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Abstract

Statistical inhomogeneity of material properties, variations in nominal geometry,

manufacturing tolerances, operational wear lead to uncertainties in the parameters

associated with FE models of turbine engine rotors and consequently to uncertainties

in their vibration response. Reliable assessment of the rotor system behavior cannot

be made unless the effects of such uncertainties are understood and quantified. In

practical situations the parametric probabilistic approach is the first choice to employ

in that context yielding efficient algorithms with feasible implementations. A set of

measured or estimated experimentally random parameters is repeatedly propagated

through rotor models in Monte-Carlo simulations, which would pose a formidable

computational task if the full order high-fidelity finite element (FE) models were

utilized. The objective of this dissertation is to decrease the expense of analyzing

systems modified in the parametric space by developing accurate model reduction

computational techniques suitable for repeated analysis, in particular addressing the

problem of large variations in nominal geometry. The first part of the dissertation

is concerned with the structural blade mistuning problem. The existing projection

based model order reduction techniques capable to numerically characterize varia-

tions in nominal geometry of periodic structures are examined, a method generat-

ing very compact reduced order models (ROM) based on correction, as opposed to

expansion, of the modal subspace is selected and its limitations are analyzed. A

new algorithm drawing on optimal preconditioned iterative methods for generalized

eigenvalue problem is introduced to address its deficiencies. Both techniques are

combined in a stochastic simulation framework to analyze the effect of random mis-

tuning on geometrically modified bladed disks, where random parameter variation

in blade properties is introduced in modal space at component level. A family of

benchmark problems on an industrial scale bladed disk model are utilized in a com-

parative study assessing the amount of computational effort and storage, scalability

and accuracy as well as providing insight on underlying physical phenomena. In the

second part of dissertation a new computational technique is proposed focusing on

prediction of the effects of uncertainty in rotor assembly inter-stage geometry on
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global vibration response. The algorithm stands apart from the traditional modal

projection based framework employing harmonic truncation only. It is shown that

decent performance can be achieved due to reliance on sparse matrix linear alge-

bra and sampling of small parametric space. Particular emphasis is given to the

computational efficiency of ROM update. Accuracy and performance of the tech-

nique is illustrated with representative simulation examples over a practical range of

geometrical parameter variations and operational conditions.
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Abrégé

La prise en compte des effets des incertitudes est un élément fondamental pour une

conception fiable des machines tournantes. Les inhomogénéités matérielles, les vari-

ations de géométrie, les tolérances de fabrication ou encore les phénomènes d’usure

en service comptent parmi les nombreuses sources de variabilité des paramètres de

modélisation qui conduisent, au niveau de la réponse dynamique des structures, à

des incertitudes qu’il est nécessaire de quantifier.

En pratique, l’approche probabiliste paramétrique est souvent privilégiée pour sa

facilité des mise en œuvre ainsi que pour l’efficacité des algorithmes utilisables. Dans

le cadre de simulations de Monte-Carlo, qui consistent à évaluer de façon répétée

un modèle en fonction d’un grand nombre de réalisations de paramètres aléatoires

(déterminés expérimentalement ou estimés), les coûts de calcul peuvent s’avérer pro-

hibitifs si des modèles éléments-finis de haute fidélité sont utilisés. L’objectif de cette

thèse est de diminuer l’effort nécessaire à l’évaluation de la réponse de systèmes in-

certains en développant des techniques de réduction de modèles adaptées à des anal-

yses répétées et permettant, en particulier, la prise en compte de grandes variations

géométriques.

La première partie de cette dissertation concerne le problème du désaccordage

structurel des roues aubagées. Les techniques existantes de réduction de modèles

basées des projections qui permettent de caractériser les variations de géométrie de

structures périodiques sont dans un premier temps revues. Une méthode amenant

un modèle réduit très compact, basée sur la correction et non l’expansion du sous-

espace modal est ensuite sélectionnée et ses limitations sont analysées. Un nouvel

algorithme, inspiré des méthodes itératives de pré-conditionnement optimal pour

les problèmes aux valeurs propres généralisés, est ensuite introduit pour palier ces

insuffisances. Les deux techniques sont combinées dans le cadre de simulations

stochastiques pour analyser les effets désaccordage aléatoire et de modifications

géométriques pour les roues aubagées. Les variations aléatoires sont introduites

en tant que paramètres des aubes dans l’espace modal. Une étude comparative est

ensuite présentée en s’appuyant sur un modèle de taille industrielle. Les coûts de
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calcul, les possibilités d’extension ou encore la précision des méthodes sont examinés

et des aspects phénoménologiques sont discutés.

Dans la second partie de cette dissertation, une nouvelle approche numérique

est proposée pour la quantification des effets d’incertitudes géométriques dans les

assemblages inter-étages des rotors. L’algorithme se distingue des approches tradi-

tionnelles basées sur des projections en cela que seule une troncature harmonique

est considérée. Des performances satisfaisantes peuvent être obtenues grâce à des

opérations d’algèbre linéaire sur des matrices creuses ainsi qu’à l’échantillonnage

d’un espace paramétrique minimal. En particulier, l’efficacité numérique de la mise

à jour du modèle réduit sera mise en évidence. Enfin, la précision et le performance

de cette méthode seront illustrées au moyen d’exemples représentatifs tant en termes

de variations de paramètres géométriques que de conditions de fonctionnement.



v

Acknowledgments

I would like to express my gratitude to my first advisor, Prof. Christophe Pierre,

for introducing me to a new exciting area and proposing the dissertation’s topic.

I would like to thank him for his invaluable support, for giving me outstanding

academical freedom, providing interesting applications of my research and interaction

with industry. Furthermore, I would like to thank Prof. Hannah Michalska, my

second advisor. This dissertation would not be possible without her excellent research

advice. My gratitude also goes to Professors Luc Mongeau and Michael Paidoussis,

for serving on my examination committee and for their comments. I am grateful

to my colleagues at Structural Dynamic and Vibration Lab. To Denis Laxalde for

numerous great discussions and help, due to his patience and availability the majority

of sentences in this dissertation contain verbs and articles. I owe thanks to Mathias

Legrand, who lent his research expertise and who supplied lots of creativity and

energy to my thesis working his magic with LaTeX. Shahram Tabandeh and Melita

Hadzagic, my colleagues at CIM, deserve to be mentioned for their support and

encouragement. Finally, I would like to acknowledge Pratt & Whitney Canada for

their financial and technical support of the second part of this research.



vi

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Uncertainty in structural analysis . . . . . . . . . . . . . . . . . . . . 2

1.3 Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Thesis organization and outline . . . . . . . . . . . . . . . . . . . . . 15

2 Reduced Order Modeling of Geometrically Mistuned Bladed Disks 17

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Static Mode Compensation method . . . . . . . . . . . . . . . . . . . 19

2.3 Jacobi-Davidson method for geometrical mistuning problem . . . . . 25

2.3.1 Computational strategies . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Algorithm description . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Statistical Quantification of the Effects of Blade Geometry Modifi-

cation on Mistuned Disks Vibration 54

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Hybrid algorithm formulation . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Algorithm accuracy . . . . . . . . . . . . . . . . . . . . . . . . 62



Contents vii

3.3.2 One damaged blade example . . . . . . . . . . . . . . . . . . . 62

3.3.3 Multiple damaged blades test case . . . . . . . . . . . . . . . . 77

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Parameterized Reduced Order Modeling of Misaligned Stacked Disks

Rotor Assemblies 85

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 3D rotordynamics equations of motion . . . . . . . . . . . . . 87

4.2.2 Modeling of disk misalignment . . . . . . . . . . . . . . . . . . 89

4.2.3 Misalignment representation in Fourier domain . . . . . . . . 92

4.2.4 Interstage coupling and assembly . . . . . . . . . . . . . . . . 95

4.2.5 Algorithm for repeated ROM evaluation . . . . . . . . . . . . 96

4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Effect of misalignment on eigenmodes and system response . . 99

4.3.2 Accuracy of the proposed method . . . . . . . . . . . . . . . . 105

4.3.3 Statistical analysis example . . . . . . . . . . . . . . . . . . . 106

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Conclusion and Future Research Directions 112

5.1 Contributions and findings . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Selected MATLAB Implementations 117

A.1 Implementation of the Jacobi-Davidson technique . . . . . . . . . . . 117

Bibliography 128



viii

List of Figures

2.1 Finite element model of a integrally bladed rotor (a) and geometry of

nominal and mistuned blades (b). The mistuning affects 1116 DOF

of one blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Natural frequencies versus nodal diameters. The frequency ranges

that include 2S and 2T/2F mode families are marked by horizontal

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Nominal and perturbed natural frequencies for the test case model in

34 − 36 kHz region. The perturbation brings about a localized mode

with natural frequency far away from the unperturbed one. Otherwise,

the clustered eigenvalues (all belong to 2S family) seem to be more

stable under perturbation. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Canonical angles between nominal and perturbed individual eigenvec-

tors (a) and eigenspaces (b) for the test case model in 34 − 36 kHz

region. Note the large angle that makes the first “rogue” localized per-

turbed mode with any of nominal ones. Also note that one member of

almost every nominal doublet keeps its original harmonic content. Plot

(b) shows the distance between perturbed and nominal eigenspaces.

In order to extract accurate eigenpairs from the nominal eigenspace

correction for the five largest canonical angles must be carried out. . 31



List of Figures ix

2.5 Norm of residual vectors calculated for nominal mode shapes in 34 −
36 kHz region as a function of spatial orientation. The residual norm

demonstrates arbitrary orientation and spatial periodicity of nominal

eigenvectors. An oriented nominal eigenvector with minimum residual

corresponds to its almost periodic perturbed counterpart. . . . . . . . 32

2.6 Effect of spatial orientation and initial guess vector on initial residual

norm for the test case model in 34 − 36 kHz region. By applying the

knowledge about our system one can consistently reduce residual of

the linear correction equation before any iterations taken. If spatial

orientation strategy is applied, the initial guess reduces residual for 13

correction equations out of 17. . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Effect of spatial orientation (a) and initial guess vector with spatially

oriented modes (b) on preconditioned GMRES relative residual con-

vergence history for the test case model in 34− 36 kHz region. Faster

on average GMRES convergence can be observed in both cases. . . . 35

2.8 Comparison of GMRES relative residual convergence history with

ILU (0) and DFT-SPAI (a), ILUT and DFT-SPAI (b) preconditioners

for the test case model in 34−36 kHz region. The DFT-SPAI precon-

ditioner consistently outperforms both structure-based and threshold-

based ILU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Natural frequencies (a) and canonical angles between eigenvectors (b)

of nominal and perturbed test case model in 15− 16 kHz region. The

“rogue” localized mode can be seen with natural frequency far away

from the original cluster and large angle with nominal ones in the

lower left corner of plot (b). . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Localized mode shapes corresponding to 14,965 Hz (a) and 33,940 Hz

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Figures x

2.11 MAC ratio (a) and natural frequency error (b) between reference and

approximated by SMC eigenpairs for the test case model in 15−16 kHz

region. SMC accurately approximates perturbed eigenpairs in this

region, with MAC above 0.9995 and natural frequency error below

0.003%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.12 Effect of GMRES relative residual tolerance on MAC (a), natural

frequency error (b) and number of inner solves (c) for the test case

model in 15 − 16 kHz region. A reasonable quality solution can be

obtained with a single outer iteration by increasing the inner solver

accuracy. With a total of 5101 GMRES iterations taken the MAC for

all modes is above 0.996 and natural frequency error below 0.05%. . . 47

2.13 MAC ratio (a) and natural frequency error (b) between reference and

approximated by SMC eigenpairs for the test case model in 34−36 kHz

region. In this case SMC fails to accurately approximate localized

perturbed mode corresponding to 33,940 Hz, which has MAC 0.86 and

natural frequency error 0.73% due to poor preconditioning calculated

with fc = 34,700 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 Outer loop convergence history of 11 modes after first outer iteration

of the preconditioned iterative method in 34 − 36 kHz region. Each

curve shows the convergence of the residual norm of a Ritz pair fallen

in 33.9− 35.2 kHz region at outer steps. Note that the outer residual

tolerance level is marked by the dashed horizontal line. . . . . . . . . 49

2.15 MAC ratio (a) and natural frequency error (b) between reference and

approximated by the preconditioned iterative method eigenpairs for

the test case model in 34 − 36 kHz region. MAC ratio for all modes

after 10 outer iterations taken is above 0.9992 and natural frequency

error below 0.0002%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Finite element model of bladed disk. . . . . . . . . . . . . . . . . . . 59

3.2 Natural frequencies versus nodal diameters. . . . . . . . . . . . . . . 59



List of Figures xi

3.3 Geometrical perturbation patterns representing some typical blade

damage scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Clamped blade eigenvalue difference (a) and MAC values (b) between

nominal and perturbed modes that correspond to selected blade mo-

tion dominated families of modes. . . . . . . . . . . . . . . . . . . . . 61

3.5 Natural frequency errors calculated with reference and ROM models

in 14.5 − 16.5 kHz region. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 MAC values between modeshapes (a) and cosine of canonical angles

between corresponding eigenspaces (b) calculated with reference and

ROM models in 14.5− 16.5 kHz region. Note that low MAC values is

the result of cross contamination of two eigenmodes close in frequency,

whereas the entire eigenspace approximated by ROM is accurately

predicted as indicated by canonical angles. . . . . . . . . . . . . . . . 64

3.7 Comparison of envelops of maximum forced response obtained with

EO2 in 14.5 − 16.5 kHz region (a), EO5 in 14.5 − 16.5 kHz (b) and

EO3 excitation in 32−37 kHz (c) calculated with reference and ROM

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 The effect of perturbation of a single blade on system eigenvalues

belonging to 1S fundamental mode family (a), detailed view of 29th

eigenvalue (b). Note the appearance of “rogue” blade modes, in par-

ticular a perturbed member of harmonic 14 23,358 Hz doublet marked

by the dashed line box. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 The effect of perturbation of a single blade on system eigenvector cor-

responding to harmonic 14 23,358 Hz eigenvalue. Nominal mode shape

(a), perturbed mode shape corresponding to 23,359 Hz eigenvalue of

pattern Fig. 3.3(b) (b), 23,371 Hz of pattern Fig. 3.3(a) (c), 23,402 Hz

of pattern Fig. 3.3(d) (d) and highly localized perturbed mode shape

corresponding to 23,532 Hz eigenvalue of patterns Fig. 3.3(e) (e). . . . 67



List of Figures xii

3.10 The 99.9th percentile magnification factor of nominal disk in 22 −
24.5 kHz band obtained with EO1 (a), EO2 (b) and EO3 (c). The

geometrical perturbation contribution to random response (maximum

and minimum of all patterns) is marked with error bars. . . . . . . . 69

3.11 Magnification factor difference (99.9th percentile) between perturbed

and nominal disks in 22−24.5 kHz band obtained with EO1 (a), EO2

(b) and EO3 (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 The 99.9th percentile magnification factor of nominal disk in 32 −
37 kHz band obtained with EO1 (a), EO4 (b) and EO12 (c). The

geometrical perturbation contribution to random response (maximum

and minimum of all patterns) is marked with error bars. . . . . . . . 71

3.13 Magnification factor difference (99.9th percentile) between perturbed

and nominal disks in 32 − 37 kHz band obtained with EO1 (a), EO4

(b) and EO12 (c) excitation. . . . . . . . . . . . . . . . . . . . . . . . 72

3.14 Envelops of maximum forced response obtained with EO1 excitation

in 22−25.5 kHz band for geometrically mistuned by pattern Fig. 3.3(c)

system subjected to small mistuning with standard deviation δ vary-

ing from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean

and minimum response out of 100 random realizations. The system

response without geometrical mistuning is depicted in thinner line. . . 73

3.15 Envelops of maximum forced response obtained with EO1 excitation

in 22−25.5 kHz band for geometrically mistuned by pattern Fig. 3.3(h)

system subjected to small mistuning with standard deviation δ vary-

ing from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean

and minimum response out of 100 random realizations. The system

response without geometrical mistuning is depicted in thinner line. . . 74



List of Figures xiii

3.16 Envelops of maximum forced response obtained with EO4 excitation

in 32−37 kHz band for geometrically mistuned by pattern Fig. 3.3(h)

system subjected to small mistuning with standard deviation δ vary-

ing from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean

and minimum response out of 100 random realizations. The system

response without geometrical mistuning is depicted in thinner line. . . 75

3.17 Comparison of probability density functions of magnification factors

for perturbed and nominal disks pattern Fig. 3.3(g) in 22 − 24.5 kHz

with EO1 excitation (a), pattern Fig. 3.3(c) in 22 − 24.5 kHz with

EO1 excitation (b) and pattern Fig. 3.3(h) in 32 − 37 kHz with EO4

excitation (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.18 Comparison of maximum responding blade histograms in 22−24.5 kHz

region with EO1 excitation: nominal mistuned disk (a), pattern Fig. 3.3(a)

(b), pattern Fig. 3.3(c) (c) and pattern Fig. 3.3(h) in 32− 37 kHz re-

gion with EO4 excitation (d). . . . . . . . . . . . . . . . . . . . . . . 79

3.19 The 99.9th percentile magnification factor of nominal disk in 32 −
37 kHz band obtained with EO1 (a), EO4 (b) and EO12 (c). The

geometrical perturbation contribution to random response (maximum

and minimum of all combinations of patterns) is marked with error

bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.20 Magnification factor difference (99.9th percentile) between perturbed

and nominal disks in 32 − 37 kHz band obtained with EO1 (a), EO4

(b) and EO12 (c) excitation. . . . . . . . . . . . . . . . . . . . . . . . 81

3.21 Envelops of maximum forced response obtained with EO4 excitation in

32−37 kHz band for geometrically mistuned by combination 3 system

subjected to small mistuning with standard deviation δ varying from

0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean and minimum

response out of 100 random realizations. The system response without

geometrical mistuning is depicted in thinner line. . . . . . . . . . . . 83



List of Figures xiv

4.1 Stacked disks assembly misalignment (exaggerated) expressed in terms

of two Euler angles θx, θy and two offsets ∆x, ∆y. . . . . . . . . . . . 90

4.2 Finite element model of the multi-stage assembly. . . . . . . . . . . . 98

4.3 Evolution of natural frequencies of the nominal system with rotating

speed in rotating frame (a), transformed to inertial frame (b). Syn-

chronous whirl is marked as dashed line. . . . . . . . . . . . . . . . . 99

4.4 Difference between nominal and perturbed imaginary (a) and real (b)

parts of complex eigenvalues calculated at Ω = 200 Hz. . . . . . . . . 100

4.5 MAC value between nominal and perturbed complex eigenvectors cal-

culated at Ω = 200 Hz. Harmonic 0 and 2 modes are highlighted with

red solid and green dashed boxes respectively. . . . . . . . . . . . . . 101

4.6 Harmonic content of the first bending mode corresponding to 74 Hz

natural frequency at Ω = 200 Hz and expressed in terms of norms of

each individual stage. Norm of real part of nominal eigenvector (a),

imaginary part (b), norm of real part of perturbed eigenvector (c) and

imaginary part(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Harmonic content of zero nodal diameter mode corresponding to 257 Hz

natural frequency at Ω = 200 Hz and expressed in terms of norms of

each individual stage. Norm of real part of nominal eigenvector (a),

imaginary part (b), norm of real part of perturbed eigenvector (c) and

imaginary part(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Perturbed harmonic zero modeshape corresponding to 257 Hz natural

frequency at Ω = 200 Hz rotational speed: real part (a) and imagi-

nary part (b). The imaginary part of the modeshape is dominated by

harmonic one component showing the effect misalignment. . . . . . . 104

4.9 Nominal (a) and misaligned (b) system response under centrifugal

forcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 Comparison of nominal and misaligned systems unbalance response,

the latter is shown decomposed into four harmonic components. . . . 105



List of Figures xv

4.11 Comparison of nominal and misaligned system dynamic response un-

der synchronous harmonic 1 (a) and 2X harmonic 2 (b) forward trav-

eling wave excitation. The misaligned system response is shown along

with its dominant harmonic components. . . . . . . . . . . . . . . . . 105

4.12 Norm of the unbalance response calculated with ROM, full (360◦) FE

and unperturbed model excited by the unbalance forcing (a). Note

that the latter consistently underestimates the response. MAC values

of the unbalance response between ROM and reference FE model (b). 106

4.13 Direct Monte-Carlo simulation of the unbalance response with random

misalignment parameters generated as statistically independent zero

mean, (0.1◦, 0.1 mm) standard deviation Gaussian random variables.

Norm of 1X harmonic content of the unbalance response for 100 real-

izations, 99%, 50% and 5% of points at bearings 1 and 2 are shown in

(a) and (b) correspondingly. . . . . . . . . . . . . . . . . . . . . . . . 107

4.14 Evolution of the population mean (a) and variance (b) with the num-

ber of samples. Each iteration we calculate norm of 1X content of the

unbalance response at two bearings at Ω = 10 Hz. . . . . . . . . . . . 108

4.15 Probability density functions of the static response at two bearings

(1X component) obtained at Ω = 10 Hz (a), Ω = 280 Hz (b) and

Ω = 590 Hz (c). Note larger variation in response at second bearing

in the subcritical region and at first critical speed. As we approach

the second critical speed, the distribution at first bearing grows wider

consistent with the first and second bending modeshapes. . . . . . . . 109

4.16 99th percentile of the unbalance response norm calculated at Ω =

280 Hz resonance frequency at bearing 1 (a) and bearing 2 (b) obtained

by increasing standard deviation of random input parameters to (0.5◦,

0.5 mm) and (1◦, 1 mm) for each stage separately, while those of others

are kept at (0.1◦, 0.1 mm). . . . . . . . . . . . . . . . . . . . . . . . . 110



xvi

List of Tables

2.1 Comparison of fill-in in applied preconditioners. . . . . . . . . . . . . 38

2.2 Computational cost and number of converged eigenpairs per outer

iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Eigenvalue mistuning pattern . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Combinations of mistuning patterns in multiple blade damage scenario. 79

4.1 Misalignment parameters . . . . . . . . . . . . . . . . . . . . . . . . . 100



xvii

List of Acronyms

BLAS Basic Linear Algebra Subroutines

CMM Component Mode Mistuning

DFT Discrete Fourier Transform

DOD Domestic Object Damage

DOF Degree Of Freedom

EO Engine Order

FE Finite Element

FOD Foreign Object Damage

FRF Frequency Response Function

GMRES Generalized Minimum Residual

IDFT Inverse Discrete Fourier Transform

ILU Incomplete LU

JD Jacobi-Davidson

LU Lower and Upper triangular matrix

decomposition

MAM Modal Acceleration Method

MAC Modal Assurance Criterion

MC Monte-Carlo

PDF Probability Density Function

ROM Reduced Order Model

SMC Static Mode Compensation

SPAI Sparse Approximate Inverse



1

Chapter 1

Introduction

1.1 Motivation

With the current trends towards increased operating speeds and lighter more, flexible

structures the effects of uncertainty are of growing concern in the design of turbine

engines. Practical experience suggests that even with very sophisticated and detailed

numerical FE models the predicted results do not always coincide with experimental

data due to unavoidable and inherent randomness of complex structural components.

The ability to accurately account for all relevant physical effects that lead to vari-

ability in the vibration response implies increased safety, reliability, performance,

“robustness” and cost-effectiveness of turbine engine designs which, in turns, mini-

mize their life-cycle costs of development, manufacturing and maintenance. Hence

there is a pressing need for more efficient and accurate predictive computational tools

that allow the effects of random uncertainty to be included in the analysis.

The problems of uncertainty quantification are complicated by the underlying

growth of modeling complexity: the models of high cost aerospace components are

becoming larger and more complicated due to both the increased demand for complex

components and desire for increased level of detail and accuracy. That complexity

leads to higher analysis costs, typically, the order of system matrices easily exceeds

106 or even higher. Regardless of available computer resources, in order to analyze

these large-scale linear dynamical systems, there is a need for reduced-order models
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of much smaller size. It is obvious that such methods must approximate the be-

havior of the original model while preserving its important characteristics, at least

for the frequency or time range of interest. An important issue is how a model or-

der reduction algorithm can be welded into uncertainty quantification framework in

such a way that the resulting ROM is valid and easily updatable over a range of

uncertain parameters. Such problems cannot be solved efficiently with the existing

general-purpose solvers, which calls for novel approaches. Fortunately, many tech-

niques have become computationally feasible with the increasing computer power of

parallel multi-core platforms and with the current state of the art linear algebra algo-

rithms. Many benefits are to be gained from the exploitation of sparse and domain

dependent structured problems, leading to reduced computational times, reduced

storage requirements, improved accuracy of prediction, etc.

1.2 Uncertainty in structural analysis

Uncertainty is inherent in any analysis process. The errors of discretization in FE,

non-linear interactions in linear models, inaccurate modeling of boundary conditions,

uncertainties in loading, variability in structural properties and geometrical imper-

fections, are all aspects which contribute to the discrepancy between predicted and

measured results. While epistemic uncertainties in mechanical modeling due to lack

of knowledge are reducible by incorporating additional information compensating

for insufficient modeling, aleatory, i.e., intrinsic physical uncertainties are irreducible

and thus require rational treatment.

Uncertainties, either epistemic or aleatory, are commonly modeled within two

somewhat conflicting views: probabilistic or possibilistic. In non-deterministic anal-

ysis with possibilistic view the uncertain properties are assumed to lie in certain

ranges. Two approaches have dominated the current literature, interval analysis and

fuzzy FE [1]. The methods are deemed to be appropriate when imprecise or rather

vague information is available on system parameters, whereas the statistical data

cannot be easily obtained or the uncertainty is not of random nature. However,

the methods are criticized for being overly conservative and for not providing accu-
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rate predictions at higher frequencies. Additionally, only academic models with very

limited order and complexity have been reported.

Therefore, in most practical situations stochastic modeling techniques are applied,

where the uncertainties variation in time and/or in space is described in terms of

stochastic processes and/or random fields defined as follows.

Definition 1. Let (Θ, F, P) be a complete probability space, where Θ is the sample

space, P is the probability measure and F is a σ-algebra associated with Θ. A random

variable (resp. vector) is a mapping (Θ, F, P) → Rm if m = 1 (resp. m > 1).

Definition 2. Let T ⊆ Rn be a set. A random field is defined as a mapping H(θ,u) :

Θ × T → Rm such that H(θ,u) is a random variable or a random vector for each

u ∈ T . If n = 1 it is a random process, if n > 1 and m = 1 it is a scalar random

field; for m > 1 it is a vector random field.

Within the probabilistic modeling view one can distinguish parametric and non-

parametric approaches, methods employing statistical Gaussian models and those

based on non-Gaussian distributions [2]. The methods of computational stochastic

mechanics employed for evaluating the global probabilistic structure of random re-

sponse are based on stochastic FEM, i.e., solution of stochastic static or dynamic

problems involving finite elements with random properties. Generally, the analysis

involves the following basic steps:

• Modeling of random uncertainties.

• Propagation of the uncertainties through stochastic FEM.

– Discretization of stochastic processes and fields.

– Formulation of stochastic FE matrices.

– Calculation of system response statistics.

• Postprocessing of the statistical results.
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The starting point is the assignment of probability distribution to continuous spa-

tially correlated random fluctuations in material or geometric properties. Normally,

due to lack of relevant experimental measurement data assumptions must be made

regarding the distribution choice; most common and convenient is the Gaussian

distribution assumption. The next step begins with the discretization, i.e. approx-

imation of a continuous random field with a finite set of random variables grouped

in a random vector. The main issue is to define the the best approximation with

respect to some estimation of error using the minimal number of random variables.

Various discretization techniques are available in the literature, by and large they can

be divided into three groups: point discretization, averaging, and series expansion.

The point discretization results in a discrete set of values of the stochastic field at

specified points of the domain, whereas the averaging type methods yield weighted

integrals of the stochastic field over each finite element. For illustration, we consider

random variation in the elasticity modulus in a stiffness matrix. Applying weighted

integral method, the elementary stiffness matrix can then be expressed as

K(e)(θ) = K
(e)
0 +

∫

D(e)

H(θ, u)BTD0BdD(e) (1.1)

where K
(e)
0 denotes the mean value of an elementary stiffness matrix, B is the matrix

relating components of stress to the nodal displacements and D0 stands for the elas-

ticity matrix. The difficulties in those approaches involve the choice of a stochastic

mesh, that is mainly dictated by the variability of a random field. Often the correla-

tion length does not correspond to the FE mesh defined by geometry leading to the

usage of different meshes.

The series expansion represents a random field as a series involving random vari-

ables and deterministic spatial functions. Approximation is obtained as a truncation

of the series. The most widely used is Karhunen-Loève expansion of a random

field [2, 3, 4]. It is based on the spectral decomposition of the random field auto-

covariance function CHH(u,u′) = σ(u)σ(u)ρ(u,u′), where σ(u) and ρ(u,u′) are the

variance and the correlation function. The orthogonal deterministic functions are

chosen as the eigenfunctions of the Fredholm integral equation with the autocovari-
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ance function as the kernel

∫

D

CHH(u,u′)φi(u
′)dDu′ = λiφi(u) (1.2)

where λi and φi are eigenvalues and eigenvectors of the autocovariance function

CHH(u,u′). Any realization of a random field H(θ,u) can be expanded over this

basis as follows

H(θ,u) = µ(u) +

M∑

i=1

√
λiξi(θ)φi(u) (1.3)

where µ(u) is the mean of the field, ξi is a set of uncorrelated random variables, M

is the number of retained Karhunen-Loève terms. For strongly correlated random

fields only a few terms corresponding to the M largest eigenvalues are required.

Again employing the random elasticity modulus example, the stochastic elementary

stiffness matrix becomes

K(e)(θ) = K
(e)
0 + K

(e)
i ξi(θ) (1.4)

where K
(e)
0 is the mean value of K

(e)
i (θ), and K

(e)
i are deterministic matrices defined

as

K
(e)
i =

√
λi

∫

D(e)

φi(u)BTD0BdD(e)
u

(1.5)

Clearly, the method does not require a random field mesh and is by far more efficient

in terms of the number of random variables required for a given accuracy. However,

Karhunen-Loève series expansion are mainly valid for Gaussian random fields. The

most serious of its drawbacks is the fact that the integral eigenvalue problem Eq. (1.2)

has to be solved numerically, in most practical situations leading to very large scale

dense problems.

In addition to Karhunen-Loève there are some other methods for series expansion

of random fields, such as Optimal Linear Estimation or Polynomial Chaos Expansion.

The interested reader is referred to [2, 3, 5] for a recent and detailed review of the

methods and for a discussion of their applicability and shortcomings.

Upon assembly of the global random matrices the following discretized stochastic
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equation of motion is obtained

M(θ)ẍ(θ, t) + C(θ)ẋ(θ, t) + K(θ)x(θ, t) = f(t) (1.6)

Arguably, two of the most popular methods employed to assess the response vari-

ability within the stochastic FEM framework in current literature are perturbation

methods and Monte-Carlo simulation. The perturbation based approach [6, 7, 8] in-

volves first or second order Taylor series expansions of the response vector in terms of

the basic input random parameters and application of standard stochastic operators

to obtain the first two moments of the response statistics. Two major limitations of

that method stem from the assumption that both the uncertainty of random para-

metric input and the non-linearity of random solution with respect to random input

must be small. In this context, it is generally recognized that the Monte-Carlo sim-

ulation approach, where the deterministic system Eq. (1.6) is solved a large number

of times by generating random parameters θ, remains the most general and versa-

tile method to propagate random uncertainties. In many cases it is even impossible

to compute the statistical response by other means than Monte Carlo simulations,

which is often used in the literature as the reference method to assess accuracy of

other approaches. As pointed out in [2, 9, 10], the Monte-Carlo method is supe-

rior to other approaches exhibiting slower computational expense growth for large

scale problems. Complex nonlinear behavior and large uncertainty variation do not

complicate the procedure or deteriorate its accuracy. Finally, the numerical imple-

mentations are easily parallelizable, many acceleration techniques are available such

as importance sampling, etc.

Random field discretization procedure followed by the solution of a system of

stochastic differential equations, such as that described above, results in approxima-

tion of the response as a random vector of nodal displacements x, each component

being a random variable xi to be statistically characterized. Instead of sampling of

input parametric space followed by random response propagation, the spectral FE

methods [2, 3, 5, 10] aim at more efficient sampling of response probabilistic space.

The input Gaussian random field is represented as truncated Karhunen-Loève expan-
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sion, presented earlier, while the response is expanded in a series of random Hermite

polynomials Ψj(θ) = (−1)je
1
2
θT θ δj

δθi1...δθij
e−

1
2
θT θ

x(θ) =

P∑

j=1

xjΨj(θ) (1.7)

where P is finite. The Galerkin projection approach applied to the static problem or

similarly to a time-dependent problem transformed to the frequency domain leads

to a system of linear algebraic equations of order Pn.

( M∑

i=1

Kiξi(θ)

)( P∑

j=1

xjΨj(θ)

)
− F = 0 (1.8)

where Ki is assembled deterministic matrices defined in Eq. (1.5) corresponding to

M kept Karhunen-Loève terms and F is a deterministic loading vector. Clearly,

the computational complexity depends directly on the number of P terms retained.

Application of the method is practically limited to linear systems with smooth solu-

tions [2].

The key issues of prohibitive computational cost associated with uncertainty prop-

agation that plague large scale systems, reduction of the parametric space to most

important random parameters and lack of statistical measurement data to quantify

spatially varying random properties can also be effectively addressed by introduc-

ing random uncertainty through perturbation of selected modal parameters [7, 11].

Needless to mention that since the parameters of the system are described in a prob-

abilistic sense, the eigenvectors and eigenvalues are random too. However, with a

simple and practical approach of neglecting the uncertainty in mode shapes, great

computational savings can be achieved with reduced order dynamics analysis. The

lack of high-resolution measurements in physical space is overcome because experi-

mental quantification of the eigenvalues and their statistics are easily measurable and

fairly straightforward to obtain. Moreover simulation of randomness in the modal

space can account for all sources of uncertainties, parametric and non-parametric, in

both mass and stiffness matrices at the same time.
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1.3 Model order reduction

Consider a second order linear time-invariant system of the type

{
Mẍ(t) + Cẋ(t) + Kx(t) = Bf(t)

y(t) = Dx(t)
(1.9)

where f(t) ∈ Rm, y(t) ∈ Rp, q(t) ∈ Rn, B ∈ Rn×m, D ∈ Rp×n, M,C,K ∈ Rn×n.

The symmetric matrices M,C,K in mechanical systems represent respectively mass,

stiffness and damping.

In complex aerospace structures the dimension n is so high that in many analysis

situations the system cannot be solved in a reasonable time. The goal of model order

reduction is to replace a large scale model of a physical system by a model of lower

dimension k ≪ n {
M̂¨̂x(t) + Ĉ ˙̂x(t) + K̂x̂(t) = B̂f(t)

ŷ(t) = D̂x̂(t)
(1.10)

where x̂(t) ∈ Rk, B̂ ∈ Rk×m, D̂ ∈ Rp×k, M̂, Ĉ, K̂ ∈ Rk×k. The resulting ROM is

expected to exhibit similar behavior, typically measured in terms of its frequency

or time response characteristics. Depending on the application area the following

properties are to be satisfied [12]:

• The approximation error is small (the error function is application dependent).

• Relevant to application area system properties are preserved, like second order

structure, stability, passivity, etc.

• The procedure is computationally stable and efficient.

Model order reduction schemes can be broadly classified as either projection based

or derived by optimizing some performance criteria. Reduction of very large-scale

systems is addressed exclusively within the projection framework. The latter involves

representation of the state vector x as a linear combination of k ≪ n basis vectors

(Galerkin projection)

x̂(t) = Vx(t) (1.11)
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where projected system matrices become

M̂ = VTMV, Ĉ = VTCV K̂ = VTKV, B̂ = VTB and D̂ = DV (1.12)

It appears that there are only two kinds of projection based methods [13]. The

first involves two essential steps, transformation into a form where the coordinates

can be ranked according to some measure of importance and subsequent truncation

of less important ones. The methods that fall into this setting, which are relevant

to structural dynamics problems, include modal truncation [14], balanced trunca-

tion [15], truncation of spatial harmonics, and a plethora of domain decomposition

methods [16].

In modal projection approach, applied usually to systems dominated by reso-

nance behavior, the transformation matrix is composed of orthogonal undamped

eigenvectors V ∈ Rn×n

VTKV = Λ and VTMV = I (1.13)

By truncating the projection matrix V ∈ Rn×k, where the retained eigenvectors

correspond to λi ∈ B in analyzed frequency band B = [ω1, ω2], the resulting projected

ROM retains the ability to accurately capture dynamics of the original model at

resonance frequencies in B, where the maximum amplitude of response is expected.

Similarly, systems featuring cyclic symmetry [17], can be rendered into pseudo-

block diagonal form with subsequent truncation of less important spatial frequencies

VTKV = Bdiag
h=1,...,H

[Kh] and VTMV = Bdiag
h=1,...,H

[Mh] (1.14)

where V = (F ⊗ I ) and F is real discrete Fourier transform matrix.

The domain decomposition methods are based essentially on the same principle,

which can be illustrated with the following simple example of Guyan condensation
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method [16]. Let the system stiffness matrix be partitioned as

K =

[
Kss Ksm

Kms Kmm

]
(1.15)

where subscripts m and s denote master and slave degrees of freedom, i.e. more and

less important coordinates in the nodal space. Then the transformation V renders

it into the form with two uncoupled blocks

VTKV =

[
Kss 0

0 K̂

]
(1.16)

where

V =

[
I −K−1

ss Ksm

0 I

]
(1.17)

is the Gaussian eliminator and the uncoupled projected matrix that we retain after

truncation K̂ = Kmm −KmsK
−1
ss Ksm is the Schur complement of Kss.

Finally, the most popular projection based method in control applications of the

first type is probably the truncated balanced realization [12, 16, 15]. Consider related

to the system Eq. (1.9) two continuous time Lyapunov equations

AP + PAT + BBT = 0 and ATQ + QA + DTD = 0 (1.18)

where the augmented system matrices in the state space are

A =

[
0 I

−K −C

]
, B =

[
0

B

]
, D =

[
D 0

]
(1.19)

Under the assumptions of asymptotic stability and minimality of the system, the

equations have unique symmetric positive definite solutions P,Q ∈ R
2n×2n called

controllability and observability Gramians. The Hankel singular values are defined
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as square roots of the eigenvalues of the product PQ

σi(G(s)) =
√

λi(PQ) (1.20)

and they are clearly basis independent. The system is called Lyapunov balanced if

P = Q = Σ = diag(σi) (1.21)

The balancing transformation is determined simply by calculating the eigenvectors

of PQ
PQ = Vdiag(σ2

i )V
−1 (1.22)

The reduced order model is achieved by truncating the states with small Hankel

singular values, which deletes less observable and less controllable states.

The desirable feature of the balanced truncation method is a guaranteed error of

approximation, the norm of the approximation error is bounded by the sum of the

Hankel singular values not retained in ROM

‖G(s) − Ĝ(s)‖H∞
≤ 2(σk+1, . . . , σn) (1.23)

where G(s) the transfer function associated with the system Eq. (1.9) in the Laplace

domain. The method is not practical for very large scale systems due to computa-

tional complexity involved in calculation of Gramians, i.e. solution of the Lyapunov

equations.

The second type of projection methods arising due to other considerations, namely

transfer function interpolation or moment matching, utilize Krylov subspace itera-

tive techniques. Application of Krylov subspace projection methods to second order

undamped or proportionally damped systems is reported in [18, 19, 20, 21, 22]. Let

the transfer function associated with the system Eq. (1.9) in the Laplace domain is

given by

G(s) = D(Ms2 + Cs + K)−1B (1.24)

With proportional damping assumption the approach is to generate projection vec-
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tors V spanning a regular first order Krylov subspace.

V = span{K−1B, . . . , (K−1M)r−1K−1B} (1.25)

The goal of Krylov-based model reduction techniques is to find a reduced-order

dynamical system by projecting Eq. (1.24) in such a way that projected Ĝ(s) inter-

polates G(s). Thus, given the original transfer function that is expanded in a Taylor

series around a given point s0 ∈ C

G(s0 + σ) = η0 + η1σ + η2σ
2 + η3σ

3 + . . . (1.26)

where ηi are the moments, find a reduced order systems

Ĝ(s0 + σ) = η̂0 + η̂1σ + η̂2σ
2 + η̂3σ

3 + . . . (1.27)

such that k ≪ n moments are matched.

η̂i = ηi, i = 1, . . . , k (1.28)

Reliable and stable algorithm implementations are reported using classical Lanczos or

Arnoldi processes. The weak points of all Krylov subspace based projection methods

include lack of general strategy for approximation error control, stopping condition

and suboptimality.

If the linear projection based model reduction techniques have reached their ma-

turity, they are well understood and have stable reliable algorithm implementations,

their extensions to parameter-dependent models are still underdeveloped due to in-

trinsic complexity [23]. Let a parameter-dependent linear time-invariant system be

{
M(p)ẍ(t) + C(p)ẋ(t) + K(p)x(t) = Bf(t)

y(t) = Dx(t)
(1.29)

where p ∈ Rm is a parameter vector. The goal of a parametric model order reduction

is to compute a ROM that preserves the parameter-dependency, thus allowing a
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variation of any of the parameters without the need to repeat the ROM construction

step. {
M̂(p)¨̂x(t) + Ĉ(p) ˙̂x(t) + K̂(p)x̂(t) = B̂f(t)

ŷ(t) = D̂x̂(t)
(1.30)

Two general requirements must be met here, the computational procedure of ROM

construction should be sufficiently efficient to offset full model analysis, the update

and evaluation of the reduced-order model should be sufficiently efficient either.

The simplest approach is to build a sufficiently robust projection space V(p0)

that can be used for models with slightly perturbed parameters p around a nominal

local operating point p0 [24].

M̂(p) = VT (p0)M(p)V(p0) and K̂(p) = VT (p0)K(p)V(p0) (1.31)

The method being obviously computationally efficient is limited in small parameter

variation assumption.

Several flavors of perturbation based techniques are reported in [23, 25, 26], where

the basis vectors are expanded in Taylor series. The general procedure involves draw-

ing several samples form parameter space, for each sample gradients and projection

matrix are calculated; fitting is applied to determine the coefficients of a parame-

ter dependent projection matrix. Once the basis is approximated for a parameter

change, a reduced linear dynamic analysis can be performed to obtain the parameter

dependent output.

A multidimensional multivariate Krylov subspace moment matching technique is

reported in [27]. The projection V is calculated such, that the reduced model not

only matches some of the first moments of the transfer function G(s) with respect

to s, but also with respect to the parameters p. The method suffers from “the

dimensionality curse” where the order of ROM grows exponentially with the number

of parameters.

Another well-known approach is to calculate local projection matrices for several

points p in the parametric space, merge them together, and then apply a common

order reducing projection to the original parametric model [28, 29, 26], which in
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the last reference is referred to Extended Projection ROM. This method, likewise,

rapidly leads to a high order ROM.

Several attempts have been made to decrease the computational effort and the

dimension of a resulting parametric ROM by exploiting interpolation and/or a soft

switching between the reduced order transfer functions of different non-parametric

models [30, 31, 32].

1.4 Objectives

The goal of this dissertation is to develop low order high fidelity models which are

suitable for incorporation into uncertainty quantification framework. The target ap-

plication area is restricted to linear vibration analysis of large-scale FE models of

turbine engine rotors. Two types of applications, bladed disks structural mistuning

and stacked rotor assemblies misalignment, are considered in particular. Certainly,

not the first endeavor in this area, this dissertation will explore the extension of

modern linear algebra solvers to the application domain in a systematic way, provid-

ing clear statement of the problems to be addressed, a spectrum of model reduction

methods as well as a range of tools implementing those methods. Due to the em-

phasis on the uncertainty effect analysis, each of the algorithms presented in this

dissertation is specifically aimed and related to its ability to address large parameter

variation.

1.5 Contributions

• Extension, thorough accuracy and numerical efficiency analysis and implemen-

tation of SMC algorithm for reduced order modeling of bladed disks subject to

large variations in blade geometry [33, 34].

• Development of an original sparse preconditioned iterative technique for re-

duced order modeling of bladed disks with large variations in blade geometry

addressing the accuracy and performance shortcomings of SMC method [34].
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• Development and implementation of a stochastic simulation framework com-

bining two aforementioned techniques with CMM method [35].

• First probabilistic assessment of the joint effects of large magnitude determinis-

tic and small random perturbations on vibration response of bladed disks [35].

• Development and efficient implementation of an original parametric model re-

duction technique for vibration analysis of misaligned stacked disks rotor as-

semblies [36].

• Provision of some insight and understanding of the effects of misalignment and

origins of the additional harmonic content in vibration response [36].

1.6 Thesis organization and outline

This chapter is concluded with a brief outline of the material in the remainder of

dissertation.

Chapter 2 presents the problem of large geometrical mistuning of bladed disks

and motivates the development of new compact reduced order models. A survey of

the existing literature and solution approaches is provided. An important modeling

technique based on direct methods, Static Mode Compensation, is extended to the

multiple mistuned blades case. It is examined in the context of the perturbed gener-

alized eigenvalue problem by taking the viewpoint of a system of nonlinear equations.

Suggestions are made for which cases it should work reasonably well, in situations

where it would not fit, a more sophisticated iterative algorithm is introduced based

on Jacobi-Davidson scheme adapted to block-circulant systems under a limited class

of perturbations. Both algorithms are compared with regard to their efficiency, ac-

curacy and memory requirements using a practical industrial scale FE model of a

bladed disk with realistic geometry.

Chapter 3 presents application of the algorithms discussed in previous chapter

in stochastic simulation framework to analyze the effect of small random mistun-

ing on geometrically modified bladed disks. A hybrid technique is proposed where
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small random parameter variation in blade properties are modeled with Component

Mode Mistuning method. The approach is motivated by the ability to retain com-

plexity and level of detail in both the mechanical and stochastic modeling, access

to perturbed system modes, realistic physical geometry variation and nonuniform

random variations of individual blades at component level, at the same time pro-

viding accuracy of approximation and computational efficiency. The performance

and precision of the method is verified against results obtained using a full reference

model. Statistical analysis of random mistuning effects on geometrically modified

rotor is performed. A a set of mesh morphing patterns is applied to a nominal blade

geometry approximating some common blade damage scenarios. Some conclusions

and observations are offered regarding the mutual effects of large deterministic and

small random mistuning on the vibration response.

In Chapter 4 a novel reduced order modeling procedure is developed for vibration

response approximation of a misaligned stacked disks rotor assembly. Motivation is

provided for more accurate 3D solid FE modeling of modern flexible rotors with

complex geometries. Model order reduction approach is rationalized at length built

upon truncation of higher order harmonics and efficient introduction of misalignment

uncertainty in Fourier domain with sparse BLAS. Radical reduction of the parametric

space is achieved by modeling the interstage geometry variation with a small set

of tilt and offset parameters. It is shown numerically that with the assumption

of small in norm perturbations and rotational periodicity of individual stages, the

flexural behavior of misaligned rotor can be accurately approximated by retaining

only first three harmonics. Insight and argumentation are provided on the issue of

the origins of the additional vibration content in response of a misaligned system.

A computational strategy of reducing large condition number of nominal uncoupled

system is discussed, that significantly simplifies and accelerates repeated solution

of the perturbed system. Statistical Monte-Carlo investigations are employed to

showcase the efficiency of algorithm implementation exposing varying sensitivity of

global response to uncertainty at individual rotor stages.

Finally, in Chapter 5 conclusions and recommendations for future work are pre-

sented.
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Chapter 2

Reduced Order Modeling of

Geometrically Mistuned Bladed

Disks

2.1 Overview

Structural blade mistuning constitutes a difficult problem in turbomachinery ap-

plications. Typically, the vibration analysis of rotationally periodic structures is

performed on an elementary sector model, from which the dynamics of a whole

structure is reconstructed by exploiting the cyclic symmetry [17]. However, manu-

facturing tolerances, operational usage and inhomogeneities in materials of individual

blades create uncertainties in system response. They involve potentially hazardous

increases in amplitude of vibration and stresses as opposed to results predicted by a

nominal symmetrical model. Structural mistuning is also known to have a dramatic

effect on high cycle fatigue, since it can lead to spatial localization of vibration energy

around one or few blades [37, 38].

The problem has been studied extensively in the literature [39]. A number of effi-

cient and accurate predictive computational tools has been reported where mistuned

rotor forced response is predicted using reduced models having order of number of el-
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ementary sectors built from large scale parent FEM [40, 41, 42, 43, 44, 45, 46]. Most

of the reduction methods involve projection into a lower order subspace spanned by a

small number of nominal system modes corresponding to a contiguous set of eigenval-

ues in the frequency band of interest. Note that the projection is done on a subspace

of the same dimension m as the number of eigenvectors one wants to approximate.

Extraction of approximations of perturbed eigenpairs (λ̂i, v̂i), i = 1, . . . , m from a

low-order subspace V ∈ Rm is essentially the Rayleigh-Ritz procedure. Let (K,M)

correspond to nominal symmetric indefinite stiffness and symmetric positive definite

mass matrices with (∆K, ∆M) denoting perturbations to these matrices due to mis-

tuning. In its practical less expensive form (if (M + ∆M)-orthonormalization of V

is omitted) the procedure leads to a projected generalized eigenvalue problem and

goes as follows:

1. Let the set of nominal modes V form a basis of V.

2. Compute H = VT (K + ∆K)V and G = VT (M + ∆M)V.

3. Find eigenpairs (µi, zi) of the matrix pair (H,G).

4. Accept (µi,Vzi) as an approximate eigenpair (λ̂i, v̂i) of the matrix pair

(K + ∆K,M + ∆M).

While effective, such approximation is limited in one basic assumption that the

perturbation to nominal matrices do not significantly change the eigenspace from

which we extract the perturbed eigenpairs. For an accurate approximation the angle

between eigenvector v̂i and subspace V must be sufficiently small. This assump-

tion enables great computational efficiencies but clearly does not hold true for large

magnitude perturbations such as geometric mistuning. The smaller angles can be

achieved in two ways. One may build a search subspace V of higher dimension by

including more nominal eigenvectors. In practice, that results in subspaces of a very

high-order rendering them computationally impractical during repeated statistical

Monte-Carlo or design optimization analysis.

Considerable effort has been applied in recent years towards development of al-

gorithms addressing the large geometry variation. Application of domain decom-
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position methods to large mistuning problem is reported in [46, 47, 48], but they

suffer from similar complexity limitations to be employed efficiently in a repetitive

analysis. Sinha [49] recently formulated a projection-based method by building a

richer extended set of basis vectors that covers larger parametric space based on

measured spatial statistics of a perturbed geometry. However the computational

burden grows with the number of retained principal components. Petrov et al. [50]

used the Sherman-Morrison-Woodbury formula to calculate the inverse of perturbed

FRF. Yet that algorithm yields a limited access to spacial information in the results.

An alternative approach suitable to be employed effectively within repetitive

simulation framework is to correct the set of nominal eigenvectors [51]. The SMC

method inspired by modal acceleration technique generates accurate approximates of

perturbed eigenpairs under large geometric mistuning perturbation extracted from

a very compact subspace. The main goal of this chapter is to analyze the SMC

method by taking the viewpoint of the perturbed generalized eigenvalue problem as

a nonlinear system of equations. We will consider the cases for which the method

should work reasonably well, in situations where it would not fit, we will propose a

more sophisticated algorithm to correct nominal modes by adopting a Newton-type

framework. The Jacobi-Davidson scheme [52], the Trace Minimization method [53]

and a number of related algorithms all fall in that category. Our algorithm is es-

sentially an adaptation of the Jacobi-Davidson scheme to the block-circulant system

under a limited class of perturbations. We will see that since the algorithm is based

on an iterative linear solver, it is more memory efficient and independent from the

structure of perturbation as compared to SMC. With the selected class of pertur-

bations the method should converge significantly faster to a target eigenspace than

any general purpose iterative eigensolver that does not exploit the structure of the

system.

2.2 Static Mode Compensation method

Throughout this study we consider the harmonic steady state response of an un-

damped mistuned bladed disk finite element model. In the absence of excitation in
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frequency domain the equation of motion can be written as:

(
(K + ∆K) − λ̂i(M + ∆M)

)
v̂i = 0 (2.1)

where v̂i is i-th mistuned mode,

√
λ̂i is i-th natural frequency, (K,M) are real

symmetric nominal mass and stiffness matrices, K ∈ R
n×n nonnegative definite and

M ∈ Rn×n positive definite, (∆K, ∆M) are symmetric perturbations due to geo-

metric mistuning with the sparsity pattern (zero entries structure) S(∆K, ∆M) ⊂
S(K,M). The defining feature of rotationally periodic structures is the fact that in a

cylindrical coordinate system matrices M,K ∈ BC(M, N) are block-circulant. Here

M denotes the number of degrees of freedom of an elementary sector, N is number

of elementary sectors. It follows that Eq. (2.1) can be decoupled into N/2 smaller

problems by applying the discrete Fourier transform

M̃ = (W∗ ⊗ I)M(W ⊗ I)

K̃ = (W∗ ⊗ I)K(W ⊗ I)
(2.2)

where

W =
1√
N




1 1 · · · 1

1 e−j 2π
N · · · e−j 2(N−1)π

N

1 e−j 4π
N · · · e−j

4(N−1)π
N

...
...

. . .
...

1 e−j
2(N−1)π

N · · · e−j
2(N−1)(N−1)π

N




(2.3)

and ⊗ denotes Kronecker product.

For parts of the discussion we will make assumptions on the class of perturbations

owing to the special structure of the nominal system. It is natural to consider the

perturbation matrices due to geometric mistuning structured as subset of nominal

symmetric block-circulant structure. If we denote any vector norm and corresponding

subordinate matrix norm as ‖ · ‖, the perturbations satisfying ‖∆K‖ < ǫ‖K‖ for

small enough ǫ are referred to as low magnitude perturbations. The influence of the

structure of perturbation on the behavior of perturbed eigenpairs is reflected by the
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rank. Thus ∆K localized to one or few blocks of a block-circulant structure with

rank{∆K} ≪ rank{K} is referred to as low rank localized perturbation.

The main idea behind the SMC method, originally presented in Lim et al. [51],

is based on the classical MAM [54] used to reduce the modal truncation error of

an expanded in modal space FRF. Consider the frequency response of the mistuned

system expanded in the truncated modal space under arbitrary excitation f(ω):

v(ω) =

m∑

i=1

v̂
T
i f(ω)

λ̂i − ω2
v̂i (2.4)

If we apply MAM it becomes:

v(ω) =
(
(K + ∆K) − ωc

2(M + ∆M)
)−1

f(ω) +
m∑

i=1

(
ω2 − ωc

2

λ̂i − ωc
2

)
v̂

T
i f(ω)

λ̂i − ω2
v̂i (2.5)

where the eigenvalue shift is usually selected in the middle of the ROM frequency

band ωc
2 = 0.5(λ̂1 + λ̂m), or zero if low frequency modes are not truncated. Lim

proposed to use the first term on the right hand side to correct the set of system

nominal mode shapes vj such that they approximately span the same subspace as

the perturbed eigenvectors v̂i:

vj(ωj) − ∆vj =

m∑

i=1

(
ω2

j − ωc
2

λ̂i − ωc
2

)
v̂

T
i f(ωj)

λ̂i − ω2
j

v̂i (2.6)

where the correction terms ∆vj called quasi-static modes are:

∆vj =
(
(K + ∆K) − ωc

2(M + ∆M)
)−1

f(ωj) (2.7)

Notice that in this setting ω2
j corresponds to a nominal system eigenvalue λj , while

f(ωj) is an equivalent to geometric mistuning forcing excitation such that the motion

of perturbed system excited at each of the unperturbed natural frequencies corre-
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sponds to the nominal eigenvector vj at that frequency:

f(ωj) =
(
(K + ∆K) − λj(M + ∆M)

)
vj =

(
∆K − λj∆M

)
vj (2.8)

In effect, the forcing terms f(ωj) form a matrix of residual vectors

R =
(
∆K − Λ∆M

)
V (2.9)

Rather than solving a linear system of full order, the correction terms are computed

by exploiting the zero structure of perturbation (∆K, ∆M) together with the block-

circulant nature of the nominal matrix pair (K,M).

(
K̂ − ω2

cM̂
)−1

R = Φn,p

(
Ip,p + (∆Kp,p − ω2

c∆Mp,p)Φp,p

)−1
Rp (2.10)

where the subscripts n, p denote the matrix partition of order Φn,p ∈ R
n×p with p

being equal to the number of degrees of freedom affected by perturbation. The set of

so-called quasi-static modes Φn,p can be efficiently precalculated off-line in Fourier

domain by solving decoupled linear systems of an elementary sector order

Φn,p = (W ⊗ I) B̃diag
h=1,...,H

[
(K̃h − ω2

cM̃h)
−1
M,p

]
(W∗ ⊗ I) (2.11)

where B̃diag denotes a pseudo block diagonal matrix, h is harmonic number and H is

total number of harmonics. Note also that since Φ ∈ BC(M, N) is hermitian block-

circulant, the entire Φn,p can be recreated from only N
2

blocks ΦM,p of an elementary

sector order.

Numerical evidence shows that a straightforward application of the SMC algo-

rithm is not always obvious or even adequate for some very large order models,

classes of perturbation and areas of spectrum, unless its convergence properties and

other limitations are well understood. First, the algorithm implies the use of fully

populated matrices (K − ωc
2M)−1, this can be done efficiently memory-wise only if

the rank of perturbation and the order of the system is sufficiently low. An optimal

choice of ωc also remains to be an issue since it must not cross the nominal and
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perturbed system natural frequencies, with the latter unknown a priori, while its

effect on convergence properties is yet unclear. The primary reason for calculation of

correction terms is generation of very compact yet accurate ROM. However the lat-

ter is not always the case even for small rank perturbations affecting limited number

of blades. If a simple strategy [33] of augmenting the projection basis by including

more corrected nominal modes is adopted to increase the accuracy, it may lead to a

very slow convergence while generating high dimensional test subspaces.

In order to better understand the convergence properties of SMC we adopt the

viewpoint taken by many subspace-based methods for computing eigenvectors and

eigenvalues of large sparse matrices. Assume that we have a set of nominal eigenvec-

tors and corresponding eigenvalues (λi,vi) that only approximate eigenpairs (λ̂i, v̂i)

of the mistuned matrix pair (K̂, M̂). In order to find a way to correct a given ap-

proximate eigenpair the generalized eigenvalue problem can be viewed as a nonlinear

system of equations:

(K̂ − λ̂iM̂)v̂i = 0 (2.12)

It is a system of n equations with n+1 unknowns, so a constraint should be imposed:

usually the eigenvectors are mass-orthonormalized ‖v̂i‖M̂
= 1, where the norm ‖.‖

M̂

is defined in the inner product space (v,y)
M̂

= vTM̂y. Given an approximate nom-

inal eigenpair (λi,vi) find a correction (∆λi, ∆vi) to satisfy the system of nonlinear

equations:

(
(K̂− λiM̂) − ∆λiM̂

)(
vi + ∆vi

)
= 0

‖vi + ∆vi‖M̂
= 1

(2.13)

which can be rewritten as:

(K̂ − λiM̂)∆vi = −(∆K − λi∆M)vi + ∆λiM̂vi + ∆λiM̂∆vi

‖vi + ∆vi‖M̂
= 1

(2.14)

The correction terms are usually found by solving the linear system that results from
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omission of the nonlinear quadratic terms ∆λiM̂∆vi as well as the terms ∆λiM̂vi:

(K̂− λiM̂)∆vi = −(∆K − λi∆M)vi (2.15)

Thus the generalized Davidson method [55] solves the resulting linear system for

each eigenvector vi as:

∆vi = −T−1(∆K − λi∆M)vi (2.16)

with the help of preconditioner T−1 that approximates the inverse (K̂− λiM̂)−1. It

is easy to see that the SMC algorithm is equivalent to one iteration of the general-

ized Davidson method without subspace acceleration, where the same preconditioner

T−1 = (K̂ − ωc
2M̂)−1 is applied for all corrected eigenvectors. Although qualitative

convergence to external eigenpairs analysis of the Davidson method have been de-

veloped, the quantitative results seem more difficult to obtain. Still the following

remarks are of interest to understanding in which situations SMC method will work.

First observe that the omission of the quadratic term is valid only if vi is close to

an eigenvector v̂i and there exists a small in norm solution to the original nonlinear

equation ∆vi, such that the quadratic term in it will have relatively small to no

influence.

Notice also that the quality of preconditioner (K̂−ωc
2M̂)−1 depends on how close

ωc
2 is to currently approximated λ̂i. Suppose that we already know λ̂i = λi, then

both neglected terms in (2.14) would disappear due to ∆λi = 0 and the equation

solved with the ideal preconditioner, the pseudoinverse (K̂ − λiM̂)†, would give us

the exact correction ∆vi to an approximate eigenvector vi. Therefore the correction

happens mainly in the direction of the perturbed eigenvector with eigenvalue closest

to ωc
2, which is also evident if we apply the amplification factor line of thought

presented in the following. Practically, should the linearization condition be satisfied,

the precision of SMC is acceptable if we either select very narrow bands of nominal

eigenpairs to correct or can provide a guess on the area of spectrum where the

perturbed eigenvectors with larger angles to nominal eigenspace are most likely to
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occur, so that their corresponding eigenvalues would fall close enough to ω2
c .

2.3 Jacobi-Davidson method for geometrical mistuning

problem

The Jacobi-Davidson algorithm, as originally developed by Sleijpen and Van der

Vorst in [52], is an alternative more robust approach to calculate correction to a cur-

rent approximation of an eigenvector that addresses the above-mentioned potential

weaknesses of SMC. First, unlike Davidson method, its convergence is guaranteed

whenever non-diagonal and non-positive definite preconditioners are used, which is

often the case when we approximate the interior of the spectrum. Second, it avoids

ill-conditioning of the linear correction equations when we cross the perturbed or

nominal eigenvalues and we are not constrained with the choice of ωc. Moreover,

the correction equations can be solved only approximately using an iterative solver

such that no fully populated matrices are involved. At the same time controlling

the number of inner iterations (the number of iterations of linear solver) can also be

used to compensate for lower quality preconditioning. The algorithm goes as follows.

After omitting the second-order term in (2.14), i.e. linearizing around ∆vi = 0, the

correction equation becomes:

(K̂ − λiM̂)∆vi = −ri + ∆λiM̂vi

‖vi + ∆vi‖M̂
= 1

(2.17)

where ri denotes the residual vector (∆K − λi∆M)vi. It is a n + 1 system of

equations with n+1 unknowns that can be solved on a smaller subspace by invoking

an orthogonal projector operator P = (I − viv
T
i M̂). Observing that Pvi = 0, we

obtain a degenerate system:

PT (K̂ − λiM̂)∆vi = −PT ri (2.18)
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Among all the solutions we seek one M̂-orthogonal to vi, i.e. ∆vi = P∆vi. That

yields the linear Jacobi-Davidson correction equation to solve for each approximate

eigenvector vi:

PT (K̂ − λiM̂)Pzi = −PT ri

∆vi = Pzi

(2.19)

It can be solved only approximately using a matrix-free iterative method, usually

(if not always) in combination with a projected preconditioner. Unlike SMC, the

standard Jacobi-Davidson method makes use of subspace acceleration, i.e. the com-

puted term rather than correcting current approximation of an eigenvector is used

for expansion of the test subspace. Each step of subspace expansion, termed outer it-

eration, is preceded by solution of the correction equation, followed by Rayleigh-Ritz

procedure, and so on up until convergence to an eigenpair. The original formulation

of Jacobi-Davidson algorithm deals with approximation of individual eigenpairs. If

more than one eigenpair is to be corrected at each outer iteration, a more restrictive

correction ∆vi is usually used, namely the one M̂-orthogonal to already converged

eigenvectors q1, . . . ,qk and/or to some clustering Ritz vectors:

(I − QQTM̂)T (K̂ − λiM̂)(I −QQTM̂)zi = −(I − QQTM̂)Tri

∆vi = (I −QQTM̂)zi

(2.20)

with Q = [q1, . . . ,qk,vi].

2.3.1 Computational strategies

A direct application of Jacobi-Davidson inner-outer iteration scheme to a periodic

system featuring large geometric mistuning could hardly be worth the trouble com-

pared with any modern subspace-based eigensolver if it were not for a host of a

priori information available on the structure of the system and perturbation. In

this section we propose some heuristic strategies to lower the computational cost of

Jacobi-Davidson scheme relevant to typical industrial applications. Thus we con-
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sider a FOD event or any kind of local defect to an industrial bladed disk [56] as a

target application, which represents a low rank local perturbation of relatively high

magnitude. Our arguments are illustrated numerically on a test case model. It is an

integrally bladed rotor depicted in Fig. 2.1(a) featuring 29 blades used in the sec-

ond stage of a compressor. The finite element model was constructed with standard

linear brick elements with total 126,846 DOF. The foreign object damage scenario

in which one blade suffers severe mistuning, with all other blades being tuned is in-

troduced by significantly changing the blade geometry, as shown in Fig. 2.1(b). The

(a) (b)

Figure 2.1 Finite element model of a integrally bladed rotor (a) and
geometry of nominal and mistuned blades (b). The mistuning affects
1116 DOF of one blade.

natural frequencies and mode shapes of the nominal system are obtained via cyclic

symmetry analysis using a finite element model of a single sector. Fig. 2.2 displays

the free vibration natural frequencies of the tuned bladed disk versus the number

of nodal diameters, where the frequency band of 34 − 36 kHz corresponding to 2S

family of modes is chosen to illustrate the numerical strategies.
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Figure 2.2 Natural frequencies versus nodal diameters. The frequency
ranges that include 2S and 2T/2F mode families are marked by horizontal
lines.

A priori information on block-circulant systems undergoing structured

perturbation

The effect of perturbation on the dynamics of periodic systems has been the subject

of a number of theoretical studies [57, 58]. Although commonly the qualitative

analysis is carried out on low-order simplified models of periodic systems, we can

extend those observations to perturbed eigenstructure of very large scale periodic

models. Typically, the eigenvectors of a periodic system are described in terms of

nodal diameters (nodal lines across the diameter of a cyclic-symmetrical structure)

and nodal circles (nodal lines in the circumferential direction). The number of nodal

diameters for an eigenvector corresponds to a certain phase shift between adjacent

blocks, given by:

αh =
2πh

N
(2.21)

where h is the number of nodal diameters (or harmonic content of an eigenvector),

and N is the number of blocks in the system. A periodic system also exhibits

repeated natural frequencies for each harmonic, except h = 0 and in the case of even

N , except h = N/2, termed accordingly the doublet and singlet modes. Each member

of a doublet has either sinusoidal or co-sinusoidal harmonic content, they are linearly
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independent, their absolute orientation is arbitrary due to symmetric nature of the

system, while they can be distinguished by relative spatial phase shift. An interesting

characteristic of periodic structures is the band structure of natural frequencies, that

is the natural frequencies are grouped into narrow bands of mode families, in most

cases forming well separated rather stable to perturbation eigenspaces. Since the

test case model has no blade-to-blade shrouds, the blade motion dominated modes

do not stiffen significantly as the number of nodal diameters increases, so they form

lines that are approximately horizontal, which is shown in Fig. 2.2.

When perturbation is introduced into a periodic system, the doublet mode pairs

split such that each of the modes have a unique natural frequency. With low mag-

nitude high rank perturbation the natural frequencies are still close in frequency,

gradually splitting further apart as the magnitude increases. Low rank high magni-

tude perturbation limited to one or some blocks significantly affects only few natural

frequencies. An example of frequency splitting phenomena for the test case model

undergoing FOD event is shown in Fig. 2.3. The eigenvectors with introduction of
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Figure 2.3 Nominal and perturbed natural frequencies for the test
case model in 34 − 36 kHz region. The perturbation brings about a
localized mode with natural frequency far away from the unperturbed
one. Otherwise, the clustered eigenvalues (all belong to 2S family) seem
to be more stable under perturbation.

moderate perturbation would still be recognizable as ones of the nominal system.
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Although the perturbation destroys the regular features of mode shapes, they keep

their original nodal diameter harmonic content, i.e. overall sinusoidal amplitude

envelope, but transition from periodic to almost periodic [57]. As perturbation in-

creases, the mode shapes sustain greater distortion until a sudden transition occurs,

after which they become essentially localized around a single sector. However not all

modes are equally sensitive to a particular perturbation, and not all of them expe-

rience sudden transitions, exhibiting rather a smoother transition from periodic to

localized behavior. Fig. 2.4(a) shows the effect of low rank geometrical mistuning on

the mode shapes for the test case model in 34− 36 kHz region. The mode distortion

is reflected by the canonical angles. Note that the heavily distorted first mistuned

mode forms large angles to any of the nominal modes, while one member of nearly

each doublet is almost unaffected by perturbation. The combined effect of low-rank

geometrical mistuning on an entire subspace spanned by nominal modes can be ob-

served by calculating canonical angles between the corresponding eigenspaces, shown

in Fig. 2.4(b). The perturbed eigenspace is very close to the nominal one, except

for the five largest canonical angles introduced chiefly by five distorted modes with

natural frequencies outside the main cluster, which is why the uncorrected nominal

subspace cannot be used in Rayleigh-Ritz procedure. In addition to distortion of the

original harmonic content in the mode shapes, perturbation also removes indetermi-

nacy from the absolute orientation [58]. This phenomenon is illustrated in Fig. 2.5

where the norm of residual vector is calculated for the nominal modes subject to

different spatial orientation. A nominal mode oriented to minimize the norm would

correspond to its perturbed almost periodic counterpart.

Decreasing the number of correction equations to solve

One of our goals in designing a practical reduction technique featuring large mistun-

ing is computational efficiency, and since the major part of computational effort of

the Jacobi-Davidson method is spent on solving the correction equations, we must

find a way to decrease it. Observe that JD computes an orthogonal correction to an

eigenvector that minimizes its residual vector by solving the linear equation (2.15).
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Figure 2.4 Canonical angles between nominal and perturbed indi-
vidual eigenvectors (a) and eigenspaces (b) for the test case model in
34 − 36 kHz region. Note the large angle that makes the first “rogue”
localized perturbed mode with any of nominal ones. Also note that one
member of almost every nominal doublet keeps its original harmonic
content. Plot (b) shows the distance between perturbed and nominal
eigenspaces. In order to extract accurate eigenpairs from the nominal
eigenspace correction for the five largest canonical angles must be car-
ried out.
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Figure 2.5 Norm of residual vectors calculated for nominal mode
shapes in 34 − 36 kHz region as a function of spatial orientation. The
residual norm demonstrates arbitrary orientation and spatial periodicity
of nominal eigenvectors. An oriented nominal eigenvector with minimum
residual corresponds to its almost periodic perturbed counterpart.

As such, JD correction term is designed to point in the direction of the closest

perturbed eigenvector, the one that makes smallest angle with the current approx-

imate eigenvector. Therefore, we can easily avoid computing corrections to both

members of a doublet because the corrected eigenvectors would routinely point in

the direction of the perturbed eigenvector that keeps maximum of the original har-

monic content making smaller angle with both unperturbed nominal eigenvectors.

Combined with subspace acceleration, such strategy lowers the computational work

almost in half during the first outer iteration without compromising the accuracy of

following Rayleigh-Ritz approximation. Out of two members of a doublet we select

one with smaller residual based on the following arguments. First, it is expected that

we will spare extra matrix vector multiplications of an iterative solver starting with

already smaller residual. Valuable observation on the secondary effect of the smaller
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residual choice are given in [59]. Consider the exact solution of equation (2.15):

∆vi = vi − ǫ(K̂ − λiM̂)−1M̂vi

ǫ =
vT

i M̂vi

vT
i M̂(K̂− λiM̂)−1M̂vi

(2.22)

If we express vi as a linear combination of v̂j it follows that:

(K̂ − λiM̂)−1M̂vi =
∑

j

αj

λ̂j − λi

v̂j (2.23)

Observe that eigenvector components corresponding to eigenvalues closer to λi will

be amplified more in (K̂ − λiM̂)−1M̂vi with amplification factors 1/|λ̂j − λi|. It is

straightforward to see that due to the M̂-orthogonalization, as soon as vi has large

component in the direction of v̂j, i.e. smaller angle between them or ultimately

smaller residual, the components in the direction of the next closest v̂j+1 become

dominant. Consequently, the correction term computed to turn the first nominal

eigenvector with smaller residual in the direction of v̂j , if used with subspace accel-

eration, will inevitably introduce more additional information in the direction of the

second perturbed member of the doublet.

Reduction of number of inner iterations

In addition to decreasing the number of correction equations to solve, we can also

better exploit the a priori information to reduce the residual norm before applying

any iterative solver. In the view of the fact that perturbed modes of periodic systems

acquire spatial orientation, as depicted in Fig. 2.5, we can inexpensively find it by

computing several residual vectors per double mode. Fig. 2.6 shows the effect of

finding spatial orientation on initial residual norm, while Fig. 2.7(a) depicts its effect

on the residual convergence history of GMRES linear solver with preconditioning.

The information on how to provide an initial guess vector for iterative solver can

be obtained if we argue heuristically as follows. It is a well known fact that if an

eigenvalue problem has a cluster of eigenvalues, then the corresponding eigenvectors
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Figure 2.6 Effect of spatial orientation and initial guess vector on
initial residual norm for the test case model in 34 − 36 kHz region. By
applying the knowledge about our system one can consistently reduce
residual of the linear correction equation before any iterations taken. If
spatial orientation strategy is applied, the initial guess reduces residual
for 13 correction equations out of 17.

will be extremely ill conditioned, such that even an insignificant perturbation can

drastically change the eigenvectors, while spanned by them eigenspace will be rela-

tively well determined and well conditioned [60]. In [61], Theorem 1 implies that the

perturbation of an eigenvector corresponding to a multiple eigenvalue will only be

unstable in the eigenspace corresponding to this multiple eigenvalue. This fact is also

corroborated in [62], where the authors have studied the modal interaction of closely

spaced natural modes undergoing perturbation and concluded that the amount of

interaction depends on the closeness of natural frequencies. Hence we may very well

expect that the orthogonal correction to a nominal eigenvector corresponding to a

double eigenvalue, lay, at least in part, in the direction of the second nominal eigen-

vector corresponding to that eigenvalue. For a single mode we might as well seek

the correction in the direction of the closest in spectrum neighbor. Thus we use

γ vi+1 as the initial guess vector for iterative solver of (2.15), where the scaling coef-

ficient γ is chosen such that PT (K̂−λiM̂)P γ vi+1 is orthogonal to the new residual
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(a)

(b)

Figure 2.7 Effect of spatial orientation (a) and initial guess vector with
spatially oriented modes (b) on preconditioned GMRES relative residual
convergence history for the test case model in 34−36 kHz region. Faster
on average GMRES convergence can be observed in both cases.
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(PT (K̂− λiM̂)P γ vi+1) −PT ri:

γ =
(PT (K̂ − λiM̂)Pvi+1)

TPT ri

(PT ri)TPT ri

(2.24)

This strategy has worked well in practice, note the significantly lower initial residual

depicted in Fig. 2.5 and relative convergence history after 40 iterations of precondi-

tioned GMRES shown in Fig. 2.7(b).

Preconditioning

In order to accelerate the convergence of iterative sparse linear systems solvers, an

auxiliary linear system is solved, which is termed preconditioning. Application of

right and left preconditioning schemes to Jacobi-Davidson correction equation is

well covered in [52, 63, 59]. In particular, an approximation T of (K̂− λiM̂) is used

as a preconditioner as long as it is inverted M̂-orthogonally to the selected subspace.

Therefore we apply the projected preconditioner matrix (I−QQTM̂)TT(I−QQTM̂),

while the associated linear system to be solved can be written as:

(I − QQTM̂)TT(I −QQTM̂)v = b (2.25)

with solution given by [63]:

v = (I −K−1M̂Q(QTM̂T−1M̂Q)−1QTM̂)T−1b (2.26)

provided that QT M̂T−1M̂Q is non-singular. Then the Jacobi-Davidson correction

equation preconditioned from the right can be solved in two steps:

(I − QQTM̂)T (K̂ − λiM̂)(I −T−1M̂Q(QTM̂T−1M̂Q)−1QTM̂)T−1y =

= −(I −QQTM̂)T ri

∆vi = (I − T−1M̂Q(QT M̂T−1M̂Q)−1QTM̂)T−1y

(2.27)
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One of the most obvious choices for a preconditioner is an ILU factorization of

(K̂ − λiM̂). ILU preconditioners have been successful in many general symmetric,

indefinite, and nonsymmetric cases [64]. However, as the authors pointed out, if

the method is applied to indefinite matrices severe problems can occur, in particular

small pivots may lead to unstable inaccurate factorizations as well as the structure

of the original matrices may cause unstable triangular solves. The nature of large

mistuning problem for periodic systems featuring high modal density and target

eigenvalues commonly located in the interior of the spectrum makes (K̂ − λiM̂)

highly indefinite and severely ill conditioned once we are close to a target eigenvalue.

As a result, we have not succeeded in computing any computationally attractive

reasonable quality ILU preconditioner. Zero pivots and extremely ill conditioned LU

factors were identified as sources of errors. These results are in part corroborated

by [63], where authors observed the necessity for a great deal of fill-in (number of non-

zero entries) in order to get efficient preconditioning matrices for interior eigenvalues.

As an alternative, we propose to exploit the block-circulant structure of the un-

perturbed matrix pair (K,M) in combination with SPAI algorithm [65]. Recall that

a block-circulant matrix is completely block-diagonalized by a Fourier matrix:

Bdiag
h=1,...,H

[Kh − λMh] = (W∗ ⊗ I)(K − λM)(W ⊗ I) (2.28)

We propose to approximate the inverse of each block (Kh − λMh)
−1 with SPAI

algorithm because of its robustness and stability, as compared to ILU. It follows that

the application of preconditioner to a vector v can be carried out by the following

steps:

1. f = DFT(v)

2. f = SPAI( Bdiag
h=1,...,H

[Kh − λMh])f

3. y = IDFT(f)

First we decompose v as a linear combination of the real Fourier basis vectors through

DFT, then the real block-Fourier coefficients contained in f are multiplied by sparse
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approximation of the inverse of harmonic blocks (Kh − λMh)
−1 before they are

reassembled by the IDFT to produce the output vector y. The DFT can be im-

plemented efficiently by making use of the fast Fourier transform algorithm with

reduced computational complexity. The following set of experiments shows the ef-

fect of applying several preconditioners, in particular ILU (0), ILUT and DFT-SPAI,

on the convergence behavior of GMRES solver after 40 iterations have been taken.

Figs. 2.8(a) and 2.8(b) show that blind application of incomplete factorization is

rather unsuccessful as compared to DFT-SPAI preconditioning. In case of structure-

based ILU (0) we observe greater inaccuracy due to dropping nonzeros, while unsta-

ble triangular solves that may have been caused by very small pivots in addition to

(LU)−1 high condition number are the main reason of ILUT failure, note in Tab. 2.1

that a relatively large fill-in is done in vain. Apart from SPAI robustness, its success

Table 2.1 Comparison of fill-in in applied preconditioners.

Preconditioner Number of non
type zero entries

ILU(0) 8474496

ILUT 71805692

DFT-SPAI 8461279

can be explained by a very high fill-in of the transformed back from Fourier domain

matrix (W ⊗ I)SPAI( Bdiag
h=1,...,H

[Kh − λMh])(W
∗ ⊗ I). Note also that the DFT-SPAI

preconditioner is independent of perturbation and can be precalculated off-line, while

ILUT uses very large amounts of non-zero entries with additional storage require-

ments and computational effort for factorization each time perturbation changes,

thus putting severe limitations on the maximum problem size that can be handled.
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(a)

(b)

Figure 2.8 Comparison of GMRES relative residual convergence his-
tory with ILU (0) and DFT-SPAI (a), ILUT and DFT-SPAI (b) pre-
conditioners for the test case model in 34 − 36 kHz region. The DFT-
SPAI preconditioner consistently outperforms both structure-based and
threshold-based ILU.
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2.3.2 Algorithm description

The Jacobi-Davidson method applied to geometric mistuning problem of periodic

systems that implements the computational strategies described in the previous sec-

tions is outlined in Algorithm 3, Matlab implementation is given in Appendix A.

Before applying the main algorithm, a set of preconditioner matrices has to be com-

puted not only with nominal eigenvalues, but also with target values equally covering

the frequency band of ROM to have a high-quality preconditioner in case if any lo-

calized mode falls in that part of spectrum. The procedure starts with a block of

m initial nominal eigenvectors and expands the basis by a block of k vectors. These

vectors are approximate solutions of k correction equations, each for one member

of double mode with lower residual norm. Note that a more restrictive correction

equation (2.20) is implemented, where we are looking for a correction in the space

M̂-orthogonal to the subspace spanned by all selected eigenvectors, each is a mem-

ber of double mode with smaller residual. This approach, suggested in [53], leads

to faster convergence in addition to better conditioned linear correction systems in

presence of clustered eigenvalues.

As with all iterative inner-outer processes, we must carefully evaluate the overall

computational cost balancing inner solves precision and number of outer iterations.

If the correction equations are solved exactly, we may often achieve convergence for

all approximated eigenpairs after first Rayleigh-Ritz projection, yet solving inner

system to high precision may be very slow and costly. It is generally acknowledged

that if a Krylov subspace method is used as linear iterative solver the residual will not

decrease substantially up until a large enough subspace is built containing significant

spectral information corresponding to omitted parts of the spectrum, which may

be prohibitive for very large order systems. Therefore a suitable inner stopping

condition scheme must be applied to avoid any superfluous work while computing

accurate solutions whenever useful.

As suggested in the literature and based on our experimental observations, the

block methods that solve all linear correction equations simultaneously do not con-

sistently improve the overall runtime, unless the eigenpairs are multiple or highly
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Algorithm 1 Large Mistuning ROM with Preconditioned Jacobi-Davidson Method

1: Let V(0) be an m-column full rank matrix of nominal modes, k = 1
2: for i = 1, . . . , m do

3: if vi is first member of a double mode then

4: Find a spatial phase p with minimum norm of residual vector ri = (K̂ −
λiM̂)vi

5: uk = Rotate(p,vi), vk = Rotate(p,vi+1)
6: k = k + 1
7: else if vi corresponds to a single mode then

8: uk = vi, set vk to the closest in frequency member of double mode
9: k = k + 1

10: end if

11: end for

12: M̂-orthonormalization of U, Q = U/(UTM̂U)

13: Denote P = I − QQTM̂

14: for j = 1, . . . , k do

15: Denote Z = PT (K̂ − λjM̂)

16: Denote T ≈ (K̂ − λjM̂)−1

17: Denote rj = PT (K̂ − λjM̂)uj

18: Solve the linear system Z∆j = rj by GMRES

using Y = (I − TM̂Q((TM̂Q)TM̂Q)−1M̂Q)T as a preconditioner, and
vj normalized by (YZvj)

T (Yrj)/(YZvj)
T (YZvj) as an initial guess

19: ∆j = P∆j

20: end for

21: W = [V(0), ∆]

22: K′ = WT K̂W,M′ = WTM̂W

23: Solve the reduced eigenproblem K′z = θM′z

for eigenpairs (θi, zi)
24: Retain (θi,Wzi) (i = 1, . . . , l) Ritz pairs falling within ROM frequency range
25: If some Ritz pairs do not converge apply more outer iterations using GMRES

with zero initial guess and deflation against converged Ritz pairs
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clustered. Therefore from the point of view of performance and efficiency, provided

that after first outer iteration the non-converged eigenpairs do not cluster, we choose

to solve one correction equation per outer iteration. Moreover, because of the differ-

ent rates of convergence of each of the approximate eigenvectors, we perform explicit

deflation by including them in Q, however, they still have to be present in the basis

of the trial subspace of the Rayleigh-Ritz method. After each outer step we may have

a number of non-converged eigenpairs in the selected area of spectrum. While only

one will be drawn for correction, there is a choice to be made. The most common

targeting schemes are: to always select the non-converged eigenvector with eigen-

value closest to a target and to select the one with minimum residual. The rationale

for latter is that the selected Ritz pair with minimum residual would converge first

to be removed from the following iterations. In the proposed implementation the

minimum residual targeting is adopted in order to avoid selecting a spurious Ritz

pair, which may be a linear combination of eigenpairs far to the left and to the right

of the targeted spectrum.

2.4 Numerical studies

In this section we present a few numerical experiments. We are mainly interested in

assessing the speed and accuracy of SMC and JD algorithms in typical situations.

The results obtained by ROM will be compared with those of the full FEM reference

model of the mistuned bladed disk. Only free response results are computed because

if we neglect the modal truncation error, the accuracy of the solution to the forced

response problem at resonance frequencies is fully determined by the errors in the

approximated natural frequencies and mode shapes. The frequency bands of 34 −
36 kHz and 15−16 kHz corresponding to the blade motion dominated mode families

are chosen for analysis and marked by horizontal lines (2S and 2T/2F mode families

correspondingly) in Fig. 2.2. Their selection is motivated by the fact that they

represent two typical situations. In particular, the higher frequency family 2S spans

a larger frequency range. The frequency veerings can be observed in that region

causing some modes belonging to different families to interact. As the result of
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generally higher modal density in that area there is less separation between mode

families. In fact, as we mentioned earlier, for symmetrical systems the sensitivity

of an eigenvector to perturbation depends on the separation of its corresponding

eigenvalue from other eigenvalues. Therefore 34 − 36 kHz region represents a more

difficult to approximate case under equivalent perturbation than that of 15−16 kHz,

or 2T/2F mode family, which is well separated from others, in addition to spanning

a narrower frequency range.

In our first example we look for 29 perturbed eigenpairs in 15 − 16 kHz region.

Figs. 2.9(a) and 2.9(b) present nominal and perturbed natural frequencies along

with the canonical angles between corresponding eigenvectors. Note the presence

of a strongly affected by perturbation eigenpair with eigenvalue separated from the

rest of cluster and eigenvector making large angle with all nominal eigenvectors

that corresponds to a highly localized mode depicted in Fig. 2.10(a). Figs. 2.11(a)

and 2.11(b) show the natural frequency errors on a logarithmic scale and MAC ratio

between perturbed mode shapes predicted by SMC and reference model ANSYS

modal analysis for the 15 − 16 kHz frequency band calculated with fc = 15,400 Hz,

arbitrarily chosen in the middle of the frequency band. The results show that for this

case of relatively narrow well isolated family of modes the correction term calculated

with fc = 15,400 Hz is still accurate enough to yield approximation for the highly

localized 14,965 Hz mode. Thus natural frequency error for all calculated modes is

below 0.003% and MAC value above 0.9995. Next we apply our new iterative method

for the same problem. We solve the correction equations approximately by using the

Matlab built-in GMRES method gmres.m, that showed faster convergence on the test

case system. We have precalculated a set of SPAI preconditioners with target value

covering the frequency region 15−16 kHz with a step ∼ 100 Hz. For all the numerical

tests the maximum inner iteration number is set to 500, while the inner iteration

tolerance varies. In Fig. 2.12 we show the effect of increasing inner solver accuracy

on MAC, log 10 of natural frequency error and number of GMRES iterations for each

of the correction equations solved used as a measure of the computational cost. Note

that a reasonably accurate estimate of the perturbed eigenpairs can be obtained

without applying any further outer iterations, provided that the inner correction
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Figure 2.9 Natural frequencies (a) and canonical angles between eigen-
vectors (b) of nominal and perturbed test case model in 15 − 16 kHz
region. The “rogue” localized mode can be seen with natural frequency
far away from the original cluster and large angle with nominal ones in
the lower left corner of plot (b).
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(a) (b)

Figure 2.10 Localized mode shapes corresponding to 14,965 Hz (a)
and 33,940 Hz (b).

equations are solved accurately enough. Apparently with 500 steps GMRES and

inner relative residual tolerance set to 4 · 10−10 the correction equations are solved

to high enough precision to yield good quality correction terms, and the results are

in line with the literature that suggests to apply more accurate inner solves if near

convergence. In the current investigation we try to obtain the highest reasonable

precision and stop if reach plateau in GMRES convergence. The performance of the

method should be tailored by taking into account the overall running time, which in

parallel computing environment suggests the strategy of decreasing the number of

outer iterations by applying more accurate inner solves. Next we carry out a more

severe test to the large geometric mistuning ROM algorithms, that features higher

modal density with frequency veering regions corresponding to 2S family of modes.

The effect of perturbation on nominal modes in that area is shown in Figs. 2.3 and

2.4(a), while Figs. 2.13(a) and 2.13(b) depict the natural frequency errors and MAC

ratio in the 34 − 36 kHz frequency band calculated by SMC with fc = 34,700 kHz.

Clearly in this case the highly localized mode shown in Fig. 2.10(b) is not properly

approximated, with the error in natural frequency more that 0.73% and MAC ratio

0.86. The error could be attributed to the choice of the centering frequency being
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Figure 2.11 MAC ratio (a) and natural frequency error (b) between
reference and approximated by SMC eigenpairs for the test case model in
15− 16 kHz region. SMC accurately approximates perturbed eigenpairs
in this region, with MAC above 0.9995 and natural frequency error below
0.003%.



2 Reduced Order Modeling of Geometrically Mistuned Bladed Disks 47

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Mistuned modes indices

M
A

C

 

 

0.4e−9
2.0e−9
4.0e−9

(a)

0 5 10 15 20 25 30

−5

0

5

Mistuned modes indices

lo
g1

0 
∆ 

λ,
 H

z

 

 

0.4e−9
2.0e−9
4.0e−9

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

Correction equations indices

N
um

be
r 

of
 it

er
at

io
ns

 

 

0.4e−9
2.0e−9
4.0e−9

(c)

Figure 2.12 Effect of GMRES relative residual tolerance on MAC (a),
natural frequency error (b) and number of inner solves (c) for the test
case model in 15 − 16 kHz region. A reasonable quality solution can
be obtained with a single outer iteration by increasing the inner solver
accuracy. With a total of 5101 GMRES iterations taken the MAC for all
modes is above 0.996 and natural frequency error below 0.05%.
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Figure 2.13 MAC ratio (a) and natural frequency error (b) between
reference and approximated by SMC eigenpairs for the test case model
in 34− 36 kHz region. In this case SMC fails to accurately approximate
localized perturbed mode corresponding to 33,940 Hz, which has MAC
0.86 and natural frequency error 0.73% due to poor preconditioning cal-
culated with fc = 34,700 Hz.

far from the mode that needs a high quality correction. This example illustrates one

of the weak points of SMC method discussed above, i.e. SMC algorithm may not

be an optimal choice if applied in the wider areas with high modal density even for
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Figure 2.14 Outer loop convergence history of 11 modes after first
outer iteration of the preconditioned iterative method in 34 − 36 kHz
region. Each curve shows the convergence of the residual norm of a Ritz
pair fallen in 33.9 − 35.2 kHz region at outer steps. Note that the outer
residual tolerance level is marked by the dashed horizontal line.

local low rank perturbations. Now we consider again the 34 − 36 kHz region and

seek 33 perturbed eigenpairs with the iterative method. Here we apply the inner

solver settings that yielded acceptable precision in the previous experiment, namely

maximum of 500 GMRES iterations with the inner relative residual tolerance set to

4 · 10−10. After solving 17 correction equations to the selected accuracy level, we

find that 11 of approximate eigenparairs do not converge to the outer residual norm

tolerance set to 9 · 105. Fig. 2.14 reports the residual convergence history of those

eigenpairs that have not converged after first outer iteration, while in Tab. 2.2 the

computational cost is provided in terms of number of GMRES solves. Note that

even if only one correction equation is solved per outer iteration with the selected

targeting strategy, we sometimes observe the convergence of several eigenpairs at a

time. The peaks in the convergence behavior of certain eigenpairs are likely to be

caused by unstable convergence to internal eigenspaces, which is technically possible

but not guaranteed by the theory. The accuracy of approximate eigenpairs after

applying 10 outer iterations are presented in Figs. 2.15(a) and 2.15(b).

Summarizing this section, these two examples demonstrate the claim from Sec-
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Table 2.2 Computational cost and number of converged eigenpairs per
outer iteration.

Outer Number of Number of
iteration GMRES converged

iterations modes

1 7354 22

2 500 4

3 500 1

4 500 1

5 500 2

6 500 1

7 500 1

8 500 0

9 500 0

10 500 1

Total 11854 33

tion 2 that SMC may not yield an accurate approximation when nominal modes

selected for ROM are spread over wider areas of spectrum, i.e. in the modal in-

teraction areas, while the iterative preconditioned method consistently produces an

accurate reduced-order model. Considering the cases where both methods provide

reasonable approximation quality, the preference should be given based on computa-

tional time and the ability to scale to larger order industrial models. The algorithmic

complexity of SMC depends to a larger extend on the rank of the perturbation (the

number of mistuned DOF m) and the order of nominal system n. Essentially, it

has the complexity O(m3), which mainly accounts for the derivation of compen-

sated basis vectors that incurs the solution of dense linear system of the order m

in equation (6) of [33] and a few BLAS3 operations of the same order. The storage

requirement roughly amounts to O(nm) that makes its scaling to larger order models

practically infeasible.
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Figure 2.15 MAC ratio (a) and natural frequency error (b) between
reference and approximated by the preconditioned iterative method
eigenpairs for the test case model in 34 − 36 kHz region. MAC ratio
for all modes after 10 outer iterations taken is above 0.9992 and natural
frequency error below 0.0002%.

Estimation of the computational cost of preconditioned iterative method is a

more delicate issue because it concerns the stopping criterion for the inner solver,

whose analysis is still an active area of research. Many factors should be considered

before setting the optimal condition (cost of preconditioning, relative cost of inner
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versus outer iterations, etc.). The performance of such methods is usually evaluated

by taking into account the cost of matrix-vector multiplications, which is the most

time consuming computation. Since (K,M) are sparse, the computational cost per

one matrix-vector operation will depend on the type of sparsity. But the overall

complexity will be essentially proportional to the total number of inner iterations.

Therefore if we insure optimal/suboptimal convergence by restricting admissible per-

turbations it will likely to grow linearly in n. As in any iterative method, the memory

requirements are also limited as n grows, they amount to storing one sparse block

of (K,M), its perturbation and a few vectors of order n. Both methods incur some

off-line computational effort. A set of nominal quasi-static modes is computed for

SMC, those are dense blocks and therefore dependent of the structure of perturbation

to be memory efficient. On the contrary, the new method requires a set of sparse

preconditioners, which are completely independent of perturbation. It is likely that

neither of the methods is a clear winner; SMC may be more efficient for medium size

models in many situations.

2.5 Summary

In this chapter we have addressed the problem of quantifying and predicting forced

response of geometrically mistuned rotors by building very compact ROM in a com-

putationally efficient way. First we have revisited and analyzed the behavior of SMC

method revealing that it is closely related to the generalized Davidson algorithm.

There are all indications that from the memory efficiency and accuracy point of view

it is a good choice for the moderate order FEM models under low rank localized

perturbation if narrow clustered areas of spectrum are analyzed. For very large scale

industrial models as well as for the areas of spectrum where multiple mode families

interact, a new method is proposed. It stems from the Jacobi-Davidson algorithm

implementing a number of simple heuristic strategies based on the block-circulant

structure of the nominal system and assumptions on perturbation. In particular, a

number of typical industrial applications of ROM are considered such as manufac-

turing imprecision, erosion or foreign objects damage event that constitute rather
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local low rank high amplitude perturbation destroying symmetry. A set of numerical

experiments have been conducted on an industrial bladed disk model. In its current

form the implementation of the method demonstrates promising numerical results.

Our experience indicates that the algorithm combined with proposed preconditioning

scheme routinely converges to the perturbed interior eigenspace within reasonable

time, provided that the perturbation is localized to a few sectors.
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Chapter 3

Statistical Quantification of the

Effects of Blade Geometry

Modification on Mistuned Disks

Vibration

3.1 Overview

The key to incorporating a computationally expensive technique into a stochastic

simulation framework is to decrease the expense of analyzing systems modified in

the parametric space. In this chapter we will discuss application of the methods ca-

pable of generating very compact ROM introduced in the foregoing in the stochastic

simulation framework to analyze the effect of random mistuning on geometrically

modified bladed disks. Small parameter variation in blade properties is added with

Component Mode Mistuning method [46]. Even though the idea of using a set of

normal modes of geometrically perturbed bladed disks as a nominal projection basis

has been discussed by Yang et al. [41], the methods employed here give us a new tool

to calculate them in a computationally efficient way by avoiding costly modal re-

analysis of a full order no longer symmetrical structures. In so doing we combine the
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ability to retain complexity and level of detail in both the mechanical and stochastic

modeling, which involves access to perturbed system modes, realistic physical geom-

etry variation and nonuniform random variations of individual blades at component

level, with accuracy and computational efficiency.

Perhaps the best indication of the utility of the proposed analysis framework is

that the problem of statistical quantification of random mistuning effects on vibration

level of deterministically modified disks has been an area of active research for years.

There exists extensive literature investigating the combined effects of intentional and

random mistuning that has shown potential in reducing maximum blade response [66,

67, 68, 69, 70]. The results of those studies were still limited in small parameter

variation assumption of the numerical tools applied. More recently, a statistical

investigation of the effects of intentional and random mistuning was presented by

Nikolic et al. [71]. The effect of geometry variation in that study is modeled rather

as large variation of a blade component natural frequency, whereas the analysis

technique employed [50] yields limited access to spacial information in the results.

In the remainder of the chapter the effectiveness of our approach is demonstrated

on FE model of a bladed disk with realistic geometry. As an example, we apply

a set of mesh morphing patterns to a nominal blade geometry approximating some

common blade damage scenarios. The selected results clearly illustrate the impor-

tance of accurate modeling of large geometric mistuning in stochastic simulations.

In particular, the geometrical perturbation patterns with similar component natu-

ral frequency variation are shown to exhibit quite different magnification levels in

random response. The most significant effects of the added deterministic mistuning

have been observed in high modal density areas. Perturbation patterns with heavier

component mode distortion have caused significant additive magnification levels as

well as lower sensitivity to additional random mistuning.

3.2 Hybrid algorithm formulation

In the following we present a computational approach for generating compact pa-

rameterized reduced order models to statistically quantify vibrational behavior of
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randomly mistuned bladed disks where some blades are geometrically modified.

An important aspect of any model reduction algorithm is balancing the compu-

tational complexity of ROM construction and subsequent analysis. Therefore, it is

important to make distinction between two types of different in nature perturbations,

small random and deterministic geometrical mistuning. Due to the presence of ge-

ometrical mistuning our target application requires reduced order models valid over

a wide range of large in norm perturbations, which normally leads to higher order

models. On the other hand our goal is to achieve extremely compact ROM suitable

for repeated evaluation to analyze random parameter dependent performances.

The hybrid approach that we are adopting here is relatively infrequent construc-

tion of geometrical perturbation dependent ROM basis vectors at some additional

computational cost, still lower than one of a general purpose eigensolver applied to

a non cyclic symmetrical full system. The cost can be amortized in later repeated

Monte-Carlo simulations, where the large size of the model is more problematic since

it directly affects simulation time.

To introduce random uncertainty into geometrically modified FE model we adopt

the parametric probabilistic approach. In this setting system matrices can be viewed

as functions of a set of random parameters collected in a vector θ. Assuming har-

monic excitation the random equation of motion an undamped bladed disk structure

around a static equilibrium in frequency domain can be written as

(
− ω2

(
M̂ + Mδ(θ)

)
+

(
K̂ + Kδ(θ)

))
x(ω, θ) = F(ω) (3.1)

where θ is a vector of random parameters and superscript δ denotes small random

perturbation. Instead of defining explicit dependence of the matrix elements on ran-

dom parameter vector, uncertainty in FE models is more conveniently represented

in the modal space. Assuming small parameter variation around geometrically per-

turbed state, i.e. ‖Kδ(θ)‖ ≪ ‖K̂‖, ‖Mδ(θ)‖ ≪ ‖M̂‖, projected random system

matrices can be expressed as

µ′ = V̂TM̂V̂ = I, κ′ = V̂TK̂V̂ + Λδ(θ) = Λ̂ + Λδ(θ) (3.2)
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Note that both mass and stiffness matrix variations can be formulated in terms

of random natural frequencies. Thus, experimentally measurable random modal

parameters can be introduced directly into ROM. Furthermore, significantly reduced

parametric space will be sampled during Monte-Carlo simulations.

In this study small random blade-to-blade variations are modeled with CMM

method, see [46] for a full development. The random parameters are introduced at

individual s-th blade component level using Craig-Bampton basis

Us =

[
V̂B

s Ψ̂B
s

0 I

]
(3.3)

where U is a matrix of component Craig-Bampton basis vectors, subscript b denotes

blade DOF partition, superscript B designates cantilevered blade entity and Ψ is a

matrix of boundary basis vectors defined as

Ψ̂B
s = −K̂−1

s,iiK̂s,ib (3.4)

The blade portion of projection basis vectors V̂s is expressed in the component

coordinates as

V̂s = UsQs (3.5)

where modal participation factors are

Qs =

[
Λ̂B−1

s V̂BT

s,iiK̂s,iiV̂s,ii

V̂s,bb

]
(3.6)

where subscript i stands for interior DOF partition. This leads to random reduced

order stiffness matrix

κ′ = V̂T
(
K + ∆K

)
V̂ +

N∑

s=1

QT
s UT

s Kδ
sUsQs = κ̂ +

N∑

s=1

QT
s

[
κδ

s,V V κδ
s,V Ψ

κδ
s,ΨV κδ

s,ΨΨ

]
Qs (3.7)

In most practical situations the blade displacements at the boundary are small,

therefore contributions of κδ
s,V Ψ and κδ

s,ΨΨ in equation (4.20) are negligible. Then
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the term κδ
s,V V = Λδ,B

s (θ) is conveniently approximated by a diagonal matrix of

random parameters

κ′ = κ̂ +
N∑

s=1

V̂T
s,iiK̂

T
s,iiV̂

B
s,iiΛ̂

B−1

s Λδ,B
s (θ)Λ̂B−1

s V̂BT

s,iiK̂s,iiV̂s,ii (3.8)

From the above we may see that since the basis vectors do not change with system

random parameters, the entire ROM update amounts to just a few BLAS 3 operations

of order m.

Algorithm 2 outlines the proposed steps for the statistical analysis of random

mistuning effects on geometrically modified bladed disks.

Algorithm 2 Reduced order simulation framework for statistical analysis of the
random mistuning effects on geometrically modified bladed disks.

1: Let n be a number of geometrical mistuning motifs.
2: for i = 1, . . . , n do

3: Compute corrected basis vectors V̂i using geometrical mistuning pattern
(∆Ki, ∆Mi).

4: Project system matrices (K + ∆Ki,M + ∆Mi) and forcing F.

5: For each sector compute participation factors Q, component normal V̂B

and boundary Ψ̂B modes.
6: Let m be the number of random misalignment realizations.
7: for j = 1, . . . , m do

8: Generate j-th vector of random parameters Λδ,B(θ).
9: Update the projected stiffness matrix κ′ according Eq. (4.20).

10: Solve the projected system (κ′, µ′).
11: end for

12: end for

3.3 Numerical examples

In this section we employ a FE model of an integrally bladed disk featuring 29

blades and 126,846 DOF, shown in Fig. 3.1. Modal characteristics of a tuned model

are frequently illustrated by plotting natural frequencies versus nodal diameters,
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Figure 3.1 Finite element model of bladed disk.

as depicted in Fig. 3.2. In general, tuned cyclic symmetrical bladed disks exhibit
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Figure 3.2 Natural frequencies versus nodal diameters.

clusters of closely spaced repeated eigenvalues, forming fundamental mode families.

In absence of blade-to-blade shrouds, as in our example, they form nearly horizontal

lines of blade motion dominated modes. The mode families are labeled according to

blade dominant motion, where F is a flexural mode, T is a torsion mode, S is a stripe

or chordwise bending mode, and R denotes a radial elongation mode. The frequency

ranges containing particular mode families investigated in statistical studies further

in the chapter are marked by dotted horizontal lines.

A set of geometrical mistuning patterns generated by mesh morphing the nominal

blade geometry is displayed in Fig. 3.3. They approximate some typical turbine blade
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3 Geometrical perturbation patterns representing some typ-
ical blade damage scenarios.
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distress scenarios, such as airfoil random impact damage due to FOD/DOD event

Figs. 3.3(e), 3.3(g) and 3.3(h); leading edge distortion Fig. 3.3(d); blade contour

change due to loss and/or build up of material Fig. 3.3(f); blade clang damage - tip

curls Figs. 3.3(a), 3.3(c) and V-shaped dent Fig. 3.3(b).

Instead of characterizing the perturbation motifs by norm, rank or sparsity pat-

tern, it is more intuitive to look at their effects on cantilevered blade eigenmodes,

which are shown in Fig. 3.4. If we invoke the traveling wave interpretation, the vibra-
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Figure 3.4 Clamped blade eigenvalue difference (a) and MAC values
(b) between nominal and perturbed modes that correspond to selected
blade motion dominated families of modes.

tion energy carrying waves propagate through the system in pass bands associated

with the fundamental blade motion dominated mode families. Thus, the effect of a
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particular perturbation pattern on the global modes within a fundamental family in

most cases will be consistent with the corresponding clamped mode shapes degree

of distortion and natural frequencies falling outside the pass band causing a global

mode to localize around the perturbed blade.

3.3.1 Algorithm accuracy

To validate accuracy of the proposed hybrid model reduction technique free and

forced response is compared against the results calculated with a full reference FE

model. The nominal geometry of blades 1, 8 and 14 is modified with patterns (g),

(f) and (h) correspondingly, whereas the nominal Young’s modulus of the n-th blade

mistuned as

En = E0(1 + δe
n) (3.9)

where E0 is the nominal Young’s modulus and δe
n is a non-dimensional mistuning

value. The specific pattern used in this test case is shown in Tab. 3.1. The mod-

eling technique presented in previous section results in ROM of order 29 DOF in

14.5− 16.5 kHz frequency region. Traveling wave point excitation forcing is applied

in the direction normal to the surface of a blade, while aerodynamic effects due to

modified geometry are neglected. Structural damping loss 0.006 is used throughout

all numerical examples. Figs. 3.5 and 3.6 show ROM accuracy in terms natural

frequency error and MAC coefficients between normal modes, forced response re-

sults are compared in Figs. ?? and ?? in terms of the euclidian norm of maximum

responding blade displacement.

Observe that the ROM in both frequency bands provide an accurate representa-

tion of mistuned system modes and as a result reliable prediction of the mistuned

system’s forced response as compared to the results computed by reference FE model.

3.3.2 One damaged blade example

In the following numerical experiments the geometry of a single blade of nominal

disk is modified by the perturbation patterns presented in the foregoing. Fig. 3.8

shows the effects of such perturbation on the test model eigenvalues in 22−24.5 kHz
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Table 3.1 Eigenvalue mistuning pattern

Blade δe
n Blade δe

n

1 0.05704 16 0.04934

2 0.01207 17 0.04479

3 0.04670 18 0.03030

4 -0.01502 19 0.00242

5 0.05969 20 0.01734

6 -0.03324 21 0.02919

7 -0.00078 22 -0.00328

8 -0.01688 23 0.00086

9 0.00242 24 -0.03654

10 -0.02747 26 -0.03631

11 -0.03631 26 -0.01665

12 -0.03570 27 0.00783

13 -0.03631 28 -0.01169

14 -0.03631 29 -0.01332

15 0.00242
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Figure 3.5 Natural frequency errors calculated with reference and
ROM models in 14.5 − 16.5 kHz region.
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Figure 3.6 MAC values between modeshapes (a) and cosine of canon-
ical angles between corresponding eigenspaces (b) calculated with refer-
ence and ROM models in 14.5 − 16.5 kHz region. Note that low MAC
values is the result of cross contamination of two eigenmodes close in
frequency, whereas the entire eigenspace approximated by ROM is accu-
rately predicted as indicated by canonical angles.
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Figure 3.7 Comparison of envelops of maximum forced response cal-
culated with reference and ROM models obtained with engine order 2
excitation in 14.5 − 16.5 kHz region (a) and their difference (b).
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Figure 3.8 Comparison of envelops of maximum forced response cal-
culated with reference and ROM models obtained with engine order 5
excitation in 14.5 − 16.5 kHz region (a) and their difference (b).
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frequency band. It is interesting to note that large mistuning limited to a single
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Figure 3.9 The effect of perturbation of a single blade on system eigen-
values belonging to 1S fundamental mode family (a), detailed view of
29th eigenvalue (b). Note the appearance of “rogue” blade modes, in
particular a perturbed member of harmonic 14 23,358 Hz doublet marked
by the dashed line box.

blade significantly modifies only few natural frequencies. Thus, every geometrical

mistuning pattern except (c) affects 23,358 Hz harmonic 14 eigenmode. The change

in eigenvalue is in accordance with the degree of localization of corresponding mode,

as shown in Fig. 3.9. The mode shapes corresponding to “rogue” natural frequencies

23,545 Hz, 24,232 Hz and 22,392 Hz of patterns (g), (h) and (f) exhibit the same
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(a) (b) (c) (d)

(e)

Figure 3.10 The effect of perturbation of a single blade on system
eigenvector corresponding to harmonic 14 23,358 Hz eigenvalue. Nomi-
nal mode shape (a), perturbed mode shape corresponding to 23,359 Hz
eigenvalue of pattern Fig. 3.3(b) (b), 23,371 Hz of pattern Fig. 3.3(a) (c),
23,402 Hz of pattern Fig. 3.3(d) (d) and highly localized perturbed mode
shape corresponding to 23,532 Hz eigenvalue of patterns Fig. 3.3(e) (e).
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strong localized behavior as one depicted in Fig. 3.9(e).

For forced response statistical analysis of geometrically mistuned disks we em-

ploy ROM of order 34 DOF in 22 − 24.5 kHz frequency region and 60 DOF in

32 − 37 kHz band. The statistical results for all geometrical mistuning patterns

are obtained through 100 Monte-Carlo simulations with standard deviation of nor-

mally distributed small mistuning parameters ranging from 0.1 to 5 percent applying

Weibull hypothesis of response statistics distribution. The latter has been employed

by Bladh et al. [45] based on the theory of the statistics of extremes. It has been

reasoned that the distribution of the maximum blade amplitudes for a population

of mistuned rotors will tend to one of three extreme value distributions, and since

the response is bounded, the distribution will asymptotically approach the Weibull

distribution.

The 99.9th percentile values and differences of the amplitude magnification fac-

tor between nominal disk and geometrically modified ones subject to small random

mistuning are shown in Figs. 3.10, 3.11, 3.19 and 3.13 as a function of mistun-

ing strength for three engine order excitation cases. The results indicate that with

introduction of blade damage we observe increase in amplification factor at lower

standard deviation levels of small random mistuning compared to undamaged ran-

domly mistuned system. As small mistuning level grows, the additive contribution

of large deterministic perturbation becomes less pronounced, for some patterns and

engine order excitations being negative. Comparing these plots, we also observe that

higher engine order excitation response show lower levels of additional amplification.

Clearly, the difference around the peak amplitude magnification caused by random

mistuning is consistently being below 10 percent of maximum nominal response. In

general, the increase in amplification is more or less in agreement with the degree of

distortion of corresponding clamped modes. Exceptions are observed for pattern (c)

in Figs. 3.11(a) and 3.11(c), as well as for pattern (h) in Fig. 3.13. Figs. 3.14 and

3.15 demonstrate selected random frequency response functions for patterns (c) and

(h) in 22 − 22.4 kHz band under EO1 excitation. Fig. 3.16 depicts random FRF for

pattern (h) in 32 − 37 kHz frequency range excited by EO4. In Fig. 3.14 note that

pattern (c) does not generate any highly distorted localized “rogue” mode at 0 per-
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Figure 3.11 The 99.9th percentile magnification factor of nominal disk
in 22−24.5 kHz band obtained with EO1 (a), EO2 (b) and EO3 (c). The
geometrical perturbation contribution to random response (maximum
and minimum of all patterns) is marked with error bars.
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Figure 3.12 Magnification factor difference (99.9th percentile) be-
tween perturbed and nominal disks in 22− 24.5 kHz band obtained with
EO1 (a), EO2 (b) and EO3 (c).
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Figure 3.13 The 99.9th percentile magnification factor of nominal disk
in 32−37 kHz band obtained with EO1 (a), EO4 (b) and EO12 (c). The
geometrical perturbation contribution to random response (maximum
and minimum of all patterns) is marked with error bars.
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Figure 3.14 Magnification factor difference (99.9th percentile) be-
tween perturbed and nominal disks in 32 − 37 kHz band obtained with
EO1 (a), EO4 (b) and EO12 (c) excitation.
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Figure 3.15 Envelops of maximum forced response obtained with EO1
excitation in 22 − 25.5 kHz band for geometrically mistuned by pattern
Fig. 3.3(c) system subjected to small mistuning with standard deviation
δ varying from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean
and minimum response out of 100 random realizations. The system
response without geometrical mistuning is depicted in thinner line.
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Figure 3.16 Envelops of maximum forced response obtained with EO1
excitation in 22 − 25.5 kHz band for geometrically mistuned by pattern
Fig. 3.3(h) system subjected to small mistuning with standard deviation
δ varying from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean
and minimum response out of 100 random realizations. The system
response without geometrical mistuning is depicted in thinner line.
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Figure 3.17 Envelops of maximum forced response obtained with EO4
excitation in 32 − 37 kHz band for geometrically mistuned by pattern
Fig. 3.3(h) system subjected to small mistuning with standard deviation
δ varying from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean
and minimum response out of 100 random realizations. The system
response without geometrical mistuning is depicted in thinner line.
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cent mistuning. All the members of the fundamental family remain quasi-periodic to

some degree being contaminated by additional harmonic content, whereas maximum

response is observed at main resonance frequency. The pattern incidentally generates

highest additive magnitude amplification in 22 − 24.5 kHz area for EO1 and EO3

at low levels of random mistuning, Figs. 3.11(a) and 3.11(c). The reason for that

special behavior is the fact that for EO1 and EO3 this particular frequency region

exhibits two eigenfrequency veerings. This implies disk-blade modal interaction and

hence better transfer of vibration energy between adjacent blades through the disk at

closely clustered nearly unperturbed blade eigenfrequencies. As random mistuning is

increased, the FRF curves become visually indistinguishable from geometrically un-

perturbed case indicating that from 0.3 percent of random mistuning that particular

blade damage pattern does not affect the response magnification factor.

Fig. 3.15 shows the random FRF of pattern (h) in the same frequency band. In

contrast, more serious damage to blade manifests itself as a heavily distorted local-

ized to that blade mode seen as an extra resonance peak at 24,232 Hz at 0 percent of

random mistuning excited by all engine orders. Other perturbed system modes stay

quasi-periodic with slight degree of contamination by different wave numbers, which

translates into forced response amplification with respect to nominal system, still

found at the fundamental family resonance frequency. The remaining perturbation

patterns follow similar trend in that frequency area, namely exhibiting an extra reso-

nance peak pending on degree of mode distortion and response amplification around

main fundamental family frequency. The effect of damage is visible at all levels of

random mistuning as an increase in random response around natural frequency of

the highly localized mode.

Finally, Fig. 3.16 depicts random system response to EO4 excitation for pattern

(h) in higher modal density 32 − 37 kHz zone. Exceptional is the fact that the

additional resonance peak appeared in the response of the mistuned system around

33,921 Hz at 0 percent of small mistuning is larger than the fundamental family

peaks even with growing random mistuning level. Thus, the maximum amplification

occur at nearly 1000 Hz lower frequency than nominal mistuned case. Note also that

the “rogue” eigenvalue displays higher sensitivity to additional random mistuning
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spreading in frequency faster than its fundamental family counterparts.

The variability of magnification factor can also be illustrated by the shape of PDF

in Fig. 3.17. PDFs of most patterns and frequency areas where “rogue” mode reso-

nance does not dominate random FRF show higher magnitude and wider distribution

at low levels of small mistuning gradually converging to nominal case, as shown in

Figs. 3.17(a) and Figs. 3.17(b). Fig. 3.17(c) illustrates the extreme case of pattern

(h) in 32 − 37 kHz band. Note very narrow distribution centered around higher

magnitude amplification level from 0.1 to 0.5 percent indicating lower variability

and consequently lower sensitivity with respect to additional random mistuning. On

the other hand the distribution function significantly widens at 2 to 5 percent levels

much greater variability of response levels as opposed to geometrically unmodified

mistuned system.

The results demonstrating spatial distribution of maximum responding blade are

presented in Figs. 3.18. As anticipated, in the nominal design undergoing random

mistuning all blades are more or less equally likely to experience maximum response,

whereas even perturbation with pattern (a), which showed minimum additional am-

plification, brings about spatial deterministic regularity in the random response.

Note that some blades, not necessarily the damaged one, are more likely to have

larger response than the others. For patterns with heavier component mode dis-

tortion we observe that the affected by perturbation blades dominate in maximum

response statistics.

3.3.3 Multiple damaged blades test case

In the next study we present the test case where more than one blade sustain sig-

nificant geometry change. The combinations of patterns can be found in Tab. 3.2.

Results shown in Figs. 3.19 and 3.20 correspond to 99.9th percentile values of the

magnification factor and differences between nominal disk and geometrically mod-

ified ones both subject to various levels of small random mistuning. Comparing

these plots to a single blade damage scenario one can observe a noticeable increase

in magnification levels. Mistuning combination 3 generates additive magnification
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Figure 3.18 Comparison of probability density functions of magni-
fication factors for perturbed and nominal disks pattern Fig. 3.3(g) in
22−24.5 kHz with EO1 excitation (a), pattern Fig. 3.3(c) in 22−24.5 kHz
with EO1 excitation (b) and pattern Fig. 3.3(h) in 32−37 kHz with EO4
excitation (c).
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Figure 3.19 Comparison of maximum responding blade histograms in
22 − 24.5 kHz region with EO1 excitation: nominal mistuned disk (a),
pattern Fig. 3.3(a) (b), pattern Fig. 3.3(c) (c) and pattern Fig. 3.3(h) in
32 − 37 kHz region with EO4 excitation (d).

Table 3.2 Combinations of mistuning patterns in multiple blade dam-
age scenario.

Combination Patterns distribution, sector(pattern)

1 1(h),26(g),27(f)

2 1(g),8(f),14(h)

3 1(h),7(h),12(f),18(e),21(h),26(e)

4 3(h),19(f),23(e)

5 5(h),6(h),16(g),17(e),25(f)
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Figure 3.20 The 99.9th percentile magnification factor of nominal disk
in 32−37 kHz band obtained with EO1 (a), EO4 (b) and EO12 (c). The
geometrical perturbation contribution to random response (maximum
and minimum of all combinations of patterns) is marked with error bars.
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Figure 3.21 Magnification factor difference (99.9th percentile) be-
tween perturbed and nominal disks in 32 − 37 kHz band obtained with
EO1 (a), EO4 (b) and EO12 (c) excitation.
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factor over 50 percent of maximum nominal case level under EO4 excitation order.

The envelop of maximum random frequency response for that combination is shown

in Fig. 3.21. Likewise, we observe an extra resonance peak appeared in the response

around 33,900 Hz at 0 percent of mistuning, which dominates over the fundamental

family peaks. However, this time several distorted “rogue” localized to damaged

blades modes are responsible for that highest peak. In view of Figs. 3.21(b) and

3.21(c) it is significant that the maximum random response of geometrically modi-

fied system does not behave the same way as the nominal mistuned case spreading

in frequency considerably faster as the random mistuning level grows.

3.4 Summary

This chapter presents a stochastic simulation framework for quantification of random

response of geometrically modified bladed disks. The proposed hybrid approach

involves relatively infrequent computation of a small set of basis vectors corrected for

each deterministic geometry change, which yields a very compact ROM. The latter

is used in repetitive Monte-Carlo simulations, where random parameter variation in

blade properties is introduced in modal space at a component level. That leads quite

naturally to a very attractive numerical tool combining both accuracy and level

of detail with computational efficiency. Its effectiveness and precision have been

demonstrated through a series of numerical examples on FE model of an industrial

bladed disk with some blades featuring significant geometry change due to practical

damage patterns. The importance of accurate modeling of geometrical mistuning

has been emphasized through a selection of damage patterns with similar component

natural frequencies variations that exhibit markedly different response levels. Rather

surprisingly, in the majority of the analyzed situations large geometric mistuning

has not led to significant additional response magnification beyond very low levels of

random mistuning. The worst case has been identified in the high modal density area

where “rogue” blade peaks found to be dominant. They are largely responsible for

considerable additive magnification factors beyond low levels of random mistuning

as compared to nominal case meanwhile exhibiting lower sensitivity to additional
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Figure 3.22 Envelops of maximum forced response obtained with EO4
excitation in 32−37 kHz band for geometrically mistuned by combination
3 system subjected to small mistuning with standard deviation δ vary-
ing from 0.5% (a), 1.5% (b) to 2.5% (c) showing maximum, mean and
minimum response out of 100 random realizations. The system response
without geometrical mistuning is depicted in thinner line.
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random mistuning.
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Chapter 4

Parameterized Reduced Order

Modeling of Misaligned Stacked

Disks Rotor Assemblies

4.1 Overview

Flexible rotor-bearing systems show significant sensitivity in overall vibration be-

havior to system uncertainties. One important issue arising in turbine engine design

is quantification of the effects of stacked disks misalignment on the system bending

dynamics.

Current trends towards lighter more flexible rotors operating at supercritical

speeds require detailed and reliable representation of complex dynamics in order to

have a better agreement between simulation and experimental results. 1D rotordy-

namic models enjoy considerable success being simple and accurate in most practical

situations. However, as a result of unconventional geometry featuring thin-walled

tubular cross sections and flexible bladed disks full three-dimensional modeling of

such rotors is unavoidable [72, 73, 74, 75].

For problems of practical interest, the computational effort required to model

the rotor continuum using 3D FE formulation is substantial. Both the large dimen-
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sion of the system and the large computational requirements render such models

inadequate for repeated calculations necessary to examine possible combinations of

the uncertainties at various operating conditions. Moreover, model parameters are

often functions of rotational speed adding considerably to the degree of complexity.

To facilitate the analysis, it is essential to have accurate low-order models that are

significantly faster to solve than the original full model.

In fact, there is an extensive literature in the area of model order reduction

for rotordynamics problems. The application of 2D Fourier axisymmetric FE was

demonstrated in [76], whereas 3D solid FE models featuring cyclic symmetry has

been reported in [72, 77]. Both approaches reduce the size of original problem by

truncating higher order harmonics. Many reduction techniques are derived using a

projection-based framework, in which the system variables and governing equations

are projected onto low dimensional subspaces. These methods include balanced

truncation [78, 79, 80] and projection into modal space [77, 81, 79, 82, 83]. The

modal projection is often combined with Guyan reduction or a component mode

synthesis technique.

In the context of parameter-dependent systems, the resulting system is of lower

order, but it is not necessarily computationally efficient to update the reduced model

once parameters change. The existing techniques developed for non-rotating struc-

tures analysis, for the most part, are straightforward extensions of the modal pro-

jection based order reduction algorithms [39]. Building a projection space assuming

small perturbations around a nominal point is not always appropriate as is the case

with uncertainties in geometry [34].

To address the challenges, we introduce a novel procedure suitable for repeated

model evaluation that achieves decent approximation properties while retaining com-

putational efficiency. The nominal rotor is discretized with 3D solid FE accounting

for rotational inertia effects in body attached frame for a set of selected rotation

speeds. Cyclic symmetry approach enables us to manipulate with FE model in-

volving only one elementary sector per stage. At each individual stage the system

equations are reduced through truncation of higher order harmonics.

The dynamic effects of disk misalignment are introduced through multiplicative
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perturbation to stiffness matrix in Fourier domain accounting for non-isotropic stiff-

ness variation plus centrifugal excitation vector that includes static and dynamic

imbalance forces. Both are dependent on a small set of parameters modeling the

interstage geometry uncertainties. Perturbation of stiffness matrix is a major dif-

ference with reported misalignment modeling methods [84, 85, 86, 87, 88] where

“rotor-bow” effects are simulated with equivalent forces and moments applied to the

nodes of nominal model.

Practical experience indicates that, with the assumption of small in norm per-

turbations and rotational periodicity of individual stages, the flexural behavior of

misaligned rotor can be studied by retaining only first three harmonics. To couple

misaligned bladed disks our algorithm employs the multi-stage cyclic symmetry tech-

nique developed in [89]. Finally, we will discuss a computational strategy of reducing

large condition number of nominal uncoupled system, which significantly simplifies

and accelerates repeated solution of perturbed system.

4.2 Background

4.2.1 3D rotordynamics equations of motion

Consider a FE model of a lightly damped rotating structure. The equations of

motion in the body fixed coordinate frame assuming constant angular velocity can

be expressed as [72, 74]

[KE + KG(uS) −KC(Ω2)]uS = FC(Ω2) (4.1)

MüD + C(Ω)u̇D + [KE + KG(uS) −KC(Ω2)]uD = F (4.2)

where M ∈ Rn×n is a symmetric positive definite mass matrix, KE ∈ Rn×n is a

symmetric semi-definite elastic stiffness matrix. Two rotational aspects are taken into

account. The Coriolis forces proportional to the velocities are introduced through

a skew-symmetric positive semi-definite pseudo-damping matrix C ∈ R
n×n. The

centrifugal forces generate spin softening matrix KC(Ω2) ∈ Rn×n and a geometric
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stiffness matrix KG(uS) ∈ R
n×n representing stress stiffening effects. FC ∈ R

n

denotes the nodal centrifugal forcing vector, Ω is the rotational speed. uS ∈ Rn

is the static equilibrium position of the structure under centrifugal loading found

by solving nonlinear equation (4.1), uD ∈ Rn is the small dynamic displacement

around the static equilibrium and F ∈ Rn is a harmonic excitation vector. Note the

dependence of system matrices on rotor speed Ω.

Nominal bladed disks-shaft assemblies at each individual stage feature rotational

periodicity that in any cylindrical coordinate system generate block-circulant matri-

ces [17]. Using that property, we can decouple both static Eq. (4.1) and dynamic

Eq. (4.2) equations at an individual stage level into N/2 smaller problems by applying

discrete Fourier transform

(W∗ ⊗ I )[KE + KG(uS)−KC(Ω2)](W⊗ I )(W∗ ⊗ I )uS = (W∗ ⊗ I )FC(Ω2) (4.3)

(W∗ ⊗ I )M(W ⊗ I )(W∗ ⊗ I )üD + (W∗ ⊗ I )C(Ω)(W ⊗ I )(W∗ ⊗ I )u̇D+

(W∗ ⊗ I )[KE + KG(uS) −KC(Ω2)](W ⊗ I )(W∗ ⊗ I )uD = (W∗ ⊗ I )F
(4.4)

where the discrete Fourier transform expressed in matrix form is defined as

W =
1√
N




1 1 · · · 1

1 e−j 2π
N · · · e−j

2(N−1)π
N

1 e−j 4π
N · · · e−j 4(N−1)π

N

...
...

. . .
...

1 e−j
2(N−1)π

N · · · e−j
2(N−1)(N−1)π

N




here N denotes the number of elementary sectors. The system equations of motion

then become

[K̃hE + K̃hG(ũhS) − K̃hC(Ω2)]ũhS = F̃hC(Ω2) (4.5)

M̃h
¨̃uhD + C̃h(Ω) ˙̃uhD +

[
K̃hE + K̃hG(ũhS) − K̃hC(Ω2)

]
ũhD = F̃h (4.6)



4 Parameterized Reduced Order Modeling of Misaligned Stacked Disks Rotor

Assemblies 90

where subscript h describes the association to a Fourier harmonic. In most practical

situations one can strongly reduce the order of the problem by selecting first harmon-

ics h = 0 and h = 1 (h = 0 corresponds to torsion and longitudinal displacements,

h = 1 to bending). Truncated higher order harmonics are mainly responsible for disk

dominated motion or for deformation of shaft cross section having little to no effect

on the global bending behavior of the rotor assembly [74].

4.2.2 Modeling of disk misalignment

Consider a multi-stage system of S cyclic symmetrical structures sharing the same

axis of rotational symmetry. As it is known, the result of changes due to manufac-

turing imperfections in the geometry on inter-stage interfaces may result in static or

dynamic imbalances in rotor plus non-isotropic variations of stiffness [90]. Assuming

that other imperfections of each stage are negligible, i.e. they preserve rotational

symmetry, we can describe these effects by orientation and position of an individual

stage given by an arbitrary rotation in terms of two Euler angles θx, θy and two offsets

∆x, ∆y, as shown in Fig. 4.1.

Thus the perturbed position of a node that belong to nth sector of sth stage in

cylindrical coordinate system in which the Z-axis is coincident with the shaft axis of

rotation can be computed in three steps as follows

{x

y

z

}
= Rz

{r

θ

z

}

{x′

y′

z′

}
= RyRx

{x + ∆x

y + ∆y

z

}

{r′

θ′

z′

}
= RT

z R′T
z

{x′

y′

z′

}

(4.7)
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∆x

Figure 4.1 Stacked disks assembly misalignment (exaggerated) ex-
pressed in terms of two Euler angles θx, θy and two offsets ∆x,∆y.

where the rotation matrices

Rx =




1 0 0

0 cos θx − sin θx

0 sin θx cos θx


 ,Ry =




cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy




Rz =




cos α − sin α 0

sin α cos α 0

0 0 1


 ,R′

z =




cos ∆θz − sin ∆θz 0

sin ∆θz cos ∆θz 0

0 0 1




α = 2(n − 1)π/N denotes nth elementary sector rotation angle about the axis of

symmetry and ∆θz is the perturbation of that angle due to rotations and translations

in Cartesian coordinate frame.

∆θz = arccos(x′/r′) − arccos(x/r) − α if y′ ≥ 0

∆θz = arccos(−x′/r′) − arccos(−x/r) − α + π if y′ < 0
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Using the definitions above we can write the equations motion of a misaligned stage

in cylindrical coordinate frame

[PT (KE − KC(Ω2))P + K̂G(ûS)]ûS = F̂C(Ω2) (4.8)

PTMP ¨̂uD + PTC(Ω)P ˙̂uD + [PT (KE − KC(Ω2))P + K̂G(ûS)]ûD = F (4.9)

here P = Bdiag
i=1,...,nnodesN

{RzR
′
zR

T
yxR

T
z }, and nnodes denotes the number of nodes in an

elementary sector.

Several basic simplifying assumptions can be taken to reduce computational ef-

fort without compromising the accuracy. As pointed out in [91], the form of the

mass matrix of 3D solid finite elements does not change under orthogonal coordi-

nate transformation, i.e. PTMP = M. The cost of FE reevaluation of the nodal

centrifugal force for each misalignment scenario can be avoided by employing the

lumped mass formulation, i.e. the ith nodal centrifugal force can be expressed in the

form

f̂iC(Ω2) ≈ Ω2µir
′
i (4.10)

where µi is the lumped mass entry, r′i is perturbed radial coordinate in the cylindrical

frame.

Because the deformations due to centrifugal forcing are assumed to be small in

this problem due to low rotational speeds Ω and low magnitude of uncertain param-

eters (θx, θy, ∆x, ∆y), the perturbed centrifugal stiffening matrix can be reasonably

approximated as the elastic stiffness matrix, i.e. K̂G(ûS) = PTKG(uS))P. The va-

lidity of that assumption will be verified numerically on the industrial scale model

later in the dissertation.

Employing these simplifications, the equations of motion of the misaligned stage

take form

PT (KE + KG(uS) − KC(Ω2))PûS = F̂C(Ω2) (4.11)

M¨̂uD + PTC(Ω)P ˙̂uD + PT (KE + KG(uS) −KC(Ω2))PûD = F (4.12)

Eq. (4.11) can be interpreted simply as follows: the effect of misalignment is intro-
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duced by a multiplicative perturbation to stiffness matrix accounting for its non-

isotropic variations, plus centrifugal forcing that includes mass imbalance forces.

4.2.3 Misalignment representation in Fourier domain

The preceding discussion was primarily concerned with modeling of misalignment

in cylindrical coordinate system. For reduced order model formulation we explore

the Fourier domain representation of the multiplicative perturbation matrix P. Let

the nominal elastic plus geometric stiffness matrices be partitioned into H harmonic

blocks, then we can introduce the misalignment as follows

̂̃
K = (W ⊗ I )PT (W∗ ⊗ I ) B̃diag

h=0,...,H

{K̃hE + K̃hG − K̃hC}(W ⊗ I )P(W∗ ⊗ I ) (4.13)

The DFT of each component of P can be evaluated separately, moreover one may

consider the multiplication P̃ = (W⊗ I )P(W∗⊗ I ) as application of the transform

ndofndof times to N ×N matrices, where ndof is the number of degrees of freedom of

an elementary sector, N is number of sectors. Clearly, the rotation matrices Rx and

Ry constant for all sectors are invariant under transform (W⊗ I )RyRx(W
∗ ⊗ I ) =

RyRx.

It can be easily shown that a DFT of a harmonic train that generate cosine and

sine entries of the rotational matrices Rz and R′
z are of the form [92]

cos

(
2πnr

N

)
δ(|n − m|) ⇔ 1

2
(δ(|u − v| − r) + δ(|u − v| − (N − r)))

sin

(
2πnr

N

)
δ(|n − m|) ⇔ 1

2
(−jδ(|u − v| − r) + jδ(|u − v| − (N − r)))

(4.14)

where δ is Dirac delta function, n, m, u, v = 1, . . . , N are row and column indices

of an N × N block and its transform correspondingly. Clearly, the Fourier domain

representation of a two dimensional signal

x[n, m] = cos

(
2πrn

N

)
δ(|n − m|)
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n, m = 0, . . . , N − 1

can be expressed as

x[u, v] =
N−1∑

m=0

N−1∑

n=0

w−mv
N wnu

N cos

(
2πrn

N

)
δ(|n − m|) =

=

N−1∑

m=0

w−mv
N (wmu

N + w−mu
N ) cos

(
2πrm

N

)
=

=
1

2

N−1∑

m=0

w
m(v−u−r)
N +

1

2

N−1∑

m=0

w
−m(v−u−r)
N +

1

2

N−1∑

m=0

w
m(u−v−r)
N +

1

2

N−1∑

m=0

w
−m(u−v−r)
N =

=
1

2
δ((v − u)− r) +

1

2
δ((v − u)− (N − r)) +

1

2
δ((u− v)− r) +

1

2
δ((u− v)− (N − r))

u, v = 0, . . . , N − 1

where w−mv
N denotes complex exponential e−j 2π

N
mv. For rotational matrix Rz, where

frequency of the harmonic periodic train is r = 1, this leads to tri-diagonal matrices

of the form

R̃cos α =




0 0.5 0.5

0.5
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0.5

0.5 0.5 0




R̃sinα =




0 −j0.5 j0.5

j0.5
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −j0.5

−j0.5 j0.5 0
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Note that for real conjugate-even sequences with real-valued DFT employed the

entries 0.5 and ±j0.5 at δ(|u − v| − (N − r)) locations disappear. It follows readily

that the transform (W ⊗ I )Rz(W
∗ ⊗ I ) need not be evaluated numerically.

The non-zero structure of the transform of matrix R′
z is again banded due to

nearly harmonic periodic nature of ∆θz with frequency r = 1. Therefore the trans-

formed entries cos ∆θz will be dominated by double frequency r = 2 components,

while sin ∆θz entries will retain the same r = 1 frequency. Observe, that the exact

values of the transformed matrices will be dependent on the phase of the periodic

train as a function of misalignment parameters (θx, θy, ∆x, ∆y) and thus have to be

computed.

With the assumption of small in norm perturbation the product of the nominal

block-diagonal stiffness matrix with Fourier domain representation of the misalign-

ment matrix given in Eq. (4.13) will essentially result in a block-banded matrix

̂̃
K =




B0 B0,1 B0,2

BT
0,1

. . .
. . .

. . .

BT
0,2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . BH−2,H

. . .
. . .

. . . BH−1,H

BT
H−2,H BT

H−1,H BH




where 2ndof ×2ndof submatrix Bh is an original perturbed harmonic block and Bh,h+1

is a 2ndof ×2ndof term introduced by pre- and post-multiplication that couples neigh-

boring harmonics, such that ‖Bh,h+1‖ ≪ ‖Bh‖ for small variations of parameters

(θx, θy, ∆x, ∆y). Then other coupling off-diagonal blocks of higher order are negli-

gible in norm ‖Bh,h+2‖ ≪ ‖Bh,h+1‖. In particular, that result implies that one may

obtain a reasonable accuracy reduced order system to analyze harmonic one behavior

through a simple truncation by retaining first three harmonic blocks with respective

coupling terms.
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4.2.4 Interstage coupling and assembly

Employing small magnitude perturbation assumption that does not significantly

change interstage interface the connection of misaligned adjacent stages can be

achieved through multi-stage cyclic symmetry coupling. Consider the displacements

compatibility condition between adjacent stages s and s + 1 defined in physical co-

ordinates by

Aus
b − us+1

b = 0 (4.15)

in which A is a Boolean connectivity matrix which makes the two interstage meshes

compatible. The multi-stage cyclic symmetry coupling procedure defines indepen-

dent compatibility relations between compatible (in terms of harmonic index) cyclic

components of adjacent stages. Accordingly, given a cyclic harmonic of the rotor n,

Eq. (4.15) is rewritten using cyclic harmonics ps(n) and ps+1(n) defined according to

aliasing of respective Fourier bases of stage s and s + 1:

(ws+1
ps+1(n)

∗ ⊗ I)A(ws
ps(n) ⊗ I)ũs

b,ps(n) − ũs+1
b,ps+1(n) = 0 (4.16)

ws
ps(n) a column of Fourier transform matrix associated with harmonic ps(n) ∈ [0, Ns]

of stage s, subscript b denotes degrees-of-freedom on the inter-stage boundary. For

further details, please refer to [89]. In order to eliminate the duplicated cyclic com-

ponents of the interstage boundary of stage s + 1 a rectangular coupling matrix is

defined as

T =




I b,s 0 0 · · ·
0 I i,s 0 · · ·
Bp 0 0 · · ·
0 0 I i,s+1 · · ·
...

...
...

. . .




(4.17)

where

Bp = (ws+1
ps+1(n)

∗ ⊗ I)A(ws
ps(n) ⊗ I)

It follows that the equations of motion of the coupled misaligned rotor system,
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for h = 0, . . . , 2 can be expressed as

T T P̃T [K̃hE + K̃hG − K̃hC ]P̃T ̂̃uhS = ̂̃
FhC (4.18)

T TM̃hT ¨̃uhD + T T P̃T C̃hP̃T ˙̃uhD + T T P̃T
[
K̃hE + K̃hG − K̃hC

]
P̃T ̂̃uhD = F̃h (4.19)

4.2.5 Algorithm for repeated ROM evaluation

The main important result of the proposed method is that the complexity of solv-

ing Eqs. (4.18) and (4.19) can be greatly reduced if the linear systems are solved

sequentially instead of calculating the matrix product, a highly populated matrix,

and then solving it. However, typically the nominal uncoupled system is severely

ill-conditioned due to the presence of rigid body modes. To improve the condition-

ing of nominal uncoupled system we propose to take advantage of the orthogonality

properties of Fourier coefficients. If we define a rectangular coupling matrix

T0.5 = T




0.5I b,s 0 0 · · ·
0 I i,s 0 · · ·
0 0 0 · · ·
0 0 I i,s+1 · · ·
...

...
...

. . .




(4.20)

the effect of the repeated coupling-uncoupling on the nominal system T0.5T T K̃hT T T
0.5

would amount to just averaging of matrix entries on the interstage boundaries having

negligible effect on perturbed system global dynamic. Furthermore, its LU factors

may be reused for different misalignment realizations. In absence of any perturbation

the repeated coupling-uncoupling does not modify the nominal system

T TT0.5 = I (4.21)

The combined results of two preceding section are summarized in Algorithm 3.
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Algorithm 3 Reduced order modeling of rotors with stacked disks misalignment
effect
1: Let Ω = [Ω1, . . . , Ωm] be a set of m discrete rotation frequencies
2: Let n be a number of misalignment realizations
3: Extract elementary sector matrices of each stage Ks

E ,Ks
G(Ωi),K

s
C(Ω2

i ) with FE
software

4: Form interstage coupling matrices T , T0.5 for a set of retained harmonics h =
0, . . . , 2

5: for i = 1, . . . , m do

6: Denote K̃h = K̃hE + K̃hG(Ωi) + K̃hC(Ω2
i )

7: Factorize nominal coupled matrix T T K̃hT
8: for j = 1, . . . , n do

9: Generate parameters (θj,s
x , θj,s

y , ∆xj,s, ∆yj,s)

10: Form P̃(θj,s
x , θj,s

y , ∆xj,s, ∆yj,s)

11: Compute centrifugal forcing
̂̃
FC(θj,s

x , θj,s
y , ∆xj,s, ∆yj,s, Ω2

i )
12: Solve the static problem in three steps:

13: ũ = (T T P̃T0.5)
−1 ̂̃FC

14: ũ = (T T K̃hT )−1ũ

15: ũ = (T T
0.5P̃T )−1ũ

16: end for

17: end for
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4.3 Numerical examples

In this study we consider a rotor assembly consisting of four high pressure compressor

integrally bladed discs composed of 36, 60, 84 and 96 sectors respectively connected

to a turbine disk featuring 120 sectors. The finite-element mesh of elementary sec-

tors is depicted in Fig. 4.2. The assembly is analyzed in body attached frame that

Figure 4.2 Finite element model of the multi-stage assembly.

rotates about the undeformed centerline of the bearings with a constant speed. It is

simply supported at the extremities, isotropic stiffness and damping at discrete nodal

locations are taken into account. The bearing stiffness and damping coefficients are

kxx = kyy = 4.58×108 N/m, kxy = kyx = 7.63×107 N/m, cxx = cyy = 1.52×106 Ns/m

correspondingly, while internal rotor material damping is neglected.

Lowest frequency complex eigenmodes are calculated at 60 discrete frequency

points 10 Hz ≤ Ω ≤ 600 Hz with a step 10 Hz using multi-stage cyclic symmetry

approach. The evolution of complex natural frequencies in rotating frame is given

in Fig. 4.3(a). Same frequencies in inertial frame are depicted in Fig. 4.3(b), where

the relationship between the frames is defined as ωrotating = ωfixed ± hΩ with h

denoting the nodal diameter with sign depending on the traveling wave direction.

Note that synchronous and 2X whirls plotted to locate critical speeds are marked with
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Figure 4.3 Evolution of natural frequencies of the nominal system
with rotating speed in rotating frame (a), transformed to inertial frame
(b). Synchronous whirl is marked as dashed line.

dashed lines. The first critical speed in rotating frame occurs at about Ω = 130 Hz

corresponding to a forward whirl global bending mode. However, the first critical

speed in inertial frame is observed at about Ω = 280 Hz, which corresponds to the

cancelation of the apparent static stiffness in the rotating frame [75].

4.3.1 Effect of misalignment on eigenmodes and system response

First we investigate the effects of stacked disks misalignment on eigenmodes of the

system. A misalignment scenario was introduced through a set of tilt angles and

offsets presented in Tab. 4.1 applied to a full FE reference model and a set of lowest

frequency complex eigenmodes was computed.

Figs. 4.4(a) and 4.4(b) present the difference between nominal and perturbed

imaginary and real parts of complex eigenvalues calculated at Ω = 200 Hz. It should

be noted that eigenvalues are not significantly affected by the misalignment, with

maximum difference less than 0.3 percent for the lowest frequency mode. The ob-

servation strongly correlates with experimental data indicating that the resonance

peaks at critical speeds can be reliably predicted by the Campbell diagram built from

a nominal model. Eigenvectors of the nominal and perturbed systems are compared

in Fig. 4.5 in terms of complex MAC values. It appears that the eigenspace is af-
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Table 4.1 Misalignment parameters

Stage number θx,
◦ θy,

◦ ∆x, mm ∆y, mm

1 0.01 0.015 1 -0.95

2 -0.05 -0.09 0.3 0.05

3 -0.06 -0.045 -0.75 -2.8

4 0.0443 0.0225 0.85 0.57

5 0.08 -0.095 -0.39 -0.45
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Figure 4.4 Difference between nominal and perturbed imaginary (a)
and real (b) parts of complex eigenvalues calculated at Ω = 200 Hz.

fected more seriously by the effect of misalignment as reflected by low MAC values.

Clearly, the mode distortion is the major reason why nominal eigenvectors cannot

be used in modal projection based model reduction technique. It can also be seen

in Fig. 4.5 that in general, harmonic one modes seem to be less stable under per-

turbation featuring lower MAC coefficients, whereas the modes of zero and second

harmonic are strongly correlated with their original unperturbed counterparts. In

order to gain better understanding of the effect of perturbation on eigenvectors we

calculate the harmonic content of real and imaginary parts of the first bending and

the next in spectrum zero nodal diameter modes at Ω = 200 Hz, depicted in Figs. 4.6
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Figure 4.5 MAC value between nominal and perturbed complex eigen-
vectors calculated at Ω = 200 Hz. Harmonic 0 and 2 modes are high-
lighted with red solid and green dashed boxes respectively.

and 4.7 correspondingly. Examination of the harmonic content of the modes yields

significant insight. Both perturbed harmonic zero and harmonic one modes become

contaminated mainly by the closest neighboring harmonics, and display other har-

monic components to a lesser extent. The observation is consistent with the banded

non-zero structure of the perturbed system matrices in Fourier domain - the amount

of harmonic contamination is proportional to the norm of harmonic coupling blocks

introduced by perturbation. The acquired additional harmonic content is most dis-

cernible in case of 257 Hz perturbed harmonic zero mode. The norm of harmonic one

content in the imaginary part of eigenvector is higher than the one of the original

harmonic zero content (see Fig. 4.7(d)), which can also be visualized using FE model

in Fig. 4.8.

Next, we examine the effects of disk misalignment on static response. The re-

sponse to centrifugal forcing for both nominal and misaligned system calculated at

Ω = 200 Hz is depicted in Fig. 4.9. While the nominal response is a pure harmonic

zero displacement field, one can notice the dominance of harmonic one component

in the response of the perturbed system. Fig. 4.10 shows the contribution of first

four harmonics to the misaligned system unbalance response in 0-600 Hz frequency

range. The harmonic decomposition is consistent with [87]. General perception is

that both 1X and 2X (two times the rotation speed) components should be present
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Figure 4.6 Harmonic content of the first bending mode corresponding
to 74 Hz natural frequency at Ω = 200 Hz and expressed in terms of
norms of each individual stage. Norm of real part of nominal eigenvector
(a), imaginary part (b), norm of real part of perturbed eigenvector (c)
and imaginary part(d).

in the response of a misaligned system with 1X being dominant, whereas the contri-

bution of 2X vibration grows with severity of misalignment. The physical source of

these effects is identified as a rotor bow and rotor asymmetry, respectively. Clearly,

the magnitude of the response will be affected by the mode distortion phenomena

discussed earlier that characterize misalignment. Thus, 257 Hz harmonic zero mode

distorted by harmonic one component may be excited by misaligned system centrifu-

gal forcing dominated by both engine orders, zero and one, contributing significantly
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Figure 4.7 Harmonic content of zero nodal diameter mode correspond-
ing to 257 Hz natural frequency at Ω = 200 Hz and expressed in terms of
norms of each individual stage. Norm of real part of nominal eigenvector
(a), imaginary part (b), norm of real part of perturbed eigenvector (c)
and imaginary part(d).

to 1X response magnification.

The effect of disk misalignment on harmonic response of the system excited by

EO1 and EO2 forward traveling wave applied to bearing support nodes is shown

in Fig. 4.11. It can be seen that the coupling between harmonic blocks introduced

by perturbation, the reason of harmonic contamination of mode shapes, can cause

significant response amplification, additional resonance peaks not observable in the

nominal response as well as extra harmonic content other than the one of excitation.
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(a) (b)

Figure 4.8 Perturbed harmonic zero modeshape corresponding to
257 Hz natural frequency at Ω = 200 Hz rotational speed: real part
(a) and imaginary part (b). The imaginary part of the modeshape is
dominated by harmonic one component showing the effect misalignment.

(a) (b)

Figure 4.9 Nominal (a) and misaligned (b) system response under
centrifugal forcing.

Observe that the misaligned system response to EO1 excitation is dominated by

harmonic 0 component, whereas EO2 forcing brings about significant harmonic 1

response.
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Figure 4.10 Comparison of nominal and misaligned systems unbalance
response, the latter is shown decomposed into four harmonic components.
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Figure 4.11 Comparison of nominal and misaligned system dynamic
response under synchronous harmonic 1 (a) and 2X harmonic 2 (b) for-
ward traveling wave excitation. The misaligned system response is shown
along with its dominant harmonic components.

4.3.2 Accuracy of the proposed method

In the following example the proposed reduction technique is applied to form a

reduced order model. To show its effectiveness the unbalance response is com-

pared against the results calculated with full (360◦) misaligned rotor-bearing system.

Fig. 4.12(a) shows ROM accuracy in terms of norm of global response, same results

are compared in Fig. 4.12(b) in terms of MAC correlation coefficients. Obviously,
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Figure 4.12 Norm of the unbalance response calculated with ROM,
full (360◦) FE and unperturbed model excited by the unbalance forcing
(a). Note that the latter consistently underestimates the response. MAC
values of the unbalance response between ROM and reference FE model
(b).

the ROM has been shown to accurately represent the centrifugal effects over the

entire range of operating speeds in both sub- and super-critical regions. It slightly

over-predicts the magnitude of response compared to the reference model. The MAC

value is consistently over 0.97 showing the effect of deteriorating accuracy as rota-

tion speed increases due to geometrical stiffness approximation. The response of

nominal system excited by same unbalance forces is presented for comparison. It is

evident that modeling of misalignment only with equivalent forces consistently un-

derestimates the global response due to unmodeled effect of harmonic coupling and

equivalently modal distortion.

4.3.3 Statistical analysis example

In this example, we consider a baseline model of the multi-stage rotor assembly in-

troduced above (see Fig. 4.2). The reduced order model is constructed by projection,

retaining first three Fourier harmonics, which results in a ROM of order 56,820 DOF.

Owing to the fact that the most significant cause of excessive rotor vibration is rotor

mass unbalance, which manifests itself as severe 1X vibration, the dynamic charac-
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teristic of primary interest is steady rotation speed unbalance response. Therefore,

in Monte-Carlo simulations we carry out a static analysis under centrifugal load-

ing measuring the deflection at bearing nodes. For simplicity, the nominal model

is first perturbed by a set of misalignment parameters θs
x, θ

s
y, ∆xs, ∆ys generated as

statistically independent Gaussian random variables with zero mean and a standard

deviation (0.1◦, 0.1 mm). The random realizations of the amplitude of unbalance

response at both bearing locations are shown in Fig. 4.13 along with the ensemble

mean and percentiles. Observe, that the unbalance response levels at 99th percentile
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Figure 4.13 Direct Monte-Carlo simulation of the unbalance response
with random misalignment parameters generated as statistically inde-
pendent zero mean, (0.1◦, 0.1 mm) standard deviation Gaussian random
variables. Norm of 1X harmonic content of the unbalance response for
100 realizations, 99%, 50% and 5% of points at bearings 1 and 2 are
shown in (a) and (b) correspondingly.

can reach from 7, between critical speeds, up to 20, at a critical speed, times of those

at 5th percentile.

Next, MCS with a sample size 2000 is carried out to test the convergence of the

response statistics. Fig. 4.14 displays ensemble mean and variance with respect to the

number of samples; a sample size 1000 is found to be adequate for accurate analysis.

Fig. 4.15 shows the pdf obtained from 1000 Monte-Carlo runs for three selected

rotation frequencies, namely in the sub-critical region, at first critical speed and in

the area close to the second critical speed. The observable differences in pdf shapes of
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Figure 4.14 Evolution of the population mean (a) and variance (b)
with the number of samples. Each iteration we calculate norm of 1X
content of the unbalance response at two bearings at Ω = 10 Hz.

two bearings at three rotation speeds are consistent with the corresponding bending

modeshapes: larger variation is expected for a modeshape dominated by motion of

that part of structure.

The statistically quantified levels of unbalance response are of importance while

selecting robust designs and manufacturing tolerances to avoid large amplitude re-

sponse within the operating range. An important ramification of imbalance induced

excessive 1X vibration, the passage through a critical speed, is illustrated in the fol-

lowing example. The 99th percentile of the unbalance response norm is computed at

first critical speed Ω = 280 Hz with two standard deviation values of misalignment

parameters (0.5◦, 0.5 mm) and (1◦, 1 mm) for each stage separately, while those of

other disks are kept at (0.1◦, 0.1 mm) level. Assuming a typical industrial situation

where an optimized stacking orientation for each stage of the rotor assembly is a

function of all individual disks random geometries, we introduce a simple decreasing

statistical dependence between misalignment parameters θs
x, θ

s
y, ∆xs, ∆ys of differ-

ent stages s = 1, . . . 5. Thus, the selected correlation coefficients are ρs,s±1 = 0.9,

ρs,s±2 = 0.7, ρs,s±3 = 0.4 and ρs,s±4 = 0.1. Fig. 4.16 shows the influence of the

amplitude or random geometry variation of each individual stage on the variation

of global response calculated for two bearings at first critical speed. The observed
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Figure 4.15 Probability density functions of the static response at two
bearings (1X component) obtained at Ω = 10 Hz (a), Ω = 280 Hz (b)
and Ω = 590 Hz (c). Note larger variation in response at second bearing
in the subcritical region and at first critical speed. As we approach
the second critical speed, the distribution at first bearing grows wider
consistent with the first and second bending modeshapes.

changes in 99th percentile of the response level with the additional uncertainty at

one stage agree with the physical intuition. It can be observed that the relative

importance of the manufacturing uncertainties in the geometry of the first and the

last interfaces outweighs the ones of the middle stages suggesting tighter tolerances

to ensure a reliable performance.

All the numerical experiments were conducted on an Intel Xeon Quad-Core

2.66 GHz workstation, coded in FORTRAN employing PARDISO direct sparse
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Figure 4.16 99th percentile of the unbalance response norm calculated
at Ω = 280 Hz resonance frequency at bearing 1 (a) and bearing 2 (b)
obtained by increasing standard deviation of random input parameters
to (0.5◦, 0.5 mm) and (1◦, 1 mm) for each stage separately, while those
of others are kept at (0.1◦, 0.1 mm).

solver. For comparison, one iteration of MCS with the ROM featuring 56,820 DOF

requires 0.5 G of RAM taking approximately 5 s counting both reduced order model

update and static analysis. An equivalent accuracy full order model has 929,160 DOF

requiring 4 min for static analysis and 17 G of memory (in-core version), whereas

a realistic introduction of disk misalignment into the full model would require FE

reanalysis.

4.4 Summary

In this chapter we have introduced a computational technique for vibration analysis

of misaligned disk rotor assemblies using 3D FE formulation. The reduced model has

been obtained after truncation of higher order harmonics in Fourier domain. The

problem was greatly simplified by assuming symmetry of individual stages and small

parameters variations. Under these assumptions the disks misalignment has been in-

troduced as multiplicative perturbations to system matrices, upon which individual

stages were coupled with multi-stage cyclic symmetry approach. We have demon-

strated computationally that the proposed algorithm gives outstanding performance
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due to reliance on sparse matrix linear algebra and sampling of small parametric

space. Of particular interest is the ability to repetitively introduce variation in

geometry where the modal projection based methods usually fail or numerically in-

effective. It is therefore advantageous in design optimization or uncertain parameter

space exploration, specifically for light flexible rotors in supercritical regions. The

accuracy of the technique has been illustrated with representative simulation exam-

ples, the results have been shown to match reference system over a practical range of

geometrical parameter variations and rotational speeds. The development was also

instrumental in understanding of the inaccuracy of traditional analysis methods. It

was shown numerically that the non-isotropic stiffness variation introduced as sparse

blocks coupling neighboring harmonics is the origin of additional 1X and 2X content

in the response of misaligned system.
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Chapter 5

Conclusion and Future Research

Directions

Stochastic analysis of large-scale models stretched traditional computational re-

sources and algorithmic capabilities to the limit. In this dissertation we have ad-

dressed two difficult problems, which solution is highly nonlinear in the uncertain

input parameters for which less expensive probabilistic techniques proved to be inac-

curate or ineffective leaving Monte-Carlo simulation analysis the only feasible means

to assess the variability of the response. The general outcome of this work is a sys-

tematic approach to design of accurate and computationally inexpensive predictive

numerical tools for uncertainty propagation within the stochastic simulation frame-

work. This is achieved by way of:

• Reduction of probabilistic parametric space to “important” and measurable

parameters

• Projection based reduced order modeling with a reasonable effort of computing

the basis vectors

• Low cost of reduced order model analysis and update for a change in random

parameters
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5.1 Contributions and findings

The Static Mode Compensation method for inexpensive computation of projection

basis vectors of geometrically modified bladed disks has been extended to accommo-

date multiple mistuned blades and effectively implemented in industrial FORTRAN

code. The accuracy, efficiency and scalability of the algorithm has been analyzed

on a FE model featuring realistic geometry. Through a number of numerical exper-

iments the method has been shown to provide reliable approximation of perturbed

eigenpairs for narrow clustered areas of spectrum displaying lower accuracy in the

modal interaction zones. The source of inaccuracy has been identified as poorer

preconditioning by revealing that the SMC technique is closely related to the gener-

alized Davidson method for eigenvalue problem. To address those deficiencies a new

method based on the Jacobi-Davidson algorithm for eigenvalue problem has been

proposed implementing a number of preconditioning techniques and simple heuristic

strategies taking advantage of the block-circulant structure of the nominal system

and assumptions on perturbation. Numerical experiments have been conducted on

an industrial bladed disk FE model demonstrating its accuracy in both areas of

spectrum.

The problem of statistical quantification of random mistuning effects on geomet-

rically modified bladed disk vibration response has been confronted by proposing a

hybrid approach, which involves relatively infrequent computation of a compact set

of projection basis vectors corrected for each geometry change using Chapter 2 devel-

opment. The projection subspace is exploited repeatedly to build a compact reduced

order model suitable for Monte-Carlo analysis for each change of random parameters

in blade properties introduced in component modal subspace. The effectiveness and

precision of FORTRAN implementation of the technique have been demonstrated

through a series of numerical examples on realistic FE model of an industrial bladed

disk whose blades featured significant geometry change due to practical damage pat-

terns. The results have shown that in the majority of the analyzed situations large

geometric mistuning has not led to significant additional response magnification be-

yond very low levels of random mistuning. The worst case has been identified in the
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high modal density area where “rogue” blade resonance peaks found to be dominant.

The situations where deterministic damage effects dominate the dynamic response

have been identified to be largely responsible for considerable additive magnification

factors beyond low levels of random mistuning as compared to the nominal case, at

the same time exhibiting lower sensitivity to additional random mistuning.

For statistical analysis of the effects of uncertainties in the inter-stage geometry

of misaligned stacked disk rotor assemblies a novel algorithm has been proposed and

effectively implemented in industrial FORTRAN code. The reduced model has been

obtained from high fidelity 3D FE models of elementary sectors after truncation

of higher order harmonics in Fourier domain. The problem has been greatly sim-

plified by assuming symmetry of individual stages and small parameter variations.

Under these assumptions the disks misalignment has been introduced as multiplica-

tive perturbations to system matrices, upon which individual stages were coupled

with multi-stage cyclic symmetry approach. It has been demonstrated computa-

tionally that the proposed algorithm gives outstanding performance due to reliance

on the state-of-the-art direct parallel linear solver, sparse matrix linear algebra and

sampling of reduced parametric space. Of particular interest is the ability of the

algorithm to repeatedly introduce variation in inter-stage geometry where the tra-

ditional modal projection based methods has been ineffective. The accuracy and

numerical efficiency of FORTRAN implementation has been illustrated with rep-

resentative stochastic simulation examples, the results have been shown to match

reference system over a practical range of geometrical parameter variations and ro-

tational speeds. The development, in turn, has also provided important insight on

the source of inaccuracy of traditional analysis methods. It has been shown that

the non-isotropic stiffness variation introduced as sparse blocks coupling neighboring

harmonics is the origin of additional 1X and 2X content in the response of misaligned

system.
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5.2 Future research directions

Beyond the issues and topics treated directly in this dissertation, there are certain

open questions, extensions and classes of problems that can potentially benefit from

further research effort. The following is a categorized list of suggestions for future

work.

5.2.1 Extensions

The extensions, which could be applied to the methods presented in Chapter 2,

include an accurate stochastic modeling of random geometric uncertainties as dis-

cretized random fields. Consequent reduction of probabilistic space should be aimed

to match available high-resolution measurement data. The algorithms presented

in Chapter 2 are limited by the assumption of high magnitude low rank perturba-

tion assumption. Inclusion of high rank low magnitude perturbations would call for

additional research on efficient algorithms to calculate projection matrices and to

decrease the computational effort of repeated analysis, by exploiting extended bases,

parametric approaches with interpolation and/or switching.

A natural and logical extension of the techniques and investigations reported

in Chapters 2 and 3 would be to perform a global probabilistic analysis of the en-

tire rotor assembly, featuring both large geometry modification and small random

parameter variation by employing multi-stage cyclic symmetry approach.

5.2.2 Methodology

There are a number of potential refinements to the preconditioned iterative technique

presented in Chapter 2 that could lead to accelerated convergence. First, applica-

tion of block Krylov sparse linear solvers with multiple right-hand sides to solution

of the linear Jacobi-Davidson equation could decrease overall computational time;

typically these methods converge in fewer iterations than their single right-hand side

versions. Future work should also aim at computation of invariant subspaces that

has received a lot of attention in the numerical linear algebra literature; new algo-
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rithms and practical implementations have been reported. The problem of invariant

subspace approximation frequently appearing in scientific computing applications

requires a solution of an algebraic Riccati equation, which can be viewed as a block-

generalization of the iterative Jacobi-Davidson technique. Instead of approximating

individual eigenvectors one by one, a block procedure would seek to approximate

an invariant subspace spanned by the perturbed members of a selected fundamental

family of modes. Investigation of alternative preconditioning techniques can also

contribute to the reduction of computational time.

Throughout the dissertation, a direct Monte Carlo approach has been used to

estimate the statistics of functions of random variables. As a potential step to im-

prove computational efficiency, the most recent developments in spectral Galerkin

based stochastic FEM methods can be investigated by capitalizing upon problem

structure and exploring alternative basis functions. Examples of such functions in-

clude wavelets, which has been found to be more effective for problems involving

non-linearities, discontinuities and sharp changes than the traditional spectral FEM

approach.

5.2.3 Applications

The concept of intentional mistuning can be fully exploited with accurate and efficient

reduced order modeling of geometrically mistuned bladed disks. As indicated in the

literature, the nominal blade shape modifications can contribute significantly to the

reduction of maximum magnitude and variability of forced response. However great

majority of prior research considered small parameter variations. A more general

multi-objective optimization tool can be implemented for parametric studies and

probabilistic design space exploration.

The techniques developed in Chapters 2 and 3 of this dissertation or their vari-

ants could also provide a convenient means to assess the impact of blade geometric

mistuning in a multidisciplinary aeroelastic analysis context.
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Appendix A

Selected MATLAB

Implementations

A.1 Implementation of the Jacobi-Davidson technique

f unc t i on [ Uout , Lout]=JDbldisk (T, Nblades , Fs , Fe , a c tb l k to l , MaxOuter It , . . .

Ava i l ab l e Prec , Outer Tol , No blocks , N Restarts , Inner Tol , MaxInner It )

% JDbldisk computes an approximation o f perturbed eigenmodes us ing a spar s e

% i t e r a t i v e pr econd i t i oned techn ique

% Inputs

% T = data s t r u c tu r e conta in ing nominal matr ices , per turbat i on

% terms and nominal e i g e npa i r s

% Nblades = number o f e l ementary s e c t o r s

% Fs = lowes t f requency , Hz

% Fe = h i ghe s t f requency , Hz

% ac tb l k t o l = block ing to l e r ance ( to avoid s o l v i ng i l l −cond i t i oned

% system ) , Hz

% MaxOuter It = maximum number o f outer i n t e r a t i o n s

% Avai l ab l e Prec = vector o f a v a i l a b l e p r e cond i t i one r s (named by natura l

% f r e qu en c i e s )

% Outer Tol = outer i t e r a t i o n r e s i d u a l t o l e r ance

% No blocks = f l a g to turn o f f b l ock ing in outer i t e r a t i o n s

% GMRES s o l v e r s e t t i n g s

% N Restarts = number o f r e s t a r t s

% Inner To l = inner s o l v e r r e s i d u a l t o l e r ance

% MaxInner It = maximum number o f inner i t e r a t i o n s

%

% Outputs



A Selected MATLAB Implementations 119

%

% Uout = perturbed e i g envec to r s

% Lout = perturbed e i g enva l u e s

T.dK = (T.dK’+T.dK) ∗ 0 . 5 ;

T.dM = (T.dM’+T.dM) ∗ 0 . 5 ;

NDofs = s i z e (T. Phi , 1 ) ;

nmodes = s i z e (T. Phi , 2 ) ;

NSectorDOFs = NDofs/Nblades ;

Even = (mod( Nblades , 2) == 0) ;

MaxDia = f l o o r ( Nblades /2) ;

Co r r e c t i on I s Ove r = 0 ;

% i n i t i a l i z e r e s i d u a l vector

f o r gs=0:Nblades−1

f o r nn=1:nmodes

Resid (nn , gs+1) = norm(T.dK∗T. Phi ( rot ( gs ) ,nn )−T.Lambda(nn ) .∗T.dM∗T. Phi ( rot ( gs ) ,

nn ) ) ;

end

end

indxP = ze r o s ( nmodes ) ;

indxIP = ze r o s ( nmodes ) ;

i n d x r o t a l l = ze r o s ( nmodes ) ;

poss = ze r o s ( nmodes ) ;

mn = ze r o s ( nmodes ) ;

% form index vector o f e i g envec to r s to c o r r e c t

k = 1 ;

S i n g l e t = 0 ;

n s i n g l e t s = 0 ;

f o r nn=1:nmodes−1

i f ( abs (T. Lambda(nn )− T. Lambda(nn+1) ) < 0 .01 && xor ( S ing l e t ,mod(nn , 2 ) ) )

S i n g l e t = ˜ S i n g l e t ;

indxP (k ) = nn ;

indxIP (k ) = nn+1;

i n dx r o t a l l (nn ) = 0 ;

k = k+1;

n s i n g l e t s = n s i n g l e t s + 1 ;

e l s e

[mn(nn ) , poss (nn ) ] = min ( Resid (nn , : ) ) ;

[mn(nn+1) , poss (nn+1) ] = min ( Resid (nn+1 , : ) ) ;

i f (mn(nn)< mn(nn+1) )

indxP (k ) = nn ;

indxIP (k ) = nn+1;

i n dx r o t a l l (nn ) = poss (nn ) −1;
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i n d x r o t a l l (nn+1) = poss (nn ) −1;

k = k+1;

e l s e

indxP (k ) = nn+1;

indxIP (k ) = nn ;

i n dx r o t a l l (nn ) = poss (nn+1)−1;

i n dx r o t a l l (nn+1) = poss (nn+1)−1;

k = k+1;

end

end

end

add i t vec = (nmodes − n s i n g l e t s ) /2 + n s i n g l e t s ;

% apply minimum r e s i d u a l s p a t i a l o r i e n t a t i o n to nominal e i g envec to r s

f o r nn=1:nmodes

T. Phi ( : , nn ) = T. Phi ( r ot ( i n dx r o t a l l (nn ) ) , nn ) ;

end

A = spar se (NDofs , NDofs ) ;

Fo = Four ierReal ( Nblades ) ;

s c a l i n g o f f s e t = 0 . 0 ;

Xit = ze r o s (NDofs , Ninner It ) ;

Rnorm = ze r o s ( add i t vec , 1) ;

%====================================================

%==== F i r s t Outer I t e r a t i o n ( block c o r r e c t i o n )=======

%====================================================

m = 1;

f p r i n t f ( ’%17s : %i \n ’ , ’ Outer I t e r a t i o n ’ ,m)

% M−or thonormal i ze the p r o j e c t i o n vec to r s

Qp = T. Phi ( : , indxP ) ;

GQ = Qp’∗Qp;

GQ = (GQ’ + GQ) ∗ 0 . 5 ;

[GQ, c h o l f l a g ] = cho l (GQ) ;

i f c h o l f l a g == 0

Qp = Qp/GQ;

e l s e

warning ( ’MATLAB: JDbldisk ’ , ’The s e t o f normal modes i s not f u l l rank . ’ )

end

Qm = (T.M+T.dM) ∗Qp;
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% compute cur r ent p r o j e c t ed r e s i d u a l

r = T.dK∗T. Phi ( : , indxP )−T.dM∗T. Phi ( : , indxP ) ∗diag (T. Lambda ( indxP ) ) ;

r = −r+Qm∗(Qp’∗ r ) ;

Comp33P = ze r o s (NDofs , nmodes ) ;

s c a l i n g = ze r o s ( nmodes ) ;

dummy = 0 ;

f o r nn=1: add i t vec

in = indxP (nn) ;

LmbdA = T.Lambda ( in ) ;

% block−diagona l SPAI p r e cond i t i one r in Four i e r space

tm1 = abs (LmbdA−Avai l ab l e Prec (1) ) ;

pos =1;

f o r qq=2: s i z e ( Ava i l ab l e Prec )

tm2 = abs (LmbdA−Avai l ab l e Prec ( qq ) ) ;

i f ( tm2 < tm1)

pos =qq ;

tm1 = tm2 ;

end

end

LmbdPrec = Avai l ab l e Prec ( pos ) ;

% load the p r e cond i t i one r

i f ( LmbdPrec ˜= dummy)

f o r harm = 1 :MaxDia+1

fname = s t r c a t ( ’ Prec ’ , ’ ’ , num2str (harm) , ’ ’ , num2str (LmbdPrec ) , ’ . mat ’

) ;

PREC(harm) .P.P = load ( fname ) ;

end

end

% s t a r t i n g guess

Guess = (T. Phi ( : , indxIP (nn ) )−Qp∗(Qm’∗T. Phi ( : , indxIP (nn ) ) ) ) ;

xxx = prec ( r ( : , nn ) ) ;

yyy = prec ( afun ( Guess ) ) ;

s c a l i n g (nn ) = (yyy ’∗ xxx ) /( yyy ’∗ yyy ) ;

Guess = s c a l i n g (nn ) ∗Guess ;

[Comp33P ( : , nn ) , f l ag1 , r e l r e s 1 (1 , nn ) , i t e r 1 , vec1 ] = gmres (@afun , r ( : , nn ) ,

MaxInner It , Inner Tol , N Restarts , @prec , [ ] , Guess ) ;

r e svec1 ( 1 , 1 : s i z e ( vec1 ) , nn ) = vec1 ;
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% make the c o r r e c t i o n M−or thogona l to the cur r ent subspace

Comp33P ( : , nn ) = Comp33P ( : , nn )−Qp∗(Qm’∗Comp33P ( : , nn ) ) ;

dummy = LmbdPrec ;

f p r i n t f ( ’%17s : %i \n ’ , ’ Inner I t e r a t i o n ’ , nn )

end

% Rayleigh−Ritz procedure

V = [T. Phi Comp33P ] ;

V = ortha ( (T.M+T.dM) , V) ;

W = (T.K+T.dK) ∗V;

H = V’∗W;

H =(H+H’ ) ∗ 0 . 5 ;

[Umam,Lmam]= e i g (H) ;

Lout = diag (Lmam) ;

Freq=sq r t ( Lout ) /2 . / p i ;

Uout=V∗Umam;

% s e l e c t Ritz pa i r s within the f r equency band of i n t e r e s t [ Fs , Fe ]

pos1 =1;

j i = s i z e (V, 2) ;

f o r qq=1: j i

i f ( Freq ( qq ) > Fs )

pos1 = qq ;

break ;

end ;

end ;

pos2 = j i ;

f o r qq=1: j i

i f ( Freq ( qq ) > Fe )

pos2 = qq−1;

break ;

end ;

end ;

% Ver i f y i f any more outer i t e r a t i o n s are needed , r e s i d u a l convergence t e s t

FreqHist ( 1 : pos2−pos1+1, 1) = Freq ( pos1 : pos2 ) ;

r = W∗Umam( : , pos1 : pos2 ) − (T.M+T.dM) ∗Uout ( : , pos1 : pos2 ) ∗diag ( Lout ( pos1 : pos2 ) ) ;

conv = 0 ;

keep = 0 ;

convind = [ ] ;

keepind = [ ] ;

keepr es = [ ] ;

t t = 1 ;

normmin = In f ;

f o r j j=pos1 : pos2
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Nr (1 , t t ) = norm( r ( : , t t ) ) ;

% perform s e l e c t i o n f o r c o r r e c t i o n to s o l v e f o r the next outer i t e r a t i o n

i f (Nr (1 , t t ) < Outer Tol )

conv = conv +1;

convind ( conv ) = j j ;

e l s e

i f ( normmin > Nr (1 , t t ) )

normmin = Nr (1 , t t ) ;

Indin=j j ;

Ind inr=t t ;

end ;

keep = keep +1;

keepind ( keep ) = j j ;

keepr es ( keep ) = t t ;

end

t t=t t +1;

end

k i = 0 ;

LmamROM = zer o s ( nmodes , 1) ;

i f ( conv ˜= 0)

LmamROM( ki +1: k i+conv ) = Lout ( convind ( 1 : conv ) ) ;

Q ( : , k i +1: k i+conv ) = Uout ( : , convind ( 1 : conv ) ) ;

% keep a l l non−converged Ritz ve c to r s in the t e s t subspace

V = [ Uout ( : , 1 : pos1−1) Uout ( : , keepind ( 1 : keep ) ) Uout ( : , pos2 +1: j i ) ] ;

k i = k i + conv ;

end

% pr i n t s t a t i s t i c s

f p r i n t f ( ’Kept Ritz va lues \n ’ )

s q r t (Lmam( keepind ( 1 : keep ) ) ) /2/ p i

f p r i n t f ( ’ Their r e s p e c t i v e r e s i d u a l norms \n ’ )

Nr (1 , keepind ( 1 : keep )−pos1+1)

f p r i n t f ( ’ Converged Ritz va lues \n ’ )

s q r t (Lmam( convind ( 1 : conv ) ) ) /2/ p i

f p r i n t f ( ’ Currently s e l e c t e d f o r c o r r e c t i o n Ritz value \n ’ )

s q r t (Lmam( Indin ) ) /2/ p i

%====================================================

%==== Outer I t e r a t i o n Loop in case o f non−convergence

%====================================================

f o r m=2:MaxOuter It

Comp33P = ze r o s (NDofs , nmodes ) ;

i f ( k i == nmodes )

break ;

end

% block ing f o r inner s o l u t i o n s to avoid s o l v i ng i l l −cond i t i oned systems
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block = [ ] ;

prev = 1 ;

f o r t t =1: keep−1

IN( t t ) . b lock = [ ] ;

b lock = [ block keepind ( t t ) ] ;

i f ( ( Freq ( keepind ( t t +1) )−Freq ( keepind ( t t ) ) ) < a c t b l k t o l )

continue ;

e l s e

% i n i t i a l i z e a l l p r ev i ous

f o r j j=prev : t t

IN ( j j ) . b lock = block ;

end

prev = t t +1;

block = [ ] ;

end

end

IN( keep ) . block = [ ] ;

b lock = [ block keepind ( keep ) ] ;

f o r j j=prev : keep

IN( j j ) . b lock = block ;

end

i f ( No blocks )

add i t vec = 1 ;

e l s e

add i t vec = keep ;

end

dummy = 0 ;

a v o i d r e l o ad i n g p r e c ond i t i o n e r = 0 ;

f o r nn=1: add i t vec

i f ( No blocks )

in = Indin ;

i n r = Ind inr ;

e l s e

in = keepind (nn ) ;

i n r = keepr es (nn ) ;

end

% M−or thonormal i ze the p r o j e c t i o n vec to r s

Qp = [Q Uout ( : , IN (nn ) . block ) ] ;

GQ = Qp’∗Qp;

GQ = (GQ’ + GQ) ∗ 0 . 5 ;

[GQ, c h o l f l a g ] = cho l (GQ) ;

i f c h o l f l a g == 0
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Qp = Qp/GQ;

e l s e

warning ( ’MATLAB: JDbldisk ’ , ’The s e t o f normal modes i s not f u l l rank . ’ )

end

Qm = (T.M+T.dM) ∗Qp;

R = −r ( : , i n r )+Qm∗(Qp’∗ r ( : , i n r ) ) ;

% s e l e c t nea r e s t p r e cond i t i one r

tm1 = abs (Lmam( in )−Avai l ab l e Prec (1) ) ;

pos =1;

f o r qq=2: s i z e ( Ava i l ab l e Prec )

tm2 = abs (Lmam( in )−Avai l ab l e Prec ( qq ) ) ;

i f ( tm2 < tm1)

pos =qq ;

tm1 = tm2 ;

end

end

LmbdPrec = Avai l ab l e Prec ( pos ) ;

LmbdA = Lmam( in ) ;

% block−diagona l SPAI p r e cond i t i one r in c y c l i c domain based on tuned system

i f (LmbdPrec ˜= dummy | | av o i d r e l o ad i n g p r e c ond i t i o n e r ˜= LmbdPrec )

a v o i d r e l o ad i n g p r e c ond i t i o n e r = LmbdPrec ;

f o r harm = 1 :MaxDia+1

fname = s t r c a t ( ’ Prec ’ , ’ ’ , num2str (harm) , ’ ’ , num2str (LmbdPrec ) , ’ . mat ’

) ;

PREC(harm) .P.P = load ( fname ) ;

end

end

% s t a r t i n g guess

Guess = [ ] ;

[Comp33P ( : , nn ) , f l ag1 , r e l r e s 1 (m, nn ) , i t e r 1 , vec1 ] = gmres (@afun ,R, MaxInner It ,

Inner Tol , N Restarts , @prec , [ ] , Guess ) ;

% make the c o r r e c t i o n M−or thogona l to the cur r ent subspace

r esvec1 (m, 1 : s i z e ( vec1 ) , nn ) = vec1 ;

Comp33P ( : , nn ) = Comp33P ( : , nn )−Qp∗(Qm’∗Comp33P ( : , nn ) ) ;

dummy = LmbdPrec ;

f p r i n t f ( ’%17s : %i \n ’ , ’ Inner I t e r a t i o n ’ , nn )

end

% make d e c i s i o n whether to expand or to c o r r e c t the t e s t subspace

i f ( keep == 1 | | No blocks )

% No blocks = 1 ;

V = [V Comp33P ] ;
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e l s e

V( : , pos1 : pos1+keep−1) = V( : , pos1 : pos1+keep−1) + Comp33P ;

end

% or thonormal i zat i on r e l a t i v e to (T.M+T.dM)

V = ortha ( (T.M+T.dM) , V) ;

W = (T.K+T.dK) ∗V;

H = V’∗W;

H =(H+H’ ) ∗ 0 . 5 ;

[Umam,Lmam]= e i g (H) ;

Lout = diag (Lmam) ;

Freq=sq r t ( Lout ) /2 . / p i ;

Uout=V∗Umam;

% s e l e c t Ritz v e c to r s within f r equency band of i n t e r e s t ( i . e . c l o s e s t to

% some ta r g e t value tau )

pos1 =1;

j i = s i z e (V, 2) ;

f o r qq=1: j i

i f ( Freq ( qq ) > Fs )

pos1 = qq ;

break ;

end ;

end ;

pos2 = j i ;

f o r qq=1: j i

i f ( Freq ( qq ) > Fe )

pos2 = qq−1;

break ;

end ;

end ;

% Compute the r e s i d u a l s

FreqHist ( 1 : pos2−pos1+1, m) = Freq ( pos1 : pos2 ) ;

r = W∗Umam( : , pos1 : pos2 ) − (T.M+T.dM) ∗Uout ( : , pos1 : pos2 )

∗diag ( Lout ( pos1 : pos2 ) ) ;

% t e s t r e s i d u a l s f o r convergence

conv = 0 ;

keep = 0 ;

convind = [ ] ;

keepind = [ ] ;

keepr es = [ ] ;

t t = 1 ;

normmin = In f ;

f o r j j=pos1 : pos2

Nr (m, t t ) = norm( r ( : , t t ) ) ;
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% perform s e l e c t i o n f o r c o r r e c t i o n to s o l v e f o r the next outer i t e r a t i o n

i f (Nr (m, t t ) < Outer Tol )

conv = conv +1;

convind ( conv ) = j j ;

e l s e

i f ( normmin > Nr(m, t t ) ) normmin = Nr(m, t t ) ; Indin=j j ; Ind inr=t t ; end ;

keep = keep +1;

keepind ( keep ) = j j ;

keepr es ( keep ) = t t ;

end

t t=t t +1;

end

i f ( conv ˜= 0)

LmamROM( ki +1: k i+conv ) = Lout ( convind ( 1 : conv ) ) ;

Q ( : , k i +1: k i+conv ) = Uout ( : , convind ( 1 : conv ) ) ;

% keep a l l nonconverged Ritz ve c to r s in the t e s t subspace

V = [ Uout ( : , 1 : pos1−1) Uout ( : , keepind ( 1 : keep ) ) Uout ( : , pos2 +1: j i ) ] ; % s t a r t with

sma l l e r r e s i d u a l s

k i = ki + conv ;

end

f p r i n t f ( ’%17s : %i \n ’ , ’ Outer I t e r a t i o n ’ ,m)

f p r i n t f ( ’Kept Ritz va lues \n ’ )

s q r t ( Lout ( keepind ( 1 : keep ) ) ) /2/ p i

f p r i n t f ( ’ Their r e s p e c t i v e r e s i d u a l norms \n ’ )

Nr (m, keepind ( 1 : keep )−pos1+1)

f p r i n t f ( ’ Converged Ritz va lues \n ’ )

s q r t ( Lout ( convind ( 1 : conv ) ) ) /2/ p i

f p r i n t f ( ’ Currently s e l e c t e d f o r c o r r e c t i o n Ritz value \n ’ )

s q r t ( Lout ( Indin ) ) /2/ p i

end

[ Lout , pos ] = so r t (LmamROM) ;

Uout = Q( : , pos ) ;

% s pa t i a l phase r o ta t i on o f nominal e i g envec to r s

f unc t i on y = rot ( s h i f t )

y ( s h i f t ∗NSectorDOFs+1:NDofs ) = 1 : ( Nblades−s h i f t ) ∗NSectorDOFs ;

y ( 1 : s h i f t ∗NSectorDOFs ) = ( Nblades−s h i f t ) ∗NSectorDOFs+1:NDofs ;

end

% spar se matrix vector mu l t i p l i c a t i o n with M−or thonormal i zat i on

f unc t i on y = afun (x , t r ans )
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tmp1 = A∗x ;

y=tmp1−Qm∗(Qp’∗ tmp1) ;

end

% DFT−SPAI Precond i t i one r

f unc t i on y = prec (x , t r ans )

Dummy = ze r o s (NDofs , s i z e (x , 2) ) ;

y = ze r o s (NDofs , s i z e (x , 2) ) ;

i 1 = 1 ;

k = 1 ;

f o r i =1:Nblades

i 2=(NSectorDOFs ) ∗( i −1)+1;

i 3=(NSectorDOFs ) ∗ i ;

f o r j =1:Nblades

j 1=(NSectorDOFs ) ∗( j −1)+1;

j 2=(NSectorDOFs ) ∗ j ;

Dummy( i 2 : i3 , : )= Dummy( i 2 : i3 , : )+ Fo( j , i ) . ∗ x ( j 1 : j2 , : ) ;

end

% mu l t i p l i c a t i o n o f f i r s t , every other and l a s t b l ocks

i f (mod( i , 2 ) | | ( i==Nblades && Even) )

Dummy( i 1 : i3 , : ) = PREC(k) .P .P∗Dummy( i 1 : i3 , : ) ;

k = k + 1 ;

end

i 1 = i 2 ;

i f ( i==Nblades && Even)

i 1 = i 3 + 1 ;

end

end

% inve r s e DFT trans form

f o r i =1:Nblades

i 1=(NSectorDOFs ) ∗( i −1)+1;

i 2=(NSectorDOFs ) ∗ i ;

f o r j =1:Nblades

j 1=(NSectorDOFs ) ∗( j −1)+1;

j 2=(NSectorDOFs ) ∗ j ;

y ( i 1 : i2 , : )= y( i 1 : i2 , : )+ Fo( i , j ) . ∗Dummy( j1 : j2 , : ) ;

end

end

y = y − Qk∗ ( (Qk’∗Qm) \(Qm’∗ y ) ) ;

end

end
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