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Summary 

 

The highly active antiretroviral therapy (HAART) drug agent, indinavir, and the 

endocrine disruptor compound, 2,4-dichlorophenol (2,4-DCP), are directly related 

to two of South Africa’s, and in fact, two of the globe’s most fundamentally 

important and comprehensively researched subjects areas, which includes, 

HIV/AIDS and water pollution. In fact these two compounds share multiple 

significant commonality factors. Firstly, they have a profound effect on the health 

aspects of humans, albeit from opposite sides of the ‘equation’. Secondly, in the 

context of metabolism, they both share the same rout of biotransformation, and as 

such, both have a profound effect on the main first pass metabolising hepatic 

enzyme, CYP450 3A4, as well as xenobiotics sharing the same metabolic 

pathway. Thirdly and perhaps more importantly, in direct relation to the human 

mortality, their levels preferentially require constant or regular monitoring, a 

process, at this stage, is still only officially possible with complex specialized 

analytically-based techniques. Moreover, these techniques are only based on 

centralized detection and quantification, which essentially means expensive 

procedures, and long waiting periods for results. This thesis firstly reports on the 

development and characterization of reagent-less and cobalt(III) sepulchrate 

[Co(Sep)
3+

] mediated biosensor platforms (biosensor platform 1 and biosensor 

platform 2), with human recombinant heme thiolate, cytochrome P450 3A4 

isoenzyme (CYP3A4), as biorecognition component. Secondly, each biosensor 

platform was evaluated by using an entirely different category of compound as 

model substrate, with the overall objective being the development of alternative 

analytical method for the detection and quantification of each of these  substrates, 

by amperometric transduction method. In this regard biosensor platform 1 was 

evaluated for the detection of 2,4-dichlorophenol, whereas biosensor platform 2  

was evaluated for the detection of protease inhibitor (PI) HAART drug, indinavir. 

Fourthly, this dissertation also reports on the use of genetic engineering as 

complimentary method during biosensor investigations, as source for continuous 

supply of  catalytically active biological recognition component. With respect to 

the preparation of the biosensors in particular, biosensor platform 1 was 
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constructed by entrapping the commercially sourced full-length, wild type 

CYP3A4 on a pre-formed electroactive carrier matrix, consisting of Co(Sep)
3+–

modified nafion membrane on a glassy carbon electrode. In this regard, the 

nafion-Co(Sep)
3+

 composite was prepared by integrating the Co(Sep)
3+

 species 

into a pre-formed nafion film through manual drop-coating and mixing methods. 

In addition to this, the so-formed biosensor was re-inforced by a thin nafion layer 

as outer-film. The complete biosensor may be denoted as GCE||naf|CME-

Co(Sep)
3+

|flCYP3A4|naf. Biosensor platform 2  on the other hand, was 

constructed by entrapment of the N-terminally modified human recombinant 

CYP3A4 (consisting only of the heme domain and the surrounding apoprotein), 

prepared locally through genetic engineering, as a histidine-tagged, catalytically 

active soluble construct, denoted nCYP3A4, in a biocompatible ionically 

crosslinked hydrogel-composite membrane. Enzyme immbilization in this case 

was also realized on a pre-formed nafion-Co(Sep)
3+

 carrier matrix film, however, 

in this case the electroactive carrier matrix was prepared by integrating the 

electroactive Co(Sep)
3+

 species deep within the nafion microstructure through 

potentiostatic electrodeposition method at a costant potential of +450 mV for 

1200 sec. The so prepared biosensor, is denoted GCE||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA. In this regard, biosensor for platform 2, 

different variables affecting the performance and stability of the biosensor were 

evaluated. Selected ex-situ characaterization methods, including scanning 

electrochemical microscopy (SEM), Fourier Transform Infrared (FTIR) and UV-

Vis spectroscopy was used as complimentary characterization methods.  , 

morphological and structural charaterization,  revealed  the formation of a highly 

stable electroactive composite film for the carrier matrix in biosensor platform 2 , 

exhibiting a compact nature and a smooth consistancy in which the electroactive 

Co(Sep)
3+

 mediating species was embedded deep within the microstructure of the 

pre-formed nafion film. Moreover, the method of preparation was highly 

reproducible, while voltammetric studies also corroborated the stability of the 

carrier matrix film. Overall, the design path used for this method was shown to be 

an improvement as compared to the design path used for biosensor platform 1, 

particularly with regard to the carrier matrix. Nevertheless, the proposed 
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substrates were successfully detected and quantified by the individual biosensor 

plaforms. In this regard, the dynamic linear  range of the GCE||naf|CME-

Co(Sep)
3+

|flCYP3A4|naf biosensor, for 2,4-DCP exhibited an upper limit of 45 

A, with the sensitivity determined as 0.038 A M
-1

. In addition to this, the 

LOD was calculated as 0.043 g L-1, which was lesser than the USA 

Environmental Protection Agency’s (EPA) drinking water equivalent level 

(DWEL) for 2.4-DCP. In the case of the GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-

PEI-PVA biosensor, the linear concentration range for indinavir was shown to be 

between 2.183 M  3.552 M, while the sensitivity was determined as 0.035 

A M-1. Morover, the LOD value, determined as 59.72 mg L
-1

 was suggested to 

be of signifiance with regard to the maximum plasma concentration, CMax, with 

respect to the ritonavir-boosted regimen, which is the proposed method of 

administering indinavir. This can also be of value for HIV/AIDS patients who are 

poor metabolizers, as they will have significantly elevated concentration of the 

drug, when administered with ritonavir as booster. Above and beoynd these 

results, the overpotential for the reduction of dioxygen, which is a crucial step in 

the catalytic cycle of the CYP3A4 enzyme, was significantly reduced by the 

GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA biosesnor, as compared to the 

other biosensor. 
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CHAPTER 1 

 

General Introduction 

 

 

1.1 Introduction 

 

This thesis describes the electrochemical dynamics of cytochrome P450-3A4 

isoenzyme biosensor for protease inhibitor (PI) antiretroviral drug. Chapter 1 gives a 

comprehensive overview of protease inhibitor antiretroviral (ARV) drugs and ARV 

agents in general. Special elaboration was dedicated to the  PI, indinavir, since it is 

the model drug that was used during the experimental investigation for this study. In 

addition, other relevant subjects, including cytochrome P450 isozymes, therapeutic 

drug monitoring, biosensors and drug assay methods were also discussed. Since 

endocrine disruptor compound, 2,4-dichlorophenol was also used in a subsection of 

the research investigation, relevant aspects surrounding the chemical was also 

elaborated on. The latter division of this chapter included the research questions, 

problem statements, rational/motivation, objectives and sub-objectives, followed by a 

layout of the thesis. 

 

 

1.2  Background  

 

1.2.1 Indinavir and HIV/AIDS: background overview and related aspects 

 

The HIV protease enzyme is a critical component of the replicative cycle 

of the virus. It processes polypepetides transcribed from the gag and pol genes late in 
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the viral replicative cycle – research has shown that this transcriptional process is 

essential for the assembly and maturation of infectious virions, and that inhibition of 

this enzyme leads to production of  immature non-infectious viral progeny [1]. In this 

regard, indinavir (L-735,524; MK-0639; Crixivan), a protease inhibitor (PI) 

antiretroviral (ARV), with high oral bioavailability, is a mechanism-based designed 

drug, explicitly formulated to interrupt this specific biochemical pathway of the viral 

replication cycle. A schematic representation of the HIV/AIDS virus and the 

mechanism of action of PI ARV, indinavir, is shown in Figure 1.1. 

 

 

 

 

Figure 1.1: HIV/AIDS virus and mechanism of action of action of protease inhibitor 

ARV, Indinavir  

 

As observed in Figure 1, indinavir functions by targeting the viral protease enzyme, 

inhibiting it and subsequently inactivating the enzyme, concomitantly leading to the 

production of immature non-infectious viral offspring [1-2], which in turn, keeps 

viral load at bay. Moreover, the qualitative attributes of indinavir is also exemplified 

in its ability to cross the blood-brain barrier (BBB) – this being a pivotal factor in 

treatment regiments, due to the highly probable risk factor of AIDS patients 
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developing behavioural disorders in the late stage of HIV infection, which results 

from the virus crossing the BBB and concomitantly affecting the individual’s nervous 

system [1]. A noteworthy fact, however, is that successful HIV protease inhibition 

requires sustained, optimally high drug levels in the blood, particularly at the site of 

replication. These optimum drug concentrations are critical, not only to suppress viral 

replication, but also to reduce viral mutations. Moreover, this pivotal factor is a 

prerequisit for successful application of all clinically available ARVs, which includes 

the PIs, nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the nucleoside 

analogues (NAs). These optimum drug concentrations is of course highly reliant on 

the oral bioavailibility of the drug, which in turn depends on the rate of first pass 

metabolism, since the unique anatomical arrangement of our bodies is such that orally 

taken substances have to pass through the intestine and then liver, before reaching 

systematic circulation [3-6]. In this regard, overall, it is crucial that drug plasma 

concentrations are regularly measured to ensure optimum and sustained anti HIV 

effect [7].  

 

 

Review of current literature have shown that of the three basic categories of ARVs, 

the PIs and NNRTIs undergo extensive hepatic first pass metabolism  and as such 

share a similar metabolic pathway [2, 4, 8]. This essentially involves first pass 

oxidative metabolism by the cytochrome P450 (CYP450) enzymes present in the 

liver [2, 4], of which CYP450-3A4 (CYP3A4) is the most abundant isoform [3, 6, 9-

10], and is as such primarily responsible for their metabolism [2, 4]. With respect to 

indinavir in particular, prior research investigations, based on in vitro and in vivo 

studies with regard to the pharmacokinetic fate of the drug, has shown it to have 

minimal extra-hepatic biotransformation –  the drug actually determined to be 

exclusively metabolized by  CYP3A4 [1, 11]. However, the variation in the 

magtinute and/or rate of  first pass oxidative metabolism causes extensive inter-

individual and ethnic variability [3, 7, 10, 12] – a finding that is not restricted to 

indinavir only, but pertains to the metabolism of all PI and NNRTI ARVs [2, 4]. This 

 

 

 

 



 Chapter 1   General Introduction  

 

4 

 

can result in significant unpredictability in the bioavailibility and systematic 

clearance of these drugs, and in this regard, dosage must be tailored to allow for 

maximum efficacy and munimum toxicity, because as earlier stated, sub-optimal 

concentrations of these  drugs will be in effective. On the  other hand, since 

HIV/AIDS is ubiquitously associated with a progressively deteriorating  immune 

system, with patients inevitably suffering from a constellation of   disorders – 

indinavir, like other PI drugs and ARVs in general, are always administered in 

combination regiments, as well as a plethora of other prescription drugs [2]. The 

combination therapy is referred to as Highly Active Antiretroviral Therapy (HAART) 

and since these drugs are administered at similar or overlapping time periods – the 

possibility of drug-drug interactions is highly probable. This is an especially crucial 

factor when the biotransformation of any two or more drugs share the same metabolic 

pathway, as they will thus compete for catalytic site binding on the same iso-enzyme 

[4, 10] -  invariably leading to antagonistic, additive and/or other undesirable drug 

interactions, catalyzed mainly by enzyme inhition or induction.  

 

The recommended standard of care for HIV/AIDS patients requires the inclusion of at 

least one PI within a course of HAART regimen [2, 7, 13-14], but often the beneficial 

effects of a particular drug combination approach is not sustained, necessitating a 

change in the prescribed drug permutation. Consequently it may be necessary to 

expose patients to various combinations of PIs and/or PI/NNRTIs  - which reiterates 

the inadvertent probability for unavoidably potentially dangerous pharmacokinetic 

interactions. On the other hand, these  (synergistic, antagonistic and/or additive drug) 

interaction effects may beneficially be used to purposely alter in vivo drug 

concentrations of specific drugs, however, this is strictly only possible with absolute 

measurement of endogenous drug concentration [2, 7]. 

 

 The cumulative effect of all the above factors complicates dosing of clinically 

diagnosed patients, and as such an urgent need for therapeutic drug monitoring 

(TDM) during HIV/AIDS treatment is highly emphasized and recommended. In view 
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of all the latter and preceding facts, the urgent need for TDM of indinavir and other 

ARV may be summarized as follows: 

 To reduce drug toxicity by decreasing drug dose, while still maintaining 

adequate trough plasma concentration, particularly in the case of PIs and 

NNRTIs. 

 To prevent adverse drug-drug interactions, by monitoring plasma 

concentration during multi-drug administration or prior to the addition of a 

new drug. 

 It can be used as an objective measurement for non-adherence, thereby 

attenuate and possibly alleviating resistant viral mutations. 

 To deliberately alter the concentration of a particular ARV during co 

administration.  

  

 

Currently available methods for quantifying indinavir and other ARVs, is done 

through centralized laboratory techniques, based on high performance liquid 

chromatography (HPLC) with ultra-violet detection and/or liquid chromatography-

mass spectrometry methods [7, 13, 15-16]. These techniques are very accurate 

indeed, but their preference is discouraged by their exceptionally expensive 

application and maintenance requirement, which includes amongst others, highly 

qualified personnel, rigorous sample preparation, expensive solvents and 

components, which concomitantly leads to long assay procedures and time 

consuming sensitive procedures [13, 15-16]. Overall, this causes long turn-around-

periods [7, 17], and the delay in results may affect timely commencement of proper 

dosage/regimen modulation – a factor that can be detrimental to the HIV/AIDS 

patient. There is therefore undoubtedly a great demand for alternative drug assay 

measurement techniques, with the practical utility being to provide decentralised 

analysis, preferably at the doctor’s office, emergency room or in the privacy of the 

patient’s own house.  

 

 

 

 



 Chapter 1   General Introduction  

 

6 

 

Since, first pass metabolism with cytochrome P450-3A4 evidently is a pivotal factor 

in the successful application of indinavir and most ARVs, it is only appropriate to 

discuss this enzyme in greater detail. In this regard, a brief, but succinct overview on 

CYP450 enzymes with particular reference to CYP3A4 follows: 

 

 

1.2.2 Cytochrome P450 (3A4): Classification, structure and function 

CYP3A4 falls under the sub-group, (mono)oxygenase-type enzymes, 

which in turn forms part of the superfamily of proteins, collectively referred to as 

cytochromes P450 (CYPs) [3, 6, 8-10, 18-20], which are present in all forms of life 

(plants, bacteria and mammals). Human CYPs are essentially membrane-associated 

(microsomal) proteins, located either in the inner membrane of the mitochondria or 

the endoplasmic reticulum (ER) of cells [6, 18, 21], of which, the ER association is 

confirred by a characteristic stretch of residues, consisting of about 20-25 highly 

hydrophobic amino acids, known as the N-terminal region. In addition to this, these 

enzymes also contain a heme cofactor, situated at what is known as the C-terminus, 

and is flanked by a peripheral region of hydrophobic surrounding protein globule, 

functioing mainly to protect the heme from any unwanted reactions [22]. Thus, in 

essence, CYP450s can be considered as enzymes containing both an N-terminal 

domain, mainly functioning as a protein anchor, as well as a C-terminus, which 

contains the heme cofactor Considering the hydrophobic residues contained within 

both of these regions, these enzymes are understandibly considerably hydrophobic in 

nature. Also noteworthy, is that P450s are also known as heme-thiolate proteins, 

because in these proteins, the heme cofactor  is covalently linked to the surrounding  

apoprotein through a cystein group [21-24]. In this regard, they are similar proteins 

with the same porphyrin-heme complex as catalytic center, the so called “P450 

signiture”, but with different amio acid sequences, altering the topography of the 

active site [21-22, 24-25] – hence the term “isozyme”. In terms of function on the 

other hand, they are mixed function oxygenases (MFO), constituted by a multifarous 
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group of essential enzyme catalysts, which mainly function in the oxidative 

metabolism of various xeno- and endobiotic organic substances [22, 24, 26]. As such, 

collectively, these P450 isozymes play key roles in vital processes, such as steroid 

hormone biosynthesis, the activation and detoxification drugs and environmentally 

contaminating chemicals, the metabolism of polyunsaturated fatty acids, activation of 

vitamins A and D3 to biologically active hormones, etc [3, 20, 24, 26]. With reference 

to the aforementioned processes, the  reactions catalysed can be extremely diverse, 

such as, hydroxylations, N-, O- and S-dealkylations, sulphoxidations, opxidations, 

deaminations, desulphurations, dehalogenations, peroxidations [21, 24]. Moreover, 

many of the individual P450s catalyze multiple reactions, and since almost every 

P450 isoform’s selectivity  is so broad – collectively, their presence provides a 

general defense system in the body against  both synthetic and/or natural compounds, 

which are nearly unassailable to  the attack by other enzymes and that would, upon 

exposure to them, otherwise accumulate and be harmful, if not metabolized to 

hydrophilic products [19, 24].  

 

On the other hand, the liver is the major organ for the metabolism and detoxification 

of pharmaceutical drug-type xenobiotics [3, 6, 12, 24], an aspect that is crucial, since 

these drugs are normally lipophilic organic molecules, and as such has to undergo 

chemical modifications within the human body, either for drug activation and/or 

successful elimination. In this regard, the liver microsomal isozymes, are key players. 

With regard to CYP3A4 in particular, it is the major cytochrome P450 isoform and as 

such, the most influencial. As all other human CYPs, it is a  membrane-associated 

protein,  residing  primarily within the endoplasmic reticulum of the liver and 

contains a single iron protoporphyrin IX prosthetic group, (heme). Figure 1.2(a) 

shows the ribbon drawing of the secondary structure of human CYP3A4, whereas 

Figure 1.2(b)  shows an enlarged detailed view of the heme cofactor.  
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Figure 1.2:(a) Ribbon drawing, showing the distal face view of cytochrome P450-

3A4 (CYP3A4) secondary/tertiary structure (a);  (b)  Prosthetic group of 

CYP3A4, (b-type heme): an iron-(III) protoporphyrin-IX linked with a proximal 

cystein ligand (fifth ligand of the heme iron) 

 

From the ribbon drawing of the cytohrome P450 isozyme, CYP3A4, in Figure 1.2(a), 

one can observe the secondary structure of the enzyme, which mainly consists of  the 

heme (stick figures coloured in red) with its active site cavity (shown as a grey mesh) 

and the surrounding protein matrix (the apoprotein). On the other hand, Figure 1.2(b) 

shows the prosthetic group in greater detail – consisting of an iron (III) 

protoporphyrin-IX, which in terms of classification, is a b-type heme. The heme iron 

is ligated by a cystein group through its sulfur, and in this regard, overall, CYP3A4 

prosthetic group may be referred to as a cysteinato-iron(III) protoporphyrin-IX.  The 

prosthetic group is the active site of the enzyme, and as such, it is at this particular 

place that the enzyme interacts with the substrates to metabolise them.  The substrate 

list of CYP3A4 is not limited to a small number of chemical classes, but rather is 

structurally diverse. A large number of these chemicals are human pharmaceuticals of 

various pharmacological actions. Overall, multiple metabolic pathways are catalyzed 

by CYP3A4, the major pathways being C- and N-dealkylation, C-hydroxylation. 
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Others include dehalogenation, N-demethylation, as well as allylic  and benzyllic 

hydroxylations in steroid molecules. Overall, the natural catalytic process of 

CYP3A4-substrate interaction, involves an insertion of one atom of elemental oxygen 

into the substrate compound (monooxygenation) – a process that occurs through a 

series of reaction steps and involves the obligatory presence of electron transfer 

donors and other molecules. A schematic representation of the catalytic reaction steps 

for the membrane-bound CYP3A4 is shown in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Natural catalytic cycle of human hepatic microsomal CYP3A4 

 

As shown in Figure 1.3, CYP3A4 reacts with substrates (R—H) at the active site 

(heme). Overall, success of the catalytic process requires the transfer of two electrons 

and the presence of molecular oxygen. The electrons are supplied at seperate 

intervales during the catalytic cycle, by the enzyme’s natural electron donor, 

NADPH-P450 oxidoreductase, through its reducing equivalents, FMN and FAD. It is 

noteworthy to add that, depending on the substrate being metabolised, CYP3A4 

sometimes also require the obligatory presence of  cytochrome b5 during supply of 

the second electron. The series of steps following the first electron transfer is such 

that it eventually results in the formation of water and a high-valent iron-oxo species 

(iron-oxo(ferryl)-complex), known as Compound I, which is capable of oxygen atom 

transfer and as such, functions in the actual substrate monooxygenation. A much 
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more comprehensive description of the catalytic reaction cycle is given in Chapter 2. 

In terms of the electron transfer redox partner involved, CYP3A4 may be classified as 

a classII cytochrome P450, whereas with respect to the fact that the enzyme requires 

an external reductant, it may be categorised as an external monooxygenase.  

 

Important considerations with regard to CYP3A4-substrate interaction include the 

fact that the enzyme is rather ‘promiscuous’ in its substrate selectivity and as such, 

known to metabolise a large variety of pharmaceutical compounds extensively 

varying in molecular weight, while  also having a spacious active site, capable of 

accomodating a diverse range of compounds. Moreover, the expression of CYP3A4 

varies between individuals, race and ethnic groups, while the enzyme is also subject 

to inhition and/or induction by a number of drugs, a factor that can be life threatening 

during concurrent and/or multi-drug administration. Considering these facts, the need 

for therapeutic drug monitoring (TDM) during treatment of chronic illnesses where 

CYP3A4 metabolism is the major drug biotransformation pathway, such as in 

HIV/AIDS, should be reiterated as highly recommended.  

 

 

 

 

1.2.3 Endocrine disruptor compound: 2,4-Dichlorophenol (2,4-DCP)  

 

As stated earlier, CYP3A4 is the most ubandantly expressed CYP450 

isozyme. In that context, it accounts for 60% of cytochrome enzymes in the liver 

and 70% of those in enterocytes in the gut wall, and appropriately, holds the 

dominant  position in phase I metabolism [3, 9-10, 27-28] – naturally having the 

largest substrate listing and as such, plays a pivatol role in the in detoxification of 

exogenous bioactive compounds and lipophillic xenobiotics, including prescription 

medicines, drugs, environmental pollutants, pesticides, herbicides, herbal 

medicaments, food supplements, steroids, etc [9-10, 23, 27-31]. Amongst the latter 
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list, of particular importance are compounds whith edocrine disrupting properties, 

because their effects are not only confounded to the individual exposed to them, but 

also their offspring, and as such cascades into transgenerational effects [32]. With 

regard to defintive context, endocrine disruption refers to a mechanism of toxicity 

that hinders the ability of cells, tissues and organs to communicate hormonally, 

resulting in a myriad of adverse health outcomes including reduced fertility and 

prolificity, spontaneous abortion, skewed sex ratios within the offspring of exposed 

communities, male and female reproductive tract abnormalities, polycystic ovarian 

syndrome, neuro-behavioural disorders, impaired immnune functions and various 

cancers [32-36]. 

 

Amongst the studied potential endocrine disruptor (ED) chemicals, pesticides (i.e. 

herbicides, bacteriocides, funagsides, insecticides, and rodentocides) and associated 

mono- and polychlorophenols were shown to be ubiquitously associated with most 

ralated endocrine disrupting subject areas [32]. Of particular interest, is the pervasive 

environmental pollutant – the chloronated phenol, 2,4-dichlorophenol (2,4-DCP), 

since it holds multiple industrial applications, including herbicide and pesticide 

production, feedstock for the manufacture of certain methyl compounds used in 

antiseptics and disenfectants, fungicides for use as wood preservatives, etc [37-38]. 

Moreover, it is a precursor for the synthesis of carcinogenic endocrine disruptor, 2,4-

dichlorophenoxyacetic acid (2,4-D), which is the active ingredient of more than 1500 

herbicides [39-40], while also being a major metabolite or degradation product of 2,4-

D and many phenoxy-based herbicides [32, 40-41]. Furthermore, 2,4-DCP also 

commonly ends up in drinking water as a by-product of chlorination, as biocides, or 

as degradation product of the commonly used phenoxy herbicides [39, 42-43]. The 

toxicity linked to 2,4-DCP exposure has been shown to contribute in the promotion of 

the growth of breast, ovarian and prostate cancer tumor cells, while also shown as 

major causative agent in specific endocrine related cancers and chronic conditions 

such as chloracne and porphyria in humans [32, 41, 44]. Consequently, it has been 

classified as a priority pollutant, especially in terms of the aquatic environment [45], a 
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fact that is exacerbated by the knowledge that endocrine disrupting related chemicals 

are capable of exerting adverse effects on living organisms even in very small 

concentrations [32].   

 

Overall, the maximum safe limit for 2,4-DCP and/or other chlorophenols in river 

water, pre-treatment potable water and drinking water has been ruled as 50 – 

100µgL
−1

, 1 – 5µgL
−1

 and 100 – 500ngL
−1

, respectively [WHO, EPA, EU]. Thus, the 

monitoring of the environment to make sure that this pollutant remains within safe 

limits of concentration requires very sensitive analytical methods. To this end, 

conventional analytical methods for determination of 2,4-DCP in water samples are 

based on gas chromatography (GC) and/or  high performance liquid chromatography 

(HPLC), either applied directly in conjunction with mass spectrometry detection, or  

with solid-phase extraction (SPE)-electrospray ionization (ESI) assisted mass 

spectrometry detection [39, 43]. Other methods, based on advanced oxidation 

processes, such as O3/UV, O3/H2O2, UV/H2O2, Fenton and photo-Fenton, which 

functions by mineralizing the organic chemical, have also been applied [38]. 

Notwithstanding degree of accuracy and/or success of these methods, their popularity 

is restricted by numerous disadvantages, as well as the fact that they are not suitable 

for on-site application [38-39, 43], hence the compelling urgency for development of 

alternative assay methods. 

 

 

 

1.2.4 Indinavir vs 2,4-DCP: The common factor shared by these two subjects  

 

At this stage, the reader’s curiousity may be kindled, as to the common 

aspect of  

two such seemingly different subjects – PI ARV drug, indinavir vs priority 

pollutant/endocrine disruptor compound, 2,4-dichlorophenol. In this regard, the 

reader is requested ponder the following significant factors:  
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On a global scale, South Africa has one of the highest HIV infection and AIDS 

related mortality percentages. Geologically, on the other hand, South Africa suffers 

from several water related challanges, which overall, may be summarised as follows: 

 

 There is an uneven spreading of ground- and other water resources across the 

country, due to its by-and-large arid/semi-arid nature –  with a select few 

regions having the great fortune of receiving moderately regular rainfall 

patterns. Moreover, chlorophenols and/or other toxic pollutants are bound to 

eventually end up in our waterways, both directly and indirectly from 

industrial processes, especially the electricity supply sector which is highly 

reliant on the use of coal fired power stations –  with the other major sector 

being the agricultural use of pesticides/herbicides for genetic modification of 

crops.  

 

Considering the latter information, it should become obvious that indinavir and 2,4-

dichlorophenol is directly related to two of our country’s most eminant concerns, 

which is HIV/AIDS and the issue of water . Moreover, with reference to the 

preceding sections, these two chemicals have also been shown to share a common 

rout of biotransformation, which involves monooxygenation by CYP3A4. On the 

other hand, knowing that CYP3A4 is such an influencially diverse enzyme catalyst, 

and the knowledge that this and other P450’s are promising enzymes for the 

applications of biosensing probes, the much emphasized alternative assay technique 

for quantification of 2,4-dichlorophenol and indinavir, is realizable through the 

application of a small analytical instrument, known as the biosensor.  
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1.2.5 Molecular models and probes for xenobiotic metabolic profiling  

 

1.2.5.1  Prospects of available biological probes for in vitro investigations with 

mammalian microsomal CYP 450s: advantages, drawbacks and new 

developments 
 

Before tackling the aspects surrounding  subjects of active in vitro models for 

studying CYP3A4 and other mammalian CYP450 enzymes, the reader is cautioned to 

consider the following factors:  

 

Considering that drug metabolism is the major determinant of drug 

clearance, the importance of mammalian CYP 450s and in particular, the determinant 

role of predominant isoform, CYP3A4, in the therapeutc efficiecy of most of the 

pharmaceutical drugs ingested by humans cannot be over estimated. Furthermore, it is 

the body’s ultimate defense mechanism, rendering otherwise carcinogenic 

compounds to harmless metabolites, for example,  the unprecedented role of 

CYP3A4’s detoxification ability to metabolise the human hepatocarcinogen, aflatoxin 

B1, to the harmless metabolite, the 3α-alcohol. Also noteworthy, is the aspect of the 

extensive interindividual differences in pharmacokinetics existing between 

individuals and ethnic groups, largely attributable to polymorphism, genotype-

phenotype relations within the isoenzymes, induction and overlapping drug 

selectivities of CYP3A4 and other mammalian CYP450 isoenzymes  of which 

these constricts  can confir differences of up to 90% in drug uptake and clearance 

beween individuals.(In this regard, polymorphism  referes to the variation in gene 

expression for particular isoenyzmes between individuals. In this regard, a small 

diefference in DNA sequence, within a population can lead to very significant 

differences in drug metabolism. Genenotype-phenotype differences, on the other 

hand, referes to the metabolising ability of individuals, in which some are poor-

metabolisers, intermediate-metabolisers and ultrafast-metabolisers). A final 

consideration factor, which is inhibition of CYP450s , particularly, CYP3A4, caused 
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by competition between drugs taken concurrently and the enzyme’s promiscuity 

confirred by its ability to accomodate more than one substrate simultaneously can 

lead to severe advers drug effects, particularly metabolic drug interactions, caused by 

altering the disposition of a drug by the presence of another compound.   

 

The relevance of  all the aforementioned constricts/factors, is based on the fact that 

they all  have a direct consequence on the overall effect of pharmaceutical 

compounds, as well as other drug-type and/or carcenogenic xenobiotics entering the 

human metabolic system. In this regard, it is pivatol that in vitro models constituted 

by validated techniques are in place for the study and assessment of metabolic 

profiling of xenobiotics both pharmaceutical and otherwise, particularly in terms 

pharmacokinetics, therapeutic dose efficiency predictions, potential toxicity and 

potential enzyme- inducting or enzyme-inhibiting studies. In fact, with regard to 

pharmaceutical constituents, these studies play a significant role in preclinical drug 

devlopment, particularly since the evaluation of potential drug-drug interactions has 

become  mandatory for the registration of new drugs by most regulatory agencies.  

 

For this purpose, various models/probes, based on various cytochrome P450 sources, 

in technqiues which makes use of in vitro-based protocols, may be applied. These 

models include human  hepatocytes, which are normally primary cultured (i.e. fully 

differentiated) and/or encapsulated hepatocytes; liver slices; microsomal fractions, 

prepared from human liver tissue; or microsomal fractions and/or hepatocytes from 

animal tissue, such as rats. Athough these models has been in use for routine 

application, they are unfortunately all subject to various drawbacks. In this regard, 

with respect to hepatocytes in particular, primary culured intact cells are used, which 

essentially means that these sources contains complete endoplasmic reticulum 

membrane, metabolic pathways, physiogical cofactors, coenzymes and active gene 

expression. The particularly sigificant drawback of the aforementioned model, is that 

investigations with one particular isoenzyme is not really possible and for the 

requirement of such results, additional statistical analysis needs to accompany such  
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investigations, particularly since most CYP 450 isoenzymes exhibit distinct, but 

overlapping substrate selectivities   

 

Although, these models are based on viable catalytically active CYP450 sources, 

there shortfallings makes the need for alternative molecular models/probes an 

urgency. In this regard, biosensors can play a major role in replacing such systems.  

In the context of  bioelectrochemical systems and biosensors in particular, it is 

essential that a constant supply of  renewable sources of biological components are 

available. In this regard, genetically manipulated  cells, expressing the specified 

single CYP gene, through perminant transfection with the cDNA of the particular 

enzyme is a highly suitable method to eliquintly supply this constant demand, 

whereas any of the aforementioned models would not suffice.  

 

 

 

1.2.6 Biosensors: The ultamite molecular probe 

 

In the context of all the problem areas identified and elaborated in all the 

preceding sections within this chapter, one subject claims centrestage — the 

unprecedented urgency for alternative analytical devices for detection, qauntification 

and monitoring of specific chemical species, with the overall aim being diverse areas 

of application. The only proposed analytical device able to meet these requirements, 

are biosensors, as they have been proven effective for continuous, real-time in vivo 

and/or non-invasive monitoring, as well as field-testing and commercialization, and 

as such may be used to complement and/or replace centralized laboratory techniques. 

From a panoramic perspective, the rational behind biosensor design and application is 

based on the synergistic combination of molecular principles and bioelectrochemical 

dynamics, packaged as intelligent materials system in self contained integrated 

devices — capable of recognising stimuli, processing the information arising from the 

response to the stimuli and responding to it in an appropriate manner and time frame, 
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as such allowing virtually any complex to be screened with minimal assay 

development. Furthermore, research has shown promise in the potential of these 

devices to provide low-cost, rapid/real-time measurement and operationaly-simple 

analytical tools for diverse applications, including environmental monitoring, 

chemical measures in agriculture, food and drug industries, as well as clinical 

diagnostics, disease- and therapeutic drug monitoring applications. Among the 

available biosensor types, electrochemical biosensors are the most preferred. In this 

regard, amperometric electrochemical biosensors are considered the superior choice, 

because they are known to be reliable, cheaper and highly sensitive for clinical, 

environmental and industrial purposes [46]. 

 

 

From a defintive perspective, overall, biosensors consist of two major parts — a 

molecular recognition component, which is of biological origin,  and a transducer, 

whereas the major processes involved in any biosensor system are analyte 

recognition, signal transduction and readout. Since the clinical utility of such devices 

are highly dependent on the selectivity of the biodetector for the specific target 

analyte and to maintain this selectivity in the presence of other potentially, interfering 

species, enzymes have received the major attendtion as recognition components. In 

this regard, enzymes are known to have high specificty and hold the ability to enable 

reactions that would otherwise not occur, thus making them nature’s most preferred 

catalysts. Moreover, biotechnology have advanced to such an extent that any enzyme 

can be genetically engineered through the use of heterologous expression systems, 

such as mammalian-, yeast- (Saccharomyces cerevisiae), insect cells (Spodoptera 

frugiperuda, i.e. Sf9 or Sf21) and/or bacterial systems (Escherichia coli), via a 

combination of cloning, expression and purification methods. This has been a 

particularly significant milestone for the application for mammalian CYPs, since this 

process allows for the preparation of only the terminal oxidase/heme domain of the 

particular isozyme, which can subsequently be used in an appropriate biosensor 

configuration, and as such elleviates the need for the external natural electron 

transfer-donors. Moreover, N-terminal modification, during the enzyme 
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expression/purification process circumvent the problem of low activity and 

aggregation normally experienced by full-length microsomal P450 isozymes, and as 

such enables the preparation of more soluble enzyme constructs, with good catalytic 

activity.  A noteworthy fact to add, on the subject of enzymes, CYPs in particular, is 

that a key factor in the construction of such biosensors involve the development of 

suitable immobilization technologies for stable tethering of the enzyme to the 

transducer, the overall aim being, to provide durable and repetitive binding of the 

biological receptor to the transducer without imparing its catalytic activity and/or 

efficiency for the target analyte. This is of course only possible with well orchestrated 

transduction platforms, consisting of  judiciously chosen carrier matrices and 

interfacial enhancer materials, since the activity of immobilized biological molecules 

are known to be dependent upon a combination of factors, including surface area, 

porosity, hydrophilic/hydrophobic character of immobilization matrix, reaction 

conditions, the chosen immobilization method etc. Moreover, the thick protein shell 

surrounding the enzyme active center introduces a kinetic barrier for electron transfer. 

 
 

A popular method, that has proven effectual for enzyme immobilization, is a 

combination of entrapment and encapsulation. Effective entrapment materials which 

have shown immense success are polymer based. Polymers used for enzyme 

immobilization and development of modified electrode films for biosensor 

configurations may be devided into two major groups: ion exchange- (without 

electronic conductivity) and electron conducting polymers. The latter group also 

includes redox-active electron conducting polymers. Among the polymer matrices, 

the ion exchange  polymer, nafion, has become a popular choice, and as such, much 

research investigations has been devoted to its use in a wide variety of 

electrochemical applications. This   perfluorosulphonate ionomer is a tremendously 

versatile material, incurred by a  range of inherently unique properties, which 

includes the following: 

i) It allows for simplistic membrane formation by either dip-, spin- or drop-

coating; 
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ii) It has high adhession to electrode surface with low swelling in aqueous media; 

iii) Its fluorocarbon backbone allows formed polymer membranes to be highly 

thermal and chemically stable; 

iv) Nafion films feature internal segregation of hydrophilic and hydrophobic 

regions, as such improving physiological enzyme environment mimicking, a 

quality that can further stabilize the immobilized enzyme molecules. 

v) The polymer’s incredible affinity for complex cations enables the pre-

concentration of cationic redox-active species in the polymer; 

vi) The formed polymer confer perselectivity to the biosensor, particularly with 

regard to the exclusion of potentially interfering compounds, while 

similtaneously protecting the underlying electrode from fouling and also 

preventing non-specific binding of enzyme molecules to the electrode surface.  

Nafion’s ability to preconcentrate redox active species is an exceptionally pavitol 

factor, and as such, can be used for the preparation of mediator-based, reagentless 

biosensor configurations, which would allow simplified electron transfer between 

the enzyme active site and the transducer surface, through electron shuttling by the 

incorporated redox active mediator molecules. This is particularly beneficial in the 

case of cytochrome P450 enzymes who’s active sites are deeply burried within the 

surrounding apoprotein and do not readily exchange electrons with the underlying 

electrode, while also alleviating the additional complication of the obligatory 

presence of NADPH electron transfer donors.  The choice of encapsulation material, 

on the other hand, also plays a significant role  in successful enzyme-film formation, 

since appropriate material will enable longer lifetime of the immobilized enzyme, 

particularly in the case of microsomal CYP450 enzymes, who are known to be 

labile and requires a suitable environment for to retain activity and function. On the 

subject of encapsulation, the natural biopolymer, agarose, well known for its 

bioaffinity and biocompatibility, non-toxic nature, water permeability, high 

mechanical strength and biomembrane like film formation,  has been widely applied 

for enzyme-film formation, in which regard it has portrayed excellent enzyme 
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encapsulation with a superior degree of biological activity retention [47-48], 

particularly in the case of cytochrome P450 enzymes [49-50]. Moreover, agarose 

can be synergistically blendid with other non-toxic, biocompatible, water-soluble 

polymers, such as poly(vinyl chloride) yielding hydrogel composites that provides a 

biocompatible aqueous microenvironment for the immobilized enzyme [51].   

 

 

1.3 Refinement of Research and Research Questions 

 

The preceding sections gave a succinct, but detailed review of the pertinent 

subjects pertaining to this dissertation. In this regard, the reader was familiarized with 

HAART drugs and endocrine disruptor/priority pollutant chemicals. With regard to 

the ARVs, special reference was given to the protease inhibitor ARVs, indinavir in 

particular, while other important issues, such as adverse drug reaction considerations, 

drug assay methods, therapeutic drug monitoring and biotransformation was 

emphasized. In terms of the other subject area on the other hand, much of the 

discussion was devoted to 2,4-dichlorophenol, particularly with respect to aspects 

surrounding its sources, applications, health impacts and assay methods. Moreover, in 

addition to the latter subject areas, detailed deliberations with regard to cytochromes 

P450 and biosensors were given. In reference to the major aspects outlined in those 

sections, a summary of research questions can be formulated which directs the focus 

to the relevant problem areas and as such provides more focused enlightenment on 

the motivation/rational for the current study.  

 

 

 The PI ARV, indinavir is specifically designed to inhibit the HIV protease 

enzyme, leading to concomitant inactivation of virus particles. 

 In general, primary antiretroviral drugs are based on three groups which 

includes the PIs, the NNRTIs  and the NAs. 
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 Successful protease enzyme inhibition, and/or general anti HIV effect, require 

absolute optimum concentration of clinically available drugs at the site of 

replication.  

 Drug plasma concentration needs to be regularly monitored to ensure 

optimum sustained anti HIV effect.  

 The recommended standard of care for HIV/AIDS requires inclusion of at 

least one PI in a course of HAART regimen. 

 The requirement of regular drug regimen modulation to prevent viral 

mutations etc., expose patients to various combinations of PIs and/or 

NNRTIs.  

 PIs and NNRTIs share the same metabolic pathway, which primarily involves 

oxidative metabolism in the liver. The major enzyme involved is CYP3A4. 

 Combination PI therapy can result in adverse additive and/or antagonistic 

drug interactions mediated by induction or inhibition of CYP3A4. 

 Great subject variability in concentration of plasma PI levels, due to 

differences in each patient’s cytochrome P450-CYP3A4, necessitates tailored 

dosage regimens to allow for maximum efficacy and minimum toxicity, 

because sub-optimal concentrations of PIs will be in effective. 

 Indinavir may be considered a model substrate for CYP3A4 since it is 

exclusively metabolized by this enzyme. 

 Since drug clearance changes rapidly with age until adult stage is reached, 

TDM in pediatric patients, would tremendously aid the selection of correct 

dosing regimen. 

 Constant TDM during antiretroviral treatment is necessary so as to ensure 

optimum trough plasma drug concentrations and thus preventing toxicity and 

non-adherence.  

 HIV/AIDS patients are immuno-compromised and as such, in addition to 

ARVs, receive numerous other prescription drugs, and with CYP3A4 being 

the main isozyme responsible for metabolism of most ARVs and 
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pharmaceutical xenobiotics, potentially dangerous pharmacokinetic 

interactions are highly probable.  

 Therapeutic drug monitoring during the treatment of HIV/AIDS is highly 

recommended, the main reasons being, to prevent adverse drug interactions, 

improvement of inter-individual therapeutic efficiency, preventing non 

adherence and to avoid drug associated toxicity.  

 Current available assays for anti HIV drugs are based on centralized 

laboratory techniques whose advocation in regard to TDM is discouraged by 

numerous disadvantages, which overall causes long turn-around-periods, 

leading to delay in results and affects timely commencement of proper dosage 

regimen adjustment. This is potentially dangerous for the patient. 

 Smaller, faster and cheaper devices are highly desired for replacement of 

time-consuming laboratory-analysis. 

 CYP3A4 being the highest expressed mammalian hepatic and small intestinal 

isoform, it also plays a major role in metabolism and detoxification of 

environmental pollutants, one of which is the pertinent endocrine disruptor 

chemical, 2,4-dichlorophenol. 

 2,4-DCP is a ubiquitous priority pollutant, ever-increasingly finding its way 

into our waterways, concomitantly putting increased strain on an already 

water-stressed country. 

 Available detection and quantification methods for 2,4-DCP are laboratory-

based GC and/or HPLC methods used in conjunction with complicated 

detection methods inlcuding SPE or ESI. Moreover, these techniques are not 

structured to enable on-the-spot field testing. 

 As in the case of ARVs, alternative analytical devices for detection of 2,4-

DCP is needed. 

 Coupling of enzymes with deliberately modified electrodes, within a 

biosensor configuration, permits rapid, simple and direct determination of 

multifarious analytes, in complex biological fluids and/or environmental 

liquid samples. Such devices can be applied for single-use, intermittent-use or 
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continuous-monitoring applications. In this regard, cytochromes P450, 

particularly major isoform, CYP3A4, are promising recognition components, 

due to the extensive variety of substrate catalytic ability. 

 Amperometric enzyme electrodes, having a wider linear range and the 

advantage of being able to produce continuous readings, holds a leading 

position among available biosensors systems presently available. 

 Sensor is comprised of three essential components: the detector, which serves 

as recognition element; the transducer, which converts the stimulus to a useful 

invariable electronic, output; and the output system itself, which involves 

amplification, display, etc in an appropriate medium. 

 The interface between the detector and transducer is an important 

consideration during biosensor construction and often constitutes the major 

hurdle in the development of an optimum operating device. 

 Optimum biosensor performance is by-and-large depended with appropriate 

immobilization techniques. 

 Requirements for effective immobilization serves to: retain biological activity 

of enzyme when attached to sensor surface, tightly associate biological film 

with transducer whilst retaining its structure and function, induce long term 

stability and durability of immobilized biological films, and of retaining a 

high degree of specificity of the biological material to particular biological 

components. 

 Improvement of biocatalytic efficiency can be achieved through choosing 

carrier matrix materials with multifunctional features; tight immobilization of 

mediator molecules within the reagent layer; as well as creating 

biomembrane-like matrix to mimic physiological conditions.   

 Among the known immobilization methods, research has found enzyme 

entrapment-encapsulation to be superior. 
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With regard to the latter research questions and preceding literature 

surveyed information, which highlighted specific problem areas as it pertains to this 

dissertation. The main issues being HAART associated TDM and on-the-spot field 

assay methods for endocrine disruptor associated priority pollutants.  The main focus 

in terms of  the subject of TDM involves alternative analytical methods capable of 

decentralized analysis, and real-time measurements. The superior method for 

executing the task was shown to be enzyme-based amperometric biosensors, in which 

appropriate miniaturization of bio-recognition and transducer components (which 

includes carrier materials) is expected to allow for fast and accurate analysis. 

Considering these aspects, the motive for the current study was thus established.       

 

 

1.4 Scope of the thesis 

 

This dissertation presents and comprehensively discusses the obtained results 

for two separate biosensor platforms, biosensor platform 1 and biosensor platform 2, 

fabricated and applied for the detection of two distinctly different categories of 

substrates. With regard to the biosensor platforms in particular, they share four major 

commonality factors, the first of which is the category of bio-recognition component, 

which in both cases is the mammalian, microsomal heme-thiolate cytochrome P450 

3A4 isoenzyme (CYP3A4). The second common factor is the mediating species, 

which is the electroactive metal-centred mediator, cobalt(III) sepulchrate [Co(Sep)
3+

]. 

The other aspect is that both platforms have been designed and fabricated to mediate 

the enzyme-based bio-electrocatalytic reaction in a reagentless manner. The fourth 

and final common factor, is with regard to one of the major objectives of the 

biosensors, which was focused on working towards providing decentralized 

analytically-based method for detection and quantification of the selected substrates.  
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The first part of the thesis involves the electrocatalytic detection and 

quantification of endocrine disruptor compound, 2,4-dichlorophenol. The biosensor 

was realized through sandwich-configuration, consisting of commercially obtained 

full-length microsomal CYP3A4 within cobalt(III)sepulchrate-derivatized nafion 

membrane. Entrapment of the cobalt(III)sepulchrate mediator within the nafion 

membrane, was done through a manual pre-concentration method, which involved a 

combination of drop-coating and mixing. Electrochemical dynamics for this 

biosensor is based on amperometric transduction.  The results for this biosensor is 

presented and discussed in Chapter 4. This platform will be referred to as biosensor 

platform 1 in the subsequent sections of this chapter.  

 

 

The second part of this dissertation involves the electrocataltyic detection 

and quantification of PI ARV, indinavir. The recognition component for this 

particular biosensor is the heme-domain of N-terminally modified CYP3A4 

(nCYP3A4), manufactured through genetic engineering, the process of which was 

done by the investigator and as such, was not commercially obtained. Enzyme 

immobilization in this particular biosensor is based on a combination of entrapment, 

behind the electroactive solid polymer electrolyte inner film, and encapsulation in 

biocompatible ionic hydrogel blended membrane. Incorporation of the 

cobalt(III)sepulchrate mediator within the inner-nafion membrane, was achieved 

through a novel electrochemically-based method.   The results for this particular 

biosensor is presented and discussed in Chapters 5 A and B. This biosensor will be 

referred to as biosensor platform 2.  

 

It should also be noted that the specific techniques applied in preparation of biosensor 

platform 2, was carefully planned to serve as improvement as compared to biosensor 

platform 1, particularly with reference to the preparation of the electroactive carrier 

matrix. Moreover, the improvement in the design path was also focused on working 
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toward lowering the operating potential of the reduction of oxygen, as compared to 

biosensor platform 1. 

 

 

1.3.1 Specific objectives to achieve the overall goal 

In this regard, spesific key research questions for each biosensor platform was 

identified, which are subsequently elaborated. 

 

 

1.3.1.1  Biosensor platform 1 

 

i) prepare a pre-formed nafion film on the glassy carbon electrode surface. 

ii) modify the formed nafion film with the electroactive mediating cobalt(III) 

sepulchrate species, to form an electroactive carrier matrix. The approach 

used here should is kept simple, by applying manual techniques. 

iii) characterize the prepared Co(Sep)
3+–modified nafion film with appropriate 

electrochemical and ex-situ morphological and structural techniques. 

iv) monomerize the commercially obained full-langth CYP3A4 (flCYP3A4) with 

a suitable detergent, for easy immobilization without aggregation of enzyme. 

v) immobilize the enzyme on the electroactive carrier matrix by simple drop-

casting method. 

vi) re-inforce the reagent layer with a thin outer film, as to minimize leaching of 

any components. 

vii) Characterize the prepared biosensor with dc voltammetric techniques in 

appropriate buffer electrolyte medium. 

viii) Probe and investigate the electrochemical interactions of the enzyme-based 

biosensor with the selected model substrate.  
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\1.3.1.2  Biosensor platform 2 

 

i) prepare the N-terminally modified human recombinant soluble CYP3A4 

construct, to enable a constant locally available renewable source of biological 

component in a cheap simplified manner. 

ii) do the necessary structural characterization,  of the prepared enzyme. 

iii)  Prepare the pre-formed nafion film, however, the technqiue used here should 

an improvement to method used in platform 1, as to create a more uniform 

film. 

iv) incorporate the electroactive cationic Co(Sep)
3+

 into the nafion film through 

the appropriate electrochemically based method.  

v) characterize the prepared carrier matrix to evaluate and highlight possible 

improvements in the formed film, as compared to the carrier matrix of 

biosensor platform 1. 

vi) create a suitable biocompatible hydrogel that can serve as replacement outer 

layer for nafion and funstion as stable encapsulator for the immobilized 

enzyme. 

vii) Immobilize the prepared enzyme on the electroactive carrier matrix and 

prepare the complete biosensor with hydrogel outer layer. 

viii) do comprehensive voltammetric characterization of the electrochemical 

characteristics of the biosensor     

 

 

1.5 Other novel objectives 

 

It is hoped that the work presented in this dissertation will provide an 

enhanced insight into the specific interactions between the biorecognition element 

and the selected substrates and such, provide an enhanced understanding/insight into 

the catalytic reaction cycle for the major human hepatic CYP3A4 enzyme, when the 

natural electron delivery system has been replaced by an electromotive force. This 
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would be a great milestone for these enzymes, since there application has been 

limited by the obligatory presence of specialozed physiological electron transfer 

donors and other components which have proven to extensively complicate 

reconstitution systems and biosensor platforms for this isoenzyme category.   

 

 

1.6 Layout of thesis 

 

The thesis is devided into the following chapters: 

 

Chapter 1 The chapter generally serves as an introduction with particular 

reference to the aspects that are of relevance to the entire scope of the 

dissertation, entitled “Electrochemical dynamics of cytochrome P450-

3A4 isoenzyme biosensor for protease inhibitor antiretroviral drug”. 

Also discussed in this chapter is the main aims, objectives, as well as 

the layout of the dissertation. 

 

Chapter 2 A comprehensive review of the literature of science of biosensors, with 

particular attendtion given to the aspects of relevance to the 

dissertation is given. In this regard, transducer aspects, molecular 

recognition, principles and classification of the enzyme electrode, solid 

polymer electrolyte, mediated amperometric biosensors, biocompatible 

polymeric hydrogels and biomolecule solid-support tethering are all 

discussed. 

 

Chapter 3A This chapter comprehensively explains important theoretical aspects 

which are of relevance to the scope of the dissertation: The main aim 

here being to provide an enhanced understanding in the school of 

thought during data analysis of obatained results, and therefore 

provides enhanced understanding of the presented results. Discussed 
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here are the thermodynamic and kinetic parameters, performance 

factors, enzyme kinetics and genetic engineering aspects. 

 

Chapter 3B General experimental protocols pertaining to the entire scope of the 

dissertation, tabulated listings of materials and reagents used, general 

preparative protocols of samples and reagents, relavent calculations 

and sample preparation and procedures for selected specialized ex-situ 

analysis.   

 

Chapter 4 Here the results for biosensor platform 1, entitled, “Microsomal 

cytochrome P450-3A4 biosensor for the determination of 2,4-

dichlorophenol  an endocrine disruptor compound” is presented 

and comprehensively” discussed. The nafion-CMECo(Sep)
3+

 carrier 

matrix was also subjected to morphological and structural 

characterization investigations for which the results are exhibited and 

discussed. The electrode assembly of the biosensor, the electrocatalytic 

response to dioxygen and substrate, as well as the biosensor response 

in the presence of selected inhibtor was evaluated with voltammetric 

investigations, for which the results are shown and discussed. In 

addition to this a critical assessment of the observed results are also 

discussed, providing enhanced insight into the observed results, as well 

as additionals observations that was of sugnificance. 

 

Chapter 5A and B The results for the assembly, characterization and catalytic 

response for biosensor platform 2  is presented and discussed. 

 

Chapter 5A The results for the assembly and characterization of composite film 

consisting of nafion and electrochemically deposited cobalt(III) 

sepulchrate [El-Co(Sep)3+] is presented and discussed. 
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Chapter 5B The results for the N-terminally modified genetically engineered 

human recombinant P450-3A4 (nCYP3A4) biosensor for the 

determination of protease inhibitor ARV drug, Indinavir is presented 

and discussed. 

 

Chapter 6 This chapter summarizes all of the major findings as observed from the 

research investigation with respect to the results shown and discussed 

for biosensor platform 1 and biosensor platform 2. Important future 

recommendations are also given. 

 

Chapter 7 References 
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Chapter Prelude 

 

The current chapter provides a comprehensive literature surveyd directory, of the 

relevant aspects and subjects on the area of sensors and biosensors as pertaining to 

the span of this dissertation. From a general perspective, a systematic description of  a 

sensor and/or biosensor should include five features. These are (1) the detected, or 

measured parameter; (2) the working/operating principle of the transducer; (3) the 

physical and chemical/biochemical model (used to evaluate functional properties and 

quality of the sensor); (4) the area of application and (5) the technology and materials 

for sensor fabrication. These issues are discussed in great detail, with the key focus 

centering around approach, design and utility of biosensors from the cytochromes 

P450 viewpoint. Elaborated discussions of selected subject areas highlighted in 

chapter one,  is also featured in this chapter. 
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2.1 Introduction 

 

The human body is equipped with at least five sensors, including the nose, tongue, 

ears, eyes and fingers [1]. Each ‘sensory-body-part’ recognises a specific component, 

for example, the nose reconizes smells; the ear, sounds; the eyes colours and light, 

and the fingers reponds to physical touch – in effect, these recognition events may be 

referred to as a detection event. Concomitantly, the message from the detection event 

gets conveid to the brain, after which the body then, in turn, responds to the stimulus 

in an appropriate manner. In this context, a sensor may be defined as: 

“a device that detects or measures a physical property, and records, indicates or 

otherwise responds to it” [52]. 

Sensors may be devided into three types, which includes physical sensors, chemical 

sensors and biosensors. Since physical sensors are not within the scope of this 

dissertation, they will not be elaborated on. A chemical sensor on the other hand, has 

definate relevance to biosensors and as such may be defined as follows: 

“ A chemical sensor is a device which reponds to a particular analyte in a selective 

way through a chemical reaction and can be used for the qualitative or quantitative 

determination of the analyte” [52]. 

Biosensors, in turn,  may be regarded as a sub-section of chemical sensors, but are 

usually treated as a subject in their own right, and thus may be discussed as a seperate 

topic. 

 

 

2.2 Biosensors 

 

Biosensors have a potentially large market, covering areas of clinical 

diagnostics, therapeutic drug monitoring, process control, food, military and 

environmental monitoring [53-55]. These analytical devices are unique in the sence 

that they may be described as self contained, all parts being packed together within 
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the same unit, the recognition element being in direct spacial contact with the 

transducer component [54, 56-57], and as such, the term ‘biosensor’ implies  

miniaturization and electronics. However, the latter description is not really 

definitive.  

 

 

2.2.1 Biosensor structure and features 

 

Biosensors are small devices which employ biochemical molecular recognition 

properties as basis for selective analysis, by making use of biological molecules as 

recognition element [54, 57-59]. The biological material is either intimately 

connected to, or intigrated within a transducer device which in turn converts the 

biochemical signal into a useful invariably electronic output . A schematic description 

of biosensor in terms of key components and operating principles are shown in  

 

Figure 2.1 Schematic representation of biosensor components and operation 

 

As shown in Figure 2.1, the essential components of a biosensor is, the biological 

component, the analyte matrix, the transducer, the amplification, processing and 

displaying systems [53-55, 59-60]. The biological component selectively recognises 

an analyte or class of analytes of interest (i.e. the physical stimulus), and as such 
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functions as the recognition element. The recognition component itself, may be 

divided into two distinct sub-groups, which is catalytic and non-catalytic. The 

catalytic group includes enzymes, micro-organisms, whole cells and tissues, whereas 

the non-catalytic group may include anitbodies, receptors, nucleic acid, DNA etc 

[54]. In the context of this thesis, enzymes are applied as recognition element. On the 

subject of enzymes, an important fact to add, is that in terms research output and 

commercial application, they have enjoyed the major attendtion due to the fact that 

they are directly linked to the historical concept of the biosensor [17, 55-56], as well 

as their inherent qualities, the most eminent being their catalytic ability and substrate 

selective behaviour. The function of the transducer, on the other hand, is to convert 

the biological recognition event into a useful electrical signal/output [54, 58-59]. The 

convertion process cofers bi-directional signal transfer to and from the biological 

recognition element (non-electrical to electrical and vice versa); also noteworthy is 

the fact that the transducer part of the biosensor is also a detector, or electrode [57]. 

The output from the transducer is amplified, processed and displayed by an output 

system, consisting of an electrical amplifier in conjunction with data acquisition and 

display instrumentation [54, 58-59]. Furthermore, on the subject of transducers, it is 

noteworthy to add that it also plays a pavitol role in enzyme stabilization, which is 

achieved through an interfacial region, consisting of specific carrier matrix materials 

which are normally intimiately associated, or tightly bound to the transducer surface 

and as such, providing the matrix support for enzyme immobilization and electron 

transfer. With regard to the manifold functions of the transducer, it is irrefutable to 

admit that it plays a significant role in (bio)sensor functioning and application and in 

this regard may be discussed in greater detail. 
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2.2.2 The Transducer 

 

An important aspect of biosensors are their classification, which amongst 

others, is highly dependant on the transduction process. In this regard, the specific 

operation principle of the transducer is a key factor, since it tells us how the 

biological recognition process being monitored is converted and transduced to obtain 

a detectable signal. In view of the latter, the transducer makes use of a physical 

change accompanying the recognition reaction, which, depending on the type of 

biosensor, differs accordingly. These may be [59]:  

 The heat output (or absorbed) by the biochemical reaction: calorimetric 

biosensors; 

 changes in the distribution of charges causing the production of a electrical 

potential: potentiometric biosensors; 

 movement of electrons produced in a redox reaction: amperometric 

biosensors; 

  light output during the reaction or a light absorbance difference between the 

reactants and products: optical biosenosrs; or 

 Effects due to the mass of the reactants or products: piezo-electric biosensors.      

A compilation of biosensors classified in tems of their transduction method and 

application, respectively, is shown in Table 2.1. 

 

Table 2.1: Biosensor transduction systems and measurement modes 

Transducer 

Type 

Detection or 

measurement mode 

Transducer 

Type 

Detection or 

measurement mode 

Electrochemical 

Amperometric 

Potentiometric 

conductometric 

 

Optical 

Fluosence 

Luminescence 

Reflection 

Absorption 

Surface plasmon 

Resonance scattering 

    

Thermal Calorimetry Piezoelectric QCM 
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Enzyme thermastor 

(heat of reaction or 

absorption) 

SAW 

SH/APM 

Lamd wave 

 

 

 

Among the list tabulated in Table 2.1, biosensors with electrochemical transduction 

systems have been found to overcome most of the disadvantages wich inhibit the use 

of other types of biosensors, and as such have incurred the most attendtion, and 

appropriately, much research has been dedicated to this type of biosensor 

development. These devices can operate in complex (turbid) media, have comparable 

instrumental sensitivity and are more ammendable to miniaturization. In terms of the 

specific measurement mode, eletrochemical biosensors may be devided into 

conductometric, potentiometric and amperometric types. Amongst these, 

amperometric biosensor configurations are the most common, the main reasons being 

its high sensitivity and wide linear range.  

 

With regard to the practical aspects of investigation purposes, the transducer refers to 

an electrode, which is in intimate contact or integrated with the biological recognition 

component — otherwise known as the working electrode (WE). Research has shown 

that the rate of electron transfer across an electrode-solution interface is directly 

dependent on the physical and chemical properties of the working elecrode material. 

In this regard, the selection of WE is very important. Electrochemistry and electron 

transfer of proteins and/or enzymes has been invetsigated on various types of 

electrodes, including Au, Pt, metal oxide electrodes (such as In2O3), glassy carbon 

electrodes, pyrolytic graphite electrodes, etc. Amongst the latter list, glassy (or 

vitreous) carbon has shown tromendous promise because of its excellent mechanical 

properties, wide potential window, chemical intertness (highly solvent resistent), 

increased reversibility for several redox complexes and reactions involving 

subsequent proton transfer, as well as its relatively reproducible performance. 

Appropriately, glassy carbon electrode (GCE) was used as WE in the research 
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investigation outlined in the current dissertation. In particular, a GCE, deliberately 

modified with appropriate material including permselective membrane, 

electrochemically and/or manually pre-concentrated mediator species and  hybrid 

compsite biocompatible biopolymer hydrogels — in short chemically modified glassy 

carbon working electrode was used. Material types and specific techniques are 

discussed in greater detail in subsequent sections within this chapter and following 

chapters. 

 

Since the biosensor configurations in this thesis is based on amperometric 

measurement, this subject area will be discussed in greater detail, and all relevant 

subsections will be discussed in terms of this specific operating principle. 

 

 

2.2.2.1 Amperometric Biosensors 
 

The origin of the novel field of analytical biotechnology as whole, is 

directly linked to amperometric devices, and as such, this class of biosensors are the 

most prevelant, the most extensively researched — having the widest available 

configurations, while also being the most successfully commercialized devices of 

biomolecular electronics [17, 56]. The poineering work in the history of 

amperometric biosensors was done by Clark and Lyons [55, 61-62], who placed the 

enzyme, glucose oxidase, at the surface of the oxygen “Clark electrode” covered with 

a semi-permeable diallysis membrane, so creating an enzyme-based electrochemical-

amperometric biosensor configuration. In this regard, it can be unequivocally stated 

that they invented the concept of the “enzyme electrode”[17, 56]. Their work was 

further researched and developt by Updake and Hicks [17, 56, 63], and, overall, the 

combined efforts set the stage for the eventual realization of the first successful 

commercial biosensor, the eminent glucose sensor [17] – an indisputably valuable 

asset for sufferers of the chronic condition known as diabetes. Being small, portable 

 

 

 

 



 Chapter 2  Biosensors: A review Of The Relevant Aspects

  

 

39 

 

and with high specificity it enables the patient to do rapid routine blood and/or urine 

glucose level measurements, which in turn allows for manual adjustment of insulin 

dosage, and as such its development has revolutionized the health care and 

pharmaceutical industries. Since then, the scientific arena has witnessed a huge 

prolifiration of amperometric biosensor configurations, in diverse areas of 

application, including drug and metabolite measurement, clinical diagnostics, 

environmental monitoring, chemical measurements in agriculture and food, etc [58].  

 

In a definitive context, the principle of the amperometric technique is based on the 

measurement/monitoring of the current associated with the electrochemical oxidation 

or reduction of an electroactive species involved in the recognition process [55, 57-

58]. The process of amperometry is usually performed by maintaining a constant 

potential at a Pt, Au, or carbon based working electrode or on array of electrodes. The 

fact that a sufficient voltage across the working electrode is essential to allow a 

specific (oxidation/reduction) to take place requires a reference electrode with known, 

fixed and stable electrode potential to be included in the cell design, examples being 

silver-silver chloride- or calomel electrode. With regard to enzyme-based 

amperometric biosensors, the electrochemically reduced or oxidized enzyme 

catalytically converts electrochemically non-active analytes (substrates) into products 

at the working electrode at a specific potential with respect to the particular reference 

electrode. The resulting current is directly correlated to the bulk concentration of the 

analyte or its consumption rate within the area adjacent to the biocatalytic layer or to 

the product, since the product is proportional to the non-electroactive enzyme 

substrate. 

 

Due to the nature of their operational principle, amperometric sensors, including 

biocatalytic amperometric sensors, alter the concentration of the analyte in their 

vicinity; these sensors may reach a steady state but they never reach equilibrium. 

With regard to specific steps involved in the recognition process, multiple steps are 

known to occur during the biocatalytic reaction which includes the following [52]: 
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 The electron transfer reaction, which encompasses the transfer of electrons 

between the electrode surface and molecules in the analyte solution adjacent to 

the electrode surface. This process is heterogeneous. 

 The other process involves the transport of molecules from the bulk solution to 

the electrode surface, which normally involves the movement of material from a 

high-concentration region of the solution to a low concentration region (the 

electrode surface) and may thus also be referred to as diffusion. 

 Chemical reactions coupled to the electron transfer reaction. 

 

The rate of the overall reaction is generally determined by the rate of the slowest step, 

known as the rate limiting step, and as such, the actual response may thus reflect 

mass-transport or kinetic limitations. 

 

Overall, amperometric biosensors can be classified into three generations [52, 58, 64-

65]:  In the earliest or first generation biosensors (FGB), the normal product of the 

molecular recognition reaction diffuses to the transducer and causes electrical 

response (current induction). The original glucose electrode, which relied on 

molecular oxygen as the oxidizing agent belongs to this group of biosensors. The 

decrease in oxygen, or the formation of hydrogen peroxide is measured with a Clark 

oxygen electrode. This generation of biosensors, however, have some inherent 

drawbacks: 

a) The applied potential required is too high, resulting substantial interference 

from other species in complex matrices; 

b) The concentration of the dissolved oxygen is fluctuant, which leads to 

systematic convolution; 

c) The tenuity of the dissolved oxygen extensively decreases electrical currents, 

which in turn influences the detection limit. 

To circumvent the inherited drawbacks of first generation biosensors, the idea of 

electroactive, artificial compounds was proposed, giving rise to second generation 

bioensors (SGB). The operating principle of second generation biosensors involve 

soluble low molecular weight redox compounds, known as mediators, which shuttles 
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electrons between protein (enzyme) and transducer in order to generate an improved 

response. Common mediators are ferrocene complexes, whose structures consist of a 

sandwich of the cation between two cyclopentadienyl (Cp) anions. The result of using 

these articficial electron acceptors, is thar measurements become insensitive to 

oxygen fluctuation and can be performed at lower potentials that do may preclude 

reactions with interfering species. For this biosensor class, the mediator is normally 

contained within the test-solution, adjacent to the biocatalytic layer. Such devices 

have been commercialized, mostly as single-use testing format. The other group, 

third-generation biosensors (TGB), are signified by the progression from the use of 

freely diffusing mediator (O2 or artificial), to a system where the protein (enzyme) 

and mediator are co-immobilized at an electrode surface, making the biorecognition 

component an integral part of the electrode tranducer. Co-immobilization of the 

protein (enzyme) can be accomplished by different methods, such as redox mediator 

labeling of the enzyme followed by enzyme immobilization, enzyme immobilization 

in a redox active polymer, or enzyme and mediator immobilization in a conducting 

polymer. Overall, third-generation biosensors offer all the benefits of second-

generation sensors, with the inclusion of some modifications and new additions. 

These biosensors are self-contained in the sense that there is no need for adding 

additional mediators or enzyme. Therefore, this design ficilitates repeated 

measurements. Also noteworthy, in the context of third-generation biosensors, is that 

due to enzymes’ renowned  superior selectivity and high affinity toward substrates, 

direct electrical contact of enzyme to electrode has also been attempted and reported. 

This would obviously be the superior choice, since it would enable a lower operating 

potential and thus less susceptability to interfering reactions, however due to their 

physiological make-up (which will be discussed later, specifically in terms of 

microsomal CYP450 enzyme), most enzymes cannot exhibit direct electron transfer 

(DET) at normal electrode surfaces. Hence, achieving DET within the development 

of TGB has been a “bottleneck’, with success only achieved with a select few 

proteins (enzymes). One such protein, is cytochrome c.   
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The concept and principles of mediators and mediated-biosensors will be more 

comprehensively discussed within the context of amperometric configurations for 

microsomal P450 enzymes in subsequent sections. 

 

 

2.2.3 Molecular Recognition 

 

As highlighted in previous sections, an important aspect/feature of 

amperometric biosensors, is the molecular recognition event, which depending on the 

nature of the specific biological element (i.e. catalytic or non-catalytic), in turn 

determines the type of analyte or substrate to be measured/detected. In the case of the 

current dissertation, the recognition element is enzyme based, and as such catalytic 

in nature. In particular, the enzyme used is cytochrome P450 isozyme, CYP3A4. As 

discussed in Chapter 1, it is the major human hepatic cytochrome P450 isozyme, and 

as such, is the most important enzyme in the metabolism and detoxification of 

xenobiotics within the human body. A schematic representation of the contributions 

of CYP450 isozymes and non-CYP450 enzymes is illustrated in Figure 2.2.  

 

 

 

 

 

 

 

 

 

Figure 2.2 Contribution of major human hepatic cytochromes P450 isozymes ad 

non-P450 enzymes to phase I metabolism of all xenobiotics  
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As shown in the above figure, the major contribution to phase I metabolism is 

assigned to CYP3A4. The structure of CYP3A4 has already been comprehesively 

discussed in Chapter 1, and as such will not be elaborated on at this stage, but in 

short: CYP3A4 is a class II, microsomal heme thiolate enzyme, whose main function 

is the monooxygenative metabolism of lipophilic xenobiotics. A schematic 

representation, showing a comprehensive overview of the stepwise catalytic reaction 

cycle, of the monooxygenation process is illustrated in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Physiological catalytic reaction cycle of CYP3A4, showing enzyme-

substrate interaction and natural electron transfer (ET) donor source, with general 

equation shown. Also shown, is the alternative sources of ET for CYP3A4 substrate 

catalytic function 
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As observed from Figure 2.3: In the absence of a substrate, at the beginning of the 

cycle, CYP3A4 heme iron is in the hexacoordinated low spin Ferric (Fe
3+

) state with 

water being the sixth ligand. Substrate binding to the hexa-coordinated low-spin 

ferric enzyme displaces water ligand from the active site, resulting in a change to the 

5-coordinate high-spin state, which is accompanied by a marked positive shift in 

redox potential (± 130mV) [66], signifying the thermodynamic favourability of the 

first electron transfer step. It is noteworthy to add though, that in some instances, 

substrates may induce only partial spin shift thus resulting in a much smaller or even 

no redox potential shift.  The transfer of the first electron from native electron transfer 

donor, NADPH-P450 reductase (via FMN and FAD) follows, thus reducing the ferric 

iron to ferrous (Fe
III

 + e
-
 → Fe

II
) state of heme. This can now bind molecular oxygen, 

forming a ferrous-dioxygen (-Fe
II
-O2) complex (also known as the oxy-ferrous 

complex). On this subject, it is important to add that the oxy-ferrous intermediate 

represents the first branching point between substrate turnover and the abortive decay 

with the formation of harmful radicals [67].  

 

After the formation of the oxy-ferrous intermediate, the second electron is transferred 

to produce a ferric peroxy anion, which is concurrently followed by protonation of 

the ferric peroxy anion, yielding an iron-hydroperoxo(Fe
III

-OOH) (intermediate) 

complex, which undergoes subsequent heterolytic (O—O) cleavage, to release a 

water molecule and a highly active iron-oxo ferryl species, formally equivalent to a 

Fe(V)═O species named, Compound I [23]. This compound (or a similar reactive, 

electrophilic iron-oxo intermediate) then ‘attacks’ the substrate, so placing one 

molcule of molecular oxygen into the substrate and as such yielding the hydroxylated 

product which dissociates to let the cycle start again. An important factor to bare in 

mind, during the second electron transfer step, is that, in addition to NADPH-

reductase, depending on the substrate, additional redox pathways involving 

cytochrome b5 may also be necessary. These can occur through the following 

scheme:  
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Although CYP450 enzymes’ catalytic cycle is always described in terms of subject 

binding being the intial step, electron transfer may of course also proceed without the 

presence of substrate, but the likelihood of reactive oxygen species, is more probable 

in such case.  

 

 

With regard to the overall catalytic reaction cycle for CYP3A4 and all microsomal 

CYP450 enzymes in general,  there are two possible major abortive reactions (shown 

in red and grey, respectively in Figure 2.3): (i) autooxidation of the oxy-ferrous 

enzyme intermediate with concomitant production of harmful radicals (a self 

inactivation process) and (ii) oxidase uncoupling with oxidation of the ferryl-oxo 

intermediate. Both of these reactions, known as uncoupling/decoupling reactions, 

produce highly active oxygen species (ROS) by autooxidation in vitro and in vivo, 

particularly without the presence of substrate and as such, extensively complicates the 

reaction cycle of this enzyme. With the regard to these uncoupling reactions, the first 

one has been documented as the most significant, because it was shown to be the first 

branching point in the catalytic cycle of microsomal cytochromes P450 enzymes, in 

which the efficiency of the substrate metabolism may be curtailed by the side reaction 

of autooxidation. In a definitive context, this particular uncoupling reaction is 

characterized by the release of superoxide within the enzyme, followed by its 

disproportionation and generation of hydrogen peroxide, a source of harmful 

hydroxyl radicals. In humans, such obortive decay reactions can induce apoptosis, a 

process which  may result in cell death and cancerous growths. In this regard,  this 

oxyferryl intermediated has been documented as being the most important natural 

determinant of CYP3A4 activity and/or human xenobiotic metabolism.  
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2.2.3.2 The enzyme electrode: Principles and classification from the 

microsomal cytochrome P450 viewpoint 
 

In light of preceding literature reviewed sections on the structure and 

function of CYP3A4, both in the current and previous chapter, one point is infallibly 

clear: Electron transfer (ET) is the key juncture to generating the necessary 

catalytically active species within the enzyme heme pocket for successful function 

and/or substrate metabolism — an aspect that pertains to all P450s, whether 

microsomal, mitocondrial, or bacterial.  As shown, in vivo, these pivotal ET steps are 

achieved through structured schemes with native freely dissociated NAD(P)H ET 

donors. However, the whole process is complicated and compromised by the 

possibility of uncoupling reactions, which may abort substrate monooxygenation. In 

this regard, being such a versatile and pivotal mammalian enzyme, with multipurpose 

in vitro studies being highly opportune, these complications needs to be taken into 

account and innovative techniques would have to be applied to prevent such 

occurances, since such studies is normally done with the obligatory presence of the 

ET donors, either in the form of fusion protein constructs (containing heme domain of 

P450 enzyme linked to flavoproetin domain of NADPH-P450), or seperately added 

within the enzyme reconstitution sample. Moreover, mammalian microsomal 

CYP450 enzymes are known to be labile, especially in reconstitution solutions, 

requiering several reagents, such as glycerol, dithiothreitol, phospholipids and 

protease inhibitors for some degree of stabilization, which means that such 

aforementioned complications would compromise the function of an already unstable 

enzyme. Furthermore, NAD(P)H is expensive, decomposis over time, gets exhausted 

after the first electron donation step and needs to be regenerated, but is difficult to 

recover once oxidized. 

 

One the other hand, the heme iron, may be regarded as a sink for receiving electrons, 

and in this regard, alternative sources of ET to the enzyme may be an option. 
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Interestingly, the so-called “shunt” reaction, which involves the application of 

peroxides, such as hydrogen peroxide, cumene hydroperoxide or tert-butyl 

hydroperoxide as alternative electron source has been documented [23, 68]. The 

reaction works on the principle of cytochrome P450-dependent catalytic substrate 

metabolism without the necessity of stepwise activation of molecular oxygen or 

interaction with native electron donating systems. Indeed, success in substrate 

turnover has been attained, however, this is at the expense of shortened enzyme 

activity [68-69], with enzyme denaturation observed within as short as one hour. 

Needless to say, for modern day requirements in healthcare, pharmaceutical, 

industrial and even (bio)catalytic chemistry-related research activities, this would be 

impracticle, and as such, alternative methods of electron sources has become a highly 

envisaged quest. One of the alternative methods of P450s reduction is 

electrochemical methods with an electrode as electron source. Enzyme electrodes 

based on P450s are promising for the application of biosensors and bioreactors. 

Moreover, enzyme-based biosensors function on the premise of an immobilized 

enzyme, an aspect in itself that, if done judiciously with carefully orchistrated 

interfactial enhancer marix material, would significantly stabilize the biological 

molecule, since the latter are generally known to have very short lifetime in solution. 

As earlier stated, electrochemical biosensors with amperometric transduction is the 

most preferred biosensor configuration. 

 

The design path and development of such an enzyme-based biosensor platform is not 

just a frivolous, extemporized putting together of components, but requires an 

absolute meticulous approach, particularly since the aim is the fabrication of a 

reagentless configuration in which the enzyme is integrated within the (electrode) 

transducer. In this regard, there are fundamental aspects that needs to be taken into 

consideration, as well as specific criteria that needs to be satisfied for the biosensor to 

be of practical use. These include the following: 

 The iron(III) protopohyrin-IX prosthetic group of the enzyme is deeply buried 

within the active site and surrounded by a thick protein shell. This is a natural 
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phenomenon, particularly in P450 enzymes, designed by nature to protect the 

redox state of the integrated cofactor, thus avoiding any unwanted processes 

with free-diffusing redox species. However, the thick protein shell introduces 

a kinetic barrier to electron transfer. The significance of this intrinsic property, 

is that direct transfer, involving a simplistic electron tunneling mechanism 

between the electrode and enzyme active site is not really feasible and as 

such, specialized ET mechanisms need to be used. 

 Proteins and enzymes tend to undergo rapid, non-specific and irreversible 

adsorption onto (metal) electrodes, coupled with conformational changes and 

the consequent loss of actvity (denaturation), the result of which is the 

formation of an insulating protein layer which hinders/prevents electron 

exchange with electrodes. Thus, appropriately, preventative measures needs to 

be inplace, to avoid such unwanted interactions. Such methods will be 

discussed in greater detail in subsequent sections. 

 During the course of the reactions sequence in amperometric biosensor 

operation, the redox state of the enzyme is altered and as such, has to be re-

generated at the electrode surface which is poised at a suitable potential. This 

can only occur if the enzyme is immobilized in a favourable, “productive” 

(anisotropic) orientation that will enable effective electron transfer to and 

from the enzyme’s prosthetic group. 

 According to the Marcus theory for biological electron transfer [ ], one of the 

major factors affecting electron transfer, is the distance between  the redox 

species, which in enzyme-based biosensors, is highly dependent on the 

accessibility of the enzyme’s redox site, as well as the specific orientation of 

the immobilized enzyme. In this regard, the deeply buried-electrically 

insulating nature of CYP3A4 prosthetic group  in itself lengthens the electron 

transfer distance between the enzyme and electrode. Moreover, the added 

effect of possible unfavourable enzyme orientation will further  drastically 

impede ET. This essentially means that innovative techniques is required to 

enable electrochemical communication between the enzyme prosthetic group, 
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while also allowing anisotropic orientation of the integrated enzyme atop the 

electrode surface. This can only be achieved through the inclusion of suitable 

electrode modifiers and ET enhancers, collectively known as interfacial 

enhancing material. 

 The other major factors which, according to Marcus’ theory directly affects 

the kinetics of electron transfer between two redox spcies, is the driving force 

(i.e. the potential difference) and the reorganizational energy. Of the 

aforementioned factors, the reoganizational energy qualitatively reflects the 

structural rigidity of the redox species and in terms of an immobilized 

enzyme, is decidedly determined by the immobilization method. Enzyme 

immobilization needs to be flexible enough to retain the structural and 

catalytic integrity of the enzyme, while also facilitating electron transfer to 

and from the electrode surface and allowing access to the active site for the 

specific substrate without requiring large reorganizational energy during 

electron transfer and/or electrocatalytic functioning. 

 Proteins and enzymes and most other biomolecules is vulnerable to extreme 

conditions such as temperature, pH and ionic strength and in this regard, the 

enzyme film needs to provide the necessary protective environment to 

maintain intrinsic properties of the immobilized biomolecule. 

 The immobilised biological film needs to have long term stability and 

duribility. 

 Reagentless biosensor configurations require tight fixation of all sensor 

components on the electrode surface, coupled with an ET pathway either by 

direct electron tunneling, or securely immobilised redox relays. Appropriately, 

sensor architecture have to be designed with this purpose in mind.    

   

In consideration of the preceding factors and to fulfill the criteria of designing an 

optimised enzyme(CYP3A4)- based amperometric biosensor, it is apparent that the 

main aim should be to increase the electronic coupling by using electrode 

architechtures with predefined ET pathways interconnecting the redox site within the 
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enzyme and the electrode surface and facilitating communication between the latter 

two species, while making the ET distance as short as possible. This is in turn 

critically dependent on the immobilization method and as such needs to be discussed 

in greater detail. 

 

 

2.2.3.1.2 Biomolecule solid-support tethering: Immobilization methods, 

biorecognition component coupling techniques, and other relevant 

aspects  

 

As discussed in the forgoing sections, an essential step in biosensor 

develpment is binding of the biological component to the transducer element. This 

immobilization feature will dictate the ultimate reliability and performance of the 

biosensor. Several methods can be used to tether biological molecules to solid 

electrode support, of which the main methods include adsorption, crosslinking, 

entrapment and covalent binding.  A schematic representation of these methods are 

shown in Figure 2.4. These methods may be used in combination with each other or 

in conjunction with other techniques – a thorough discussion of the various 

techniques follows subsequently. In this regard, subsequent discussion is based on a 

combination of documented literature [17, 53-54, 58, 64-65, 70] 
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Figure 2.4: Major immobilization methods for proteins, enzymes and other 

biological molecules onto solid (electrode) supports 

 

Amongst the above methods, the most simplistic and oldest involves adsorption. 

Adsorption of biomolecules from solution onto solid surfaces can proceed by means 

of either physical or chemical interactions. Physical adsorption involves van der 

Waals forces, ionic binding or hydrophobic forces, whereas in chemisorption on the 

other hand, there is a sharing or transfer of electrons to form a chemical bond. 

Adsorption has been successfully applied to couple proteins and/or enzymes to 

various solid supports, including derivatized glass, plastics, silicone rubber and most 

recently, conductive electrodes for biosensor application. The binding of such 

biological components through physical adsorption can be directly measured via a 

piezoelectric qaurtz crystal microbalance (QCM) or surface acoustic wave device 

which functions by detecting frequency changes, which are related to the amount of 

protein/enzyme bound onto the solid surface. In addition to the aforementioned 

methods, optical techniques of surface plasmon resonance (SPR) and ellipsometry 
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have also been employed to detect refractive index changes at the surface of a thin 

metal film as a result of biomolecule adsorption. Overall, the main advantage 

associated with adsorption, is that it is a simple method which can be performed 

under mild conditions. However, on the other hand, biomolecules tethered through 

adsorption were found to exhibit a certain degree of reversibility and furthermore, the 

forces involved in the binding are not very strong. In this regard, with respect to long 

term stability, duribility and tight association of the enzyme film, on its own, this 

particular method is not intirely conducive.  

 

One alternative approach to attachment of biomolecules to electrode surfaces is 

through covalent binding, which involves attachment onto the solid surface through 

the formation of defined linkages. This technique has been documented to result in 

minimal loss of biomolecule activity, and in addition, have been shown to overcome 

problems associated with instability, diffusion and aggregation, or inactivation of 

proteins commonly experienced when biomolecules are trapped on sensor surfaces by 

other methods. Bifunctional reagents and spacer molecules, such as gluteraldehyde, 

carbodiimide, succinimide esters, maleinimides and periodate are commonly used for 

this method. The principle of covalent binding is based on the premise that 

biomolecules such as proteins and enzymes have many functional groups present for 

covalent linkage onto surfaces; these include amino-acid side chains (e.g. lysine 

amino acid groups), carboxyl groups (e.g. aspartate and glutamate), sulfhydryl groups 

(e.g. cystein), phenolic, thiol and imidazole groups. The actual coupling procedure 

between the enzyme or the protein and the solid support is best achieved through 

functional groups on the biomolecule which are not required for its biological 

activity. On the other hand, the solid support is usually chemically modified, with 

specific reagents in order to introduce a functionality (also known as surface 

activation) which may then be coupled with the protein/enzyme. Covalent binding 

generally have the advantage that the biomolecule is usually strongly immobilized on 

the surface and therefore unlikely to detach from the surface during use. However, 

absolute care has to be taken that the reagents used in achieving immobilization of the 
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biomolecules on the surfaces do not result in a loss of activity due to reactions 

involving the functional groups. Moreover, although covalent coupling procedures 

have yielded a substantial degree of success for a number of biosensor systems, the 

drawbacks of this method and associated techniques have been documented as the 

production of randomly oriented, non-uniform structures of inactivated enzymes or 

protein molecules on the electrode (solid support or sensor) surface. This in turn 

highlights the need for immobilization methods which are capable of producing 

uniform, active layers of immobilized protein/enzyme.  

 

The next method which proved to compensate for short-comings observed in the 

aforementioned methods, envolves a procedure based on entrapment of the 

biomolecule. In this regard entrapment matrices include (semi)permeable membranes, 

polymers (including non conductive-, conductive and redox polymers), surfactants, 

sol-gels, biopolymer hydrogels and/or redox hydrogels  with redox centres such as 

[Os(bpy)2Cl]
+/2+

. In a definitive context, entrapment simply involves the confinement 

of the specific biological  molecule (e.g. a solution of enzyme, a suspension of cells, 

or a slice of tissue) as a thin film covering/integrated onto the transducer (electrode). 

With regard to membrane and/or non conductive-based polymer confinement, the 

negatively charged perfluorinated sulphonate polymer, Nafion™, has proven to be 

quite popular, particularly, due to its inherent property of reducing interference 

reactions through charge repulsion and as such, enabling it to also be utilized as 

semipermeable membrane. Overall, Nafion™ has been utilized in numerous 

biosensor configurations for enzyme/protein integration onto electrode surfaces. Since 

the specific protocols applied in this dissertation includes Nafion membrane 

confinement, the specific structure and function of Nafion is discussed in subsequent 

sections. A number of other polymers have been used for inclusion of proteins, 

enzymes, cells and organells. These include poly(vinyl-alcohol), polyvinyl chloride, 

cellulose acetate, polycarbonate and polyacrylamide. With regard to conductive 

polymer confinement on the other hand, the method of electropolymerization has 

widely been used to immobilize proteins in electrochemically formed polymer films 
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at electrode surfaces. This allows for electron transfer through molecular wiring of 

the protein/enzyme to the electrode and as such, has been of immense interest in 

electrochmemical biosensors. Various polymer films, have been created on electrodes 

using this approach, the most eminent being polypyrrole and polyaniline-based. 

Immobilization of the protein/enzyme in a polymer film at an electrode by 

polymerization can be performed in two ways: (i) electropolymerization from a 

solution containing protein or enzyme, mediator and monomer (one-step method); or 

electropolymerization from the monomer- (and mediator) containing solution, 

followed by drop-coating or electrochemical adsorption of the protein or enzyme 

(two-step method).  Entrapment of protein (enzymes) in thin bilayer lipid membrane 

films has become populer, since it is thought to provide a biomembrane-like 

environment, characterised by a liquid-crystal milieu. Such membranes can be 

fabricated by drop-coating or langmuir blodget (LB) deposition. Entrapment within 

self assembled monolayer films are also common. Overall, entrapment-based method 

do, however, suffer from the weakness of  leakage of biological species during use, 

resulting in some loss of activity. In this regard, additional re-inforcement through 

cross-linking usually alleviates the problem of biomolecule leakage.  

Cross-linking of biological molecules by means of multifactoriar reagents affords 

improved stability  of biological molecules, confined both as adsorbed, entrapped or 

covalently bound species. Gluteraldehyde, which couples with lysine amino groups of 

proteins (enzymes), is undoubtedly the most common cross-linking agent in 

biosensor applications. In addition to gluteraldehyde, other examples of cross-linking 

agents include hexamethylene di-isocyanate, 1,5-difluoro 2,4-dinitrobenzene and 

diazobenzidine-2,2’-disulphonic acid, etc. Indeed, as with any technique, there are of 

course a number of disadvantages associated with this method: (i) complete control of 

the reaction is difficult and tricky; (ii) the protein/enzyme layer formed is frequently 

gelatinous and not rigid; most often, large amounts of biological material are 

required; (iv) cross-linking can result in the formation of multilayers of 

protein/enzyme, which may result in low activity of the immobilized layers; (v) large 
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diffusional barriers to the transport of species may result, leading to retarded 

interactions. 

 

 

The other alternative method for the immobilization of biological molecules is 

encapsulation, which can be done in ceramics, glasses and other inorganic materials 

using sol-gel encapsulation technique. With respect to the sol-gel procedure, 

biological molecules are entrapped in an aqueous microenvironment in a porous 

matrix, an example being the polymeric oxo-bridged SiO2 network. In this regard, the 

matrices are porous wet gels formed by the hydrolysis and condensation-

polymerization of metal and semi-metal alkoxides, mostly SiO2 materials. Such 

matrices are optically transparent, so enabling the chemical interactions of the 

entrapped biological molecules to be optically monitored. The advantages of this 

particular technique is that it can be carried out at ambient temperature and that the 

conditions of the sol-gel process are reletively mild and thus do not normally 

denature the immobilized biomolecules. The drawbacks on the other hand are as 

follows: Although biomolecules immobilized with this procedure retain their activity 

to a large extend and are chemically, thermally and structurally stable, sol-gels with 

reproducible pore sizes are required, and problems due to diffusional limitations 

inside the porous network, brittleness of the glassy matrix, reproducibility and 

variations in the preparation procedures confer some degree of limitation and as such 

must be taken into cinsideration.  

 

Finally, other immobilization may also be achieved through bulk modification of 

entire electrode material, e.g. enzyme modified carbon paste or graphite epoxy resin. 

 

It is noteworthy to add, that in most aforementioned methods: (i) The biological 

material may also be immobilized together with carrier proteins, such as bovine 

serum albumin, which also functions to minimise non-specific binding of the 

biomolecule. (ii) A low molecular weight, redox inactive compound, known as a 
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promoter, which may or may not be further activated and/or modified, is in many 

cases initially adsorbed onto the solid surface, followed by enzyme linkage.   

 

Also worth mentioning, is that besides the reacting layer or membrane, many 

biosensors, especially those designed for biological or clinical applications, 

incorporate one or several inner and outer layers. Such membranes serves specific 

important functions [57]: 

 Protective barrier. The outer membrane prevents large molecules, such as 

proteins of the biological samples from interfering with the reaction layer. It 

also reduces leakage of the reacting layer components into the sample 

solution. Moreover, a properly selected membrane exhibits permselective 

properties which may be additionally beneficial to the biosensor function. It 

may decrease the influence of possible interfering species detected by the 

transducer. 

 Diffusional outer barrier for the substrate. As most enzymes follow some 

form of Michaelis-Menten kinetics, enzyme reaction rates are largely non-

linear with concentration. Nevertheless, linear dynamic ranges may be large if 

sensor response is controlled by the substrate diffusion through the 

membrane, rather than by enzyme kinetics. This control is achieved by 

placing a thin outer membrane over highly active layer. The thinner, the 

membrane, the shorter is the biosensor response time. 

 

Another intereseting aspect to add, still on the subject of biomolecule-electrode 

coupling, is, that in some cases the structure of carrier matrix materials have been 

further manipulated, usually done by a reduction in particle size and/or the inclusion 

of selected (conductive) nanoparticles within the matrix in order to try and improve 

biocatalytic efficiency of the immobilized biomolecule. The premise here is that in 

the case of surface attachment, smaller particles can provide a larger available surface 

area for attachment of proteins or enzymes, while providing enhanced conductivity, 

for example, in the case of gold nanoparticles. 
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A final noteworthy factor to add at this stage, with the emphasis on reiteration of the 

absolute need for maintaining the catalytic activity of the immobilized biomolecule, 

is that, bioelectrocatalytic and/or biosensor coupling efficiency assesment 

investigations may be complimented with in-situ and/or ex-situ spectroscopic studies, 

in order to provide a more in-depth examination of the integrity of the protein/enzyme 

conformational state and substrate binding ability. This is an especially pivotal aspect 

in the case of cytochromes P450 in particular, who have to maintain their active 

conformational state, guaranteed by the presence of a specific thiolate bond between 

the heme iron and the highly conserved cystein residue (see Figure 1.2(b))  [71-72]. 

In this regard, such an active state can be spectroscopically interrogated and identified 

as a reduced carbon monoxide complex with an absorbance maxima at 450 nm [24, 

71-72]. Weakening, or distortion of the heme-thiolate bond usually gives rise to the 

formation of an inactive species called P420 that is characterized by an absorbance 

maxima at 420 nm of its reduced CO complex (Fe
II
-CO), rather than the expected 

signature P450. In this context, such assesment studies, is a preferred accompaniment 

to electrochemical investigations, in order to distinguish the electrochemical 

behaviours of the active form from that of the inactive one when developing devices 

based on cytochromes P450. In terms of electrochemical studies in particular, on the 

other hand, CO Fe
III

/Fe
II
 complex formation is usually portrayed by cyclic 

voltammetric peak potential shift and current signal changes, based on the premise 

that CO is known to rapidly bind as a six ligand to the reduced heme iron [73]. 

However in the presence  of artificial mediating electron shuttlers, the 

exhibition/portrayal of CO-Fe
II
 complex formation is complicated by the fact that 

electron transfer occurs via the mediator to the enzyme prosthetic group. In this 

regard and to further elucidate enzyme catalytic activity, additional electrocataltyic 

studies with native model substrates, specifically known to be metabolized by a 

particular isoenzyme, accompanied by metabolite analysis and/or with inclusion of 

added electrochemical techniques, such as chronoamperometry and/or rotading disk 

electrochemistry can also be done. The aforemenioned electrochemical methods is 

known to provide essential information regarding the number of electrons utilized 
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during the required oxygen reduction, a prerequisite for successful substrate 

metabolism, and as such, also enables the investgator to conclusively identify any 

uncoupling reactions. Specific complimentary spectroscopic methods to investigate 

CO-binding in particular, include UV-spectrophotomeric studies, UV-Vis 

spectroscopic studies or cyclic voltabsorptometry (CVS) techniques. More on the 

subject of CO-binding, as well as complimentary spectroscopic and electrochemical 

methods, with emphasis on definitive aspects and method of operation is discussed in 

more detail in Chapter 3A and B. 

 

 

In the quest to perfect the art of biomolecule tethering to electrodes in 

biosensor configurations, numerous peer-reviewed reports with various methods of 

biomolecule linkage, based on latter and aforementioned techniques either 

individually or in combination protocols, has been published, some of which have 

been summarized in the discussion below:  

 

In a study conducted by Iwhuoa et al.., an amperometric biosensor with genetically 

engineered cytochrome P450cam as recognition component for the detection of 

camphor, adamantanone and fenchone, was constructed by entrapping the enzyme in 

the presence of BSA within vesicle dispersions of water-insoluble surfactant, 

didodecyldimethylammonium bromide (DDAB) on a glassy carbon electrode surface. 

The immobilization was reinforced by gluteraldehyde cross-linking, while cobalt (III) 

sepulchrate was used as diffusional electron transfer mediator for electrocatalytic 

experiments with substrate interactions [74]. In a different study, biosensor 

configurations were constructed with heme-proteins including myoglobin (Mb), 

hemoglobin (Hg) and horseradish peroxidase (HRP). In this regard, biomolecule 

immobilization was achieved by entrapment within N,N-dimethylformamide-agarose 

hydrogel composite, on an edge-plane pyrolytic graphite (EPG) electrode. The 

entrapped proteins portrayed direct and reversible electron transfer, corresponding to 

Fe
III

 + ℮−  Fe
II
 [48]. In yet another study, a reagentless, mediated biosensor was 
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prepared with HRP as recogntion component for the detection of hydrogen peroxide. 

The biosensor was constructed by galvanostatically electrodepositing polypyrrole in 

the presence of HRP on the surface of a carbon composite electrode which was 

derivatized with a ferrcenecarboxylic acid/sol-gel composite prior to the 

polymer/enzyme deposition [75]. The enzyme-based biosensor had good stability 

showing reversible electrochemistry and a formal potential of 275 mV. Other studies 

involving cytochrome P450 in particular, which includes bacterial, microsomal and 

mitochondrial, various methods, by different researchers were used. In this regard a 

comprehensive summary is given below: 

 

 In a study, conducted  by Paternolli et al. [76], three genetically engineered 

cytochrome P450 isoforms, CYP450-2B4, P450SCC (CYP11A1) and 

P4501A2,  prepared as fusion enzyme construct (glutathione S-transferase-

fused), N-terminally modified construct and low purity grade full-length 

isozyme construct, respectively, was used for biosensor construction. Two 

methods were evaluated for immobilization of the biological recognition 

elements, which included the langmuir blodged technique and entrapment 

within a biocompatible agarose hydrogel matrix. The enzyme-based biosensor 

configurations were then tested with regard to electrocatalytic response to 

respective substrates,  of which the findings showed that both methods proved 

to be successful. Hhowever, in terms of robustness, agarose hydrogel proved 

superior, and in this regard even portrayed effective for stabilization of low 

purity enzyme constructs, a task which is normally problematic due to 

hindrance of  ET by molecular impurities within such prepared enzymes. 

 In four different studies conducted by Shumyantseva et al. [77-80], different 

cytochrome P450 isoforms, were used as recognition elements for construction 

of various enzyme-based amperometric configurations: In the first study, 

semisynthetic flavocytochromes RfP450-1A2, RfP450-2B4 and RfP450-11A1, 

each consisting of the  microsomally-purified holoenzyme and a riboflavin (a 

synthetic flavin molecule containing FMN and FAD), conjugated to each other 
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by covalent binding, was immobilized onto screen printed rhodium-graphite 

electrodes (SPRGE) through gluteraldehyde cross-linking within vesicular 

dispersions of phospholipid surfactant films. Immobilization was done in the 

presence of   BSA carrier protein molecules, while the riboflavin molecules, 

functioned as electron transfer mediator during electrochemical investigations, 

and as such, served as electron-tunneling relay between the enzyme prosthetic 

group and the electrode. In the other study, purified CYP11A1 holoenzyme was 

immobilized onto a SPRGE either through glutaraldehyde cross-linking on a 

diloroylphosphatidylcholine (DLPC) derivatized electrode in the presence of 

BSA, or through agarose-hydrogel entrapment with concurrent vesicular DLPC 

dispersion. In both of the latter methods, the enzyme was tethered to the 

electrode together with the electrochical mediator, which in both cases was 

riboflavin. The third study involved microsomally purified CYP2B4, which was 

immobilized in a colloidal montmontrollite clay film in the presence of 

nonionic detergent, Tween80, which functioned to monomerise the 

hydrophobic enzyme for better immobilization and catalytic reactivity. The aim 

here was to produce an amperometric enzyme-based configuration for the 

detection and metabolic profiling of selected phenobarbital drugs. The drugs 

tested included aminopyrine and benzphetamine, and concomitant metabolite 

analysis corroborated electrochemical results.  In the forth investigation on the 

other hand, purified CYP2B4, CYP1A2 and CYP51b1 was immobilized on  

screen printed graphite electrodes through entrapment within a nano-structured 

liquid crystal film consisting of DDAB surfactant stabilized colloidal gold 

nanoparticle vesicular milileu. Substrates studied during electrocatalytic studies 

in this investigation include benphetamine and lanosterol.  

 In a study conducted by a different group [81], with regard to CYP3A4 in 

particular, genetically engineered, N-terminally modified CYP3A4 isoenzyme 

construct, either as fusion enzyme or heme domain only, was used for 

preparation of modified enzyme-based electrodes. The fusion constructs 

consisted of two parts, which were fused at genetic level during the engineering 
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process, and they include the heme domain of CYP3A4 isoenzyme and the 

soluble NADPH-dependent oxidoreductase domain from bacterial enzymes. 

Two methods were evaluated for enzyme linkage to the electrode, the first of 

which, involved electrostatic adsorption onto a PDDA polyelectrolyte-modified 

glassy carbon electrode. The other method was based on covalent coupling 

through reagents including 3-(Maleimido)propionic acid and N-

hydroxysuccinimide ester onto a cysteamine-modified gold electrode. Midpoint 

potentials (Em) obtained with regard to the Fe
III

/Fe
II
 redox transitions for the 

CYP3A4-modified electrodes determined by cyclic voltammetry, were -297 

and -357 mV vs Ag/AgCl on the GC and Au electrodes, respectively.  Em for 

the fusion construct on the other hand, were determined as  -345 and -341 mV 

on GC and Au electrodes, respectively. Electrocatalytic investigations for 

determining catalytic activity of the immobilized enzymes was investigated 

with native CYP3A4 substrate, the macrolide antibiotic, erythromycin. These 

results showed that both the immobilized heme domain and fusion enzyme 

were catalytically active, and as such, both yielding metabolism products, with 

higher coupling efficiency observed for the fusion enzyme-modified electrode 

configurations. 

 In a few other studies, the focus has been on the bacterial cytochrome P450, 

P450BM3 (CYP102A1) [71-73, 82], which in many aspects, resembles 

membrane-bound mammalian P450s [ ] and as such could be used as model 

recognition component for bioelectrochemical studies in various biosensor 

configurations. Various methods, by different research groups have been used 

to tether the enzyme to electrode surfaces for electrochemical studies: In one 

study, both the complete wild type holoenzyme, as well as the heme domain 

was each immobilized on edge-plain pyrolytic graphite (EPG) electrodes by 

entrapment within DDAB vesicle dispersions. Fe
III
Fe

II
 redox transitions 

could be observed of which the Em for the heme domain was determined as -

500 mV (vs Ag/AgCl). Electrocatalytic studies in the presence of atmospheric 

oxygen showed markedly increased reduction currents. In a different study, 
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conducted by Udit et.al, the integrity and bonding properties of the immobilized 

P450BM3 heme was studied in more detail within DDAB liquid crystal films, 

with the aid of in situ spectrophotometric and FTIR spectroscopic 

measurements. The results showed that the a combination of a hydrophobic 

effect and enhanced H-bonding stabilizes the ferrous (Fe
II
) state of heme and 

cumulatively increases the redox potential, while also favoring a P420-state of 

heme. Furthermore, cyclic voltammograms did not show any significant 

increase in heme redox potential in the presence of CO. Overall, the findings in 

the latter study were that, on the one hand, the significant stabilization of the 

ferrous state coupled with a heme-carbonyl interaction produces a system where 

the added benefits of heme-π-back-bonding to CO are  greatly diminished, 

while on the other hand, the P420-like state of heme reduces overall success in 

achieving substrate turnover. Their conclusions were that similar perturbations 

of the heme environment within such surfactant films may be particularly 

exhibited by mammalian cytochrome P450s. In another study, also conducted 

by Udit et al.., the heme domain of wild-type cytochrome P450 BM3 was 

immobilized within a carrier matrix consisting of a liquid crystal-

polyelectrolyte film, which is a combination of surfactant vesicle dispersions, 

DDAB and anionic polyelectrolyte, polystyrenesulphonate (PSS). The 

surfactant-polyanion film, DDAPSS, proved to be a stable environment for the 

immobilized enzyme and Em for Fe
III

/Fe
II
 transitions was determined as ± -200 

mV vs Ag/AgCl. Moreover, results were consistant with surface confined 

species, whereas CO studies showed a marked positive  increase in redox 

potential. Furthermore, electrocatalytic studies in oxygen atmosphere, resulted 

in the signature increase in reduction current, whereas additional rotating disk 

electrochemical studies, on the other hand, revealed the formation of H2O2, 

which may have also contributed to the increased reduction current and also 

reveals the accompaniment of uncoupling reactions during electrocatalytic 

interactions of the immobilized enzyme. In yet another study, the main purpose 

here centred on the in depth characterization of the active/inactive state of heme 
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environment and conformational integrity of the immobilized P450BM3 — 

cyclic volatmmetry was combined with cyclic voltabsorptometry to elucidate 

the aforementioned aspects. In this investigation, the heme domain (BMP) of 

P450 BM3, prepared through genetic engineering, was immobilized within a 

polyelectrolyte film of either PDDA or PEI through electrostatic adsorption on 

a nanocrystalline SnO2-modified solid support. In these results, reduction 

potentials for the active P450 form immobilized on the  PDDA-SnO2 and PEI-

SnO2 electrodes were determined as -390 mV and -580 mV vs Ag/AgCl, 

respectively. Furthermore, voltabsorptometric experiments revealed that, 

depending on the environment of the carrier matrix, both the inactive P420, as 

well as the active P450 species may be present, and in such cases may both 

contribute to the observable background current in cyclic voltammograms. In 

particular, it was proposed that the local environment plays a direct role in 

inducing the P450-P420 transition either by dehydrating the substrate binding 

cavity or by interfering with the H-bonding network responsible for 

stabilization of the thiolate bond. 

 For the past few decades, Rusling and co-workers has done a significant 

amount of bioelectrocatalytic investigations with various heme proteins 

(enzymes), including hemoglobin, myoglobin and selected cytochromes P450, 

using different immobilization matrices, of  which the findings have been 

documented in various peer reviewed publications, some of which is 

subsequently discussed [83-86], the emphasis of course being P450-modified 

electrodes in particular. In one study, cytochrome P450cam was entrapped 

within a liquid crystal film, consisting of vesicle dispersions of either DDAB or 

dimyristoyl-L-α-phosphatidylcholine (DMPC) on pyrolytic graphite (PG) 

electrodes. The electrochemical behaviour of of both P450cam-modified PG 

electrodes exhibited reversible electrochemistry with Em determined as -213 

mV for the DMPC-film and -220 mV for the DDAB-film (vs Ag/AgCl), while 

the CO Fe
II
 interaction was accompanied by a anodic potential shift, as well as 

the signature P450 absorption spectra shown by accompanying UV-
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spectrophotometric studies. In electrocatalytic studies, interaction with oxygen 

and/or substrate, trichloroacetic acid (TCA) was investigated. In this regard, 

results showed that the electrochemically generated P450Fe
II
 reacted rapidly 

with dioxygen, which was signified by signicant increase in reduction current. 

Furthermore, substrate interaction induced an additional increase in reduction 

current, a phenomenon that was also observable in anaerobic atmosphere, 

whereas overall, the results did not suggest any autooxydation or uncoupling 

reactions, thus signifying the coupling efficiency of the enzyme-based film. In a 

second study, cytochrome P450cam was immobilized through onto polyion 

films, by making use of either posively charge polyelectroytes or negatively 

charged polyelectroytes. In the case of the cationic polyion film matrix, a 

combination of  PDDA and PEI was used, whereas in the case of the anionic 

matrix,  poly(styrenesulphonate) (PSS) was used. Depending on the charge of 

the polyelectrolyte, the enzyme was either immobilized through electrostatic 

adsorption, or with the  aid of DNA as bonding material, while, on the other 

hand, enzyme immobilization within the polyelectrolyte film was done on a 

mercpato-1-propanesulphonic acid self assembled monolayer-modified gold 

electrode. Overall, the results showed that in multilayer assemblies, only the 

first layer of polyelectrolyte/CYP450cam was electroactive, while the 

MPSPEI-PSSP450cam exhibited the best results in terms of electron transfer 

and electrocatalytic efficiency with substrate, styrene. Metabolite analysis for 

electrolysis experiments, further confirmed enzyme activity, while on the other 

hand, results also showed that a small percentage of H2O2 was formed which 

also contributed to the formation of one of the metabolites, i.e. benzaldehyde. 

This essentially means that the reduction of oxygen in the catalytic cycle of the 

immobilized enzyme, gave rise to the formation of reactive species, in this case, 

H2O2, which in itself, as discussed earlier can induce substrate metabolism on 

the one hand, but on the other hand, shortens the lifespan of the enzyme. In yet 

another study, also conducted by Rusling and coworkers, the heme domain of 

genetically engineered cytochrome P450-1A2 was used as recognition 
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component. In the platform used in these studies, the enzyme was immobilized 

through electrostatic adsorption in a PSS polyelectrolyte film on a carbon cloth 

electrode. The average Em for the enzyme-modified electrode was determined 

as -70 mV (vs NHE). Fe
II
-O2 interaction was signified by a characteristic 

increased reduction current, which in the presence of the substrate, styrene, 

exhibited an anticipated further increase. Although control experiments without 

CYP1A2 showed no detectable formation of the enzyme-catalyzed metabolite, 

styrene oxide, the addition of H2O2 scavenger, catalase, in the presence of 

immobilized enzyme, also resulted in no styrene oxide formation.  This 

essentially means that electrochemically produced H2O2 significantly 

contributed to the substrate turnover in bioelectrocatalytic experiments. In the 

next research investigation, microsomes, constituted by fusion proteins, 

consisting of selected genetically engineered cytochrome P450 isozyme heme 

domain, and cytochrome P450 reductase protein (with flavins, FAD and FMN), 

were the subjects of investigation in these bioelectrochemical studies. The P450 

isozymes studies were cytochromes P450 1A2 and 3A4, for which the prepared 

microsomes were denoted CYP1A2ms and CYP3A4ms. Once again, polyions 

were used as immobilization matrix for the enzyme-modified electrodes, while 

the flavin cofactors of reductase, functioned as mediator.  In this regard, clean 

gold electrode solid supports were initial modified with a ‘base layer’ 

consisting of PEIPSSPEI, followed by alternate adsorption of  the particular 

microsome and PEI, thus preparing six bilayers in a layer-by-layer fasion. In 

both cases, enzyme configurations exhibited qauzireversible thin film 

electrochemistry, with peak current proportional to scan rate () for up to 1000 

mV s
-1

. Moreover, Em for both enzyme-modified electrodes was determined as -

530 mV (vs Ag/AgCl). As earlier stated: upon reduction in the presence of CO, 

heme proteins form Fe
II
-CO complexes that is normally signified by a shift in 

Em via the influence of complexation following ET., however, cytochrome 

P450 reductases have flavin cofactors and are not influenced by CO. In this 

regard, upon addition of CO no observable change in peak potential or current 
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could be detected. Overall, the results revealed that electron transfer to the 

enzyme heme occurs via the reductase, and a such follow the natural ET 

pathway observed in native physiological systems. Moreover, electrocatalysis 

with substrates with or without the presence of H2O2 scavengers showed the 

formation of similar amount of metabolites, while only very small amounts of 

H2O2 could be detected in the microsomal-modified films. In this regard, it was 

concluded that oxygen reduction competed poorly with reduction of reductase, 

which essentially prevented the formation of reactive H2O2 species and as such 

showed adequate coupling efficiency.   

 

Finally, in light of all the preceding and aforementioned discussions, clearly a 

plethora of methods and techniques, each with its own attribues and shortcomings, 

are available to taylor biomolecule immobilization and electron transfer pathways for 

bioelectrochemical (sensor) configurations. Furthermore, secure immobilization may 

incur multifaceted privaleges, such as securing long term sensor stability, avoiding 

loss of biological recognition element to the bulk of the analyte solution, as well as 

predefining the overall sensor architecture and proposed signal transduction process. 

On the other hand, however, the type of immobilization and coupling method directly 

affects the operational stability of the enzyme-based sensor, as well the efficiency of 

ET from electrode (the coupling efficiency). Furthermore, the immobilization 

procedure is absolutely dictated by and adapted to the specific features of the 

biological recognition element, such as intrinsic stability, presence of available non-

essential functional groups for covalent binding, possible inhibition due to active site 

modification by reagent molecules, impact of binding mode on substrate diffusion to 

the enzyme active site (defining the linear range of the calibartion graph), the local 

concentration of the biorecognition element (defining the maximum signal), as well 

as the location of the biorecognition element with respect to the transducer surface. In 

the case of CYP3A4 in particular, recalling all of its structure, reconstitution and 

reaction cycle complexities,  very few research investigations endeavor utilizing it as 
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recognition component in sensor and/or bioelectrochemical studies. In this regard, of 

all the peer reviwed articles cited and and discussed in the preceding section, only 

three focussed on CYP3A4.   

As recap, being of microsomal origin and essentially membrane bound; highly 

hydrophobic; requiring the obligatory presence of specific external electron transfer 

donors and other specialized compounds in reconstitution systems; being labile and 

quite vulnerable to extremities; its prosthetic group hidden within a highly insulating 

protein shell. Moreover, the high probability of uncoupling reactions, mostly caused 

by autoxidation of oxyferrous Fe
II
-O2 complex (see Section 2.2.3),  giving rise to 

reactive oxygen species,  a phenomenon that is common amongst membrane-bound 

microsomal and mitochondrial mammalian cytochrome P450 enzymes, adds further 

constrictions. In this regard, clearly, electrode linkage and electron-transfer pathways 

in biosensor confgurations for this enzyme is obviously quite a challanging task, as 

such requiering  considerable enginuity with regard to platform design.  In the same 

breath, however, according to documented literature findings, it has been suggested 

that biosensors based on such enzymes fall under the category of disposable ones [64, 

87].  On the other hand, for practicle application, the prosthetic group would have to 

be recycled during such P450-enzyme sensor operation – a task that some people 

have tried to overcome by co-immobilization of native NAD(P)H cofactor. However, 

NADPH has known inherent complications, some of which was discussed in Section 

3.2.1.1. In this regard, it is expensive, is known have a high likelihood of inhibiting 

the enzyme without the presence of substrate, direct regeneration of NADPH requires 

substantially high overpotentials. Furthermore, regeneration occurs through  via a two 

step intemediate radicals that tend to dimerize under the formation of insoluble 

products, which in many cases leads to electrode fouling [88], as well as its expensive 

nature, its application would be impracticle. Moreover,  it would defeat the main 

purpose of biosensors, which of course is providing alternative, cheaper methods to 

compliment and/or compete with existing analytical techniques. While 

electrochemical, chemical, enzymatic and whole cell systems for regenerating 
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NAD(P)H are available, these approaches are frequently inefficient or difficult to 

implement on  a practicle scale [89].  

 

In view of the latter and preceding issues and based on peer reviewed documented  

research, it is suggested that harnassing membrane bound P450s and heme thiolate 

proteins in general, is best approached with electrochemical systems by utilizing 

soluble or co-immobilized surrogate, articfial mediators. Appropriately, the approach 

in research design in this dissertation is based on mediated enzyme-based biosensor 

configuration. 

 

 

2.2.4 Mediated Amperometric Biosensors 

 

Mediators are artificial electron transferring agents that can readily 

participate in the redox reaction with the biological component, and a such, assist in 

the rapid electron transfer. In this regard, in a more defintive context, it is a low 

molecular weight redox couple, which shuttles electrons from the surface of the 

electrode to the redox center of the enzyme. During the catalytic reaction, the 

electrochemically reduced/oxidized mediator reacts with the enzyme, to reduce/oxize 

it and then diffuses back to the electrode surface to undergo rapid electron tranfer 

again. An ouline of the this process is illustrated in Figure 2.5.  
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Figure 2.5: Principle of operation of amperometric mediated biosensor 

 

 

As shown in Figure 2.5, during the mediator facilited electron transfer of the enzyme 

(protein/biological molecule), the mediator is cycled between its  reduced and 

oxidized forms. Overall, the process is thermodynamically, but not kinetically 

favourable. The following equations shows a more detailed sequential flow of the 

overall sequence of events with and without medtiated electron transfer to get an idea 

of the main benefit of the presence of the mediator, 

  MOx+ e−  MR  electrochemical  

 2.1(a) 

  EOx + e−  ER  electrochemical (very slow reaction)

 2.1(b) 

  MR + EOx  MOx + ER chemical   

 2.1(c) 

where MOx and EOx are the oxidized forms and MR and ER are the reduced forms of 

the mediator and enzyme, respectively. In a bioelectrochemical setup, the overall 

electrochemical reaction occurs at the characteristic potential of the mediator. The 

MOx is thus regenerated close to the electrode surface and does not have to diffuse 
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very far to again undergo rapid electron tansfer. In this regard, thus, a significant 

enhancement of the current may be observed for only a small amount of EOx present, 

provided the chemical reaction with the mediator is rapid. The observed current may 

be related to the concentration of EOx present, and therefore the mediator approach 

has been widely applied for the fabrication of biosensors with various biological 

compounds as recogntion component. Since reaction of the electrogenerated MR is 

not very specific however, care must be thus taken to exclude other potential oxidants 

that can compete with EOx, so that mediator can successfully and efficiently divert the 

flow of electrons between the electrode and enzyme active site. On the subject of 

effectiveness and efficiency, to confir successful mediation, a mediator species 

should preferentially fulfill certain criteria, including the following:  

 A mediator should be stable under required working conditions and should not 

participate in the side reactions during electron transfer. 

 The mediator should preferentially have a lower redox potential than the other 

electrochemically active interferents in the sample. 

 The redox potential of the mediator should provide an suitable potential 

gradient gradient for electron transfer between th enzyme’s active site and 

electrode 

 The redox potential of the mediator (compared to the redox poetntial of the 

enzyme prosthetic group (active site)) should be more negative for reductive 

biocatalysis or more postive for oxidative biocatalysis.  

 A suitable mediator has to be able to regenerate the active site of the enzyme 

with fast kinetics, to diffuse back to the electrode to be converted there to its 

initial stage. 

 The redox mediator has to be stable in both oxidation states and should not 

have a toxic nature. 

 The mediator have to diffuse with high diffusion coefficient between the 

enzyme and electrode. 

 The overpotential for the regeneration of the mediator should be pH 

independent. 
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Overall one other aspect surrounding the characteristics of an ideal mediator, is that 

in its reduced form, it should preferentially not react with oxygen, however, since 

many mediators exhibit some degree of oxygen interaction, if indeed it does, the 

reaction should be slow enough to not compete with the electron transfer kinetics of 

mediator-enzyme interaction, since it may otherwise leed to false signals. There are 

many available mediating species which may be used in electrochemical systems, the 

most common being ferrocene and its derivatives, quinones, tetrafuvalene, Os-

complexes and conducting salts [46, 56, 90]. With regard to cytochromes P450 

enzymes in particular, research conducted by Estabrook and co-workers has identified 

the compound, cobalt(III) sepulchrate as an effective electron shuttle for these 

enzymes. In this regard cobalt(III)(sepulchrate-mediated (electro)catalysis with a 

variety of P450s, including mammalian (membrane bound) and bacterial, with rates 

approaching that of native NAD(P)H-driven systems have been realized.   

 

Generally, cobalt(III) sepulchrate [Co(sep)
3+

] is a cage compound. The term cage 

compound refers to the class of transition metal complexes enclosed by encapsulating 

ligands (‘cages’).  Generally, these encapsulating cages are macro-multicyclic 

ligands, which consist of a non-planar arrangement of three arms enclosing a 3D 

space, into which donor atoms have been incorporated, which in turn allows 

encapsulation of metal ions within these cages. Examples of cage-type macrocycles, 

are ‘clathrochelates’, ‘cryptans’ and ‘bis-tren derivitives’, where the latter two 

contains mixed N-O donor atoms, while the former one contains unsaturated N-

donors within the 3D space. Sepulchrate, on the other hand, is a class of saturated 

amine-donor macrobicycles (1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane), 

called ‘cage amines’, of which a graphical illustration is shown in Figure 2.5(a). 

Incorporation of the metal ion (Co
3+

) into the sepulchrate cage results in a 

thermodynamically and kinetically inert complex [Co(sep)
3+

], in which the metal ion 

is not easily released. A graphical illustration of  Co(Sep)
3+

] is shown in Figure 

2.5(b) 
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Figure 2.6 (a)The cage-type N-donor macrbicycle: Sepulchrate 

    (b)Sepulchrate with incorporated Co(III) transition metal ion:  

  Cobalt(III)sepulchrate  

 

The distinctiveness about the these cage complexes, is the excellent reversible metal-

based electrochemistry in aqueous and other solvents, which is particularly interesting 

for applications as electron relays in electrocatalysis. With regard to Co(Sep)
3+

 in 

particular,   which according to research findings was shown to have a formal 

potential (Eº) of between ± -550 to -700 mV (vs Ag/AgCl) which of course is a 

sufficiently negative potential to be able in turn reduce the ferric ion of the 

cytochromes P450 enzyme heme group, hence the polularity of applying this 

particular compound as surrogate mediator for these enzymes, to couple them to an 

electrode.  

 

 

In a general context, mediation may be homogeneous or heterogeneous. Since 

homogeneous reactions refers to both the medatior and enzyme freely diffusing in 

solution, it will not be further discussed, as it falls out of the scope of this thesis. With 

regard to to heterogeneous mediation on the other hand, particulary in terms of 

amperometric biosensor configurations – depending on the level of integration of the 

mediating species within the transducer surface, the biosensor may be secondary or 
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reagentless and/or tertiary configuration. In secondary biosensor configurations, as 

mentioned in Section 2.2.2.1, the mediator is added to the bulk of the solution. 

Reagentless configurations on the other hand, requires mediator confinement as close 

as possible to the electrode, along all other necessary components. Moreover, tight 

fixation of the mediating species is important, while architechture should to be such 

that leakage is prevented, which is crucial, since mediator leakage will obviously 

directlty affect the obtained signal. Moreover, such leakage will concomitantly affect 

the long-term biosensor stability, while inadvertently, can also lead to contamination 

of the adjacent sample. On the other hand, movemement of the mediator is an 

absolute prerequisite for productive and successful electron transfer in amperometric 

biosensor configurations. In addition to this, most mediators are small molecules, 

with molecular weights close to that of the enzymes’ subtrates, which makes retaining 

them at the electrode surface more difficult, as lng-term leaking is highly probable. 

Taking into consideration the latter and aforementioned constricts, options for 

confirring effective retainment of mediators at electrode surface, while concurrently 

allowing mass diffusional movement of mediator, as well as rapid electrochemical 

communication are fairly limited. In this regard, techniques based on different 

mechanisms have indeed been formulated. (i) A relatively easy approach is based on 

simply mixing the mediator into a carbon paste, followed by enzyme immobilization 

on top of the carbon paste surface. Further modification with additives, such as 

stabilizers or polyelectrolytes may also be added. (ii) Another approach involves 

modification of the enzyme (protein) itself with covalently bound redox mediators, as 

such forming ‘electroenzymes’. The premise here is that the covalently bound redox 

relays are supposed to shorten the electron transfer distance between the deeply 

burried active site and the enzyme surface by allowing an “elecctron hopping” via the 

enzyme-bound artificial mediators. A third approach combines flexibility with 

binding of the redox mediator by covalent attachment of the redox mediator 

molecules via long spacer chains, either to the electrode surface (seaweed 

mechanism), a suitable matrix, or the outer surface of the enzyme itself (whip 

mechanism). Alternatively, covalent binding of redox species to the backbone the 
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immobilized matrix, such as a conductive polymer, can be done, thus creating a redox 

polymer which is then used to wire the enzyme to the electrode. “Redox hydrogels” 

consisting of a poly(vinyl imidazole), a poly(vinyl pyridine), a poly(acrylic acid) or 

poly(allylamine) backbone with covalently bound osmium-complexes or 

poly(siloxane) backbones with covalently bound ferrocene units have also been 

applied to provide an increased local concentration of redox mediator. 

 

Although theretically, these techniques are promising, in practise, as with any subject 

area, they are each assocoiated with some constricts or drawbacks, for instance,  

techniques are only successful when the enzyme is in solution, while most suffer 

from mediator leakage from the reagent layer. Moreover many of these methods 

involves modification of the enzyme/protein  itself, which can only be successful for 

highly stable enzymes, a demand which is essentially unrealistic, while some 

techniques also require extremely technically complex and expensive approaches. 

Furthermore, covalent mediator attachment, theoretically identified as the most 

attractive method – in practise have not been able to  ensure coupling of redox groups 

close enough to the enzyme’s redox center to ensure fast enough electron transfer in 

order to effectively compete with molecular oxygen.  Nonetheless, in spite of such 

complications and drawbacks, with regard to the aforementioned techniques, some 

degree of success was indeed attained. Altgough at this stage, choosing an 

appropriate mediator confiment technique may seem like an excercise in futility; a 

good approach is still realizable, by choosing a multifaceted matrix that not only 

allows fairly simplistic mediator uptake/coupling, but also contributes to sensor 

performance by promoting permselectivity. In this regard, in terms of versatility, 

permselectvity, as well as numerous other inherently novel attributes, the superior 

choice would be the eminent polymer electrolyte, nafion


. 
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2.2.5  Nafion 

 

Nafion


 is a solid polymer electrolyte with a linear structure.  It is a 

copolymer with the main skeleton structure based on a polytetrafluoroethylene 

(PTFE) backbone. Nafion was originally created by Dupont de Nemours in 1962 and 

is the first class synthetic polymers with ionic properties and are called ionomers. In a 

defintive context, an ionomer refers to a polyelectrolyte that comprises copolymers 

containing both electrically neutral repeating units and a fraction of ionized sulphonic 

acid units/groups, which in turn amounts to no more than 15% ionizable groups per 

monomer nafion unit. Thus, basically, in its full description, nafion may be described 

as a sulphonated tetrafluorethylene copolymer consisting of a PTFE backbone with 

regular-spaced perfuorinated vinyl ether side-groups that are each terminated with a 

sulphonic acid group or its salt (sulphonic ionic group), which in turn are covalently 

attcahed to the fluorocarbon backbone. A schematic representation of the structure 

nafion is   shown in Figure 2.6.1 

 

 

 

 

 

 

 

 

Figure 2.7: The structure of Nafion  

 

Where, M
+
 is the counter ion (H

+
, Na

+
), which is dissociable and thus,  exchangeable 

for other (electroactive) cationic species from a contacting solution phase; the  –

SO3
−Na

+
 form of nafion, is referred to as its neutral or salt form, whereas the –

SO3‾H
 
form is the acid form. Due to the fluorocarbon backbone, these polymers are 
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chemically and thermally very stable, mostly due to an absence of sites for attack by 

reactive oxygen radicals, since C–F bonds generally cannot react with hydroxyl (OH) 

and other radicals even at elevated temperatures. Moreover, the unique anatomical 

combination and arrangement of the PTFE, the fluorocarbons and the ionized 

sulphonic acid groups, confirs a unqiue heterogeneity to nafion, complimented by 

numerous inherent peculiar features such as ion exchange selectivity, good wetting 

properties, self-organization in hydrophobic/hydrophilic domains, chemical and 

biological inertness, thus enabling the polymer to have numerous and diversified 

applications that is unparalleled by most other polymers, whether electron 

conductive, non-conductive and/or electropolymerized. To fully understand and 

appreciate these features, the microscopic structure of nafion is further elucidated. 

The first eminent structural unique quality of nafion, is the fact that nafion films 

feature internal segregation of hydrophobic and hydrophilic domains: On a 

microscopic level, this ion containing polymer is known to seperate into different 

phases, including ionic, organic and interfacial  regions –  resulting from a unique 

cluster type structure containing “water-filled pockets” and aqueous ions embedded 

in a continuous hydrophobic fluorocabon surrounding. The first phase constitutes the 

hydrophilic ionic cluster phase which contains the sulfo ion groups, the dissociable 

counter ions and hydrated water, of which the latter in its properties do not differ 

from water that occurs in the bulk of the solution. The second phase is the teflon-like 

fluorocarbon framework (backbone) surrounding these clusters and is essentially 

hydrophobic. The third phase on the other hand, refers to the minor subsidiary area 

between the hydrophobic backbone and the hydrophilic ionic clusters which mainly 

consists of a flexible amorphous part of the perfluorocarbon backbone and in general 

constituted by an intermediate hydrophilic phase. A schematic representation of the 

phase segregation in a nafion membrane is shown in  Figure 2.6.2. 
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Figure 2.8: Nafion structure showing schematic presentation of the different 

phases observable in a nafion membrane. The sulfo groups are clustered in 

hydrophilic inclusions, referred to as phase A. Phase B referes to the teflon-like 

fluorocarbon backbone, and is essentially hydrophobic. Phase C is intermediate in 

hydrophilicity. 

 

 

 

With regard to the physical characteristics of the ionic clusters, different models by 

various researchers has been proposed, but generally ― they are roughly spherical in 

nature with a diameter of ± 40-50 Å (4-5 nm), which varies with water content, as 

well as the equivalent weight of the particular nafion membrane and the type of 

cation (counter ion) contained within the clusters. Generally, these clusters are 

randomly distributed throughout the backbone tetrafluoroethylene (TFE) polymer and 

they are inter-connected by small channels of approximately 10 Å (1 nm) in diameter. 

It has also been proposed that the average cluster contains about 70 exchange sites 

and approximately 1000 water molecules.  A graphical illustration of the cluster 

network, highlighting the physical characteristsics of the sulfo ionic clusters is shown 

in Figure 2.6.3. 
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Figure 2.9: The characteristic ionic sulfo cluster network in a Nafion membrane 

 

The channels connecting the ionic clusters are generally thermodynamically stable 

and they function mainly in determining the transport properties of the ions (counter-

ions) and water, while the water content/degree of hydration is of great importance 

since it by-and-large dictates the properties of  Nafion polymer membrane/film. The 

water content is in turn determined by the type of counter-ion contained within the 

ionic cluster phase. On the subject of the water content and the type of counter-ion ― 

in these nafion ionomer films, the water increases the free volume of and decreases 

the PTFE polymer chain concentration in the ionic cluster, and as such, in this 

context, the water of hydration acts as a placticizer for the ionic cluster region in 

nafion and ionic polymers in general. On the other hand, though, the water content of 

the ionic clusters decreases as the size of the counter-ions increases, and since Nafion 

is known to have a high preference for large organic cations relative to smaller 

organic and inorganic cations, this is not an uncommon phenomenon. In this regard, 

thus, as the water content of the cluster decreases, the polymer chain material must 

unequivocally play an increasingly significant role in determining the chemical 

environment of the cluster region. Since the TFE backbone in nafion is highly 

hydrophobic and has an extremely low dielectric constant, this essentially means, 
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that, in the case when a large organic cation is the counter-ion and as its concentration 

increases, the ionic cluster resembles a lipophilic phase; conversely, when  a small 

cation is the counter ion, the water decrease is considerably less, and as such, in such 

cases, the ionic clusters in nafion remain essentially hydrophilic. An important aspect 

to add in the context of counter ions, is that nafion’s high affinity for (large) 

hydrophobic cationic counter ion species is contrary to the characteristics exhhibited 

by conventional ion-exchange material. Moreover, research has conclusively shown 

that nafion’s method of retention/pre-concentration of cationic species within the 

polymer is dictated by hydrophobic interactions, which differs considerably from 

conventional ion-exchange resins and/or electrostatic binding polymers, in which 

electrostatic forces dominate the retention interactions. These fundamental 

differences in exchange characteristics between nafion and other ion-exchange 

materials/polymers is best explained by highlighting the eminant structural 

differences between the them: Firstly, conventional ion-echange resins are covalently 

crosslinked while nafion is not. In this regard, the Gibbs-Donnan eqation, which is 

the fundamental thermodynamics equation for exchange reactions, accounts for the 

effect of crosslinking through inclusion of the so called PV term, which is a term that 

functions to discrminate against ions of large size. Since nafion is not cross-linked, 

there is no PV-based discriminating against large ions, and thus, such ionic species 

may be partitioned into nafion without the thermodynamic penalty inherent in the 

Gibbs-Donnan equation. The second significant structural difference, is that in nafion 

only about one in eight monomer units is sulphonated, conventional ion-exchange 

resins are close to 100% sulphonated. This essentially means that the large segments 

of uncharged chain material allow for hydrophobic interactions which drive ion-

exchange reactions for cations in nafion. Other inherent dissimilarities between 

nafion and electrostatically binding  polymers which are of significance in this 

subject area is the difference in dielectric constant of the chain material and  the 

charge density divergence: nafion has a very low dielectric constant, as well as a 

fairly low charge density, whereas the converse is exhibited by the other 

electrostatically binding polymers. 
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One other area of significance,  is the subject of transport properties within nafion 

polymer films, which is a pertinent aspect, especially since the ionomer is known to 

take up electroactive counter ions, a feature that is of particular relevance in the 

application of electrochemical studies and biosensors.  In this context, unlike in other 

membranes where transport, in accordance with the Donnan equilibrium,  is a one-

dimensional process; in Nafion, transport does not comply with the Donnan effect 

and actually occurs through a three dimensional process, largely controlled by an 

effect known as  percolation. The actual mechanism of charge transport in nafion 

polymer films (in the absence of chemical kinetic complications), consist of mass 

transport (diffusion) of the electroactive species, electron hopping and migration of  

counter ions. However, research has conclusively determined the electron hopping 

pocess to be equivalent to diffusion, and as such, the overall mechanism of charge 

transfer within nafion polymer films, in the absence of chemical kinetic 

complications, is by-and-large dictated by difussion and as such, the overall rate can 

be described by an apparent diffusion coefficient (Dapp). On the other hand, 

depending on the thickness of the formed nafion film, regions of monolayer (thin-

layer) behaviour may or may not be observed, for example, in a study conducted by 

Bard and coworkers, a nafion film with thickness 0.1m with incorporated 

Ru(byp)3
2+

 on a glassy carbon electrode exhbited thin-layer behaviour below 30 mVs
-

1
, accompanied by a small seperation between anodic and cathodic peak potential 

(Ep), which was independent of  scan rate () and a linear behaviour of peak current 

(Ip) vs ; whereas  nafion film thicker than 2 m with incorporated Ru(bpy)3
2+

 

exhibited no region of monolayer behaviour.    

 

The aforementioned segments provided important insight into nafion’s perculiar 

structural characteristics and subsequent distinctiveness in behaviour and function 

relative to  other ionic-, ion-exchange- and electrostatically-binding polymers and/or 

materials. As gathered by these discussions, considerable differences are eminent, 
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which of course would profoundly affect anticipated results at chemically modified 

electrodes based on nafion as apposed to other  ionic polymer and coordinating 

polymer electrodes, some of which was highlighted and discussed.  In this regard, a 

last few relevant variations are highlighted, which provides more insightful incentive 

for the polymer’s popularity of application. Firstly, research has shown that nafion-

based films has a greater lifetime than other electrodes of this type. Moreover, the the 

retention of the electroactive molecule is more stable, while the counter ion species is 

retained and film stays on for longer. Such etxtended lifetime is of course highly 

beneficial in possible applications. Secondly, nafion polymer films shows no 

difference in observed electrochemical properties irrespective of preparation method, 

i.e. wether one-step- or multiple-step coating procedure, which is unlike what can be 

observed for a coordinating polyme, which exhibits large variation in electrochemical 

properties, depending on the preparation procedure. It has been proposed that the 

difference can be attributable to the presence of only comparatively weak electrostatic 

interaction in nafion and to the ionic unique interchannel-connected ionic cluster 

morphology which allows for easier diffusion.     

 

In a final note, based nafion’s diverse areas of application, its peculiar structural 

features, coupled with its simplistic film formation, which simply involves traditional 

dip-, spin-coating or casting procedures from the ionomer solution, known 

biocompatibility and its unparalelled discrimination ability bewteen postitively and 

negativele charged species, creates an easy comprehension of its popularity in 

polymer film/membrane application. Moreover, the fact that electroactive mediating 

species can be stably incoporated into its matrix allows for close proximation to 

subsequently immobilized enzymes in bioanalytical applications, which in itself is 

invaluable for electrochemical communication purposes.   

 

 

At this stage, to recapitulate ― latter and previous sections provided 

comprehensive insight into important aspects of tayloring electrode architecture for 
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stable CYP450-3A4 tethering, with special reference to enzyme structural and 

functional features and requirement constricts, immobilization methods, mediator 

aspects etc. In view of the extensive elaboration on these aspects, there is not much 

left to discuss, however,  one final important aspiration for biosensor to be of 

practical use, is that that once formed, the biological film must be adaptable to 

different environments. In particular, the immobilized films need to be resistant to a 

wide range of physiological pHs, maintaining their stability and activity with changes 

in temperature, ionic strength and chemical composition [59]. In this regard, 

polymeric hydrogels, in particular has proven to be tromendously beneficial, 

especially in the case of membrane-bound CYP450 isoenzymes. In this regard, they 

exhibit various physical and chemical phenomena, such as bending and volume 

change in the presence of external stimuli (such as changes in pH, solvent 

composition, ionic strength, temperature and electric field [60].  Moreover, these gels 

can undergo considerable swelling and collapsing as a function of their environment, 

up to 1000 times in volume, which is one of their most eminent qualities. 

 

 

 

 

2.3.6 Polymeric hydrogels   

 

The inherent biocompatibility of polymeric hydrogels together with their ability to 

simulate natural tissues makes them potentially important electrode-coating materials, 

and as such, they are excellent carriers of biomolecules, which can be immobilized 

within the hydrogel matrices.   

 

 Hydrogels are three-dimensional, hydrophilic, polymeric networks capable of 

absorbing large amounts of water or biological fluids. The networks are composed of 

homopolymers or copolymers and are insoluble in water, through the presence of 

chemical cross-links, otherwise known as tie-points or junctions; physical crosslinks, 
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such as perminent entanglements; and/or ionic interactions. These hydrogels exhibit a 

thermodynamic compatibility with water which enables them to not dissolve in water 

at physiological pH, but allows them to swell considerably in aqueous media. 

Moreover, gel volume transitions can be induced by temperature, pH, or ionic 

strength among other stimuli, and collectively these phenomena has inspired research 

investigations for applications of these gels as potential actuators, artificial muscles, 

in sensors, controllable separation membranes and drug delivery vehicles. With 

regard to sensor application in particular, hydrogels can either be used in the interior 

of sensors, as a gel matrix to imbed bio-recognition proteins, such as enzymes; or 

they may be applied to the exterior of the sensor. As exterior coatings, the polar, 

(un)charged, water swellable, flexible materials mask the underlying surfaces by 

producing a hydrophilic interface between the solid surface and aqueous bulk.   

With respect to known labile isoenzymes, membrane-bound CYP450s in particular, it 

was documented that a soft hydrogel is the most suitable environment to retain the 

enzyme’s activity and integrity. In this regard, the greatest promise was shown with 

water soluble agarose. Moreover, agarose can be blendid with other water soluble 

non-toxic polymers, such as poly(vinyl alcohol) (PVA), to create biopolymeric gel 

that ensures stable enzyme encapsulation and catalytic retention.   Both agarose and 

PVA are promising outer membrane coatings for sensors, because water-soluble 

analytes can readily diffuse through the water-swollen polymer gel layer. The degree 

of analyte diffusion is readily modulated by controlling crosslink density of the gel, 

which in turn controls the gel water content and openness of the polymer network.  
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2.3.6.1 Agarose and related relevant subjects 
 

Agarose is a highly prominent natural biopolymer, which has a long-

standing application in the separation and/or purification of various biological 

molecules, including enzymes, polysaccharides, nucleic acids and proteins, usually 

done through gel permeation- and/or affinity chromatography methods. This polymer 

is a naturally occurring polysaccharide, and in a definitive context, it is a neutral 

component of polygalatoside agar; in particular, it is one of the two major 

components of agar, with the other major component being agaropectine. The 

strucure of agarose is based on a linear polymer consisting of repeating units of 

alternating 1,4-linked 3,6-anhydro-α-L-galactopyranose and 1,3 linked β–D–

galatopyranose. A schematc illustration of the structure of agarose is exhbited in 

Figure 2.7.1.  

Figure 2.10: Structure of Agarose 

 

When dissolved in water, agarose forms thermoreversible gels, the characteristics of 

which essentially involves a temperature controlled liquid-to-gel forming process. In 

this regard, in a hot solution, agarose chains exist in stiff and disordered 

configuration, whereas upon cooling below ±40 ºC, the coils form orderly helices 

which subsequently aggregates into thick bundles through forming inter- and 

intramolecular hydrogen bonds. These bundles contain large pores of water, and are 

characterized by a soft porous gel consistency, of which the pore size can be 
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controlled by the concentration of the agarose. In general, agarose gel matrices 

exhibit considerable elasticisity and high turbidity, complimented by an aqueous 

microenvironment and significant bioaffinity, and the cumulative effects of these 

features makes it an ideal biopolymer for the immobilization of biological molecules 

on solid substrates, including electrodes. In fact, agarose has proven to be the superior 

polymer gel for preserving enzyme activity in bioreactor-based electrochemical 

studies with microsomal CYP450, compared with other tested gels, such as 

polyacrylamide, calcium alginate and prepolymerized polyacrylamide hydrazide ― 

which, overall is highly significant study, since suitable immobilization methods for 

mammalian microsomal P450 enzymes are not well established, because these 

enzymes are labile.  Moreover, it was documented that gel-entrapment is the 

preferred immobilization method if the purpose is the construction of reusable 

bioreactor and/or biosensor.  

 

The beneficial aspects of agarose can be further exploited by combining it with other 

biocompatible polymers, in the form of blends, copolymers and/or interpnenetrating 

polymer networks or gels. Moreover, polymer blending is one of the most effective 

methods for providing highly specialized composite materials that combine the 

physicochemical qualities of both components and overcome their individual 

shortcomings. In this regard, the hydrophilic polymer, poly(vinyl alcohol) (PVA), 

which is non-toxic, is frequently used in biomedical applications and protein 

immobilization, has numerous industrial applications and is equilly well-known for 

its good membrane forming ability has proved highly compatible in combinaton with 

other polymeric materials. In fact, agarose and PVA are often used to form bi-

composite matrix for enzyme immobilization. 

 

Generally, in a definitive context, PVA is an uncharged, water soluble polymer which 

is commercially prepared by the hydrolysis of poly(vinyl acetate). A schematic 

illustration of PVA is shown in Figure 2.7.2.  
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Figure 2.11 Structure of Poly(vinyl alcohol) 

 

In a general context, different ‘grades’ of PVA are commercially available with 

varying degrees of hydrolysis and a range of molecular weights; however, 

irrespective of grade and/or molecular weight, their hydrophilicity and chemical 

intertness remains an essential part of the polymer’s structural integrity, which are 

two aspects that play an eminant role in their biocompatibility. In fact, a thin thin 

surface coating of PVA is frequently applied in biosensors to ensure the prevention of 

non-specific binding of protein molecules, which in itself, is a fundamental 

prerequisite for success of performance criteria in such devices. Above and beyond, 

the afformentioned attributes, PVA hydrogels can easily be formed by polymer-

grafting, or simple ionic complexation and/or crosslinking with suitable reagents, 

such as poly(acrlic acid), citric acid, glutaraldehyde and acid catalysts, or 

polyelectrolytes. Moreover, the aforementioned interactions concurrently confers 

insolubilization of PVA during hydrogel formation and as such, alleviates its poor 

instability in aqueous medium, (which is a known weakness of ‘pure’ PVA), while 

simultaneously enhancing the structural porosity, mechanical stability and robustness 

of PVA.  A particular popular choice among these blending-crosslinking agents, is 

amine-containing polyelectrolyte, polyethyleneimine (PEI), which induces hydrogel 

formation in PVA through ionic interactions.  

 

Generally PEI is a charge modifier which has found widespread application as 

membrane surface modifier, by blending it with the interfacial enhancing matrix 

material. Its contribution to the improvement of biosensor performance is a 

 

 

 

 



 Chapter 2  Biosensors: A review Of The Relevant Aspects

  

 

87 

 

particularly interesting area of application, and in this regard, it confers mulitionic 

bonding interactions between reagent-layer components, while concurrently 

improving hydrophilicity on electrode surfaces, and its presence also contributes to 

providing unique microenvironment for the immobilized enzyme.  In a defintive 

context, PEI is a branched chain cationic hydrophilic polymer with an abundance of 

amine groups, which at physiological pH, are highly protonated, thus conferring 

multiple interactive functional sites to ionically interact with other polymer species 

with anionic groups. A schematic representation of the structure of PEI is shown in 

Figure 2.7.3. 

    

 

 

 

 

 

Figure 2.12 Structure of Polyethyleneimine (PEI) 

 

With reference to the interaction between PVA and PEI in particular ― the 

interaction during the blending of the two homopolymers is highly ionic in nature, 

resulting from ion complexation between the anion (CO
2-

) group of the PVA and the 

cationic (NH3
+
C) of the PEI, of which the overall result is an ionically crosslinked 

composite, which is insoluble. The so produced blend, is highly hydrophilic and 

preferentially absorbs water, due to the extensive interaction arising from intra and 

inter molecular hydrogen bonding and dipole-dipole interactions between water and 

the functional groups of PVA/PEI such as amine, acetal and hydroxyl, as well as 

some unreacted amine moieties. 
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In all analytical techniques, as is the case in any  (bio)sensor, based on molecular 

recognition, standard protocols for evaluation of performance criteria, in accordance 

with standard IUPAC definitions needs to be examined.  Amongst these criteria are: 

  

(i) Calibration characteristics which; are based on sensitivity, working and linear 

concentration range, detection and quantitative determination limits;  

(ii) precision, accuracy and repeatability;.  

(iii)  Selectivity and reliability; and finally, 

(iv)  time factors, which includes response times, recovery times and lifetime of 

the biosensor.  

 

It has already been established that the optimisation of biosensors is by and large 

dependant on the immobilization technique used, however, as biosensors are self-

contained, all parts being packed together in the same unit, elegant research on new 

sensing concepts, coupled with numerous technological innovations, has opened the 

door to achieving higher sensitivity, specificity, simplicity and inherent 

miniaturization of modern electrical bioassays permitting them to rival the most 

advanced protocols  
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CHAPTER 3 

 

 

Variables of Investigation, Practical Aspects and  

General Protocols 
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Chapter Prelude 

This chapter consists of two parts. Part A takes a much closer look at the specific 

variables which needs to be considered during the application of cytochrome P450-

3A4 biosensors as applied in the scope of current dissertation. In this regard, the 

aspects covered in this chapter is aimed at forming the basis of the experimental 

methods of investigation, particularly in terms of biosensor configurations including 

thermodynamic parameters, kinetic parameters, as well as performance factors which 

include range, linear range, detection limits, time factors, precision, accuracy and 

repeatibility. Furthermore, the significance of this review is that it aims at providing 

the reader an anhanced understanding of obtained results, since it comprehesively 

explains and defines important aspects, as it applies to the enzyme-based 

electrochemical and/or bioelectrocatalytic factors in this study. The second part, gives 

a succinct overview of general experimental protocols as pertaining to the dissertation 

as a whole. Also included are all the materials and reagents used throughout the 

conduction of the PhD research, including general preparative protocols of samples 

and reagents. In addition to this, the school of thought with regard to relevant 

calculations of specific parameters are also provided. 
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3A Variables of Investigation 

 

3A.1 Introduction 

 

A biosensor in the context of this thesis may be described as a (bio)analytical device 

which exhibits the chemistry of the immobilized biological component, with respect 

to its electron tranfers processes, its reduction and oxidation, adsorption pehomena, 

kinetics of eletron transfer and reaction mechanisms and catalytic interactions – by  

through electrochemical methods and by making use of analytical tools. To 

effectively determine the aforementioned phenomena, the type of transduction 

method is a key juncture, which according to the scope of the current dissertation is 

electrochemically based. Generally, electrochemical transduction operates on the fact 

that during a bio-interaction process, electrochemical species such as electrons are 

consumed or generated, and as such, producing a measurable electrochemical signal.  

In this regard, it is evident that evaluation of all of the relevant aspects and 

parameters pertaining to the operation, and performance of the prepared biosensors 

are by-and-large based on analytical electrochemistry methods, which are collectively 

referred to as Electroanalysis. Appropriately, this subject, together with all relevant 

related topics are subsequently defined and discussed.   

 

 

 

 

3A.2 Electroanalysis (Electroanalytical Chemistry): Theoretical Aspects 

 

On a broad scale, electroanalysis may be described as the science of 

carrying out analytical chemistry by making use of electrochemistry. At the core of 

this subject area, are two prominent electroanalytical observables, which includes 

potential (E) (also called voltage) and the current (I) (or its integral, i.e. charge (Q)). 

During electroanalytical analysis experiments, the interplay between these 

observables (E, I) and  chemical parameters are observed, assessed and subsequently 
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exhibited in appropriate configuration.    It is noteworthy to also add that since 

current is expressed per unit time (current (i) = amperes (A); i.e. coulombs/second) – 

time also plays a significant role in electroanalytical techniques. Generally within the 

context of electroanalsysis, potential measured is referred to as potentiometry, while 

current measurement done in association with amperometry and its main co-topic, 

voltammetry. In a more descriptive  context, potentiometric detection requires two 

electrodes, which includes the working electrode and the reference electrode and 

measurements is made at thermodynamic equilibrium conditions, which essentially 

involves conditions with no current flow. The potential difference, measured between 

the two electrodes is then related to the quantity of the electroactive species/analyte. 

In  current measurement detection techniques on the other hand, the focus is on the 

current passing through a polarizable electrode, which is generally measured as a 

function of careful potential manipulation (controlled potential methods). The 

magnitude of the current is directly proportional to the conentration of the 

electroanalyte species in the electrolyte solution. Compared to potentiometry, 

amperometric techniques has high precision and accuracy, and is much more 

versatile. Moreover, a complete study of an electrode process requires measurments 

of kinteics, as well as thermodynamics, for which potentiometry is inadequite, while 

amperometric based techniques on the other hand can be applied to determine all 

parameters catagorized under kinetics and thermodynamics.  

 

Generally, the chemical questions that can be answered by such use of electrical 

measurements in amperometric techniques include (1) the standard potentials (E
º
) of 

the copound’s oxidation-reduction reactions, (2) evaluation of thermodynamics of the 

compound, (3) determination of the electron stoichiometry, (4) evaluation of the 

heterogeneous eletron-transfer kinetics and mechanisms of the compound, (5) study 

of pre- and postchemical reactions, heterogeneous (thermodynamics and kinetics) that 

are associated with the electron transfer of a reaction, (6) study of effects of the 

solvent, supporting electrolyte and solution acidity on oxidation-reduction reactions 

and (7) study of reaction and product formation in relation to heterogeneous catalysis.  

 

 

 

 



 Chapter 5   Variables of investigation and general protocols  

 

93 

 

 

It is not possible to measure current during a homogeneous reaction, since an 

electrode and an electrolyte solution is required, which each represents a different 

phase. Moreover, amperometric type electroanalytical measurements takes place 

across an electrode-solution interface, and as such these methods are based on 

heterogeneous electron-transfer reactions. Also noteworthy, is that since 

amperometric analysis does not occur at equilibrium, these techniques are dynamic in 

nature, and as such is accompanied by compositional changes in the electrochemical 

cell material. The most common techniques directly associated with amperometry is 

polarography (when a mercury electrode is used) and voltammetry. 

 

 

3A.2.1  Voltammetry 

 

 

Voltammetry has its roots from the discovery of polarography in 1922 by 

the Czech chemist, Jaroslay Heyrovsky, for which he was subsequently honored by 

the 1959 Nobel Prize in chemistry. In this regard, voltammmetry is based on exactly 

the same principles that pertains to polarography. In a more definitive context, 

generally, the common feature shared by all voltammetric techniques is the 

application of potential (E) to the working electrode and the monitoring of the 

resulting current (I) flowing through  the electrochemical cell. Depending on the 

particular type of voltammetric technique, the potential may either be scanned 

between selected potentials (E1 and E2), or the potential of the working electrode may 

be changed instantaneously, whereas the resulting current may monitored as a 

function of potential or time (depending  on the type of voltammetric technique). 

Thus, overall, one can conclusively say that all voltammetric techniques can be 

described in terms of some function of E, I and time. With reference to the applied 

potential in particular, depending on the desired effect, it can be used to derive an 

overall reduction or oxidative process. In effect, here, the potential is used to force the 
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electraoctive species to either gain or lose an electron, which essentially happens in a 

potential region that makes electron transfer thermodynamically and kinetically 

favorable. Thus at the core or voltammetry, is also the transfer of electrons: 

Ox + ne¯⇌ R     3A.1 

where Ox and R refers to the oxidized and reduced forms of the redox couple, 

respectively. Such oxidation/reduction reactions, derived by electron transfer, is 

governed by Faraday’s law (i.e., the amount of chemical reaction caused by the flow 

of I is proportional to the amount of electricity passed). In this regard, the resultant 

observable voltammetric response, exhibited as the Faradaic current, is directly 

proportional to the concentration of the electroactive (analyte) species (    
    

 ). 

Moreover, the surface concentrations of the analyte species involved in the Faradaic 

processes are related to the electrode potential by the thermodynamic Nernst 

equation: 

  E = Eº´ + 
      

  
 log 

    
 

   
        3A.2 

Where (Eº) is the standard potential for the redox reaction, R is the universal gas 

constant (8.314 J K
-1

 mol
-1

), T is the Kelvin temperature and F is the Faraday 

constant (96,487).  As the electrode is polarized and Faradaic current is passed, the 

potential is in effect moved away from the equilibrium and a concurrent change in the 

concentration of     
    

   is enforced, however, for a system that is controlled by the 

laws of thermodynamics (Nernstian  conditions), equilibrium needs to be 

continuously re-established as changes are made, and as such, the potential and the 

surface concentrations are always kept at equilibrium with each other by fast charge-

transfer process. In effect, the potential forces the respective concentrations of Ox and 

R at the surface of the electrode to a ratio that is in compliance with the Nernst 

equation, which essentially means that, changing the applied potential will 

concurrently induce a change in the ratio of  
    

 

   
  , so as to satisfy Equation 3A2. On 

the other hand, due to the fact that the applied potential enforces a gaining or losing 

of electrons, it may be viewed as “electron pressure”, and as such, the faradic current 
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also reflects the rate at which electrons move across the electrode-solution interface. 

In this regard, the rate of reaction can be described by the Butler-volmer equation, 

which is one of the prominent laws that describe voltammetry: 

  
 

   
 = k

º
{   

  exp[-αθ]-  
  exp[(1-α)θ]}   3A.3 

where θ = nF(E-E
º
)/RT, k

º
 is the heterogeneous rate constant, α is the transfer 

coefficient, and A is the area of the electrode. As can be observed from Equation 

3A.4, the Butler-volmer equation links the variables for current, potential and 

concentration, which is a very useful relationship for the benefit of many 

voltammetric techniques. Moreover, it allows one to determine the values of the two 

analytically important parameters, I and k
º
.   Another noteworthy fact is, that charge 

transfer (current flow) is always accompanied by diffusional-mass transfer. This 

essentially happens, since no equilibrium exist between the surface- and the bulk-

solution concentrations, because, as the reagent is consumed or the product is formed 

during the redox reaction of Ox and R,, concentration gradients between the locality 

of the interface and  the bulk solution arise, which in effect, induces diffusion, and as 

such, reactants or products are continuously transported to, or away from the 

electrode surface (or to/from the bulk of the solution) by diffusion. This concentration 

gradient and mass transport is described by Fick’s law, which essentially describes 

the amount of material impinging on the electrode’s surface per unit time. In 

particular, Fick’s law states, that the flux of matter (electroactive/analyte species) (Φ) 

is directly proportional to the change in concentration of species as a function of the 

distance, x, away from the electrode surface (concentration gradient): 

 Φ = -ADOx(cO/x) 3A.4 

where DO is the diffusion coefficient of Ox and x is the distance from the electrode 

surface. An analogous equation can be written for R. It is important to note that since 

voltammetric electrochemical processes always involves consumption of 

electroactive species and formation of product occurring at the same time that current 

is flowing, these processes will always be accompanied by the formation of such 

concentration gradients and as such, mass-transport induced and flux plays a 
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significant role. In effect, the flux of Ox and R at the electrode surface controls the 

rate of reaction and thus the Faradaic current flowing through the cell. In addition to 

diffusion, mass-transport may also occur through migration or convection. 

Convection involves the movement/transport of species  by a forceful physical 

movement, in which such fluid flow occurs with controlled-stirring or flow-through 

of the solution, as well as with rotation or vibration of the working electrode (i.e. 

forced convection), or due to density gradients. Migration on the other hand, refers to 

the movement of  charged particles under the action of an electric field (a gradient of 

electrical potential). In effect, it may be simply described as the movement of charge-

carrying ions in the solution during an electrode process: the positive ions are 

attracted by the negatively charged electrode (cathode), while the negative ions are 

attracted by the positively charged electrode (anode). The rate of migration depends 

on the charge on the ion (transference number), the size of the ion (including its full 

salvation spheres) and on the strength of the interaction between the ion and electric 

field. A stronger field will of course form at an electrode bearing a larger potential. In 

voltammetry, however, the effects of migration is attenuated by using an electrolyte 

which contains an excess of un-reactive ionic salt, known as a swamping electrolyte. 

More on this subject is discussed in Section 3.3.1.2. 

 

 

From  a general perspective, a voltammetric electrode reaction can be quite complex 

and takes place in a sequence that involves several steps. In the simplest case, only 

mass transport of the electroactive species to the electrode surface; the electron 

transfer across the interface and the transport of the product back to the bulk of the 

electrolyte solution is involved. More complex reactions include additional chemical 

and surface processes that precede or follow the actual electron transfer. The net rate 

of the reaction, and hence the measured current value may be limited either by the 

mass transport of the reactant or by the rate of electron transfer ― the slower process 

will be the rate determining step. Overall, whether a given reaction is mass-transport 

or electron transfer controlled, is determined by various parameters, including the 
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type and concentration of the redox-active compound being measured; the size, shape 

and material of the electrode; the electrolyte solution resistance; operating potential; 

mode of mass transport; number of electrons transferred; time scale, etc. Thus, in 

effect, these parameters also determine the measured current signal. When the overall 

reaction is controlled exclusively by the rate at which the electroactive species reach 

the surface, the current signal is said to be mass transport limited. Such reactions are 

labeled Nernstian  or reversible, since they obey thermodynamic relationships.  

 

 

Commonly, results obtained from voltammetric analysis are displayed in terms of  a 

voltammogram, which, in the most general form is a plot of current signal versus 

excitation potential. In fact, this current-potential plot is used to exhibit results 

obtained from the most popular and widely used voltammetric technique, i.e., cyclic 

voltammetry.    

 

 

 

 

3A.2.1.1  Cyclic Voltammetry 
 

Cyclic voltammetry is undoubtedly, the most widely used electroanalytical 

technique and is highly beneficial in diverse areas of scientific research application, 

mainly due its exceptional ability for providing qualitative information about redox 

processes. In particular, it provides rapid information with regard to the 

thermodynamics of redox processes, on the kinetics of heterogeneous electron-

transfer reactions, and on coupled chemical reactions or adsorption processes, 

including understanding reaction intermediates and for obtaining stability of reaction 

products. In fact, cyclic voltammetry is normally the first experiment performed in an 

electrochemical study, since it enables rapid location of redox potentials of the 

electroactive species, as well as simplistic evaluation of the effect of media upon the 

redox process.  
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The technique itself is based on linearly scanning the applied potential of a stationary 

working electrode (in an unstirred solution) in a triangular waveform with time. The 

form of the potential-time impulse is exhibited in Figure 3A.1. 

 

 

Figure 3A.1 Potential-time excitation signal in cyclic voltammetric experiment 

 

During the process of potential scanning, the potential is varied with time, in a linear 

manner at a specific scan rate, up to a pre-defined limit (known as the switch 

potential), and then reversed to the initial value. The parameters which are of 

significance during the actual sweep scan, are the initial potential (Ei), the initial 

sweep direction, the sweep rate (), the final potential (Ei) and the switch potential. 

Depending on the particular experiment being conducted, the initial/forward sweep 

may be in the negative or positive direction, whereas the reverse scan, being the 

inverted sweep, will then obviously be in the opposite direction. Moreover, 

depending on the information sought, such as the potential at which the redox process 

occur, or the concentration of the electroactive species, or the presence of preceding 

or following chemical complications – a partial cycle, full cycle, or multiple cycles 

can be performed. During the potential sweep, the current signal resulting from the 

applied potential is measured by the potentiostat, whereas the overall response is 
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collected as a resulting current versus potential plot, known as the cyclic 

voltammogram. An illustration of the expected typical cyclic voltammetric response 

of a FeCN
IIIII

 redox couple during a single full potential cycle, is exhibited in 

Figure 3A.2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3A.2 Basic parameters for a cyclic voltammogram: Epa refers to the 

potential of the anodic (forward) peak; Epc represents the potential of the cathodic 

(reverse) peak; E is the potential value at the inversion of the scan direction (switch 

potential); Ipa represents the current of the forward peak with respect to its baseline; 

ipc is the cathodic (reverse) peak current with respect to its baseline; (if)0 is the current 

at the inversion potential with respect to the zero current baseline 

 

With the assumption that only the reduced form is present initially. Thus 

appropriately, a positive potential scan is chosen for the first half-cycle, which starts 

from a value where no oxidation occurs. As the applied potential approaches the 

characteristic Eº for the redox process, an anodic current signal begins to increase, 

until a peak is reached. After passing through the potential region where the oxidation 

process takes, the direction of the potential sweep is reversed. During the reverse 

scan, Ox molecules (generated in the forward half cycle), and accrued near the 

electrode surface) are reduced back to R and a cathodic peak results. 
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Generally, as shown in Figure 3A.2 the prominent observable parameters in a cyclic 

voltammogram are the peak potentials (Epc, Epa), the peak currents (Ipc, Ipa) of the 

cathodic and anodic peaks, respectively; the switch potential (Eλ) and the peak 

potential difference (∆Ep). In terms of data interpretation in particular, of these 

parameters, the most important are the two peak currents and peak potentials, which, 

based on the theory developed by Nicholson and Shain (“the theory of stationary 

electrode polarography”) is used to analyze the cyclic voltammetric response. In this 

regard, these parameters are applied as diagnostics for determining whether the 

system is electrochemically reversible, quasi-reversible, or irreversible, as well as for 

the study and determination of other relevant aspects, such as coupled chemical 

reactions and adsorption processes. In a reaction which is electrochemically 

reversible, i.e., a reaction in which the electron transfer is fast, compared with mass 

transfer (such as diffusion)  the peak current is given by the Randles-Sevcik 

equation:  

 Ip = (2.69 x 10
5
)n

3/2
ACD

½ν½ 3A.5 

 

where n is the number of electrons, A is the electrode area (in cm
₂), C is the 

concentration (in mol cm
-3), D is the diffusion coefficient (in cm

2
s

-1
) and   is the 

scan rate (in V s
-1

). As observed in equation 3A.5, the current is directly proportional 

to the concentration, and furthermore, peak current increases with square root of scan 

rate. What is more, for a simple reversible reaction, the ratio of the reverse-to-forward 

peak currents     /     is unity. On the other hand, the aforementioned peak ratio can 

be strongly affected by chemical reactions coupled to the redox process (more on this 

subject will be discussed in following sections). The positions of the peaks on the 

potential axis is related to the formal potential of the redox process. In particular, the 

formal potential for a reversible couple is centred between Ep,a and Ep,c: 

 Eº = 
         

 
  3A.6  
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The separation between the peak potentials (for a reversible couple) is given by: 

 ∆Ep = ׀Ep,a – Ep,c2.303 = ׀ RT/nF 3A.7a 

Which at 25ºC becomes: 

 ∆Ep = 
     

 
 3A.7b 

In this regard, the peak separation can be used to determine the number of electrons 

transferred, and as a criterion for Nernstian behaviour. Hence, a fast one-electron 

process exhibits a ∆Ep of about 59 mV and such value maintains constant with scan 

rate. Thus for reversible electrochemical reaction, both the cathodic and anodic peak 

potentials are independent of scan rate. It must be noted though, that in practice, a 

value of 59 mV ∆Ep is indeed very difficult to attain, because of small distortions 

caused by solution resistance, so an error variable of about 10-15 mV is still regarded 

as acceptable.  

 

 

Unlike, the electrochemical behaviour for reversible redox processes, in “non-ideal” 

redox processes, such as irreversible and quasi-reversible processes, in which the 

electron transfer is slow, or coupled with a chemical reaction, a very different 

situation presents itself.  Such processes are actually of greatest chemical interest and 

for which the investigative ingenuity of cyclic voltammetry is most valuable.  

 

In terms of irreversible, electrochemical processes in particular (those with sluggish 

electron exchange), in general, the commonality is that the rate of the electron 

transfer is lower than the rate of the mass transport. One of the eminent characteristics 

features of irreversible processes is that individual peaks are smaller in size and are 

widely separated from each other (Figure 3A.3, curve A). In fact, in many cases, the 

separation between the forward- and reverse peak is so large that the reverse peak is 

undetected.  This essentially happens, because the forward peak, compared to its 

standard thermodynamic potential, is located at potentials more negative than if it 

were a reversible reaction. Moreover, the forward peak potential, Ep,f  shifts with scan 

rate, such that for reduction processes,  the shifting will be toward more cathodic 
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values. At 25 ºC (298 K), the shift is approximately   
   

⁄  mV for a tenfold 

increase of the scan rate. Overall, the precise dependence of peak potential (Ep) on 

scan rate, , is expressed by: 

 Ep = Eº ― 
  

      
 [ 0.78 ― ln

  

    + ln
       

  


½] 3A.8 

where α is the transfer coefficient and na is the number of electrons involved in the 

charge-transfer step. Thus, Ep occurs at potentials higher than the standard 

thermodynamic potential (Eº), with the overpotential is related to the heterogeneous 

standard rate constant, kº, and the transfer coefficient, α. However, independent of the 

value of kº, an appropriate change in scan rate, can compensate for the displacement 

in peak potential. Also noteworthy, is that if the half-peak potential (Ep/2) is the value 

at half-height peak current, Ip/2, it holds that at 25 ºC: 

 Ep ― Ep/2 = 
         

       
 = 

  

     
 (in mV) 3A.9 

Thus, as observed in equation 3A.9, at 25 ºC, the peak potential and the half-peak 

potential will differ by a magnitude 48/αn mV. This essentially means that the 

voltammogram becomes more drawn-out as αn increases. With regard to the peak 

current on the other hand, given by: 

                                
         3A.10 

it is still proportional to the concentration, but will be lower in magnitude, with the 

actual peak current height depending on the value of the α (since the relationship 

shown in equation 3A.10 shows that Ip depends on the square root of α). In this 

regard, assuming a value of 0.5 for α, the peak current for an irreversible process has 

a magnitude of about 78-80% of the peak for a reversible one, which amounts to a 

ratio of reversible-to-irreversible current peaks of approximately 1.25-1.27. Another 

noteworthy aspect with regard to the peak current for irreversible processes includes 

the fact that no current ratio for Ip,r/Ip,f exists. In this respect, however, it must also be 

taken into account that the lack of any reverse response is not sufficient to 

conclusively diagnose an electrochemically irreversible step, since the presence of 
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chemical reactions involving the electrogenerated species can attenuate the reverse 

response. 

 

 

Figure 3A.3 Cyclic voltammograms for irreversible (curve A) and quasi-

reversible (curve B) redox processes. 

 

The other foreseeable type of redox electron transfer process, the quasi-reversible 

reaction, involves processes in the transition zone between reversible and irreversible 

behaviour. In such reactions, the shape of the cyclic voltammogram is a function of  

kº/√aD (where a = nF/RT)  thus as kº/√aD increases (i.e., at very fast scan 

rates), the system potrays irreversible behaviour. Therefore, in such reactions, it is not 

uncommon that at low scan rates, the redox couple exhibits reversible electron 

transfer behaviour, whereas at high scan rates the process behaves irreversibly. 

Generally, quasi-reversible systems, occurs when the rate of the electron transfer (of 

the redox reaction) is of the same order of magnitude as the mass transport and as 

such, consequently, the current is controlled by both the charge transfer and the mass 

transport. Another point also noteworthy is that it is commonly assumed that an 
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electron transfer behaves quasi-reversibly when the standard rate constant lies within 

the values expressed as a function of the highest and lowest scan rates , i.e.:  

 3 x 10
-3

   ½  kº  2 x 10
-7

 ∙ 
½
 

where kº is expressed in m s
-1

 and  in V s
-1

. From a more practical perspective, one 

of the most eminent readily observable aspects of a quasi-reversible redox reaction is 

the separation between the forward and reverse peaks (i.e., Ep)  which in this 

case, is much greater than that of a reversible process. Moreover, the peak height is 

not directly proportional to 
½. Also noteworthy is that the peak shapes and peak-to-

peak separation (Ep) depend, through a complex mathematical function  (known 

as the rate parameter), on α, kº and: 

   =  
  

 
        

   
  

 3A.11 

The above relation holds under the assumption that α = 0.5; DOx = DRed = D. 

Considering the latter and aforementioned aspects, it becomes evident that for 

diagnostic characterisation of a quasi-reversible process, the parameters of relevance 

includes the thermodynamic parameter Eº, and the kinetic parameters α and kº. In 

this regard, the parameter Eº can be efficiently calculated as the average between the 

forward and reverse peaks, given that 0.3 < α < 0.7; whereas kº can be calculated if 

both D and α are known. In this regard, α is generally assumed to be approximately 

0.5, however, one can also roughly evaluate the value of α by taking into account the 

effect of α on the shape of the cyclic voltammogram: 

 For the case of α > 0.5, the forward peak is sharper than the reverse peak, and 

as such, Ip,f > Ip.r; 

 For α < 0.5, the opposite is evident  

Other noteworthy factors with regard to the potential and current which are also of 

significance in qausi-reversible processes include the following:  

 The forward peak (Ep,f) shifts with , i.e., toward more negative Ep values for 

reduction process; 

 At 25 ºC, the peak-to-peak potential difference is higher than 59.0/n, of which 

the difference become much more prominent with increasing ; 
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 The forward peak current Ip,f increases with ½, but the dependence may not 

be linear. 

 The current ratio Ip,f/Ip,r equals 1 only if α = 0.5. Otherwise, if  

 

To sum up the aspects of reversibility, irreversibilility and quasi reversibility, Table 

3.2 highlights the important aspects that may be applied as diagnostic tools for the 

correct classification of electrochemical reactions during experimental investigations.  

 

Table3.2 Summary of diagnostic criteria for electrochemical reversibility, 

irreversibility and quasi-reversibility of a redox couple, obtainable 

from cyclic voltammetric investigation 

  

Property Reversible Quasi-

Reversible 

Irreversible 

For Diffusion Controlled processes 

Properties 

of the 

Potential 

∆Ep =    ⁄  for 

an n-electron 

couple 

Peak potential, 

Ep,c and Ep,a are 

independent of  ν 

Peak-to-Peak 

separation, ∆Ep is 

independent of ν;  

plot of ∆Ep vs ν  

= linear 

E
0

 = (Ep,a + 

Ep,c)/2 

Ep varies with  

Ep ≠ 57.0/n mV 

(departure from 

59/n becomes 

very significant at 

higher ) 

Ep,f varies 

with  

Properties 

of the 

Current 

Ipc = Ipa 

Ip is proportional 

to ν
½ 

; plot of Ip 

vs ν
½
 = linear 

Ipa/Ipc = 1 
 

Ip,f increases with 

ν
½
 , but the 

dependence may 

be non-linear; 

Ip,r/Ip,f = 1 only if 

α < 0.5 

(otherwise, if α > 

0.5: Ip,r/Ip,f < 1; if 

α < 0.5: Ip,r/Ip,f >1 

plot of Ip 

vs ν
½
 = 

linear; 

Ipa/Ipc  Ip,a 

or Ip,c (no 

current 

ratio of  

Ipa/Ipc exist) 
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So far, the application of cyclic voltammetry was discussed with respect to 

the response of diffusive solution systems. However, the explorative diagnostic 

ability of cyclic voltammetry can also be used to investigate redox processes for 

electron transfer across the electrode/film interface involving (electroactive) 

species/molecules adsorbed onto, or confined to a thin layer close to the electrode 

surface. For such redox-active interfacial supramolecular assemblies, a distinctly 

different observable electrochemical behaviour is exhibited. Firstly, for such 

confinement/immobilization of electroactive species, the redox-active material 

normally does not have to diffuse to or from the electrode surface, which 

concomitantly leads to changes in the shape of the cyclic voltammograms, i.e., peaks 

are more Gaussian in shape. Moreover, the separation between the peak potentials is 

also much smaller than expected for solution-phase processes, which become more 

evident at slow scan rates where the species is exhaustively oxidized or reduced. In 

fact, ideal Nernstian behaviour of surface-confined non-reacting species (species with 

no lateral interaction between redox centres, or in which interactions are independent 

of surface coverage), is characterised by symmetrical voltammetric peaks (see Figure 

3A.4), with an ideal peak-to-peak potential difference of zero (Ep = 0). Moreover, 

the peak current is directly proportional to the potential scan rate (), as shown in the 

following relation: 

 

  Ip = 
     

   
 AΓ 3A.12 

where n, F, R and T has its usual meanings, A is the area of the electrode and Γ is the 

surface coverage or concentration of the redox active molecule (in mol cm
2

). If one 

recalls from aforementioned sections, that Nernstian behaviour of diffusing species 

yields a 
½
 dependence. Conversely, as shown in Equation 3A.12, surface confined 

species exhibits a linear scan rate dependence () and not 
½
. Also noteworthy, as 

shown in the relation exhibited by the above equation, is the fact that the peak current 

is directly proportional to the surface coverage. Moreover, the area under the peak 

corresponds to the charge associated with the reduction of the adsorbed species and in 
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this regard, the surface coverage and the quantity of charge consumed during 

reduction or adsorption of the adsorbed/confined layer is related in a very useful 

equation: 

  Q = nFAΓ 3A.13 

In effect, the above relation shows that by measuring the Faradaic current passed 

during exhaustive electrolysis of the adsorbed/surface confined layer, the surface 

coverage of the latter can be determined, which in turn, can be used to calculate the 

area occupied by the adsorbed molecule. From a practical perspective, this may be 

done through slow scan rate voltammetry, or by using bulk electrolysis with 

chronocoulometry. Overall, essentially, this can be used to calculate the area 

occupied by the adsorbed species. Generally, for a species exhibiting an ideal 

Nernstian  behaviour, in which there are no lateral interaction between redox centres, 

or where interactions are independent of surface coverage, the surface confined 

species will commonly adhere to the following relationships: 

 FWHM = 3.53 
  

   
 = 

    

 
 mV, 3A.14 

   Ep,a = Ep,c 3A.15 

  

where FWHM is the full width at half maximum of the cathodic or anodic wave. On a 

final note, ideally, for species exhibiting the relations described by Equations 3A.12 

– 3A.15, the type of adsorption of the adsorbed redox active species can be described 

by the Langmuir isotherm: 

 Γ = Γm (
  

    
)  3A.16  
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Figure 3A.4 Ideal cyclic voltammatric behaviour for reduction and oxidation of 

adsorbed/surface confined species. The surface coverage, Γ, can be obtained from the 

area under the peak 

 

 

 

 

3A.2.1.1.2 Aspects of chemical reactions coupled to electron transfer 

 

As mentioned in preceding sections, heterogeneous electron transfer 

processes in voltammetric reactions can be quite complex due to the common 

occurrence of homogenous preceding or following chemical reactions. The presence 

of such reactions will concomitantly affect the shape of the cyclic voltammograms, 

and thus will inevitably appreciably perturb the diagnostic investigations for electron 

transfer processes. In this regard, the chemical complications are categorized as: 
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 Preceding (the electron transfer) chemical reactions 

 Following (the electron transfer) chemical reactions 

With regard to specific classifications, these reactions may be catalytic or just 

coupled homogeneous chemical reactions. A specific example, with reference to 

catalytically coupled chemical reactions in CYP450-based electrochemical 

investigations in particular, the reduced product formed from the forward scan are 

normally, in the presence of oxygen, used up in very fast follow-up chemical 

reaction, hence the lack of the reverse scan, particularly evident at low scan rates. 

Indeed there are many aspects to consider in evaluating such reactions, however, that 

will not be further elaborated on at this stage. For more information regarding this 

subjects areas, the listed textbooks may be consulted [91-92].   

 

 

3A.2.1.2 Pulsed Voltammetric Techniques 
 

From a general perspective, in terms of the analytical sensitivity in 

classical cyclic voltammetry, detection limits can go down to approximately 10
-5

 mol 

dm
-3

 concentration level. However, at very low concentrations of analyte, the current 

perturbation caused by double layer effects or other non-Faradaic sources induces a 

substantial compromise in the accuracy. As an example, consider the case of electron 

transfer processes in cyclic voltammetry complicated by consecutive electron transfer 

process, with the electrode potentials separated by < 100 mV  the resulting 

overlapping peak systems are very difficult to be resolved in order to obtain the 

precise formal electrode potential for each step. Moreover, during the study of 

catalytic electrochemical experiments, in which electron transfer processes are 

complicated by follow-up chemical interactions, a more accurate measure of 

electrode potential with preferably lower signal-to-noise ratio is required. In the latter 

and aforementioned cases, it is convenient to make use of pulsed techniques. These 

methods all ‘accentuate/amplify’ the Faradaic current, while greatly minimizing the 

 

 

 

 



 Chapter 5   Variables of investigation and general protocols  

 

110 

 

capacitive (charging) current. This is essentially achieved by applying a sequence of 

potential steps to the working electrode which enables the experimenter to exploit the 

variation in decaying rate of Faradaic current as opposed to the charging capacitive 

current. In this regard, after the potential is stepped, the charging current decays 

rapidly (exponentially with time) to a negligible value, while the Faradaic current 

decays rather slowly. Thus, after triggering the electron transfer by potential 

application across the working electrode, and sampling the current late in the pulse 

life, effectively discriminates against the charging current, and as such, the observed 

current is by-and-large Faradaic. 

Overall, in this regard, the two techniques which are particularly useful and also as 

pertaining to the scope of the dissertation include: 

 Square-wave voltammetry  

 Differential pulse voltammetry 

 

 

3A.2.1.2.1 Square-Wave Voltammetry (SWV) 

 

Square wave voltammetry is originally invented by Ramaley and Krause 

and subsequently extensively further developed by Osteryoung and co-workers into 

the modern analytical tool which is often regarded more popular than normal- or 

differential pulse voltammetry. In fact, the technique itself can be viewed as a 

synergistic combination of the best aspects of several pulse voltammetric techniques, 

including background discrimination and superior sensitivity of differential pulse 

voltammetry, the diagnostic competence of  normal pulse voltammetry and the 

capability of direct interrogation of products in the same manner as reverse pulse 

voltammetry, hence the popularity of the method. 

 

Essentially, SWV is a large-amplitude differential technique, developed through the 

combination of the high-amplitude, high frequency square wave with the fast 
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staircase waveform, and by making use of computer-controlled electroanalytical 

instrument in preference to analogue hardware. With regard to practical aspects, it is 

normally applied to a stationary electrode, and involves the application of a potential 

waveform to the working electrode. In particular, the waveform composed of a 

symmetrical square wave, superimposed on a base staircase potential, is applied to 

the working electrode. With respect to the interpretation of results, it is best to 

consider the waveform as consisting of a staircase scan, of which each tread is 

superimposed by a symmetrical double pulse, one in the forward direction and one in 

the reverse. In general, the principle parameters associated with a square wave 

include a pulse height, Ep, which is measured with respect to the corresponding 

tread of the staircase, and the pulse width, tp. The pulse width can also be expressed 

in terms of the square wave frequency, f  = 1/2tp. The scan rate v = Es/2tp = fEs, 

which is based on the fact that the staircase shifts by Es at the start of each cycle. 

Figure 3A.5 exhibits the waveform and measurement scheme, including the principle 

parameters, for square wave voltammetry. 
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Figure 3A.5 Time-potential waveform profile for square wave voltammetry. 

Showing initial potential, Ei; pulse height (amplitude), Ep; step height, Esh; pulse 

width, tp (also known as square wave period), forward current- and reverse current 

sample. 

 

From Figure 3A.5, one can see distinguish a number of important parameters. Firstly, 

the square wave scan begins at an initial potential, Ei, which is applied for a 

subjective time to initialize the system. Another significant parameter is the pulse 

height/amplitude, Ep, which is measured with respect to the corresponding tread of 

the staircase, as well as the pulse width/square wave period, tp. During each square 

wave cycle, the current is sampled twice, i.e., at the end of the forward pulse (at tf) 

and at the end of the reverse pulse (at tR).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3A.6 Typical square wave voltammogram exhibiting reversible electrochemistry 
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3A.2.1.2.2 Differential Pulse Voltammetry (DPV) 

 

In DPV a succession of pulses of fixed magnitude, which is superimposed 

on a linear potential ramp, are applied to a working electrode. Here, the current is 

monitored (sampled) twice per drop, i.e.: The first sample is taken just before the rise 

in potential, at the beginning of the pulse, whereas the second sample is taken late in 

the current pulse life just before it decreases back to the baseline (when the charging 

current is decayed). The difference between these two currents, which is 

instrumentally subtracted, is thus essentially ΔIpulse. The differential pulse 

voltammogram is then subsequently plotted as a current vs potential graph. A 

noteworthy factor to also add, is that since the difference between the Faradaic 

components of the two current samples is usually negligible, in practice ΔIpulse is zero, 

unless a legitimate redox activity occurs. From a practical perspective, during 

investigations involving DPV, the important parameters include:  

 the pulse amplitude (ΔEpulse), which is the magnitude (height) of the applied 

potential pulse; 

 the pulse width, which is the time duration (in ms) in which the pulse is 

maintained; 

 the sample width, which corresponds to the time (in ms) at which the current 

is measured after the application of the potential pulse; 

 the pulse period, which is the time required to complete one cycle of variation 

of potential.  
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Figure 3A.7 Potential wave form and time-dependence of applied potential in 

differential pulse voltammetry   

 

 

3A.3  Practical considerations 

 

3A.3.1  Voltammetric investigations: Instrumentation and general practical 

requirements 

 

From a general perspective, the basic requirements for the conduction of a 

voltammetric electrochemical investigation include an electrochemical cell – fully 

equipped with a three-electrode system, a voltammetric analyzer (consisting of a 

potentiostatic circuitry, including a voltage ramp generator), while the other 

component is an X-Y-t recorder/plotter (X-Y: for current-potential measurements and 

X-t: for current-time/concentration measurements). Also noteworthy is the fact that 

the complete system should be kept in a location that is free from disturbing 

vibrations and drastic fluctuations in temperature, since these aspects can 

substantially influence the obtained results. 
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3A.3.1.1 The electrochemical cell 
 

Generally, voltammetric experimental investigations are commonly 

conducted in a glass electrochemical cell, equipped with a three electrode system. A 

typical electrochemical cell is exhibited in Figure 3A.8. The general volume capacity 

of such cells range from 5 to 50 mL and it is usually fitted with a teflon cover, 

equipped with o-ring adaptors to hold the three electrodes, which includes the 

working electrode (WE), the reference electrode (RE) and the counter electrode (CE) 

(or auxiliary electrode). In this regard, the WE is the electrode that is usually 

modified with the appropriately chosen interfacial enhancers and is the electrode at 

which the reaction of interest occurs. Various materials can be used as working 

electrodes, and based on origin, these may be metals, carbonaceous materials, 

semiconductors and organic conducting salts. With regard to the scope of this 

dissertation, carbonaceous WE was used. In particular, glassy carbon WE was used, 

the characteristics of which will be elaborated on in more details in subsequent 

section. The RE consist of an inner solution of constant composition of both forms of 

its redox couple and as such, is resistant against potential changes which enables it to 

provide a stable and reproducible potential, independent of sample composition. 

Common reference electrodes are saturated calomel (Hg/Hg2Cl2) and silver-silver 

chloride (Ag/AgCl) electrodes, of which the latter was used in this dissertation.  With 

regard to the counter electrode on the other hand, an inert conducting material, 

usually a platinum wire is used. During the performance of the actual voltammetric 

experiments, these electrodes are immersed in the solvent and supporting electrolyte. 

In addition to this, depending on the type of voltammetric experiment, the solution 

may be quiescent, or may require stirring, for which a stirrer bar is included in the 

cell. Moreover, the tube used for bubbling the inert deoxygenating gas is also 

supported in the holes of the teflon cover. 
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Figure 3A.8 A typical electrochemical cell used during a routine 

electrochemical investigation 

 

 

The relative positions of the electrodes are important and should be payed close 

attention, while their connection to the electrochemical analyzer should also be 

closely monitored. Also noteworthy is the fact that in techniques where the potential 

for high background currents exist, such as chronoamperometry and bulk electrolysis, 

the CE can be separated in a glass-frit, in order to alleviate interference by 

electrolysis products.  
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3A.3.1.2  Solvents and supporting electrolytes  
 

Akin to common chemical reactions, the electrolytic medium, which is 

generally constituted by the solvent and the supporting electrolyte, plays a pivotal 

role in the success of an electrochemical measurement [93-94]. In this regard, the 

choice of solvent in particular is limited by a combination of prerequisites to 

adequately facilitate the heterogeneous electron transfer to and from the electrode and 

solution. In this regard, the solvent should not react with the analyte and should not 

undergo electrochemical reactions over a wide potential range, but should be 

adequately electrically conductive. to dissolve the analyte under study, but to be 

chemically inert with respect to it. Other requirements with respect to the solvent 

include the following: 

 to dissolve considerably high amounts of supporting electrolyte, with the 

overall aim of  improving the electrical conductivity of the electrolyte 

solution, while concomitantly reducing its resistance; 

 impurities which have the potential to interact with the analyte under study or 

interfere with the electrochemical process must be easily removable and as 

such, the solvent should be easily purified; 

 since enzyme-based modified electrodes are very sensitive and susceptible to 

fouling, the solvent should not process any toxic constituents. 

Generally, water is the most common solvent used, but, depending on the specific 

requirements of the electrochemical investigation, non-aqueous media may also be 

used. As for the supporting electrolyte on the other hand, overall, its presence in 

controlled-potential electrochemical investigations are required to decrease the 

resistance of the solution, to attenuate electro-migration effects and to maintain a 

constant ionic strength. It is important that the concentration of the supporting 

electrolyte is sufficiently high, so as to “swamp out” the effect of variable amounts 

of naturally occurring electrolyte (migration effects). In this regard, the usual 

concentration is 0.05  1.0 M, in other words in excess of the concentration of all 
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electroactive species. In terms of specific constituents, the inert supporting 

electrolyte may an inorganic salt, a mineral acid, or a buffer system, of which the 

latter is used when a pH control is essential. With regard to the current dissertation, 

with specific reference to the sensitive nature of the biologically based recognition 

component, all supporting electrolytes were prepared with phosphate buffer 

systems, prepared at predetermined pH of 7.4.  

 

 

3A.3.1.3 Conditions for requirement of oxygen removal  
 

From a general perspective molecular oxygen (dioxygen, O2) is chemically 

reactive with numerous substances, but more importantly, during electrochemical 

experiments, at cathodic potentials, O2 is electrochemically reducible. This can be 

highly problematic, since the reduction of O2 can result in series of electroactive 

intermediary products which of course could have dramatic effects on the electrode 

reaction being studied. In a more descriptive context, a detailed outline of the possible 

electrochemically base reactions and intermediates is subsequently discussed:  

 

The ground state of molecular oxygen (O2, 
3
g


) has two unpaired electrons in 

degenerate 2g orbitals. Essentially, atmospheric dioxygen dissolves in water to a 

concentration of approximately 1 x 10
-3

 M. Thus in un-degassed supporting 

electrolyte solution, at sufficiently cathodic potentials, the dioxygen will be reduced 

by the electron transfer process, the effect of which can, via reduction, hydrolysis and 

disproportionation steps, result in the formation of a series of intermediate basic 

dioxygen and monooxygen species, that may take up one or two hydronium ions 

(H3O
+
) from the electrolyte media (O2


, HOO


, H2O2, HOO


, HO


, H2O, HO


). With 

regard to the overall general significance on electrochemical and electrocatalysis 

investigations in particular, the formation of hydrogen peroxide and water is the 

important branching points. Considering  the two main branching points in the overall 
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reduction of oxygen, the formation of H2O2 and H2O proceeds via two well-separated 

two-electron steps, respectively. The first step corresponds to the formation of 

hydrogen peroxide: 

 O2 + 2H
+
 + 2e  H2O2 3A.18 

The hydrogen peroxide formed above is essentially also electroactive and thus a 

second reduction step occurs: 

 H2O2 + 2H
+
 + 2e  2H2O 3A.19 

Thus overall, since electrons are being consumed here, the associated non-Faradaic 

current can result in large background current accruing from this stepwise oxygen 

reduction, and will in effect interfere with the measurement of many reducible 

analytes. Moreover, the products of the oxygen reduction can affect the 

electrochemical process being investigated. Considering these aspects, during 

investigation of the electrochemical behaviour of a redox process, ideally, oxygen has 

to be removed/excluded, which can be done through degassing with an appropriate 

inert gas prior to the experiment, while a blanket of gas should also be maintained 

atop the solution during the experiment. 

 

At this stage, it should also be said that in cases where the presence of dioxygen is 

essential, such as during normal electrocatalysis studies, particularly with regard to 

CYP450-based platforms, the possible formation and interference of reactive oxygen 

species can be limited/avoided by working at a lower operating potential and/or 

working under conditions of low oxygen tension. Moreover, in reagentless mediated 

biosensor platforms, most reduced mediating species poses the potential of reacting 

with oxygen resulting in the formation of H2O2 through dismutation of superoxide, so 

care has to be taken in this regard also.   
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3A.3.1.4 Working electrodes  
 

Essentially, the working electrode (WE) is the electrode where the redox 

reaction of electroactive species takes place and where the charge transfer occurs. In 

this regard, from a practical perspective, the electrochemical performance aspects are 

influenced by the characteristics of the WE. In this context, the ideal WE should 

operate at a wide potential window, provide a high signal-to-noise ratio; confer low 

resistance and adequate conductivity, while also yielding a reproducible response. 

Generally, several types of materials can be used as WE, of which the most popular 

are those involving mercury, carbon, or noble metals (especially platinum and gold). 

A significant factor to consider during application of a solid WE is the dependence of 

the response on the surface state of the electrode. Therefore, appropriately, the 

application of these electrodes requires specialized pretreatment and polishing 

procedures to obtain reproducible results. The nature of the pretreatment protocol is 

highly dependent on the type of electrode material involved. To this end, mechanical 

polishing (to a smooth mirror-like finish) and potential cycling are common effectors, 

while various thermal, chemical, or electrochemical protocol steps may be added for 

activating surfaces. In this regard, carbon-based surfaces benefit especially from 

specific ‘activating’ pretreatment steps. While on the subject of carbon-based 

electrodes, amongst available ones, the glassy carbon electrode is the most popular 

and in the context of this dissertation, is the electrode used for all electrochemical 

investigations and prepared platforms.  

 

 

3A.3.1.4.1 Glassy carbon electrodes 

 

Glassy carbon  (GC), as does all other carbon electrode material, share the 

basic structure of a six-membered aromatic ring sp
2
 bonding. In its full description, 

GC is also called vitreous carbon and is a popular choice for WE based on its wide 
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potential window, chemical inertness, as well as providing a  relatively reproducible 

performance. With regard to the specific structure of GCEs, it consist thin, tangled 

ribbons of cross-linked graphite-like sheets. With regard to the actual use of GCEs, 

usually a surface pre-treatment is employed, mainly functioning to activate the 

electrode surface group, while also enhancing their analytical performance. In this 

regard, the most basic step of course involves polishing procedures. However, 

additional steps, have also been used to enhance performance factors.   

 

 

 

3A.3.2  Human cytochrome P450 genetic engineering: Important theoretical 

pre-emptive and research design considerations 

 

3A.3.2.1  Foreword 
 

Based on the fact that a significant part  of the success of the research 

investigation exhibited and discussed in this dissertation centred around 

understanding and physically applying the intricate process of preparing a 

catalytically active enzyme-based biorecognition source for the purpose of 

conducting successful experimental protocols, it is only appropriate to enlighten  the 

reader’s understanding with regard to this subject. This subject matter is particularly 

important to get a complete grasp of the experimental aspects and results 

interpretation of Chapter 5B, since the recognition component for these biosensors 

were prepared ‘locally’ by the author and not sourced from commercial domains, as 

in the case of recognition component used in Chapter 4 .  

 

  

3A.3.2.2 The road to getting started: Important considerations 
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As emphasized in Chapter 1, for the study of enzyme-drug interactions 

and drug metabolic profiling investigations with cytochrome P450 enzymes and/or 

CYP3A4 in particular, a viable catalytically active enzyme source is a prerequisite. 

As already stated, these sources can be either cell cultured and tissue-based systems, 

liver microsomal systems, or genetically manipulated recombinant systems, 

expressing single CYP isoenzymes. In both the case of liver microsomal fractions and 

cell/tissue-based systems, the enzymes sources are directly obtained from human 

origin, and as such, are part of complex systems, which may contain other 

isoenzymes, native electron transfer mediator complex components, and these 

isoenzymes are largely bound to cell membranes, which, for the purpose of 

bioelectrochemical studies, makes the systems essentially difficult to use, since the 

study of a particular isoenzyme’s specificity for substrates, kinetic parameters for 

reaction and possible means of regulation, preferentially requires the isolation of the 

isoezyme. This would require extensive purification procedures, which involves 

disruption of the cell membranes, and other biochemical procedures, such as column 

chromatography, etc., of which these procedures are highly time-consuming, and 

expensive, while the isolated isoenzyme may be inactive in the absence of 

phospholipids or detergent and as such, catalytic reconstitution systems would need 

to contain all such additional components [95], particularly in the case of CYP3A4. 

Moreover these sources are highly sensitive and decay rapidly, which means that 

fresh supplies would have to be sourced very regularly an human liver 

tissues/fraction/slices are not always readily available. In addition to this, many of the 

isoenzymes within a family,  share extensive homology with each other in their 

amino acid sequence identity, some of which have been shown up to 97%, and as 

such, their substrate selectivities overlap considerably [96], which means that 

additional methods of analysis would be required for the interpretation of the results 

in terms of one particular isoenzyme (more on this particular subject is elaborated in 

Chapter 1). 
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For the purpose of electrochemically-based, biosensor-type, enzyme-modified 

electrodes for drug metabolism studies in particular though, where the focus usually 

is on the study and investigation of the interaction of selected drug(s) with a single 

biorecognition component, hosted within appropriate interfacial carrier matrix, it is 

essential that prepared enzyme constructs be purified and isolated, rather than mixed 

enzyme-constructs or crude preparations, molecular impurities and/or other 

‘unwanted’ (electrochemically active) species will interfere with electron transfer and 

catalytic activity. This may occur by preferencial non-specific binding of impurities 

and/or blocking and fouling the modified electrode, or inadvertently leading to false 

signals which complicates the analysis and interpretation of the observed 

voltammetric result output. For this purpose, genetically engineered, recombinant 

CYP450 construct systems are highly recommended, since such methods can 

generate sufficient quantities of highly purified enzyme preparations, without 

compromising selectivity or activity. Moreover, and perhaps more importantly, these 

enzymes can be  prepared as the heme-domain and surrounding protein, without the 

inclusion of the native electron transfer mediator complex (CPR: NADPH 

cytochrome P450 oxidoreductase) fused to the enzyme, which for the scope of the 

dissertation is absolutely necessary, since the purpose is using the modified electrode, 

with appropriately chosen interfacial enhancers as electron transfer donor, rather than 

the native CPR electron transfer donor system.   

 

 

 

3A.3.2.3  Practical research design aspects and considerations for genetic 

engineering: cloning, purification and expression 
 

From a very broad perspective, protein genetic engineering is generally 

understood to involve the use of site-directed or random mutagenesis to alter the 

properties of a protein or enzyme. In this regard, in terms of the scope of this 
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dissertation, the definition may be extended and tailored to encompass the 

modification of the N-terminal membrane anchor and fusion tagging of recombinant 

cytochrome P450 3A4 to facilitate over expression for the investigation of protein 

targeting with respect to enzyme- substrate interaction [97].  

 

Generally, all human microsomal P450s are essentially membrane bound, unlike their 

bacterial and mitochondrial counterparts, who are soluble and thus confounded to the 

cytosol. In general, the expression of recombinant  (human) full length, wild type 

CYP3A4 in particular, is quite a difficult endeavour, because the enzyme’s 

complicated structural and catalytic requirements, based on its membrane-bound 

nature  causes a combination of constricts. In this regard, firstly, a full length wild 

type CYP3A4 usually expresses at very low levels coupled with equally low activity; 

secondly, when considering the highly hydrophobic character of the enzyme, the host 

cell would require cellular organelles, because the enzyme is essentially membrane-

bound and would preferentially be confounded to the endoplasmic reticulum of the 

host cell. Also important, is the requirement of additional monomerisation methods 

and reagents during application of the prepared enzyme, due to its aggregation prone 

nature. On the other hand, research has shown that CYP3A4 and other microsomal 

P450s contain a sequence of 15-25 amino acids spanning across the N-terminus, 

which provide the major hydrophobic interaction with the endoplasmic reticulum, 

and in this regard, this stretch of amino acids are the major determinant of the 

enzyme’s membrane binding nature. Moreover, and perhaps more importantly, it was 

determined that this particular region does not play an active role the catalytic 

activity, substrate interaction, or electron-donor interaction of the enzyme, and as 

such, its modification holds no potential for damage to the enzyme. The significance 

of latter and aforementioned aspects, are that during preparation of recombinant 

CYP3A4, specific manipulations to this particular region has enabled  the evolution 

of innovative techniques, based on site-directed genetic manipulation, which 

significantly enhanced the preparation of soluble, heterologously expressed enzyme 

constructs that are catalytically active. These methods can include either the 
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truncation of the N-terminal membrane anchor domain, or N-terminal sequence 

modifications, or complete removal of the hydrophobic N-terminal anchors sequence.  

 

 

 

In terms of the practical aspects of the genetic preparation of recombinant CYP3A4 in 

particular, with the overall aim being the preparation of an N-terminally modified 

CYP3A4 construct (nCYP3A4)  the experimental protocol followed should 

provide the highest soluble protein expression, and in this regard  a number of   

requirements and factors needs to be considered and addressed, in order to have a 

successful expression and purification process. These include the following: 

  

 The type of host and the particular host strain which will be used for the 

heterologous expression of the enzyme. Available hosts, which can be used 

include Escherichia coli (E coli), yeast, mammalian cells and insect cells, of 

which, based on financial, time, user friendliness and potential for increased 

protein yield considerations, E-coli are the preferred expression host, of which 

available strains may be. With regard to the particular E-coli strain,  the D5α 

and JM109 strains are known for their increased insert stability and good yield 

and as such, more popular choices.    

 Choosing and obtaining the host (parent) expression vector, with plasmids 

containing the amplified cDNA (complimentary DNA) of the particular 

isoenzyme, as well as promoter elements. Moreover, coding sequences for any 

additional fusion tag components are also cloned into these vectors, and 

overall, the prepared vector is then used to initiate the whole heterologous 

enzyme expression process. 

 The choice of co-expressing charged soluble proteins tags, as fusion adducts, 

which functions to further enhance the soluble yield of the genetically 

prepared recombinant construct, by enhancing the protein targeting expression 

to specific cellular or extracellular compartments, and as such increasing the 
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cytosolic (soluble) expression. In this regard, the placement position of the tag 

plays a significant role. Also important, is that the tags should preferably be of 

a small enough nature, as to not interfere with the correct folding of the 

protein during expression, or enzyme-electron donor interactions during 

catalysis application. The most popular tags which may be used in E. coli 

expression systems are NusA (E coli N-utilisation substance protein A), His 

(polyhistidine, usually His6: containing 6 residues), BMP (maltose binding 

protein), GST (glutathione S-transferase). In this regard, his-tag is the 

preferable choice, since in addition to confirring increased solubility to the 

protein, it has reversible binding ability and a considerable affinity for Ni
2+

, of 

which these attributes can be used to simplify the purification step with N
2+

-

affinity chromatography without denaturing the protein.  

 Investigating/evaluating which prefered specific method to choose for 

modification of the N-terminal region. This is an important aspect, since 

without such modification; the N-terminus of the expressed construct will 

target the protein to be anchored into the inner endoplasmic membrane of the 

host cell, with only the active site facing the cytosol. The overall implications 

of this would obviously be at the cost of the soluble yield of the prepared 

enzyme, which defeats the purpose as it pertains to the scope of this 

dissertation.  

 As CYP3A4 and other human CYP450 enzymes also contain hydrophobic 

amino acids at other regions of the protein, distinct from the N-terminal 

domain, such as areas of the catalytic domain, which is distinct from the N-

terminus, addition of other reagents may be added to further increase the 

soluble yield of the prepared construct. In this regard, the use of detergents, 

particularly non-ionic detergents (at a final concentration of 0.1-0.2% (v/v) 

was shown to be of great benefit.  
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3A.3.3 Enzyme kinetics  

 

Generally, enzymes may be regarded as biological catalysts. In effect, they 

possess active sites that function to bind to the substrate, which essentially leads to 

the catalytic production of product, P. In this regard, enzymes are able to act on 

substrates and produce product with the overall effect of lowering the activation 

energy required for product formation. In a more descriptive context, the theory 

behind enzyme catalysis are all based on the pioneering work of Michaelis and 

Menten, postulated the formation of the enzyme-substrate complex (ES), based on 

their studies regarding the substrate concentration dependence of enzyme reactions 

[98-99]. According to the Michaelis Menten (MM) theory, the rate or velocity () of 

catalysis by enzymes varies with substrate concentration. In this regard, the velocity 

increases with the increase in substrate concentration up to certain point and then 

becomes constant, thus reaching a maximum velocity Vm, as shown in Figure 3A.9.     

 

 

  

 

   

 

 

 

 

 

 

 

 

 

Figure 3A.9 Initial velocity i as a function of substrate concentration [S] for 

enzyme-catalyzed reaction following MichaelisMenten kinetics. 
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According to  the plot of Vi as a function of [S], the following findings is made: 

 At low values of [S], the initial velocity, Vi, rises in a linear fashion in 

association with increasing [S]. 

 However, as [S] increases, the gains Vi level off (forming what looks like a 

rectangular hyperbola). 

 In this regard, the asymptote represents the maximum velocity of the reaction, 

known as Vmax. 

  The substrate concentration that produce a Vi which is one-half of Vmax is 

designated the MM constant, Km.  

With regard to the Km in particular, it is noteworthy to also add that it is an inverse 

measure of the affinity f strength of binding between the enzyme and its substrate. 

This essentially means that the lower the Km, the greater the affinity (thus, the lower 

the concentration of substrate needed to achieve a given rate). Furthermore, the MM 

model further postulates that the ES is temporary and as such,  can either dissociate 

back to E and S or proceed to form a product, P. The interaction, based on the MM 

model is shown in Scheme 1: 

   

                                         3A.20  

          

The maximum rate (Vmax) will be observed when all the enzyme is in the form of the 

ES complex. The kinetics  of the reaction shown in Scheme 1can then be described 

by the fundamental Michaelis-Menten equation, shown as follows: 

  = 
        

      
                     3A.21  

where ν is the initial rate (moles/time), Vmax is the maximum rate of catalysis, Km is 

the apparent Michaelis-Menten constant and [S] is the substrate concentration.  
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3A.3.3.1 Treatment of data  
 

Due to the difficulty of determining the limiting value of specific 

parameters, such as Km directly from the plot of V vs. [S], the MM equation can be 

rearranged in either of three different ways, to yield a linear graphical representation. 

These are known as the LineweaverBurk equation, the Eadie-Hofstee equation or 

the Hanse equation. In this regard, in the first case, Lineweaver and Burk converted 

the MM equation (3A.22) into straight line form by taking the reciprocals of each 

side of the equation and rearranging terms to obtain:  

 

 
 = 

  

  
 [

 

   
]   

 

  
    3A.22   

 

Thus a plot of 
 


 vs 

 

   
 gives a straghtline with a slope of 

  
  

⁄  and a y-intercept of 

 
  

⁄   

 

 

 

 

 

 

 

 

 

Figure 3A.10 Lineweaver-Burk double reciprocal plot of   ⁄  vs     ⁄  for the 

dependence of enzyme-catalyzed reaction velocity on substrate concentration. 

 

 

 

 

 

 

 

 



 Chapter 5   Variables of investigation and general protocols  

 

130 

 

3A.3.3.2 Enzyme inhibition  
 

Noncovalent binding of inhibitors can reversibly or irreversibly decrease the activity 

of the enzyme.  This is a particularly eminent factor in the case of CYP450 enzymes, 

which are known to have specific compounds that act as inhibitors of these enzymes.  

 

3A.3.5 Biosensor performance aspects  

 

In the context of the overall scope of this dissertation, the investigation of the 

electrochemical behaviour of the fabricated biosensors is the main theme, and as 

such, an important factor is also the evaluation of the biosensor response with respect 

to performance factors. In effect, the evaluated operating parameters may indicate the 

nature of the rate-limiting steps (e.g. transport or reaction factors), and can facilitate 

biosensor optimisation in a given matrix.  In this regard, a list of parameters are 

denoted and described: 

 

3A.3.5.1 Sensor calibration: sensitivity, working and linear concentration 

range, detection determination limits [52, 57] 
 

Calibration of sensor, from a general perspective is usually done by adding standard 

solutions of the analyte (substrate) and by plotting the (steady-state) responses Rrs, 

possibly corrected for a blank (usually referred to as the background) signal Rbl, 

versus the substrate concentration ([S]). The sensitivity and linear concentration range 

of the calibration curves are then determined by plotting the change in concentration 

(Rrs  Rbl) versus [S]. Thus, in this regard, the sensitivity is determined within the 

linear concentration range of the biosensor calibration curve, obtained from the slope 

of the particular linear plot.   
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Electrochemical biosensors normally have an upper limit of the linear concentration 

range, of which this limit is directly related to the biocatalytic or biocomplexing 

properties of the biochemical or biological recognition component. A noteworthy 

aspect in this regard, is that in the case of enzyme-based biosensors that has an 

additional outer-layer films, the linear dynamics may be larger if the sensor response 

if controlled by the diffusion of substrate through the outer membrane and not by the 

enzyme kinetics. Having said that, the compromise for such an extension will 

obviously be at the cost of sensor sensitivity, with the latter showing an associated 

decrease. Nevertheless, still on the subject of the linear concentration range and upper 

limit, the parameters for Michaelis-Menten kinetics can then subsequently be 

determined, of which, as described in Section 3A3.3, the most notable parameters are 

Km and Vmax. In this regard, whe the Km is much larger than its value for soluble 

enzyme, it signifies that either a significant barrier to the diffusion of substrate is 

present between the sample and the reaction layer, or that the rate of reaction of the 

co-substrate with the enzyme is increased.  

 

On a final note, the limit of detection (LOD) is also of significance, where 

determination of this parameter takes into account the blank and the signal 

fluctuation. The exact method used for determination of the LOD in the context of 

this dissertation is shown in the appropriate section in Chapter 3B. 

 

 

3A.3.5.2 Reproducibility, stability and lifetime 
 

Reproducibility may be described as a measure of the scatter or drift in a series of 

results performed over a period of time. The operational stability of the sensor on the 

other hand, can vary significantly, depending on the method of sensor preparation, the 

applied recognition component and the transducer used. Moreover it is also 

dependent on the response rate limiting factor, and furthermore, it may vary 

considerably depending on the operational conditions. In the case of storage stability 
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assessment, the parameters that requires clear distinction when reporting on this 

parameter, is the state of storage, i.e. dry or wet, the atmosphere composition, which 

usually refers to air, or under inert gas (e.g. nitrogen), pH, buffer composition and the 

presence of additives.   

 

 

 

3B General Experimental: Protocols and Methods of Investigation 

 

 

3B.1  Introduction 

 

This chapter gives a succinct, but detailed overview on the following: 

 Materials: Describing sources and preparative methods for all reagents and raw 

materials as pertaining to the context of the dissertation as a whole. 

 Platform(s) modification methods: In this regard, a general flow diagram of the 

design for each biosensor platform used in the overall research investigation of 

this dissertation is given, with particular reference to highlighting the 

differences in overall preparation. A more in-depth description of the 

modification steps in research design of each enzyme-based biosensor platform 

is given at the end of the relevant results chapters. 

 Morphological and structural characterization methods:  Since the techniques 

used in the characterization methods are common to the dissertation as a whole, 

all morphological and structural characterization methods applied are described 

in terms of relevant preparative methods. 

 Voltammetric instrumentation and techniques: All general methods and 

protocols used in voltammetric investigations are described. 
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It is noteworthy to remind the reader that this dissertation reports on results obtained 

from two different enzyme based biosensor platforms (i.e. biosensor platform 1 and 

biosensor platform 2 ), each based on a distinctly unique design protocol – with 

common features being the mediating species and category of enzyme, i.e. 

microsomal mammalian cytochrome P450 3A4 enzyme. In this regard, the methods 

and techniques described in this chapter serves as a general prelude to coincide with 

obtained results in the context in the relevant forthcoming chapters. However, in 

terms of specific step-wise sequential modifications and protocols applied    at the 

end of each of the results chapters (i.e. Chapter 4, Chapter 5A and Chapter 5B) a 

comprehensive description with relevant subsections pertaining to each procedural 

outline is given. 
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3B.2 Materials and reagents 

 

Table 3.1 shows a list of all general materials and reagents used in the 

course of the  research investigations of this dissertation. All reagents were of 

analytical grade: 

 

Table 3B.1 A complete comprehensive list of all materials used during the 

conduction of this PhD research investigation; listed also are sources 

and specific information 

 

Materials/Reagents Source Information Specific Information 

Milli-Q water 

Milli-Pore filter 

system  

Nafion Sigma Aldrich 

Supplied as a 5% (w/v) 

solution in lower 

aliphatic alcohols; 

Equivalent weight = 

1100 g mol
-1

; wet 

density =0.87 g cm
-3

 

Cobalt(III) sepulchrate 

trichloride Sigma Aldrich 95% purity 

Potassium Ferricyanide 

(K3Fe(CN)6) Sigma Aldrich  

Ruthenium(III) hexaamine 

chloride Sigma Aldrich  

2,4-Dichlorophenol   

Potassium dihydrogen 

phospahate (KH2PO4) Sigma Aldrich 

Analytica grade 99.99% 

Purity 

Quantofix hydroperoxo sticks Sigma Aldrich  
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Low melting point Agarose Hispan agar  

Ethanol   

Methanol Merck HPCL grade 

Carbon monoxide Specialty Gases 99% Pur, gas form 

Oxygen Specialty Gases 99+% Pure, gas  

Erythromycin Sigma Aldrich 916 g mg
-1

 

Quinidine hydrochloride 

monohydrate Sigma Aldrich  

Glutaraldehyde Sigma Aldrich 

Supplied as 25% (v/v) 

stock 

Polyvinyl alcohol (PVA)   

Indinavir Crixivan 

Supplied as tablets 

containing 400mg 

indinavir sulphate 

Polyethylene diamine (PEI) Sigma Aldrich  

Eastman AQ (EAQ)-55 Eastman Supplied as pellets 

L-glutamic acid Sigma Aldrich 99.5% 

L-asparagine anhhydrous Sigma Aldrich 99.5%  

Bovine liver catalase Sigma Aldrich  

Full-legth wild type CYP3A4 Merck South Africa  

Glassy Carbon Basi 

Teflon shrouded; 

geometrical area = 

0.071cm
2
 

Reagents and materials for Electrolyte buffer media 

Sodium phosphate buffer 

solution (PBS) 

Na2HPO4, NaH2PO4 H2O (Sigma Alrdich) 

Prepared as 50 mM solution (pH7.4) 

Sodium phosphate buffer saline 

(PBL) 

Na2HPO4, NaH2PO4 H2O Prepared as 50 mM 

solution containing 100 mM KCl (pH 7.4) 

Materials for enzyme expression and purification of N-terminally modified 

CYP34 

CYP3A4  Parent vector 

pBJW102.2 and 

PMD004 UK 

Ampicilin (Amp)   

Glycerol Sigma Aldrich  

-aminolevolunic acid (ALA)   

MgCl2 Sigma Aldrich  

   

Detergents: Igepal CA-3600, 

{3-[(3-

cholamidopropyl)dimethylammoni

o-1-propanesulphonate} (CHAPS), 

Triton X-100   

PD-10 Columns GE Healthcare,  
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USA 

Polyhistidine (His6)  As soluble his tagg 

Ni-TED resin 

Macherey-Nagel, 

Germany  

Centriprep YM-10 columns Millipore, Island  

Milli-Q water   

Zeba column Pierce, USA  

Bovine serum albumin (BSA) Sigma Aldrich  

Bio-Rad protein assay dye Bio-Rad, USA 

Based on Bradford 

assay 

DNase I 

New England 

Biolabs 500 Units supply stock 

Mercapto ethanol  Sigma Aldrich  

Thiamine   

Isopropyl thiogalactose pyranoside 

(IPTG)   

Glycerol stock  

It consist of the E-Coli cells containing the plasmid with 

the enzyme DNA-sequence . (Stored at -80 °C) 

Lysis buffer, pH 7.4 

Constituents:  K2HPO4 & KH2PO4 (20 mM), glycerol 

(20%, v/v), -mercaptoethanol (10 mM) 

Terrific broth Constituents (per litre of solution): K2HPO4 (2.31g) & 

KH2PO4 (12.54g), yeast extract (24g), tryptone (12g), 

glycerol (4 ml) 

Phosphate buffer saline Constituents: Na2HPO4 H2O, KH2PO4, NaCl, KCl 

10 x phosphate buffer 

saline (PBL) pH 7.4  
Constuents: K2HPO4 2H2O (4.3 mM), NaCl (147 mM), 

KCl (2.7 mM), KH2PO4 (1.8 mM)  

Trace elements (per 

100 mL) 
Constuents: FeCl3 6H2O (2.7g), ZnCl 4H2O (0.2g), 

CoCl2 6H2O (0.2g), Na2MoO4 2H2O, CaCl2 2H2O 
(0.13g), H3BO3 (0.05g), CuCl2 6H2O (0.1g), conc. HCl 
(10 ml) 

Luria Bertani media 

(LB) 

Constuents (per 500 mL stock): tryptone (5 g); yeast 

extract (2.5 g); NaCl (2.5 g) 

 

Purified nCYP3A4 

storage buffer: 100 mM 

potassium phosphate 

buffer storage solution 

(KPBST): pH 7.4 

Constituents: K2HPO4 2H2O and KH2PO4 (100 mM); 

20% glycerol (v/v); 0.2 mM EDTA; 1 mM DTT 
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3B.2.2 Solutions 

 

All chemical solutions were prepared using ultra pure water obtained from 

a Milli-Q Water System (Millipore Corp., Bedford, MA, USA). 

 

 

3B.2.2.1 Preparation of electrolyte buffer solutions 
  

All biosensor investigations done throughout the course of the research 

investigaions were conducted in aqueous solutions, with phosphate buffer as 

supporting electrolyte. In this regard, 50 mM sodium phosphate buffer (pH 7.45), 

containing  AnalaR grade Na2HPO4, NaH2PO4 was prepared with milli-Q water. 

These electrolyte buffers, prepared without the addition of the inorganic salt, KCl are 

referred to as phosphate buffer solutions (i.e. PBS). On the other hand, saline 

phosphate buffer solutions, prepared as above, but with the inclusion of 100 mM KCl 

is denoted as PBL.   Generally, all electrochemically-based voltammetric experiments 

conducted with control and enzyme-based biosensors were either conducted in PBL 

or PBS. In this regard, the author specifically specifies the type of electrolyte used 

when describing the various experimental protocols. 

 

 

 

3B2.2.2 Preparation of redox probes 
 

1 mM hexaamine ruthenium(III) chloride working solution was prepared in 

100 mM aqueous KCl solution, by dissolving the appropriate mass in the KCl 

solution in a suitably calibrated volumetric flask. In addition to this, the Ferricyanide 

[K3Fe(CN)6] redox probe was prepared as a 1mM working solution in an aqueous 

KCl solution, by dissolving the appropriate amount in a calibrated volumetric flask 

 

 

 

 

 



 Chapter 5   Variables of investigation and general protocols  

 

138 

 

 

3B.2.2.3 Preparation of working solutions for casting components for 

biosensor platform 1 and biosensor platform 2  
 

3B.2.2.3.1 Preparation of Nafion casting solution 

 

1% nafion solution (v/v) was prepared by diluting the appropriate volume 

of a 5% nafion


 stock [supplied as a 5% solution (w/v) in lower aliphatic alcohols] 

with milli-Q water in a calibrated volumetric flask. The pH of the so prepared nafion 

solution was adjusted to prepare a working solution of pH 7.45. This was done by 

adding approximately 2-3 drops of  a previously prepared pH 12.0  potassium 

phosphate buffer solution (of concentration 100 mM), with intermediate pH 

measurements until the desired pH of 7.45 was obtained. The final nafion solution, 

was then subsequently used for casting. Care was taken not to store the nafion casting 

solutions for long periods, since evaporation of alcohol may change the 

concentration, as well as precipitation reactions that may take place.  

 

 

3B.2.2.3.2  Preparation of electrolyte solution of cobalt(III) sepulchrate 

species for electrodeposition (for preparation of biosensor 

platform 2 ) 

1 mM Cobalt(III) sepulchrate [Co(Sep)
3+

] was prepared as an aqueous 

buffered saline saline solution, by dissolving the appropriate amount of cobalt(III) 

sepulchrate trichloride  in 100 mM potassium phosphate buffer (pH 7.45, containing 

100 mM KCl)  in a calibrated volumetric flask. The prepared electrolyte solution was 

then subsequently used for the formation of the nafion-El-Co(Sep)
3+

 carrier matrix, as 

well as for the preparation of the nCYP3A4-based biosensor platform. 
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3B.2.2.3.3 Preparation of Eastman-AQ casting aqueous dispersion 

A EAQ concentrated aqueous dispersion (15%, w/v) stock was prepared 

according established methods [100-101]. In this regard, stock was prepared by 

treating the appropriate amount of as obtained Eastman-AQ 55 in H2O at 45  °C, 

under vigorous stirring, until a transparent, colourless and homogeneous phase was 

obtained. A 3% EAQ working aqueous dispersion was then subsequently prepared by 

appropriate dilution of the stock. When required, the 3% solution was used for 

casting during biosensor construction, but before use, the aqueous dispersion was 

always sonicated for  at least  20 min, to obtain a smooth consistency for better film 

preparation. 

 

 

 

3B2.2.3.4 Preparation of 1% agarose (w/v)  

 

The preparation for the agarose working solution was done according to 

standard methods [102]. In this regard, 100 mL Milli-Q water was brought to boiling 

point on a temperature controlled hotplate, equipped with an inbuilt magnetic stirrer. 

The appropriate amount of low melting agarose was then weighed out, after which 

the agarose powder was very slowly added to the boiling water. This was done while 

vigorously stirring  the solution, and after all the agarose was added, the solution was 

stirred at the same temperature until complete dissolving of the agarose, at which 

point a solution with a clear consistency was obtained. The formed agarose solution 

was then removed from the heat and stored at 4 C when not in use. It is noteworthy 

to add that working solutions of agarose was strictly only used for a maximum of two 

or three times, after which fresh solutions were prepared. 
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3B.2.2.3.5 Preparation of aqueous poly(vinyl alcohol) solution 

 

A concentrated stock solution of PVA was prepared according to standard 

methods [103]. Milli-Q water was heated to 70 C on a thermostated hotplate, after 

which an appropriate amount of PVA was slowly added to obtain a final stock 

concentration of 25% (w/v). The addition was done with vigorous stirring and the 

stirring was continued until complete dissolution of the PVA, at which time a clear 

colourless solution was obtained. The next step, involved the preparation of the 

working solution of PVA, which was subsequently used in the casting outer-layer 

composite solution preparation. In this regard, a 5% PVA solution in 0.1 M potassium 

phosphate buffer (pH 7.4) was prepared by appropriate dilution of the 25% stock.    

 

 

3B.2.2.3.6 Preparation of aqueous polyethyleneimine solution  

A working solution of PEI was prepared by dissolving 2 g of PEI in 20 mL of 0.1 M 

potassium phosphate buffer solution. The solution was thoroughly mixed and stored 

at room temperature until required.  

 

 

3B.2.2.3.6 Preparation of outer-film polymer blend casting solution for 

biosensor platform 2  (Results and discussion: Chapter 5B)    

 

Equal volumes of the 5% PVA working solution and  the 1% agrs solution 

placed in a pre-heated eppendorf tube and blended together by hand-mixing. The so-

formed solution may be referred to as solution A. Following this, a volume of the 

prepared PEI solution was added to solution A, such that the final ratio of PEI to 
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PVA-Agrs (PEI:PVA-Agrs) was  0.2 : 1. This solution was then subsequently used for 

casting. 

 

 

 

3B.2.2.4.3 Preparation of Indinavir stock and working solutions 

 

1 Capsule of indinavir, as obtained from the manufacturers was opened up 

and placed in a 25 mL volumetric flask, made up to the mark with 50 mM sodium 

phosphate buffer solution. The active ingredient was attracted and undissolved 

components removed by filtering the formed suspension through a Whatman 

polytetrfluoroethylene syringe filter (pore size 0.3 m) into a clean glass storage 

bottle. The so prepared indinavir solution had a concentration of 28,095 M of 

indinavir sulphate. This solution was then used as stock indinavir solution, from 

which all other working solutions were prepared, by making the appropriate dilutions 

with 50 mM sodium phosphate buffer.  

 

3B.3  Voltametric investigations 

 

3B.3.1 Instrumentation, apparatus and general procedures 

 

Generally, all of the voltammetric experiments in this dissertation were 

conducted in a 20 mL volume capacity glass electrochemical cell containing the 

required volume of supporting electrolyte and a conventional three electrode system, 

consisting of a glassy carbon working electrode (GCE, 0.33 cm diameter), a Ag/AgCl  

(3 M NaCl) as pseudo reference electrode, and a platinum wire as counter electrode 

(CE). Unless otherwise stated, all experiments conducted in the three-electrode 

electrochemical cells were done at at 25 ºC. 
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All voltammetric experiments and measurements, including cyclic voltammetric 

(CV), Osteryoung square wave voltammetry (OSWV) and differential pulse 

voltammetric (DPV) measurements were obtained with a BioAnalytical System 

(BAS) 100 B/W Electrochemical Workstation. During substrate interaction 

experiments, conducted with OSWV, convective transport during measurements was 

achieved with the use of a magnetic stirrer bar, and stirring was done at 

predetermined rate. 

 

 

3B.3.1.1 Pre-treatment of the glassy-carbon working electrode 
 

Prior to all electrochemical investigations, all working electrodes 

(modified and unmodified) were activated by following a specific protocol in 

accordance with selected literature procedures  modified and customized for the 

requirements of the practical aspects of the current dissertation. Generally, this 

entailed the polishing of the GCE with 3 μm diamond paste for 1 min, followed by 

rinsing with methanol and water, respectively. The polished electrode was then 

ultrasonicated for 2 min. Then the electrode was polished consecutively, with 

aqueous slurries of 1.0, 0.3 and 0.05 μm alumina, for 1 min on a microcloth pad 

(Buehler). Residual polishing material was removed by ultrasonication for 3 min after 

each polishing step. Finally, the pre-treated GCE was sonicated in absolute ethanol 

for 2–3 min, rinsed with water, dried for 5min and immediately used. Surface 

cleanliness and electro-analytical reproducibility was always verified for all cleaned 

electrodes by standardization and calibration with ‘universal’ redox probe, 1mM 

Fe(CN)6
3−

, and known standard solutions. It is also noteworthy to add that, when 

additional cleaning or polishing of the surfaces were required,  a more vigorous 

cleaning was done with diamond paste polishing kit, by following the same general 

procedure as described above.  
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3B.4 Specific methods for important calculations of electrochemical 

parameters 

 

 

 

3B.4.1 Determination of film thickness 

 

 

 

In the context of this dissertation, the approach for the determination of 

film thickness  was based on taking into consideration the volume of the drop of 

nafion-solution, the density of the Nafion® solution and the area of the electrode, 

according to the following equation [104-105]: 

 h = ν/s =    /    x S = mdrop x ω/    x S    3B-1 

where h is the thickness of the film, ν is the volume of the solution applied to the 

surface of the electrode,      is the denisty of the nafion (g cm
-3

), ω is the fractional 

concentration of nafion in the solution,     is the calculated mass of nafion, and S is 

the surface area of the electrode.  

 

 

3B.5 Complimentary ex-situ characterisation analysis 

 

 

3B.5.1 Scanning Electron Microscopy (SEM)  

 

Scanning electron microscopy was used to characterize the morphology of 

the prepared films, including the following: 

 the unmodified nafion film prepared for each biosensor platform; 

 the naf-CME-Co(Sep)
3+

 composite film; 

  the naf-El-Co(Sep)
3+

 

The SEM images were captured with an Hitachi X-650 analyzer employing the 

secondary electron (SE) mode with interchangeable accelerating voltages of 25 
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kV electron  microscope  All samples prepared for SEM characterization were 

adequately dried before analysis. Screen printed carbon electrodes were used for 

preparation of films for SEM analysis. The modified electrodes were fixed onto a 

SEM mounting stage with low resistance carbon transfer adhesive. For cross-

sectional views, electrodes were fractured with a sharp surgical blade. Prior to 

SEM analysis, each sample was gold-coated with a Polaron sputter coater. As a 

control, for comparison purposes, a blank screen printed electrode was always 

analysed in addition to the modified electrodes. 

 

 

3B.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 
 

All the FTIR spectra of samples were recorded on a PerkinElmer Spectrum 

100, FT-IR spectrometer. All FTIR spectra recordings were done with small amount 

of dried, or wet samples without KBR mixing. Moreover, all spectra were obtained 

against the air background spectrum. With regard to the specific methods used: In the 

case of the spectral analysis for the prepared films, the samples were first prepared on 

the electrode surface, following the specific procedures for the particular platform (as 

outlined in the methodology section of the relevant results chapters), after which the 

samples were gently scraped off the surface, followed by desiccator drying. The dried 

samples were then used for recording of the spectra, as shown in Figure 3B.1. In the 

case of FTIR spectral analysis for the enzyme solutions on the other hand, the wet 

samples were used, as described in the experimental section of the relevant results 

chapter. 
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Figure 3B.1 Showing method of FTIR analysis with high-pressure anvil cell for 

dry samples 

 

 

3B.5.3 UV-Vis Absorption Spectroscopy 

 

All UV-Vis absorption spectroscopic analysis were done with a Nicolet-    

Evolution UV-visible scanning spectrophotometer (Thermo Electron Corporation, 

UK) using 1-cm path length quartz cells. The exact protocols followed for the 

specific analysis experiments are discussed in the Experimental outline of the relevant 

results chapter. 
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSION: Biosensor Platform 1 

 

 

 

 

 

Chapter Prelude 

The results presented in the current chapter were published in Electrochimica Acta, 

2009, 54, 1925-1931. In the context of the dissertation as a whole, the biosensor 

platform presented and discussed in this chapter, serves as a potrayel of an initial 

attempt in the creation of a reagentless biosensor mediated by the electroactive cage-

type mediating species, cobalt(III) sepulchrate, in which the mediator was integrated 

into the reagent layer. Generally,  this initial  approach was more ‘unrefined’, 

consisting of casting and mixing was applied in creating this particular biosensor 

platform  the main focus here was to observe the electrocatalytic behaviour of the 

of the immobilized enzyme with its co-substrate (molecular oxygen) and selected 

substrates. This could also be done, since the commercially sourced, wild type, full-

length CYP450 3A4 used on the current platform, is more stable than their N-

terminally modified genetically engineered counter-parts, which was used as 

recognition component in the  platform presented and discussed in Chapter 5A and B. 
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CHAPTER 4 

 

Microsomal cytochrome P450-3A4 (CYP3A4) biosensor for the 

determination of 2,4-dichlorophenol — An endocrine disruptor 

compound 

 

 

Abstract 

Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major 

role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. 

medicines, drugs, environmental pollutants, food supplements and steroids). A unique 

CYP3A4 biosensor system that essentially simplified the enzymatic redox processes 

by allowing electron transfer between the electrode and the enzyme redox centre to 

occur, without any need for the enzyme’s natural physiological redox partners, was 

developed and tested with respect to analyte detection, by using  2,4-dichlorophenol 

(2,4-DCP), a priority environmental pollutant and an endocrine disruptor as substrate. 

The biosensor, GCE||NafCMECo(Sep)
3+

|flCYP3A4|Naf, was constructed by 

entrapping commercially obtained wild type full length cytochrome P450 3A4 

(flCYP3A4) on a pre-formed electroactive carrier matrix, consisting of a Cobalt(III) 

sepulchrate-modified nafion membrane on a glassy carbon (GC) electrode. The 

responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native 

substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and 

square wave voltammetric techniques. The detection limit (DL) of the biosensor for 

2,4-dichlorophenol was 0.043 gL
−1

, which is by an order of magnitude lower than 

the EU limit (0.3 gL
−1

) for any pesticide compound in ground water. The 

biosensor’s DL is lower than the U.S. Environmental Protection Agency’s drinking 

water equivalent level (DWEL) value for 2,4-DCP, which is 2 gL
−1

. 
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4.1 Introduction 

 

The pervasiveness and incapacitatingly negative impact of 2,4-dichlorophenol (2,4-

DCP) both on the environment (particularly our waterways), as well as on human 

beings are well known and exhaustively documented in many peer reviewed literature 

[32-36, 41, 44]. Most of these aspects were already discussed in Chapter 1, Section 

1.2.3, and as such need not be elaborated on in its entirety this time. However, it will 

be said, that in terms of the multiple catastrophic effects of this pollutant, it is the 

endocrine disrupting properties that poses the biggest threat, affecting not only the 

exposed person, but also their generational offspring [32]. Overall, with regard to 

curbing the effects of 2,4-DCP, safety limits have been set, as 50 – 100µgL
−1

, 1 – 

5µgL
−1

 and 100 – 500ngL
−1

 for river water, pre-treatment potable water and drinking 

water, respectively (WHO, EPA, EU). Conventional analytical methods, used for 

determination of 2,4-DCP and other chlorophenols indeed have high accuracy  

obtaining detection limits ranging from 0.01 to 0.5 μg L
−1

, and linearity of up to 2–3 

orders of magnitude [32], but all fall short in terms of the requirement of extensive 

sample preparation and time-consuming pre-concentration steps. Moreover, onsite 

real-time measurements are out of the question. In contrast, it is known that biosensor 

devices based on electrochemical principles can offer analytical solutions with low 

cost, simplicity and fast sample throughputs, while being suitable for on-the-spot 

testing of environmental samples [53-54, 106]. The biosensors reported so far for the 

determination of chlorinated phenols are mostly based on indirect recognition of the 

analyte, and rely on the inhibition of enzymes such as horseradish peroxidase, 

tyrosinase or cholinesterase immobilized over an electrode surface [32, 43, 107]. This 

preference may be due to limitations in the availability of oxido-reductase enzymes 

which can act on these pollutants. Nevertheless, biosensors based on enzyme catalysis 

would operate on “signal-on” transduction basis and, thus, possess better detection 

limits. Amongst the possible enzyme ‘candidates’, the cytochrome P450 iso-enzyme, 

CYP3A4, is the most catalytically versatile, having the ability to catalyze the 

oxidative metabolism of various lipophilic xenobiotic compounds which includes 
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chlorophenols, pesticides, carcinogens, etc. [3, 64, 66, 108] and thus can be used for 

the development of non-inhibition based biosensor for these pollutants. In fact, based 

on the ability of CYP3A4 and many other microsomal CYP450s to break down  

highly toxic hydrophobic compounds to harmless water soluble products, such as 

aromatic hydrocarbons, afflatoxins, etc., their proposed future significance in 

industrial applications have long been predicted [109]. Notwithstanding all these 

factors, to this end, no biosensors have been reported for 2,4-DCP and/or other 

chlorophenols using CYP3A4 as the enzymatic recognition component. Nevertheless, 

in considering such an endeavor, based on the unique and highly complex nature of 

CYP3A4 enzymes, very versatile and innovative electron transfer mechanisms is 

required support this membrane bound, microsomal mammalian heme thiolate protein 

chemistry – the overall challenge being designing a system that has a good electrode-

enzyme electronic coupling that, in turn, would drive catalytic turnover at relatively 

high rates. In this regard, the integration of a mediator into the reagent layer has 

proven highly beneficial in functioning as electron transfer shuttle to and from the 

deeply buried enzyme active site. Amongst available mediating species, with specific 

reference to microsomal CYP450 enzymes, cobalt(III) sepulchrate [(Co(Sep)
3+

] is 

shown to be the better choice. 

 

In this study, firstly, wild type full-length CYP3A4 was monomerized through 

treatment with nonionic 3-[(3-chlolamidopropyl)dimethylammonio]-1-

propanesulphonate (CHAPS), which prevented aggregation of the enzyme units and 

enabled simplified casting of the enzyme. The biosensor was constructed by 

immobilizing the enzyme on a carrier matrix consisting of a nafion-cobalt (III) 

sepulchrate composite film. The choice of nafion as base matrix, was due to the 

multifaceted inherent features of the ionomer, including its unique cation pre-

concentration ability that is distinct from most other ionic polymers and conventional 

ion exchanges, its high chemical stability, as well as its microscopic 

hydrophobic/hydrophilic phase segregation. These qualities was applied to firstly 

extract and stably pre-concentrated the mediating species in the overall carrier matrix, 
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while secondly providing the suitable platform in which the immobilized flCYP3A4 

could interact with the pseudo-donor electron platform through its required   

hydrophobic/hydrophilic interactions that it normally use in native in-vitro and in-

vivo systems. In order to re-enforce the stability of the reagent-layer film and protect 

the underlying components, an additional thin layer of nafion was used as outer film 

throughout all experimental investigations. 

 

 

4.2  Morphological and structural characterization of the nafion-

CMECo(Sep)
3+

 film (carrier matrix) formed on the GCE [GCE 

(GCEnafCMECo(Sep)
3+

] 

 

Before the application of the carrier matrix in the fabrication of the 

flCYP3A4-based biosensor, some morphological and structural analysis of the 

formed film was done. In this regard, morphological studies were done through 

Scanning Electron Microscopic (SEM) analysis, while the structural analysis of the 

films was done with Fourier Transform Infrared (FTIR) Spectroscopy. 

 

 

 

4.2.1 Morphological characterization: Scanning Electron Microscopy (SEM) 

 

Figure 4.1 a  c shows the top sectional view of the blank, un-modified 

electrode (bl-E), the nafion-modified electrode, as well as the nafion-modified 

electrode containing the incorporated Co(Sep)
3+

 species. The nafion film displays 

more of an island-type feature, containing random void-type areas, thus overall not 

does not really have a smooth consistency. This may probably be due to the argon 

flow used during the drying of the nafion film, which could have possibly slightly 

perturbed the nafion during film formation. On the other hand, one must bear in mind 
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that nafion is known for its high chemical stability and in this regard, is still expected 

to provide an acceptable inner-film for the incorporation and/or immobilization of the 

other reagent-layer constituents. Moreover, according to documented literature, actual 

decomposition of a nafion film is signified by visible pore holes which is evident in 

cross-sectional views [110]. In this regard, the cross sectional images taken of the 

formed film, exhibited an intact film, devoid of any such pores. The Co(Sep)
3+

-

modified nafion film, of which the SEM image is shown in Figure (c) also exhibits 

an island-like film, which does not really have a smooth consistency , but rather 

resembles a ‘cauliflower-type’ surface.     
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Figure 4.1 Top scanning electrochemical image of electrode (a) blank electrode (bl-

E); (b) nafion modified electrode (Naf-E); (c) Naf-E with pre-concentrated Co(Sep)
3+
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4.2.2 Structural characterization: Fourier Transform Infrared (FTIR) 

Spectroscopy  

 

Figure 4.2 a  c exhibits the FTIR spectra of the  nafion membrane, 

commercially attained pure cobalt(III) sepulchrate trichloride, and the chemically  

prepared nafCMECo(Sep)
3+

 composite film, respectively. In this regard it shows the 

structural features, exhibited as vibrational fingerprints, associated with each 

component within an analyzed film. The assignment of vibrational bands thus assists 

in identification of species. In terms of the nafion membrane, in particular, shown in 

Spectra a, characteristic bands associated with the structure of pure nafion, identified 

as the CF2 assymetric stretching (1207 cm
-1

), CF2 symmetric stretching (11490 cm
-1

), 

S-O symmetric stretching (1058 cm
-1

), C-O-C stretching (981, 862 cm
-1

), and C-F 

stretching (630 cm
-1

) are shown and appropriately highlighted [110-114]. With regard 

to the pure un-modified cobalt(III) sepulchrate [Co(Sep)
3+

], shown in Spectra b, the 

exhibited absorption bands, associated with the associated with methylene groups 

(733, 834, 2850, 3034 cm
-1

), and secondary amines (1055, 1130, 1168, 1335, 1366, 

1444, 3415, 3520 cm
-1

) are in fact characteristic functional groups in the structure of 

of Co(Sep)
3+

 [115], and as such, may be regarded as an efficient fingerprint 

identification of the unique structural features of the compound. With regard to the 

chemically prepared nafion-Co(Sep)
3+

 composite film on the other hand, shown in 

Spectra c, from a general perspective, most of the characteristic fingerprint bands 

associated with the structural features of nafion can be seen. However, closer 

evaluation of the spectra revealed the presence of new vibrational bands, as well as 

slight positional shifts in some of the original bands as seen in Spectra a. 

Cumulatively, these observations of course suggest the modification of the 

microstructure of nafion, which in the current case is due to the pre-concentration of 

the chemically deposited Co(Sep)
3+

 within the pre-formed nafion membrane. Thus 

appropriately, the changes in vibrational absorption bands associated with the 

incorporation of the Co(Sep)
3+

 have been indicated by coloured arrows on the 
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spectrum, with the likely functional group involved in the change also suitably 

marked on Spectra b. In this regard, in the modified nafion membrane, the appearance 

of vibrational band located at 854 cm
-1

 (indicated by the magenta colour arrow) may 

be ascribed to methylene groups associated with the Co(Sep)
3+

 structure. Moreover, 

the appearance of bands in association with secondary amines, located at 1240 and 

1462 cm
-1

, (indicated by the blue and green arrows, respectively) also signify the 

presence of Co(Sep)
3+

 within the nafion membrane. Also, it is notable that the peaks 

centred at 2892- and 2997 cm
-1

, associated with methylene functional groups of the 

Co(Sep)
3+

 structure. Interestingly, it is noteworthy that the water content of the 

modified nafion membrane, signified by the broad peak for stretching vibration of 

water molecules centred at between  2630 – 3740 cm
-1

, is still very high, as 

compared to the untreated nafion membrane. On the one hand, to some extent, this 

phenomenon may be partly ascribed to the blending vibration of molecularly 

adsorbed water in the membrane [116]. On the other hand, since the Co(Sep)
3+

 was 

manually casted and allowed to mix with the pre-formed nafion membrane, which in 

itslf is known to contain an appreciable amount of water molecules, which functions 

as plasticizer around the sulphonic cluster region [117]   this could indicate that 

while some of the Co(Sep)
3+

 molecules were indeed taken up within the lower density 

ionic cluster phase, some were probably still concentrated near the surface of the bulk 

polymer phase. The reasoning for the school of thought here is based on the fact that 

from a general perspective, the water of hydration contained within the nafion is 

normally reduced in direct association with the increase in the uptake of the amount 

of counter ions, particularly in the case of counter ion species which contains 

hydrophobic ligands, such as is the case with Co(Sep)
3+

 [117-118]. Nevertheless, 

overall, the results shown in the FTIR spectra does indeed confirm the existence of 

the electroactive Co(Sep)
3+

 mediating species in the nafion membrane, which of 

course is the more important factor. Moreover, due to nafion’s unique method of 

extraction of cationic species that, as described in Chapter 2, Section  is quite distinct 

from other ionic polymers and/or conventional cation exchangers, and as such, is 

known to stably retain these species for much longer time frames [119]. (More on the 
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subject of the aforementioned aspects surrounding the water molecules etc., is 

comprehensively discussed in Chapter 5A.)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Fourier Transform Infrared Spectroscopic (FTIR) spectra of (a) un-

modified nafion membrane; (b) commercially obtained, pure cobalt (III) sepulchrate 

only; the nafion membrane modified with the chemically deposited Naf-Co(Sep)
3+

-

composite film nafCMECo(Sep)
3+

) 

 

 

 

On a final note, regarding the latter and afore-showed characterization results: 

Although the morphology of the formed films were not exactly visually ideal, the 

structural analysis of the formed films still showed the presence of the expected 

functional groups and as such, the method of preparation may be regarded as 

acceptable.  
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4.3 Voltammetric characterization of the modified electrode 

 

Before commencing with the electrochemical results, it is noteworthy to bring 

to the reader’s attention that to reinforce the stability of the carrier matrix and/or 

enzyme-based reagent layer, a thin layer of nafion film was used as outer film.   

   

 

 

4.3.1  Electrode Assembly  

 

In order to ascertain whether the proposed electroactive compound, i.e., 

Co(Sep)
3+

, can effectively function as mediating species within the flCYP3A4-

derivatized biosensor  platform, background studies first have to be conducted. The 

specific aim here being  the determination of whether the mediator exhibits a redox 

response at a sufficiently negative potential to be able to, in turn, reduce the enzyme 

ferric iron (Fe
3+

) for the initiation of its catalytic reaction cycle and concomitant 

electrocatalytic interaction with its co-substrate, molecular oxygen, and/or selected 

analytes (substrates) [74, 120].   The results for these studies are shown in Figure 4.1. 

In particular, Figure 4.1 shows the cyclic voltammogram of 1 mM cobalt sepulchrate 

on a bare GCE working electrode performed at 10mVs
−1

 in argon-degassed PBL. The 

voltammogram exhibited a cathodic peak (Ep,c = −640mV/Ag/AgCl, Ip,c =−3.74µA) 

and an anodic peak (Ep,a = −579, Ip,a = 3.54µA). Moreover, both the cathodic and 

anodic waves consisted of one peak each,  which is indicative of only one redox 

species, and can thus be ascribed to the  metal-centred, one-electron process due to 

Co
3+

/Co
2+

 with a E determined as  610 (± 10) mV. The peak separation (ΔEp) value 

was 61mV±3mV, whereas the Ip,a/Ip,c value was 0.95±0.05µA. In this regard, in terms 

of theoretically based values,  the aforementioned  ΔEp and Ip,a/Ip,c values are well 

within the range for fast diffusion controlled reversible one electron cyclic 

voltammetric processes (i.e. ΔEp = 59 and Ip,a/Ipc = 1) [74, 121] and as such, imply 
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rapid electron transfer . In addition to this, the inset in Figure 4.1 exhibits the square 

wave response the GCE in the 1 mM Co(Sep)
3+

, shown as the difference square 

wave,  for which a signal was obtained at -640 ±5 mV.  In this regard, as compared to 

the E obtained for the CV, there is approximately 30 mV difference between the 

values obtained from the two respective voltammetric techniques. However,  as 

explained in Chapter 3A, Section 3A.2.1.2.1, square wave voltammetry is eminent 

for its lower signal-to-noise ratio and as such, variation  in obtained results from the 

two techniques are indeed expected. Nevertheless, in terms of specific assessment, 

both of these values are sufficiently cathodic, to   be able to, in turn, reduce the 

enzyme heme ferric ion (Fe
3+

) to its active Fe
2+

 form for its electro-catalytic function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Cyclic voltammogram of bare GCE in phosphate buffer saline (PBL, 

pH 7.4) containing 1 mM Co(Sep)
3+

. Inset shows the square wave (SW) voltammetric 

response of the GCE in 1 mM Co(Sep)
3+

, exhibited as the difference SW. 
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The stepwise modification of the GCE was monitored by electrochemical studies in 

order to investigate the variation in the voltammetric characteristics in association 

with the progression from the nafion-modified GCE, to the reagentless, mediator-

containing flCYP3A4-derivatized biosensor platform 

(GCnafCMECo(Sep)
3+
flCYP3A4naf). A major main aim here, was also to confirm 

electron flow from the electrode to the flCYP3A4 via the( nafion pre-concentrated) 

Co(Sep)
3+

 mediator. In this regard, Figure 4.4(a) shows the cyclic voltammograms of 

the nafion-modified GCE (GCEnaf) and the Co(Sep)
3+

-entrapped nafion film 

(GCEnafCo(Sep)
3+

). In addition to this, the difference SW voltammogram of the 

GCEnafCo(Sep)
3+

  is shown in Figure 4.4(b). With regard to evaluation of the CVs 

exhibited in Figure 4.4(a), the nafion-modified electrode did not exhibit any 

discernable electrochemistry. Essentially, this is not an unexpected phenomenon, 

since nafion is not itself electroactive but due to its unusually high ion-exchange 

ability and/or affinity for large (hydrophobic) cations it may be used to pre-

concentrate [52, 122], or simply physically absorb electroactive cationic molecules in 

a thin membrane-layer, onto a suitable electrode, as is the case in the current study. 

This usually done by contacting a pre-formed nafion film with an aqueous solution 

containing the specific counter ion species, in accordance wih the following equation 

[52]: 

 C
n+

 (aq) + Naf
+
 (film)   C

 n+
 (film) + 

n
Na

+
 (aq)    4.1 

On the other hand, in biosensor preparation in particular, based on its unique physical 

and structural characteristics,  nafion may be used as an electrode coating for the 

stable incorporation and immobilization of biomolecules, while simultaneously 

preventing biofouling [52, 122-123]. Considering aforementioned characteristics of 

nafion with regard to its superior counter-ion pre-concentration ability, it is thus not 

surprising that in the CV for the GCNafCMECo(Sep)
3+

 electrode, a pair of well 

defined symmetrically shaped redox peaks can be observed. In terms of the context of 

the current research investigation, the peaks can be ascribed to the reversible one 

electron transfer reaction of the metal-centred surface-confined redox species 
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Co(Sep)
3+

/Co(Sep)
2+

 and as such, also exhibits fast electron tunnelling process 

through the Nafion layer, to and from the underlying GCE. Closer evaulation of the 

redox couple showed that they consist of cathodic peak (Ep,c = −609 mV (vs 

Ag/AgCl),  Ip,c = −1.048 μA) and an anodic peak (Ep,a = −534 mV (vs Ag/AgCl), Ip,a 

= 0.848 μA) with a midpoint potential, Em of −571 ±5 mV. Compared to the 

electrochemistry of Co(Sep)
3+

 on bare GCE, GCNaf-Co(Sep)
3+

 showed a decrease in 

the magnitude of the Ip,c and Ip,a and an anodic shift in the Ep,a value by approximately 

23mV. Interestingly, in previously documented literature, other researchers report a 

cathodic potential shift in the Em value of GCNaf-Co(Sep)
3+

 as compared to that 

observed for the bare elecrode [124].In this regard, unlike the physical casting/mixing 

technique of Co(Sep)
3+

-nafion interaction used in the current investigation, in the 

aforementioned study, incorporation of Co(Sep)
3+

 within the pre-formed nafion 

membrane was done through potentiodynamic cycling in the contacting solution. The 

significant difference in applied technique could thus possibly confer a variation in 

the interaction and/or distribution of the Co(Sep)
3+ 

counter ion species within the 

microstrucure of the nafion film. Moreover, considering that the redox potential of 

Co(Sep)
3+

 depends on the specific experimental conditions, such as the nature of the 

film, pH, supporting electrolyte, etc., the results are well within experimental 

variability. Another noteworthy factor with regard to the exhibited CV for the 

GCNaf|CMECo(Sep)
3+

 is that the anodic peak current is slightly smaller in 

magnitude than the corresponding cathodic peak current, by a value of about 0.20 μA. 

This is not an uncommon phenomenon and can be ascribed to the fact that the 

electroactive species was entrapped in the Nafion film in its oxidized form Co(Sep)
3+

 

[91]. With regard to the difference SW voltammogram  shown in Figure 4.4(b) for 

the GCNaf-Co(Sep)
3+

 electrode, the signal is observed at -570 mV, which, as in the 

case of the results obtained for the CVs, shows an anodic shift as compared to the 

obtained Ep observed for the difference SW of the bare GCE, by a magnitude of 

approximately 70 mV.  
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Figure 4.4: (a) Cyclic voltammetric response for the nafion-coated GCE 

(GCEnaf), and the cobalt(III)sepulchrate modified- GCEnaf (i.e., 

GCnafCMECo(Sep)
3+
naf ) for experiments conducted  in argon-degassed  (Ar) 50 

mM PBL at 10 mV s
-1
. (b) Square wave voltammetric response of the 

GCnafCMECo(Sep)
3+
naf also in ArPBL, presented as the difference spectrum. 

Experimental conditions: StepE = 4 mV; amplitude = 75 mV;  

 

In terms of the fabricated biosensor, the results for the cyclic and square-wave 

voltammetric responses for the GC|nafCMECo(Sep)
3+
flCYP3A4naf  electrode for 

an experiment conducted in ArPBL, is shown in Figure 4.5 (a) and (b), respectively. 

In the absence of substrate (indinavir), and/or co-substrate (molecular oxygen), the 

immobilized enzyme gives no catalytic response, and as such, the electrochemistry 

observed is essentially dictated by the the Co(Sep)
3+

 mediator [125]. In this regard, 

with respect to the CV in particular, the anodic and cathodic peak potentials for the 
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reaction was −555 and −625 mV, respectively, corresponding to the Co
3+

 + 1e− ⇄ 

Co
2+

 redox system. Moreover, the cathodic and anodic peak currents (Ip,c = −1.322 

μA; Ip,a = 0.717 μA), were fairly symmetrical, with the Ip,c exhibited for the fabricated 

biosensor (GCEnafCMECo(Sep)
3+
flCYP3A4naf) shown to be higher in magnitude, 

than the Ip,c of the Nafion-entrapped CMECo(Sep)
3+ 

modified GCE (i.e. 

GCEnafCMECo(Sep)
3+

) [Figure 4.4(a)], by almost 2 orders of magnitude. Prior 

research has established Nafion as a perfluorinated polymer with a micellar pore 

structure, that is able to stably bind or incorporate surfactants and other molecules to 

and/or into its bulk membrane through coulombic and/or hydrophobic interactions, 

depending on the charge and hydrophobic nature of the compound [122, 126]. Thus, 

the increase in Ip,c, may be ascribed to the favourable interaction between the Nafion 

and the  CHAPS monomerized-flCYP3A4 without the need  for any additional 

coupling reagents and/or bifunctional linking molecules to re-enforce stable enzyme 

immobilization. The overall result is effective electron shuttling between the reduced 

mediator and the enzyme heme group yielding Ip,a/Ip,c and ΔEp values of 0.9 and 70 

mV, respectively. The ΔEp value is close to 65mV indicating the presence of a 

surface-bound electroactive species undergoing fast reversible electron transfer at the 

electrode [74]. In this context, the GC|NafCMECo(Sep)
3+

 is therefore a better 

electrode system than the Nafion-entrapped mediators reported by some other 

researchers. For example, Nafion-entrapped [cobalt(II)phthalocyanine-

cobalt(II)tetra(5-phenoxy-10,15,20-triphenylporphyrin)] — pentamer, also done 

through a casting/mixing technique, showed  a ΔEp value of 200mV [127]. Figure 

4.5(b) shows the squarewave response of the 

GCnafCMECo(Sep)
3+
flCYP3A4 naf  electrode, for which signals was 

obtained at −600 ±5 mV. Compared to the results shown for the nafion-entrapped 

CMECo(Sep)
3+

 and the bare GCE in Co(Sep)
3+

, the signal shifted anodically by 

approximately 40 mV and 30 mV, respectively. These results are comparable with 

those obtained in cyclic voltammetric studies and thus corroborate those findings. 
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Figure 4.5: (a) Cyclic voltammetric response for the flCYP3A4 based biosensor, 

i.e., nafflCYP3A4Co(Sep)
3+
nafGC electrode, for experiment conducted  in argon-

degassed  (Ar) 50 mM PBL at 10 mV s
-1
. (b) Square wave voltammetric response of the 

nafflCYP3A4Co(Sep)
3+
nafGC electrode in ArPBL, presented as the difference 

spectrum. (Plot shows the net current of the forward and reverse SWV response for a 

scan that was done cathodically). Experimental conditions are: square-wave 

amplitude 75 mV; potential step 4 mV. Step E = 4 mV; amplitude = 75 mV; 
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4.3.2  Electrochemical behaviour of the 

GCnafCMECo(Sep)
3+
flCYP3A4naf biosensor  

 

 To ascertain and identify the type of current involved in the redox process, 

the dependence of the peak current on scan rate was investigated over the potential 

range scanned (-350  -850 mV). In this regard, scan rate studies for the 

GCENafCo(Sep)
3+
CYP3A4Naf biosensor was conducted in argon-degassed PBS 

(50 mM, pH 7.4), from which the obtained voltammetric results were fitted by linear 

regression analysis, of which the results are shown in Figure 4.6. In this regard, the 

current function, Ip/ν
½
 exhibited a constant value for all the scan rates within the 

range of 201500mV, essentially implying that the charge transfer at the electrode-

film interface, in the absence of oxygen and substrate in the higher scan rate region 

(20–1500 mVs
−1

), is diffusion-kinetic-controlled and as such, governed by semi-

infinite conditions at all the scan rates employed [119, 125, 128-129].  In the context 

of electrochemical characteristics, generally, this behaviour suggest the possibility of 

kinetic effects for bulk and/or surface processes. However, according to documented 

literature, the unique phase segregation in the micro-domain of nafion membranes, 

confer electron transfer and/or charge transport in such membranes to be equivalent 

to a diffusion process. As such, these results does not necessarily reflect kinetic 

limitations, but more on the subject on the type of charge transport and electron 

transfer in nafion membranes  is comprehensively discussed in Chapter 5A, which 

will give the reader a more in depth view on this subject. Nevertheless, as is common 

with many films showing diffusion controlled current, a region of monolayer 

behaviour may be exhibited at low scan rates, in which thin layer electrochemistry 

behaviour is  mimicked and exhaustive electrolysis of the electroactive species is 

possible. In this regard, at low scan rates, ν < 9 mV s
-1

, the surface coverage of the 

Co(Sep)
3+

, Γ (mol cm
−2

), was determined by  measuring the Faradaic charge (Q) 

passed during exhaustive electrolysis of the assembly, using slow scan rate 

voltammetry [91, 119, 129]. This is based on the equation [92, 129-130]: 

Γ =Q/nFA        4-1 
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 where n is the number of electrons transferred and F is Faraday’s constant, A is the 

area of the electrode. The surface coverage was calculated to be 9.8×10
−8

 mol cm
−2

. 

On the other hand, with regard to the least squares regression results shown for the 

higher scan regions (Figure 4.6 Inset), the linear regression equations for the cathodic 

and anodic peaks, based on peak current versus ν
½
 plots for diffusion kinetically-

controlled scan rates were determined as: Ip = −0.1593 ν
½
 = −0.07335 (r = 0.996) and 

Ip =0.1148 ν
½
 = –0.2027 (r = 0.99854), respectively. Concomitantly, the slopes of 

these graphs could then be used to determine the charge transfer diffusion coefficient, 

Dct (cm
2
 s

−1
), in the films by Randle Sevcik analysis, as shown in equation: 

 

Ip = (2.69 × 105)ν
1/2

Dct 
  

 
     4-2 

 
 

The volume of the film (l×A) was determined from the molecular volumes and 

amounts of Nafion and Co(Sep)
3+

 deposited in the film [128, 131]. The electron 

diffusion coefficient, Dct for the electroactive film was estimated as 3.6×10
−8

 cm
2
 s

−1
. 

The Dct value is subject to error of 0.5×10
−8

 cm
2
 s

−1
 due to the uncertainty in film 

thickness [130, 132].  
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Figure 4.6 Cyclic voltammograms of NafCYP3A4Co(III)Sep-Naf-film in 

phosphate buffer saline (pH 7.4) at scan rates 20 – 1500 mVs
-1

. Inset: Plot of cathodic 

and anodic peak current vs 
½
. 

 

 

With regard to the operational stability of the film within the context of an 

experimental setup, when the GCNafCMECo(Sep)
3+
CYP3A4Naf electrode 

(biosensor) was scanned continuously in 50mMPBL (pH 7.4), the voltammetric 

response decreased gradually with increasing cycles. The peak current remained 

approximately 90% of the initial response after 20–30 cycles. In terms of storage 

stability, on the other hand: Upon storage of the biosensor in buffer solution, 

followed by subsequent electrochemical cycling in fresh PBL, under the same 

experimental conditions used in the study, a gradual decline in signal, equivalent to 

approximately 6-10% per day could be observed. The decline is an indication of 

gradual leaching of the mediator species from the reagent layer, since as discussed 

earlier, in argon-degassed PBL, in the absence of substrate and/or oxygen, the 

observed electrochemistry is essentially dominated by the  Co(Sep)
3+

 mediator. 

 

 

4.3.3  Electrocatalytic investigations of the fabricated biosensor 

(GCEnafCMECo(Sep)
3+
flCYP3A4naf) 

 

4.3.3.1  (Electro)catalytic responses to co-substrate (oxygen) and substrate 2,4-

dichlorophenol (2,4-DCP)  
 

One of the major disadvantages of nafion is its extremely acidic nature 

which usually limits its usefulness as an enzyme immobilization agent. However, in 
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this study the pH of Nafion was adjusted to 7.4 before the incorporation of CYP3A4. 

The responses of the biosensor under anaerobic or aerobic conditions are shown in 

Fig. 4.7 for experiments carried out at a potential scan rate of 10mVs
−1

 in PBL. The 

biosensor response in argon-degassed substrate-free PBL (voltammogram (a) of 

Figure 4.7) shows that in the absence of substrate, the observed charge transfer is by-

and-large dictated by the Co(Sep)
3+

/Co(Sep)
2+

 electrochemistry. In the presence of 

11.04 μM 2,4-DCP in anaerobic PBS (voltammogram (b)),  there was an increase in 

the cathodic peak current (Ip,c) and a small cathodic shift in reduction potential. 

Compared to the substrate-free CV in anaerobic PBS, the Ip,c in the presence of the 

substrate (2,4-DCP) increased by 317 nA (0.317 μA) and the Ep,c shifted cathodically 

by approximately 5 mV. The increase in Ip,c value upon substrate binding illustrates 

the typical response of ferri-heme-containing enzyme biosensors, in which the 

reduction of the heme group (Fe
3+

 +1e
−
→ Fe

2+
) is coupled to monooxygenation 

(hydroxylation) of the substrate. Oxygen binding to ferrous P-450 enzymes are 

known to be very rapid, even at low oxygen tension, such as found in the liver [12]. 

With regard to CYP3A4 in particular, according to documented findings, binding of 

oxygen to the reduced heme iron, Fe
II
 occurs at an estimated rate of 350  400 s

-1
[67]. 

Considering the latter and aforementioned aspects, it may be concluded that the 

residual oxygen contained in the injected substrate containing solution, was sufficient 

for the formation of the activated ferro–oxo complex, which in turn functioned in 

substrate metabolism. In fact, the observed Ip,c increase in the presence of substrate 

under anaerobic conditions, is in agreement with previous findings involving P450cam 

reported by Iwuoha et al.. [74]. The shift in peak potential on the other hand, may be 

attributed to substrate docking via weak hydrophilic interactions between distant 

prosthetic group amino acids, followed by binding to active site functional groups 

[25]. In this regard, substrate binding is accompanied by the displacement of water 

(originally bound to CYP3A4 as the sixth axial ligand), concomitantly resulting in the 

conversion of the heme to high spin, while sufficient oxygen was present for substrate 

hydroxylation. However, with limited residual oxygen present, only the partial 

displacement of water at the enzyme active site was possible, hence the small shift in 
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Ep,c [25, 74, 133]. It is noteworthy though, that the absence of cathodic shift in the 

Ep,c values on changing from substrate-free sensor to substrate-bound sensor under 

anaerobic conditions does not necessarily imply a lack of heme–substrate interaction  

[73, 134]. Previous studies suggested that in the absence of oxygen, the effect of 

substrate on the heme electronic environment may be negligible. This, however, in 

turn depends on the nature of the substrate [133]. The voltammetric response of the 

biosensor in substrate-free oxygenated PBS is shown in volatmmogram (c) of Fig. 

4.7. Oxygen is the natural co-substrate of CYP3A4 and binds to the ferrous iron 

(Fe
2+)

 at a very fast rate, usually more rapid than substrate binding (> 106 M
-1

s
-1

) [74, 

77, 135]. Therefore, voltammogram (c) is essentially the electrocatalytic response of 

the enzyme heme redox centre to dioxygen. In this regard, the most likely equation 

which can adequately describe the aforementioned oxygen interaction is as follows: 

flCYP3A4Fe
II
 + O2  flCYP3A4FeO2  4-2 

Figure 4.7 CV (d) on the other hand,  shows the biosensor response to 11.04 μM  

2,4-DCP in oxygenated PBL. The presence of substrate, in this case 2,4-DCP, 

increases the rate of dioxygen binding to the heme, which is exemplified by the 

increase in the electro-reduction current (Ip,c) shown in the cyclic voltammogram. 

Moreover, the flCYP3A4-oxygen and/or flCYP3A4-oxgen/substrate interaction is 

essentially a chemical reaction and as such, irreversible. In terms of an 

electrochemical perspective this means that the heme-Fe
II 

of the flCYP3A4 produced 

during the cathodic scan, was consumed in the fast follow-up chemical reaction, thus 

making it unavailable for re-oxidation during the anodic scan ,  In this regard, the 

background capacitative-current subtracted CVs specifically showing the 

electrocatalytic response of the enzyme based biosensor to substrate and/or oxygen 

exhibited in Figure 4.8, essentially shows that this was accompanied by a complete 

attenuation of the anodic peak current (Ip,a).  
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Figure 4.7: Cyclic voltammograms of GCEnafCMECo(Sep)
3+
naf 

(biosensor) in 50 mM PBS at 10 mV s
-1

, showing: (a) biosensor in anaerobic PBS 

with 0 μM 2,4-DCP; (b) anaerobic PBL with 11.04 μM 2,4-DCP; (c) air-saturated 

PBS containing 0 μM 2,4-DCP; (d) air-saturated PBL containing 11.04 μM 2,4-DCP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Voltammetric response of the GCEnafCMECo(Sep)
3+
naf biosensor, 

showing  background capacitive current-subtracted CVs in: (a) the presence of 11.04 
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μM 2,4-DCP in argon-degassed PBS; (b) substrate-free un-degassed PBL; (c) in un-

degassed PBL in the presence of 11.04 μM 2,4-DCP. 

 

 

On a final note, with regard to the catalytic response profile of the biosensor exhibited 

in Figure 4.7 CV(d) and Figure 4.8  this is typical of cytochrome P450 enzymes in 

particular, and heme enzymes in general, thereby suggesting  the metabolism of 2,4-

DCP by CYP3A4 [74, 135]. It is noteworthy though to also add that, as discussed in 

Chapter 2, Section 2.2.3, the catalytic cycle of P450 enzymes are frequently 

complicated by uncoupling reactions, such as the formation of superoxide and 

concomitantly produced peroxide, which of course can complicate the interpretation 

of exhibited results. However, based on documented literature, it has been shown that 

the substrate has a stabilizing effect on the oxygenated P450 enzyme, which in turn 

could minimize side reactions that could generate superoxide and peroxide [67]. 

Having said that, however, this does not preclude the possible contribution of 

peroxide to the observed electrocatalytic response, especially considering the large 

difference between the catalytic oxygen reduction current in the absence and in the 

presence of 2,4-DCP, of which such a phenomenon has been thought to indicate the 

possibility of the contribution of what is known as the peroxide shunt pathway [77, 

136]. On this note,  Section 4.3.2.5, gives more insight into the enzyme-substrate 

interaction, with inclusion of some perspective of reactive oxygen species. On the 

other hand, it is also noteworthy to bring to the reader’s attention that Section 

5B.3.3.1.1, in Chapter 5B gives an even more comprehensive overview all of the 

possible envisaged reaction pathways in relation to electrocatalytic investigations 

with this category of enzyme, including the effects of reactive oxygen species, both 

with specific reference to the enzyme, as well as in consideration of the mediating 

species. In this regard, detailed equations are also provided. 

 

 

The response of the GCEnafCMECo(Sep)
3+
naf biosensor in the presence 

of increasing  concentrations of 2,4-DCP was subsequently investigated and the 
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results recorded with square wave voltammetry. In the presence of increasing 2,4-

DCP concentrations, an eminent increase in peak catalytic current, in a  linear 

fashion, with each consecutive addition, up to a final concentration of 1600 μM was 

observed. These results are shown in  Figure 4.9. In addition to this, the calibration 

curve for 2,4-DCP was also constructed, by the plot of Ip of 2,4-DCP versus their 

concentrations, of which the results are shown in Figure 4.10. Also shown in the 

inset of Figure 4.10, is the linear range of the biosensor. In this regard, the dynamic 

linear range for 2,4-DCP had an upper limit of 45 A and a sensitivity of 0.038 A 

M
-1

. Moreover, the corresponding detection limit, calculated as  the concentration 

giving a signal equal to three times the standard deviation of the blank signal divided 

by the sensitivity [3(S/N) = 3], was determined as 0.043 g L
-1

. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.9  Square wave voltammetric response of 

GCEnafCMECo(Sep)
3+
flCYP3A4naf biosensor in 50 mM un-degassed PBL containing 

0 264 μM 2,4-DCP  
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Figure 4.10 (b)Dependence of catalytic peak current  

GCEnafCMECo(Sep)
3+
flCYP3A4naf biosensor  for 2,4-DCP for experiment 

performed in un-degassed 50 mM PBL. 

 

 

4.3.3.2  (Electro)catalytic response to native marker CYP450 3A4 substrate: 

Erythromycin  
 

In order to re-affirm and corroborate that the response of 

GCEnafCMECo(Sep)
3+
flCYP3A4naf  biosensor is due to flCYP3A4 enzyme, 

experiments were carried out with erythromycin, which is a macrolide antibiotic that 

is frequently used in in-vitro studies as standard substrate for testing and confirming 

CYP3A4 activity [12]. The responses of the biosensor under anaerobic and aerobic 

conditions, in the presence and absence of erythromycin (ERM) are shown in 

voltammograms (a)–(d) of Fig. 4.11, for experiments carried out at a potential scan 

rate of 10 mVs
−1

 in 50mM PBL, pH 7.4. The cyclic voltammetric responses in the 
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absence and presence of 2.18 mM ERM under anaerobic conditions are shown in 

CVs (a) and (b) of Fig. 4.11, respectively. CVs (c) and (d) on the other hand, shows 

the cyclic voltammetric responses of biosensor in the absence or presence of 2.18 

mM ERM, in the presence of dissolved oxygen. The sensing of ERM in anaerobic 

PBS caused an increase in Ip,c value (by 0.1462 μA) and an anodic shift (by 14mV) 

Ep,c value. The voltammetric response of the biosensor in substrate-free oxygenated 

PBS is shown in Fig. 4.11  CV (c). The CV portraying the biosensor response in 

oxygenated PBL (Fig. 4.11 c) displays a distinct increase in Ip,c value due to the 

coupling of the ferri-/ferro-heme reaction to the binding of dioxygen to the reduced 

heme (Fe
II
) [74, 135]. Biosensor response to 2.18 mM ERM in oxygenated PBL is 

shown in Fig. 4.11 CV (d). The Ip,c value increased by 0.64 μA over the response of 

erythromycin-free oxygenated solution. The results for the voltammetric studies with 

ERM exemplify a response profile which is in complete agreement with those 

obtained for 2,4-DCP, thus corroborating and confirming the latter as a substrate of 

flCYP3A4. 
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Figure4.11 Cyclic voltammograms of GCEnafCMECo(Sep)
3+
flCYP3A4naf 

biosensor in 50 mM PBS at 10 mV s
-1

, showing: (a) biosensor in anaerobic PBS with 

0 mM erythromycin (ERM); (b) anaerobic PBS with 2.18 mM ERM; (c) air-sarurated 

PBS containing 0 mM ERM; (d) air-saturated PBS containing 2.18 mM ERM 

 

 

As in the case of 2,4-DCP, response of the GCEnafCMECo(Sep)
3+
flCYP3A4naf 

biosensor to  increasing ERM concentrations was also investigated. This was done by 

successively adding ERM in conjunction with intermittent stirring of the solution in 

un-degassed PBL under optimized conditions followed by subsequent voltammetric 

recording of  the response. The results showing the SW voltammetric response of the 

biosensor to ERM up to 164.0 μM is shown in Figure 4.12.  The voltammograms 

shown represent the difference SWVs, for scans done cathodically. Overall, a 

periodic increase in peak current in conjunction with each consecutive addition of 

ERM up to a final concentration of 164 μM can be observed. A full calibration curve 

was then subsequently constructed. In this regard, Figure, 4.13 exhibits the 

dependence of catalytic peak current on ERM concentration (0  292 μM), showing 

an upper limit for the dynamic linear range of 53.7 μA. A linear plot was obtained for 

ERM over the 4.63  26.4 μM concentration range, (R
2
 = 0.9987, slope = 0.0323 A 

μM; intercept = 1.9212 μA. The limit of detection for ERM, was determined as 1.271 

x 10
-5

 M. 
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Figure 4.12 Square wave voltammetric response of GCEnafCMECo(Sep)
3+
flCYP3A4naf 

biosensor in 50 mM un-degassed PBS containing 0 164.4 μM erythromycin. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Full ccalibration plot for response of GCEnafCMECo(Sep)
3+
naf  biosensor  

to ERM for experiment performed in un-degassed 50 mM PBS. Inset: Linear curve 

for 2,4-DCP. 
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4.3.2.3  Electrocatalytic behaviour in the presence of inhibitor: ketoconazole 
 

Voltammetric experiments were conducted to ascertain the effect of heme-

inhibitor interactions on the electro-catalytic metabolism of 2,4-DCP. In this regard, 

the effect of ketoconazole, a known CYP3A4 inhibitor, on the response of the 

CYP3A4 biosensor to 2,4-DCP was studied by square-wave voltammetry. 

Voltammogram (a) of Fig. 4.14 depicts the SWV of the flCYP3A4 biosensor in PBL 

containing 245 μM DCP, with no ketoconazole present. The peak cathodic current for 

this SWV was determined as 11.8 μA. After 15min incubation with 94 μM 

ketoconazole, the square wave voltammetric signal was reduced by 12% 

(voltammogram (b)). 188 μM ketokonazole decreased the response by 27% 

(voltammogram (c)) and 36% for 15 and 30 min incubation periods, respectively. 

These results agree with the finding of Joseph et al.. [135] for which 500 μM 

ketoconazole induced an 80% decrease in CYP3A4 activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Square wave voltammogras of GCEnafCMECo(Sep)
3+
flCYP3A4naf 

biosensor in 50 mM air-saturated PBS: showing biosensor response to 2,4-DCP 

before (a) and after incubations with enzyme inhibitor, ketoconazole (b – d) . 
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4.3.2.5 Critical assessment and additional observations of electrocatalytic 

behaviour of biosensor: A closer look at the bio-electrocatalytic response  
 

The results obtained for the electrocatalytic response of the 

GCEnafCMECo(Sep)
3+
flCYP3A4naf  biosensor  with respect to oxygen, as well as 

the investigated substrates, i.e., 2,4-DCP and ERM were comprehensively compared 

and assessed, to reveal additional findings which may contribute to the overall 

understanding of the dynamic mechanism of the enzyme-based detection process. In 

this regard, the following findings were made: Firstly, with respect to the cyclic 

voltammetric studies exhibiting the biosensor response in the absence and presence of 

2,4-DCP or ERM, as shown in Figure 4.7 and 4.11, respectively, a peculiar 

phenomenon presents itself: The augmentation of the Ip,c by the additional catalytic 

response to ERM was accompanied by a marked anodic (positive) shift in Ep,c, 

corresponding to a magnitude of 17 mV, whereas the in the case of 2,4-DCP a small 

cathodic Ep,c shift was found. These results, seemingly contradictory can actually be 

moderately well explained by understanding particular aspects of the unique nature of 

the structure and substrate interaction aspects of CYP3A4 active site. Firstly,  from a 

general perspective, the metabolism of CYP3A4 and/or P450 isoenzymes is governed 

by three generic rules [25]: 

 The topography of the active site. 

 The measure of steric hindrance of the access of the iron-oxygen complex to 

the possible sites for metabolism on the substrate. 

 The possible ease of hydrogen or electron abstraction from the various 

carbons or heteroatoms of the substrate. 

In view of the aforementioned aspects, with regard to the more specific characteristics 

and specifications of  CYP3A4 in particular, firstly the initial motion of substrates to 

within the vicinity of the enzyme’s active site is enabled by weak hydrophillic 

interactions. However, actual substrate binding to the enzyme’s active site, which 

consist mainly of hydrophobic residues is by-and-large governed by highly  lipophilic 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Plaform 1 

 

177 

 

forces, and as such, also requires the removal/stripping of any water molecules 

associated with any of the functional groups on the substrate molecule, a process 

which requires a considerable amount of energy. Moreover, favourable substrate 

binding governed by lipophilic forces results in the preferential expulsion of water 

from the active site, which in turn provides the driving force for the enzyme spin state 

change and hence the formation of the catalytic oxy-complex, [(FeO)
3+

], unit. Also 

noteworthy is the fact that the substrate can adopt more than one orientation in the 

active site, of which, the eventual product is governed by the interaction between one 

of these orientations and the enzyme catalytic (FeO)
3+

 unit. In addition to the above 

aspects, with specific reference to substrate-turnover and the formation of the 

catalytically-active oxy-complex of the enzyme, important documented findings have 

been made [67]: From a general perspective, in bacterial P450 counterparts, such as 

P450cam, substrate turn-over rates are typically much faster than the autoxidation of 

the catalytic oxy-complex, [(FeO)
3+

] in substrate-free oxygenated solution. 

Conversely, in human CYP450s, the catalytically active oxy-complex is highly 

unstable and, once formed can decompose at a rapid rate. In fact, product formation, 

particularly in the case of  CYP3A4, is much more slower and significantly lower 

than the rates for spontaneous decomposition of the FeO)
3+

, which decomposes at a 

rate of 2-3 orders of magnitude faster than in other CYP450s. This poses the potential 

threat of rapid uncoupling reactions during catalytic studies with this enzyme. On the 

other hand, saturation of CYP3A4 with substrate, confer a marked stabilization of the 

catalytically active oxy-ferrous intermediate of the enzyme. This unique stabilization 

ability of CYP3A4 substrates presumably occurs through modulating the escape of 

superoxide or hydroperoxyl radical from the distal binding pocket of the enzyme. 

Cumulatively, the unique stabilization ability of substrates can result in the 

acceleration of the reduction rate, concomitantly attributing to a positive shift of the 

redox potential in response to substrate binding to the enzyme. On this note, it must 

also be remembered though, that the percent contribution of stabilization and/or 

increased reduction, is highly dependent on the type of substrate. 
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Keeping in mind all of the aforementioned aspects, both these compounds are 

essentially hydrophobic in nature, however ERM holds the additional advantage of 

being a significantly large molecule, thus avoiding the possible occurrence of 

randomly unfavourable oriented conformations within the enzyme active site, while 

being large enough to possibly effectively confer the expulsion of the sixth water 

ligand from the active site, thus effectively driving the required spin state change of 

the enzyme to rapidly drive the formation of the catalytic (FeO)
3+

 unit. Moreover, 

during phase I reaction with CYP3A4, this compound is known to undergo N-

dealkylation. This requires the abstraction of an electron from the ERM molecule, a 

phenomenon which could have a synergistic effect on the transfer of the second 

electron required in the catalytic cycle of the enzyme. In addition to this, the fact that 

this particular electrocatalytic interaction of substrate addition was investigated in 

argon degassed- PBL, coupled with the fairly high injected concentration of ERM, 

held an advantage: In this regard, binding of the substrate probably occurred at a fast 

rate, thus essentially stabilizing the enzyme, while the undegassed substrate solution 

provided sufficient residual oxygen to effectively drive the required oxygen 

activation and subsequent substrate turnover. Moreover, ERM being the larger 

substrate probably enabled a ERM-CYP3A4 complex that minimized available active 

site volume to any uncoupling intermediates.  The cumulative effects of these 

attributes would of course favourably affect the metabolism of ERM, which, from an 

electrochemical point of view, can greatly contribute to the observed positive 

potential shift in association with the electrochemically-based substrate interaction. 

The small nature of the 2,4-DCP molecule on the other hand, could induce random 

orientations of the substrate in the enzyme active site, which, in turn, could confer an 

initial unfavourable orientation, thus slightly impeding interaction with the catalytic 

(FeO)
3+

 unit, while also resulting in partial expulsion of water from the active site. 
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4.3.4 Performance aspects: reproducibility and stability 

 

Some selected aspects regarding the repeatability and stability of the 

GCEnafCMECo(Sep)
3+
flCYP3A4naf  biosensor with respect to 2,4-DCP was 

considered. Firstly, the repeatability of the measurements of the biosensor-based 

electrocatalytic response was evaluated by measuring the response of freshly 

prepared biosensor to 24 μM 2,4-DCP within the first six hours of preparation, 

consecutively, at ± 1 hr time intervals, with intermittent rinsing and storing of the 

biosensor at 4 C after each measurement. In this regard, Figure 4.15, exhibits the 

obtained current responses for the biosensor for five consecutive measurements taken 

within the first five hours. Assessment of the results reveals that a fairly consistent 

response was obtained, declining very gradually, by a magnitude of approximately 

5% with each measurement, up to the fourth measurement, after which a much more 

eminent decline, corresponding to a magnitude of about 44% was observed. Overall, 

in its completeness, the evaluation of the repeatability of measurements exhibited a 

relative standard deviation (R.S.D) value of 5.5%, indicating good repeatability. In 

another evaluation, the biosensor’s storage lifetime (storage stability) was 

investigated, by monitoring its response to 2,4-DCP at pre-determined time-intervals. 

In this regard cyclic and square wave voltammograms were recorded using the same 

biosensor after storing in PBS at 4 ◦C for 0h, 12h, 24h, 2 days, 4 days and 1 week. 

The peak current decreased with increase in storage time; however, the biosensor still 

retained 65% of its initial response after 1 week of storage. A R.D.S. value of 5.2% 

for n = 3 was obtained for the 1 week stability study (where n is the number of 

biosensors tested).  
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Figure 4.15 Repeatability of measurements: Showing response of 

GCEnafCMECo(Sep)
3+
flCYP3A4naf  biosensor  in oxygenated PBS to 24 μM for five 

consecutive measurements, with intermittent rinsing   

 

 

 

 

 

4.4 Conclusions 

 

Nafion-entrapped cobalt (III) sepulchrate provided stable matrix for the 

immobilized CYP3A4. The film permitted fast reversible electrochemistry of 

Co(Sep)3+ which was coupled to the reduction of ferri-heme to ferro-heme and the 

resultant monoxygenation reaction steps responsible for the amperometric detection 

and quantification of 2,4-DCP. The proposed reaction scheme is shown in Fig. 4.16. 

The sensor exhibits high sensitivity and a detection limit for 2,4-dichlorophenol far 

below the EU requirement for pesticides in ground water. The sensitivity, detection 

limit, as well as the wide dynamic linear range associated with this sensor system 

makes it very promising for environmental monitoring. With an upper linear range 
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value of 45mM the biosensor may, in future be used to determine and thereby control 

the amount of 2,4-DCP in industrial effluents from pesticide plants where the 

concentration of the compound is expected to be high. Since exposure to 2,4-DCP 

contamination can only occur through drinking water it is important to compare our 

results with the USA Environmental Protection Agency’s (EPA) drinking water 

equivalent level (DWEL) [44,45]. The DWEL value is the daily intake that will not 

cause any deleterious effect to a 70- kg adult exposed over a lifetime period and 

drinking 2 L of water per day, which for 2,4-DCP is 2 g L
−1

. The detection limit 

calculated for the GC/Naf-Co(Sep)
3+

/CYP3A4/Naf biosensor system reported in this 

study is 0.043 g L
−1

. This demonstrates the potential of the sensor as an easy to use 

device for possible regular testing of drinking water since it can detect concentrations 

of 2,4-DCP well below the DWEL value. 
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4.5 Experimental protocols 

 

4.5.1 Reagents and Materials 

 

Wilde type genetically engineered cytochrome P450-3A4 (CYP3A4), 

purified from a full length human CYP3A4 cDNA clone and over expressed in 

Escherichia coli cells [137], consisting of only the terminal oxidase (heme domain) 

and surrounding protein, was purchased from Merck South Africa. Upon receipt, the 

original enzyme stock, supplied as a 38 μM suspension, was immediately aliquoted 

into 5 μL portions, each of which was always stored at −70 ◦C until used. Nafion (5% 

(w/v) alcoholic solution), cobalt(III)sepulchrate trichloride {Co(Sep)
3+

} and 3-[(3-

chlolamidopropyl)dimethylammonio]-1-propanesulphonate (CHAPS) were the 

products of Sigma–Aldrich. Di-potassium hydrogen phosphate (K2HPO4), potassium 

dihydrogen phosphate (KH2PO4) monohydrate salts, and KCl were purchased from 

Sigma and used to prepare phosphate buffer saline (PBS) (50mM, pH 7.4, 

100mMKCl) used as supporting electrolyte. All solutions were prepared with water 

obtained from a Millipore Milli-Q purification system. 

 

 

4.5.2  Preparation of biosensor for voltammetric analysis 

 

4.5.2.1  Pre-treatment of working electrode 
 

The conditioning and pre-treatment of the WE were done exactly as outlined in the 

general experimental Chapter, i.e. Chapter 3B, Section 3B2.2. 
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4.5.2.2  Preparation of GCEnafCMECo(Sep)
3+
flCYP3A4naf biosensor 

 

Nafion stock solution was diluted to 1% (w/v) and the pH adjusted with 

PBS, yielding a 1% solution (pH 7.4) or solution A. This was followed by the 

preparation of a 1-mM solution of Co(Sep)
3+

 in PBS, yielding solution B. 5 μL of the 

38 μM CYP3A4 enzyme stock suspension was solubilised in CDPS followed by the 

addition of 100mM PBS to give solution C containing 3.8 μM monomeric CYP3A4 

enzyme and 0.8mM CDPS. The following coating procedure yielded the best 

electrochemical reversibility for the Co
3+

/Co
2+

 process: 4 μL of solution A was drop-

coated onto the clean GCE and dried for 10 min under a gentle flow of argon, in order 

to evaporate the excess ethanol. Care was taken to avoid the complete drying out of 

the Nafion layer. Then 4_L of solution B was drop-coated onto the Nafion-modified 

GCE and allowed to stand for 20 min under argon, during which time Co(Sep)3+ 

diffused into the Nafion layer to form Nafion-entrapped cobalt(III)sepulchrate-

modified GCE (GC/Naf-Co(Sep
3+

). The next step involved the drop-coating of 5 μL 

of solution C onto the Nafion-entrapped Co(Sep)
3+

 layer, and argon-dried for 20 min. 

Finally, approximately 2 μL of solution A was drop-coated onto the enzyme-modified 

GCE, to keep the enzyme film stable, whilst protecting the enzyme from biofouling. 

The resultant enzyme-modified electrode is denoted as 

GCEnafCMECo(Sep)
3+
flCYP3A4naf. 

 

 

4.5.3  Biosensor response experiments 

 

Biosensor responses to 2,4-DCP (analyte of interest), ketoconazole (a CYP3A4 

inhibitor) and erythromycin, ERM (a native CYP3A4 substrate) were studied by 

cyclic and square wave voltammetry in the presence and absence of the substances. 

All the electrochemical measurements with the biosensor were carried out at 25 
◦
C in 

either degassed or un-degassed 50mM potassium phosphate buffer solution pH 7.4, 

100mM KCl. Anaerobic condition was ensured by passing argon gas through the 
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electrolyte for at least 15min before measurements and maintaining an argon 

atmosphere atop the solution throughout the duration of the particular experiment. 

Cyclic voltammetry (CV) and Osteryoung-type square-wave voltammetry (SWV) 

were run in the presence and absence of oxygen and/or substrate to probe the 

enzyme–oxygen–substrate interaction. 

 

4.5.3.1 Inhibition Experiments with Ketoconazole 
 

The inhibitory experiments were performed with 250 μM 2,4-DCP. In the 

method, 250 μM 2,4-DCP was added to the PBS, under aerobic conditions and the 

voltammetric response of the CYP3A4 biosensor was recorded. This was then 

followed by the addition of known concentration of ketoconazole. The CYP3A4 

biosensor was incubated with ketoconazole for a specific time, under constant 

stirring, after which the voltammetric response was again taken. The ketoconazole 

concentrations, as well as the incubation time were varied and the cyclic and square-

wave voltammetric signals recorded, after each incubation session.  
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Chapter prelude 

In the context of the dissertation as a whole, the current chapter serves as an 

improved version of the biosensor platform presented and discussed in Chapter 4, in 

which the platform was up-scaled and customized for the current purpose. Particular 

attention was focussed on a more sophisticated and reproducible method  of 

preparation   of the carrier matrix, while simultaneously pre-concentrating a larger 

percentile of the mediating species deep within the microstructure of the nafion film, 

thus attenuating  potential pre-mature and/or long term leaching of the small 

mediating species from the reagent layer. The other important focus points were 

lowering of the operating potential, as well as down-scaling on financial burden of 

expensive commercially sourced biosensor components, such as nafion and biological 

recognition component. In terms of layout, this chapter consists of two parts: In the 

first part, Chapter 5A, the results for the synthesis and characterization of the base-

composite film (carrier matrix for enzyme-derivatised platform) are presented and 

discussed. In the second part, Chapter 5B, the results for the preparation, 

optimisation, electrochemical and catalytic performance of the enzyme-derivatised 

biosensor platform is presented and discussed. From a panoramic perspective, overall, 

platform improvement was done with a multifaceted approach: Firstly, 34.8 μg was 

casted in the current platform, instead of 34 μg, as used in the platform presented in 

Chapter 4. Moreover, dried nafion film formation was done under vacuum conditions, 

rather than under argon-flow as used in Chapter 4.  In addition to this, the Co(Sep)
3+

 

mediator was not immobilized through manual casting technique, but rather, was 

incorporated within the base-nafion film through electrochemical deposition method. 

Secondly, the enzyme used for this particular biosensor platform, is the heme-domain 

of the N-terminally modified,  human recombinant microsomal CYP3A4 isoenzyme 

(nCYP3A4), expressed as a catalytically-active His-tagged enzyme construct, 

prepared  in-house, by the investigator, through genetic engineering; unlike the full-

length hydrophobically-based, commercially attained counter-part  used in Chapter 4. 

In the third aspect, unlike the biosensor used in Chapter 4, where an additional 

nafion-layer was used as outer membrane, in this particular biosensor, a hydrogel-

film based on a biocompatible hydrogel-type composite membrane was used as outer 

layer. Lastly, the analyte detected in this study is a pharmaceutical drug, extensively 

used as part of the HAART treatment regime.  
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CHAPTER 5A 

 

 

Assembly and characterization of composite film consisting of nafion 

and electrochemically deposited cobalt(III) sepulchrate [El-Co(sep)
3+

]  

   

Abstract 

In the current chapter, the incorporation of electrochemically active transition metal 

complex, cobalt (III)sepulchrate (Co(Sep)
3+

 into preformed ionomer nafion polymer 

film, prepared on a glassy carbon electrode surface is presented and discussed. Based 

on the hydrophobic nature of the sepulchrate ligand and nafion’s exceptional affinity 

for hydrophobic compounds,  pre-concentration of Co(Sep)
3+

 was easily achieved 

through potentiostatic electrodeposition method, by applying a constant potential of  

450 mV for 1200 seconds (20 min) in aqueous solution, with cobalt (III) sepulchrate 

trichloride (1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosainecobalt trichloride) as 

starting material. In this regard, the nafion base-film, of thickness 3.1 μm, provided 

an efficient matrix for the incorporation of Co(Sep)
3+

 and a stable functional 

electroactive composite (Naf|El-Co(Sep)
3+

)  film was prepared, for which the surface 

concentration (Γ) of the Co(Sep)
3+

 was determined as 1.537 x 10
-5

 mol cm
-2

). Thus, 

the Co(Sep)
3+

 species was preferentially incorporated into the ionic cluster 

microdomain of the polymer, and the formed Naf|El-Co(Sep)
3+

 film exhibited, 

diffusion controlled electrochemistry with a formal potential (Eº') of -615 mV. 

Moreover, electrochemical behaviour exhibited by the electroactive film was in line 

with the unique inherent charge transfer charactersitics of nafion, while the obtained 

charge transfer coefficient determined as 2.63 x 10
-7

 cm
2
 s

-1
.  In addition to this, the 

composite film was highly stable. 
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5A.1 Introduction 

 
 

Although polymers, particularly of the ion exchange type, are popular 

choices for fabrication  of composite electroactive platforms for electroacatalytic 

studies and/or creation of carrier matrices for mediated biosensor construction, a 

major limitation is their short lifetime caused by low ionic mobility in the polymer 

film and/or easy loss of electroactive species from the inner phase of the membrane 

[117-118]. Attempts have been  made to fix such problems through covalent 

attachment of selective ligands to polymers, however, these techniques require the 

addition of plastizers which tend to leach and thus leads to demise of the formed 

films. On the contrary, the non-electroactive, ion-containing polymer, nafion, have 

the ability to circumvent such problems, based on its very unique characteristics, 

which includes phase segregation, with phases consisting of components which are 

highly hydrophic in nature;  containing no water leachable components; having an 

inherent ability for charge-exclusion and being chemically inert;  and also having 

unparalleled affinity for cation  species, particularly of hydrophobic nature, as well as 

unique cation pre-concentration features.  In this context, the unique features of 

nafion is combined with novel electrocatalytic technqiue, to afford an electroactive 

coating that is highly chemically stable, and preoperatively easily reproducible, while 

also subsequently serving as effective carrier matrix for the coupling of the prepared 

enzyme to the electrode in the creation of biosensor platform 2.  

 

As for the overall aim of the current investigation, the emphasis was on the creation 

of a stable Co(Sep)
3+

-modified, electroactive nafion membrane which, as mentioned 

in the prelude to Chapter 5 A and B, would subsequently serve as carrier matrix for  

fabrication of an enzyme-based biosensor. On the other hand, notwithstanding the 

fact that the composite film is based on the same starting components as in Chapter 4, 

a major focus point of the current study was the improvement of the matrix, 

particularly in terms of repeatability, structural morphology and ease of preparation. 
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This required a multifaceted approach and in this regard – firstly, 0.045 mg cm
-2

 

nafion   was used as the base layer, as opposed to the 0.35 mg cm
-2

 used in the 

platform prepared in Chapter 4. This was done in an overall quest to provide better 

coverage on the underlying GCE. Secondly, a more evenly dispersed nafion layer was 

formed by using a specialized short-structured micro-tip for casting, while drying of 

the nafion film was not done under argon flow, but rather under a tightly fitted cover 

which provided a vacuum effect. Lastly, and perhaps more importantly, as already 

elaborated, a potentiostatic technique was used for Co(Sep)
3+

 incorporation, rather 

than the manual casting/mixing method used in the previous chapter.  In addition to 

voltammetric characterization, the assembly of the prepared matrix was characterized 

with selected ex-situ methods, of which the results are subsequently shown and 

comprehensively discussed. 

 

 

 

 

5A.2 Assembly: Electrochemical characterisation of the GCE|Naf|El-Co(Sep)
3+

 

 

 

As explained in the outline of the experimental protocols described in 

Section 5A.5, the cobalt(III) sepulchrate was deposited  on a pre-formed nafion 

matrix on a glassy carbon working electrode. The step-wise modification of the GCE 

was monitored with voltammetry and in this regard, the findings are appropriately 

exhibited and discussed. In this context, an important noteworthy aspect to emphasize 

is that all cyclic voltammetric results are obtained from scans taken after repeated 

cycling when a steady state response was attained. Moreover, all reported values, for 

determined parameters, such as formal potential (Eº') , are reported as mean  

standard deviation for 3-4 experiments. In addition to this, the results presented and 

discussed in this chapter are all based on an optimized nafion-cobalt(III) sepulchrate 

composite [GCE||Naf|El-Co(Sep)
3+

]  film,  in which optimisation was done with 
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respect to electrocatalytic response of the CYP450 enzyme-modified electrode [138], 

since the Co(Sep)
3+

-modified nafion platform was  created with the overall aim to 

eventually fabricate a nCYP3A4-based biosensor for detection of HAART associated 

drug, indinavir.  In this regard, results for optimisation is not shown in this Chapter, 

but are exhibited and comprehensively discussed in Chapter 5B. 

 

The cyclic voltammogram of the nafion-modified GCE, GCE||naf, in 

anaerobic PBS (50 mM; pH 7.4)  is shown in Figure 5A.1, for an experiment 

conducted at a scan rate of 10 mV s
-1

. Essentially, the voltammogram obtained for the 

nafion-modified GCE is similar to that for bare GCE (not shown), with the 

fundamental difference being that the background current is appreciably reduced, 

which indicates that some active sites have been filled in by the smooth nafion film. 

In fact, according  to literature findings, the proportion of active sites blocked by 

nafion ranges from 15 to 20% [139].  Moreover, the lack of observable 

eletrochemistry is in complete agreement with studies based on nafion modified 

electrodes [104, 122, 140]. The important fact here is that the presence of the nafion 

does not substantially modify or block electron transfer with respect to the underlying 

electrode, and as such the nafion film may be effectively used as matrix for 

subsequent incorporation of cationic (mediating) species, as well as additional layers.  
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Figure 5A.1 Cyclic  voltammogram of GCE|Naf at 10 mV s
-1

 in argon-degassed 

phosphate buffer (50 mM, pH 7.45) 

 

 

The thickness of the nafion film was also determined, of which the calculations were 

done according to established methods, in conjunction with relevant theoretically 

based equations, from already published data [104-105, 128, 132]. In particular, 

calculations were done according to methodology outlined by equation 3B-1 in 

Chapter 3B. In short, however, essentially, the relation takes into consideration the 

fractional concentration of the nafion added, the density of the Nafion


 stock 

solution, as well as the density of the dry film and the area of the electrode. The 

nafion film thickness estimated by this method, was determined as 3.1 μm. In this 

regard, considering that the nafion film essentially served as inner layer, for the 

eventual assembly of an enzyme-based biosensor, the thickness value is in fairly good 

agreement with other research investigations which utilized nafion for similar 

purpose [122].  
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The cobalt(III) sepulchrate, which was loaded into the nafion membrane though 

potentiostatic deposition, on the other hand, exhibited a completely different 

electrochemical behaviour.  Figure 5A.2 displays the voltammetric response of the 

GC||naf|El-Co(Sep)
3
, for scans taken in argon-degassed PBS.  In particular, the cyclic 

voltammogram for the GC|naf|El-Co(Sep)
3+

 shown in Figure 5A.2(a), for an 

experiment conducted at  scan rate of  3 mV s
-1

  shows a pair of well-defined 

symmetrically shaped redox peaks, consisting of a cathodic and anodic wave. In this 

regard, considering that an oxygen-free medium was used and that fact that only one 

pair of redox waves, the cathodic and anodic peak of the CV can be ascribed to the 

Co(Sep)
3+

/Co(Sep)
2+

 redox couple. The reduction (cathodic, Ep,c) and oxidation 

(anodic, Ep,a) peak potential values were determined as -654 and -575 mV, 

respectively, while a peak separation, ΔEp, of 79 ( 3) mV was determined.  The 

formal potential (Eº’), determined as the midpoint potential (Emid), estimtated from 

the cyclic voltammetric data, was found to be  -615 mV,   and in addition to this, the 

ratio of anodic to cathodic peak current (Ip,a/Ip,c) was estimated to be 1.2.  In fact, the 

values of Emid, Ep and Ip,a/Ip,c, from CVs between 2 and 10 mV s
-1

, determined as 

averaged values corresponded to -611 mV, 77 and 1.1. Moreover, the variation in Ep 

for  these scan rates were negligible. In this regard, in terms of the theoretical aspects 

of electrochemical reversibility, a value of 1.0 for Ip,a/Ip,c corroborates the reversibility 

of the electron transfer reaction at the electrode surface, while a value of lower than 

65 mV for ΔEp is an indication of a surface-bound electroactive species which 

undergo fast reversible electron transfer at the electrode [74]. In practice however, the 

exact values for these parameters are difficult to attain, and as such, room is made for 

experimental error of approximately  10%, which essentially means that the results 

obtained for the current electrochemical system shows adequate promise in terms of 

ideal proximity. Another noteworthy point to emphasize at this stage, is that repeated 

CV scans recorded at half hour or one hour intervals, up to three/four hours after 

assembly of the GC||Naf|El-Co(Sep)
3
 exhibited stable background currents, with no 

indication of instability or reduction of  peak current  a factor which also 

corroborates the findings of the stability and reversibility of the prepared film. The 
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total surface coverage/concentration (Γ) of the Co(Sep)
3+

 cationic species in the 

nafion film was calculated by measuring the Faradaic charge (Q) passed at slow scan 

rate, where exhaustive electrolysis of the film occurs [129, 141]. In particular, the  Γ 

was calculated by integrating the cathodic charge under the voltammetric peak 

recorded at  = 2 mV s
-1

, by using the equation, Γ = 
 

   
, where n is the number of 

electrons of the redox reaction, A is the geometric electrode area (0.071 

cm
2
) ,  and F is the Faraday constant (96  500 C mol

-1
). Considering n = 1, Γ 

of the Co(Sep)
3+

 was calculated to be 1.537 x 10
-5

 mol cm
-2

. Since the Γ of the 

electroactive Co(Sep)
3+

 species may be regarded as a reflection of the amount of 

cationic species incorporated into the pre-formed nafion film  it is important to 

accentuate that, the technique used in the current study enabled the incorporation of 

the highest possible percentile of electroactive species within the nafion membrane in 

the shortest possible time. In fact, it is highly comparable to previously published 

studies involving metal centred and/or cage complexes, for example, in a study 

conducted by Dewald et al.. [124], the maximum loading for Co(Sep)
3+

 into a 36 μm 

pre-formed nafion film, was only 2 x 10
-4

 mol cm
-2

, obtained by potentiodynamic 

cycling method over a two hour period. In this regard, the method used in the current 

study (i.e. potentiostatic deposition) may be revered as an effective technique for pre-

concentration of counter-ion species in nafion and/or other ion-based polymer films.  
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Figure 5A.2 Voltammetric response of the nafion-cobalt(III) sepulchrate composite 

film, GC|Naf|El-Co(Sep)
3
 in argon-degassed PBS. Cyclic voltammogram taken at 3 

mV s
-1

, with cathodic and anodic waves indicated by negative and positive currents, 

respectively. Experimental conditions for square wave: StepE = 4 mV; S.W. 

amplitude = 25 mV; frequency = 1 Hz 

 

The effectiveness of pulsed techniques such as square wave voltammetry to 

accentuate the Faradaic current while discriminating against capacitive (charging) 

current cannot be over estimated. In this regard, Osteryoung square wave (OSW) 

voltammetry was employed to compliment cyclic voltammetry, particularly in terms 

of a more accurate measure of the Eº’ for the  Co(Sep)
3+

/Co(Sep)
2+

 redox couple.  

Thus appropriately, Figure 5A.2 (b) depicts the SWV responses of the  GC|Naf|El-

Co(Sep)
3
, with the main graph showing the net (difference) SWV response and the 

inset showing the forward (negative wave) and reverse (positive) SW responses. The 
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value of the net SW response as determined from SW data is -620 ( 5) mV, while 

the forward and reverse potential values was determined as -616 and -624  ( 5) mV, 

respectively. Moreover, these results revealed a small Ep, corresponding to a value 

of only 8 mV. On the other hand, the forward and reverse waves, although fairly 

symmetric in shape, revealed that, the magnitude of the reduction SW is higher than 

that of the anodic SW, by approximately one order of magnitude. In fact, these 

findings, although with a smaller difference, was also found in CV and this 

essentially means that the metal centred electroactive species was incorporated into 

the nafion film in its   Co(Sep)
3+

 form. This is indeed a true representation of the 

electrode reaction, since the Co(Sep)
3+ 

 was potentiostatically deposited at a 

sufficiently anodic potential (i.e. +450 mV), which means it was taken up into the 

nafion layer in its original  Co(Sep)
3+

 form. Overall, the Eº’, as determined from the 

aforementioned  results shows values that are significantly more cathodic in 

magnitude (by at least  65 mV)  as compared to results obtained for Co(Sep)
3+

 at 

bare electrodes in similar aqueous solution and potential scan conditions. This finding 

was also reported in  some previous research investigations  [124, 142], involving the 

incorporation of other   metal-centred cationic electroactive species, into nafion films. 

In fact, it has been determined by prior research investigations, that this type of 

cathodic potential shift suggest a strong affinity of nafion for the particular cationic 

species [143], and as such incurs uptake and retention of the cobalt(III) sepulchrate 

species within the nafion structure, through strong hydrophobic interactions between 

the two species. In this regard, to substantiate the aforementioned proposed method of 

retention, it is noteworthy to some of the structural unique attributes of nafion [117, 

119, 143]:    

 Firstly, unlike conventional ion exchange resins which are all 100% 

sulphonated, in nafion, only about one in every eight monomer units is 

sulphonated, and consequently, the large segments of uncharged chain 

material enable an enhanced ability of hydrophobic interaction, and these 

hydrophobic interactions dominate ion exchange reactions for cation species 

in nafion membranes/films. 
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 Secondly, unlike other ion exchange polymers, such as PVP
+
, nafion has a 

very low dielectric constant, as well as a low charge density and the 

implications of these factors is that hydrophobic interactions dominate 

retention in nafion polymers, whereas electrostatic forces are the critical 

component in other ion exchange polymers.  

 Thirdly, unlike Co(Sep)
3+

, nafion has very little affinity for many other 

trivalent species, such as Fe
3+

, Eu
3+

 and Ru(bpy)3
3+

, which essentially indicate 

that enhanced electrostatic interaction based on charge, is not the only or 

dominant factor responsible for nafion’s strong retention of any particular 

cationic species. In fact, it has been shown that solvation of the hydrophobic 

parts of a cationic complex by nafion’s organic chain material is a major 

determining factor for uptake and retention of cations, and considering the 

hydrophobic nature of the sepulchrate  ligand (containing at least  3 

methylene groups, see Figure 2.5(a)), this type of interaction is definitely 

highly possible.  

 Fouthly, nafion is eminent for its microscopic phase segregation, which is 

mainly constituted by the bulk polymer phase and the much lower density 

ionic cluster phase.   Electroactive counter ions are present in the ionic cluster 

phase and charge-based ion-pair formation, although present to some extent, 

is not significant in these polymers. In fact, it has been proposed that due to 

nafion’s high preference for organic cations, the ionic cluster regions must be 

regarded as a rather lipophilic environment, while the water contained within 

these regions acts a plasticizer, functioning to increase the free volume of and 

decrease the polymer chain concentration in the ionic cluster. 

 

Considering all the aforementioned unique structural attributes of nafion, the most 

fundamental conclusion that can be drawn at this stage is that the mechanism of 

retention of electroactive ions in nafion membranes are significantly different, as 

compared to conventional ion exchange polymers  nafion being largely dominated 
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by hydrophobic interactions, rather than the normal electrostatic forces. This also 

confirms and reiterates the proposed mechanism of uptake and retention for 

Co(Sep)
3+

 as described above. 

 

 

Another noteworthy finding, as determined from the voltammetric results exhibited 

for the GC|Naf|El-Co(Sep)
3+

 in the current study, is that the Epº’,  determined as -615 

( 5) mV, varies quite significantly from the value determined for the previous 

platform presented in Chapter 4 (-571  5 mV) but is quite similar to previously 

reported value obtained for a different investigation, conducted by Dewald and Chen   

(i.e., () -600 mV), which also involved a nafion-cobalt(III) sepulchrate composite 

film. In this regard, the composite film presented and discussed in Chapter 4, 

involved chemical  preparation methods, in which the Co(Sep)
3+

 was manually mixed 

with the pre-formed nafion film, whereas the protocol used by Dewald and Chen, on 

the other hand was based on potentiodynamic technique, in which Co(Sep)
3+

 was 

incorporated into the nafion film through electrochemical cycling in a contacting 

solution, containing the electroactive species. The overall fundamental deduction that 

can possibly be made from these findings is that electrochemical pre-concentration of 

cobalt(III) sepulchrate and/or other metal centred electroactive species in ion-

containing polymer films, such as nafion is a more effective method for producing 

stable composite films, as opposed to chemically preparative methods.  

 

  

Overall, a critical evaluation of the above presented and discussed voltammetric 

results for the GC|Naf|El-Co(Sep)
3+

 system, in terms of the determined Ip,a/Ip,c  ( 1); 

Ep (close to 65/n mV); Ep and variation with scan rates (negligible for  = 3→10 

mV), corresponds to a reversible system [74, 131]. On the other hand, for ideal 

Nernstian  electrochemical reversibility of a surface-confined  electroactive species,  

the relationship, Ep,c = Ep,a should be satisfied and in this regard, the difference in 
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peak potential, which was determined as an average value of 77 ( 5) mV, is 

consistent with semi-infinite linear diffusion, and not with ideal Nernstian  

electrochemical surface confined species for which peak potentials should coincide 

[130, 144].  In fact, the results obtained for the investigation of peak current on scan 

rate, of which the results are exhibited in Figure 5A.3, revealed a perfectly linear 

relation for the Ip/
½
  for both the cathodic and anodic peak currents, as shown in the 

inset of Figure 5A.3, with correlation coefficients obtained from linear regression for 

both  Ip,c/
½
 and Ip,a/

½
 functions determined as 0.9994. This finding essentially 

corroborates diffusion controlled electrochemistry for the GCE|Naf|El-Co(Sep)
3+

 

system. On the other hand, when looking at the cyclic voltammograms shown in 

Figure 5A.3, the reduction and oxidation waves were fairly symmetrically shaped 

and increased gradually with the scan the scan rates studied ( = 4  50 mV s
-1

), 

with no visible tailing observed. Such results, would normally indicate thin layer 

electrochemistry, usually accompanied by a linear Ip,c/ function, which is not the 

case here, as shown by the linear relation between peak current and square root of 

scan rate. These results, although seemingly baffling, can be perfectly explained and 

envisaged if one understands the peculiar nature of the mechanism of charge transport 

in ion-containing nafion films: Unlike conventional polymers,  containing 

electroactive sites along their polymer backbone, for which charge transport is a one 

dimensional process (Donnan equilibrium), mainly constituted by electron hopping in 

which electrons are transferred from reduced to oxidized sites in the film, play a 

major role in charge transfer within the films    in ion-containing polymers such as 

nafion, for which phase segregation and water of hydration in microdomains are the 

characteristic features, a significantly different model for charge transport has been 

shown [117-119]. Electroactive counter ions taken up by nafion, is by-and-large 

present in the randomly distributed low density ion cluster regions in nafion films. 

These clusters are inter-connected by small channels, and as such charge transport 

within such films in the absence of any chemical kinetic complications actually 

occurs through a three dimensional process, consisting of diffusional mass transport 
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of species through these channels,  largely controlled by what is known as the 

percholation effect, which proposes that the short channels connecting two 

neighboring clusters are thermodynamically stable. In fact, it has been documented 

that in nafion membranes, all electron hopping processes has been shown to be 

equivalent to a diffusion process and as such the overall rate of charge transport can 

be described in terms of an apparent diffusion coefficient [119]. What is more, in a 

previously documented study conducted by a different research group [124], in which 

Co(Sep)
3+

 was pre-concentrated through potentiodynamic cycling into a pre-formed  

nafion film, the current function, Ip/
½
 also exhibited a constant value at different 

scan rates, which essentially corroborates the results obtained in the current research 

investigation. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5A.3: Cyclic voltammograms of  GC|Naf|El-Co(Sep)
3
 showing voltammetric 

response in argon-degassed PB with increasing scan rate (4 – 50 mV s
-1

). Inset: 

Influence of scan rate on cathodic (Ip,c) and anodic (Ip,c) peak current 
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With regard to the charge transfer diffusion coefficient  (Dct) for this study in 

particular, the Randle Sevcik behaviour of the cyclic voltammetric peak currents, as 

exhibited in Figure 5A.3, was used to evaluate Dct from the slope of the straight line 

obtained from the Ip,c vs 
½
 plot [129, 131], by using the equation,  

  

  = 
                            

 
 

= slope, where A is the geometric surface area of the electrode, Γ is the surface 

concentration of the El-Co(Sep)
3+

 (1.537 x 10
-5

 mol cm
-2

) and L is the thickness of 

the film (3.10 x 10
-3

 cm). Based on this method, using the already calculated 

aforementioned values for Γ and L, the Dc,t for this study was determined as 

2.64 x 10
-7

 cm
2 

s
-1

.  Compared to other metal-centred cationic species incorporated 

within nafion films of similar thickness, i.e. Ru(bpy)3
2+

[119] [141]; Ru(NH3)6
3+

 

[143]; [Os(bpy)2(PVP)10Cl]Cl [145], the aforementioned value of Dc,t obtained in 

the current study is in the higher region. In fact, it is comparable to 

previously reported values  obtained for smaller counter -ion species, 

Na
+
 (9 x 10

-7
 cm

2
 s

-1
) [143], which is eminently known for its fast diffusion 

through nafion films, as compared to many other pre-concentrated cationic 

counter-ion species. Moreover, it has been documented that a larger Dc,t is a 

reflection of a more homogeneous distribution of the cationic species within the 

microstructure of the polymer film [119].  The cumulative significance of the latter 

and aforementined findings, once again is of course to exemplify and reiterate the 

effectiveness of the technique used in the current study for pre-concentration of the 

cationic species within the nafion film.     

 

In addition to the above results exhibited for scan rate studies, the plot of  logIp vs log 

 for both anodic and cathodic peak currents, revealed slopes of 0.47 and 0.52 for log 

Ip,a/log  and log Ip,c/log  respectively.  Both these values are close to the theoretical 

value of 0.5 for diffusion controlled electrode processes [122] and as such, 

corroborates the above findings. The results for these plots are shown in Figure 5A.4.  
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Figure 5A.4: Plots of log Ip vs log  for cathodic and anodic peak currents, to show 

influence of scan rate on peak current for GC|Naf|El-Co(Sep)
3+

 films 

 

 

 

5A.2.1 Long-term stability of the GC|Naf|El-Co(Sep)
3+

 film 

 

Due to nafion’s unique method of cation extraction and uptake, which, as 

described in aforementioned and preceding sections is distinctly different and more 

effective than conventional ion-exchange resins and/or electrostatic binding polymers 

[118-119], combined with its  phase segregation enabled three-dimensional charge 

transport network, providing molecular accessibility and rapid diffusional mass 

transport of electroactive species [104-105, 118, 143], as well as its renowned 

superior chemical and thermal stability [146-147], a factor that remains, even in the 

presence of strong oxidants at elevated temperatures  nafion-based electrodes has 
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been shown to have a greater lifetime, while retaining electroactive species for longer 

times than other ionic polymer and/or coordinating polymer based electrodes. In this 

regard, to illustrate long term stability, the storage stability of the  nafionEl-

Co(Sep)
3+

 film was investigated, of which the results are exhibited in Figure 5A.5, in 

which Day 0, refers to the day of fabrication of the GC|Naf|El-Co(Sep)
3+

 film, and as 

such, considered as time 0.  A close evaluation of the results depicted in Figure 5A.5 

revealed the following: 

 On the third day, there was a 13% and 8.8% decline in the magnitude of Ip,c 

and Ip,a, respectively. This was accompanied by a cathodic peak potential 

shift for both Ep,c and Ep,a by a magnitude of 16 mV and 9 mV, respectively. 

In addition to this, the formal potential (Eº') for GC|Naf|El-Co(Sep)
3+

 

shifted cathodically by  13 mV, as compared to the original CV exhibited 

for Day 0. 

 On the fifth day of storage, there was a 14.3% decline in the magnitude of  Ip,c. 

On the other hand, the no measurable change in Ip,a was observed, as 

compared to what was determined for the third day. As for Ep,c and Ep,a, once 

again a cathodic shift was observed corresponding to a magnitude of 30 mV 

and 24 mV for Ep,c and Ep,a, respectively. Similarly, the Eº' shifted 

cathodically by a magnitude of 27 mV, as compared to the original 

results for the GC|Naf|El-Co(Sep)
3+

 film observed on Day 0. 

 

Overall, the above electrochemical results for the GC|naf|El-Co(Sep)
3+

 system 

showed that, upon storage for up to one week in dry conditions at ambient 

temperature (23 3 ºC), the film still retained 73% of its original 

electrochemical signal, without the need for storage and/or physical contact 

with the Co(Sep)
3+

-containing supporting electrolyte. Moreover, the 

presented CVs were recorded after repeated cycling, when a steady state in 

Ip,c and Ip,a were attained, in which these cycles were completely identical and 

showed no loss of signal, which are all indications of a stable film.  
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Figure 5A.5 Cyclic voltammetric reponse showing variation in Faradaic current 

and peak parameters (Ip,c; Ip,a; Ep,c; Ep,a) of the GC|Naf|El-Co(Sep)
3+

 films with 

numbers on the curves denoting days elapsed after fabrication. The voltammograms 

were recorded in anaerobic PB (50 mM; pH 7.45) 

 

 

 

The cumulative implications of all the preceding and aforementioned 

results with regard to the Co(Sep)
3+

 loading, voltammetric behaviour, as well 

as the stability of the composite nafion-El-Co(Sep)
3+

, is quite significant, since 

it not only accentuates improvement as compared to techniques applied in 

numerous previously conducted research investigations involving incorporation 

of metal-centred cationic species into nafion films, but also exhibits 

enhancement in terms of long term stability, as opposed to some of these 

studies: 
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 Firstly, loading methods used by most previously conducted research 

investigations involved either physical equilibration with the solution, which 

were usually done from a few hours up 24 hours to ensure adequate loading or 

in some cases,  potentiodynamic techniques using potential cycling for up to 

2-3 hours in the supporting electrolyte containing the metal centred cationic 

species (analyte solution) [124, 143].  To recall, the technique applied in the 

current study on the other hand, involved potentiostatic deposition of the 

Co(Sep)
3+

 at +450 mV for 20 min, which overall, resulted in a highly stable 

composite film. In this context, with regard to Co(Sep)
3+

 in particular, the  

rate of loading for the current research investigation was considerably faster 

(by  a  factor of 6), as compared to rate observed for Co(Sep)
3+

 loading for a 

study conducted by Dewald and Chen [124] who used the potential cycling 

pre-concentration technique.  

 Secondly, the composite nafion-El-Co(Sep)
3+

- (GC|naf|El-Co(Sep)
3+

) film 

exhibited well defined, stable voltammetric behaviour, upon repeated cycling  

in the PB supporting electrolyte containing no Co(Sep)
3+

 analyte. In some 

other studies, conducted by other research investigators involving composite 

nafion/metal centred cation species, however, stable CVs were only possible 

in electrolyte solutions containing the cationic analyte [143, 148].  

 Thirdly, under the experimental conditions applied for the current study, the 

GC|naf|El-Co(Sep)
3+

  film maintained at least 73% of its original signal after 

five days of storage, whereas for methods based on pre-concentration of metal 

centred cationic species (analyte) through physical equilibration techniques 

especially   maintaining adequate signal response of the composite film was 

only possible in conjunction with storage in the supporting electrolyte [119].   

 

Before commencing with subsequent discussions, a final important subject 

to also address, is the implications of the exhibited voltammetric behaviour of the  

naf|El-Co(Sep)
3+

  composite film with regard to its proposed application, i.e., as 
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mediating-carrier matrix platform for amperometric biosensor construction with the 

synthesized  n-terminally modified recombinant CYP3A4 (n-CYP3A4). As already 

accentuated and discussed in Section 2.2.4 in Chapter 2,  creating a successful 

reagentless amperometric mediated biosensor requires effective retention of the 

mediator at the electrode surface, and, perhaps more importantly, allowing 

simultaneous free diffusional movement of the mediating species, as well as rapid 

electrochemical communication to-and-from the electrode surface. In fact, according  

to relevant literature survey, it has been recorded that the diffusional movement of the 

mediator is an essential prerequisite for a productive electron transfer [65, 149] in 

mediated biosensors. Taking into consideration the latter and aforementioned  

criteria: Based on the results exhibited and discussed in terms of electrochemical 

performance factors of the composite film, as well as critical comparisons to relevant 

literature findings, the suitability of the prepared naf-El-Co(Sep)
3+

  film with regard 

to suitability for biosensor construction was critically assessed and the findings 

summarized. In this regard, firstly, as corroborated by previous findings, nafion was 

shown to retain and incorporate the electroactive cation mediator distinctly different 

from other ion exchange polymers/resins, which resulted in a more stable film, 

exhibiting good reversible electrochemistry. Secondly, also as corroborated by 

previous findings, in the absence of any kinetic complications, the electrochemistry of 

the film is dominated by diffusional movement, which as elaborated above, is 

fundamental for productive electron transfer.  Thirdly, due to nafion’s considerably 

lipophilic nature, essentially containing no water leachable components, formed 

membranes/films consequently should have  much longer lifetime, particularly with 

regard to incorporated electroactive counter-ion species [118] [117]. In fact, research 

has shown that unlike conventional polymer membrane ion selective electrodes 

(PMISEs), which require plasticizers and covalently attached ligands to increase ionic 

mobility in the polymer membrane, as well as preventing loss of electroactive species 

from the membranes, ion containing polymers, like nafion, requires no additional 

components and films containing ionic species have shown stability for up to six 

months [117]. In this context, as evaluated by the results exhibited and discussed for 
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long term stability, the  Naf|El-Co(Sep)
3+

film corroborated the aforementioned 

findings and thus maintained a high electronic signal after storage for up to one week.    

 

 

 

5A.2.2  Electrochemical behaviour of GCE|Naf|Co(Sep)
3+

 with Ruthenium(III) 

hexaamine redox probe 

 

It is an eminent fact that nafion has an unusually high affinity for 

ruthenium(III) hexamine. In this regard, thus it seemed appropriate to further 

investigate the integrity and charge-transfer behaviour of the naf|Co(Sep)
3+

 film by 

using Ru(NH3)6Cl3 as a redox probe, for which the studies were done in PB 

containing 1 mM Ru(NH3)6Cl3. Upon initial potentiodynamic cycling  in the  

Ru(NH3)6Cl3 containing PB with the GCE|naf|Co(Sep)
3+

 electrode, there was a 

gradual increase in Ip,c and Ip,a with time, of which steady state background current 

was obtained after approximately five hours. The CVs are shown in Figure 5A.6, for 

0 – 5 hour equilibration time. The results, in terms of increasing Ip,c and Ip,a is 

completely in accordance with previous findings, and in this regard, usually 

signifies the extraction and pre-concentration of the  Ru(NH3)6
3+

 into the film  

a process which, for a 1 μm thick nafion film, normally takes up to one day for 

completion. However, the uptake of the Ru(NH3)6
3+

  into the film can only be 

conclusively deduced, with the aid of additional investigations, such as determination 

of distribution coefficients (kD), etc., however such parameters were not determined 

at this stage, since it is not required for the scope of the dissertation.   With regard to 

further evaluation of the CVs presented in Figure 5A.6, a fairly well-defined redox 

couple  can be observed,  which corresponds to the oxidation and reduction of the 

Ru(NH3)6
3+

/Ru(NH3)6
2+ 

 couple.
 
The specific peak parameter values for Ep,c; Ep,a; Eº', 

for the redox couple were determined as -210 mV; -145  mV and -176 mV ( 5 mV) 

respectively. These were determined as mean standard deviation at low scan rates, 

where exhaustive electrolysis were possible, as such converting all of the  Ru(NH3)6
3+
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to Ru(NH3)6
2+

.  Furthermore, |Ip,c/Ip,a| was determined as 1.4, while a peak potential 

difference (ΔEp)  of 60 ( 2) mV  signified semi-infinite linear diffusion, as it is close 

to the theoretical value of 57 mV for a diffusion controlled system.   Diffusion control 

was confirmed by varying the scan rate, as shown in  Figure 5A.7 which exhibits the 

cyclic voltammomatric responses, as well as a linear relationship of Ip,c and Ip,a with 


½
  of  Ru(NH3)6Cl3 at the GC|Naf|El-Co(Sep)

3+
 electrode for scan rates from 10 

to 150 mV s
-1

. A closer evaluation of the exhibited CVs, shows a gradual 

increase in both Ip,c and Ip,a with each scan rate, up to 150 mV s
-1

, coupled with 

a very small cathodic and anodic peak shifts for the cathodic wave and anodic 

wave, respectively, with each scan rate (by a magnitude of  5 mV). The 

Randles-Sevcik relation for a one-electron reaction was applied to determine 

the apparent diffusion coefficient, based on the following equation:  

 Ip = (2.687 x 10
5
)n

3/2


½
 Dapp

½ 
AC 

Where Ip is the peak current, n is the number of electrons transferred,  is the 

scan rate (V s
-1

), A is the electrode are (cm
2
), C is the bulk concentration Dapp 

is the Ru
3+

/Ru
2+

 diffusion coefficient (mol cm
-3

). In this regard, by using the slope of 

the straight line obtained from the Ip,a vs 
½
 plot, and applying it in the Randles-

Sevcik equation (Equation ), Dapp was determined as 7.982 x 10
-10

 cm
2
 s

-1
. It is 

noteworthy to add though, that the obtained  Dapp is slightly on the low side, but is 

not entirely unexpected, since usually smaller ions like Na have, is expected 

and indeed does exhibited larger diffusion coefficients [143]; on the other 

hand, research has shown that diffusion of Ru(NH3)6
3+

 into pre-formed nafion 

films can take up to 24 hours to reach equilibrium, while equilibration for 

Ru(NH3)6
2+

 uptake can take up to one week [117, 143], which essentially 

translates into corresponding generally lower Dapp values. That being said, 

considering the preformed nafion film already contained a counter-ion 

(Co(Sep)
3+

), which were quite stably retained,, as well as the fairly good 

charge transfer/electrochemical behaviour of the film with respect to the  

Ru(NH3)6Cl3 redox probe, including the fact that equilibration with RuNH6
3+

 took  5 
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h  to attain a steady state – the obtained Dapp are well within reason. Moreover, the 

value obtained for Dapp for Ru
3+

/Ru
2+

 in this study is actually completely in line 

with literature reported values for nafion film of similar thickness (i.e. ≈ 1x10
-10

 – 

25x10
-10

 cm
2
 s

-1
).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5A.6 Cyclic voltammograms (5 mV s-1) of the GC|Naf|El-Co(Sep)
3+

 

electrode in anaerobic PB containing 1 mM ruthenium(III) hexamine chloride 

[Ru(NH3)6Cl3]. Voltammograms at 0-, 1-, 3-, and 6 hours are shown 
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Figure 5A.7 Cyclic voltammograms showing the influence of scan rate on 

oxidation and reduction peak current for 1 mM  ruthenium(III) hexamine chloride 

[Ru(NH3)6Cl3], in 50 mM PBS (pH 7.4) at the GC|Naf|El-Co(Sep)
3+

 electrode. 

Scan rates in order of increasing peak height are 10, 20, 30, 40, 50, 60, 70, 80, 

90, 100, 110, 120, 130, 140 and 150 mV s
-1

. In set shows the linear 

relationship between peak current (Ip,c and Ip,a) and 
½

, with determined slopes 

 

 

 

 

5A.3 Morphological and structural characterization of the Naf-El-Co(Sep)
3+

 

film 

 

To get a complete comprehensive overview of a prepared platform, morphological 

and structural investigation of the film is also required, of which these investigations 

may be conducted through various spectroscopic and microscopic techniques, but the 

most eminent being, normally done through Scanning Electron Microscopic (SEM) 

analysis and Fourier Transform Infrared (FTIR) Spectroscopy, respectively. In this 
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regard, obtained FTIR spectra enables the assignment of unique characteristic 

vibrational signals, which allows for easy structural analysis of compounds. 

Similarly, changes in chemical environments due to incorporated chemical 

components, etc. induces vibrational peak shifts, which may aid in structural 

characterization of composite material.  On the other hand, SEM analysis allows for 

top-sectional and/or cross-sectional views, revealing more detailed information on 

film morphology, and integrity of film constituents. 

 

 

5A.3.1 Morphological characterization: Scanning Electron Microscopy (SEM)

  

 

Figure 5A.8 a – c shows top view SEM images of the blank screen printed 

electrode (bSPE), nafion-modified SPE (nafSPE), as well as the Co(Sep)
3+

 modified 

electrode (SPE||naf|El-Co(Sep)
3+

). Compared to the rough surface observed for the 

bSPE, the surface morphology exhibited by the nafion film on the other hand, 

revealed a microstructure with a smooth consistency, which indicates a chemically 

stable membrane that covers and protects the underlying electrode. In this regard, 

according to research findings, nafion is known to maintain its chemical stability 

under extreme conditions – proven to maintain characteristic structural bonds even 

when exposed to radical producing H2 or O2 environment for up to 1000 hours [111]. 

The incorporated Co(Sep)
3+

 cation species did not induce any noticeably visible 

changes  to the nafion-derivatised film, but rather also exhibited a fairly smooth film, 

as shown in Figure 5A.8 (c). The notable similarity of the composite naf|El-

Co(Sep)
3+

-film to the film consisting only of nafion is indeed an interesting feature, 

not an entirely unexpected phenomenon, since as described in preceding sections 

within this chapter, once exposed to the Co(Sep)
3+

, the nafion extracts the cation 

species and it subsequently taken up within the nafion microstructure, which 

essentially means that, although inherent structural changes within the nafion 
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microstructure occur, this does not necessarily translate into visible changes and as 

such, not much visible changes of the film surface is really expected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5A.8: Top Scanning electrochemical microscopy images of electrode and 

films: (a) blank screen printed electrode (bSPE); (b) Naf modified SPE (nafSPE); (c) 

nafSPE with pre-concentrated Co(Sep)
3+

 (SPE||naf|El-Co(Sep)
3+

)   
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At this stage, still on the subject of the exhibited SEM-images, an important aspect to 

bring to the reader’s attention, is the fundamentally unequivocal dissimilarity in the 

surface morphology with respect to the pre-formed nafion membrane, as well as the 

Co(Sep)
3+

-modified nafion membrane in the current study, as compared to what was 

observed for the study presented and discussed in Chapter 4. In this regard, for the 

current study, both films exhibited a compact nature with a highly smooth 

consistency, whereas those observed in the previous chapter was highly unevenly 

distributed films with very little signs of compactness. This finding is quite 

significant, since firstly, the compact nature and smooth consistency of the nafion 

film, in turn allows for a better coverage and/or protection of the underlying 

electrode. Secondly, the marked similarity of the modified and un-modified nafion 

films, essentially portrays a good extraction and uptake of the incorporated Co(Sep)
3+

 

within the nafion microstructure. The cumulative sub-conclusion which may be 

drawn from these findings point to the improvement in technique used for film 

preparation, as compared to the experimenter’s initial approach used for the design of 

biosensor platform 1  in Chapter 4. The observed improvement may be attributed to 

the different approach taken in terms of design parameters, with particular reference 

to the amount of nafion cast, the technique used for nafion film formation, as well as 

the specific technique used for incorporation of the Co(sep)
3+

 species, as compared to 

the design path used in the preparation of the carrier matrix for the preparation of 

biosensor platform 1.         

 

 

 

5A3.2 Structural characterization: Fourier Transform Infrared Spectroscopy 

(FTIR) 

 

Figure 5A.9 a – c shows the FTIR spectra of nafion used in this study, 

commercially obtained cobalt(III) sepulchrate trichloride, as well as the 

electrochemically prepared nafion/El-Co(Sep)
3+

 composite membrane, respectively. 
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In this regard, the spectra exhibits the major vibrational fingerprints associated with 

each singular and/or composite compound, of which the assignment of vibrational 

bands was based on relevant already published data, as well as theoretically 

established IR correlation charts. With regard to the un-modified ‘pure’ nafion 

membrane exhibited in Spectra a, characteristic absorption bands associated with 

CF2 asymmetric stretching (1207 cm
-1

), CF2 symmetric stretching (11490 cm
-1

), S-O 

symmetric stretching (1058 cm
-1

), C-O-C stretching (981, 862 cm
-1

), and C-F 

stretching (630 cm
-1

) are shown and identified within the graph [111-114, 116, 150]. 

In terms of the pure Co(Sep)
3+

 exhibited in Spectra b, absorption bands associated 

with methylene groups (733, 834, 2850, 3034 cm
-1

), and secondary amines (1055, 

1130, 1168, 1335, 1366, 1444, 3415, 3520 cm
-1

), associated with the characteristic 

structural features of Co(Sep)
3+

 (see Figure 2.5, Chapter 2)  is shown [115].   

 

 

With regard to the Co(Sep)
3+

-modified nafion film (naf|El-Co(Sep)
3+

), shown in 

Figure 5A.9 (c), most of the major vibrational fingerprint bands associated with the 

nafion are also exhibited; however, positional shifts in vibrational bands, as well as 

new vibrational bands is exhibited in the FTIR spectra. This is an unequivocal 

indication of structural changes within the microstructure of the nafion membrane and 

can broadly be ascribed to the incorporation of the electrochemically deposited 

Co(Sep)
3+

 within the membrane. In this regard, vibrational absorption bands 

associated with the structure of Co(Sep)
3+

 are indicated/highlighted by differently 

coloured arrows in Spectra b and c of Figure 5A.9. Thus, in a more descriptive 

context regarding Spectra c, in terms of a more in-depth investigation of the presence 

of Co(Sep)
3+

 in the modified nafion membrane in particular, firstly, the appearance of 

vibrational bands located at 735-, 835 and 971 cm
-1

 (highlighted by the red arrows) 

can be ascribed to the methylene groups associated with the structure of Co(Sep)
3+

. 

Secondly, the appearance of absorption peaks for secondary amine groups, located at 

1367 and 1448 cm
-1

, indicated by green arrows as shown in Spectra c, once again 

signifying and confirming the presence of Co(Sep)
3+

 within the nafion membrane. 
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Another very noteworthy aspect is that the FTIR spectra for the unmodified nafion 

membrane (Spectra a) exhibited a notable amount of inherent water content signified 

by the broad peak for stretching vibration of water molecules ranging from ≈ 2620 – 

3740 cm
-1

, whereas no such observable peaks in this region for the Co(Sep)
3+

-

modified nafion membrane can be seen in Spectra c. This is not unexpected, since 

un-evacuated/un-heat-treated, pure nafion membranes are known to contain an 

appreciable amount of water, constituted by hydrogen bonded, partially hydrogen 

bonded and non-hydrogen bonded water molecules [114]   of which these water 

molecules decreases relative to the increase in concentration of and/or size of 

counter-ion species (particularly hydrophobic cation species) [118] and considering 

that on average, each prepared nafion membrane used in the current research 

investigation (thickness ≈ 3.1 μm) contain ed at least    1.5 x10
-5

 mol 

cm
-2

 extracted/pre-concentrated Co(Sep)
3+

 counter-ion species, a significant decrease 

of water content are within experimental expectancy. Moreover the intensity of the 

CF2 absorption bands, as well as  for the sulphonic group (1055 cm
-1

) in the 

Co(Sep)
3+

 modified nafion membrane shown in Spectra c are more intense and 

slightly shifted as compared to the bands observed for the unmodified nafion 

membrane shown in Spectra a. Considering the afore-discussed visibly reduced 

water content associated with the modified nafion membrane, this is certainly not an 

unexpected phenomenon: Generally each sulphonic cluster region in an unmodified 

nafion membrane contains water filled pockets consisting of approximately 1000 

water molecules and the ensuing interaction of the sulphonate ion groups with these 

water molecules results in less intense SO (SO3

) absorption bands (as seen in 

Spectra a ≈ 1058 cm
-1

). Moreover, these water molecules is known to function as a 

plasticiser, thus increasing the free volume (and decreases the concentration of the 

polymer chain) in the sulphonic clusters [117]. However, as the concentration and/or 

size of the counter-ion species increases during ion pre-concentration and/or 

modification of the nafion membrane, a the cumulative effect concomitantly results in  

loss of water molecules (dehydration) from the sulphonic cluster regions, with a 

simultaneous increase in the role of the CF2 groups, thus leading to more intense 
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FTIR absorption bands for these groups . Furthermore, another prominent finding as 

observed from the current spectra, is the appearance of a new absorption band of 

quite  strong intensity at 1742 cm
-1

 which is likely to also be associated with the 

structural changes due to the blending vibration of the incorporated cationic 

Co(Sep)
3+

 species, which, based on the upward shift of the frequency as compared to 

position of absorption band observed in that vicinity (see Spectra a) for the 

unmodified nafion membrane, this may be attributed to the resultant effect of specific 

interactions such as  strong hydrogen bond interactions between the Co(Sep)
3+

 and 

structural groups in the nafion microstructure [114, 118].       

 

 

 

Figure 5A.9: Fourier Transform Infrared Spectroscopy (FTIR) spectra of (a) 

unmodified nafion membrane; (b) commercially obtained cobalt sepulchrate   
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On a sub-conclusive note, in a conclusive observation regarding the afore-presented 

and discussed FTIR results, an interesting feature to once again bring to the reader’s 

attention, is the conspicuous variation in the mictrostructure of the Co(Sep)
3+

 

modified nafion membrane, compared to that observed for ‘pure’ nafion, particularly 

with regard to the marked difference in water molecules and associated structural 

vibrations. In a critical comparative evaluation, with specific reference to the FTIR 

results exhibited for the nafion-CMECo(Sep)
3+

 carrier matrix in Chapter 4, for which 

a chemically-based modification technique was applied, the results were significantly 

different. In the context of the explanative significance of these findings, the reader’s 

attention  is drawn to the following facts: Generally, the change in the chemical 

nature of the ionic domains associated with the nafion structure, is caused by the 

increasing uptake and incorporation of the  cationic species, particularly in the case of 

compounds with hydrophobic ligands. This behaviour is caused by a change in 

polarity of the microenvironment surrounding a portion of the sulphonate groups 

from hydrated, inverted micelle type domains to a more hydrophobic, low dielectric 

medium. As the content of the  counter-ion species increases, the ionic clusters 

become increasingly dehydrated and the quantity of the other linkages which 

penetrate into the polar interior of the ionic clusters decreases while the quantity of 

ether groups surrounded by the less polar regions of the ionomer increases. Hence, in 

this regard, the fundamental structural changes observed in accordance with the 

modified nafion microstructure, is in fact a good indication of the effective uptake of 

the counter-ion mediator species, which in turn signify the superior efficiency of the 

electrochemically-based technique, as opposed to the chemically-based, manual 

casting/mixing technique used in Chapter 4.  
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5A.4 Conclusions 

 

The cationic species, Co(Sep)
3+

, was successfully incorporated into the 

microstructure of the pre-formed nafion film through potentiostatic electrochemical 

deposition method. Moreover, FTIR spectroscopic studies confirmed the 

incorporation of the e Co(Sep)
3+

 species deep within the microstructure of the nafion 

membrane. In addition to this SEM analysis revealed that the formed composite has a 

exceedingly smooth consistency with a highly compact structure. In addition to this, 

results obtained from electrochemical investigations all pointed to a stably prepared 

electroactive film, which exhibited excellent electrochemical characteristics, 

particularly in terms of fast reversible electron transfer with the underlying electrode 

as well as stability and reproducibility. Compared to other pre-concentration methods 

involving metal-centred electroactive species, the technique applied in this study 

enabled the incorporation of the highest possible percentile of electroactive counter-

ion species within the shortest possible time,  with a   Γ value  of the incorporated 

counter ion species. Similarly, a fairly high obtained charge transfer diffusion 

coefficient, 2.64 x 10
-7

, was evidence of a fast uptake of cationic species, as well as 

the ease of preparation using the proposed method.  
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CHAPTER 5B 

 

 

 

 N-terminally modified genetically engineered human 

recombinant P450-3A4 (nCYP3A4) biosensor for the 

determination of protease inhibitor ARV drug, Indinavir:  
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Abstract 

A catalytically active N-terminally modified human recombinant CYP3A4 isoenzyme 

was successfully prepared through genetic engineering, as a catalytically active 

histdine-tagged N-terminally modified soluble construct. The active P450 content 

was corroborated with The catalytically active P450 content was confirmed by the 

absorption maximum of the reduced CO-bound complex at 450 nm. A reagentless 

mediated biosensor was constructed with cobalt(III) sepulchrate [Co(Sep)
3+

] as 

mediating species, integrated within the microstructure of a pre-formed nafion base 

film by potentiostatic deposition, and the  prepared  enzyme  was used as the bio-

recognition component. Stable enzyme immobilization was ensured by a combination 

of entrapment and encapsulation.  In this regard, to ensure enzyme stabilization and 

retention of catalytic activity, the immobilized enzyme was encapsulated with a ionic 

hydrogel-composite membrane. The hydrogel was prepared through pre-blending, via 

the combination of agarose (Agrs) hydrogel with hydrophilic polymer, poly(vinyl 

alcohol) (PVA) and cationic polyelectrolyte, polyethylene amine (PEI). The 

combination of PVA and agarose , while the addition of PEI enabled the ionic cross 

linking of the biocompatible Agrs-PVA composite hydrogel, and thus confirming  

reduction in the swelling index of both polymers, while also inducing ionic cross 

linking of the polymers, thus ensuring a more stable insoluble hydrogel blend, with a 

porous meshwork that still freely allowed the diffusion of the substrates into the 

reagent layer. The prepared biosensor, GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-

PVA, exhibited a low operating potential for oxygen reduction, determined as -365 

mV. The biosensor successfully detected and quantified the selected model substrate, 

indinavir. In this regard, the biosensor showed a linear range between 2.183 x10
-6

  

3.552 x 10
-6

 M, a sensitivity of 0.0349 A M-1, while the LOD was determined as 

59.72 mg L
-1

. The LOD was shown to be of significance in the CMax of the ritonavir-

boosted regimen, as well as for poor metabolisers. Control experiments corroborated 

the bio-electrocatalytic response from the active enzyme.   
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5B.1 Introduction 

 

The PI ARV, indinavir is given either by itself, or in association with 

booster-PI ARV, ritonavir. An important problem associated with the standard 

singular and/or boosted regiment is the manifold side effects, which is in direct 

relation to drug-induced toxicity, in association with the P450 3A4 first pass 

biotransformation pathway. Therefore, therapeutic drug monitoring (TDM) is always 

a highly recommended fundamental aspect of indinavir treatment, which normally 

involves blood samples taken and sent for analysis with standard centralized 

techniques by trained personnel  in effect boiling down to a tedious and expensive 

endeavour.   However, the often overlooked, but clearly pivotal subject-area during 

such treatment regimes,  is finding alternative, cheaper, decentralized techniques for 

TDM of indinavir and/or other HAART associated drugs. In fact, during the initial 

comprehensive literature survey, approximately one journal, focussing on cheaper 

alternative detection/quantification method for selected HAART drug, nevirapine, 

based on the development of a immunochromatographic (IC) strip test, was found 

[16]. In contrast, all other available literature focussed on enhancing centralized 

methods of detection and analysis, particularly, HPLC  a technique which in spite 

of its precision, is highly expensive, requiring tedious sample preparation with trained 

personnel. In this regard, biosensors is the only analytical device that have the 

potential to parallel the detection and quantification ability of these centralized 

methods, the difference here of course being a much more simplified analysis 

technique and real-time analysis. Moreover, due to the complexity and unique nature 

of CYP3A4 enzymes, substantially multifaceted electron transfer machinery is 

required to support this membrane bound, microsomal mammalian heme thiolate 

enzyme chemistry, and in this regard, the electrochemical platform provided by 

biosensor configurations can substitute for many of these needed components. On the 

other hand, genetically manipulated cells expressing single CYP genes/isoenzymes, 

can be an effective way of providing a continuous supply of biological recognition 

component for these biosensor platforms. In such configurations, an important 
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aspects is enzyme immobilization. In this regard, although immobilization methods 

for mammalian microsomal P450 isoenzymes are not as yet entirely well established, 

gel-entrapment has been documented as the least damaging to such enzymes and can 

even be used in methods when reusable enzyme-based sensor platforms are required. 

The high preference for hydrogel material is based on collective inherent favourable 

attributes, of which the most eminent include their considerable water imbibing 

ability, and soft consistency which is similar to natural tissue. In fact, hydrogels 

resemble natural living tissue more than any other class of (synthetic) biomaterials, 

and are thus considered highly biocompatible 

 

In this study, the favourable interaction between the ionomer, nafion, and the 

Co(Sep)
3+

 mediating species was further explored and harnessed for utilization in the 

creation of alternative analytic tool for decentralized method of therapeutic drug 

monitoring, specifically aimed at selected HAART associated drug components. This 

was done through the creation of a sophisticated, robust reagentless-type mediated 

biosensor, prepared through the innovative combination of potentiostatic deposition 

technique, combined with genetic engineering technology and complimented by the 

application of three-dimensional biocompatible hydrogel blend-membrane creativity. 

In this regard, firstly a highly stable and reproducible electroactive carrier matrix was 

prepared  through potentiostatic electrodeposition of Co(Sep)
3+

 onto a pre-formed 

nafion membrane, for which the results were presented and comprehensively 

discussed in Chapter 5A. Secondly, a reagentless, mediated enzyme-based biosensor 

was constructed, by using the heme domain of mammalian microsomal CYP3A4 

(expressed as a catalytically-active histidine-tagged, N-terminally modified soluble 

construct) as bio-recognition component. In addition to this, stable enzyme 

immobilisation was ensured by its mild entrapment in an ionically-based three-

dimensional hydrogel blend, consisting of agarose, polyvinyl alcohol and 

polyethyleneimine. In keeping with the main aim of the biosensor, the HAART 

associated protease inhibitor ARV drug, indinavir, was used as model substrate, in 

order to evaluate its performance in the detection and quantification of ARV drug 
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components. As elaborated in the Prelude of Chapter 5,  a major aim of the current 

biosensor was to improve the characteristics of the Co(Sep)
3+

 biosensor (designed and 

created in the research investigation presented and discussed in Chapter 4), with 

particular reference to pre-determined aspects, of which the most fundamental was 

the following: 

 Designing a reproducible method of preparation of the carrier matrix, 

especially in terms of preventing/alleviating pre-mature and/or long-term 

leaching of medating species; 

  Pre-concentrating a larger percentile of mediating species in the nafion 

microstrucure to allow faster enzyme/electrode interaction at the shortest 

distance; 

 Lowering the operating potential (to a less cathodic value), especially in terms 

of the reduction of dioxygen, which plays a pivotal role in the reaction cycle 

of nCYP3A4’s electrcatalytic response to the substrate. Moreover a less 

negative oxygen reduction potential would also  considerably alleviate any 

air-sensitivity/reactivity of the Co(Sep)
3+

 mediating species within the 

nCYP3A4-based biosensor configuration, a process that would strongly 

curtail the potential formation of reactive intermediate species that could 

affect the efficiency of the bio-electrocatalytic activity of the enzyme to 

oxygen and selected substrates ;  

 Incorporating cheaper alternatives for selected reagent-layer components, 

sourced commercially. 

On the subject of improving the operating potential with respect of reduction of 

dioxygen in particular  the results obtained for biosensor-platform1, presented and 

discussed in Chapter 4, was used as primary reference point, and as such obtained 

results on this factor was comparatively evaluated. Thus, with all the proposed 

criteria in mind, design and optimisation of the nCYP3A4-based biosensor with 

regard to major objectives and sub-problems were conducted accordingly. 
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5B.2 Structural aspects of the genetically engineered his6-tagged N-terminally 

modified recombinant CYP3A4 (nCYP3A4) 

 

Before commencing with presentation and discussion of the 

electrochemical results, the synthesized nCYP3A4 enzyme was subject to specific 

characterization studies, to verify and corroborate certain characteristics associated 

with CYP450 enzymes, for which the results are subsequently presented and 

discussed.  

In general, cytochrome P450 (CYP450) enzymes, in their naturally 

oxidised resting state, portray inherently unique trait-specific conformational and/or 

structural features, which are easily distinguishable by specific complimentary in-

situ/ex-situ spectrophotometric, spectroscopic and/or biophysical techniques. 

Moreover, in their reduced and/or excited state, these enzymes undergo characteristic 

conformational changes which are also discernible through the application of such 

complimentary methods. The significance of such techniques also allows 

experimenter to assess the success of expression/synthesis methods used for 

preparation of these enzymes with genetic engineering, since secondary/tertiary 

enzyme structure exhibit unique characteristics, which are easily determined by these 

methods. In this regard, depending on the specific purpose, there are a number of 

possible techniques that can and have been applied, which include Fourier transform 

infrared (FTIR) spectroscopy, Utraviolet-Visible (UV-Vis) absorption spectroscopy, 

Circular dichroism (CD), Resonance Raman spectroscopy. In the interest of the scope 

of this dissertation however, only results for FTIR and UV-Vis spectroscopic analysis 

are shown and discussed, since these two techniques are basic exploration methods 

which can provide sufficient information regarding the secondary structure of 

CYP450 enzymes. For a more comprehensive outline regarding the structure-function 

and other biophysical properties of these enzymes, the reader is encouraged to read 

the PhD dissertation of Natasha Beeton-Kempton .  

 

 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

224 

 

5B.2.1 Fourier transform infrared spectroscopy  (FTIR) characterization [151-

152] 

 

The characteristic shape and positions of amide and/or other bands 

observed in FTIR spectrum can be used as fingerprint identification of 

enzymes/proteins, while simultaneously providing information on the secondary 

structure of the polypeptide chains of these compounds, and as such, is an age-old,  

invaluable tool for studying their structure-function relationships. In this regard, FTIR 

spectroscopy was used for conformational studies of the prepared enzyme 

(nCYP3A4), of which the results are exhibited in the spectrum shown in Figure 5B.1. 

Before commencing with the discussion of the observed results, an important 

noteworthy factor should first be brought to the reader’s attention: Generally, in 

principle, in FTIR analysis of CYP450 and/or other heme proteins, all of the 

components in the sample contribute to the observed spectrum This essentially means 

that the full spectrum, as obtained from the original FTIR scan, consist of absorption 

bands from (i) the surrounding apo-protein part; (ii) the heme (prosethic group) 

component and heme ligands; (iii) interactions between the heme and the surrounding 

apo-protein; and (iv) the water and other components of the buffer solution, 

particularly those from the phosphate group. Thus considering the aforementioned 

aspects, with regard to the results exhibited in Figure 5B.1   the inset shows the 

full spectrum as obtained from the original FTIR scan, whereas the main graph is an 

enhanced graphical presentation of the relevant absorption bands restricted to the 

components of enzyme itself,  i.e., the spectral region of 2200 cm
-1

 to 1300 cm
-1

.     

 

In terms of specific band assignments, firstly, the distinctive absorption band marked 

as ±1630 cm
-1

, may be attributed to overlapping contributions from the  surrounding 

apo-protein groups (protein component), as well as heme associated groups. With 

regard to the protein component in particular, it may be ascribed to the Amide I band, 

primarily from the stretch vibration of the peptide CO. With regard to the 
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contribution from the heme, on the other hand, it may be ascribed to the CC 

stretching from the vinyl group in the protoporphyrin IX  (Normally, distinctive 

porphoryn vibrational modes are difficult to detect in isolation, because of their low 

intensity and their overlap with amide bands from the surrounding apo-protein). 

Secondly, the smaller and much less distinctive band, highlighted at position ± 1459 

cm
-1

 may be attributed to the Amide II absorption band, of which the latter arises 

from NH bending coupled with CN stretching. According to documented reviews, 

the positioning of this particular band is normally centred around ± 1550 cm
-1

, 

however, FTIR reflects the degree and strength of hydrogen bonding, a phenomenon 

which is known to be strongly influenced by sources other than changes in the protein 

secondary structure, including different sampling techniques, the surrounding water- 

and other molecules from the protein storage solution; stress factors such as 

lyophilisation of the protein, etc. These constricts, thus essentially shifts the modes to 

higher/lower frequencies, and as such, the results within this research investigation 

are well within experimental variability. The absorption band positioned at ± 1328 

cm
-1

 may be ascribed to the protein-associated Amide III band, while the other bands 

of equally small intensity in the surrounding area (highlighted by red arrows), can be 

ascribed to the α-helices and β-sheets as induced by the protein secondary structure, 

as well as the infrared absorption of amino acid side chains.  
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Figure 5B.1 Fourier transform infrared (FTIR) spectra of the pure synthesized N-

terminally modified CYP3A4 construct (nCYP3A4). Inset shows full spectrum as 

obtained directly from FTIR analysis. Main spectrum shows the relevant spectral 

range for bands associated solely from nCYP3A4, restricted to the region of 1830 cm
-

1
  1140 cm

-1
.    

 

 

 

5B.2.2 Spectrophotometric characterization: UV-Vis Spectroscopy 

 

The inherent advantage of the presence of the spectroscopically rich heme 

in the active site of CYP450 enzymes can easily serve as an in situ probe – exhibiting 

characteristic visible and near-ultraviolet absorption band changes for recognition of 

protein, and in association with interaction of the protein/enzyme with various 

effectors [153-154]. In this regard, the results of the UV-Vis analysis of the 

synthesized CYP450 3A4 enzyme (nCYP3A4), are shown in Figure 5B.2(a) and (b). 

Figure 5B.2 (a) in particular, is the absolute UV-Vis absorption spectrum of the pure, 

substrate-free  nCYP3A4, from which a distinct peak  with a Soret maximum (λmax) at 
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424 nm is observed. This is essentially characteristic of  P450 enzymes in their 

resting state and as such, exhibits a low-spin state of the water-ligated six-coordinate 

heme, in which the heme-iron is in its ferric (Fe
III

) oxidation state [83, 155-156]. No 

additional shoulder peak at ~ 390 nm can be observed, which, if present, would have 

indicated a mixed spin heme, of which a proportion would be in the high-spin state.  

Moreover, the smaller shoulder peak and two slightly broad troughs, located at ± 358, 

536 and 570 nm, respectively, exhibits spectral properties typical for members of the 

P450 enzyme class, and as such, are always observed in CYP4503A4Fe
III

 absolute 

spectra [153, 155-156]. Moreover, these peaks may be attributed to the instrinsic 

apoprotein absorbance of the surrounding protein molecule, thus confirming the 

overall structural integrity of the synthesized enzyme construct. In terms of specific 

classification, these peaks may be ascribed to the δ-band (358 nm), α-band (570 nm) 

and the β-band (536 nm), respectively.  Reduction of the nCYP3A4 enzyme and 

addition of carbon monoxide (CO) gave the characteristic CYP450n3A4Fe
II
CO band, 

exibited in the difference spectrum with a soret maximum at  ± 449 nm, as shown in 

Figure 5B.2 (b).  With regard to the displayed CYP450n3A4Fe
II
CO complex, the 

structure of CYP450 enzymes is such that, in general, the enzyme’s prosthetic group 

is constituted of an iron(III), protoporhyrin-IX which is covalently linked to the 

surrounding apoprotein by the sulphur atom of a proximal cystein (see Figure 1.2 a 

and b, Chapter 1) [22-24, 72]. Moreover, the catalytically active conformational 

state of these enzymes are guaranteed/corroborated by the presence of  the 

aforementioned specific thiolate bond between the heme iron and the highly 

conserved cysteine residue (the fifth ligand of the heme), of which such an active 

state may be spectroscopically identified as a reduced CYP450Fe
II
CO complex [21, 

23-24, 137] (formed upon reduction of the heme iron and exposure to CO gas),  as 

shown in Figure 5B.2 b. Thus in essence, the UV-Vis absorption spectrum shown for 

the reduced CO-complex of the prepared enzyme is very significant, since it 

contributes to the corroboration of the success of the preparation of a catalytically 

active enzyme construct [72, 156-158].  
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On the other hand, still on the subject of the CO-difference spectrum, it is noteworthy 

to also add, that the full spectrum (shown in Figure A-1, Appendix A) also exhibited 

an additional absorbance peak at ± 419 nm, albeit a peak maxima of smaller intensity, 

as compared to the P450 peak. This is also a finding that requires its own merit of 

attention, since ideally, the carbon-monoxide difference spectrum produced from 

reduction and CO treatment of pure catalytically active; CYP450 enzymes should 

produce an ‘abrupt’ absorption maximum, with no additional peaks at 420 nm [24, 

72, 159]. Observation of a peak at 420 nm in this context, would thus imply a 

proportion of the protein being denatured [24, 72, 83, 156]. Based on the 

aforementioned criteria, such a result, as it stands, imply that the synthesized enzyme 

contains a mixture of spectral species  with a proportion being in its native 

catalytically active state, and a proportion being denatured. That being said, based on 

documented findings regarding genetically engineered N-terminally modified soluble 

CYP450 constructs and other constricts known to contribute to trouble shooting in 

this area in such enzymes, the reader is cautioned to consider the following [24, 158-

159]: 

 Prior research has shown that mammalian microsomal P450s, particularly 

CYP3A4 has a rather unstable conformational nature, with the enzyme easily 

being denatured during treatment with various effectors. In fact, it has been 

shown that research has shown that the P450-complex in these enzymes are 

unstable, with P450 very easily converting to the inactive P420 form within 

minutes of formation of the complex. Similarly, the agitation brought about 

by excess dithionite treatment and/or CO bubbling also can cause 

distortion/loss of the heme-thiolate ligation, which in effect will cause 

denaturing of the protein.  

 The sensitivity of N-terminally modified CYP450s as compared to their full-

length wild-type enzyme equivalents are generally well known – the protein 

structure being easily disconcerted, and as such, easy loss of cystein ligation 

could be an artefact of the genetic engineering process. 
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 To obtain sufficient yields of soluble purified protein, the application of 

detergents during the genetic engineering process is crucial, however, it has 

been documented that they do have a percentile of destabilising effect on the 

so produced enzymes, thus once again enzyme sensitivity with loss of 

cyteinate could be an artefact of the preparation process. 

Based on the preceding facts, it is evident that the number of constricts could have 

contributed to the inactive ‘P420 form’ during CO studies.  Nevertheless, the results 

does indeed show structurally intact, catalytically active native enzyme construct. 

Moreover, the sensitivity of the so produced enzyme construct is not uncommon, 

since all proteins/enzyme suffer a percentile of this fate, which is always taken into 

consideration during biosensor construction, particularly in terms of optimum 

immobilization and coupling efficiency.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.2 Electronic absorption spectra for the synthesized, N-terminally 

modified CYP450 3A4 (nCYP3A4). The UV-Vis absorption spectrum for pure 

nCYP3A4 (concentration μM) showing (a) nCYP3A4 in its resting low-spin Fe
III
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state; inset (b) nCYP3A4-Fe
II
carbon monoxide, prepared by reducing nCYP3A4Fe

III
 

with excess sodium dithionite and saturating with CO by bubbling for 2 min. Spectra 

in (b) were difference spectra taken against references of reduced nCYP3A4 before 

addition of CO. Working solution of nCYP3A4 was 20 mM potassium phosphate 

buffer, pH 7.40, 20% glycerol, EDTA, DTT. 

 

 

 

 

5B.3  Assembly and electrochemical characterization of the hydrogel-based 

enzyme biosensors prepared on glassy carbon electrode  

 

 

5B.3.1 Electrode Assembly: Optimisation of the variables concerning the 

indinavir amperometric biosensor assembly and behaviour 

 

 

5B.3.1.1 The effect of carrier matrix assembly: Optimisation of constituents 

and method of preparation 
 

With the ‘research spotlight’ on the main objectives and sub-problems for 

the current investigation, as elaborated in the Prelude of Chapter 5, as well as the 

aspects highlighted in the introduction of the current chapter  the investigation in 

the initial studies were focussed on three important aspects during the biosensor 

construction. Firstly, the feasibility of using the   poly(ester sulphonic acid) cation 

exchanger, Eastman-AQ55 (EAQ), as cheaper alternative to the more expensive 

nafion membrane as base film was explored. Secondly, in the quest to design a more, 

reproducible method of preparing the electroactive carrier matrix composite, the 

Co(Sep)
3+

 mediating species was incorporated into the EAQ through electrochemical 

deposition. With regard, to the time aspect of the potentiostatic deposition process in 

particular, an electro deposition time of 1200 s was regarded as an optimal period to 
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accumulate sufficient mediating species within the pre-formed polymer film. The 

selection was based on a series of experimental trial investigations in which the 

stability of the background signal was evaluated. In the third aspect, the investigation 

of a suitable aqueous biocompatible hydrogel as outer layer, instead of the more 

expensive nafion film was conducted. In this regard, as an initial possible 

replacement, the hydrophilic, non-toxic, biocompatible polymer, poly(vinyl alcohol) 

(PVA) was evaluated. However, PVA has a considerably high swelling index and 

dissolves readily in water when not cross-linked, and as such, during the fabrication 

of the biosensor, the PVA was cross-linked with gluteraldehyde (GA) under acid 

catalysis, denoted clPVA. (A comprehensive step-wise description of the 

experimental protocols used in the preparation of the biosensor is elaborated in 

Section 5B in the current chapter.)    As a sensitivity criterion, the prepared 

biosensor, denoted GCEEAQCo(Sep)
3+
nCYP3A4clPVA, was evaluated with 

regard to the stability of the prepared platform, as well as electrocatalytic response 

both in terms of the enzyme’s co-substrate (i.e. molecular oxygen, O2) and the 

substrate (indinavir), paying particular attention to the operating potential for 

electrocatalysis.      

 

The obtained results for the GCEEAQCo(Sep)
3+
nCYP3A4clPVA biosensor is 

exhibited in Figure 5B.3. In the first aspect, the stability of the reagent-layer coating 

was evaluated both visually (i.e. by observing the integrity of the coating in the 

aqueous buffer electrolyte) and voltammetrically (i.e. by observing the stability and 

reproducibility of the obtained voltammetric signals). When the prepared biosensor 

was placed in the argon-degassed electrolyte buffer, the film took on an opaque 

appearance, also exhibiting a substantial amount of swelling, a finding which is 

characteristic of EAQ-coatings and in agreement with previous studies. However, 

upon close visual examination, a sizeable percentage of reagent-layer component 

leaching could be seen after initial placing of the biosensor in the electrolyte solution. 

Moreover, the film appeared unstable. These observations were in fact mirrored  by 

the voltammetric behaviour exhibited by the biosensor, as shown in plot I of Figure 
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5B.3. In this regard, the obtained cyclic voltammograms showed a distinct decrease in 

Ip,c and Ip,a in direct accordance with increased equilibration time, observed during 

repeated cycling, a phenomenon which lasted at least 50-60 min after initial placing 

in the electrolyte. In terms of magnitude, the highest decrease in Ip was seen in terms 

of the cathodic peak current, and thus points to the loss of electroactive Co(Sep)
3+

 

species from the reagent layer (which is pre-concentrated in the oxidized form)  

essentially meaning that with each scan, there are less available Co(Sep)
3+

 for 

reduction. Similar observations and findings regarding leaching behaviour and 

instability of EAQ-films have been observed in previous research investigations 

[160].  In terms of a plausible explanation for the current investigation, these 

observations can perhaps be explained in terms of the literature-based unique 

structural aspects of Eastman AQ. Firstly, EAQ is known to take up huge amounts of 

water, swelling to 4-5 times its original dry volume after hydration [161-162]. In fact 

EAS films with or without electroactive and/or enzyme species have been shown to 

contain at least 87% water, following hydration after being placed in electrolyte 

solutions. Moreover, EAS films, in their characteristics, have been compared to 

biomembrane-like surfactant-based films, of which the latter is known to exhibit 

fragility in aqueous solutions, while also showing a certain degree of leaching 

behaviour after initial equilibration. In a comparative context, swelling in nafion 

membranes are not that extensive, with dry films shown to contain only up to 

approximately 28% after soaking in aqueous solutions [161].  In addition to this, and 

perhaps more importantly, with regard to the uptake and pre-concentration of cation 

species,  research has shown that, EAQ has other inherent structure-functional 

features that are distinctly different from those observed for nafion:  Firstly, AES’s 

method of cationic retention/pre-concentration, occurs largely in accordance with the 

Gibbs-Donnan equation, which essentially means that ionic charge, and as such 

electrostatic binding, rather than  hydrophobic interactions plays the determinant role 

in cationic retention [163]. With nafion on the other hand, counter ion retention/pre-

concentration is dictated by hydrophobic interactions, whereas the Gibbs-Donnan 

equation does not play a role with this polymer [118-119]. Moreover, based on 
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documented  literature, transport in accordance with the Donnan equilibrium is a one 

dimensional process, which would be the case in EAS, whereas in the case of nafion, 

who does not comply to the Donnan equilibrium, transport is a three dimensional 

process [118-119]. This of course has highly significant implications, since it would 

mean faster charge transport in the case of electraoctive platforms created with 

nafion, as compared to the use of EAQ.    The general implications of these factors, 

points to nafion being far more superior for application in the current purpose, as 

opposed to EAQ. Thus, cumulatively, all of aforementioned literature-based factors 

gives some insight into the observed instability with regard to the   

GCEEAQCo(Sep)
3+
nCYP3A4clPVA biosensor.  

 

The next aspect was of course the evaluation of the electrocatalytic response of the 

GCEEAQCo(Sep)
3+
nCYP3A4clPVA biosensor, the results of which is shown in 

plots II and III of  Figure 5B.3. In this regard, plot II shows the cyclic voltammetric 

responses of the prepared biosensor in argon-degassed phosphate buffer solution (pH 

7.45) (a); in response to dissolved oxygen (b); and in response to 0.5 M indinavir 

(c). Indeed in the presence of molecular dioxygen, the reduction peak was distinctly 

augmented by the marked increase in peak current caused by the catalytic response of 

the immobilized enzyme to its co-substrate oxygen, and a concomitant decrease in 

Ip,a. Similarly, the response to indinavir was signified by a further increase in the Ip,c 

and accompanied by a further decline in the Ip,a. These results were corroborated by 

the square wave voltammetric response of the biosensor in the presence of oxygen 

and indinavir, as shown in plot III of Figure 5B.3. These results are characteristic 

behaviour of CYP450 enzymes, and thus suggest the reduction of oxygen by the 

reduced heme iron (i.e. Fe
II
), a reaction which is increased in the presence of the 

substrate, as shown by the additional Ip,c increase in response to indinavir. Having 

said, analysis of the obtained voltammetric results revealed that oxygen reduction 

occurred at an average operating potential of -650 10 mV, while, average response 

to indinavir occurred at -630 ( 15) mV. In this regard, the operating potential 

attained with this biosensor is quite high, in fact, reduction of oxygen and substrate 
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detection both occurred at more cathodic potentials, as compared the results obtained 

for biosensor  platform1, presented in Chapter 4 

(CGE|naf|CMECo(Sep)
3+

|flCYP3A4|naf), for which reduction of oxygen occurred at 

an average Ep of -600 ( 5mV), while the average operating Ep for the substrates was 

-585 mV for erythromycin and  -590 ( 5mV) for 2,4-dochlorophenol  (as determined 

from SWV), respectively. Moreover, a more cathodic potential can increase the 

likelihood of reactive oxygen intermediate species, such as superoxide anion and 

H2O2, through a process known as uncoupling reaction, which in itself could have 

contributed to the observed increase in Ip,c. (More on this subject and a deeper insight 

into the process of oxygen reduction is given in Section 5B.3.3.1.1  of the current 

chapter). Moreover, the obtained electrochemical and electrocatalytic response did 

not exhibit sufficient reproducibility, which could be due to a combination of the 

instability and leaching  incurred by using the EAQ as base layer, as well as the acid-

catalyzed cross-linking of the PVA, of which the latter could have negatively 

impacted the integrity of the delicate enzyme. With regard to the latter constrict, 

CYP3A4 constructs produced through N-terminal modification is generally known to 

be more sensitive than its wild type full-length counterpart, and as such, reagent layer 

preparation methods needs to be mild enough as to ensure the absolute integrity of the 

immobilized enzyme, as to obtain the highest possible activity for the longest 

possible time. In this regard, a more stable crosslinked PVA film was only possible if 

the acid-catalyzed glutaraldehyde crosslinking was done after casting of the PVA on 

the electrode surface, so it is possible that, although extreme care was taken,  some of 

the active cast enzyme units could have been affected by the residual traces of  acid.   

 

On a final note, in keeping with the original objectives, as outlined in preceding 

sections in this chapter, in light of the instability and leaching behaviour incurred by 

the fragile nature of the EAQ-film, as well as the high operating potential, and the 

non-reproducibility of the signal obtained, the method of biosensor preparation based 

on the using EAQ in creating the current platform was not taken forward.                                                                       
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Figure 5B.3(I-III) Voltammetric behaviour and electrocatalytic response of the 

nCYP3A4-based biosensor, fabricated from Eastman AQ(EAQ)-Co(Sep)
3+

 carrier 

matrix (i.e. GCEEAQCo(Sep)
3+
nCYP3A4): plot I: CVs illustrating the biosensor in 

argon-degassed phosphate buffer solution (ArPBS) with increased equilibration time; 

plot II: cyclic voltammetric response of the biosensor in ArPBS (a), in the presence of 

dissolved oxygen (b), in the presence of 0.5 M indinavir in un-degassed PBS (c); 

plot III: square wave voltammetric response to dissolved oxygen (b) and indinavir (c). 

Co(Sep)
3+

 was pre-concentrated on pre-formed ionomer ionic polymer (nafion or 

EAQ film, respectively) by potentiostatic deposition at +450 mV.  Arrows show the 

trend of the variation in peak current. 

 

 

With it now clear that the compromise on nafion as base layer  may not be 

a suitable rout for improving on the Co(Sep)
3+
 mediated biosensor, the next step was 

to re-strategize the biosensor design to further explore and optimize on this variable. 

In this regard, the biosensor was  fabricated by following the same general protocol as 

used for the EAQ-Co(Sep)
3+

 platform, but with nafion as base matrix.  The fabricated 

biosensor is denoted, GCE|naf|El-Co(Sep)
3+

|nCYP3A4|clPVA. Indeed, the obtained 
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results, both in terms of general voltammetric response, particularly with regard to the 

stability of the signal response showed by the biosensor, as well as electrocatalytic 

response, proved to be a definite improvement as compared to the results obtained for 

the EAS-platform. Figure 5B.4 shows the voltammetric response of the GCE||naf|El-

Co(Sep)
3+

|nCYP3A4|clPVA biosensor, prepared with the electroactive nafion-

Co(Sep)
3+

 composite as carrier matrix, in which Co(Sep)
3+

 potentiostatic 

electrodeposition was done for 1200 sec. The results presented are for an experiment 

conducted in argon-degassed PBS, at 5 mV s
-1

. Thus, when the GCE, coated with the 

complete reagent-layer film components were placed in argon-degassed buffer 

solution, repetitive scanning revealed a single redox couple, exhibiting a stable 

background  current, consisting of a cathodic and anodic peak, with an overall E’ 

determined as -600 ( 3) mV. Moreover, the integrity of the coating remained stable 

in the aqueous electrolyte buffer, exhibiting negligible leaching behaviour. In 

addition to this, the stability of the background Ip,c and Ip,a signal remained stable 

throughout the equilibration time, i.e., from initial placing in the buffer up to 60 min,  

exhibiting a very small, almost negligible increase in Ip,c and Ip,a in association with 

increased equilibration time. 
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Figure 5B.4 Cyclic voltammetric response of the GCE|naf|El-

Co(Sep)
3+

|nCYP3A4|clPVA biosensor in argon-degassed PBS, showing Ep,c and Ip,a 

variation with increased equilibration time, from 0 up to 60 min. Arrows show the 

trend of the variation in Ip. 

 

 

The electrocatalytic response of the biosensor was also investigated, of which the 

results are shown in Figure 5B.5 III. In this regard, in graph I, plot (a) – (c) shows 

the  cyclic voltammetric response of the biosensor in argon-degassed PBS; in the 

presence of dissolved oxygen in the PBS containing no indinavir; and in un-degassed 

PBS containing 22.45 M indinavir, respectively. Thus as shown in plot (b), the 

interaction with dissolved oxygen is signified by a marked increase in the cathodic 

peak current (Ip,c) and associated decrease in the anodic peak current. In this regard, 

these results therefore suggest the rapid interaction of the  electrochemically 

generated CYP3A4Fe
II
  with dioxygen, followed by the reduction of the 

CYP3A4
II
O2, as such, leaving a very small amount of the reduced heme Fe

II
 species 

available for re-oxidation, during the reverse scan, hence the significant decrease in  

Ip,a in the reverse scan. 

 

The presence of indinavir, increases the rate of oxygen binding and subsequent 

reduction, as shown by the dramatic increase in Ip,c in response to  22.45 M 

indinavir. In terms of the specific operating potential, the biosensor response to 
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molecularly dissolved oxygen was determined to occur at an average Ep of -615 ( 

10) mV, whereas the response to indinavir occurred at an average of -595 ( 10 mV) 

mV.  The response of the biosensor to increasing indinavir concentrations was also 

evaluated and in this regard, Figure5B.5 II shows the dependence of current change 

on increasing concentrations from 0.05 up to 96.95 M indinavir. A linear calibration 

curve was also constructed, as shown in the inset of Figure 5B.5 II, which reveals a 

linear concentration range from 2.15 x 10
-6

 – 18.25 x 10
-6

 M (r = 0.9903) and a 

sensitivity of 0.02932 A M
-1

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.5 (I): Voltammetric response of  GCnafEl-Co(Sep)
3+
nCYP3A4Cl-

PVA electrode in (a) argon-degassed PBS; (b) un-degassed PBS; OxPBS containing 

22.45 M indinavir. (II): Biosensor response to indinavir at concentrations ranging 

from 0.05 up to 96.95 M. Inset shows the linear calibration curve for the biosensor. 
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5B.3.1.2 Outer layer optimisation: Effect of film constituents and/or ratio 

 

The school of thought here, was to create a biocompatible composite film, 

for which low-melting point agarose served as the base component, while polyvinyl 

alcohol (PVA) and polyethyleneimine (PEI) functioned as enhancing/supporting 

components. The overall emphasis was to provide a mild entrapment-based outer 

layer for the nCYP3A4-derivatized biosensor platform. These components were 

comprehensively evaluated in terms of their own merit, as well as their contributory 

factor in combination, paying particular attention to their optimum working- 

performance- ratio. The evaluation criterion for optimisation on this particular 

variable was done firstly, with regard to efficient reduction of oxygen, and secondly,  

in terms of substrate interaction, paying particular attention to achieving the lowest 

operating potential.  With regard to PEI in particular, its inclusion in hydrogel blend 

membranes enables the effective formation of polyion complex membranes, which 

exhibit a high degree of stability and structural strength [164-165]. In fact, according 

to documented findings, it has been shown to improve the sensitivity and other 

enzyme-based biosensor performance factors, by favourable modification of the 

electrochemical properties, as well as the stability and activity of the biocomponents, 

if included in the reagent-layer film preparation [74, 121].  However, establishing the 

correct ratio of PEI in association with the other components of the outer layer film 

was a critical aspect.  In the initial evaluation, a ratio for PEI:PVA-Agrs of above  0.2 : 1, 

substantially impeded the electrochemical  interaction of the mediating species with 

the underlying electrode,  as well as its concomitant interaction with the immobilized 

nCYP3A4 in the reagent layer. In this regard, Figure 5B.6 shows the obtained 

voltammetric response for a biosensor, based on a 0.25 : 1 ratio of  PEI:PVA-Agrs. In 

argon-degassed PBS shown in plot (a), a CV consisting of only an oxidation peak 

centred at -560 mV, while no observable reduction peak could be seen. This 

essentially suggests the difficulty of the required electrochemical reduction of the 
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Co
III

 metal ion within the mediating species to the required Co
II
, which in  turn, is 

necessary to effectually reduce the heme iron of the immobilized enzyme (Fe
III

/Fe
II
). 

In effect, this phenomenon will of course concomitantly negatively affect the bio-

electrocatalytic ability of the immobilized enzyme, due to the inability of generating 

the necessary active oxidation-state conformation in order to initiate its catalytic 

reaction cycle.  Indeed as shown in Figure 5B.6 (b), which represents the response of 

the biosensor to molecular oxygen in un-degassed PBS, for a scan taken after a 60 

min equilibration time in oxygenated PBS,  no observable reduction peak current is 

seen. Oxygen is the co-substrate of CYP450 enzymes, and interaction of the reduced 

enzyme with molecular oxygen  encompass a catalytic-type interaction, a 

phenomenon which,  from an electrochemical perspective, is signified by an 

additional cathodically-based catalytic current [74, 83]. Moreover, still on this 

subject, an observable electrocatalytic  response to molecular oxygen could only be 

seen after an equilibration time of at least ±210 min (i.e. ± 3.5 h) in un-degassed PBS, 

as shown in the inset in Figure 5B.6. The implications of these results of course 

points to the impracticality of applying this particular ratio of PEI in the blend 

hydrogel outer-layer membrane, and as such, the ratio had to be appropriately 

adjusted.  On the other hand, let us draw our attention to the  providing a plausible 

explanation for the aforementioned  exhibited unfavourable biosensor responses. PEI 

is a cationic hydrophilic polymer, which essentially contains a high density of 

reactive primary, secondary and tertiary amine functional groups. In this regard, 

within the right setting, under optimized conditions, these reactive groups  can 

confirm ionic cross-linking with the functional groups of PVA through ionic 

complexation between the cationic group (NH3
+
C)  of PEI and anionic group 

(CO
2

)of PVA and/or other hydrogel-blend membrane co-constituents, to form  a 

structurally stable hydrophilic blend membrane, that effectively allows the 

permeation of water molecules and associated analyte/ions contained within the  

surrounding solution. Moreover, the presence of PEI can induce a small degree of 

plasticisation of the polymers within the blend [164], a factor that can prove 

favourable, particularly in terms of  increasing selectivity of fabricated biosensor .  
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On the other hand, if the ratio of PEI is too high, as compared to that of the other 

components, the cross-linking reaction may be intensified by the multifold increase in 

available functional moieties, resulting in excessive reduction in the proximity of the 

polymer chains with respect to each other, thus producing a very rigid membrane, 

which in turn highly restricts movement of reagent-layer constituents, as well as 

impeding diffusion of analyte species.   

 

Interestingly, upon interaction of the biosensor with indinavir, the electrocatalytic 

response was dominated at operating potential in the region of -660 mV, which was 

accompanied by a measurable concentration of H2O2, as determined from the reagent 

layer through quantofix peroxide sticks. The significance of this finding is quite 

pivotal, since as will be shown in subsequent sections (electrocatalysis section), this 

is in fact related to the autooxidation of the enzyme and the formation of uncoupling 

reactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.6 Voltammetric response of GCnafEl-Co(Sep)
3+
nCYP3A4PVA-PEI-

Agrs electrode in: (a)argon-degassed PBS (ArPBS); (b) response after 60min 

equilibration in aerobic conditions (OxPBS); and  after ±210 min in OxPBS  (II). 

Note: The outer layer of the biosensor is prepared with a ratio of PEI : PVA-Agrs of 
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0.25 : 1 (v/v). Experimental conditions:  CVs taken in PB, pH 7.4 at 10 mV s
-1

; 

reductively scanned: Ei = - 100 mV, Ef = -950 mV.  

 

 

Figure 5B.7 shows the obtained voltammetric response for a biosensor, based on a 

0.1 : 1 ratio of  PEI:PVA-Agrs. Indeed, the exhibited electrochemical behaviour is 

distinctly different from that observed previously in Figure 5B.6. In this regard, in 

argon-degassed PBS, a cyclic voltammogram consisting of a single set of fairly 

symmetric cathodic and anodic peak currents, with an average Em of 

approximately -617 ( 5) mV is observed. Moreover, the Ip,c and Ip,a increases 

gradually with increasing equilibration time, up to about 50 min, after which a steady 

state CVs were obtained, as observed with subsequent cycling. The electrocatalytic 

response of the biosensor to dissolved molecular oxygen was also investigated, from 

which the results are shown in the inset of Figure 5B.7. As can be seen, the presence 

of oxygen, signified by a dramatic increase in Ip,c. Moreover, this is accompanied by a 

fundamental augmentation of the Ip,c, due to the appearance of a single new peak 

centred at -445 ( 5) mV, while the Ip,a completely disappeared. These results suggest 

the rapid binding and reduction of dioxygen, catalyzed by the reduced immobilized 

nCYP3A4. When compared to the results obtained for bio-electrocatalysis exhibited 

by the biosensor platform in Chapter 4, the overpotential was reduced by at least 135 

mV, whereas in terms of the results shown in aforementioned sections within the 

current chapter, the overpotential for oxygen reduction was reduced by between 180 – 

200 mV. Thus, based on the favourable results shown by the biosensor, this 

fabrication method was taken forward. 
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Figure 5B.7 Voltammetric response of GCnafEl-Co(Sep)
3+
nCYP3A4PVA-PEI-

Agrs electrode in: (a)argon-degassed PBS (ArPBS); inset: response to dissolved 

molecular oxygen in aerobic conditions; Parameters: Ratio of biosensor outer-layer 

(PEI:PVA-Agrs) = 0.1 : 1 (v/v). Experimental conditions:  CVs taken in PB, pH 7.4 

at 10 mV s
-1

; reductively scanned: Ei = - 100 mV, Ef = -950 mV.  

 

With protocol now in place, the next step was just to optimize on the specific minor 

variables, such as the enzyme loading amount and the potentiodynamic deposition 

time. 

 

 

5B.3.1.3 Optimisation of Enzyme (nCYP3A4) loading 
 

From a general perspective, for optimal analytical performance in 

biosensors and/or bio-electrochemical platforms in general, the enzyme concentration 

needs to be sufficiently high, so as to ensure that neither the rate of the enzymatic 

reaction, nor the electrode kinetics is the limiting step in the overall detection scheme. 

In this regard, too low enzyme loading can concomitantly result in high sensitivity to 
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small variations in activity, which in effect can lead to poor analytical performance. 

On the other hand, too high enzyme loading may induce an effect in which the 

enzyme layer itself becomes a barrier for the diffusional movement of both the 

substrate and the mediating species, while simultaneously affecting rates of mass 

transfer to the electrode. In this context, the cumulative effects of these constricts can 

inadvertently cause delaying in biosensor response time. With all such and other 

aspects in mind, the enzyme loading amount for the indinavir amperometric biosensor 

was investigated, by varying the amount of the enzyme per unit area(i.e. μg 

nCYP3A4 cm
-2

), while keeping all other variables constant. Regarding the practical 

aspects – for this particular variable, the calibration plot for indinavir in the 0.0582.8 

μM concentration range was selected, with the resulting sensitivity obtained as slope 

from overall regression analysis obtained and comparatively assessed. Figure 5B.3 

exhibits the slopes (μA μM
-1

)as a function of amount of nCYP3A4 loaded (μg cm
-2

). 

Evaluation of the graph reveals that the slope of the indinavir calibration plot 

increased with enzyme loading up to 5.58 μg nCYP3A4 cm
-2

, after which the slope 

value levelled off. With regard to relating the aforementioned obtained amount to 

units of enzyme cm
-2

: Considering that, 1 mg of nCYP3A4 contains approximately 

0.828 x 10
-4

  units of enzyme, thus 5.58 μg (i.e. 5.58 x 10
-3

 mg) nCYP3A4 is 

determined to contain 4.61 x 10
-7

 units cm
-2

. The school of thought regarding the 

determination of the units of nCYP3A4 in 1 mg of enzyme is in relation with the 

established standard unit for expression of enzyme, according to the International 

Union of Biochemistry. In this regard, in terms of a definitive context, one 

international unit (IU) of enzyme activity is defined as “the amount of enzyme 

necessary to produce one μmol of product per minute, under specified standardized 

conditions of substrate concentration, pH and temperature” [99].  Thus, the unit factor 

here, is in specific reference to the amount of active enzyme per unit area.   The plot 

showing the slopes as a function of enzyme units as a function of amount of 

nCYP3A4 loaded in particular is shown in Appendix A1-2(b). 
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The individual calibration graphs and all obtained parameters for each enzyme 

loading amount is exhibited in Appendix B1-2 a-b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.8 Effect of nCYP3A4 loading amount on the bio-electrocatalytic response 

of the nCYP3A4-based biosensor [GCE||naf|El-Co(Sep)3+|nCYP3A4|Agrs-PEI-

PVA]. Slopes obtained from indinavir calibration plots in the 0.05  25.60 μM 

concentration range. Supporting electrolyte: 0.05 M aerobic PB (pH 7.4). 

 

 

 

5B.3.1.4 Optimisation of potentiostatic electro-deposition time for Co(Sep)
3+

 

 

The optimisation on the deposition time of Co(Sep)
3+

 is a subject area that 

required the judicious all-inclusive consideration of a range of different, but equally 

fundamental aspects:   

 Firstly, from a general perspective, physiological reconstitution of microsomal 

P450-mediated monooxygenase activity requires a relationship with its 

NADPH-based electron transfer donor-component, such that a 1:1 complex is 
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formed. In terms of a bioelectrochemical setup on the other hand, although no 

actual complex is formed  as exhibited in Equation 2.1(c), enzyme 

reduction proceeds via a chemically-based interaction between the reduced 

mediator (MR) and the oxidized enzyme (EOx). In this regard, diffusion of the 

mediating species to and from the underlying electrode needs to be 

sufficiently swift in order to ensure fast, continuous regeneration of enzyme 

active site.  Moreover, the percentile of available electroactive mediating 

species needs to be sufficient as to provide optimally favourable interactions 

with all catalytically active immobilized enzyme units per unit electrode area. 

 Due to the inherent susceptibility to denaturisation of microsomal mammalian 

heme thiolate CYP450s, particularly in the case of N-terminally modified 

constructs, as a precautionary measure to maintain the functional integrity of 

the enzyme during immobilization, no exchange of buffer for glycerol-free 

casting solution was made, resulting in casting solutions containing 20% 

glycerol. However, considering glycerol’s hydrophobic nature, coupled with 

its low dielectric constant (as compared to water, i.e. 43) and high viscosity, 

the overall effect of its presence on the electrode would of course confer a 

substantial degree of electronic resistance. Moreover, according to 

documented findings, the buried cofactor of the enzyme, which is normally 

encased in a fairly hydrophobic intervening peptide shell, normally results in 

moderately weak electronic coupling  between the prosthetic group and the 

external reluctant (the GCnafEl-Co(Sep)
3+

). The cumulative effect of the 

aforementioned constricts, generally translates into lowered electronic 

conductivity, and in this regard, it is essential that the carrier matrix contains a 

sufficient percentile of electroactive species, in order to effectively 

recompense these constricts. 

 In terms of the specific activity of the synthesized recombinant enzymes ( ± 

66 kDa), on average, they have been determined to contain 0.828 x 10
-4

 

(catalytically active) units per mg of protein, which is essentially on the low 

side. Moreover, from a general perspective, in a bio-electrochemical setting, 
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enzyme immobilization always occurs at the expense of denaturalization of a 

small percentage of active enzyme [87]. The cumulative effect of these 

constricts results in the requirement of higher amount of enzyme per unit 

surface area (cm
2
) in order to drive a sufficiently productive catalytic 

turnover. On the other hand, based on documented literature, as stated in 

Chapter 2 Section 2.24, the diffusional movement of the mediator is an 

absolute prerequisite for productive and successful electron transfer in 

amperometric biosensor configurations. Considering the aforementioned 

aspects, including the fact that as shown in Section 5B.3.1.2, the enzyme 

sample used in the current research investigation contains a  small percentile 

of inactive P420 component, it is essential that sufficient mediator species is 

pre-concentrated within the carrier matrix, such as to ensure optimum 

interaction with the active immobilized enzyme units at the shortest distance 

possible. 

In view all the preceding aspects, the primary objective during the investigation of the 

effects of Co(Sep)
3+

 loading time, the focus was on providing the highest fraction of 

electroactive mediating species within the base-nafion matrix to ensure that all 

available exchange sites are filled, while not exceeding an amount that may actively 

block electron transfer, as too high fractions of mediating species has been shown to 

incur blockage effects. With regard to the actual experiments, as a sensitivity criterion 

for the optimisation on this particular variable, the slope for the calibration plot for 

indinavir in the 0.05  25.60 M concentration range was chosen, and as such, 

mediator loading time was varied (from 300 s  2000 s), while keeping all other 

variables constant, of which the results are shown in Figure 5B.8. In particular, the 

graph shows the obtained slopes for the aforementioned indinavir concentration range 

obtained by the Agrs-PEI-PVAnCYP3A4Co(Sep)
3+
nafGC electrode (nCYP3A4-

based biosensor),  as a function of Co(Sep)
3+

 loading time. As can be seen from the 

graph, 300 s resulted in the poorest performance, while optimum response was 

observed for deposition times between 600 and up to 1200 s, thus exhibiting an 
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upper-limit within this region. Potentiostatic loading times exceeding 1200sec, on the 

other hand,  resulted in drastic reduction in biosensor response to the selected 

concentration range – in fact, the value obtained for a loading time of 2000sec, fell 

completely out of the range of the points shown in Figure 5B.8 and, as such, could 

not be included in the graph. This phenomenon has been encountered before in 

mediated biosensor systems, and as such, can probably be attributed to non-

conductivity,  caused by hindrance of electron transfer in the presence of too high 

fraction of pre-concentrated Co(Sep)
3+

 [138]. Although 600 sec, fell within the 

starting range of the upper slope value limit for this particular variable,  1200 sec was 

selected as the formal Co(Sep)
3+

 loading time, since it enabled the highest mediator 

pre-concentration without exhibiting any visible kinetic limitations to electron 

transfer in terms of blocking interactions. Moreover, this particular deposition time 

resulted in highly stable and reproducible results observed, for the electroactive naf-

Co(Sep)
3+

 carrier matrix in particular. Still on this subject of the carrier matrix, a 

comprehensive morphological, structural and electrochemical investigation on the 

nafion-Co(Sep)
3+

 was conducted, the results of which have been exhibited and 

discussed in Chapter 5A.   
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Figure 5B.9 Effect of Co(Sep)
3+

 electrostatic deposition loading time on bio-

electrocatalytic response of the GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA 

biosensor. Showing slopes of indinavir calibration plots in the 0.05  25.60 μM 

concentration range. Supporting electrolyte: 0.05 M aerobic PB (pH 7.4). 

 

 

The typical calibration curves obtained for each Co(Sep)
3+

 loading time is exhibited 

in Appendix B.1. 

 

 

 

5B.3.2 Voltammetric characterization of the  fabricated biosensor (prepared 

under optimized conditions): General electrochemical behaviour in 

anaerobic conditions 

 

 

Figure 5B.10 exhibits the voltammetric response of the fabricated 

biosensor, both in terms of the biosensor un-mediated biosensor [plot (a)], denoted 

GCE||naf|nCYP3A4|Args-PEI-PVA, as well as the mediated biosensor [i.e. plot (b)], 

denoted GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Args-PEI-PVA. The cyclic 

voltammograms were obtained for a typical experiment conducted in argon-degassed 

phosphate buffer, for a scan done cathodically, at 3 mV s
-1

 in (pH 7.45). In this 
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regard, in the absence of the Co(Sep)
3+

 the obtained CVs were defined by ill-formed 

cathodic and anodic waves, with no observable Ip,c and Ip,a maxima, and as such the 

E’ could not be determined. Similarly, complimentary techniques, with inherently 

higher signal-noise ratio, such as SWV also did not show an observable or Ip,c and Ip,a 

maxima. This phenomenon has been observed before, in particular, attempts to 

observe cytochrome C electroactive signals in nafion films were shown to be 

unsuccessful [101], while, in a separate study conducted with myoglobin, the 

presence of surfactants were required to observe electroactivity signals with 

hemoglobin, since no observable signals could be obtained with unmodified nafion 

films [122]. Similarly, in yet another study,  HRP could not be incorporated into 

unmodified nafion films [160]. Based on these documented findings and the results, 

as shown in Figure 5B.10 of the current study, this phenomenon observed here can 

probably be ascribed to somewhat weak electronic coupling of the immobilized 

enzyme with the underlying nafion-modified GCE, which may be due to a 

combination of factors: Firstly, the enzyme prosthetic group is buried within a  fairly 

hydrophobic intervening peptide shell and as such will not readily exchange electrons 

with the modified electrode [64, 87]. Moreover, in terms of nafion in particular,  it 

has a small micellar pore structure [122, 160], with small water-filled volume, due to 

its limited water imbibing ability (dry nafion films, was shown to absorb up to 28% 

water upon rehydration) [161-162], and as such cannot incorporated large molecular 

weight biological molecules into its porous microstructure. In fact,  according to 

documented literature, nafion is not able to incorporate species with a molecular mass 

higher than 10 000 g mol
-1

  into its microstructure [160]. Therefore in the current 

study, with nCYP3A4 having an average MW of  46 500 g mol
-1

, such an endeavour 

would also prove difficult. In addition to this, nafion’s phase segregation, which 

confers it a substantial degree of heterogeneity, exhibiting a large percentage of 

hydrophobic regions, can in turn result in the formation highly hydrophobic 

interactions with immobilized biological molecules [101],  as it would probably do in 

the present platform, which in turn would be unfavourable for electron transfer due to 
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enhanced electronic resistance, and as such, exhibiting moderately weak electronic 

coupling between the enzyme and the modified electrode. 

 

In terms of the Co(Sep)
3+

 mediated biosensor, on the other hand, the results were 

significantly different, as shown by the CV in Figure 5B.10 (b). The voltammogram 

exhibits a typical electroactive signal of the fabricated biosensor, and essentially 

consists of a reduction and oxidation wave, typical of a single redox couple. 

Considering that substrate- and oxygen-free electrolyte reaction medium was used, 

the observed anodic and cathodic waves were attributed to the Co(Sep)
3+

/Co(Sep)
2+

 

redox species contained within  the reagent layer. In this regard, the electrochemistry 

under anaerobic conditions are normally dominated by the mediating species [74]. 

The  Ep,c and Ep,a, determined as average values from four different biosensors at scan 

rates between 2- and 10 mV s
-1

, was determined as  -670 ( 5) mV and -565 ( 5) 

mV, respectively. The average E
’
, as determined from cyclic voltammetry was -617 

( 5) mV.  Moreover the Ep was determined as 100 ( 10) mV. As far as the peak 

shapes are concerned, they are roughly symmetric, however, the Ip,c was larger than 

the Ip,a, a phenomenon that was observed at all scan rates studied, by on average, 1.2 

orders of magnitude.  As compared to the results obtained for the peak analysis of the 

nafion-Co(Sep)
3+

 carrier matrix platform and that obtained for the control sensor 

(containing all reagent-layer components, but with BSA instead of nCYP3A4) in 

particular, variations in all parameters was observed. In this regard, Table 5B.1, lists 

comparatively enlists the obtained values for Ep,c, Ep,a, Ep and E’.   
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Figure 5B.10 Cyclic voltammetric response of (a) GCnafnCYP3A4Agrs-PEI-

PVA electrode; (b) GCEnafCo(Sep)
3+
nCYP3A4Agrs-PEI-PVA biosensor. Scans 

taken in substrate-free argon-degassed PB solution at ν = 3 mV s
-1

. Scans done 

reductively, thus negative scan represent Ip,c (cathodic). 

 

Table 5B.1 Peak parameters as obtained from GCE||naf|El-Co(Sep)
3+

; 

GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA (control sensor); 

GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA 

 Ep,c(mV) Ep,a(mV) E
0´

 Ep 

GCE||naf|El-Co(Sep)
3+

 -654 -575 -615 79 

GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-

PVA -703 -547 -625 156 

GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-

PEI-PVA 

 -670 -565 -617 100 

 

With regard to the aforementioned results, it is also noteworthy to add that the CV of 

the control sensor, denoted GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA, is shown in 

Appendix C (Figure C-1). 

 

In addition to cyclic voltammetry, other complimentary voltammetric techniques, 

known for their low signal-to-noise ratio and particular exclusion of charging current, 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

253 

 

was also used explored, the results of which was compared to that obtained for the 

biosensor from CV.  In this regard, the square wave voltammetric response for the  

GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA biosensor in substrate-free argon-

degassed PBS  exhibited as the difference SW, for a scan done cathodically, is 

shown in Figure 5B.11 (a). Moreover, plot (b) shows the cathodic- (red) and anodic 

(black) differential pulse waves as obtained for the biosensor in argon-degassed PBS. 

With respect to the SWV results, the E’, obtained as an average from the evaluation 

of at least four biosensors, was determined as -616 ( 5) mV. Results obtained from 

DPV on the other hand, exhibited cathodic and anodic waves showing good 

symmetry. Close evaluation of the scans, revealed a Ep,c of -600 mV and Ep,a 

corresponding to a value of -610 mV respectively, thus showing an overall Ep of 10 

mV. Moreover, the Ip,a/Ip,c ratio was determined to be 0.97, which is close to the 

theoretical value of 1, for electrochemically reversible system. These results, with 

respect to both SWV, as well as DPV are in fact in good agreement with that obtained 

from cyclic voltammetry. Moreover, the small Ep suggest rapid electron transfer 

between the electroactive species in the reagent layer film and the underlying GCE . 
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Figure 5B.11  (a) Square wave (SW) voltammetry response of the   GCEnafEl-

Co(Sep)
3+
nCYP3A4Agrs-PEI-PVA biosensor (plot shows the difference SW current 

obtained for a cathodic scan). (b) Differential pulse waves, showing cathodic (red) 

and anodic scans for the GCEnafCo(Sep)
3+
nCYP3A4Agrs-PEI-PVA biosensor. 

Experimental conditions: All scans were taken in substrate-free, argon-degassed PBS 

(pH 7.45). SWV: square wave amplitude 25 mV; potential step 4 mV. DPV: pulse 

amplitude 25 mV; sample width of 15 ms; pulse period of 200 ms. 

 

 

On a final note, the background-subtracted CV of the GCEnafEl-

Co(Sep)
3+
nCYP3A4Agrs-PEI-PVA biosensor is exhibited in Appendix C (Figure 

C-2). 

 

 

The next factor involved the determination of the type of current involved 

in the redox reaction of electroactive film of the nCYP3A4-based biosensor. In this 

regard, the dependence of peak current on the scan rate was investigated in order to 

identify the type of current, from which it was shown that the current function (Ip/ν
½

) 

has a constant value at the different scan rates studied (i.e. 3 – 10 mV s
-1

), the results 

of which is depicted in Figure 5B.13.  The electrochemical behaviour, as it presents 
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itself here, is in accordance with the unique structural aspects of nafion membranes, 

since as explained in Chapter 5A (Section 5A.2), according to documented 

literature, in general, electron transfer in nafion membranes has been shown to be 

equivalent to a diffusion process. On the subject of scan rates and electron transfer, it 

is noteworthy to also add that at scan rates up to 10 mV s-1, peak potentials for the 

Co(Sep)
3+

 mediated biosensor were  nearly constant in the film. However, as the scan 

rate increased beyond 10 mVs
-1

, a marked negative shift in peak potentials could be 

observed. This behaviour has been depicted in Figure 5B.14, which exhibits Ep,c as a 

function of log ν. This suggests the onset of limiting kinetic effects in association 

with increase in scan rate. Nevertheless, overall, in a critical comparison of the 

electrochemical behaviour (which includes all determined parameters) of the enzyme-

based biosensor, as compared to that exhibited by the naf-El-Co(Sep)
3+

 film (the 

results of which was presented and comprehensively discussed in Chapter 5A)    

based on the exhibited and afore-discussed results, as well as data shown in Table 

5B.1, the key aspects including Ip,a/Ip,c; E
’
; Ep; Ip/ν

½
; Ep/Log ν all exhibit an 

unambiguous similarity. The cumulative implications of this finding suggest that, 

indeed, in substrate-free argon-degassed electrolyte medium, the observed 

electrochemistry is dictated by the electroactive Co(Sep)
3+

 mediating species, and as 

such, the observed redox waves may be ascribed to the Co
3+

 + 1e− ⇄ Co
2+

 redox 

system. 
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Figure 5B.12 Influence of scan rate on peak current. Inset: Ip,c and Ip,a as a 

function of ν
½
 for scan rates of 3 – 10 mV s

-1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.13 Influence of scan rate on cathodic peak potential for a GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode 
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5.B.3.3  Bio-electrocatalytic actvity of  the GCE||naf-El-Co(Sep)
3+

|nCYP3A4|-

PVA-PEI-Agrs biosensor 

 

According to documented literature, with reference to the quest for 

preventing the futile cycling of electrons and for curtailing/attenuating the formation 

of reactive oxygen species, it has been proposed that electrocatalytic investigations 

involving Co(Sep)
3+

 mediated systems with P450 enzymes are best done under 

conditions of low oxygen tension, by gentle blanketing of the reaction mixture with 

an inert gas [120]. However, due to the possible associated constraints with regard to 

diffusional rate limiting of dioxygen within the reagent layer under conditions of low 

oxygen tension  in the current research investigation, catalytic studies were done in 

ambient conditions in the presence of molecular oxygen, while other additional steps 

were taken to help to maintain the catalytic integrity  of the enzyme-based recognition 

component. With regard to the latter constrict, maintaining a 15–20% glycerol 

presence within the reagent layer, proved to be an important factor, the reasons of 

which will become apparent in the discussion involving a more comprehensive 

overview of the reaction steps in the bio-electrocatalytic process (Section 5B.3.3.1.1). 

In addition to this, due to the fairly low small amount of active CYP450 units per mg 

of protein (as determined by standard reconstitution methods) and the known liability 

of these enzyme constructs, all electrochemical investigations with the prepared 

biosensor platforms were done in a salt-free phosphate buffer solution (PBS), as 

supporting electrolyte, rather than the phosphate buffer saline (PBL), which 

according to documented findings may induce possible inhibitory effects due to ionic 

competition [166]. 
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5B.3.3.1 Bio-electrocatalytic response to molecular oxygen and substrate 

(indinavir) 

 

Under optimized biosensor fabrication conditions, voltammetric  

experiments were undertaken to ascertain the effect of heme-co-substrate/substrate 

interactions on the redox properties of the immobilized nCYP3A4, without the 

presence of the electroactive Co(Sep)
3+

 mediator species. This was done in order to 

observe the effect of the absence and/or presence of the mediator on the bio-

electrocatalytic response of the enzyme-based biosensor, with particular reference to 

observing any changes in the obtained overpotential. Figure 5B.14 exhibits the 

voltammetric results obtained from the bio-electrocatalytic studies with the 

mediatorless nCYP3A4-based biosensor, which was fabricated by immobilizing the 

enzyme directly on the unmodified nafion membrane, denoted 

GCE||naf|nCYP3A4|Agrs-PEI-PVA. In this regard, plot I (a) exhibits the cyclic 

voltammetric response of the biosensor in substrate-free, argon-degassed PBS, 

whereas plot I (b) shows the cyclic voltammetric response of the nCYP3A4-based 

biosensor in substrate-free oxygen in air-saturated PBS, and plot I (c) depicts the 

biosensor  response in oxygen-saturated PBS containing 14 M indinavir. The 

voltammetric response of the biosensor in substrate-free argon-degassed PBS was 

already discussed in previous sections and thus need not be further elaborated now. 

Compared to the ill-defined redox waves seen in substrate-free, argon-degassed, the 

presence of dissolved molecular oxygen (O2), however, was signified by a dramatic 

augmentation of the cathodic peak current, which was simultaneously accompanied 

by a marked increase in Ip,c. From a general perspective, in an electrode-based 

electrochemical setting, the observation of additional catalytic current is in effect the 

classic voltammetric signature for electrochemical catalysis [85, 167]. In the current 

situation it reflects the reaction of the reduced nCYP3A4 heme iron, i.e. nCYP3A4-

Fe
II
, with dioxygen followed by the reduction of the  nCYP3A4-Fe

II
O2 complex 

(known as the oxy-ferrous complex), a reaction which within the context of the 

current experimental conditions, occurred at a determined Ep,c of  -650 ( 10) mV.  
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Direct reduction of oxygen on these electrodes (prepared without enzyme) occurs at 

potentials significantly more negative than observed for the enzyme-based electrode. 

Nevertheless, under aerobic conditions, in the presence of 14 M indinavir, as shown 

in plot (c) of Figure 5B.14, a further increase in the cathodic peak current was 

observed, which in effect reflects the increase in turnover of dioxygen induced by the 

presence of the substrate, suggesting the metabolism of the substrate by nCYP3A4, 

which is in turn regenerated for the next catalytic cycle. Indeed, based on documented 

findings regarding the catalytic interactions of  CYP450 enzymes, it has been shown 

that the presence of substrate favourably affects the enzyme-oxygen interaction, by 

significantly increasing the rate of oxygen binding  to the heme redox centre, a factor 

that has been observed in numerous studies involving CYP450 and/or heme-

containing enzymes [74, 77, 85, 135].  A closer evaluation of the exhibited CV 

showed that the bio-electrocatalytic response to indinavir occurred at a potential 

of -687 mV, which, compared to the operating potential determined for oxygen 

reduction, shifted negatively by a value of 36 mV. Normally, in the context of 

electrochemical systems, and with regard to CYP450 enzymes in general, a positive 

shift in Ep in association with substrate interaction signifies the thermodynamic 

favourability of the interactions, which in terms of specifics portrays the expulsion of 

a water molecule (bound as a sixth axial ligand) from the heme centre, in association 

with the change in heme iron from six co-ordinate, low spin to five co-ordinate high 

spin state. On the other hand, as explained in Chapter 2 (Section 2.2.3.2), according 

to the Marcus theory for biological electron transfer [65, 70], the kinetic effects of 

electron transfer is between two redox species is directly dependent on the driving 

force (i.e. the potential difference), as well as the reorganizational energy. Having 

said that, a cathodic (negative) potential shift, in this context, signifies a larger 

reorganization energy in association with a slower rate of electron transfer [134]. In 

this context, on a microscopic level, due to nafion’s small micellar pore size, it cannot 

incorporate the large enzyme into its structure. However,  based on its inherent phase-

related heterogeneity (consisting of the bulk hydrophobic phase and the much lower 

density hydrophilic ionic cluster region), it can form strong interactions with 
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compounds largely dominated by lipophillic forces, which is probably the case 

between the pre-formed nafion and the nCYP3A4 in the current investigation,  the 

results of which would be unfavourable for electron transfer with the underlying 

electrode. Indeed, this phenomenon has been observed with other enzymes 

immobilised on nafion matrices [101]. Moreover, this in itself could also constrict the 

accessibility to the enzyme’s deeply-buried prosthetic group, the overall effect which 

would be an increase in reorganization energy in association with co-substrate and/or 

substrate interaction, thus resulting in a negative shift in Ep. In addition to this, the 

enzyme  stabilizing effect of glycerol, by-and-large operating by slowing down the 

conformational changes of the enzyme required for electron transfer, to minimize 

enzyme denaturation and/or unwanted harmful side reactions, could also contribute to 

the observed negative shifts in potential, as well as the high operating potential. 

Nevertheless, the presence of the Co(Sep)
3+

 mediating species would thus play a 

significant role in enhancing the electron transfer reactions and as such, the overall 

bioelectrocatalytic response of the enzyme-based biosensor.  In addition to cyclic 

voltammetry, the bioelectrocatalytic response was also studied with SW voltammetry, 

the results of which are shown in plot II of Figure 5B.14. The scans were done 

cathodically, and as such, the difference SWs shown here represents the net reduction 

process. Evaluation of these results showed that once again, as in the case of the 

cyclic voltammetric study, the presence of dioxygen (scan b) and substrate (scan c – 

e) results in a marked increase in catalytic peak current. In the case of the plots 

showing the substrate (indinavir) interaction in particular, a concentration dependent 

increase in peak current up to the final concentration (i.e. 14 M) can be seen. 

Moreover, with regard to the peak potentials observed from SW voltammetric studies 

in particular, oxygen reduction occurred at approximately – 678 mV, whereas the 

catalytic response to indinavir occurred at a more negative potential, corresponding to 

a value of -706 mV, thus coinciding with results observed from cyclic voltammetric 

studies. At this stage it must also be emphasized that the high operating potential with 

regard to reduction of dioxygen, as well as substrate detection and monoxygenation, 

as observed from both cyclic voltammetric and square wave voltammetric results, 
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holds the potential consequence of a much higher likelihood of the formation of 

reactive oxygen species and  associated uncoupling reactions, and as such, as earlier 

stated, the presence of the mediator will greatly aid the bio-electrocatalytic response 

to effective substrate turnover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.14 I: Cyclic voltammograms of the GC||naf|nCYP3A4|Agrs-PEI-PVA 

electrode in 50 mM PBS, showing biosensor response in (a) substrate-free argon-

degassed PBS; (b) air-saturated PBS with 0 M indinavir; (c) air-saturated PBS with 

14 M indinavir. II: square wave voltammograms of the GC||naf|nCYP3A4|Agrs-

PEI-PVA electrode, showing response in (a) substrate-free argon-degassed PBS; (b) 

air-saturated PBS with 0 M indinavir; air-saturated PBS with (c) 1 M, (d) 2 M 

and (e) 14 M indinavir, respectively. Experimental conditions are: CVs scanned 

cathodically at 5 mV s
-1

.  SWVs: square wave amplitude 25 mV; potential step 4 mV 

(showing difference SWs) 

 

The results as observed for the Co(Sep)
3+
mediated electrochemically driven 

catalysis of nCYP3A4 in the presence of dissolved molecular dioxygen and indinavir 

was markedly different. In this regard, the voltammetric response of the GC||naf-El-

Co(Sep)
3+

|nCYP3A4|-PVA-PEI-Agrs electrode (biosensor) in the presence of O2, as 
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well indinavir was investigated with cyclic voltammetry and square wave 

voltammetry, for which the results are exhibited in Figure 5B.15 I, (plot b, c) and 

Figure 5B.16 I (plot a, b). With regard to the cyclic voltammetric results in 

particular, Figure 5B.15 I, plot b and c exhibits the response of the GC||naf-El-

Co(Sep)
3+

|nCYP3A4|-Agrs-PEI-PVA electrode in substrate-free air-saturated 

phosphate buffer solution (PBS) and air-saturated PBS containing 5 M indinavir, 

respectively. Plot a on the other hand depicts the cyclic voltammetric behaviour of 

the biosensor in substrate-free argon-degassed PBS. These plots show results for an 

experiment conducted at 5 mV s
-1

 for which scans were done cathodically. Evaluation 

of the exhibited results revealed that the presence of molecular oxygen caused a 

dramatic augmentation of the CV as compared to the cyclic voltammetric response 

observed from the biosensor in substrate-free, argon-degassed PBS [plot a]. In a 

more descriptive context, the presence of oxygen was signified by a distinct increase 

in the cathodic current, which was accompanied by the emergence of a new peak, 

centred at an average potential of -440 ( 10) mV (n = 10), and also accompanied 

by a considerable decline of the anodic current. Moreover, as compared to the CV in 

argon atmosphere, for which the cathodic wave exhibited a single peak centred at   

approximately -670 mV, the response in the cathodic wave of the CV in oxygen on 

the other hand, was dominated by the new peak, centred at -440 mV, while the peak 

in the region of  -670 mV became almost ‘featureless’ and thus its exact parameters 

could not be determined.  When indinavir was added to the air-saturated PBS there 

was a further increase in the cathodic current, in specific association with the peak 

centred in the region of that observed for the response to oxygen. Moreover, the small 

increase in reduction (cathodic) peak current, in association with indinavir addition, 

coupled with the negligible amount of H2O2 formation (as measured by Quantofix 

hydrogen peroxide sticks), suggest the miminal occurrence of “futile” redox cycling 

of the system and associated concomitant production of reactive oxygen species [86, 

89, 168].  Considering the latter, including the fact that oxygen is the co-substrate of 

nCYP3A4, and in view of the exhibited voltammetric responses, as well as the 

absence in catalytic response of the enzyme in substrate-free argon-degassed PBS (of 
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which the observed redox process is dominated by the Co(Sep)
3+

 mediating species), 

these results suggest the bio-electrocatalytic reduction of oxygen by the 

mediatorreduced nCYP3A4, (i.e.nCYP3A4-Fe
II
), in the substrate-free aerated buffer 

and the increase in turnover of dioxygen affected by indinavir in the substrate-

containing aerated buffer (shown in plot b) [77-78, 136, 142]. With regard to the 

square wave voltammetric results, a more well-defined indication of the position and 

magnitude of the peak response for the GC||naf-El-Co(Sep)
3+

|nCYP3A4|-Agrs-PEI-

PVA electtrode in the presence of oxygen, and in the presence of indinavir can be 

observed. In this regard, Figure 5B.16 I plot a and b depicts the response of the 

GC||naf-El-Co(Sep)
3+

|nCYP3A4|-Agrs-PEI-PVA electrode in substrate-free air-

saturated phosphate buffer solution (PBS) and air-saturated PBS containing indinavir, 

respectively. The voltammograms represent the net (difference between forward and 

reverse scans) SWV responses when the modified electrode was scanned 

cathodically. Evaluation of the observed plots revealed that these results coincide 

with that exhibited for cyclic voltammetry and as such, the presence of both O2 and 

indinavir was signified by a distinct response, centred in the potential region where 

the new peak emerged [as compared to the SWV observed in substrate-free, argon-

degassed PBS (see inset in Figure 5B.16, i.e. plot II)] . It must also be emphasized at 

this stage that although the exhibited SWs are characterized by two peaks, no 

discernible  response was observed at the other peak position (i.e.  -637 mV), which 

can be evidenced by the noticeable lack of catalytic-type increase in in Ip in 

association with indinavir/ O2 addition. Moreover, at the same time, an increase in net 

current in association with the response of the biosensor to both O2 and indinavir, as 

compared to that observed for the biosensor in substrate-free argon-degassed PBS 

(plot II) was also observable. With regard to the  exact position of the emerged peak 

in association with the bio-electrocatalytic response to O2, the peak potential was 

determined as -365  ( 5) mV, while the addition of the indinavir resulted in a small 

cathodic shift  of approximately 4 mV, thus yielding a final response potential of -369 

( 10, n=10)  mV . In terms of current  magnitude on the other hand,   the   
         in 

the presence of indinavir was significantly higher than that observed in the presence 
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of dioxygen (containing no indinavir), thus showing an increase in the value of  

  
        ( -369 mV) of approximately 1.6 orders of magnitude. Still on the subject 

of the observed bio-electrocatalytic results, it is noteworthy to emphasize the fact that 

the presence of the Co(Sep)
3+

 mediator has enabled an unequivocal reduction in the 

overpotential for the bio-electrocatalytic reduction of O2, as well as for the bio-

electrocatalytic substrate turnover, as compared to the results observed for the un-

mediated biosensor (i.e., GCE||naf|nCYP3A4|Agrs-PEI-PVA). In particular, the 

overpotential for the reduction of O2 was reduced by at least 210 mV, while the 

overpotential for indinavir detection/metabolism was reduced approximately 240 mV. 

Moreover, with specific reference to the reduction of O2, as compared to the results 

obtained for the biosensor platform1, presented and discussed in Chapter 4, (i.e. 

CGE|naf|CMECo(Sep)
3+

|flCYP3A4|naf), the operating potential was reduced by 

approximately 215 mV. This observation also holds for previous investigations 

involving CYP3A4-based biosensor platforms  in particular, compared to the study 

involving full-length human recombinant CYP3A4 in a PDDA-polyelectrolyte 

platform [135], the overpotential for the bioelectrocatalytic reduction of dioxygen 

was reduced by  250 mV; and as compared to another study also involving full-

length microsomal CYP3A4, in a DDAB liquid crystal vesicular system [136], the 

overpotential was reduced by  270 mV.  It is also noteworthy to again point out the 

effectiveness of the design path used in this biosensor platform, as compared to that 

used for biosensor platform 1, with particular reference of the technique used in the 

fabrication of the electroactive carrier matrix. In this regard, the design path used in 

biosensor platform 2  probably enabled a better coupling efficiency between the 

immobilised enzyme and the transducer material. 

 

 

In the interest of negative control measures, the behaviour of the control sensor, 

fabricated with the exclusion of nCYP3A4, by using the pseudo carrier enzyme, 

bovine serum albumin (BSA), in the presence of oxygen and in the presence of 

indinavir was also investigated with cyclic voltammetry, as well as square wave 
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voltammetry. In this regard, with reference to the CV results in particular, plot b of 

Figure 5B.15 II depicts the cy c l i c  v o l t a m m e t r i c  r e s p o n s e  o f  t h e  c o n t r o l  

s e n s o r  ( i . e .  G C E | | n a f | E l - C o ( S e p )
3 +

| B S A | A g r s - P E I - P V A )  i n  

s u b s t r a t e - f r e e  air-saturated PBS, while plot c exhibits the behaviour of the 

control sensor in air-saturated PBS in the presence of indinavir. In addition to this, 

plot a (in Figure 5B.15 II), which depicts the redox reactivity of the control sensor in 

substrate-free argon-degassed PBS is also showed. In terms of the SWV results on the 

other hand, Figure 5B.16, plot c depicts the reactivity of the GC||naf|El-

Co(Sep)
3+

|BSA|Agrs-PEI-PVA in substrate-free aerated-PBS, whereas plot d shows 

the reactivity of the control sensor in aerated-PBS containing 5 M indinavir. 

Evaluation of the CV results in particular, showed that indeed, the presence of 

molecular dioxygen, as well as indinavir (in air-saturated PBS) were both 

accompanied by a measurable increase in cathodic current, as compared to the CV in 

substrate-free argon-degassed PBS, and although the cathodic wave was not entirely 

featureless/ill-formed, the exact positions of the observed small cathodic peaks 

(minima) could not be determined. Moreover, unlike in the results observed for the 

nCYP3A4-based biosensor, where a clear response at  -440 mV could be observed, 

no clear Ep could be observed in this region with the BSA-based control sensor. In 

terms of the SWVs, in the presence of oxygen, a small, but measurable increase in net 

current could be observed, while the introduction of indinavir resulted in another 

small measurable increase in net SW current. However, the reactivity in the presence 

of both O2 and indinavir was indistinct, with current increase in both cases observed 

to be at two peak potentials, i.e.   -410 mV and -645 mV. This was contrary to the 

clear response as exhibited by the nCYP3A4-based biosensor, for which a distinct 

current increase centred on a single potential was observed, typical of a catalytically 

active enzyme containing a single prosthetic group.  Nevertheless, in terms of the 

observed increase in cathodic current as seen from CV and SW voltammetric studies 

for the BSA-based control electrode  based on documented literature findings 

regarding catalytic electrochemical studies, this type of phenomenon is in fact not 

uncommon. On the other hand, the observed ‘double-peak increase behaviour’ is 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

266 

 

characteristic of the reduction of two species at different potentials [169], which, in 

the current case, suggest with relative certainty, the effect of reactive oxygen species, 

particularly H2O2, formed in association with two electrochemically driven processes. 

In this regard, the first process most probably involved the direct reduction of 

dioxygen in the film at the GCE, while the other process may be attributed to the 

coupling of the 1e
­
 reduction of the mediating species with a fast follow-up chemical 

process, which involves the interaction of the reduced species with dioxygen [85, 

120, 135, 169]. A comprehensive description of the details of these interactions and 

their concomitant implications are given in Section 5B.3.3.1.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.15 Cyclic voltammograms showing: (a) response of nCYP3A4-based 

biosensor, (GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA) in argon-degassed 

PBS containing 0 M indinavir; (b) response of nCYP3A4-based biosensor in 

air-saturated PBS containing 0 M indinavir; (c) response of nCYP3A4-based 

biosensor in air-saturated PBS containing 5 M indinavir. (d – e): negative 

control, showing BSA-based control sensor (i.e. GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-
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PEI-PVA  in (d) air-saturated PBS containing 0 M indinavir; (e) air-saturated 

PBS containing indinavir 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.16 Square wave voltammograms showing: (a) response of 

nCYP3A4-based biosensor, (GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA) in 

air-saturated PBS containing 0 M indinavir; (b) response of  nCYP3A4-based 

biosensor in air-saturated PBS containing 5 M indinavir; (d) – (e) negative control 

showing: reactivity of BSA-based control sensor (GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-

PEI-PVA) in air-saturated PBS containing 0  M indinavir [i.e. (a)] and reactivity of 

BSA-based control sensor in air-saturated PBS containing  5 M indinavir. 

Experimental conditions are: square wave amplitude 25 mV; potential step 4 mV; 

plots show net currents for forward and reverse SW currents for scans done 

cathodically.  

 

 

To further explore the catalytic response of the nCYP3A4-based, Co(Sep)
3+
 

mediated biosensor with respect to indinavir  the voltammetric response of the 

GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode in the presence of 

increasing indinavir concentrations in the potential region where the afore-discussed 

biosensor response was observed was investigated. In this regard, Figure 5B.17 
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exhibits the dependence of the square wave voltammetric current (response)  as a 

function of concentration, for indinavir. The depicted plots represent the net 

(difference between forward and reverse scans) SWV responses for scans done 

cathodically. Moreover, the voltammograms showed a measurable increase in the  

  
        upon subsequent addition of indinavir to the air-saturated PBS up to the 

final concentration of 73 M. In addition to this, in the interest of corroborating the 

lack of bio-electrocatalytic response of the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-

PEI-PVA electrode in the potential region  where the second peak was shown in the 

afore-discussed results, (i.e.  -637 mV, for plots a and b of Figure 5B.16), the 

reactivity of the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode to 

increasing indinavir concentrations in the region of that potential was also 

investigated with respect to this particular potential region. In this regard, as exhibited 

in Figure 5B.17, other than the normal redox reactive peak seen, no additional 

discernible catalytic response in this region could be observed. 
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Figure 5B.17 Square wave voltammograms showing response of  GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode to increasing indinavir concentrations, 

from 0 M up to a final concentration of 73 M. Experimental conditions are: square 

wave amplitude 25 mV; potential step 4 mV. (Plots show the net currents obtained 

from scans done cathodically) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5B.18 Square wave voltammograms for the potential region of -490  -950 

mV for the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode, for an 

experiment done with increasing indinavir concentrations (0  73 M). 
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Experimental conditions are: square wave amplitude 25 mV; potential step 4 mV. 

(Plots show the net currents obtained from scans done cathodically) 

 

 

Once again, with the focus on negative-control measures, the reactivity of the BSA-

based control sensor to increasing indinavir concentrations were also investigated, 

with SWV. In this regard, Figure 5B.19 shows exhibits the dependence of the square 

wave voltammetric current as a function of concentration of indinavir. The depicted 

plots represent the net (difference between forward and reverse scans) SWV 

responses for scans done cathodically. Indeed, an increase in current in the presence 

of both O2 and indinavir as compared to the background current observed for the 

substrate-free argon-degassed PBS (see inset, i.e. plot II) could be seen. However 

further evaluation of the voltammograms showed that the results for the GCE||naf|El-

Co(Sep)
3+

|BSA|Agrs-PEI-PVA control electrode was irrefutably different from the 

results showed for the nCYP3A4-based biosensor (GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA). In this regard, with particular reference to the 

results showed for indinavir, other than the initial peak current increase with the 

initial indinavir addition, no clearly discernible subsequent increase in peak current 

(Ip) in association with consecutive indinavir additions could be seen, which 

essentially means that for all subsequent indinavir additions, up to the final 16 M, 

the magnitude of Ip stayed the same. Moreover, the observed initial Ip increase 

presented itself as a double-peak increase, thus mirroring and corroborating what was 

seen in the afore-discussed results for control studies exhibited Figure 5B.16 (plot 

c,d).    
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Figure 5B.19 Negative control: square wave voltammograms showing reactivity of 

BSA-based control sensor (GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA) with 

increasing indinavir concentrations from 0  16 M in air-saturated PBS. Inset (i.e. 

II) shows the redox behaviour of the GC||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA 

electrode in substrate-free argon-degassed PBS. Experimental conditions are: square 

wave amplitude 25 mV; potential step 4 mV. (Plots show the net currents obtained 

from scans done cathodically) 

 

Still on the subject of electrocatalysis investigations, it is noteworthy to also show an 

interesting, but not unexpected phenomenon that became apparent during the these 

studies. In this regard, Figure 5B.20 (a  c) exhibits the electrocatalytic reactivity in 

air-saturated PBS, of (a) the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA 

electrode, containing freshly expressed nCYP3A4 (biosensor-n1); (b) GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode containing nCYP3A4 which have 

been stored for  six-eight months (biosensor-n2); and (c) the (GCE||naf|El-

Co(Sep)
3+

|BSA|Agrs-PEI-PVA) containing the pseudo-enzyme, BSA (BSA-based 

control).  From an evaluation of the results, it became apparent that the biosensor 

containing the freshly expressed enzyme (biosensr-n1) responded unequivocally 
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different to dioxygen as compared to the biosensor in which the old stored enzyme 

was used as recognition component (biosensor-n2). In this regard, biosensor-n1 

exhibited the classic signature of dioxygen reduction for a enzyme containing a single 

active centre, comprised by a characteristic increase in cathodic peak current, with an 

almost complete attenuation of the anodic peak current [73-74, 82-83, 135], the 

implications of which, essentially suggest the coupling of the Co(Sep)
3+/2+

-mediated 

Fe
3+

/Fe
2+

 reduction event to fast binding of oxygen to the  ferro-heme. Moreover, the 

exhibited results corroborate the afore-shown and discussed results for the    

GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA biosensor. On the other hand, the 

results as exhibited for biosensor-n2 showed a rather vague reactivity to dioxygen, 

which was in fact similar to what was observed in the case of the BSA-based control 

electrode, the difference being just a slightly more pronounced intensity in the 

cathodic peak currents in the case of biosensor-n2 as compared to that seen for the 

BSA-based control. The reason for this seemingly reprehensible behaviour in the case 

of  biosensor-n2, may be attributed to the fact that since it contained very little 

catalytically active nCYP3A4, the results was essentially  a very weak interaction 

between the enzyme and the mediator-containing carrier matrix, resulting in the 

formation of a large percentile of reactive oxygen species, particularly H2O2, due to 

unspecific interaction of Co(Sep)
2+

 with dioxygen, as well as uncoupling reactions in 

association with the small percent of enzyme that  engaged in reductive dioxygen 

activation [77-78, 86]. In fact, the latter is a known possible branching point in 

observed uncoupling reactions involving CYP450 enzymes [23, 67]. Moreover, with 

the BSA-control, as well as biosensor-n2, a measurable amount of H2O2 was formed 

in association with electrocatalytic studies (10  25 mg L
-1

) as measured by 

quantofix-peroxide sticks, whereas in the case of biosensor-n1 which contained the 

fresh active nCYP3A4 H2O2 formation was more-or-less negligible. In this regard, it 

suggest that the reduction of oxygen competes poorly with the reduction processes 

involving  Co(Sep)
3+/2+

 and  nCYP3A4–Fe
3+/2+

, and as such, much less H2O2 

peroxide is formed with fresh enzyme samples. Similar results have been seen before 

with  CYP450 3A4 enzymes using reductase as electron transfer mediator [86]. 
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Figure 5B.20 Comparisons of effect of oxygen : Cyclic voltammograms showing: 

(a)  (GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA)  electrode containing 

fresh nCYP3A4, (b) (GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA)  

electrode containing nCYP3A4 which have been stored for    six-eight 

months;  (c) (GC||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA) electrode (BSA-

control)  in substrate-free air-saturated PBS. 

 

On a sub-conclusive note, in the context of the collective implications of the afore-

exhibited and discussed results regarding the catalytic investigations for the 

GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode, a few noteworthy 

sub-conclusions may be drawn at this stage. Firstly, with regard to the response of 

dioxygen in particular, these results are consistent with catalytic reduction involving 

nCYP3A4-Fe
2+
O2, and as such, suggest that the electrochemically-based reduction 

of the nCYP3A4 ferric heme, through the Co(Sep)
3+

 mediating species, is followed 

by rapid binding of dioxygen with the subsequent formation of the ferrous-dioxygen 

complex.  Secondly, the results obtained in association with indinavir addition, all in 

turn coincides with previously documented findings, and as such suggests that  the 
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presence of substrate increases the rate of the reduction of dioxygen [74, 77-78, 135-

136, 142]. In addition to this, comparative evaluations between response behaviour of 

the Co(Sep)
3+

 mediated nCYP3A4-based biosensor, and that observed in the case of 

the BSA-based control was fundamentally different, in all electrocatalytic 

investigations done. Thus cumulatively, these results all suggest, that firstly, the 

enzyme may be activated along a similar pathway utilized in its physiological 

reaction cycle the overall response of the GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-

PVA biosensor upon substrate addition to the air-saturated PBS is due to bio-

electrocatalytic substrate turnover,  

 

 

 

Evaluation of the voltammograms exhibited in the presence and absence of 

indinavir all suggest that indinavir increases the rate of oxygenation of nCYP3A4. 

The significance of this observation is the implication that the GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PV electrode can be used for varying the indinavir 

concentration in the construction of a calibration curve for indinavir. In this regard, 

Figure5B.21 shows the full calibration curve obtained from experimental studies 

with increasing indinavir concentrations up to a final concentration of 147.5 M.  A 

linear calibration curve was also constructed, as shown in the inset of Figure 5B.21, 

from which it was shown that the biosensor response to indinavir exhibited a linear 

concentration range from 2.183 x 10
-6

 to 3.552 x 10
-6

 M (r = 0.99501). Moreover, the 

accompanied sensitivity value was determined as 0.00349 A M
-1

. In addition to 

this, the value for the LOD, (calculated as the concentration giving a signal equal to 

three times the standard deviation of the blank signal divided by the sensitivity) was 

determined as 59.72 mg L
-1

. This value is markedly higher than the documented 

maximum plasma drug concentration range (CMax) for indinavir (i.e. 5 – 11 mg L
-1

) 

[2, 170], however, according to the Handbook for HIV Medicine [14], as well as 

other documented literature [4, 7, 170-171], there is a high degree of variability in 

terms of plasma levels among individuals. Moreover, the quoted literature-based 
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value showed above, is based on the in-vitro model for the unboosted indinavir dose 

regiment, and secondly, is recorded in association with standard prediction in-vitro 

models, which are in effect based on animal studies and/or intermediate to extensive 

metabolisers. The effect of ritonavir-boosting on the other hand can lead to up to a 3–

5 fold increase in indinavir CMax value, since it results in a significant increase in the 

most important pharmacokinetic paramters, including CMax, trough levels and half life 

[14]. The implications of these factors, essentially means that in poor metabolisers (as 

are most HIV/AIDS patients), as well as within the context of the multi-drug based 

HAART associated regiments, the CMax value for indinavir and/or any other PI ARV 

may in reality rise to markedly higher values, therefore, within the context of these 

criteria, a higher LOD does not necessarily reflect an out of range detection rating. 

Still on the subject of the obtained LOD, it is also noteworthy to add that the value is 

higher than the value published for indinavir, based on a biosensor platform 

developed during the course of this research investigation, with wild type full length 

microsomal CYP3A4 in a vesicle dispersion of DDAB [136]. In this regard, vesicular 

dispersions/liquid crystal film environments are known to have a distinct effect on the 

heme environment of the immobilized enzyme, mostly through dehydration, which 

very effectually leads to more positive shifts in potential, and as such can 

significantly influence the obtained results. On the other hand, full-length wild-type 

CYP450s are known to be more stable than the N-terminally truncated enzymes 

(which are easily perturbed), while the use of detergents (which are necessary to 

obtain acceptable yields of soluble N-terminally modified constructs during the 

process of genetic engineering) is also known to have a destabilizing effect on the 

prepared CYP450s. The implications of these factors may have also contributed to 

the observed variance in results.          
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Figure 5B.21 Calibration curves for GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-

PVA biosensor response to indinavir: Main plot shows increasing concentration of 

indinavir up to a final concentration of  147.5 M. Inset shows the linear calibration 

plot for indinavir.  

 

 

With regard to the plot shown in Figure 5B.21, at high indinavir concentration a 

current plateau can be observed. In this regard, the curvature from the initial straight 

line represents the characteristics of Michaelis-Menten (MM) kinetics (see Chapter 

3A, Section for a comprehensive overview of the MM theory aspects) . The apparent 

Michaelis-Menten constant,   
   

, which essentially gives an indication of the 

enzyme-substrate kinetics for the biosensor, i.e.  GC||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode can then be calculated from the 

electrochemical version of the Lineweaver-Burk equation: 

 
 

   
 = 

  
   

    
 
 

 
 + 

 

    
        5B-1 

where Iss the steady-state current after the addition of the substrate, IMax the maximum 

current measured under conditions of substrate saturation, and C is the concentration 
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of the substrate. In this regard, the slope (  
   

     ) and intercept (1/    ) from the 

plot of the reciprocal current versus the receprocal indinavir concentration was used 

to calculate   
   

.  With regard to the general implication of determined   
   

    it 

gives an indication of the kinetics of the enzyme-substrate system [74, 77, 172]. A 

low   
   

 shows that the E–S complex is stable, thus indicating that the saturation of 

the enzyme active site is a fast process. Moreover, a smaller    
   

 implies that the 

proposed electrode exhibits a higher affinity for indinavir. Having said that, the   
   

 

value for the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode was 

determined as 17.539 M. 

 

 

5B.3.3.1.1 A deeper insight into the specifics of the electrocatalytic interactions 

with dioxygen and with the substrate, indinavir 

 

This section serves to provide a deeper insight into the specific interactions 

pertaining to the results as observed from the afore-exhibited (bio)electrocatalytic 

studies. On this subject, the common phenomenon that was apparent in all catalytic 

interaction studies was the distinct increase in cathodic current. In this regard, 

through the comprehensive discussions provided in this section, as well as the 

schematic information shown, the common role in reactive dioxygen in the observed 

results will be become apparent and collectively, will help explain the observed 

results, both with regard to the control electrodes, as well as the Co(Sep)
3+–mediated 

nCYP3A4-based biosensor.  

 

With oxygen shown to be the important factor here, to grasp the significance of the 

fundamental role of the biosensor’s interaction with oxygen, one needs to firstly 

understand the effect of oxygen in the context of general electrochemically based 

studies; secondly, its role in the physiological reaction cycle of CYP3A4; and thirdly, 
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the possible implication of oxygen interaction with the mediating species in mediated 

biosensor systems. Let us first divert our attention to oxygen in general electrode-

based interactions in particular. Generally, oxygen is chemically reactive with 

numerous substances and also electrochemically reducible, therefore, unless catalytic 

studies are being conducted, electrochemical work is best done with the exclusion of 

oxygen. Having said that, according to documented literature, at unmodified or 

modified electrodes, the overall electrochemical reduction of dioxygen with electron 

transfer, results in the production of H2O, with the complete process consuming a 

total of 4e
¯
. In a more descriptive context, the reduction usually occurs through two 

well separated steps, the first of which corresponds to the formation of  hydrogen 

peroxide: 

O2 + 2H
+
 + 2e¯  H2O2      5B-2 

While the second step corresponds to the reduction of peroxide:  

 H2O2 + 2H+ + 2e¯  2H2O     5B-3 

 

Moreover, while the latter two equations gives a broad description of the overall 

process, on a microscopic level, the formation of H2O2 and H2O, may generally be 

preceded and/or accompanied by a series of  other intermediate basic reactive 

dioxygen and monooxygen species, including   
– 

, HOO•, HOO¯, 
•
O¯, HO¯, that 

may take up one or two hydronium ions (H3O
+
) from the electrolyte media. 

Generally, the large background current accrued from this stepwise oxygen reduction, 

can interfere with the measurements of many reducible analytes. Moreover, the 

products of the oxygen reduction may affect the electrochemical process under 

investigation.     

 

With regard to the role of oxygen in CYP450 enzymes and CYP3A4 on the other 

hand, the binding and reduction of dioxygen plays a pivotal role in the reaction cycle 

of CYP3A4 and CYP450 enzymes in general. In fact, according to documented 

literature, the oxy-ferrous/ferrous-dioxygen complex (CYP3A4-Fe
II
O2) has been 
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labelled the first and most fundamental intermediate for successful monooxygenation 

of substrate in the catalytic reaction cycle of the enzyme. In this regard, from a 

general perspective, for catalytic reactions involving P450 isoenzymes, the reduction 

of molecular oxygen to reactive oxygen species, such as H2O2, is preferably an 

unwanted occurrence, since it can essentially curtail the electron transfer between the 

reducing equivalents and the isoenzyme under study. In this regard, once formed, the 

oxy-ferrous complex rapidly binds dioxygen, but the catalytic reduction to H2O2 

rapidly follows. Moreover, the introduction of the second electron thus can result in 

H2O2 dissociation, and the overall process is known as autooxidation. Therefore, the 

oxy-complex is believed to be the primary source of such reactive species (radicals), 

i.e. superoxide/peroxide, and the resultant challenge thus is getting the second 

electron to be used in peroxoiron complex formation and not in H2O2 dissociation. 

Considering these factors, it is not surprising that, according to documented literature, 

the oxy-ferrous complex has also been categorized “the first major branching 

intermediate in the catalytic cycle of CYP450 in which the total efficiency of the 

substrate monooxygenation may be curtailed by the uncoupling reaction of 

autooxidation”. On the other hand, as in the case of physiological reducing 

equivalents, in catalytic systems utilizing electroactive pseudo-mediating species, the 

formation of H2O2 due to non-specific inadvertent reactions between the reduced 

mediator and dioxygen can result in catalytic activities of P450s that are uncoupled 

from the natural enzyme-based consumption of dioxygen. Moreover, this reaction 

pathway does not consume electrons, and as such, occurs in association with 

uncoupling of the mediator-based electron transfer to the enzyme. This can 

essentially divert the sequence of CYP3A4’s reaction cycle through what is known as 

the peroxide shunt pathway, which can also contribute to substrate turnover, but may 

come at the cost of enzyme longevity. In this regard, the stability of the biosensor is 

more inclined to the envisaged realization of a disposable platform, as opposed to 

reusable platform.  Considering all of these aspects, the electrocatalytic response of 

the CYP3A4-based biosensor (GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA), to 

dioxygen may be regarded as a key juncture in the overall evaluation of the biosensor 
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dynamics and thus merits due consideration with regard to its own plausible reaction 

pathways, in tandem with substrate-related electrocatalytic discussions.  

 

 

Bearing in mind all of the above aspects, we will now take a closer look at the 

electrocatalytic dynamics of the biosensor platform  in the current study, essentially 

providing a comprehensive overview of all reactions taking place at the modified GC 

working electrode. In this regard, Figure 5B gives a schematic representation of all 

envisaged reactions, occurring during typical voltammetric catalytic experiments, 

with reference to both the nCYP3A4-based biosensor, as well as the BSA-based 

control electrode, as done according to the context of the experimental for the current 

research investigation. With regard to the reactions outlined in Figure 5B, reactions 

A and C refers to reaction pathways which may typically occur in the GC||naf|El-

Co(Sep)
3+

|BSA|Agrs-PEI-PVA electrode, i.e., the BSA-based control sensor, whereas 

reaction B and D exhibits the reaction pathway typically occurring in the context of 

the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode, i.e., the 

Co(Sep
)3+
mediated, nCYP3A4-based biosensor. Let us start with the GC||naf|El-

Co(Sep)
3+

|BSA|Agrs-PEI-PVA electrode: In this regard, no nCYP3A4 is present to 

initiate the substrate monooxygenation pathway, and as such the futile redox cycling 

of the system can lead to the reactive oxygen species. Firstly, as shown in reaction A, 

a small amount of dioxygen may be reduced in the film at the underlying GCE, 

forming the reactive dioxygen species, superoxide (  
– 

), which, when formed 

dismutaes to H2O2 through another reduction process. Secondly, according to 

equation 5B-4 

Co(Sep)
3+

 + e

 ⇄ Co(Sep)

2+
       5B-4 

– Electrochemical 

     

the electroactive mediator, Co(Sep)
3+

 is reduced to Co(Sep)
2+

, and with no nCYP3A4 

present, the reaction of the reduced species with dioxygen is highly probable, a 
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process which also produces superoxide that dismutates to H2O2, according to the 

following equation: 

Co(Sep)
2+

 + O2 O2 

  H2O2 5B-5 

The produced H2O2 can of course be further reduced in the formation of H2O as by-

product, according to equation 5B-3. The general implications of these processes is 

that the accrued current associated with the produced reactive oxygen species adds to 

the catalytic oxygen reduction current, i.e. in the reverse scan in the cyclic 

voltammetric studies, and in the overall difference current in the square wave 

voltammetric studies, in air-saturated electrolyte media (i.e. PBS). Needless to say, 

this then explains the catalytic current, as observed from the results in association 

with the response of the  GC||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA electrode in the 

presence of dioxygen in substrate-free air-saturated PBS (see Figure 5B.15, 5B.16). 

Moreover, the reaction associated with the GCE and with the Co(Sep)
3+

 occurs at 

separate potentials, hence the increase at two separate peak currents, as shown from 

the voltammograms. On the other hand, with reference to the formed H2O2 particular, 

during electrocatalytic substrate interaction studies, it is known induce the formation 

of small amounts of minor metabolites, a reaction path that occurs through a non-

enzymatic reaction of the selected substrate with the formed H2O2. In fact, this 

phenomenon has been documented for numerous studies involving enzyme-based 

electrocatalytic investigations conducted in the presence of oxygen, for which 

negative control-electrode studies with the occlusion of active enzyme was done [85-

86, 135]. However, it must be emphasized that this reaction pathway is completely 

distinct from the catalytic pathway followed by the active enzyme-based 

electrode/biosensor, and as such, no main metabolites can form through this reaction 

path. Moreover, no characteristic increase with each consecutive substrate addition is 

seen, as opposed to the case for the active enzyme-based electrocatalysis, hence the 

distinctly different voltammetric reactivity exhibited by the control-electrode in the 

presence of increasing indinavir concentration, as shown in Figure 5B.19.  
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We can now focus our attention to the electrocatalytic reactions as occurring at the 

GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode (i.e. the Co(Sep)–mediated 

nCYP3A4based biosensor). The reaction pathways in Figure 5B.22 that are of 

significance in the case of the active-enzyme based electrode include reaction B and 

D. It is important to emphasize the fact that while the indinavir is the selected 

substrate, dioxygen is the co-substrate of nCYP3A4, and as such the reaction 

pathways need to be discussed with respect to both aspects. To provide a complete 

comprehensive stepwise overview of all the possible reaction pathways with regard to 

the GC||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA electrode in particular, an 

additional schematic reaction scheme, exhibited in Figure 5B.23, which  illustrates 

possible reaction pathways and also explains both the bioelectrocatalytic oxygen 

reduction current and the bioelectrocatalytic substrate conversion. In addition to this, 

where relevant, representative equations are given to provide more insight into exact 

reactions: Let us start with dioxygen, which, as observed in exhibited catalytic 

studies, showed a distinct increase in reduction peak current (see Figures 5B.15 I and 

5B.16, 5B.20 ), and as such, generally, served as evidence for the electrocatalytic 

activity of cytochrome P450, based on the rapid binding of dioxygen to the reduced 

ferrous nCYP3A4, a process with a usual rate  in the order of   10
6 

M
-1

 s
-1

. In this 

case, without substrate (indinavir) present, the resulting ferrous-dioxygen complex is 

known to be highly unstable. In this regard, it can simply accept a second electron, 

but on the contrary, may also release superoxide or alternatively H2O2, while it is 

itself oxidized back to the ferric form. The latter is then reduced again 

electrochemically, which generates the increase in cathodic (reduction) current. With 

regard to the exact sequence of the afore-discussed dioxygen reduction process and 

its associated possible pathways, the following reaction sequence describes the 

process, and as such, provides a in-depth explanation of the results exhibited for the 

catalytic studies of the fabricated biosensor.  

 

All enzyme-based reactions are mediated through the Co(Sep)
3+/2+

 species and as 

such, is preceded by the initial 1e
-
 reduction reaction as shown in equation 5B-3. 
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 The Co(Sep)
2+

 species then in turn reduces the immobilized active enzyme 

 Co(Sep)
2+

 + nCYP3A4-Fe
III

  Co(Sep)
3+

 + nCYP3A4-Fe
II
  5B-6 

– Chemical 

 In the presence of oxygen, the reduction of nCYP3A4 –Fe 
(3+/2+)

 (equation 5B-6)  is 

followed by  rapid dioxygen binding (equation 5B-7) and introduction of a second 

electron (equation 5B-8), or alternatively, the abstraction of reactive oxygen species 

(equation 5B-9) and regeneration of the ferric state. 

 nCYP3A4-Fe
II 

+ O2  nCYP3A4Fe
II
O2 5B-7 

 nCYP3A4Fe
II
O2 

      

→     nCYP3A4Fe
III
OOH

  

→  nCYP3A4 Fe
III

 + H2O2

   5B-8 

 EFe
II
O2 EFe

III
 O2 


   E Fe

III
 + O2 


   5B-9 

– Autooxidation 

The electrocatalytic reduction of any generated peroxide will also contribute to catalytic 

current (equation 5B-10). 

 EFe
III

 +H2O2  PFe
IV=O

       

→       EFe
III 

+ EFe
III 

+ H2O  5B-10 

 

 

In the case of  the  nCYP3A4-based bio-electrocatalytic interaction with the substrate on the 

other hand,  the possible reaction pathways are a bit more complex, as exhibited in the 

schematic reaction scheme in Figure 5B.23. In this regard, after the substrate binding 

(reaction 1), the Co(Sep)–mediated 1e
–
 reduction of the ferric iron occurs (reaction 

2). This is followed by binding of dioxygen (reaction 3), thus forming the ferrous-

dioxygen complex. Following this, through another 1e

 transfer interaction, mediated 

by Co(Sep)
3+/2+

 (reaction 4), the highly reactive peroxy intermediate is formed. 

Furthermore, the input of protons to the reactive intermediate can result in the 

cleavage of the OO bond, so producing a high-valence iron-oxygen complex (i.e. 

Fe(IV)═O, also known as Compound I), which at this stage, is then reactive enough 

to insert an oxygen atom into the substrate (indinavir). On this subject, it must be 

emphasised that, although electron abstraction from substrates do occur during the 
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physiological reaction cycle of P450 enzymes, the substrate itself (i.e. indinavir), is 

unable ro reduce the high valencenCYP3A4Fe
V
═O species directly. Finally, 

dissociation of the monooxygenated product, ROH, then restores the nCYP3A4 to the 

starting ferric state (reaction 5). 

 

At this stage, the release of reactive oxygen species needs to also be considered, since 

it is known to be a highly probable envisaged reaction pathway in the P450 reaction 

cycle, particularly in the case of human microsomal P450 isoenzymes, [67, 73, 77, 

87]. In this regard, within the enzyme, the release of superoxide is followed by 

disproportionation and generation of H2O2, which as explained earlier, in the 

vocabulary of P450 enzymology, is referred to as the decoupling/uncoupling reaction. 

Indeed, the uncoupled formation of peroxide has been observed with various 

mammalian P450 isoenzymes [81]. In the context of the current investigation, as 

outlined by the scheme in Figure 5B.23, the main branching points for uncoupling 

for the nCYP3A4 may be envisaged at the level of the dioxygen ferrous complex 

(reaction 6) or the ferric-hydroperoxy complex (reaction 7) [12, 23, 77]. In the 

absence of substrate, this catalytic oxygen reduction may effectually regenerate the 

ferric enzyme, which may again be reduced (reaction 2). The concomitant effect will 

be enhancement of the electrochemical reduction. On the other hand, the peroxide can 

substitute for oxygen and reducing equivalents in what was earlier described as, the 

peroxide shunt pathway, in which the  formed H2O2 directly converts the enzyme to 

its reactive putative ferryl species, i.e. nCYP3A4-Fe(V)═O, which is the reactive 

electrophilic iron oxo intermediate that attacks the substrate for monoxygenative 

product formation [23]. In fact this reaction pathway has played been identified as 

minor and major contributory reaction pathways in numerous electrode-based 

enzyme-substrate electrocatalytic investigations [77, 85, 89, 135]. Still on this 

subject, this reaction, however, does not occur in association with the consumption of 

electrons and will thus not lead to catalytic reduction current.  A noteworthy aspect to 

add is that the general process of catalytic oxygen reduction, as well as the catalytic 

substrate conversion process consume the same number of electrons, and as such, 
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substrate conversion will not result in a higher electron uptake per cycle, therefore 

increase of the reduction current should in effect be a result of a increase in rate 

(hence the further increase in reduction current with indinavir, as shown in Figures 

5B.15 and 5B.16). In this regard, it is not possible to conclusively elucidate the 

reaction pathway from net current alone. 

 

With respect to substrate in particular, substrate binds to the six co-ordinate low spin 

ferric heme (reaction 1). In terms of the natural reaction cycle of P450s, binding of 

the substrate  induces the displacement of the axial H2O molecule from the enzyme 

active site, and as such, generally triggers the catalytic cycle of the enzyme, resulting 

in a penta-coordinated high spin substrate-complexed heme [78, 134]. This 

essentially makes the heme a better electron sink and thus triggers electron transfer 

from the natural NADPH reducing equivalents; this electron transfer event then 

initiates the cycle [22]. In the context of the current research investigation, the 

favourable effect of substrate in tandem with interaction with the reduced Co(Sep) 

mediator, results in the overall initiation of the catalytic cycle. Dioxygen binds, with a 

diffusion limited rate constant of  10
-6

 M
-1

 s
-1

 in the context of P450s in general [22, 

77], and in the context of CYP3A4 in particular, the rate constant is estimated to be 5 

x 10
-5

 M
-1

 s
-1

 [67],  and as such, the process is not rate limited [77]. A noteworthy 

cautionary factor to consider at this stage, though is that according to documented 

research findings, in general, with regard to rate-limiting steps in human CYP3A4 

catalysis, uncoupled autooxidation reactions for this enzyme was shown to be 2–3 

orders of magnitude faster than in the case of the other P450s [67]. Additionally, 

product formation in human P450s was generally shown to be slower than the rates of 

uncoupling reactions, thus, in the absence of substrate the oxy complex in CYP3A4 

would usually tend to autoxidise rapidly and return to the ferric heme state [22, 67]. 

Notwithstanding these factors, it must be said here that catalytic studies in the current 

research investigation was done by maintaining a 15–20% glycerol content within 

enzyme region of the reagent layer. The significance of this aspect lies in the fact that 

according to documented literature, glycerol has been generally shown to confer a 
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unique stabilizing effect on P450 enzymes [24, 173]. In the context of catalysis in 

particular, stabilization is thought to occur mainly through slowing down enzyme 

reaction rates, and reducing non-specific potentially harmful uncoupling interactions, 

while also providing the necessary lubrication for enzyme catalysis through multiple 

hydrogen bond capability, conferred by its water mimicking nature [174-175].    

Furthermore, in this context, the overall stabilizing effect of glycerol may result in a 

longer-lived, iron-peroxy species, thus attenuating its premature dissociation before 

substrate conversion to compound I, which will of course have a favourable effect on 

enzyme-based substrate hydroxylation [73, 82]. In addition to this, with reference to 

human microsomal CYP3A4 in particular, prior research has also shown  that the 

bound presence of substrate significantly stabilizes the oxy-ferrous complex  against 

any uncoupling oxygen reduction reactions, while also modulating  the escape of any 

superoxide or hydroperoxyl species from the heme binding pocket [67]. Considering 

these aspects, and the infinitesimally low detected concentrations of H2O2 during 

enzyme-based catalytic studies, as well as the small relatively small difference 

between catalytic oxidation current in the absence and in the presence of indinavir (as 

shown in Figure 5B.15–5B.17) it appears that in the current investigation, “futile” 

reduction reaction pathways is slower than the substrate conversion, which also 

consumes electrons. On this note, it must also be said at this stage though, that further 

studies will be required to completely understand and elucidate the intricate details of 

the electrocatalytic CYP3A4-reaction. 
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Figure 5B.22 Schematic representation of the reactions occurring at the modified 

glassy carbon working electrode during electroctalaysis experiments. 

 

Figure 5B.23 Suggested general scheme of the electrocatalytic reaction of nCYP3A4 

[mediated by Co(Sep)] in the presence of oxygen. The presence of bound substrate is 

marked by (RH). All reaction pathways are included in a catalytic cycle for better 

indication/illustration of the possible processes.  

 

5B.4 Conclusions 

 

This study demonstrates the successful incorporation of the catalytically 

active N-terminally modified CYP3A4, consisting only of the heme domain and 

surrounding apoprotein, synthesized through genetic engineering by over expression 

in ecoli cells as biorecognition component in a reagentless amperometrically-based 
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biosensor. Moreover, the nafion-modified GCE, containing the potentiostatically 

integrated Co(Sep)
3+

 electroactive mediating species served as pseudo-electron 

transfer donor species for the nCYP3A4 isoenzyme and as such, enabled the electron 

transfer for bio-electrocatalytic activity of the enzyme, while the Co(Sep)
3+

 was in 

turn continuously regenerated at the modified GCE. In addition to this, the detection 

and quantification of the PI ARV, indinavir was realized, while the hydrogen 

peroxide shunt path did not appear to play a role in substrate catalytic interaction. 

Another important observation is that the working potential, with particular reference 

to the reduction/activation of dioxygen is was shown to be considerably reduced, as 

compared to biosensor platform 1 and some other documented studies. 

 

 

 

5B.5 Materials and Methods of Investigation 

 

 

5B.5.1  Preparation of Recombinant N-terminally modified CYP3A4 

(nCYP3A4) 

 

 

5B.5.1.1 Reagents and materials 

 

All categories of materials and reagents (including their specific 

constituents) used in during this process are comprehensively described and outlined 

in table 3B.1, under the section labelled “The reagents and materials for enzyme 

expression and purification of N-terminally modified CYP3A4”, in Chapter 3B. An 

important fact to also emphasize at this stage is that all working solutions used 

throughout the process of expression and purification of the enzyme was either 

autoclaved or filtered through specialized filters, or both. 
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5B.5.1.2 Expression and purification of CYP3A4 construct 

 

 

This process describes the expression and purification of the human 

recombinant, heme-thiolate CYP3A4 isoenzyme, in which genetic engineering was 

used to modify the hydrophobic N-terminal anchor of the CYP450 3A4 isoenzyme, 

by removal of 25 amino acids from this region, and as such, eventually preparing a N-

terminally modified soluble construct tagged with a histidine residue. 

 

 

From a general perspective, the expression/purification process comprised five 

consecutive steps, which included (1) inoculation of the preculture; (2) growing the 

culture and adding specific reactants to induce protein expression in the host cell; (3) 

disrupting the cell membrane to release proteins (lysis); (4) purification of obtained 

protein through making use of affinity-based columns; (5) quantification of the 

obtained product to measure protein concentration. On the other hand, the ‘micro-

steps’ in the actual process was quite an intricate endeavour. Moreover, to ensure 

successful product formation, it was absolutely necessary that each of these steps 

were conscientiously and meticulously carried out. Having said that, an outline of the 

complete protocol is described as follows:  

 

5B.5.1.2.1 Construct expression for CYP3A4/Preculture inoculation 

 

5 mL of the luria broth (LB) medium (see table 3B.1 for constituents of the 

LB medium) was pipetted into a 50 mL, high density glass vial. To this solution,  10 

μL of the glycerol stock (consisting of the single colony E-coli cells containing the 

DNA that encodes the N-terminally truncated P450 3A4 isoenzyme), and 5 L of a 
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(previously prepared) 1 M ampicillin (AMP) was added. The so formed mixture 

(solution A), usually referred to as the pre-culture, was then incubated over night 

(O/N) at 37 °C with shaking at 150 rpm  (strict adherence to the temperature was 

ensured by proper thermostating). With regard to solution A, depending on the 

amount yield required, usually 2 or 3 samples of solution A was prepared during each 

expression/purification experiment. On the same day that the pre-culture was 

prepared, 900 mL terrific broth (TB) medium was also prepared (see table 3B.1), in a 

1 L conical flask, which was followed by autoclaving and overnight cooling. The 

following day, after the 24 hr incubation period, 100 mL (1x) K-phosphate buffer 

solution was added to the (pre-warmed) TB medium, forming solution B. To solution 

B, the following was added: 1 mL of 1 M AMP, 1 mL of 1 M thiamine and 2.5 mL 

trace element solution (see table 3B.1 for specific constituents), thus forming 

solution C. Solution C was then divided into two 500 mL samples. The two samples 

can be referred to as culture C1 and C2. To each of the 500 mL cultures, i.e. C1 and C2, 

a 5 mL of the previously incubated solution A (pre-culture) was added, thus forming 

solution D1 and D2. Solution D1 and D2 was then incubated at 37 °C with shaking 

until the the optical density for each culture was between 0.4 – 0.6. It took 

approximately 3 – 4 h of incubation to   attain the required OD. After the desired 

absorbance readings were attained, δ-aminolevulinic acid (δ‐ALA) was added to 

each of solutions D1 and solution D2 to a final concentration of 0.5 mM. Each of the 

δ‐ALA –containing solutions was subsequently incubated at 30 °C, 150 rpm for 30 

min. After the 30 min has lapsed, CYP3A4 heme expression was induced in each 

solution by addition of IPTG to a final concentration of 1 mM. The induced cultures, 

i.e. solution D1 and D2, were then incubated for a total of 18 h at 30 °C, with shaking 

at 150 rpm. 
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5B.5.1.2.2 Preparation of the crude lysates 

 

Following the 18 h incubation period, the expressed cultures were harvested. For this 

process, each of the two culture samples were further divided into smaller aliquots in 

high density centrifuge tubes, followed by centrifugation of each sample at 5 000 rpm 

for 15 min at 4 °C. During centrifugation, a cell pellet collected at the bottom of each 

centrifugation tube, which was used in the subsequent steps, while the supernatant 

was discarded. In this regard, each of the cell pellets was re-suspended in 250 mL 1 x 

phosphate buffer saline (PBL, pH 7.4). The re-suspension process generally 

comprised of gentle agitation of the pellets until complete dissolution has taken place, 

and all solid pellets were suspended in the PBL. After re-suspension, the 

centrifugation process was repeated at 4 °C, again resulting in cell pelleting. Next, the 

cell formed pellets were re-suspended in 5 mL lysis buffer (see table 3B.1), following 

the same ‘agitation process’ as before. To the re-suspended pellets, lysozyme (to a 

final concentration of 1 mg mL-1), DNase I (500 U), CaCl2 (final concentration = 0.5 

mM), and MgCl2 (final concentration 2.5 mM) were all added. It is noteworthy to 

also add that the lysis suspended cell pellets gave a final volume of approximately 10 

mL, therefore the final concentrations of all the latter constituents were with respect 

to a 10 mL solvent volume. Next, the cell suspensions were incubated on ice for 30 

min with very gentle shaking. Following the ice incubation step, the cell suspensions 

were then subsequently centrifuged at 10 000 xg at 4 °C for 30 min and the resulting 

supernatants, which may be referred to as the crude soluble lysate preparations, were 

either stored in 100 L aliquots at -20 °C for later analysis, or were then used for the 

subsequent protein purification process. 

5B.5.1.2.3 Protein purification 

 

The Ni-TED resin (see table 3B.1) was used for the initiation of the protein 

purification process. The, Ni-TED, with the provided buffers were obtained from the 

manufacturers. To the Ni-TED HisLink wash buffer obtained was added 75 mM 
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imidazole. In addition to this, 250 and 500 mM imidazole was also added to the 

elution buffer which was for use in the sequential elution process involving 2.5 mL of 

the elution buffer for each elution.  The Ni-TED resins were then packed into 

Pharmacodynamics (PD) – 10 columns. The histidine-tagged crude soluble lysate 

preparations were then purified with the Ni-TED resins, by affinity. Meanwhile, 

Centriprep YM – 10 columns were rinsed with 15 mL Milli-Q water by 

centrifugation at 3000 xg. Next, each  resin – purified protein sample was added to a 

cleaned Centriprep column and centrifuged at 3 000 xg at 4 °C until the protein 

samples were concentrated to just below 700 L. The Centriprep concentration 

process took approximately 35 min. Following this, each protein concentrate was 

then added to a Zeba column for buffer exchange into the final P450 storage buffer 

(see table 3B.1 for constituents), according to the instructions provided by the 

manufacturer. The final soluble purified protein samples were eluted from the Zeba 

columns and immediately divided into 5 – 10 L aliquots, which was stored at -20 °C 

until used.      

 

 

 

5B.5.1.3 Total protein quantification 

 

The determination of total protein concentrations in the purified protein 

samples were done with the use of the Bio-Rad protein dye, based on the Bradford 

micro-assay. In this regard bovine serum albumin (BSA) was used for creation of 

standard curves. The exact protocol was done according to the manufacturer’s 

instructions. Briefly, 20 mg/mL BSA were prepared in the P450 storage buffer, thus 

forming solution A. Solution A was then diluted to 100 g mL-1, thus forming 

solution B. Solution B was then used to prepare 5 standard BSA solutions of 

concentrations, 2-, 4-, 6-, 8- and 10 g mL-1. In this regard, three replicates of these 

standard solutions were prepared. Meanwhile, 1 in 20 dilutions of the purified protein 

samples were prepared (also in triplicate). Next, 200 L concentrated Bardfords 
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reagent was thoroughly mixed with 800 L of each standard or purified protein 

sample working solution. Each of the mixtures were aged for 5 min, after which the 

absorbance readings were recorded at A595. The results were then used to obtain a 

calibration curve, from which the purified protein concentrations were estimated. To 

eventually calculate the molarity, the molecular weights used for the   

 

 

5B.5.1.3  Spectral analysis of and activity assays the prepared nCYP3A4 

construct 

 

5B.5.1.3.1 FTIR spectral analysis 

 

Spectra were recorded by placing a drop of the enzyme-containing solution 

directly on the gasket of the cell window, as shown in Figure 5B.24. The background 

spectra of the protein storage solution were also taken and the necessary background 

subtractions were done with the inherent mathematical software of the system. 
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Figure 5B.24 Showing method of FTIR analysis with high-pressure anvil cell for 

wet nCYP3A4 samples.  

 

 

 

5B.5.1.3.2 UV-Vis spectra of resting state nCYP3A4 (nCYP3A4-Fe
3+

) 

construct 

 

UV-Vis spectra of the resting state nCYP3A4 were taken with 3 M 

nCYP3A4, in a potassium-phosphate buffer solution, containing 20% glycerol, 1 mM 

DTT and 0.2 mM EDTA, with a dual-beam spectrometer. The enzyme storage 

solution was used for background. 

 

 

5B.5.1.3.3 Activity assay for the nCYP3A4 construct: Carbon monoxide 

complex 

 

Cytochromes P450 got their name from their atypical spectral properties 

displaying a characteristic absorption maximum of the reduced carbon-bound 

complex at 450 nm. Thus the ability of the reduced P450 to produce an absorption 

peak at 450 nm upon CO binding has been used thru ought the years for estimation of 

the P450 content [21, 23]. In this regard, the method of analysis is still done, 

according to its discoverers,  i.e. according to the method of Omural and Sato [159]: 

 A working solution of the synthesized enzyme construct was prepared by 

dilution of the stock into 50 mM KPBS (pH 7.4), containing glycerol ( 20% 

v/v). The glycerol was necessary to stabilize the enzyme against autooxidation 
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 The solution was argon-degassed and the baselines were recorded with a dual-

beam UV-Vis spectrometer (see details of instrument in Chapter 3B). 

 Reduction of the protein was then initiated by injection of equimolar 

concentration of sodium dithionite (made up in a 0.5 mM solution with the 

buffer). The spectra was them measured at 1.5 – 2 min intervals, until no 

further reduction was observed. i.e. until no further variation in the 420 nm 

peak was observed. 

 At this point, CO was gently bubbled through the solution for 30 sec intervals 

followed by intermittent measurement of the spectra until no further increase 

in the 450 nm peak was observed.  

 The difference spectra were then obtained by subtraction of each reduced 

protein spectrum from the relevant CO – bound reduced spectrum to obtain 

the final difference spectrum.  

 Amount of catalytically active heme – bound protein content was calculated 

using ε450 – 490 = 91 mM cm
-1

, whereas inactive (denatured) heme  - bound 

nCYP3A4 content was calculated according to ε420 – 490 = 111 mM cm
-1

. 

 

 

 

 

 

 

5B.5.2 Methods and protocols for biosensor preparation, optimisation studies 

and voltammetric investigations 

 

Table 5B.2  Materials and reagents used  

 

Reagents and materials for optimized Co(Sep)
3+

-mediated nCYP3A4-based 

biosensor 

Reagents for carrier 

matrix preparation 

1% nafion (pH 7.4);  1mM Co(Sep)
3+

 (in 100 mM KPBL) 
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Reagents for outer-film 

preparation 

5% PVA (in 100 mM KPBS), 1% agarose (in milli-Q 

H2O), PEI in (100 mM KPBS)  

nCYP3A4 casting 

solution 
1.5 M nCYP in 100 mM KPBST, pH 7.4 (See table 

3B.1 for exact constituents of buffer) 

Reagents for catalytic 

studies 

Molecular dioxygen (O2) and indinavir 

Reagents and materials for un-mediated nCYP3A4-based biosensor 

Reagents for carrier 

matrix 

1% nafion only (pH 7.4) 

Reagents for outer-film 

preparation 

Exactly the same as described in previous section 

nCYP3A4 casting 

solution 

Exactly the same as described in previous section 

Reagents for catalytic 

studies 

Molecular dioxygen (O2) and indinavir 

Reagents and materials for Control sensor platform 

Reagents or carrier 

matrix preparation 

1% nafion (pH 7.4);  1mM Co(Sep)
3+

 (in 100 mM KPBL) 

Reagents for outer-film 

preparation 

5% PVA (in 100 mM KPBS), 1% agarose (in milli-Q 

H2O), PEI in (100 mM KPBS)  

Pseudo enzyme casting BSA in 100 mM KPBST, pH 7.4 

Note: For exact constituents of reagents and protocols for preparation of working 

solutions etc, the reader may consult the relevant subsections in Chapter 3B 

 

 

 

5B.5.2.1 Preparation of Co(Sep)3+–mediated nCYP3A4-based biosensor 

(under optimised conditions) for voltammetric characterization and 

catalytic investigations 

 

The working electrode used in this study was a clean or modified GCE. 

Before modification, the GCE was activated and pre-treated according to the method 

outlined in Section 3B.3.1.1 of Chapter 3.  5 L 1% nafion (pH 7.4) was 

subsequently drop coated onto the activated GCE surface. The electrode was then 

covered with a tight-fitting cover to allow the stable formation of a smooth nafion 

film. After a dry nafion film has formed the Co(Sep)
3+

 was incorporated into the 

nafion membrane by potentiostatic electrodeposition. For this process, the a argon-
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degassed 100 mM potassium phosphate buffer saline (KPBL, pH 7.4) solution,  

containing 1 mM cobalt(III) sepulchrate (prepared as described in Section 3B.2.2.3.2, 

Chapter 3) was used as electrolyte medium. The electrodeposition was done at a 

constant potential of +450 mV for 1 200 sec, after which the modified electrode was 

rinsed and air dried. The naf-El-Co(Sep)
3+

 modified GCE (GCE||naf|El-Co(Sep)
3+

) 

was then subjected to electrochemical cycling in a 50 mM PBS until a stable 

background current was obtained. At this point the nCYP3A4-based biosensor was 

prepared. In this regard, a total of 6 L  nCYP3A4 (1.5 M) was drop-coated onto the 

GCE||naf|El-Co(Sep)
3+

 in two 3L aliquots by a sterilized, calibrated glass micro-

syringe. In addition to this, each drop-casting step was followed by intermittent 

setting at 2 °C after each casting step for duration of 5 min each. In addition to this,  

the enzyme modified electrode was placed in a gentle flow of argon for 

approximately 5 min, followed by immediate casting of the outer layer solution. In 

this regard, 7 L of the blended ionic polymer-composite solution (prepared as 

described in Section 3B.2.2.3.6, Chapter 3B) was drop-cast onto the GC||naf|El-

Co(Sep)
3+

|nCYP3A4 electrode with a calibrated glass micro-syringe. An important 

requirement for this step was that both the casting solution and the syringe needed to 

be pre-warmed in order to prevent pre-mature solidification of the solution. Finally, 

the prepared biosensor, denoted GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA, 

was set for eight hours at 2 °C. 

 

 

 

5B.5.2.2 Preparation of un-mediated nCYP3A4-based biosensor for 

voltammetric characterization and catalytic investigations 

 

The preparation of this biosensor was exactly the same as described in the 

pre-ceding section, except that in this case, no Co(Sep)
3+

 electrodeposition was done 

and as such, enzyme casting was done directly after the formation of the base nafion-
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film, exactly as described above. This was then followed by casting of the outer-film 

solution, also done exactly as described above. The prepared biosensor may be 

denoted, GCE||naf|nCYP3A4|Agrs-PEI-PVA. 

 

 

 

5B.5.2.3 Preparation of the Co(Sep)3+ based  control sensor platform 

 

The sequential steps for preparation of the control sensor platform was 

exactly the same, as outlined in Section  5B.5.2.1. However, in the case of the control 

platform, instead of the prepared nCYP3A4 construct, bovine serum albumin (BSA) 

was cast as pseudo enzyme substitute. The prepared control sensor may be denoted 

GCE||naf|El-Co(Sep)
3+

|BSA|Agrs-PEI-PVA. 

 

  

 

5B.5.2.4  Preparation of the platforms for optimisation of the variables 

concerning the indinavir amperometric biosensor  

 

5B.5.2.4.1 Preparation of Co(Sep)
3+
–mediated nCYP3A4-based biosensor 

platform with Eastman-AQ as base layer and  crosslinked PVA as 

outer film 

5 L of an aqueous 3% EAQ dispersion was drop coated onto a clean, 

activated GCE with a micro-pipette. The modified GCE was covered with a tightly 

fitting lid to allow even formation of the EAQ-film. Once dry, the Co(Sep)
3+

 

mediating species was incorporated into the pre-formed EAQ using a protocol exactly 

as described in Section 5B.5.2.1 above. Since the EAQ-El-Co(Sep)
3+

 film did not 

appear very stable, it was not subjected to subsequent electrochemical cycling in a 50 

mM PBS before biosensor construction, as in the case of the biosensor with nafion as 
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base film. The next step involved drop-coating 6 L of the prepared nCYP3A4 (1.5 

M) with a sterilized calibrated glass microsyringe. Following this, the enzyme-film 

was set for approximately 5 min at 2 °C followed by further setting under gentle 

argon flow for 5 min.  In the next step, 7 L of a 5% aqueous PVA solution (prepared 

as described in Section 3B.2.2.3.5, Chapter 3) was cast onto the nCYP3A4-

derivitized electrode, as outer film component. PVA is usually labile in aqueous 

solution and as such, to ensure stable enzyme encapsulation, the cast PVA was 

subsequently crosslinked. The technique used for crosslinking was customised from 

standard methods [103, 164]. The method basically comprised acid catalyzed 

crosslinking with glutaraldehyde (25% v/v).   The biosensor, denoted GCE||EAQ|El-

Co(Sep)
3+

|nCYP3A4|clPVA was placed in milli-Q water to remove any unreacted 

components and stored  at 2 °C for further setting .  

 

 

 

5B.5.2.4.2 Preparation of Co(Sep)
3+
–mediated nCYP3A4-based biosensor 

platform with nafion as base layer and  crosslinked PVA as outer film 

 

The nafion base layer was formed exactly as described in Section 5B.5.2.1. 

In addition to this, incorporation of the Co(Sep)
3+

 mediating species into the pre-

formed nafion membrane was also done exactly according to the method outlined in 

Section 5B.5.2.1. The GCE|naf|El-Co(Sep)
3+

 electrode was then subjected to 

electrochemical cycling in a 50 mM PBS until a stable background current was 

obtained. Following this, the prepared nCYP3A4 was immobilized in exactly the 

same manner as outlined in Section 5B.5.2.4.1. In addition to this, casting and 

crosslinking of the PVA outer layer was also done exactly the same as described in 

Section 5B.5.2.4.1. The prepared biosensor is denoted GCE||naf|El-

Co(Sep)
3+

|nCYP3A4|clPVA. 
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5B.5.2.4.2 Preparation of Co(Sep)
3+
–mediated nCYP3A4-based biosensor 

platform with nafion as base layer and  crosslinked PVA as outer film 

 

In this case the nafion film, Co(Sep)
3+

 incorporation and  immobilization 

of nCYP3A4 was done exactly according to the method outlined in Section 5B.5.2.1. 

In addition to this, the casting of the outer layer solution was also done exactly 

according to method outlined in the afore-mentioned section. However, the ratio of 

PEI with respect to the PVA-Agrs was varied by varying the volume of PEI in the 

casting solution.  

 

 

5B.5.2.4.3 Preparation of biosensor platforms for nCYP3A4 loading optimisation 

studies 

 

For investigation of this variable, the amount of nCYP3A4 was varied, 

while all other variables were kept constant. In this regard, the casting volume of 

nCYP3A4 was varied, i.e. 4-, 5-, 6-, 7- and 8 L. In terms of the fabrication of the 

biosensor platforms, in its entirety, each platform was prepared exactly according to 

the sequential protocol outlined in Section 5B.5.2.1. 

5B.5.2.4.4 Preparation of biosensor platforms for Co(Sep)
3+

 potentiostatic 

loading time optimisation studies 

 

With regard to investigation of this particular variable, the potentiostatic 

Co(Sep)
3+

 electrodeposition time was varied, while all other parameters were kept 

absolutely constant. For this purpose, Co(Sep)
3+

 electro-deposit times were varied 
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from 300 up to 2 000 sec. Again, as in the previous case, with regard to fabrication of 

the biosensor platforms, the protocol followed was exactly according to the method 

outline in Section 5B.5.2.1, the only difference, where relevant, being the Co(Sep)
3+

 

electro-deposition times.  

 

 

 

5B.5.2.4 Procedures for voltammetric characterization of the prepared 

platforms 

 

All voltammetric characterization studies were done with a three electrode 

arrangement as described in Section 3B.3.1, Chapter 3B (see also Figure 3A.8). The 

supporting electrolyte used throughout characterization in all cases, were argon-

degassed 50 mM phosphate buffer solution (PBS, pH7.4). For cyclic voltammetric 

investigations, the particular electrode was cathodically scanned from -100 mV to the 

switch potential, -950 mV (vs Ag/AgCl). Cycling was done until a steady state 

background current for the Faradaic redox response was observed, and as such, all 

voltammograms were collected from the 5
th

 cycle onward, when a stable background 

current was observed. Osteryoung square wave voltammetry (SWV) was done by 

applying a linear reductive potential scan (cathodic mode – one direction only) 

between -100 and -950 mV at a step potential of 4 mV, a frequency of 1 Hz, and a 

square wave amplitude of 25 mV. Differential pulse voltammetry (DPV) for the 

reduction wave was performed by applying a potential scan from -100 to -950 mV (vs 

Ag/AgCl), with specific parameters as follows: scan rate = 20 mV s
-1

, pulse 

amplitude = 25 mV, sample width = 2 ms, pulse width = 15 ms, pulse period = 200 

ms and quiet time = 2 s. For the DPV of the oxidative wave, the electrode was 

scanned from -950 to -100 mV, while all other parameters were exactly the same of 

the for the reductive scan.   
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5B.5.2.5 Procedures for catalytic response investigations 

 

All catalytic response investigations were conducted in un-degassed 50 

mM PBS in the presence, or absence of the substrate of interest (i.e. indinavir). 

Response experiments were done with cyclic voltammetry and square wave 

voltammetry. In this regard CV and SWV was run in the presence and absence of 

oxygen and/or indinavir to investigate the Co(Sep)
3+–mediated or un-mediated 

enzyme-oxygen-substrate interaction. For all cyclic voltammetric investigations, in 

the presence of oxygen and/or indinavir, the electrode was cathodically scanned from 

-100 mV to the switch potential, -950 mV (vs Ag/AgCl) at a scan rate of 5 mV s
-1

. 

Square wave voltammetric investigations were done by applying a linear reductive 

potential scan (cathodic mode – one direction only) between -100 and -950 mV at a 

step potential of 4 mV, a frequency of 1 Hz, and square wave amplitude of 25 mV. 

 

 

 

 

5B.5.2.6 Procedures for investigations of optimisation of the variables 

 

As a sensitivity criterion for the optimisation of the relevant working 

variables affecting the behaviour of the indinavir biosensor: Firstly, optimisation was 

done with respect to the working potential for the reduction of oxygen. In this regard, 

the platforms were evaluated with regard to a lower operating potential which could 

significantly reduce the overpotential for oxygen reduction as compared to the results 

obtained for biosensor platform 1, as well as previous investigations involving 

CYP3A4. Secondly, in terms of response to indinavir, evaluations, where relevant 

was done with the slope of calibration curves for indinavir for predetermined 

concentration range as sensitivity criterion. The specific concentration ranges and 

slopes, etc. are discussed in the relevant results sections in the current chapter.  
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CHAPTER 6 

 

Summary and Conclusions 

 

6.1 Introduction 

 

In the current chapter the results obtained in association with the two 

biosensor platforms from the work presented in the dissertation is summarized. In this 

regard, a summary of each individual results chapter, with particular reference to 

recapitulating the main and most significant findings and conclusions for that 

particular chapter is given. In addition to this,     

 

 

6.2 Summary of individual results chapters 

 

6.2.1  Chapter 4 

 

These results are based on design path 1, as shown in the flow diagram 

exhibited in Chapter 3B. 

 

 The detection and quantification of endocrine disruptor compound/priority pollutant, 

2,4-DCP have been successfully realized by using the fabricated 

GCE||naf|CMECo(Sep)
3+

|flCYP3A4|naf biosensor. The design path for this biosensor 

platform, was based on sandwich configuration, in which detergent-monomerized, 

commercially obtained, full-length human recombinant CYP3A4 was entrapped 

between a cobalt(III) sepulchrate derivatised nafion inner-membrane and a thin 

nafion outer film. Entrapment of the Co(Sep)
3+

 in the preformed nafion membrane 

was achieved through simple manual drop-casting and mixing method. In this regard, 
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FTIR confirmed the existence of the Co(Sep)
3+

 counter-ion species in the nafion 

membrane. The variation in the electrochemical characteristics in association with the 

progression from the nafion-modified GCE, to the reagentless mediator containing 

flCYP3A-derivatized biosensor platform confirmed the electron flow from the 

electrode to the flCYP3A4 via the (nafion pre-concentrated) Co(Sep)
3+

 mediator. 

Moreover, comparitive evaluation of the exhibited electrochemically based results for 

the GCE||naf|CMECo(Sep)
3+

|flCYP3A4|naf biosensor with that of the 

GCE||naf|CMECo(Sep)
3+

 carrier matrix, suggested the favourable interaction between 

the monomerized flCYP3A4 through possible coulombic and/or hydrophobic 

interactions of the nafion with the surfactant-type CHAPS detergent.  

 

The voltammetric investigations of the GCE||naf|CMECo(Sep)
3+

|flCYP3A4|naf, 

revealed a Em of   -590 mV. Moreover, the surface coverage, Γ, of the electroactive 

Co(Sep)
3+

 species was determined as 9.8 x 10
-8

 mol cm
-2

. On the other hand, the 

constant value exhibited for the current function Ip/ν
½
 suggests that the charge 

transfer of the biosensor in the absence of oxygen and substrated in the higher scan 

region is a diffusion-kinetically controlled process. Thus, the Dct, calculated by 

Randle Sevick analysis, was determined as 0.5 x 10
-8

 cm
2
 s

-1
. Inter-day 

electrochemical evaluation of the storage stability of the biosensor revealed a gradual 

decline in signal in association with progressive leaching of the mediating species 

from the reagent layer. 

 

With respect to the electrocatalytic investigations, the following findings were made:  

 The catalytic increase in Ip,c in association with the injection of the substrate,  

2,4-DCP, in anaerobic phosphate buffer saline, coupled to the small 

simultaneous anodic Ep shift, suggested the presence of sufficient residual 

dioxygen in the substrate containing solution to induce bioelectrocatalytic 

response from the reduced heme iron, flCYP3A4-Fe
2+

 for the formation of the 

active oxy-ferryl species, for effecting hydroxylation of the 2,4-DCP. 
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 The GCE||naf|CMECo(Sep)
3+

|flCYP3A4|naf  biosensor showed an average 

reduction potential for dioxygen of -600 ( 10) mV, as determined from CV 

and SWV. With regard to the cyclic voltammetric results in particular, the bio-

electrocatalytic response to molecular dioxygen was signified by a considerable 

increase in Ip,c which was  simultaneously accompanied by a complete 

attenuation of the Ip,a. 

 The results exhibiting  the catalytic response of the biosensor to the 2,4-DCP, 

suggested that the presence of the substrate increased the rate of dioxygen 

binding to the flCYP3A4-Fe
2+

. 

 In the presence of increasing 2.4-DCP concentrations, the biosensor exhibited a 

periodic increase in catalytic peak current in conjunction with each consecutive 

addition, up to the final concentration.  

 The catalytic investigations with the native physiological CYP3A4 substrate, 

erythromycin, exhibited results that was in complete agreement with the 

findings as observed for 2,4-DCP. This re-affirmed and corroborated the 

catalytic response was due to the enzyme-based bio-recognition component, i.e. 

flCYP3A4. 

 Similarly, the inhibition of the bio-electrocatalytic response of the flCYP3A4 in 

association with the observed decrease in catalytic response signal to 2,4-DCP 

in the presence of native, physiological CYP3A4 inhibitor, ketoconazole, 

served as additional re-affirmation of catalytic activity of the bio-recognition 

component.  

 With regard to the calibration curve for 2,4-DCP: The dynamic linear range for 

this substrate had an upper limit of 45 A and a sensitivity of 0.038 A M-1. 

In addition to this, the LOD was determined as 0.043 g L
-1

. 

 The linear curve for ERM showed a linear range over 4.63  26.4 M, while 

the dynamic linear range showed an upper limit of 26.4 A. The sensitivity was 

determined as 0.323 A M
-1

 and the LOD calculated as 1.271 x 10
-5

 M. 
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Overall, the biocatalytic response of the flCYP3A4 to the selected substrates were 

successfully mediated by the immobilized Co(Sep)
3+

 species. The manual 

casting/mixing method thus seemed to be a feasible method of pre-concentrating the 

mediator within the reagent layer.  

 

 

6.2.2 Chapter 5A 

 

These results are based on design path 2, as shown by the flow diagram 

exhibited in Chapter 3B. 

 

Here, the incorporation of the electroactive Co(Sep)
3+

 cationic species  into the 

microstructure of a pre-formed nafion film is successfully achieved through an 

innovative electrochemically based technique, which involved potentiostatic 

deposition  at a potential of +450 mV for a duration of 1 200 sec.   The cyclic 

voltammetric characterization of the nafion-derivatised GCE, suggested that the 

nafion film effectively filled approximately 15 – 20% of the active sites of the 

underlying GCE, but did not substantially impede ET with respect to the underlying 

electrode, which essentially meant that the pre-formed nafion film could serve as 

efficient matrix for subsequent incorporation counter-ion species. Moreover, 

morphological analysis of the nafion film revealed a microstructure with highly 

evenly formed, smooth consistency and compact nature. The thickness of the nafion 

membrane was determined as 3.1 m. With regard to the Co(Sep)
3+

 modified nafion 

film, the electrochemical characterization studies indicated fast reversible ET for the 

metal-centred electroactive species, with an  average Em determined as -615 mV. 

Moreover, Ep variation for scan rates between 2  10 mV s
-1

 was negligible, while 

the average Ip,a/Ip,c was shown to be  1. In addition to this, the GCE||naf|El-

Co(Sep)
3+

 exhibited a stable background current under continuous and/or  

intermittent cycling, with no indication of variation or reduction in the observed 

redox signal for scans taken at half hour up to four hour intervals. The total surface 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

307 

 

coverage, Γ, of the Co(Sep)
3+

 electroactive species, determined under conditions of 

exhaustive electrolysis, was calculated to be 1.537 x 10
-5

 mol cm
-2

.  

 

Above and beyond these findings, cumulatively, the electrochemical characterization 

studies showed the following additional findings:  

 The results suggest a strong affinity of nafion for the cationic Co(Sep)
3+

 

species. 

 The results also suggest that the novel electrochemical technique allowed the 

nafion to extract and incorporate the Co(Sep)
3+

 into the lower density ionic 

cluster phase in a manner that is inline with its unique inherent structural 

features. In this regard, uptake of Co(Sep)
3+

 appeared to be dominated by 

hydrophobic interactions, rather than normal electrostatic forces.   

 The obtained Em for the naf-El-Co(Sep)
3+

 was shown to be similar to previously 

documented results which also involved an electrochemically based method of 

incorporation, but distinctly different from the results showed for the manual 

casting/mixing method used for the platform shown in Chapter 4. 

 A linear relationship for the current function, Ip/ν
½
 for both Ip,c and Ip,a 

suggested diffusion controlled electrochemistry. In addition to this, the plot of 

log Ip vs log ν for both Ip,c and Ip,a, showed slopes of close to the theoretical 

value of 0.5 for diffusion controlled process. The Dct for the naf-El-Co(Sep)
3+

 

was determined as 2.64 x 10
-7

 cm s
-1

. 

 The unique method of nafion’s cation uptake, which distinctly different and 

from and more effective than as observed in the case of conventional ion 

exchange resins and/or electrostatic binding polymers, combine with its 

inherent phase segregation enabled a three-dimensional charge transport 

network, providing molecular accessibility and rapid diffusional mass 

transport of electroactive species. 

 The long-term stability evaluation of the  GC||naf|El-Co(Sep)
3+

, revealed a 

retention of 73% of its original signal following intermittent electrochemical 

cycling at  times and intermittent storage over a five day period. 
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 FTIR structural investigations confirmed the existence of the Co(sep)
3+

. 

 

 

 

6.2.3 Chapter 5B 

 

The first aspect of importance in this study, was that the human 

recombinant heme thiolate CYP3A4 was successfully prepared through genetic 

engineering, as a catalytically active N-terminally modified histidine-tagged, soluble 

construct, consisting of the heme domain and the surrounding apoprotein. Secondly, 

the detection and quantification of HAART associated protease inhibitor drug, 

indinavir, was successfully realized by means of the prepared GCE||naf|El-

Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA biosensor. The design path for this particular 

biosensor was based on a combination of entrapment  encapsulation. In this regard 

the biological molecule was entrapped behind a modified solid polymer electrolyte 

nafion membrane,  and  further encapsulated by a biocompatible ionically crosslinked 

blended hydrogel outer membrane, consisting of a composite of agarose, poly(vinyl 

alcohol) and polyethylene imine. Entrapment of the Co(Sep)
3+

 mediating species 

within the microstructure of the pre-formed nafion membrane was uniquely done 

through novel potentiostatic electrodeposition method, for which the major findings 

were discussed in Section 6.2.2.  

 

 

For the enzyme that was synthesised, the FTIR spectra exhibited major vibrational 

absorption bands in association with the unique structural characteristics of P450 

enzymes, while  the catalytically active P450 content was confirmed by the 

absorption maximum of the reduced CO-bound complex at 450 nm. As for the 

fabricated GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-PVA biosensor, firstly, 
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different factors and variables in the construction of  biosensor was evaluated, which 

included: 

1)  the effect of carrier matrix assembly, 

 here optimisation was done with respect to constituents, as well as 

method of preparation.  

2) outer layer optimisation, 

 here optimisation was done with respect to film constituents and 

ratio.  

3) the optimal enzyme loading amount, 

4) optimisation of potentiostatic electro-deposition time for cobalt(III) 

sepulchrate. 

 

Overall, with regard the un-mediated biosensor, GCE||naf|nCYP3A4|Agrs-PEI-

PVA, the results suggested weak electronic coupling with the underlying nafion-

modified GCE, characterized by ill-formed voltammograms in substrate-free argon-

degassed PB eletrolyte solution. This translated into high operating potentials, with 

regard to the biocatalytic reduction of dioxygen, and response to the substrate, 

indinavir. In particular, the reduction of dioxygen occurred at an average Ep of -664 

mV, while average Ep response for indinavir was approximately -700 mV. 

Nevertheless, overall, the GCE||naf|nCYP3A4|Agrs-PEI-PVA biosensor exhibited 

the classic additional catalytic current in response to oxygen, as well as indinavir.  

 

With regard to the optimized Co(Sep)
3+

 mediated biosensor on the other hand, the 

results were unequivocally different. The bioelectrocatalytic response in the 

presence of oxygen and indinavir was signified by the emergence of a new peak in 

the reduction wave, which dominated the cathodic wave. On average, oxygen 

reduction occurred at -365 mV, while response to indinavir occurred at -369 mV. 

Moreover, the possible effects of the peroxide shunt pathway appeared to be 

negligible. The behaviour of the control sensor, for which the active enzyme was 

replaced by the pseudo carrier enzyme (BSA), an indistinct current increase with 
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maxima at two peak potentials i.e.  -410 mV and  -645 mV was observed in the 

presence of oxygen and indinavir. The double peak behaviour was suggested to be 

ascribed to the effect of reactive H2O2 formed in association with the reduction of 

oxygen in the film of the GCE, as well as the coupling of the 1e
–
 reduction of the 

mediating species with a fast follow- up chemical reaction with oxygen. 

Experiments involving investigation with varying indinavir concentration with the 

GCE||naf|nCYP3A4|Agrs-PEI-PVA biosensor, showed a concentration dependent 

increase in Ip,c in association with consecutive addition of substrate, at the potential 

of the response of the nCYP3A4-Fe
2+

. The GCE||naf|BSA|Agrs-PEI-PVA control 

sensor on the other hand did not exhibit a discernible response to increasing 

indinavir concentrations. 

 

Above and beyond all these findings, the  GCE||naf|nCYP3A4|Agrs-PEI-PVA 

biosensor exhibited a linear concentration range for the constructed calibration 

curve in the range of between 2.18 x 10-6  3.552 x 10-6 M. The sensitivity was 

determined as 0.035 A M
-1

, while the LOD was determined as 59.72 mg L
-1

. This 

value for LOD was shown to be of significance in the CMax of ritonavir–boosted 

indinavir regimen, which is the current proposed method of treatment for 

administration of indinavir, while also being of significance in patients which are 

poor metabolisers. The apparent Michaelis Menten constant was determined as 

17.54 M, which is on the low side, and as such shows affinity of the enzyme for 

the substrate. 

 

 

6.3 Critical overview of the studies in this dissertation 

 

In the following segments, some additional findings are highlighted, while 

comparative evaluations between the design paths are given and a brief overview of 

achieved aims are given. 
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Overall, with regard to the pre-formed nafion films and the Co(Sep)
3+

 modified films, 

as compared by the techniques used in the two different design paths, i.e. design path 

1 and design path 2: The results with reference to the morphological,  structural and 

electrochemical  investigation, firstly suggest that a larger amount of nafion yields a 

better coverage on the underlying GCE. Secondly, still, vacuum conditions, rather 

than argon drying yields a more evenly formed nafion film. Thirdly, the results 

suggest that the electrochemically based technique of Co(sep)
3+

 incorporation into the 

nafion film is much more superior than the manual casting/mixing method, both with 

regard to ideal film formation, as well as enabling the incorporation of the Co(Sep)
3+

 

deep within the micro-structure of the nafion membrane. In addition to this, the 

electrochemically based technique proved to be a more reproducible method of 

preparation. 

 

All the catalytic studies in the presence of the selected substrate(s), as observed for 

both biosensor platforms 1 and 2, in effect corroborated documented findings 

regarding catalytic interactions of CYP3A4 in particular and/or P450 enzymes in 

general, in which it has been shown that the presence of substrate favourably affects 

the enzyme-oxygen interaction, by significantly increasing the rate of dioxygen 

binding to the redox centre. In addition to this, in a critical comparative evaluation, 

the overpotential for the bioelectrocatalytic reduction of dioxygen was shown to be 

considerably reduced in the case of biosensor platform 2, as compared to biosensor 

platform 1.  

 

 

 

6.4 Recommendations for future study 

  

1. Although it appears that the major rout of hydroxylation of substrate was 

formed by the completion of the natural catalytic cycle of the CYP3A4 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

312 

 

isoenzyme, further studies will be required to conclusively corroborate all the 

proposed reaction pathways in the electrochemically driven enzyme catalysis. 

In particular, the most significant recommended studies would include rotating 

disk electrochemical studies (to determine exact coupling efficiency), bulk 

electrolysis, with subsequent analysis of products to determine the exact 

metabolites formed, and catalysis experiments in the presence of reactive 

oxygen species scavengers. Additional incubations with H2O2 conducted 

without the use of an electromotive force under the same electrolysis 

experimental conditions as would be used above, with subsequent analysis of 

products is also suggested.  These experiments are thus recommended for future 

work. 

2. The application of and characterization of GCE||naf|nCYP3A4|Agrs-PEI-PVA 

with real human plasma was not done, due to time constraints. Thus it is 

recommended that such studies be conducted in future post-doctoral studies. 

3. It is also recommended that additional ex-situ investigations of the complete 

biosensor platforms be done, both before and after catalytic investigations, 

which can then be combined with the observed results to have a more 

comprehensive picture of the changes in the enzyme in association with 

immobilization, as well as catalytic studies. 

4. Probing  of the biosensor platforms with  

 

6.5 Overall significance of the study 

 

The results obtained  in this dissertation firstly contributes significantly in 

the overall stride toward decentralized methods of assaying drug concentrations in 

chronic  conditions such as HIV/AIDS, which could eventually serve useful in the 

quest for alternative  analytically based methods for DTM during such chronic 

conditions. Secondly, with regard to 2,4-DCP,  the study is a step forward in research 

with regard to alternative proposed methods for preparation of small analytical 
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devices for  on-the-spot detection and measurement of environmental samples. 

Moreover, a fundamental aspect regarding the scope of the dissertation in its entirety 

is the fact that the natural electron delivery system which is absolutely necessary for 

the CYP catalytic cycle was replaced by an electromotive force. What is more, is that  

catalysis was effectuated with just the heme domain of the enzyme, which is a huge 

milestone, since the application of this kind of human microsomal isoenzymes are by-

and-large impeded  by the  requirement of physiological  reducing equivalents, either 

immobilized within the reagent layer or usually expressed with the enzyme, as a 

fusion construct. Another milestone is the synthesis and expression of the soluble 

construct of CYP3A4. In this regard, the full-length native isoenzyme is known to 

require the obligatory presence of highly expensive additional surfactant-type 

compounds and/or other monomerisation agents in order to prevent its aggregation.  
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APPENDIX A 

 

Additional results for Section 5B.2.2: Structural aspects of the genetically 

engineered his6-tagged N-terminally modified recombinant CYP3A4 

(nCYP3A4) 

 

 

 

 

 

 

 

 

 

Figure A-1  Electronic absorption spectra for the synthesized, N-terminally 

modified CYP450 3A4 (nCYP3A4). (nCYP3A4-Fe
II
carbon 

monoxide, prepared by reducing nCYP3A4Fe
III

 with excess sodium 

dithionite and saturating with CO by bubbling for 2 min). Spectra 

exhbited is the difference spectra taken against references of reduced 

nCYP3A4 before addition of CO. Working solution of nCYP3A4 was 

20 mM potassium phosphate buffer, pH 7.40, 20% glycerol. 
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APPENDIX B 

 

 Additional results for Section 5B.3.1.1:  

 Optimisation of the variables concerning the indinavir amperometric biosensor 

assembly  
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APPENDIX B.1 

 

Optimisation of Co(Sep)
3+

 Loading time: 

 

 

Figure B.1-1: Typical calibration plots, showing nCYP-based biosensor [GCnafEl-

Co(Sep)
3+
nCYP3A4] response, to indinavir in the 0.05  25.60 μM 

concentration range for biosensors prepared  

 

 

 

 

 

 

 

 

 



 Chapter 5   Results and Discussion: Biosensor Platform 2 

 

331 

 

 

APPENDIX B.2 

 

Calibration plots obtained for nCYP3A4 loading optimisation studies: 

 

Table B.2-1: Specific parameters with regard to the calibration plots 

Figure 

Amount of nCYP3A4 Loaded 

Paramaters obtained from 

Regression analysis 

μg cm
-2

 Units cm
-2

 (x 10
-7

) Slope R
2
 

a 3.718 3.06 0.029 0.941 

b 4.650 3.85 0.038 0.906 

c 5.579 4.61 0.043 0.958 

d 5.935 4.91 0.043 0.961 

e 7.437 6.15 0.021  

 

 

Figure B.2-1: 
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APPENDIX C 

Additional results for section 5B.3.1.2 

Voltammetric characterization of the fabricated biosensor (prepared under 

optimized conditions): General electrochemical behaviour in anaerobic 

conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1 CV for control sensor (GCE||naf|El-Co(Sep)
3+

|nCYP3A4|Agrs-PEI-

PVA. Experimental conditions: Scan taken in argon-degassed PBS (pH 7.45) at 

3 mV s
-1

. Scan direction: cathodically. 
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Figure 5B.12 Background-subtracted CV showing GCnafCo(Sep)
3+
nCYP3A4Agrs-PEI-

PVA electrode, showing biosensor response in argon-degassed PB solution. 

Conditions: ν = 3 mV s
-1

; scanned cathodically. 
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