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The secret of freedom lies in educating people,

whereas the secret of tyranny is in keeping them ignorant.
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ABSTRACT OF THE DISSERTATION

Isoperimetric profile of algebras

by

Michele D’Adderio

Doctor of Philosophy in Mathematics

University of California, San Diego, 2010

Professor Efim Zelmanov, Chair

The main topic of this thesis is the isoperimetric profile of algebras, introduced

by Gromov in [21]. This is an asymptotic geometric invariant of algebras which has a

strong connection with the property of amenability. We pursue a systematic study of

this invariant, which will lead us to new insights into the phenomenon of amenability of

algebras. Also, we show the connections of the isoperimetric profile with other invariant

of algebras, like the GK-dimension, the growth and the lower transcendence degree. We

will use our tools to provide answers to some questions on these topics.
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Chapter 1

Introduction

Trying to apply geometric ideas to algebra is a leitmotif of the mathematics

of the last century. The geometric theory of groups, one of the main byproduct of

this philosophy, reached its exploit in 1981 with Gromov’s paper [19]. Other than the

celebrated theorem on groups of polynomial growth, this work contains the key idea

that, once we chose a set of generators, we can view finitely generated groups as metric

spaces with the word-length metric, and hence apply to them the methods of the so

called “rough” geometry, whose objects of study are metric spaces considered up to

quasi-isometries. There has been a tremendous amount of work on this subject, and this

field of research is still flourishing.

The ultimate motivation of the work presented in this thesis is to develop a geo-

metric theory of algebras parallel to the one just mentioned for groups.

The cited work of Gromov was motivated by the study of the notion of growth

of groups. Research on this important asymptotic geometric invariant in group theory

promoted further investigations, leading, among other things, to another breakthrough in

the subject: the discovery by Grigorchuk of the famous group that now bears his name.

In the literature, the concepts for algebras traceable to these body of notions that

have been mainly considered are the growth of algebras and the related Gelfand-Kirillov

dimension. These turn out to be fundamental tools in noncommutative ring theory.

Together with the growth, the most important asymptotic geometric invariant of

groups is the isoperimetric profile.

The geometric concept of an isoperimetric profile was first introduced in algebra

1
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for groups by Vershik in [40] and Gromov in [20]. Here is the definition given by

Gromov in [21], for semigroups:

Definition. Given an infinite semigroup Γ generated by a finite subset S, and given a

finite subset Ω of Γ we define the boundary of Ω as

∂S(Ω) :=
⋃
s∈S

(sΩ\Ω).

Then we define the isoperimetric profile of a semigroup Γ with respect to S as

the function from N onto itself given by

I◦(n;Γ,S) := inf
|Ω|=n

|∂S(Ω)|

for each n ∈ N, where |X | denotes the cardinality of the set X .

It’s well known that the asymptotic behavior of this function is independent of

the set of generators S.

For properties of the isoperimetric profile see [13, 14, 21, 33], the survey [34]

and references therein.

The notion of the isoperimetric profile of algebras was introduced by Gromov in

[21]:

Definition. Let A be a finitely generated algebra over a field K of characteristic zero.

Given two subspaces V and W of A we define the boundary of W with respect to V by

∂V (W ) :=VW/(VW ∩W ).

If V is a generating finite dimensional subspace of A, we define the isoperimetric

profile of A with respect to V to be the maximal function I∗ such that all finite dimen-

sional subspaces W ⊂ A satisfy the following isoperimetric inequality

I∗(|W |;A,V ) = I∗(|W |)≤ |∂V (W )|,

where |Z| denotes the dimension over the base field K of the vector space Z.

Again, the asymptotic behavior of this function does not depend on the generat-

ing subspace.
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The main topic of this thesis is this invariant of algebras.

The isoperimetric profile is an asymptotically weakly sublinear function, and it

has a strick connection with the notion of amenability.

Amenability of groups has been introduced by John von Neumann in 1929

([41]). Since than, it has been extensively studied, and it turned out to have connections

with many areas of mathematics: group theory, representation theory, random walks,

C∗-algebras, von Neumann algebras, Banach-Tarski paradox, property T , etc. . . .

In associative algebras this notion was introduced by Elek [10]. It’s easy to

see that the isoperimetric profile of an algebra is linear if and only if the algebra is

nonamenable (in the sense of Elek). In this sense it can be viewed as a measure of the

amenability of an algebra.

There have been several works on amenability of algebras. I will mention the

more significant ones: Elek in [10] and [11] studied basic properties of the amenability

of algebras and amenability of division algebras. Bartholdi in [2] studied the relation

between the amenability of a group and the amenability of its group algebra. In [21]

Gromov studied in particular the isoperimetric profile of group algebras and its relation

with the isoperimetric profile of the underlying group.

Along these lines, in this thesis we pursue a systematic study of the isoperimetric

profile of algebras.

In the second chapter we provide some technical and motivational background

on growth, amenability and isoperimetric profile in group theory, and on growth of al-

gebras and Gelfand-Kirillov dimension. We tried to make the rest of this thesis indepen-

dent on this chapter.

In the third chapter we discuss the first basic properties of the isoperimetric pro-

file, its relation with amenability and we review some of the work of Gromov that pro-

vides the fundamental computation of the isoperimetric profile of the algebra of polyno-

mials.

In the fourth chapter we study the behavior of the isoperimetric profile under

various ring-theoretic constructions. We will also consider briefly the isoperimetric pro-

file of modules. These tools will enable us to provide new results on the amenability of

algebras, generalizing most of the results in Elek’s [10, 11].
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In the fifth chapter we apply our tools to compute the isoperimetric profile of

many algebras.

In the sixth chapter we discuss the relation of the isoperimetric profile with other

invariants of algebras. In particular we study the relations of the isoperimetric pro-

file with the lower transcendence degree introduced by Zhang in [45], and we derive

from this some consequences on amenability of algebras. We study its relation with the

growth, answering a question in [21] Section 1.9. We conclude by stating a conjecture.



Chapter 2

Background

In this chapter we provide some technical and motivational background.

2.1 Growth of groups

We will always consider finitely generated groups, unless otherwise stated.

Efremovič ([9]) and Švarc ([38]) in the fifties, and Milnor ([30]) in 1968 started

the study of the concept of growth in groups.

Definition. Let Γ be an infinite group generated by a finite subset S⊂ Γ such that 1 /∈ S

and S = S−1. For every n ∈ N we set

G◦(n;Γ,S) := |∪n
r=0 Sr|,

where S0 = {1} and 1 is the identity of Γ. This gives a monotone increasing function

from N into itself, which depends on Γ and S, called the growth of Γ with respect to S.

Thinking about the Cayley graph associated to this two data as a metric space, with the

distance between two points defined as the minimal length of a trail joining them, we

can think of G◦(n;Γ,S) as the volume of the ball centered in 1 of radius n. This justifies

the name of this function.

We need another definition:

5
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Definition. Given two functions f1, f2 :N+→R+ we say that f1 is asymptotically faster

then f2, and we write f1 � f2, if there exist positive constants C1 and C2 such that

f1(C1x)≥C2 f2(x) for all x ∈ R+. We say f1 is asymptotically equivalent to f2, and we

write f1 ∼ f2, if f1 � f2 and f2 � f1. This is clearly an equivalence relation. We will

talk about the equivalence class of such a function as its asymptotic behavior.

Remark. Notice that given a function f :N→N we can always consider it as a function

on R+, simply defining for r ∈ R+, f (r) := f (brc), where brc denotes the maximal

integer ≤ r. We will often do it, without mentioning it explicitly.

Example 2.1.1. It’s easy to check that if we have a polynomial p(x)∈R[x] with p(r)> 0

for r > 0, and we consider it as a function r 7→ p(r), we have p(r)∼ rdeg(p).

Lemma 2.1.1. Let Γ be an infinite group generated by a finite subset S ⊂ Γ such that

1 /∈ S and S = S−1, and let S′ ⊂ Γ be another generating subset with these properties.

Then G◦(n;Γ,S)∼ G◦(n;Γ,S′).

Proof. Clearly S⊂∪m
r=0S′m for some m, since S′ generates Γ. This implies that∪n

s=0Ss⊂
(∪m

r=0S′r)n ⊂ ∪mn
j=0S′ j for all n ∈ N. Hence

G◦(n;Γ,S)≤ G◦(mn;Γ,S′),

which gives

G◦(n;Γ,S)� G◦(n;Γ,S′)

since m does not depend on n. In the same way it can be shown that

G◦(n;Γ,S′)� G◦(n;Γ,S),

giving the result.

This lemma shows that the asymptotic behavior of G◦(n;Γ,S) does not depend

on S, and hence it’s an invariant of the group. We will call it the growth of Γ and we

will denote it G◦(n;Γ) or just G◦(n) if there is no possibility of confusion. For basic

properties of growth of groups and for reference on what we will discuss in this thesis

we refer to [8].
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Example 2.1.2. It’s easy to check that for any positive integer d the growth of the group

Zd is

G◦(n;Zd)∼ nd.

It’s also easy to show that for the free group Fd in d ≥ 2 free generators

G◦(n;Fd)∼ en.

Definition. A group Γ is said to have (bounded) polynomial growth if

G◦(n;Γ)� na

for some a ∈ R, a≥ 0.

Notice that a group has constant growth if and only if it’s finite. If a group Γ

is infinite, then G◦(n;Γ) ≥ n: if for some m we have ∪m
r=0Sr = ∪m+1

r=0 Sr, then ∪m
r=0Sr =

∪m+p
r=0 Sr for any p≥ 1, which implies that Γ is finite. On the other hand, we always have

|∪m
r=0 Sr| ≤

m

∑
r=0
|S|r ≤ |S| · |S|m,

showing that we always have

G◦(n;Γ)� en.

Hence we just observed that the growth of an infinite group always lies between a linear

function and an exponential function. Moreover, the growth can be polynomial of any

integral exponent. The next two results (which we mention without proofs) show that

this is the case for a big class of groups.

Definition. The class EG of groups containing finite and abelian groups, and closed

under taking subgroups, quotients, direct limits and extensions is called the class of

elementary groups.

For example this class contains nilpotent and solvable groups, but not the free

group F2 on two free generators.

Definition. A group is called virtually nilpotent if it contains a finite index subgroup

which is nilpotent. More generally, it has virtually a certain property if there is a finite

index subgroup that has that property.
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Remark 1. It’s easy to see that the growth of a group Γ and the growth of any finite index

subgroup of Γ are the same.

Theorem 2.1.2 (Milnor,Wolf,Chou [31, 43, 6]). An elementary group has polynomial

growth if and only if it is virtually nilpotent, and it has exponential growth otherwise.

Theorem 2.1.3 (Guivarc’h, Bass [22, 3]). For a nilpotent group Γ we have

G◦(n;Γ)∼ nd,

where d is its homogeneous dimension.

All we need to know about the homogeneous dimension is that it is a positive

integer for which there is a formula in terms of the lower central series of Γ.

It can be shown that if a group Γ contains a subgroup isomorphic to a free group

F2, then its growth is exponential. It’s been an open problem for many years (since

Milnor’s question in 1968) if there exist groups of intermediate growth, i.e. with growth

asymptotically faster than any polynomial, but asymptotical slower than the exponential.

A positive answer to this question has been provided by Grigorchuck [18] in 1983, where

he provided an example of such a group.

We state the celebrated Gromov’s theorem on groups with polynomial growth:

Theorem 2.1.4 (Gromov [19]). A group has polynomial growth if and only if it is virtu-

ally nilpotent.

It’s worthwhile to mention here that this theorem and even more its proof in [19]

signed a landmark in geometric group theory.

This theorem can be considered as a “negative” result: there are few groups of

polynomial growth, the virtually nilpotent ones (which we understand reasonably well),

and for those we have seen that the exponent of the growth is an integer.

We will see that this is very far from the corresponding situation for algebras.

2.2 Growth of algebras and Gelfand-Kirillov dimension

In this section, unless otherwise stated, with the word “algebra” we will always

mean a finitely generated infinite dimensional associative algebra with unit 1 over a
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fixed field K of characteristic 0.

In order to define the notion of growth of algebras, we need some definition and

some notation.

Definition. We define a subframe of an algebra A to be a finite dimensional subspace

containing the identity and a frame to be a subframe which generates the algebra. (cf.

[45])

Given a finite dimensional vector space W over K we will denote its dimension

over K by

|W | := dimK W.

Given an algebra A and a frame V ≤ A, for any n ∈ N we set

G∗(n;A,V ) := |V n|.

This gives us a monotone increasing function from N into itself, which depend on the

algebra A and on V . What does not depend on V is its asymptotic behavior.

Lemma 2.2.1. Given two frames V and V ′ of an algebra A, we have

G∗(n;A,V )∼ G∗(n;A,V ′).

Proof. Since V and V ′ generate A, for some r and s we will have

V ≤V ′r and V ′ ≤V s,

which imply immediately

G∗(n;A,V )≤ G∗(rn;A,V ′) and G∗(n;A,V ′)≤ G∗(sn;A,V ),

giving the result.

Hence, as for groups, we can define the growth of an algebra A as the asymptotic

behavior of G∗(n;A,V ) for a frame V , and we can denote it G∗(n;A) or simply G∗(n) if

there is no possibility of confusion.
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Example 2.2.1. It’s easy to see that the growth of the algebra K[x1, . . . ,xd] of polynomi-

als in d variables is

G∗(n;K[x1, . . . ,xd])∼ nd.

Also, the growth of the free algebra K〈x,y〉 in two generators is

G∗(n;K〈x,y〉)∼ en.

As in the case of groups, the growth of an (infinite dimensional finitely gener-

ated) algebra lies between a linear function and an exponential one, and we have just

seen examples of polynomial growth with integer exponent.

As in the case of groups, we say that an algebra has (bounded) polynomial

growth if its growth is asymptotically bounded by a polynomial.

Contrary to the case of groups, algebras of polynomial growth are far from being

completely understood. To see this we now introduce the notion of Gelfand-Kirillov

dimension, which was introduced by Gelfand and Kirillov [15, 16] in 1966.

Definition. The Gelfand-Kirillov dimension (also called GK-dimension) of a (not nec-

essarily finitely generated) algebra A is

GK dim(A) := sup
V

limn logn |V n|,

where the supremum is taken over all subframes of A.

Remark 2. Notice that, while this definition works also for algebras that are not finitely

generated, for finitely generated algebra to compute the GK-dimension it’s enough to

choose any fixed frame V , instead of taking the supremum. For this and all the other

properties of the GK-dimension that we will mention in this thesis we refer to [27].

It’s easy to see that if G∗(n;A)∼ nr then GK dim(A) = r. Also, if the growth of

an algebra is faster then any polynomial, then its GK-dimension is infinite.

These remarks provide us examples:

GK dim(K[x1, . . . ,xd]) = d and GK dim(K〈x,y〉) = ∞.

In the following proposition we list some of the many properties of the GK-

dimension. Proofs can be found in [27].
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Proposition 2.2.2. Let A, A1 and A2 be algebras. Than

• GK dim(B) ≤ GK dim(A) whenever B is a subalgebra or a homomorphic image

of A.

• GK dim(A1⊕A2) = max{GK dim(A1),GK dim(A2)}.

• GK dim(A1⊗A2)≤ GK dim(A1)+GK dim(A2).

• If A is finitely generated and commutative, then GK dim(A) = K dim(A), where

K dim denotes the classical Krull dimension.

• If A is a field, then GK dim(A) = tr.degK(A), where tr.degK denotes the transcen-

dence degree of A over K.

Hence the GK-dimension provides an extremely useful invariant of algebras, that

is a noncommutative generalization of the Krull dimension and of the transcendence

degree of commutative algebras.

Proofs of the following two results can be found in [27].

Theorem 2.2.3 (Bergman). No algebra has GK-dimension strictly between 1 and 2.

The next result suggests that algebras of polynomial growth are more compli-

cated than groups of polynomial growth.

Theorem 2.2.4 (Warfield). For any real number r ≥ 2 there exists an algebra A with

GK dim(A) = r.

It is also clear that GK dim(A) = 0 if and only if A is locally finite-dimensional,

i.e. every finitely generated subalgebra is finite dimensional, and GK dim(A)≥ 1 if A is

not locally finite dimensional. These observations together with the previous theorems

show that for any algebra A

GK dim(A) ∈ {0,1}∪ [2,∞].

Algebras of GK-dimension 1 are well understood:

Theorem 2.2.5 (Small, Stafford, Warfield [36]). A finitely generated algebra of GK-

dimension 1 satisfies a polynomial identity.
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The following example will be relevant in the next chapters.

Example 2.2.2. For n∈N, n≥ 1, the Weyl algebra An = An(K) is the ring of polynomial

in the 2n variables x1, . . . ,xn,y1, . . . ,yn with coefficients in K subject to the relations

[xi,x j] = 0, [yi,y j] = 0 and [xi,y j] = δi j,

where [a,b] := ab−ba, and δi j is the Kronecker symbol. Observe that

An+1 ∼= An[yn+1][xn+1,δ ] with δ =
∂

∂yn+1
,

where with B[x;δ ] we denote the Ore extension of the algebra B with respect to the K-

derivation δ of B, i.e. polynomials in x with coefficients in B subject to the relations

[x,b] = δ (b), where b ∈ B.

To compute the GK-dimension of the Weyl algebra we can use the following

lemma, which is useful in many computations (see [27]). We could have used it to

compute the GK-dimension of the algebra of polynomials.

Lemma 2.2.6. Let A be an algebra with a derivation δ such that each finite dimen-

sional subspace of A is contained in a δ -stable finitely generated subalgebra of A. Then

GK dim(A[x;δ ]) = GK dim(A)+1.

It’s easy to check that the hypothesis of the lemma are satisfied for the Weyl

algebras. Hence by induction we get

GK dim(An) = 2n.

While the GK-dimension well behaves under many ring theoretic construction,

it does not work as much as well under taking localizations.

If A is an algebra, a right Ore set Ω ⊆ A is a multiplicative closed subset of A

which satisfies the right Ore condition, i.e. cA∩ aΩ 6= /0 for all c ∈ Ω and a ∈ A. If

all the elements of Ω are regular, we can consider the ring of right fractions AΩ−1, and

identify A with the subset {a/1 | a ∈ A} ⊆ AΩ−1.

There are analogous left versions of these notions.

Definition. An algebra A is called an Ore domain if the subset A \ {0} is a (right) Ore

set.
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Hence given an Ore domain A we can consider its ring of quotient Q(A), i.e. the

(right) localization of Q(A) := A(A\{0})−1. This is going to be a division algebra.

Example 2.2.3. The Weyl algebras are Ore domains (in fact they are notherian), hence

we can consider their quotient division algebras, that we will denote Dn := Q(An). The

study of these division algebras motivated the pioneering work of Gelfand and Kirillov.

A well known theorem of Makar-Limanov (see [29] or [27]) shows that the

quotient division algebra D1 of the Weyl algebra A1 contains a subalgebra isomorphic

to a free algebra on two free generators. By what we already mentioned about GK-

dimension, this implies that GK dim(D1) = ∞, while GK dim(A1) = 2. This shows that

the GK-dimension can blow up under localizations, and this is one of the main motiva-

tion to look for another invariant of algebras that behaves better under this fundamental

construction. We will see that the isoperimetric profile does work better.

We conclude this section with another example showing that the GK-dimension

can increase with localization. It will be relevant later.

Example 2.2.4. Consider in the Weyl algebra A1 the multiplicative closed set Ω gen-

erated by x and y. It can be shown that this is an Ore set, and that the localization

A1Ω−1 has GK-dimension 3. Notice also that this algebra is finitely generated and it’s a

noetherian domain (see [27], Example 4.11 for details).

2.3 Amenability of groups

Amenability of groups was introduced in 1929 by John von Neumann ([41])

in terms of invariant means. Here we give a more combinatorial definition, which is

essentially due to Følner, that is easier to generalize for algebras.

Definition. A group Γ is amenable if for every finite subset S⊂ Γ and every ε > 0 there

exists a finite subset Ω⊂ Γ such that

|Ω∪SΩ|< (1+ ε)|Ω|.

For a good introduction to this subject and for reference to what we are going to

state in this section we refer to Wagon’s [42].
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Example 2.3.1. Finite groups are amenable: choose Ω := Γ.

It can be showed that abelian groups are also amenable.

The free group F2 on two free generators x and y is not amenable: if we choose

S = {x,y}, than for any finite subset Ω⊂ F2 we have

|Ω∪SΩ| ≥ 2|Ω|.

The following proposition gives us more examples of amenable groups:

Proposition 2.3.1. If Γ is a group and G◦(n;Γ)� en, than Γ is amenable.

Proof. Suppose Γ is not amenable. Then there exist a finite S ⊂ Γ and ε > 0 such that

for any finite Ω⊂ Γ

|Ω∪SΩ| ≥ (1+ ε)|Ω|.

In particular we can take Ω = ∪m−1
r=0 Sr. Hence we get

|∪m
r=0 Sr|− |∪m−1

r=0 Sr| ≥ ε|∪m−1
r=0 Sr|,

which is the same as

G◦(m;Γ,S)−G◦(m−1;Γ,S)≥ εG◦(m−1;Γ,S).

This implies that G◦(m;Γ) grows exponentially.

We define AG to be the class of amenable groups. We have the following prop-

erties:

Theorem 2.3.2. The class of amenable groups AG is closed under taking subgroups,

homomorphic images, extensions and direct limits.

This together with the previous examples shows for instance that nilpotent and

solvable groups are amenable. Also, groups that contain a noncommutative free sub-

group are not amenable.

Call NF the class of such groups. We have seen the inclusions

EG⊆ AG⊆ NF.
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In 1968 Milnor asked if the first inclusion is an equality. Grigorchuk’s group

([18]) provided an example showing that the inclusion is in fact strict: since Grig-

orchuk’s group has intermediate growth, it’s amenable, but for the same reason it cannot

be elementary by the theorem of Milnor, Wolf and Chou.

In 1929 von Neumann asked if the second inclusion is an equality. In 1981

Ol’shanskii in [35] provided a group which is not amenable and it does not contain

noncommutative free subgroups (in fact all the elements have finite order).

It’s a result of Tits [39] that equalities holds if we restrict ourselves to consider

only group of matrices.

We end this section mentioning that amenability turns out to be important in a

number of fields of mathematics, including group theory, representation theory, random

walks, C∗-algebras, von Neumann algebras, Banach-Tarski paradox, property T . It has

a strict connection with the isoperimetric profile.

2.4 Isoperimetric profile of groups

The notion of an isoperimetric profile in algebra was first introduced in groups

by Vershik in [40] and by Gromov in [20].

Definition. Given an infinite semigroup Γ generated by a finite subset S, and given a

finite subset Ω of Γ we define the boundary of Ω as

∂S(Ω) :=
⋃
s∈S

(sΩ\Ω).

Then we define the isoperimetric profile of a semigroup Γ with respect to S as

the function from N onto itself given by

I◦(n;Γ,S) := inf
|Ω|=n

|∂S(Ω)|

for each n ∈ N, where |X | denotes the cardinality of the set X .

It’s well known that the asymptotic behavior of this function is independent of

the set of generators S. Hence this provide another asymptotic geometric invariant of

groups.
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We want to stress here a few properties of this invariant. First of all notice that

|∂S(Ω)|= |
⋃
s∈S

(sΩ\Ω)| ≤ |S||Ω|,

hence we always have

I◦(n;Γ)� n,

i.e. the isoperimetric profile of a semigroup is a sublinear function. The following

proposition shows that the linearity of this invariant is equivalent to the nonamenability

of the group.

Proposition 2.4.1. A group Γ is nonamenable if and only if there exists a finite subset

S⊂ Γ such that

I◦(n;Γ,S)∼ n.

Proof. If Γ is nonamenable than there exist S⊂ Γ finite and ε > 0 such that for any finite

subset Ω⊂ Γ

|∂S(Ω)|= |Ω∪SΩ|− |Ω| ≥ ε|Ω|,

which implies

I◦(n;Γ,S)� n,

that gives

I◦(n;Γ,S)∼ n.

If Γ is amenable, then for any finite subset S ⊂ Γ and any ε > 0 we can find a

finite subset Ω⊂ Γ (depending on ε) such that

|∂S(Ω)|= |Ω∪SΩ|− |Ω|< ε|Ω|,

and this prevent I◦(n;Γ,S)� n, as we wanted.

In this sense the isoperimetric profile can be viewed as a measure of the amenabil-

ity of the group.

Looking at the definition, it becomes immediately clear that to compute the

isoperimetric profile, even for easy examples, it’s not easy to prove a lower bound. The

key result which lies at the hearth of almost any computation of isoperimetric profiles
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is the following remarkable inequality which is due to Coulhon and Saloff-Coste (cf.

[34]). We need some definitions.

Let Γ be an infinite semigroup generated by a finite subset S. Let B(n) :=∪n
i=0Si,

where S0 = {1} and 1 is the identity element of Γ. Define Φ(λ ) := min{n∈N | |B(n)|>
λ} for λ > 0. This is the inverse function of the growth of Γ. The following proof is

due to Gromov ([21]).

Theorem 2.4.2 (Coulhon, Saloff-Coste). Let Γ be an infinite semigroup with the cancel-

lation property (i.e. xz = yz implies x = y for any x,y,z ∈ Γ) generated by a finite subset

S. For any finite non-empty subset Ω of Γ we have

|∂S(Ω)| ≥ |Ω|
2Φ(2|Ω|)

.

Remark 3. A typical example of a semigroup with the cancellation property is a sub-

semigroup of a group.

Proof. Observe that if a,b ∈ Γ then

|∂ab(Ω)| ≤ |∂a(Ω)|+ |∂b(Ω)|.

Hence by induction, if ai ∈ Γ for i = 1, . . . ,n, then

|∂a1a2···an(Ω)| ≤∑
i
|∂ai(Ω)| ≤ n max

i
|∂ai(Ω)|.

This immediately implies that for any m≥ 1 and y ∈ B(m)

|∂y(Ω)| ≤ m max
s∈S
|∂s(Ω)|.

Therefore

|∂S(Ω)| ≥ max
s∈S
|∂s(Ω)| ≥ 1

m
1

|B(m)| ∑
y∈B(m)

|∂y(Ω)|

=
1
m

1
|B(m)| ∑

y∈B(m)

(|Ω|− |yΩ∩Ω|)

=
1
m

1
|B(m)|

(
|B(m)||Ω|− ∑

y∈B(m)

|yΩ∩Ω|

)
.

We need a lemma.
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Lemma 2.4.3.

∑
y∈B(m)

|yΩ∩Ω| ≤ |Ω|2.

Proof. We have

∑
y∈B(m)

|yΩ∩Ω|= ∑
y∈B(m)

∑
x1∈Ω

∑
x2∈Ω

χ(yx1 = x2),

where χ(P) = 1 if the proposition P is true, χ(P) = 0 if P is false. By cancellation

property, the ordered pair (x1,x2) ∈ Ω×Ω uniquely determines y such that yx1 = x2,

hence

∑
y∈B(m)

∑
x1∈Ω

∑
x2∈Ω

χ(yx1 = x2)≤ |Ω×Ω|= |Ω|2.

Using the lemma and choosing m = Φ(2|Ω|), we get

|∂S(Ω)| ≥ 1
m

1
|B(m)|

(
|B(m)||Ω|− ∑

y∈B(m)

|yΩ∩Ω|

)

≥ 1
m

1
|B(m)|

(
|B(m)||Ω|− |Ω|2

)
=
|Ω|
m

(
1− |Ω|
|B(m)|

)
>
|Ω|
2m

=
|Ω|

2Φ(2|Ω|)
,

completing the proof.

The following results are based on this inequality and the results on the growth

of groups that we have mentioned before (see [34]).

Theorem 2.4.4. Let Γ be a finitely generated group. The following conditions are equiv-

alent:

• I◦(n;Γ)∼ n(d−1)/d where d ≥ 1 is an integer.

• The growth of Γ is polynomial of degree d.
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In a way this theorem tells us that for groups of polynomial growth, the growth

and the isoperimetric profile provide the same amount of information. The next result

shows that this invariants are not equipollent.

Theorem 2.4.5. Let Γ have a finite index subgroup which is polycyclic. Then

• I◦(n;Γ)∼ n(d−1)/d if and only if G◦(n;Γ)∼ nd .

• I◦(n;Γ)∼ n/ logn if and only if Γ has exponential growth.

Hence for example a polycyclic group Γ of exponential growth and the free

group F2 on two generators have the same growth, but I◦(n;Γ)∼ n/ log, while I◦(n;F2)∼
n. In general the isoperimetric profile of a group is believed to be a finer invariant than

the growth, but there is no proof of this statement.

It’s worthwhile to mention that there are many other example of groups that

have exponential growth, but non linear isoperimetric profile. For example the wreath

product of a non trivial finite group with Zd with d ≥ 2 have an isoperimetric profile

asymptotically strictly between n/ logn and n (the rate depending on d).

We don’t discuss here the important connection of the isoperimetric profile with

random walks (see [34]).



Chapter 3

Preliminaries

In this chapter we give basic definitions and properties of the isoperimetric pro-

file, including its connection with amenability and the fundamental computation of this

invariant for the algebra of polynomials, which is due to Gromov.

3.1 The Isoperimetric Profile

Unless otherwise stated, by an algebra A we will mean an infinite dimensional

associative algebra with unit 1 over a fixed field K of characteristic 0.

Given two subspaces V and W of an algebra A we will denote the quotient space

V/(V ∩W ) simply by V/W . Also, given a subset S of A and a subspace V of A we define

SV := spanK{sv|s ∈ S,v ∈V}.
In this notation, given a subspace V of A and a subset S of A, the boundary of V

with respect to S is defined by

∂S(V ) := SV/V.

We will denote the dimension over K of a subspace V of A by |V |. Also, for any

finite set S we denote by |S| its cardinality. Hopefully this will not cause any confusion.

We are interested in the dimension of the boundary, hence we can always assume

that 1 (the identity of A) is in S, since

∂S∪{1}(V ) = (S∪{1})V/V = (SV +V )/V ∼= SV/(SV ∩V ) = SV/V = ∂S(V ).

20
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Claim. If V ⊂ A is a finite dimensional subspace and a,b ∈ A,

|∂ab(V )| ≤ |∂a(V )|+ |∂b(V )|.

Proof. We want to estimate |∂ab(V )| = |abV/V |. Let’s consider a basis e1,e2, . . . ,er

of the subspace {v ∈ V | bv ∈ V} of V , and let’s complete it to a basis of V , say

e1,e2, . . . ,er,er+1, . . . ,en. Hence be j /∈ V for j > r. When we multiply by a after b

we see that abei ∈ aV for 1 ≤ i ≤ r, so they will contribute at most |∂a(V )| = |aV/V |
to |∂ab(V )|. Clearly the other abe j’s ( j > r) will contribute at most |∂b(V )| to |∂ab(V )|.
This proves the claim.

In the same way it can be proved the following more general inequality:

|∂ST (V )| ≤ |∂S(V )|+ |S||∂T (V )|, (•)

where S and T are finite subsets of A. Notice also that if S is a finite subset of A and

V = spanKS = KS, then ∂S(W ) = ∂V (W ) for all subspaces W of A. Hence the same

inequality is true if we assume S and T to be finite dimensional subspaces.

Definition. We define a subframe of an algebra A to be a finite dimensional subspace

containing the identity and a frame to be a subframe which generates the algebra. (see

[45])

Remark. The previous discussion shows that as long as we are interested in the dimen-

sion of the boundary ∂V (W ), instead of taking an arbitrary finite dimensional subspace

V of an algebra A, we can take a subframe, without loosing anything.

Convention. In the rest of the paper by a subspace we will always mean finite dimen-

sional subspace, unless otherwise specified.

Given a subframe V of A, in the Introduction we defined the isoperimetric pro-

file of A with respect to V (see [21]) to be the maximal function I∗ such that all finite

dimensional subspaces W ⊂ A satisfy the isoperimetric inequality

I∗(|W |;A,V ) = I∗(|W |)≤ |∂V (W )|.

Notice that for any n ∈ N

I∗(n;A,V ) = I∗(n) = inf |∂V (W )|,
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where the infimum is taken over all subspaces W of A of dimension n.

We are interested in the asymptotic behavior of the function I∗.

Definition. Given two functions f1, f2 :R+→R+ we say that f1 is asymptotically faster

then f2, and we write f1 � f2, if there exist positive constants C1 and C2 such that

f1(C1x)≥C2 f2(x) for all x ∈ R+. We say f1 is asymptotically equivalent to f2, and we

write f1 ∼ f2, if f1 � f2 and f2 � f1.

Remark. We can always consider the function I∗( · ) as a function on R+, simply defin-

ing for r ∈ R+, I∗(r) := I∗(brc), where brc denotes the maximal integer ≤ r. We will

often do it, without mentioning it explicitly.

Definition. We say that an algebra A has an isoperimetric profile if there exists a sub-

frame V of A such that for any other subframe W of A we have

I∗(n;A,W )� I∗(n;A,V ).

Otherwise we say that A has no isoperimetric profile.

In case A has an isoperimetric profile, we will refer to this function, or its asymp-

totic behavior, as the isoperimetric profile of A, and we’ll denote it also by I∗(A). If the

subframe V of A is such that I∗(n;A,V ) is the isoperimetric profile of A we will say that

V measures the profile of A.

First of all we want to show that an arbitrary finitely generated algebra has an

isoperimetric profile. We need the following proposition.

Proposition 3.1.1. If V and W are two frames of A, then I∗( · ;A,V )∼ I∗( · ;A,W ).

Proof. Clearly V ⊂W m for some m ∈ N, since W is a generating subspace. Now, given

a subspace Z of A, we have

|∂V (Z)| ≤ |∂W m(Z)| ≤

(
m−1

∑
i=0
|W |i

)
|∂W (Z)|,

where the second inequality follows by induction on m using (•). This gives

I∗( · ;A,V )� I∗( · ;A,W ),

since ∑
m−1
i=0 |W |i is a constant which does not depend on Z. The other inequality is proved

in the same way.
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Observe that in a finitely generated algebra A, any subframe V is contained in

a frame W , and obviously I∗(n;A,V ) ≤ I∗(n;A,W ). This together with the previous

proposition shows that A has an isoperimetric profile, and any frame of A measures

I∗(A).

We will see later examples of algebras with an isoperimetric profile which are not

finitely generated (see Example 4.2.1), and we will give also an example of an algebra

which has no isoperimetric profile (see Example 3.3.1).

3.2 Isoperimetric profile and Amenability

In a way, the isoperimetric profile measures the degree of amenability of an

algebra.

Definition. We say that an algebra A is amenable if for each ε > 0 and any subframe

V of A, there exists a subframe W of A with |VW | ≤ (1+ ε)|W |. This is the so called

Følner condition.

We will see a lot of examples of amenable algebras in the rest of this work.

Notice that the Følner condition can be restated in the following way using the

boundary: for any subspace V ⊂ A and ε > 0 there exists a subspace W ⊂ A such that

|∂V (W )|/|W | ≤ ε .

Proposition 3.2.1. An algebra A is amenable if and only if I∗(n;A,V )� n for any sub-

frame V of A.

Proof. First of all observe that we always have I∗(n;A,V )� n, since |∂V (W )| ≤ |V ||W |
for any fixed subframe V and any subspace W . So if I∗(n;A,V )� n is not true we have

I∗(n;A,V ) ∼ n, and hence for n big enough the value of I∗(n;A,V )/n is bounded away

from 0.

If A is amenable, given a subframe V of A, we can find a sequence {Wk}k∈N

of subspaces with |∂V (Wk)|/|Wk| ≤ 1/k, and with |Wk| tending to infinity as k tends to

infinity. But then

I∗(|Wk|;A,V )/|Wk| ≤ |∂V (Wk)|/|Wk| ≤ 1/k,
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showing that I∗(n;A,V )� n.

If A is not amenable, there is a subframe V and an ε > 0 such that for any

subspace W we have |∂V (W )|/|W |> ε , i.e. |∂V (W )|> ε|W |, and hence I∗(n;A,V )� n.

So we have I∗(n;A,V )∼ n.

Corollary 3.2.2. An algebra A is nonamenable if and only if A has isoperimetric profile

I∗(n;A)∼ n.

Proof. If A is nonamenable, then by the previous Proposition there exists a subframe

V ⊂ A such that I∗(n;A,V )∼ n. Then clearly A has isoperimetric profile, and I∗(n;A)∼
I∗(n;A,V )∼ n.

If A is amenable, then by the previous Proposition A cannot have isoperimetric

profile I∗(n;A)∼ n.

Corollary 3.2.3. If all the finitely generated subalgebras of an algebra A are amenable,

then A is amenable.

Proof. If A is not amenable, than there is a subframe V and an ε > 0 such that for any

subspace W we have |∂V (W )|/|W |> ε , i.e. |∂V (W )|> ε|W |. In particular this is true for

any subspace W of K[V ], where K[V ] is the subalgebra of A (finitely) generated by V .

Hence I∗(n;K[V ],V )� n, i.e. I∗(n;K[V ])∼ n, which says that K[V ] is not amenable.

Remark 4. The converse of the previous corollary is not true. For example, we will

show later in the paper that the algebra A = K[x,y]⊕K〈w,z〉 is amenable, since we’ll

prove (see Proposition 4.1.2 and Proposition 3.3.4) that I∗(A) � I∗(K[x,y]) ∼ n1/2. But

it’s known (cf. [5]) that the finitely generated subalgebra K〈w,z〉 (a free algebra of rank

2) is not amenable:

Example 3.2.1. If we call Fk = K〈x1, . . . ,xk〉 the free algebra in k ≥ 2 noncommuting

variables, and V = K+Kx1+ · · ·+Kxk, clearly for any subspace W we have |∂V (W )| ≥
|W |, which shows that I∗(n;Fk)∼ n for k ≥ 2.

We have the following Corollary (see also [5])

Corollary 3.2.4. Free algebras of finite rank ≥ 2 are not amenable.

It can be proved in a similar way the following proposition (see [10] and [45]).
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Proposition 3.2.5. If A is an amenable domain, then A is a right Ore domain.

Proof. If A is not right Ore, then there are two elements a and b such that aA+ bA =

aA⊕ bA. Hence, if we set V := K +Ka+Kb, then |VW | ≥ 2|W | for every subspace

W ⊂ A. Hence we get I∗(n;A,V )∼ n, showing that A is not amenable.

3.3 Orderable semigroups and the algebra of polynomi-

als

Let Γ be an infinite semigroup generated by a finite subset S. Let B(n) :=∪n
i=0Si,

where S0 = {1} and 1 is the identity element of Γ. Define Φ(λ ) := min{n∈N | |B(n)|>
λ} for λ > 0. This is the inverse function of the growth of Γ.

The following result is due to Coulhon and Saloff-Coste. We gave a proof of it

in Chapter 2.

Theorem 3.3.1 (Coulhon, Saloff-Coste). Let Γ be an infinite semigroup with the cancel-

lation property (i.e. xz = yz implies x = y for any x,y,z ∈ Γ) generated by a finite subset

S. For any finite non-empty subset Ω of Γ we have

|∂S(Ω)| ≥ |Ω|
2Φ(2|Ω|)

.

Remark 5. A typical example of a semigroup with the cancellation property is a sub-

semigroup of a group.

Corollary 3.3.2. The free abelian semigroup on d ∈N generators Zd
≥0 has isoperimetric

profile I◦(n;Zd
≥0)∼ n

d−1
d .

Proof. The lower bound is given by Theorem 3.3.1, since clearly the growth of Zd
≥0 is

polynomial of exponent d.

For the upper bound, let S be the set of standard generators of Zd
≥0 and consider

the cubes Cn = {(x1, . . . ,xd) ∈ Zd
≥0 | xi ≤ n−1 for all i}. Now |Cn|= nd and |∂S(Cn)|=

dnd−1 = d|Cn|
d−1

d ∼ |Cn|
d−1

d . From this it follows easily the upper bound.

Given a semigroup Γ generated by a finite subset S, we can consider its semi-

group algebra KΓ. We have the following inequality ([21]):

I∗(KΓ)� I◦(Γ).
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This because given a finite subset Ω of Γ, clearly |Ω|= |KΩ|, and also

|∂S(Ω)|= |∂S(KΩ)|.

The other inequality is not always true (see [21]).

Definition. A semigroup Γ is said to be orderable if there exists a total order on Γ,

which we denote by <, such that x < y implies xz < yz and zx < zy for any x,y,z ∈ Γ.

We have the following result ([21]).

Theorem 3.3.3 (Gromov). If Γ is an orderable semigroup generated by a finite set S,

then I◦(Γ)∼ I∗(KΓ).

Proof. By the previous discussion, we only need to prove

I◦(Γ)� I∗(KΓ).

Consider the elements of KΓ as functions on Γ with finite support. Let ν be

the function ν : KΓ→ Γ defined by ν( f ) := minsupp( f ), where f ∈ KΓ and supp( f )

denote the support of f . Given a subspace V of KΓ, it’s easy to see that |ν(V )| = |V |,
and moreover ∣∣∣∣∣ k

∑
i=1

Vi

∣∣∣∣∣≥
∣∣∣∣∣ k⋃
i=1

ν(Vi)

∣∣∣∣∣ ,
where Vi is a subspace of KΓ for all i’s. It’s also clear that

ν(γV ) = γν(V ).

All these properties imply that

|∂S(V )| ≥ |∂S(ν(V ))|.

This gives the inequality that we wanted.

Corollary 3.3.4. The isoperimetric profile of the algebra A = K[x1, . . . ,xd] of polynomi-

als is I∗(n;A)∼ n
d−1

d .

Proof. Observe that the semigroup algebra of the semigroup Zd
≥0 is isomorphic to the

algebra K[x1, . . . ,xd]. Also, Zd
≥0 is clearly orderable (see [32]), hence the result follows

from Corollary 3.3.2 and Theorem 3.3.3.
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We can now give an example of an algebra which has no isoperimetric profile.

Example 3.3.1. Consider the algebra A = K[x1,x2, . . . ] of polynomials in infinitely many

variables. For any d ∈N, call Wd = spanK{x1, . . . ,xd}. We can consider the vector space

V (d)
n = spanK{xm1

1 · · ·x
md
d | mi ≤ n−1 for all i}. We have |V (d)

n |= nd and |∂Wd(V
(d)
n )|=

dnd−1 = d|V (d)
n |

d−1
d , which easily implies the upper bound

I∗(n;A,Wd)� n
d−1

d .

Now A is a free K[x1, . . . ,xd]-module, hence we can apply Proposition 4.9.1,

which we will prove later, to get

n
d−1

d ∼ I∗(n;K[x1, . . . ,xd],Wd)� I∗(n;A,Wd),

giving I∗(n;A,Wd)∼ n
d−1

d .

Notice that any subspace W ⊂ A is contained in W m
d for some d and m ∈ N.

Hence we can apply (•) to see that

I∗(n;A,W )� I∗(n;A,Wd)∼ n
d−1

d .

This shows that A cannot have an isoperimetric profile.

We mention here another interesting result, which is due to Bartholdi ([2]).

Theorem 3.3.5 (Bartholdi). A group Γ is amenable if and only if its group algebra FΓ

is amenable for any field F.

Notice that Theorem 3.3.3 gives more for orderable groups, but it does not say

anything on groups which are not orderable, while this theorem holds for any group. We

remind also that in general the isoperimetric profile of a group is not equivalent to the

isoperimetric profile of its group algebra (see [21]).

Part of the text of chapters 3, 4, 5 and 6 of this thesis is a modified version of

“On isoperimetric profiles of algebras”, D’Adderio Michele, J. Algebra, 322, 2009.



Chapter 4

Ring theoretic constructions

In this section we study the behavior of the isoperimetric profile under vari-

ous ring-theoretic constructions. In the process we derive many consequences on the

amenability of algebras.

4.1 Subalgebras and homomorphic images

In general, the isoperimetric profile for algebras does not decrease when passing

to subalgebras or homomorphic images.

Lemma 4.1.1. If A and B are two algebras, V is a subframe of A and W is a subframe

of B, then I∗(n;A⊕B,V +W )≤ I∗(n;A,V ) and I∗(n;A⊕B,V +W )≤ I∗(n;B,W ).

Proof. We identify A and B with their obvious copies in A⊕B. Let V be a subframe of

A, W a subframe of B and let Z ⊂ A be any subspace. We have

|∂V+W (Z)|= |∂V (Z)|,

where the second boundary is in the algebra A. This proves the first inequality. The

second is proved in the same way.

We have the following consequence.

Proposition 4.1.2. If A and B are two finitely generated algebras, then I∗(A⊕B)� I∗(A)

and I∗(A⊕B)� I∗(B).

28
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Proof. If V is a frame of A and W is a frame of B, than V +W is a frame of A⊕B. By

the previous Lemma

I∗(A⊕B)∼ I∗(A⊕B,V +W )� I∗(A,V )∼ I∗(A),

and

I∗(A⊕B)∼ I∗(A⊕B,V +W )� I∗(B,W )∼ I∗(B),

completing the proof.

Observe that A is a subalgebra of A⊕B, and also A is isomorphic to a homomor-

phic image of A⊕B. If we now consider a direct sum A⊕B of two finitely generated

algebras with I∗(A) � I∗(B) (cf. Remark 4), it follows immediately from the previous

proposition that we do not have in general inequality for subalgebras and homomorphic

images.

From this and what we saw in the previous sections it follows for example that

amenability for algebras does not pass to quotients and subalgebras (see also [5]).

In fact this phenomenon can occur also when we deal with domains: given an

amenable domain, it’s not true that a subdomain must be amenable. In fact it’s well

known that the Weyl algebra A1 is amenable (we will see this later), since it has finite

GK-dimension, hence by [11] (or even by our results later in this thesis) its quotient

division algebra D1 is still amenable. But it’s also known (see [29]) that D1 contains a

subalgebra isomorphic to a free algebra of rank 2, which is nonamenable.

4.2 Localization

The isoperimetric profile behaves well with nice localizations.

If A is an algebra, a right Ore set Ω ⊆ A is a multiplicative closed subset of A

which satisfies the right Ore condition, i.e. cA∩ aΩ 6= /0 for all c ∈ Ω and a ∈ A. If

all the elements of Ω are regular, we can consider the ring of right fractions AΩ−1, and

identify A with the subset {a/1 | a ∈ A} ⊆ AΩ−1.

There are analogous left versions of these notions.
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Notice that we will have slightly different results for the left and the right cases

in this section. This depends on the fact that the definition of the boundary is not sym-

metric.

Lemma 4.2.1. Let A be an algebra and let Ω be a right Ore set of regular elements in

(i) and (ii) and a left Ore set of regular elements in (iii).

(i) If V is a subframe of A, then

I∗(n;A,V ) = I∗(n;AΩ
−1,V ).

(ii) If W is a subframe of AΩ−1, then we can find an m∈Ω such that Wm⊂A⊂AΩ−1.

For any such m

I∗(n;AΩ
−1,W )≤ I∗(n;A,Wm+K).

(iii) If W is a subframe of Ω−1A, we can find an m ∈ Ω such that mW ⊂ A ⊂ Ω−1A.

For any such m

I∗(n;Ω
−1A,W )≤ I∗(n;A,mW +K).

Proof. (i) Let V be a subframe of A. Of course V is also a subframe of AΩ−1. Given any

subspace Z of AΩ−1, clearly we can find an element m ∈Ω such that Zm⊆ A⊆ AΩ−1.

We have

|∂V (Zm)|= |V Zm|− |Zm|= |V Z|− |Z|= |∂V (Z)|.

Hence

I∗(n;A,V )≤ I∗(n;AΩ
−1,V ),

which implies

I∗(n;A,V ) = I∗(n;AΩ
−1,V ).

(ii) Given now a subframe W of AΩ−1, again we can find an m ∈ Ω such that

Wm⊂ A⊂ AΩ−1. If Z is a subspace of A, we have

|∂W (mZ)|= |WmZ|− |mZ| ≤ |WmZ +Z|− |Z|= |∂Wm+K(Z)|.

The above inequality shows that

I∗(n;AΩ
−1,W )≤ I∗(n;A,Wm+K).
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(iii) Suppose that W is a subframe of Ω−1A. As before we can find an m ∈ Ω

such that mW ⊂ A⊂Ω−1A. If Z is a subspace of A, we have

|∂W (Z)|= |WZ|− |Z| ≤ |mWZ +Z|− |Z|= |∂mW+K(Z)|.

The above inequality gives

I∗(n;Ω
−1A,W )≤ I∗(n;A,mW +K).

The following corollary follows easily from this lemma.

Corollary 4.2.2. Let A be an algebra and let Ω be a right Ore set of regular elements in

(i) and a left Ore set of regular elements in (ii). Then

(i) A has an isoperimetric profile if and only if AΩ−1 does, and in this case I∗(A) ∼
I∗(AΩ−1). Moreover, any subframe of A that measures I∗(A), measures also

I∗(AΩ−1), and viceversa if W measures I∗(AΩ−1), then for any m ∈ Ω such that

Wm⊂ A, Wm+K measures I∗(A).

(ii) If both A and Ω−1A have isoperimetric profiles, then I∗(Ω−1A)� I∗(A).

Remark. In [45], the remark after Proposition 2.1 may suggest that I∗(A)� I∗(Ω−1A) is

not true in general.

We can now give an example of an algebra with an isoperimetric profile, which

is not finitely generated.

Example 4.2.1. If A = K[x1, . . . ,xd] is the algebra of polynomials in d variables, then we

already saw that I∗(A)∼ n
d−1

d . If we denote as usual by K(x1, . . . ,xd) the quotient field

of A, using the previous corollary we have

I∗(K(x1, . . . ,xd))∼ n
d−1

d .

Notice that K(x1, . . . ,xd) is not finitely generated as an algebra.

Another immediate consequence of this corollary is for example that

I∗(K[x±1
1 , . . . ,x±1

d ])∼ n
d−1

d ,
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where K[x±1
1 , . . . ,x±1

d ] is the algebra of Laurent polynomials in d variables (see [21]).

The following consequences on the amenability of a localization follow easily

from Lemma 4.2.1 and Proposition 3.2.1.

Corollary 4.2.3. Let A be an algebra and let Ω be a right Ore set of regular elements in

(i) and a left Ore set of regular elements in (ii). Then

(i) A is amenable if and only if AΩ−1 is amenable.

(ii) If A is amenable, then Ω−1A is amenable.

4.3 Subadditivity

Definition. We say that a function f :R+→R+ is (asymptotically) subadditive if there

exist positive constants C1,C2 > 0 such that for every finite set of positive real numbers

r1, . . . ,rk we have

C2 f (C1(r1 + · · ·+ rk))≤ f (r1)+ · · ·+ f (r2).

Example 4.3.1. The function f (x) = xα for 0 ≤ α ≤ 1 is subadditive with constants

C1 =C2 = 1.

For example the isoperimetric profile of an infinite group is subadditive with

constants C1 =C2 = 1 (cf. [21]).

The following lemma motivates our definition of subadditivity.

Lemma 4.3.1. Given two functions f ,g : R+→ R+, if f ∼ g, then f is subadditive if

and only if g is.

Proof. Suppose that f is subadditive, with constants C1 and C2. By assumption there

exist positive constants A1,A2,B1 and B2 such that

f (A1n)≥ A2g(n) and g(B1n)≥ B2 f (n)

for all n ∈ N. Given r1, . . . ,rk ∈ N we have

A2C2B2g
(

C1

A1B1
(r1 + · · ·+ rk)

)
≤ C2B2 f

(
C1

B1
(r1 + · · ·+ rk)

)
≤ B2

(
f
(

r1

B1

)
+ · · ·+ f

(
rk

B1

))
≤ g(r1)+ · · ·+g(rk).
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The converse is proved in the same way.

Subadditivity seems a natural property of the isoperimetric profile. Unfortu-

nately, we are not able to prove it in general for any algebra.

In [21] Gromov states the following result. We give a proof for completeness.

Lemma 4.3.2. If Γ is an infinite semigroup with the cancellation property generated by

a finite set S, then I◦(n;Γ,S) is subadditive. In particular for r,s ∈ N

I◦(r+ s;Γ,S)≤ I◦(r;Γ,S)+ I◦(s;Γ,S).

Proof. If X and Y are two finite subset of Γ, then clearly

|∂S(X ∪Y )| ≤ |∂S(X)|+ |∂S(Y )|,

since

∂S(X ∪Y ) =

(⋃
s∈S

s(X ∪Y )

)
\ (X ∪Y )

=

(⋃
s∈S

s(X ∪Y )\X

)
∩

(⋃
s∈S

s(X ∪Y )\Y

)

⊆

(⋃
s∈S

s(X)\X

)
∪

(⋃
s∈S

s(Y )\Y

)
= ∂S(X)∪∂S(Y ).

Another obvious observation is that

|∂S(X)|= |∂S(Xγ)|

for any γ ∈ Γ.

Now, given r,s ∈ N, let X ⊂ Γ with |X | = r such that |∂S(X)| = I◦(r;Γ,S), and

let Y ⊂ Γ with |Y |= s such that |∂S(Y )|= I◦(s;Γ,S).

We claim that we can find an element β ∈ Γ such that X ∩Y β = /0. In fact, for

any x ∈ X and y ∈ Y , by the cancellation property there exists at most one γ ∈ Γ such

that x = yγ . Since X and Y are finite and Γ is infinite, there exists a β ∈ Γ such that

x 6= yβ for all x ∈ X and y ∈ Y . Hence X ∩Y β = /0.
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Using the observations we made before, this implies

|∂S(X ∪Y β )| ≤ |∂S(X)|+ |∂S(Y β )|

= |∂S(X)|+ |∂S(Y )|

= I◦(r;Γ,S)+ I◦(s;Γ,S).

Since now |X ∪Y β |= r+ s, this gives the result.

In [21], pag. 8, Gromov claims that clearly

I∗(r+ s;KΓ)≤ I∗(r;KΓ)+ I∗(s;KΓ).

We don’t see how to prove it for general infinite groups Γ. But the previous two lemmas

and Theorem 3.3.3 imply the following corollary:

Corollary 4.3.3. If Γ is a finitely generated orderable semigroup with the cancellation

property then I∗(KΓ) is subadditive.

We now show that the isoperimetric profile of a domain is subadditive. We need

the following proposition, which was showed to me by Zelmanov.

Proposition 4.3.4 (Zelmanov). Let A be a domain over K, and let V and W be finite

dimensional subspaces of A, with |V | = m and |W | = n. If V ∩Wa 6= {0} for all a ∈
A\{0}, then A is algebraic of bounded degree.

To prove this proposition we need the following lemma.

Lemma 4.3.5. In the hypothesis of the previous proposition, let {w1, . . . ,wn} be a basis

of W. Then for any nonzero element a ∈ A there exist polynomials f1(t), . . . , fn(t), not

all zero and all of degree ≤ m such that

w1 f1(a)+ · · ·+wn fn(a) = 0.

Proof. Given 0 6= a ∈ A, we have V ∩W1 6= {0},V ∩Wa 6= {0}, . . . ,V ∩Wam 6= {0}.
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Hence there are coefficients αi j ∈ K such that

0 6= α01w1 + · · ·+α0nwn ∈V,

0 6= α11w1a+ · · ·+α1nwna ∈V,
...

0 6= αm1w1am + · · ·+αmnwnam ∈V.

Since |V |=m, these elements are linearly dependent, hence there exist β0, . . . ,βm

not all zero such that

β0(α01w1 + · · ·+α0nwn)+β1(α11w1a+ · · ·+α1nwna)+ · · ·

· · ·+βm(αm1w1am + · · ·+αmnwnam) = 0,

which implies

w1(β0α01+β1α11a+· · ·+βmαm1am)+w2(β0α02+β1α12a+· · ·+βmαm2am)+· · ·

· · ·+wn(β0α0n +β1α1na+ · · ·+βmαmnam) = 0.

We set fi(t) := β0α0i +β1α1it + · · ·+βmαmitm for i = 1, . . . ,n. If all the fi’s are

zero, then βiαi j = 0 for 0≤ i≤ m and 1≤ j ≤ n. But each row (αi0, . . . ,αin) is not the

zero vector, because ∑ j αi jw jai 6= 0. Hence βi = 0 for all i, a contradiction.

We can now prove the proposition.

Proof. Let {w1, . . . ,wn} be a basis of W . By the lemma, for 0 ≤ i ≤ m we can find

polynomials fi1, . . . , fin, not all zero and of degree ≤ m such that

∑
j

w j fi j

(
a(m+1)i

)
= 0. (*)

We have

det
∥∥∥ fi j

(
a(m+1)i

)∥∥∥= 0.

We got in this way a polynomial of degree bounded by a function of m and n

only, satisfied by a. If this is not the zero polynomial, we are done.
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Suppose this is not the case. Let fi j(t) :=αi j0+αi j1t+ · · ·+αi jmtm, and suppose

that

det
∥∥∥ fi j

(
t(m+1)i

)∥∥∥= 0.

Observe that in each row of the matrix
∥∥∥ fi j

(
t(m+1)i

)∥∥∥ there are at least two

nonzero polynomials. In fact we know that they are not all zero. If only one of them is

zero, then the equation (*) gives a zero divisor, which doesn’t exist by our assumption.

Moreover, we can assume that in each row the entries have no common divisors of the

form tk with k ≥ 1, since otherwise we can factor it out, preserving the relation (*).

Hence in particular in each row there is at least one polynomial with nonzero constant

term.

Since these rows are linearly dependent, we can take a minimal linearly depen-

dent set of rows, call r the cardinality of this set and call the indices of these rows

j1, j2, . . . , jr. By construction all the minors of order r in these rows are zero. Consid-

ering these minors modulo t(m+1) j1+1
we can replace the coefficients in the first of our

rows by their constant terms, still having the first row non zero and depending on the

others. Hence we can find polynomials b(t),c2(t), . . . ,cr(t) such that

b(t)α j1k0 =
r

∑
i=2

ci(t) f jik

(
t(m+1) ji

)
for all k = 1, . . . ,n. By assumption b(t) 6= 0. Observe now that (*) implies

b(a)

(
n

∑
k=1

wkα j1k0

)
=

n

∑
k=1

wkb(a)α j1k0

=
n

∑
k=1

wk

r

∑
i=2

ci(a) f jik

(
a(m+1) ji

)
=

r

∑
i=2

ci(a)

(
n

∑
k=1

wk f jik

(
a(m+1) ji

))
= 0.

Since ∑
n
k=1 wkα j1k0 6= 0, we must have b(a) = 0. It’s now clear that b(t) also has degree

bounded by a function of m and n only. This completes the proof.

The following lemma is crucial.

Lemma 4.3.6. If A is an (infinite dimensional) division algebra, then given two finite

dimensional subspaces V and W ⊂ A there exists a nonzero element a ∈ A such that

V ∩Wa = {0}.
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Proof. Suppose the contrary. Then by the previous proposition we know that A is alge-

braic of bounded degree. Hence by a theorem of Jacobson (see [23]) A is locally finite,

i.e. any finitely generated subalgebra of A is finite dimensional. But for any nonzero

a ∈ A we have v = wa for some nonzero v ∈V and some nonzero w ∈W , i.e. a = w−1v.

Hence a is contained in the subalgebra generated by V and W , which is finite dimen-

sional. This gives a contradiction, since A is not finite dimensional.

We are now able to prove the main result of this subsection.

Theorem 4.3.7. If A is a nonamenable domain, then I∗(A) is subadditive. If A is an

amenable domain, then I∗(A,V ) is subadditive for any subframe V of A.

Proof. If A is nonamenable, then by Corollary 3.2.2 I∗(n;A)∼ n, hence by Lemma 4.3.1

I∗(A) is subadditive.

If A is amenable, then by Proposition 3.2.1 we know that I∗(A,V ) � n for any

subframe V of A. In this case, we know that A is a right Ore domain, hence it admits a

ring of quotients D, which is of course a division algebra. By Lemma 4.2.1, I∗(n;A,V ) =

I∗(n;D,V ), hence again by Lemma 4.3.1 we reduced the problem to show that D has a

subadditive isoperimetric profile.

Let r,s ∈ N, and consider two subspaces W,Z ⊂ D with |W |= r and |Z|= s. By

the previous lemma, we can find an element a ∈ D such that W ∩Za = {0}. If now V is

any subframe of D, we have

|∂V (W ⊕Za)| = |V (W ⊕Za)|− |W ⊕Za| ≤ |VW |+ |V Za|− |W |− |Za|

= |VW |+ |V Z|− |W |− |Z|= |∂V (W )|+ |∂V (Z)|,

which gives the subadditivity of I∗(n;D,V ).

Question 1. Is the isoperimetric profile with respect to some subframe of an algebra

always subadditive?

4.4 Free left modules over subalgebras

We now study algebras which are a free left module over some subalgebra.



38

The proof of the following proposition is a modification of the proof of Theorem

2.4 in [45].

Proposition 4.4.1. Suppose that B⊂ A is a subalgebra and A is a free left B-module. If

V is a subframe of B and I∗(B,V ) is subadditive, then I∗(B,V )� I∗(A,V ).

Proof. We have A =
⊕

i Bai where ai ∈ A. Given any subspace W of A we can find

a1, . . . ,an such that W ⊂
⊕n

i=1 Bai. We can choose a basis of W of the form

{w1
i a1 + y1

i }
p1
i=1∪{w

2
i a2 + y2

i }
p2
i=1∪·· ·∪{w

n
i an + yn

i }
pn
i=1

where w j
i ∈ B and y j

i ∈
⊕

k> j Bak, such that for each j, {w j
i }

p j
i=1 are linearly independent.

Notice that {w j
i a j + y j

i }
p j
i=1 corresponds to a basis of (W ∪

⊕
k≥ j Bak)/(W ∪

⊕
k> j Bak).

Let W ′j denote the subspace generated by {w j
i }

p j
i=1 and let Wj denote the subspace gen-

erated by {w j
i a j + y j

i }
p j
i=1. Then

W =W1⊕W2⊕·· ·⊕Wn

and hence

|W |= ∑
j
|Wj|= ∑

j
|W ′j |.

Let V be a subframe of B. We have

VW1 =

{
xa1 + y | x ∈VW ′1 and y ∈

n⊕
i=2

Bai

}
.

Since
n

∑
i=2

VWi ⊂
n⊕

i=2

Bai and

(
n⊕

i=2

Bai

)
∩Ba1 = 0,

we have ∣∣∣∣∣ n

∑
i=1

VWi

∣∣∣∣∣≥ |VW ′1|+

∣∣∣∣∣ n

∑
i=2

VWi

∣∣∣∣∣ .
By induction on n we have ∣∣∣∣∣ n

∑
i=1

VWi

∣∣∣∣∣≥ n

∑
i=1
|VW ′i |.
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Using the hypothesis, this implies

|∂V (W )| = |VW |− |W |=

∣∣∣∣∣ n

∑
i=1

VWi

∣∣∣∣∣− n

∑
i=1
|Wi|

≥
n

∑
i=1
|VW ′i |−

n

∑
i=1
|W ′i |=

n

∑
i=1
|∂V (W ′i )|

≥
n

∑
i=1

I∗(|W ′i |;B,V )≥C2I∗(C1

n

∑
i=1
|W ′i |;B,V ) =C2I∗(C1|W |;B,V ),

where C1 and C2 are two positive constants. Therefore

I∗(B,V )� I∗(A,V ).

The following corollaries are immediate consequences of the proposition.

Corollary 4.4.2. Suppose that B ⊂ A is a subalgebra and A is a free left B-module. If

both A and B have isoperimetric profiles, and I∗(B) is subadditive, then I∗(B)� I∗(A).

Corollary 4.4.3. Suppose that B⊂ A is a subalgebra and A is a free left B-module. If A

is amenable and I∗(B) is subadditive, then B is amenable.

Let’s derive another easy consequence from the previous proposition, which gen-

eralizes a result in [11].

Proposition 4.4.4. If B is a nonamenable division subalgebra of A, then A is nona-

menable. If B is an amenable division subalgebra of A, then I∗(B,V ) � I∗(A,V ) for

any subframe V of B. In particular, if both A and B have isoperimetric profiles, then

I∗(B)� I∗(A).

Proof. If B is a nonamenable division subalgebra, then A is a free left B-module. By

Theorem 4.3.7, I∗(B,V ) is subadditive for any subframe V that measures I∗(n;B) ∼ n,

hence by Proposition 4.4.1

n∼ I∗(n;B,V )� I∗(n;A,V )

for any subframe V of B that measures I∗(B). Hence I∗(n;A,V ) ∼ n, and so A is nona-

menable by Corollary 3.2.2.
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If B is an amenable division subalgebra, A is again a free left B-module. By

Theorem 4.3.7, I∗(B,V ) is subadditive for any subframe V , hence the result follows

again from Proposition 4.4.1.

We are now able to prove the following

Theorem 4.4.5. Let B ⊂ A be domains. If both B and A are right Ore, then I∗(B,V ) �
I∗(A,V ) for all subframes V of B.

Proof. If we call S and D the right quotient division algebras of B and A respectively, by

Lemma 4.2.1, if V is a subframe of B we have I∗(n;B,V ) = I∗(n;S,V ) and I∗(n;A,V ) =

I∗(n;D,V ). Since I∗(S,V ) is also subadditive, we can apply Proposition 4.4.4 to S ⊂ D

to get I∗(S,V )� I∗(D,V ). Now again by Lemma 4.2.1, I∗(B,V )� I∗(A,V ).

Corollary 4.4.6. If B ⊂ A are domains, B is right Ore and both A and B have isoperi-

metric profiles, then I∗(B)� I∗(A).

Proof. If A is nonamenable, I∗(n;A) ∼ n and there is nothing to prove. Otherwise, the

result follows from the previous theorem.

Remark 6. Notice that the hypothesis on B of being right Ore cannot be dropped. For

example we already observed that the quotient division algebra of the Weyl algebra A1

is amenable, but it contains a subalgebra isomorphic to a free algebra in two variables

(see [29]). We show now that this is the only case that can occur.

By a theorem of Jategaonkar ([24]), a domain which is not Ore must contain a

subalgebra isomorphic to a noncommutative free algebra. This and the previous propo-

sition imply the following corollary.

Corollary 4.4.7. If A is an amenable domain, then for any subdomain B of A we have

I∗(B,V )� I∗(A,V ) for all subframes V of B if and only if A does not contain a subalge-

bra isomorphic to a noncommutative free algebra.

4.5 Finite modules over subalgebras

Suppose that B is a subalgebra of an algebra A. Assume that A is a finite right B-

module, i.e. A=WB, where W is a subframe of A. We want to compare the isoperimetric
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profiles of A and B.

The following proposition generalizes some of the results in [11].

Proposition 4.5.1. Let A be an algebra.

(1) Let B be a subalgebra of A such that A is a finite free right B-module. If B is

amenable, then A is also amenable. If both A and B have isoperimetric profiles,

then I∗(A)� I∗(B). If moreover B has a subadditive isoperimetric profile and A is

also a free left B-module, then I∗(A)∼ I∗(B).

(2) Let B be a division subalgebra of A and let A be a finite right B-module. If B is

amenable, then A is also amenable. If both A and B have isoperimetric profiles,

then I∗(A)∼ I∗(B).

(3) Let B be a finite dimensional algebra and A an algebra. If A is amenable, then

A⊗B is also amenable. If both A and A⊗B have isoperimetric profiles, then

I∗(A⊗B) � I∗(A). If moreover A has a subadditive isoperimetric profile, then

I∗(A)∼ I∗(A⊗B).

(4) Let Mn(A) be the algebra of n× n matrices over A. If A is amenable, then

Mn(A) is also amenable. If both A and Mn(A) have isoperimetric profiles, then

I∗(Mn(A)) � I∗(A). If moreover A has a subadditive isoperimetric profile, then

I∗(A)∼ I∗(Mn(A)).

(5) Let G be a finite group and A ∗G a skew group ring. If A is amenable, then also

A∗G is amenable. If both A and A∗G have isoperimetric profiles, then I∗(A∗G)�
I∗(A). If moreover A has subadditive isoperimetric profile, then I∗(A)∼ I∗(A∗G).

First we need a lemma.

Lemma 4.5.2. Let V,W,Z ⊂ A be subspaces of A. Then∣∣∣∣ZVW
ZW

∣∣∣∣≤ |Z| ∣∣∣∣VW
W

∣∣∣∣
Proof. Let v1, . . . ,vm be a basis of V and w1, . . . ,wn a basis of W . Then the products viw j

span VW . Clearly at most |VW/W |= |∂V (W )| of these products are not in W . For each

of them, multiplying on the left by elements of Z, we get at most |Z| products which do

not fall into ZW . This proves the result.
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The previous proposition follows from the following lemma together with Propo-

sitions 4.4.1, 4.5.3 and 4.3.1.

Lemma 4.5.3. Let B be a subalgebra of an algebra A, let V be a subframe of A and let

A be a finite right B-module.

(i) If there exist positive constants C1 and C2 such that

C1I∗(C2n;A,V )≤ I∗(n+ r;A,V )

for any n,r ∈ N, then I∗(A,V )� I∗(B,V1) for some subframe V1 of B.

(ii) If A is also free as right B-module, then I∗(A,V )� I∗(B,V1) for some subframe V1

of B.

Proof. Since A is a finite right B-module, there exists a subframe W of A such that

A =WB. It’s clear that given the subframe V of A there exists a subframe V1 of B such

that VW ⊆WV1. For any subspace Z of B, using the previous lemma, we get

I∗(|WZ|;A,V ) ≤ |∂V (WZ)|=
∣∣∣∣VWZ

WZ

∣∣∣∣≤ ∣∣∣∣WV1Z
WZ

∣∣∣∣
≤ |W |

∣∣∣∣V1Z
Z

∣∣∣∣= |W ||∂V1(Z)|.

Now the hypothesis in (i) gives

C1I∗(C2|Z|;A,V )≤ I∗(|WZ|;A,V )≤ |W ||∂V1(Z)|,

which implies I∗(A,V )� I∗(B,V1).

In (ii), if A = ⊕k
i=1wiB, we choose W to be the span of {1 = w1,w2, . . . ,wk}.

Then

I∗(|W ||Z|;A,V ) = I∗(|WZ|;A,V )≤ |W ||∂V1(Z)|,

which again gives I∗(A,V )� I∗(B,V1).

Remark. Notice that the hypothesis in (i) of this lemma is a generalization of the prop-

erty of being weakly monotone increasing. All the isoperimetric profiles we know sat-

isfy this property.
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Question 2. Is it true that I∗(A) satisfies the property in (i) for any algebra A? Is it true

if A is a domain?

We are now able to prove the following corollary (cf. [45], Corollary 3.3).

Corollary 4.5.4. Let B⊂ A be prime right Goldie algebras with isoperimetric profiles,

and suppose that I∗(B) is subadditive. Then I∗(B)� I∗(A). If moreover A is a finite right

B-module and B is artinian, then I∗(A)∼ I∗(B).

Proof. By Goldie’s Theorem, A has a right quotient ring which is a simple artinian

algebra. Hence by Corollary 4.2.2 we may assume that A is a simple artinian ring Mn(A′)

for some division algebra A′. By Proposition 3.1.16 in [28], the quotient ring Q of B

embeds into Mk(A′) for some k≤ n. Therefore by Corollary 4.2.2 and Proposition 4.5.1,

(4), we may assume that B is a division algebra. Whence the first statement follows from

Proposition 4.4.4.

If B is artinian and A is finite as B-module, then A is artinian. Therefore the

second statement follows from Lemma 4.5.3 and Proposition 4.5.1, (4).

4.6 Tensor products

In this section we study the behavior of the isoperimetric profile with respect to

tensor products.

Proposition 4.6.1. Let A and B be two K-algebras, and let VA and VB be two subframes

of A and B respectively. If V :=VA⊗1+1⊗VB, then

I∗(nm;A⊗K B,V )≤ mI∗(n;A,VA)+nI∗(m;B,VB).

Proof. Given any two subspaces W ⊂ A and Z ⊂ B, we have

I∗(|W ||Z|;A⊗K B,V ) ≤ |∂V (W ⊗Z)|=
∣∣∣∣VAW ⊗Z +W ⊗VBZ

W ⊗Z

∣∣∣∣
≤

∣∣∣∣VAW ⊗Z
W ⊗Z

∣∣∣∣+ ∣∣∣∣W ⊗VBZ
W ⊗Z

∣∣∣∣
= |Z||∂VA(W )|+ |W ||∂VB(Z)|,

which gives the result.
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Corollary 4.6.2. Let A and B be two K-algebras, let VA and VB be two subframes

of A and B respectively, and let V := VA ⊗ 1 + 1⊗VB. If I∗(n;A,VA) � n1−1/r and

I∗(n;B,VB)� n1−1/s for some real numbers s≥ r ≥ 1, then

I∗(n;A⊗K B,V )� n1− 1
r+s .

Proof. Given t ∈ R, 0 < t < 1 the previous proposition implies

I∗(n;A⊗K B,V ) � ntI∗(n1−t ;A,VA)+n1−tI∗(nt ;B,VB)

� nt+(1−t)(1−1/r)+nt+(1−t)(1−1/s).

Substituting t = r/(r+ s) we get

I∗(n;A⊗K B,V )� n
r

r+s+
s

r+s
r−1

r +n
r

r+s+
s

r+s
s−1

s � n
r+s−1

r+s ,

since s≥ r, hence both the exponents in the sum above are less or equal then the expo-

nent (r+ s−1)/(r+ s).

We have also the following immediate consequence of Proposition 4.4.1.

Proposition 4.6.3. If A and B are two K-algebras, V is a subframe of A and I∗(A,V ) is

subadditive, then

I∗(A,V )� I∗(A⊗K B,V ⊗1).

The relation given in Proposition 4.6.1 looks a bit strange. A more natural rela-

tion holds for Følner functions, as we will see later in this work.

4.7 Filtered and Graded Algebras

In this section we consider a filtration on A, i.e. a sequence of subspaces Ai of A

A0 ⊂ A1 ⊂ A2 ⊂ ·· · ⊂ A,
∞⋃

n=0

An = A,

with the property that AiA j ⊂ Ai+ j for all i, j ≥ 0. We assume also that A0 = K and that

A1 generates A.
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Given a filtered algebra, we can consider its associated graded algebra

gr(A) :=
⊕
i≥0

Ai/Ai−1,

where we agree that A−1 = {0}. This is an algebra with the multiplication derived by

the rule

[x+Ai−1] · [y+A j−1] = [xy+Ai+ j−1].

For any subframe V ⊂ A1, we can view V also as a subframe of gr(A) via the

identification V ≡ (V ∩A0)/A−1⊕V/A0 = K⊕V/K.

Theorem 4.7.1. If A is an algebra with a filtration given as above, and gr(A) is a

domain, then I∗(gr(A),V )� I∗(A,V ) for any subframe V ⊂ A1.

Proof. Given a subspace W of A we define Wi = W ∩Ai and gr(W ) =
⊕

i≥0Wi/Wi−1.

Observe that gr(W ) is a finite dimensional subspace of gr(A).

The first remark is that |W |= |gr(W )|: this can be seen looking at a basis for Wi

and completing it to a basis of Wi+1 (if Wi 6=Wi+1, otherwise look at the next index) for

each i. These basis elements clearly give a basis for gr(W ).

Now we want to compare |∂V (W )| and |∂V (gr(W ))|. The remark we need is that

for any finite dimensional subspace W of A, and any element a ∈ A1 we have

|agr(W )|= |gr(aW )|,

where agr(W ) is a short notation for [a+A0]gr(W ).

We have

agr(W ) = a
⊕
i≥0

Wi/Wi−1 =
⊕
i≥0

aWi

aWi∩Ai
,

and

gr(aW ) =
⊕
i≥0

aW ∩Ai

aW ∩Ai−1
,

hence we want to show that

aW ∩Ai+1

aW ∩Ai
=

aWi

aWi∩Ai
.

Clearly aWi = a(W ∩Ai) ⊆ aW ∩Ai+1. If the other inclusion is false, then there exists

x ∈W \Ai with ax ∈ Ai+1. So x ∈ Ai+p \Ai for some p≥ 1, with ax ∈ Ai+1. This gives

a zero divisor in gr(A), which is a contradiction. Hence aWi = aW ∩Ai+1.
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Similarly aWi∩Ai = aW ∩Ai. In fact, it’s obvious that aWi∩Ai ⊆ aW ∩Ai. If the

other inclusion is false then there exists x∈W \Ai with ax∈Ai. So x∈Ai+p\Ai for some

p≥ 1, with ax∈ Ai. Again, this gives a zero divisor in gr(A). Hence aWi∩Ai = aW ∩Ai.

This proves the equality we wanted, giving |gr(aW )|= |agr(W )|.
Let’s now choose a basis 1 = a1,a2, . . . ,ar of V . We have

|∂V (gr(W ))| =

∣∣∣∣V gr(W )

gr(W )

∣∣∣∣=
∣∣∣∣∣∑j

a j gr(W )

∣∣∣∣∣−|gr(W )|=

=

∣∣∣∣∣⊕
i≥0

∑
j

a j(W ∩Ai)

a j(W ∩Ai)∩Ai

∣∣∣∣∣−|gr(W )|=

= ∑
i

∣∣∣∣∣∑j

a j(W ∩Ai)

a j(W ∩Ai)∩Ai

∣∣∣∣∣−|gr(W )|= ∑
i

∣∣∣∣∣∑j

a jW ∩Ai+1

a jW ∩Ai

∣∣∣∣∣−|gr(W )|=

= ∑
i

∣∣∣∣∣∑j

a jW ∩Ai+1

(∑ j a j)W ∩Ai

∣∣∣∣∣−|gr(W )| ≤∑
i

∣∣∣∣(∑ j a j)W ∩Ai+1

(∑ j a j)W ∩Ai

∣∣∣∣−|gr(W )|=

=

∣∣∣∣∣⊕
i

(∑ j a j)W ∩Ai+1

(∑ j a j)W ∩Ai

∣∣∣∣∣−|gr(W )|= |gr(VW )|− |gr(W )|= |VW |− |W |=

= |∂V (W )|.

This gives I∗(gr(A),V )� I∗(A,V ).

In [45] (see also [44]) Zhang considers a more general setting.

Definition ([45]). Let A and B two K-algebras and let ν be a map from A to B. We call

ν a valuation from A to B if the following conditions hold:

(v1) ν(ta) = tν(a) for all a ∈ A and t ∈ K;

(v2) ν(a) 6= 0 for all nonzero a ∈ A;

(v3) for any a,b ∈ A, either ν(a)ν(b) = ν(ab) or ν(a)ν(b) = 0;

(v4) for any subspace W of A |ν(W )|= |W |.

The main example of a valuation is the leading-term map of a Γ-filtered algebra,

where Γ is any ordered semigroup. Let A be an algebra with a filtration {Aγ | γ ∈ Γ} of

A, which satisfies the following conditions:
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(f0) K ⊂ Ae where e is the unit of Γ;

(f1) Aα ⊂ Aβ for all α < β in Γ;

(f2) AαAβ ⊂ Aαβ for all α,β ∈ Γ;

(f3) A = ∪γ∈Γ(Aγ −A<γ), where A<γ = ∪α<γAα ;

(f4) 1 ∈ Ae−A<e (and hence K ⊂ Ae−A<e).

Then we define the associated graded algebra to be gr(A) :=⊕γ∈ΓAγ/A<γ with

the multiplication determined by (a+A<α)(b+A<β ) = ab+A<αβ . Notice that this is

the definition we gave before with Γ = N.

We define a map ν : A→ gr(A) by ν(a) = a+A<γ for all a ∈ Aγ −A<γ . This ν

is called the leading-term map of A and it is easy to see that it satisfies (v1,2,3,4) (see

[44], Section 6). If also

(f5) gr(A) is a Γ-graded domain,

then ν(a)ν(b) = 0 will not happen in (v3).

Theorem 4.7.2 (compare to [45], Theorem 4.3). If A and B are two K-algebras, and ν

is a valuation from A to B, then

I∗(B,ν(V ))� I∗(A,V ).

Proof. If W ⊂ A, using Lemma 4.1, (3) in [45], we have

|∂V (W )| = |VW |− |W |= |ν(VW )|− |ν(W )|

≥ |ν(V )ν(W )|− |ν(Z)|= |∂ν(V )(ν(W ))|,

which gives I∗(A,V )� I∗(B,ν(V )), as we wanted.

If Γ is an ordered semigroup, B is a Γ-filtered graded K-algebra with the as-

sociated graded algebra gr(B) and A is a K-algebra, then A⊗K B is Γ-filtered, and its

associated graded is isomorphic to A⊗K gr(B). Here is another immediate consequence

of Theorem 4.7.2:

Corollary 4.7.3. If Γ is an ordered semigroup, A and B are two finitely generated K-

algebras and B is Γ-filtered, then

I∗(A⊗K gr(B))� I∗(A⊗K B).
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4.8 Ore extensions

In this section we study how the isoperimetric profile behaves with Ore exten-

sions.

Definition. Let A be an algebra, and let σ be an endomorphism of A. A linear map δ is

a σ -derivation if

δ (ab) = δ (a)σ(b)+aδ (b)

for all a,b ∈ A. We can introduce a ring structure on the free A-module ⊕i≥0xiA by

defining

ax = xσ(a)+δ (a)

for all a ∈ A. The resulting ring will be called an Ore extension of A, and it will be

denoted by A[x,σ ,δ ].

Proposition 4.8.1. Let A be an algebra, σ an automorphism of A and δ a σ -derivation.

If I∗(A,V ) is subadditive for some subframe V ⊂ A, then

I∗(A,V )� I∗(A[x,σ ,δ ],V +V x).

Proof. There is a natural filtration of A[x,σ ,δ ] determined by the degree of x, such that

the associated graded algebra is isomorphic to A[x,σ ]. Hence there is a valuation ν from

A[x,σ ,δ ] to A[x,σ ], which by Theorem 4.7.2 gives

I∗(A[x,σ ,δ ],W )� I∗(A[x,σ ],W ),

for any graded subframe W =⊕m
i=0Wixi.

Hence it’s enough to show that I∗(A[x,σ ],V +V x)� I∗(A,V ), where V is a sub-

frame of A. First observe that the leading-term map of A[x,σ ] is a valuation from A[x,σ ]

to itself. Again by Theorem 4.7.2 it follows that it’s enough to consider only the graded

subspaces of A[x,σ ].

Let V be a subframe of A. Given a graded subspace Z ⊂ A[x,σ ], we have Z =
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⊕n
i=0Zixi, where Zi ⊂ A for all i. Since ax = xσ(a) for all a ∈ A, we get

|∂V+V x(Z)| =

∣∣∣∣∣ n

∑
i=0

V Zixi +V xZixi

∣∣∣∣∣−|Z|
=

∣∣∣∣∣n+1

∑
i=0

(V Zi +V Zσ−1

i−1 )x
i

∣∣∣∣∣− n

∑
i=1
|Zi|

=
n+1

∑
i=0

∣∣∣V Zi +V Zσ−1

i−1

∣∣∣− n

∑
i=1
|Zi|

≥
n

∑
i=0
|V Zi|−

n

∑
i=1
|Zi|=

n

∑
i=0
|∂V (Zi)|

≥
n

∑
i=1

I∗(|Zi|;A,V )≥C2I∗(C1(
n

∑
i=1
|Zi|);A,V ) =C2I∗(C1|Z|;A,V ),

where by convention Z−1 = Zn+1 = {0}, and C1 and C2 are the two positive constants

coming from the subadditivity assumption. This shows that

I∗(A[x,σ ],V +V X)� I∗(A,V ),

completing the proof.

The following corollary follows from the previous proposition and Theorem

4.3.7.

Corollary 4.8.2. Let A be a domain, σ an automorphism of A and δ a σ -derivation. If

A is amenable, then for any subframe V ⊂ A,

I∗(A,V )� I∗(A[x,σ ,δ ],V +V x).

If A is nonamenable, then A[x,σ ,δ ] is nonamenable.

Remark 7. Notice that in the proof of the previous proposition we used the following

obvious inequality
n+1

∑
i=0

∣∣∣V Zi +V Zσ−1

i−1

∣∣∣≥ n

∑
i=0
|V Zi|.

This inequality doesn’t appear to be optimal and it’s reasonable to expect a better

one.

In this direction, in [45], Theorem 5.2, Zhang essentially proves the following
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Proposition 4.8.3. Let A be an algebra, V ⊂ A a subframe, σ an automorphism of A

and δ a σ -derivation. If I∗(A,V )� n
d−1

d for some d ∈ R, d ≥ 1, then

I∗(A[x,σ ,δ ],V +V x)� n
d

d+1 .

This proposition gives for example a lower bound for the isoperimetric profile of

iterated Ore extensions, starting from a finitely generated algebra A with I∗(A) � n
d−1

d ,

for some d ≥ 1.

We have also these two easy corollaries.

Corollary 4.8.4. Let A be a finitely generated algebra and σ an automorphism of A,

such that σm is an inner automorphism for some m ∈ N. Then

I∗(n;A[x,σ ])� I∗(n;A⊗K K[x]).

Proof. If σm is the inner automorphism given by the conjugation by the invertible el-

ement u ∈ A, then A[x,σ ] is a finite free module over A[xm,σ ] ∼= A[u−1x] ∼= A⊗K K[x].

The result now follows from Lemma 4.5.3.

There is also an analogous version of this corollary with the algebra of Laurent

skew polynomials A[x,x−1,σ ].

Corollary 4.8.5. Let A be a finitely generated algebra and σ an automorphism of A,

such that σm is an inner automorphism for some m ∈ N. If I∗(n;A)∼ n
d−1

d then

I∗(n;A[x,σ ])∼ n
d

d+1 .

Proof. It follows from the previous corollary, Corollary 4.6.2 and Proposition 4.8.3.

4.9 Modules and ideals

If V is a frame of a K-algebra A and M is a left A-module, then we can define the

isoperimetric profile of the A-module M as

I∗(n;M,V ) := inf |∂V (W )|= inf |VW/W |
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where the infimum is taken over all n-dimensional subspaces W of M. As for algebras,

the asymptotic behavior of this function does not depend on the generating subspace V ,

hence we can talk about the isoperimetric profile of the module M and we will denote it

by I∗(M). We observe some properties of this isoperimetric profile.

Proposition 4.9.1. Let A be an algebra, V ⊂ A a subframe of A and M = AM a left

A-module.

(i) If IM = 0 for some ideal I of A, then I∗(AM,V ) ∼ I∗(A/IM,V ), where V is the

image of V in A/I.

(ii) If N is an A-submodule of M, then I∗(M,V )� I∗(N,V ).

(iii) If M is a left A-module, then I∗(AM,V )� I∗(A,V ).

Proof. The first property follows directly from the definitions.

For (ii), given a subspace W ⊂ N, the boundary ∂V (W ) is the same as if we

regard W as a subspace of N or of M, hence I∗(M,V )� I∗(N,V ).

Now by (ii), I∗(M,V ) � I∗(Am,V ) for all m ∈ M. Hence we can assume that

M = Am for some m ∈ M. By (i) we can also assume that M is faithful. In this case,

given a finite dimensional subspace W of A we will have |Wm| = |W |. Then clearly

|∂V (Wm)| ≤ |∂V (W )|. This gives the inequality we wanted.

Consider now a frame V of an algebra A, and an infinite dimensional ideal J in

A. Now J is a left A-module, hence

I∗(J)� I∗(A).

But also J is an A-submodule of A, hence I∗(A) � I∗(J). Therefore I∗(A) ∼ I∗(J) as

A-modules.

Remark 8. Notice that the isoperimetric profile of an ideal J of an algebra A as an A-

module is a priori different from the isoperimetric profile of J as a subalgebra of A.

Part of the text of chapters 3, 4, 5 and 6 of this thesis is a modified version of

“On isoperimetric profiles of algebras”, D’Adderio Michele, J. Algebra, 322, 2009.



Chapter 5

Computations of isoperimetric profiles

of various algebras

The aim of this section is to prove the following theorem:

Theorem 5.0.2. The isoperimetric profile of the following algebras is of the form n
d−1

d

where d is the GK-dimension of the algebra:

• finitely generated algebras of GK-dimension 1,

• finitely generated commutative domains,

• finitely generated prime PI algebras,

• universal enveloping algebras of finite dimensional Lie algebras,

• Weyl algebras,

• quantum skew polynomial algebras,

• quantum matrix algebras,

• quantum groups GLq,pi j(d),

• quantum Weyl algebras,

• quantum groups U (sl2) and U ′(sl2).

52
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5.1 Algebras of GK-dimension 1

For finitely generated algebras of GK-dimension 1 the isoperimetric profile is

constant.

Proposition 5.1.1. If A is a finitely generated algebra of GK-dimension 1, then I∗(A) is

constant.

Proof. Let A be a finitely generated algebra of GK-dimension 1. G. Bergman proved

(see [27], Theorem 2.5) that for an algebra to have GK-dimension 1 is equivalent to have

linear growth, i.e. if V is a frame for A, then for all n ∈ N

|V n+1|− |V n| ≤C,

where C is a positive constant. This inequality can also be written as

|∂V (V n)| ≤C.

Since the growth is linear, this proves that the isoperimetric profile I∗(A) is con-

stant.

Remark 9. The converse of this proposition is not true.

A cheap example is given by the algebra

A = K[x]⊕K[y,z].

We know by Proposition 4.1.2 that I∗(A)� I∗(K[x]), and we know by Proposition

3.3.4 that I∗(K[x]) is constant. However, GK dimA = 2.

There is a more interesting example (cf. [12], Example 4). Consider the algebra

A = K〈x,y〉/J, where J is the ideal generated by all monomials in x and y containing

at least 2 y’s. Clearly V = K +Kx+Ky is a frame of the infinite dimensional algebra

A. Observe that the numbers an := |V n| satisfy the relation an = an−1 + n, with initial

conditions a1 = 3 and a2 = 5. Hence A has quadratic growth, and GK dimA = 2. On the

other hand, if we put Wn := spanK{y,xy,x2y, . . . ,xn−1y}, we have |Wn|= n, and

|∂V (Wn)|= 1

for all n ∈ N. This shows that I∗(A) is constant.
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Notice that both of these examples are not domains.

Question 3. Is it true that if a prime noetherian algebra has constant isoperimetric pro-

file, then it has GK-dimension 1?

Notice that the noetherianity assumption can’t be dropped: the following exam-

ple is due to Jason Bell.

Example 5.1.1 (J. Bell). Consider the algebra A over K with generators x and y and

relations x2, xymx for m not a power of 2, and for each r ≥ 2, xy2m1 xy2m2 x · · · · · xy2mr x

whenever ∑
r
i=1 mi < r2r. This ring has GK dim 2 and is prime. Let V = K +Kx+Ky,

and for k ≥ m+1 let Wk = spanK{yix : 2k +1≤ i < 2k+1}. Then xWk = (0) and yWk +

Wk = Wk +Ky2k+1
x. Hence |VWk/Wk| = 1 and |Wk| = 2k. This easily implies that the

isoperimetric profile of A is constant.

5.2 Commutative Domains

We compute the isoperimetric profile of finitely generated commutative domains.

Proposition 5.2.1. Let A be a finitely generated commutative domain over K, and let

d = GK dimA. Then I∗(n;A)∼ n
d−1

d .

Proof. By the Noether’s normalization theorem the ring A is a finitely generated module

over a subring B isomorphic to K[x1, . . . ,xd].

Theorem 4.4.5 implies that

n
d−1

d ∼ I∗(B)� I∗(A).

Considering now the quotient fields Q ⊂ S of B and A respectively, we have that S is a

finite dimensional vector space over Q, hence using Lemma 4.5.3 and Corollary 4.2.2

we have

I∗(A)� I∗(B),

which gives the result.
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5.3 PI algebras

We compute the isoperimetric profile of finitely generated prime PI algebras.

Proposition 5.3.1. If A is a finitely generated prime PI algebra, then I∗(A) ∼ n
d−1

d ,

where d = GK dimA.

Proof. A theorem of Berele says that a finitely generated PI algebra has finite GK-

dimension (see [27], 10.7).

Suppose that A is a finitely generated prime PI algebra, and consider its quotient

algebra Q, which is known to be a full matrix algebra over a division algebra D, which

is a finite module over its center F . Clearly d = GK dimF , hence the result follows from

Proposition 4.5.1 (2).

We have also the following

Corollary 5.3.2. If A is a finitely generated semiprime PI algebra, then I∗(A) � n
d−1

d ,

where d = GK dimA.

Proof. The proof of this corollary goes like the one of the previous proposition. In this

case Q is a direct sum of full matrix algebras over division algebras, which are finitely

generated over their centers. Hence the same argument we used before together with

Proposition 4.1.2 and well known properties of the GK-dimension gives the result.

Notice that in the semiprime case we have a direct sum of subalgebras, hence

Proposition 4.1.2 shows that in general we don’t have the equivalence.

5.4 Universal enveloping algebras

We compute the isoperimetric profile of universal enveloping algebras of finite

dimensional Lie algebras.

Proposition 5.4.1. The isoperimetric profile of the universal enveloping algebra U (g)

of a finite dimensional Lie algebra g is I∗(n;U (g))∼ n
d−1

d , where d = dimg.
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Proof. Theorem 4.7.1 applies to the universal enveloping algebra U (g) of a finite di-

mensional Lie algebra g. Since gr(U (g)) (with respect to the natural filtration) is iso-

morphic to the algebra of polynomials in d = dimg variables, we have the lower bound

I∗(n;U (g))� I∗(n;gr(U (g)))∼ n
d−1

d .

Now consider a basis e1,e2, . . . ,ed of g, fix the order e1 < e2 < · · · < ed and consider

the lexicographical order on the monomials in the ei’s in U (g). For any n ∈ N consider

the subspace Vn = spanK{em1
1 em2

2 · · ·e
md
d | for all i 0 ≤ mi ≤ n− 1}. If we call U1 =

spanK{1,e1, . . . ,ed}, it follows from the definition of U (g) and the PBW theorem that

a basis of the boundary ∂U1(Vn) is given by the classes of the monomials ek1
1 ek2

2 · · ·e
kd
d

such that exactly one of the ki’s is equal to n and all the other are smaller then n. Now

|Vn| = nd and |∂U1(Vn)| = dnd−1 = d|Vn|
d−1

d . From this follows easily the upper bound

we needed.

We want to derive also some consequences in the infinite dimensional case.

Proposition 5.4.2. If A = U (g) is the universal enveloping algebra of an infinite di-

mensional Lie algebra g, then for any 0 < α < 1 there exists a subframe V ⊂ U1 such

that

I∗(n;U (g),V )� nα .

Proof. A basis of U1 is given by a basis of g and 1. Now gr(U (g)) is isomorphic to

the polynomial algebra K[x1,x2, . . . ] on infinitely many variables, where each variable

xi corresponds to a basis element of g.

Suppose first that V = Vd ⊂ U1, where a basis for Vd is given by the basis ele-

ments of U1 corresponding to 1,x1, . . . ,xd . Then by Theorem 4.7.1

I∗(n,gr(A),V )� I∗(n;A,V ).

But by Proposition 4.4.1, since we can see gr(A)∼= K[x1,x2, . . . ] as a free K[V ]≡
K[x1, . . . ,xd]-module, it follows that I∗(n,gr(A),V )� I∗(n;K[x1, . . . ,xd],V )∼ n

d−1
d . It’s

easy to see by considering the cubes in the x1, . . . ,xd as usual (and it follows also from

Proposition 4.9.1) that I∗(n,gr(A),V ) � n
d−1

d , and hence I∗(n,gr(A),V ) ∼ n
d−1

d . From

this the result easily follows.
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This proposition implies for example that for a finitely generated infinite dimen-

sional Lie algebra (e.g. affine Kac-Moody algebras), its universal enveloping algebras

has an isoperimetric profile faster then any polynomial in n of degree α < 1.

5.5 Weyl algebras

Consider now the Weyl algebra Ad =Ad(K), i.e. the algebra K〈x1, . . . ,xd,y1, . . . ,yd〉
subject to the relations

[xi,x j] = 0 = [yi,y j] and [xi,y j] = δi, j,

where δi, j is the Kronecker symbol. It is well known that Ad is a domain.

Proposition 5.5.1. The isoperimetric profile of the Weyl algebra Ad is

I∗(n;Ad)∼ n
2d−1

2d .

Proof. The lower bound n
2d−1

2d � I∗(n;Ad) is given by Theorem 4.7.1, since gr(Ad) (with

respect to the filtration determined by total degree) is isomorphic to the algebra of poly-

nomials K[x1, . . . ,xd,y1, . . . ,yd].

Now for any n ∈ N consider the subspace Vn = spanK{xm1
1 · · ·x

md
d ymd+1

1 · · ·ym2d
d |

for all i 0 ≤ mi ≤ n− 1}. It’s easy to see that a basis for Ad is given by the monomials

of the form xm1
1 · · ·x

md
d ymd+1

1 · · ·ym2d
d . Calling V = spanK{x1, . . . ,xd,y1, . . . ,yd}, it’s clear

that a basis for ∂V (Vn) is given by the classes of the monomials xk1
1 · · ·x

kd
d ykd+1

1 · · ·yk2d
d

such that exactly one of the ki’s is equal to n and all the other are smaller then n. Now

|Vn| = n2d and |∂V (Vn)| = 2dn2d−1 = 2d|Vn|
2d−1

2d . From this it follows easily the upper

bound we needed.

5.6 Quantized algebras

In this subsection we compute the isoperimetric profile of some quantized alge-

bras related to quantum groups.

We start with quantum skew polynomial algebras. Let {pi j | 1 ≤ i < j ≤ d} be

a set of nonzero scalars in K. The quantum skew polynomial algebra Kpi j [x1, . . . ,xd]
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is generated by the variables x1, . . . ,xd subject to the relations x jxi = pi jxix j for all i <

j. The set of ordered monomials {xl1
1 · · ·x

ld
d | (l1, . . . , ld) ∈ N

d} is a basis over K of

Kpi j [x1, . . . ,xd]. In [44], Example 7.1, Zhang gives a valuation from Kpi j [x1, . . . ,xd] to

K[x1, . . . ,xd], hence by Theorem 4.7.2 we have

I∗(n;Kpi j [x1, . . . ,xd])� I∗(n;K[x1, . . . ,xd])∼ n
d−1

d .

Consider now the subspaces Vn := spanK{xm1
1 · · ·x

md
d | for all i 0≤mi ≤ n−1}

corresponding to the cubes in Zd
≥0, and let V = spanK{1,x1, . . . ,xd}. Clearly |Vn|= nd ,

and from the defining relations it follows that |∂V (Vn)|= dnd−1 = d|Vn|
d−1

d (see the proof

of Corollary 5.5.1). From this it follows easily the upper bound

I∗(n;Kpi j [x1, . . . ,xd])� I∗(n;K[x1, . . . ,xd])∼ n
d−1

d ,

giving

I∗(n;Kpi j [x1, . . . ,xd])∼ n
d−1

d .

The following definition is in [44], Section 7.

Definition. Consider the lexicographical order on Zd with deg(ei) < deg(e j) for i < j,

where ei is the vector with 1 in the i-th position, and 0 elsewhere. An algebra A is

called a filtered skew polynomial algebra in d variables if there is a set of generators

{x1, . . . ,xd} of A such that the following three conditions hold.

(q1) The set of monomials {xl1
1 · · ·x

ld
d | (l1, . . . , ld) ∈ N

d} is a basis over K of A. We

define deg(xl1
1 · · ·x

ld
d ) = (l1, . . . , ld) and F(l1,...,ld) to be the set of all linear combi-

nations of monomials of degree ≤ (l1, . . . , ld).

(q2) {F(l1,...,ld) | (l1, . . . , ld) ∈ N
d} is a filtration of A.

(q3) The associated graded algebra gr(A) is isomorphic to a quantum skew polynomial

algebra.

For example it’s easy to see that the Weyl algebras are filtered skew polynomial

algebras.

The following proposition is an immediate consequence of Theorem 4.7.1 and

what we have shown before.
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Proposition 5.6.1. If A is a filtered skew polynomial algebra in d variables, then

I∗(n;A)� n
d−1

d .

Now we want to consider the quantum matrix algebras Mq,pi j(d) and the quan-

tum groups GLq,pi j(d). See [1] for details on these algebras.

Given a set of nonzero scalars {q}∪{pi j | 1 ≤ i < j ≤ d}, the quantum matrix

algebra Mq,pi j(d) is generated by {xi j | 1 ≤ i, j ≤ d} subject to the relations (7.4.1) of

[44, p. 2885]. It’s easy to show (cf. [44], Example 7.4) that Mq,pi j(d) is a filtered skew

polynomial algebra on d2 variables, hence by Proposition 5.6.1

I∗(n;Mq,pi j(d))� n
d2−1

d2 .

To prove the other inequality, for each n ∈ N we define the subspace

Vn := spanK{xm11
11 xm12

12 · · ·x
m1d
1d xm21

21 · · ·x
m2d
2d · · ·x

mdd
dd | for all i and j 0≤ mi j ≤ n−1},

and we put V := K + spanK{xi j | 1≤ i, j ≤ d}. Using the defining relations it’s easy to

show that VVn ⊂Vn+1. This would imply that

|∂V (Vn)| = |VVn|− |Vn| ≤ |Vn+1|− |Vn|

= (n+1)d2
−nd2

∼ nd2−1 = |Vn|
d2−1

d2 .

As usual, from this it follows easily the upper bound

I∗(n;Mq,pi j(d))� n
d2−1

d2 ,

which gives

I∗(n;Mq,pi j(d))∼ n
d2−1

d2 .

The quantum group GLq,pi j(d) is defined to be the localization Mq,pi j(d)[D
−1],

where D is the quantum determinant of Mq,pi j(d), and Mq,pi j(d)[D
−1] indicates the right

localization with respect to the subset {Dn | n ∈ N}. Hence by Corollary 4.2.2 we have

I∗(n;GLq,pi j(d))∼ I∗(n;Mq,pi j(d))∼ n
d2−1

d2 .

Consider now the quantum Weyl algebra Ad(q, pi j) (see [17] for details on this

algebras).
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Given a set of nonzero scalars {q}∪ {pi j | 1 ≤ i < j ≤ d}, the quantum Weyl

algebra Ad(q, pi j) is generated by {x1, . . . ,xd,y1, . . . ,yd} subject to the relations given

in [44], Example 7.5. It’s easy to see (cf. [44], Example 7.5) that defining deg(xi) =

d+1− i and deg(yi) = 2d+1− i, Ad(q, pi j) is a filtered skew polynomial algebra in 2d

variables. Hence by Proposition 5.6.1 we have

I∗(n;Ad(q, pi j))� n
2d−1

2d .

To prove the other inequality, for each n ∈ N we define the subspace

Vn := spanK{xm1
1 · · ·x

md
d yn1

1 · · ·y
nd
d | for all i and j 0≤ mi,n j ≤ n−1},

and we put V := K+spanK{x1, . . . ,xd,y1, . . . ,yd}. Again we can show that VVn ⊂Vn+1,

from which it follows easily the upper bound

I∗(n;Ad(q, pi j))� n
2d−1

2d ,

which gives

I∗(n;Ad(q, pi j))∼ n
2d−1

2d .

Consider now the quantum group U (sl2) (see [25]). This is an algebra isomor-

phic to an algebra generated by {e, f ′,h} subject to the relations (7.6.2) of [44], pag.

2887.

It’s easy to see that it is a filtered skew polynomial algebra in three variables,

setting deg(h) = (1,0,0), deg(e) = (0,1,0) and deg( f ′) = (0,0,1) (cf. [44], Example

7.6). This by Proposition (5.6.1) gives the lower bound

I∗(n;U (sl2))� n
2
3 .

Now consider for each n ∈ N the subspace

Vn := spanK{hm1em2 f ′m3 | 0≤ m1 ≤ 2(n−1) and 0≤ mi ≤ n−1 for i = 2,3},

and let V = spanK{1,h,e, f ′}. We can show that VVn ⊆ Vn+1, from which it follows

easily the upper bound

I∗(n;U (sl2))� n
2
3 ,
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which gives

I∗(n;U (sl2))∼ n
2
3 .

There is also another version of the quantum universal enveloping algebra U (sl2),

say U ′(sl2), which was studied in [26]. Given q ∈ K \ {0}, the quantum universal en-

veloping algebra U ′(sl2) is generated by {e, f ,h} subject to the relations

qhe− eh = 2e,

h f −q f h = −2 f , (5.1)

e f −q f e = h+
1−q

4
h2.

Defining deg(h) = (1,0,0), deg(e) = (0,1,0) and deg( f ) = (0,0,1), U ′(sl2) is a filtered

skew polynomial algebra in three variables (cf. [44], Example 7.6). This by Proposition

5.6.1 gives the lower bound

I∗(n;U ′(sl2))� n
2
3 .

For the upper bound we can use the same subspaces Vn (where of course we

replace f ′ with f ).

We summarize the computations of this section in the following

Proposition 5.6.2. With the notations we explained in this subsection,

(1) I∗(n;Kpi j [x1, . . . ,xd])∼ n
d−1

d ;

(2) I∗(n;Mq,pi j(d))∼ n
d2−1

d2 ;

(3) I∗(n;GLq,pi j(d))∼ n
d2−1

d2 ;

(4) I∗(n;Ad(q, pi j))∼ n
2d−1

2d ;

(5) I∗(n;U (sl2))∼ n
2
3 ;

(6) I∗(n;U ′(sl2))∼ n
2
3 .

All together the computations that we performed in this section give a proof of

Theorem 5.0.2.

Part of the text of chapters 3, 4, 5 and 6 of this thesis is a modified version of

“On isoperimetric profiles of algebras”, D’Adderio Michele, J. Algebra, 322, 2009.



Chapter 6

Relations with other invariants

In this section we compare the isoperimetric profile to some other invariants for

infinite dimensional algebras.

6.1 I∗ and the Følner function

Given an amenable algebra A and a subframe V of A, we define the Følner func-

tion F∗(n;A,V ) with respect to V (cf. [21]) to be the minimal dimension of a subspace

W of A such that

|∂V (W )| ≤ |W |
n

.

Notice that this function is not defined for a nonamenable algebra.

As we did for the isoperimetric profile, we say that an algebra A has Følner

function if there exists a subframe V of A such that

F∗(A,W )� F∗(A,V )

for any subframe W of A. We denote this function and its asymptotic equivalence class

by F∗(A), and we say that a subframe V measures F∗(A) if F∗(A)∼ F∗(A,V ).

It can be proved in the same way as we did for the isoperimetric profile that a

finitely generated algebra A has Følner function, and its asymptotic behavior is measured

by any frame V of A.

62
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Notice that if n is in the image of F∗(A,V ), then

I∗(n) = I∗(|W |)≤ |∂V (W )| ≤ |W |
F−1
∗ (|W |)

for a suitable subspace W of dimension n. This would suggest the inequality

I∗(n)�
n

F−1
∗ (n)

,

where F−1
∗ (n) := sup{k | F∗(k)≤ n}.

Question 4. Is this inequality always true? Is it true for domains? Is it true for semi-

groups?

Of course there is the analogous definition for semigroups: in this case the Følner

function is denoted by F◦ (cf. [21]).

In [21] there are various proofs of the lower bound for the Følner function of

Zd
≥0, the upper bound being clear considering the cubes:

F◦(n;Zd
≥0)∼ nd.

Notice that in this particular case I◦(n)∼ n/F−1
◦ (n).

Question 5. Are these two functions always equivalent? Is it true for algebras? Is it true

for domains?

The equivalence I∗(n) ∼ n/F−1
∗ (n) is correct at least in the case of polynomial

algebras. In fact, using the fact that the Følner functions of an orderable semigroup and

its semigroup algebra are asymptotically equivalent (see [21], Section 3), we have

F∗(n;K[x1, . . . ,xd])∼ nd.

Sometimes the Følner function is easier to handle than the isoperimetric profile

(see [13]). For example the Følner function of the tensor products has an easier relation

with the Følner functions of the factors.

Proposition 6.1.1. Given A and B two K-algebras, if VA and VB are two subframes of A

and B respectively, and V :=VA⊗1+1⊗VB, we have

F∗

(
mn

m+n
;A⊗K B,V

)
≤ F∗(m;A,VA)F∗(n;B,VB).
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Proof. We use the proof of Proposition 4.6.1: we keep the same notation we used there,

but this time we choose suitable subspaces W ⊂ A and Z ⊂ B for which |∂VA(W )| ≤
|W |/m and |∂VB(Z)| ≤ |Z|/n. We get

|∂V (W ⊗Z)| ≤ |Z||∂VA(W )|+ |W ||∂VB(Z)|

≤ |W ||Z|
m

+
|W ||Z|

n
=

m+n
mn
|W ||Z|,

which gives the result.

Putting m = n in the proposition we get the following

Corollary 6.1.2. In the same notation of the previous proposition,

F∗ (n;A⊗K B,V )� F∗(n;A,VA)F∗(n;B,VB).

6.2 I∗ and the lower transcendence degree

In [45] J. J. Zhang introduced the notion of the lower transcendence degree of an

algebra.

Definition. If for every subframe V ⊂ A there is a subspace W ⊂ A such that

|∂V (W )|= 0,

then we define the lower transcendence degree of A to be 0 and we write Ld(A) = 0.

Otherwise there is a subframe V such that for every subspace W

|∂V (W )| ≥ 1.

In this case the lower transcendence degree of A is defined to be

Ld(A) := sup
V

sup{d ∈ R≥0 | ∃C > 0 : |∂V (W )| ≥C|W |1−
1
d for all W},

where V ranges over all subframes of A. Hence Ld(A) is a nonnegative real number or

infinity.
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Observe that in the definition of the lower transcendence degree we can use

the inequality I∗(|W |;A,V ) � |W |1− 1
d instead of |∂V (W )| ≥ C|W |1− 1

d . In the case of a

finitely generated algebra, since we already showed that the asymptotic behavior of the

isoperimetric profile does not depend on the frame, we can drop the first supremum in

the definition and we can take simply some fixed frame V .

It’s now clear from the definitions that if two algebras A and B satisfy I∗(A) ∼
I∗(B), then Ld(A) = Ld(B). The converse is not always true:

Remark 10. In general we do not have the inequality

n1− 1
Ld(A) � I∗(n). (6.1)

For example in the case I∗(n)∼ nα/ logn for some 0 < α ≤ 1, we would have

nβ � I∗(n)

for any β < α , but

nγ � I∗(n)

for any γ ≥ α . For example, I∗(n) ∼ n/ logn (α = 1) is the isoperimetric profile of the

group algebra of a finitely generated polycyclic group of exponential growth (see [33]).

Hence (Ld(A)−1)/Ld(A) = α in this case, which shows that the inequality is not true.

From this remark we see that if we have for example two algebras A and B

with I∗(n;A) ∼ n/ logn and I∗(n;B) ∼ n (e.g. the group algebra of a finitely generated

polycyclic group of exponential growth and a free algebra of rank two), then clearly

I∗(A) � I∗(B), but Ld(A) = Ld(B) = ∞. All this shows that the isoperimetric profile is

finer than the lower transcendence degree as an invariant for algebras.

With these observations and all the tools that we have developed we see that

this invariant behaves well with localizations. This makes it a good (probably the best

known) “trancendence degree” of division algebras infinite dimensional over their cen-

ters, whose absence have been a major obstacle to the study of such rings.

The following proposition follows directly from the definitions

Proposition 6.2.1. If d = Ld(A), then n
s−1

s � I∗(n;A,V ) for any s � d and some par-

ticular subframe V ⊂ A. Moreover, I∗(n;A,W ) � n
t−1

t for any t > d and any subframe

W ⊂ A.
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In [45], Proposition 1.4, Zhang proves that for any algebra A,

LdA≤ TdegA≤ GK dimA,

where TdegA is the Gelfand-Kirillov transcendence degree (see [45] for the definition).

This together with Proposition 6.2.1 implies the following theorem, which gen-

eralizes a result in [11].

Theorem 6.2.2. If all the finitely generated subalgebras of an algebra A have finite

lower transcendence degree, then A is amenable.

An example of a finitely generated amenable division algebra with infinite GK-

transcendence degree is given in [11]. Theorem 6.2.2 together with previous results in

this paper allows us to provide new examples of this sort.

An easy example is the field F := K(x1,x2, . . .) of rational functions in infinitely

many variables.

Even more interesting examples come from universal enveloping algebras of

infinite dimensional Lie algebras with subexponential growth, for example affine Kac-

Moody algebras. In fact by [37] these algebras have subexponential growth, and so they

are amenable (see [10]). But from Proposition 5.4.2 it follows that they have infinite

lower transcendence degree. Since they are domains, we can consider their quotient

division algebras to provide examples of division algebras.

In [45, p. 181], Zhang asked if is it true that for any orderable semigroup Γ

the semigroup algebra KΓ is Ld-stable, i.e. LdKΓ = GK dimKΓ. We conclude the

subsection giving a positive answer:

Proposition 6.2.3. The group algebra KΓ of an ordered semigroup Γ is Ld-stable.

Proof. By a theorem of Gromov (see [21], Section 3) we know that I◦(Γ,S)∼ I∗(KΓ,S)

for any finite subset S ⊂ Γ. Observe that d := GK dimKΓ is the degree of growth of

the semigroup Γ, which may be of course infinity. Now by the Couhlon-Saloff-Coste

inequality (Theorem 3.3.1) we have

I∗(n;Γ)� n
d−1

d ,
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in case d is finite, or

I∗(n;Γ)� n/Φ(n),

where Φ is the inverse function of the growth of Γ, if d is infinity. In the last case Φ is

slower then any positive power of n, hence in both cases

LdKΓ≥ GK dimKΓ.

Since the other inequality is always true, this completes the proof.

6.3 I∗ and the growth

The Weyl algebra A1 and its quotient division algebra D1 give an example that

shows that the isoperimetric profile is not a finer invariant then the GK-dimension. An-

other example is in [27], Example 4.10, where the algebra U (g) and some its localiza-

tion have different GK-dimensions, but they have the same isoperimetric profiles.

We may ask for an analogue of the Coulhon-Saloff-Coste inequality (Theorem

3.3.1) for algebras. In Remark 9 we considered the algebra A = K〈x,y〉/J, where J is the

ideal generated by all monomials in x and y containing at least 2 y’s. We already showed

that this algebra has constant isoperimetric profile, but it has GK-dimension 2. This

example shows that we don’t have in general an analogue for algebras of the Coulhon-

Saloff-Coste inequality. A cheaper example of this type is the algebra K[x]⊕K〈y,z〉,
which we also considered in the Remark 9. Both these examples are not domains.

An example of a prime algebra is Example 5.1.1. An example of a domain is

given by the quotient division algebra D1 of the Weyl algebra A1.

In [21], Section 1.9, Gromov asks if there is a bound on the growth of a domain

by its Følner function. Keeping in mind Questions 4 and 5, this bound would correspond

to the Coulhon-Saloff-Coste inequality for the isoperimetric profile. The algebra D1

answers this question in the negative, since in this case clearly the Følner function F∗(n)

of D1 is asymptotically bounded by n2, but D1 grows exponentially. Of course D1 is not

finitely generated.

A finitely generated example is given by the localization A1Ω−1 of the multi-

plicative closed subset Ω (of the Weyl algebra A1) generated by x and y. This is a finitely
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generated noetherian domain with GK-dimension 3 but with lower transcendence degree

2 (see Example 4.11 in [27] for details).

6.4 A conjecture

Let A be a domain, and let D⊂A be a subalgebra of A which is a division algebra

(over our base field K). We can see A as a (right) algebra over D. In this case we will

use the notation AD. In a natural way we can define all our invariants over a D instead

over K: first of all, given a subset S⊂ A, we define

|S|D := right span of S over D.

Hence, given any subframe V ⊂ A, and a subspace W ⊂ A, we can define

|∂V (W )|D := |VW |D−|W |D.

With this we can clearly define the notions of isoperimetric profile, Følner function and

lower transcendence degree of A over D, and we denote them I∗(n;AD), F∗(n;AD) and

LdD(A) respectively.

We formulate our conjecture:

Conjecture 1. Let A be a domain, and let D⊂A be a subalgebra of A which is a division

algebra. Then

F∗(n;A)� F∗(n;D) ·F∗(n;AD).

To justify our conjecture, we show how this conjecture implies a well known

conjecture of Zhang (see [45]).

Lemma 6.4.1. For simplicity, let’s assume that A is finitely generated. Then

Ld(A) = sup{d ∈ R, d ≥ 1 | ∃c > 0 : F∗(n;A)≥ c ·nd}.

Proof. Suppose that I∗(n;A) � n1− 1
d for some d ∈ R, d ≥ 1. Hence there exists b > 0

such that for all N ∈ N
I∗(N)≥ b ·N1− 1

d .
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Also, assume that I∗(N;A)≤ N/n; therefore

b ·N1− 1
d ≤ I∗(N)≤ N/n,

hence

N ≥ bd ·nd,

i.e. F∗(n;A)≥ c ·nd for c = bd .

Suppose now that for some d ∈ R, d ≥ 1, we have a c > 0 such that F∗(n;A) ≥
c ·nd for all n ∈ N. By contradiction, if we assume that I∗(n;A) � n1− 1

d , then for every

r ∈ N we can find an Nr such that

I∗(Nr;A)�
1
r
· (Nr)

1− 1
d =

Nr

r · (Nr)1/d
.

Hence, by the definition of Følner function,

F∗(r · (Nr)
1/d;A)≤ Nr.

This implies

Nr ≥ c(r · (Nr)
1/d)d = crdNr.

For r big enough this gives a contradiction.

The same argument works for the case of LdD.

The lemma immediately implies that our conjecture implies the following con-

jecture of Zhang (see [45]):

Conjecture 2 (Zhang). Let A be a domain, and let D⊂ A be a subalgebra of A which is

a division algebra. Then

LdA≥ LdD+LdDA.

This conjecture has many interesting consequences in noncommutative ring the-

ory, especially its part related to noncommutative projective algebraic geometry (see

[45] for details). Aside from a new proof of the Artin-Stafford gap (proved by Smok-

tunowicz), it would imply the following well known conjectures due to Lance Small and

Michael Artin.
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Conjecture 3 (Small). Let A be an Ore domain which is not locally PI and F a commu-

tative subalgebra of the quotient division algebra of A. Then GK dimF ≤GK dimA−1.

This conjecture has been recently proved by Jason Bell in [4].

Conjecture 4 (Artin). Let D be a division algebra over an algebraically closed field k

with GK dimD > 1. Then LdD≥ 2.

Part of the text of chapters 3, 4, 5 and 6 of this thesis is a modified version of

“On isoperimetric profiles of algebras”, D’Adderio Michele, J. Algebra, 322, 2009.
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