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Abstract 
Understanding and designing sensors in E. coli 

Elizabeth Jane Clarke

Two-component systems are a highly conserved signal transduction pathway that 

enable bacteria to sense changes in their environment and adjust gene expression to adapt 

to nutrients, stresses, and other signals. The body of this work seeks to determine the 

extent to which E. coli uses these sensors as a network to process their environment. This 

is broken into two parts: (1) Whether cross talk can occur at the phosphorelay level and 

(2) whether the sensors are able to function as a combinatorial sensor. A combinatorial 

sensor is made up of a set of sensors, each of which is activated to different degrees by 

many inputs such that the pattern of their activation defines the signal. Using promoter 

reporters and flow cytometry, we measured the response of three two-component 

osmosensors in E. coli (envZ/ompR, cpxA/cpxR, and rcsC/rcsD/rcsB) to 38 chemicals 

including known inducers of the systems, membrane perturbing agents, alcohols and 

chemicals of industrial relevance. We found that each system responded to a wide 

spectrum of conditions and that the three systems are uncorrelated, meaning that unique 

patterns of gene expression are generated by even closely related chemical compounds. 

Of the eight possible patterns generated by a three sensor system, we observe five. This 

data show that bacteria are able to use a limited set of sensory components to identify a 

diverse set of compounds and environmental conditions. 
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Chapter 1  
Introduction 

1.1. Preamble.

My work in the Voigt lab began with Chris Anderson, where we made tumor 

seeking bacteria ("Environmentally controlled invasion of cancer cells by engineered 

bacteria" JMB, 2006). Although that work is not presented in this thesis, it was an 

awesome project, and affected how I thought about bacterial sensing for the remainder of 

my time here.

The motivation behind that work was to come up with a way to get E. coli to

invade cancer cells as a function of a certain condition (oxygen content, cell density, or 

small molecule). We were able to do this by transferring an invasion module from 

another bacterium into E. coli. At the end of the day, a big part of the problem will 

become how to specify the microenvironment of the cancer to the bacterium (so that it 

doesn't invade and kill healthy cells). Bacteria have evolved to be very good at this type 

of problem. They are able to survive in changing environments, rapidly and accurately. I 

started thinking about whether you could take this natural response, and use it to make 

new types of biosensors.
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The next project I worked on was constructing a bacterial thermometer (appendix 

A). Though this work was never published, the idea was to look for E. coli's natural 

transcriptional response to temperature (from published microarray data) to find 

candidate temperature reporters. I was also able to do dome simple circuit engineering to 

make a better heat sensor.

Finally, the core of my thesis work revolved around drawing an analogy between 

the mammalian olfaction system and a set of sensors in E. coli.

1.2. Two component Systems.

E. coli can thrive in environments that differ in temperature, pH, osmolarity, 

oxidative stress, and antimicrobial agents [1, 2]. To survive, the cell must sense these 

stresses and respond by affecting necessary changes in gene expression for survival. One

mechanism for linking environmental sensing to transcriptional regulation is two-

component systems[3, 4]. Bacteria have many two-component systems (TCS; E.coli has 

~32) that relay extracellular information to the cytoplasm where transcriptional responses 

are executed. Each system consists of a membrane bound sensor and a cognate 

cytoplasmic response regulator. Upon stimulation of the sensor, it autophosphorlylates 

and transfers the phosphate to its response regulator. The response regulator is often a 

transcription factor, binding to promoters where it activates or represses gene expression. 

In some cases, the sensor is very specific, responding to a single stimulus and regulating 

only a limited number of genes, appropriate to that stress. For example, E. coli's CusSR 

TCS is activated by copper, which at high levels is toxic to the cell, and CusR activates 

the genes encoding copper efflux pumps[5]. Other two component systems are stimulated 
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by multiple conditions, and regulate many genes of diverse function[6-8]. The most 

general sensors are often assigned a function of sensing osmolarity[9-11].

Environmental input

 

Figure 1.1: A two-component system 

Two component systems function to communicate information from the outside to the inside of 

the cell in order to adapt to changes in conditions.  The first component is in the in inner 

membrane. It auto-phosphorylates upon stimulation and transfers its phosphate to its partner 

response regulator protein. In this activated form, the response regulator binds to promoters, to up 

or down-regulate gene expression.

1.3. EnvZ/OmpR.

EnvZ/ompR is arguably the most well-characterized TCS, and is commonly 

labeled an “osmosensor”. EnvZ is activated by external stimuli, autophosphorylates, and 

transfers its phosphate to OmpR. Classically, EnvZ/ompR has been shown to alter the 

expression of outer membrane porins ompC and ompF in response to changes in osmotic 

pressure [12]. However, there are other signals, such cationic peptides, which also 

activate this system (Figure 1A). Stimulation of EnvZ can induce the membrane stress 
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response through over-expression of outer membrane porins which in turn leads to the 

de-repression of the alternate sigma factor, σE [13].

1.4. CpxA/CpxR.

CpxA/cpxR is the system closest in sequence to EnvZ/ompR[14]. In contrast to 

EnvZ, the primary role of CpxA is to de-phosphorylate CpxR[15]. It is subject to 

feedback amplification and repression, via up-regulation of its own expression, as well as 

up-regulation of its negative regulator, a periplamic putative chaperone protein, cpxP[16-

18]. CpxAR responds to cell envelope stress, and activates genes to combat the stress, 

such as periplasmic protein folding and degrading factors. Multiple stresses feed into cpx 

activation through the periplasmic proteins NlpE and CpxP. Certain activators require 

transmission via the lipoprotein NlpE[19], whereas others require CpxP but not NlpE[16, 

20, 21]. Interestingly, a few activators can stimulate CpxR in the absence of CpxA, 

through phosphorylation by the small molecule acetyl phosphate[15]. 

1.5. RcsC/RcsC/RcsB.

The RcsC/RcsC/RcsB signaling pathway consists of three proteins. The 

membrane-bound RcsC autophosphorylates and transfers the phosphate to the membrane-

bound RcsD. RcsD then phosphorylates the response regulator RcsB. The specific signal  

activating is unknown, although most activating conditions, such as contact with surfaces 

and overexpression of periplasmic proteins[4] are likely to lead to envelope stress. Like 

CpxA, RcsC requires a lipoprotein, RcsF, to activate downstream signaling in response to 

certain signals[22, 23]. Some promoters are regulated by the RcsB homodimer, while 
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others require the expression of a second protein RcsA, which forms a dimer with a 

single RcsB[24, 25].

1.5. Combinatorial sensing.

We postulate that two-component sensors that respond to many inputs could 

participate in a combinatorial sensor, analogous to olfaction in higher organisms. A 

combinatorial sensor is made up of a set of receptors, each of which is activated by many 

inputs such that and the pattern of their activation defines the signal. The mammalian 

olfactory system is a canonical example of a combinatorial sensor. For example, the 

human nose is a remarkably flexible biosensor. It has ~400 different chemoreceptors, yet 

it can recognize ~10,000 different odorants[26, 27]. This is accomplished via a 

combinatorial recognition of odorants; the nose does not have a single receptor for every 

odorant, rather, there is a set of receptors that binds non-specifically to many chemicals 

with different affinities. A chemical produces a signature pattern of receptor activities, 

which is processed by the brain to identify the odor. This illustrates two notable 

advantages of such an organizing principle. First, a small number of receptors can 

respond to a large number of chemicals. Second, the system can be trained to respond to 

new inputs without the addition of new receptors through rewiring of the system’s 

downstream components. Combinatorial sensing has been applied in industry, where 

electronic noses based on materials that bind to many chemicals non-specifically have 

been incorporated into analytical and control systems[28, 29]. 
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Figure 1.2: Combinatorial sensing 

With three general binary sensors, a total of eight possible patterns can be generated. With 

intermediate states allowed, many more patterns are possible. The patterns are theoretically 

distinguished by signal processing in the cell, for example by complex promoters.

Combinatorial sensing with two-component systems could be an efficient strategy 

bacteria have evolved to sense multiple inputs with a limited set of sensory components, 

conceptually analogous to the mammalian olfactory system. Here, multiple two 

component systems would respond to different inputs, and the downstream regulatory 

network would interpret the incoming pattern. For combinatorial sensing to take place, 

the sensors should (i) respond non-specifically to multiple environmental signals; (ii) be 

un-coupled, such that different patterns are generated in response to the inputs; and (iii) 

there should also be a means for pattern recognition, such as downstream promoters with 

multiple response regulator binding sites. 
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Multiple two-component systems could interact with each other as part of a higher 

order network[30-36]. Interactions could be at the level of cross talk at the phosphorelay 

level, as integration of response regulator binding to promoters, or as gene product based 

feedback from one system into another[37, 38]. Although cross talk at the phosphorelay 

step is rare in vivo[39, 40], downstream interactions between two component systems are 

known to occur. For example, in S. enterica, a gene product controlled by the PhoPQ 

TCS protects PmrA in the PmrAB TCS from dephosphorylation[41, 42]. Parallel two 

component systems have also been shown to regulate common promoters, for example, 

CpxR and OmpR overlap binding sites at the csgD promoter, which is also regulated by 

the two component systems RcsAB, RstA, and its own gene product[10].

Previous work demonstrating that envZ/ompR, cpxA/cpxR, and rcsC/rcsD/rcsB 

are activated by many conditions primarily measured one system at a time, with different 

metrics, growth conditions, strains, and induction times. As a result, it is impossible to 

compare relative induction either across conditions within a single sensor, or between 

sensors. To address this, we optimized reporter system and assay conditions and used 

standardized measurements to compare induction by known inducers, alcohols and 

chemicals of industrial relevance both within and between sensors. This induction data 

allowed us to determine the degree to which each sensor is general, measure the 

correlation between each sensor and osmolarity, and importantly, between pairs of 

sensors. By visualizing the patterns, we could determine how the chemicals clustered in 

terms of their impact on the sensors, as well as the diversity of patterns generated
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EnvZ CpxA RcsCD

OmpR CpxR RcsB

Low pH, K+, 
Pb+, NH4+, 
procaine, 
cationoic
peptides 

Low temperature, 
indole, growth on 

surfaces, zinc, 
chlorpromazine, 
antibiotics, Fe3+, 
EDTA, ethanol

Osmolarity
High temperature, 
oxidative stress, 
envelope stress, 

high pH, pili
contact, abiotic
surfaces, Cu2+, 
indole, EDTA, 

ethanol, 
antibiotics

Osmolarity Osmolarity

Pili growth, plasmid conjugation, biofilm
formation, virulence, drug exporters, osomotic
shock genes, motility, capsule synthesis, cell 

division, periplasmic protein degradation, 
modification of phospholipid composition.

Figure 1.3: Overlapping inputs and overlapping regulons 
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Chapter 2  
Standardizing two-component reporters and assay 

conditions 

2.1. Preamble

This section of my thesis gets its own chapter. Though there isn't much data here, 

perfecting the assay conditions, and picking the reporters took up such a big part of my 

graduate career that I wanted it to stand on its own. Hopefully I will convey here the 

amount of toiling that went on to get it just right.

2.2. Selecting promoter reporters

To assay sensor activity, we measured the activity of promoters regulated by each 

of the three systems. Each reporter contains a regulated promoter driving green 

fluorescent protein (GFP) on a medium copy plasmid (Figure 1B).  We tested a number 

of promoters activated by the response regulator for each system, and picked the reporter 

that had the largest dynamic range: envZ (PompC), cpx (PcpxP), and rcs (PrprA). For rcs, we 

used a reporter activated by the RcsB homodimer (rather than RcsB-RcsA heterodimer) 
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as this eliminates the possibility of a spurious signal from the histidine kinase 

independent RcsA. A full list of the promoters tested is provided below.

Table 2.1: Promoter reporters tested, and genomic locatios 

pOmpC GFPco

CmR
p15A

CmR

pAC-EnvZ
pAC-Cpx
pAC-Rcs

-100 +1

-100 +1

-100 +1

pCpxP

pRprA

Figure 2.1: Promoter reporters and footprinting data 

Known regulator binding sites are shown above. OmpR in red, CpxR in green, and RcsB in 

purrple. On the right is the plasmid map of the reporter plasmid.

2.3. Assay conditions

To measure promoter induction, cells containing a single reporter plasmid were 

grown up in minimal media, and split into either a control flask, or a flask containing 

inducing chemical. Each chemical was supplied at the concentration which led to a 50% 

growth rate defect as measured at the end of the 2 hours. Samples were collected for two 

hours after induction, and GFP content for un-induced and induced cells was measured 

using flow cytometry (Figure 1C). We noticed two things that directly affected how we 
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performed our induction assay. One, all of the reporters, especially those for envZ, 

became more active upon entry into stationary phase. And two, differences in 

temperature, growth rate, and media composition had a large impact on induction. This is 

consistent with the documented observations that certain chemicals induce some two 

component systems only under specific growth conditions such as low temperature or a 

specific carbon source[43]. Because of this, we measured induction only over logarithmic 

growth, kept temperature constant by growing in water bath shakers, and grew cells in 

minimal media, whose composition and pH we could carefully control. Under these 

conditions we found envZ/ompR to be less strongly induced than in a rich media, such as 

LB, an observation also made by Goulain and co-workers[44]. 

Chemical
A

uninduced
GFP / cell

# 
of

 c
el

ls

Chemical
A

Chemical
B

Chemical
C

Figure 2.2: Assay 

A culture was inoculated from a plate and grown for 14 hours, and then diluted 100x into fresh 

media. At OD600 = 0.4 cells were again diluted 100x into 150 mls. These cells were grown at 37oC 

in a shaking water bath at 160 rpm. When cells reached OD600 = 0.2, the culture was split into 6 

flasks, one un-induced, and the rest containing various induction chemicals. Samples was taken at 

t = 0 min, 15min, 30min, 60min, 90min and 120min. Protein expression was immediately stopped 

in each sample with 2 mg/mL kanamycin, and the samples were stored on ice until flow cytometry 

was performed.
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2.3 Reporter controls

We show an inducer dependent activation of each reporter only in cells that 

contain its response regulator (Figure 1D). Panel 1 of Figure 1D shows the induction of 

pAC-EnvZ in the presence (WT) and absence (ΔompR) of the response regulator ompR. 

Induction by indole occurs only in the WT strain, thus we conclude that the observed 

induction is a result of changes in levels of phosphorylated ompR. We similarly tested 

pAC-Cpx and pAC-Rcs in their response regulator knock out strains as shown in Panel 2 

and Panel 3, and conclude that they are appropriate reporters. Known regulator 

interactions at each promoter are shown in Figure 1B. Interestingly, a combination of 

genetics and footprinting experiments supports cpxR activation of PompC[44]. Though we 

show that indole induces both envZ and cpx (Figure 3A), indole does not activate PompC

in the presence of cpxR and absence of ompR. From this, we conclude that cpxR is not 

contributing significantly to PompC under our conditions, which is consistent with other 

observations[45]. 

WT ΔompR WT ΔcpxR WT ΔrcsB

- + - + - + - + - + - +
pOmpC pCpxP pRprA

1000

500

0

Fl
ou

re
se

nc
e

(A
U

)

Figure 2.3: Reporter controls 

For each system, induction occurs in the presence of the response regulator, but not in the absence. 

The controls were performed with a strong inducer for each: envZ/ompR: indole(3mM), 
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cpxA/cpxR: phenethyl alcohol(0.2%), and rcsC/rcsD/rcsB: NaCl (550mM). Error bars are the 

standard deviation from the mean of two runs performed on different days.
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Chapter 3  
Cross talk between two-component systems 

3.1. Preamble

The data in this chapter is a small piece of a larger body of work spearheaded by 

Eli Gorban as a graduate student in the Voigt lab. In the paper (Kinetic Buffering of 

Cross Talk between Bacterial Two-Component Sensors, Journal of Molecular Biology

Volume 390, Issue 3, 17 July 2009), we show a combination of in vitro, in vivo, and 

computational experiments to determine whether cross-talk between two two-component 

systems (EnvZ/ompR and CpxA/cpxR) exists, and if not, what buffering mechanism the 

cell uses to prevent it. This is particularly interesting in the context of my personal work, 

which demonstrates the promiscuity of the same set of sensors for their inputs. This leads 

to interesting speculation about the point at which signal integration may be occurring in 

the cell, if it is not happening at the level of phosphorelay.

I am also fascinated by the fact that with the artificial TAZ system used here 

(TAZ is the extracellular domain of tar fused to the cytoplamic domain of EnvZ) Eli sees 

much larger changes in phosphorylated response regulator than I ever come close to 

when making measurements with the wild type system. Imagine for a second that the 
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fraction of phosphorylated response regulator, going from 0 to 1, is drawn on a ruler 

going from 0 inches to 12 inches. Eli's system can go from 0 to 12 inches. MY data

shows that the wild type cell, responding to normal stimuli, only ever experiences about 

an inch-worth of phophorylation states, if that. Remarkable!

3.2. Introduction

The in vitro and computation data predict that cross talk should only occur in a 

triple mutant: ΔompR ΔcpxA ΔactA-pta. To test this prediction, all seven combinations of 

knockouts are made and only this particular strain demonstrates crosstalk, where the cpxP

promoter is induced 280-fold upon the activation of EnvZ.  Further, the behavior of the 

other knockouts agrees with the model predictions.  This model points to a kinetic model 

of buffering where both the cognate phosphatase activity and competition between 

regulator proteins for phosphate prevents cross talk in vivo.

Because of the number of simultaneously expressed systems and the strong 

conservation in the sequence and structure, it seems plausible that cross reactions would 

occur frequently between systems[38]. This could either occur as a single kinase 

phosphorylating multiple response regulators, or conversely, a single regulator could be 

phosphorylated by multiple kinases.  Cross reactions could even be exploited to create a 

neural network linking inputs and outputs such that a higher level of sensing power is 

achieved. In contrast, all of the two-component systems could behave linearly with one 

input being linked to one output.  Given the similarity between systems, there would have 

to be some sort of buffering mechanism for linearity to be preserved.[38, 39, 46]

Previous in vitro studies demonstrate some promiscuity among histidine kinases 

and response regulator proteins.  Ishihama and co-workers assayed 25 histidine kinases 
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from E. coli against the 34 E. coli response regulators.[47]  They showed that after a 30 

second incubation time, 11 of the 34 response regulators can be phosphorylated by more 

than one histidine kinase.  There are only a few promiscuous kinases, however, so out of 

692 possible cross talk pairs, only 3.0% of them showed in vitro cross talk.  Skerker and 

Laub assayed the EnvZ, CpxA, and CheA kinases against a panel of all response 

regulators from E. coli.[48]  Non-cognate transfer occurs between EnvZ and CxpR, but 

this is observed at a 60 minute timepoint.  This is very slow compared to the cognate 

transfer, which occurs in 10 seconds.  They suggest that the non-cognate transfer is too 

slow to be relevant in vivo.

Several theories have been proposed as to how two-component systems could 

buffer in vivo the slow crosstalk observed in vitro.  Savageau proposed that buffering 

could emerge from the ability for the histidine kinase to both phosphorylate and 

dephosphorylate the response regulator (a bifunctional interaction).[46]  Using a 

mathematical model, he demonstrated that the phosphotase function could decrease the 

background phosphorylation of the response regulator, thus reducing spurious 

phosphorylation.

Laub and co-workers argue that each kinase has a “kinetic preference” for its 

cognate substrate.[48]  They postulate that subtle amino acid differences in the binding 

interface between the kinase and the response regulator affect the Km.  If the correct 

response regulator interacts for a longer time with its kinase, this both prevents access to 

the kinase by the incorrect substrate and drains the kinase of all available phosphate, 

resulting in phosphorylation of only the correct response regulator.  To support this 
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hypothesis, they made small amino acid changes to the kinase at the binding interface, 

which resulted in a shift in kinetic preference that altered specificity.[49]

Here we characterize the interactions between the E. coli EnvZ/OmpR and 

CpxA/CpxR two-component systems. The phosphotransfer domains share the most 

similarity amongst E. coli two-component systems, sharing 31% amino acid identity for 

the kinase domain of the sensor histidine kinase and 50% identity between the receiver 

domain of the response regulators.[14]  It has been shown previously that EnvZ can 

phosphorylate CpxR in vitro, albeit at a much slower rate than OmpR.[47, 48]  

We perform a comprehensive kinetic study of the interactions between the 

EnvZ/OmpR and CpxA/CpxR two-component systems.  First, we purified the kinases 

EnvZ and CpxA and their response regulators OmpR and CpxR.  We phosphorylated 

either the kinase or the response regulator using radiolabeled phosphate and monitored 

phosphorylation kinetics in vitro (Figure 1).  Moreover, we also synthesized radiolabeled 

32P acetyl phosphate and used this to phosphorylate the OmpR and CpxR proteins in the 

absence of kinase to determine autophosphoryation rates.  Fully phosphorylated response 

regulator proteins were then exposed to unlabeled kinase to measure phosphatase activity.  

After obtaining rate constants for ten reactions, we parameterized a mathematical model 

and used this model to predict combinations of gene knock outs to make that could 

induce cross talk in vivo.  To test the prediction, we constructed seven knock out strains 

and used promoter-GFP fusions to measure cross talk in vivo.  Significant cross talk is 

only observed for a triple knock out suggested by the model.
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3.3. Results

We monitor the in vivo phosphorylation state of OmpR and CpxR by following 

the activity of the ompC and cpxP promoters, respectively (Figures 1A and 1B). We 

selectively activate the EnvZ/OmpR pathway in order to determine whether in vivo cross 

talk occurs between it and CpxA/CpxR.  As there are no known ligands for the EnvZ 

kinase, we used a second generation version of the hybrid kinase designed by Utsumi and 

Inoyue, which combines the transmembrane aspartate receptor (TAR) with the kinase 

domain of the EnvZ kinase (TAZ) (Figures 1C and 1D).[50]  This hybrid kinase serves to 

selectively activate the EnvZ kinase domain, and phosphorylate its cognate response 

regulator OmpR in the presence of the small molecule aspartate.  We activate the EnvZ 

kinase using the TAZ construct and monitor the output levels of both the EnvZ/OmpR 

and CpxA/CpxR system using the promoters ompC and cpxP to drive green fluorescent 

protein (GFP) expression, which is measured at the single-cell level using flow cytometry 

(Figures 1D and 1G).  

TAZ phosphorylates the OmpR response regulator in the presence, but not the 

absence, of 5 mM aspartate in vivo in the wild type system (Figure 4E and Figure 2, first 

panel).  Induction of TAZ via addition of 5 mM aspartate leads to a 34.7 (+/- 1.9) fold 

change in fluorescence at the ompC promoter showing that the presence of aspartate and 

TAZ provides an active EnvZ kinase.  This activation is TAZ dependent, as a control 

strain lacking TAZ shows no activity at the ompC promoter (Figure 1F).  ∆ompR does not 

respond to TAZ showing that the ompC promoter is specific to OmpR~P.  Our use of 

GFP as a reporter for system activity, combined with flow cytometry, allowed us to 



19

conduct single cell measurements.  From this we see that cells containing the ompC

promoter GFP fusions produce a single distribution in all cases (Figure 1E).

Figure 3.1: Experimental set-up 

(A) pAC581-pOmpC-GFP and (B) pAC581-pCpxP-GFP, which contain the ompC and cpxP

promoters driving GFP expression.  (C) The reporters are co-transformed with a second plasmid 

pTJ003, which contains the TAZ protein under control of the constitutive lpp promoter.  (D)  TAZ 

phosphorylates OmpR in the presence of 5 mM asparate.  (E) Gated cytometry data is shown for 

cells without TAZ (gray line) and with TAZ but without asparate (black line).  Addition of 5 mM 

aspartate induces the system (black line, right).  (F) The ompC reporter is not induced in the 

absence of TAZ (-), but is strongly induced when both TAZ and aspartate is present (+).  When 

ompR is knocked out, TAZ has no affect on the system.  (G) The ability of TAZ to induce CpxR 

was also measured in wild-type cells. (H) The cytometry distribution shows no difference between 
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cells with TAZ and aspartate (black line) and cells without TAZ (gray line). There is a basal level 

of activity from the cpxP promoter.  (I) The activity of the cpxP promoter is the same in the 

absence (-) and presence (+) of TAZ and inducer.   The basal activity is eliminated by knocking 

out CpxR.  For both parts F and I, the mean of three experiments performed on different days is 

shown and the error bars are one standard deviation.

In the wild type system, active EnvZ does not affect the levels of CpxR~P 

response regulator in vivo (Figure 1G-I).  By monitoring the abundance of 

phosphorylated CpxR via the cpxP promoter and activating TAZ, we are able to measure 

the presence or absence of cross talk between EnvZ and CpxR.  We are unable to see a 

significant difference in cpxP activity in the presence of active EnvZ. 

We then constructed seven knockout mutants containing all possible 

combinations of ΔcpxA, ΔompR, and ΔackA-pta (Methods).  In addition, EnvZ is also 

knocked out and TAZ is introduced on a plasmid.  For each of the knockouts, the activity 

of the promoters is compared for the ΔenvZ strain (-) and the addition of the TAZ and 5 

mM aspartate (+) (Figure 2). 

Figure 3.2: Response of seven knock-out strains 
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The knockouts are shown at the top of each panel and the promoter used as a reporter is shown at 

the bottom.  For each knockout, the fluorescence in the absence of EnvZ (-) and presence of active 

EnvZ (TAZ and aspartate) (+) are shown.  Panel 1 shows selective activation of the ompC

promoter in the presence of TAZ and aspartate (black bars) but not in the absence of TAZ (gray 

bars).  Also, TAZ is unable to activation the cpxP promoter.  Different combinations of knock outs 

do not produce cross talk between EnvZ and CpxR, as shown from the inability of this kinase to 

activate the cpxP promoter.  Only a triple knockout, ∆ackA-pta ∆cpxA ∆ompR, displays cross talk.  

Bars represent the mean of three different experiments and the error bars are one standard 

deviation from the mean.

The knockout ∆cpxA causes the level of CpxR~P to increase (Figure 2).  In the 

absence of the CpxA kinase, CpxR autophosphorylates using acetyl phosphate as a 

substrate and reaches a higher steady state.  Notably, the experiments recover the 

decrease in activity from the addition of active EnvZ as observed in the model (Figure 2).  

The single knockout ∆ompR behaves similarly to WT.  The double knockout ∆cpxA

∆ompR strongly activates the cpxP promoter and is insensitive to active EnvZ.  

The affect of disrupting the acetyl phosphate synthesis pathway was then 

explored.  The ∆ackA-pta and ∆ackA-pta ∆ompR strains display similar behavior to WT.  

In contrast, the ∆ackA-pta ∆cpxA strain strongly decreases the amount of CpxR~P and 

the activity of the cpxP reporter.  However, there is a small amount of crosstalk observed, 

where active EnvZ is able to phosphorylate CpxR and induce the cpxP promoter 3.6 (+/-

0.2) fold.  

A ∆ackA-pta ∆cpxA ∆ompR triple knock out shows EnvZ dependent 

phosphorylation of CpxR in vivo (Figure 5, panel 9).  Inducing TAZ in this system causes 

a 370.4 (+/- 79.8) fold increase in cpxP activity.  This system lacks two crucial 
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mechanisms to prevent cross talk.  First, it lacks the phosphatase activity of CpxA.  

Second, it does not have the OmpR protein, allowing CpxR access to the active EnvZ 

kinase.  These two buffering mechanisms are quite effective.  Therefore, cross talk is 

highly unlikely to be relevant in vivo.  In the wild type system, CpxA serves as a 

phosphatase and OmpR quickly removes phosphate from active EnvZ.  It is only by 

removing all possible mechanisms for insulation that we see a potent activation of CpxR 

by EnvZ in vivo.

3.4. Methods

Assay and Cytometry:  

Cells were transformed with either pAC581-PompC-GFP, pAC581-PcpxP-GFP, or either 

plasmid and pTJ003 and grown for 12 – 16 hours at 37o C on selective LB/Agar.  Control 

cells containing no plasmid, used to normalize cell fluorescence, were grown for 12 – 16 

hours at 37o C on LB/Agar as well.  Single colonies were used to inoculate overnight (12 

– 16 hours) cultures of 2 mL of M9 media supplemented with appropriate antibiotics.  

Next, the cultures were diluted 100X into 50 mL of fresh M9 with appropriate antibiotics 

and grown at 37o C in a shaking water bath to OD600 = 0.2.  They were then split and 18 

mL was put into each of two flasks and exposed to 2 mL of either pre-warmed M9 media 

or pre-warmed M9 media supplemented with 50 mM aspartate, for a final aspartate 

concentration of 5 mM.  Cells were grown at 37o C with shaking for two more hours post 

induction.  Samples were taken, spun at 3,300 x g for 5 minutes and re-suspended in 1X 

PBS with Kanomycin (2 mg/mL) to stop translation.  Cells were diluted into 1X PBS and 

single cell GFP measurements were made using a BD Biosciences LSRII, courtesy of the 

Gladstone Research Institute (Laser settings -- FSC: 577, SSC: 335, GFP: 607).  Each 
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data set consisted of at least 30,000 bacteria.  The FlowJo software package was used to 

gate the data by FSC-H and SSC-A before calculating a geometric mean GFP 

fluorescence value (Tree Star Inc.).

3.5. Discussion

Here, we started with two systems that that are share a high degree of sequence 

similarity and for which crosstalk had been previously demonstrated in vitro. 

Remarkably, it required three knockouts to induce crosstalk, which demonstrates the 

degree to which two-component systems are buffered from crosstalk.  This is consistent 

with other recent observations, all of which point to phosphotransfer being linear in the 

native host. There are other mechanisms by which crosstalk can occur, including the 

inclusion of additional kinase domains in the sensor kinase which interact with other 

response regulators.[38, 51, 52]  There are also examples of cyoplasmic adaptor proteins 

that integrate multiple sensors and then interact with a downstream response regulator.  

An example of this is the Spo0F protein in B. subtilis, which integrates multiple sensors, 

and activates the Spo0A response regulator through the histidine phosphotransferase 

Spo0B.[53, 54]  However, unless there are additional domains or proteins involved in 

phosphotransfer, it would appear that the phosphotransfer that occurs in canonical two-

component systems is remarkably linear.  

Integrating two-component systems may play a critical role for bacteria to 

identify an environment.  To this end, there are many promoters that contain multiple 

operators that bind different response regulators. There are also genetic circuits that act as 

logic to integrate multiple inputs. An emerging conclusion is that most of the signal 

integration between two-component systems occurs on the transcriptional level.
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The remarkable degree of buffering occurs due to a combination of kinetic 

interactions.  We find that the bifunctional phosphatase activities of the sensors are just 

fast enough to remove the phosphates that get transferred via non-cognate interactions. 

This supports the theory put forward by Savageau and co-workers.  However, when this 

interaction is removed, crosstalk does not occur.  Also, there is evidence that the response 

regulators act as phosphate sinks by preferentially interacting with their cognate sensor.  

Previous studies suggest that only 0.02% of EnvZ is phosphorylated in vitro and OmpR 

preferentially interacts with phosphorylated EnvZ, leaving only the unphosphorylated 

EnvZ to act as a phosphatase to interact with non-cognate response regulators.[47, 55, 56]  

We see evidence of this effect in the inverse induction when CpxA is knocked out.  Also, 

the removal of OmpR is critical for significant crosstalk to occur. 

Programmable sensors are a key component for engineering bacteria. The 

modularity of two-component systems makes them an intriguing target for engineering, 

where input signals can be rapidly connected to control different pathways through 

domain swapping.[57-62]  In addition, two-component systems can generally be moved 

between species.  This enables access to a diversity of sensing functions present in 

bacteria.  However, it has been observed that after transfer, two-component systems can 

exhibit cross reactions to host systems, which can have deleterious effects.[48]  

Therefore, it will be critical to understand how natural systems buffer crosstalk such that 

these interactions can be engineered de novo.
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Chapter 4  
Combinatorial sensing in E. coli 

4.1. Introduction

Two-component systems are a highly conserved signal transduction pathway that 

enable bacteria to sense changes in their environment and adjust gene expression to adapt 

to nutrients, stresses, and other signals. We have sought to determine whether bacteria 

use multiple two-component systems as a combinatorial sensor to discriminate 

environmental conditions. A combinatorial sensor is made up of a set of sensors, each of 

which is activated to different degrees by many inputs such that the pattern of their 

activation defines the signal. Using promoter reporters and flow cytometry, we measured 

the response of three two-component osmosensors in E. coli (envZ/ompR, cpxA/cpxR, 

and rcsC/rcsD/rcsB) to 38 chemicals including known inducers of the systems, membrane 

perturbing agents, alcohols and chemicals of industrial relevance. We found that each 

system responded to a wide spectrum of conditions and that the three systems are 

uncorrelated, meaning that unique patterns of gene expression are generated by even 

closely related chemical compounds. Of the eight possible patterns generated by a three 

sensor system, we observe five. This data show that bacteria are able to use a limited set 
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of sensory components to identify a diverse set of compounds and environmental 

conditions. 

4.2. Chemical library

We compiled a panel of 38 chemicals consisting of those that are known to 

influence these two-component systems, induce membrane perturbations, or are of 

industrial interest. We included chemicals that have been directly demonstrated to induce 

a system, and also chemicals with indirect evidence such as a growth phenotype in the 

absence of the two-component system[36]. A full list of the chemicals tested can be 

found below.

Table 4.1: Chemicals that produced response above threshold 
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Table 4.2: Chemicals that produced response below threshold 

4.3. Time-course inductions and flow cytometry

We next examined the effect of each compound on the expression of reporter 

genes. The three sensor pattern generated in response to a given chemical is a three bar 

histogram where each bar corresponds to the fold induction of one of each of the two-

component systems at the two hour time point. Fold induction is calculated by dividing 

the mean GFP from cells grown in inducing conditions by the mean GFP value from 

uninduced cells. Raw time course data, patterns generated, and raw end point flow 

cytometry can be found below.
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We find that the kinetics of the responses vary both across chemicals, and across 

sensors. For each sensor, there are chemicals that lead to a fast induction and others that 

lead to slow induction. The differences in response time are not strictly a function of 

chemical; for example, the response of rcs to all of the alcohols is delayed for as much as 

an hour in some cases, whereas for cpx we see no delay for any of the alcohols. The 

kinetics of the response may be a result of how the chemical perturbs the membrane. 

Certain chemicals illicit responses in multiple sensors with similar kinetics (indole), 

whereas other chemicals induce with different kinetics. For example, rcs responds more 

slowly than cpx to butanol, ethanol and pentanol (time to half maximal induction occurs 

around 90 minutes, versus 60 minutes for cpx). One explanation for this is that the 

sensors have an intrinsically different response time. Though this might be the case, there 

are examples of chemicals that induce rcs faster than cpx, such as NaCl, KCl and sucrose. 

A second explanation is that the effect of alcohol on the membrane changes over time, 

and that the sensors respond differently to these time dependent perturbations. 

4.4. Constitutive control

We excluded compounds from further analysis for one of two reasons: either the 

chemical induced all three systems by less than two-fold, or else it was non-specifically 

leading to GFP accumulation. This later criterion was determined by measuring the 

activity of a constitutive promoter under the same growth conditions; chemicals with 

control induction of greater than two fold were eliminated (Supplemental figure 2). There 

were two chemicals that fell into the latter category, both beta lactams. These drugs have 

been shown to affect the size and shape of cells; specifically they can lead to larger or 
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more rod-like cells[63]. Either deformation could contain more GFP, even with a 

constitutively expressed GFP. Of the 38 chemicals tested, 13 passed these two criteria 

and were chosen for further analysis.
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Figure 4.3: Constitutive expression control 

4.5. Summary of fold inductions

Each two-component system is activated by the majority of the 13 chemicals. A 

summary of the fold inductions for all of the chemicals can be found in Figure 3A. 

Though we designed the chemical library to include compounds expected to influence 

these systems, and eliminated in the initial screen those chemicals that affected none of 

them, the degree of overlap in inducers of the three systems was surprising. In fact, as 

defined by a two-fold cut off, EnvZ/ompR, cpxA/cpxR, and rcsC/rcsD/rcsB responded to 

10, 11, and 10 of the 13 chemicals, respectively. The top five inducers for each of envZ 

and cpx include alcohols, indole, and pH extremes. These seemingly do not have a 
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common mode of action; alcohol is known to fluidize the membrane, indole causes 

derangement of the outer membrane, and pH affects levels of both periplasmic and 

envelope proteins. [64, 65] Rcs is strongly induced by alcohols and also salt, two stresses 

that have opposite effects on membrane fluidity. Because each system is activated by 

many and diverse inputs, they meet the first requirement for a combinatorial sensor that 

the sensors be general.
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4.6. Correlation of sensor inductions

Though these two-component systems respond to most of the 13 chemicals, a 

variety of three sensor patterns is generated. There is a slight correlation in induction 

between cpx-envZ, the two systems which share the highest sequence identity of any 

two-component systems in E. coli[14], however little correlation between rcs-envZ and 

rcs-cpx (Figure 4). In all three correlation plots there are examples of chemicals that 

induce one system and not the other. For example, pH4 induces envZ but not cpx, and 

phenethyl alcohol induces cpx but not envZ. This suggests that the systems do not 

respond to the same inducing signal. Because these sensors respond for the most part 

independently of one another to each chemical, the second requirement for a 

combinatorial sensor is met.
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Figure 4.4: Correlation between sensors 

Environmental conditions generate unique patterns of sensor responses. The sample correlation 

coefficients for each pair of sensors were calculated to be: cpx-envZ, R2 =0.323; rcs-envZ, R2 = 

0.024; rcs-cpx, R2 = 0.001. Points are the average of 2 or more experiments performed on different 

days, and error bars are the standard deviation from the mean. 
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4.7. Osmolarity and pH controls

Because env, cpx, and rcs are respond to high osmolarity, we determined whether 

the responses in gene expression were simply due to differences in osmolarity in the 

assay conditions(Figure 3B). If this were the case, we would expect the fold-induction to 

be correlated with osmotic strength. We added each chemical to media and measured the 

resulting osmolarity with an osmometer. We found little correlation between osmolarity 

and fold induction for envZ (R2 = 0.066) and cpx (R2 =0.095). For rcs, we find a 

significant correlation (R2 =0.639). This is driven primarily by the strong response to the 

two highest osmolality conditions (NaCl and KCl), and when these two points are 

removed, there is no longer a correlation. To highlight this, there is a condition, namely 

sucrose, which is a high osmolality condition that does not induce (in fact it did not make 

the 2-fold cut off criterion for any sensor) and butanol, a low osmolality condition that 

induces strongly. Thus, though each system is induced by high salt, we can conclude that 

none of the systems respond strictly to osmolarity. 
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Figure 4.5: Correlation between fold induction and medium osmolarity 

Correlation between fold-induction and osmolarity for each sensor. The sample correlation 

coefficients for each were calculated to be: envZ, R2 = 0.066; cpx, R2 =0.095. rcs, R2 =0.639.
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pH has a significant effect on induction, especially for envZ and cpx (Figures 2 

and 3). To test whether any of the inductions to the chemicals were a result in a change in 

pH, we measured media pH after a two hour induction in the presence of each chemical. 

All pHs were within 0.11 pH units of an uninduced culture grown in parallel, thus pH is 

not a factor in the differences we observe. 

4.8. Principle component analysis of pattern data

We applied principle component analysis (PCA) to the data set in order to 

visualize both the full diversity of patterns generated, as well as how chemicals cluster in 

terms of sensor pattern. PCA allows the user to reduce the dimensionality of data by 

finding new axes that capture the most information from the original data set[66]. In our 

data, each input pattern can be thought of as a vector with three elements, producing a 

three dimensional space where each chemical is represented by a point. In this case, PCA 

reduces the dimensions from three to two, but it could be applied to systems with many 

more sensors as well (e.g. as analysis of all 32 E. coli sensors). To capture differences in 

the patterns themselves, rather than differences in induction magnitudes, we normalized 

each pattern by its maximum before performing the PCA. As a result, a pattern made up 

of small inductions will cluster with a pattern of large inductions, as long as the pattern is 

the same. Though PCA allows us to visualize clusters, the components themselves do not 

intuitively correspond to a specific sensors activity; note that the point corresponding to 

no induction for all three sensors is not (0,0) in PCA space, rather is represented in Figure 

5 by a black dot. 
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Figure 4.6: Principle component analysis of pattern data 

Principle component analysis of sensor data. Each point in the left panel corresponds to the pattern 

generated by a single chemical projected onto a 2-dimenstional principle component space. Points 

are grouped by type of pattern, and representative patterns are shown on the right. The pattern 

corresponding to no induction for all three systems is represented on the graph as a black point.

Compounds in principle component space were grouped by the type of patterns 

they induce. Of the seven patterns possible with three binary sensors (excluding the all-

OFF response) we observe four. Examples of each are shown to the right of the PCA plot. 

The most common pattern is one where envZ is off, and both cpx and rcs are on; 7 out of 

the 13 patterns fall into this category. Within this set, we divided the chemicals into two 

clusters. In one, rcs responds much more that cpx and in the other they respond more or 

less equally. We do not observe the pattern with all sensors on; though there are 

conditions such as butanol and NaCl which induce all three, they induce cpx and rcs so 
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much more than envZ that it is classified as being an envZ-off, cpx-on, rcs-on pattern. 

We also do not observe the two patterns corresponding to only envZ or only rcs on. 

Certain clusters can be rationalized based on the effect that the cluster members 

have on the membrane. For example indole and procaine are in the same cluster, and both 

perturb the outer membrane. These two patterns are characterized by envZ and cpx being 

on, and rcs off. The pattern itself is surprising since rcs has been shown to respond to 

surface contact as well as over-expression of an outer membrane lipoprotein, both of 

which are likely to influence the outer membrane. We also found that some chemicals 

which increase membrane fluidity, such as alcohols and acetone[67], cluster. 

We were surprised to see that certain chemicals did not cluster. For example, 

though the linear short chain alcohols cluster, pentanol and phenethyl alcohol induce very 

different patterns, and cluster with pH10. Also, instead of clustering with butanol, 

isobutanol clusters with the salts, a separation driven by a large difference in cpx 

induction. These alcohols could affect the membrane differently, and by extension the 

two-component systems, based on their specific properties such as chain length, 

bulkiness, and lipophilicity. pH4 is the only condition we tested that induces envZ and rcs 

but not cpx, and though envZ and rcs are also slightly induced at pH10, cpx is 

dramatically induced. This leads to two very different patterns, and thus different 

clusters.

4.9. Effect of concentration on response amplitude and pattern.

We examined sensor activity in the reporter strains over a range of short-chain 

alcohol (ethanol, butanol, pentanol) concentrations and a range of pH. 
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For each of ethanol, pentanol, butanol and pH, a series of measurements were made, either varying 

concentration of the alcohol, or varying pH. EnvZ is red, cpx is green, rcs is blue. Data points are 

the average of two runs performed on different days, and error bars are the standard deviation 

from the mean

The response to alcohols and pH shows that the sensors are graded, rather than 

all-or-none. As cells are exposed to more inducer there is an incremental increase in 

activity for all sensors. 
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On each panel is superimposed raw flow cytometry data from four difference butanol 

concentrations at the two hour time point. Histogram color in order of increasing butanol 

concentration: black, blue, green, red.

Each concentration has a corresponding induction pattern which can be visualized 

in PCA space, allowing us to observe how that pattern changes across a gradient of pH or 

inducer concentration. Bellow, each of the 4 trajectories corresponds to one inducer, with 

each point on the trajectory a different concentration. For the alcohols, the trajectory 

starts at low and moves towards high concentration, with conditions inducing all sensors 

less that 2-fold removed. A trajectory crossing the boundary of a cluster signifies that the 

pattern has changed. 
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Figure 4.9: Projection of concentration data onto PC space 
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Projection of each sequence of patterns onto principle component space. A trajectory crossing the 

boundary of a cluster signifies that the pattern has changed. The patterns for the alcohols are 

insensitive to changes in concentration, whereas the pattern for pH changes dramatically. Ethanol 

and butanol are distinguishable from pentanol for all concentrations.

Interestingly, though the underlying sensor inductions vary dramatically, the 

patterns for the three alcohols remain remarkably constant. Though the trajectories of 

pentanol and ethanol do cross boundaries at their lower concentrations, they are only 

subtle changes in pattern. In contrast, varying pH does change the pattern. At the two 

extremes, the trajectory lies in clusters of dramatically different patterns, with the pattern 

changing from envZ and rcs on and cpx off at low pH, to cpx on at high pH. 

The trajectories of butanol and ethanol are nearly overlapping across all 

concentrations which indicates that their patterns are the same independent of 

concentration. Interestingly, neither trajectory crosses that of pentanol. Thus the initial 

observation that pentanol is in a different cluster from the shorter chain alcohols is not an 

artifact of picking concentrations on a different part of the same trajectory. Based on 

pattern, envZ, cpx, and rcs can discriminate pentanol from ethanol and butanol, and are 

able to read out alcohol concentration from amplitudes of induction. The sensors can 

determine their position on the pH gradient using patterns alone.

4.10. Methods

Strains and plasmids 

Strains BW28357 (a K12 derivative), BW29655 (BW28357ΔenvZompR), BW29849 

(BW28357ΔcpxAcpxR) and BW27870 (BW28357ΔrcsB) were obtained from the Coli 
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Genetic Stock Center at Yale. All promoter reporters are variants of pAC581. This 

plasmid possesses a p15A origin, chloramphenocol resistance marker, and a codon 

optimized GFPmut3. GFP expression is under the control of various promoters. PompC

(2310952...2310802), PcpxP (4103753...4103858) and PrprA (1768254...1768396) were 

amplified from MG1655 genomic DNA. The constitutive control plasmid with promoter 

J23107 was constructed by inserting annealed primers into pAC581. J23107 is a 35 base 

pair sequence from a library of constitutive promoters and assigned BBa_J23107 in the 

MIT registry of standard biological parts (JC Anderson, University of California, 

Berkeley). 

 

Media 

Assays were performed in M9 minimal media (48 mM Na2HPO4, 22 mM KH2PO4, 16 

mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2 and 8.6 mM NaCl, pH7.4) with 0.4% 

glucose as the carbon source plus 30 μg/mL chloramphenicol. Cells were plated on 

selective LB agar (25 g of Luria-Bertani broth (Difco) and 18 g Bacto agar (Difco) per L) 

plus 30 μg/mL chloramphenicol.

Induction Assay 

Cells were streaked from glycerol stocks onto an LB agar plate and grown for 16 hours. 

A culture was inoculated from this plate and grown for 14 hours, and then diluted 100x 

into fresh media. At OD600 = 0.4 cells were again diluted 100x into 150 mls. These cells 

were grown at 37oC in a shaking water bath at 160 rpm. When cells reached OD600 = 0.2, 

the culture was split into 6 flasks, one un-induced, and the rest containing various 
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induction chemicals. Samples was taken at t = 0 min, 15min, 30min, 60min, 90min and 

120min. Protein expression was immediately stopped in each sample with 2 mg/mL 

kanamycin, and the samples were stored on ice until flow cytometry was performed. 

Control cells containing no plasmid were handled similarly. Data points are the average 

of at least 2 independent experiments with assays run on different days. 

 

Chemicals 

Acetone (4% ; Sigma-650501), Butanol (0.54% ; Sigma-B7906), Ethanol (3% ; Gold 

shield chemicals co), Indole (3mM ; Fisher-06104), Isobutanol (0.3% ; Fluka-82059), 

KCl (550mM ; Fisher-S77375), Methanol (4.8% ; Sigma-34898), NaCl (550mM ; Acros 

organics-327300010), Pentanol (0.3% ; Fluka-77597), Phenethyl Alcohol (0.2% ; Sigma-

P13606), Procaine (17mM ; Sigma-P9879) 

Measurig osmolaritys 

Chemical was added at the appropriate concentration to M9, and the osmolarity was 

measured using a Wescor vapro pressure osmometer, model 5520. The machine was 

calibrated with three standards: 1000, 290, and 100mmol/kg. A clean test was performed 

prior to measurements to ensure linearity and accuracy. 

Flow cytometry 

Cells were diluted 100x into phosphate-buffered saline containing 2 mg/ml kanamycin 

and single-cell GFP measurements were made on a BD Biosciences LSRII flow 

cytometer (Courtesy of the Gladstone Resarch Institute) with laser settings: FSC,578; 
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SSC,335; GFP,607. Each data set consisted of at least 10,000 cells. The FlowJo software 

package (Tree Star Inc) was used to gate the data on the FSC-SSC scatter. From this, a 

histogram of GFP fluorescence was generated the mean GFP fluorescence calculated. 

 

Data analysis 

Principle component analysis was preformed using the multivariate analysis add-on in 

Microsoft Excel. Prior to analysis, each row of the matrix is normalized to its max, and 

then each column in mean centered. The contributions of each sensor to the principle 

components are: PC1 (0.025, -0.619, 0.785) and PC2 (0.988, -0.103, -0.112). PC1and 

PC2 together capture 85% of the variance of the original dataset. To generate Figure 6, 

we first removed conditions that induced all sensors by less than 2-fold. We then 

normalized each pattern to its maximum, as before. Each concentration pattern was then 

projected onto the PCA space of Figure 5. 

4.11. Discussion

In this work, we demonstrate that the osmosensors envZ/ompR, cpxA/cpxR, and 

rcsC/rcsD/rcsB function as a combinatorial sensor of chemicals and environmental 

conditions including alcohols, salts, pH and membrane perturbing agents. Though 

previous work has demonstrated that these systems are activated by many conditions, our 

work shows that diverse patterns are generated, and that the sensor fold inductions are 

uncorrelated with each other, as well as with osmolarity. In PCA space, clustering of 

certain chemicals could be rationalized based on their membrane effect; however, we 

were surprised to find that pentanol was in a different cluster from the shorter chain 

alcohols. To explore this, we looked at how these patterns changed as a function of 
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inducer concentration and found both that the patterns generated by butanol, ethanol and 

pentanol were robust to inducer concentration, and that pentanol induced a distinct 

pattern from the other alcohols across all concentrations. 

One way for combinatorial sensing to be physiologically relevant to the cell is for 

there to be a way for the cell to "read" the pattern. We hypothesized that pattern 

recognition might occur at the transcriptional level; there exist complex promoters that 

are regulated in different combinations of two response regulators [24, 68-70] as well as 

csgD which is regulated by all three. Multiple transcription factors regulating a single 

promoter can lead to predictable and physiologically sensible logic[71, 72]. To determine 

whether co-regulated promoters are capable of integrating signals in this system, a first 

step would be to map the cis-regulatory function of the complex promoters across 

combinations of three response regulator inputs. Another non-mutually exclusive 

possibility is that quantitative differences in timing and expression of genes could be an 

optimized and coordinated response to a given stress.

A combinatorial sensor composed of general sensors may be favored by evolution 

because it allows a large set of environmental conditions to be detected by a limited set of 

sensory components, in direct contrast to a system where each environmental condition 

necessitates a specialized sensor.[73] Also, rather than evolving a new sensor protein in 

order to sense a new environmental condition, the cell could rewire downstream signal 

processing in order to recognize a new pattern. This could be possible via modification of 

the promoter structure or transcription factor binding sites[74].

We do not expect that each input makes direct binding interactions with the 

sensor kinases. More likely, the sensors are responding to properties of the membrane 
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and envelope. Temperature, pH, various chemicals, oxygen, and osmolarity all have been 

shown to affect the membrane. For lipophilic compounds, these changes are often 

induced by a direct insertion of the compound into the lipid bilayer. Certain stresses can 

immediately affect membrane fluidity, whereas other stresses lead to a secondary 

response, such as changes in membrane permeability, potential, lipid structure and 

composition, and protein composition[64, 75-79]. Altered by a particular stimulus, it may 

be that these membrane properties, in some combination, are themselves the input to the 

two-component systems. 

The impact of alcohol chain length on membrane perturbation is well studied and 

is particularly interesting in the context of our observations. Longer chains influence 

fluidity further into the membrane than do shorter chain length alcohols[64]. Also, the 

adaptive changes in lipid composition vary with chain length[80]. For alcohols with chain 

lengths 1-4, 18:1 fatty acid levels increase and 16:0 fatty acid levels decrease. For chain 

lengths 5-10 however, the opposite occurs with 18:1 fatty acid levels decreasing and 16:0 

levels increasing. This correlates with our observation that pentanol clusters away from 

the shorter chain alcohols. The difference in patterns between pentanol and the lower 

chain alcohols is driven predominantly by a difference in the rcs response. One might 

speculate that rcs is sensing only shallow changes in membrane fluidity, or else that it is 

sensitive to the ratios of these specific lipids. 

A combinatorial sensor composed of a small number of general sensors could be 

used for industrial applications to detect the presence of a specific chemical. For a given 

application, other candidate sensors from E. coli (such as rstBA, kdpDE, baeSR), or from 

other bacteria, could be screened to identify a subset that best identifies the chemical of 
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interest. Screening sensor promoters should be faster than other strategies, such as 

designing or evolving a protein. One or more general sensors could also be used in 

combination with existing engineered sensors to increase their specificity. In the simplest 

implementation, a color readout could indicate the abundance of a particular chemical, 

but one could envision engineering a more sophisticated system capable of pattern 

recognition, enabling the user to interface the output with other components in their 

design.

This systematic measurement of the response of two component systems to a 

variety of chemicals demonstrates that E. coli has general and uncoupled sensors.

Combinatorial sensing, made possible by sensors with these properties, could be an 

efficient mechanism for organisms to perceive changing environments. 
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Appendix A 

Engineering temperature sensors in E. coli 

A.1 Introduction

This work was performed over the course of 6 months leading up to November of 

2005 as part of MIT's iGEM competition. Substantial work was contributed by Matt 

Eames in the Kortemme lab, as well as by two local high school students: Xiaoyan liu 

(Apple) and Nessa Ramos. We presented our findings at the iGEM meeting, and were 

awarded 'Best Part'.

Our goal was to engineer cells that would change color as a function of 

temperature. We envisioned spreading a lawn of engineered bacteria onto a plate, 

exposing the plate to a temperature gradient, and imaging the generated color.

E. coli lawn Change in gene 
expression

Figure A.1: Engineering goal 
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To do this, we thought that we could borrow from E. coli's natural response to hot 

and cold by controlling expression of fluorescent proteins with promoters unregulated

during temperature stress.

Heat-shock 
promoter (PHS)

ac
tiv

ity

T

Cold-shock 
promoter (PCS)

ac
tiv

ity

T

Figure A.2: Theoretical temperature sensors 

A.2 Temperature sensitive promoter screening.

We examined a number of microarray papers that measured post-temperature-

stress transcript levels, and picked a set of candidate promoters. They are as follows:

Table A.1: Candidate heat and cold shock promoters 

Heat Shock
clpB

groEL
htpG

dnaK-p1
dnaK-p2

dnaJ
grpE

phoBR
lon

htpX
ibpA
ibpA*
ibpB
yedU
hslUV
yccV

Cold Shock
glpBC
ompT
nupG
katG
hypB
hybB
ansB
cspA
cspA*

* mRNA truncation

We constructed a series of high copy plasmids that each had one promoter driving 

GPF. We measured the transfer function for each (Output vs. Temperature) by 

performing the following series of experiments.
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Figure A.3: Assay 

By performing this for each promoter we were able to tabulate parameters such as on 

state, off state, switch point and gain. Examples of a few are given below.
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Figure A.4: HybB cold sensor 
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Figure A.7: HtpG hot sensor 

Of the cold sensors, hybB performed the best, but the best heat sensor (htpG) was 

not good at all. So we decided to see if we could turn a cold sensor into a hot sensor.

A.3 Hot sensor engineering

To do this, we decided to invert the output of the best cold sensor (hybB). The 

design for this is shown below.

λ BBa_Q04510

tetR BBa_Q04400

MIT Registry of Standard Biological Parts
(Weiss, PNAS, 2002)

PHybB

NotI MluI BamHI

GFPTetR tetPT1

Figure A.8: Inverted htpG design 
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When we built both versions of this, we were disappointed to find that the circuit 

appeared to have no temperature dependence. Below is the flow cytometry data of the 

tetR based circuit.

10         100         1000

Fluorescence (au)

20
30
42

Figure A.9: Temperature response of version 1 of hot-sensing circuit 

There were a few scenarios that could explain this failure. One is that the output 

from the hybB promoter (which is the input to the inverter) is too high (so that even when 

it is OFF it is ON enough to flip the inverter). The other option is that the hybB promoter 

never turns ON enough to flip the inverter. To test this, we added aTc, which binds to 

TetR and prevents it from binding well to DNA. Thus if the OFF state of hybB is too 

strong (and thus making too much TetR) this should fix the problem. 
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Figure A.10: Debugging the hot sensor 
 

From this data, we can confirm that too much TetR is made, regardless of the 

temperature. In order to fix the circuit without having to add aTc, we made several 

variants of the circuit that had weaker ribosome binding sites in front of TetR.

PHybB

NotI MluI BamHI

GFPTetR tetPT1

RBS

_ ( g)
BBa_B0031 0.07 (weak)
BBa_B0032 0.3 (medium)
BBa_B0033 0.01 (weakest)

Registry of Standard PartsRon Weiss, 2001

strong

weak

Figure A.11: Modifying the RBS of TetR 

The circuit based on RBS-2 was successful in allowing for temperature dependent 

inversion. In order to test this version on a plate, as our original design had been 

envisioned, we poured tiny agar plates into the tubes for a 96 well PCR block. Onto each 

little agar slab we put cells either containing hybB, or containing the engineered 

temperature heat sensor. We then set a temperature gradient on the cycler, and let the 
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cells grow for 6 hours. On the top row of the figure below, is an image of the heat sensing 

cells. On the bottom is flow cytometry of cells scraped from the wells.
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Figure A.12: Temperature sensing cells 

A.4 Concluding thoughts

What is particularly interesting from this series of experiments, is that the best

cold sensor was a promoter that had nothing to do with cold sensing. In fact, those 

promoters that we tested that regulated genes involved in the hot and cold response, were 

very poor temperature sensors. This is perhaps not surprising given our long assay time, 

and the fast feedback involved in E. coli's natural response to temperature changes.

Moreover, it speaks to the idea of being able to screen promoters, based on un-

biased microarray data, for desired function, and should be broadly applicable to other 

engineering problems.
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Appendix B 

A timing circuit in E. coli 

A1. Introduction

We set about to develop a tunable time delay circuit in E. coli derived from the 

spv system in Salmonella. Through exponential growth the output of the circuit is low.

As the cells reach a specific density entering stationary phase, the circuit output increases 

rapidly. Linking the output of this circuit module to other modules in synthetic programs 

would give us dynamic control over cellular processes. Certain applications necessitate 

circuits that turn on earlier or later than defined by this circuit. To satisfy this need we 

wanted to generate a circuit library consisting of members that turn on over a range of 

different cell densities. Though this circuit did not ultimately meet our design goal, it 

could be applied in other settings.
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Figure B.1: A modular timer, capable of controlling multiple events 

The spv circuit consists of a positive feedback loop embedded in a cascade.

Specifically, the transcriptional activator SpvR activates both its own promoter, PspvR, and 

another promoter, PspvA. Upstream of the RNA polymerase binding site on PspvR is a 

single spvR-dimer binding site necessary for circuit behavior. PspvA has two SpvR-dimer 

operators, one upstream of and one overlapping with the RNA polymerase binding site.

Binding of spvR to the upstream site recruits spvR to the downstream site. Binding of 

spvR to this second site is essential for RNA polymerase binding. Thus the induction of 

the system occurs as follows: a poorly understood signal increases the activity of PspvR.  

This leads to an increase in cellular levels of spvR which is amplified by the positive 

feedback loop. This increase leads to occupancy of the upstream operator of PspvA which 

leads in turn to binding at the downstream site. Finally, RNA polymerase binds the 

promoter and transcription is initiated. The timing of RNA polymerase binding can be 

altered by changing the binding constant of spvR to its operators on PspvA. 



69

σs

σs

spvR spvABCD

LRP

IHF

H-NSPhoPQ
σ70

σ70

Figure B.2: Architecture of the wild type spv circuit 
    

We designed our system to be both modular and capable of controlling the timing 

of multiple sequential events. To do this we have divided our circuit into two parts. The 

first is knocked into the genome at the intC locus and contains spvR, its endogenous 

promoter and ribosome binding site. The second is on a medium copy p15A plasmid that 

contains PspvA driving GFP. This design has two advantages. First, the circuit library can 

be constructed entirely on the plasmid. Thus once the library has been constructed and 

characterized, incorporation into a new system requires only a knock in and the use of a 

desired library member promoter. Second, in any given system multiple different library 

members can be included to induce distinct processes at different times.

A2. Wild type circuit behavior

The behavior of the circuit with the driver knocked into the genome and the rest 

on a plasmid is shown below. The SpvR driver is knocked in the the intC locus of 

DH10B cells. The spvA promoter drives GFP, and the reporter is on a p15A plasmid.  

The circuit output is bimodal, the on state becoming more populated over cell growth
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Figure B.3: Circuit output increases over bacterial growth 
 

The switch point is a function of the growth medium. This is not surprising given 

that the OD at which cells enter stationary phase depends on growth media. Notice how 

sharply the circuit turns on and how tightly it is off before turning on. This is probably a 

function of both the positive feedback at the first promoter, and the cooperative binding 

of transcription factors at the second promoter.
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Figure B.4: Media dependence of switch point. 
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A3. Library construction

Two strategies were used generate the PspvA promoter library. The first is targeted

mutagenesis of the spvR operators. We expect that mutation in the upstream site will 

alter the concentration of cellular spvR necessary for occupancy without changing the 

ultimate promoter activity. (As this activity depends on the downstream site and RNA

polymerase binding site neither of which are altered) A decrease in affinity of spvR for 

this operator should lead to a delay in circuit induction; an increase in affinity should lead 

to an earlier induction. Mutations in the second site should also alter circuit timing and 

may affect promoter activity as well. The second strategy was a random mutagenesis of 

the entire promoter. Here, though any given mutation may not hit an operator, other 

promoter properties might change. For example DNA supercoiling could indirectly 

affect the ability for spvR to bind; sigma factor binding strength, and propensity for open 

complex formation could affect the timing of RNA polymerase binding and its ability to 

begin transcription. This turned out not to work very well because the stretch of DNA 

was so short we got very low frequency of mutations.

To characterize the library we measured the activity of the promoter GFP reporter 

plasmids described above in knock in cells using 96-well format flow cytometry. In 

order to measure the dynamics of circuit response of this sub-library we took multiple 

time points over the course of cell growth, with increased frequency in late exponential 

growth and early stationary phase in order to finely distinguish the densities at which 

different mutants switch on.
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Figure B.5: Bulk fluorimetry screen for circuit mutants  

We then moved a few interesting mutants to cytometry. We noticed and tabulated 

a few interesting characteristics of these mutants. 

WT SpvR LRPWT SpvR LRP

OFF: 100
ON: 3000
Fraction ON: 0.65

OFF: 100
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OFF: 150
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Figure B.6: Flow cytometry of circuit mutants  
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Mutants in the SpvR binding site show delayed induction and reach a lower 

fractional occupancy of the on state, while maintaining the same off state magnitude and 

slightly lower off state compared to the wild type circuit. Mutants in the LRP binding site 

have a higher off state, a significantly higher on state and are noisier.

A4. Concluding Thoughts

This circuit did not meet our design goal because we could not generate mutants 

that switched early. This is presumably because the inputs to both promoters are sigma S 

(the stationary phase alternate sigma factor). Two main thoughts come to mind:

(1) We could try to fix the problem.

Some possible ways of trying this: Stronger SpvR RBS; Mutations in the H-NS ‘binding 

site’; Additional constitutive promoter upstream of spvR; Replacement of SpvR promoter 

with another promoter that is growth phase dependent but σs independent (there are 

microarray papers on this)

(2) Use it anyways.

Some application may necessitate expression only when entering stationary phase. And 

this is a pretty nice performer, pretty tightly off, turns on sharply, high on state (which 

you could perhaps make even stronger) maybe some day someone will use it =)
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