighede, die verwagte koste geassosieer met ’n oesskedule en die
negatiewe effekte van omgewingsfaktore op die herwinbare waarde van suikerriet. Die werking
van die BSS is gebaseer op ’n kombinatoriese optimeringsprobleem wat aan die welbekende
asimmetriese handelreisigersprobleem met tyd-afhanklike kostes herinner, en hierdie model word
benaderd opgelos deur middel van ’n eienskap-gebaseerde tabu-soektog waarin beide lokale en
globale skuiwe gëınkorporeer is. Die BSS word ook gevalideer in terme van die haalbaarheid
en kwaliteit van die skedules wat dit oplewer, soos geassesseer deur ervare kundiges in die
suikerrietbedryf.
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Terms of reference

The idea of automated scheduling of sugarcane harvesting operations was introduced to the
author in 2007 by Professor Carel Bezuidenhout of the School of Bioresources Engineering
and Environmental Hydrology (BEEH) at the University of KwaZulu-Natal (UKZN). Profes-
sor Bezuidenhout was on sabbatical in the United Kingdom at the time, visiting the Cranfield
School of Management, Cranfield University and there gave a presentation on current supply
chain problems in the South African sugarcane industry. Dr Roy Andersson of the Industrial
Engineering Department, School of Engineering, University of Bor̊as attended the presentation,
noticed that some of the problems within the South African sugarcane supply chain may be
approached by means of operations research tools, and was aware that the author was highly
interested in pursuing a doctoral degree in operations research. The author invited Professor
Bezuidenhout to give the presentation in Sweden, at the Industrial Engineering Department of
the University of Bor̊as where the author worked. The School of Engineering at the Univer-
sity of Bor̊as subsequently decided to provide funding in order to enable the author to work
on a doctoral dissertation project and Professor Bezuidenhout advised the author to apply for
admission to the doctoral programme in operations research at Stellenbosch University, un-
der the supervision of Professor Jan van Vuuren, head of the Operations Research Division
within the Department of Logistics at Stellenbosch University, and under the co-supervision
of Professor Bezuidenhout. Professor Bezuidenhout advised towards applying to the Division
of Operations Research due to the complementary component it would bring to the doctoral
dissertation project, in terms of a well-developed research environment in the subject of opera-
tions research with prior experience in modelling problems within the sugarcane industry. The
author commenced his PhD studies on 21 January 2008.

The research group at the Operations Research Division of Stellenbosch University is involved
in projects spanning a multitude of practical applications, and there are currently two students
working on problems involving sugarcane at the division. Ms Linke Potgieter is currently work-
ing on a masters project with the title “A mathematical model for the control of the stalk borer
Eldana saccharina Walker” focussing on a method called the sterile insect technique. This tech-
nique is based on the idea that sterile specimens of the insect are introduced into the insect
population with the purpose of diluting the presence of fertile specimens, thereby decreasing
the successful fertilisations and thus the insect population size. Ms Potgieter is working on a
part of a larger project including researchers with the South African Sugarcane Research Insti-
tute (SASRI). Ms Heletje van Staden—Namibia’s top female cyclist—is currently working on a
BSc Honours year project within the Operations Research Division with the title “Resource as-
signment and scheduling in sugarcane industry” involving sugarcane resources—especially with
respect to irrigation—scheduling. Both Ms Potgieter and Ms van Staden are supervised by
Professor van Vuuren.

Parts of this project were conducted in situ and thus the author was stationed in Pietermar-
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itzburg, KwaZulu-Natal for much of its duration. The School of BEEH at the Pietermaritzburg
campus of UKZN continuously conducts a wide range of projects involving various aspects of
sugarcane production. Professor Bezuidenhout is a SASRI Senior Research Fellow at the School
of BEEH and is responsible for many of these projects housed under the subject area of agricul-
tural engineering. Some current projects include a masters project on Diagnostics of integrated
sugarcane production systems by Milindi Sibomana, a doctoral project on the Improvement of
sugar cane supply and processing chain using complex systems thinking tools by Thawani San-
jika, and a doctoral project on Optimising the raw material transportation of the sugar value
chain by Louis Lagrange.

The idea to attempt to provide decision support in sugarcane harvesting operations scheduling
was conceived some time into examining the reasons behind a problem which was thought to be
a crisis management problem arising across entire mill areas in South Africa when sugarcane is
struck by destructive environmental events. The crisis perspective remained as the main issue
until it was proposed that tactical harvest scheduling may be the solution to crisis-type problems
as well, not just the solution to the problem of maximising seasonal profits. This proposal came
as a result of the research conducted while the author was stationed in Pietermaritzburg, close
to several sugar mills in KwaZulu-Natal.

While stationed in Pietermaritzburg, the author visited Noodsberg Mill on several occasions,
interviewing the cane supply manager, as well as taking a tour of the mill. The author partici-
pated in several meetings organised by the Noodsberg Mill Group Board between representatives
of Noodsberg Canegrowers, the School of BEEH (including Professor Bezuidenhout and various
students that he supervised), the Noodsberg Mill Area Extension Officers (including Mr Pat
Brenchley), the Noodsberg Mill (including Mr Julius De Lange) as well as various individually
acting cane growers. The author also attended a proper Mill Group Board meeting in Noods-
berg. Furthermore, Professor Bezuidenhout and the author met with the cane supply manager
at Sezela Mill, Mr Allan Simpson, who over several hours rendered the insight of a long-time
industry professional into the problem of harvest scheduling from a miller’s perspective to the
author.

At the time of these meetings, the problem was still being formulated, and the author hence
conducted a number of question-driven interviews with several growers. During these interviews,
the grower was encouraged to elaborate on his/her answer following a predetermined question
and the author would subsequently ask ad hoc follow-up questions in response to the grower’s
answer. This was done in order to understand the harvesting problem from the growers’ per-
spectives. It was during these interviews that the problem was understood to a sufficient extent
in order for the author to be able to attempt a general problem formulation, as well as to select
an appropriate modelling approach.

During a subsequent meeting with Mr Edgar Bruggeman, then Extension Officer at Eston
Mill, the idea was conceived to test the problem modelling approach on a syndicated group of
growers that he knew personally, in the Eston Mill area. The syndicate members were Mr Roger
O’Neill, Mr Clive Coulthard, Mr Eric Lewis and Mr Malcolm Thompson and the syndicate had
operated for a few years, employing Mr Shawn Kyle as the manager of the harvesting operation.
This group was approached with a proposal including that the author would send suggested
harvesting schedules to the syndicate on a regular basis during the 2009 harvesting season and
that the growers should return information in response to these suggested schedules concerning
the actually harvested fields since the last suggested schedule received as well as their opinions
concerning the quality of the schedules. The schedules would be constructed based on data that
the growers were to send to the author ahead of the season. The syndicate unanimously agreed,
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and the author proceeded to spend time with the growers and the manager, in order to better
understand the details of how harvesting operations are managed and how harvest scheduling
decisions are made in practice. While this learning (and data collection) phase took place, work
on implementing the first decision support system (DSS) of this dissertation was commenced.
The syndicate upheld their part of the agreement throughout the season.

The actual implementation of the first DSS was completed in the postgraduate laboratory
operated by Professor Jan van Vuuren at the Operations Research Division, with the aid and
advice of additional experienced operations researchers, namely Dr Alewyn Burger and Mr Neil
Jacobs. This DSS was ready to produce schedules ahead of the 2009 harvesting season and
did so regularly until September 2009, when it was decided to stop the schedule generation
procedure due to the small number of fields remaining. The author again spent time with the
growers and gathered comments that had not been recorded from the regular communication
(exchanged in conjunction with the submission of the schedules) during the 2009 harvesting
season. He then implemented a second version of the DSS. This final version of the DSS was
to incorporate aspects which were not incorporated into the first DSS, and was to be tested
during the 2010 harvesting season by the same syndicate, which had been agreed upon during
the syndicate’s end-of-season meeting in November 2009.

The testing of the final DSS occurred while the author was stationed at the Operations Research
Division of Stellenbosch University, enabling the employment of the computational resources and
communication facilities required for a successful experiment and access to the skills possessed
by the operations researchers within the division to ensure the application of appropriate changes
to the DSS architecture and computer implementation.
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1.1 Background

The problem of constructing a suitable schedule for the harvesting of sugarcane dates back
to the period 6 000 BC to 500 BC, when the cultivation of this species of the grass family,
Poaceae (earlier Gramineae), began in New Guinea and continued at a larger scale in India [62],
having followed the human migration routes between Melanesia and South-east Asia [172]. The
Persian Emperor Darius discovered “the reed which gives honey without bees” during his 510
BC intrusion into India Proper and brought it home to Persia, where honey was the only known
sweetener at the time [189]. Alexander the Great discovered “the sacred cane” [210] during his
two-year India campaign from 327 to 326 BC [210, 232], for the benefit of the Mediterranean
nations [201].

It was, however, not until the Arab invasions of Persia in 633, 636 and 642 AD [229] that
Saccharum officinarum, or “noble cane” (the sweetest species of the Saccharum genus), S.
spontaneum (the species occurring in the wild), S. barberi (the most important species used in
breeding) and S. robustum (the hard stalked species) [54] began to spread seriously, reaching
Egypt in 710 AD [89], Spain in 755 AD, Sicily in 950 AD [15, 34] and was eventually brought
by Columbus to Hispaniola on November 22, 1493 during his second journey to the Americas
[230, 231]. In 1518, the Portuguese established the first sugarcane plantation in Brazil [218],
today the largest sugar producer in the world, having a few decades earlier colonised some
of the islands off the west coast of the African continent, namely Madeira and Sao Tome,
successfully cultivating sugarcane on a large scale [62].

The southward spread of sugarcane cultivation and refining from Egypt—refining and re-crystalli-
sation having been invented by the Egyptians [89]—to southern and eastern Africa occurred
rather gradually during the period 1500–1850 AD. However, the Dutch introduced sugarcane to
Mauritius prior to surrendering the island to the French in 1710 [151].
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2 Chapter 1. Introduction

The first colonial sugar plantations in South Africa were established in Natal (currently KwaZulu-
Natal) during the period 1846–1855 [10,197], the first plantation being Compensation in Umhlali
established by a Mr Edmond Morewood who acquired his seed cane from Mauritius and Re-
union [197]. Land had been opened to white settlers due to the annexation of Natal by order
of the Cape Governor, Sir George Napier, on 31 May 1844 [185]. However, some claim that
sugarcane was already grown by the Zulus at least as early as the 17th century [10].

From the 1850s onward, sugarcane growers established themselves throughout Natal, some im-
migrating from Europe or Mauritius, lured by word of profitability stemming from initial suc-
cess [197], while many workers were “recruited” as indentured labourers from India during the
1860s [196]. The general trend during the 20th century was for sugarcane farms to expand, the
initially small, scattered mills to be consolidated and for large sugar companies to emerge. Some
farms remain small to this day, other farms have merged into large, family-owned farms while
still others have become incorporated into commercial estates. This relative diversity today
makes up the fourteen established mill supply areas from Mpumalanga Province in the north to
southern KwaZulu-Natal, contained within the areas indicated in Figure 1.1. The approximately
47 000 sugarcane farms in South Africa [194] currently produce more than 20 million tonnes of
sugarcane per annum, resulting in approximately 2.3 million tonnes of sugar each year [108].

Figure 1.1: Shaded areas indicate the cultivation of sugarcane in South Africa.

1.2 Informal problem description

Increasing global competition in the international marketplace, mainly spearheaded by the
Brazilian and Indian sugar industries, results in sugar prices remaining relatively low world-
wide [55]. However, increasing fuel prices, perhaps currently driven by the rate of depletion of
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fossil fuels and the emerging industrial giants, China and India [228], are raising operational
costs of farming. A mill supply area may comprise several thousand subsistence farmers, sev-
eral hundred commercial growers and a few very large estates [194]. The commercial growers
and large estates are, from a purely economical perspective, more important. For example, 83
% of the sugarcane milled in South Africa by Tongaat Hulett Sugar, one of the large sugar
companies, is grown on company land or large commercial farms, while only 17 % is grown on
small and medium-scale farms [215]. Increasing pressure from the global market on the South
African sugar supply chain [135] combined with the fact that sugarcane is an age-deteriorating
product which loses value while in the transportation stage [191], leads to the requirement that
the logistics of the sugar supply chain be streamlined in order to ensure the survival of the
industry. Indeed, there is currently a concerted effort in the industry to collaborate across busi-
ness entity boundaries and with government [193]. For example, there is collaboration among
growers with respect to co-owning logistical equipment [25] and collaboration between growers
and millers concerning the implementation of computerised logistical scheduling systems [69].
In terms of computerised decision support for sugarcane estates, SQR Software’s CANEPRO
system [199] supports the management of 130 000 hectares of land for several estates with re-
spect to operational planning, manual agricultural activity scheduling, field data-basing and
costing.

A farm of commercial proportions is ideally designed and managed to maximise land use, pro-
viding fields that are fit for available cultivation and harvesting equipment as well as accessible
by the relevant transportation vehicles, while minimising negative environmental impact such
as erosion, wetland encroachment and flora and fauna habitat destruction [181,182]. One visible
effect of the layout design is that farms are typically divided into fields, usually separated by
relatively wide firebreaks, neighbouring fields often differing quite substantially in appearance
from one another. These differences in appearance are not circumstantial; it is due to careful
planning of cultivation stages, crop age1 and sugarcane variety interspersion, so as to minimise
the risks of runaway fires, insect infestation proliferation, the spread of fungal and other diseases
as well as hampering hillside water run-off velocities during periods of heavy rainfall [182].

While layout design is an ongoing issue at the strategic farming level, one may argue that
harvesting tactics are in themselves crucial in maintaining a resilient and sustainable commercial
sugarcane farm—both financially and environmentally. Even with a carefully planned layout,
some fields may be connected by roads that are too steep to travel on or may themselves be
too steep to allow harvesting during the rainy season. Figure 1.2 shows sugarcane harvesting
in progress on a hillside. Other fields may be situated in an area that is exceptionally dry,
experiences frost regularly or dries off slowly following rain. While considering such physical
properties of the farm, it is equally important to be aware of any occasional minor disruption or
major disaster that may strike the sugarcane. A frosted field, or one that has been overrun by
accidental fire, may become a financial disaster if not tended to immediately, while a field that
has had its sugarcane lodged (blown down) may only constitute a developing problem [182].

In South Africa, sugarcane is grown in cycles of twelve to twenty-four months. Different sugar-
cane varieties display different seasonal sucrose content trends, which generally peak during the
middle of winter [182]. Ideally, this is the time around which the entire farming strategy, layout
design, sugarcane variety interspersion planning and harvesting tactics should be oriented. The
tactical harvesting problem is, however, a more challenging reality since cane must be harvested
at a consistent rate throughout the entire nine-month season, according to the rules and regula-
tions governing the South African sugar industry. This is to spread out the workload, requiring

1These differences in age is called the age-mosaic.
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Figure 1.2: Hillside harvesting should preferably occur during dry conditions, since harvesting machin-
ery tends to slide on wet, sloping earth. The topography of a farm is one of the factors to consider in
tactical sugarcane harvest scheduling.

less milling capacity and thus save money.

A commercial sugarcane farm may comprise more than 120 fields, and most of the crops on
these fields as well as the field properties themselves, are different from one another. These dif-
ferences may be small when viewing them at an instant, but their effects typically become more
distinguishable over time. When considering the number of different answers to the question
of how to schedule the harvest of 120 different fields, the harvest scheduling problem seems a
little daunting. Determining the harvest schedule is, however, at the centre of remediating the
negative of the effects of the various disruptions and major disasters mentioned earlier and prof-
iting from the positive of these effects; hence the challenge and value embedded in the tactical
sugarcane harvest scheduling problem treated in this dissertation.

This dissertation contains an approach to modelling and solving the problem of providing com-
puterised decision support to people charged with the task of scheduling the harvest of sugar-
cane. The approach involves models of sugarcane growth, sugarcane deterioration when struck
by disease, frost, insect infestations, fire and other adverse events. These models are then used
to estimate the net profit from harvesting each field at each point in time into the future of a
current season. Once each field has a net profit associated with its harvesting, an optimisation
model is used to construct a schedule of maximum estimated profit, by ordering the fields in such
a way as to maximise their combined net profit. This schedule is the proposed solution to the
decision support problem described in this dissertation, and the focus is mainly on medium-scale
commercial growers and groups of such growers working co-operatively.

1.3 Dissertation aim and objectives

This dissertation is aimed at advancing the current state of research on decision support systems
(DSSs) for sugarcane harvest scheduling in South Africa. Towards realising this aim, nine
detailed objectives are pursued throughout.

Objective I: To perform a literature survey of operations research models previously formu-
lated in the context of optimising the sugar supply chain, the sugar supply chain’s indi-
vidual parts from growing to the mill yard, and other supply chains that relate to the
problem at hand.

Objective II: To perform a literature survey of related combinatorial optimisation problems
and conventional solution methodologies in order to establish a foundation of scientifically
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sound and practically suitable models and associated solution methods on which to base
the core of the DSS put forward in this dissertation.

Objective III: To perform a literature survey of the methods previously and currently used
to model sugarcane mass, value per unit of mass and harvesting costs in order to establish
a foundation from which to develop a suitable methodology for predicting

a) sugarcane yield based on readily available data,

b) sugarcane relative recoverable value percentage based on readily available data,

c) sugarcane harvesting costs based on readily available data.

Objective IV: To perform a literature survey and to interact with suitable role-players in the
sugar industry in order to gain an understanding of the various factors that affect the
growth, quality and survival of sugarcane crops, in order to establish a foundation on
which to develop means of adjusting predictions of sugarcane yield, relative recoverable
value percentage and harvesting costs, when such factors are in effect. Examples of these
factors are foreseen to include, but are not limited to, accidental fire, frost of varying
degrees, diseases, insect infestations and drought.

Objective V: To conduct an empirical combined evaluation and development experiment at
the level of potential DSS users in order to determine what capabilities a tactical harvest
scheduling DSS should possess and how those capabilities may be supported mathemati-
cally, in order for such a DSS to be useful to the South African sugar industry.

Objective VI: To put forward a viable suggestion with respect to sugarcane crop harvesting
decision support, based on the results of pursuing Objectives I–V, by

a) designing a generic DSS architecture so that it may accommodate relevant building
blocks without loss of capability, showing its data requirements, how the data are
transformed and flow within the DSS, as well as what processes utilise the data and
how these processes are sequenced,

b) populate the DSS architecture with various building blocks, such as interfaces, data-
bases, mathematical models, solution methodologies for these models and evaluation
tools.

Objective VII: To render useful the DSS of Objective VI, by

a) implementing the DSS on a personal computer so as to achieve a stand-alone pro-
gram which does not require specialist software to be installed for its execution and
subsequent use,

b) testing and debugging the DSS implementation by means of a sequence of experiments
interspersed with implementation corrections designed to render the DSS capable of
performing consistently and predictably in practice.

Objective VIII: To validate the effectiveness of the DSS implementation of Objective VII, by

a) shadow scheduling at least one actual harvesting operation for an entire season, while
implementing newly found necessary or improving changes or additions to the various
building blocks of the DSS,

b) drawing opinions from the industry representatives involved in a),

c) comparing actual harvesting schedules with the DSS-generated schedules as a means
of benchmarking the DSS with respect to the decisions of industry professionals.
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Objective IX: To outline ideas for future work and to provide possible directions in which to
proceed in order to further advance the research on operations research-based DSSs for
tactical sugarcane harvest scheduling in South Africa and other nations.

1.4 Dissertation scope

The methodology within the DSS for predicting cane yield2 for an undamaged, disease-free
cane crop not treated with chemical ripener3, not in a state of water stress, shall provide for the
employment of empirical models derived from data readily available to the user4, (such as field
records from a representative geographical area under representative agroclimatic5 conditions).
The DSS shall provide for the user to be able to manually adjust the predicted cane yield
values field-by-field for perceived errors due to detailed conditions which are in this dissertation
considered unpredictable. For example, such conditions may be unexplained low cane yield in
a field which is apparently healthy, low cane yield in a field due to crop class6 (when data are
not sufficient for incorporating the factor crop class into the prediction models) or generally
different than expected cane yield in some field due to other factors that were not modelled
explicitly when applying the methodology for predicting cane yield on the available data.

The methodology within the DSS for predicting cane recoverable value percentage7 (RV %)
shall be subject to the same limitations and provision requirements as the methodology within
the DSS for predicting cane yield, insofar as these limitations and provisions bear meaningful
implications, except for the provision that the user may manually adjust cane yield estimates,
but not cane recoverable value percentage estimates.

The DSS shall accommodate the incorporation, by the user of the DSS, of alternative models
for predicting the effects of extraneous events8 that may impact substantially on the value or
future value of cane crops9, and in particular their effects on cane yield and cane recoverable
value percentage as functions of time (since the occurrence of the event).

The DSS shall take into consideration to a reasonable level the differences in harvesting costs
which arise due to varying field properties and weather. It shall be possible for the user to

2The term cane is taken throughout this dissertation to mean sugarcane. The term cane yield is taken
throughout this dissertation to mean the mass of cane, including the sucrose and other components, and is thus
a production quantity. The term cane yield per hectare is taken to mean the mass of cane per hectare and is thus
a measure of productivity.

3A chemical ripener is a chemical that, when applied to unstressed sugarcane, may increase the amount of
sugar in the cane stalks as well as the purity of the juices within the cane stalks [38].

4The term user is taken throughout this dissertation to mean a person who knows how to use the DSS put
forward in this dissertation.

5The term agroclimatic is used throughout this dissertation to mean temperature, incident solar radiation,
rainfall and wind conditions; climatic factors that are known to influence agriculture [18].

6The term crop class refers to the number of times that a cane field has been harvested since it was planted.
A crop class of 0 is called a plant crop and a crop class of 1 means that the crop has re-germinated from the root
system of a plant crop after initially being harvested, such a crop is also called a ratoon.

7The term cane recoverable value percentage means the percentage of the cane yield of a crop for which the
seller of the crop receives payment, after the affixation of a market and regulation-dependent recoverable value
price [195].

8The term extraneous event is taken throughout this dissertation to mean an event, which may occur on or
inside the cane roots, stalks or leaves as well as in a crop or field as a whole, and which is known to alter the
normal growth or normal quality of the crop positively or negatively.

9The term crop is taken throughout this dissertation to mean the sugarcane present in a single field. The
term field is therefore equivalent to the term crop when referring to the sugarcane, but the term field is more
appropriate when referring to the field as part of the layout of the farm.
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adjust these considerations to fit his/her situation.

The DSS shall be designed and validated for South African conditions, for geographical and agro-
climatic regions where sugarcane crops are harvested approximately every twenty-two months
and do not require extensive irrigation.

Furthermore, the DSS is to be designed for medium-scale growers and co-operative joint ventures
between such growers, but is hoped to apply to other types of sugarcane harvesting contexts as
well.

1.5 Dissertation structure

This dissertation comprises three parts: a part on previous work by researchers related to
sugarcane production leading up to a formal problem description, a part dedicated to describing
the solution to the problem and finally a part devoted to summarising the dissertation and
presenting a few proposals for future research.

Part I consists of Chapters 2, 3 and 4. Chapter 2 contains a brief review of the literature on
previous work employing operations research-based methods on modelling sugarcane flow, a
very brief review of current research in the field of supply chain management and a brief review
of value chain research on agricultural value chains. Moreover, Chapter 2 contains an effort to
organise previous results on how sugarcane deteriorates when having been subjected to various
extraneous events, and is in particular devoted to a thorough study of authoritative information
about such events that is readily available to any sugarcane grower in South Africa. Chapter 3
contains a description of the sugar supply chain from the planting of sugarcane to the delivery
of sugarcane at the mill. The chapter is dedicated to presenting a brief overview of some main
activities that impact the grounds on which the harvest scheduling decisions are normally taken.
The final chapter of the first part, Chapter 4, contains a more formal description of the problem
at hand. The problem is conceptually placed within several contexts and formulated within
each one.

Part II of this dissertation consists of Chapters 5, 6, 7, 8 and 9 which together describe a solution
to the problem at hand. Chapter 5 contains a brief review of the literature on combinatorial
optimisation problems and combinatorial optimisation solution methodologies relevant to the
problem at hand. The problems and solution methodologies considered are here described
only in order to bring the problem into a combinatorial optimisation context. Chapter 5 is
thus together with Chapter 4 the formative chapters in defining the problem. Chapter 6 is
committed to the description of two different formulations employed to model the problem
and some solution methods employed in order to solve it. The two formulations in Chapter 6
require parameters and data, and the requirements on these are described in Chapter 7 which
also contains descriptions of the methodologies employed to generate these parameters from
available data as well as descriptions of how the parameters are turned into the correct form
implied by the optimisation model formulation. Chapter 7 also contains conclusions drawn
from Chapter 2 with respect to growth and deterioration related parameters. The models and
their parameters are placed in a common architecture which is described in Chapter 8. In
Chapter 8, there is a description of this DSS architecture and its building blocks and how
the DSS may be implemented on a personal computer. A description of activities and skills
required if installing and deploying this computer implementation in a real problem environment
is presented and the various implemented building blocks are shown by means of screen-shots.
There is a section dedicated to verifying that the computer implementation functions as intended
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and a series of experiments are performed in order to determine relevant settings for solution
method parameters. In Chapter 9, the validation and development experiments are described.

Part III contains the conclusion of this dissertation in Chapter 10 and an outline of proposed
future work in Chapter 11. Chapter 10 consists of a comprehensive summary of the dissertation,
where each chapter is mentioned and reference is made to the dissertation objective fulfilled by
the work contained within the chapter. The main contributions of this dissertation are then
outlined and subsequently appraised. Finally, Chapter 11 is dedicated to several proposals for
future research and each one is described briefly.
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Sugarcane production
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This chapter contains an overview of the relevant literature with respect to sugarcane produc-
tion, aimed at providing a basis for developing the necessary modelling methodology within the
DSS framework presented later in this dissertation.

2.1 Introduction

Sugarcane production has been modelled using many different approaches, such as mathematical
programming for scheduling, planning or optimising sugarcane supply, discrete event simulation
and queueing theory to improve mill-yard operations and many other modelling techniques for
the vast array of problems arising in this context. The following phenomena receive special
attention during this literature review: operations research (OR) approaches to sugarcane mod-
elling, live sugarcane crop quality and yield models, cut cane stalk effects, burnt cane stalk
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effects, frosted cane stalk effects, effects of lodging and drought effects. Research areas that re-
late to the framework of the problem include supply chain management philosophies and value
chain research in agriculture. Even if these research areas are not related to sugarcane harvest
scheduling it may be beneficial to review some current advancements in the general area of
supply chain improvement work.

2.2 OR approaches to modelling sugarcane flow

Grunow et al. [81] considered parts of the Venezuelan supply network, where most farms (ha-
ciendas) are owned by the same business entity that owns the mill. According to Grunow et
al., there is no paper in literature that deals with decisions across levels from strategic through
tactical to operational. The main objective of their proposed mixed integer linear programming
(MILP) model was to secure a minimum supply of cane to the mill. Their step-by-step, hierar-
chical modelling and solution procedure starts at the strategic level by assigning a cultivation
date to each hacienda, after which the solution for that model is implemented. When it is time
to start harvesting, a tactical level model is solved in order to determine optimal haciendas to
start harvesting for every day for the following two weeks. This harvesting schedule is used at
a third modelling level to generate crew and equipment dispatch schedules. One assumption
in their model is that once the harvest of a particular hacienda has begun, it only stops when
completed. This constitutes an important difference between the South American and South
African harvesting circumstances, since in South Africa farms are not by rule harvested in a
single effort, but rather on a field-by-field basis with the harvesting effort tempered to adhere
to a daily rateable delivery1 (DRD). In addition to securing supply to the mill during normal
conditions, Grunow et al. claim to address the occurrences of unforeseen events such as criminal
fires by accommodating data changes at the tactical level (harvest day).

A modelling approach by Higgins et al. [101] and Muchow et al. [158] incorporated six years of
block productivity data in an attempt to optimise the harvest schedule of an entire mill region in
Australia. The model parameters were supported by a number of one-way analyses of variance
(ANOVAs) which were used to find significant differences in sugar yield due to geographical,
cane variety, crop class and other circumstances. The authors of [101] concluded that there is
opportunity to increase the profitability of the investigated mill region as a whole.

Higgins [97] adopted a MILP formulation towards modelling the transportation problem of sug-
arcane in Australia. He emphasised the importance of using a participatory research approach
which he attributes to Martin et al. [148]. The model was used to some extent by transport
planners in the Maryborough mill region.

A review by Weintraub and Murray [227] shows how the forest harvest scheduling area addresses
many of the issues found in sugarcane harvest scheduling. The mathematical formulations pre-
sented by Weintraub and Murray include retaining a “mosaic” of forest patches analogous to
retaining a healthy age or variety difference between adjacent sugarcane fields. The best solution
approach towards solving real problems, according to Weintraub and Murray, are metaheuris-
tics such as genetic algorithms, tabu search and simulated annealing. A model by Karlsson
et al. [117], similar to the models reviewed by Weintraub and Murray, was designed to sched-
ule harvesting crews while obeying a number of demand, capacity and transportation (road)

1The term daily rateable delivery is taken throughout this dissertation to retain the same meaning as the term
rateable delivery defined in the sugar industry agreement (SIA) [49]. The SIA term means that the total cane
delivered by any grower shall be delivered to the mill in a rateable manner throughout the entire season.
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constraints. Karlsson et al. compared a number of solution approaches and also preferred a
metaheuristic approach. Rönnqvist [177] gives an overview of optimisation problems found in
the forest industry.

Guilleman et al. [83] investigated several mill-scale harvesting schemes using CIRAD’s2 simula-
tion tool named MAGI3 [134] to determine whether harvesting sugarcane without the require-
ment of adhering to the DRD could increase revenue for all parties at the Sezela mill in South
Africa during the 2000 season. Results indicated gains in RV % valued between approximately
4–15 million Rand, depending on scenario. The study was followed up by an investigation by Le
Gal et al. [135] addressing essentially the same question, assuming that RV-prediction functions
change significantly from year to year. Their conclusion was that the Sezela mill region could
gain up to 7.44 million Rand, given an average sugarcane crush rate of 2.23 million tonnes per
year. The authors in [135, p. 66] suggest several general views on modelling sugarcane supply,
and claim that

“These optimisation models are not directly applicable in the South African case.
Firstly, they need a detailed data set including the field level. Secondly, they as-
sume either that a central controller implements the calculated solution by deciding
precisely which fields have to be harvested within the season and by allocating both
harvest and transport capacities between farms, or that all the stake-holders agree
with the optimal solution and are ready and able to implement it at their own level.
Thirdly, these models are based on complex algorithms which make them difficult
to explain in a decision support perspective. Fourthly, they give little room for
discussion or compromise as they provide ‘one best way’ solutions.”

In 2004, Higgins and Postma [102, p. 237] pointed out the importance of allowing each grower
fair harvesting time windows throughout the season, which “. . . prevents any grower from being
unfairly exposed to wet weather risks towards the start or the end of the harvest season, as
well as other seasonal effects.” The results of Higgins and Postma’s work on the optimisation
of siding rosters4 which entailed a solution to the staff roster problem, was implemented by
the participating mill and cost savings were estimated to approximately 150 000 Australian
dollars/year. Higgins and Postma [102, p. 248] claim—in obvious contrast to the above quoted
Le Gal et al. [135, p. 66] claim, that

“Given the complexities of producing a staff roster acceptable for use in the Aus-
tralian sugar industry, we would argue that traditional scientific research and de-
velopment principles would not have achieved implementation. The siding rostering
model of this paper is adaptable [to] all other sugar mill[s] in Australia and any sugar
producing country that uses mechanical harvesters, such as Brazil, South Africa and
the United States.”

In a 2002 paper, Higgins [96] placed focus on the participative nature required to gain success
in developing and implementing operations research-based optimisation models or tools for the
Australian sugar industry. This time Higgins developed an optimisation model for mechanical
harvester scheduling, which eventually led to the highly successful work on the optimisation of
siding rosters mentioned above.

2Centre de Cooperation Internationale en Recherche Agronomique puor le Développement.
3The meaning or origin of the acronym is not explained in [134].
4Siding rosters are the schedules used by Mackay Sugar to distribute time-slots for cane deliveries to railway

sidings throughout the mill-region.
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Iannoni and Morabito [106] formulated a discrete event simulation model of the mill yard of a
large sugarcane mill in Brazil, assuming that the arrival rate at the mill is a result of the number
of long-range transport vehicles in the system combined with the transportation vehicles’ cycle
time. The cycle time was defined as the sum of waiting and unloading time in the mill yard
and the time to travel to the field, load and return to the mill yard. The authors ran three
scenarios which showed promise in that it was, according to the model, possible to decrease
the amount of sugarcane in queue and to increase the utilisation of the mill. The scenario
that showed promise consisted of changing dispatching and queueing rules for vehicles of a
certain type, effectively increasing the amount of unloaded sugarcane. The model represents
the sugarcane supply system, which is, according to Iannoni and Morabito, a closed system
since long-range transport vehicles loop. A problem with this approach, should it be applied
to the South African case, according to the author of this dissertation, is that a closed system
assumes that the amount of sugarcane available for pick-up per time unit is governed by the
cycle time of the long-range transport vehicles. A more accurate way to model the available
cane for the South African case is to consider the mill crush rate, the DRDs of all growers and
the cutting capacity of all growers. However, Iannoni and Morabito provide validation of their
model towards answering the questions they put forth.

Higgins and Davies [100] built a stochastic simulation model for the purpose of long-term trans-
port system capacity planning and considered several scenarios developed together with rep-
resentatives from growers, harvesters and the miller in the Mourilyan mill region in Australia.
One of the scenarios was deemed promising and was later implemented, the results of which
were evaluated by the group of representatives to be of benefit to the miller, while growers
and harvesters were not negative. In the same paper, Higgins and Davies developed a second
simulation model to optimise the starting time for each harvester in the promising simulation
scenario. The new harvester schedule indicated a reduction of the 1.5 hour average waiting time
at the railway sidings for harvesters by 70 %. The new harvesting starting times schedule was
adopted by the group of representatives in 2004, not without harvesters being unhappy with
the optimised schedule, raising some objections.

Le Gal et al. [133] presented a method for conceptually integrating three levels of modelling of
the sugarcane supply chain, namely the operational, tactical and strategic levels. The framework
that they proposed is an idea of how to combine the three software packages CIRAD’s MAGI
[134], Rockwell Automation’s ARENA [7] and Weintraub and Epstein’s decision support system
for forestry transportation scheduling ASICAM [226] and constitutes, according to the authors,
a step towards an operational support method. Grunow et al. [81] as well as Le Gal et al. point
out that little or no research is aimed at addressing decision support on all levels across the
supply chain in a single approach. The author of this dissertation believes that there are no
such actual decisions to be supported, mainly since the ownership structure of the sugarcane
supply chain is too diverse, at least in South Africa. Before models can really be applied to
all three levels of the same supply chain, the various owners must somehow embark on joint
ventures under which such decisions are actually likely to occur. The highly successful project
during which the decision support system ASICAM was developed was, incidentally, a project
where such decision existed [226].

In Thailand, a recent effort by Piewthongngam et al. [170] points out that communication be-
tween growers and millers in the northeast of Thailand is poor. Here, the amount of cane
delivered each day is not determined by contract as in South Africa, which leads to problems
such as under-utilisation of the mill and sugar losses. Piewthongngam et al. developed a frame-
work for cultivation planning on the field level, in order to provide possible alleviation of the
problem, using crop growth simulation models for a yield estimation module and mathematical
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programming for a planning module. The mathematical formulation approach is to maximise
sugar production by mass, subject to a set of constraints ensuring that the available area of
land is not exceeded and a set of constraints ensuring that the milling capacity is exactly met.
The Piewthongngam framework considers an entire mill region at once, attempts to make field
level decisions one season into the future and has yet to be validated through actual trials.

2.3 Supply chain improvement methodologies and philosophies

According to Stock [208, p. 147], there are three main areas of supply chain management (SCM)
research in the literature:

“. . . (1) development of methods and techniques to study SCM and its compo-
nents/processes; (2) developing solutions or answers to specific supply chain-related
problems or challenges; and/or (3) measuring the results or outcomes of supply chain
strategies and tactics.”

He furthermore states (in [208, p. 156]) that more theoretical work is needed for SCM research
to develop, but mentions that there is some consensus around the notion of the supply chain
modelled by

“. . . four levels of analysis: process types (plan, source, make, deliver, return); pro-
cess categories (types of processes, such as planning, execution, enable); decompose
processes (definitions, source of inputs and outputs, performance metrics, best prac-
tices); and decompose process elements (i.e. implementation).”

Kleijnen and Smits [121] describe the quantification of supply chains and discuss four differ-
ent simulation-style analysis tools. They argue that an organisation should measure its own
performance, not the performance of the entire supply chain, but should inform itself of and
be part of the general striving of the rest of the value net. Kleijnen et al. in essence suggest
a four-step approach to supply chain research: finding a subject supply chain (SC), deciding
upon and defining metrics, building a simulation model, and finally performing a sensitivity,
optimisation and robustness analysis using the simulation model. Kleijnen’s et al. proposed
methodology could be compared to what is used in Six Sigma (invented at Motorola in 1996)
called the design, measure, analyse, improve, control-cycle (DMAIC) [114]. The DMAIC is a
five-step approach to problem solving using a toolbox that comprises essentially any mathemat-
ical, statistical, visual or other quantitative tool that is approved by management. The user
first defines the problem, then determines a way to measure it, then analyses it to find the
root cause(s), then improves (i.e. develops and implements a solution) and finally controls the
implemented solution until the situation has stabilised and become part of the daily operational
procedures or protocols.

Within the school of thought of SCM, however, a vast amount of research exists on the subject
of supply chain performance measurement frameworks (PMF). An example is Beamon [11],
who in 1999 developed a framework by which to choose measures for improving manufacturing
supply chains. Beamon defined a number of concrete measures, which were divided into three
main groups, namely, resources, output and flexibility. By categorising any set of performance
measures into these three (employing the framework), Beamon claims that organisations may
more completely characterise their supply chain. Gunasekaran et al. [84, p. 334] stated:
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“Furthermore, computer generated production schedules, increasing importance of
controlling inventory, government regulations and actions such as the creation of a
single European market, and the guidelines of GATT and WTO have provided the
stimulus for development of and existing trends in SCM.”

Gunasekaran et al. thus support computer generated production schedules as part of the supply
chain improvement mission. Their framework consists of crossing four—as opposed to Beamon’s
three and Stock’s five—categories, namely plan, source, make/assemble and deliver with either
the strategic, tactical or operational level. A measure may, for example, be categorised as
source/strategic if it concerns the lead time performance (strategic measure) of a supplier (source
level) compared to the industry norm [84, p. 336].

It is agreed within the supply chain management community that today companies must coop-
erate, which is expressed as follows by van Hoek et al. [222, p. 126]:

“One [lesson] is that companies have to align with suppliers, suppliers’ suppliers,
customers and customers’ customers to streamline operations. As a result, increas-
ingly supply chains are the dominant vehicle for competition and not individual
companies. Another lesson is that within the supply chain, companies should work
together to achieve a level of agility beyond the reach of the individual company.”

The use of PMF is generally regarded as fruitful but not simple to implement. Beamon [11] and
Gunasekaran et al. [84] share the idea put forth by others, such as Gunasekaran and Tirtiroglu
[85], Gilmour [70], and van Hoek [220], that performance measurement can drive and guide
improvements. In [221], van Hoek used performance measurement to strengthen the hypothesis
that companies will ally more horizontally in the future. According to Hervani et al. [93],
performance measurement may be used for environmental purposes. Chan and Qi [30, 31]
contributed with a measurement algoritm as a framework and Aramyan et al. [6] used PMF in the
agricultural-food supply chain (in their case tomatoes). Bichou and Gray [19] expressed difficulty
in applying supply chain PMF to the port industry, and notably point to the same research
methodology as did Higgins [96], namely participatory research. Lai et al. [128] developed a
framework for use in the transportation industry and Swinehart and Smith [211] used total
quality management (TQM) to design a continuous improvement programme for health care
supply chains, including performance measures. Swinehart and Smith may not be the first to
connect PMF and TQM, but did so very clearly, showing that different schools of thought in
terms of management should not be regarded as alternatives, but rather complementary.

2.4 Value chain research in agricultural supply chains

In 2005, the Australian Sugar Research and Development Corporation completed an investiga-
tion into the opportunities for future research on the Australian sugar value chain [203]. The
inquiry was based on a once-off forum comprising 80 participants representing all areas of the in-
dustry and a report written by Higgins et al. [99] on a study of various R&D projects which had
taken place in the Maryborough region during the period 1995–2005. In these value chain R&D
projects, the results were in part due to the participatory research approach, implying that the
intangible output of the work itself is as important as the planned goals and outcomes. Com-
ments from participants were positively directed towards harvesting and transport scheduling,
e.g. “Harvest and transport scheduling work has had the biggest advantages; it has highlighted
the need to be flexible about how to organise harvesting in the region and has provided figures to
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work out how to organise the harvesting system more efficiently” [203, p. 14] and so contradicts
statements by Le Gal et al. [135, p. 66] claiming that: “. . . these optimisation models are based
on complex algorithms which make them difficult to explain in a decision support perspective.”
Le Gal is correct in that solving scheduling problems involves complex algorithms, but that does
not mean that users cannot understand the solutions. One example occurs in the trucking indus-
try, where large as well as small trucking companies employ difficult-to-understand algorithms
to produce easy-to-understand solutions to their various scheduling and routing problems.

Findings during R&D in the Mackay region furthermore suggests that “To date [cane sup-
ply scheduling] has been adopted mainly at the block or farm level so impact has been limited.
However, knowledgeable industry leaders believe that the time will come when the industry will
adopt it at the regional level and reap substantial benefits” [203, p. 17]. A successful, large scale
attempt to implement and integrate several supply chain models (and single unit models) by
Higgins et al. [98] revealed how important it is for the researcher to work closely with the subject
in order to gain acceptance for methods used and in order for the subject to understand and
use the solutions. It seems, according to the author of this dissertation, that the manner in
which a particular methodology or tool is implemented speaks more about how well it will be
understood, than the inherent properties of the tool itself. Obviously, the solution that the tool
provides must in both cases be beneficial, in order to be accepted. For further support of the
participatory approach, see Higgins et al. [103].

Other research that has examined the whole of the value chain (which is the same as the supply
chain, but often points solely at the valuable materials or information that flows through the
chain) includes a paper on suitable modelling approaches for inter-company cooperation by
Gaucher et al. [66], a web-based cooperation platform for the Australian Mackay mill region
developed by Fleming [58], an evaluation by Thorburn et al. [213] of a whole-region value chain
for the purpose of cogeneration and an inquiry into the potential for dimethyl ether production
throughout the biomass flow of the sugarcane value chain by Chohfi [36].

2.5 Sugarcane growth models

In his review of sugarcane simulation models in 2000, O’Leary [163] argued that there are two
simulation-based growth models in use in the world today, namely APSIM Software Engineer-
ing’s APSIM-Sugarcane by Keating et al. [118] and the South African Sugarcane Research Insti-
tute’s CANEGRO by Inman-Bamber [109] and Inman-Bamber et al. [110]. O’Leary [163, p. 98]
furthermore suggested that regression-based models are highly prevalent in “site-specific stud-
ies.” APSIM-Sugarcane is, according to O’Leary, unable to accurately simulate sucrose accu-
mulation under significant water stress, but is otherwise able to predict yields with a root mean
squared error (RMSE) of 1.97 t.ha−1. CANEGRO performs at an RMSE of 0.95 t.ha−1 while a
less known model by the name of QCANE outperformed both of these well-known models with
an RMSE of 0.85 t.ha−1 [163]. QCANE was developed by Liu and Bull in Australia [143] and
is being further developed (see e.g. [144]).

There are two major models in use in South Africa for predicting the yield and sucrose content
of sugarcane based on environmental and weather data. These models are CANEGRO and the
South African Sugarcane Research Institute’s CANESIM [16,17]. According to Bezuidenhout et
al. [18], CANEGRO is not suitable for estimating RV since it does not distinguish between the
cane constituents non-sucrose and fibre. CANESIM consistently over-estimates cane yield per
hectare and also does not directly report recoverable value percentage as an output. The claim
with respect to over-estimation follows from the validation run in [16, 17] on fifteen mills and
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data from 1980 to 2002. The level of over estimation is estimated at an average of 50 % [16,17].
Moreover, [16, 17] claims that the model will outperform the Mill Group Boards5 early in the
season, but that the opposite is true later in the season.

Instead of relying on relationships between rainfall, soil, yield and RV %, albeit well-known,
yield and RV % may be modelled using multiple regression. Using a database of yield data from
multiple states during the period 1963 to 2002, maintained by the American Sugar League,
Greenland [79] performed a statistical analysis in 2005. The resulting four variable model re-
portedly modelled the yield with an RMSE of 5.1 t.ha−1. The model variables in Greenland’s
model were selected through ranking the correlation coefficients between 74 climatic variables
and the response (the dependent variable), yield, selecting the variables with the largest co-
efficients (while excluding some of the intercorrelated variables). The yield that Greenland
attempted to model is the grand average of a season for an entire state and the RMSE value
essentially means that the model could predict the average yield of the state to within ± 5.1 ×
1.96 = 10.0 t.ha−1, assuming that the residual errors in his model are normally and indepen-
dently distributed (NID). Jiao et al. [116] also used historical data to model cane productivity;
in their case the response variable was the Australian basis for cane payments, commercial cane
sugar (CCS). Incidentally, the authors in [116] used regression models to optimise harvesting
of fields tactically across multiple farms. They optimised harvest schedules across the season
for multiple farms within a mill region in Australia. The approach is focused on maximising
sugar output from harvesting groups. Jiao et al. used a linear programming model to find the
optimal proportion of each farm to harvest during each harvesting round and also to determine
during which week each harvesting round should take place for each farm. The prediction func-
tions were found by fitting a one-factor second-order polynomial using linear regression analysis.
The mill area seasonal average CCS prediction problem using historical productivity data in
Australia was also approached by Lawes and Lawn [132]. Lawes and Lawn mention that the
variable farm may constitute a surrogate variable for several hard-to-capture variables that are
more traditionally used in explaining yield and CCS. The same type of data, called block pro-
ductivity data6, were used in 1998 by Higgins et al. [101] and later in 1999 by Higgins [94] to
build regression models feeding into mathematical programming models which optimise harvest
scheduling across entire mill regions. The regressors harvest time, harvest age, crop class and
farm paddock (field) were connected to the responses yield and CCS.

Park et al. [165, p. 318] found that the radiation use efficiency (RUE) of sugarcane sometimes
decreases dramatically and that the phenomenon requires further study; they specifically sug-
gested multivariate analysis to assess “a broader range of variables than is currently available is
necessary if we are to ensure that harvesting schedules based on maximising whole of industry
profitability, realise their full potential.” Park et al. mentioned lodging7 as a factor.

Singels et al. [187] performed three trials designed to study the effects of crop class, start date
(previous harvest date) and variety on the sugarcane plant’s ability to absorb light. Singels et
al. argued that by understanding light absorption, cane yield improvements will ensue. Singels’s
et al. three trials showed that canopy8 development during the initial approximately 100–300

5Mill Group Boards are boards of representatives from growers and millers who are charged with the task of
“. . . [providing] services aimed at facilitating the reception and testing of cane delivered to the mills concerned. . . ”
[49, §52(a) p. 15].

6Block productivity data is a term used in Australia for data recorded at the mill for cane payment purposes
[116]. The term field records is used in this dissertation to mean existing information on field productivity history.

7Lodged cane is a term for sugarcane that is not erect, but still alive and growing. Lodging may e.g. be the
result of strong winds or weakness or overweight of the cane stalks.

8The canopy of sugarcane is its leaves. Singels et al. [187] uses FIPAR, an acronym for fraction intercepted
photosynthetic active radiation, to define the sugarcane canopy’s ability to absorb light.
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days after germination depends on temperature, crop class and varietal differences. Starting in
December, one of the varieties required approximately 130 days to develop a full canopy as a
first ratoon9 and 160 days as a plant crop. Another variety used 120 days to develop an 80 %
canopy for the first ratoon crop and 160 days for the plant crop. Starting in June, the varieties
respectively used 170 and 200 days to develop an 80 % canopy and both varieties took nearly
300 days to develop a full canopy. However, Singels et al. concluded that these initial differences
in growth diminish to the point of negligibility—in terms of final yield—as crops near the time
of harvest, especially if a full canopy is developed long before the time of harvest. To put this
into perspective, the planned time of harvest is seldom at an age of less than 365–670 days,
while a full canopy is usually developed before the age of 200–300 days. Another conclusion
that Singels et al. drew from this result is that row-spacing optimisation is only interesting
for crops that are cut every 12 months and are under irrigation, due to the fact that canopy
development compensates for any space differences between rows rather rapidly.

2.6 Deterioration models for damaged sugarcane

A significant part of the value of any sugarcane crop is the degree to which it has withstood
the impact of extraneous events during its growth. Various events cause different degrees of
damage to cane, and damage is at times best remedied by immediate harvesting while at other
times the effects are slow to materialise or of little consequence. Cane is adversely affected
by, for example, frost, long-term cool weather, strong winds, hail, bush pigs, warthogs, stalk
borers, fires, drought, flowering, red rot and brown rust. Cane is sometimes damaged in densely
populated areas, often due to carelessness with regards to fire. Some of these problems are
reviewed and discussed in this section.

2.6.1 Harvest and fire

Wood et al. [236] analysed five trial plots in South Africa in 1972 designed for the purpose of
determining the post-harvest deterioration of sugarcane, until 21 days after being cut, burnt
and cut, or just burnt and left standing. Unburnt sugarcane lost approximately 17 % of its
recoverable sugar10 during the first 7 days and 38 % of its recoverable sugar after 21 days.
Sugarcane that was cut immediately after being burnt, lost respectively 11 % and 53 % of its
recoverable sugar during the 7 and 21 day periods. Burnt sugarcane that was left standing lost
respectively 21 % and 57 % during the same periods. Wood et al. claimed that ambient weather
is an important factor in determining the rate of deterioration following a fire.

In trials during 1973 designed to test for deterioration differences between varieties, Wood [234]
found that variety was indeed a factor. It was also found that 24-month old cane deteriorated
by approximately 4.5 unit % recoverable sugar per day, whereas 12- and 18-month old cane
deteriorated by approximately 2.25 unit % per day (judging from [234, Figure 3, p. 138]).

Lionnet [142] concluded, based on trials, that trashing (cutting without burning) or burning
and cutting are important factors influencing the deterioration of sugarcane, but that ambient
temperature following the fire is even more important.

9A crop of crop class 1 is termed a first ratoon and a crop harvested for the third time is termed a second
ratoon, and so on.

10Recoverable sugar, also known as estimable recoverable crystal or ERC, is the part of the sugarcane that is
possible to recover as sugar [182].
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(a) Frosted fields. (b) Dead growing point.

Figure 2.1: Frost can kill sugarcane, but may sometimes only cause minor damage.

Wood [235] showed in 1976 that billeted11 cane deteriorates faster than whole stalk cane, espe-
cially for billet lengths under 20 centimetres (cm). In cane that was not burnt prior to harvest,
whole stalk, 40 cm billets and 20 cm billets lost, on average, approximately 5.9 %, 6.1 % and
8.4 % of the available recoverable sugar in 5 days after being cut, respectively. The average
effect was slightly greater for burnt cane, where whole stalk, 40 cm billets and 20 cm billets lost
approximately 6.6 %, 8.3 % and 10.5 %, respectively. The worst case observed was for a 20 cm
billets sample taken after 4 days whose recoverable sugar amount had decreased by 28 %.

In a trial in 1978, Clowes and Wood [38] tested the effect of chemical ripening on the deteri-
oration rate of unburnt cane where unburnt, harvested, whole stalk cane in one of the trials
lost approximately 17 % of the available recoverable sugar in 6 days and 31 % in 9 days, while
in another trial it lost 34 % in 6 days and 41 % in 9 days. Clowes and Wood furthermore
found that the ripener MON 8000 by Monsanto Chemicals may have the ability to slow down
deterioration.

2.6.2 Frost

Frost can affect cane differently in terms of severity, ranging from mild effects to cracking of the
stalks, in which case the cane dies and deteriorates rapidly. Figure 2.1 shows the characteristic
greying of the tops which occurs when cane has suffered frost. The figure also shows a frost-
damaged stalk, in which the growing point has died and side-shoots have begun to emerge.

During an experiment in Louisiana in 2001, Eggleston and Legendre [53] noted that at −4.4◦C
lateral buds were damaged and at −5.6◦C there was cracking of the stalks. In their paper,
Eggleston and Legendre [53, Figure 2, p. 454] present a figure in which a slow—approximately
1.5 parts per million dextran12 accumulation in brix13 in 14 days—deterioration occured as a
result of the first −4.4◦C frost and a fast—approximately 10 parts per million additional dextran
accumulation in brix in another 14 days—deterioration occured as a result of the −5.6◦C frost.
The damage from frost at the mentioned levels is mainly due to secondary dextran production
by Leuconstoc bacteria which invade the cracked and broken tissue.

Legendre et al. [136] studied the effect of a Louisiana frost event that took place in 2006 and

11Billeting is the act of cutting cane stalks into shorter pieces—called billets—usually for the purpose of making
the cane conveyable through the interior of (mechanised) combine-harvesters.

12Dextran is a chemical which accumulates in sugarcane as it deteriorates.
13Brix is a term used in the sugar industry for all soluble substances present in sugarcane.



2.6. Deterioration models for damaged sugarcane 21

(a) Recently lodged cane. (b) Cane several months after
lodging.

(c) Burnt, lodged cane.

Figure 2.2: Cane that falls or is blown down is termed lodged cane. Difficulties arise when the cane is
allowed to grow for too long, since the stalks form a curve with ensuing handling problems.

affected 30–40 % of the harvest. Temperatures between 0 and −2.2◦C cosmetically affected
leaves and buds while temperatures between −2.2 and −3◦C killed the growing point and the top
third of the stalk. The whole stalk was killed by temperatures below −3.9◦C, while temperatures
below −5.6◦C usually caused cracking of the stalk rind. In terms of sucrose losses measured
there were no significant losses at one of the sites that had experienced −1.7◦C temperatures.

Another study in the United States of America conducted in Florida in 1979 by Gascho and
Miller [65] focused on the effect on six different varieties of a series of closely intertimed frosts
of which the coldest was −6◦C. All varieties demonstrated a linear decrease over the period of
nine weeks following the three day frost period, estimated at approximately 9.2 % sugar loss
per week.

A study by Irvine [113] of a 1966 freeze in Louisiana concluded that there was a 0.014 % per
day sucrose decrease during the 92 day period following a spell of −4.4◦C temperatures and
that, in fact, purity increased significantly during that period. Irvine concluded that cane with
little stalk damage (top 1–2 inter-nodes) may be harvested as late as 3 months after the event.

2.6.3 Lodging

Strong winds combined with heavy stalks regularly leads to cane falling over, a phenomenon
known as lodging. Most of the stalks survive and begin to grow vertically and after approximately
three months, a complete quarter-circle has formed. Figures 2.2(a) and 2.2(b) respectively show
cane that has recently lodged and cane that was lodged approximately two to three months
ago. Notice the curved shape of the stalks in Figures 2.2(b) and 2.2(c). Cane does not bend
immediately when lodging occurs; it is the subsequent months of growth that bends the cane.

Methods to predict and control lodging of sugarcane have been researched by Berding et al. [14].
In a large sampling experiment in Australia they quantified, with a 0.01 probability of being
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wrong14, losses in brix from 15.162 % to 14.134 % and CCS from 10.323 % to 9.252 % between
erect and lodged sugarcane respectively during pre-harvest months [14, p. 270]. Combined with
the loss of stalk soundness, lodging caused 24 % losses in CCS (approximately 2.4 unit %).
During harvest months, the losses in brix were on average 1.925 unit % and losses in CCS were
2.225 unit % [14, p. 271].

As noted by Berding et al. [14], Singh et al. [188] quantified the loss of CCS due to lodging to
roughly between 3 % and 12 % which corresponds to a decrease from 10 unit % to between 9.97
unit % and 8.8 unit %, thus not contradicting the results of Berding et al. Furthermore, Singh
et al. estimated cane yield losses to 11–15 % compared to same-aged erect cane.

Experiments by Sinclair et al. [186, Figures 5 and 6, p. 213–214] show that lodging may reduce
the average inter-node volume15 by approximately 0–25 % in stalks that have reached a vertical
top-pose16. The volume loss may significantly differ between varieties.

During the 1990s, Seeruttun et al. [184] performed an experiment in Mauritius to quantify the
cane and sugar yield difference between 12-month and 24-month old cane. The 24-month old
crops produced 22–60 % less sugar than two 12-month crops, and Seeruttun et al. additionally
argued that lodging increases weed-, pest- and harvesting problems.

2.6.4 Flowering

Flowering is the means by which sugarcane reproduces in the wild. Berding et al. [14] found that
excessive flowering should be attributed with a 10 % (ca 1.5 unit %) sucrose loss in Australia.
The applicability of this value in the South African case is unknown.

According to Nuss [162], a study performed in South Africa during the 1980s on flowered
stalks during the period May–December showed that yield in terms of sucrose tonnage generally
increases for the May–October period and that it may decrease during the September–December
period.

In India, Rao and Kumar [175] experimentally ascertained that flowering stalks display a loss
in cane yield of (judging from [175, Figure 1, p. 186]) approximately 10 % three months after
flowering. Rao and Kumar argued, however, that sucrose levels actually increase—rather than
decrease—due to flowering. The loss in sucrose recorded by Berding et al. should perhaps be
construed as a result of sucrose weight-loss mainly due to stalk weight-loss. According to Rao
and Kumar, flowering does not affect fibre content.

2.6.5 Eldana infestation

According to Leslie [138], Eldana17 levels measured as the percentage of inter-nodes18 with
Eldana bore-holes (% IB) increase linearly with time at a rate of approximately 3 unit % in 4
months, which is equal to 0.75 unit % IB per month. The sugar yield losses due to the 3 %

14In statistical inference, the probability of being wrong when rejecting the null hypothesis is also known as
the p-value.

15An inter-node volume was calculated by measuring the length of an inter-node and multiplying that by its
mid-point cross section area.

16When the top part of the sugarcane stalk points towards zenith the cane is said to have reached a vertical
top-pose.

17Eldana is a moth known to be a stalk borer which causes serious damage to sugarcane.
18An inter-node is a segment of a sugarcane stalk and begins and ends with a node—nodes are the points along

the stalk from where shoots may germinate.
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IB increase corresponded to approximately 1.8 % recoverable sugar. Thus, the increase in IB
% per month is approximately equivalent to a decrease in RV % of 1.8/4 = 0.45 unit %. The
loss is thus 1.8/3 = 0.6 % recoverable sugar per % IB. In a 100 t.ha−1 crop and with a 2000
Rand per tonne (R.t−1) RV-price, the monthly IB % increase is approximately equivalent to
0.0045× 100× 2000 = 900 R.ha−1 in lost profit. By means of pesticides, the IB % increase may
be reduced by approximately 40–75 % [76,138].

The linear increase of % IB reported in [137] may, according to a study by Carnegie and
Smaill [28] in South Africa in 1982, be decreased through a round of de-trashing19 by 5–10 %
in four months.

In trials by Goebel and Way [76] performed in Zululand (South Africa) during the period 2001
to 2002, results showed that in Gingindlovu (one of two sites) the decrease in recoverable sugar
percentage per % IB is approximately 0.02 % recoverable sugar per % IB on the % IB interval
2.1–6.2. On the % IB interval 6.2–18.4, decrease in recoverable sugar percentage per % IB is
approximately 0.15 % recoverable sugar per % IB. In Empangeni, the interval 1.1–2.3 showed a
0.08 % recoverable sugar per % IB decrease, while a 2.3–17.4 interval produced a value of 0.13
% recoverable sugar per % IB decrease. These values differ from those of [138].

A survey of available data throughout South Africa by Goebel et al. [77, Figure 6, p. 344] in
2003 indicated that Eldana levels increase by 1.3 unit % stalks bored (SB) per month in Darnall
and Entumeni, but by approximately 2.7 unit % SB in the Amatikulu mill region. The so-called
economic injury level reported by Goebel et al. is approximately equal to that of Leslie [137],
namely 7 % IB20. Goebel et al. [77] provide the conversion rate of 1 : 7.7 for SB21 to IB %, which
leads to the deduction that Eldana infestation levels increase by 0.17 unit % IB per month at
Darnall and Entumeni to 0.35 unit % per month at Amatikulu. These values are slightly smaller
than those deduced from [137] (0.75 unit % per month). The conversion rate from SB to IB is,
however, closer to 1 : 6, judging by the results of Cadet et al. [26, Figure 3, p. 532], which would
raise the respective values of % IB increase per month from 0.17 and 0.35 to 0.22 and 0.45 unit
% IB per month.

According to Goebel et al. [77] as well as Keeping and Rutherford [119], susceptibility to Eldana
is different among varieties and is correlated with inter-node rind hardness, and thus also cor-
related with fibre content, which is usually negatively correlated with recoverable sugar. This
means that variety selection based on inter-node rind hardness to combat Eldana may be an
undesirable alternative.

2.7 The SASRI information sheets

The foremost authority on sugarcane biology in South Africa is the South African Sugar Associa-
tion’s (SASA) Sugarcane Research Institute (SASRI22). SASRI is mandated to conduct research
on sugarcane on a continual basis, and possesses a vast accumulated amount of information,
data and knowledge. SASRI publishes a binder with informative leaflets known as information
sheets [182] which summarise research results to date and provide instructions on how to deal

19De-trashing consists of removing dry leaf matter from sugarcane fields by pulling or beating the dead leaves
off of the stalks.

20The measurement units used by Goebel et al. [77] is actually % stalk length red (SLR), which is a generalisation
of % IB.

21Goebel et al. [77] used stalks damaged (SD), which is equivalent to stalks bored (SB).
22SASRI is an acronym for South African Sugarcane Research Institute and is based at Mount Edgecombe,

KwaZulu-Natal.
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with various issues that may occur at sugarcane farms. The information that bears implications
on this dissertation is briefly summarised in the subsections below. The shaded conclusions
with respect to “impact on harvest scheduling” following each paragraph are specifically for the
South African case, deduced by the author of this dissertation based on the information sheets.

2.7.1 Commercial sugarcane varieties

The relevant properties of South Africa’s commercial sugarcane varieties as presented in the
information sheets are summarised in Table 2.1. Different commercial varieties display vastly
different properties. Some varieties perform better in terms of RV % than others, but worse in
terms of cane yield. Some varieties are especially suited for dry conditions, while others achieve
low yield but high RV %, which makes them more suitable for growing far from the mill. Some
varieties are neither high-yielding nor of high RV %, but are highly resistant to diseases. Each
variety is useful under certain conditions, and careful consideration is required when selecting
varieties for planting.

2.7.2 Common diseases

Sugarcane is constantly under risk of becoming infected by various diseases, and some of these
diseases bear implications when considering which fields to harvest. Many of them may be
combated by means of pesticides or good farming-practices. Outbreaks of these diseases have
to be taken into account when constructing sugarcane harvesting schedules.

Brown rust

Brown rust is caused by the fungus Puccinia melanocephala which is favoured under cool, wet
conditions with high humidity and below 30◦C temperatures. Susceptible varieties may lose
as much as 20–30 % in cane yield and younger cane (3–6 months) is more susceptible than
older cane. The recommended control measures are to avoid planting susceptible varieties on
south-facing slopes, in valley-bottoms or near tree-lines while ensuring good nutrient balance
and considering that cane planted or harvested during spring or summer is less prone to infection
due to its higher age during the wet season.

Brown rust impact on harvest scheduling: Infected N29 or N33 fields will experience decreasing
cane yield. Such fields are, however, usually too young to harvest.

Mosaic

Mosaic is a viral disease spread by either infected seed cane setts23 or the aphids24 Hysteroneura
setariae and Rhopalosiphum maidis. Effects on sucrose yield are reductions of 30–40 % by mass
when all stalks are infected, for both varieties NCo376 and N12. Varieties differ in susceptibility.
Recommended control actions are to plant less susceptible varieties, to ensure that seed cane
setts are free of mosaic, to ensure thorough crop eradication25, to avoid planting during mid-

23The pieces of stalk laid in furrows during planting are called setts.
24Aphids are various species of a family of flying insects.
25The process of ensuring that an old crop is completely destroyed, particularly with respect to its roots [182].
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Name Harv. time Harv.
age

Soil
pot.

Cane
yield

RV % Flow-
ering
freq.

Lodg-
ing
susc.

Smut
susc.

Mos.
susc.

RSD
susc.

Rust
susc.

Red
rot
susc.

Nem.
susc.

Eld.
susc.

Dry
cond.
grow.

NCo-
376

Jul–Dec 12 mod–
good

high low mod low high very
high

high low high high high poor

CP66/
1043

Apr–Jun – – low very
high

low mod–
high

low low high low – – mod–
high

poor

N12 May–Oct 16–22 poor mod–
high

mod mod low mod mod mod–
high

low low mod low–
mod

mod–
good

N14 Jul–m Aug 12 mod–
good

high low high low mod mod high mod low low high poor

N16 Jul–Dec C12
M18–
24

good high mod low mod–
high

high mod mod–
high

mod mod high high mod

N17 Aug–Dec C12 good low–
mod

mod–
high

high mod–
high

low mod very
high

low high high low–
mod

mod–
good

N19 Apr–Aug 12 good low–
mod

high low early
&
high

low high high low high very
high

mod
high

poor

N21 Aug–Dec 14–15 poor–
good

high mod low high low low high low mod very
high

low good

N22 Apr–Aug – good low–
mod

high low low very
low

low mod low – – mod–
high

poor

N23 Jul–m Aug – mod mod low high low low mod mod–
high

low low mod mod mod

N24 Apr–Oct – good low very
high

low high low low high low high very
high

mod poor

Table 2.1: Selected properties of commercial South African sugarcane varieties NCo376–N50. The abbreviations are as follows: Harv. = Harvest, pot.
= potential, freq. = frequency, susc. = susceptibility, Mos. = Mosaic virus, Nem. = Nematodes, Eld. = Eldana, cond. = conditions, grow. = growth, m
= middle of, irrig = under irrigation, rainf = rain-fed, mod = moderate, M = midlands only (KwaZulu-Natal), C = coastal region only and “–” means
that no information was available.
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Name Harv. time Harv.

age
Soil
pot.

Cane
yield

RV % Flow-
ering
freq.

Lodg-
ing
susc.

Smut
susc.

Mos.
susc.

RSD
susc.

Rust
susc.

Red
rot
susc.

Nem.
susc.

Eld.
susc.

Dry
cond.
grow.

N25 Aug–Dec – poor high low low mod–
high

mod mod very
high

low high mod low–
mod

mod

N26 Apr–Jun 12 irrig
good

low very
high

low high low low high mod low very
high

very
high

poor

N27 Jul–m Oct 12 good high high high low low low low–
mod

mod low very
high

high good

N28 Jul–Oct – irrig
poor–
good

mod mod low low mod mod mod–
high

low mod high low–
mod

poor

N29 Apr–m Oct 15 good low very
high

high mod low mod high high low high low–
mod

poor

N30 Apr–Jun 12 irrig
good

low very
high

mod mod–
high

low low high low high very
high

very
high

poor

N31 Jul–Dec 18–24 poor–
mod

very
high

low mod mod–
high

high mod high mod high mod mod good

N32 May–Oct – irrig
poor–
good

mod high mod low mod high high mod mod mod low–
mod

poor

N33 Jul–Dec 15–18 poor mod–
high

mod low low mod mod low–
mod

high – mod low good

N35 Apr–Dec 12 good low high low low low low mod mod mod high high poor
N36 Apr–Nov 12 irrig

mod–
good

mod high mod mod mod mod mod–
high

low low high mod–
high

mod

Table 2.1: (continued)
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Name Harv. time Harv.
age

Soil
pot.

Cane
yield

RV % Flow-
ering
freq.

Lodg-
ing
susc.

Smut
susc.

Mos.
susc.

RSD
susc.

Rust
susc.

Red
rot
susc.

Nem.
susc.

Eld.
susc.

Dry
cond.
grow.

N37 May–Dec 15–24 good mod–
high

high low mod high low mod mod mod high mod poor–
mod

N39 Jul–Dec 15–24 poor mod–
high

high mod low high mod low–
mod

mod – mod low good

N40 May–Nov 12 irrig
good

low very
high

mod low low low low–
mod

low – mod mod poor–
mod

N41 Apr–Oct 12–24 irrig
rainf
good

low–
mod

high low mod mod mod high mod – mod low–
mod

mod–
good

N42 Apr–m Oct C12 mod–
good

mod–
high

high high low low low – mod – mod low –

N43 Aug–Dec 12 irrig
good

mod–
high

mod low mod high low–
mod

– low–
mod

– – mod–
high

poor

N44 Jul–Dec M20–
24

mod–
good

high mod low mod–
high

high low – low – – mod–
high

poor

N45 – C12–
14

mod–
good

mod–
high

mod low mod mod–
high

low – low – – mod–
high

–

N46 Aug–Dec C12 irrig mod mod low mod low–
mod

low – mod – – mod poor

N47 – 15–18 poor–
mod

mod high low mod mod mod – low – – low–
mod

–

N48 – M20–
24

– mod–
high

high very
low

mod mod low – low–
mod

– – mod –

N49 Mar–Dec C12 irrig mod mod–
high

low mod low low – mod – – mod–
high

–

N50 – M20–
24

mod–
good

high mod low mod–
high

high low – mod – – mod

Table 2.1: (continued)
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October to late-January (so as to avoid having young crops during peak aphid activity periods)
and to weed and rogue isolated fields that show low infection levels.

Mosaic impact on harvest scheduling: Isolated occurrence—none; Extensive occurrence—
harvest, plough-out and plant with resistant variety.

Pineapple disease

Pineapple disease is caused by the fungus Ceratocystis paradoxa and can halt germination.
Different varieties experience different susceptibility and environmental conditions play a part
in mitigating or propagating the disease. Control measures include planting under non-slow
germination conditions, moisture application to furrows after planting and the avoidance of
excessively deep planting.

Pineapple disease impact on harvest scheduling: Harvest, plough-out and re-plant early during
the year so that germination takes place at time of rapid germination.

Pokka boeng

Pokka boeng is spread by the wind-borne spores of the fungi Fusarium moniliforme and F.
subglutinans, and may, in some varieties, lead to severe crop loss. The control actions against
this disease are limited to the withdrawal of susceptible varieties by SASA.

Pokka boeng impact on harvest scheduling: None.

Ratoon stunting disease

Ratoon stunting disease (RSD) is an infection caused by the bacterium Leifsonia (Clavibacter)
xyli xyli, which affects cane yield with a loss of up to approximately 40 %. Effects vary between
varieties, between plant and ratoon crops and when comparing normal conditions to droughts.
The recommended control actions are to ensure healthy seed cane setts, to harvest infected
fields early, to eradicate the old crop thoroughly and let the fields lie fallow for three months
during the winter, before being replanted.

RSD impact on harvest scheduling: Harvest before June. Cane yield expectations should be
decreased.

Red rot

A disease that sometimes strikes sugarcane is called red rot and is caused by the fungus
Colletotrichum falcatum [223] (also known as Glomerella tucumanensis). The effects are se-
vere [209]. The appearance of stalks having been damaged in other ways is sometimes mistaken
for the disease. Stalk damage with ensuing rotting (not red rot) is shown in Figure 2.3(a) while
red rot is shown in Figure 2.3(b).
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(a) Damaged cane. (b) Red rot. Shown with permission [200].

Figure 2.3: Damage caused by borers or other mechanical damage may sometimes be mistaken for
Colletotrichum falcatum, all three constituting problems facing sugarcane growers before the cane may
be harvested.

Red rot of sugarcane leads to sucrose loss in infected stalks, amounting to 20 % or more in
individual fields. Old, frost-, drought- or borer damaged cane in cooler areas is more susceptible
to red rot. To control red rot, highly susceptible varieties, unhealthy seed cane and allowing
cane to grow too old should be avoided. Borer damage should be controlled and fields affected
by red rot should be harvested early.

Red rot impact on harvest scheduling: Harvest soon due to deterioration of sucrose levels.

Smut

Smut is a disease that spreads through wind-borne spores of the fungus Ustilago scitaminea.
Yield losses caused by smut generally increase with increased crop class.

Smut impact on harvest scheduling: Severe cases—harvest and plough-out before end of June.
Plant resistant variety.

Sour rot

Sour rot is a disease that spreads through wind-borne and rain-splashed spores of the fungus
Phaecytostroma sacchari. Yield losses caused by this fungus may become severe during drought.

Sour rot impact on harvest scheduling: Severe cases—harvest as soon as possible and avoid
allowing crops to over-mature.

2.7.3 Environmental and biological events

Utilising and exploiting the prevailing environmental conditions is a precursor to success in
sugarcane farming. Sugarcane needs sunshine, water, nutrients, heat and shelter from adverse
conditions. Shelter or protection in the form of available insecticides are not always available,
with the result that sugarcane suffers, at times, from accidental fires, drought, frost, flowering
of the cane, borer infestations, aphid infestations and green leaf sucker infestations. These
environmental conditions, extraneous events and insect-related problems also have to be taken
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into account when constructing a sugarcane harvesting schedule in practice, and the SASRI
information sheets contain advice with respect to these various events.

Accidental fire

A field subjected to fire by accident may be categorised as subject to one of four different
recommended actions. Firstly, if the fire was relatively cool, the cane may be left, at no great
loss, in the field to recover and continue to grow normally. Secondly, if a sample of stalks shows
that the meristem26 is dead, the fire was warm and the cane has visible but unmillable stalks,
it should be cut back and treated as normal re-growth, unless in winter, in which case it should
only be cut once the rains have set in. Thirdly, if the fire was warm and the cane stalks are
invisible, the cane should be left in the field to tiller27. Finally, if the cane is millable it should
be harvested immediately since it deteriorates by 1–2 unit % recoverable sugar per day after
being cut and even faster if left standing in the field.

Accidental fire impact on harvest scheduling: warm fire—harvest immediately unless in winter,
in which case harvest when the rains have set in; cool fire—leave and harvest according to the
original plan, expecting slightly less cane yield.

Drought

Drought-stressed cane should be harvested if the stalks are millable; Eldana-prone fields should
receive first priority, drought sensitive varieties second priority and cane on shallow soil or that
face in a northerly direction should receive third priority. Fields with unmillable cane should be
cut back if Eldana hazard levels are high or should else be left standing if the crop can survive.
If the crop is unmillable and cannot survive, it should be cut back at the onset of the rains.

Drought impact on harvest scheduling: Eldana-prone cane should be depreciated heavily, more
so for drought-sensitive varieties and dry field situations (hill-tops, shallow soil or north-facing
slopes).

Frost

If sugarcane is subject to −2◦C, there is slight damage to the meristem, striping of leaves, tip
die-back and a browning of the leaf roll above the meristem, but negligible hampering of growth.
At −3◦C, there is partial damage to the meristem, with die-back of leaves, but re-growth occurs
within a few weeks. At −5◦C, the meristem is killed, a few buds below the natural breaking
point28 die, 40 % of the leaves die, growth is halted, but the cane may be left standing for
approximately three weeks. At −7◦C, the top six buds below the breaking point are killed, all
green leaves are killed—which leads to the cessation of photosynthesis in the affected stalks, and
since RV % decreases rapidly, the cane should—if it is millable—be harvested without undue
delay. At −9◦C, most buds are killed, inter-nodes turn glossy and deterioration is extremely

26The meristem is the part of the stalk that contains cells which are not completely distinguishable from each
other and constitutes the point of growth.

27Develop lateral shoots from the base of the stalk.
28A point on the stalk below the meristem at which it breaks easily after removing the sheaths covering the

stalk’s upper parts [111].
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rapid. Harvesting should commence immediately. If the weather is dry as well as cold, a so-
called black frost may occur. A black frost may freeze the sap in the plants, which leads to
rapid deterioration and it may strike a very large area on a single occasion.

Frost impact on harvest scheduling: To compensate for the effect of the various levels of frost,
there should be no adjustment of yield for the −2◦C level, a slight negative alteration of the
yield expectations for a −3◦C level frost, a halting of the yield development starting immedi-
ately combined with a depreciation of RV % starting three weeks after a −5◦C frost, a strong
depreciation of RV % directly following a −7◦C frost and the same for a −9◦C frost or a black
frost.

Flowering

The flowering of sugarcane is its natural means of reproduction and extensive instances—more
than 20 % flowering stalks—may impact RV % and yield. Approximately four months after the
onset of flowering, or if entering October, sucrose levels may begin to decrease. Before that,
sucrose levels are usually higher in flowered stalks than in other stalks.

Flowering impact on harvest scheduling: If flowering is very extensive, a slight depreciation of
RV % after four months, or after the beginning of October, should be applied.

2.7.4 Insects

As with diseases and extraneous events, insects may become a pest with respect to sugarcane
production. They may use the plant for feeding or other activities, causing serious damage,
and invasions of sugarcane by insects are therefore also an important factor to consider when
constructing a sugarcane harvesting schedule.

Eldana borer

The moth Eldana saccharina, mentioned in §2.6.5, lives for approximately one week, during
which it lays eggs in concealed dry-matter parts of sugarcane. The eggs hatch within 7–10 days,
and the larvae disperse to mine sugarcane for 20–60 days before they pupate for seven days,
whereupon the insect begins its next life cycle. Eldana larvae bore holes in the stalks and feed
off the matter inside; the bored inter-nodes are then often invaded by red rot. Damage may
become severe, especially in moisture stressed crops.

Eldana impact on harvest scheduling: Eldana infested fields should be harvested within 20 days
or as soon as pupae appear, in order to prevent the completion of a life cycle. During the 20
days and for the remainder of the season, a depreciation of yield should be applied.

Sesamia borer

The moth Sesamia calamistis causes the same type of damage as Eldana, but in younger cane
and at a lower rate and intensity. The cane is often young enough to be able to grow new tillers
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subsequent to a Sesamia borer attack. However, since Sesamia infestations seem to promote
Eldana infestations, early harvest of such cane is recommended.

Sesamia impact on harvest scheduling: Harvest within 20 days. After that, an eldana-risk
related depreciation of the cane yield should be applied.

Chilo borer

Chilo sacchariphagus is also a stalk borer and is a serious pest in the Far East, Mauritius
and Madagascar. As opposed to Eldana, the Chilo borer prefers to lay its eggs on the green
matter, rather than the dry matter. The larvae then begin to feed inside the upper parts of the
stalk, pupating inside, completing a life cycle in approximately 60–70 days. This pest may be
controlled by biological means, and no implications on harvest scheduling are known.

Chilo impact on harvest scheduling: None.

Hysteroneura

The aphid Hysteroneura setariae, mentioned earlier in this section, should be controlled by
avoiding planting during the summer.

Hysteroneura impact on harvest scheduling: None.

Green leaf sucker

The 7 millimetre long insect Numicia viridis is known to poison sugarcane and can, in extreme
cases, cause severe yield and sucrose loss.

Green leaf sucker impact on harvest scheduling: If the outbreak is severe, depreciate cane yield
and RV % slightly over time.

2.8 Chapter summary

In this chapter, the various approaches taken in the literature with respect to modelling sug-
arcane have been reviewed briefly. Several mixed integer linear programming models as well
as discrete event simulation models were found, and the problems modelled range from highly
delimited to very broadly defined scenario-type exploratory questions. In Australia, quite a
few models have reached the stage of providing actual decision support, and some of them are
integer programming-based and some are simulation-based. There are many models, but few
OR tools of validated quality available to growers for seasonal harvest scheduling.

Further on in the chapter, a survey of the current issues pursued within the field of supply chain
management is followed by a brief review of current agricultural value chain research. Within
the field of SCM-related research, theories are still under development. The scientific community
does not yet agree on exactly how modelling in terms of, for example, performance measurement
of supply chains should be undertaken in order to provide successful SCM-improvement projects.
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Various modelling aspects of sugarcane growth and deterioration were also reviewed and dis-
cussed in this chapter, and most events that influence the growth or deterioration seem to have
been previously studied and quantified to some extent. There is, however, a lack of data that
may be used for computing accurate and precise deterioration functions. If harvest scheduling
decision support is to become an accurate science that can give precise advice, more work must
be done on quantifying the deterioration rates of sugarcane for various varieties, diseases, field
conditions and all other factors involved. Research on post-harvest deterioration in [38,234–236],
where deterioration rates were at the centre of the study, set good examples of what is needed
for the other events.

This chapter is presented in partial fulfilment of Dissertation Objectives I, III and IV, presented
in §1.3.
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This chapter contains a brief description of the main activities occurring in the sugarcane supply
chain, prior to the cane reaching the crusher-stage of the sugarcane milling process. South
African regulations pertaining to sugarcane production are mentioned and the payment system
is briefly explained.

3.1 Introduction

Global sugar production is currently estimated at 160 million tonnes per year, according to
the United States Department of Agriculture [217]. The refined product, centrifugal sugar, is
mainly produced from sugarcane or sugar beets, and for every tonne of sugar that is derived
from sugar beets, approximately three tonnes are derived from sugarcane. Sugar beets are
mainly grown in temperate climates in the northern hemisphere, while sugarcane is grown in
sub-tropical and tropical climates in both the northern and southern hemispheres. During
the 2008/2009 sugar season, Brazil is estimated to have been the largest producer with its 33.7
million tonnes, of which 21.6 million tonnes was exported. India was the second largest producer
with 24.8 million tonnes, dropping sharply from 28.9 million tonnes during the 2007/2008 season.
India decreased its exports from 2.4 million tonnes during the 2007/2008 season to 1.3 million
during the 2008/2009 season. The European Union (EU) produced 16.8 million tonnes and
exported 1.4 million tonnes during the 2008/2009 season. China produced 14.4 million tonnes
and imported more than it exported, while Thailand produced 7.2 million tonnes of which 5.6
million tonnes was exported, which makes it the second largest exporter of centrifugal sugar in
the world. Australia produced 5.2 million tonnes and exported 3.9 million tonnes of centrifugal
sugar during the 2008/2009 season.

35



36 Chapter 3. The sugarcane supply chain

South Africa is currently the 13th largest producer at 2.3 million tonnes of centrifugal sugar
and exports 1 million tonnes per year. The United States of America produces 7.4 million
tonnes, Mexico 5.9 million tonnes, Pakistan 3.7 million tonnes, the Russian Federation 3.1
million tonnes, Argentina 2.5 million tonnes and Colombia 2.4 million tonnes.

3.2 The South African sugar industry

South African commercial sugar is exclusively produced from sugarcane, grown, as mentioned in
§1.1, in the provinces of Mpumalanga and KwaZulu-Natal. There are fourteen sugar mills in the
country, operated by six different companies, namely Gledhow Sugar Company Ltd (GS), Illovo
Sugar Ltd (Il), Tongaat Hulett Sugar (TH), Transvaal Sugar Ltd (TSL), Umfolozi Sugar Mill Ltd
(USM) and Union Cooperative Ltd (UCL). The fourteen mills are (ownership in paranthesis)
Malelane (TSL), Komati (TSL), Pongola (TSL), Umfolozi (USM), Felixton (TH), Amatikulu
(TH), Darnall (TH), Gledhow (GS), Maidstone (TH), Noodsberg (Il), Union Coop (UCL), Eston
(Il), Sezela (Il) and Umzimkulu (Il). Malelane and Komati are situated in Mpumalanga, while
the other twelve mills are all in Kwa-Zulu Natal, as shown in Figure 3.1. During 2008, the mills
crushed between 920 000 and 2.2 million tonnes of sugarcane each.

The South African sugar industry is regulated by means of the Sugar Act (Act No 9 of 1978)
and its amendments. The act institutes SASA and its constitution, and provides for the Sugar
Industry Agreement (SIA) [49] which, upon ministerial agreement, dictates how Mill Group
Boards and other industry representative bodies should function and regulates the relationship
between millers and growers. The SIA is a document that contains rules regarding the practical
aspects of the South African sugarcane supply chain and it was revised in 2000, mostly towards
deregulating the industry [48]. SASA conducts a substantial amount of research on sugarcane
through its subsidiary, SASRI.

The smallest sugarcane growers in South Africa grow sugarcane on an average of 1.7 hectares of
land [194] and they are usually grouped together in one of several ways. They may have signed
a contract with a company, usually referred to as a contractor, to transport their cane from the
field to the mill. The contractor acts as a middle man between growers and a mill, and usually
controls when each grower harvests. In practice, the miller assigns each grower a daily rateable
delivery allocation based on the grower’s estimated cane yield, the mill performance, the number
of milling days per week and the length of the milling season. The growers then surrender their
allocation to the contractor who, in turn, pools all his growers’ allocations. This is known
and endorsed by the miller, who then accepts harvested cane from the contractor based on the
pooled allocation. However, some small-scale growers form formal or informal cooperatives and
aquire the vehicles and equipment that are necessary to perform their own harvesting, loading
and transportation of cane. Other small scale growers do not employ a contractor or establish
relationships with other growers, but rather deliver their cane directly to the mill when they
see fit. The small amounts that they deliver are often not regarded by the miller as disruptive
to the consistent flow of cane sought [47]. To put these growers’ impact on the supply chain
into perspective, it may be mentioned that 1.7 hectares yields in the order of 100 tonnes of
cane per year, which is comparable to what commercial growers deliver to the mill in a single
day. Even so, if the number of small-scale growers is substantial, the small-scale growers may
cause congestion at the mill due to their erratic delivery pattern [68]. Growers prefer to harvest
early in the morning and during the part of the season when the cane is of the highest quality.
Again, the fact that these growers often do not own their own long-range transport vehicles,
may balance out the problem of too many growers preferring to harvest at the same time.
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Figure 3.1: Sugar mills and milling regions in South Africa. Map drawn using data from [182,202].

Family-owned sugar growers average 186 hectares of sugarcane fields which corresponds to ap-
proximately 10 000 tonnes of cane per year [194]. The SIA in effect makes the issue of timing
and mode of delivery of harvested cane from these growers to the mill a Mill Group Board
responsibility. This responsibility has in practice developed into the contractual concept of the
DRD. The DRD is the amount (measured in tonnes of cane) that a grower is obligated to de-
liver to his or her crush1 mill on a daily basis. The amount depends on the number of days per
week that the mill is open to receive cane deliveries, denoted by tcrush, the current mill crushing

1According to the SIA, the home mill, or crush mill, is the mill to which the grower is bound by contract to
deliver cane.
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rate in tonnes per week, denoted by rcrush, the total cane in tonnes to be delivered during the
remainder of the season by the grower, denoted by mgrower, and the total cane in tonnes to
be delivered during the remainder of the season by all growers, denoted by mall. The DRD,
denoted here by D, may be expressed as

D =
mgrower

mall
· r

crush

tcrush
. (3.1)

Here mgrower/mall is the fraction of all cane in the mill area that the grower in question accounts
for. Furthermore, rcrush/tcrush is the total daily tonnage to be crushed by the mill. The expres-
sion in (3.1) represents the rule according to which all growers should deliver cane consistently.
The effectiveness of this system of daily rateable deliveries may, however, be questioned. The
inherent variability in agricultural activities has caused the SIA and the Mill Group Boards to
render adherence to the daily rateable delivery subject to a certain degree of flexibility. The
flexibility itself does not appear to cause a problem, because the average of all exercised flexi-
bility tends to zero as the number of growers increases. However, problems arise when growers
over-estimate their total seasonal cane yield in order to be allocated a higher DRD so as to
increase the probability of completing their harvesting operation before the rains set in [47]. It
may be problematic (in a fairness sense) when a miller requests growers to deliver above the
original daily rateable delivery, because the mill has managed to reach a higher crush rate than
the original rcrush, and then unjustly reduces the daily rateable delivery at a later date, not
returning the favour to the growers (of allowing those growers who answered to the request the
same flexibility) [164].

Another problem related to queueing at the mill-yard arises and has been analysed by means
of advanced tools such as discrete event simulation [87, 106]. The problem occurs at mills that
do not schedule the cane deliveries consistently throughout the day, due to growers preferring
to send cane early in the morning and on particular days of the week. One solution, according
to [68], is to implement computerised and GPS-based vehicle delivery scheduling systems.

3.3 Sugarcane cultivation

Sugarcane is preferably ploughed out during the first half of the harvest season, since there may
otherwise not be enough time for planting and germination before the summer, during which
growth is the fastest. Planting consists of placing seed cane setts one after the other in furrows
created by a plough (also called a ridger). Furrows and seed cane are shown in Figures 3.2(a),
3.2(b) and 3.2(c). The new shoots germinate from buds located between the inter-nodes of the
seed cane stalk.

Sugarcane is allowed to grow for a period of nine to approximately twenty-four months, depend-
ing on various agroclimatic factors. Close to the equator, temperature, radiation units (light)
and precipitation combine to form conditions that allow sugarcane to grow to maturity within
approximately nine months. In South Africa, cane is usually harvested at an age of between
twelve to twenty-two months; a harvesting age of twelve months is common in coastal regions
while an age of twenty-two months is more common inland [164]. Figures 3.3(a) and 3.3(b)
show cane at ages one and six months, respectively, while Figures 3.4(a) and 3.4(b) show cane
above twenty months of age. Figure 3.5 shows the age-mosaic character of a well-managed
sugarcane farm mentioned in §1.2. SASRI has developed the Farming Calendar to aid growers
in organising the various activities required for successful farming throughout the year [181].
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(a) Furrows with seed cane. (b) Seed cane sett. (c) A Bud.

Figure 3.2: Furrows and cane setts. Buds are visible between the inter-nodes.

(a) New cane. (b) Young cane.

Figure 3.3: Cane at ages one and six months.

Different cane varieties exhibit different strengths and weaknesses in terms of resisting adverse
conditions. In Figures 3.6(a) and 3.6(b) the difference between the height of the millable2 part
of the stalk of the cane variety N12 is compared to the N37-variety. The N37 stalks were
approximately 40 % longer and slightly thicker than their same-age N12 counterparts. The
previous 20 months had been relatively cold [164].

Chemical agents whose effects include a temporary stressing of the sugarcane plant are applied
to some of the crops 6-12 weeks before harvest, thereby increasing their sucrose content. The
procedure is called chemical ripening and is used around the world, the effect of which varies with
cane variety, climate and chemical ripener [192]. Chemical ripening initiates behaviour of the
cane identical to that which is induced by drought [112]. In South Africa, the ripeners include
ethephon, Fusilade super, Gallant super, glyphosate, MON 8000 and Polaris CP 41945 [192]
and at their best, the documented effects of these chemicals yield approximately 1.0 to 2.0 unit
percent increase in recoverable sugar. A chemically ripened field should not be harvested before

2The millable part of the stalk is the part that is accepted by the mill.
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(a) Mature cane. (b) Mature cane.

Figure 3.4: Cane at ages above twenty months.

Figure 3.5: Cane of different ages and varieties.

the ripener has had time to take effect, and should not be harvested too late [126].

3.4 Sugarcane harvesting

When the harvesting season begins, the successful grower has prepared for the coming nine
months by ensuring that fields are planted with different varieties and of different ages, spread
out across the farm. The grower must select suitable fields to harvest, and does so with the
objective of maximising the profit over the whole season. Depending on how many fields the
grower owns, the field selection may be a daily decision process or may occur less frequently.
However, all but the very smallest growers must deliver cane every day, which means that the
decision process must be completed at least once per week.

The harvesting date of a field is typically not decided upon very far in advance. There are,
however, a number of rules-of-thumb that are in use today when making scheduling decisions.
Every time that a new field must be harvested, the farm’s fields are sorted according to age.
Fields that may not be harvested due to physical constraints are postponed, and the oldest
of the remaining fields are sorted according to estimated recoverable value. The oldest, most
valuable field is selected for harvest, and is burnt some time before cutters or a mechanical
harvester arrives. The process of burning is illustrated in Figures 3.7(a) and 3.7(b).

The curved shape of lodged cane causes difficulties during the cutting and loading operation,
and there are claims [126] that more soil is inadvertently captured during the loading operation
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(a) N12. (b) N37.

Figure 3.6: Cane of different varieties, but of the same age. The N37 variety was more successful than
the N12 during the cold and wet growth period of 2007/2008.

when harvesting a field of lodged cane. The soil causes problems at the mill due to build-up and
other interference within the milling process. Furthermore, curved stalks do not stack as neatly
as straight cane. One may therefore argue that lodged cane takes longer to load and requires
more space on the long-range transport vehicles, thereby reducing transportation efficiency.

It is considered good practice to cut down cane as soon as possible after burning (for example,
it is not good to burn a field on Monday and to let it be cut in portions throughout the week.
It is better to split the field and burn it in portions as well). Larger farms usually employ larger
field sizes, due to their faster cutting rate.

The cutters may enter a field and begin cutting the stalks as soon as the field has cooled down
after being burnt. In South Africa, cutters are usually paid a fixed wage plus a bonus amount
per tonne that they cut. To be able to record the amount of cane cut by each cutter, they
are assigned one row at a time and a foreman records the distance cut. The distance is used
to approximate the tonnage cut by each cutter. Figures 3.8(a) and 3.8(b) illustrate the rows
system and the cutting technique.

Whilst on the ground, the cane stalks’ tops are cut off in order to ensure that these fibrous parts
of the stalks are not delivered to the mill, since RV percentage is adversely affected by high fibre
content. The “topped” cane may be left in rows on the ground, a practice called windrowing,
or stacked and bundled using chains. The process of topping is shown in Figures 3.9(a) and
3.9(b).

3.5 Sugarcane loading and transport

Cane loading is usually mechanised. For example, a machine called a Bell loader with a grab3

attached to its lifting arm may be employed to collect the cane and drop it into the hold of a
3A grab is a term used for a device designed to grab sugarcane.
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(a) Burning. (b) Jumping fire.

Figure 3.7: The process of burning consists of setting fire to a field from its edges and burning it
inwards, rather than setting fire to one edge in which case the fire builds up heat while reaching the
opposite edge. Wind conditions and adjacency of other fields are other important factors to take into
consideration in order to avoid the phenomenon of fire jumping (the spread of fire from one field to an
adjacent field.

(a) Starting position. (b) Striking cane.

Figure 3.8: Manual cutting of sugarcane. A cutter here holds a handful of stalks which he bends while
striking a special kind of machete with a bent tip at the base of the stalks, as close to the ground as
possible.

trailer. The trailer may be—in the case of zone loading4—attached to a tractor or—in the case
of direct haulage5—attached to a long-range transport vehicle. The grab procedure consists of
driving the loader forward for a suitable distance with the open grab snugly against the ground,
whereupon the loader stops moving and pushes the grabbed cane down and then repeats the
process until the grab is full. The grab is then closed and the loader drives to the trailer and
unloads the cane. Figures 3.10(a), 3.10(b), 3.12(a) and 3.12(b) illustrate the sequence of events.

Another manner in which to load the harvested cane onto vehicles is by means of so-called
bundles. Bundles of cane are held together by steel chains which are lifted by a crane onto
transportation vehicles, possibly weighing the load at the same time [179].

Alternatively, a mechanical harvester may be used. The harvester begins by cutting the stalks as

4Zone loading is the process of unloading a tractor-trailer onto the ground at a loading zone outside the field
and subsequently reloading the cane onto a long-range transport vehicle.

5Direct haulage is the process of loading a long-range transport vehicle directly in a field.
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(a) Topping of straight cane. (b) Topping of lodged cane.

Figure 3.9: Topping of cane is done to remove the topmost part of the stalks since it contains no value
in terms of sugar extraction. Topping is clearly more arduous in the case of lodged cane, since the tops
then point in different directions, as shown in (b).

(a) A Bell loader grabs and collects cane from a
windrow.

(b) The loader pushes and grips until the grab is full.

Figure 3.10: The Bell loader is a machine specially designed for grabbing cane.

close to the ground as possible. Inside the harvester, the stalks are cut into billets approximately
30 cm in length and the stalk tops are expelled onto the ground. The billets are offloaded directly
from the harvester onto a trailer, usually pulled by a tractor. The use of a mechanical harvester
therefore entails zone loading.

The loaded cane is transported to the grower’s crush mill, where it is weighed and tested. In
Australia, for instance, it is common to transport cane via rail, a practice less common in South
Africa [68]. The cane is unloaded onto a spiller and that is the point where grower and miller
part ways in terms of contractual bonds with regards to physical flow of cane in the supply chain.
The spilling operation is shown in Figures 3.13(a) and 3.13(b). The cane continues immediately
from the spiller table to a shredder where it is turned into a coarse, wet pulp, which constitutes
the beginning of the milling process.
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Figure 3.11: A bundle grab loader (derived from [179]).

(a) Unloading onto a tractor-trailer combination. (b) Unloading onto a long-range transport vehicle.

Figure 3.12: A Bell loader is also designed for loading cane onto trailers.

(a) Spilling cane from trailer onto the spiller table at the mill. (b) Spiller table buffering the cane
before the shredder.

Figure 3.13: The spiller operation is the final point of delivery for growers at the mill.
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3.6 Sugarcane constituents and use

According to Almazan et al. [2], out of 1 000 kilograms (kg) of mature cane in the field, 824 kg
reaches the mill6 on average, 94 kg is left in the field and 82 kg is waste, cleaned out at an initial
cleaning process. In the 824 kg that reaches the milling process, there is, on average, 430 kg of
liquid waste, 33 kg of mud, 1 kg of ash, 26 kg of molasses, 231 kg of bagasse and 104 kg sugar.
Bagasse is composed of fibre, pith, insoluble solids and water and is used for fuel in the mill,
paper production, chip board production and animal feed and several other purposes. Bagasse
and sugar may, in turn, be used to generate electricity, and a combination of ethanol, heat
energy and electricity through various schemes [3]. The production of ethanol from sugarcane
is promising even on a global fuel supply scale, according to Goldemberg et al. [78]. Molasses
is mainly used for producing fuel ethanol and the white spirit known as rum but also in its raw
form as cattle feed [2].

3.7 Chapter summary

This chapter contains a brief description of the global centrifugal sugar producers, of which South
Africa is the 13th largest in terms of tonnage. Sugarcane cultivation, harvesting, loading and
transport activities are described, and important issues are highlighted. The various constituents
of a typical sugarcane crop are outlined together with some of their uses. The main result of
this chapter is the understanding of how the various processes required to produce sugarcane
fit together, and focus is not on a detailed description of each process.

This chapter is presented in partial fulfilment of Dissertation Objectives I, III and IV, and
together with Chapter 2 completes the fulfilment of those objectives.

6This and the following figures are not clearly referenced by Almazan et al. [2], but should however suffice as
a basis to judge average proportions between the constituents of cane.
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The tactical sugarcane harvest scheduling problem (THSP) considered in this dissertation is the
problem of sugarcane field harvest scheduling in general, and how support may be provided to
managers charged with the task of deciding which field to harvest at any given point in time
during the harvesting season.

4.1 THSP contexts

There are various possible contexts within which to consider this problem, and those taken into
consideration here are small-scale solitary growers, small-scale harvesting groups, medium-scale
solitary growers, medium-scale commercial harvesting groups, independent large-scale commer-
cial estates and mill-owned large-scale commercial estates. Henceforth, when referring to the
THSP, all of the above contexts are included implicitly.

4.1.1 Small-scale grower contexts

Small-scale growers are here divided into two groups based on whether they pool their DRD
with other growers or not. In the former case, the grower has—to a certain extent—surrendered
his/her tactical harvesting decision to a contractor who decides which grower’s fields to harvest
at what time. In the latter case, the grower may choose when to harvest his/her fields according
to the prevailing arrangement with the mill. A small-scale grower is here defined by having
dedicated less than 10 hectares of land to the production of sugarcane on a permanent basis.

47
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In the sugar industry in South Africa, these growers are often called subsistence growers (see
§3.2).

The small-scale solitary grower context is characterised by the situation in which the sugarcane
grower is independent of other growers and has very few fields to harvest. Harvesting operational
capacity is assumed to be managed by the grower, and any decisions related to capacity are thus
not considered part of the THSP within this context. The mill is assumed to allow the delivery
of cane without adherence to the DRD. The net realisable operational profit1 from harvesting
each field is assumed to be a function of time.

The THSP within the small-scale solitary grower context consists of providing decision
support to small-scale growers who are charged with scheduling the harvest of a set of sugarcane
fields during a single season. The objective is to maximise the profit to the grower while exploiting
the possibility of scheduling the fields in a time-wise disjoint sequence.

The small-scale harvesting group context is characterised by the situation where a number
of growers have formed a group consisting of small-scale growers. This group of small-scale
growers are assumed to have pooled their DRDs and act as a single entity towards the mill.
A contractor or haulier often acts as the middleman between such a harvesting group and the
mill. The contractor may be a separate business entity or an entity created by the group of
growers or may be of some other constitution. The small-scale harvesting group is assumed to
agree on a division of the season into several rounds, where each grower’s fields are harvested
during one or several such rounds. The contractor assumes the responsibility of harvesting and
delivering cane to the mill at a consistent rate. When the contractor arrives at some farm,
the grower should already have decided which set of fields to harvest. The decision of when to
arrive at each farm is, however, not taken by any single decision maker, but rather jointly by
the harvesting group.

The THSP within the small-scale harvesting group context consists of providing decision
support to a group of small-scale growers charged with scheduling the harvesting of several sets
of fields during a single season, where inter-set relations are of major concern. The objective is
to maximise the profit for the group while each grower within the group is treated equitably.

4.1.2 Medium-scale commercial grower contexts

A medium-scale commercial grower is typically characterised by having dedicated between 10
and 1000 hectares of land to the production of sugarcane on a permanent basis. These farms are
sometimes referred to as family-owned farms and average approximately 187 hectares devoted to
sugarcane production [194]. Medium-scale commercial growers are also divided into two groups
based on whether they act singly or in a group setting.

The medium-scale solitary commercial grower context is mainly characterised by the proviso
that the harvesting operation is managed so that the amount of cane delivered to the mill
does not deviate more than 10 % above or below a DRD on a weekly basis. Growers within
this context often deliver cane on several fully loaded long-range transport vehicles during each
day of the milling-week2. Despite harvesting capacity being subject to several conditions, such
as labour supply, weather and stochastic availability of equipment (breakdowns, preventive
maintenance, etc.), the grower is assumed to be able to maintain a constant harvesting rate.

1The term net realisable operational profit refers to the profit resulting from selling the cane on the field after
having deducted harvesting and transportation costs. Henceforth, the term profit is used instead of the term net
realisable operational profit.

2The days of the week during which the mill is crushing.
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This is an important assumption in that it is a departure from a typical miller’s main short-term
objective [47], namely to maintain a steady flow of cane on a daily basis to the mill. Assuming
that any grower is able to maintain a steady capacity every single day removes the explicit
requirement for the DSS to solve problems related to steady delivery volumes of cane. The
DSS, however, indirectly addresses this issue since if a manager relies on the scheduling ability
of the DSS, then he/she is indirectly required to maintain a steady capacity. One may, however,
argue that the incentive is not on a daily level, but rather on a level corresponding to the length
of a planning period. There will thus exist cause for concern with respect to the daily delivery
consistency, even if the DSS is employed.

The THSP within the medium-scale solitary commercial grower context is the problem
of providing decision support to medium-scale commercial growers charged with scheduling the
harvesting of a single set of fields which is to be harvested in a continuous fashion during a single
harvesting season. The harvesting schedule should maximise the total profit from the harvesting
of each field combined, given that the value of each field as well as the cost of harvesting each
field vary as functions of time.

The medium-scale commercial harvesting group context is the situation in which there are several
medium-scale growers who jointly plan and operate a single or very small number of harvesting
fronts3. Joining such a group enables growers to employ a manager, to share the use of equipment
and to co-operate in terms of labour supply problems [25, 40, 126, 139, 214]. Once formed, such
a group may manage the harvesting of hundreds of fields. To gain some perspective on the
business scale of this context, one may consider that a single field of 10 hectares may contain
1 200 tonnes of cane and that a single unit increase in relative recoverable value percentage in
such a field corresponds to approximately R24 000 of profit increase. It is thus safe to make
the assumption that no grower within a medium-scale commercial harvesting group accepts a
poorer schedule than that which may be achieved solitarily.

The THSP within the context of medium-scale commercial harvesting groups con-
sists of providing decision support to groups of medium-scale commercial growers charged with
scheduling the harvesting of a number of sets of fields across a single harvesting season. The po-
tential profit assigned to each field is to be realised to the fullest possible extent, while considering
the required adherence to the DRD.

4.1.3 Large-scale commercial estate contexts

Large-scale commercial estates may be independent of any mill or may be owned by a mill. These
two situations constitute the two contexts under which commercial estates are considered.

The independent large-scale commercial estate context is characterised by several hundred fields
totalling an area of thousands of hectares, owned by a single business entity, but spread over
a vast area, even across different mill regions. A large estate presumably employs a manager
of the harvesting operation who constructs and executes several harvesting plans, one for each
harvesting front. Furthermore, the ownership of a large estate may be divided among several
shareholders, separating the harvest scheduling from the owners.

The THSP within the context of independent large-scale commercial estates consists
of providing decision support to the manager of the harvesting operation of an estate, who is

3The term harvesting front refers to a set of fields that will be harvested one after the other, as well as the
equipment and personnel assigned to perform this harvesting, and as a rule, there is no concurrent harvesting of
any fields within the same harvesting front.
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charged with scheduling a harvesting operation characterised by a large size, a wide array of
equipment and personnel in use, potentially long travelling distances, a requirement to adhere
to a DRD as well as the division of the harvesting operation into several harvesting fronts.

The mill-owned large-scale commercial estates context is characterised by the fact that the
two partly opposite inclinations of miller and grower here merge. This interesting situation is
different from all of the contexts mentioned above since now the miller may adjust harvesting
rates according to the crushing capacity of the mill. In the case of an unreliable mill, this may
create a need for relatively frequent updating of harvesting schedules, something that should
increase the need for a computerised DSS. Moreover, during major environmental disasters
the DSS may provide planning support across an entire disaster area, implementation of the
schedules now unimpeded by otherwise necessary lengthy, sometimes fruitless, negotiations.
Finally, the harvesting front is, as for the independent large-scale commercial estates, relatively
large and travelling costs present an undeniable factor influencing harvest scheduling decisions.

The THSP within the context of mill-owned large-scale commercial estates is the
same as for the independent large-scale commercial estates with the exception that mitigation
between grower and miller (who are in this context part of the same business entity) is assumed
to occur more easily.

4.2 Dissertation scope revisited

The problem outlined above presents a challenge in that there is a necessity in developing
a suitable model under close collaboration with industry professionals. It is foreseen that a
further limitation of the scope in §1.4 is required to delimit the otherwise too large group
of stake-holders. Therefore the dissertation scope is augmented with the limitation that the
DSS will only be designed to model and solve the THSP within the context of medium-scale
commercial harvesting groups.

It is, however, possible that the DSS will be applicable within other contexts, especially if minor
changes are allowed subsequent to development conducted under collaborative terms with the
relevant stake-holders. It is not believed that by selecting a particular context, the project will
end in an overly specialised DSS computer implementation.

Henceforth, when the THSP is mentioned, context still matters, but when the DSS is mentioned
as an answer or solution to the THSP, the context is that of medium-scale commercial harvesting
groups unless otherwise specified.

4.3 The DSS design and development approach

The proposed approach towards solving the THSP consists of the design and development of a
decision support system framework as well as an implementation of this framework on a personal
computer in a stand-alone fashion which may be run on a Windows-based PC requiring only
Excel 2007 or later after having been installed. The DSS is to be based on known predictive
modelling and combinatorial optimisation modelling techniques.
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4.3.1 The DSS building blocks

The DSS framework should firstly consist of a module of databases for field information, cane
yield prediction models, recoverable value percentage prediction models, effects models account-
ing for extraneous events and coefficients related to harvesting cost prediction models. These
databases should be editable by the intended user.

The field database is envisaged to contain a list of each field on the farm or estate accompanied
by information on field size, field toposequence4, field aspect5, cane variety, crop class, estimated
yield, date when last harvested (or date of start of growth in the case of a plant crop), as well
as a list of extraneous events which have occurred on each field accompanied by a percentage
describing the portion of the crop affected by the extraneous event occurrence. The cane yield
prediction models as well as the recoverable value percentage prediction models require their
respective parameters to be specified by the user. The parameters may be found by fitting the
cane yield or recoverable value percentage prediction models to the available field records’ data
on cane age, crop class, harvest day and respective cane yield or recoverable value percentage
at previous harvests. The extraneous events models as well as the harvesting cost prediction
models should have default coefficients incorporated in them, but should be alterable by the
user.

The DSS framework secondly should consist of a computational module for predicting the profit
from harvesting each field during each of a set of future discrete time periods. This module
should not require input from the user but should rather take all its inputs from the databases.
The profit values output by this module should be relative estimates, but the cane yield estimate,
which is foreseen to be a by-product in this module, is an estimate of the absolute cane yield.

Thirdly, the DSS should contain a scheduling model that schedules the fields into an, according
to a specific criterion, optimal harvesting schedule.

Fourthly, the DSS should consist of a user interface module, with user-editable databases, user-
editable prediction models, facilities for selecting which fields in the field database should be
included in the schedule as well as other schedule-specific information, facilities for running the
computational module for predicting the profit from harvesting each field, facilities for running
the scheduling algorithm and finally facilities for printing a harvesting schedule as decision
support in selecting which field to harvest next.

4.3.2 The DSS validation

The validation of the DSS should occur while it is being revised in response to complaints,
suggestions and technical problems, throughout an extended collaborative experiment. The
first operational version of the DSS should be ready prior to the onset of the 2009 harvesting
season to be put in use within a specific mill area. The data gathering process should be
conducted in parallel with readying the DSS, and should also be concluded before the season
opening date.

The DSS should be used to generate schedules at regular intervals during the 2009 harvesting
season. Hopefully, several harvesting fronts may be shadow scheduled. Development of the DSS
is foreseen to occur in parallel with shadow scheduling.

4The term field toposequence is taken throughout this dissertation to mean the vertical situation of a field, i.e.
whether the field is located on a hill-top, mid-slope or on a valley bottom.

5The term field aspect is taken throughout this dissertation to represent the prevailing direction that a field
faces.
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The results of the validation effort should provide an answer to the question whether tactical
sugarcane harvest decision support has been rendered by the DSS implementation. The various
components of the DSS are, however, foreseen to require individual validation, before they may
be used as valid building blocks in other ventures.

4.4 Chapter summary

In this chapter, the problem to be considered in this dissertation was described in some detail
and structured according to various different viewpoints or contexts. These contexts are small-
scale solitary growers, small-scale harvesting groups, medium-scale commercial solitary growers,
medium-scale commercial harvesting groups, independent large-scale commercial estates and
mill-owned large-scale commercial estates.

The planned decision support system design and development approach taken towards solving
this problem was outlined by listing its major building blocks, requirements imposed on the
user and other forms of input. The main components of an envisaged validation process of the
DSS were also described.

The thesis of this dissertation is that the THSP in the contexts mentioned in §4.1.1, §4.1.2 and
§4.1.3 may be supported by a DSS requiring only readily available data, incorporating well-
known predictive modelling and combinatorial optimisation modelling techniques. The planned
DSS is foreseen to, at least, provide some evidence towards accepting or discarding this thesis
with respect to the medium-scale grower contexts, found in §4.1.2.
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A number of well-known problems from the operations research literature, which are all relevant
to the THSP, are reviewed in this chapter. As well as highlighting various classical operations
research problems related the THSP, this chapter also contains a summary of appropriate exact
and approximate solution approaches for these problems.

5.1 Well-known OR problems from the literature

Problems found in the OR literature often share some properties with other problems; the
THSP, for example, shares several properties with the classical assignment problem and the
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travelling salesman problem. This section contains a description of a set of problems and is
aimed at uncovering the similarities between these problems and the THSP.

5.1.1 The classical assignment problem

The classical assignment problem (CAP) is concerned with the assignment of a set of agents to
a set of tasks such that each agent is assigned to perform exactly one task, each task is assigned
to exactly one agent and the total cost of the assignments is minimised. The first time the
CAP appeared in the literature was in 1952 in a paper by Votaw and Orden [224]. Other early
work on this problem is most notably the development of the Hungarian method by Kuhn as a
solution approach for the CAP in 1955 [125]. The literature on problems related to the CAP is
large and spans more than 50 years of research [168]. If Iα is the set of agents and Jα is the set
of tasks, the CAP may be stated as the problem of

minimising z =
∑
i∈Iα

∑
j∈Jα

cαijx
α
ij (5.1)

subject to the constraints ∑
i∈Iα

xαij = 1, j ∈ Jα, (5.2)∑
j∈Jα

xαij = 1, i ∈ Iα, (5.3)

xαij ∈ {0, 1} , i ∈ Iα, j ∈ Jα, (5.4)

where the decision variable xαij takes the value 1 if agent i ∈ Iα is assigned to perform task
j ∈ Jα, or 0 otherwise, and where cαij is the cost incurred when agent i is assigned to perform
task j. Constraint set (5.2) ensures that each task has exactly one agent assigned to it, whereas
set (5.3) ensures that each agent is assigned to perform exactly one task. Finally, constraint set
(5.4) ensures the binary nature of the decision variables. The CAP is neither NP-complete1 nor
NP-hard, but rather belongs to the class of P [9, 125,174].

In the context of the THSP, the tasks of the CAP may be identified with the fields, the agents
may be identified with the time periods and the cost coefficients cαij may be taken as the negative
of the estimated profit from harvesting field i during period j. This formulation is, however, not
entirely suitable for the THSP since fields may differ in size, and it may be very difficult to derive
a practical harvesting strategy from a solution to the problem if some time periods are only
partially utilised or if some fields are only partially harvested during a time period. An iterative
approach may be considered, where one first locates an optimal assignment, then adjusts the
period lengths in order to fit in the assignments, solves the adjusted problem, readjusts the
period lengths and so on, in the hope that the procedure will converge to a solution where each
set of assigned fields fits its corresponding harvesting period. This approach is not considered
here.

1P is a class of problems for which there exists algorithms that can find solutions in a polynomial number of
steps with respect to problem size. NP is a class of problems that ask questions which may be answered with
yes or no. For a problem to be part of NP, there must exist a method of checking, in a polynomial number of
steps with respect to problem size, whether a guessed solution is, indeed, a solution to the problem. An NP-
complete problem is an NP problem for which the existence of an algorithm that is guaranteed to find a solution
in a polynomial number of steps is impossible, unless there exists a polynomial algorithm for each problem in
NP [20]. The Clay Institute offers a USD $1 million prize associated with establishing whether there exists such
an algorithm, i.e. proving whether NP = P [20, 27].
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5.1.2 The generalised assignment problem

A more natural way to model the THSP is to adopt a so-called generalised assignment problem
(GAP) model formulation. The minimisation form of the GAP is usually also described in terms
of a set of jobs and a set of agents. Each job is to be assigned to one of the agents who is to
perform the job at some cost while consuming some portion of a limited resource (which may or
may not be time). Each agent-job combination is cost-specific as well as resource-specific. Each
agent has associated with him/her a specific amount of total available resource, and may thus
perform any set of jobs that has a combined resource requirement that is no more than that
available to the agent. The GAP appeared for the first time in the literature in the 1975 paper
by Ross and Soland [176] as a generalisation of the CAP. In the GAP, agents are, as mentioned
earlier, allowed to process multiple jobs, while in the CAP each agent may only process one job.
To model agent capacity, a set of resource constraints on the agents is enforced. In Ross and
Soland’s original formulation, the objective was to

minimise z =
∑
i∈Iα

∑
j∈Jα

cαijx
α
ij (5.5)

subject to the constraints ∑
j∈Jα

rijx
α
ij ≤ bi, i ∈ Iα, (5.6)

∑
i∈Iα

xαij = 1, j ∈ Jα, (5.7)

xαij ∈ {0, 1} , i ∈ Iα, j ∈ Jα, (5.8)

where Iα is again the set of agents and Jα is the set of jobs. Here rij denotes the resource
required by agent i to perform job j, while bi is the resource available for agent i. Furthermore,
cαij is the cost incurred when agent i is assigned to perform job j and xαij is again a binary
decision variable taking the value 1 if job i is assigned to agent j, or 0 otherwise. Constraint set
(5.6) ensures that the resource available to each agent is not exceeded by the job assignment
requirement, while constraint set (5.7) ensures that each job is assigned to exactly one agent.
Finally, constraint set (5.8) ensures the binary nature of the decision variables. The GAP is
NP-hard2 [178].

The GAP may be used as a model for the THSP by identifying the agents with the time periods
and by identifying the tasks with the fields. During each period in the THSP, a maximum
amount of sugarcane may be delivered to the mill, represented by the available resource bi.
Each field contains a time-dependent amount rij of cane to be delivered to the mill when xij is
1 (i.e. when field i is harvested during period j). Since the coefficients cij are time-dependent,
the GAP is able to accommodate the differences in profit from harvesting due to seasonal
progression. There are, however, some issues related to practicality arising with this approach.
Assuming that a typical harvesting period is two weeks long, of which there may be twenty
during the entire harvesting season, the first practical concern when adopting the GAP as a
model formulation for the THSP is of a combinatorial nature. Some subset of the fields may
be suited for harvest during a particular period from a profit point of view, but their combined
total cane yield may be quite different from the total yield required by the contract between
the grower and the miller during the period. If, for example, the total combined cane yield is

2NP-hard is a class of problems in which each problem may be reduced to an NP-complete problem in a
polynomial number of steps with respect to problem size [20].
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500 tonnes and a period requirement is 400 tonnes, the solution to (5.5)–(5.8) is mathematically
infeasible since one of the constraints in constraint set (5.6) will be violated by a margin of
100 tonnes. In practice, however, the 100 tonnes may simply be left for harvesting during
the following time period, something that cannot be accommodated when using the GAP as a
model. This issue impacts negatively on the practical value of a solution to (5.5)–(5.8).

The second practical concern is that of a timeline resolution problem arising if there are a few,
relatively large, fields to be scheduled. The time periods must always be made long enough
to accommodate the largest field (otherwise (5.5)–(5.8) will have no feasible solution). The
value of cane on the fields changes too rapidly to be approximated at intervals longer than
one month. For example, if the time periods are one month long and two fields are scheduled
to be harvested during some period, there is at least a two week scheduling precision deficit
concerning the particular point in time at which the harvesting of each field should commence,
since the order in which the two fields should be harvested is not considered by the GAP. In
terms of scheduling fields that suffer from adverse extraneous events, this scheduling precision
deficit may be too large.

5.1.3 The asymmetric travelling salesman problem

Another approach towards modelling the THSP is to consider arranging the set of fields into
a sequence representing the order in which sugarcane fields are to be harvested, in which case
the celebrated travelling salesman problem (TSP) is the natural starting point for model devel-
opment. The TSP is traditionally concerned with the order in which a salesman should visit a
set of pre-specified cities, in order to minimise travel cost. Each city should be visited exactly
once in such a tour and a cost is associated with travelling between each pair of cities. The
TSP is sometimes called the symmetric travelling salesman problem, due to the travelling cost
between two cities being independent of the direction of travel. The first integer programming
formulation of the TSP is due to Dantzig et al. [45] in 1954.

The generalisation of the TSP in which the travelling costs depend on the direction of travel
is called the asymmetric travelling salesman problem (ATSP). The ATSP is described here,
highlighting the TSP as a special case of the ATSP. Consider a set of vertices V and a set of
weighted arcs A which form a complete, directed, simple, weighted graph G(V,A). Each pair
of vertices u, v ∈ V is joined by two arcs, one for each direction of travel between the vertices.
The arcs are denoted by uv ∈ A and vu ∈ A, respectively. Travelling along an arc uv ∈ A is
associated with a weight, denoted by cβuv. The arc weights satisfy the triangle inequality, which
requires a direct connection between any two vertices to be of less than or equal weight than
any indirect connection between the two vertices via a third vertex. A feasible tour visits each
vertex in G(V,A) exactly once, returning to the vertex from which the tour started. An optimal
tour is a feasible tour with minimum total weight. The objective of the ATSP is therefore to

minimise z =
∑
u∈V

∑
v∈V

cβuvx
β
uv (5.9)
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subject to the constraints ∑
v∈V

xβuv = 1, u ∈ V, (5.10)∑
u∈V

xβuv = 1, v ∈ V, (5.11)

∑
u∈Sβ

∑
v∈Sβ

xβuv ≤
∣∣∣Sβ∣∣∣− 1, Sβ ⊂ V,

∣∣∣Sβ∣∣∣ ≥ 2 (5.12)

xβuv ∈ {0, 1} , u, v ∈ V, (5.13)

where the proper subset Sβ represents a so-called sub-tour (a closed route that does not visit
all vertices) through the graph G(V,A), and the binary decision variable xβuv takes the value
1 if the arc uv is traversed, or 0 otherwise. Constraint set (5.10) ensures that the tour leaves
each vertex exactly once, while constraint set (5.11) ensures that the tour arrives at each vertex
exactly once. Furthermore, constraint set (5.12) ensures that all sub-tours are forbidden, while
constraint set (5.13) maintains the binary requirement on the decision variables. To avoid loops,
the convention is adopted of setting cβuu =∞ for all u ∈ V . The TSP is equivalent to (5.9)–(5.13)
if cβuv = cβvu for all vertex pairs u, v ∈ V .

The cities, or vertices, in the ATSP may be identified with the fields in the THSP. The ATSP
would have been an interesting option for modelling the THSP if the main concern had been
between which fields travelling occurs, but it is more important to record at what time the
travelling occurs, since that indicates the time of harvest. In the context of travelling salesman
problems, time is by convention taken to be equivalent to cost. The THSP requires these two
dimensions to be distinct, so that harvesting costs and revenue may be modelled as functions
of time.

5.1.4 The vehicle routing problem

According to Laporte [130], the classical vehicle routing problem (VRP) was introduced by
Dantzig and Ramser in 1959 [46] and is concerned with constructing m routes of minimum
total weight for m vehicles through a weighted, undirected graph G(V,Eβ) with vertex set
V = {0, 1, 2, . . . , n} and weighted edge set Eβ. Each vehicle has a capacityQ, and each customer,
modelled by a vertex u ∈ V \ {0}, is associated with a nonnegative demand qβu which may not
exceed Q. Each vehicle may only complete one route, starting out and returning to a central
depot modelled by the vertex 0 ∈ V , and each customer must be visited exactly once by some
vehicle. An optimal solution to the problem consists of m such routes through G(V,Eβ), with a
minimum combined weight. The VRP is a generalisation of the TSP and if Q =∞ and m = 1,
they are equivalent. The following formulation of the VRP is that of Laporte [130].

Let the integer decision variable xβuv denote the number of times the edge uv ∈ Eβ is traversed
in a feasible solution to the VRP. The variable xβ0v may take the value 0, 1 or 2, but for any other
vertex u, xβuv may take only the values 0 or 1. This construct allows for a return trip between
vertex 0 and any vertex v ∈ V \ {0}, which occurs if a route only visits a single customer. The
objective in the VRP is to

minimise z =
∑
uv∈Eβ

cβuvx
β
uv (5.14)
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subject to the constraints

∑
v∈V \{0}

xβ0v = 2m, (5.15)

∑
u<w

xβuw +
∑
v>w

xβwv = 2, w ∈ V \ {0} , (5.16)

∑
u∈Sβ ,v /∈Sβ

xβuv ≥


∑
u∈Sβ

qβu/Q

 , Sβ ⊂ V \ {0} , (5.17)

xβuv ∈ {0, 1} , u, v ∈ V \ {0} , (5.18)

xβ0v ∈ {0, 1, 2} , v ∈ V \ {0} , (5.19)

where cβuv is the cost of traversing the edge uv ∈ Eβ and Sβ is any proper subset of the customer
set V \ {0}. Constraint set (5.15) ensures that there are two edges incident to the depot vertex
0 per route. Constraint set (5.16) ensures that two edges are incident to each vertex other
than the depot, one being the “incoming” edge and the other the “outgoing” edge. Constraint
set (5.17) prevents sub-tours by forcing all proper subsets of the set of customer vertices to be
connected to the depot, as well as ensuring that the vehicle capacities are not violated. The
term d

∑
u∈Sβ q

β
u/Qe in (5.17) is a lower bound on the number of vehicles required to service

all customers in Sβ. Constraint sets (5.18)–(5.19) ensure integrality and place bounds on the
decision variables.

In the context of the THSP, the VRP may be applicable if there are several harvesting fronts to
consider where some maximum cutting capacity is associated with each harvesting front. In such
a case, the harvesting fronts would correspond to the vehicles, the cutting capacity to the vehicle
capacity and the fields to the customers. The weakness of this modelling approach is, again,
the time-dependency of the field harvesting profits in the THSP, which is not accommodated in
the VRP. However, it should be mentioned that a vehicle routing problem with time windows
appears in the literature (see, for example, Soler et al. [190]), which would allow for a time-
dependent multiple-harvesting front THSP model formulation.

5.1.5 The time-dependent travelling salesman problem

The earliest formulation of the time-dependent travelling salesman problem (TDTSP) was pub-
lished in 1960 in a paper by Miller et al. [153]. According to Fox et al. [59] its origin may,
however, be traced to a paper by Bowman [21] in 1956. The problem is concerned with con-
structing an optimal tour through a directed, weighted graph G(V,A) of order n with vertex
set V , arc set A and with arc costs depending on arc positions in the tour. Define the binary
decision variable xγuvα to take the value 1 if the arc uv ∈ A is traversed as the αth arc in the
tour, or 0 otherwise. Then the TDTSP is the problem of

minimising z =
∑
u∈V

∑
v∈V

∑
α∈V

cγuvαx
γ
uvα (5.20)
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subject to the constraints

∑
v∈V

∑
α∈V

xγuvα = 1, u ∈ V, (5.21)∑
u∈V

∑
α∈V

xγuvα = 1, v ∈ V, (5.22)∑
u∈V

∑
v∈V

xγuvα = 1, α ∈ V, (5.23)∑
v∈V

∑
α∈V \{1}

αxγuvα −
∑
v∈V

∑
α∈V

αxγvuα = 1, u ∈ V \ {1} (5.24)

xγuvα ∈ {0, 1} , u, v, α ∈ V, (5.25)

where it is assumed that each traversal of an arc requires one time period and that the tour
begins at vertex 1 during period 1 and returns to vertex 1 during period n. Constraint set
(5.21) ensures that exactly one arc enters each vertex in such a tour, while constraint set (5.22)
ensures that exactly one arc exits each vertex. Furthermore, constraint set (5.23) ensures that
exactly one arc is traversed during each period, while constraint set (5.24) forbids the formation
of sub-tours and advances time by one period per traversed arc. The final constraint set (5.25)
is a binary constraint on the decision variables.

If sugarcane farms generally consisted of equally sized fields, the TDTSP would have been a
suitable model formulation in the context of the THSP, where the fields would then be repre-
sented by the vertices of the graph, the negative of the profits of harvesting each field during
each period would be represented by the cost coefficients in (5.20), and the time periods of the
THSP would be the periods of the TDTSP. One might further investigate the implications of
assuming that all fields are of an equal, average size; this special case of the THSP is, however,
not considered in this dissertation.

5.1.6 The ATSP with time windows

The asymmetric travelling salesman problem with time windows (ATSPTW) is an ATSP with
the additional requirement that each vertex must be visited within a certain time window.

Consider a set of vertices V and a set of weighted arcs A which form a complete, directed,
simple, weighted graph G(V,A). Each pair of vertices u, v ∈ V is joined by two arcs, one for
each direction of travel between the pair of vertices. The arcs are again denoted by uv ∈ A and
vu ∈ A, respectively. Travelling along an arc uv ∈ A is associated with a weight, denoted by cβuv.
A time window [aβu, b

β
u] is associated with each vertex u ∈ V . The tour must leave each vertex

within its associated time window. The tour may arrive at vertex u before time aβu but will in
such a case leave the vertex at time aβu. Traversing the arc uv ∈ A implies a travel time tβuv and
a travel cost cβuv, regardless of the time at which the traversal commences. The ATSPTW is
the problem of

minimising z =
∑
u∈V

∑
v∈V

cβuvx
β
uv (5.26)
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subject to the constraints ∑
v∈V

xβuv = 1, u ∈ V, (5.27)∑
u∈V

xβuv = 1, v ∈ V, (5.28)

yβu + tβuv −M
(

1− xβuv
)
≤ yβv , u, v ∈ V, (5.29)

aβu ≤ yβu ≤ bβu, u ∈ V, (5.30)

xβuv ∈ {0, 1} , u, v ∈ V, (5.31)

where the decision variable xβuv takes the value 1 if the tour progresses from vertex u to vertex
v and the decision variable yβu denotes the time at which the tour leaves vertex u. Constraint
set (5.27) ensures that the tour exits each vertex exactly once, constraint set (5.28) ensures
that the tour enters each vertex exactly once. In (5.29), M is a number larger than bβu and the
constraint sets (5.29) and (5.30) together ensure that the time windows are adhered to. Finally,
constraint set (5.31) ensures that the decision variable xβuv is binary.

In terms of the THSP, the ATSPTW is applicable in cases where one considers assigning each
field a period of the season during which it must be harvested. This may be the case, for example,
when the optimal time to harvest a field is relatively certain, while the size of the harvesting front
or distance between the fields is large. Such a situation may, however, place more importance on
the travelling costs than is necessary. The THSP assumes that the harvesting front returns to
a depot every night, which renders the harvesting sequence irrelevant with respect to travelling
costs.

5.1.7 The ATSP with time-dependent costs

The asymmetric travelling salesman problem with time-dependent costs (ATSPTDC) is a vari-
ation of the ATSP in which inter-city travelling costs depend on how much time has elapsed
since the start of the tour, i.e. the sequence of vertices preceding the traversal of a particular
arc determines arc-cost. According to Albiach et al. [5], the ATSPTDC is an extension of the
ATSPTW and it may be formulated as follows. Let V = {0, 1, 2, . . . , n, n+ 1} be the vertex set
and let A be the arc set of a graph G(V,A) in which there is one arc for each time instant and
each direction between each pair of vertices. The vertices 0 and n+ 1 are a dummy starting de-
pot vertex and a dummy ending depot vertex, respectively, for any feasible tour. A time window
[aδu, b

δ
u] is associated with each vertex u ∈ V , where aδu is the earliest time at which vertex u may

be visited in a feasible solution tour and bδu is the latest time by which the vertex may be visited.
These windows are defined in terms of time instants τκu = aδu+κ−1, κ ∈

{
1, 2, . . . , bδu − aδu + 1

}
.

The parameters cδuvκ and tδuvκ denote the cost and time, respectively, of travelling to vertex v
from vertex u, starting at time instant κ. Define the decision variable xδuvκ to take the value 1 if
the arc uv is traversed starting at time instant κ, or 0 otherwise. Furthermore, let pδuvκ denote
a waiting penalty for arriving early at vertex v from vertex u, having exited u at time instant
κ, let the decision variable yδu denote the time instant at which the tour leaves vertex u and let
wδuvκ denote the number of time instants by which the tour arrives early at vertex v. Finally,
let Z+ denote the set of all positive integers. Then the objective in the ATSPTDC is to

minimise z =
∑
u∈V

∑
v∈V

∑
κ∈{1,2,...,bδ0}

(
cδuvκx

δ
uvκ + pδuvκw

δ
uvκ

)
(5.32)
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subject to the constraints∑
v∈V

∑
κ∈{1,2,...,bδ0}

xδuvκ = 1, u ∈ V \ {n+ 1} , (5.33)

∑
u∈V

∑
κ∈{1,2,...,bδ0}

xδuvκ = 1, v ∈ V \ {0} , (5.34)

∑
v∈V

∑
κ∈{1,2,...,bδ0}

xδn+1,v,κ = 0, (5.35)

∑
u∈V

∑
κ∈{1,2,...,bδ0}

xδu,0,κ = 0, (5.36)

xδuvκ = 0, u = v ∈ V, κ ∈
{

1, 2, . . . , bδ0
}
, (5.37)

xδ0,n+1,κ = 0, κ ∈
{

1, 2, . . . , bδ0
}
, (5.38)

yδ0 = 1, (5.39)

yδn+1 − 1 = bδ0, (5.40)

yδu + tδuvκ −M
(

1− xδuvκ
)
≤ yδv, u, v ∈ V, κ ∈

{
1, 2, . . . , bδ0

}
, (5.41)∑

v∈V

∑
κ∈{1,2,...,bδ0}

κxδuvκ = yδu, u ∈ V \ {n+ 1} , (5.42)

aδu ≤ yδu ≤ bδu, u ∈ V, (5.43)

aδv − yδu − tδuvκ −M
(

1− xδuvκ
)
≤ wδuvκ, u, v ∈ V, κ ∈

{
1, 2, . . . , bδ0

}
, (5.44)

xδuvκ ∈ {0, 1} , u, v ∈ V, κ ∈
{

1, 2, . . . , bδ0
}
, (5.45)

yδu ∈ Z+, u ∈ V, (5.46)

where M is a number larger than bδu, and the objective function (5.32) consists of a sum of
the travelling costs and the waiting penalty costs. Constraint set (5.33) ensures that each
vertex is exited exactly once in a solution tour, while constraint set (5.34) ensures that each
vertex is entered exactly once. Constraint sets (5.35) and (5.36) ensure that the dummy ending
depot vertex is not exited and that the dummy starting depot vertex is not entered, (5.37)
forbids looping within each vertex, while (5.38) ensures that the dummy ending depot vertex is
not visited immediately after the dummy starting depot vertex. Constraint sets (5.39)–(5.42)
ensure that the time instant when the tour leaves each vertex is computed correctly and that
the tour does not arrive at a vertex after the last time instant of its associated time window,
while constraint set (5.43) ensures that the tour does not leave any vertex at a time instant
outside of its associated time window. Constraint set (5.44) computes the waiting time wδuvκ
(expressed as a number of time instants) spent at vertex v, having left directly from vertex u
at time instant κ. Finally, constraint set (5.45) ensures that the decision variable xδuvκ is binary
and constraint set (5.46) ensures that the decision variable yδu is a positive integer.

The ATSPTDC is capable of modelling time-dependency both in terms of travel time and travel
cost. This makes the ATSPTDC very attractive in the context of the THSP, since the yield
and RV % of a sugarcane crop change with time. If the ATSPTDC is used to model the THSP,
cδuvκ may be taken as the negative of the profit from harvesting field v at time instant κ directly
after having completed the harvesting of field u (which occurs at time instant κ− tδuvκ′ , where
κ′ is the time instant at which the harvesting operation began harvesting the previous field).
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The time required to harvest field v at time instant κ directly after having finished harvesting
field u may be denoted by tδuvκ. Both cδ0vκ and tδ0vκ are zero for κ ∈

{
1, 2, . . . , bδ0

}
and the time

required to harvest a field includes the time required to travel to the next field. Despite its
modelling strengths, the ATSPTDC is not used in its entirety in this dissertation, since time
windows are not considered necessary for modelling the THSP and since travel times in the
THSP need not depend on time. It was, however, the main inspiration for one of the modelling
approaches towards solving the THSP adopted later in this dissertation.

5.1.8 The job-shop scheduling problem

The classical job-shop scheduling problem (CJSP) commonly arises in the manufacturing envi-
ronment and was introduced by Bowman in 1959 [22]. Consider a set of jobs where each job is
to be processed on a set of machines and where each machine can process one job at a time.
Each job j must be processed on each machine i in a certain order, and the objective is to
minimise the total makespan (the total time elapsed between the start of the first job and the
completion of the last job). The set N ε contains all operations (i, j) (indicating that job j is to
be processed on machine j) and the set Aε contains all precedence constraints (h, i, j) indicating
that job j must be processed on machine i before being processed on machine h. The following
formulation of the CJSP is due to Pinedo [171, pp. 85–86]. The objective is to

minimise z = Cmax (5.47)

subject to the constraints

yεhj − yεij ≥ pεij , (h, i, j) ∈ Aε, (5.48)

Cmax − yεij ≥ pεij , (i, j) ∈ N ε, (5.49)

yεij − yεik ≥ pεik or yεik − yεij ≥ pεij , (i, k) , (i, j) ∈ N ε, i = 1, 2, . . . ,m, (5.50)

yεij ≥ 0, (i, j) ∈ N ε, (5.51)

where the decision variable yεij denotes the time at which job j is processed on machine i and
pεij denotes the processing time duration required for job j on machine i. Constraint set (5.48)
ensures that each job is processed on the machines according to the precedence requirements,
while constraint set (5.49) computes the makespan Cmax. The constraints in (5.50) are called
disjunctive constraints3 and ensure that jobs which are to be processed on the same machine
are ordered in some fashion so as to disallow simultaneous processing (the leftmost disjunctive
constraint provides for job j to precede job k and the rightmost disjunctive constraint provides
for job k to precede job j, where either ordering is acceptable). Finally, constraint set (5.51)
ensures the non-negativity of the decision variable.

If a harvesting front is modelled as an operation consisting of various parts (such as burning,
cutting, loading, zone unloading, zone loading and transportation), then a set of fields considered
for harvesting during the season may be identified with the jobs and the various harvesting front
parts may be identified with the machines of the CJSP. In such a case the minimisation of the
makespan would correspond to attempting to maximise the utilisation of the available resources
(by squeezing the harvesting of fields into as short a time frame as possible). Adopting an
iterative approach whereby the available resources are manipulated until a solution is reached
for which the makespan is equal to the length of the milling season, a theoretically optimal

3Disjunctive constraints function in pairs where either one must be satisfied, whereas conjunctive constraints
must all be satisfied.
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burning capacity, cutting capacity, loading and transportation capacity may thus be computed.
This approach may be useful for large operations controlled by a single business entity.

5.1.9 The sequence and time-dependent scheduling problem

A sequence and time-dependent scheduling problem (STDSP), which is relevant to the THSP,
was put forward in 2008 by Stecco et al. [206,207], who considered different formulations of the
STDSP as well as both exact and metaheuristic solution approaches. This particular scheduling
problem is similar to a version of the TDTSP, described above as the ATSPTW. The STDSP
is interesting, firstly because it represents one of the most complicated makespan problems
within the research area of single machine scheduling and, secondly, because it provides for an
alternative modelling approach in the context of the THSP.

The STDSP is the problem of minimising the total makespan that occurs during the processing of
a setN ζ = {0, 1, 2, . . . , n+ 1} of jobs, where job j has a processing time of pζj (j ∈ N ζ\{0, n+ 1})
and where two different setup times for a particular job depend on which job preceded it as well
as on the completion time of the preceding job. Here, 0 and n + 1 are two dummy jobs with
zero processing times; these jobs represent the virtual start and end of the processing schedule.
The entire schedule is designed for a single planning horizon which is composed of several
planning periods of equal length. The horizon begins at time τ ζ . For notational purposes,
P ζ = {0, 1, 2, . . . , n} and Sζ = {1, 2, . . . , n+ 1} denote the sets of possible predecessors and
successors, respectively. Between the processing of any two jobs, two different setups may take
place: an unrestricted setup may occur at any time, except when the restricted setup has been
begun and halted (due to insufficient time to complete it), while a restricted setup may only take
place outside a forbidden interval [aζ , bζ ] ⊂ [0, dζ ] where dζ is the end of each planning period. A
practical setting in which the restricted setup occurs is in complicated operational environments
where skilled people or technology may not be available twenty-four hours a day, so that job
changes which require these resources are restricted to parts of the day when the resources are
available. Stecco et al. [206] made the assumption that the forbidden interval may take the form
[aζ , dζ ], without loss of generality. The restricted setup time rζij (i, j ∈ N ζ) between two jobs

combined with the unrestricted setup time uζij (i, j ∈ N ζ) introduces a time-dependent aspect
to the problem, since there is an implicit waiting time involved whenever the completion of the
restricted setup must wait until the end of a forbidden interval.

An instance of the STDSP is specified by presenting a weighted, directed graph G, whose vertices
represent the jobs, while the traversal of an arc represents the transition from one job to the
next in the schedule. The total time to traverse an arc is rζij + uζij if the traversal begins within

either the interval [0, aζ−rζij ] or the interval [dζ−uζij , dζ ] of any planning period, while the total

traversal time is rζij + uζij + dζ − aζ if the traversal begins within the interval (aζ − rζij , dζ − u
ζ
ij).

These three intervals constitute the set of relevant intervals Kζ . The graph G is specified in
such a manner that each pair of vertices is joined by six arcs: one arc in each direction for each
k ∈ Kζ . This arc set is denoted by Aζ inducing the graph G = G(N ζ , Aζ). The decision variable
tζij is the departure time when leaving vertex j ∈ N ζ if it was visited immediately after vertex

i ∈ N ζ . The decision variable hζij is the number of the planning period during which vertex
j ∈ N ζ is to be visited if visited immediately after vertex i ∈ N ζ , while the binary decision
variable xζijk takes the value 1 if vertex i ∈ N ζ is exited during relevant interval k ∈ Kζ towards

vertex j ∈ N ζ , or 0 otherwise. The time required to traverse the arc ijk is denoted by cζijk
and an upper bound on the relevant time interval k ∈ Kζ for arc ijk is denoted by Iζijk. The
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departure time from vertex 0 is denoted by tζ0. The formulation of the STDSP given here is the
final of the three formulations in [206, pp. 2637–2642]4 and consists of

minimising z =
n∑
i=1

tζi,n+1 (5.52)

subject to the constraints∑
i∈P ζ

∑
k∈Kζ

xζijk = 1, j ∈ Sζ , (5.53)

∑
j∈Sζ

∑
k∈Kζ

xζijk = 1, i ∈ P ζ , (5.54)

∑
j∈Sζ

tζij ≥
∑
`∈P ζ

tζ`i +
∑
j∈Sζ

∑
k∈Kζ

(
cζijk + pζj

)
xζijk, i = 1, 2, . . . , n, (5.55)

n∑
j=1

tζ0j ≥ t
ζ
0 +

n∑
j=1

∑
k∈Kζ

(
cζ0jk + pζj

)
xζ0jk, (5.56)

∑
`∈P ζ

tζ`i ≥
∑
j∈Sζ

∑
k∈K

Iζij,k−1x
ζ
ijk + dζ

∑
m∈P ζ

hζmi, i = 1, 2, . . . , n, (5.57)

tζ0 ≥
n∑
j=1

∑
k∈Kζ

Iζ0j,k−1x
ζ
0j,k−1, (5.58)

∑
`∈Sζ

tζ`i ≤
∑
j∈Sζ

∑
k∈Kζ

Iζijkx
ζ
ijk + dζ

∑
m∈Sζ

hζmi, i = 1, 2, . . . , n, (5.59)

tζ0 ≤
n∑
j=1

∑
k∈Kζ

Iζ0jkx
ζ
0jk, (5.60)

tζij ≤M
ζ
1

∑
k∈Kζ

xζijk, i ∈ P ζ , j ∈ Sζ , (5.61)

hζij ≤M
ζ
2

∑
k∈Kζ

xζijk, i ∈ P ζ , j ∈ Sζ , (5.62)

tζ0 ≥ τ
ζ , (5.63)

hζij ∈ Z+, i ∈ P ζ , j ∈ Sζ , (5.64)

xζijk ∈ {0, 1} , i ∈ P ζ , j ∈ Sζ , k ∈ Kζ . (5.65)

Constraint set (5.53) ensures that the tour enters each vertex (except vertex 0) exactly once,
while constraint set (5.54) ensures that the tour departs from each vertex (except vertex n+ 1)
exactly once. Constraint set (5.55) computes the time at which the tour departs from each
vertex (except the vertex from which the tour departed after having visited vertex 0), while
constraint (5.56) computes the time at which the tour departs from the vertex that it entered
after departing from vertex 0. Constraint sets (5.57) and (5.59) force the correct relevant interval
to be used for the decision variable xζijk, based on the time at which the tour leaves each vertex,
except for the relevant intervals applicable when leaving vertex 0, which is accounted for by
constraints (5.58) and (5.60). The variables xζijk, t

ζ
ij and hζij are linked in constraint sets (5.61)

and (5.62), where M ζ
1 may be given the value of any upper bound on

∑n
i=1 t

ζ
i,n+1 and M ζ

2 may be

4The authors presented a non-linear programming formulation, a linear TDTSP formulation and a stronger,
integer programming formulation (the one appearing here).
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given the value of any upper bound on
∑n

i=1 t
ζ
i,n+1/d

ζ . The final three constraint sets, namely
(5.63), (5.64) and (5.65), ensure that the tour starts within the planning horizon [τ ζ ,∞], that
the planning periods are real, positive integers, and that xζijk is a binary integer, respectively.

In the context of the THSP, the vertices in an instance of the STDSP may represent the fields
while each of the arcs from one vertex to the next may represent the various relevant periods of
a typical harvesting day (recall that there are k arcs emanating from each vertex to the next, ex-
cept from vertex n+1). The harvesting of a field requires burning, which may only be performed
during the light hours of the day (due to fire-safety considerations). Manual cutting also requires
light, and the least costly option is the sun, while it is also preferable to complete cutting during
the morning. Loading of cane and transportation of equipment can occur throughout the day
and so these operations may be classified as unrestricted setup times. In this context, a field is
said to be harvested by the series of setups: burning (restricted to daylight), cutting (restricted
to the morning), loading (unrestricted) and transport (unrestricted). The main realism prob-
lem with this model in the context of the THSP is that an actual harvesting operation may be
burning one field while another is being cut or loading at one field while another is being cut. In
fact, all the operations above may overlap, which disqualifies the formulation for the THSP as
is. As a provision for situations where the operations may not overlap, the formulation should,
however, not be discounted. As a final note, the above example illustrates the difficulty with
which optimisation may be applied to the operational problems of sugarcane harvesting. The
STDSP as well as all other scheduling formulations encountered in the literature review of this
dissertation lack the important ability to account for cost-time dependency in the sense required
by the THSP. The realm of scheduling is generally not concerned with costs other than the cost
of time. For examples of sequence-dependent scheduling problems (in which the sequencing of
jobs affects the processing time of each job), see [1, 60,61,124,127,129,212,225].

5.2 Popular exact solution methodologies

Instances of the problems reviewed in §5.1 have been solved exactly by researchers using various
methods. One of the most common exact5 solution approaches is the branch-and-bound method,
often incorporating the generation of cutting planes. These methods are described in this section.

5.2.1 The branch-and-bound method

In this section, the general framework of the branch-and-bound method is first described, after
which more specific implementations of the method for integer programming problems and the
TSP in particular are considered.

The general approach

The branch-and-bound method is a general procedural framework within which a solution to a
combinatorial optimisation problem, denoted by C, may be proven to be optimal, given that it
is possible to relax C into a solvable problem C′ and subsequently separate C′ into subproblems,
denoted by S ′i, where the index i identifies the subproblems. Furthermore, the combined solution
space of all subproblems must cover that of the original problem and it must be possible to

5The term exact in this context means that the solution method is guaranteed to uncover the optimal solution
to the problem, given enough time and computational resources (often theoretical amounts of resources).
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place upper and lower bounds on the objective function values of solutions to S ′i for all i. The
separation into subproblems is termed branching since the data structure most often used to
record the progress of the method resembles a tree, called the branch-and-bound tree or the
search tree. If C is a minimisation problem, achieving a low objective function value during
the search is better than achieving a high objective function value. If a subproblem’s lower
bound on the optimal objective function value is larger than the smallest upper bound in the
search-tree (the current upper bound), the subproblem cannot possibly be used to improve on
the current best upper bound, in which case it is pruned (discarded) during subsequent stages
of the method; this process is known as bounding. If all subproblems have been pruned, or if
further branching into subproblems is impossible, or if the lower bound of the search tree equals
the current upper bound, the current upper bound is the optimum objective function value of
the original combinatorial optimisation problem C and the corresponding solution is proven to
be optimal.

The branch-and-bound method for integer programming

In the case of general integer programming problems, the branch-and-bound method is the
overwhelmingly most common exact solution approach adopted in the literature. The branch-
and-bound method described above in general is easily adapted to the case of a general linear
integer programming setting. Consider an integer programming problem with the objective of

minimising cTx (5.66)

subject to the constraints

Ax ≥ b, (5.67)
x ∈ Zn+, (5.68)

where A is an m × n matrix of coefficients whose rows correspond to m constraints and
whose columns correspond to n integral decision variables captured in an n-column vector
x = [x1, . . . , xn]T. In (5.66), c = [c1, . . . , cn]T is an n-column vector typically containing cost
coefficients. The n-column vector of right-hand-side constants b contains lower bound values
for each constraint.

The so-called linear programming relaxation problem associated with (5.66)–(5.68) is the prob-
lem of

minimising cTx (5.69)

subject to the slightly weaker constraints

Ax ≥ b, (5.70)
x ≥ 0, (5.71)

where the only difference between the original problem (5.66)–(5.68) and the relaxation (5.69)–
(5.71) is the replacement of (5.68) by (5.71).

The branch-and-bound method for the problem (5.66)–(5.68) begins by solving (5.69)–(5.71),
then selecting a solution component xi with a fractional solution value ξ to branch on, sub-
sequently solving the linear programming relaxations of the two subproblems (5.69)–(5.71) to-
gether with the additional constraint xi ≤ bξc, and (5.69)–(5.71) together with the additional



5.2. Popular exact solution methodologies 69

constraint xi ≥ dξe. This process is repeated and at any point a solution with no fractional
components is a solution to the problem (5.66)–(5.68). The best such solution uncovered at
any point in time during an application of the method is called the incumbent, its objective
function value constituting an upper bound on (5.66)–(5.68). If a solution is found that has no
fractional components and its objective function value is less than the upper bound, it is taken
as the incumbent and its objective function value is taken as the upper bound. If a subproblem
has an objective function value greater than the upper bound, it is pruned.

A lower bound on the objective function value of the original problem (5.66)–(5.68) is found by
taking the lowest objective function value among subproblems that have not yet been branched
on. The procedure is terminated whenever the lower bound becomes equal to the upper bound
or comes within a predetermined percentage from the upper bound. The linear programming
relaxations are sometimes strengthened by the addition of cutting planes, based on certain
properties of the matrix A, a procedure which is described in §5.2.2.

The branch-and-bound method for the TSP

The TSP presented as problem (5.9)–(5.13) with the addition of the condition cβuv = cβvu (the
condition that changes the ATSP into the TSP) may be relaxed into a CAP by removing
the subtour constraint set (5.12). The CAP may be solved efficiently by means of existing
algorithms [233], such as the Hungarian Method presented by Kuhn [125] in 1955.

This description of the branch-and-bound method for the TSP is based on that of Winston [233].
The root problem (the original TSP problem), denoted by C, of the branching tree is first relaxed
into a root problem relaxation (a CAP), denoted by C′, which is subsequently solved using some
available efficient algorithm, such as the Hungarian Method (which renders an integer solution
to the CAP). The objective function value of the optimal solution to C′ is taken as the lower
bound on C. The solution to C′ is then inspected for subtours and if it does not contain any
subtours, i.e. does not violate any constraint in the set (5.12), the solution to C′ is also an
optimal solution to C, and the method terminates.

If there exists subtours in the solution to C′, one of those subtours is selected to constitute the
basis for branching. Within this branching subtour, a number of decision variables are currently
1, indicating the presence of their corresponding arcs in the branching subtour. By choosing one
of these variables and forcing it to take the value 0, a subproblem6, denoted by S ′1, results in
which the particular branching subtour cannot possibly exist. By choosing a different variable
in the branching subtour and forcing this variable to take the value 0, a different subproblem
S ′2 results. For each variable in the branching subtour, one possible subproblem thus exists,
and the branching subtour cannot possibly appear in any of them. Each branching step in
the method may thus be completed by generating one subproblem for each arc present in the
selected branching subtour.

An appropriate subproblem S ′i to be solved is selected based on some rationale, such as a depth-
first strategy7. The selected subproblem S ′i is first solved and, as for C′, if the objective function
value of S ′i is larger than the upper bound on that of C (if no incumbent exists the upper bound
is taken to be infinite), S ′i is pruned. If the objective function value is smaller than the upper

6A subproblem to C inherits the relaxed status from C′ during the branching step in this method, as do the
next level of subproblems from the subproblems to C′, and so on.

7The root problem C being the “top” problem, branching downwards in the tree rather than sideways, logically
leads to the rapid strengthening of the relaxations, increasing the probability of uncovering a solution without
subtours [233].
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bound, and if there are no subtours in the subproblem, the objective function value is taken as
the new upper bound on C and no further branching takes place on S ′i. If the objective function
value is smaller than the upper bound and there are subtours in the solution to S ′i, branching
may take place (in the same manner as for C′).

In the event of a new upper bound being established as a result of uncovering a feasible solution
to the root problem, the entire branching tree is inspected, and each subproblem that has an
objective function value larger than the new upper bound is pruned.

The current lower bound on C is the smallest objective function value among the subproblems
that have neither been branched on completely nor been pruned. The method terminates if all
subproblems are pruned or if the lower bound meets the upper bound.

Some strategic considerations of the method may be highlighted by this brief description of an
instance of an application of the branch-and-bound method for the TSP described above. Since
the subproblems S ′i inherit the relaxed status of their “parent” subproblems with the ultimate
“grandparent” being C′, the relaxation of the original problem C, any subproblem may be solved
to optimality. Suppose that there are several subproblems in the branching tree which have not
been solved and several which have been solved. Suppose further that a particular subproblem
S ′i is selected at some point and solved. If a new incumbent is uncovered when solving S ′i,
some subproblems in the branching tree may be pruned, including S ′i. If no new incumbent
was uncovered, but the solution to S ′i is devoid of subtours, S ′i may be pruned, but no other
subproblems may be pruned. If there are subtours in the solution to S ′i, and the objective
function value is smaller than the upper bound, three main approaches may be adopted: either
S ′i is subjected to branching immediately, generating new subproblems, or one of the other
solved subproblems in the branching tree is selected and branched on, or one of the unsolved
subproblems is selected and solved as was just described.

5.2.2 The generation of cutting planes

Balas et al. [8] attribute the method of generating cutting planes to Gomory [71]. The method
was not regarded by the research community as being very useful until the early 1990s, but
is now part of some of the solver engines in popular off-the-shelf mathematical programming
software such as IBM’s ILOG CPLEX Optimizer [107], LINDO System’s LINGO [140] and
GAMS Development Corporation’s GAMS [63].

The general approach

Consider a combinatorial optimisation problem C, and suppose that C may be relaxed into an
easily solved relaxation C′. Initially, an optimal solution to C′ is usually not a feasible solution to
C and is usually not easily transformable into one. The method of cutting planes is based on the
idea of strengthening a relaxation so that its optimal solution becomes more likely to be feasible
to the original problem. In general, the strengthening consists of the addition of so-called valid
inequalities to C′, which are constraints obviously satisfied by any feasible solution to C and
hence their addition to C′ excludes some part of the solution space of C′ that does not contain
any feasible solutions to C. These superfluous parts of the feasible domain of C′ may be cut
off by repeatedly adding valid inequalities (also called cuts), hopefully eventually leading to an
improved relaxation whose optimal solution is feasible (and hence optimal) to C.
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The generation of cutting planes for the TSP

Exactly as in §5.2.1 the TSP is presented as problem (5.9)–(5.13) with the addition of the
condition cβuv = cβvu, and is relaxed into the CAP by removing constraint set (5.12). In addition,
this relaxation is further relaxed by substituting constraint set (5.13) with the linear bounds

0 ≤ xβuv ≤ 1, u, v ∈ V, (5.72)

which renders a linear programming relaxation of the CAP, constituted by (5.9)–(5.11), (5.72)
and cβuv = cβvu. Let the TSP and the linear programming relaxation of the CAP be denoted by
C and C′, respectively.

The generation of cutting planes for the TSP is described as follows. First the problem C′ is
solved. If an uncovered optimal solution to C′ violates some constraint in (5.12), that single
constraint is added to C′ which is subsequently resolved. This is repeated until a stopping
criterion is satisfied, which may be a time limit or a situation in which the solution to C′
does not violate any constraint in (5.12). If the optimal solution to C′ does not violate any
constraint in (5.12), the objective function value is the best lower bound on C obtainable using
this procedure. If the solution is also an integer solution, it is an optimal solution to C. The
latter is often not the case, and so the question arises of how to continue the search for a good
(or optimal) solution to C, once the cutting plane procedure has been terminated. One answer
to this question is to combine the cutting plane procedure with a branch-and-bound procedure,
discussed previously.

The branch-and-cut method for the TSP

The branch-and-cut method for the TSP is a combination of the branch-and-bound method and
the method of generating of cutting planes. The following description is focussed on the main
traits of one of several versions of the branch-and-cut method, and these main traits are from
Cook et al. [39].

Suppose that the cutting plane generation method described above is applied to the TSP, which
is again denoted by C. During iteration i = 1, C is relaxed into a linear programming relaxation
of the CAP, denoted by C′, by replacing the binary constraints (5.13) with the linear bounds
(5.72) as well as removing the subtour elimination constraints (5.12).

In a cutting plane generation phase, cuts are generated for C′ until no subtour elimination
constraints are violated. If the solution to C′ at this stage is integer, it is an optimal solution to
C. If the solution to C′ is not integer, one of the variables xβuv with fractional values is selected
to branch on. Two subproblems result, denoted by S ′i and S ′i+1 respectively, setting xβuv = 0 in
the first and xβuv = 1 in the second. The cuts that were generated for C′ are carried over to S ′i
and S ′i+1.

One of the subproblems, denoted by S ′s, is selected and solved to optimality using a linear
programming solution method, such as the simplex method, invented by George Dantzig [44]
in 1947, and if the objective function value is larger than the upper bound, S ′s is pruned, as
described for the branch-and-bound method. If the objective function value is smaller than the
upper bound, the cutting plane generation phase is completed for S ′s in the same fashion as for
C′. If, during this phase, the objective function value becomes larger than the upper bound, S ′s
is pruned. If the cutting plane generation phase ends with an integer solution to S ′s, this solution
is taken as the new incumbent. If the cutting plane generation phase ends with a fractional
solution, branching is performed on S ′s in the same fashion as for C′.
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The branch-and-cut method therefore consists of selecting a subproblem, solving the subprob-
lem, generating new cuts for the subproblem, pruning the subproblem if appropriate, updating
lower bounds as subproblems are enumerated and solved in the branching tree, updating the
upper bound when integer solutions are found that contain no subtours and iterating through
this loop until terminating the method when the upper bound is equal to the lower bound.

Good selections of which subproblem to branch on and which variable to fix are crucial to the
practical success of any branch-and-bound or branch-and-cut implementation. One subproblem-
picking strategy is to pick the subproblem with the minimum objective function value among the
subproblems of the search tree, which aims at increasing the lower bound at every subproblem.
Another subproblem-picking strategy is to follow a depth-first strategy, which aims at finding
an integer solution which may or may not be a tour, the goal being to improve the upper bound
(if it is, indeed, a tour). The problem of picking a variable (or arc) to fix may be based on the
subproblem solution values for all arcs (except the ones which have already been fixed), where
that arc is picked which has a value closest to 0.5, the rationale being that this often causes
the greatest difference in optimal objective function value between the current subproblem and
the two resulting subproblems. The traversal cost of an arc plays a similar role since fixing
an expensive arc generally causes a larger change in objective function value than fixing an
inexpensive arc.

5.3 Approximate solution methodologies

Some of the most popular approximate8 solution methodologies for hard combinatorial op-
timisation problems (such as those outlined in §5.1) include ant colony optimisation algo-
rithms [32,61,64,216], genetic algorithms [37,115,219,237], memetic algorithms [35,60], scatter
search algorithms [12, 105], simulated annealing algorithms [41, 167, 173] and tabu search algo-
rithms [13, 123, 169] as well as highly problem-specific methods such as advanced versions of
the Lin-Kernighan heuristic for the TSP [91, 92] and special bounding techniques such as the
minimum spanning tree bound for the TSP due to Held and Karp [90]. These methods are not
explored in great detail here; however, the method of tabu search is given some special attention
due to its incorporation into the DSS presented later in this dissertation. The other methods
are touched upon briefly towards the end of this section.

5.3.1 The tabu search

Tabu search as a solution approach is relatively simple to implement and has worked well for
several instances of the TSP and its generalisations as well as for integer programming problems
in general. Laporte [130] provides a review on solution methodologies for the VRP in which he
mentions the high success rate of tabu search9. In 1990, Laguna et al. [127] investigated several
tabu search approaches towards solving the single machine scheduling problem. They could
solve problems with 25 jobs to optimality, and found solutions to problems with 25–35 jobs that
had objective function values equal to that of the best known solutions. More recently, a tabu
search was successfully applied by Stecco et al. in 2009 [207] in the context of the STDSP. The
solution times for problems with 50 jobs ranged from 17 to 145 seconds, while these solutions

8The term approximate in this context means that the solution method is not designed to prove the exact
optimality of the objective function value of the best solution encountered.

9Laporte calls a tabu search with attributes an attribute-based tabu search.
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where between 0.000 % and 2.298 % from a lower bound10 with the tabu search having been
coded in C and run on a 3.0 GHz computer with 1 GB RAM.

The general approach

The method of tabu search was invented during the late nineteen-seventies by Fred Glover [72]
who first described it in detail in 1989 [73, 74]. The notation and terminology used in the
description presented here for the general methodology is based on that of Glover [73,74].

As in the descriptions of the exact solution methods in §5.2.1 and §5.2.2, let C denote a hard
combinatorial optimisation problem. Let Ω denote the entire feasible domain of C and let ω
denote an element of Ω. The core of the tabu search consists of repeatedly performing a so-
called move, here denoted by s. Performing a move implies that a solution ω is altered to
form another solution, and this changed solution is denoted by s(ω). There may be several
types of moves, which differ by the manner in which they alter ω; here s belongs to a single
(arbitrary) such move type, denoted by S. The set of possible moves depends on which solution
ω is under consideration, and this set is denoted by S(ω). The set S(ω) is also described as
the neighbourhood of ω induced by the move type S. Let the objective function value of ω be
denoted by V (ω).

The tabu search is an iterative method, and is typically divided into three phases, which are
described here under the assumption that the search has completed a certain number of iterations
of the loop constituted by these three phases and is considered to be in iteration h.

The tabu search always maintains a single current solution, denoted by the previously found
solution ω, and a best solution found so far, denoted by ω?. The central phase towards improving
the current solution ω may be called the neighbourhood enumeration phase and involves the
generation of a set of trial solutions, a trial solution being denoted by ω′. In this phase, some
or all of the solutions obtainable by applying the move type S on the current solution ω (i.e.
some or all of the solutions ω′ ∈ {s(ω) : s ∈ S(ω)}) are generated.

The next phase may be called the trial solution selection phase and here the move s associated
with the best trial solution generated during the neighbourhood enumeration phase is compared
to the reversals of previously performed moves, denoted by s−1

i (where i < h is an identifier of
the ith time this phase was applied), which are stored in a so-called tabu list, denoted by T . If
s appears as one of the inverted moves s−1

i in T , the move s is said to be tabu and may not be
performed unless V (ω′) is better than V (ω?). If the move was declared to be tabu, the next
best ω′ is inspected in the same fashion, repeatedly, until a solution ω′ is found that does not
have its associated move s in T . This solution is denoted by ω′h and the associated move is
denoted by sh.

In the next phase, called the updating phase, the finally approved trial solution ω′h—within
the trial solution selection phase—is taken by the tabu search as the new current solution ω
(i.e. ω ← ω′h). The move sh used to generate this solution is reversed into move reversal s−1

h

which is subsequently entered together with the identifier i = h into the tabu list T . If T has
reached its maximum length, its so-called tenure, the oldest reversal of a move is deleted from
the list.

This three phase iteration process continues until some stopping criterion is satisfied, such as
a time limit or a maximum number of iterations has been reached or, perhaps preferably, until

10The lower bound was computed using a linear programming relaxation with the addition of cutting planes,
as explained in [206].
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V (ω?) is within some percentage of a bound on the best possible objective function value. This
tabu search method is illustrated in pseudo-code form in Algorithm 5.1.

Algorithm 5.1: Tabu search algorithm.
Input: A starting solution ω, a neighbourhood, denoted by S(ω), an objective function V (ω) defined for a

problem C, a bound on the best objective function value which must be achieved before termination,
denoted by bound, and a tabu list tenure, denoted by tenure.

Output: The best solution ω? found to C.
ω? ← ω;
h← 1;
T ← ∅;
while V (ω?) is not better than bound do

trial solution set← {s(ω) : s ∈ S(ω)};
trial← tabu;
while trial = tabu do

ω′ ← s(ω) ∈ trial solution set that has the best V (s(ω));
if s ∈ T then

trial solution set← trial solution set \ {s(ω)};
else

trial← not tabu;
ω′h ← ω′;
sh ← s;

end

end

T ← T \
˘
s−1
h−tenure

¯
;

T ← T ∪
˘
s−1
h

¯
;

if V (ω′h) is better than V (ω?) then
ω? ← ω′h;

end
h← h+ 1;

end

The key element in a tabu search is forbidding certain moves, which prevents the procedure from
returning to some recently visited local optimum. This is accomplished by entering the move
reversals into the tabu lists, which are then used to stop attempted backtracking to recently
visited local optima.

In a tabu search implementation towards solving a particular type of combinatorial optimisation
problem, several of the method’s building blocks require complete adaptation. The solution
encoding, move types implemented, move encoding and tabu tenure must all be designed with
careful consideration to the particular problem. This is one of the drawbacks of the tabu search
method, but the same is true for metaheuristics in general.

The attribute-based approach

An alternative to recording move reversals in a tabu list is to record so-called move attributes
instead. Attributes may, for example, be the arcs of a TSP tour that are omitted as the tabu
search moves to another tour.

Each solution-specific move s from ω to ω′ is associated with a set of g attributes, each gener-
ated by an attribute function ap (s,ω), p = 1, 2, . . . , g. The set of all attributes is denoted by E
and each attribute is equipped with an aspiration function value A (e), e ∈ E. The aspiration
function A (e) stores the best objective function value known to be obtainable from ω′. When-
ever a move from ω to ω′ is implemented, the aspiration function values for the g attributes of



5.3. Approximate solution methodologies 75

Algorithm 5.2: Attribute based tabu search algorithm.
Input: A starting solution ω, a neighbourhood, denoted by S(ω), an objective function V (ω) defined for a

problem C, a termination bound, denoted by bound, attribute functions ap (s,ω), p = 1, 2, . . . , g, an
aspiration function A (e), e ∈ E, and a tabu list tenure for each tabu list, denoted by tp. Tq(p) points to
the list in which attribute p should be stored.

Output: The best solution ω? found to C.
ω? ← ω;
h← 1;
for p = 1 to g do

Tp ← ∅;
p← p+ 1;

end
while V (ω?) is not better than bound do

trial solution set← {s(ω) : s ∈ S(ω)};
trial← tabu;
while trial = tabu do

ω′ ← s(ω) ∈ trial solution set that has the best V (s(ω));
trial← not tabu;
for p = 1 to g do

ep ← ap (s,ω);
if ep ∈ Tp AND V (ω′) is not better than A(ep) then

trial← tabu;
end
p← p+ 1;

end
if trial = tabu then

trial solution set← trial solution set \ {s(ω)};
else

ω′h ← ω′;
for p = 1 to g do

ep,h ← ep;
end

end

end
for p = 1 to g do

Tp ← Tp \
˘
ep,h−tp

¯
;

Tq(p) ← Tq(p) ∪ {ep,h};
A(ep,h)← The best among {A(ep,h), V (ω), V (ω′h)};

end
if V (ω′h) is better than V (ω?) then

ω? ← ω′h;
end
ω ← ω′h;
h← h+ 1;

end

the move are updated according to A (e) = Min {A (e) , V (ω) , V (ω′)}.

Each attribute is recorded in a corresponding tabu list, where the pointer q(p) takes the index
value of the tabu list in which attribute ep should be stored. At iteration h the lists are

Tq(p) =
{
ap (sk,ωk) : k > h− tq(p)

}
, p = 1, 2, . . . g, (5.73)

where sk and ωk refer to respectively the move s and the current solution ω added during
iteration k. The tabu lists (5.73) may be of different lengths tp for different attributes.

A typical attribute-based tabu search procedure consists of completing the steps outlined in
Algorithm 5.2.
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When implementing a tabu search, a move may be allowed notwithstanding a non-passing status
for one or more of the attributes. This may be allowed to occur if there are multiple types of
attributes of varying importance. Sometimes a percentage of attributes having a passing status
may suffice for a move to be allowed. In addition to this, when an attribute e has an aspiration
function value A(e) that is better than some predetermined value (often the best objective
function value found so far during the search), e receives a passing status regardless of whether
it is on a tabu list.

The approach for the TSP

The attribute-based tabu search method described above may be implemented towards solving
the TSP. In this section it is described how the required input to Algorithm 5.2 is generated, if
C is the TSP.

The solution encoding ω may be taken to be a column vector whose elements are the vertices
of a tour, so that ω(j) = i indicates that vertex i ∈ V is visited as the jth vertex in the tour. A
tour ω may be generated either by means of some heuristic, or randomly (see, for example, the
interesting discussion on how to generate an initial tour by DePuy et al. [50]). This encoded
tour ω constitutes the input starting solution in Algorithm 5.2.

A neighbourhood S(ω) for the TSP requires that a move type S be defined. The move type S
is defined with respect to the solution encoding, and an example is to allow any two elements of
ω to swap positions. The new solution is denoted by ω′, as mentioned earlier, and a particular
ordered pair of positions (j1, j2) in ω may be denoted by the earlier defined move s, so that
s = (j1, j2) means that element ω(j1) moves to position j2 in the tour and element ω(j2) moves
to position j1 in the tour. Another example is a shift move, in which one element is shifted from
its current position to another position. Other move types exist, such as compound moves where
a series of swaps or shifts are performed within the same “main” move. Yet other move types
may be the shifting of subsets of vector entries at once, or the swapping of two subsets of entries
at once. The more elements that are moved at the same time, the larger the diversification of the
“main” move. In terms of the algorithmic implementation of the method, the neighbourhood
is a function in which all possible moves implied by the move type and current solution are
generated. Each move is then performed on the current solution, generating all possible trial
solutions (or neighbours to the current solution), storing them as a set in a list or array. This
neighbourhood constitutes the neighbourhood S(ω) in Algorithm 5.2.

The objective function of the TSP in terms of the solution encoding ω sums the arc costs implied
by the definition that each element in the encoding represents a vertex in a tour and that two
elements that are adjacent (a neighbouring pair) in the encoding are also adjacent in the tour.
Such a function constitutes the objective function V (ω) in Algorithm 5.2.

A good bound on the best possible value for the TSP’s objective function value may be computed
using the relaxation described in §5.2.1. This bound may be multiplied by some percentage,
indicating to which degree the algorithm must fulfil this goal.

An attribute function within a tabu search implementation towards solving the TSP may return
a so-called neighbouring pair, denoted by e = (i, j), where i, j ∈ V and i 6= j, which is defined
as any two neighbouring vertices (in terms of their position in the solution encoding), together
constituting a set denoted by E, the attribute set. Furthermore, the solution encoding ω
may be “closed” by “connecting” its last vertex with its first vertex (i.e. by wrapping the
solution encoding). A solution sequence ω of vertices may then be described by a subset
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of E constructed by including those neighbouring pairs which appear in ω. For example, if
ω = [2, 3, 1], the neighbouring pairs are (2, 3), (3, 1) and (1, 2), the rightmost neighbouring pair
(1, 2) constituting the closing (or wrapping) of the sequence.

The move from a current solution to a trial solution may now be described in terms of deleted
and added neighbouring pairs. For example, if moving from ω = [2, 3, 1] to ω′ = [3, 2, 1] (by
shifting vertex 3 into position 1) none of the three neighbouring pairs (2, 3), (3, 1) or (1, 2)
remain neighbouring pairs in ω′, then these neighbouring pairs are said to have been deleted.
The three added neighbouring pairs are (3, 2), (2, 1) and (1, 3). This example illustrates that
for a TSP, a natural set of attribute functions consists of a first attribute function rendering
the leftmost deleted neighbouring pair, a second attribute function rendering the middle deleted
neighbouring pair, a third attribute function rendering the rightmost deleted neighbouring pair,
a fourth attribute function rendering the leftmost added neighbouring pair, a fifth attribute
function rendering the middle added neighbouring pair and a sixth attribute function rendering
the rightmost added neighbouring pair. These attribute functions may constitute the g = 6
attribute functions ap (s,ω), p = 1, 2, . . . , g, in Algorithm 5.2.

The aspiration function A (e) in Algorithm 5.2 retains values as a function of neighbouring pair.
A particular neighbouring pair, whether having been deleted or added, may be equipped with a
value which is the best objective function value obtainable by deleting or adding it. Sometimes
this function is replaced by the best objective function value found so far during the tabu search
application (a single value for all neighbouring pairs in E).

5.3.2 Other approximate solution approaches

Some of the other approximate solution approaches which are commonly applied to the combi-
natorial optimisation problems outlined in §5.1 are briefly described in this section. However,
none of these methods were implemented in the DSS presented later in this dissertation.

Some of these methods employ a special kind of search method known as local search. The local
search method starts with a current solution. In a discrete setting (with respect to solution
encoding), the local search method subsequently and in an iterative and strictly improving
manner moves to better solutions in the neighbourhood defined by a predetermined move type
until no better solution may be found, and then terminates. In a continuous setting, the search
“steps” across the solution domain according to a predetermined step length, the direction being
the direction of the gradient of the objective function evaluated at the current solution, until no
better solution may be found along the gradient using the current step size, and then terminates.

Ant colony optimisation

Ant colony optimisation (ACO) was invented by Dorigo et al. [52] in 1996 and is a metaheuristic
based on the notion that groups of ants are good at finding the shortest path between their
colony and some source of food. The following metaphorical discussion is based on [52]. A
colony consists of a large number of ants, each behaving in a certain manner. Each ant con-
tinuously deposits a chemical substance known to attract other ants, a so-called pheromone.
The pheromone trail of an ant dissipates as time progresses. Each ant wanders more or less at
random within a certain area, but is likely to follow any pheromone trail leading from one point
to the next, the probability of which depends on the intensity of the pheromone trail. Thus,
the more ants that follow a certain pheromone trail, the stronger the pheromone trail becomes,
in turn increasing the probability of more ants following the pheromone trail.
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A single ant is not likely to follow a particular pheromone trail for very long if only one other
ant has recently deposited pheromone there. It is when an ant finds a food source, that the
behaviour yields results. An ant that finds a food source stops and forages until it returns to
the nest. When it returns, it is likely to return along the path by which it reached the food
source, reinforcing the pheromone trail it deposited earlier. Other ants are likely to pick up the
pheromone trail on the path that leads to the food source.

Since the world of ants is made up of large obstacles, ants must make decisions whether to go
left or right around such obstacles at many points during their journeys. If, at some point,
called A, on the path leading from the food source to the nest there exists an obstacle, the first
ant is assumed to decide to go left or right around the obstacle with 0.5 probability assigned
to either direction. Directly on the other side of the obstacle lies point B, where the split path
around the obstacle is joined. If the left path takes twice as long to complete as the right path,
an ant choosing the left path will reach point B later than an ant choosing the right path. Ants
coming from the other direction will, until the first ant reaches point B, be equally likely to
choose the left path or the right path. Assuming that the first ant choses the left path, an
equal (probabilistically speaking) number of ants will take the right path as will take the left
path until the first ant reaches point B. Then more ants will choose the left path for a while.
However, ants on the right path towards the food source will reach the food source sooner than
the other ants, thus returning sooner as well. When they reach point A, there will be a stronger
pheromone trail on the right path since there were ants there more recently than on the left
path. Ants are thus more likely to choose the shorter path since the shorter path is more likely
to have recently been trodden.

Another manner in which to investigate this metaphor is to consider a steady-state situation
without pheromones having been deposited. Assume that 10 ants in either direction per minute
embark on the journey between the food source and the nest, and that the left path around the
obstacle takes 10 minutes and the right path takes 5 minutes for the average ant to complete.
The left path around the obstacle will then (probabilistically) be occupied by 50 ants moving
in each direction, a total of 100 ants. The right path will be occupied by 50 ants in total11.
This simple example shows that without the deposit of a pheromone trail, the ant density would
be the same for the short and long paths. In fact, if the pheromone deposit and dissipation
is “turned on” at this stage, the pheromone density would remain the same for the two paths
indefinitely. One way for the pure pheromone metaphor to work is if the pheromone deposit
and dissipation is turned on from the beginning, because of the initial head start that ants who
finish the short route then give the pheromone trail on the short path. Another is to divide the
whole path into sub-paths and for ants to deposit the same amount of pheromone per sub-path,
thus causing a higher pheromone trail density on shorter sub-paths.

The ACO method of Dorigo et al. [52] is an iterative method. Suppose that a solution to a
combinatorial optimisation problem C is encoded as a vector ω of components ωi, i indicating
the identity of each component. The set of all components is denoted by Vcomp. Let ω(j) = ωi
indicate that position j of the solution encoding vector contains component ωi. The division
into components must be performed in such a way as to ensure that the number of components
required to complete a feasible encoding is constant within a given instance of C.

In the ACO method, each component is associated with a pheromone amount, here denoted by
fωi,k, where k is the current outer iteration of the method.

11In 10 minutes, 100 ants will have arrived at either point A or B, 50 deciding to follow the left path and 50
deciding to follow the right path, but in the same ten minutes half of the ants that entered the right path will
have traversed and left it.
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There are several ants in the ACO method, as in its related metaphor. These ants, denoted by
ωu, where u is an identifying index for the ants, each start an inner iteration, counted by an
iteration counter `, by containing a single starting component, and components are added in an
iterative manner until ωu is feasible. At inner iteration ` and outer iteration k, a component
ωi has a certain desirability assigned to it, based on the value of fωi,k and the cost of the
component with respect to the objective function value of C. Only components that have not
yet been included and that cause the ant to retain its possibility of feasibility are eligible for
selection. The selection is made probabilistically, based on each eligible component’s desirability.
For example, an eligible component with a desirability value of 3 is twice as likely to be selected
as an eligible component with a desirability of 1.5. The set of eligible components changes
between inner iterations, and towards the end of an outer iteration, is rather small. At the
end of an outer iteration, the ant yields a feasible solution to C, and fωi,k is updated for all
components. The components that were included in any ant receives more pheromone and all
components have their pheromone amount decreased by some factor or function.

Algorithm 5.3 shows the inner and outer iteration loops with V (ωi) denoting the objective
function value change due to including component ωi in any solution, ddes(fωi,k, V (ωi)) denoting
the desirability function and ρf denoting the factor by which the pheromone present at each
component is dissipated at each outer iteration.

Algorithm 5.3: Ant colony optimisation algorithm.
Input: Problem data and a bound on the maximum number of non-improving iterations max no imprv iter.
Output: The best solution found to the problem (ω?).

k ← 0;
fωi,0 ← 0 for all ωi ∈ Vcomp;
no imprv iter = 0;
while no imprv iter ≤ max no imprv iter do

k ← k + 1;
Generate m ants ωu, u = {1, 2, . . . ,m};
Randomly assign a starting component to each ant;
Update each ant’s corresponding list of eligible components, denoted by Eantu ;
`← 0;
while ` is less than the number of ωi required to complete a feasible solution do

`← `+ 1;
for u = 1 to m do

Select a component ωi ∈ Eantu probabilistically with respect to ddes(fωi,k−1, V (ωi));
Add ωi to ωu;
Eantu ← Eantu \ {ωi and other components which may no longer be added};
Eantu ← Eantu ∪ {components which may now be added};
times added(ωi)← times added(ωi) + 1;

end

end
Update the pheromone trail fωi,k for all ωi ∈ Vcomp based on times added(ωi);
Let times added = 0 for all components;
Dissipate the pheromone trail by letting fωi,k ← ρffωi,k for all ωi ∈ Vcomp;
if V (ωu) is better than V (ω?) then

V (ω?)← V (ωu);
no imprv iter ← 0;

else
no imprv iter ← no imprv iter + 1;

end

end
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Genetic algorithms

A genetic algorithm (GA) is special case of a more general algorithm known as an evolutionary
algorithm [131]. Genetic algorithms were invented by John Holland in 1962 [104]. In the
early days, the metaphor behind this class of algorithms consisted of terms such as programs
representing a solution encoding and the term environments representing problems (see [104]),
but now, after years of refining, the metaphor is more often described in the literature using a
different setting.

In evolution, each species faces a continuously changing environment, be it the weather, re-
sources, competition from other species or even competition from mutated individuals within
the same species. These changes forces natural selection to occur, and the populations of indi-
viduals that comprise a species have certain means at their disposal by which they may evolve
by adapting to the environment. One such evolution process occurs as individuals breed and
give birth to a new individual, an individual that may or may not be fitter than its parents. If
the individual is fitter than its competitors, it is likely to live longer, thus likely to breed more
and to propagate its genes to the next generation. Another evolution process occurs when an
individual mutates, i.e. experiences a small reproduction error in one or several of its genes.
Usually this renders an unfit individual, but may also occasionally give rise to a superior indi-
vidual whose new gene(s) will rapidly proliferate through breeding. Furthermore, a population
of a species may encounter an entire foreign sub-population of the same species which has mi-
grated to the first sub-population’s territory, giving rise to an influx of new genes to the first
sub-population. The new genes will be successful during the subsequent breeding and compe-
tition, if they combine with the genes of the individuals of the first sub-population to give rise
to fitter individuals. The weakest individuals die from general weakness, and are more likely to
succumb to disease, predators and competition from others within the same species. The fact
that the fitter individuals are more likely to survive is known as elitist selection, and seemingly
guarantees the survival of the species for generations to come.

The individuals may metaphorically be referred to as chromosomes, consisting of genes. Chro-
mosomes comprise a population. A generation is a specific population in time, and time is
represented by iterations so that one generation exists per iteration. The mutations, breeding,
migrating populations and competition for resources and space, cause the next generation to
adapt to its changing environment, its basis for selection.

A GA maintains a set of candidate solutions to a combinatorial optimisation problem and
evolves it over multiple transformative steps, similarly to the above metaphor. The set of
solutions is called the current generation. Several sub-procedures change solutions from the
current population and add them to the new generation, thus advancing the current generation
by one iteration. A pseudo-code description of the general approach is shown in Algorithm 5.4.

The solutions are often called chromosomes, and the sub-procedures have names such as migra-
tion, cross-over, mutation and elitist selection. Migration is a procedure that adds randomly gen-
erated chromosomes to the new population, while a cross-over is the combination of parts from
two parent chromosomes from the current generation to form one or more child chromosomes
to become part of the new generation. Mutation is implemented by taking a chromosome from
the current generation and changing it randomly (or otherwise) so as to achieve diversification
in the next generation. Elitist selection is the simple carrying over of some top proportion—in
terms of objective function value—of the current generation to the new generation.
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Algorithm 5.4: Genetic algorithm.
Input: Problem data and a bound on the maximum number of non-improving iterations max no imprv iter.
Output: The best solution found to the problem (best solution).

Generate initial current generation P cur;
no imprv iter = 0;
while no imprv iter ≤ max no imprv iter do

Generate new generation Pnew by
{

Performing generation on P cur;
Performing elitist selection on P cur;
Performing crossover on P cur;
};
Evaluate Pnew;
if New best solution is found then

best solution = New best solution;
no imprv iter = 0;

else
no imprv iter = no imprv iter + 1;

end
Set P cur = Pnew;

end

Memetic algorithms

Cheng and Gen [33] describe memetic algorithms (MAs) as hybrids between GAs and local
search-based metaheuristics. Simply put, an MA is a GA in which the child chromosomes
are added to the new generation only after having been improved by some local search-based
metaheuristic. Recent attention in the combinatorial optimisation research literature and the
general appeal of memetic algorithms probably stem from the combination of the diversifying
strengths of a GA with the intensification strengths of local search-based heuristics. The general
approach is described in pseudo-code in Algorithm 5.5.

Algorithm 5.5: Memetic algorithm.
Input: Problem data and a bound on the maximum number of non-improving iterations max no imprv iter.
Output: The best solution found to the problem (best solution).

Generate initial current population P cur;
no imprv iter = 0;
while no imprv iter ≤ max no imprv iter do

Generate intermediate new population P prime by
{

Performing migration on P cur;
Performing elitist selection on P cur;
Performing crossover on P cur;
};
Improve each solution in P prime by means of a local search-based method;
Pnew ← P prime Evaluate Pnew;
if New best solution is found then

best solution = New best solution;
no imprv iter = 0;

else
no imprv iter = no imprv iter + 1;

end
Set P cur = Pnew;

end
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Scatter search

A scatter search (SS) is based on the notion of maintaining a reference set of good and diverse
solutions. According to Belfiore [12], the working of a typical SS comprises the steps outlined
in Algorithm 5.6. First, a starting solution set is generated by means of a diversifying sub-
procedure, then each solution in this set is improved by means of a second sub-procedure. The
first reference set of the SS is constructed by picking some of the best solutions and some of the
most diverse solutions obtained via the set of improved solutions from the second sub-procedure.

The reference set is then subjected to three further sub-procedures until there is no change in its
composition: solutions are combined, solutions are improved, and the reference set is updated.
When these sub-procedures no longer cause any change in the reference set, it is rebuilt using
other sub-procedures and an iteration counter is updated. During the SS, the best solution
encountered is stored in memory. When the iteration counter reaches a certain value, the SS
algorithm terminates.

In contrast to GAs, SSs perform each sub-procedure according to deterministic rules. These
rules are highly involved and problem-specific and the interested reader is referred to the paper
by Belfiore [12] where an SS for a heterogeneous fleet VRP with time windows and split deliveries
is described.

Algorithm 5.6: Scatter search.
Input: Problem data and a bound on the maximum number of iterations max iter.
Output: The best solution found to the problem (best solution).

Generate an initial diverse solution set P init;
iter = 0;
while iter ≤ max iter do

Improve each solution in P init by means of, for example, a local search-based method;
Select a set of good P good and a set of diverse P div solutions from P init;
P ref ← P good ∪ P div;
while P ref changes do

Combine solutions in P ref to form the set P comb ;
Improve all solutions in P comb;
Select a set of good P good and a set of diverse P div solutions from P comb;
Update P ref by replacing certain solutions in P ref with solutions from P good and P div;

end
if New best solution is found then

best solution = New best solution;
end

Rebuild P ref ;
end

Simulated annealing

Annealing is the physical process by which a heated substance, such as metal, alloy or glass, is
allowed to cool gradually, in order for certain crystalline patterns among atoms to be allowed
time to form before solidification of the substance occurs. In 1983, Kirkpatrick et al. [120]
developed the idea to simulate this process for the purposes of solving combinatorial optimisation
problems. In the method of simulated annealing (SA) a set of solutions is not maintained;
moves from one solution to the next are applied instead, as is the case in the method of TS.
As with TS, SA also requires a neighbourhood to be defined. From this neighbourhood, the
algorithm chooses a new solution at random. Assuming that a combinatorial maximisation
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problem is considered, let δz denote the difference between the new objective function value
and the current objective function value, and let T denote a value (conventionally called the
“temperature”) which decreases by a factor r (0 ≤ r ≤ 1) each iteration. A positive value on δz

indicates that the move being considered for acceptance is an improvement (increase) in terms
of the objective function value. If so, the new solution is accepted and becomes the new current
solution. If not, the new solution is accepted with probability e−δ

zT . While T is large, the
probability of accepting a degrading solution is relatively high, which supposedly causes enough
diversification for the method to be able to escape local optima early during the search. As
T decreases, the algorithmic behaviour converges towards that of a hill-climbing heuristic that
chooses the first available improving solution in the neighbourhood, therefore zooming in on a
locally optimal solution. The method is described in the form of pseudo-code in Algorithm 5.7.

Algorithm 5.7: Simulated annealing.
Input: Problem data and a bound on the maximum number of non-improving iterations max no imprv iter.
Output: The best solution found to the problem (best solution).

Generate an initial solution ω;
iter ← 0;
while no imprv iter ≤ max no imprv iter do

ω′ ← a solution in the neighbourhood of ω;
if δz > 0 then

ω ← ω′;
no imprv iter ← 0;

else if [0, 1]-random number < e−δ
zT then

ω ← ω′;
else

no imprv iter ← no imprv iter + 1;
end
if New best solution is found then

best solution← New best solution;
end
T ← rT ;

end

5.4 Practical aspects of the various solution methodologies

The only problem reviewed in §5.1 whose optimal solution may be found—or even approximated
well—in a polynomial number of computational steps is the CAP [9, 125, 174]. The other
problems described in §5.1 belong to a class of problems for which this is believed to be impossible
[178], namely the class of NP-hard problems.

5.4.1 Solving the GAP in practice

Ross and Soland [176] designed a branch-and-bound algorithm for the GAP in 1975 which was
capable, at the time, of solving instances with 5, 10 or 20 agents and 200 jobs in consistently
under 3 seconds in FORTRAN IV on a CDC 6600 with 72 000 words of memory. They used a
branch-and-bound approach in which the Lagrangean relaxation (see, for example, [56]) consisted
of allowing jobs to be assigned to agents without the restriction of limited resources (i.e. relaxing
(5.6)). An optimal solution to the relaxation is easily found by assigning each job to an agent
with lowest cost. A lower bound on the objective function value of an optimal solution to
the original problem is thus achieved, allowing for an optimality-related stopping rule. Ross
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and Soland moreover refined this lower bound by identifying those constraints in the original
problem that were violated by a solution to the relaxation. A comparable branch-and-bound-
based algorithm is the one of Martello and Toth [146], presented in 1981, in which the constraint
set ensuring that each job is only assigned to any agent once—i.e. (5.7)—is relaxed using
Lagrangean relaxation, which breaks up the GAP into an equal number of knapsack problems
as there are agents in the GAP. In terms of the lower bound achieved when using Lagrangean
relaxation, a part of the relaxation is penalised by means of Lagrangean multipliers for each
relaxed constraint. Later, in 1986, Fisher et al. [57] also relaxed the constraint set (5.7) in
their branch-and-bound-based algorithm, but used a different method than Martello and Toth
by which to compute the Lagrangean multipliers. At the time, these three algorithms were
evidently the best for solving the GAP.

According to more recent computational comparisons by Yagiura et al. [238] in 2004, the branch-
and-bound-based exact method of Nauss [161] performed on par with their tabu search-based
metaheuristic on difficult (class-E )12 instances with up to 20 agents and 200 jobs. In [238], all
instances with more than 300 jobs were only attempted with metaheuristics, and the largest
class-E instances had 1 600 jobs and 80 agents. Such problems were attempted for up to 50 000
seconds yielding solutions within 0.03 % from the lower bound. Racer and Amini [174] employed
a variable depth search-based algorithm and Higgins [95] adopted a tabu search solution approach
on sugarcane harvest scheduling problems with 50 000 jobs and 40 agents. The currently most
powerful algorithms for the GAP appear to be those in [51,238,239].

5.4.2 Solving the asymmetric/symmetric TSP in practice

As mentioned above, Dantzig et al. [45] adopted a mathematical programming approach to-
wards solving the TSP, based on a linear programming relaxation, and in doing so, developed a
method that still forms the basis for some of the best exact algorithms presently available. The
symmetric TSP belongs to the class of NP-hard problems [39] and has been under investigation
by the modern research community for more than 50 years. Grötschel and Holland [82], as well
as Padberg and Rinaldi [166], developed the methods of Dantzig et al. further in two branch-
and-cut implementations, the latter of which forms the core of the Concorde TSP by Applegate
et al. [4], possibly the best exact algorithm currently available for the TSP. According to Hels-
gaun [91], the ATSP is usually less difficult to solve than the symmetric TSP when using exact
algorithms. Miller and Pekny [154] reported a 500 000 vertex ATSP instance being solved to
optimality. Mak and Boland [145] presented a Lagrangean relaxation-based branch-and-bound
algorithm that solves an ATSP instance with replenishment arcs with 519 vertices and 42449
arcs in 894 seconds, while CPLEX 9.0 (which employs a branch-and-bound approach) required
a computational time of 1 144 seconds to solve the same instance, both computations performed
on a Dell Latitude C840, Model PP01X with a P4 2 GHz CPU and unspecified RAM. Grötschel
and Holland [82] solved 1 000-city symmetric TSPs in approximately 2 hours of CPU time on
an IBM 3081D with a 38 MHz CPU and 16 Mb RAM.

A metaheuristic based on the groundbreaking work of Lin and Kernighan during the 1970s [141]
and named LKH 2 by its author, Helsgaun [92], solved an 85 900 city instance of a symmetric
TSP to optimality, a 1 000 000 city instance to within 0.027 % of optimality and a 10 000 000
city instance to within 0.58 % of optimality, all in 2009. The optimal solution of the Helsgaun
85 900 city instance was established by Applegate et al. [4].

12In mainstream GAP computational comparisons, difficult instances are often called E -instances following a
well-established convention of problem instance generation.
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Further approximate approaches towards solving the symmetric TSP include a hybrid genetic
algorithm by Jayalakshmi and Sathiamoorthy [115] and a metaheuristic randomised priority
search by DePuy et al. [50]. A genetic algorithm for the ASTP of Choi et al. [37] performed,
according to their own computational comparisons, no better than the branch-and-bound-based
algorithm of Carpaneto et al. [29]. Xing et al. [237] presented a hybrid GA which produces high
quality solutions to the ATSP with long computing times.

5.4.3 Solving time-dependent ATSPs and TSPs in practice

The ATSPTDC may, according to Albiach et al. [5], be transformed into the ATSP and subse-
quently solved using ATSP algorithms or further transformed and solved using TSP algorithms.
This may be a highly viable option, since the amount of research available on exact algorithms
for the ATSP or TSP is vast compared with that available for the time-dependent problems in
§5.1. Consider, however, that the state-of-the-art work in [5] only manages to solve ATSPTDCs
with 60 vertices and time window-widths of 30 instants in approximately one to three hours
of CPU time on a PC with 1.8 GHz CPU and unspecified RAM. When the number of time
instants at each of the 60 vertices was equal to 60, no optimal solutions could be found.

The VRP with the addition of time windows becomes very similar to the ATSPTW if the
number of vehicles is reduced to one. Kohl and Madsen [122] solved many instances with up to
100 customers to optimality using an exact approach based on Lagrangian relaxation and the
branch-and-bound method. However, these problems are not time-dependent in the parameters;
they merely have time-independent travelling times and travelling costs13. A computational
study of a memetic algorithm by Nagata et al. [160] included attempts to solve instances as
large as 1 000 customers for the VRP with time windows.

Stecco et al. [207, p. 14] applied a tabu search to solve an STDSP similar to the TDTSP, claiming
to produce better and faster results than the available exact algorithms for all instances for which
the exact algorithms did not find an optimal solution (in this case, the exact approaches were
stopped before finding an optimal solution). The tabu search produced very good solutions to
instances with 50 jobs in less than 2 minutes on a PC with a 3.0 GHz CPU and 1 Gb of RAM,
while the same instances often required 240 minutes in their branch-and-bound approach (on
the same PC), as described in [206].

It seems that the choice between a metaheuristic and an exact algorithm should fall on the
metaheuristic when interest is purely practical and the problem size is moderate to large (i.e.
50 or more cities/jobs), and on the exact algorithm when the problem size is smaller and the
interest is more theoretical. One may, however, often benefit from formulating a combinatorial
optimisation problem as an integer or mixed integer linear programming problem so that a lower
or upper bound may be computed by means of its linear programming relaxation. Alternatively,
a lower or upper bound may be found by other forms of relaxation, such as removing certain
sets of constraints, thus transforming the problem into one more easily solved.

5.5 Chapter summary

A number of classical problems in the operations research literature were briefly reviewed in
this chapter, in partial fulfilment of Dissertation Objective II, as stated in §1.3. Each classical

13This causes a reduction in the number of constraints, since the time accounting may be completed by means
of variables rather than ensured through the addition of constraints.
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problem was conceptually connected to the THSP, in an effort to highlight the relevance of these
problems towards modelling the THSP. An attempt was made to formulate the ATSPTDC as
an integer programming problem, such a formulation not having been encountered during the
literature review.

The branch-and-bound method and the method of cutting planes were described in §5.2 as exact
solution methodologies for the problems in §5.1, in partial fulfilment of Dissertation Objective II,
as stated in §1.3. These two methods are, in fact, the starting points for most exact approaches
towards solving NP-hard combinatorial optimisation problems. It is unlikely, however, that
very large instances to some of these problems will be solved to optimality in the near future,
considering that the research community regards time-dependent TSPs with 100 nodes to be
large with respect to current computing capabilities and current computing technology.

A number of popular metaheuristics were briefly reviewed in §5.3, in partial fulfilment of Disser-
tation Objective II, as stated in §1.3. These include ant colony optimisation, genetic algorithms,
memetic algorithms, scatter search, simulated annealing and tabu search. These methods show
the ability to uncover very good solutions to very large, practical size instances of the problems
in §5.1.

Finally, some practical aspects of the various solution methodologies were discussed in §5.4,
completing the fulfilment of Dissertation Objective II, as stated in §1.3. The choice was made to
design the core of the DSS presented later in this dissertation based on an alternative formulation
of the ATSPTDC to the one presented in §5.1.7 coupled with a tabu search metaheuristic similar
to the one presented in §5.3.1.
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An early version of the DSS put forward in this dissertation was based on a natural model for the
THSP, introduced in §5.1.2 as the GAP. The resulting DSS-development version (DSSDV) was
built entirely around the GAP-model. Its databases were implemented in Excel, and a purpose-
built local search based solution procedure was implemented in Wolfram’s Mathematica, the
Excel implementation employing various schedule printing preparation macros as well. This
chapter opens with a description of the optimisation model incorporated into the DSSDV in
§6.1, and then continues with an outline of the local search-based solution approach.

A further DSS was developed incorporating improvements as a result of a validation experiment
performed on the DSSDV, as will be described later in this dissertation. The optimisation model
embedded in the final DSS is then described in §6.2, and this is followed by a description of the
solution approach taken towards solving it. The two separate decision support systems consist
of two conceptually different approaches in terms of the combinatorial optimisation models
incorporated in them. The approach forming the basis for the final DSS is considered more
suitable with respect to the THSP as will be argued later in this dissertation.

6.1 The base model formulation

The mathematical programming model incorporated into the DSSDV in order to generate sea-
sonal harvesting schedules is presented in this section. The main purpose of this mathematical
programming model is to decide during which time period to harvest each of the sugarcane fields
in the area under consideration. The formulation allows for an arbitrary number of fields and
an arbitrary number of time periods, and is based on the GAP, presented in §5.1.2. The GAP
is augmented here by introducing a lower bound in the form of a constraint on the amount of
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“resource” used by each agent. At this developmental stage, most of the modelling effort was
focused on formulating a sensible, uncomplicated model with little attempt at incorporating
constraints for every possible eventuality. The GAP with the lower bound is henceforth referred
to as the base model formulation (BMF), the word base referring to the fact that it formed the
basis for further model development as will become clear later in this dissertation.

6.1.1 Integer programming model formulation

Let I be the set of fields for which a harvesting schedule is sought and let J be the set of
harvesting periods over which a harvesting schedule is to be constructed. The length of a
harvesting period may be any period of time that is sensible to adopt as a planning period,
such as a week or a month. Furthermore, define the binary decision variable xij to take the
value 1 if field i is harvested during period j, or 0 otherwise. Also, let the parameters Pij and
Mij represent the profit forecast and the yield forecast associated with harvesting field i during
period j, respectively. Finally, let Dmin

j and Dmax
j be the minimum and maximum tonnages

allowed to be harvested during period j, respectively. Then the objective in the BMF is to

maximise z =
∑
i∈I

∑
j∈J

Pijxij (6.1)

subject to the constraints ∑
j∈J

xij = 1, i ∈ I, (6.2)

∑
i∈I

xijMij ≥ Dmin
j , j ∈ J, (6.3)∑

i∈I
xijMij ≤ Dmax

j , j ∈ J, (6.4)

xij ∈ {0, 1} , i ∈ I, j ∈ J. (6.5)

The constraint set (6.2) ensures that all fields are harvested exactly once, while constraint sets
(6.3) and (6.4) impose respectively lower and upper bounds on the harvested tonnage during any
period. Constraint set (6.5) ensures that entire fields are harvested (i.e. harvesting fractions of
fields is disallowed). The formulation without constraint set (6.3) is equivalent to the traditional
formulation of the GAP.

A major drawback of the BMF is its misrepresentation of the fact that during almost every
period, one field is only partially harvested in practice. If, for instance, four fields have been
scheduled to be harvested during a particular period, the first three are typically burnt and
harvested in succession and the fourth is then burnt and may only be harvested in part due to
the harvesting period coming to an end before its harvesting can be completed. The remaining
part is often harvested during the following period. Harvesting schedules generated by the BMF
do not exploit this opportunity for letting one field in each period be harvested partly, allowing
for the completion of its harvesting to take place during the next period. In fact, it is probable
that the real-world value of the schedules produced by the BMF are significantly diminished
due to this drawback. Theoretically, the BMF may however be better at modelling harvesting
scenarios where operations cease on the last one or two days of each week, since harvesting a
burnt field only partly causes sucrose deterioration to occur in the remaining cane.

The fields must be harvested according to the DRD (see §3 and (3.1)), and hence each period
must be assigned a set of fields which, when combined, fulfil the DRD during that period. The
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variability in the ability of a harvesting operation to fulfil the DRD is accommodated by the
gap between (6.3) and (6.4). This gap is necessary for feasibility reasons as well, since a gap of
0 would mean that each period would have to be filled exactly by harvesting activity, which is
not possible in a practical application. A breakdown of the THSP into periods was done while
keeping in mind that the schedule is likely to change both within every period and between every
two consecutive periods due to forced implementation deviations from the schedule. Conceptual
restrictions foreseen by the author is that the model will not apply when the number of different
business entities that share the same schedule increases. For example, if two hundred growers
submit all their field records and estimates1, and are later subjected to a grand schedule that
outlines every field’s harvest week, the model solution would probably not be adopted by the
growers due to a variety of equity issues that are not explicitly taken into consideration, such as
growers requiring cash-flow every month. Furthermore, it may not apply when the number of
fields is too small, due to the combinatorial nature of the allocation of fields to time periods. For
example, if three of the fields should be harvested first for reasons of profitability, the BMF may
sometimes counteract this due to the fields not satisfying the first period’s constraints in (6.3)
and (6.4). The model is else foreseen to be applicable whenever a decision maker is considering
when to harvest his or her sugarcane fields, or when a business is making such decisions for an
entire set of farms or a large estate. The supply chain into which the farm(s) deliver may be
of consequence; for example, transport costs may be poorly estimated by an average in some
cases. If one mill is further away, it will rarely be profitable to deliver to it unless cane would
be eligible to carry over (not be harvested until the next season). The DRD may easily be
computed regardless of whether a farm is part of a single or several supply chains.

6.1.2 A local search solution approach

As part of the DSSDV, a solution approach which could be relied upon to consistently solve
problem instances of up to 100 fields and 40 time periods had to be developed in rather a short
time. The solution of the BMF was initially approached by means of two different methods.
Firstly, a purpose-built local search procedure, here called the BMF algorithm, was coded in
Wolfram’s Mathematica [149] and secondly, Lindo System’s LINGO 9 [140] was applied as a
modelling language and solver to (6.1)–(6.5). LINGO 9 was unable to produce feasible solu-
tions to practical size instances. Instead, the local search-based metaheuristic algorithm was
employed. The main traits of the algorithm are described by means of pseudo-code shown in
Algorithms 6.1–6.4. Later, it was found that LINGO 11 produced good feasible solutions rela-
tively quickly to some problem instances, but this finding occurred too late to pose an alternative
solution method.

For the purposes of describing the metaheuristic referred to above, a solution to the BMF is
denoted by the vector σ. The ith element of σ is the number of the period during which field i is
harvested. Therefore, σ(i) = j means that field i is harvested during period j. Let V (σ) denote
the objective function value of a solution σ. Furthermore, let σ? denote the best solution found
so far during the search.

In the BMF algorithm, shown in Algorithm 6.1, the problem (6.1)–(6.5) is first relaxed to a linear
programming problem by modifying the binary constraint set (6.5) into the interval constraint
set

0 ≤ xij ≤ 1, i ∈ I, j ∈ J. (6.6)

1The list containing all fields to be harvested during the current season.
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Algorithm 6.1: BMF algorithm.
Input: Profit parameters Pij , cane yield parameters Mij , minimum cane yield Dminj , maximum cane yield Dmaxj , access

to the current system time, denoted by system time, and a time limit, denoted by time limit.
Output: The best available allocation of fields to harvesting periods, denoted by σ?.

start time← system time;
best← −∞;
Compute an upper bound, denoted by UB, using a linear programming relaxation;
while system time ≤ time limit+ start time do

σ ← Ninit shift(σ);
while iter < max iter do

best in← best;
σ ← Nperturb(σ);
σ ← Nshift(σ);
if best > best in then

iter ← 1;
else

iter ← iter + 1;
end

end

end

Algorithm 6.2: Initial shift move Ninit shift(σ).
Input: The best objective function value found so far, denoted by best.
Output: A candidate solution σ, and, if discovered, a new best solution σ?.

Generate new random starting solution σ;
if V (σ) > best then

σ? ← σ;
end
starter ← 1;
while starter = 1 do

i← 1;
j ← 1;
stopper ← 0;
while stopper = 0 do

σ′ ← σ;
σ′(i)← j;
i← i+ 1;
if i > |I| then

j ← j + 1;
i← 1;

end
if V (σ′) ≥ V (σ) then

σ ← σ′;
stopper ← 1;

end
if j > |J | then

stopper ← 1;
starter ← 0;

end

end

end
if V (σ) > best then

σ? ← σ;
best← V (σ?);

end

The resulting linear programming problem is then solved by means of a function included as a
standard function within Mathematica and the objective function value of its solution is taken
as an upper bound on the optimal value of the objective function value in (6.1).

The BMF algorithm then applies a shift move function, denoted by Ninit shift(σ), which generates
a starting solution for itself, improves that solution and returns the improved solution as output.
This solution is passed on to a move function designed to diversify the search, denoted by
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Algorithm 6.3: Perturbation move Nperturb(σ).
Input: A solution σ and a candidate ordering c̃ of the fields.
Output: A candidate solution σ, and, if discovered, a new best solution σ?.

while Not all fields have been selected to be the first ejected field do
Select a field in σ according to c̃ to be the first ejected field, denoted by ejf, and eject it from its period;
Compute available DRD, denoted by availm, during the period that ejf was ejected from;
while Not all fields have been examined do

Select a field ik in σ according to c̃ to potentially be ejected and subsequently move to the period that the
previously ejected field occupied;
if Mass of ik ≤ availm then

Perform the move of ik in σ;
Compute availm during the period in σ that ik was ejected from;
Create a trial solution by allowing ejk to move to the period that the previously ejected field occupied;
Save the trial solution in a list of trial solutions;

end

end
if best trial solution is better than σ then

Let σ be the best trial solution;
end
if V (σ) > best then

σ? ← σ;
best← V (σ?);

end

end

Nperturb(σ), which attempts to move fields around in σ while ensuring that the solution remains
feasible. The third function employed is another a shift move function, denoted by Nshift(σ).

The move function Ninit shift(σ) improves, if possible, the starting solution by repeatedly moving
through the solution space by “shifting” fields from one harvesting period to another. A move
is performed as soon as a “shift” is found that causes an improved objective function value.

Algorithm 6.4: Shift move Nshift(σ).
Input: A starting solution σ.
Output: A new solution σ, and, if discovered, a new best solution σ?.

starter ← 1;
while starter = 1 do

i← 1;
j ← 1;
stopper ← 0;
while stopper = 0 do

σ′ ← σ;
σ′(i)← j;
i← i+ 1;
if i > |I| then

j ← j + 1;
i← 1;

end
if V (σ′) ≥ V (σ) then

σ ← σ′;
stopper ← 1;

end
if j > |J | then

stopper ← 1;
starter ← 0;

end

end

end
if V (σ) > best then

σ? ← σ;
best← V (σ?);

end
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Problem size Time % Gap from
Date (Fields × Periods) limit [s] bound

18 March 2009 36× 19 3600 2.363
18 March 2009 72× 19 3600 1.479
25 March 2009 72× 18 7200 1.371
30 March 2009 33× 18 7200 4.044
30 March 2009 72× 18 7200 1.443
14 April 2009 33× 17 1800 1.780
14 April 2009 72× 17 7200 1.352
27 April 2009 32× 16 7200 1.141
27 April 2009 70× 16 7200 1.221
10 May 2009 27× 15 1800 27.11
10 May 2009 58× 15 5400 1.468
11 June 2009 52× 13 7200 238.9
22 June 2009 24× 12 60 8.157
22 June 2009 49× 12 1800 21.66
10 July 2009 23× 11 1800 0.842
10 July 2009 44× 11 3600 1.996
1 August 2009 21× 9 1800 0.716
1 August 2009 40× 9 1800 1.981
10 August 2009 17× 8 180 0.595
10 August 2009 38× 8 180 1.259
25 August 2009 20× 7 1800 0.524
25 August 2009 35× 7 3600 0.805

Table 6.1: Computational results obtained via the BMF algorithm during a validation experiment
performed during the 2009 harvesting season together with a harvesting group of four medium-scale
growers in the Eston Mill area in KwaZulu-Natal.

This is known as a first admissible move strategy. The function returns the best solution it
encounters, and, if applicable, updates the best solution found so far during application of the
BMF algorithm. The procedure is described further by means of pseudo code in Algorithm 6.2.

The Nperturb(σ) move function selects a “first” field, according to some candidate ordering, to
be ejected from its harvesting period. Upon passing a test, a “second” field is moved into this
harvesting period, a “third” field into the “second” field’s period, and so on, until all fields have
been tried for such a move. Each time a field has been moved, the first field is inserted into
the last harvesting period to be “left” by a field, generating a so-called trial solution, which is
stored in memory.

The Nperturb(σ) move function then adopts the best trial solution as σ (if it is better than the
previous value of σ), and selects the next “first” field according to the candidate ordering and
repeats the above procedure, continuing until all fields have played the part as “first” field. The
main procedural workings of this function are shown in Algorithm 6.3.

The Nshift(σ) move function is identical to the Ninit shift(σ) move function, except that Nshift(σ)
does not generate a new starting solution. The function is, however, shown in Algorithm 6.4.

The computational results obtained via the BMF are illustrated here by means of twenty-two
actual runs during the 2009 harvesting season, based on data relevant to the Eston Mill area
in KwaZulu-Natal. These runs were computed in Mathematica 6, installed on a 1.7 GHz PC
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with 1 GB RAM. The results are presented in Table 6.1 and illustrate problems in obtaining
good optimality values encountered mainly when running small problems (with either a small
number of fields or a small number of periods, or both).

6.2 The sequential model formulation

The mathematical programming model and solution methodology employed in the final DSS
presented later in this dissertation, is fundamentally different from the BMF and is similar to
the ATSPTDC, presented in §5.1.7. This approach is concerned with arranging the fields in a
sequence, rather than into groups to be assigned to harvesting periods, as was the case in the
BMF. This formulation is therefore called the sequential model formulation (SMF). The model
formulation incorporates time- and sequence-dependent costs so that the time instant at which
a field is harvested depends on the sum of the harvesting times of the preceding fields.

6.2.1 Integer programming model formulation

Let I = {0, 1, 2, . . . , n, n+ 1} be the set of fields that have to be harvested during the harvesting
season. Here the fields 0 and n + 1 are a dummy starting field and a dummy ending field,
respectively, delimiting a feasible harvesting sequence. The combined time required to harvest
field u ∈ I and to physically travel to any other field is denoted by tu. Let J = {1, 2, . . . , b0} be
the set of time instants (for example, days) into which the season is divided, where b0 =

∑
u∈I tu.

Denote the profit from harvesting field u ∈ I beginning at time instant j ∈ J by Puj . The
parameters P0j , Pn+1,j , t0 and tn+1 are assumed to be zero for all j ∈ J . The decision variable
xδuvj is defined to take the value 1 if the harvesting operation leaves field u ∈ I for field v ∈ I
at time instant j ∈ J , or the value 0 otherwise. Furthermore, let yu denote the time instant at
which the harvesting operation leaves field u and let Z+ denote the set of positive integers. The
travelling times between fields are assumed to be negligible and the time required to harvest a
field is assumed to be independent of the time of harvest. The objective of the SMF is then to

maximise z =
∑
u∈I

∑
v∈I

∑
j∈J

Pujx
δ
uvj (6.7)

subject to the constraints∑
v∈I

∑
j∈J

xδuvj = 1, u ∈ I \ {n+ 1} , (6.8)

∑
u∈I

∑
j∈J

xδuvj = 1, v ∈ I \ {0} , (6.9)

∑
v∈I

∑
j∈J

xδn+1,v,j = 0, (6.10)

∑
u∈I

∑
j∈J

xδu0j = 0, (6.11)

xδuvj = 0, u = v ∈ I, j ∈ J, (6.12)

xδ0,n+1,j = 0, j ∈ J, (6.13)

y0 = 1, (6.14)
yn+1 − 1 = b0, (6.15)
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yu + tu −M
(

1− xδuvj
)
≤ yv, u ∈ I \ {n+ 1} , v ∈ I \ {0} , j ∈ J, (6.16)∑

v∈I

∑
j∈J

jxδuvj = yu, u ∈ I \ {n+ 1} , (6.17)

xδuvj ∈ {0, 1} , u, v ∈ I, j ∈ J, (6.18)

yu ∈ Z+, u ∈ I, (6.19)

where (6.7) computes the total harvesting operational profit, (6.8) ensures that all fields except
the dummy ending field are “exited” exactly once in the harvesting sequence and (6.9) ensures
that all fields except the dummy starting field are “entered” exactly once in the harvesting
sequence. Constraint sets (6.10) and (6.11) ensure that the dummy ending field is not “exited”
and that the dummy starting field is not “entered”, (6.12) forbids looping from a field to itself in
the harvesting sequence, while (6.13) ensures that the ending field is not “visited” immediately
after the starting field in the harvesting sequence. Constraint sets (6.14), (6.15), (6.16) and
(6.17) ensure that the time of harvest is advanced by tu time instants when the harvesting
operation moves from field u to field v. Finally, (6.18) ensures that the decision variable xδuvj is
binary and (6.19) ensures that the decision variable yu is a positive integer.

In order to explore the ease with which the SMF may be solved, several pseudo-randomly
generated instances of the SMF were solved in Lindo System’s LINGO 11 [140] on an Intel Core2
vPro 3 GHz PC processor with 4 Gb RAM. LINGO 11 mainly employs a branch-and-bound
solution approach but also a relaxation induced neighbourhood search (RINS), a metaheuristic
designed to bring the advantages of local search to the realm of integer programming and mixed
integer programming solution methodology (see [43] for a detailed description of RINS). The
sizes of these problem instances and their solution times are shown in Table 6.2. In solving
instance D, LINGO found an optimal solution within two hours, while the last six hours were
spent improving the lower bound so as to establish optimality. No feasible solutions were found
within fifteen hours for instance E. As a practical size problem instance may involve more than
fifty fields and two hundred time instants, it became apparent that an alternative solution
approach was required.

6.2.2 A tabu search solution approach

The tabu search (TS) approach was therefore adopted to solve the model (6.7)–(6.19). This
local search is primarily based on the work by Glover [73] and inspired further by the paper of
Yagiura et al. [238], which actually focuses on the GAP, but the solution method shares common
features with the one presented here. The TS is shown by means of pseudo-code in Algorithm
6.5.

Problem size CPU time Feasible Optimal
Instance (Fields × Time instants) [s] solution? solution?

A 5× 14 3 Yes Yes
B 5× 28 15 Yes Yes
C 7× 21 30 Yes Yes
D 8× 21 29100 Yes Yes
E 10× 21 54000 No —

Table 6.2: Various SMF instances solved using LINGO 11. The time unit is seconds.
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Algorithm 6.5: Attribute-based tabu search algorithm for the SMF.
Input: The objective function z (ω); a time limit bound time limit; attribute functions ap (s,ω), p = 1, 2, . . . , g; an

aspiration function A (e), e ∈ E; tabu list tenures tp; pointers q(p) to the list Tq(p) in which attribute p should be

stored. The shift move type NSMF
shift (ω), the ejection chain compound move type NSMF

ejec (ω) and the

pseudo-random generation algorithmNSMF
RR . The maximum number of non-improving iterations

max no local impr allowed between applications of the NSMF
ejec . The maximum number of non-improving

iterations max no global impr allowed between applications of NSMF
RR .

Output: The best solution ω? found to the SMF.

start time← system time; ω ← NSMF
RR ; ω? ← ω; no local impr ← 0; no global impr ← 0;

while system time ≤ time limit+ start time do
h← 1;
Tp ← ∅ for all p ∈ {1, 2, . . . , 6};
while no global impr < max no global impr do

while no local impr < max no local impr do
trial solution set←

˘
s(ω) : s ∈ NSMF

shift (ω)
¯

;
trial← tabu;
while trial = tabu do

ω′ ← s(ω) ∈ trial solution set that has the best z(s(ω));
trial solution set← trial solution set \ {s(ω)};
trial← not tabu;
for p = 1 to 6 do

ep ← ap (s,ω);
if ep ∈ Tp AND z(ω′) ≤ A(ep) then

trial← tabu;
end
p← p+ 1;

end
if trial 6= tabu then

ω′h ← ω′;
for p = 1 to 6 do

ep,h ← ep;
end

end

end
for p = 1 to 6 do

Tp ← Tp \
n
ep,h−tp

o
;

Tq(p) ← Tq(p) ∪
˘
ep,h

¯
;

A(ep,h)← The best among
˘
A(ep,h), z(ω), z(ω′h)

¯
;

end
if z(ω′h) > z(ω?) then

ω? ← ω′h;
no global impr ← 0;

end
if z(ω′h) > z(ω) then

no local impr ← 0;
else

no local impr ← no local impr + 1;
end
ω ← ω′h;
h← h+ 1;

end

ω ← NSMF
ejec (ω);

if z(ω) > z(ω?) then
ω? ← ω;
no global impr ← 0;

end
no global impr ← no global impr + 1;
no local impr ← 0;

end

ω ← NSMF
RR ;

if z(ω) > z(ω?) then
ω? ← ω;

end
no global impr ← 0;

end
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A feasible solution to the SMF is represented by a permutation vector ω on the set {1, 2, . . . , |I|}
whose j-th component ω(j) = i corresponds to field i ∈ I being assigned harvesting sequence
position j ∈ I. Let ti denote the time required to harvest field i ∈ I and define the index set
function Ui(ω) to contain the set of fields in ω that have a sequence value less than that of field
i (i.e. Ui(ω) = {ω(u) ∈ I : u < j, ω(j) = i}). Consecutive time instants for which profit values
remain approximately constant are amalgamated as a single time period in a bid to reduce the
problem instance size. The set of time periods which thus arises is denoted by K. Let the
parameter dk denote the first time instant of period k ∈ K and let Pik denote the resulting
profit from harvesting field i ∈ I during period k. Then the function

τi(ω) =
∑

ω(u)∈Ui(ω)

tω(u), i ∈ I (6.20)

gives the time instant at which the harvesting of field i begins and the function

θi(ω) = min
k∈K
{k : τi(ω)− dk ≥ 0} , i ∈ I (6.21)

expresses the period during which field i is harvested. Finally, if the indicator function χik(ω)
is defined to take the value 1 if θi(ω) = k, or 0 otherwise, the objective function in (6.7) may
be expressed as

z (ω) =
∑
i∈I

∑
k∈K

Pikχik(ω). (6.22)

The sequence into which the fields are arranged thus determines the time instant at which each
field is harvested, since the field harvesting times are assumed to be independent of the tonnage
of cane available. To determine the time period (k ∈ K) during which a field’s harvesting time
instant occurs, the harvesting times of the preceding fields are summed in (6.20). The sum of
those harvesting times is the time that has elapsed before the harvest of the field in question
commences. In order to compute the objective function value associated with a particular
solution ω, the summation must be performed for every field. Therefore, the procedure required
to compute z (ω) requires O

(
n2
)

steps.

If the harvesting times were a function of the tonnage of cane, and not just the field area, the
parameter ti would become a function of ω, thus requiring a reformulation of the SMF. The
modelling of the tonnage-dependent harvesting time is omitted here because cutting speed is
sufficiently modelled by area [88,126]. Cutting capacity may also be altered by a grower in order
to account for varying conditions. Therefore only area is used as the determining factor for the
values assigned to the parameter ti.

The TS adopted to find a good solution (ω?) to the SMF comprises several components: a
random restart procedure (RR), a shift neighbourhood move (SN), an ejection chain compound
move (EC), as well as procedures for handling tabu restrictions and aspiration criteria, all
described below. The TS is mainly guided by two objective function values encountered during
the course of its execution; these are the best objective function value in (6.22) encountered so
far, denoted by z?, and the best objective function value encountered since the last EC or RR
application, denoted by z′.

The TS begins by applying the SN to the current solution, which returns a new current solution
ω. If the objective function value of the new current solution is better than z′, an iteration
counter denoted by no local impr is set to 0, otherwise the value of this counter is increased by
1. If the objective function value of the solution is better than z?, an iteration counter denoted
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by no global impr is set to 0. If no local impr is greater than a certain specified value, the EC is
applied to the current solution and the value of an iteration counter no global impr is increased
by 1. If the counter no global impr is larger than a specified threshold, the RR is applied.

The random restart procedure (RR) generates a pseudo-random permutation of a range of inte-
gers from 1 to the total number of fields. The RR thus provides a new starting solution for the
TS.

The SN finds a best admissible solution in the shift neighbourhood of the current solution.
This shift neighbourhood is formed by considering a shift of any field to another position in the
harvesting sequence, generating a trial solution, denoted by ω′.

Define a neighbouring pair, denoted by e = (i, j), where i, j ∈ I and i 6= j, as any two neigh-
bouring fields (in terms of their position in the harvesting sequence) and denote the set of all
neighbouring pairs by E. Furthermore, assume that ω is “closed” by “connecting” its last field
with its first field (i.e. by wrapping the solution encoding). A sequence ω of fields may then be
partially described by a subset of E, constructed by including those neighbouring pairs which
appear in ω. For example, if ω = [2, 3, 1], the neighbouring pairs are (2, 3), (3, 1) and (1, 2), the
rightmost neighbouring pair (1, 2) constituting the closing (or wrapping around) of the sequence.

The move from a current solution to a trial solution may now be described in terms of deleted
and added neighbouring pairs. For example, when moving from ω = [2, 3, 1] to ω′ = [3, 2, 1]
(by shifting field 3 into position 1), none of the three neighbouring pairs (2, 3), (3, 1) or (1, 2)
remain neighbouring pairs in ω′, hence these neighbouring pairs are said to have been deleted.
The three added neighbouring pairs are (3, 2), (2, 1) and (1, 3).

There are six so-called tabu lists, denoted by T1, T2, T3, T4, T5 and T6, respectively, which list
neighbouring pairs that either may not be deleted or may not be added. When considering
a move from ω to ω′, the deleted neighbouring pairs are tested for membership in the tabu
lists which contain neighbouring pairs that may not be deleted and the corresponding test is
also performed for the added neighbouring pairs. An aspiration function, denoted by A (e),
is defined so as to return a single value as a function of neighbouring pair e. During these
membership tests, if any neighbouring pair e is found in any of its corresponding tabu lists, the
aspiration function value corresponding to the particular neighbouring pair (A (e)) is evaluated
according to the aspiration criterion A (e) < z (ω′). If the aspiration criterion evaluates as true,
the move receives a passing status with respect to the particular neighbouring pair. However, if
the aspiration criterion does not evaluate as true, the move is given a non-passing status. The
values returned for each neighbouring pair by the function A (e) are updated so as to reflect the
best objective function value obtainable by allowing the addition or deletion of neighbouring
pair e. The trial solution ω′ with the best objective function value that has achieved passing
status for all associated neighbouring pairs is selected to be returned to the TS as the new
current solution ω. Then the neighbouring pairs that were added are inserted into the tabu lists
that list neighbouring pairs that may not be deleted, while the neighbouring pairs that were
deleted are added to the tabu lists that contain neighbouring pairs that may not be added. The
tabu lists have specified lengths (tenures) and each time a neighbouring pair is added to any of
the lists, the oldest neighbouring pair is removed.

The reason for employing six tabu lists is that it provides for the possibility of enforcing more or
less restrictiveness on moves based on the type of deleted or added neighbouring pair. If desired,
the length of the list that retains the middle added neighbouring pair, for example, could be
made longer or shorter as a means of disfavouring or favouring certain kinds of algorithmic
behaviour. Alternatively, a passing status may be awarded to a move as long as the associated
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neighbouring pairs are not present in more than some fraction of the lists.

The EC rearranges the field harvesting sequence, employing rules that facilitate the preservation
of parts of the quality of the sequence while seeking to diversify the TS. The EC starts by
computing a parameter value for each field that measures the relative performance of the field
during each period. This is achieved by means of the performance parameter

Υij = Pij
/

max
k∈K
{Pik} , i ∈ I, j ∈ K.

Given a particular harvesting sequence ω, each field is assigned a current relative performance
as a result of its time of harvest, the time of harvest being computed by means of (6.21). The
field with the lowest current relative performance is deemed to have the largest potential for
improvement. This field is ejected from the sequence, “opening” its position for another field.
A sequence with such an “opening” is by convention called a reference structure [75, 238]. The
ejected field i is reserved until the end of the application of the EC, when it is assigned to
the then “open” position. The reference structure has an improvement potential g defined as
g = 1 − Υij . All other fields k ∈ I, k 6= i are now compared and the field with the largest
value of Υkj − Υk`, is selected to move from position k to position i in the reference structure
(corresponding to moving from period ` to period j), where ` is the current period of the
selected field and j is the period associated with the “open” position i. This is called a reference
structure move. The reference structure move only occurs if the condition Υkj − Υk` ≥ −g
holds. If the condition does not hold, the EC stops performing reference structure moves.
However, if a reference structure move does indeed occur, g takes the value g + Υkj −Υk` and
the EC continues to perform reference structure moves by investigating the remaining fields
with respect to their relative performance increase/decrease values, possibly augmenting the
chain of reference structure moves with another move. Any field may only be subjected to one
reference structure move. The EC ends by assigning the first ejected field to the position of the
last ejected field, thus turning the reference structure into a new solution encoding vector ω.

The TS was coded in Microsoft’s Visual Basic for Applications for Excel. Investigative compu-
tational results were obtained on the same machine as for the integer programming instances
mentioned in §6.2.1 and are shown in Table 6.3. The results indicate that the solution times nec-
essary to obtain acceptable solutions by means of the TS are stable for instances A–E. Instance
F was solved twice (the two runs named F1 and F2, respectively) using different time limits,
achieving results approximately 0.01 % apart in terms of optimality. Solutions to practical size
instances were obtained on a regular basis during the validation of the DSS presented later in
this dissertation, uncovering satisfactory objective function values.

6.3 Chapter summary

Two combinatorial optimisation problems were formulated in this chapter. The BMF formed
the core of the DSSDV (which is not described further in this dissertation) and was based on
the GAP. It was solved to within an acceptable percentage of optimality by means of a local
search algorithm coded in Wolfram’s Mathematica.

The SMF constitutes the core of the final version of the tactical harvest scheduling decision
support system—the DSS presented later in this dissertation—and was solved using an attribute-
based tabu search method incorporating a shift neighbourhood and an ejection chain. Failed
attempts to solve small instances of the SMF using LINGO 11 shows that it is a hard problem
to solve to optimality. Even its LP relaxation could not be solved for practical size instances
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Problem size CPU time Feasible Optimality
Instance (Fields × Time instants) limit [s] solution? gap [%]

A 5× 14 10 Y 0.1100
B 5× 28 15 Y 0.2480
C 7× 21 30 Y 0.0788
D 8× 21 30 Y 0.0100
E 10× 21 30 Y 1.0351
F1 60× 210 300 Y ≤ 9.55
F2 60× 210 900 Y ≤ 9.54

Table 6.3: SMF instances solved by means of the TS. The time limits are given in seconds. Note that
instances D and E did not require an increase in the time limit. The optimality gap was computed as
that fraction of the lower bound remaining as a gap between the LP relaxation lower bound and the
objective function value of the best solution found. A practical size instance was solved twice (F1 and
F2) using a lower bound computed by summing the minimum cost during any period for each field, since
no LP-relaxation solution was available.

(due to Lingo Core Solver memory problems having been encountered when applying Lingo
11 installed on a Dell Optiplex 755, Intel Core2 vPro 3 GHz, 4 Gb RAM workstation). This
chapter stands in partial fulfilment of Dissertation Objectives VI and VII of §1.3.
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CHAPTER 7

Model parameter estimation
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7.1 Introduction

This chapter contains a description of the regression and other models used to estimate the
parameters Pij and Mij introduced in Chapter 6. Given a particular farm or other relatively
homogenous area, the current state of each field is taken into consideration during these es-
timations. Unless otherwise specified, the models presented here are those used in the DSS
presented later in this dissertation. The underlying concepts of the methodologies employed are
introduced and a rationale behind each estimate is given. As mentioned earlier, the BMF con-
stitutes the mathematical programming formulation employed in the DSSDV, while the SMF is
the mathematical programming formulation employed in the final DSS.

The only sets of parameters in the BMF are the field-by-period profits (Pij), the field-by-period
yields (Mij), the minimum harvested tonnage per period (Dmin

j ) and the maximum harvested
tonnage per period (Dmax

j ). The first parameter represents the value of the sugarcane on a
particular field during a particular time period less the cost of harvesting that particular field
during that particular time period, expressed in South African Rand. The second parameter

101
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represents an estimate of the yield in tonnes of sugarcane on a particular field during a particular
time period. The latter two parameter sets are quantities that the user can manipulate until
he/she is satisfied with the harvested cane mass across the season and also to ensure that the
DRD is taken into consideration. The parameters Dmax

j or Dmin
j do not appear in the SMF.

To a grower, the profit from harvesting a field of sugarcane is the remuneration paid by a miller
less the costs associated with the harvesting operation and the fixed costs associated with the
land allocated to sugarcane on the farm. Since the SMF has been designed to render decision
support based on profit differences between fields over various time periods, it is logical to ignore
those fixed costs that are equal across all fields. Assuming that only the operational costs differ
between fields, let

Pij = Vij − Cij (7.1)

denote the profit associated with harvesting field i during period j, where Vij is the value of the
sugarcane on field i during period j and Cij is the cost of recovering that value. Then the value
and costs may be treated separately.

7.2 The value component

The value of sugarcane is well-defined in South Africa, once a physical process of sampling and
measuring has been put in place. Any cane consignment at a sugar mill is first crushed, then
sampled and its three primary constituents [159] are measured: fibre, moisture and brix. Brix
is the sugar component and consists of sucrose and other sugars. According to the payment
system, let Sij be the sucrose content of cane harvested from field i during period j (measured
as a percentage of mass), and let d be a coefficient that accounts for molasses value as well
as the processing difficulties that non-sucrose causes in the refining process. Furthermore, let
Nij denote the non-sucrose content (in fact, molasses contains some sucrose) of cane harvested
from field i during period j (measured as a percentage of mass), and let c be a coefficient that
accounts for the processing difficulties that arise from fibre itself and its constituents. Finally, let
Fij be the fibre content of cane harvested from field i during period j (measured as a percentage
of mass). Then the RV %, denoted by Rij , for field i when harvested during period j, may be
expressed as

Rij = Sij − dNij − cFij , i ∈ I, j ∈ J. (7.2)

If P is the season’s price per tonne of recoverable value, which is re-estimated monthly and
published on the South African Canegrowers’ website [195], ȳ is the seasonal average percentage
of recoverable value for the entire mill, w̄j is the average percentage of recoverable value for the
entire mill during period j and Mij is the mass of the cane in field i during period j, then the
remuneration (in Rand) for harvesting field i during period j may be expressed as

Vij = PMij(Rij + ȳ − w̄j), i ∈ I, j ∈ J. (7.3)

There are several ways of estimating the mass and RV % of sugarcane, such as using multiple
linear regression analysis, plant physiology-based weather-driven models and visual appreciation
(eye-estimation). The method chosen for the purposes of this dissertation is multiple linear
regression. This approach facilitates an estimation of the values of the parameters Sij , Nij and
Fij in (7.2) unnecessary, but places a heavy reliance on field records, since they form the data
set to which the regression models are fitted.
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7.3 Multiple linear regression analysis

Multiple linear regression analysis is a technique within the framework of statistical inference
that allows for the fitting of data to a mathematical expression with several variables [23,24,156,
157]. The technique is based on the method of least squares, refined by Gauss during his work
on the prediction of the position of the stellar object Ceres during the early 19th century [67].
The expression describes a tentative relationship between a dependent variable and a set of
independent variables. The estimated parameters of a multiple linear regression model appear
linearly in the model, hence the name “linear regression”, but in the mathematical function
(the regression model) it may be multiplied by any function of the dependent variables. In fact,
the regression model may be composed of any number of terms involving one or several of the
independent variables, as long as the estimated parameters are scalars. The data are usually
arranged in order of appearance1 in a column vector denoted by y = [y1, y2, . . . , yn]T .

The technique rests on the assumptions that any differences (called residuals) between the regres-
sion model and the data are distributed according to a normal distribution and are independent
of one another. The statistical inferences made during the analysis are not mathematically valid
if the residuals are not normally and independently distributed.

Multiple linear regression may be conducted using historical data or data from a designed and
controlled experiment. The technique is identical for these two situations; however, care must be
taken with conclusions regarding cause-and-effect relationships using historical data. Unknown
variables may be responsible for variability attributed to a variable that correlates in some
fashion with one or more of the unknown variables.

The technique begins by proposing a model to which to fit the observed data y. Let

y = Xβ + ε,

where

β =


β0

β1

β2
...
βk

, X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

...
1 xn1 xn2 . . . xnk

 and ε =


ε1
ε2
...
εn

.

Here β0 is the model intercept, k is the number of terms in the regression model (excluding
β0), β1, β2, . . . , βk denote the k regression coefficients, n is the number of observed data values,
xi1, xi2, . . . , xik denote the values of the regressor variables corresponding to data value i ∈
{1, 2, . . . , n}, and ε1, ε2, . . . , εn denote the errors between the model and data. The best fit
between the data and the model is achieved by treating the parameters β1, β2, . . . , βk as variables
and minimising the sum of the squared values of ε1, ε2, . . . , εk. This is equivalent to minimising

L = ε′ε = (y −Xβ)′ (y −Xβ) = y′y − 2β′X′y + β′X′Xβ.

Minimisation is achieved by letting

δL

δβ

∣∣∣∣
β̂

= −2X′y + 2X′Xβ̂ = 0

1In a designed experiment, the data values are ordered in the standard order of the experimental design
employed. Using historical data, the data are ordered according to an arbitrary but known scheme.
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from which the entries of the vector β̂ may be derived. The result,

β̂ = (X′X)−1X′y,

makes it simple to compute the regression coefficients from the selected model and the data.
The fitted regression model

ŷ = Xβ̂

may subsequently be analysed diagnostically for appropriateness. The diagnostics usually per-
formed on regression models are mainly based on the residuals

e = y − ŷ. (7.4)

Diagnostics involve the computation of the R2-value, the adjusted R2-value (R2
adj), the prediction

error sum-of-squares value (PRESS) and other key indicators of whether the model may be
expected to be a good predictor. The diagnostics also involve—perhaps more importantly—the
plotting of residuals against dependent and independent variable values, on normal probability
paper2 and, in the case of a designed experiment, the run order.

The regressor variables are allowed to be functions of other variables, often those variables that
represent the true system factors3. There may, for example, exist a relationship between a
regressor variable x2 and an underlying variable t2, such that x2 = t22. A regression model
including such a term would be classified as polynomial of at least second order. Note, however,
that the regression coefficients still appear linearly in the model.

There are several approaches to selecting an appropriate tentative model to fit the data to. The
model terms may be selected using past experience, which is appropriate if the phenomenon
under study has been rigourously experimented upon and modelled in the past. It may then
only be required to estimate the expected value of the parameters of an already well-known
relationship. However, some phenomena are more or less unknown, and thus require other
model selection approaches. In 1959, Daniel [42] invented the use of the half normal probability4

plot of effects from factorial experiments to separate effects that are significant. The approach
works by calculating all effects (regression model coefficients multiplied by 2) and plotting their
absolute values on half-normal probability paper, and the effects that obviously deviate from a
thick (pen-width) straight line drawn from [0, 0] through the group of effects that do end up on
the line, are declared not statistically significant. According to [156], the half-normal probability
plot works well with designed and controlled industrial experiments, but is not infallible.

Another good approach towards selecting a regression model is the backward elimination ap-
proach. It starts by proposing the greatest order model possible and performs a statistical
analysis. The single model term with the lowest statistical significance value on its regression
coefficient is eliminated. A new statistical analysis is performed and the least significant term’s
regression coefficient is again eliminated. The process is continued until no term is statistically
insignificant. The procedure may terminate with only the intercept left in the regression model.
Miller [152] explored the problem of coefficient selection thoroughly [86]. If the model is to be
used for prediction purposes, it must be hierarchical [156], which means that any higher order

2Normal probability paper has a logarithmically scaled vertical axis designed to cause normally distributed
ranked data plot to form a straight line.

3The system factors may, for instance, be the row-spacing in metres and fertiliser amount involved when
growing sugarcane.

4The half normal probability paper has the same vertical axis as normal probability paper, but uses the
absolute value of the variable being plotted. The probability papers are equivalent in usage, but look different.
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term involving a particular variable requires all possible lower order terms involving that vari-
able to be present in the model. If, for example, β12x1x2 is statistically significant and included
in the regression model, then β1x1 and β2x2 must also be included. During the backward elim-
ination process, terms that are not believed to be sensible to include, i.e. terms that suggest
relationships that do not make sense in the practical setting being modelled, may be discarded
if not significant. Terms that are heavily correlated with each other must be considered with
special care, and may sometimes be resolved (by deleting one of them) using previously acquired
insight about the process under study. Finally, one very useful tool amidst all statistical tests
and indicators normally used in multiple regression analysis, is the simple response surface plot
in which both the model output and data are depicted together. Generating such a plot may
provide a safeguard against trivial errors and erroneous assumptions. When there are more
than two independent variables, multiple plots are required.

There is an abundance of statistical software available for analysis of multivariate regression
models. To name a few, IBM SPSS’s SPSS [198], SAS Institute’s SAS [180], StatSoft’s Statistica
[205], Wolfram’s Mathematica [149], MathWorks’ Matlab [150], Minitab Inc.’s Minitab [155] and
StatEase’s Design Expert [204] all have extensive regression modelling capability. Important and
useful books on linear regression analysis are [23,24,156,157].

7.4 The yield and RV models

In the DSS presented later in this dissertation, matricesM = [Mij ] andR = [Rij ] are populated
by localised values obtained from farm regression models which are, in turn, fitted to historical
data from the farm in question. When such data are not available, data from a farm that
operates under similar conditions and in a similar fashion are used instead. The values of ȳ
and w̄j are based on weekly data of RV % for all South African sugar mills (the SASRI data
set) provided by SASRI [183]. As noted in §2.5, SASRI’s CANEGRO model [183] is unable to
accommodate RV %. The expression in (7.2), where only the coefficients d and c are known
(determined by corporate entities as laid out in the sugar industry agreement [49]), contains
the parameter Sij and two further unknowns. CANEGRO is able to estimate Sij , but not the
remaining two unknowns, thus making it impossible to estimate Rij using CANEGRO. This
finding is supported in the claim by Bezuidenhout et al. [18] that CANEGRO cannot simulate
RV %.

In (7.3) the seasonal average RV % for the entire mill, ȳ, and the periodic average percentage of
RV %, w̄j , for the mill area during period j are required. The methodology for estimating ȳ is
to use the Mill Group Board estimate for the season, or to use the average RV % from historical
data over a reasonable number of years. The value of w̄j may be computed by means of simple
regression on the SASRI data set.

The case study area selected for this purpose is located in the Eston mill region in KwaZulu-
Natal and four growers (who co-own a harvesting syndicate) originally agreed to contribute
with data and schedule evaluation during the 2009 season, and later agreed to continue doing
so during the 2010 season. One of these farms, Seafield farm, is used as an example throughout
this chapter and is situated 10 kilometres north of Richmond.
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7.4.1 Base yield models

As mentioned earlier, the method chosen to estimate the yield of a field at a given moment
in time in the future is multiple linear regression analysis. The models were, from the onset,
expected to be polynomials, but which model terms should be included and the degree of the
included model terms were not known. The model selection approach was adapted to the
available field records.

For practical modelling purposes, a definition of cane age other than the cane’s actual age was
introduced. The notion is called effective growth time (EGT) and is the age of the cane in
months, not counting the time spent during months of slow or halted growth. In the case study
area, June, July and August are classified as such “no-growth” months.

In order to fit the regression models, the historical data for a particular farm are stratified
according to variety, so that cane varieties are associated with one regression model each. Using
Seafield farm as an example, the data spanned the time period 2002 to 2007, and there were
sufficient data to model the cane varieties N12, N16, N35 and N37. There were not sufficient
data to distinguish between different crop classes, different years, different field aspects, or
different field toposequences. Figure 7.1 shows the results of both a first-order model with
EGT in months as regressor (x) and yield in t.ha−1 for the N12 variety as response (y) and
a second-order model involving the same regressor and response. The accompanying residual
plots indicate that the second-order model is superior. The R2-values of the two models are
0.975 for the first-order model and 0.986 for the second-order model. The base yield model for
N12 is y = 11.7x− 0.29x2.

The intercept in both models should be fixed5 at zero in order to ensure that—particularly under
data scarcity—the regression model always displays a parabolic shape with a single maximum
extreme point as well as abiding by the fact that cane with EGT 0 always yields 0 t.ha−1. The
fixing of the intercept is the cause of the relatively large R2-values. The ANOVAs along with
the respective model functions for the four varieties are shown in Figure 7.2 and the graphical
representations of the base yield models for N16, N35 and N37 are shown in Figure 7.3.

In order to compute a base yield model value BM
ij for field i during period j, the variety present

on the field is first established (the information about variety is available in the field records).
Secondly, the EGT of the field is computed and the future EGT of the field at the midpoint of
period j is also computed. The EGT of field i at the midpoint of period j is denoted by aij .
For example, a field at Seafield farm containing the cane variety N12, with i = 4, j = 5 and
a45 = 21.2 months has a BM

ij -value of

BM
45 = β1a45 + β11a

2
45

= 11.7× 21.2− 0.29× 21.22

= 117.7
[
t.ha−1

]
.

7.4.2 Event-driven yield models

The ability to account for factors other than the regressors was found during the case study to
be crucial to the usefulness of the resulting DSS. This ability was partly incorporated by means
of so-called event-driven yield models. Event yield models are simple first-order polynomials
where yield is a function of the number of days elapsed since some time marker.

5When the intercept is fixed, the computation of the R2-value is affected.
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(a) First-order N12 yield versus EGT model.
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(b) First-order standardised residuals versus EGT.
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(c) Second-order N12 yield versus EGT model.
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(d) Second-order standardised residuals versus EGT.

Figure 7.1: A comparison of a first-order model and a second-order model of yield per hectare for the
cane variety N12 with EGT as the regressor at Seafield farm. The standardised residuals versus EGT
plots indicate that the second-order model is more appropriate.

If an extraneous event `i(k) ∈ Ex takes place on field i, the time in days between its occurrence
and the midpoint of period j is first computed; that time is denoted by qij`i(k), where k ∈ {1, 2, 3}
is the order number of the kth event6 that has taken place on the particular field. Let EMij denote
an event-driven yield model value that adjusts yield in t.ha−1 during period j to account for
events that have occurred on field i, let δM0,ij`i(k) denote the step decrease due to the kth event
and let δM1,ij`i(k) denote the rate of yield decrease in t.ha−1d−1 (tonnes per hectare per day after
the day of the event) due to the kth event. Then EMij may be expressed as

EMij =
3∑

k=1

(
δM0,`i(k) + q`i(k)δ

M
1,ij`i(k)

)
i ∈ I, j ∈ J. (7.5)

To compute Mij , the base yield model and the event-driven yield model are added together to
yield

Mij = BM
ij + EMij , i ∈ I, j ∈ J. (7.6)

6Note that only as many as three different events are kept on record, assuming that any serious events will
simply replace less serious ones, should a fourth or further extraneous event occur.
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N12 Df SS MS p-value

x 1 1313880 1313880 < 0.0001
x2 1 14743.6 14743.6 < 0.0001
Error 101 18828.7 186.4
Total 103 1347460

(a) N12 model y = 11.7x− 0.29x2.

N16 Df SS MS p-value

x 1 267247 267247 < 0.0001
x2 1 6195.5 6195.5 < 0.0001
Error 24 5369.7 223.7
Total 26 278812

(b) N16 model y = 11.1x− 0.28x2.

N35 Df SS MS p-value

x 1 113981 113981 < 0.0001
x2 1 1944.7 1944.7 0.03
Error 13 4538.2 349.1
Total 15 120464

(c) N35 model y = 12.0x− 0.39x2.

N37 Df SS MS p-value

x 1 107603 107603 < 0.0001
x2 1 515.1 515.1 0.003
Error 5 91.5 18.3
Total 7 108209

(d) N37 model y = 14.0x− 0.38x2.

Figure 7.2: Four yield models fitted to data from Seafield farm. Here Df denotes degrees of freedom,
SS denotes sum-of-squares and MS denotes mean square.

For realism, negative values of Mij may be rounded up to 0, but there is a drawback to such an
approach. If many of the fields suffer from severe events concurrently, there may not be enough
time to harvest them all before their yields have reached zero, at which stage some of the fields
will receive no further increase in postponement penalty (because it is being rounded up to
zero). If a suffering field is not scheduled for harvesting within the time before the yield reaches
zero, it may be scheduled arbitrarily anywhere in the remainder of the harvesting sequence. The
same is the case for rounding RV %. On the other hand, if the field is worthless already, it may
or may not cause any harm to leave it to be harvested later during the season.

There are a total of twenty-three types of events in the set Ex, out of which thirteen were
included to affect yield. As mentioned, δM0,`i(k) and δM1,ij`i(k) are the respective coefficients that
determine the step change and rate of change of yield. The area fraction Hik (i ∈ I, k ∈ {1, 2, 3})
affected by the event and the event’s interactions with variety, field toposequence and field aspect
(V E
i`i(k), L

E
i`i(k) and FEi`i(k)) affect the values of the coefficients which may be expressed as

δM0,ij`i(k) = dM0,`i(k)HikV
E
i`i(k)L

E
i`i(k)F

E
i`i(k), i ∈ I, j ∈ J, k ∈ {1, 2, 3} , `i(k) ∈ Ex, (7.7)

δM1,ij`i(k) = dM1,`i(k)HikV
E
i`i(k)L

E
i`i(k)F

E
i`i(k), i ∈ I, j ∈ J, k ∈ {1, 2, 3} , `i(k) ∈ Ex, (7.8)

where the yield event coefficient dM0,`i(k) is the best estimate available of the mean step change
in t.ha−1 for the geographical region in which the farm is located and the yield event coefficient
dM1,`i(k) is the best available estimate of the mean change in yield per day, measured in t.ha−1d−1.

7.4.3 Base RV models

As for the base yield models, one base RV model per farm and variety is fitted. The regressor
is Julian date7. As for the yield data, the RV % data are stratified according to variety, so
that there is one base RV % model per farm and variety. The data from Seafield farm were
sufficient for fitting regression models in the case of sugarcane varieties N12, N16 and N37, and
a second-order polynomial again provided the best fit. Contrary to the base yield models, the
intercept in the base RV models was not set to zero (since RV % is not necessarily zero on

7The Julian date is the number of the day counting from January 1st.
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(a) N16 base yield model.
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(b) N16 standardised residuals vs. EGT.
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(c) N35 base yield model.
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(d) N35 standardised residuals vs. EGT.
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(e) N37 base yield model.
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(f) N37 standardised residuals vs. EGT.

Figure 7.3: Three base yield models for cane varieties N16, N35 and N37, along with residual plots.
Notice the scarcity of data for the N37 base yield model.
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January 1st). Figure 7.5 shows the results of the three ANOVAs as well as the base RV models.
The base RV models are denoted by BR

ij .

7.4.4 Event-driven RV models

In order to account for the effect on RV % caused by the occurrence of extraneous events, event-
driven RV models are introduced, similar to the usage of event-driven yield models described
in §7.4.2. The notation for the event-driven RV models follows that of the event-driven yield
models, where qij`i(k) denotes the time in days between successive occurrences of event `i(k) ∈
Ex on field i and the midpoint of period j. The order number k ∈ {1, 2, 3} retains the same
meaning as previously. Let ERij denote an event-driven RV model value that adjusts RV % in
unit percent during period j to account for events that have occurred on field i, let δR0,ij`i(k)

denote the step decrease due to the kth event and let δR1,ij`i(k) denote the RV % decrease in unit
% per day after the day of the event due to the kth event. Then ERij may be expressed as

ERij =
3∑

k=1

(
δR0,`i(k) + q`i(k)δ

R
1,ij`i(k)

)
, i ∈ I, j ∈ J. (7.9)

To compute Rij , the base RV model and the event-driven RV model are summed together to
yield

Rij = BR
ij + ERij , i ∈ I, j ∈ J. (7.10)

Twelve events were included to affect RV %. The field area as well as the event’s interactions
with variety, field toposequence and field aspect affect the values of the RV event coefficients in
the same fashion (and to the same degree) as for yield, so that

δR0,ij`i(k) = dR0,`i(k)HikV
E
i`i(k)L

E
i`i(k)F

E
i`i(k), i ∈ I, j ∈ J, k ∈ {1, 2, 3} , `i(k) ∈ Ex, (7.11)

δR1,ij`i(k) = dR1,`i(k)HikV
E
i`i(k)L

E
i`i(k)F

E
i`i(k), i ∈ I, j ∈ J, k ∈ {1, 2, 3} , `i(k) ∈ Ex, (7.12)

where the RV event coefficient dR0,`i(k) is the best estimate available of the mean step change
RV % in unit % due to the kth event for the geographical region in which the farm is located
and the RV event coefficient dR1,`i(k) is the estimate of the mean change in RV % in unit % per
day due to the same event.

7.5 The cost component

The scheduling model within the DSS takes various costs into consideration, such as the cost of
cutting the sugarcane, loading, reloading, transporting it to the mill and other operational costs.
The scheduling model is sometimes forced to behave in a certain manner, which is achieved by
means of penalties in the form of large costs.

7.5.1 Event-driven costs

The DSS also imposes penalties in the form of costs as a means of discouraging solutions to
the SMF that are deemed beforehand to be undesirable. For example, if a grower marks a field
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(f) N37 standardised residuals vs. Julian date.

Figure 7.4: Three RV models fitted to data from Seafield farm.



112 Chapter 7. Model parameter estimation

N12 Df SS MS p-value

x 1 5.06 5.06 0.013
x2 1 28.2 28.2 < 0.0001
Error 100 79.0 0.79
Total 102 112

(a) N12 model y = 8.31 + 0.051x− 0.00011x2.

N16 Df SS MS p-value

x 1 0.063 0.063 0.79
x2 1 14.7 14.7 0.00061
Error 23 21.5 0.94
Total 25 36.3

(b) N16 model y = 6.04 + 0.068x− 0.00015x2.

N37 Df SS MS p-value

x 1 0.62 0.62 0.061
x2 1 2.30 2.30 0.0076
Error 4 0.37 0.093
Total 6 3.29

(c) N37 model y = 3.69 + 0.095x− 0.00020x2.

Figure 7.5: Three RV % models fitted to data from Seafield farm. Here Df denotes degrees of freedom,
SS denotes sum-of-squares and MS denotes mean square.

with an early plough-out decision8, a penalty is applied to the field if scheduled for harvesting
after the 181st day of the year (end of June). This approach has led to the introduction of
the notions of a harvesting time window (HTW) and a harvesting time deadline (HTD) which
specify upper bounds on the number of days to wait before harvesting some affected field and
the date before which to harvest some affected field, respectively. For example, a field affected
by an Eldana infestation receives an HTW of 20, and the cost matrix Cij is manipulated by
adding a penalty cHTWij = PEqij`i(k), where PE is a per-day-per-tonne penalty coefficient. When
Cij is computed, the Julian date of the event is subtracted for each j ∈ J from the first Julian
date of the period. The portion of that difference that exceeds 20 is multiplied by the penalty
coefficient and subsequently added to the computation of Cij . A realistic estimate for the value
of PE is 10 Rand per day per tonne [164], and reflects on the importance of adhering to the
time windows and deadline dates.

7.5.2 Fixed operational costs

The operational costs involved when harvesting and transporting sugarcane arise under the
completion of a number of activities, which, for a typical harvesting and transport operation in
South Africa involves at least:

• oversight of the harvesting operation,

• when cutting manually: burning the fields before cutting,

• when cutting mechanically: burning is optional,

• transporting the cutters and drivers to, from and between fields,

• transporting or driving mechanised equipment between fields,

• cutting the cane,

8The early plough-out event is a decision—not an environmental event—taken early in the season by the
grower to plough out and replant a field during the latter parts of the season. Common farming practice is to
harvest such a field early in order to optimise total yield.
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V Ei`i(k) LEi`i(k) FEi`i(k)

Event N12 N16 N23 N29 N35 N37 N40 N41 H M V NW N NE E SE S SW W

Drought death 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Drought stress .9 1.2 1 1.2 1.4 1.1 1.1 .9 1.2 1 .8 1.1 1.2 1.1 1 .9 .8 .9 1
Eldana borer .9 1.2 1 .9 1.2 1 1 .9 1.1 1 .9 1.1 1.2 1.1 1 .9 .8 .9 1
Cool fire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Warm fire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Flowering 1 .8 1.2 1.2 .8 .8 1 .8 1 1 1 1 1 1 1 1 1 1 1
Frost −2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frost −3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frost −5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frost −7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frost −9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frost black 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Green leaf sucker 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lodging 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mosaic 1 1 1 1 .8 .8 .8 1 1 1 1 1 1 1 1 1 1 1 1
Normal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Plough out early 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Red rot .8 1 .8 .8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ripening 6 week 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ripening 8 week 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RSD 1.1 1.1 1.1 1.2 1 1 .9 1.2 1 1 1 1 1 1 1 1 1 1 1
Sesamia borer 1 1 1 1 1 1 1 1 1.1 1 .9 1.1 1.2 1.1 1 .9 .8 .9 1
Wetness - - - - - - - - .7 1 1.3 .9 .8 .9 1 1.1 1.2 1.1 1

Table 7.1: The interaction coefficients V E
i`i(k), L

E
i`i(k) and FE

i`i(k). The values of V E
i`i(k) were chosen as

numerical representations of varietal properties as described in SASRIs Information Sheets [182]. The
values of LE

i`i(k) and FE
i`i(k) were conservatively assigned based on discussions with the owner of Seafield

farm [164] and the case study harvesting operation manager [126].

• topping the cane,

• windrowing, stacking or bundling the cane,

• driving long-range transport vehicles and tractors to and into the fields from other fields,
a mill or their depots,

• loading the cane from the ground into bins, trailers or long-range transport vehicles using
mechanised equipment,

• transporting the cane from the field to the mill, waiting and unloading it.

It is complicated to estimate the exact cost of these harvesting operations, which are typically an
unknown function of the day of the year and the geographical location of the field. However, in
KwaZulu-Natal, there are estimates of manual harvesting costs at 30 Rand per tonne of cane with
infield loading and 46 Rand per tonne with the use of an intermediary loading zone [126, 164].
The cost of transportation is heavily dependent on the distance between the field and the mill,
but for the case study area mentioned earlier it is assumed to be approximately 30 Rand per
tonne [164]. These costs include pay-off of capital, fuel, wages and other direct costs such as
contractors. This may seem a gross over-simplification, but most fields belonging to the same
farm differ only marginally in terms of their distances to the mill. The fields on a particular farm
in South Africa that lie furthest apart from one another may be at a distance of, for example,
50 km and 55 km from the mill, respectively. The harvesting operation only travels directly
between fields if they are harvested on the same day. Otherwise the harvesting operation returns
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to a depot every afternoon, bringing personnel and equipment along. Harvesting different fields
on the same day becomes more common the larger the farm or estate. The notation for the cost
of harvesting and the cost of transportation for field i during period j is cij .

7.5.3 Rain-dependent operational costs

It is not so important to supply the DSS with perfectly calculated costs per tonne of cane as it
is to estimate differences in costs due to inherent differences between fields or the occurrence of
extraordinary events. One such difference occurs due to the practice of zone loading, mentioned
in Chapter 3, which entails the additional loading and unloading of tractor-trailer combinations.
An approach towards modelling this practice is described in this section.

The fields may be classified according to differences in the manner in which they may be accessed
during harvesting operations. Fields are said to belong to one of two access categories: access
category 1 (AC1) or access category 2 (AC2). Fields in AC1 are accessible to a long-range
transport vehicle when dry and a tractor when wet. Fields in AC1 are level, have a layout
conducive to in-field loading and have good access roads. Fields in AC1 are zone loaded only if
they are wet. Fields in AC2 are only accessible to tractors, when dry or wet. Roads connecting
AC2 fields may be poor or steep, or the fields themselves may be on slopes too steep for large,
long-range vehicles to operate on. Fields in AC2 are zone loaded at all times.
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Figure 7.6: The fraction of days that received at least one instance of precipitation by month, averaged
over the years 2000 to 2007.

No field, regardless of category, may be harvested during precipitation. The surface of the field
weakens and softens when it is wet. Hence driving any type of vehicle into the field during
rainy weather causes damage to the cane stools and surface layer of the soil. The differences
in costs between the above-mentioned categories are rather assumed to consist of the necessary
zone loading and the capacity decrease that occurs when conditions are wet, which is the case
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Figure 7.7: The average amount of precipitation in millimetres received on the days that received
precipitation by month, averaged over the years 2000 to 2007. The grand average is 7.1 millimetres per
day.

during a period of time after precipitation. Wet conditions cause other problems as well, such
as reducing the effectiveness of the burning practice [126] or increasing the amount of soil being
picked up and mixed with the cane during loading.

Figure 7.6 shows that during the winter months of June, July and August, precipitation only
occurs on approximately one out of twenty days. The average amount of precipitation on days
that actually experience precipitation is shown in Figure 7.7 and the greater the amount of
precipitation, the longer the field will take to dry out.

During the part of the season that receives relatively few instances of precipitation, the fields
usually dry out within a few hours, making them almost always accessible to long-range trans-
port vehicles, tractors and loaders. For the case study area, fields in AC1 may almost always
be loaded onto long-range transport vehicles in-field during May, June, July and August, but
not as often during April and September, and rarely during October, November, December,
January and February.

The approach towards modelling this situation is based on associating a cost with the harvesting
of a field of a particular access category during a particular period of the season. Let Wij be
a random variable that takes the value 1 if conditions for field i are wet during period j, or 0
otherwise. Fields are assumed to receive equal amounts of precipitation but are not assumed to
dry out at equal rates. Accordingly, let P (Wij = 1) denote the probability of wet conditions at
field i during period j.

Assuming that the probability of wet conditions is constant during any particular period, the
scenario may be modelled by means of an M/M/1 queueing system. Let 1/µij be an expo-
nentially distributed random variable that denotes the average time for an initially dry field
i to dry out after a single occurrence of precipitation (one rain shower) during period j. A
unit of precipitation is assumed to be of a certain average millimetre amount for each period,
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

λpohj 0.02 0.019 0.011 0.005 0.002 0.002 0.004 0.016 0.022 0.022 0.022 0.022

ψapaj 10.4 5.6 7.0 5.6 9.1 7.6 4.3 6.2 7.3 5.5 8.7 7.7

µpohj 0.03 0.06 0.05 0.06 0.04 0.05 0.08 0.06 0.05 0.06 0.04 0.05

Table 7.2: Seasonal values of the number of precipitation occurrences per hour (λpoh
j ), the average

amount of rainfall during each occurrence (ψapa
j ) expressed in millimetres and the average dry-out rate

expressed in number of precipitation occurrences per hour (µpoh
j ).

the amount following an exponential distribution. Furthermore, let 1/λj be an exponentially
distributed random variable denoting the average time between precipitation occurrences at
all fields during period j. Finally, if ρij = λj/µij , the probability of wet conditions may be
expressed as

P (Wij = 1) = 1− P (Wij = 0)
= 1− (1− ρij)
= ρij , i ∈ I, j ∈ J, (7.13)

(see, for example, [80]).

For the purposes of estimating µij and subsequently ρij , the field’s aspect and toposequence
must be known. The average dry-out time is assumed to depend on the average amount of
precipitation per precipitation occurrence, the field aspect (north-west, north, north-east, east,
south-east, south, south-west or west) and the field toposequence (hilltop, mid-slope or valley
bottom). A field situated mid-slope is assigned the nominal dry-out rate, while a field situated
on a hill-top is assumed to dry out 30 % faster and a field situated in a valley bottom is assumed
to dry out 30 % slower. A field facing east or west is given a nominal dry-out rate, a north-east
or north-west facing field is assumed to dry out 10 % faster while a south-east or south-west
facing field is assumed to dry out 10 % slower. A field facing north is assumed to dry out 20 %
faster than the nominal rate, while a south-facing field is assumed to dry out 20 % slower than
the nominal rate.

The wet probability for a particular field during a particular time period is found through the
following computational steps: First, for each period j of the season, an average number of
precipitation occurrences per hour λpohj is computed using the information in Figure 7.6. For
January, for instance, the computation becomes 0.48/24 = 0.020 occurrences per hour. An
assumption is that the days that receive precipitation only receive a single occurrence; this
assumption was made to enable the next step. Secondly, an average precipitation amount of
water in millimetres per occurrence ψapaj is extracted from Figure 7.7, which for January is
10.4 millimetres per occurrence. Thirdly, it is assumed that the average dry-out rate µapa is
0.35 millimetres per hour, but that the dry-out rate µpohj in number of precipitation occur-

rences per hour is expressed as µpohj = µapa/ψapaj , which for the January example becomes

µpohj = 0.35/10.4 = 0.034 occurrences per hour. The field-specific dry-out rate in number of

occurrences per hour is then expressed as µij = µpohj /(LEi`i(k)F
E
i`i(k)), where `i(k) represents the

event called “Wetness” in Table 7.1. Using (7.13), the probability of wet conditions becomes
P (Wij = 1) = ρij = λpohj /µij . In the above computation the end result may occasionally be
a value larger than 1; this, however, is not of concern, since its only use is to multiply it by
a penalty coefficient. The resulting values of λpohj , ψapaj and µpohj for the case study area are
presented in Table 7.2.
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Let ρij from (7.13) be the risk of wet conditions on field i on a day during period j and let PWi
be the penalty, i.e. an estimate of the cost to the business, incurred if field i is scheduled to be
harvested on a wet day. Then the zone loading cost component, cdij , becomes

cdij = PWi ρij i ∈ I, j ∈ J. (7.14)

The penalty PWi depends only on the accessibility of field i, which for the fields in AC 1 is equal
to the cost of zone loading (estimated at 16 Rands per tonne [126] and for the fields in AC 2
is equal to zero (AC 2 fields are always zone loaded, so their cdij-values are instead fixed at 16
Rand per tonne). In summary, the cost component Cij may be expressed as

Cij = cij + cHTWij + cHTDij + cdij , i ∈ I, j ∈ J. (7.15)

7.6 The profit

The various coefficients necessary to complete the computations described in §7.4 and §7.5
are summarised in Table 7.3. Given that Mij , Rij , Cij , ȳ, w̄j and the RV-price P have been
computed according to the above procedures, the profit Pij associated with harvesting field i
during period j should be computed by determining the value of Vij using (7.3) and substituting
this value into (7.1).

7.7 Chapter summary

The various models employed to associate a value and a cost with the harvesting of a field
during some time period were introduced and described in detail in this chapter. The value of
harvesting a field is estimated by means of the sugarcane value, which has been modelled by
means of a regression analysis of the yield, a regression analysis of the recoverable value, special
models of the effects of extraneous events on yield and recoverable value as well as the price
of recoverable value and the regional conditions involved in sugarcane production. The cost of
harvesting the field is modelled by estimating the cost of the activities involved, separated into
two parts: costs under dry conditions and costs under wet conditions. All other aspects of the
costs involved in the harvesting and transportation process are aggregated as far as possible.
The appraisal of the value and cost of harvesting a particular field during a particular time
period takes (adverse) extraneous events into consideration in a novel fashion. This chapter is
thus in partial fulfilment of Dissertation Objective VI of §1.3.
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Yield effect RV % effect
Event dM1,l(k) assumptions dR0,l(k) dR1,l(k) assumptions HTW HTD

Drought
death

−0.383 Deterioration compu-
ted to cancel out 1/4
of the maximum N12
growth rate.

0 −2 RV % estimated to de-
teriorate by 14 unit %
per week.

365 365

Drought
stress

−0.383 See drought death. 0 0 365 365

Eldana
borer

0 0 −0.0015 0.045 unit % RV % de-
terioration per month.

20 365

Cool fire −0.038 Deterioration estima-
ted at one tenth of the
maximum N12 growth
rate.

0 0 365 365

Warm fire −0.383 See drought death. 0 −0.45 Old (>18 months)
crops deteriorate by
0.45 unit % RV % per
day.

365 365

Flowering −0.109 Deterioration estima-
ted at 10 t.ha−1 per 3
months.

0 0 365 365

Frost −2 0 Present for record keep-
ing purposes.

0 0 365 365

Frost −3 −0.038 See cool fire. 0 0 365 365
Frost −5 −0.383 See drought death. 0 0 21 365
Frost −7 −0.383 See drought death. 0 −1 1 unit % per day. 14 365
Frost −9 −0.383 See drought death. 0 −2 2 unit % per day. 7 365
Frost
black

−0.383 See drought death. 0 −2 2 unit % per day. 7 365

Green
leaf
sucker

−0.038 See cool fire. 0 −0.0007 Half of the Eldana de-
preciation.

365 365

Lodging −0.109 See flowering. 0 −0.0108 0.33 unit % per month. 365 365
Mosaic 0 Should be harvested

early if severe.
0 0 365 181

Normal 0 Indicates that no ev-
ents have occurred.

0 0 365 365

Plough
out early

0 Indicates that grower
has decided to plough
out field. Should be
harvested early.

0 0 365 181

Red rot 0 0 −0.0007 See Green leaf sucker. 365 365
Ripening
6 week

0 2 0 Increases RV % by 2
unit %. Should be har-
vested within 42 days.

42 365

Ripening
8 week

0 2 0 Increases RV % by 2
unit %. Should be har-
vested within 56 days.

56 365

RSD −0.153 Slows growth by 40 %
of the N12 maximum
growth rate.

0 0 Should be harvested
early.

365 181

Sesamia
borer

0 0 −0.0007 See Green leaf sucker. 365 365

Table 7.3: Yield and RV event coefficients as well as harvesting time windows (HTW) and harvesting
time deadlines (HTD) for the twenty-three events incorporated into the DSS presented later in this
dissertation. HTW is the number of days counting from the day of the event within which the field
should be harvested, while HTD is the Julian date before which the field should be harvested. The
reason for not displaying dM

0,l(k) is that it is 0 for all the currently incorporated events.



CHAPTER 8

The decision support system

Contents
8.1 The decision support system as a concept . . . . . . . . . . . . . . . . . . . . . 119

8.1.1 The DSS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1.2 The building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2 The DSS implemented on a personal computer . . . . . . . . . . . . . . . . . . 122

8.2.1 The user interface and the run data building blocks . . . . . . . . . . . 123

8.2.2 The prediction models and the scheduling model building blocks . . . . 129

8.3 Verification of the DSS implementation . . . . . . . . . . . . . . . . . . . . . . 135

8.3.1 Verification experiment 1: 20 fields . . . . . . . . . . . . . . . . . . . . . 135

8.3.2 Verification experiment 2: 60 fields . . . . . . . . . . . . . . . . . . . . . 138

8.3.3 Verification experiment 3: 200 fields . . . . . . . . . . . . . . . . . . . . 141

8.4 Determining the tabu list tenures . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

This chapter contains descriptions of a conceptual architecture of a DSS put forward to aid
with sugarcane harvest scheduling decisions. This architecture contains various building blocks
which are also described as well as the workflow and dataflow related to these building blocks.
Finally, a computer implementation of the DSS is described in some detail.

8.1 The decision support system as a concept

From a high level, the DSS may be viewed as a tool which operates in a stand-alone manner on a
personal computer, which needs input in the form of relatively readily available historical data
on field level productivity and which recommends a harvesting schedule for a single, current
season, as shown graphically in Figure 8.1.

Historical
productivity data

// DSS // Harvesting
schedule

Figure 8.1: High-level view of the DSS inputs and outputs.
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8.1.1 The DSS architecture

The DSS architecture is designed for the medium-scale solitary commercial grower and medium-
scale commercial harvesting group contexts. The building blocks that make up the DSS archi-
tecture are called the user interface building block, the run data building block, the field database
building block, the coefficient database building block, the prediction models building block and
the scheduling model building block. The architecture is shown schematically in Figure 8.2.
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Figure 8.2: Conceptual DSS architecture.

The user interface provides the means by which to populate the coefficient database building
block, to populate the field database building block, to enter information into the run data
building block, and to control the performance of the prediction models and scheduling model
as well as methods for producing legible harvesting schedules. The coefficient database building
block stores all coefficients for the prediction models of Chapter 7, while the field database
building block stores all field data required for the correct application of the prediction models
building block. The run data building block contains information required for the correct
application of the scheduling model building block.

The prediction models building block contains the models presented in Chapter 7, namely the
cane yield models, the recoverable value percentage prediction models, the cane yield event mod-
els, the recoverable value percentage event models, the event penalisation models, the harvesting
cost models, the wet conditions probability models, the relative recoverable value payment sys-
tem models, the mill area seasonal average prediction model and the mill area periodical average
prediction model.

The scheduling model building block houses the model and solution methods presented in §6.2.2,
namely the sequential model formulation and the attribute based tabu search with a shift
neighbourhood and an ejection chain.

8.1.2 The building blocks

Several of the conceptual building blocks mentioned above were indirectly described in Chap-
ters 6 and 7. In this section, the building blocks are further described within the context of the
DSS architecture.

The user interface building block provides the user with the possibility of entering values into the
run data building block, the coefficient database building block, the field database building block
as well as controlling the performance of the prediction models building block, the running of
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the scheduling model building block and the parameter values within the embedded tabu search
algorithm.

The run data building block consists of values for harvesting and transportation costs, zone-
loading costs, season starting and ending dates, event-related penalty coefficients PE , parameter
settings for the scheduling model and the RV price. The parameters employed in the TS are
max no local impr, max no global impr, the tabu list tenures of the six tabu lists, and a time
limit for the scheduling algorithm.

The coefficient database building block contains

• the regression coefficients β0, β1 and β11 for the base yield models of §7.4.1 and the base
RV models of §7.4.3,

• the coefficients for event interactions with variety, field toposequence and field aspect
V E
i`i(k), L

E
i`i(k) and FEi`i(k),

• the yield event coefficients dM0,`i(k) and dM1,`i(k) as well as the RV event coefficients dR0,`i(k)

and dR1,`i(k) of §7.4.2 and §7.4.4,

• the zone loading penalty PWi , dry-out rate µapa, the precipitation amount per occurrence
ψapaj , and the precipitation occurrence rate λpohj of §7.5.3.

The field database building block contains

• the set of all fields, I,

• the field-by-field values of variety, the previous harvest date, the harvesting front, the
aspect, the field toposequence, the field area, the field accessibility, the estimated yield,
and the manual yield adjustment,

• the events `i(k) and percentage of crop affected Hik.

The prediction models building block contains

• functions for computing the field EGT and the day of the year for future periods j ∈ J ,

• the base yield models BM
ij of §7.4.1,

• the base RV models BR
ij of §7.4.3,

• the event-driven yield models EMij of §7.4.2,

• the event-driven RV models ERij of §7.4.4, including intermediary computations of δM0,ij`i(k),
δM1,ij`i(k), δ

R
0,ij`i(k) and δR1,ij`i(k) due to event `i(k),

• a function for computing the zone loading component cdij including intermediary compu-
tations of λj and µij of §7.5.3,

• functions for computing the event related waiting and time window penalties cHTWij and
cHTDij of §7.5.1,

• functions for computing Mij , Rij , ȳ, w̄j , and finally
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• functions for computing Vij , Cij and Pij .

The scheduling model building block contains the model and solution approach of §6.2.2. The
input taken from the run data building block is the time limit, tabu list tenures, the maximum
number of non-improving iterations between ejection chains, the maximum number of non-
improving iterations between newly generated randomised starting solutions, and the season
starting and ending dates. The data taken from the prediction models building block are the
Pij , while the field areas are taken from the field database building block (used to approximate
the required time to harvest each field).

A possible approach towards deploying this conceptual architecture in practice is now briefly
described. Figure 8.3 shows the various steps required to deploy the DSS together with a refer-
ence to what kind of expertise is required by the deployer or which role-player may be suitable
to perform each step of the deployment process. The role-players are divided into the three
categories indicative of the type of decision each is expected to make on a regular basis, namely
the strategist, the manager and the consultant. The strategist is considered to be a person
usually responsible for strategic decisions concerning the harvesting operation, such as variety
selection, layout planning, and other decisions with long-term or large financial implications.
The manager is considered a person normally in charge of daily operations, labour management,
short-term planning and who generally has some set of directions to follow. The consultant is
someone who is capable of managing the deployment of the DSS and who understands the
nature and workings of the models included in the DSS.

The DSS may only be deployed within a delimited harvesting area, which may constitute a
single farm or multiple farms. Within this area, the consultant is tasked to populate a finite
number of prediction models with parameter values, for example by means of a model fitting
technique such as the Method of Least Squares which renders values for the parameters of the
model. One way of limiting the number of models is to, for example, decide to fit one model per
cane variety and agroclimatically homogenous area, or one model per cane variety and farm.
The regressors to include are assumed to depend on the quality and quantity of the available
field record data. The strategist then divides the harvesting operation into harvesting fronts
and selects fields to be harvested during the current season, assigning each field to a harvesting
front. Each harvesting front is treated as a separate problem by the DSS. The manager then
gathers data on each field and populates the field database, while the consultant populates the
coefficient database and selects solver parameters taking the number of fields into consideration.
Finally, a time limit for the solver is specified and the solver is called to produce a harvesting
schedule. Once the deployment has been completed, the manager may iterate through the
manager level of the diagram in Figure 8.3 each time a new schedule is sought.

8.2 The DSS implemented on a personal computer

This section contains a description of the appearance and functionality of a computer imple-
mentation of the DSS described in §8.1. This computer implementation was performed with
the main focus of providing a platform from which to test and validate the concepts within the
architecture described in §8.1.1 as well as the architecture as a concept in itself.

The components of the DSS implementation are described by means of screen-shots with accom-
panying descriptions of the functionality of the various sub-components. The implementation
is a macro-activated Microsoft Excel workbook and each of its parts is described according to
which worksheet in the workbook it is located in. The worksheets are first described with respect
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Figure 8.3: Workflow involved when deploying the DSS described generically in §8.1.

to their relevance to the user, and are subsequently comprehensively described with regards to
functionality. The underlying Visual Basic for Applications for Excel (VBA) source code is
included in Appendix A. For the purposes of the implementation development and verification
work, two of the worksheets include a search-report feature and a random farm generator.

8.2.1 The user interface and the run data building blocks

The user interface mainly consists of the two worksheets “Start” and “HarvestPlan.”

The worksheet “Start”

The most important parts of the user interface are located on the worksheet named “Start” of
which a screen-shot is shown in Figures 8.4 and 8.5. The components of Figures 8.4 and 8.5
have been divided into six numbered parts which are described according to their respective
user-relevant components. In the following description, there are some values (numeric and
otherwise) which the user may specify. In this description, such input is consistently put inside
quotation marks, but only the value inside the quotation marks should be typed into the cells
in the DSS.

Part 1 of the sheet in Figure 8.4 contains that aspect of the user interface which connects with
the field database, where the user may enter information on up to 999 fields. For each field
(row) there are 21 columns into which the user may enter values and one column (DET) whose
values are returned by the DSS, and these 22 columns are now described by heading:
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HF contains the numbers or names of the harvesting fronts to which each field belongs. The
user may use a numerical value or text to distinguish as many harvesting fronts as desired.
The scheduling algorithm only schedules fields within a single selected harvesting front.

FN contains the names of the fields, which need only be unique within each harvesting front.
These names may be specified in text or number form.

FA contains the field sizes in hectares.

S contains the toposequences of the fields, where an “H” represents a field lying on a hill-top,
where “M” represents a field lying on a mid-slope, and where “V” represents a field lying
in a valley-bottom.

FD contains the aspects of the fields, where the strings “N”, “S”, “E”, “W”, “NW”, “NE”,
“SE” and “SW” may be input to indicate the direction of the field’s normal.

AC contains the access categories of the fields. An access category value of “1” should be
specified when a long-range transport vehicle may enter the field whenever it is dry1,
while a “2” should be specified if long-range transport vehicles may never enter the field.

V contains the names of the cane varieties present on the fields. The available names are
stored on the worksheet “V”, but may, for example, follow the cane variety names used in
Chapter 2 (“N12”–“N50”). This variable value is important since the prediction models
building block relies solely on this value when selecting the regression coefficients for
modelling the cane yield or RV % for each field. If this column is populated carefully, it
may accommodate a single model for each field. This is achieved by choosing values for
each field that are unique and using them as input in this column, then fitting a cane yield
prediction model (base yield model) and an RV % prediction model (base RV model) for
each field, not just for each cane variety.

CC contains the crop classes of the fields, where “0” means a plant-crop, “1” means a first
ratoon and so on.

LHD contains the last harvest dates of the fields. The last harvest date of a field is the date
on which the field was last harvested. This value must be specified in a date format
such as “2007/04/24” and should reflect the date from which the age of the cane is to be
calculated. The age and EGT are calculated automatically by the DSS.

ESTD contains the user estimate date. The user estimate date is a date usually reported to
the local Mill Group Board for which a grower prepares cane yield estimates for all fields
on his/her farm. Extensive effort is invested by the grower in estimating the cane yield
at this particular date, which is usually taken to be the same date for every field. For
example, the grower may choose June 20 as the user estimate date, in which case he should
input“2009/06/20” as ESTD.

ESTY contains the estimated field cane yields at ESTD. As indicated above, the grower esti-
mates (or sometimes eye-estimates) the cane yield at the user estimate date for the fields
and this estimate is specified in the ESTY-column.

ESTRV contains the estimated field RV percentages at ESTD.

1 If the field belongs to category 1, the cost of loading its sugarcane is less than that of a category 2 field, but
the cost depends on the risk of wet conditions. For more information, see Chapter 7.
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EV1 contains the name of event 1 which may have occurred on the various fields. The available
names are listed in the worksheet “EV,” and should be input exactly as they appear.
Optionally, the user may right-click on the cell and select the option “Select from list. . . ,”
in which case a drop-down list containing all event names will appear, from which the user
can select one event.

EV1D contains the dates of the start of or occurrence of event 1 for the various fields. The
format is “yyyy/mm/dd” and the value has implications on yield, RV % and cost trends.

EV1 % contains the percentages of the areas affected by event 1 for the various fields, and has
implications on yield, RV % and cost trends.

EV2 and EV3 contain additional events that have occurred on the field. The maximum num-
ber of events documented for any field is three.

DET contains the differences between the user’s estimates and the DSS’s estimates at ESTD,
and is thus not for user input.

MAV contains manual adjustment values specified by the user when it is considered necessary
to increase or decrease the yield value produced by the DSS. The values specified in this
column are added as constants to the appropriate regression functions within the DSS and
thus affects the yield trends.

Part 2 of the sheet in Figure 8.4 contains the necessary input for defining a current season:

Start of year is specified as a date (“yyyy/mm/dd”) and should normally be set as the first
day of the current calendar year.

Start of season is specified as a date (“yyyy/mm/dd”) and should express the first day of the
current milling season.

End of season is specified as a date (“yyyy/mm/dd”) and should represent the last day of
the current milling season.

RV-price is the current RV-price expressed in Rands per tonne of RV.

RV-season is one of the models of historical mill area-wide RV % data, specified by entering
the name of the chosen season. The available seasons may be found on the worksheet “V”,
and are represented by regression functions.

Cut, load, transport contains the user-specified harvesting cost as a Rands-per-tonne figure.

Zone loading cost contains the extra cost incurred should an access category 1 field be wet2.

Events contains a Rands-per-tonne-per-day figure specified by the user for use by the DSS to
penalise harvesting postponement of fields suffering as a result of particular events either
past a certain event duration or past a certain date. For example, a field with an “Eldana”
event is penalised after 20 days after EVD1 and a “Plough out early”-field is penalised
after 30 June.

2This figure is multiplied by the risk of wet conditions to yield a penalty for scheduling such a field during
periods with heightened risk of wet conditions.
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Figure 8.4: User interface screen-shot of the DSS implementation described in §8.2. The large numbers and black frames have been added to the
screen-shot for annotation purposes.
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Part 3 of the worksheet in Figure 8.4 contains the click-button “Update trends” which triggers
the calculation of a cane yield value, an RV % value, a cost value, a mill area RV % value and
a relative RV % value for each field for every seventh day of the current year, starting with the
period January 1–7 and ending with the period December 24–31, and writes these values into
the “FDB”-worksheet. For a large field database, this operation may take several minutes, but
it must be performed in order for the scheduling algorithm to receive the correct input.

Part 4 of the user interface in Figure 8.4 contains the necessary user input for specifying
what part of the worksheet “FDB” should be used as input by the scheduling algorithm. The
worksheet “FDB” contains all fields in the database with cane yields, relative RV values and
harvesting costs for all periods, but each scheduling run may only be for a certain subset of
those fields and a certain subset of those periods. The user specifies ten values in this part:

Start of schedule contains the first day (a date in the format “yyyy/mm/dd”) of the schedule
to be generated.

End of schedule contains the date of the last day of the schedule to be generated.

Harvesting front contains the name of the current harvesting front. The fields in the database
with this name in the “HF” column will be included in the scheduling, unless they have
been harvested to 100 %.

DRD from average is the DRD calculated by the DSS based on the assumption that each
field yields its across-the-season average value.

DRD from maximum is the DRD based on the assumption that each field yields the maxi-
mum value for the season.

Maximum profit contains an estimate of the maximum possible profit from the set of fields
in the schedule assuming that each field is harvested during its optimal period. This value
is returned by the DSS after having run the scheduling algorithm.

Scheduled profit is the profit value of the solution returned by the DSS subsequent to exe-
cuting the scheduling algorithm.

Schedule/Maximum is the percentage of the maximum profit possible that the returned
scheduling solution achieved.

Time limit contains the user-specified time limit allocated to the scheduling algorithm (three
separate cells; one for the number of hours, one for the number of minutes and one for the
number of seconds).

Schedule! is a click-button used to initiate execution of the scheduling algorithm for the current
season and harvesting front.

Part 5 of the worksheet in Figure 8.4 contains the click-button “Generate plan” which generates
a printable report based on the last solution generated by the scheduling algorithm. A selection
of key figures output by the DSS may be found below the click-button and in the worksheet
“HarvestPlan” the user may print the schedule as a list excerpt from the database, arranged in
order of harvest.

Part 6 of the worksheet is shown in Figure 8.5 and contains run options that are mainly used
by the scheduling algorithm, and were included in the DSS implementation for development
and debugging purposes.
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Figure 8.5: User interface screen-shot of the run options part of the user interface of the DSS implemen-
tation presented in §8.2. This area of the user interface provides the possibility of manually specifying
tabu list tenure and various options for causing the scheduling algorithm to output certain values while
running.

The worksheet “HarvestPlan”

The worksheet “HarvestPlan” contains a list of the fields included in the most recent run of the
scheduling algorithm. A screen-shot of the worksheet may be found in Figure 8.6, where the
columns contain the following information:

Field contains the names of the fields.

Area contains the areas of the fields (in hectares).

Vrty contains the names of the cane varieties present on the fields.

Month contains the scheduled months of harvest for the various fields.

AgeBrn contains the ages of the fields in months at the scheduled times of harvest.

TnHa contains the DSS estimates of the cane yields of the fields (in tonnes per hectare) at the
scheduled times of harvest.

Tons contains the DSS estimates of cane yields in tonnes at the scheduled times of harvest.

RV contains the DSS estimate of RV percentages for the various fields at the scheduled times
of harvest.

RRV contains the DSS estimates of relative RV percentages at the scheduled times of harvest.

MRV contains the DSS estimates of mill area average RV percentages at the scheduled times
of harvest.
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Figure 8.6: A screen-shot showing the HarvestPlan worksheet.

Cost contains the DSS estimates of the costs—including provisional artificial penalties—in
Rands per tonne at the scheduled times of harvest.

Ev1 contains the names of Event 1 for the various fields.

Ed1 contains the dates on which Event 1 occurred or began for the various fields.

Ep1 contains the percentages of the areas that are affected by an Event 1 for the various fields.

Ev2 contains the names of Event 2 for the various fields.

Ed2 contains the dates on which Event 2 occurred or began for the various fields.

Ep2 contains the percentages of the areas that are affected by an Event 2 for the various fields.

Ev3 contains the names of Event 3 for the various fields.

Ed3 contains the dates on which Event 3 occurred or began for the various fields.

Ep3 contains the percentages of the areas that are affected by an Event 3 for the various fields.

CutJD contains the Julian dates of the scheduled harvesting dates for the various fields. This
figure is a more precisely expressed variant of the value that column “Month” is based on.

8.2.2 The prediction models and the scheduling model building blocks

The three command buttons “Update trends,” “Schedule!” and “Generate plan” were briefly
mentioned in §8.2.1. These command buttons contain most of the functionality of the decision
support system, since the first button functions as the initiator of computer procedures repre-
senting the prediction model building block, the second button functions as the initiator of the
computer procedures representing the scheduling algorithm and the third button initiates the
computer procedures that turns the solution from the scheduling algorithm into a legible sched-
ule. The following subsections contain comprehensive explanations of the procedures associated
with the command buttons.
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The command button “Update Trends”

The command button “Update Trends” is used to separate the computationally demanding
process of computing the parameter values (the Pij , Mij , Rij , Cij and w̄j of Chapter 7) from the
process of executing the scheduling algorithm, since the user may wish to rerun the scheduling
algorithm without having to wait for the parameter values to be updated unnecessarily.

When the “Update trends” command button is left-mouse-clicked, the VBA code in Appendix
A.1 is executed, here called the UDT procedure. An overview of the events that occur in this
execution is shown in Figure 8.7(a), the components of which are described as follows:

Wait for user to click. The implementation waits for the user to click the command button
before initiating the UDT procedure.

Initialise variables. The implementation initialises variables for the number of varieties avail-
able (NOV) by searching the top 998 rows of worksheet “V” and counting the number of
entries in column “B”, the number of possible events (NOE) by searching worksheet “EV”
and counting the number of entries in column “B”, the number of toposequences (NOS)
by searching worksheet “S” and counting the number of entries in column “B,” and, fi-
nally, the number of field aspects (NOFD) by searching worksheet “FD” and counting the
number of entries in column “B.” The name of the harvesting front (HF) that should be
considered during the execution of a particular scheduling instance is captured from the
user interface (the user must enter the name of the harvesting front for which scheduling is
required), the total number of fields (TNOF) in the database variable is found by counting
the entries from row 1 to row 999 in the worksheet “Start” and an initial estimate of the
number of fields (NOF) to include in the schedule is found by evaluating a function that
counts only those entries that have a harvesting front value that matches the name of the
HF. The variable NOF is then adjusted for fields that have been harvested completely. The
first day of the year (FDY) variable is captured from the user interface and the number
of periods (NOP) variable is set to 52. Of the variables mentioned in this paragraph, only
the variable NOF has previously been mentioned in this dissertation. The variable NOF
corresponds to the size of the set I introduced in §6.1.

RV matrix. The RV matrix RVij is defined as a two-dimensional matrix with TNOF rows
and NOP columns and is built up by starting with the topmost field in the database
(the worksheet “FDB”) and computing an RV %-value for the first period of the season.
Subsequently, the RV %-values for the remaining periods are computed and these values
become the first row of the matrix. This is repeated for all TNOF fields in the database. To
compute each RV % value according to (7.10) of §7.4.3 and §7.4.4, the field toposequence
(Sit), field aspect (FD), cane variety (V), regression model intercept (B0), regression
model first-order coefficient (B1), regression model second-order coefficient (B11), event
names for events 1–3 (EV1, EV2 and EV3), event dates for events 1–3 (EV1D, EV2D and
EV3D), the percentages of the fields affected by events 1–3 (EV1P, EV2P and EV3P) are
first captured for the relevant field from the worksheet “FDB”. Secondly, the Julian date
(JD) of the harvest of the field is determined and an RV % (RVBase) is calculated by
applying the regression model to JD following the outline in §7.4.3. Thirdly, the effects of
each event having taken place on each field is computed by means of (7.11) and (7.12) of
§7.4.4. Here, dM0,`i(k) in (7.11) and dM1,`i(k) in (7.12) of §7.4.4 are called BEC0 and BEC1,
respectively, and are located in worksheet “EV,” in which they are listed by event name.
The implementation then takes the relevant percentage of the field affected by each event
Hik of (7.11) and (7.12) of §7.4.4 (here denoted by EV1P, EV2P and EV3P), takes the
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event’s interaction with cane variety V E
i`i(k) (here denoted by VCoeff) from worksheet “V,”

takes the event’s interaction with field toposequence LEi`i(k) (here denoted by SitCoeff)
from worksheet “S”, takes the event’s interaction with field aspect FEi`i(k) (here denoted
by FDCoeff) from worksheet “FD” and finally uses JD and the event dates (EV1D, EV2D
and EV3D) to compute q`i(k) of (7.9). The implementation may now by means of (7.9)
compute the effects of the up to three events (here denoted by , RVEV1, RVEV2 and
RVEV3, respectively) taken place on each field. RVBase is subsequently added to RVEV1,
RVEV2 and RVEV3, to complete the computation of a single RV matrix entry, following
(7.10). RVij is pasted into the worksheet “FDB” in the proper place.

Yield matrix. The yield matrix Yij comprises TNOF rows and NOP columns, and is con-
structed in a similar fashion as RVij. Here (7.7), (7.8), (7.5), (7.6) of §7.4.2 and the
outline in §7.4.1 are used in succession to compute each entry of this yield matrix. The
main difference is that MAV is applied by the calculated yield value for each field and
period, but since the regressor unit is measured in effective growth time (EGT)—defined
as the time in months outside the period of June, July and August allowed for the field to
grow— the calculation involves this rather complicated step for every field and period. As
for the RV matrix, Yij is constructed by finding the regression model value for each field
and adding to it the each field’s events’ yield effects (here denoted by YEV1, YEV2 and
YEV3) and iterating this computation over all fields and periods. The resulting matrix is
then pasted into the worksheet “FDB”.

DET. The implementation computes a column of differences between the user’s own estimate of
the yield at ESTD and the Yij-element corresponding to each field (row) and the period in
which ESTD falls (column). The DET column vector is pasted into the worksheet “Start”
so that it is visible within the user interface.

Cost matrix. The cost matrix Cij also consists of TNOF rows and NOP columns, and is
constructed by computing one element at a time. Each element is computed by adding
the cut, load and transport costs from the user interface to the sum of the following three
terms as outlined in §7.5 according to (7.15): (1) the wet probability of the field and period
adjusted for toposequence and aspect multiplied by the zone loading cost from the user
interface, (2) the difference between the time elapsed since the event and the allowable
time window for the event (HTW) for each event (found in the worksheet “EV”) multiplied
by the event penalty from the user interface, and finally (3) the difference in time between
the period and the harvest time date (HTD) (found in the worksheet “EV”) multiplied by
the event penalty from the user interface. Cij is subsequently pasted into the worksheet
“FDB.”

Mill RV matrix. The mill RV matrix (MRVij) is constructed by means of the relevant re-
gression coefficients from worksheet “V” based on the choice of RV-Season from the user
interface. Each period’s value is calculated separately, but all fields in the same harvesting
front are assumed to deliver to the same mill—therefore the matrix may be constructed
by copying one row TNOF times. The matrix MRVij is subsequently pasted into the
worksheet “FDB.”

Relative RV matrix. The relative RV matrix (RRVij) is constructed element by element by
subtracting the MRVij value from the RVij value and then adding the average mill RV
value (the row average). RRVij is subsequently pasted into the worksheet “FDB.”
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(c) “Generate plan.”

Figure 8.7: Flowcharts of the actions executed when the command buttons “Update trends,” “Sched-
ule!” and “Generate plan” are left-mouse-clicked.

The command button “Schedule!”

The command button “Schedule!” provides the user with control over the scheduling algorithm.
The command button is connected to the VBA procedure in Appendix A.2. The algorithm is
described in Chapter 6 and is a tabu search employing a shift neighbourhood and an ejection
chain. In the following description of the flow of the activities within the scheduling algorithm,
the term problem should be interpreted as an instance of the scheduling problem described in
§6.2 comprising a set of sugarcane fields and harvesting periods. The working procedure is
illustrated in Figure 8.7(b).

Wait for user to click. When the user left-clicks the “Schedule!” button, the implementation
initiates the code in Appendix A.2.

Initialise variables. Variables used in this procedure are initialised in such a way as to min-
imise memory usage and computation speed, without encroaching on the possibility to
extend the procedure to larger problems (up to 999 fields).

Yield and profit matrices. The problem-specific yield and profit matrices (the Mij and Pij
matrices, respectively) comprise NOF rows by NOP columns (note that NOP does not
necessarily have the value 52 anymore) and are constructed by selecting the rows which
correspond to the fields identified by the current HF and which have not been harvested
completely. The selection occurs from the yield part of the worksheet “FDB” that covers
the columns (periods) implied by the user input start and end of schedule. To compute
a yield value for each field in tonnes (to populate the Mij matrix), the selected part of
the worksheet “FDB” (which is given in tonnes per hectare) is multiplied row-wise by the
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field’s area. To populate the Pij matrix, a profit value for each problem field is computed
by multiplying the corresponding Mij matrix element by the difference between the RV
price multiplied by the relative RV % (from the corresponding field and period on the
relative RV % part of the worksheet “FDB”) and the cost (from the corresponding field
and period of the cost part of the worksheet “FDB”). The last computation follows that
of (7.1) in §7.1.

Cutting times matrix. The cutting time matrix CTij requires the computation of the time
that it takes to harvest a field during a certain time period and depends on the choice of
method specified by the user via the user interface. The method may either be based on
the area of the field or on the yield value of the field. In the former case, the computation
is independent of the time period, and is thus straightforward. The cutting time for
each field is computed by dividing the field area by the total problem area, subsequently
multiplying that value by the schedule duration expressed in days (populating the CTAij
matrix). However, if the latter method is chosen, the total problem yield is first computed
by summing the average yield for each field. The cutting time for each field and each period
is computed by dividing the regression model yield for that field and period by the total
problem yield, and subsequently multiplying that value by the schedule duration expressed
in days (populating the CTYij matrix). Both methods are approximations, since the time
required to cut a field may depend on both area and yield. Despite the approximations,
the objective function is non-linear, which becomes clear when considering that the yield
value of a field depends on the harvesting time period, which in turn depends on the
harvesting sequence of fields preceding the field in question.

Matrix of relative profits. The matrix of relative profits (Nuij) is used in the ejection chain
part of the tabu search algorithm. The relative profit value is computed for each field and
period by dividing the corresponding profit matrix value by the largest profit matrix value
for the field. Thus each value in the matrix Nuij expresses the relative performance of a
field during a particular period, compared to what the field achieves in the period of best
performance.

DRD computations. The user interface shows two values of DSS estimated DRD, namely a
DRD based on the maximum yield of each field, and a DRD based on the average yield of
each field. The DRD based on maximum yield is found by summing the maximum yield of
each field found throughout the Mij matrix and dividing that number by the duration of
the season expressed in days (LOS). The DRD based on average yield is found by summing
each field’s average yield across the Mij matrix, and subsequently dividing that number
by the LOS.

Initialise timer. The timer used to control the run-time of the scheduling algorithm is set
equal to system time plus the user-specified allotted time from the user interface.

Starting solution. At this stage a pseudo-random starting solution is generated by generating
a random permutation of a range of integers between 1 and NOF.

Tabu search. The starting solution is used as input to the tabu search algorithm. The best
possible solution found during the tabu search is returned from this step and is stored in
the worksheet “Sequence.”
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Field Area Accs Vrty Month AgeBrn TnHa Tons RV RRV MRV Cost Ev1 Ed1 Ep1 Ev2 Ed2 Ep2 Ev3 Ed3 Ep3 CutJD

F4 5.63 1 N40 Mar 13.2 97 548 10.5 11.7 10.9 R 66 Fire warm 03/17 100 Normal 01/01 0 Normal 01/01 0 76
F9 9.18 2 N16 Apr 21.4 100 917 11.8 11.9 12.0 R 76 Plough out early 03/17 100 Normal 01/01 0 Normal 01/01 0 99
F1 6.76 2 N16 May 23.2 100 677 12.2 11.2 13.1 R 76 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 136
F7 5.52 1 N16 Jun 23.2 101 556 12.4 10.9 13.7 R 61 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 163
F3 4.49 1 N35 Jul 16.1 104 467 13.9 12.1 13.9 R 60 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 185
F6 8.95 1 N40 Jul 22.4 102 914 14.0 12.1 14.0 R 60 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 203
F5 9.32 1 N12 Aug 25.5 101 939 14.0 12.2 14.0 R 67 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 239
F8 4.61 2 N12 Oct 25.1 103 474 13.8 12.4 13.5 R 76 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 277
F2 3.35 2 N16 Oct 29.1 97 325 12.5 11.6 13.0 R 76 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 295
F10 6.09 1 N12 Nov 20.8 114 696 13.2 12.8 12.6 R 66 Normal 01/01 0 Normal 01/01 0 Normal 01/01 0 309

Table 8.1: An example of a ten-field harvesting plan constructed by the computer implementation of the DSS. Here the column Field contains the names
of the fields in the schedule, the column Area contains the areas of the fields, the column Month contains the months of the scheduled fields’ harvesting
dates, the column Accs contains the access categories of the fields, the column Vrty contains the cane varieties of the fields, the column AgeBrn contains
the ages of the fields at the time of the fields’ scheduled burning, the column TnHa contains the cane yields per hectare for the fields at their times of
scheduled harvest, the column Tons contains the cane yields of the fields at their times of scheduled harvest, the columns RV, RRV and MRV contain the
RV percentages, the relative RV percentages and mill area RV percentages for the fields at their scheduled times of harvest, respectively, the column Cost
contains the harvesting cost in R.ha−1 at the fields’ times of scheduled harvest, the column Ev1 contains the names of any first events having struck the
fields, the column Ed1 contains the dates of any such events, the column Ep1 contains the percentages of the fields affected by these events, the column
Ev2 contains the names of any second events having struck the fields, the column Ed2 contains the dates of the second events, the column Ep2 contains
the percentages of the fields having been affected by such an event, the column Ev3 contains any third events having struck the fields, the column Ed3
contains the dates of any third events, the column Ep3 contains the percentages of the fields having been affected by the third events and the column
CutJD contains the days of the year on which the fields are scheduled to be harvested.
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Factors Low level Centre point High level

Tabu tenures [A edges] 1 5 9
MaxNoBigImpr [B iterations] 1 3 5
MaxNoImpr [C iterations] 1 10 19
Timelimit [D seconds] 10 40 70

Table 8.2: The first verification experiment’s factors and levels.

The command button “Generate plan”

The command button “Generate plan” should be clicked upon completion of the procedures
initiated after clicking on the “Schedule!” command button in order to produce a printable
preview of the solution output, which is also stored in the worksheet “HarvestPlan.” The
working of the procedure is illustrated in Figure 8.7(c).

Wait for user to click. When the user clicks, VBA executes the procedure in Appendix A.3.

Initialise variables. Variables are first initialised.

Plan matrix. The report is generated by means of populating a matrix that is called “Plan.”
The matrix has NOF+1 rows (one additional row for the column headings) and 22 columns
(one for each report option). The matrix is populated field by field, one column at a time,
by extracting data from the worksheets “FDB” and “Start,” using appropriate functions
to manipulate the relevant data into proper format. Upon completion of the last field in
the harvest sequence, the matrix is pasted into the worksheet “HarvestPlan”. An example
of a typical harvest plan is shown in Table 8.1.

8.3 Verification of the DSS implementation

The decision support system functionality was verified by means of a number of design ex-
periments described in this section. However, before any experiment was performed, the DSS
was debugged and equipped with a random farm generator as well as a routine used to record
relevant information about the progress of the scheduling algorithm itself.

8.3.1 Verification experiment 1: 20 fields

The first verification experiment was a 24 factorial design experiment in two replicates with six
centre points (see, for example, [156]). The factors and levels used are shown in Table 8.2, where
“Tabu tenures” denotes the lengths of any of the six tabu lists, “MaxNoBigImpr” denotes the
number of ejection chains allowed in a row between improvements to the overall best objective
function value before a new random starting solution is generated, “MaxNoImpr” denotes the
number of iterations in a row between improvements to the best objective since the last randomly
generated solution allowed before an ejection chain is generated and “Timelimit” denotes the
time duration after which the algorithm terminates and returns the best solution found so far.
Each of the 38 runs was a 20-field randomly generated farm with up to one event per field. The
likelihood of an event occurring was set to 20 percent.
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R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
Treatment A B C D % OPT % OPT ITR ITR RND RND EJC EJC BRK BRK

1 1 1 1 10 91.79 85.07 482 475 14 14 17 17 4 10
2 9 1 1 10 92.53 92.28 385 398 18 19 20 21 2 3
3 1 5 1 10 91.78 92.1 479 489 7 5 39 30 3 4
4 9 5 1 10 89.78 91.12 380 392 7 6 41 36 5 8
5 1 1 19 10 90.55 89.69 500 470 6 6 8 7 3 6
6 9 1 19 10 92.01 90.73 251 266 3 4 4 4 4 2
7 1 5 19 10 91.72 90.3 480 497 1 1 15 14 3 10
8 9 5 19 10 77.04 92.16 251 262 0 0 7 8 4 2
9 1 1 1 70 92.32 92.21 3538 3491 108 105 110 107 70 84
10 9 1 1 70 90.97 92.64 2718 2673 169 164 171 165 6 11
11 1 5 1 70 91.68 92.84 3414 3486 40 44 214 227 78 71
12 9 5 1 70 91.73 91.59 2600 2661 59 65 302 330 13 18
13 1 1 19 70 91.72 89.39 3470 3475 49 47 50 51 45 63
14 9 1 19 70 52.89 91.4 1691 1738 30 31 30 33 7 6
15 1 5 19 70 93.02 90.04 3579 3541 18 17 92 87 11 6
16 9 5 19 70 90.34 92.91 1697 1687 10 10 55 55 6 6
17 5 3 10 40 86.25 78.11 1635 1615 13 12 39 41 119 108
18 5 3 10 40 90.6 91.96 1697 1696 13 12 41 41 124 125
19 5 3 10 40 91.14 92.73 1754 1681 11 13 37 44 132 93

Table 8.3: The results of the various responses along with settings for each particular run for the first
verification experiment. Here, treatment means a particular setting of the factor levels, A, B, C and
D. R1 means the first replicate of a particular treatment and R2 means the second replicate of that
treatment. Furthermore, % OPTdenotes the percentage of the upper bound achieved by the objective
function value of each replicate and treatment, ITR denotes the number of iterations completed by the
algorithm, RND denotes the number of randomly generated starting solutions generated throughout the
run, EJC denotes the number of ejection chains applied and BRK denotes the number of times the
search escaped from a local optimum without using a random restart or ejection chain.

The results of Verification Experiment 1 may be seen in Table 8.3, where “Run” denotes the
number of the experimental row, which includes two separate experimental runs, “A” denotes the
value or level of factor A for each experimental row, “B”, “C” and “D” are the respective levels
taken by factors B, C and D for each experimental row. In the table, “% OPT” (one column
for each replicate) denotes the solution objective function values expressed as percentages of the
upper bound, “ITR” denotes the total number of iterations completed during the search, “RND”
denotes the number of randomly generated solutions used throughout the search, “EJC ” denotes
the number of ejection chains used throughout the search and “BRK ” denotes the number of
times that the tabu search found a locally better solution (between two execution-wise adjacent
ejection chains) while being kept away by the tabu lists from the current local optimum. A BRK
value of 10 means, for example, that ten times during the search, the algorithm first found a
local optimum and was disallowed from revisiting it by the tabu lists, but while being disallowed
to revisit the local optimum, found a solution that was better than the local optimum.

The results of Table 8.3 were analysed by means of an ANOVA using backward elimination
regression for factor selection. For each response, the starting model was a full factorial design
with interaction effects3, and the results for the backward elimination regression with an alpha-
out at 0.1 of the five responses are shown in Table 8.4.

The quality of solutions, as measured by the optimality gap, clearly decreases as the tabu tenures

3Interaction effects between factors, for example, the AC interaction effect denoting the interaction effect
between factor A and factor C, represent the occurrence of a dependency in that the effect of either one of the
factors on the measured response depends on the concurrent value of the other variable.
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Res A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Cur

Mod Yes No Yes No No Yes No No Yes No No Yes No Yes Yes
% OPT Effect −7.2 2.8 −6.7 −2.8 2.3 −6.5 −3.5 3.5 6.9 −3.0 2.7 7.1 −3.5 6.2 6.0

p-value 0.04 0.4 0.06 0.4 0.5 0.07 0.3 0.3 0.05 0.4 0.4 0.05 0.3 0.08 0.09 0.7
Mod Yes No No Yes No No No No No No No No No No No

ITR Effect −746 −19 −260 2437 −10 −289 −578 43 −12 −199 −11 −14 −218 46 −16
p-value 0.05 1.0 0.5 0.00 1.0 0.4 0.1 0.9 1.0 0.6 1.0 1.0 0.5 0.9 1.0 0.9

Mod No Yes Yes Yes No No No No No No No No No No No
RND Effect 6.6 −32 −38 53 −4.1 −14 6.6 17 −25 −29 7.4 −3.6 −12 14.6 5.9

p-value 0.7 0.1 0.05 0.007 0.8 0.4 0.7 0.4 0.2 0.1 0.7 0.8 0.5 0.4 0.8 0.3
Mod No Yes Yes Yes No Yes No Yes Yes Yes No No Yes No No

EJC Effect 10.6 44.4 −82 109 0.6 −28 12 −25 31 −61 −5.9 1.9 −24 −17 −5.1
p-value 0.4 0.001 0.00 0.00 1.0 0.03 0.3 0.05 0.02 0.00 0.6 0.9 0.06 0.2 0.7 0.01

Mod Yes No No Yes No No Yes No No No No No No No No
BRK Effect −21 −2.3 −12 26 4.5 11 −22 −6.5 −2.8 −12 3.8 3.5 11 −6 4.8

p-value 0.02 0.8 0.1 0.004 0.6 0.2 0.01 0.4 0.7 0.1 0.7 0.7 0.2 0.5 0.6 0.00

Table 8.4: Abbreviated ANOVAs of the five responses subject to backward elimination regression. Res
denotes response, Cur denotes the quadratic curvature of the model and Mod represents the question of
whether the coefficient should be included in the model or not.

(factor A) increase. The between-ejection chain no-improvement iterations—local iterations—
(factor C) may also have a negative effect on solution quality. The interaction effects that are
significant are hard to explain due to lack of hierarchy; however, the AC-interaction effect is
statistically significant, which would imply that the negative effect of tabu tenure on solution
quality worsens at high levels of local iterations allowed (factor C). The BD-interaction effect is
also statistically significant which implies that the time limit (factor D) plays a more important
role if the number of ejection chains between random restarts (factor B) is larger, which makes
sense since in that case the algorithm would spend more time semi-locally (within the same
random starting point, but employing ejection chains for diversification) and would not diversify
enough. The fact that the ABD-interaction effect is statistically significant implies that the BD-
interaction effect may be larger at high levels of factor A, which could be interpreted as the
inhibiting effect (on diversification) of increasing the tabu tenure may increase the reliance on
time for diversification.

The number of iterations, ITR, decreases as the tabu tenures increase and, of course, increases
as the time limit increases.

The number of random restarts, RND, decreases as the number of local iterations allowed is
increased and decreases as ejection chains allowed increases, while it increases as the time limit
is increased.

The number of ejection chains performed by the tabu search increases when the number of ejec-
tion chains allowed is increased (as expected) and decreases as the number of local iterations is
increased (probably due to the additional search time spent between ejection chains). Increas-
ing the time limit increases the number of ejection chains and the positive effect of increasing
the number of ejection chains allowed is smaller at high levels of allowed local iterations (BC-
interaction effect). Increasing the time limit also increases the positive effect of the number of
allowed ejection chains (BD-interaction effect).

The number of “breakaways”, BRK, seem to decrease with the tabu tenures, but increase with an
increased time limit. The AD-interaction effect for this response implies that if one is interested
in increasing BRK, one should use short tabu lists and a large time limit.

In order to further verify that the DSS functioned as intended, the best harvest schedule pro-
duced by each experimental run was examined. The main test performed was to ensure that no
obvious, trivial improvements could be made by inspection, which would be the case if a field
that was affected by a serious event were to be harvested too late. In addition to the harvest
schedule, the DSS was made to plot a graph of information collected during each run. The
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Repeated measurements
Treatment Tabu tenure 1 2 3 4 Average

1 1 0.9449 0.9445 0.9446 0.9446 0.9446
2 2 0.9443 0.9444 0.9443 0.9445 0.9444
3 4 0.9446 0.9448 0.9446 0.9440 0.9445
4 12 0.9445 0.9446 0.9451 0.9440 0.9445
5 20 0.9444 0.9448 0.9440 0.9443 0.9444

Table 8.5: Optimality gaps encountered during the second verification experiment.

Source of variation SS df MS p-value

Between treatments 1.94× 10−7 4 4.85× 10−8 0.731

Within treatments 1.43× 10−6 15 9.54× 10−8

Table 8.6: Single-factor ANOVA of the optimality gaps in Table 8.5 encountered during the second
verification experiment. Here SS denotes sum of squares, df denotes degrees of freedom and MS denotes
mean square.

graph plots the current objective function value, the best local objective function value (since
the last random restart) and the best overall objective function value along with the number
of iterations since the last ejection chain and the number of iterations since the last random
restart. Both the harvest schedule and this graph are shown in Figures 8.8 and 8.9 for the
second replicate of the first row of the experiment in Table 8.3.

8.3.2 Verification experiment 2: 60 fields

Verification Experiment 2 was conducted as a single factor experiment where the only factor
varied was the tabu tenures, which were set equal for all six tabu lists. Each run consisted
of solving an instance four times (repeated measurements), and recording the average % OPT
value and standard deviation over the four repeated measurements. The maximum number of
iterations without improvement between ejection chains was set to ten since at this stage it had
not been realised that the length of short-cyclings for this problem are longer than ten with
the tenures employed in this experiment. The maximum number of ejection chains without any
improvement to the best objective function value found so far was set to three so as to only
allow a presumably low number of random restarts, while the time limit was set to sixty seconds.
The results of this experiment are shown in Tables 8.5 and 8.6.

The results show that for this instance, the tenure does not influence solution quality (the p-value
for the between-treatment effects is 0.731, which is not less than 0.05, a common significance
level threshold). An ANOVA was also conducted on the number of iterations completed when
attempting to solve each problem instance, the results of which are shown in Table 8.7. The
results clearly indicate that a large tabu tenure significantly slows down the algorithm, as
expected.

Source of variation SS df MS p-value

Between treatments 813.7 4 203.425 4.55× 10−7

Within treatments 99.25 15 6.61667

Table 8.7: Single-factor ANOVA of ITR-values for the second verification experiment. Here SS denotes
sum of squares, df denotes degrees of freedom and MS denotes mean square.
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Figure 8.8: Row 1, second replicate best harvest plan (screen-shot).
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Repeated measurements

15 minutes 0.8856 0.8828 0.8881 0.8882 0.8872 0.8854 0.8885 0.8863 0.8867
60 minutes 0.8894 0.8885 0.8888
120 minutes 0.8899

Table 8.8: Values of % OPT corresponding to the third verification experiment. The 120 minute run
is not part of the ANOVA; it was only run for comparison.

Source of variation SS df MS p-value

Between treatments 1.2856× 10−5 1 1.2856× 10−5 0.05

Within treatments 2.5982× 10−5 10 2.59817× 10−6

Table 8.9: Single-factor ANOVA of % OPT values for the third verification experiment. Here SS
denotes sum of squares, df denotes degrees of freedom and MS denotes mean square.

8.3.3 Verification experiment 3: 200 fields

A few tabu search runs were finally performed on a single problem instance involving two-
hundred fields with an allotted solution time of fifteen minutes, while a few runs were conducted
with a solution time of sixty minutes, and there is indication that the solutions obtained after
fifteen minutes are significantly worse than those obtained after sixty minutes. The % OPT
values obtained are shown in Table 8.8.

The results of the corresponding ANOVA are shown in Table 8.9 and indicate with a p-value
of 0.05 that there is a significant difference in solution quality between the 15 minute and 60
minute time limit solutions uncovered for the 200 field instance at hand, while the 120 minute
run indicates that further improvement in objective function value is possible.

8.4 Determining the tabu list tenures

The problem under study displays an interesting structure. If, for example, there are two
hundred fields to be harvested during a period of forty weeks, some neighbouring pairs of
fields are certainly harvested during the same week. If, in this example, all fields are equally
large, it is easy to see that five fields are harvested each week. There are several shift moves
in this example that will not produce a change in objective function value, since each week
allows for one-hundred-and-twenty possible different arrangements of the five fields. Even in a
situation where fields are not equally large, there may be many possible shift moves that do not
cause a change in objective function value. A solution that has neighbouring solutions—direct
neighbours or neighbours’ neighbours and so on—with the same objective function value is said
to lie on a plateau in the search space. Plateaux may become large if there are many fields in
comparison to the length of the harvesting periods, and in the above example, the number of
fields on each plateau is at least4 12040. Discovery of plateaux in the search space is certainly
not new; in early papers on tabu search methods non-improving moves were allowed to occur
if there was no improving neighbour of the current solution available [73]. However, if there is
a large plateau at a local optimum, one might argue that it is highly unlikely that the search
would return to a previously visited solution, even if the tabu tenure is zero or one. In the
above example, each solution has 800 direct neighbours on the same plateau, so moving from

4There may be other shift moves than the ones “within” weeks that do not cause a change in objective function
value.
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the current solution to another solution when at a local optimum implies a 1/800 probability
of returning to the current solution at the next iteration if the tabu tenure is zero. If the tabu
tenure is 1, the probability is 1/(6.4× 105). This suggests that tabu tenures need not be large
for this scheduling problem.

However, the situation is different for instances with a relatively small number of fields compared
to the number of harvesting periods. Assuming that there are problem instances for which there
are no plateaux, consider a situation in which the tabu search has reached a local optimum.
The first shift move taken will be a move that causes the least possible decrease in objective
function value. The new solution is worse than the previous solution. If the new solution has a
neighbour which is better than the previous solution, the tabu search will move to the neighbour
of the new solution. If there is no such neighbour, the tabu search will attempt to move back
to the previous solution, and the only manner by which to prevent this type of cycling is by
classifying the move back to the previous solution as tabu. Other than running tests, there is no
way of computing how long a tabu list should be in order to prevent this kind of “short-cycling”
behaviour.

An experiment designed to determine the necessary tabu tenures consisted of running several
instances of a problem with forty harvesting periods and twenty fields, all ranging between three
and nine hectares in size, which makes it unlikely that there are plateaux present in the solution
space. Each instance was repeatedly solved, using different tenures. The search time limit was
set to thirty seconds, the maximum number of non-improving iterations between ejection chains
was set to 100 and the number of ejection chains allowed without improvement was set to 10 so
that there would not be any random restarts. The solution runs were examined for instances
of short-cycling, and the length of the shortest cycle was recorded as well as the % OPT and
BRK values. The results are shown in Table 8.10.

20-Field instances
Instance 1 Instance 2

Tenure % OPT Cycle length BRK % OPT Cycle length BRK

1 94.33272 4 4 92.71313 4 18
94.33272 4 8 92.71313 4 12

2 94.33272 6 17 92.71313 6 25
94.33272 6 22 92.71313 6 24

3 94.33272 8 24 92.71313 8 36
94.33272 8 35 92.71313 8 35

4 94.33272 10 38 92.71313 10 54
94.33272 10 36 92.71313 10 34

5 94.33272 12 34 92.71313 12 31
94.33272 12 40 92.71313 12 22

6 94.31389 1 6 92.71313 1 1
94.32819 1 5 92.71313 1 2

7 94.33272 1 7 92.71313 1 1
94.33272 1 4 92.71313 1 2

Table 8.10: Results of different tenures on the optimality gap, cycle length and BRK on two 20-field
problem instances. Cycle length denotes the number of iterations completed by the tabu search (at
least) before returning to a previously visited local optimum. There were 40 time periods and fields were
between six and nine hectares in size; this size distribution coupled with the 20/40 ratio of the number
of fields to the number of periods lead to a problem instance containing very few plateaux.
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The results of this experiment show that for the two instances the largest number of BRK s
were obtained for tabu tenures of three to five. Tabu tenures of six or seven led to a complete
exhaustion of the shift neighbourhood, which then returned the input solution as output. An
exhaustion of the shift neighbourhood occurred once when the tenure was equal to five.

The next tabu tenure experiment was performed on two forty-field problem instances with tabu
tenures between four and twelve. The results are shown in Table 8.11 and indicate that there is
little difference in the % OPT value obtained using the different tabu tenures. At a tabu tenure
of twelve, there were cases of exhaustion of the shift neighbourhood.

The results suggest that a cycle will be at least as long as two plus the tabu tenure multiplied by
two. One may thus draw the conclusion that the number of iterations between ejection chains
should be allowed to be at least the length of a cycle, but in the case of problems with small
or no plateaux, not much more. In the case of problems with large plateaux, the tabu list need
not be larger than 1 or 2, but it may be beneficial to allow the number of iterations between
ejection chains to exceed these values substantially, in order to allow the search to explore the
plateaux in search of possible escape routes towards better solutions.

8.5 Chapter summary

In this chapter, the decision support system as a concept was described in terms of an architec-
tural framework into which building blocks may be incorporated to create a functioning whole.
The DSS architectural framework was also implemented on a personal computer, using a pro-
gramming language available to anyone with access to Microsoft Excel 2007. The computer
implementation of the DSS was described by means of screen-shots and bulleted descriptions of
the various parts of the user interface and the procedures embedded within. The DSS computer
implementation was thoroughly verified by means of different problem instances and parame-
ter settings were discussed at some length, concluding that the number of iterations between
ejection chains allowed should be at least as many as twice the tabu tenure plus two. The
tabu tenure should be approximately 3–4 for normal 20-field instances, 9–10 for normal 40-field

40-Field instances
Instance 1 Instance 2

Tenure % OPT Cycle length BRK % OPT Cycle length BRK

4 92.96646 10 13 92.71313 10 10
5 92.95090 12 8 92.71313 12 9
6 92.95046 14 19 91.72778 14 4
7 92.96168 16 25 91.75036 16 10
8 92.94984 18 7 91.75510 18 10
9 92.96172 20 17 91.76673 20 11
10 92.96517 22 7 91.77277 22 14
11 92.95375 24 12 91.75299 24 9
12 92.96168 1 6 91.75423 1 1

Table 8.11: Results of different tenures on the optimality gap, cycle length and BRK on two 40-field
problem instances. Cycle length denotes the number of iterations completed by the tabu search (at
least) before returning to a previously visited local optimum. There were 40 time periods and fields were
between five and seven hectares in size; this size distribution coupled with the 40/40 ratio of the number
of fields to the number of periods lead to a problem instance containing a number of small plateaux.
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instances and may be set slightly larger for larger problem instances, but that the number of
breakaways from local optima (the desired effect of having tabu lists) do not seem to increase
beyond a certain size tenure, while computational time does increase.

This chapter, together with Chapters 6 and 7 complete the fulfilment of Dissertation Objectives
VI and VII of §1.3.
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This chapter contains a description of the results of a validation experiment conducted in order
to test the desirability of the decision support output. The validation experiment was started
in March 2009 using a development version of the decision support system, earlier referred to
as the DSSDV, whose scheduling model building block was based on the BMF of §6.1 and
an early implementation of the SMF of §6.2, which had not been thoroughly verified at that
stage. The validation was performed in a medium-scale commercial harvesting group context,
and is thus also valid for the medium-scale solitary commercial grower context. The final DSS
architecture and implementation presented in §8.1 and §8.2 was based on the SMF of §6.2.
The SMF introduced into the DSSDV in June 2009 started generating parallel schedules on
June 9. The experiment continued throughout the 2009 harvesting season and was restarted at
the onset of the 2010 harvesting season, this time using the full DSS described in Chapter 8. In
this experiment the DSS was used to generate two schedules for each of two harvesting fronts
involving a number of farms in the South African province of KwaZulu-Natal.

9.1 Validation of the DSSDV

The DSSDV was designed in Microsoft Excel, as was the DSS, but the algorithms used to solve
the scheduling model in the DSSDV were programmed in Wolfram’s Mathematica as opposed
to VBA For Excel which was used in implementing the full DSS. The schedules of the DSSDV
were generated using a Dell Dimension 1.7 GHz Intel Celeron with 1 GB RAM.

145
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The DSSDV was evaluated during the 2009 sugarcane harvesting season at four farms in the
Eston Mill area in KwaZulu-Natal. Data from the four farms were first used to populate the
models necessary to predict the yield and RV % of the varieties present on the farms. The
DSSDV was then populated with these models together with the field data from the farms, and
was subsequently used to generate harvesting schedules throughout the season, approximately
once every two weeks. The manager of the harvesting front was responsible for returning a
simple form containing answers to the questions: (1) “Which schedule did you prefer?”, (2)
“Which fields did you harvest this [period]?”, (3) “Grade the schedule that you preferred from
1–5, where 1 is very poor, 2 is poor, 3 is [acceptable], 4 is good and 5 is very good.”, (4)
“Write any comments you may have regarding the schedules or anything that might relate to
this past [period’s] harvest planning.” The resulting form, called the “weekly harvest schedule
return form”, was returned in conjunction with receiving new schedules. Apart from the simple
formality of the form, numerous phone-calls to the manager and the growers were made by
the author towards gaining a fuller understanding of any issue or viewpoint arising during the
validation and development work.

The four growers participating in the validation project had previously formed a syndicate, and
had previously employed a single harvesting front approach towards managing their harvesting
operation. However, the growers decided to split the harvesting operation into two harvesting
fronts, called HF A and HF B respectively, consisting of the fields belonging to two growers
each. This decision was taken by the growers in order to remedy the previously unfair usage
vs. internal costing of mechanised equipment. The unfairness arose due to differences in usage
of certain equipment, which, in turn, was due to differences in topography between the two
harvesting fronts. In the following account of the 2009 harvesting season, each harvesting front
is treated separately.

9.1.1 Harvesting front A

Geographically, HF A is situated a few kilometres north of Richmond, KwaZulu-Natal. The area
under cane1 for HF A is approximately one hundred-and-fifty hectares spread across thirty-seven
fields of between 0.56 and 9.18 hectares each. The varieties present in this harvesting front at
the beginning of the 2009 milling season—which commenced on 18 March 2009—were N12, N16,
N35, N37 and N41. The two growers connected to HF A delivered all of their cane to Eston Mill,
located approximately thirty-five kilometres from the centre of the harvesting front. In 2008,
Eston Mill crushed 1.51 million tonnes of sugarcane—a slight increase from 2007, 2006 and 2005
when it crushed 1.46, 1.35 and 1.40 million tonnes, respectively. The mill was commissioned by
Illovo in 1995, and by 1996 it was crushing 1.11 million tonnes of sugarcane annually. All of the
cane from the area is delivered by road, as is the produced sugar to Durban.

Table 9.2 shows all the schedules that were sent to the manager of HF A during the season and
Table 9.5 contains the growers’ grades and comments and the lessons learnt from each schedule.

Two measures, called the scheduling prediction desirability 1 (SPD-1) and scheduling prediction
desirability 2 (SPD-2), were formulated in order to provide a numerical means by which to
judge the desirability of the various schedules. For a particular schedule, SPD-1 is defined as
the percentage of the fields scheduled for period 1 and period 2 combined (the first month of
the schedule), that were actually harvested during each field’s respective period or during the
two months following each field’s respective period. As an example of computing an SPD-1
value, consider the first schedule of HF A, which is the schedule listed in the column labelled

1The area that is considered to be up for harvest during one particular season.
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Harvesting front Harvesting front
Schedule HF A HF B Schedule HF A HF B

BMF1 88 96 — — —
BMF2 85 88 — — —
BMF3 90 104 — — —
BMF4 68 62 — — —
BMF5 67 103 — — —
BMF6 — 101 SMF6 42 69
BMF7 — 80 SMF7 51 77
BMF8 — 49 SMF8 43 59
BMF9 — 32 SMF9 29 29
BMF10 — 50 SMF10 39 65
BMF11 — 52 SMF11 41 52

Table 9.1: SPD-2 values for all schedules generated throughout the validation of the DSSDV. A paired
Student’s t-test for comparison of means shows no significant difference in SPD-2 values between the
schedule set BMF6–BMF11 and the schedule set SMF6–SMF11. Another paired t-test shows, however,
that the SMF schedules have a lower SPD-2 value for HF A than for HF B. There was no significant
such difference between the BMF schedules of HF A and HF B.

“BMF1” in Table 9.2. The first period of this schedule is the period 18/3–30/3, which contains
the fields O32A, O41 and T216. The two following months comprise the four periods 31/3–14/4,
15/4–26/4, 27/4–10/5 and 11/5–25/5. The column labelled “Actual” is now searched over the
five periods 18/3–30/3 to 11/5–25/5 and the number of occurrences of the fields O32A, O41
and T216 is counted. If some field appears more than once, only one occurrence of that field
is recorded. In this example, the only such occurrence is that of field T216 during the period
11/5–25/5, so the number of occurrences during this computation so far is one. The second
period of the column “BMF1” contains field T225, and the field occurs four times during the
“Actual” column periods 31/3–14/4, 15/4–26/4, 27/4–10/5, 11/5–25/5 and 26/5–8/6, which
is only counted as one occurrence (the harvest of this field occurred in portions spread across
a period of more than one month). In summary, there are two occurrences of fields from the
first month of the schedule in question present in the following periods of the actual harvesting
sequence, and there are four fields in total scheduled during the first two periods, so the SPD-1
value is 2/4× 100 % = 50 %.

The second measure (SPD-2) is the average time difference in days between scheduled day and
actual harvesting day for the ten first fields of a schedule. For example, the SPD-2 for the
column “BMF1” in Table 9.2 is the average of the values 156, 69.5, 55, 0, 41, 83.5, 114.5,
152.5, 55 and 152.5, which yields an SPD-2 of 87.95. SPD-2 values for all schedules and both
harvesting fronts are presented in Table 9.1.

The first schedule (HF A BMF1) of the season for HF A was generated on 18 March 2009 but
was cancelled and regenerated on 20 March due to an error in computing the values of Rij . The
solution to the BMF is within 1.6 % of optimality and the corresponding local search time limit
was 15 hours. The grower response to the first schedule is clear in that the schedule does not
reflect the difference in maturity between varieties properly. The growers argued that N35 and
N37 are relatively more mature early in seasons preceded by cold and wet conditions compared
to N12 and N16, and should thus be given precedence for harvesting. By 31 March 2009, field
O4AB had been split into two fields—O4A and O4B—and O4A had been harvested during the
period 18–30 March 2009. The fields recommended for harvesting by HF A BMF1 for the first
month are O32A, O41, T216 and T225. The harvesting of T225 was actually begun within
two weeks, T216 was actually harvested within two months, O41 was actually harvested within
three months and O32A was actually harvested within five months. The SPD-1 value for this
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HF A DSSDV Schedules
P Actual BMF1 BMF2 BMF3 BMF4 BMF5 SMF6 SMF7 SMF8 SMF9 SMF10 SMF11

18/3–30/3 O23 O32A — — — — — — — — — —
O26 O41
O4A T216
O8

31/3–14/4 T225 T225 T225 — — — — — — — — —
15/4–26/4 T225 T231 T232 O31

T235 T203
T235

27/4–10/5 T225 O40 O34 T225 T235 — — — — — — —
T223 T225

11/5–25/5 T225 O15 O17 O41 O32A O36 — — — — — —
T216 O23 O46 T223 T216
O17 O46 T235 T225B

26/5–8/6 O42 O19 O3C O2A O19 T232 — — — — — —
O41 O42 T231 O32A O29
T231 O32B O3C

O46 O46
O47 O4B

9/6–22/6 T216 O2A O2A O17 O12 O1A O46 — — — — —
T225B T216B T228 O4B O31 O29
T231 O3C
O16 T235
O29 O32A

O19
O16

23/6–6/7 O19 O36 O32B O13 O47 T215 O13 O3C — — — —
O13 O47 T228 T231 T234 O32B

T225B O46
O32A
T203
T235

7/7–21/7 T216 O1A O1A O1A T232 O1B T231 O19 O46 — — —
T228 O42 T216 O13 T235
T235 T203 T234 T203
T234 O32B
O13 O32A

O3C
22/7–4/8 T216B O13 T215 O12 O1B O12 O36 O36 O36 O46 — —

O1A O29 O1B O2A O41 T216B O4B T228 O36
O1B O3C O29
O2A

5/8–19/8 O2A O16 O29 O3C O41 O40 T225B T216B O2A O3C O46 —
O36 O17 O4B T231 T223 T228 T228 T216B O32B O3C

T216B O2A T203 O36
O1B

20/8–3/9 T223 O1B O12 O34 O13 O31 O1B O1B O1A T216B T203 O3C
T215 O47 O1B T216B T228 O3C O47 O32A O17 O23
O40 T203 O12 O31 O46
T203 O32A
O47 O34

O32A
O31

4/9–30/11 O12 T232 O36 O15 O15 O17 T232 O31 O34 O34 T223 T203
O15 O26 O16 T216 T216B O32B O17 O2A O1B O17 O4B T232

O32B O32B O41 T232 O17 O29 O34 T232 O4B O2A O32A O26
O34 T228 O19 O42 O42 O32A O12 O1A T232 O12 O32B O4A
O3B O12 O32A T225B O1A T216B T223 O17 O17 T232 O31 O8
O3C T225B O13 O40 O16 O47 O4B O34 O12 O1A O34 O4B
O46 O31 O42 T215 O34 T223 O1A T215 T223 O47 T232 O17
O4B O34 O15 O36 T203 O34 O32B O15 O15 O40 O47 T223
T232 O8 T216 O16 O32B T228 O47 T223 O47 O4B O15 O32B

O4AB O40 O19 O36 O2A O40 O40 O31 T215 O12 O40
T223 O31 O40 O46 O31 T215 T223 O40 O47
T215 T203 T215 T203 O15 O40 O15 T215 O12

O15 T215 T215
O4B O15

T225B O31
T235

Table 9.2: The actual harvesting sequence for HF A to the left in the table is compared by period P
to the eleven schedules generated throughout the 2009 milling season. Field O3B was not in the field
records at the commencement of the season, and is therefore missing in the schedules. The DSSDV
implementation was installed on a laptop computer which stopped functioning properly around 26 May,
and required several days in order to be brought back to a functional state. After that, there were too
few fields left to be able to achieve good solutions to the BMF (§6.1), which led to the decision to only
use the SMF (§6.2) onwards.

schedule is 50 %.

The second schedule (HF A BMF2) of the season is for the period 31 March 2009 onwards, its
objective function value is within 4.1 % of optimality and the solution was uncovered after 2656
seconds, under a local search time limit of two hours. The fields T225 and T232 were scheduled
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for harvesting during the first month and field T232 was actually harvested approximately five
months later. One reason for field T232 being harvested so late may be that it was not chemically
ripened, unlike many of the other fields, which may have pushed it later in the real harvesting
sequence. The SPD-1 value for this schedule is 50 %.

The third schedule (HF A BMF3) was generated under a local search time limit of thirty
minutes, and the best solution was uncovered after 567 seconds, and its objective function value
is within 1.78 % of optimality. The fields scheduled for harvesting during the first month are
O31, T203, T235 and T225. Only T225 was actually harvested within two months. The SPD-1
value for this schedule is 25 %.

Schedule four (HF A BMF4) for HF A was generated on 25 April 2009 and the first period
of the schedule began on April 27 2009. The local search time limit was two hours, the best
solution was encountered after 5852 seconds and its objective function value is within 1.14 %
of optimality. The fields scheduled for the first month of this schedule are T235, T225, O32A,
T216 and T225B. Fields T225, T225B and T216 were actually harvested within one month from
the schedule periods, but the other two fields were actually harvested three (T235) and four
(O32A) months after the schedule periods. The SPD-1 value for this schedule is 60 %.

The fifth schedule (HF A BMF5) was generated upon receiving information concerning a number
of events having taken place on each of the four farms. Five fields in HF A had lodged and
six had been chemically ripened. The lodging was accounted for in the DSSDV by event-driven
yield models and event-driven RV models similar to those described in Chapter 7. The input
data were based on an eye-estimation performed by the growers of the extent of the lodging
expressed as a percentage of each field having been affected. The time limit allocated for the
local search solution procedure was thirty minutes and the best objective function value was
uncovered after 208 seconds. The fields scheduled for the first month of this schedule are O36
and T232. The field O36 was actually harvested three months later than the scheduled date,
while T232 was actually harvested five months later than its scheduled date. The schedule’s
objective function value was notably worse than previously, being within 27.1 % of optimality.
It was concluded that this was a result of the combinatorial nature of the problem. More
specifically, the problem was infeasible in terms of the minimum amount of cane to be harvested
during each period, leading to some periods being allocated insufficient cane. The DSSDV solver
uses penalties to encourage feasibility, and thus penalised these “infeasible” schedules. There
were also problems of the opposite nature, where some periods were over-scheduled. In fact,
some of the fields were moved to periods of their individual lowest yield, due to the decrease in
penalty on the objective function value (penalty for exceeding the maximum allowed tonnage for
the period during which the field was scheduled). Other problems also arose—due to the same
basic problem—where fields were being combined based on tonnage so as to avoid breaking the
minimum and maximum tonnage for each period, again putting profit aside for the benefit of
reducing DSSDV solver penalties. An obvious attempt to remedy the situation is to increase
the allowed maximum tonnage and decrease the allowed minimum tonnage for all periods, but
that causes an imbalance in terms of consistent cane yield tonnage throughout the season. The
SPD-1 value for the fifth schedule is 0 %.

Schedule six (HF A SMF6) was generated on 10 June 20092 using the SMF model incorporated
into the DSSDV and the tabu search time limit was one hour. The fields scheduled for the
first month of this schedule are O46, O29, O3C, T235, O32A, O19, O16, O13 and T234. The
fields O13, O16, O19, O29, T234 and T235 were actually harvested within two weeks from their
scheduled dates, O32A was actually harvested three months after its scheduled date, while O3C

2No schedule was generated for HF A for the period 26 May 2009 to 9 June 2009.
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and O46 were actually harvested four and five months after their scheduled dates, respectively.
From this schedule onward, the schedule printouts contained information on events having
occurred, which for example, included information on which fields had been chemically ripened.
The SPD-1 value for the sixth schedule is 67 %.

Schedule seven (HF A SMF7) was generated on 22 June 2009 and the first day of the schedule
was 23 June 2009. It was generated under a tabu search time limit of eight hours. The fields
scheduled for the first month of this schedule are O3C, O32B, O46, O23A, T203, T235, O19,
O13 and T234. Fields O32A, T203, T235, O19 and O13 were actually harvested within two
weeks from their respective scheduled dates, field T234 was actually harvested two months after
its scheduled date, while fields O3C, O32B and O46 were actually harvested more than two
months outside of their scheduled dates. For this schedule, the manager mentioned that the
scheduling of ripened fields was correct. The SPD-1 value for this schedule is also 67 %.

Schedule eight (HF A SMF8) for HF A was generated on 10 July 2009 under a tabu search time
limit of thirty minutes. The fields scheduled for the first month of this schedule are O46, T235,
T203, O32B, O32A, O3C, O36 and T228. Fields T228, T235 and O36 were actually harvested
within two weeks of their scheduled dates, while field O32A was actually harvested within two
months of its scheduled date. There had been a severe frost [126] during the previous period,
but unfortunately no data on the frosted fields or the level of frost was conveyed in time for
incorporation into this scheduling run3. The SPD-1 values for this and the remaining HF A
schedules are not computed since the number of fields remaining is low, which inflates the SPD-1
value substantially.

Schedule nine (HF A SMF9) was generated on 1 August 2009 under a tabu search time limit
of thirty minutes, lacking in information regarding the impact of the frost on the four farms4.
The schedule was, however, well received with a grade of 4.

Schedule ten (HF A SMF10) for HF A was generated on 10 August 2009 and there were seventeen
fields left to schedule for harvesting. The tabu search time limit was thirty minutes and the
schedule was afforded a grade of 4.

Schedule eleven (HF A SMF11)—the last schedule generated for HF A during 2009—was gen-
erated on 25 August 2010 and contained three more fields than HF A SMF10, since these had
been added to the set of fields by the growers. This schedule was also given a grade of 4.

In summary of the 2009 HF A validation experiment, no schedule was given a “very poor” grade,
one out of the eleven schedules (the first schedule) was given a “poor” grade, three schedules
were given “acceptable” grades, four schedules were given “good” grades and four schedules
were given “very good” grades.

9.1.2 Harvesting front B

HF B is situated a few kilometres north of HF A, the area under cane being approximately three
hundred hectares distributed across seventy-nine fields ranging in size from 0.7 to 10.5 hectares.
The varieties present in this harvesting front at the onset of the 2009 harvesting season were
N12, N16, N23, N29, N35, N37, N40 and N41. Two growers belonged to HF B and their cane
was delivered to Eston mill or (a small part of the cane) to Noodsberg mill; Noodsberg mill is

3This would of course have been a prime opportunity to test the DSSDV’s capability in terms of scheduling
frosted farms.

4This lack of information was due to the difficulties and resources required in assessing the level of frost damage
sustained, not as a result of failing to convey the information.
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HF B DSSDV Schedules
P Actual BMF1 BMF2 BMF3 BMF4 BMF5 BMF6 SMF6

18/3–30/3 L238 C26 C154 L236 — — — — — —
L239 C28 L7D L249
L183 L9D L21

L40 L22
L195

31/3–14/4 L21 C26 L8 L232 L9D L249 — — — — —
L22 C28 C150 L264 L40 L21

L74 C26 L195 L22
L84 C28

15/4–26/4 L7D C148 L222 C154 L74 C154 L40 — — — —
L1D L70 L5D L84 L6 L74

L12 L232 L23D L249
27/4–10/5 L9D C148 C29 L36 C146 L99 C16 L84 C146 L70 — — —

L198A C147 C145 L169 L8D L222 C24 L201 L9D L326
L200 C146 L8D L219

L9D L251
11/5–25/5 C153 C150 C147 L91 L9 C150 C147 L91 L8 L84 C136 L40 — —

C152 L70 L3D C17 L70 L70 C29 L166 C145 L74
C151 L307 C24 L74 L36 L249

26/5–8/6 L70 L176 C16 L325 C16 L15D L29D L199 L29D L36 L9 L84 L8 L40 L219 L250
L307 L12 L6 C29 L264 L176 L242 L32D L241 C24 L195 L9 L84 C145 L251
L174 C138 L14D L232 C136 L195 L164A L195

C145 L219
L17D L249

9/6–22/6 L28D L232 C138 L23D C136 L181 C150 L100 L9 L40 L12 L242 L70 L232 L70 L249
L236 L222 L8D L219 C148 L7D C136 L249 L41 L251 L164A L264 L36 L222

C145 L251
C148 L307

23/6–6/7 L169 L249 L7 L251 C137 L251 C148 L14D C24 L198A C143 L23D L7 L251 C143 L84
L166 L250 L100 L200 L12 L236 C147 L219 C144 C143 L9 L7
L181 L29D L31D L264 L8 C142
L84

7/7–21/7 L23D L219 L32D C147 L325 L7 L169 C142 L169 L7 L100 C154 C146 L232 C24
L15D L164A L200 L35 L1D L198A C153 L199 L8 C153 L181 L300 L15D
L14D C152 L28D L12 L14D

C151 L23D L40 L23D
C150 L14D C136 L28D
C148 L15D
C147 C24

22/7–4/8 C17 C143 C146 L176 L8 L31D C29 L5D C16 L15D C17 L35 L91 L250 L181 C151
C16 C31 L12 L307 L29D L91 C145 L32D C154 L28D L6 L166 C146 C152
C154 C32 C153 L8D L41 C147 C153
C144 C22 C148 C154

C150
5/8–19/8 L74 C29 C152 L326 L23D L303 C146 L174 C144 L35 L15D L307 C142 L222 L32D L264

L100 C11 L41 L100 C152 L307 L3D L112 L36 L169 L242
L35

20/8–3/9 L200 L6 C137 L198A C143 L41 C138 L41 C152 L32D L222 L3D L8D L112
L199 L91 L35 C151 L31D L232 L181 L91 L112 L17D L41
L242 L99
L41 L112
L40

4/9–30/11 L326 L17D L14D L29D L14D L174 C137 C143 L6 C143 L31D L303 L8D L31D L5D L176
L325 L8D L28D L166 L36 L176 L181 L222 L12 C150 L166 C138 L32D L169 L201 L6
L303 L5D L199 L241 L169 L201 L35 L241 L17D L99 L326 L5D L35 C29 L29D L99
L300 L3D C151 C17 L112 C153 L200 L303 L174 C151 L70 L28D L6 C137 C144 L326
L264 C145 L15D C142 L166 L1D L8 C17 C138 L91 L99 L201 L41 L174 C29 L31D
L251 C142 L99 C153 L242 L198A C151 C142 L195 L112 L174 L17D L325 L201 C16 C137
L241 C138 L9 L174 C144 L199 L15D L17D L222 L200 L29D L176 L5D L236 L174 L303
L201 C137 C144 L201 C152 L236 L28D L166 L242 L201 L169 L219 L100 L303 L91 L100
L195 C136 L5D C24 L28D C145 L36 L264 L303 L236 C16 L236 L199 C16 L325 C138
L36 C24 L31D C136 L326 L17D C144 L3D L5D L325 L3D L241 C144 C17 C17 L3D
L35 L9 L17D C146 C142 L32D L99 L195 L14D L7 L199 L264 L99 C138 L236 L199
L32D L8 L181 L112 L3D L219 L112 L325 L23D C137 L176 L241 L241
L31D L7 L242 L303 L6 L241 L9 L326 L176 L100 L326 L242

L1D L7 L307 C136 C17 L232 L12 L300
L29D

Table 9.3: The actual harvesting sequence for HF B is compared to the first seven schedules generated
throughout the 2009 milling season. These six first periods were scheduled using the BMF (§6.1) and
the sixth period was also scheduled using the SMF (§6.2) for the first time.

located approximately ninety kilometres to the north-east of the harvesting front and crushes
approximately 1.4 million tonnes annually.

Tables 9.3 and 9.4 show all schedules that were generated by the DSSDV for HF B during the
2009 harvesting season.

The first schedule (HF B BMF1) was generated on 18 March 2009 under a one hour local search
time limit and the objective function value of the best schedule uncovered was within 1.48 % of
optimality. Of the seventeen fields scheduled for the first month, five fields (C26, C28, L21, L22,
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L7D) were actually harvested within one month after the scheduled period, two fields (L9D,
C150) within two months, three fields (L236, L84, L232) within three months, one field (L249)
within four months, two fields (C154, L74) within five months, one field (L40) within six months
and three fields (L195, C8, L264) outside of six months. The SPD-1 value for this schedule is
41 %.

The second schedule (HF B BMF2) was uncovered in 2 268 seconds under a two hour local
search time limit and the objective function value of the best schedule encountered is within
1.44 % of optimality. Of the twelve fields scheduled for the first month, three fields (L9D, L21,
L22) were scheduled within one month from the actual harvesting period, two fields (L12, L232)
within two months, two fields (L249, L84) within three months, two fields (C154, L74) within
four months and one field (L5D) outside of four months. The SPD-1 value for this schedule is
42 %.

The third schedule (HF B BMF3) was uncovered in 5 512 seconds under a two hour local search
time limit and its objective function value is within 1.35 % of optimality. Of the fourteen fields
scheduled for the first month, only two (L9D, L84) were actually harvested within two months
which yielded an SPD-1 value for this schedule of 14 %.

Schedule four (HF B BMF4) was uncovered in 5 538 seconds under a local search time limit of two
hours, and its objective function value is within 1.2 % of optimality. Fields C146, L9D and L70
were actually harvested within two weeks from their scheduled date, fields L84 and L166 within
two months, while fields L74, C29, L8 and L326 were actually harvested within five months from
their respective scheduled dates. Twenty-one fields had lodged during the preceding period, and
fourteen fields had been chemically ripened. The SPD-1 value for schedule four is 56 %.

The fifth schedule (HF B BMF5) was produced under an eighty minute local search time limit;
the best objective function value was uncovered in 718 seconds and is within 1.47 % of optimality.
Twelve fields were scheduled for the first month and fields L249, L84, L14D and L232 were
actually harvested within two months from their respective scheduled dates. The combinatorial
issues encountered while finding a schedule for HF A’s fifth schedule were not noticed for HF
B, other than some slight infeasibility in terms of over-allocation of tonnage during some of the
periods. One may conclude that the problem was slight because of the closeness of the objective
function value to the linear programming relaxation’s optimum (1.47 %). The SPD-1 value of
the schedule is 33 %.

The sixth set of schedules for HF B were generated on 27 May 2009 as one BMF-based schedule
(HF B BMF6) and one SMF-based schedule (HF B SMF6). The SMF was operational two
weeks earlier for HF B than for HF A, and the generation date for the sixth set of schedules was
26 May 2009. The local search time limit was two hours for the BMF and the tabu search time
limit was four hours for the SMF. The BMF scheduled fourteen fields for harvesting during the
first month, while the SMF scheduled ten for the same period. Both the BMF and the SMF
scheduled fields C145, L70, L164A, L195, L219 and L249 for harvest during the first month and
L17D is the only field which was scheduled more than two months apart by the two schedules.
The SPD-1 value for the BMF schedule is 43 %, while the SPD-1 value for the SMF schedule is
60 %.

Schedule set seven (HF B BMF7 and HF B SMF7) was generated on 11 June 2009. The two
schedules were obtained under two-hour and four-hour local/tabu search time limits, respec-
tively. The best objective function value of the BMF schedule was 238 % from optimality, due
to an infeasibility arising from an error in the input data with respect to the amounts of cane
to be delivered during each period (Dmin

j and Dmax
j ). The error in the input was very large
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HF B DSSDV Schedules
P Actual BMF7 SMF7 BMF8 SMF8 BMF9 SMF9 BMF10 SMF10 BMF11 SMF11

9/6–22/6 L28D C137 L219 — — — — — — — —
L236 C138 L74
L232 L241 C145
L222 L250 L195

L249
L164A

23/6–6/7 L169 L31D L36 C9 L74 — — — — — —
L166 L164A C142 C144 L195
L181 L199 L40 C145 L219
L84 L300 L251 L40 L251
L249 C24 L250 L74 C145
L250 L15D L23D L219 L250
L29D L14D L15D L249

L23D
L28D

7/7–21/7 L23D L181 L14D C24 L164A L40 L164A — — — —
L15D C146 L219 C154 C136 L219 L74
L14D C147 L164A L181 C9 C24 L219
L219 C148 L181 L23D L84 L15D L251

L164A C150 C146 L14D L36 L14D L40
C151 L15D L40 L23D
C152 L249 C154
C153
C154

22/7–4/8 C17 C17 C147 L29D C24 C143 C24 L32D L251 — —
C16 L166 C148 L164A C154 L195 L15D L112 C145
C154 L169 C150 L169 L181 L251 L14D L251 L195
C144 L219 C151 L250 L23D L325 L23D L74
C143 L232 C152 L14D C154 C136
C31 L236 C153 L15D C136 L40
C32 L249 C154 L36 C8
C22 L195

5/8–19/8 L74 C8 C136 C7 C7 C142 C7 C8 L36 C136 C145
L100 C16 L84 C143 C8 C144 C145 C16 C9 C145 L40
C29 C136 C143 L35 C142 C5D L300 C6 L264 C5D L195
C11 C143 C9 C143 L41 C8 L264 C142 L35 L74

L84 C9 L325 L300 L40 L251
L112 C143 C143 L195 C136

L264 L300 C8
C9

20/8–3/9 L200 L99 C7 C17 L264 C7 L201 C142 L32D C8 L36
L199 L201 C8 C136 C6 C8 C142 C143 L201 L32D C142
L242 L242 L232 C142 L17D C145 L242 L17D L242 L112 C7
L41 L264 L242 L84 L32D C8D L32D L40 C7 L264
L40 L326 L32D L241 L242 L32D L242 L17D L300
C6 L201 L251
L91 L264
L99
L112

4/9–30/11 L326 C6 L169 C8 L35 C9 L112 C7 L112 C9 L112
L325 L74 L35 C8D L300 L35 L35 C145 L35 C142 L201
L303 L222 C29 L41 C29 L112 L29D L35 C8D L36 L32D
L300 C7 L112 L195 C144 L29D L17D L41 L326 L325 L242
L264 L41 L29D L201 C8D L74 C8D L195 C6 C29 L17D
L251 L91 L300 L325 L112 L100 L99 L300 C29 L74 L35
L241 C144 C8D L32D L169 C16 C29 L74 L91 L99 C29
L201 C3D L222 L166 L166 L31D C5D L91 L325 L251 C5D
L195 L29D L303 L326 C5D L91 L41 L201 L41 C7 L41
L36 C142 L17D L31D L303 L164A C144 L326 C144 C6 C6
L35 C145 L236 L36 C17 C138 L100 C29 C17 L201 L91

L32D L325 L41 L112 L100 L17D L91 C137 L99 L326 C8D
L31D C5D L91 C137 L91 L242 L325 L100 C3D C3D L303
L17D L36 L166 C3D L201 L264 L326 L241 C16 L91 L99
C8D L251 C3D L99 L41 L303 C6 C9 C5D L100 L100
C5D L32D L326 C6 L29D C29 C16 C17 L31D C137 L31D
C3D L35 C6 L17D L325 L36 L31D L31D L199 C138 L326
C145 L40 C144 L91 L326 L99 L303 L36 L241 L17D C3D
C142 C9 C16 L300 C16 L201 C17 L199 C137 L199 L325
C138 C29 C5D C29 L99 C136 C137 C138 L303 C8D C138
C137 C8D L99 L100 C3D C6 L199 C144 L100 L31D L199
C136 L17D C17 L199 L241 L241 C138 C5D C138 L41 L241
C24 L195 L100 L264 L199 L326 L241 C8D L241
C9 L100 L31D C16 C138 C17 C136 L242
C8 L303 L325 C138 L31D C137 L3D L264
C7 L241 L5D C137 L3D L99 L303

C137 L242 L199 L303
L199 L303 L300
C138

Table 9.4: The actual harvesting sequence for HF B compared to the last ten schedules generated
throughout the 2009 milling season. Note that for each period, one BMF harvesting schedule and one
SMF harvesting schedule were generated by the DSSDV.

and hence all solutions were penalised by the solver, leading to no apparent relative differences
between different solutions with respect to objective function value. However, there may arise
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unknown such differences, so HF B BMF7 is not further analysed here. The SMF scheduled the
fields L219, L74, C145, L195, L249, L164A, L36, C142, L40, L251, L250, L23D and L15D to be
harvested during the first month. The SPD-1 value of HF B SMF7 schedule is 54 %.

Schedule set eight (HF B BMF8 and HF B SMF8) was generated on 23 June 2009 under
local/tabu search time limits of thirty minutes and two hours, respectively. The best objective
function value uncovered by means of the BMF was within 22 % of optimality, the problem
instance again being infeasible, but not due to input errors. The infeasibility was due to the
manner in which all chemically ripened fields had been represented, namely as a single field,
which became slightly too large for any of the periods. The first month of the BMF contains
the fields C9, C144, C145, L40, L74, L219, L249, C24, C154, L181, L23D, L14D and L15D and
has an SPD-1 value of 77 %, but should be considered to be influenced by the fact that there
was a small proportion of the season left at this stage. The first month of the SMF schedule
contains the fields L74, L195, L219, L251, C145, L250, L164A, C136, C9, L84, L36, L40 and
L249 and has an associated SPD-1 value of 54 %.

Schedule set nine (HF B BMF9 and HF B SMF9) was generated on 11 July 2009 with both
the BMF and the SMF being subjected to local/tabu search time limits of one hour. The best
objective function value uncovered by the BMF was within 2 % of optimality and has fields L40,
L219, C24, L15D, L14D, L23D and C154 scheduled to be harvested during the first two weeks,
while fields L219, L15D, L14D, L23D and C154 were actually harvested within one month from
the scheduled dates. No SPD-1 value was computed due to the inflation arising from reaching
the end of the season, but the BMF schedule is desirable judging by the five out of seven fields
having been harvested within a month from the scheduled date. The SMF scheduled fields
L164A, L74, L219, L251 and L40 to be harvested during the first two weeks, and fields L164A,
L74 and L219 were actually harvested within one month from the scheduled dates. The SMF
was also good, judging from the three out of five scheduled fields being harvested within one
month.

Schedule set ten (HF B BMF10 and HF B SMF10) was generated on 1 August 2009 with a local
search time limit for the BMF of thirty minutes and a tabu search time limit for the SMF of
one hour. The best objective function value of the BMF is within 2 % of optimality. The BMF
scheduled fields L32D, L112 and L251 to be harvested during the first two weeks, while field
L112 was actually harvested within one month from the scheduled date. The SMF scheduled
fields L251, C145, L195, L74, C136, L40 and C8 to be harvested during the first two weeks,
while fields L74 and L40 were actually harvested within one month from the scheduled dates.

Schedule set eleven (HF B BMF11 and HF B SMF11) was generated on 10 August 2009 under
local/tabu search time limits of two minutes and one hour for the BMF and SMF, respectively.
The best objective function value obtained by BMF local search is within 1.3 % of optimality
and the BMF scheduled fields C136, C145, C5D, L35, L40, L195 and L300 to be harvested
during the first two weeks. Only one field (L40) was actually harvested within one month. The
SMF scheduled fields C145, L40, L195, L74, L251, C136, C8 and C9 to be harvested during the
first two weeks, and fields L40 and L74 were actually harvested within one month.

9.1.3 DSSDV appraisal by field experts

The harvesting front manager’s comments and schedule evaluation grades as well as the knowl-
edge gained in response to the feedback on all twelve sets of schedules generated throughout
the season are presented in Table 9.5. During the first two weeks of the validation experiment
described in §9.1.1 and §9.1.2, it became clear that chemical ripening must be taken into con-
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HF A HF B
P Manager Comment Grade Manager Comment Grade Knowledge gained

18/3–30/3 N35 and N37 have rela-
tively high RV % in im-
mature cane. Current
season sees relatively im-
mature cane. Not prac-
tical to move equipment
between farms too often.

2 All harvested fields
were ripened. Manager
thought L21 and L22
were good, but weather
interfered.

3 Ripening must be incor-
porated into all schedul-
ing.

31/3–14/4 Cane is immature. 5 Ripened fields go first. 3
15/4–26/4 5 Fields are destined for

plough-out.
3 Plough-out decision must

force scheduling before
end of June.

27/4–10/5 5 Again, fields are destined
for plough-out.

3

11/5–25/5 Good. 5 You have not taken
plough-out fields into
consideration yet. Your
schedule will not be
accurate.

3

26/5–8/6 Age computations may
be wrong.

4 We cut L307 because we
needed an infield for the
weekend.

3

9/6–21/6 3 The fields cut were con-
venient (positionally) on
farm.

3 Distance matrix may be
necessary.

23/6–6/7 Cutting plough-out and
ripened fields.

3 Good. Cutting plough-
out and ripened fields.

4

7/7–21/7 Still cutting plough-out
and ripened fields.

3 Cutting ripened fields. 3

22/7–4/8 Harvested fields with
name starting with a “T”
were all frosted.

4 Fields whose names end
with a “D” were frosted.
L219 and L164 are good
choices.

4 Frost definitely must be
part of any DSS for sugar-
cane harvest scheduling.

5/8–19/8 The harvested fields were
all ripened.

4 The frosted cane was
unpredictable and the
other [harvested] cane
was ripened.

4

20/8–3/9 Harvested fields were all
ripened and in the sched-
ules. Good.

4 The frost cane was unpre-
dictable. There are ac-
tually no wrong fields to
harvest now. Most cane
is ready. We [the grow-
ers and the manager] are
choosing fields with rain
and position on farm in
mind.

3

Table 9.5: The appraisal forms contained comments and grading by the manager, and conclusions in
the form of knowledge gained were drawn after every period. The grades are on a scale of 1 to 5, where
1 is very poor, 2 is poor, 3 is acceptable, 4 is good and 5 is very good.

sideration during scheduling decisions. It also became clear that some varieties are known to
perform better than others under cold and wet conditions, such as N35 and N37.

Later during the validation, it became clear that the participating growers tend to decide early
in the season which fields to plough out, and that this information was not correctly captured
ahead of the onset of the 2009 harvesting season. The capturing and handling of plough-out



156 Chapter 9. Validation of the DSS

and chemical ripening related decisions became a prioritised improvement to be implemented
in preparation of the follow-up 2010 validation experiment.

The growers took travelling between fields into consideration, and it was decided to incorporate
this into a formulation presented in Chapter 11, the future work chapter presented later in this
dissertation.

Further into the harvesting season (during July) a frost struck a significant number of fields
across both harvesting fronts. Information about the extent of the frost with respect to severity
and area affected never became available.

Towards the end of the 2009 harvesting season, the author attended the growers’ end-of-season
meeting. Some final remarks on the DSSDV were collected and it was agreed to continue the
validation experiment and development project during the first quarter of the 2010 harvesting
season.

Some statements made by the growers during a final discussion at the end-of-season meeting
include the following:

• The growers felt that the DSSDV may be useful as a guide, not in detail.

• They thought the DSSDV may be more useful to large estates (in fact, that it will only
become useful for estates producing more than 25 000 tonnes per annum).

• The DSSDV sometimes schedules fields wrongly, which may cause losses if the responsible
person is not careful.

• It is only necessary to update schedules once per month.

• Some flat fields should be scheduled for every month, and

• the DSSDV must take dry conditions into consideration.

After this validation experiment, the next step was to completely rebuild and solidify the DSSDV
into a new implementation of the DSS architecture that could handle all requirements and
other problems put forward during 2009. These included coding the DSS implementation in
a different programming environment accessible by the manager of a typical harvesting front,
refitting all the regression models and updating the handling of certain events and decisions that
are not automated within the DSSDV. This was not possible during the process of validating
the DSSDV. This was done during the break between the 2009 and 2010 harvesting seasons.

9.2 Validation of the final DSS

The second stage in validating the conceptual DSS proposed in this dissertation consisted of
employing the computer implementation of the DSS of §8.2. Two schedules were generated for
each harvesting front described in §9.1.1 and §9.1.2, a set consisting of one schedule for each
harvesting front generated in March 2010 and another set of one schedule for each harvesting
front generated in May 2010.
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9.2.1 Hindsight schedules of the 2009 harvesting season

The 2009 harvesting season field database was input into the newly developed DSS, which was
not available until the end of that season. The field conditions at the onset of the 2009 harvesting
season were captured into the DSS databases, prediction models were employed to compute the
parameters required by the scheduling model and three schedules were obtained. Fields that
were newly added to the set of harvesting fields during the season were not included in the
schedules, since no information is available regarding the status of those fields at the onset of
the season. Fields in the actual harvesting sequence that were actually harvested over several
time periods of the schedule were here assumed to have been completely harvested at the first
occasion. The split field O4AB was considered as a whole again, and was assumed to have been
completely harvested at the time of the harvesting of field O4A. The two first schedules are
shown in Table 9.6 together with the actual harvesting schedule of the two harvesting fronts.
The first two schedules are hindsight schedules for HF A and HF B, while the third schedule
was generated by the treating the two harvesting fronts as a single harvesting front.

The total profit computed by the DSS for the first two best hindsight schedules combined is
R8 369 729. The best solution found when solving for the third hindsight schedule has an objec-
tive function value of R8 395 032, which is R25 303 more than the two first schedules combined.
This indicates that combining two harvesting fronts into one may yield an increased profit solely
due to the different conditions under which the fields may be sequenced. Any advantages in
terms of economy-of-scale are in addition to the advantage in sequencing conditions.

The aim of the computer implementation of the DSS is to enable the testing of the DSS as a
concept with respect to its ability to provide support in making harvest scheduling decisions.
In §9.1, this question was explored by means of appraisals from industry professionals. Another
way to explore the question is to examine the schedules statistically. The measure used for
this task first takes the difference in the number of days between the day on which a field was
actually harvested compared to when a hindsight schedule listed the field for harvesting. The
absolute values of these differences are summed for each field, and then divided by the number
of fields; the measure is thus the average difference in days between field harvesting date and
schedule date. This value is denoted by δhs. The null hypothesis is that the DSS schedules are
not better predictors of harvesting sequences than a randomly generated schedule, i.e.

H0 : δhs
DSS ≥ δhs

RND,

H1 : δhs
DSS < δhs

RND,

where δhs
DSS is the value of δhs for schedules generated by the DSS computer implementation and

δhs
RND is the δhs-value for schedules generated randomly. To test the hypothesis for HF A, thirty-

five schedules were randomly generated. There is only a single estimate available for δhs
DSS = 58,

so the appropriate test is a one-sided Student’s t-test. First, the probability of sampling a value
X ≤ δhs

DSS from the randomly generated schedules’ δhs
RND-distribution was computed. Assuming

that
δhs

RND − δ̄hs
RND

sδhs
RND

is distributed according to a standardised Student’s t-distribution, the probability of sampling a
value X less than 58 is 0.013, which indicates that the null hypothesis is not true (δ̄hs

RND = 80.9
and sδhs

RND
= 9.77). The corresponding test for HF B yielded a p-value of 0.048, also indicating

that the schedules generated by the DSS are better predictors of harvesting sequences than
randomly generated schedules5, as expected.

5The probability of the statement “The DSS schedules are better than randomly generated schedules” being
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HF A HF A Difference in HF B HF B Difference in HF B HF B Difference in
Actual Hindsight Harvesting day Actual Hindsight Harvesting day Actual Hindsight Harvesting day

O23 T228 −19 L238 L008D −75 C016 C153 −40
O26 T225B −21 L239 L074 −69 C154 L181 31

O4AB T216B −205 L183 L200 −47 C144 C150 −72
O8 O46 −59 C026 L084 −71 C143 L005D 96

T225 O23 −104 C028 C136 −71 L074 C138 139
T216 O26 −28 L021 L300 −26 L100 L264 −38
O17 O42 5 L022 L241 −25 C029 C017 −47
O42 O36 41 L007D L169 −210 L199 L303 −3
O41 O29 −88 L001D L166 −179 L242 L176 13
T231 O31 −10 L009D L307 −199 L041 L242 −61

T225B T235 80 L198A L249 −143 L040 L236 −62
O16 O17 11 L200 L070 26 L006 L326 −22
O29 O8 47 C148 C143 −52 L091 L174 −41
O19 O16 0 C147 C009 −75 L099 L031D −33
O13 T216 −1 C146 L021 −61 L112 L199 119
T228 T231 114 C153 L022 −74 L326 C016 28
T235 O19 65 C152 L232 −63 L325 L012 −16

T216B O13 115 C151 L164A −56 L303 L003D 43
O1A O32A −16 C150 L250 −75 L300 L198A 171
O1B T225 −32 L070 L183 25 L264 L201 52
O2A T232 −54 L307 L112 32 L251 L017D −49
O36 O3C 109 L174 C137 −88 L241 L029D 178
T223 O1A −28 L176 C007 −74 L201 L100 22
T215 T203 −67 L012 L219 −93 L195 L006 −44
O40 O41 −27 L028D C142 −4 L036 C029 −32
T203 O1B −1 L236 L239 −70 L035 L325 −21
O47 T223 −68 L232 C008 33 L032D C144 −9

O32A O40 50 L222 L238 −132 L031D L001D 55
O31 O2A 120 L169 L028D 68 L017D L099 37
O12 O32B −66 L166 C026 67 L008D L091 217
O15 O15 −23 L181 C028 −28 L005D L222 90

O32B O4AB −11 L084 C148 81 L003D L032D 54
O34 T215 −40 L249 L023D 68 C145 L041 −14
O3C O47 65 L250 C154 47 C142 L009D 159
O46 O12 203 L029D C024 −76 C138 L040 98
T232 O34 99 L023D L015D 15 C137 L035 172

L015D L014D 12 C136 L007D 223
L014D C146 13 C024 L036 145
L219 C151 46 C009 C145 203

L164A C152 68 C008 L251 170
C017 C147 −20 C007 L195 183

Table 9.6: Actual harvesting sequences for HF A and HF B compared to hindsight schedules for these
fronts suggested by the final DSS. Here “HF A Actual” means the actual harvesting sequence which
reads from top to bottom. “HF A hindsight” is the hindsight schedule generated after completion of the
season. The column “Difference in harvesting day” shows the difference in harvesting day for the field in
the “Actual” column, i.e. the number of days that elapsed between its actual and hindsight-scheduled
harvesting days (actual day minus hindsight day). The corresponding meanings are valid for the HF B
columns. The second set of columns for HF B contains the second halves of the HF B schedules.

9.2.2 Harvesting front A

The first schedule for HF A (HFA1) was generated on 16 March 2010 under a tabu search
time limit of five minutes, and the best objective function value found was within 2.5 % of
optimality. The entire final harvesting sequence is not known, so neither SPD-1 nor SPD-2
could be employed as measures of prediction desirability. Instead, another measure was defined
as the average difference between the actual harvest day and the scheduled harvest day of the
first ten (or less than ten if ten are not available) harvested fields, this measure being called SPD-
3. This schedule and the other three schedules generated during the 2010 validation experiment
are shown in Table 9.7 together with the actual harvesting sequences. The SPD-3 value (based
on ten fields) for the first schedule is ninety days.

The second schedule for HF A (HFA2) was generated on 10 May 2010 under a tabu search time
limit of two minutes, and the best objective function value found is within 5.6 % of optimality.
The SPD-3 value (based on three fields) for the second schedule is sixty-one days.

wrong is 1− (1− 0.013)(1− 0.048) = 0.06, if the combined probability is considered.
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HF A HF B HF A HF B
Day Actual HFA1 HFA2 Actual HFB1 HFB2 Day HFA1 HFA2 HFB1 HFB2

77 O18 O3A C12 L173 152 L90 C3
79 C13 L1 154 T224 L327 L83
80 C14 L235 156 L171 L302
82 O20 O25 C18 L14 160 O6 C20 C4
83 C19 L7 162 T226 O42B C24 L224
85 C20 L177 165 T227A L306
86 O28 O7 C21 167 T227 L76 L185
88 C24 169 L57 C10
89 C25 A2 173 L34 C15
91 O32B O24 C135 L234 175 O13 L172 L78
92 C145 A25 177 O39 A4 A25
94 C149 179 L56 C1
95 O44 O22 A2 181 O43 O7 L197B L168
97 A6 183 O9 O22 L221
98 A10 L223 185 L62 L82
100 L7 188 O27 L168 L14
101 O45 O27 L34 190 O2B O10 L251 L90
103 L56 192 T216A C141 L108
104 L57 L11 194 O45 A10 L223
106 T216 O10 L76 L324 196 T227 O35 L003 L177
107 L77 L108 200 T236 L197A L179
109 L229 202 O28 O3D A21 L251
110 T216B T232 L1 204 O32B C145 L324
112 L8 L221 206 C135 L234
113 L10 208 T216 O24 L240
115 T224 L11 211 O44 T226 L224 C141
116 O3D L186 L78 213 O13 L264
118 L231 L10 217 C1 C140
119 T232 L264 C18 219 C2 C6
121 O18 L266 L229 221 C149
122 L327 C25 223 T227A L23 L172
124 T236 O25 L328 C14 225 C3
126 O9 C4 C13 L173 229 L303B L3
128 C3 L43 C2 231 O23 L083
130 O20 L177 L8 L240 234 O43 C4
132 O13 L43 C12 L198B 236 O6 C6 C5
134 L83 L186 L43 238 O14 C10 A4
136 L34 L77 L23 240 L185 C23
138 O14 L229 A6 A21 244 O42B L220 L2
139 T216A L220 C140 246 O21 O21 C23 L303B
141 L327 C21 L197A 248 L302 L171
143 O35 O3A L328 L179 250 C5
145 O37 L164 L82 L235 252 L2
147 L186 C19 254 O14 A15 L197B
149 L251 L266 257 O26 L220
151 O37 L172 L90 C3 259 L198B L308

261 L164B
263 O39 C15 A14
265 O37 L308
267 A24
269 L231
273 A14 L306
275 T233 L195 L164B
277 L300 A15
279 O26 L36 A24
282 O38 O23 L219 C27
284 T234 L22 L96
286 T233 T234 L219
288 O5A C27 L36
290 L328 L22
292 O30 O2B L96 L195
294 O5A O38 L300
298 O5B O5B
300 O30

Table 9.7: Actual harvesting sequences for HF A and HF B until end of May 2010 compared to the
four schedules HFA1, HFA2, HFB1 and HFB2, shown together with an approximate day of the year.
The schedules extended until early 2010, which is shown in the rightmost part of the table.

9.2.3 Harvesting front B

The first schedule for HF B (HFB1) was generated on 16 March 2010 under a tabu search time
limit of ten minutes, and the best objective function value found is within 6.5% of optimality.
The SPD-3 value (based on ten fields) for the first schedule is sixty-two days.

The second schedule for HF B (HFB2) was generated on 10 May 2010 under a tabu search time
limit of ten minutes, and the best objective function value found is within 9.5% of optimality.
The SPD-3 value (based on 8 fields) for the second schedule is fifty-nine days.
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9.2.4 DSS appraisal by field experts

Each of the four schedules displays a rather large SPD-3 value when compared to the best SPD-2
values of Table 9.1. The cause for this is probably a lack of communication between the author
and the harvesting front manager, since it later came to the author’s attention that conditions
at the four farms were dry. The dry conditions had caused the growers to schedule high-lying
fields earlier.

Two additional schedules were generated in hindsight, taking into consideration that conditions
were dry. All fields had the event called “Drought stress” set to 100 % of the area, the event
date being 17 March 2010. The first hindsight schedule is for HF A and it achieved an SPD-3
value of fifty-eight days, an improvement on the ninety days of schedule HFA1 of thirty-two
days. The second hindsight schedule is for HF B and achieved an SPD-3 value of sixty-two
days, which was one day worse than that of HFB1.

The final comments on the DSS were communicated personally, and the manager of the harvest-
ing front said that if he were less experienced and lacked the support of the growers he would
have liked to have the DSS generated schedules as support. He also felt that the schedules that
had been sent for the 2010 season were very good [126].

9.3 Chapter summary

In this chapter, a DSSDV validation experiment was described, in which a number of schedules
were sent to the manager of two harvesting fronts of a syndicate comprising four growers in
the Eston Mill area of KwaZulu-Natal. The growers and the manager were available during the
entire 2009 harvesting season and provided appraisals and other feedback on each schedule. In
general, the schedules were appraised by the manager and growers as acceptable, good or very
good. The growers are of the opinion that the schedules may be of particular assistance when
scheduling larger estates.

The DSSDV was further validated by computing two numerical measures providing a scoring
method with respect to the ability of the DSSDV to predict the actual harvesting sequence. The
first measure, SPD-1, showed that on nine out of fifteen occasions, the DSSDV scheduled the
fields in such a way that more than half of them were actually harvested within two months of the
scheduled date. The second measure, SPD-2, showed that there was no significant difference
between the BMF-based and SMF-based schedules in their ability to predict the harvesting
sequence, but it was mentioned that the BMF-based schedules were harder to generate for
certain problem instances. The SPD-2 values did, however, show that there is a significant
difference in prediction desirability attributable to HF A than to HF B, but the reason for
this is unknown. Overall, the SPD-2 values indicate that the DSS on average scheduled fields
approximately sixty-five days from their actual harvest day for the particular experiment in
question. The SPD-2 values of the six SMF-based schedules for HF A were, however, in the
range twenty-nine to fifty-one, indicating that prediction desirability may be better under certain
conditions.

This chapter also contains a description of the effort undertaken to validate the DSS. The DSS as
a computer implementation is based on the same conceptual decision support system architec-
ture that formed the basis of the DSSDV, and hence the DSSDV validation is also applicable to
the DSS. The DSS was tested by means of hindsight scheduling the 2009 harvesting season and
was further validated during the early part of the 2010 harvesting season by means of two sets
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of shadow-schedules of the two harvesting fronts HF A and HF B. It was necessary to introduce
a third performance measure, called SPD-3, which indicated that the average difference in days
between the harvested fields’ actual harvesting dates and their DSS scheduled harvesting dates
was approximately sixty days, and in one case ninety days. Two additional hindsight schedules
were generated thereafter, taking into consideration recent information about dry conditions
prevailing across the farms. A result of comparing these hindsight schedules with dry condi-
tions taken into consideration in addition to the original schedules was that the ninety day
SPD-3 value for HFA1 was reduced to fifty-eight days. As a final remark, the harvesting front
manager said that he would have liked to have the scheduling capability of the DSS as support
had he been less experienced, and added that the schedules for the 2010 harvesting season were
“perfect.”

This chapter is in fulfilment of Dissertation Objectives V and VIII of §1.3.
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This chapter contains a summary of work contained in this dissertation, a presentation of the
main contributions of this dissertation to the field of sugarcane harvesting decision support and
an appraisal of these contributions.

10.1 Dissertation summary

Chapter 1 of this dissertation opened with a brief history of sugarcane cultivation in §1.1 where
it was described how sugarcane followed the human migration routes from Melanesia and South-
East Asia to India and through the campaigns of warring emperors reached the Middle East, the
Mediterranean and northern Africa, was then carried by colonialist missions to the Americas,
Mauritius and Reunion and finally taken by a Mr Morewood to South Africa in 1846. This
was followed by a description of the current state of the South African sugarcane industry
and an overview of some of the issues involved in producing sugarcane. Then the problem of
providing decision support to managers charged with the task of scheduling sugarcane harvesting
operations was introduced in §1.2. The aim of this dissertation was alluded to in a statement
that the proposed solution to the decision problem considered is the schedule output by a DSS to
be presented later in this dissertation. It was mentioned that the focus of the work throughout
the dissertation would remain on medium-scale commercial growers. In §1.3, the nine objectives
of the dissertation were presented. Chapter 1 was concluded by a delimitation of the scope of
the dissertation in §1.4, in which several of terms used throughout the dissertation were defined,
as well as a description of the organisation of material included in the dissertation in §1.5.

Chapter 2 opened in §2.2 with a review of the various approaches taken in the literature with re-
spect to modelling sugarcane production in general. The modelling work by Grunow et al. [81],
Higgins [96], Higgins et al. [101], Muchow et al. [158] and Piewthongngam et al. [170] exemplified
the variety of contexts having been considered in literature as well as the complexities of imple-
menting the models and gaining industry acceptance for those implementations. Several mixed
integer linear programming models as well as discrete event simulation models appear in the
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literature, and the problems modelled range from highly delimited case studies to very broadly
defined scenario-type exploratory questions. In Australia, quite a few models have reached the
stage of providing actual decision support, and some of them are integer programming-based,
while some are simulation-based. There are many models to be found in literature, but few OR
tools of validated quality available to growers for seasonal harvest scheduling.

In §2.3, a survey of current research topics within the field of supply chain management was de-
scribed, followed in §2.4 by a brief review of current agricultural value chain research with respect
to sugarcane. Within the field of SCM-related research, theories are still under development.
The scientific community does not yet agree on exactly how modelling in terms of, for example,
performance measurement of supply chains should be undertaken in order to provide successful
SCM-improvement projects. This dissertation may be called an SCM-related research project
since it concerns “. . . developing solutions or answers to specific supply chain-related problems
or challenges. . . ”—a defining trait of SCM-research, according to Stock [208, p. 147]. In §2.4,
it was argued that work done towards providing decision support in the sugarcane industry is
more likely to be successful if the researcher performing the work does so in close collaboration
with the potential user of the decision support [103]. It was also noted that scheduling models
have been received with positive anticipation by the Australian sugar industry [203].

The various modelling approaches taken in the literature towards predicting the recoverable
sugar and the cane yield of sugarcane was explored in §2.5. Simulation-based models such as
APSIM-Sugarcane, CANEGRO or QCANE, are accurate under ideal cultivation conditions,
but would have required extensive tuning in order to model recoverable value and cane yield in
practical settings for individual farms, and the model developed for South African conditions
(CANEGRO) could not compute RV, only recoverable sugar and cane yield. The simulation-
based models were, furthermore, based on architectures too involved to “copy-implement” into
the DSS of §8.2, and one of the objectives of this dissertation was to implement the DSS
as a standalone system, effectively ruling out the use of the simulation-based models in this
work. A viable option for predicting recoverable value and cane yield was found in the work by
Greenland [79], Higgins [94], Higgins et al. [101], Jiao et al. [116], and Lawes and Lawn [132]
who all used regression-based models to predict cane yield and recoverable sugar.

In §2.6, studies in the literature of various extraneous events such as harvest, fires of various
kinds under different circumstances, frost of varying degree, lodging, flowering and Eldana
infestation were examined in search of quantified resulting rates of deterioration in cane yield
and recoverable value. Very few deterioration rates were found, most results directly usable
in computing the parameter values of §7.4.2, §7.4.4 and §7.5.1 having been performed on fires
(in [38, 234–236]), where deterioration rates were at the centre of the study. These papers set
good examples of what should be done for the other events. The extraneous events were given
further attention in §2.7 by analysing the information sheets published by SASRI. Commercial
sugarcane varieties were tabulated according to a wide spectrum of properties and the common
diseases of brown rust, mosaic, pineapple disease, pokka boeng, ratoon stunting disease, red rot,
smut and sour rot were all discussed in terms of their effects on sugarcane harvest scheduling.
The SASRI information sheets also render advice with respect to accidental fire, drought, frost
and flowering, much apparently being drawn from the same work as that examined in §2.6.1,
§2.6.2, §2.6.3 and §2.6.4. A description of the advice by SASRI on insect infestations by Eldana,
Sesamia, Chilo, Hysteroneura and green leaf sucker concluded Chapter 2, which was presented
in partial fulfilment of Dissertation Objectives I, III and IV, as described in §1.3.

Chapter 3 contains an overview of global sugar production (§3.1) followed by a series of brief
overviews of the national sugarcane production scene, the rules and regulations governing the
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national sugar industry and a differentiation of growers according to size, for the South African
case, in §3.2. In §3.3, the cultivation of sugarcane was briefly touched upon, and some examples
of activities that growers perform and problems that they face on a daily basis were mentioned.
This was followed by an overview description of the harvesting operation (§3.4) and the loading
and transportation of sugarcane to the mill (§3.5). Chapter 3 was concluded by a brief mention
of the various constituents of sugarcane and a selection of current uses of these constituents.
Chapter 3 stands in partial fulfilment of Dissertation Objectives I, III and IV, and together with
Chapter 2 achieve the fulfilment of these objectives.

In Chapter 4, the problem considered in this dissertation, called the tactical sugarcane harvest
scheduling problem (THSP), was described in some detail. The problem description was struc-
tured according to various different viewpoints or contexts. There were six specific contexts:
small-scale solitary growers, small-scale harvesting groups, medium-scale commercial solitary
growers, medium-scale commercial harvesting groups, independent large-scale commercial es-
tates and mill-owned large-scale commercial estates. The decision support system design and
development approach taken towards solving the THSP for the medium-scale commercial soli-
tary grower and medium-scale commercial harvesting group contexts was singled out for focus
in the remainder of the dissertation and the main components of the validation process of the
DSS were envisaged. The thesis of this disseration was stated in §4.4.

The CAP (§5.1.1), GAP (§5.1.2), ATSP (§5.1.3), VRP (§5.1.4), TDTSP (§5.1.5), ATSPTW
(§5.1.6), ATSPTDC (§5.1.7), CJSP (§5.1.8) and STDSP (§5.1.9) were briefly reviewed in Chap-
ter 5. These well-documented operations research problems were conceptually connected to the
THSP. The ATSPTDC was formulated as an integer programming problem, such a formulation
not having been encountered during the literature review of this dissertation. These well-known
problems of §5.1 were described in partial fulfilment of Dissertation Objective II as stated in
§1.3. In §5.2, the branch-and-bound method (§5.2.1) was described in general and in terms of the
TSP. The cutting plane method was described in §5.2.2, also in general and then specifically for
the TSP. These two exact methods are considered the starting points for most exact approaches
towards solving NP-hard combinatorial optimisation problems. The work of §5.2 was in partial
fulfilment of Dissertation Objective II as stated in §1.3. In §5.3, a number of popular meta-
heuristics, including ant colony optimisation, genetic algorithms, memetic algorithms, scatter
search, simulated annealing and tabu search, were briefly reviewed and pseudo-code algorithms
for these methods were given. These descriptions were in partial fulfilment of Dissertation Ob-
jective II as stated in §1.3. A number of practical aspects of the various solution methodologies
were discussed in §5.4, completing fulfilment of Dissertation Objective II as stated in §1.3. The
choice was made to base the core of the DSS on an alternative formulation of the ATSPTDC
to the one presented in §5.1.7, the alternative formulation subsequently presented in §6.2.1,
coupled with a tabu search metaheuristic subsequently presented in §6.2.2.

Two distinct decision support systems were developed in this dissertation, called the decision
support system—development version (DSSDV) and decision support system (DSS), respectively.
The optimisation models destined for the scheduling model building blocks of the DSSDV and
the final DSS were formulated in Chapter 6. The scheduling model of the DSSDV, called the
BMF, was described in §6.1 and approaches towards its solution were attempted by means of
the off-the-shelf optimisation software suite (based on the branch-and-bound method) LINGO
9.0, the attempt being described in §6.1.1, as well as by means of a specially designed local
search-based approximate solution algorithm described in §6.1.2. The core model of the final
DSS, called the SMF, was solved using an attribute-based tabu search method incorporating
a shift neighbourhood and an ejection chain, described in §6.2.2. Failed attempts, described
in §6.2.1, at solving small instances of the SMF using LINGO 11 shows that it is a very hard
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problem. Even the LP relaxation could not be solved for practical size instances since the
LINGO solver ran out of memory (4 Gb of RAM was installed on the PC involved). Chapter 6
stands in partial fulfilment of Dissertation Objectives VI and VII of §1.3.

Chapter 7 contains descriptions of the various models later employed within the prediction
models building block of §8.1.2. A definition of the value of a sugarcane crop was introduced
in §7.2 and was followed in §7.3 by a brief methodological review of multiple linear regression,
the technique chosen as the basis for developing the models populating the prediction models
building block. This was followed in §7.4 by a description of the base yield models of §7.4.1,
developed using this technique. A manner in which to adjust the base yield models for practical
circumstances under which certain extraneous events were assumed to have taken place was
described in §7.4.2 by means of the so-called event-driven yield models, whose parameters were
based on the findings described in Chapters 2 and 3. The base RV models of §7.4.3 were also
developed using multiple linear regression and since RV is affected by extraneous events, these
base RV models were also equipped with adjusting event-driven RV models populated with
parameter values as a result of the findings in Chapters 2 and 3.

The cost parameter values of Chapter 7 assigned to the harvesting of a particular field at a
particular point in time served the dual purpose of representing the actual cost of harvesting a
particular field at that particular point in time (which, for example, varies due to the probability
of rain) and representing an artificial penalty assigned to harvesting a field outside a time-window
associated with certain extraneous events having occurred on the particular field. The artificial
penalties were described in §7.5.1 and the more natural cost models were put forth in §7.5.2
and §7.5.3. Chapter 7 stands in partial fulfilment of Dissertation Objective VI of §1.3.

In Chapter 8, the architectural framework of the decision support system was presented (§8.1.1)
and various building blocks were incorporated (§8.1.2) into it in order to formulate an approach
towards solving the THSP for medium-scale solitary commercial growers and medium-scale
commercial harvesting groups. The DSS architectural framework was implemented on a personal
computer in a programming language available to those with access to Microsoft Excel 2007, as
described in §8.2. Screen-shots and bulleted descriptions showed and described the appearance
and workings of the various parts of the user interface and the procedures embedded within.
The DSS computer implementation was verified in §8.3 by means of selected problem instances
with designed parameter settings (§8.3.1, §8.3.2 and §8.3.3) and the results were discussed at
some length, with conclusions drawn regarding the setting of the scheduling model parameters.
Chapter 8, together with Chapters 6 and 7 completed the fulfilment of Dissertation Objectives
VI and VII of §1.3.

Chapter 9 contains a description of the validation experiment performed on the DSSDV, in
which a number of schedules sent to the manager of two harvesting fronts, HF A and HF B, of
a syndicate comprising four growers in the Eston Mill area of KwaZulu-Natal were evaluated
and used for the purpose of generating response in terms of faults, weaknesses, strengths or
missing properties of the DSSDV schedules. The growers involved in this case study—also
referred to as the validation experiment—and the manager were available during the entire
2009 harvesting season, and the schedules were in general evaluated by them as acceptable,
good or very good (§9.1.1, §9.1.2 and §9.1.3). The DSSDV was also validated by means of
a scoring method designed to measure the DSSDV’s performance in terms of predicting the
actual harvesting sequence. The first measure, SPD-1, indicated that most of the time (nine
out of fifteen schedules) the DSSDV scheduled the fields within two months of their actual
harvesting date (§9.1.1 and §9.1.2). The second measure, SPD-2, showed that the BMF-based
and the SMF-based schedules did not yield a significant difference in terms of their ability to
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predict the harvesting sequence. According to the SPD-2 values, there is, however, a significant
difference between HF A and HF B in prediction desirability (§9.1), the reason for which was not
determined. The DSSDV on average scheduled fields approximately sixty-five days from their
actual harvest day for the particular experiment in question, according to the analysis performed
on the SPD-2 values. SPD-2 values in the range of twenty-nine to fifty-one for six SMF schedules
for HF A shown in Table 9.1 indicated that predictions may be better under certain conditions.
The DSS as a computer implementation was also validated, this experiment being described in
§9.2. The DSS was tested by hindsight scheduling the 2009 harvesting season, the results of
which are described in §9.2.1. Evidence was found that the hindsight schedules were significantly
better at predicting the actual harvesting sequence than were randomly generated schedules, as
expected. The DSS was further validated during the early part of the 2010 harvesting season
by shadow scheduling the two harvesting fronts HF A and HF B, described in §9.2.2 and §9.2.3.
A third performance measure—SPD-3—indicated that the average difference in days between
the harvested fields’ actual harvesting dates and their DSS scheduled harvesting dates was
approximately sixty days, but for the first HF A schedule it was ninety days. During the grower
and manager appraisal process, described in §9.2.4, it came to the author’s attention that there
had been a slight, unreported drought at the onset of the season, and these dry conditions had
affected the actual harvesting sequence. Two hindsight schedules were subsequently generated,
taking this belated information into consideration. These hindsight schedules were compared
to the original schedules which lead to the interesting result that the ninety day SPD-3 value
for HFA1 was reduced to fifty-eight days. During the appraisal conversations, summarised in
§9.2.4, a field expert stated that the schedules would have been useful to him if he had been
less experienced. Chapter 9 stands in fulfilment of Dissertation Objectives V and VIII of §1.3.

10.2 Main contributions of this dissertation

The contributions to the sugarcane harvest scheduling decision support problem made in this
dissertation are outlined in this section. These contributions are described in the order in which
they appear in this dissertation.

Contribution 1 A contextually formulated description of the tactical sugarcane harvest schedul-
ing problem in Chapter 4.

The first contribution of this dissertation is the formulation of the THSP within several contexts.
This problem formulation served as the object of the design of the decision support system
architecture and has not been contextually defined previously in the literature.

Contribution 2 An exploration of well-known mathematical programming models and their
relationships with the THSP within its various contexts in §5.1.

In §5.1, various well-known problems were examined with respect to their expected appropri-
ateness in terms of modelling the THSP within the various contexts mentioned above. This
was done to exploit the available literature for possible angles not yet considered during the
formulation of the scheduling model building block within the final DSS put forward in this
dissertation.

Contribution 3 A sequential model formulation in §6.2 for the scheduling model building block
of the DSS.
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The formulation presented in §6.2 constitutes a novel (within the field of sugarcane harvest
scheduling) and well-grounded scheduling model building block suitable for the THSP within
the medium-scale solitary commercial grower and medium-scale commercial harvesting group
contexts. A solution approach towards solving this scheduling model was described in §6.2.2
and it was shown that it is a very hard problem to solve in §6.2.1.

Contribution 4 A proposed modelling framework in §7.4.2 for improving the forecast of seasonal
cane yield for sugarcane crops that have been affected by one or several extraneous events.

The framework of the regression-based base yield models in §7.4.1 coupled with the event-driven
yield models in §7.4.2 was designed to improve the forecast of seasonal cane yield with respect
to crops that have been exposed to extraneous events. The base yield models are not novel, but
the event yield models and the coupling of these models are novel.

Contribution 5 A proposed modelling framework in §7.4.2 for improving the forecast of sea-
sonal recoverable value percentage for sugarcane crops that have been affected by one or several
extraneous events.

The framework of the regression-based base RV models in §7.4.3 coupled with the event-driven
RV models in §7.4.4 was designed to improve the forecast of seasonal cane RV with respect to
crops that have been exposed to extraneous events. The base RV models are not novel, but the
event RV models and the coupling of these models are novel.

Contribution 6 An appraisal of environmental events and human-induced events in §2.6 and
§2.7 with a proposed quantification of their effects with respect to the yield and quality of sugar-
cane, presented in Table 7.3, which fits into the framework described in §7.4.

The gathering and organisation of information available in the literature concerning environ-
mental and other events that affect sugarcane adversely has not previously been presented in
the literature. The information found was analysed in order to quantify the effects of these
events on the yield and quality of sugarcane. The actual coefficient values assigned in Table 7.3
are proposals, not experimental results or known facts, based on §2.6, §2.7 and communication
with field experts.

Contribution 7 A cost modelling framework in §7.5 designed to further the accuracy of seasonal
profit forecasts of sugarcane fields, especially with respect to extraneously affected fields.

In §7.5.1, §7.5.2 and §7.5.3, a framework for properly costing sugarcane field harvesting as well
as selectively penalising undesirable harvesting dates due to field properties, extraneous events
or combinations thereof, was described. This is novel.

Contribution 8 The DSS architecture in §8.1.

The main contribution of this dissertation is the DSS architecture described in §8.1 designed
through its various building blocks to predict the values of sugarcane fields into the future,
schedule the fields in profitable sequences and provide these schedules in support of decision
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making within sugarcane harvesting operations. The DSS architecture as described in §8.1 is a
novel manner in which to approach the sugarcane harvest scheduling problem.

Contribution 9 The computer implementation of the DSS architecture in §8.2.

The computer implementation of the DSS architecture described in §8.2.1 and §8.2.2 was verified
in §8.3 and its parameter settings were fine-tuned in §8.4. The implementation itself is a novel
contribution to the currently available computer programs that can provide decision support to
managers of sugarcane harvesting operations.

Contribution 10 The validation experiments in §9.1 and §9.2.

Finally, this DSS architecture was validated to provide “acceptable” to “very good” schedules
by industry experts, through a series of validation experiments performed by shadow scheduling
an actual harvesting operation via an early implementation in §9.1 and the final DSS imple-
mentation in §9.2. These validation experiments are novel in terms of what has previously been
conducted in South Africa with respect to sugarcane harvest scheduling decision support tool
validation experiments, as far as the author can ascertain.

10.3 An appraisal of the dissertation contributions

The definition of the THSP in Chapter 4 is of value since it provides a problem formulation
general enough to invite several methodologies for its solution, while it is well-defined enough to
provide a point of reference for comparing these various methodologies. Today, there are many
methodological comparisons in the literature on sugarcane production, but these sometimes
compare different methodologies across different problems, leading to possible misconceptions
about the value of the methodologies. Therefore, the definition in Chapter 4 may improve
the comparisons of future research in seasonal sugarcane harvest scheduling. If the THSP is
recognised by the scientific community as a problem worthy of their attention, the formulation
in Chapter 4 may contribute significantly to the development of the field.

The exploration in §5.1 of well-known mathematical programming models and their relationships
with the THSP within its various contexts provides a number of viewpoints to be taken when
formulating optimisation models for sugarcane harvest scheduling problems. These viewpoints
may constitute starting points for future research on the THSP.

The sequential model formulation in §6.2 and its solution in §6.2.2 provides a valid (Chapter
9) manner in which to sequence (or schedule) a set of sugarcane fields based on their forecast
time-dependent seasonal profits.

The modelling of extraneous events in §7.4 and in §7.5 in terms of cane yield, RV and cost
penalties was shown by means of a hindsight schedule in §9.2.4 to provide, in a single case,
an improvement in SPD-2 from ninety to fifty-eight days. This single sample constitutes no
statistical evidence, but it does provide an indication of the improvement potential arising as a
result of the incorporation of the event-driven yield and RV models. The comments collected
during the 2009 and the 2010 validation experiments further indicate that these considerations
are paramount in scheduling the harvesting operation.

The most important contribution of this dissertation is the validated DSS implementation in
§8.2, whose validation reflects on the decision support system architecture in §8.1 as being an



172 Chapter 10. Conclusion

acceptable solution to the THSP for medium-scale solitary commercial growers and medium-
scale commercial harvesting groups formulated in Chapter 4. The validation experiments showed
that the DSS implementation delivered—according to the opinions of industry experts—one
poor schedule, twelve acceptable schedules, seven good schedules and four very good schedules
during the 2009 validation experiment. Hindsight schedules in §9.2.1 prove statistically that the
DSS-generated schedules are better than random schedules as predictors of the actual harvesting
sequence. The final comments in §9.2.4 after the 2010 validation experiment includes the belief,
expressed by several of the growers, that the schedules would be useful if their operations were
much larger, in the range of 25 000 tonnes of cane per annum and upwards.

The sugar industry may benefit from this research, since the DSS may be the first automated
harvest scheduling system that works for a large variety of sugarcane growers in South Africa.
It may be used as a negotiating tool within harvesting groups who may seek an “impartial”
system to decide the harvesting sequence or it may provide decision support to managers of
large-scale harvesting operations.



CHAPTER 11

Recommendations for future research

The harvest scheduling problem described in this dissertation is in its nature contextual, and
more research is required in order to understand the problem and in order to model it further.
Several components of the building blocks of the DSS architecture are in an early stage of
development and may increase in quality and prediction accuracy by means of further study. A
number of avenues of future research intended to spawn future work on this intriguing problem,
are proposed in this final chapter. The first four proposals concern the prediction models building
block, the following four proposals relate to the formulation and solution of the scheduling model
and the last two proposals deal with an improved DSS architecture. This chapter stands in
fulfilment of Dissertation Objective IX of §1.3.

Proposal 1 To develop empirical models of the effects of extraneous events on cane yield and
RV over time.

The potentially vast undertaking of modelling all extraneous events that may affect the yield
or quality of sugarcane may be carried out by means of a series of experiments. The factors
involved in these experiments may for a particular event, include:

• the time of year at the onset of the event,

• the soil properties of the field (i.e. several factors),

• the cane variety (varieties may perhaps be grouped according to already known behaviour
in response to the event),

• the age of the cane in the field,

• the field aspect and the field toposequence,

• latitude, longitude and altitude of the field,

• whether dry or normal conditions prevailed before the onset of the event,

• whether dry or normal conditions prevailed during the experiment.

A nation-wide experiment (or series of experiments) with factors that may be controlled, as well
as factors that may only be recorded, may shed more light on the relationships between these
factors and their associated rates of deterioration of sugarcane.
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Proposal 2 Use simulation-based crop prediction models in a standalone fashion.

Simulation-based crop prediction models are well-developed in the literature and it may be
possible to combine these models within a standalone DSS implementation. During this disser-
tation project, SASRI showed that they are helpful, should one decide to attempt to use their
model (CANEGRO) to predict various important base properties of sugarcane. The potential
benefits are large in terms of increasing the base yield and base RV model accuracies.

Proposal 3 Use heat units instead of time as a regressor in the cane yield models.

Cane yield may be modelled more precisely using the factor heat units rather than the factor
time spent growing as regressor in the base yield models. This is thus an avenue that may
provide better prediction models as a result of a relatively small amount of work invested.

Proposal 4 Improve the cost models in §7.5.

More may be done in terms of modelling costs accurately, especially towards making it feasible
to integrate the DSS architecture into a business information system. Much has been done in
this area and most of the costing should be possible to mine from the literature.

Proposal 5 Incorporate restricted adjacency harvesting in the case of twelve-month crops.

The harvesting of fields should, if possible, be performed in such a way that neighbouring fields
retain a significant age difference [25]. When fields are left in an age mosaic pattern, erosion
due to rain on hill slopes is reduced. The risk of fires wreaking havoc on adjacent fields is also
reduced, since fires are more easily extinguished in young cane than in old cane [164]. The
harvesting of certain restricted pairs of fields within a certain number of time periods from
one another may be forbidden by augmenting the SMF (problem (6.7)–(6.19)) with additional
constraints. One possibility is to employ the ATSPTDC formulation in §5.1.7, which will accom-
modate adjacency control by means of time windows whereby one could assign a time window
to each restricted field. There is, however, a drawback here, since one would have to choose
beforehand which of the two fields in each pair should be assigned to which harvesting time
window, thereby deciding the internal harvesting sequence within each restricted pair.

In terms of the formulation in §6.2.2, one may alter the objective function to incorporate a
penalty for harvesting the restricted pairs within a certain number of time periods from one
another. It is a matter of computing the differences in harvesting times for all restricted pairs
and penalising those that are less than a certain value, determined beforehand. The penalty
constants, of course, need to be fine-tuned, before the algorithm may be put to use.

Proposal 6 Incorporate a distance matrix into the cost components of §7.5 in order to account
for travelling costs and to restrict certain harvesting front movements.

If the objective function of the SMF in §6.2.1 is changed to

maximise z =
∑
u∈I

∑
v∈I

∑
j∈J

(Pujxδuvj + Cduvjx
δ
uvj), (11.1)
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where Cduvj is the cost of travelling from field u to field v starting at time instant j, then
it is possible to account for travelling costs and also to enforce certain adjacency restrictions
by means of artificial penalties within Cduvj . This change would also not be computationally
demanding for the tabu search, in a relative sense, since the current objective function already
has to compute the time instants of the harvesting commencement of every field. One interesting
idea is to penalise travelling more during the wet periods of the season, since travelling is more
difficult then than during the dry periods of the season. This notion has not been discussed
with the industry experts, but should provide an interesting topic.

In some scenarios applicable to the decision support system, the geographical situation of the
fields under consideration might be such that they can be grouped into a number of separate
general areas. An example of such a situation is when a large farm consists of two or more
groups of fields that are separated by a large distance. To move the harvesting front, which
consists of all the cutters or mechanical harvester, loading machinery, water carts and any other
equipment and personnel required to burn and harvest a particular field, between general areas
may come at a high cost, and should be avoided if possible. In order to restrict such movement,
one may utilise the Cduvj-parameters in (11.1) and penalise all arcs leading from one general area
to the next to some extent.

Proposal 7 Implement a better upper bounding technique on the objective function value in
§6.2.2 into the scheduling model building block.

Currently, the maximum profit possible for each field is taken, and these profits are summed into
an upper bound on the objective function value. For certain instances of the problem, this upper
bound is very poor. Using the linear programming relaxation of the formulation in §6.2.1 is one
option, but removing certain constraints first and then linearly relaxing the resulting problem
may be a better option, due to the large number of constraints present even in moderate size
problem instances.

Proposal 8 Explore other methods of solving problem (6.7)–(6.19) approximately.

The body of solution methods for combinatorial optimisation problems in the literature can
probably offer faster and stronger solution methods than the one (i.e. tabu search) implemented
in this dissertation. It is therefore suggested that such work is undertaken, perhaps for the SMF
augmented with a distance matrix as well.

Proposal 9 Test and develop the DSS further, and integrate it with other business information
systems.

Many questions about the DSS may still be unanswered and some of these questions may be
addressed by testing the DSS in several distinct regions, for several years and even in other
countries. Opportunities for further improvement of the DSS will undoubtedly arise during
such tests. In order to pursue this proposal, a larger project is necessary, involving computer
and decision support systems scientists, business information systems scientists, GIS experts,
logisticians, social scientists and others, depending on the set goals of such a project.

Proposal 10 Redesign or adapt the DSS architecture to accommodate the large-scale indepen-
dent estate and large-scale mill-owned estate contexts of the THSP described in §4.1.3.
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The DSS may be adapted to the large-scale independent estate and large-scale mill-owned estate
contexts by shadow scheduling several estates across a season. Such an endeavour should be
completed in close collaboration with the managers and owners of such estates. The results may
lead to a different DSS architecture altogether, or may only result in additions or changes to
the one presented in §8.1.
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APPENDIX A

Computer code

Contents
A.1 Visual Basic for Excel code for command button “Update Trends” . . . . . . . 193

A.2 Visual Basic for Excel code for command button “Schedule!” . . . . . . . . . . 199

A.3 Visual Basic for Excel code for command button “Generate plan” . . . . . . . . 209

This appendix contains the commented computer code in the final DSS implementation of §8.2.

A.1 Visual Basic for Excel code for command button “Update
Trends”

Below, the VBA code initiated by the command button “Update Trends” is shown, with com-
ments following an apostrophe (’).

Private Sub CommandButton3_Click() ’Sub-procedure initiated by clicking the "Update trends" button.

Dim NOV, NOE, HF, TNOF, NOF, FDY, LOS, LDS, FDS, SD, EP, NOP As Integer, RVP As Single

Dim counter, counter1 As Long

’Compute the number of varieties:

NOV = Application.WorksheetFunction.CountA(Worksheets("V").Range("A2:A999"))

’Compute the number of events:

NOE = Application.WorksheetFunction.CountA(Worksheets("EV").Range("A2:A999"))

’Compute the number of situations:

NOS = Application.WorksheetFunction.CountA(Worksheets("S").Range("A2:A999"))

’Compute the number of field aspects:

NOFD = Application.WorksheetFunction.CountA(Worksheets("FD").Range("A2:A999"))

’Capture the harvesting front name or number from the UI:

HF = Worksheets("Start").Range("Z22").Value

’Compute the total number of fields in database:

TNOF = Application.WorksheetFunction.CountA(Worksheets("Start").Range("B2:B999"))

’Compute the number of fields to be included in schedule:

NOF = Application.WorksheetFunction.CountIf(Worksheets("FDB").Range("A2:A999"), HF)

’Again account for harvested fields:

For counter1 = 1 To TNOF

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction <= 0 Then

NOF = NOF - 1

End If

End If

Next counter1

’Capture the first day of the year

FDY = Worksheets("Start").Range("Z2").Value

’Capture the number of periods in the entire year.
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NOP = 52

Dim counter2, counter3, counter4 As Integer

’Define variables for base models and event models:

Dim RVij(), B0, B1, B11, BEC0, BEC1, RVBase, RVEV1, RVEV2, RVEV3, VCoeff, SitCoeff, FDCoeff As Single

’Dimension the RV matrix:

ReDim RVij(1 To TNOF, 1 To NOP)

’Compute RV values across all fields and periods accounting for all events:

For counter1 = 1 To TNOF ’Do this for all fields in the database:

Sit = Worksheets("FDB").Cells(counter1 + 1, 4): FD = Worksheets("FDB").Cells(counter1 + 1, 5):

V = Worksheets("FDB").Cells(counter1 + 1, 7)

A0 = Worksheets("FDB").Cells(counter1 + 1, 12): A1 = Worksheets("FDB").Cells(counter1 + 1, 13):

A11 = Worksheets("FDB").Cells(counter1 + 1, 14)

B0 = Worksheets("FDB").Cells(counter1 + 1, 16): B1 = Worksheets("FDB").Cells(counter1 + 1, 17):

B11 = Worksheets("FDB").Cells(counter1 + 1, 18)

EV1 = Worksheets("FDB").Cells(counter1 + 1, 19): EV1D = Worksheets("FDB").Cells(counter1 + 1, 20):

EV1P = Worksheets("FDB").Cells(counter1 + 1, 21)

EV2 = Worksheets("FDB").Cells(counter1 + 1, 22): EV2D = Worksheets("FDB").Cells(counter1 + 1, 23):

EV2P = Worksheets("FDB").Cells(counter1 + 1, 24)

EV3 = Worksheets("FDB").Cells(counter1 + 1, 25): EV3D = Worksheets("FDB").Cells(counter1 + 1, 26):

EV3P = Worksheets("FDB").Cells(counter1 + 1, 27)

For counter2 = 1 To NOP ’Do this for all periods in the entire year:

JD = counter2 * 7 ’Compute the julian date of the last day of this period.

RVBase = B0 + B1 * JD + B11 * JD ^ 2 ’Compute base RV model value

RVEV1 = 0: RVEV2 = 0: RVEV3 = 0 ’Initialise effect values of the three events.

If EV1D > FDY - 365 Then ’Do this if event 1 occurred before the first day of last year.

If EV1D < JD + FDY Then ’Do if it occurred before the last day of this period.

For counter3 = 1 To NOE ’Check all events in the events database.

If Worksheets("EV").Cells(counter3 + 1, 1) = EV1 Then ’Do this for the matching event:

’Let the current decrease coefficients for event 1 be those of the correct event in the database:

BEC0 = Worksheets("EV").Cells(counter3 + 1, 4): BEC1 = Worksheets("EV").Cells(counter3 + 1, 5)

Exit For

End If

Next counter3

For counter3 = 1 To NOE ’Check all events across the varieties database:

If Worksheets("V").Cells(1, counter3 + 7) = EV1 Then ’Do this for the matching variety:

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

’Let the current variety interaction coefficient be that of the matching variety and event:

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE ’Check all events across the toposequences database:

If Worksheets("S").Cells(1, counter3 + 1) = EV1 Then

For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

’Let the current locational interaction coefficient be that of the matching location and event:

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE ’Check all events across the aspects database:

If Worksheets("FD").Cells(1, counter3 + 1) = EV1 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

’Let the current locational interaction coefficient be that of the matching aspect and event:

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

’Compute the first event’s alteration effect:

RVEV1 = (BEC0 + BEC1 * (JD + FDY - EV1D)) * VCoeff * SitCoeff * FDCoeff

End If

End If

’Do for event 2 what was done for event 1:

If EV2D > FDY - 365 Then

If EV2D < JD + FDY Then

For counter3 = 1 To NOE

If Worksheets("EV").Cells(counter3 + 1, 1) = EV2 Then

BEC0 = Worksheets("EV").Cells(counter3 + 1, 4): BEC1 = Worksheets("EV").Cells(counter3 + 1, 5)

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("V").Cells(1, counter3 + 7) = EV2 Then

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("S").Cells(1, counter3 + 1) = EV2 Then
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For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("FD").Cells(1, counter3 + 1) = EV2 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

RVEV2 = (BEC0 + BEC1 * (JD + FDY - EV2D)) * VCoeff * SitCoeff * FDCoeff

End If

End If

’Do for event 3 what was done for events 1 and 2:

If EV3D > FDY - 365 Then

If EV3D < JD + FDY Then

For counter3 = 1 To NOE

If Worksheets("EV").Cells(counter3 + 1, 1) = EV3 Then

BEC0 = Worksheets("EV").Cells(counter3 + 1, 4): BEC1 = Worksheets("EV").Cells(counter3 + 1, 5)

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("V").Cells(1, counter3 + 7) = EV3 Then

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("S").Cells(1, counter3 + 1) = EV3 Then

For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("FD").Cells(1, counter3 + 1) = EV3 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

RVEV3 = (BEC0 + BEC1 * (JD + FDY - EV3D)) * VCoeff * SitCoeff * FDCoeff

End If

End If

’Ensure that RV values are nonnegative:

If RVBase + RVEV1 + RVEV2 + RVEV3 < 0 Then

RVij(counter1, counter2) = 0

Else

RVij(counter1, counter2) = RVBase + RVEV1 + RVEV2 + RVEV3

End If

Next counter2

Next counter1

’Clear the RV part of the database and paste the new RV matrix:

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 31), Worksheets("FDB").Cells(999, NOP + 30)).ClearContents

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 31), Worksheets("FDB").Cells(TNOF + 1, NOP + 30)).Value = RVij

’Do the yield matrix in the same fashion as the RV matrix.

Dim Yij(), YBase As Single

ReDim Yij(1 To TNOF, 1 To NOP)

For counter1 = 1 To TNOF

MAV = Worksheets("Start").Cells(counter1 + 1, 23): LHD = Worksheets("FDB").Cells(counter1 + 1, 9)

Sit = Worksheets("FDB").Cells(counter1 + 1, 4): FD = Worksheets("FDB").Cells(counter1 + 1, 5):

V = Worksheets("FDB").Cells(counter1 + 1, 7)

A0 = Worksheets("FDB").Cells(counter1 + 1, 12): A1 = Worksheets("FDB").Cells(counter1 + 1, 13):

A11 = Worksheets("FDB").Cells(counter1 + 1, 14)

EV1 = Worksheets("FDB").Cells(counter1 + 1, 19): EV1D = Worksheets("FDB").Cells(counter1 + 1, 20):

EV1P = Worksheets("FDB").Cells(counter1 + 1, 21)

EV2 = Worksheets("FDB").Cells(counter1 + 1, 22): EV2D = Worksheets("FDB").Cells(counter1 + 1, 23):

EV2P = Worksheets("FDB").Cells(counter1 + 1, 24)

EV3 = Worksheets("FDB").Cells(counter1 + 1, 25): EV3D = Worksheets("FDB").Cells(counter1 + 1, 26):
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EV3P = Worksheets("FDB").Cells(counter1 + 1, 27)

For counter2 = 1 To NOP

JD = counter2 * 7 ’Compute the Julian date of the last day of the period.

Age = JD - LHD + FDY

’Compensate age for periods of slow growth:

If JD > 151 Then

If JD > 243 Then

LGT1 = 92

Else

LGT1 = JD - 151

End If

Else

LGT1 = 0

End If

LJD = 365 - (FDY - LHD)

If LJD < 243 Then

If LJD < 151 Then

LGT2 = 92

Else

LGT2 = 243 - LJD

End If

Else

LGT2 = 0

End If

’Compute EGT:

EGT = (Age - LGT1 - LGT2) / 30.4375 ’Compute EGT by subtraction lost growth time from age.

YBase = A0 + A1 * EGT + A11 * EGT ^ 2

YEV1 = 0: YEV2 = 0: YEV3 = 0

’Do as was done for RV:

If EV1D > FDY - 365 Then

If EV1D < JD + FDY Then

For counter3 = 1 To NOE

If Worksheets("EV").Cells(counter3 + 1, 1) = EV1 Then

AEC0 = Worksheets("EV").Cells(counter3 + 1, 2): AEC1 = Worksheets("EV").Cells(counter3 + 1, 3)

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("V").Cells(1, counter3 + 7) = EV1 Then

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("S").Cells(1, counter3 + 1) = EV1 Then

For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("FD").Cells(1, counter3 + 1) = EV1 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

YEV1 = (AEC0 + AEC1 * (JD - EV1D + FDY)) * VCoeff * SitCoeff * FDCoeff

End If

End If

If EV2D > FDY - 365 Then

If EV2D < JD + FDY Then

For counter3 = 1 To NOE

If Worksheets("EV").Cells(counter3 + 1, 1) = EV2 Then

AEC0 = Worksheets("EV").Cells(counter3 + 1, 2): AEC1 = Worksheets("EV").Cells(counter3 + 1, 3)

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("V").Cells(1, counter3 + 7) = EV2 Then

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("S").Cells(1, counter3 + 1) = EV2 Then
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For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("FD").Cells(1, counter3 + 1) = EV2 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

YEV2 = (AEC0 + AEC1 * (JD - EV2D + FDY)) * VCoeff * SitCoeff * FDCoeff

End If

End If

If EV3D > FDY - 365 Then

If EV3D < JD + FDY Then

For counter3 = 1 To NOE

If Worksheets("EV").Cells(counter3 + 1, 1) = EV3 Then

AEC0 = Worksheets("EV").Cells(counter3 + 1, 2): AEC1 = Worksheets("EV").Cells(counter3 + 1, 3)

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("V").Cells(1, counter3 + 7) = EV3 Then

For counter4 = 1 To NOV

If Worksheets("V").Cells(counter4 + 1, 1) = V Then

VCoeff = Worksheets("V").Cells(counter4 + 1, counter3 + 7)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("S").Cells(1, counter3 + 1) = EV3 Then

For counter4 = 1 To NOS

If Worksheets("S").Cells(counter4 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

For counter3 = 1 To NOE

If Worksheets("FD").Cells(1, counter3 + 1) = EV3 Then

For counter4 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, counter3 + 1)

Exit For

End If

Next counter4

Exit For

End If

Next counter3

YEV3 = (AEC0 + AEC1 * (JD - EV3D + FDY)) * VCoeff * SitCoeff * FDCoeff

End If

End If

’In addition to how it was done for RV, add the manual adjustment values from the UI (MAV):

If YBase + YEV1 + YEV2 + YEV3 + MAV < 0 Then

Yij(counter1, counter2) = 0

Else

Yij(counter1, counter2) = YBase + YEV1 + YEV2 + YEV3 + MAV

End If

Next counter2

Next counter1

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 87), Worksheets("FDB").Cells(999, NOP + 86)).ClearContents

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 87), Worksheets("FDB").Cells(TNOF + 1, NOP + 86)).Value = Yij

’Compute deviations between cane yield trends and user estimates:

Dim Period As Integer

Dim DET() As Single

ReDim DET(1 To TNOF, 1)

For counter1 = 1 To TNOF

ESTD = Worksheets("FDB").Cells(counter1 + 1, 10)

JD = ESTD - FDY

ESTY = Worksheets("FDB").Cells(counter1 + 1, 11).Value

Period = PeriodFunction(JD)

DET(counter1, 1) = ESTY - Yij(counter1, Period)

Next counter1

’Paste the deviations into the UI:

Worksheets("Start").Range(Worksheets("Start").Cells(2, 22), Worksheets("Start").Cells(999, 22)).ClearContents

Worksheets("Start").Range(Worksheets("Start").Cells(2, 22), Worksheets("Start").Cells(TNOF + 1, 22)).Value = DET

’Build the Cij matrix similarly as the RV and yield matrices:

HBaseCost = Worksheets("Start").Range("Z12").Value

ZBaseCost = Worksheets("Start").Range("Z13").Value
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EventPenalty = Worksheets("Start").Range("Z16").Value

Dim Cij() As Single

ReDim Cij(1 To TNOF, 1 To NOP)

For counter = 1 To TNOF ’Do for all fields in the problem:

Sit = Worksheets("FDB").Cells(counter + 1, 4): FD = Worksheets("FDB").Cells(counter + 1, 5):

AC = Worksheets("FDB").Cells(counter + 1, 6)

EV1 = Worksheets("FDB").Cells(counter + 1, 19): EV1D = Worksheets("FDB").Cells(counter + 1, 20):

EV1P = Worksheets("FDB").Cells(counter + 1, 21) / 100

EV2 = Worksheets("FDB").Cells(counter + 1, 22): EV2D = Worksheets("FDB").Cells(counter + 1, 23):

EV2P = Worksheets("FDB").Cells(counter + 1, 24) / 100

EV3 = Worksheets("FDB").Cells(counter + 1, 25): EV3D = Worksheets("FDB").Cells(counter + 1, 26):

EV3P = Worksheets("FDB").Cells(counter + 1, 27) / 100

HCost = HBaseCost

For counter1 = 1 To NOP ’Do for all periods:

If AC = 2 Then ’Check whether the field is an access category 2 field.

ZCost = ZBaseCost ’In that case give it a zoneloading cost of 100 %.

Else ’Otherwise:

JD = counter1 * 7 ’Compute the Julian date of the last day of the period.

For counter2 = 1 To NOS

If Worksheets("S").Cells(counter2 + 1, 1) = Sit Then

SitCoeff = Worksheets("S").Cells(counter2 + 1, 25)

Exit For

End If

Next counter2

For counter2 = 1 To NOFD

If Worksheets("FD").Cells(counter4 + 1, 1) = FD Then

FDCoeff = Worksheets("FD").Cells(counter4 + 1, 25)

Exit For

End If

Next counter2

For counter2 = 1 To NOP

If Worksheets("RW").Cells(1, counter2 + 1) = JD Then

WCP = Worksheets("RW").Cells(7, counter2 + 1) ’Capture wet conditions probability.

Exit For

End If

Next counter2

’Add the wet conditions probability-based zone loading cost:

ZCost = ZBaseCost * SitCoeff * FDCoeff * WCP

End If

JD = counter1 * 7: EV1Cost = 0

’Capture relevant harvesting time windows for event 1:

For counter2 = 1 To NOE

If Worksheets("EV").Cells(counter2 + 1, 1) = EV1 Then

HTW = Worksheets("EV").Cells(counter2 + 1, 6)

HTD = Worksheets("EV").Cells(counter2 + 1, 7)

EHD = Worksheets("EV").Cells(counter2 + 1, 8)

Exit For

End If

Next counter2

’Compute a penalty for harvesting later than HTW days after the event date:

If JD + FDY > EV1D + HTW Then EV1Cost = EV1Cost + EV1P * EventPenalty * (JD + FDY - EV1D - HTW)

’Compute a penalty for harvesting after HTD:

If JD > HTD Then EV1Cost = EV1Cost + EV1P * EventPenalty * (JD - HTD)

’Compute a penalty for harvesting before EHD days has elapsed after the event date.

If JD + FDY < EV1D + EHD Then EV1Cost = EV1Cost + EV1P * EventPenalty * (EV1D + EHD - JD - FDY)

’Do the same for event 2:

EV2Cost = 0

For counter2 = 1 To NOE

If Worksheets("EV").Cells(counter2 + 1, 1) = EV2 Then

HTW = Worksheets("EV").Cells(counter2 + 1, 6)

HTD = Worksheets("EV").Cells(counter2 + 1, 7)

EHD = Worksheets("EV").Cells(counter2 + 1, 8)

Exit For

End If

Next counter2

If JD + FDY > EV2D + HTW Then EV2Cost = EV2Cost + EV2P * EventPenalty * (JD + FDY - EV2D - HTW)

If JD > HTD Then EV2Cost = EV2Cost + EV2P * EventPenalty * (JD - HTD)

If JD + FDY < EV2D + EHD Then EV2Cost = EV2Cost + EV2P * EventPenalty * (EV2D + EHD - JD - FDY)

’Do the same for event 3:

EV3Cost = 0

For counter2 = 1 To NOE

If Worksheets("EV").Cells(counter2 + 1, 1) = EV3 Then

HTW = Worksheets("EV").Cells(counter2 + 1, 6)

HTD = Worksheets("EV").Cells(counter2 + 1, 7)

EHD = Worksheets("EV").Cells(counter2 + 1, 8)

Exit For

End If

Next counter2

If JD + FDY > EV3D + HTW Then EV3Cost = EV3Cost + EV3P * EventPenalty * (JD + FDY - EV3D - HTW)

If JD > HTD Then EV3Cost = EV3Cost + EV3P * EventPenalty * (JD - HTD)

If JD + FDY < EV3D + EHD Then EV3Cost = EV3Cost + EV3P * EventPenalty * (EV3D + EHD - JD - FDY)

’Sum all costs for the field and the period and enter into the cost matrix.

Cij(counter, counter1) = HBaseCost + ZCost + EV1Cost + EV2Cost + EV3Cost

Next counter1

Next counter

’Paste the cost matrix into the field database:

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 141), Worksheets("FDB").Cells(999, NOP + 140)).ClearContents

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 141), Worksheets("FDB").Cells(TNOF + 1, NOP + 140)).Value = Cij

’Build Mill RV matrix

Dim MRVij() As Single

ReDim MRVij(1 To TNOF, 1 To NOP)

’Capture the mill trend name from the UI:
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Mill = Worksheets("Start").Range("Z9").Value

’The mill trend coefficients are located in the varieties worksheet "V":

For counter2 = 1 To NOV ’Check all entries in the "V" worksheet.

If Worksheets("V").Cells(counter2 + 1, 1) = Mill Then ’Find the matching mill trend in worksheet "V".

MBC0 = Worksheets("V").Cells(counter2 + 1, 5):

MBC1 = Worksheets("V").Cells(counter2 + 1, 6):

MBC11 = Worksheets("V").Cells(counter2 + 1, 7)

Exit For

End If

Next counter2

’Populate the Mill RV matrix:

For counter = 1 To TNOF

For counter1 = 1 To NOP

JD = counter1 * 7

MRVij(counter, counter1) = MBC0 + MBC1 * JD + MBC11 * JD ^ 2

Next counter1

Next counter

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 195), Worksheets("FDB").Cells(999, NOP + 194)).ClearContents

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 195), Worksheets("FDB").Cells(TNOF + 1, NOP + 194)).Value = MRVij

’Compute the relative RV matrix values:

Dim SumMRV, AverageMRV(), RRVij() As Single

ReDim RRVij(1 To TNOF, 1 To NOP), AverageMRV(1 To TNOF)

For counter = 1 To TNOF

SumMRV = 0

For counter1 = 1 To NOP

MRV = MRVij(counter, counter1)

SumMRV = SumMRV + MRV

Next counter1

AverageMRV(counter) = SumMRV / NOP

Next counter

For counter = 1 To TNOF

For counter1 = 1 To NOP

RRVij(counter, counter1) = RVij(counter, counter1) - MRVij(counter, counter1) + AverageMRV(counter)

Next counter1

Next counter

’Paste the relative RV matrix into the field database:

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 249), Worksheets("FDB").Cells(999, NOP + 248)).ClearContents

Worksheets("FDB").Range(Worksheets("FDB").Cells(2, 249), Worksheets("FDB").Cells(TNOF + 1, NOP + 248)).Value = RRVij

End Sub

Public Function PeriodFunction(JD) ’This function returns the week number given a Julian date.

Dim P As Integer

P = 1 + (JD - 4) / 7

If P > 52 Then P = 52

PeriodFunction = P

End Function

A.2 Visual Basic for Excel code for command button “Schedule!”

Option Base 1

Private Sub CommandButton1_Click() ’Sub-procedure initiated by clicking the "Schedule!" button.

Dim HF, TNOF, NOF, LOS, LDS, FDS, SD, EP, NOP As Integer, RVP As Single ’Initialise variables.

Worksheets("Mij").Cells.ClearContents ’Clear space for Mij matrix.

Worksheets("Pij").Cells.ClearContents ’Clear space for Pij matrix.

HF = Worksheets("Start").Range("Z22").Value ’Capture harvesting front name or number.

’Compute total number of fields in database:

TNOF = Application.WorksheetFunction.CountA(Worksheets("Start").Range("B2:B999"))

’Compute number of fields to be included in schedule:

NOF = Application.WorksheetFunction.CountIf(Worksheets("FDB").Range("A2:A999"), HF)

’Discount harvested fields from NOF.

For counter1 = 1 To TNOF ’Do for all fields in database.

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then ’Do only if field is in correct harvesting front.

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then ’Check if first event is a harvest event.

’Remove the fraction having been harvested:

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then ’Check if second event is a harvest event.

’Remove the fraction having been harvested:

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then ’Check if third event is a harvest event.

’Remove the fraction having been harvested.

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction <= 0 Then ’If field is completely harvested, discount it from NOF.

NOF = NOF - 1

End If

End If

Next counter1

LOS = Worksheets("Start").Range("Z21").Value - Worksheets("Start").Range("Z19").Value ’Compute length of schedule in days

FDS = Worksheets("Start").Range("Z19").Value - Worksheets("Start").Range("Z2").Value ’Compute first Julian day of schedule

LDS = Worksheets("Start").Range("Z21").Value - Worksheets("Start").Range("Z2").Value ’Compute last Julian day of schedule

SP = PeriodFunction(FDS) ’Compute starting period of the schedule.

EP = PeriodFunction(LDS) ’Compute ending period of the schedule.

NOP = EP - SP + 1 ’Compute the number of periods covered by the schedule.
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RVP = Worksheets("Start").Range("Z8").Value ’Capture RV-price from UI.

’Mij and Pij matrices:

counter2 = 0

Dim MijMatrix() ’Define a matrix containing field by period cane yield.

Dim PijMatrix() ’Define a matrix containing field by period profits.

Dim CTAij() As Single ’Define a vector containing field by period cutting times based on hectares.

Dim FieldNamesVector() As Variant ’Define a vector containing the names of the fields.

Dim TotArea, Area, TotYield, Mass As Single ’Define variables for areas and yields.

ReDim FieldNamesVector(1 To NOF) ’Define vector for field names.

ReDim MijMatrix(1 To NOF, 1 To NOP) ’Dimension yield matrix.

ReDim PijMatrix(1 To NOF, 1 To NOP) ’Dimension profit matrix.

ReDim CTAij(1 To NOF) ’Dimension cutting times vector

’Remove harvested fields and build problem-specific vectors and matrices.

For counter1 = 1 To TNOF

Mass = 0

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then ’Check harvesting front.

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction > 0 Then ’Do this if there is anything left of the field.

counter2 = counter2 + 1

For counter3 = 1 To NOP

’Adding field name to vector:

FieldNamesVector(counter2) = Worksheets("FDB").Cells(counter1 + 1, 2).Value

’Capture its area from the field database:

Area = Worksheets("FDB").Cells(counter1 + 1, 3).Value * RemainingFraction

’Capture the cane yield per hectare from the field database:

Yield = Worksheets("FDB").Cells(counter1 + 1, 85 + SP + counter3).Value

’Capture the relative RV from the field database:

RRV = Worksheets("FDB").Cells(counter1 + 1, 247 + SP + counter3).Value / 100

’Capture harvesting cost from the field database:

Cost = Worksheets("FDB").Cells(counter1 + 1, 139 + SP + counter3).Value

’Compute the cane yield and add to total cane yield for the field:

Mass = Mass + Area * Yield

’Compute cane yield:

MijMatrix(counter2, counter3) = Area * Yield

’Compute profit:

PijMatrix(counter2, counter3) = Area * Yield * (RVP * RRV - Cost)

Next counter3

’Add area to total area:

TotArea = TotArea + Area

’Compute the sum of all field cane yield averages:

TotYield = TotYield + Mass / NOP

End If

End If

Next counter1

’Paste Mij and Pij matrices into a worksheet each:

Worksheets("Mij").Range(Worksheets("Mij").Cells(1, 1), Worksheets("Mij").Cells(NOF, NOP)).Value = MijMatrix

Worksheets("Pij").Range(Worksheets("Pij").Cells(1, 1), Worksheets("Pij").Cells(NOF, NOP)).Value = PijMatrix

’Prepare the worksheet that will contain the final harvesting sequence.

Worksheets("Sequence").Cells.ClearContents

’Cutting times vector CTAij

counter2 = 0

’This again accounts for harvested fields:

For counter1 = 1 To TNOF

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction > 0 Then

counter2 = counter2 + 1

Area = Worksheets("FDB").Cells(counter1 + 1, 3).Value * RemainingFraction

’Compute the cutting time for each field (counter2):

CTAij(counter2) = Application.WorksheetFunction.RoundDown(Area / TotArea * LOS, 3)

End If

End If

Next counter1

’Set the cutting times matrix.

CTij = CTAij

’The Nuij matrix is used in the ejection chain function.

’Compute the matrix of relative profits by field and harvest period.

Dim Nuij()

ReDim Nuij(1 To NOF, 1 To NOP)

For i = 1 To NOF

PiMax = -10 ^ 30

For j = 1 To NOP

If PijMatrix(i, j) > PiMax Then PiMax = PijMatrix(i, j)

Next j

For j = 1 To NOP
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Nuij(i, j) = PijMatrix(i, j) / PiMax

Next j

Next i

’DRD calculations

Dim DRDByAverageYield, MaxFieldYield, DRDByMaxYield, MaxFieldProfit, MaxProfit As Double

’Compute the average yield across all fields and periods in the problem:

DRDByAverageYield = Application.WorksheetFunction.Average(Worksheets("Mij").

Range(Worksheets("Mij").Cells(1, 1), Worksheets("Mij").Cells(NOF, NOP)).Value) * NOF / LOS

For counter1 = 1 To NOF ’Do this for all fields in the problem.

’Find the maximum yield for the field:

MaxFieldYield = Application.WorksheetFunction.Max(Worksheets("Mij").Range(Worksheets("Mij").

Cells(counter1, 1), Worksheets("Mij").Cells(counter1, NOP)).Value)

’Add to the total:

DRDByMaxYield = DRDByMaxYield + MaxFieldYield

Next counter1

DRDByMaxYield = DRDByMaxYield / LOS ’Compute an average yield per day.

’Paste the DRD based on the average into the UI:

Worksheets("Start").Range("Z23").Value = DRDByAverageYield

’Paste the DRD based on the maximum yields into the UI:

Worksheets("Start").Range("Z24").Value = DRDByMaxYield

’Compute an upper bound on the objective value

For counter1 = 1 To NOF ’Do this for all fields in the problem.

’Compute the maximum profit for the field:

MaxFieldProfit = Application.WorksheetFunction.Max(Worksheets("Pij").Range(Worksheets("Pij").

Cells(counter1, 1), Worksheets("Pij").Cells(counter1, NOP)).Value)

’Add the profit to the total:

MaxProfit = MaxProfit + MaxFieldProfit

Next counter1

’Paste the upper bound into the UI:

Worksheets("Start").Range("Z25").Value = MaxProfit

Dim TimeLimit As Variant

’Capture the TimeLimit variable from the UI:

newHour = Hour(Now()) + Worksheets("Start").Range("Z28"):

newMinute = Minute(Now()) + Worksheets("Start").Range("Z29"):

newSecond = Second(Now()) + Worksheets("Start").Range("Z30")

EndTime = TimeSerial(newHour, newMinute, newSecond)

’x(j) is the solution representation, where x (j) = i corresponds to field i having sequence number j.

’Generate a random permutaton of a range of values by applying the RndSubset function:

x = RndSubset(NOF) ’Do this for the number of fields in the problem.

Worksheets("Start").Range("Z26") = OV(x, NOF, NOP, PijMatrix, CTij) ’Compute the objective function value (OFV).

’Apply the tabu search function:

xfinal = TabuSearch(x, NOF, NOP, SP, MijMatrix, PijMatrix, CTij, Nuij, EndTime)

’Paste the OFB into the UI:

Worksheets("Start").Range("Z26") = OV(xfinal, NOF, NOP, PijMatrix, CTij)

’Paste the solution vector into the UI:

Worksheets("Sequence").Range(Worksheets("Sequence").Cells(1, 1), Worksheets("Sequence").Cells(1, NOF)).Value = xfinal

’Paste the field names vector into the UI.

Worksheets("Sequence").Range(Worksheets("Sequence").Cells(2, 1), Worksheets("Sequence").Cells(2, NOF)).Value = FieldNamesVector

End Sub

Public Function RndSubset(ByVal Length) As Variant

’This function returns a pseudo-random permuation of a sequence of elements.

’Generate a sequence of random numbers with length Length.

Dim RndRanks() As Single

ReDim RndRanks(1 To Length, 1 To 2)

Randomize

For fcounter1 = 1 To Length

RndRanks(fcounter1, 1) = fcounter1

RndRanks(fcounter1, 2) = Rnd

Next fcounter1

Dim fcounter As Long

Dim Ordering() As Long

ReDim Ordering(1 To Length)

For fcounter = 1 To Length

MaximumValue = 0

For fcounter1 = 1 To Length

If RndRanks(fcounter1, 2) >= MaximumValue Then

Largest = fcounter1:

MaximumValue = RndRanks(fcounter1, 2)

End If

Next fcounter1

Ordering(fcounter) = Largest

RndRanks(Largest, 2) = -1

Next fcounter

RndSubset = Ordering

End Function

Public Function OV(x, NOF, NOP, PijMatrix, CTij) As Variant

’This function generates the objective value given a sequence.

’Define time of harvest variable (TOH) and value variable (V). Unit is day of the year.

’Define harvesting period.

Dim P As Integer

Dim V, CTM, TOH As Single

Dim Yield, Val, FNo, fc As Long

TOH = 1

For fc = 1 To NOF

FNo = x(fc)

P = 1 + (TOH - 4) / 7

If P > 52 Then P = 52

Val = PijMatrix(FNo, P)

CTM = CTij(FNo)
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TOH = TOH + CTM

V = V + Val

Next fc

OV = V

End Function

Public Function CT(x, NOF, NOP, SP, CTij) As Variant

’This function generates the Julian date of the first cutting day of each field in x.

Dim CuttingJD(), HP As Integer

ReDim CuttingJD(1 To NOF)

Dim CTM, TOH As Single

Dim FNo, fcounter As Long

TOH = Worksheets("Start").Range("Z19").Value - Worksheets("Start").Range("Z2").Value - (SP - 1) * 7 ’CTij is defined

’only on the periods of the schedule - not all 52 periods - so 7 *the number of preceeding periods must be deducted.

For fcounter = 1 To NOF

CuttingJD(fcounter) = TOH + 7 * (SP - 1)

FNo = x(fcounter)

HP = PeriodFunction(TOH)

CTM = CTij(FNo)

TOH = TOH + CTM

Next fcounter

CT = CuttingJD

End Function

Public Function Attribute1(S, x, NOF) As Variant

’This attribute returns the 1st dropped neighbouring pair (the left neighbouring pair).

Dim Edge(1 To 2) ’Give a neighbouring pair (np) two elements.

If S(1) = 1 Then ’Do if the first element of the current solution is the moving field:

’Set the first element of the first dropped np to be the last field in the solution:

Edge(1) = x(NOF):

’Set the second element of the first dropped np to be the first field in the solution:

Edge(2) = x(1)

Else

’Set the first element of the first dropped np to be the field that precedes the moving field in the solution:

Edge(1) = x(S(1) - 1):

’Set the second element of the first dropped np to be the moving field:

Edge(2) = x(S(1))

End If

Attribute1 = Edge

End Function

Public Function Attribute2(S, x, NOF) As Variant

’This attribute returns the 2nd dropped neighbouring pair (the right neighbouring pair).

Dim Edge(1 To 2)

If S(1) = NOF Then ’Do if the last element of the current solution is the moving field:

’Set the first element of the second dropped np to be the moving field:

Edge(1) = NOF:

’Set the second element of the second dropped np to be the first field in the solution:

Edge(2) = x(1)

Else

’Set the first element of the second dropped np to be the moving field:

Edge(1) = x(S(1)):

’Set the second element of the second dropped np to be the field that succeeds the moving field in the solution:

Edge(2) = x(S(1) + 1)

End If

Attribute2 = Edge

End Function

Public Function Attribute3(S, x, NOF) As Variant

’This attribute returns the 3rd dropped neighbouring pair (the split neighbouring pair).

Dim Edge(1 To 2)

If S(2) = NOF Then ’Do if the moving field is moving into the last position in the solution:

’Set the first element of the split np to be the last field in the solution:

Edge(1) = x(NOF):

’Set the second element of the split np to be the first field in the solution:

Edge(2) = x(1)

ElseIf S(2) = 1 Then ’Do if the moving field is moving to the first position in the solution:

’Set the first element of the split np to be the last field of the solution:

Edge(1) = x(NOF):

’Set the second element of teh split np to be the first element of the solution:

Edge(2) = x(1)

ElseIf S(1) < S(2) Then ’Do if the field is moving to a later position in the solution:

’Set the first edge of the split np to be the field in the target position of the moving field:

Edge(1) = x(S(2)):

’Set the second edge of the split np to be the field succeeding

’the field in the target position of the moving field:

Edge(2) = x(S(2) + 1)

Else

’Set the first edge of the split np to be the field preceeding

’the field in the target position of the moving field:

Edge(1) = x(S(2) - 1)

’Set the second edge of the split np to be the field in the target position of the moving field:

Edge(2) = x(S(2))

End If

Attribute3 = Edge

End Function

Public Function Attribute4(S, x, NOF) As Variant

’This attribute returns the 1st added neighbouring pair.

Dim Edge(1 To 2)

If S(2) = 1 Then ’Do if the target position of the moving field is the first position of the solution:

If S(1) = NOF Then ’Do if the moving field is moving from the last position in the solution:

’Set the first element of the first added np to be the field preceeding the moving field:

Edge(1) = x(S(1) - 1)

’Set the second element of the first added np to be the last field in the solution:

Edge(2) = x(NOF)

Else

’Set the first element of the first added np to be the last field in the solution:

Edge(1) = x(NOF):
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’Set the second element of the first added np to be the moving field.

Edge(2) = x(S(1))

End If

ElseIf S(1) < S(2) Then ’Do if the moving field is moving to a later part of the solution:

’Set the first element of the first added np to be the field in the moving field’s target position:

Edge(1) = x(S(2)):

’Set the second element of the first added np to be the moving field:

Edge(2) = x(S(1))

Else

’Set the first element of the first added np to be the field preceeding

’the field in the moving field’s target position:

Edge(1) = x(S(2) - 1):

’Set the second element to be the moving field:

Edge(2) = x(S(1))

End If

Attribute4 = Edge

End Function

Public Function Attribute5(S, x, NOF) As Variant

’This attribute returns the 2nd added neighbouring pair.

Dim Edge(1 To 2)

If S(2) = NOF Then ’Do if the moving field is moving to the last position in the solution:

If S(1) = 1 Then ’Do if the moving field is moving from the first position in the solution:

’Set the first element of the second added np to be the moving field:

Edge(1) = x(1)

’Set the second element of the second added np to be the field in the second position:

Edge(2) = x(2)

Else

’Set the first element of the second added np to be the moving field:

Edge(1) = x(S(1))

’Set the second element of the second added np to be the field

’in the first position of the solution:

Edge(2) = x(1)

End If

ElseIf S(1) < S(2) Then ’Do if the moving field is moving to a later position in the solution:

’Set the first element of the second added np to be the moving field:

Edge(1) = x(S(1)):

’Set the second element of the second added np to be the field succeding

’the field in the target position of the moving field:

Edge(2) = x(S(2) + 1)

Else

’Set the first element of the second added np to be the moving field:

Edge(1) = x(S(1)):

’Set the second element of the second added np to be the field in the target position:

Edge(2) = x(S(2))

End If

Attribute5 = Edge

End Function

Public Function Attribute6(S, x, NOF) As Variant

’This attribute returns the 3rd added edge.

Dim Edge(1 To 2)

If S(1) = 1 Then ’Do if the moving field is in the first position of the solution:

If S(2) = NOF Then

’Set the first element of the third added np to be the moving field:

Edge(1) = x(1):

’Set the second element of the third added np to be the field in

’the target position of the moving field:

Edge(2) = x(2)

Else

’Set the first element of the third added np to be the field in the

’last position of the solution:

Edge(1) = x(NOF):

’Set the second element of the third added np to be the field in the second

’position of the solution:

Edge(2) = x(2)

End If

ElseIf S(1) = NOF Then ’Do if the moving field is in the last position of the solution:

If S(2) = 1 Then ’Do if the moving field is moving to the first position in the solution:

’Set the first element of the third added np to be the second-to-last field in the solution:

Edge(1) = x(NOF - 1)

’Set the second element of the third added np to be the last field in the solution:

Edge(2) = x(NOF)

Else

’Set the first element of the third added np to be the second-to-last field in the solution:

Edge(1) = x(NOF - 1):

’Set the second element of the third added np to be the first field in the solution:

Edge(2) = x(1)

End If

Else

’Set the first element of the third added np to be the field preceeding the moving field in the solution:

Edge(1) = x(S(1) - 1):

’Set the second element of the third added np to be the field succeding the moving field in the solution:

Edge(2) = x(S(1) + 1)

End If

Attribute6 = Edge

End Function

’This is the tabu search function.

Public Function TabuSearch(x, NOF, NOP, SP, MijMatrix, PijMatrix, CTij, Nuij, TimeLimit)

Dim T1(), T2(), T3(), T4(), T5(), T6() As Long ’Define tabu lists.

Dim TL1, TL2, TL3, TL4, TL5, TL6 As Integer ’Define tenures.

TL1 = 3: TL2 = 3: TL3 = 3: TL4 = 3: TL5 = 3: TL6 = 3

If CheckBox6.Value = True Then ’Do if user has checked the "Assign tabu list lengths" checkbox in the UI.

TL1 = Worksheets("Start").Range("AC32").Value: TL2 = Worksheets("Start").Range("AC33").Value:

TL3 = Worksheets("Start").Range("AC34").Value

TL4 = Worksheets("Start").Range("AC35").Value: TL5 = Worksheets("Start").Range("AC36").Value:
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TL6 = Worksheets("Start").Range("AC37").Value

End If

ReDim T1(1 To TL1, 1 To 2)

ReDim T2(1 To TL2, 1 To 2)

ReDim T3(1 To TL3, 1 To 2)

ReDim T4(1 To TL4, 1 To 2)

ReDim T5(1 To TL5, 1 To 2)

ReDim T6(1 To TL6, 1 To 2)

Dim Aspiration() As Double ’Define aspiration function.

ReDim Aspiration(1 To NOF, 1 To NOF)

For i = 1 To NOF ’Dimension the aspiraton function.

For j = 1 To NOF

Aspiration(i, j) = -10 ^ 30

Next j

Next i

’Define variables for average improvement per iteration between ejection chains:

Dim AverageImpr, GrandAverageImpr As Double

Dim Improvement, BigImprovement As Single

’Define variables for various iteration counters:

Dim Breakaways, NoEjectionChains, NoRandomRestarts, k, NoImpr, NoBigImpr, MaxNoImpr, MaxNoBigImpr, xprev() As Long

’Define a starting solution:

ReDim xprev(1 To NOF)

’Define a matrix containing values from the search to be reported:

Dim ReportMatrix() As Single

ReDim ReportMatrix(1 To 65000, 1 To 6)

BestOV = OV(x, NOF, NOP, PijMatrix, CTij)

VeryBestOV = BestOV

’Set the starting solution to be the input solution (x is the input solution):

xprev = x

AverageImpr = 0.00000000001

BestAverageImpr = 0.00000000001

NumberOfGAIUpdates = 0

NumberOfStarts = 1

’Get the number of nonimproving iterations allowed before an ejection chain (ejc) is applied from the UI.

MaxNoImpr = Worksheets("Start").Range("AC29").Value

’Get the number of nonimproving ejcs allowed before random restart from the UI.

MaxNoBigImpr = Worksheets("Start").Range("AC30").Value

’Do this while the search is within the UI specified time limit.

While TimeSerial(Hour(Now()), Minute(Now()), Second(Now())) < TimeLimit

k = k + 1

If AverageImpr < BestAverageImpr Then ’Do if the average improvement per iteration is

’worse than when the best solution was found.

If NoBigImpr > MaxNoBigImpr Then ’Do if the number of nonimproving ejcs is too large.

’Add 1 to the random restart counter:

NoRandomRestarts = NoRandomRestarts + 1

’Generate a new random starting solution:

xprev = RndSubset(NOF)

’Reset variables used to compute average improvement:

NumberOfImprovements = 0: AverageImpr = 0

’Empty the tabu lists:

Init = InitTabuLists(T1, T2, T3, T4, T5, T6, TL1, TL2, TL3, TL4, TL5, TL6)

’Reset nonimproving iterations counters and compute objective function

’value (ov) of the new starting solution:

NoImpr = 0: NoBigImpr = 0: BestOV = OV(xprev, NOF, NOP, PijMatrix, CTij)

End If

End If

If NoImpr > MaxNoImpr Then ’Do if too many nonimproving iterations have occured:

NoEjectionChains = NoEjectionChains + 1 ’Add 1 to ejc counter.

xprev = EjectionChain(xprev, NOF, NOP, SP, CTij, Nuij) ’Apply ejc-function to current solution.

NoImpr = 0 ’Reset nonimproving iteration counter.

BestOV = OV(xprev, NOF, NOP, PijMatrix, CTij) ’Compute the best ov since the application if this ejc.

NoBigImpr = NoBigImpr + 1 ’Add 1 to the number of ejcs without improving the very best ov.

If BestOV > VeryBestOV Then ’Do if the ov of the solution returned by this ejc is better

’than the very best ov found during the entire search.

BigImprovement = BestOV - VeryBestOV ’Compute the improvement to the very best ov.

verybestx = bestx: VeryBestOV = BestOV ’Set the new very best solution and set the new very best ov.

NoBigImpr = 0

End If

End If

’Improve solution by applying the shift move function:

xprev = ShiftNeighbourhood(xprev, NOF, NOP, SP, MijMatrix, PijMatrix, CTij, T1, T2, T3, T4, T5, T6, TL1, TL2,

TL3, TL4, TL5, TL6, Aspiration)

CurrentOV = OV(xprev, NOF, NOP, PijMatrix, CTij) ’Set the ov of the current solution.

If CurrentOV > BestOV Then ’Do if the current ov is better than the best ov since last ejc application.

’If the solution came from a nonimproving solution and has a better ov than found since the

’last ejc application, it has broken away from a local optimum:

If NoImpr > 0 Then Breakaways = Breakaways + 1

NoImpr = 0: Improvement = CurrentOV - BestOV:

NumberOfImprovements = NumberOfImprovements + 1:

’Compute an average improvement:

AverageImpr = (AverageImpr + CurrentOV / Improvement) / NumberOfImprovements

bestx = xprev: BestOV = CurrentOV ’Reset the best solutionan ov since last ejc application.

If BestOV > VeryBestOV Then ’Do if ov is better than best overall ov found during the entire tabue search:

BestAverageImpr = AverageImpr

BigImprovement = BestOV - VeryBestOV

verybestx = bestx: VeryBestOV = BestOV

NoBigImpr = 0

End If

Else

NoImpr = NoImpr + 1 ’Add 1 to the noumber of nonimproving iterations since the last ejc application.

End If

If CheckBox2.Value = True Then Worksheets("Start").Range("AC21").Value = k ’Post iterations to UI.

If CheckBox3.Value = True Then ’Post improvements to UI:
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Worksheets("Start").Range("AC23").Value = Improvement: Worksheets("Start").Range("AC24").Value = BigImprovement

End If

If CheckBox4.Value = True Then ’Post ov values to UI:

Worksheets("Start").Range("AC26").Value = CurrentOV:

Worksheets("Start").Range("AC27").Value = BestOV: Worksheets("Start").Range("AC28").Value = VeryBestOV

End If

If CheckBox9.Value = True And k < 65001 Then ’Add values to the report matrix:

ReportMatrix(k, 1) = k

ReportMatrix(k, 2) = NoImpr

ReportMatrix(k, 3) = NoBigImpr

ReportMatrix(k, 4) = CurrentOV

ReportMatrix(k, 5) = BestOV

ReportMatrix(k, 6) = VeryBestOV

End If

Wend

If CheckBox9.Value = True Then ’Post search history in UI:

Worksheets("SearchHistory").Range(Worksheets("SearchHistory").Cells(2, 1), Worksheets("SearchHistory").Cells(20001, 6)).ClearContents

Worksheets("SearchHistory").Range(Worksheets("SearchHistory").Cells(2, 1), Worksheets("SearchHistory").Cells(k + 1, 6)) = ReportMatrix

Worksheets("SearchHistory").Range("P2").Value = NoRandomRestarts

Worksheets("SearchHistory").Range("Q2").Value = NoEjectionChains - NoRandomRestarts

Worksheets("SearchHistory").Range("R2").Value = Breakaways

End If

TabuSearch = verybestx ’Return the best solution found.

End Function

Public Function ShiftNeighbourhood(x, NOF, NOP, SP, MijMatrix, PijMatrix, CTij, T1, T2, T3, T4, T5, T6, TL1, TL2,

TL3, TL4, TL5, TL6, Aspiration)

’A move is defined as a change from one sequence number to another.

’3,4 for example means that the field with sequence number 3 moves to sequence number 4.

Dim S(1 To 2) As Long

Dim NShift()

ReDim NShift(1 To NOF * (NOF - 1), 1 To 3)

Dim Yield, Val, FNo, counter, counter1, counter2, counter3, movecounter As Long

’Genrate all relevant moves and compute objective function values

’associated with these moves:

For counter1 = 1 To NOF

For counter2 = 1 To NOF

movecounter = movecounter + 1

If counter1 = counter2 Then

counter2 = counter2 + 1

If counter2 > NOF Then

Exit For

End If

End If

xstar = x

If counter1 < counter2 Then

For counter3 = counter1 To counter2 - 1

xstar(counter3) = x(counter3 + 1)

Next counter3

xstar(counter2) = x(counter1)

End If

If counter1 > counter2 Then

For counter3 = counter2 + 1 To counter1

xstar(counter3) = x(counter3 - 1)

Next counter3

xstar(counter2) = x(counter1)

End If

NShift(movecounter, 1) = OV(xstar, NOF, NOP, PijMatrix, CTij)

NShift(movecounter, 2) = counter1

NShift(movecounter, 3) = counter2

Next counter2

Next counter1

BestValue = -10 ^ 30

Dim BestMove(1 To 2)

Dim BestNumber As Long

For counter = 1 To NOF * (NOF - 1)

’The best possible shift move is selected

For counter1 = 1 To NOF * (NOF - 1)

If NShift(counter1, 1) > BestValue Then

BestValue = NShift(counter1, 1)

BestNumber = counter1

BestMove(1) = NShift(counter1, 2)

BestMove(2) = NShift(counter1, 3)

End If

Next counter1

’Tabu status is checked

Dim Pass1, Pass2, Pass3, Pass4, Pass5, Pass6 As Integer

Pass1 = 0: Pass2 = 0: Pass3 = 0: Pass4 = 0: Pass5 = 0: Pass6 = 0:

e1 = Attribute1(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL1

If e1(1) = T1(counter1, 1) Then

If e1(2) = T1(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL2

If e1(1) = T2(counter1, 1) Then

If e1(2) = T2(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL3

If e1(1) = T3(counter1, 1) Then
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If e1(2) = T3(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

If Tabu = 0 Then

Pass1 = 1

ElseIf BestValue > Aspiration(e1(1), e1(2)) Then

Pass1 = 1

End If

e2 = Attribute2(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL1

If e2(1) = T1(counter1, 1) Then

If e2(2) = T1(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL2

If e2(1) = T2(counter1, 1) Then

If e2(2) = T2(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL3

If e2(1) = T3(counter1, 1) Then

If e2(2) = T3(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

If Tabu = 0 Then

Pass2 = 1

ElseIf BestValue > Aspiration(e2(1), e2(2)) Then

Pass2 = 1

End If

e3 = Attribute3(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL1

If e3(1) = T1(counter1, 1) Then

If e3(2) = T1(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL2

If e3(1) = T2(counter1, 1) Then

If e3(2) = T2(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL3

If e3(1) = T3(counter1, 1) Then

If e3(2) = T3(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

If Tabu = 0 Then

Pass3 = 1

ElseIf BestValue > Aspiration(e3(1), e3(2)) Then

Pass3 = 1

End If

e4 = Attribute4(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL4

If e4(1) = T4(counter1, 1) Then

If e4(2) = T4(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL5

If e4(1) = T5(counter1, 1) Then

If e4(2) = T5(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL6

If e4(1) = T6(counter1, 1) Then

If e4(2) = T6(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

If Tabu = 0 Then

Pass4 = 1

ElseIf BestValue > Aspiration(e4(1), e4(2)) Then

Pass4 = 1

End If

e5 = Attribute5(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL4

If e5(1) = T4(counter1, 1) Then

If e5(2) = T4(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL5

If e5(1) = T5(counter1, 1) Then

If e5(2) = T5(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL6

If e5(1) = T6(counter1, 1) Then

If e5(2) = T6(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1
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If Tabu = 0 Then

Pass5 = 1

ElseIf BestValue > Aspiration(e5(1), e5(2)) Then

Pass5 = 1

End If

e6 = Attribute6(BestMove, x, NOF)

Tabu = 0

For counter1 = 1 To TL4

If e6(1) = T4(counter1, 1) Then

If e6(2) = T4(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL5

If e6(1) = T5(counter1, 1) Then

If e6(2) = T5(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

For counter1 = 1 To TL6

If e6(1) = T6(counter1, 1) Then

If e6(2) = T6(counter1, 2) Then Tabu = 1: Exit For

End If

Next counter1

If Tabu = 0 Then

Pass6 = 1

ElseIf BestValue > Aspiration(e6(1), e6(2)) Then

Pass6 = 1

End If

’If all neighbouring pairs have a pass status, the move is accepted

’and the search moves on with the corresponding solution:

If Pass1 + Pass2 + Pass3 + Pass4 + Pass5 + Pass6 = 6 Then

Exit For

’If not all neighbouring pairs have a pass status the solution is brought

’out of contention by assigning a large bad objective function value to it:

Else

NShift(BestNumber, 1) = -10 ^ 30

BestValue = -10 ^ 30

End If

’If there are no more solutions left in the neighbourhood, the

’incoming solution to the shift neighbourhood is selected and sent to the tabu search:

If counter = NOF * (NOF - 1) Then

ShiftNeighbourhood = x: NoImpr = MaxNoImpr

Exit Function

End If

Next counter

’At this stage solution has been selected,

’and it is thus time to update all tabu lists and aspiration values.

COV = OV(x, NOF, NOP, PijMatrix, CTij)

CurAsp = Aspiration(e1(1), e1(2))

Aspiration(e1(1), e1(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL1 - 1

T1(counter1, 1) = T1(counter1 + 1, 1)

T1(counter1, 2) = T1(counter1 + 1, 2)

Next counter1

T1(TL1, 1) = e4(1)

T1(TL1, 2) = e4(2)

CurAsp = Aspiration(e2(1), e2(2))

Aspiration(e2(1), e2(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL2 - 1

T2(counter1, 1) = T2(counter1 + 1, 1)

T2(counter1, 2) = T2(counter1 + 1, 2)

Next counter1

T2(TL2, 1) = e5(1)

T2(TL2, 2) = e5(2)

CurAsp = Aspiration(e3(1), e3(2))

Aspiration(e3(1), e3(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL3 - 1

T3(counter1, 1) = T3(counter1 + 1, 1)

T3(counter1, 2) = T3(counter1 + 1, 2)

Next counter1

T3(TL3, 1) = e6(1)

T3(TL3, 2) = e6(2)

CurAsp = Aspiration(e4(1), e4(2))

Aspiration(e4(1), e4(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL4 - 1

T4(counter1, 1) = T4(counter1 + 1, 1)

T4(counter1, 2) = T4(counter1 + 1, 2)

Next counter1

T4(TL4, 1) = e1(1)

T4(TL4, 2) = e1(2)

CurAsp = Aspiration(e5(1), e5(2))

Aspiration(e5(1), e5(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL5 - 1

T5(counter1, 1) = T5(counter1 + 1, 1)

T5(counter1, 2) = T5(counter1 + 1, 2)

Next counter1

T5(TL5, 1) = e2(1)

T5(TL5, 2) = e2(2)

CurAsp = Aspiration(e6(1), e6(2))
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Aspiration(e6(1), e6(2)) = Application.WorksheetFunction.Max(CurAsp, COV, BestValue)

For counter1 = 1 To TL6 - 1

T6(counter1, 1) = T6(counter1 + 1, 1)

T6(counter1, 2) = T6(counter1 + 1, 2)

Next counter1

T6(TL6, 1) = e3(1)

T6(TL6, 2) = e3(2)

’Set the new solution to be output:

xstar = x

If BestMove(1) < BestMove(2) Then

For counter3 = BestMove(1) To BestMove(2) - 1

xstar(counter3) = x(counter3 + 1)

Next counter3

xstar(BestMove(2)) = x(BestMove(1))

End If

If BestMove(1) > BestMove(2) Then

For counter3 = BestMove(2) + 1 To BestMove(1)

xstar(counter3) = x(counter3 - 1)

Next counter3

xstar(BestMove(2)) = x(BestMove(1))

End If

ShiftNeighbourhood = xstar ’Return the selected solution.

End Function

Public Function EjectionChain(x, NOF, NOP, SP, CTij, Nuij)

Dim EJ(), i, j, k, Used() As Long

Dim Potential As Single

ReDim EJ(1 To NOF, 1 To 2), Used(1 To NOF)

CuttingJD = CT(x, NOF, NOP, SP, CTij)

NuijMin = 10 ^ 30

For i = 1 To NOF

j = PeriodFunction(CuttingJD(i) - 7 * (SP - 1))

If Nuij(x(i), j) < NuijMin Then NuijMin = Nuij(x(i), j): EJ(1, 1) = i: EJ(1, 2) = j: Potential = 1 - Nuij(x(i), j) ’The field with the

’highest potential to improve is selected for ejection.

Next i

Used(EJ(1, 1)) = 1

Potential = 1 - NuijMin

NumberOfEjections = 1

DeltaMax = -10 ^ 30

Success = 0

For counter = 2 To NOF

For i = 1 To NOF

If Used(i) = 0 Then

k = PeriodFunction((CuttingJD(i) - 7 * (SP - 1)))

’Each field’s current profit coefficient is compared to what it would recieve in the ejection period:

Delta = Nuij(x(i), EJ(counter - 1, 2)) - Nuij(x(i), k)

If Delta > 0 - Potential Then

If Delta > DeltaMax Then

’If a field is selected, it is recorded with position and period on the ejection list EJ:

DeltaMax = Delta

’This value stores the position of field x(i).

EJ(counter, 1) = i

’This value stores the period number of the start of the slot that was opened up by the ejection of field x(i).

EJ(counter, 2) = k

End If

End If

End If

Next i

’If there is no ejection that moves a field to a better position, the ejection chain ends.

’A field may draw from the available potential, thus may be allowed to move if its decrease

’in relative profit is less than the available potential.

If DeltaMax <= 0 - Potential Then

Exit For

Else

DeltaMax = -10 ^ 30

Success = Success + 1

Used(EJ(counter, 1)) = 1

’Potential = Potential + DeltaMax

End If

Next counter

FirstEjectedField = x(EJ(1, 1))

For counter = 1 To Success

x(EJ(counter, 1)) = x(EJ(counter + 1, 1))

Next counter

x(EJ(Success + 1, 1)) = FirstEjectedField

EjectionChain = x

End Function

Public Function InitTabuLists(T1, T2, T3, T4, T5, T6, TL1, TL2, TL3, TL4, TL5, TL6)

’This function initialises the tabu lists.

For j = 1 To 2

For i = 1 To TL1

T1(i, j) = 0

Next i

For i = 1 To TL2

T2(i, j) = 0

Next i

For i = 1 To TL3

T3(i, j) = 0

Next i

For i = 1 To TL4

T4(i, j) = 0
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Next i

For i = 1 To TL5

T5(i, j) = 0

Next i

For i = 1 To TL6

T6(i, j) = 0

Next i

Next j

InitTabuLists = 1

End Function

Public Function PeriodFunction(JD) ’This function returns the week number given a Julian date.

Dim P As Integer

P = 1 + (JD - 4) / 7

If P > 52 Then P = 52

PeriodFunction = P

End Function

A.3 Visual Basic for Excel code for command button “Generate
plan”

Private Sub CommandButton2_Click() ’This sub is only here to generate a nice-looking printout.

’Generate Plan

HF = Worksheets("Start").Range("Z22").Value

NOF = Application.WorksheetFunction.CountIf(Worksheets("FDB").Range("A2:A999"), HF)

TNOF = Application.WorksheetFunction.CountA(Worksheets("Start").Range("B2:B999"))

’This again accounts for harvested fields:

For counter1 = 1 To TNOF

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction <= 0 Then

NOF = NOF - 1

End If

End If

Next counter1

LOS = Worksheets("Start").Range("Z21").Value - Worksheets("Start").Range("Z19").Value

FDS = Worksheets("Start").Range("Z19").Value - Worksheets("Start").Range("Z2").Value

LDS = Worksheets("Start").Range("Z21").Value - Worksheets("Start").Range("Z2").Value

SP = PeriodFunction(FDS)

EP = PeriodFunction(LDS)

NOP = EP - SP + 1

RVP = Worksheets("Start").Range("Z8").Value

counter2 = 0

Dim MijMatrix()

Dim FieldNamesVector() As Variant

Dim CTAij() As Single

ReDim FieldNamesVector(1 To NOF)

ReDim MijMatrix(1 To NOF, 1 To NOP)

ReDim CTAij(1 To NOF)

For counter1 = 1 To TNOF

Mass = 0

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction > 0 Then

counter2 = counter2 + 1

For counter3 = 1 To NOP

FieldNamesVector(counter2) = Worksheets("FDB").Cells(counter1 + 1, 2).Value

Area = Worksheets("FDB").Cells(counter1 + 1, 3).Value * RemainingFraction

Yield = Worksheets("FDB").Cells(counter1 + 1, 85 + SP + counter3).Value

Mass = Mass + Area * Yield

Next counter3

TotArea = TotArea + Area

TotYield = TotYield + Mass / NOP

End If

End If

Next counter1

’Cutting times matrix CTAij and CTYij

counter2 = 0

For counter1 = 1 To TNOF



210 Appendix A. Computer code

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

RemainingFraction = 1

If Worksheets("FDB").Cells(counter1 + 1, 19).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 21).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 22).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 24).Value / 100

End If

If Worksheets("FDB").Cells(counter1 + 1, 25).Value = "Harvest" Then

RemainingFraction = RemainingFraction - Worksheets("FDB").Cells(counter1 + 1, 27).Value / 100

End If

If RemainingFraction > 0 Then

counter2 = counter2 + 1

Area = Worksheets("FDB").Cells(counter1 + 1, 3).Value

CTAij(counter2) = Application.WorksheetFunction.RoundDown(Area / TotArea * LOS, 3)

End If

End If

Next counter1

If CheckBox1.Value = True Then

CTij = CTAij

Else

CTij = CTYij

End If

Dim CuttingPeriod As Integer

Dim SortedPlan()

ReDim SortedPlan(1 To NOF)

Dim FieldNames()

ReDim FieldNames(1 To NOF)

Dim xvector()

ReDim xvector(1 To NOF)

For counter = 1 To NOF

FieldNames(counter) = Worksheets("Sequence").Cells(2, counter).Value

xvector(counter) = Worksheets("Sequence").Cells(1, counter).Value

Next counter

Worksheets("HarvestPlan").Cells.ClearContents

For counter = 1 To NOF

SortedPlan(counter) = FieldNames(xvector(counter))

Next counter

Dim Plan()

ReDim Plan(1 To NOF + 1, 1 To 22)

CuttingJD = CT(xvector, NOF, NOP, SP, CTij)

For counter = 1 To NOF

Field = SortedPlan(counter)

For counter1 = 1 To TNOF

If Worksheets("FDB").Cells(counter1 + 1, 1).Value = HF Then

If Worksheets("FDB").Cells(counter1 + 1, 2).Value = Field Then

FieldRow = counter1 + 1:

Exit For

End If

End If

Next counter1

Area = Worksheets("FDB").Cells(FieldRow, 3).Value

Accs = Worksheets("FDB").Cells(FieldRow, 6).Value

Vrty = Worksheets("FDB").Cells(FieldRow, 7).Value

AgeBrn = (CuttingJD(counter) - Worksheets("FDB").Cells(FieldRow, 9).Value + Worksheets("Start").Range("Z2").Value) / 30.4375

CuttingPeriod = PeriodFunction(CuttingJD(counter))

TnHa = Worksheets("FDB").Cells(FieldRow, 86 + CuttingPeriod).Value

Tons = TnHa * Area

RV = Worksheets("FDB").Cells(FieldRow, 30 + CuttingPeriod).Value

RRV = Worksheets("FDB").Cells(FieldRow, 248 + CuttingPeriod).Value

MRV = Worksheets("FDB").Cells(FieldRow, 194 + CuttingPeriod).Value

Cost = Worksheets("FDB").Cells(FieldRow, 140 + CuttingPeriod).Value

EV1 = Worksheets("FDB").Cells(FieldRow, 19).Value

Ed1 = Worksheets("FDB").Cells(FieldRow, 20).Value

Ep1 = Worksheets("FDB").Cells(FieldRow, 21).Value

EV2 = Worksheets("FDB").Cells(FieldRow, 22).Value

Ed2 = Worksheets("FDB").Cells(FieldRow, 23).Value

Ep2 = Worksheets("FDB").Cells(FieldRow, 24).Value

EV3 = Worksheets("FDB").Cells(FieldRow, 25).Value

Ed3 = Worksheets("FDB").Cells(FieldRow, 26).Value

Ep3 = Worksheets("FDB").Cells(FieldRow, 27).Value

Plan(counter + 1, 1) = Field: Plan(counter + 1, 2) = Area: Plan(counter + 1, 3) = Accs

Plan(counter + 1, 4) = Vrty: Plan(counter + 1, 5) = MonthName(Month(CuttingJD(counter) + Worksheets("Start").Range("Z2").Value), True)

Plan(counter + 1, 6) = AgeBrn: Plan(counter + 1, 7) = TnHa

Plan(counter + 1, 8) = Tons: Plan(counter + 1, 9) = RV: Plan(counter + 1, 10) = RRV

Plan(counter + 1, 11) = MRV: Plan(counter + 1, 12) = Cost: Plan(counter + 1, 13) = EV1

Plan(counter + 1, 14) = Ed1: Plan(counter + 1, 15) = Ep1: Plan(counter + 1, 16) = EV2

Plan(counter + 1, 17) = Ed2: Plan(counter + 1, 18) = Ep2: Plan(counter + 1, 19) = EV3

Plan(counter + 1, 20) = Ed3: Plan(counter + 1, 21) = Ep3: Plan(counter + 1, 22) = CuttingJD(counter)

Next counter

Plan(1, 1) = "Field": Plan(1, 2) = "Area": Plan(1, 3) = "Accs": Plan(1, 4) = "Vrty": Plan(1, 5) = "Month":

Plan(1, 6) = "AgeBrn": Plan(1, 7) = "TnHa"

Plan(1, 8) = "Tons": Plan(1, 9) = "RV": Plan(1, 10) = "RRV": Plan(1, 11) = "MRV": Plan(1, 12) = "Cost": Plan(1, 13) = "Ev1"

Plan(1, 14) = "Ed1": Plan(1, 15) = "Ep1": Plan(1, 16) = "Ev2": Plan(1, 17) = "Ed2": Plan(1, 18) = "Ep2": Plan(1, 19) = "Ev3"

Plan(1, 20) = "Ed3": Plan(1, 21) = "Ep3": Plan(1, 22) = "CutJD"

Worksheets("HarvestPlan").Range(Worksheets("HarvestPlan").Cells(1, 1), Worksheets("HarvestPlan").Cells(NOF + 1, 22)).Value = Plan

Worksheets("HarvestPlan").PrintPreview (False)

End Sub

Public Function PeriodFunction(JD) ’This function returns the week number given a Julian date.

Dim P As Integer

P = 1 + (JD - 4) / 7

If P > 52 Then P = 52
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PeriodFunction = P

End Function
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APPENDIX B

The accompanying compact disc

The compact disc (CD) accompanying this dissertation contains the dissertation in pdf format
as well as the computer implementation of the DSS presented in this dissertation in the macro-
activated Excel workbooks format “*.xlsm”. There are a number of folders on the CD and the
contents of these folders are described here by their folder names.

Dissertation. This folder contains the dissertation in pdf format.

DSS Implementation. This folder contains the latest version of the DSS implementation, in
Excel format. The file is unprotected and may be edited completely. The file and its
VBA-code may be activated by double-clicking the file icon, subsequently clicking the
“Options” button in the “Security Warning” area within the Excel window, selecting
“Enable this content” and finally clicking the “OK” button. This file may now be used as
described in §8.2. The only known problem occurs when the solver is run in such a way
as to continue past midnight; the time limit does not work properly in that case.

20-Field Experiment. This folder contains the Excel files used in the verification experiment
in Table 8.10 and should not be used for any other purposes than to test results presented in
§8.4. The VBA code within these files has been password-protected to prevent unforeseen
problems, and it is recommended that macros are NOT ENABLED for these files. In
order to perform re-runs of the experiments the macros must, however, be activated at
one’s own risk.

40-Field Experiment. This folder contains the Excel files used in the verification experiment
in Table 8.11 and should not be used for any other purposes than to test results presented in
§8.4. The VBA code within these files has been password-protected to prevent unforeseen
problems, and it is recommended that macros are NOT ENABLED for these files. In
order to perform re-runs of the experiments the macros must, however, be activated at
one’s own risk.

2009 Hindsight. This folder contains the Excel files used in the hindsight scheduling of 2009
shown in Table 9.6 and further discussed in §9.2.1 and should not be used for any other
purposes than to test results presented in §9.2.1. The VBA code within these files has been
password-protected to prevent unforeseen problems, and it is recommended that macros
are NOT ENABLED for these files. In order to perform re-runs of the experiments the
macros must, however, be activated at one’s own risk.
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