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ABSTRACT 

 

The Cape Flats are characterised by a flat sandy subsurface, consisting of the ‘Late-Tertiary and 

Recent sands’ unit up to 50 m thick; and with long-term mean annual precipitation (MAP) of 600 

mm/a. The vegetation belongs to the Cape Flora group invaded by xerophytic species and thick 

Coastal Fynbos in the Cape Flats Nature Reserve. The sandy aquifer is underlain by an 

impervious shaly bedrock aquifer (Malmesbury Shale).  This thesis reviews the history and 

problems of groundwater development, and provides extensive information on the geology, 

hydrology, hydrogeology, recharge quantification, and groundwater chemistry in the Cape Flats. 

The aim is to utilize all of the information to aid conceptual understanding as well as develop a 

method suitable for the aquifer’s vulnerability assessment.and mapping to set the stage for 

groundwater protection.  

 

The analysis of geologic, hydrologic and hydrogeologic data interpreted to give the 

characteristics of the Cape Flats aquifer showed the quality of groundwater from the aquifer is 

suitable for development as a water resource. The conceptual model of the Cape Flats sand 

shows an unconfined sandy aquifer, grading into semi-confined conditions in some places where 

thick lenses of clay and peat exists. Recharge rates through the saturated zone of the Cape Flats 

aquifer have been determined  by water table fluctuation (WTF), rainfall-recharge relationship, 

soil water balance  and chloride mass balance methods (CMB). Recharge rates using the WTF 

vary considerably between wet and dry years and between locations, with a range of 17.3% to 

47.5%.  Values obtained from empirical rainfall-recharge equation (method 2) agree with those 

of the WTF. Recharge estimates from the water balance model are comparatively lower but are 

within the range calculated using empirical method 2 (i.e. 87 – 194 mm or 4 – 21% of MAP). 

These recharge rates also agree with estimates from the series of other methods applied to sites 

located in the north-western coast of Western Cape and are comparable to recharge rates 

obtained elsewhere in the world.  
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Hydrochemical evaluation of groundwater in the Cape Flats identified the following geochemical 

processes: ion exchange, mixing, dissolution and weathering. These control the evolution of 

groundwater in the aquifer and influence its quality in relationship to other aquifers in the study 

area. Various graphical plots, ionic ratios and statistical analyses have been interpreted to reveal 

the chemical water types and ionic constituents of groundwater in the area. Na-Cl, Na-Ca-Cl-

HCO3 and Ca-Na-HCO3 are dominant; and the general groundwater composition reflect the 

influence of seawater on rainwater due to the proximity to the sea (although 82% of >1,000 

hydrochemical data interpreted are classified as fresh with TDS less than 1,000 ppm).  The stable 

isotope (18O and 2H) is considerably dispersed, reflecting direct recharge and the shallow nature 

of groundwater. The recharge mechanism obtained from isotopic evidence (direct recharge from 

rainfall) confirms field observations. 

 

A vulnerability assessment method (CALOD) developed and used for vulnerability mapping of 

the Cape Flats aquifer, confirms the highly susceptible nature of the aquifer to pollution from the 

surface and compares well with a common method with acronym “GOD” (Groundwater 

occurrence; Overlying strata and Depth to groundwater).  The vulnerability map shows areas on 

the Cape Flats susceptible to pollution with rankings: Low-medium, medium-to-high, high to 

very high. Low indexes represent aquifer that is better protected from contaminant leaching by 

the natural environment while a high pollution potential index indicates the capacity of the 

hydrogeologic environment to readily transport contaminants into the groundwater system.  

Sensitivity analysis was carried out to validate and evaluate the consistency of the analytical 

results forms the basis for evaluation of the vulnerability maps and showed the order of 

sensitivity of the, parameters.  

 

Finally, implications from the analyses of results of aquifer parameters recharge mechanisms and 

conceptual understanding of flow characteristics and aquifer vulnerability contributed to 

increased understanding of the aquifer system. The Cape Flats aquifer is highly vulnerable to 

pollution because of its lithological units; vulnerable to drought because of the decreasing 

(fluctuating) rainfall pattern and consequently recharge. Therefore, the emphasis is to plan before 

development and set adequate protection measures.  
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1 

CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Inventory of the water resources in the Western Cape  

 

The Cape Flats is located within the boundaries of the City of Cape Town in the Western Cape 

Province.  The Cape Flats covers a surface area of 630 km2 and is positioned between 33˚30΄ and 

34˚10΄ south-latitude and between 18˚20΄ and 19˚00΄ east-longitude. The large undulating sandy 

area connecting the hardrock of the Cape Peninsula with the mainland is known in the literature 

as the Cape Flats (Schalke 1973, Theron 1974, Theron et al. 1992).  Presently, most of the area 

underlain by the Cape Flats aquifer is built up, from the City main bowl to the northern and 

southern suburbs. The City of Cape Town and its suburbs are entirely underlain by Cenozoic 

sands, which form the Cape Flats aquifer. Detailed physiographic description and scope of the 

present study are given in chapter 3. 

 

Water resources in the Western Cape can be divided into six interrelated categories: sources or 

headwaters; rivers; wetlands; estuaries; groundwater and human-made facilities, all of which 

form part of catchments. There are 10 major and 4 minor catchments in the Cape Metropolitan 

Area (Figure 1). Catchments in the Cape Metropolitan Area (CMA) display a high seasonal 

variability, given that the CMA receives most of its rain in the winter months. The upper reaches 

of a river are referred to as the headwaters or the mountain stream zone. Headwaters are 

generally steep gradient, high-energy (turbulent flow) systems. In general, sources and 

headwaters of the rivers of the CMA are relatively undisturbed and in a good ecological state, 

however, they are sensitive to anthropogenic disturbance. Several upper catchments within the 

CMA are planted with pine trees, usually Pinus pinaster, that reduces runoff (CCT 1997). The 

specific state of the rivers in the CMA varies greatly between catchments, depending largely on 

the degree of urbanization within the catchment (Inland Waters Management Team 1994).   
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The groundwater situation reveals there are three significant aquifers within the CMA: the 

Newlands aquifer, the Atlantis aquifer and the Cape Flats aquifer; although the TMG (TMG) 

aquifer borders and underlain parts of the region. The sandy substrate of the Cape Flats has a low 

filtering efficiency and, rendering thegroundwater resource particularly vulnerable to pollution 

from human activities.  

 

The City of Cape Town has over the last few decades had a history of water shortages and water 

restrictions before the new water augmentation schemes were constructed (Bishop & Killick 

2002). The most recent water shortage faced by the city was from 2002-2005 that necessitated 

imposition of water restrictions in the year 2005. This has been due to decreasing dam levels 

subsequent to fluctuating rainfall pattern and climatic conditions in the last decade. Presently, the 

Bulk Water Transfer from the Berg River (located outside the CMA) now brings the City in to a 

good situation with respect to water supply. All the same, the measure is for few years after 

which the situation with water supply may be tight again. This is why the City of Cape Town is 

looking at several options, particularly using groundwater in the augmentation scheme. 

Therefore, groundwater use in CMA is expected to increase in the nearest future. As 

groundwater use becomes critical to the municipality, it is also expected to be more at risk of 

pollution.  

 

Recent studies on hydrochemistry, recharge estimation, and the impacts of groundwater-

dependent ecosystem in the TMG (e.g. Wu 2005, Jia 2007) and selected groundwater regions in 

South Africa have yielded valuable information that is useful for groundwater resources 

exploitation in the Western Cape. However, such current information that can aid full 

groundwater development and management of the Cape Flats aquifer is still lacking or 

inadequate. Therefore the importance of resource evaluation in the Cape Flats cannot be over-

emphasised. 
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Figure 1: CMA map showing major and minor catchments (CMC 1999) 
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Utilization and development  

In the city of Cape Town, groundwater is by far less utilized than surface water. With increasing 

scarcity of fresh water resources and variable climate in the region, the Cape Flats aquifer 

represents an important potential source of water for the Cape Town Metropolitan Area. 

However, the city is expanding in terms of commercial and industrial activities, which presents a 

threat to the sustainability of the water resources. Activities of the increasing population in the 

metropolitan city, the use of chemicals and generation of both domestic and industrial wastes 

tend to constitute potential sources of contamination in this area.  

 

Table 1 shows the water supplied by the City of Cape Town to the Municipal Local Authorities 

for 1997/1998. The City’s metering system was set up to measure water consumption was also 

extended to calculate the amount of water that is unaccounted for or lost from the mains. For 

example, in 1993/1994, figures for the City of Cape Town, which then included the South 

Peninsula area, indicated a total consumption of 1.1 × 108 m3 with 22.8 % of this being 

unaccounted for (Inland Waters Management Team 1994). The bulk of the water not accounted 

is usually lost through leakages, pipe burst and wastage.  

 

Table 1: Water supplied to local authorities (1 July 1997 to 30 June 1998) 

Local authority Amount (kl) 

Blaauwberg Municipality 27 985 557 

City of Cape Town 95 160 582 

Helderberg Municipality 11 371 496 

Oostenberg Municipality 20 310 808 

South Peninsula Municipality 42 328 905 

City of Tygerberg 82 828 004 

Total 279 985 352 

            Note: The six municipal (local) authorities combine to form the present City of Cape Town as shown in Appendix 1.1 
            Source: CMC Water Department, 1998 
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The three significant aquifers within the CMA have varied degree of utilization: (i) the Atlantis 

aquifer, which is used most intensively for water supply to Atlantis and Mamre townships, yields 

approximately 5.5 x 106 m3 per annum (Cave et al.1996); (ii) the TMG aquifer, with 

approximately 3.6 x 106 m3 of water per annum abstracted for irrigation of sports fields and for 

usage in Ohlssons (Newlands) Brewery; and (iii) the Cape Flats aquifer, which is presently 

abstracted on an ad hoc basis for watering lawns and gardens. Of these, the Cape Flats aquifer 

has been identified has having the greatest potential, yet remains the most under-utilized (Fraser 

& Weaver 2000) and therefore represents a potential source to be fully utilized to augment the 

City’s water supply. The envisaged initial quantity for abstraction was estimated at 18 × 

106 m3/year (Gerber 1981, Vandoolaeghe 1990). Recently, groundwater use for the City of Cape 

Town has been divided into 3 categories (Bishop & Killick 2002): 

 

(i) groundwater for general bulk water supply purposes; the Cape Flats and TMG aquifers fall 

into this category 

(ii) groundwater for strategic supply purposes; the Atlantis and the TMG aquifer in the South 

Peninsula are in this category; 

(iii) groundwater for irrigation purposes; the Cape Flats aquifer is currently being utilized for this 

purpose.  

 

1.1.2 Water demand and supply quality situation  

In the Western Cape, agricultural sector is one of the largest users of water resources. Moreover, 

rapid economic development and population growth is generating increased pressure on water 

supplies; that may soon lead to greater dependence on groundwater. The growth in urban water 

demand in the Greater Cape Town Metropolitan Area was projected to increase from 243 million 

m3 in 1990 to 456 million m3 in 2010; whereas for irrigation water demand the increase is from 

56 million m3 in 1991 to 193 million m3 in 2010 (Ninham Shand 1994). The total urban and 

irrigation demand was estimated at 470 million m3 in 1998 and is expected to reach 664 million 

m3 by 2010. Over 60 % of the annual urban demand and 90 % of the irrigation demand occurs in 

summer.  

 

 

 

 

 



 
 

6 

The shortage of surface water, which is fully utilized in the study area, makes groundwater a 

potential source for development. This shortage of water resources could become a serious 

restraining factor for economic development in the Western Cape if proper management schemes 

are not in place. Due to the increasing tendency to develop and exploit this aquifer for municipal 

water supply the knowledge of the groundwater quantity, the recharge rates and hydrochemical 

characteristics become significant issues. In a broad sense, resource management in the City of 

Cape Town needs to address quality issues along with quantity.  

 

Generally, the quality of the water in the rivers and streams arising in the mountains in the CMA 

is good. As streams pass from the footslopes into lower-lying areas where urban and industrial 

developments dominate the landscape, water quality is influenced by the quality of runoff arising 

from these areas. Rivers in seven major catchments in the CMA received effluent from sewage 

works (CCT 1997). As a result, many of the rivers of the CMA show signs of pollution 

(measured in terms of faecal coliform content). The increase in the faecal coliform counts of a 

number of rivers in the CMA (1993-1996) and the water quality measurements for a selection of 

rivers and vleis in the Cape Metropolitan Area are presented in the Catchment, Stormwater and 

River Management (CSRM) 2004/2005 report. 

 

Much of the CMA’s water supply has been diverted from rivers that are located beyond its 

boundaries. The water is brought into the CMA via inter-basin water transfer schemes (IBTs). 

The Riviersonderend/Berg River Government Water Scheme regulates the flows from the 

Riviersonderend, the Berg River and the Eerste River for urban, industrial and agricultural use 

(CCT 1997). The Riviersonderend/Berg River is located several kilometers outside the study 

area. During summer, algal blooms threaten some of the reservoirs in these catchments. 

According to the City of Cape Town report, the water from these sources requires extensive 

treatment before consumption and this is a costly and time-consuming process. Sewage ponds 

and reservoirs, although unnatural, provide habitat for aquatic fauna and flora. Aside the quality 

issues, the dam levels have been dropping since the last ten years. These further increases the 

needs for reassessment and proper evaluation of groundwater resources of the City of Cape 

Town in order to meet the projected increase in water demand.  
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In the city of Cape Town, it has been established that groundwater may be contaminated through 

a wide variety of human activities. These include the land disposal of waste materials, disposal 

of sewage and particularly sanitary landfills and pipeline outlet, the leaching of fertilizers and 

pesticides, accidental spills of hazardous materials, and underground fuel tank leakages (Usher et 

al. 2004, Adelana & Xu 2006). The issue of unknown quantity and quality of groundwater 

generated debates in the past over the idea of developing the Cape Flats aquifer (Vandoolaeghe 

1990). The intensive land use, as a consequence of development, has been found to repeatedly 

impact negatively on the quality of groundwater in many cities of the world  Examples of 

contamination of urban groundwater resources are available in the literature (Foster 1987, Lerner 

1992, Scharp et al. 1997, Foster et al. 2002). Some of these issues, like disposal of wastes, 

landuse, and proximity of sanitary landfills were used as counter argument against the 

development of the Cape Flats aquifer for groundwater use since the late 1980s to early 1990s. In 

the Cape Flats area, groundwater pollution trends and source identification were enumerated 

with the main controlling factors (Adelana & Xu 2006). In considering the Cape Flats aquifer as 

a water source for the City of Cape Town, the issues raised around the polluting influences are 

important and require investigation. It is therefore important to study the hydrochemical quality 

of groundwater in this area. Sequel to point source identification and the various non-point or 

diffuse sources of pollution, the need for protection zoning in the well fields of the Cape Flats 

aquifer have also been highlighted and forms part of this study. 

 

1.1.3 Significance of the current research 

Recent studies on groundwater resource use in the Western Cape have concentrated largely on 

the TMG and the Atlantis aquifers. Although Henzen (1973) did an extensive study on water 

resource management and water quality specifically regarding the Cape Flats, recent research 

efforts are not being directed towards developing the aquifer. Since the work of Henzen (1973) 

and Gerber (1981) there is need for an integrative and more comprehensive study to justify the 

use or disuse of the Cape Flats aquifer for the City’s water supply. There is the need to put 

together all such necessary information as relevant for groundwater resource development and 

management in the Cape Flats (in addition to recent data) in order to have a present-day view on 

the aquifer.  
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Only in recent years has the municipal government become aware of the need to assess the 

impact of the abstraction of bulk groundwater from the Cape Flats aquifer on the natural 

environment and on the aquifer itself (CMC 1998, Fraser & Weaver 2000). In 2001, a study to 

simulate alternative groundwater abstraction scenarios in part of the Cape Flats was attempted by 

the CSIR using the MODFLOW model (CSIR 2000) and following the earlier model by Gerber 

(1981). Less attention has been given to recharge estimation, partly because groundwater 

abstractions for water supplies account for only a small proportion of the available groundwater 

resources in the Western Cape and partly as a result of inadequate data. Now, however, due to 

growing awareness of the importance of groundwater contributions to the environment and, more 

specifically, to the introduction of the augmentation scheme by the City Council estimates of 

reliable recharge are required for the aquifers in the Western Cape region.  

 

Recharge quantification in the TMG aquifer has been carried out (Wu 2005). In the evaluation of 

groundwater resources of the region, estimation of recharge into the Cape Flats aquifer is 

significant. Therefore, in the present study, evaluation of the groundwater resource in the Cape 

Flats incorporates recharge estimates, hydrochemical characterization into the regional 

groundwater management and planning in meeting Cape Town’s water demand.  The aims and 

objectives of the present study are defined in the following section.  

 

1.1.4 Objectives of the present study  

Many groundwater-related studies, mainly on the TMG, have been conducted in this area since 

the last decade (e.g. Duvenhage et al. 1993, Weaver et al. 1999, Kotze 2000, 2001, 2002, Xu et 

al. 2002a, Cleaver et al. 2003, Wu & Xu 2004, Wu 2005, Jia 2007). A number of research 

projects have also been carried out on the Cape Flats, however, none of the studies conducted 

have applied an integrated evaluation of the resource. The main focus of this study, therefore, is 

the evaluation of the Cape Flats aquifer to advice on the possible development of the aquifer for 

water supply augmentation and the long-term consequences of over-development of the resource 

as a water supply option to the City of Cape Town. This study also aims at addressing the aspects 

of groundwater contamination as relevant to future integrated water resources development, and 

as such presents protection strategies for the Cape Flats aquifer that are adoptable for regional 

planning purposes.  The overall purpose of this study is thus to understand the groundwater 
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conditions in the greater Cape Town area, particularly on the Cape Flats aquifer, by utilizing 

more integrated and systematic approach.  Although the motivation for, and objectives of, the 

current study are scientific, the results may be used for policy development, resource consent 

conditioning, and in formulating monitoring plans. 

The objectives of this study are then summarised into the following: 

1. To collate data on climate, geology, soil, hydrogeology and groundwater in the 

study area in order to address identified groundwater problems associated with 

urbanization and human activities. 

2. Evaluate groundwater occurrence, aquifer characteristics, groundwater exploitation 

and recharge, groundwater quality. 

3. Prepare conceptual hydrogeological model (based on existing and new data) to set 

the stage for numerical modeling of the Cape Flats aquifer. This is in attempt to 

reconstruct the groundwater flow pattern with respect to the local hydrogeologic 

conditions.   

4. Assessment of groundwater recharge rates and establish well-defined concepts on 

the various recharge processes occurring within (and) or around the aquifer. 

5. Establish the physico-chemical characterization of the groundwater in the study 

area in order to determine evolution and trend. 

6. Make recommendations on the need for protection of the aquifer, with specific 

reference to local conditions prevalent in the Cape Flats area, to form the basis for 

guiding future land use decisions.  

 

It is hoped that the findings of this study would provide useful information and increase the 

understanding of the Cape Flats aquifer to better inform the City Management Authorities and 

the public on groundwater resource estimates. This in turn may support water resource 

management framework suitable for future water stress times.  
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1.1.5 Delimitation of the present research work 

The impact of urbanisation on groundwater is becoming high and requires adequate 

investigations. Groundwater quality deterioration and reduced recharge are among the 

measurable impacts. The general concept is that groundwater quality is worse beneath cities than 

beneath nearby rural areas due to various factors, some of which are discussed in section 1.2.3 

and 1.2.4. Within the Cape Municipality, the size, density and location of settlements have been 

found to determine the degree or intensity of pollution. The various sources of pollution have 

been classed according to the varying human activities and presented in Adelana and Xu (2006).  

The intention was to further link the varying human activities or specific land use pattern with 

groundwater quality, using the knowledge of the Geographical Information System (GIS) as 

presented in Adelana and Xu (2008).  Incorporating this information into numerical flow model 

for the Cape Flats aquifer and then defining protection zones based on particle tracking will not 

be covered in this work. This is therefore presented as recommendation for further studies. 

 

 

1.2 Review of literature  

Groundwater is a precious source of drinking water in many parts of the world accounting for 

about two-thirds of the earth’s freshwater resources (Freeze & Cherry 1994, Hiscock 2005). Yet, 

groundwater contamination is an increasing problem globally (Van Stempvoort et al. 1993).  In 

recent decades, the number and diversity of potential groundwater pollutants, particularly 

fertilisers, pesticides, and herbicides have increased dramatically (Foster 1987, Foster et al. 2002, 

Usher et al. 2004).  Since the 1980’s various chemicals and wastes have been found in 

groundwater.  For example, nitrate, the most ubiquitous contaminant, has been found at levels in 

excess of drinking water standards in Europe, USA, Canada, Israel, Australia, and New Zealand 

(Spalding et al. 1993) and in many part of Africa (Adelana & Olasehinde 2003, Tredoux et al. 

2001, Faillat 1990, Edmunds & Gaye 1997, Akiti 1982).  The discharge of domestic, agricultural, 

and industrial effluent onto, and into, the ground has also increased because of the high cost of 

alternative disposal systems. In addition, land based ‘treatment’ of effluent is actively 

encouraged in many areas, often without regard to the possibility of groundwater contamination. 

If contaminated, groundwater may pose a serious health hazard to humans.  
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Until the 1980s it was thought that soils served as filters with an unlimited capacity for 

preventing groundwater contamination from the land surface. Soon research began to focus on 

the fate of contaminants within the subsurface, and on the vulnerability of groundwater resources. 

Researchers recognized that groundwater resources could not be expected to fulfill the dual roles 

of a destination for waste and a source of drinking water at the same time (Foster et al. 2002, 

Sililo et al. 2001). Concern about groundwater pollution relates primarily to the phreatic 

(unconfined) aquifers, especially where their vadose zone is thin and their water table shallow, 

but may also arise even where aquifers are semi-confined, if the confining aquitards are 

relatively thin and permeable (Foster et al. 2002).  

 

Groundwater recharge has been defined as the downward flow of water reaching the water table, 

forming an addition to the groundwater reservoir (Lerner et al. 1990). In the context in which 

recharge is implied in this study the definition by Sophocleous and Perry (1985) seems more 

appropriate: It is water that percolates into the lower limits of the vadose zone, reaching the 

water table and subsequently, causing a measurable water-table rise. There are two main types of 

recharge: direct (vertical infiltration of precipitation where it falls on the ground) and indirect 

(infiltration following runoff). It is generally acknowledged that in semi-arid environments most 

groundwater replenishment is point recharge (Simmers 1997). However, in certain geological 

situations, this may be direct forming a crucial addition to the groundwater reservoir. 

 

Howard & Lloyd (1979) describe two key types of direct recharge; potential and actual recharge. 

Potential recharge is the water that leaves the bottom of the soil zone. If the material in the 

unsaturated zone does not restrict the vertical movement of water, the actual recharge (the water 

reaching the water table) equals potential recharge. 

 

Estimating recharge is essential in any analysis of groundwater systems and the impacts of 

withdrawing water from the aquifer. In water resource investigations, groundwater models are 

often used to simulate the flow of water in aquifers and, when calibrated, may be used to 

simulate the long-term behaviour of an aquifer under various management scenarios. Without a 

good estimate of recharge and its spatiotemporal distribution, these models become unreliable. 

Thus, without a good estimate of recharge, the impacts of withdrawing groundwater from an 
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aquifer cannot be properly assessed, and the long-term behavior of an aquifer under various 

management schemes cannot be reliably estimated (Sophocleous 2005). Accurate estimates of 

recharge and recharge mechanisms are also necessary to assess the risk of groundwater 

contamination, particularly diffuse agricultural contamination (such as nitrates and pesticides). 

There are several techniques used in groundwater recharge estimation. Generally, these are 

divided into categories, with a range of techniques and variations within each category. These 

categories and techniques are discussed in chapter 5. 

 

1.2.1 Review of previous studies on the Cape Flats  

Several studies on exploration, developmental techniques, digital flow modelling and artificial 

recharge to groundwater in the Cape Flats have been carried out by different research 

organizations between 1966 and 1989. All were in attempt to develop this groundwater resource 

and define its relevance to the Cape Metropolitan Area with respect to possible purification and 

introduction into the municipal water supply system. Intensive exploration of the hydraulic and 

geologic properties of the sand deposits in the region was initiated by Henzen (1973) primarily to 

determine the feasibility of artificial recharge and abstraction for the purpose of municipal 

supply. In the process of this Henzen (1973) prepared maps on surface and groundwater quality 

for the area. Gerber (1976) carried out additional investigations on the hydraulic conductivity for 

the entire Cape Flats, which formed a basis for further development of models necessary for 

optimum groundwater management. The first study with a mathematical model was used to 

predict the changes in the aquifer caused by changes in stresses on the system as well future 

water level responses (Gerber 1981).  

 

Several instances of groundwater pollution within the Cape Flats aquifer are available in both 

published (Tredoux 1984, Weaver & Tworeck 1988, Ball et al. 1994, Engelbrecht 1998, Parsons 

& Taljard 2000, Saayman et al. 2000) and unpublished reports (Bertram 1989, Saayman 1999, 

Traut & Stow 1999, Ball & Associates 2003).  For the general water quality surveys, boreholes 

were drilled all over the Cape Flats but a number of the wells were specifically sited at potential 

pollution points (Tredoux 1984). Although the investigation included observation boreholes all 

over the Cape Flats, two solid waste disposal sites received special attention with monitoring 
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boreholes in their vicinity. Analytical results of groundwater sampled from both observation and 

monitoring boreholes indicated that pollution was going on in the Cape Flats.  

According to Tredoux (1984), ammonium nitrogen (NH4-N), nitrate (as N), potassium, total 

alkalinity and COD were present in high concentrations in groundwater within the vicinity of the 

two solid waste disposal sites and the Sewage Treatment Works. Other parameters like 

phosphate are occasionally present only at low concentrations. The groundwater quality 

monitoring indicated increasing trend in pollution between 1979 and 1982; while prior to 1979 

no definite sign of groundwater pollution could be discerned. Pollution reached its peak values 

between 1980 and 1981. Although potassium is not a common pollutant of groundwater, it was 

used to trace leachates from sanitary landfills and sewage effluents into the Cape Flats aquifer.  

In a similar monitoring system, the Coastal Park Landfill monitoring data had accumulated over 

a period of 20 years to produce clear long-term trends that showed the flux of certain pollution 

indicator parameters with distance from the landfill (Ball and Novella 2003). The Coastal Park 

landfill is located adjacent to the outlet of the Zeekoevlei Sewage Works, some 400 m from the 

coast and separated from the groundwater by a 2 m natural unsaturated zone comprising of the 

Cape Flats sand (Ball and Stow 2000). In the historical reports, the monitoring of mini-well 

system has shown that leachate generated from the landfill has entered the groundwater. This has 

been shown to migrate mainly eastward towards the Zeekoeivlei Outlet, although pollution 

migration in a southerly direction is now also being detected (Ball and Associates 2003). 

Furthermore, with the introduction of Differential Depth sampling of boreholes, data relating to 

pollution with depth became available and showed persistent trend over a period of time. In the 

case of COD, there are indications of general organic pollution throughout the profile while 

NH4-N gave indications of high concentrations associated with the top of the profile and 

attributed to leachate pollution from the landfill. However, the long-term trends for COD and 

NH4-N provided new insight into the possibility of leachate attenuation (Ball and Associates 

2003). 

In the study of the interaction between the Cape Flats aquifer and the False Bay, the risk of the 

aquifer becoming increasingly contaminated from low to medium risk pollution sources has been 

identified (Giljam and Waldron 2002). According to Giljam and Waldron, the Cape Flats aquifer 

 

 

 

 



 
 

14 

is vulnerable to many outside influences: the informal settlement of the Khayelitsha (where there 

is poor sanitation) and the Philippi agricultural area (where fertilizer application takes place 

regularly) and numerous nodal sources of pollution (e.g. Waste Water Treatment Works, 

WWTW and the waste disposal sites). One of the methods applied in this study, identified three 

sections of low salinity. High silicate, nitrate and phosphate concentrations (which confirmed the 

earlier report of Hartnady and Rogers, 1990 and Grobicki, 2000) were also identified in the 

Philippi agricultural area. In the same vein, Traut and Stow (2001) identified high NH4-N 

concentrations at the Swartklip Waster disposal Site. A marked increase in salinity was recorded 

at eastern boundary of the Cape Flats WWTW. The nitrate, phosphate and silicate concentrations 

in the berm and behind the surfzone were high in comparison to other sample sites south of the 

Philippi agricultural area and correspond with the generally high concentrations of these 

nutrients found recorded in the aquifer in this area. 

Also considered in the review is the work of Saayman (1999), which was a case study on the 

chemical characteristics of a pollution plume and a determination of its direction of movement at 

the Bellville Waste Disposal site. The aim of this work was to establish whether leaching from 

the waste disposal site was causing pollution of the groundwater in the area. The results show 

high concentrations of potassium, sulphate and orthophosphate, with elevated concentrations of 

other ions (magnesium, chloride, COD, electrical conductivity) and heavy metals (nickel and 

lead) indicating groundwater pollution in the area. It is important to note that all the observation 

boreholes around the waste disposal site penetrated the Cape Flats aquifer only to a depth of 15 

m (except one that is to a depth of 30 m). Although varying level of pollution of groundwater 

were observed in this boreholes consequent to the effect of the waste disposal site, the influence 

of nearby wastewater treatment works on the groundwater was also highlighted. In an attempt to 

establish which of the sources contribute significantly to groundwater pollution, the boreholes 

were sampled for isotopes of oxygen and hydrogen (Saayman et al. 2000). The results of the 

stable isotopes of water molecule successfully defined the level of influence of recharge from 

surface pollution on the groundwater of this area.  
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Another report of concern in the Cape area is that of pollution of groundwater by cemeteries. 

Engelbrecht (1998) reported the occurrence of groundwater pollution in the unconsolidated sands 

of the Bredasdorp Group by the influence of a cemetery. In a local municipal cemetery, 21 well-

points were installed in the cemetery grounds and one well-point outside the cemetery to be used 

for sampling and quantifying the quality of the groundwater. The results showed an increased of 

colony forming units (cfu) in the sampled groundwater for all microbiological indicators used 

indicating that the groundwater within the cemetery area is extremely polluted compared with 

the expected regional groundwater quality. According to Engelbrecht, the leachate from the 

cemetery appears to be a nutrient for the micro-organisms rather than a poison. Pathogenic 

bacteria, viruses, protozoa and helminths that survive consequently reached the groundwater and 

as such, a significant increase above the regional groundwater quality (as represented by a 

municipal borehole) for all the chemical parameters was encountered. Apart from high levels of 

Escherichia coli, faecal streptococci and Staphylococcus aureus in the groundwater samples, 

potassium, ammonium-nitrogen, nitrate and nitrite, dissolved organic carbon and electrical 

conductivity showed increased concentrations in all the 22 well-points in comparison to the 

municipal borehole. The chemical data as in the case of the microbiological data therefore 

showed that the groundwater became polluted as a result of the cemetery. 

 

1.2.2 Groundwater resources evaluation  

As mentioned in section 1.1.1, there are three significant aquifers and one major spring (Albion 

spring) within the CMA: the Atlantis aquifer, the Newlands aquifer, and the Cape Flats aquifer. 

The Atlantis Water Supply Scheme comprises of two well fields, one at Witzands and the other 

at Silwerstroom; the  two together have abstraction potential of 5.5 x 106 m3/a from 30 and 14 

boreholes respectively (CCT 2001, Cavé et al 1996). The Atlantis aquifer is used most 

intensively, and the water supply for the town of Atlantis and Mamre is abstracted from this 

source. Thus, most monitoring and exploratory work has been focused here in the last few 

decades (CMC 1998, Snaddon 1998).  
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The water quality in the Newlands aquifer is relatively good and uncontaminated. This aquifer is 

a transitional zone that covers the Newlands-Rondebosch-Kenilworth areas, grading towards 

Wynberg and Plumstead. Currently, approximately 3.6 x 106 m3 of water per annum is extracted 

from this aquifer (Ninham Shand 1994). It has been identified as a potential source of water for 

the CMA.  

 

The Albion Spring in Newlands has been in use as a source since 1891. This spring is derived 

from the Newlands aquifer on the bank of the Liesbeek River (Bishop & Killick 2002). Albion 

Spring was originally used by Ohlssen’s Brewery and in 1892 it was taken over for municipal 

water supply. Water from Albion Springs is treated with chlorine and lime and then pumped 

directly into the reticulation system of the City of Cape Town (CCT 2001). It produces a high 

quality carbonated water, which is treated to reduce its acidity by stripping the dissolved carbon 

dioxide in a cascade, before being chlorinated and pump into the mains.  

 

Apart from Albion Spring, a number of other springs were recorded in the past as used for 

portable water supply and are no longer in use but now discharges into the stormwater system. 

Kotze Spring, which discharges at 0.23 m3/day, is used by Leeuwenhof Estate for irrigation. 

Kommetjie Spring (Newlands aquifer) yields 4 m3/day and is used by Ohlssen’s Brewery; 

Newlands Springs (Newlands aquifer) is used by the Western Province Cricket Club and Kelvin 

Grove (flow is not recorded). Most of these springs could not be located during this study. The 

springs visited and sampled for chemistry during this study are: Main Spring 1 (MS1), Main 

Spring 2 MS2), Main Spring 3 (MS3), Albion Spring, Kildare Spring (Cottage Home), and 

Palmboom Spring (see Section 6.8).  

 

The Cape Flats Groundwater Development Pilot Abstraction Scheme was established in 

Mitchells Plain in the period 1985-1988 jointly by the Department of Water Affairs and Forestry 

(DWAF) and the City of Cape Town to test the aquifer under concentrated stress conditions. The 

essence was to observe the yield and aquifer response as well as monitor the quality of the water 

with respect to abstraction and subsequent environmental impacts. The hydrochemical conditions 

of the Cape Flats aquifer during the 3-years abstraction scheme (of 18 observation boreholes) 

revealed that the bulk groundwater supply was portable with a median TDS of 640 ppm, 
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although polluted was induced from a nearby Sewage Works Maturation ponds (Vandoolaeghe 

1989). Further deductions were made with respect to the spatial variation in groundwater quality 

to determine the heterogeneity of the aquifer system on both micro- and macro-scales. No 

seasonal variations in quality variables and no evidence of contamination or intrusion of the 

groundwater body by saline seawater were observed (Edwards 1989). According to 

Vandoolaeghe (1989), too few data points and too much natural fluctuations made the study of 

the quality changes in the observation wells almost meaningless. This was further complicated 

by the fact that the pumping exercise homogenizes water abstracted from the different horizons 

and hydrogeological units masking the detection of any such changes. 

 

The storage capacity of the aquifer was estimated at 128 million cubic metres (CCT 2001).  

Gerber (1981) earlier estimated about 18 × 106 m3/year can be extracted from the Cape Flats 

aquifer without adverse effect on the ecosystem (as this equals the rate of natural recharge to the 

aquifer). Vandoolaeghe (1989) calculated a mean annual yield of 4.1 Mm3 which was produced 

from ten production boreholes in the period May 1985 to April 1988. This generated limited 

regional water table decline under optimal operating efficiency and favourable recharge 

conditions. The sandy substrate of the Cape Flats and Atlantis areas has a good filtering 

efficiency but its potential for removal of dissolved pollutants may be low. As groundwater is 

recharged by slow seepage from the surface, this water resource is particularly vulnerable to 

pollution from human activities.   

 

The TMG aquifer falls outside the boundaries of the CMA. The potential of the TMG aquifer as 

a water resource received a significant amount of public attention from late 2000; and the 

Integrated Water Resource Planning Study has revealed that the potential yield of the aquifer for 

urban consumption could be as much as 70 million cubic metres per annum (CCT 2001).  

Detailed study by Jeffares & Green (2002) reveals the yield of the TMG aquifer as 5 × 103 m3 

per day, which can be used to augment supply in the South Peninsula, south of Clovelly area. A 

quantitative recharge estimate of the TMG aquifer is documented in Wu (2005) while resource 

estimation and storativity determination of this aquifer were reported in Jia (2007). 
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1.2.2.1 Urbanisation and recharge 

Cape Town is unique among most South African cities in the occurrence of significant resources 

of fresh shallow groundwater in the unconfined, sandy aquifer system that underlies the Coastal 

Plain of its suburbs. Cape Town Metropolitan Area (with a population of about 3.8 million 

people), uses less than 5 percent of the total annual water consumption (3 × 108 m3) which is 

extracted from groundwater. The Water Authority (the Department of Water Affairs & Forestry) 

coordinates and monitor activities such as borehole sinking and is charged with responsibility 

(under the National Water Act of 1998) of regulating the abstraction of groundwater. But, only a 

fraction of the boreholes in the Western Cape are registered; a good number of pumped bores are 

under private domestic ownership.   

 

Urban groundwater in Cape Town Metropolitan Area is under-used despite being a potentially 

valuable resource. Across the world, urban groundwater (according to Lerner 2004) is now:  

(a) a potentially valuable resource,  

(b) a problem because water tables are rising, and 

(c) either polluted or at risk of pollution.  

 

1.2.2.2 Urban groundwater recharge 

In its simplest form, urbanisation is viewed as reducing recharge by waterproofing surfaces, or 

impermeabilization (Lerner & Barret 1996). But several studies have shown that this is not 

always the case (Barret 2004, Lerner 1989, Price & Reed 1989). The complexity of urban water 

balance compared with rural catchments is a major challenge for water resources management in 

cities (Lerner 1990, Foster & Morris 1994). Losses by leakage from the city supply mains, 

combined sewers, pluvial drains, together with percolation from roof runoff/paved area soak-

aways, provide sources of near-surface recharge additional to those available in rural areas. At 

the same time, impermeabilization of the land surface by buildings and paved areas changes the 

scope for local precipitation to enter the aquifer (Lerner & Barret 2004). The resultant effect of 

these complicate both the quantification of net recharge to the aquifer and the prediction of the 

effects such recharge may have on groundwater quality (Cox et al. 1996, Eiswirth and Hotzl 

1994). 
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1.2.3 Groundwater contamination   

Contamination of groundwater can occur whenever there is a source releasing contaminants to 

the environment. The various sources of groundwater contamination have been classed according 

to human activities ranging from agricultural practices, sanitation and mining (Adelana & Xu 

2006). An idea of the more common types of activity capable of causing significant groundwater 

pollution hazard can be gained from Table 2.  The size, density and the location of a settlement 

have been found to determine the degree or intensity of pollution or potential pollution to that 

area within the environment (DWAF 1999). In the Cape Town area, several potential point-pollution 

sources were identified (Adelana & Xu 2006). These include chemical and pharmaceutical industries, 

long existence of a major harbour, with reported contaminated waters, urban infrastructure, and 

particularly sanitary landfills and pipeline outlet disposal. In addition, salt-water intrusion inland from the 

sea also poses pollution threats to groundwater. This has not attracted much research attention in South 

Africa, especially in the Western Cape with its long coastline. 

 

1.2.4 Strategies for groundwater protection and pollution control  

 A common approach to groundwater protection has been to concentrate the protection efforts on 

capture zones of wells or well fields in order to secure drinking water quality; in order words, 

wellhead protection zoning (USEPA 1987). The possibilities and limitations to the approach 

have also been discussed (Lerner & Kumar 1991, Adams et al. 1992, Batt 1993, Evers & Lerner 

1998). Wellhead protection zoning fulfils the purpose of protecting the existing use of the 

groundwater only, without taking into consideration other values or the sustainability of the 

resource. It is therefore, preferable to issue strong land use restrictions in the whole capture zone 

of the well, as any contaminant that enters the subsurface may finally end up in the well. 

However, as these areas can sometimes be extensive, it is often impracticable or economically 

unjustifiable (Scarp et al. 1997).  
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Table 2: Common pollution sources and associated groundwater contaminants 
Pollution source Type of contaminant Potential impact 

Agricultural Activity Nitrates; ammonium; pesticides; fecal 
organisms 

Health risk to users (e.g. infant 
methemoglobinemia), 
toxic/carcinogenic 

In-situ Sanitation Nitrates; fecal organisms; trace synthetic 
hydrocarbons 

Health risk to users, 
eutrophication of water bodies 

Gasoline Filling Stations 
& Garages 

Benzene; other aromatic hydrocarbons; 
phenols; some halogenated hydrocarbons 

Carcinogens & toxic compounds, 
odour and taste 

Solid Waste Disposal Ammonium; salinity; some halogenated 
hydrocarbons; heavy metals 

Health risk to users, 
eutrophication of water bodies, 
odour & taste 

Metal Industries Trichloroethylene; tetrachloroethylene; 
other halogenated hydrocarbons; heavy 
metals; phenols; cyanide 

Carcinogens & toxic elements 
(As, Cn) 

Painting and Enamel 
Works 

Alkylbenzene; tetrachloroethylene; other 
halogenated hydrocarbons; metals; some 
aromatic hydrocarbons 

Carcinogens & toxic elements 

Timber Industry Pentachlorophenol; some aromatic 
hydrocarbons 

Carcinogens & toxic elements 

Dry Cleaning Trichloroethylene; tetrachloroethylene Carcinogens & toxic elements 
Pesticide Manufacture Various halogenated hydrocarbons; 

phenols; arsenic 
Toxic/carcinogenic compounds 

Sewage Sludge 
Disposal 

Nitrates; various halogenated 
hydrocarbons; lead; zinc 

Leather Tanneries Chromium; various halogenated 
hydrocarbons; phenols 

Health risk to users, 
eutrophication of water bodies, 
odour & tastes 

Oil and Gas 
Exploration/Extraction 

Salinity (sodium chloride); aromatic 
hydrocarbons 

May increase concentrations of 
some compounds to toxic levels 

Metalliferous and Coal 
Mining 

Acidity; various heavy metals; iron; 
sulphates 

Acidification of groundwater & 
toxic leached heavy metals 

Source: Adelana & Xu 2006 (modified from Foster et al. 2002)  

 

The practical approach is to divide the capture zone of the well into several zones to allow for 

differentiation in the land-use restrictions. Comprehensive systems for land-surface zoning 

taking into consideration protection of the groundwater resource as a whole, as well as capture 

zones, have been discussed in Adams and Foster (1992), Foster et al. (2002).  In modern day 

terminology, the protection of groundwater resources may be based on different methodologies 

involving preventive actions (to avoid future pollution) and remediation actions (to control the 

pollution threat posed by existing and past activities). Prevention of environmental 

contamination is the key to efficient and effective environmental management.  This is 

particularly true in the case of groundwater. Article 6 of the Groundwater Directive includes 

measures to prevent or limit inputs of pollutants into groundwater (Directive 2000/60/EC, Water 

Framework Directive 2006). Incorporating preventive measures like this into the existing water 

laws will go a long way in ensuring groundwater quality here and elsewhere beyond the region. 
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The establishment of site-specific protection zones, with regulation of land use within them and 

the Resource Directed Measures (RDM) under the South African Water Act of 1998 has been 

seen as a possible way forward in future groundwater management in South Africa.  

 

1.3 Outline of chapters 

The various chapters in this thesis are outlined as follows: 

Chapter 1: gives the background to the study outlining the inventory of groundwater situation 

with respect to current groundwater research and socio-economic interests as outlined in the 

objective. A literature review on groundwater resource evaluation, concept of, and common 

groundwater pollutants, and previous contamination events in the study area are described in this 

chapter.   

Chapter 2: describes the physical processes and the research methodology employed in the 

present study, monitoring data, methods of field and laboratory measurements during this study 

are described. Detailed descriptions of the monitoring network and procedures for water and 

sediments characteristics are explained. Data availability, data sources and processing are also 

described. 

Chapters 3: gives an outline of the study area in terms of physiographic description (topography 

and climate), vegetation patterns, soil types, population and land use. A regional and local 

geology of the study area has been described in details in this chapter.  

Chapter 4: presents the hydrogeological framework, conceptual hydrogeological model and 

analyses of rainfall time series were interpreted and discussed in relation to groundwater 

recharge. Series of pumping tests carried out at the UWC test site (near the main gate, Bellville 

South) and at iThemba Labs (Faure), used to determine the aquifer characteristics. This is 

corroborated with the data obtained by Gerber (1981) and Meyer (2001). 

Chapter 5: presents the results of recharge estimation in the study area (using different 

approaches); recharge processes and mechanism are presented with a conceptual model of 

recharge in the Cape Flats. Knowledge of the various recharge processes and their relative 

contributions are of fundamental importance for establishing a realistic water resources 

development plan for the area. A comparative analysis of the methods applied in the recharge 

estimation is also presented and discussed. The flow pattern of groundwater with respect to the 

local hydrogeologic conditions is presented and discussed. 
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 Chapter 6: presents the results of the field and laboratory analyses which have been employed to 

assess the quality of the waters; and to ascertain the groundwater systematics. Major ion trends, 

minor and trace element data have been used in the elucidation of physical and chemical 

processes controlling groundwater chemistry in the study area.  Hydrochemical evolution and 

characteristics of groundwater of the study area were also discussed based on these results.  

Chapter 7:  gives a framework for groundwater protection in the study area. The assessment of 

aquifer pollution vulnerability and implications for groundwater resource protection are 

discussed in this chapter. 

Chapter 8: summarizes the main results and findings from this research study. The summary of 

discussions and synthesis of ideas are presented with implications for groundwater management. 

Conclusions based on the objectives of this study are drawn with appropriate recommendations.  
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OPERATIONAL DEFINITIONS 

 

Groundwater recharge  

In the sense in which recharge is implied in this study the following definition seems more 

appropriate: It is water that percolates into the lower limits of the vadose zone, reaching the 

water table and subsequently, causing a measurable water-table rise (Sophocleous and Perry 

1985). Such recharge can be from precipitation, from surface watercourses and/or from other 

aquifers.   

 

Vulnerability 

Throughout this thesis, the term vulnerability will be defined as the likelihood that contaminants 

will reach the phreatic surface after introduction at some location above the uppermost aquifer.  

Accordingly, vulnerability refers to the likelihood of groundwater contamination.  It is dependent 

solely on hydrogeologic factors such as soil type and rainfall (Bekesi & McConchie 2000). 

 

Vulnerability assessments 

The term vulnerability assessment defines the process of assigning numbers, ranks, or categories 

to areas and time intervals thought to effect aquifer vulnerability (Bekesi 1998).  It includes the 

testing and verification of such a vulnerability assessment.  The product of a vulnerability 

assessment is almost always a vulnerability map, or a set of maps. 

 

Pollution risk 

Pollution risk on the other hand is the function of the hydrogeologic conditions and agronomic 

practices, including contaminant loading and contaminant characteristics.  Aquifers with high 

vulnerability may have no, or negligible, pollution risk because of the absence of any potential 

contaminants (Foster 1987).  An aquifer may also exhibit a high pollution risk to nitrate pollution 

while having a small risk to heavy metal contamination because of the different characteristics of 

those contaminants. 
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Well and borehole 

The word well or wellbore itself, (from Oil and Gas glossary), includes the openhole or uncased 

portion of the well, often cylindrical (Wilson and Moore 1998); borehole may refer to the inside 

diameter of the wellbore wall, the rock face that bounds the drilled hole.  

In Civil Engineering, Geophysics, Mining & Quarrying, it is a deep hole or shaft sunk into the 

earth to obtain water, oil, gas, or brine.   

In Geophysics, an exploratory well refer to a small-diameter well drilled especially to obtain 

water. A borehole refer to the hole drilled by the bit; a wellbore may have casing in it or it may 

be open (uncased); or part of it may be cased, and part of it may be open; also called a borehole 

or hole. In this sense in which these words are used and throughout this thesis, the word well and 

borehole are used to refer a drill hole into groundwater for the purpose of exploitation or 

monitoring. 
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CHAPTER 2: APPROACH AND METHODOLOGY 

 

2.1 General description of research methodology  

This research project evaluates groundwater occurrence, aquifer characteristics, groundwater 

recharge and groundwater quality (chemical characteristics and evolution) of the Cape Flats 

aquifer. The research that went into this thesis can be divided into two main studies: (i) 

groundwater resources evaluation (ii) the development of a framework for strategic groundwater 

protection.  

 

The project focused on improving the understanding of groundwater systems in the area of the 

Western Cape covered by sand. Groundwater recharge rates were determined based on chloride 

mass balance calculations, groundwater level fluctuation, stream discharge and a number of 

empirical methods. Aquifer characteristics as well as the behaviour of groundwater movement in 

the Cape Flats were determined from pumping tests. Hydrochemical evaluation was used to 

describe the chemical characteristics of groundwater (using major, minor elements and isotope 

data) and evolution of groundwater in the study area. Integrating the results from hydrochemical-

isotopic and hydraulic parameters in order to obtain refined recharge estimates and describe 

recharge processes in the study area is of paramount importance. The knowledge of recharge 

rates is fundamental to proper assessment of the extent of groundwater resources and their long-

term availability, particularly in the context of water supply planning. The quality and 

characteristics of this groundwater resource are significant to its development for municipal 

water supply. Assessment of aquifer vulnerability to the increasing urban polluting influences is 

paramount to protection of groundwater resources in the study area. Therefore, this research 

employed a number of methods to estimate recharge, determine aquifer characteristics and 

hydrochemical evolution of groundwater in the study area and develop strategies for 

groundwater protection. 
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2.2 Data collection  

Compilation of data: Collation of existing data on climate, geology, hydrogeology and 

hydrochemistry from various databases and maps was done. Available data (i.e. basic borehole 

information, water levels and chemical data) on the Cape Flats collated from DWAF, CSIR, 

Council for Geosciences, City of Cape Town and climatic information (from the South African 

Weather Service) were presented in a workable format, analyzed and interpreted to give useful 

hydrological characteristics of the study area. Long-term climatic data, water level measurements 

and stream discharges were analyzed statistically and interpreted to give recharge estimates for 

the study area. 

 

Field sampling: Fieldwork included sampling of water from boreholes, hand-dug wells, and 

ponds for physico-chemical and stable isotopic analyses. At each borehole or well site, water was 

pumped for about 5 minutes to obtain representative water samples. Parameters such as pH, 

electrical conductivity, as well as temperature were measured immediately at the various 

sampling points since these parameters are subject to drastic changes with time.  

 

2.3 Analytical description  

Laboratory analyses: Each water sample collected in the field were further analyzed in the 

laboratories for total dissolves solids (TDS), major and minor/trace elements as well as stable 

naturally-occurring isotopes of oxygen (O-18), and hydrogen (H-2). 

 

i. Determination of the main chemical constituents  

The main cations and anions determined in the laboratory include: Na, K, Ca, Mg, Cl, SO4, NO3, 

Br, F, PO4. The content of the major ions for the water samples in the study area would help to 

explain the groundwater chemistry. The factor controlling the water chemistry were assessed and 

possible changes in groundwater composition would be traced along the flow path of the coastal 

aquifer system to give the overall chemical evolution of waters in the study area.  
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ii. Determination of minor constituents 

Minor/trace elements such as Cu, Al, Pb, Zn, As, Cd, Cr, Mn, and H2S were also analysed for in 

the water samples using ICP-MS method. The results of these analyses (and isotopic data) were 

used to assess the quality of the waters and to ascertain the groundwater recharge conditions 

corroborating. Although major elements generally constitute more than 95 % of the total ionic 

concentration of groundwaters, some hydrogeochemical processes cannot be identified through 

the interpretation of major ion chemistry, as the relative variation of the concentrations of 

elements is small. The analysis of specific minor and trace elements have been used in the past to 

assist the interpretation of groundwater systems (Edmunds et al. 1987, Edmunds 1995, Edmunds 

& Smedley 2000, Herczeg & Edmunds 2000, Jankowski & Schofield 2001). Hydrochemical data 

thus collected were interpreted using various forms of log- and semi-log plots, piper and 

schoeller diagrams (Piper 1944, Derec & Louvier 1973) and so on. 

 

Recharge estimation techniques 

The main techniques used in the estimation of groundwater recharge are classified into physical 

and chemical methods (Allison 1988, Foster 1988, Cook & Herczeg 2002). The physical 

methods involve (i) meterologic and soil-crop data processing to determine hydrologic balance 

or the soilwater balance; (ii) hydrologic data interpretation, including water table fluctuations, 

and differential stream flow analysis; (iii) The Hydraulic or Darcian approach), including the 

estimation of water fluxes beneath the root zone using hydraulic conductivity functions and 

water potential gradient. The chemical methods involve chemical and isotopic analysis of pore 

fluids from the saturated and unsaturated zones.   

 

In South Africa, the methods previously applied have been summarized in a schematic 

presentation (Bredenkamp et al. 1995, Xu & Beekman 2003) to provide a logical structure and 

have been grouped into categories relating to the following: 

(i) The unsaturated zone which includes lysimeters studies, soil moisture flow and balances, use 

of tritium profiles, chloride profiles in the soil overlying an aquifer. 

(ii) The saturated zone which includes an analysis of groundwater hydrographs, water balances 

of delineated aquifers, the analysis of spring flow, the saturated volume fluctuation method, and 

the cumulative rainfall departure method (CRD). 
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 (iii) Modeling of groundwater flow and the water balance, incorporating the determination of 

recharge, storativity and transmissivity by inverse solution techniques, the direct parameter 

estimation method involving a multiple linear regression (inverse) fit of water balance 

parameters, hydrological models based on conceptual hydrological interrelationships.  

(iv) Steady state flow approximations which involves applying Darcy’s law, incorporating the 

flow through a cross-section of the aquifer. 

(v) Rainfall-recharge relationship expressed by a regression-type simulation of the groundwater 

recharge in accordance with some conceptual logic built into the formulae. 

(vi) Natural radioisotopes used to reveal mixing and transient flow within an aquifer system.  

(vii) Natural stable isotopes such as 18O and 2H are commonly used to reveal groundwater 

characteristics and to distinguish between waters of different origin. 

 

The detailed procedure for each of the techniques and adaptation to be used are described in the 

literature (Bredenkamp et al. 1995, Walker et al. 2002, Xu & Beekman 2003) while those 

applied in this study are discussed in Chapter 5.  

 

2.4 Data processing  

The research was designed to assess the National Groundwater Databse and factual materials, in 

particular, about the state of chemical composition of the Cape Flats aquifer and its variation in 

time, as well as to identify sources of chemical variations. This is further progress on the earlier 

work of Henzen (1973) and Vandoolaeghe (1989) on the groundwater quality aspects towards 

the Cape Flats groundwater development pilot abstraction scheme. A large number of chemical 

data exist in the DWAF database, which has not been interpreted or published. New sampling 

will be carried out to fill as many data gaps as possible.  

 

The sources available are groundwater, river water and water from canals or irrigation ponds. 

The methodology involves analyzing and interpreting the existing chemical data of the NGDB 

under the Western Cape region. Large datasets have accumulated for the City of Cape Town and 

suburbs – over 1,000 chemical analyses with the first sets of measurements recorded in 1967.  
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About 200 boreholes with different yearly records of chemical data are interpreted in Chapter 6. 

More than a hundred of these wells are screened in the Cape Flats sands and were sampled for 

major ions and trace element chemistry. The results of this sampling are stored in a database 

managed by the Department of Water Affairs & Forestry. During the course of this research 

(2005-2007) sampling for chemistry and stable isotope analyses have also been carried out on 

selected wells. Series of pumping tests were carried out on three wells from two sites (University 

of the Western Cape, UWC test site, and iThemba Labs experimental borehole).  Field 

parameters, including water temperature and EC were determined during pumping using 

standard probes. Samples were also collected during the pumping exercise for full chemical 

analyses of anions, cations and trace metals. The locations of the sampled boreholes are shown in 

figures 33, 45 and 47). 

 

Rain samples collected from the rain samplers installed at UWC, iThemba Labs and rainwater 

from Belhar residential area were analysed for chloride for the purpose of recharge estimation 

(Adelana et al. 2006). Sampler installed at a private property later became inaccessible due to 

lack of continued cooperation. Prior to sampling for analysis, groundwater was pumped for about 

5 minutes. The samples collected during this research (2005-2007) were in most cases filtered 

using 0.45-µm millipore filter paper and stored in 150 ml polyethylene bottles. All samples were 

stored at 4 °C prior to laboratory analysis. The pH, electrical conductivity (EC) and total 

dissolved solids (TDS) were determined at the site using portable field kits. The carbonate and 

bicarbonate were determined by acid titration; chloride by AgNO3 titration; sulphate by a 

titrimetric method using barium perchlorate after passing the samples through cation exchange 

resin; phosphate by ascorbic acid method using spectrophotometer; calcium and magnesium by 

EDTA titration; and sodium and potassium by flame photometry in the laboratory (BEMLABS 

Somerset West, Cape Town). 
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2.5 Accuracy of determinations  

Charge balances between cations and anions were determined using Hydrogeochemical Analysis 

Model in excel (HAM) (Kan et al. 2004) and Aqueous Geochemical data analysis and Plotting, 

“AquaChem” (Waterloo 1999). The observed charge balance for most locations is within ±10 %, 

which is acceptable for waters of moderate TDS (Eaton et al. 1995). Ninety percent (90 %) of all 

the data falls in the ±5 % ionic balance error range while 98 % are within the ±10 % range. Few 

samples outside these limits have high HCO3
_ concentrations suggesting errors in titration. 

Analysis of stable isotopes (δ18O and δ2H) was also performed in order to identify recharge 

processes since the content of 18O may vary as a function of the average altitude of recharge.  

Stable isotope analyses were performed in two laboratories, Monash University (School of 

Geosciences, Melbourne, Australia) using a Finnigan MAT 252 mass spectrometer and the 

Leibniz Institute for Applied Geosciences (GGA, Geochronology and Isotope Hydrology, 

Hannover, Germany). δ18O values were measured via equilibration with CO2 at 25 °C for 24–48 

h. δ2H values were measured via reaction with Cr at 850 °C using an automated Finnigan MAT 

H/Device. δ18O and δ2H values were measured relative to internal standards that were calibrated 

using IAEA SMOW, GISP, and SLAP standards. Data were normalized following Coplen (1988) 

and are expressed relative to V-SMOW where δ18O and δ2H values of SLAP are −55.5‰ and 

−428‰, respectively. Many samples were analyzed at least twice and the precision (1σ) is: δ18O 

= ±0.1‰; δ2H = ±1‰.  

 

2.6 Interpretation methods  

The datasets are divided into 3: 1967-2001, 2003-2007 and wells or groundwater sources with 

consistent few years’ record were singled out for separate interpretation (Philippi 1985-1989; 

Newlands Spring 1994-2006). Besides, 25 boreholes, 6 springs, 8 surface water (included 2 

polluted rivers and 6 canals/reservoirs), and selected rain episodes between 2005 and 2006 were 

sampled for hydrochemical analysis; selection was according to geographic location and 

accessibility. These, in addition to the dataset 2003-2007 (from the NGDB database), were 

interpreted to show present day quality status of groundwater from the Cape Flats aquifer. All the 

data sets were prepared in excel and interpreted with HAM as recommended (Kan et al. 2004) 

and AquaChem version 3.7 for Windows (Waterloo 1999).  
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2.7 Summary 

In Chapters One and Two the various concept of groundwater contamination, urbanization and 

recharge are defined and described as it relates to resource evaluation. Various aspects relating to 

water resources availability and ranging from demand to water supply quality, in relation to 

current research on groundwater have been described. Several previous studies on exploration, 

developmental techniques, contamination, digital flow modelling and artificial recharge to 

groundwater in the Cape Flats were reviewed in order to define the objectives and scope of the 

present work. The general description of research methodology and approach of the present 

study are highlighted. Mode of data collection, analytical descriptions and accuracy of 

determinations were also presented. Chapter Three, therefore will focus on physiographic 

description (topography and climate), vegetation patterns, soil types, population and landuse as 

well as regional and local geology of the study area. 
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CHAPTER 3: PHYSICAL DESCRIPTION AND GEOLOGY OF THE STUDY AREA 

 

3.1 Introduction 

The Cape Metropolitan Area (CMA) covers an area of 2, 159 km2, and is largely surrounded by 

the Atlantic Ocean to the west and south with the most prominent landmass being the Cape 

Peninsula, attached to the mainland by the sandy plain of the Cape Flats. The CMA is enclosed 

by mountains to the north and east. The key study area discussed in this thesis is located towards 

the southernmost end of the continent of Africa. The various major and minor catchments of the 

CMA have been described in Chapter One. The geographical location of the sand-covered 

coastal plain known as the Cape Flats is shown in figure 2 with the full description given in this 

chapter. The Cape Flats area is characterized by a high potential for groundwater resources and 

represents one of the areas of dense human settlement, with increasing industrial and agricultural 

activities.    

 

3.2 Location and coverage of the study area  

The Cape Flats therefore represents a region of broad coastal sand between the Cape Peninsula 

and mainland. The Cape Peninsula is situated near the southernmost western coast of South 

Africa. The sands, which cover an area of approximately 630 km2, extend in a northerly direction 

along the west coast (Figure 2). Generally, the Cape Flats is taken to be the area bounded by the 

Cape Town-Muizenberg, Cape Town-Bellville-Kraaifontein, Bellville-Eerste River-Strand 

railway lines and the False Bay coast; with a narrow strip of sand along the western coast, 

extending northwards from Cape Town and Bellville through Blouberstrand up till Atlantis 

(Figure 2). The selected area is the Cape Flats sands, which is more susceptible to pollution as a 

result of industrialization, urbanization and intense use of the land area for waste disposal and 

agricultural purposes. The area extent of this research project is the entire Cenozoic sand cover 

of the Western Cape, particularly, the southern part where basic data and borehole information 

are available. 
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Figure 2: Location of the Cape Flats sand in the Western Cape, South Africa 
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3.3 Physiographic description  

3.3.1 Topography  

The Cape Flats area is essentially lowland with an average elevation of 30 m. Generally, the 

CMA has a varied terrain ranging from low-lying sandy plains to rocky mountains. The most 

dramatic terrain is located along the Cape Peninsula, a spine of mountains extending some 56 

kilometres from Table Mountain in the north to Cape Point in the south (Figure 2). The Cape 

Peninsula mountain chain is a series of peaks, rising to Maclear's Beacon (1038 m) on Table 

Mountain and dropping dramatically to the sea in many parts of the Peninsula. Topographical 

features are varied and include narrow flats, kloofs and gorges, cliffs, rocky shores, wave-cut 

platforms, small bays and sandy and gravel beaches.  

 

On the Cape Flats, sand dunes are frequent with a prevalent southeasterly orientation; and the 

highest dunes are only 65 m above sea level. The sand is derived from two main sources: (i) 

weathering followed by deposition, under marine conditions, of the quartzite and sandstone of 

the Malmesbury Formation and the Table Mountain Series; (ii) the beaches in the area, from 

where Aeolian sand was deposited as dunes on top of the marine sands. According to Henzen 

(1973), the marine sands were deposited in accordance with the prevailing sea level and one 

typically finds that the sand body is horizontally stratified. Portions of the area are covered by 

calcareous sands and surface limestone deposits while silcrete, marine clays and bottom 

sediments of small inland water bodies also occur sporadically (Gerber 1976, 1981). The 

bedrock bounding the deposits was penetrated during several cases of test drilling, from which it 

was concluded that the bedrock surface may be assumed impermeable (Gerber 1981). 

 

The almost horizontal sandstones of the Table Mountain were originally linked to the same 

Formations capping the mountains on the eastern fringes of the Cape Flats. Post-Palaeozoic 

erosion has removed the sandstones between the False Bay and the Table Bay. Rivers have 

carved valleys to both False Bay and Table Bay, while surf-zone erosion during transgressions 

has formed marine platforms in the south-east corner of the Cape Flats. This fluvial marine 

erosion has shaped the topography of deeply weathered Malmesbury Group and Cape Granite 

bedrock on the Cape Flats (Hartnady and Rogers, 1990). The False Bay is one of the largest 

natural embayments in South Africa with sides 30 km in length and has an area of 1000 km2. The 
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eastern and western shores are rocky whilst the north shore is a sweeping beach stretching from 

Muizenberg to Gordon’s Bay (CSIR 1982).  

 

3.3.2 Climate  

South Africa is situated almost completely within the high pressure belt of the southern 

hemisphere, which at sea-level is located around 30º S latitude. This is the reason why South 

African climate is largely arid to semi-arid (Schalke 1973). The high pressure belt is subject to a 

seasonal displacement of 4º latitude, its centre being located further south in February. Due to 

unequal heating of the land in summer and in winter, its high pressure belt splits up into two cells, 

one at the Atlantic side and the other above the Indian Ocean (Schalke 1973). Another important 

element of the air circulation influencing the climate of South Africa is the presence of the 

circumpolar Westerly Winds to the south of the high pressure belt. These Westerly Winds, which 

at sea-level occur at 35˚ S latitude, are found at much lower latitudes in the upper atmosphere.  

Consequently, the weather changes in South Africa are largely determined by perturbations in 

the westerly circulation of the Southern Hemisphere, though in summer to a lesser extent than in 

winter. These phenomena may explain the Mediterranean type of climate prevailing in the south-

western coastal region (Schulze 1974).  

 

The Cape Flats has a typical Mediterranean climate but the generally mountainous nature of the 

Cape Fold Belt results in the entire region having sharp changes in climate. The climate of Cape 

Town, which is situated at the border of the Cape Flats, reveals annual precipitation of the Cape 

Flats area varies between 400 and 500 mm, with a dry period from November to April, and that 

the mean annual temperature is approximately 17˚ C (Figure 3). According to Walter and Leith 

(1960), a period is to be called arid when the precipitation curve stays below the temperature 

curve; this is usually the experience in Cape Town area during the summer months. However, 

the prevailing southeast trade winds in summer are replaced by northwest anti-trade winds in 

winter, the latter spelling rainy weather. Very strong winds are frequent and characteristic of the 

Cape Town weather. 
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Figure 3: Mean Temperature variation with monthly rainfall in Cape Town (1933-2006) 
 

 

The continental margin of South Africa causes the deviation of the westerly cold ocean current 

towards and along the western coast of Africa (see Figure 4). This branch is called the Benguela 

current and has, of the coast near Cape Town, a mean annual temperature of 12 ˚C with a 

variation of 2-3 ˚C (Schalke 1973). The Cape Flats, therefore, has a typical Mediterranean 

climate with cold wet winters and warm dry summers. There is a variable rainfall gradient within 

the CMA; rainfall is largely controlled by topography and is concentrated within the winter 

months. The generally mountainous nature of the Cape Fold Belt results in the entire region 

having sharp changes in climate.  

 

The rainfall over the CMA is influenced by the steep peaks in the Cape Peninsula mountain 

chain as well as the Helderberg and the Hottentots Holland mountain range to the east of the 

CMA (see Figure 5). As a result the annual rainfall varies greatly within the CMA – from 

between 500 mm and 1700 mm on the Cape Peninsula, to between 500 mm and 800 mm on the 

Cape Flats, and ranging from 800 to over 2600 mm in the mountains to the east of the CMA. 

Cape Town International Airport situated on the Cape Flats receives 554 mm/a (South African 

Weather Bureau 2006).  
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Figure 4: Map of southern Africa showing principal ocean currents 
 

To the northeast of the Cape Flats area lies a semi-arid to arid climatic region with an annual 

precipitation of less than 250 mm. Temperature fluctuations occur both diurnally and seasonally 

with a period of frost from June to September each year (see Figure 3). The climate in the coastal 

region east of the Cape Flats area is rather uniform, having a higher annual precipitation (about 

1100 mm in the mountains and 400 mm on the plains) evenly distributed over the year (Schalke 

1973). The average daily maximum temperature of the CMA is about 28 °C in mid-summer and 

17 °C in mid winter. The variation of the mean annual temperature with precipitation amount for 

the period 1933 to 2006 has been illustrated in Figure 3. Due to the moderating influence of the 

sea, temperatures rarely fall below 0 °C or rise above 35 °C. As with rainfall, temperature is also 

influenced by the topography of the CMA. Temperature can therefore vary depending on micro-

climatic conditions that exist in the area. 
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Figure 5: Distribution of rainfall in the Cape Metropolitan Area; E-W along the southern coast is 

approximately 45 km (CMC 1999) 
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3.3.3 Drainage  

In several depressions, flat marshy sites - locally named ‘vleis’- are present which sometimes 

contain open water and are connected by a river with the sea (Stephens 1929, Schalke 1973). The 

drainage system is represented by the Eerste River, Kuils River and the Diep River, as well as 

Zeekoevlei and other open water bodies (Figure 6). Other streams and creeks are Lourens, 

Elsieskraal, Lotus Hout, Sout, Liesbeek, and Sir Lowry’s Pass, which are mostly tributaries 

discharging into the main rivers.. The Diep and Sout rivers drain southwesterly to the sea at 

Table Bay while drainage towards the south takes place by the Eerste River and by the 

Zeekoevlei into False Bay.  
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Figure 6: Rivers within CMA catchments  
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The plains of the Cape Flats extend from the Cape Peninsula to the Hottentots Holland 

Mountains in the east and Atlantis in the north (CMC 1999). The undulating plains and koppies 

of the CMA are sandy and interspersed with some larger koppies, with a diversity of slopes and 

hollows, landforms and drainage lines. False Bay is characterized by long stretches of sandy 

beaches and coastal dunes. This varied terrain leads to a diversity of habitats and micro-climates. 

 

3.3.4 Soil type of the Cape Town area 

In the broad sense, the term soil is used to include surficial material, the product of parent 

material (geological rock type), slope, and a variety of chiefly climate-driven processes 

interacting over time. The inorganic component of soil can be regarded as the product of 

mechanical and chemical weathering. Within the CMA, geology and slope, and soil, are closely 

allied. The soils of the CMA, which form the basis for all habitats, can be placed in three 

groupings (McVicar 1991):  

 (i) Shallow, acidic, sandy soils derived from TMG sandstone. Such soils occur on, or close to 

mountain slopes. They are nutrient-poor, have poor water retention properties and although they 

provide an apparently inhospitable medium for plant growth, fynbos vegetation has adapted to 

these harsh growing conditions.  

(ii) Deeper, sandy, calcareous soils of the low-lying areas. They are less acidic than the previous 

type and their nutrient status, while still low, is higher than the previous group. The low-lying 

nature of the environment in which they typically occur implies that these soils are often subject 

to water-logging during the winter months.  

(iii) Soils derived from the weathering of parent material which is relatively rich in clay. 

Typically, these soils are found on granitic suites to the north east of the CMA (Paarl, 

Stellenbosch areas) as well as on Malmesbury Group shales in the Swartland to the north of the 

CMA. Because they contain significant proportions of clay, their nutrient status and water-

holding capacity is superior to the previous two types. This group displays the widest variety in 

terms of depth, profiles and mineralogical make-up. However, for the sake of convenience, they 

are grouped here as one.  
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Other surfaces in the CMA (as illustrated in Figure 7) comprise the following: 

(i) Bare rock surfaces and very thin sandy veneers;  

(ii) Wetlands and marshy areas;  

(iii) Alluvial soils along drainage lines (in some cases, brackish);  

(iv) Talus, rock debris and scree (boulder-rich slope deposits); and  

(v) Built and paved areas. 

 

3.3.6 Population and land use  

The City of Cape Town is a large urban area with a high population density; one of South 

Africa’s six metropolitan municipalities. It represents centers of economic activity with complex 

and diverse economies, a single area with integrated development planning and strong 

interdependent social and economic linkages. The City of Cape Town includes the Cape 

Metropolitan Council, Blaauwberg, Cape Town CBD, Helderberg, Oostenberg, South Peninsula 

and Tygerberg (CCT 2006). In 1996, the total population of South Africa was over 40 million 

(Central Statistical Services 1997). It was estimated that about 4 million people live within the 

Western Cape Province, with 3.5 million living in urban places (Central Statistical Services 

1996). The Western Cape Province has the second highest percentage urbanized population 

(almost 89 %) in South Africa after Gauteng Province. A selection of pictures in Appendix 2.1 

shows current land use and open land surface in the Cape Flats. 
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 Figure 7: Soil type of the Cape Town area (CMC 1999a/b) 
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In 1996 the population of the CMA was approximately 2.56 million (Central Statistical Services 

1997). Natural population growth, combined with urbanization, gave rise to a population growth 

rate of approximately 2 % per annum (Bekker & van Zyl 1998). The population estimate for 

1998 was 2.9 million (CMC 1999a/b), 3.08 million in 2001 and currently estimated at 3.48 

million. This represents an increase of more than 700,000 people between 1996 and 2006 (CCT 

2006). 

 

The general distribution of population in the CMA by local metropolitan council areas is shown 

in Table 3.2.6 and illustrated in Figure 8. Approximately 68 % of the population is found in the 

City of Cape Town and City of Tygerberg, with the City of Cape Town experiencing the highest 

population density. The 2001 population density per km2 by suburb produced by the City of 

Cape Town is presented in Appendix 3.1. 

 

 

Table 3: Population distribution for the CMA by municipal area (1996) 

LOCAL AUTHORITY PERCENTAGE 

POPULATION 

PERCENTAGE OF 

TOTAL AREA 
Blaauwberg Municipality 4.6% 25.6% (551 km2 ) 

City of Cape Town 36.6% 13% (280 km2) 

City of Tygerberg 32.3% 19.7% (423 km2) 

Helderberg Municipality 4.8% 15.2% (328 km2) 

Oostenberg Municipality 9.3% 7.5% (162 km2) 

South Peninsula Municipality 12.3% 18.9% (407 km2) 

Cape Metropolitan Council (total) 100% 100% (2 151 km
2
) 
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Figure 8: The city of Cape Town Metropolitan Municipality with population density  
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3.4 Geology of the study area 

3.4.1 Regional geology of the Western Cape 

The oldest rocks in the Western Cape are meta-sediments of the pre-Cambrian Malmesbury 

Group (Ne), which occupy the coastal plain between Saldanha and False Bay in the west, to the 

first mountain ranges in the east. Several erosional windows to this group are exposed in mainly 

fault-controlled valleys further to the east and south, of which the Breede River valley is the 

most conspicuous (Meyer 2001). The Malmesbury Group consists of low grade metamorphic 

rocks such as phyllitic shale, quartz and sericitic schist, siltstone, sandstone and greywacke.  

 

Several granite plutons of the Cape Granite Suite (N-Ec) have intruded the Malmesbury Group. 

About ten plutons have been identified between Saldanha and Somerset West.  Apart from the 

major pre-Cape granite intrusions into the Malmesbury Group, a number of mafic dykes were 

intruded into the Malmesbury Group and Cape Granite Suite, especially in the Cape Peninsula, 

Worcester and Wellington areas. These dykes often occur in swams, with a north-westerly to 

north-easterly strike direction (Gresse & Theron 1992).  

 

The Klipheuwel Group (Ek), which of Cambrian age, is younger than the Cape Granite suite and 

consists of conglomerate, sandstone and shale. The Cape Supergroup, which occupies most of 

the Western and Eastern Cape, was deposited in a trough from early Ordovician to late Devonian 

age (Tankard et al. 1982) and can be differentiated into (from the lowermost to the top): the 

arenaceous TMG, which unconformably overlie the Malmesbury, Klipheuwel and Cape Granites. 

This is conformably followed by the argillaceous beds of the Bokkeveld Group and then, finally, 

the alternating shales and sandstones of the uppermost Witteberg Group (Theron et al. 1992, 

Meyer 2001).  

 

The Karoo Supergroup is represented by the basal glacial diamectite of the Dwyka Group, 

followed by the predominantly argillaceous Ecca Group and the shales and sandstones of the 

Beaufort Group. Deposits of Conglomerate with interbedded sandstone lenses of the late Jurassic 

Enon Conglomerate Formation (Uitenhage Group) occur along the Worcester Fault between 

Worcester and Heidelberg (Figure 9).  
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Late-Tertiary to Recent sediments, up to 50 m thick (ranging in age between 12-0 Ma) overlay 

the older rocks in this area. Limited occurrences of Coastal Sands were deposited mainly along 

the coast between Agulhas and the Breede River Mouth (Meyer 2001). Considerable deposits of 

alluvium consisting of clay, sand pebbles and boulders occur in the valley of the Breed River and 

its tributaries.  

 

The dominant rock type underlying the soils throughout most of the CMA is from the 

Malmesbury Group (Theron et al. 1992), which is broadly classified as a type of shale. Shale 

derived soils (clays) are most easily seen in the Tygerberg area, on the Peninsula and near 

Somerset West. The two other main rock formations are sandstone from the TMG and granites 

from the Cape Granite Suite (Theron et al. 1992). Detailed lithological and structural 

descriptions of the TMG and Cape Granites are given in Wu (2005) and Jia (2007). 
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Figure 9: Regional geological map of the Western Cape showing principal lithological units 
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3.4.2 Geology of the Cape Flats 

The Cape Flats is a component of the ‘Late-Tertiary and Recent sands’ unit of the geological 

map edited by Haughton (1969) and the revised editions (Theron et al. 1992), which are in places 

up to 50 m thick (as discussed in Section 3.3.1). Figure 10 shows the location and geological 

map of the area around the Cape Flats, in the Southwestern Cape. Although this cover is rather 

thin in relation its wide lateral extent, practically no outcrops occur. On the Cape Flats (and 

along the coastal plain between Cape Town and Saldanha) are essentially sediments of 

Quaternary age that blankets the Neogene deposits, of which little is known except from 

boreholes and quarries (Theron et al. 1992). These are all Cenozoic sediments of the Western 

Cape (west of Cape Hangklip) now referred to as the Sandveld Group, a name earlier restricted 

to the Elandsfontein and Varswater Formations by Hendey and Dingle (1983) see Table 4. Thus, 

the Sandveld Group now includes Quaternary sediments formerly incorporated with the 

‘Bredasdorp Formation’ (Visser & Schoch 1973, Rogers 1982) while the Bredasdorp Group is 

restricted to Cenozoic Formations east of Cape Hangklip (Malan 1987, Theron et al. 1992).   

 

The basement of the Cape Flats is composed of Precambrian and Palaeozoic rocks belonging to 

the Cape granite, the Malmesbury Formation, and the Table Mountain Sandstone (Schalke 1973; 

Theron et al. 1992). The Cape Flats is assumed to have been developed after the closure of the 

‘Cape Strait’, which at one time united False Bay with Table Bay, by lowering of the sea-level 

and a probable rise of the basement (Walker 1952). Along the coast of the Cape Peninsula and on 

sites where a cliff-coast is present, raised beaches have been found as evidence of former 

fluctuations in sea level (Schalke 1973). The ancient beaches at the levels 18-27 m and 5-6 m are 

the best known (Schalke 1973); and are supposed to be of Eemian age and correlated with the 

Mediteranean Monasterian levels (Krige 1927). The highest of these beaches exhibits evidence 

of a fossil warm water fauna, whereas the lower one contains a cool water fauna similar to the 

recent one. According to Krige (1927), the explanation of this phenomenon can be found in the 

ancient ‘Cape Strait’, which at that was a passage for the warm Agulhas current with its 

accompanying fauna but became closed later on in the Eemian.  
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The sands are derived from two sources as described in section 3.3. The marine sands were 

deposited in accordance with the prevailing sea level and the sand body is horizontally stratified 

with several lithostratigraphic units identified (Table 4). The process of sedimentation was 

initiated in a shallow marine environment, subsequently progressing into intermediate beach and 

wind-blown deposits, and finally to Aeolian and marshy conditions, which led to the formation 

of peaty lenses in the sands.  
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Figure 10: Location and geological map of the area around the Cape Flats 

 

According to Henzen (1973), portions of the area of the Cape Flats (particularly along the False 

Bay coast between Muizenberg and Macassar) are covered by calcareous sands and surface 

limestone deposits while silcrete, marine clays and bottom sediments of small inland vlei 

deposits also occur sporadically (Hartnady & Rogers 1990). The detailed geology of the Cape 

Flats has been reported in Henzen (1973) and the full description of the various lithostratigraphic 

units is presented in Section 3.3.2.1. The bedrock topography shows that there is a Palaeo-valley 

reaching more than 40 m below mean sea level towards the northeastern portion of the area.  
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3.4.2.1 Quaternary Deposits  

The Quaternary deposits of the Sandveld Group consist of the following Formations (with 

lithology in brackets): the basal Springfontein Formation (well sorted, fine- to medium-grained 

quartz sand, virtually free of mud), the Milnerton Formation* (Fluvial gravel, marine clay and 

littoral sand), the Velddrif Formation (partially consolidated lime-rich shelly beds, shellcoquina 

to clay and sand with shell layers), Langebaan Formation (aeolian, calcrete-capped, calcareous 

sandstone) and the Witzand Formation (fine- to coarse-grained calcareous coastal dune sand). As 

shown in Table 4, the quaternary deposits consist largely of aeolian sand, but minor fluvial to 

marine deposits also occur. The inter-relationships of the various formations are known from 

many boreholes and exposures within and outside the greater Cape Town area (Theron et al. 

1992). Figure 11 shows the various geological sections based on available logs and information. 

The section lines are indicated on the geological map (see figure 10). Figure 12 illustrates the 

lithostratigraphic features at the University of the Western Cape (UWC) Test Site. In the 

following sections, the lithostratigraphic classification of the Quaternary deposits (from top to 

bottom, young to old) is described. 

 

The Witzand Formation, which consists of very fine to very coarse calcareous sands, is easily 

recognized by the presence of abundant small shells and shell fragments. These Holocene sands, 

named the Witzand Formation after the calcareous dunes on Witzand 2, northeast of 

Melkbosstrand (Rogers 1980, 1982), form extensive system of parabolic, vegetation-bound 

coastal dunes which may be partially cemented (Theron et al. 1992). The Witzand Formation is 

light-coloured, calcareous, and distinctly recognizable from the underlying consolidated 

Langebaan Formation.  

 

The Langebaan Formation is a Limestone Member of the Bredasdorp Group, which has been 

incorporated (in the recent nomenclature and re-grouping of the Cenozoic sediments) into 

Quaternary sediments of the Sandveld Group (Malan 1987, Theron et al. 1992). It is locally 

known as the Wolfgat Member, consisting of calcrete and very fine- to fine- calcareous sand. 

The limestones of the Langebaan Formation, which are in reality mostly calcarenites, overlie a 

wide variety of older units and are found from sea level to altitudes over 200 m (Theron et al. 

1992).  
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Table 4: The Cenozoic Formations of the Western Cape (Modified from Theron et al. 1992) 

GROUP FORMATION DESCRIPTION AGE 

Witzand  Aeolian, calcareous, quartzose 
sand 

H
o

lo
c

e
n

e
 

Langebaan 
(Wolfgat) 

Aeolian, calcrete-capped, 
calcareous  sandstone 

Velddrif  Littoral, calcrete-capped 
coquina 

Milnerton Fluvial gravel, marine clay & 
littoral sand 

Springfontein 
(Philippi) 

Aeolian, quartzose sand with 
intermittent peaty clays 

P
le

is
to

c
e

n
e

 

Varswater Quartzose & muddy sand, and 
shally gravel, phosphate-rich 

P
li

o
c

e
n

e
 

Saldanha Conglomeratic sandy 
phosphorite 

L
a
t
e 

S
A

N
D

V
E

LD
 

Elandsfontein Angular quartzose gravely sand 
& peaty clays 

M
i
d
d
l
e 

M
io

c
e

n
e

 

 

 

The Velddrif Formation is a patchy deposit of partially consolidated lime-rich beds of shell and 

sand with shelly layers; the type section of which is situated close to the Berg River mouth near 

Velddrif (Tankard 1975, Theron et al. 1992). Along the western shore of Langebaan Lagoon, the 

Velddrif Formation clearly underlies the aeolian calcareous Langebaan Formation and is exposed 

below Malgaskop, south of Saldanha, as well as at various localities along the Postberg 

Peninsula (Theron et al. 1992). Other occurrences are located south of the Modder River on 

diorite outcrops, at Swartklip parking area on the northern shore of False Bay, and at Noordhoek 

Beach (Rogers 1980, 1982, 1983; Barwis & Tankard 1983). 
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The Springfontein Formation is a fine- to medium-grained quartzose sand which, near the coast, 

is light grey-white to pale red in colour with less than 2 % mud (Rogers 1980). Grain size often 

increases with depth and thin calcareous clay and peat lenses may locally be present 

(Vandoolaeghe 1989). Phosphatised shell fragments and shark teeth are also found sporadically 

at various levels while in excavations, particularly on Duynefontein, a gastropod bed occurs 

within the basal laminated sand of this formation (Theron et al. 1992). 

 

The Saldanha Formation is Late Miocene in age and consists of consolidated conglomeratic 

phosphorite, which is in places rich in whale, penguin, shark and mollusc fossils (Simpson 1973, 

Tankard 1974, 1975). Deposition of the Saldanha Formation clearly reflects a marine 

transgression in the Middle Miocene which succeeded the fluviatile deposition of the 

Elandsfontein Formation (described in the following section). The occurrences of these 

phosphatic exposures have been reported in the Hoedjiespunt Peninsula at Saldanha and on 

Langeberg (north of the map area), in the foundation excavations at Ysterplaat Air Force Base 

(east of the Table Bay) and in a quarry at Milnerton (Theron et al. 1992). The fossils indicated a 

Miocene-Pliocene age for the occurrences; however, Miocene marine sediments are probably 

more widespread in this area since rolled specimens of Neogene shark teeth are washed up on the 

Milnerton-Blouberg beach during winter storms (Theron et al. 1992). 

 

 

3.4.2.2 The Neogene Deposits 

Underlying the Quaternary sediments, west of Cape Hangklip, are Neogene deposits which occur 

below present sea level (Theron 1992). The distribution of these deposits is controlled, to a large 

extent, by the topography of the bedrock which, from borehole and geophysical logging usually 

lies below 50 m b.s.l (Rogers 1980, De la Cruz and Du Plessis 1981, Smith 1982, Woodborne 

1982, 1983, Timmerman 1988, Grindley et al. 1989). In the Cenozoic sediments of the Western 

Cape, the Neogene deposits include the Varswater Formation (Pliocene) underlain by the Late 

and Middle Miocene Saldanha and Elandsfontein Formations respectively (Table 4). The 

occurrence and lithological variations of this sequence are described in the following sections. 
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Varswater Formation is a marine deposit made up of very fine to medium silty sand that contains 

abundant small shells and shell fragments (Vandoolaeghe 1989). The formation constitutes the 

deposit of phosphatic sand which is internationally known for its rich Pliocene assemblage of 

vertebrate fossils (Hendey 1981a, b). Timmerman (1988) mapped the distribution of the 

Varswater Formation and found that this marine deposit is restricted to the western (i.e. seaward) 

parts of the major bedrock depressions east of Langebaan Lagoon and Saldanha Bay. 

 

The sediments of the Elandsfontein Formation are angular, fine to coarse clayey sands identified 

as fluviatile deposits in several boreholes within the study area (Rogers 1980, 1982; 

Vandoolaeghe 1989). This formation is characterized by peat and peaty layers; and sometimes by 

cycles of angular, quartzose, gravelly sand fining upwards to cohesive (often peaty) clays, as 

observed in the type section in a borehole on Elandsfontein, west of Hopefield (Rogers 1982). 

  

3.4.2.3 Other Cenozoic Deposits 

There exist a number of other deposits of Cenozoic age, which have no formal names because 

their occurrences are restricted or as a result of the lack of information relating to 

interrelationships of the sediments. These include silcrete, ferricrete, scree and pediment gravel, 

fluvial and marine terrace gravel (Theron et al. 1992). Silcrete and ferricrete are both formed 

near the surface by groundwater concentrating iron oxide and/or silica derived from underlying 

weathered rocks. Silcrete varies from a yellow to a light-grey, fine- to coarse- grained, gritty or 

conglomeratic rock. Silcrete generally occur directly on or in the neighbourhood of weathered 

Malmesbury rocks, except near Noordhock where buried silcrete beds were encountered in 

boreholes at several levels to as deep as 40 m below present sea level (Theron et al. 1992). 

Ferricrete, on the other hand, has a considerably wider distribution in the study area than silcrete, 

and occur in the soil either as loose nodules or fragments a few millimeters to several centimeters 

in diameter, or as more compact zones of variable thickness. Ferricrete occur at Plattekloof and 

De grendel, near Parrow, where it is found as a hard, dark-brown knobbly rock (Theron et al. 

1992) with honeycomb texture and more than one metre in thickness. Extensive scree deposits 

occur in the mountain chains of the Cape Peninsula which sometimes exceed 10 m in thickness 

and grade into pediment gravel and coarse-grained sands.  
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Figure 11: Selected geological cross-sections (lines indicated in figure 10) showing the inter-relationship of sediments in the study area  
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Figure 12: Litho-logs of some typical monitoring wells drilled at the UWC Test Site (vertical distance is in metres, horizontal distance is not to 
scale). The position of UWC Test Site is indicated in figure 47.
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Terrace gravels can be related to either fluvial or marine environments of deposition. 

Shand (1917) recognized three distinct terraces along the Eerste River near 

Stellenbosch. The oldest, 14 m above present river level, has a basal, partly cemented 

conglomerate which is being successively overlain by grit, sand and clay. The middle 

terrace is 6 m above the river level and is covered with sand and boulders. The 

youngest terrace, 4 m above present river level, is covered by dark alluvial sands. 

Along the Berg River and its various tributaries similar terrace gravels occur at 

intervals from Kylemore to Wellington from 15 to 30 m above river level.  

 

Along the coastline, from Saldannha to Betty’s Bay, occur gravel beds on raised-

beach terraces, of which several have been reported and described in the literature 

(Krige 1927, Haughton 1933, Gatehouse 1955, Lamming 1962, Parker 1968, Birch 

1968, Visser & Schoch 1973, Davies 1973, Fleming 1977, Theron 1984). These have 

sometimes cut into granite at various levels on the Postberg Peninsula and islands in 

the Langebaan Lagoon are covered by shelly gravel and pebbles (Theron et al. 1992). 

 

3.4.3 Geological history 

For much of the Peninsula the upper half is mainly Sandstone of the TMG, originally 

deposited by rivers up to 520 million years ago, overlying older Granite, which is 540 

million years old. The oldest rocks are on Signal Hill, north of Lion's Head, which 

consist of the Malmesbury Group's marine siltstones (560 million years old). Zircon 

crystals were used for dating these rocks, which formed part of the ancient 

supercontinent Gondwana.  For about 20 million years after the granite intrusion, the 

high ‘Malmesbury’ mountains and granites were gradually reduced by erosion to an 

almost flat surface, before the next cycle of sedimentation began. Then slowly-

meandering rivers dropped their loads of sand in deltas and along the beaches of a 

shoreline very different from what we see today (Norman & Whitfield 2006).  

 

About 250 million years ago – approximately 50 million years after the Cape 

sedimentation had ended – great welts of crust were seized by convulsions as the 

Cape Fold Belt was born.  The new generation of fold mountains shed their detritus 

into the Karoo basin to the north for 70 million years, until crustal stretching began 

and vast tracts of Gondwana were covered by the floods of Drakensberg basalt that 

surged up the tensional fissures (Tankard et al 1982).  As the stretching proceeds, and 
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Gondwana fragmented, at first the proto-Indian Ocean opened up and then the proto-

Atlantic Ocean, 125 million years ago (Noman & Whitfield 2006, McCathy & 

Rubidge 2005, Tankard et al. 1982).  Since Gondwana split up 130 million years ago, 

the Cape Flats has seen great changes, from high sea levels in the last few million 

years (which joined Table Bay to False Bay), to low sea levels as recently as 20 000 

years ago (the Last Ice Age) when Robben Island, Table Bay and False Bay were all 

part of the mainland (Krige 1927, Walker 1952, 1956). 

 

From geophysical evidence the sediments of the Malmesbury sequence accumulated 

partly on oceanic crust (De Beer 1983, De Beer et al. 1982) and the “Malmesbury 

Geosyncline” developed south and southwest of the Kalahari Craton about 980 to 830 

Ma (Burger & Coertze 1973, Hartnady 1987, Theron et al. 1992).  The earliest 

tectonic episode in the Saldanha sub-province (Hartnady 1969, 1987) preceded 

granitic intrusions dated between 630 and 500 Ma (Schoch 1975). Some of the granite 

intrusions show evidence of syn- to post-intrusive tectonism; and some of the 

youngest units of the Malmesbury Group may also post-date the earliest of the 

intrusive events (Theron et al. 1992). A broader perspective of the earlier tectonic 

episode in the Saldanha sub-province as well as the Cape Fold Belt and Cape Orogeny 

are documented and have been discussed exclusively in the literature (Hartnady 1969, 

1987, Schoch 1975, Sohnge 1983, Theron 1984, Theron et al. 1992). 

 

 

3.5 Summary 

The physical and geological characteristics of the study area have been described. The 

regional geology of the study area was summarised while the local and the 

lithological variations of the Cape Flats have been discussed in detail in this chapter. 

Aspects of hydrology and hydrogeology, groundwater use, and groundwater data 

availability, which are important for management planning in the region, need to be 

described. Therefore in Chapter Four existing and new information are discussed to 

define a hydrogeological framework for the Cape Flats. 
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CHAPTER 4: HYDROGEOLOGICAL FRAMEWORK 

 

4.1 Hydrological Situation  

This section deals with the evaluation of the hydrological characteristics of the study 

area in relation to groundwater resource management. Before discussion of 

management policies and impact on groundwater there is need to understand the 

conditions which prevailed previously in the study area. The most practical way to 

examine and compare water levels/potentiometric heads over time is the use of 

hydrographs as compiled from available data (for selected boreholes) and presented in 

this section.   

 

A rainfall analysis and time series for Cape Town is presented in Section 4.1.1, with 

the data tabulated and presented in Appendix 4.1 and 4.2. While consistent monthly 

records exist for climatic data, the monitoring wells in the study area do not show 

matching and consistent records. From available record on selected DWAF 

monitoring and private boreholes in the study area seasonal contour maps have been 

generated and are presented in the appendix (4.3).  

 

4.1.1 Climatic-hydrological conditions 

The climatic parameters are described and statistically interpreted. Long-term data are 

from the South African Weather Service in three stations (Cape Town 

Observatory/Airport, Somerset West and Kirstenbosch) and one measuring point 

(UWC test site) managed by the Western Cape Branch of the Department of Water 

Affairs, Bellville (see Table 5). There are more hydrological stations (managed by 

various organizations like the DWAF, CCT Catchment Monitoring, CSIR, etc.) in the 

study area, but for the quality and consistency of the datasets, they are not included in 

the interpretation and/discussion here. Only data from Cape Town 

Observatory/Airport (with complete climatic data) have been analyzed and interpreted 

in this study. Annual means of rainfall for other stations around Cape Town are as 

follows: Somerset West (576.1 mm), Kirstenbosch (1381.9 mm) and UWC (414 mm). 

The monthly values of precipitation in the Plain (the Cape Flats) are comparable and 

fluctuate in a similar pattern. Data from Kirstenbosch (located in the mountain-side) 

are higher and not comparable to the other stations. The annual difference can be 

attributed to the altitude. 
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4.1.1.1 Analysis of rainfall 

Rainfall data measurement started in 1841 at Cape Town Astronomical Observatory, 

which was later taken over by Cape Town International Airport observatory. In this 

write-up, the station will be referred to as Cape Town Airport. Precipitation data from 

1841-2006 measured at the Cape Town Airport were examined (Figure 13-16). The 

mean of total yearly rainfall over this period is 619.1 mm. Spatially averaged rainfall 

and temperature data were plotted to illustrate annual variability of rainfall in Cape 

Town. Figure 14 shows the mean of 10-year fluctuating in step-wise.   The monthly 

means of precipitation is as shown in Figure 15 indicating precipitation was not 

evenly distributed through the year and mostly in the winter months. Rainfall, 

minimum and maximum temperatures are related to show climate variability over the 

years, and to illustrate the need for data monitoring in order to assess climate impact 

on groundwater (figure 16).  

The plot of precipitation, minimum and maximum temperatures are shown in Figure 

16. The average values with highest records of rainfall and temperature (from 

available daily records 1961-1991) are tabulated in Table 6.   

 

 

Table 5: Rainfall stations within Cape Town Municipal used in this study 

Annual Rainfall (mm) Station Latitude Longitude Altitude 
(m) 

Period of 
Observation 

No. 
of 
years 

Maximum Minimum Mean 

Cape Town 
(SAAO)* 

33.97 18.6 42 1841-2006 164 1037.7 229.4 619.1 

Sommerset 
West 

34.15 18.85 10 1934-2006 71 1191.1 104.4 576.1 

Kirstenbosch 34.00 18.43 160 1914-2006 91 2295.9 893.6 1381.9 
UWC, 
Bellville 33.93 18.62 

42 2002-2006 4 662 393. 414 

*SAAO = South African Astronomical Observatory; UWC = University of the Western Cape (Test site) 
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Table 6: Summary of climatological data for Cape Town Airport (1961-1991) 

Temperature (° C) Precipitation (mm) Month 

Highest 
Recorded 

Average 
Daily 

Maximum 

Average 
Daily 

Minimum 

Lowest 
Recorded 

Average 
Monthly 

Average 
Number of 
days with 
>= 1mm 

Highest 24 
Hour 

Rainfall 

January 39  26  16  7  15  6  41  

February 38  27  16  6  17  5  27  

March 41  25  14  5  20  5  42  

April 39  23  12  2  41  8  39  

May 34  20  9  1  69  11  65  

June 30  18  8  -1  93  13  58  

July 29  18  7  -1  82  12  61  

August 32  18  8  0  77  14  56  

September 33  19  9  0  40  10  29  

October 37  21  11  1  30  9  53  

November 40  24  13  4  14  5  30  

December 35  25  15  6  17  6  21  

Year 41  22  11  -1  515  103  65  

 

Note: This climatological information is the normal values and, according to World Meteorological Organization 

(WMO), based on monthly averages for the 30-year period. A longer record of annual mean rainfall is presented in 

the following figures. 
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Figure 13: Variability of annual rainfall in Cape Town from a long-term record (1841-2006)  

 

 

 

 



 
 

61 

0

200

400

600

800

1000

1200

18
41

18
46

18
51

18
56

18
61

18
66

18
71

18
76

18
82

18
87

18
92

18
97

19
02

19
07

19
12

19
17

19
22

19
27

19
32

19
37

19
42

19
47

19
52

19
57

19
62

19
67

19
72

19
77

19
82

19
87

19
92

19
97

20
02

Y
e
a
rl

y
 r

a
in

fa
ll

 (
m

m
)

Annual rainfall (mm/a) 10yr Mean

 

Figure 14: Long-term rainfall in Cape Town with strong variability in the 10-year-means 
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Figure 15: Mean monthly variations of rainfall in Cape Town 
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Figure 16: Mean monthly values of climatic data in Cape Town (Note: Rainfall averaged from 

1841-2006; Temperature 1933-2006) 
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In Cape Town, the highest amount of precipitation fell in 1892 (1037 mm), the lowest 

in 1935 (229 mm). The maximum downpour is in June, while precipitation is in its 

minimum in February as shown in the mean monthly variations (see figure 15). In 

order to assess rainfall fluctuations, time series of yearly rainfall data of Cape Town 

Airport was analysed. The slope is almost nil and not very distinct when the entire 

period (1841-2006) was considered. However, the features of interest (e.g. positive 

and negative trend) become evident when the entire time series was analysed in 

segments as shown in Figure 17 (a,b,c). 

 

Discussion of rainfall analysis 

A segment of about 50 years (1841-1891) in the Cape Town Airport series, leads to a 

significant positive trend (Figure 17a), whereas a significant negative trend is noted 

when the 50 years segment is taken at the end of the record (Figure 17c). A change of 

mean was obvious when the average of annual rainfall for the entire record was 

calculated decade by decade (as shown in Figure 14). This made the pattern and 

variability of the precipitation in Cape Town obvious. The average of annual rainfall 

was increasing until 1891 as was shown in Figure 17a.   
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Figure 17 (a,b,c): Cape Town rainfall illustrating trends and mean of decades in segments of 

50 years 

 

From 1892 the trend showed continuous decrease up till 1941 but there was a 

“climatic jump” about 1941-1942. Such climatic jump occurred much later in the 

Sahel of Western Africa (about 1969-1970) as reported in the study by Hubert & 

Carbonnel (1987). This coincided with the period when the probability of a sudden 

change in the mean reached a maximum. Since then there has been much fluctuation 

in the pattern of rainfall in the study area. This is shown by the ‘rising’ and ‘dropping’ 

averages of the yearly rainfall (Figure 18). The figure shows that the years 1921-1941 
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were relatively dry periods, in which the least yearly rainfall (229.4 mm in 1935) was 

recorded. A similar pattern is observed lately (1999-2003) with the exception of year 

2001 that showed a wetter record (784 mm). This is further illustrated in the yearly 

fluctuations and departure of yearly rainfall from the mean (Figure 19). The plots of 

clearly show the wet and dry years or decades. Consequently, this fluctuation in the 

rainfall pattern has serious implications for recharge and water management issues in 

the study area.  
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Figure 18: Long-term rainfall in Cape Town with moving average 
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Figure 19: Cape Town rainfall illustrating the yearly departure from the mean 
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Daily rainfall was analysed for Cape Town Airport and UWC stations because of the 

rather complete records. The use of one day as a time step is based partly on the 

availability of data: daily rainfall data are measured at many stations but there are 

missing gaps in other stations. However, only records of the last five years were 

analysed for Cape Town Airport and UWC (Figures 20 and 21) in order to study in 

detail (using daily records) the low rainfall of this period relative to other years and 

the fluctuating pattern. Nevertheless, daily rainfall measurements still have their 

defects due to the convective nature of the rainfall pattern. The figure for daily rainfall 

represents in most cases, one rainfall event (i.e. one downpour only), because the rain 

gauges are usually read in the mornings (8.00 a.m. in all the stations). The rainfall 

occurring in the mid-day and extending in some cases into the night are read and 

attributed to the reading of the following day.   
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Figure 20: Monthly mean of daily rainfall in Cape Town (2003-2005) 
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Figure 21: Monthly daily average rainfall in UWC Test Site (2002-2004) 

 

 

 

 



 
 

66 

Monthly average of daily rainfall data from the University of the Western Cape 

(UWC) test site analyzed shows the daily rainfall were low in 2002-2003 compared to 

that in 2004 (Figure 21). The response of the water level to the daily rainfall is 

therefore necessary to illustrate impacts of climate variability. This is discussed in 

detail in Section 5.4. 

 

4.1.1.2 Temperature and Duration of sunshine 

Figures 22 and 23 show the hydrograph of temperature and Appendix 4.2 the means 

of minimal and maximal values in Cape Town. Mean annual temperatures (1933-2006) 

are 13.0 and 22.3 °C for minimum and maximum respectively. The highest 

temperatures occur in the month of December (29.2 °C) while the lowest is in 

July/August (7.0 °C). Temporal variation is similar at the other stations. The time 

series analysis is described in Section 4.1.1.4. 
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Figure 22: Annual mean of daily maximum temperature in Cape Town 
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Figure 23: Annual mean of daily minimum temperature in Cape Town 

 

 

 

 

 



 
 

67 

4.1.1.3 Potential and actual evapotranspiration 

Theory and methods applied in the study area 

 Evaporation is an important factor in hydrology and climatology. It is sometimes 

necessary and useful to make a distinction between ‘evaporation’ and 

‘evapotranspiration’. The former is used to describe water loss from water and bar 

ground surfaces while the latter is used for water loss from vegetated surfaces where 

transpiration is of major importance.  

 

The term potential evapotranspiration (PET) was introduced by Thornwaite (1948) as 

equal to “the water loss which will occur if at no time there is a deficiency of water in 

the soil for vegetation”. The majority of water loss due to evapotranspiration takes 

place during the summer months, with little loss in the winter. Because there is often 

not sufficient water available from soil moisture, the term actual evapotranspiration is 

used to describe the amount of evapotranspiration that occurs under field conditions 

(Fetter 1994).  

 

From the definition stated above, potential evapotranspiration is a maximum water 

loss or upper limit of actual evapotranspiration, AET (Domenico & Schwartz 1998). It 

is a temperature-dependent quantity which reveals the measure of the moisture 

demand for a region. During most of the year, the actual evapotranspiration is 

generally less than the potential rate (Domenico & Schwartz 1998). This is usually 

demonstrated by the ratio of precipitation to potential evapotranspiration. In arid 

regions, for example, this ratio may be < 0.1. In these areas, precipitation is not 

sufficient to meet the water demands so that very little grows naturally.  

 

According to Domenico and Schwartz (1998), for any irrigation scheme to be 

successful in dry regions, water must be supplied at the potential rate. When the ratio 

of precipitation to potential evapotranspiration ranges from 0.2 to 0.6, it is indicating a 

need for irrigation water in crop production. When the range is from 0.8 to 1.6 a 

rather well- balanced situation is indicated and, in some cases, a water surplus. Hence, 

the presence or absence of vegetation in a region is thus a reflection of the 

precipitation–potential and evapotranspiration ratio. 
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Potential evapotranspiration and evaporation can be determined using different 

methods and formulae. The uncertainties and problems in determining these values 

are well known. They are naturally changeable depending on geological and 

hydrogeological values (thickness, permeability of a layer etc.). Hence, there is a 

source of randomness, and that is why statistical methods (mean and deviation) and 

laws of spatial distribution have to be taken into consideration.   

 

Water tables near the soil surface often exhibit diurnal fluctuations, declining during 

daylight hours in response to evapotranspiration and rising through the night when 

evapotranspiration is virtually zero. This is accordance with the assumptions of White 

(1932) who developed a formula for estimating evapotranspiration: evapotranspiration 

is usually taken as zero between midnight and 4:00 AM. Based on this assumption h' 

is defined as the hourly rate of water table rise during the night hours when no 

evapotranspiration takes place. The total amount of groundwater discharged during 

one day, VET, was then calculated using the following relationship (Fetter 1994, Lautz 

2008): 

 

VET = Sy (24 h' + s)                                                                                            (4.1.3.1) 

 

where Sy is specific yield and s is the water-level elevation at midnight at the 

beginning of a 24-h period minus the water level elevation at the end of the period.  

Under field conditions it is impossible to separate evaporation from transpiration 

totally. Indeed, the general concern is with total water loss, or evapotranspiration, 

from a basin.  

 

Evapotranspiration may also be estimated by creating an equation of the water 

balance of a catchment (or watershed). The equation balances the change in water 

stored within the basin (S) with inputs and exports: 

                                                                                   (4.1.3.2) 

where ∆S is change in soil water storage.  
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The input is precipitation (P), and the exports are evapotranspiration (which is to be 

estimated), streamflow (Q), and groundwater recharge (D). If the change in storage, 

precipitation, streamflow, and groundwater recharge are all estimated, the missing 

flux, ET, can be estimated by rearranging the above equation (Christiansen and 

Awadzi 2000). Another methodology to estimate evapotranspiration is the use of the 

energy balance. 

 

                                                                                            (4.1.3.3) 

 

where λE is the energy needed to change the phase of water from liquid to gas, Rn is 

the net radiation, G is the soil heat flux and H is the sensible heat flux (Hague 2003). 

Several researches (Bastiaanssen et al. 1998, 2005, Allen et al. 2005, Su et al. 2005, 

Gowda et al. 2009) have successfully applied the surface energy balance method to 

estimate crop water use in irrigated areas. The most general and widely used equation 

for calculating reference ET is the Penman equation. The combination methods were 

developed by other researchers (Morton 1978, 1983, Le Meur and Zhang 1990) and 

extended to cropped surfaces by introducing resistance factors (Kovacs 1987, Lu et al. 

2005, Stoy et al. 2006). It is now generally referred to as the standard FAO-56 

Penman-Monteith equation. 

 

The Penman-Monteith variation is recommended by the Food and Agriculture 

Organization (Allen et al. 1998). 

The author has applied models based on FAO Penman-Monteith equation developed 

by FAO (CROPWAT 8.0) to estimate potential evapotranspiration. A model 

developed by Cranfield Univeristy in the UK (WASIM) was used to estimate actual 

evapotranspiration. The model requires daily reference evapotranspiration and rainfall 

data. Wasim incorporates potential evapotranspiration calculated using FAO 56 

Penman-Monteith equation with daily rainfall data and soil-irrigation data to generate 

actual evapotranspiration.  

CROPWAT version 8.0, on the other hand, provides an easy and convenient source 

by which the regional evapotranspiration anywhere in the world, especially where the 

supply of water is less abundant, can be estimated (Allen et al. 1998). The FAO 

Penman-Monteith equation is a close, simple representation of the physical and 

physiological factors governing the evapotranspiration process.  
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The equation is given as:  

                                                                                        (4.1.3.5) 

where 
  
ETo reference evapotranspiration [mm day-1], 

Rn net radiation at the crop surface [MJ m-2 day-1], 

G soil heat flux density [MJ m-2 day-1], 

T mean daily air temperature at 2 m height [°C], 

u2 wind speed at 2 m height [m s-1], 

es saturation vapour pressure [kPa], 

ea actual vapour pressure [kPa], 

es - ea saturation vapour pressure deficit [kPa], 

∆  slope vapour pressure curve [kPa °C-1], 

γ  psychrometric constant [kPa °C-1]. 

 

Several studies have compared evapotranspiration estimates derived theoretically and 

from direct measurements. Actual evapotranspiration is best measured instrumentally 

by complex weighting lysimeters (Calder et al. 1986, Essery and Wilcock 1990). 

Average daily potential evapotranspiration, monthly averages of maximum and 

minimum temperatures, mean relative humidity, wind speed, sunshine hours, 

radiation data as well as rainfall and ETo calculated with the FAO Penman-Monteith 

method are listed appendix 4.4. 

 

Discussion of results and implications for groundwater recharge  

From estimates in this study, the average annual potential evapotranspiration is 1360 

mm per year in the Cape Town area and this exceeds the average annual rainfall 

generally by a factor of 2.5. Figure 24 shows potential evapotranspiration and actual 

evapotranspiration for Cape Town (the calculated values are in Appendix 4.4). As 

expected, the evapotranspiration PET stays relatively low during the months of May-

September but increases, to a maximum during December–January and the actual 

evapotranspiration correspondingly decreases, to a minimum during December–

January, because there is not enough water to evaporate. 
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Station: Cape Town
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Figure 24: Rainfall, potential and actual evapotranspiration in Cape Town (2000-2009) 

 

From the figure three things are obvious (indicating the time periods): 

(i) period when precipitation equals potential evapotranspiration 

(ii) period when precipitation is less than potential evapotranspiration 

(iii) period when precipitation is greater than potential evapotranspiration.  

 

Figure 25 illustrates the variation of monthly actual and potential evapotranspiration 

with rainfall for Cape Town while the values as calculated in the water balance using 

WaSim modeling software (Hess and Counsell 2000) are shown in Appendix 4.5. The 

values of potential evapotranspiration are higher than the actual evaporation in the 

summer months as shown in Figure 25. The average daily PET values are similar for 

the years (2000-2009) as shown in figure 26. These values are much higher than the 

values for precipitation in the less raining months, such that the precipitation 

evaporates completely and there should be no groundwater recharge. Groundwater 

recharge in the study area takes place during the rainy season (May-August), when 

there is a ‘surplus’ of precipitation. Rainfall during the months of April and 

September are usually not of high intensity like these months (May-August) to 

guarantee such surplus. Most rainfall in Cape Town occur as relatively high intensity 

rain events, often range from 10 to 61 mm per day during the raining months. 
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Therefore, on a daily basis, rainfall can exceed potential evapotranspiration within 

those months (May-September) and thus potentially recharge the aquifer. In general, 

rainfall of high intensities results in surface runoff and sometimes, flooding episodes 

are recorded in part of the municipal area.  
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Figure 25: Variation in monthly evapotranspiration for Cape Town Airport (2000-2009) 

Note: AET = Actual evapotranspiration, PET = Potential evapotranspiration, P = Precipitation 
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Figure 26: Average daily values of PET for Cape Town over a 10-year period 
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During the summer months in Cape Town, the actual evapotranspiration is generally 

less than the potential rate, simply because of the lack or insufficient rainfall or 

possibly because the soil-moisture storage capacity is limited. In months when the 

potential evaporation is less than the rainfall, some of the demand will be met by 

drawing upon moisture stored in the soil. When available soil-moisture is depleted, 

the actual evapotranspiration will be limited to the monthly precipitation (Fetter 1994, 

Domenico & Schwartz 1998).  

 

4.1.2 Climatic-hydrological balance 

4.1.2.1 Surface run-off 

Runoff is a significant component of the water budget, which has its impact factors 

similar to that of evapotranspiration. However, the formation mechanism of runoff is 

completely different from that of evapotranspiration. Surface runoff occurs when the 

precipitation rate exceeds the soil’s infiltration capacity and increases with increasing 

amounts of precipitation Runoff amounts tend to vary depending on the features of 

precipitation and land surface. In the present study area, runoff measurements are 

somehow limited as there are not many rivers and streams running through the area. 

The main rivers flowing through the study area are Kuils and Eerste Rivers located at 

the eastern end. Others streams are Lourens, Elsieskraal, Sand, Lotus, Diep, Salt, 

Liesbeek, Sir Lowry’s pass, etc. Data were available from the Department of Water 

Affairs and Forestry for Eerste, Lourens and Diep.  

 

There was a failed attempt to gauge flow in the drainage canals of the Cape Flats, as 

there is no continuous record of flow magnitude as such, its relationship to rainfall 

intensity is little known. The maximum observed flow rate in the Lotus river system 

at its entry point into Zeekoevlei, using manual measurement was 11,000 m3/h in 

response to rainfall intensity of 50 mm/day at the height of the rainy season. The 

corresponding figure for the upper stretches of the Vygerkraal River, at its crossing 

with Hein road, was estimated to be at 2,000 m3/h. The “baseflow” component the 

Great Lotus River was of the order of 400 to 1,000 m3/h and was maintained during 

the wet season (Gerber 1981). With knowledge of the baseflow in the Great Lotus 

River, discharge rate per borehole in this area was estimated at 2.4 × 10-3 m3/s (Gerber 

1981). This could not be updated as there are no current data available for the Great 

Lotus River. 
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4.1.2.2 Hydrologic Balance 

Under natural conditions, an aquifer is usually in a state of dynamic equilibrium 

(Theis 1938). A volume of water recharges the aquifer and an equal volume is 

discharged. However, the amount of water that recharges an unconfined aquifer 

(according to Fetter 1994) is determined by three factors:  

(i) the amount of precipitation that is not lost by evapotranspiration and 

runoff and is thus available for recharge; 

(ii) the vertical hydraulic conductivity of surficial deposits and other strata in 

the recharge area of the aquifer; and 

(iii) the transmissivity of the aquifer and potentiometric gradient, which 

determine how much water can move away from the recharge area.  

 

Usually, groundwater recharge can be determined with the help of the climatic-

hydrological conditions using the following equation: 

 

Precipitation = evapotranspiration + groundwater recharge + surface runoff  

 

The WaSim water balance simulations have been used with the climate data available 

in Cape Town. WaSim software package (available from Cranfield University, 

www.cranfield.ac.uk/sas/naturalresources/research/projects/wasim.jsp) is a daily 

water balance model that uses rainfall and PE to simulate the soil water relationships 

in response to different management strategies. The model requires daily reference 

evapotranspiration and rainfall data. The reference evapotranspiration required by the 

model was calculated from daily climate data using the FAO56 Penman-Monteith 

method. The author has applied CROPWAT version 8.0 to calculate potential 

evapotranspiration (as discussed in section 4.1.1.3).  

 

Climate data was imported from text files and screened for missing or out-of-range 

data. Data errors are then flagged and can be edited with WaSim. Only Cape Town 

metereological station has been considered in this model due to climate data 

requirements for using CROPWAT. It is only the more recent data (2000-2009) that 

has complete daily record of rainfall, minimum and maximum temperature, humidity, 

wind speed and sunshine hours.  The daily averages of climate parameters input into 
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the model to calculate PE are in the appendix (Appendix 4.5a). Estimates of runoff, 

precipitation, actual evapotranspiration and recharge (as deep percolation) of Cape 

Town station are listed in appendix 4.5(a). The parameters of daily and monthly water 

balance for Cape Town for a period of ten years (2000-2009) are in appendix 4.5b. 

The groundwater recharge estimation for the present study area using various methods 

is discussed in the next chapter (Chapter 5). 

 

Discussion 

Meteorological, soil physical and groundwater information have been used to estimate 

the different components of the water balance for Cape Town as presented in 

appendix 4.4 and 4.5. The combination of parameters and these methods proved 

useful in similar setting (Cook et al. 1998, Anurage et al. 2006); and each of the 

models used here have been tested under different scenarios. Mean annual rainfall for 

the period (2000-2009) is 520 mm, with the highest and minimum values as 680 and 

376 mm respectively. Annual PET were summed from the the daily calculations 

generated by CROPWAT and are higher than AET in order of nearly 2.5. The daily 

averages of PET (Figure 26) are more useful and illustrative.  

 

Most of the rainfall is lost as AET. The analysis of the model results show tht on 

monthly basis, AET is nearly equal to PET in wet months (as shown in Figure 26) and 

about 10 - 25% of PET in dry months. These findings are in line with the water 

balance results of Christianse and Awadzi (2000) showing AET as equal to PET in the 

wet seasons and about 25% of PET in the dry season. Low AET occurs in periods 

with limited moisture as shown in the monthly values in the Appendix. The relatively 

higher positive change in soil and groundwater storage occurred in 2007 and 2008 

while the most negative was year 2000 (with only 376 mm of rainfall). The average 

annual recharge occurring each year were taken as infiltration beyond the root zone 

regarded in the water balance model as deep percolation. These values range from 

zero (in year 2000) to 27 mm (year 2008) respresenting about 4.3% of mean annual 

rainfall. The method presented gives a quantitative indication of vertical movement of 

water of the represented soil types, neglecting horizontal water movement. No 

consideration for lateral flow or inter flow.  
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Irrigation 

The Department of Water Affairs keeps records of irrigation water use in the study 

region. In practical field observations, the farmers in the Cape Town area irrigate their 

crops, particularly during the dry summer months but there are no consistent data to 

show the extent of irrigation for the study area. Assuming a conservative upper limit 

of 1000 mm mean annual rainfall over the study region of 630 km2, the total volume 

of rainfall is 6.30 ×1011 m3/year. There are 211 irrigation permits within the study 

area (as at February 2006). Assuming a conservative, 60 day long irrigation season, 

the total amount of returned irrigation water is 1.03 × 108 m3/year or 0.163 % of the 

rainfall. Even if the irrigation season was 365 days long, irrigation water would only 

amount to 0.2 % of the rainfall over the study area.   

 

The interplay of calculated evapotranspiration, pan evaporation and crop irrigation 

requirements are useful in estimation of total potential recharge and a regional water 

balance. With the general understanding of the climatic-hydrological balance 

discussed above combined with the hydrogeological characteristics to be determined 

in the following section it should be possible to conceptualise and model groundwater 

flow in the Cape Flats. To start with, the general behaviour of coastal aquifers and 

water table characteristics in the Cape Flats are presented in the following section to 

enhance a conceptual modeling. 
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4.2 Hydrogeological situation  

4.2.1 Characterization of coastal aquifers  

Coastal aquifers can be a sustainable source of fresh water if correctly managed and 

exploited according to recharge, well pattern and local hydrogeological characteristics. 

Coastal aquifers share with continental aquifers many hydrogeological characteristics 

(Custodio 2002). The main difference is the risk of water quality deterioration by 

salinity increase. This was attributted not only to natural or induced mixing with 

present sea water, but also to the possible existence of old marine water in deep 

aquifers and aquitards, and to the generation of saline waters and brines in flat areas at 

an elevation close to that of current sea level. Current research has shown it is 

possible to devise coastal aquifers exploitation plans to limit and correct salinization 

problems (Walraevens 2000, Panteleit et al 2001, Custodio 2002, Pandit 2004). 

 

Coastal aquifers are highly valuable as a freshwater resource, and as a regulating and 

emergency water reserve, since they are placed at the lower reaches of river basins, in 

areas that are often flat, with scarce chances to develop other water projects, and 

where population, its economic activities and tourism concentrate. In general, coastal 

aquifers show geological characteristics that may be derived from sedimentation in an 

interfacial environment and the coastal processes. The general behaviour of coastal aquifers is 

conditioned by the fixed hydraulic head imposed by the sea and the greater density of sea 

water (Custodio 2002). In most coastal aquifer systems groundwater flows naturally towards 

the sea driven by the head potential created by inland recharge. Since mean sea water level is 

practically constant there is no induced flow in it, except for the short range, periodical tidal 

fluctuations. The equilibrium conditions can be described by the Ghijben-Herzberg (G-H) 

principle when a sharp interface separates freshwater and seawater. The interface depth is 

α times the freshwater head, both referred to the local mean sea water elevation.  

α means the specific weight  

(γ) difference between fresh (f) and salt (s) water:  
 

                                                                                        (4.2.1) 

where γf is specific weight for fresh water and γs is specific weight for salt water. 

The value of α is approximately 40 for normal circumstances (Custodio & Bruggeman 

1987). 
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Freshwater flow influences salinity stratification. The resulting iso-concentration 

surfaces start near the coastline and deep into the ground down to the aquifer system 

lower boundary. This produces the classical saltwater wedge or the floating 

freshwater lens. The situation is more complex and has been described in three-

dimensional heads (Custodio 2002). According to Custodio (2002), a series of 

circumstances favour groundwater quality degradation in coastal aquifers by 

introducing an excess of dissolved salts. Sea water is the most important but not the 

only source of salinity. Mixing with only 2 % seawater produces a noticeable 

deterioration. If the fraction is 4 % there is a serious impairment for many uses. If it is 

6 % the water is almost unusable but for cooling and flushing purposes.  

 

Real situations may greatly differ from the very simplified conditions under which the 

principle applies, but even in such cases it is useful to describe and quantify actual 

behaviour, if it is correctly applied. This means that the actual saltwater head has to be 

considered, according with the principle of Hubbert (1940) of pressure equilibrium of 

both fluids at each side of an interface, especially during transient situations or when 

saline water is being pumped out directly or mixed with freshwater. Relevant 

examples are documented in Van Dam (1997), Reilly & Goodman (1985), Custodio 

& Llamas (1983), Custodio & Bruggeman (1987) and Falkland & Custodio (1992).  

Figure 27 shows the schematic freshwater-saltwater relationships in an idealized 

homogenous coastal water table and confined aquifers.  

 

The conditions prevailing in the Cape Flats aquifer are such that the total dissolved 

solids concentration ranging from few hundreds of milligrams per litre to several 

thousand with corresponding range of density between 1000 and 1025 kg/m3. The 

aquifer discharges into the sea hence mixing occurs as a result of molecular diffusion; 

the most effective mechanism of mixing, large turbulence may not take place. 

Consequently, the boundary between freshwater and saltwater becomes sharp and the 

thickness of the transition zone is usually ignored (Gerber 1981). Since the density of 

the sea water is greater than that of freshwater, the former penetrates coastal aquifers 

to some extent, underlying the lighter freshwater which flows above the sloping 

interface. Generally, the location of this interface is important in the development of 

coastal groundwater resources since the intrusion of sea water contaminates both the 

freshwater and the aquifer. The freshwater-saltwater interface in the Cape Flats and its 
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relation to groundwater quality is discussed in Section 6.6.7.  In the application of this 

to the Cape Flats, the closest approximation to what obtains at the coastline of the 

False Bay is illustrated in Figure 28. However, it is necessary to first have knowledge 

of the water table conditions and a conceptual understanding of the boundary 

conditions. These are discussed in the following section.  

 

 

 
 

 

Freshwater-saltwater relationships in an idealized, 
homogeneous coastal water table aquifer in which 
main recharge comes from other areas to the right- 
hand side. First figure shows the sharp interface case: 
no mixing zone and steady saltwater. ‘a’ is for z û h, 
being h the water table elevation and z the depth of 
the interface; ‘b’ is for true heads along the interface. 

 

Figure 27: Freshwater-saltwater relationships in an idealized, homogeneous coastal water 

table aquifer 

 

 

 

Figure 28: A schematic representation of the coast around the False Bay 
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4.2.2 Occurrence of groundwater in the Cape Flats  

4.2.2.1 Water table behaviour 

A pilot abstraction study conducted for the Cape Flats Groundwater Development 

Pilot Abstraction Scheme (1983-1985) revealed the enormous groundwater potential 

and water table behaviour of the Cape Flats aquifer. The scheme was established in 

Mitchells Plain by the Department of Water Affairs in cooperation with the City of 

Cape Town Municipal Council with the objective to test the aquifer under 

concentrated stress conditions in an urban environment. Groundwater withdrawal over 

a period of 35 months at an average rate of 162 m3/day from ten boreholes sited 

within 1 km2 induced aquifer stress (a statistical significant drawdown) over a 

maximum area of about 8.5 km2. A cone of depression with a maximum diameter of 

3.3 km and a maximum estimated depth at its centre of 4 m developed. A mean 

annual yield of 4.1 Mm3yr-1 was produced from the ten production wells in the period 

May 1985 to April 1988. The yield, drawdown and constant discharge rate of each of 

the wells are discussed in Section 4.2.3.4. Maximum drawdown occurred during the 

month of May 1987 (Vandoolaeghe 1989). The cone of depression contracted 

cyclically to the minimum after the winter recharges. The combination of reduced 

evapotranspiration and recharge therefore exceeded abstraction during the winter 

months. According to Vandoolaeghe (1989), the implication is that the pilot test took 

place during an above-average recharge cycle (rainfall at Cape Town airport was near 

or far above average of 534 mm/year from 1983-1987). 

 

In general, the observed regional water table decline (according to Vandoolaeghe 

1989) was not as large and extensive as expected for the given abstraction volume for 

two reasons: 

i. there was evidence of higher than average recharge recorded as taking place during 

the test period. This is evident from the work of Timmerman (1987) where a net 

recharge, calculated as a percentage of total precipitation for a 100 mm sandy soil 

profile using the modified Penman method and meteorological data at the Cape Town 

Airport, range from 14.6-36.9 % (1982-1987). 

  

ii. there was evidence of favourable storage conditions, suggesting that the effective 

porosity, especially of the Springfontein sands is higher than generally accepted value. 
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S-values of the order of 30 % for well-sorted and rounded, fine to medium sand was 

estimated by Morris & Johnson (1967); although Gerber (1981) later calculated the 

mean specific yield value of 12 %. This was regarded as grossly under-estimated in 

the work of Vandoolaeghe (1989). According to Vandoolaeghe (1989), there was the 

evidence of artificial recharge resulting from leakage of the Sewage Works 

maturation ponds. This, in addition to the suspected upward leakage from the 

fractured Malmesbury aquifer, may have contributed to the subdued drawdown during 

the pilot abstraction test. 

  

 4.2.2.2 Conceptual hydrogeological model 

The aquifer configuration and flow direction in the Cape Flats is presented in Figure 

29. A general representation indicates flow from western and southeastern direction to 

the coast. Recharge to the aquifer takes place readily since the aquifer is mostly 

unconfined and the whole area is entirely flat plain. Obviously, exposures in the 

mountainous areas bordering the aquifer both west and east represents where recharge 

is also taking place. The assumptions applied in the conceptual model of the aquifer is 

that all flow are regionally unconfined and two-dimensional with negligible vertical 

components; flow across the aquifer boundaries is in a direction normal to the 

boundary.   

 

The assumptions are based on the data presented by Henzen (1973) and Gerber (1976, 

1981), which show water table conditions to be a reasonable concept at regional scale, 

although water may be semi-confined locally where the primary water-bearing zone is 

capped by small, local and discontinuous deposits of low permeability (Gerber 1981, 

Wright & Conrad 1995, Fraser & Weaver 2000). To the south-east, semi-confined 

conditions may be created by clay lenses and subsurface outflow from the aquifer 

takes place across the northwestern boundary where the Cape Flats sands is in 

hydraulic contact with the peninsula granite. The entire region is underlain by the 

impermeable Malmesbury aquifer. The assumptions that the bedrock is regionally 

impermeable may be void locally especially where the Malmesbury aquifer has been 

reported fractured (e.g. near the Sewage Works maturation ponds, where an upward 

leakage from the Malmesbury into the Cape Flats aquifer was observed, 

Vandoolaeghe 1989). 
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Discharge of groundwater by evapotranspiration is likely where depth to groundwater 

table is relatively shallow. Information about root penetration is scarce (probably due 

to inadequate research efforts and interest). However, some acacias are known to be 

able to reach greater depths in search of soil moisture (Fraser & Weaver 2000).  

Extensive calcrete and silcrete sheets in some parts of the Cape Flats provide ideal 

conditions for perched water tables. For instances, in most areas depth to the water 

level in a number of boreholes is less than 3 m. There are a number of Nature 

Reserves (Core Flora Conservation areas) within Cape Town municipality, mostly 

located on the Cape Flats. These findings may therefore indicate that a significant 

amount of soil water is consumed by the available vegetation, in addition to the low 

annual rainfall (mostly <500 mm in recent years) and loss of moisture by vapour 

transport are also contributing factors to the generally low recharge estimates.  
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Figure 29: Hydrogeological cross-section and conceptualization of the Cape Flats (inset: indicate the position of the cross-section) 
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4.2.3 The Cape Flats aquifer properties  

 4.2.3.1 Aquifer parameters in the study area 

The greater Cape Town Metropolitan Area lies on one of the most extensive sand aquifers in 

South Africa, and the supply potential of groundwater from this aquifer is highly significant.  

This extensive sand aquifer, called the Sandveld Group is hydrogeologically divided 

(according to Meyer 2001) into four main units: the Cape Flats unit, the Silwerstroom-

Witzand unit in the Atlantis area, the Grootwater unit in the Yzerfontein region and the Berg 

River unit in the Saldanha area. Yield analysis of about 497 boreholes in the Sandveld Group 

indicates that 41 % of boreholes yield 0.5 m3/day and less while 30 % yields 2 m3/day and 

more (Meyer 2001). 

 

The static water level in the Cape Flat aquifer occurs at shallower depth (about 2 m) than the 

weathered Malmesbury. There are no indications that groundwater occurrence is controlled by 

local fractures or fracture zones. It would have been more realistic to consider a common 

water table assuming that all the aquifer systems are hydraulically connected through relict or 

fresh fracture zones. Enhanced weathering in the unsaturated zones as well as saturated zones 

produces a clay-rich material of lower permeability and is responsible for apparent semi-

confined conditions in the Cape Flats and weathered (bedrock) aquifers. Generally, 

permeability contrast among the various layers determines whether the aquifer systems will 

react as a confined or unconfined condition. However, pumping test results suggest that the 

weathered Malmesbury aquifer is more transmissive than the weathered crystalline rock 

aquifers implying unconfined conditions. Table 7 describes the hydrogeological properties of 

the Sandveld group aquifer (after Meyer 2001).  

 

The potential yield within the different rock types of the Sandveld Group (as shown in Table 

7) is highest in Berg River followed by the Cape Flats, Silwerstroom and lowest in 

Grootwater. The high yield in the Berg River valley may be associated with recharge through 

alluvium; borehole yield of up to 15.5 m3/day are obtained where recharge through alluvium 

is evident as compared with the average borehole yield of 3.7 m3/day where alluvium does not 

occur (Meyer 2001). Comparison of the underlying metamorphic (Malmesbury) bedrocks 

shows variations in yield due to large argillaceous materials and thus incompetent nature of 

many lithological units and overall structural complexities. Notable exceptions of high yield 

in the Malmesbury Group are documented in Meyer (2001) as areas where groundwater 

recharge into the arenaceous units takes place from overlying alluvium, sites in and along 
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dislocation zones, areas where the more arenaceous units of the Malmesbury Group rocks are 

located in hydrogeological association with the TMG, and where contact zones with granite 

bodies, providing favourable conditions for groundwater recharge, exist. The following 

section describes pumping tests as carried out under the present study.  

 

Table 7: Hydrogeological properties of the Sandveld group aquifer 

Aquifer unit EC 

(mS/m) 

Potential 

groundwater 

yield (106 m3/a) 

Transmissivity 

(m2/day) 

Recharge 

(%)* 

Storage 

(106 m3) 

MAP 

(mm) 

Cape Flats 60-135 15 +32-620 +16-47 1500 +619 

Silwerstroom 

Witzand 

80-110 6 50-1300 15-35 400 360** 

Grootwater 30-250 3.5 100-1000 10 250 263*** 

Berg River <100 36 200-1000 15 6000 294**** 

MAP = Mean Annual Precipitation 
*% of the MAP    +Current data (2005-2007) 
Data confirmation: **Lamming 1999  ***Timmerman (1986)    ****Timmerman (1985) 

 

4.2.3.2 Pumping tests  

Pumping tests are commonly used to better understand the aquifer system, to quantify 

hydraulic characteristics and to assess yield. However, to determine the hydraulic 

characteristics as well as the relationship between yield (pumping rate) and drawdown, data 

over longer time periods are required. Typical pumping data during recent pumping tests are 

listed in appendix 4.6 and previous records in appendix 4.7. A log-log plot of drawdown 

versus time for two pumping test sites is given in Figure 30. Wells used for pumping test (in 

the two sites) and other exploited wells in the CMA are shown in Figure 31. Figure 30(a) 

shows pumping test results from boreholes in iThemba Labs demonstration site (located in 

Faure)  tapping the Cape Flats aquifer; while Figure 30(b) illustrates the close agreement 

between two pumping tests on UWC5 conducted in two different seasons (November and 

March, respectively). Figure 30(c) compares pumping test data from the three boreholes.   
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Figure 30: Results of pumping tests conducted on the Cape Flats aquifer and the underlying 
Malmesbury shale aquifer during 2006-2007 on a log-log plot 
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Figure 31: Wells with data on the exploited formation. Symbols represent the well location while 
numbers indicate the well identification.  
 

 

The drawdown plot for borehole 5 at UWC (UWC 5) shows a straight line suggesting linear 

flow. The overlying weathered horizon provides storage for the bedrock aquifer (Malmesbury 

Shale). For borehole 4 (UWC 4) the curve can be fitted to a Theis type curve suggesting a 

radial flow pattern, indicating homogeneous conditions in the Cape Flats aquifer, and 

generally hydraulically similar to those of a porous medium with good storage characteristics 

in the deeply weathered zone. In spite of similar pumping rates in the two wells, at 0.5 min 

after pumping started (Figure 30a), the drawdown in borehole 5 (UWC 5) was about 0.25 m 

but 1.54 m in borehole 4 (UWC 4). This difference indicates that the transmissivity is higher 

in borehole 5 than in borehole 4.   
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4.2.3.3 Computation of aquifer transmissivity and storage coefficient 

The time-drawdown pumping test data were available for only three wells at two sites: UWC 

test-site (UWC-4 and UWC-5) and iThemba Labs (see figure 30), from which the hydraulic 

conductivity values were determined by using Aquifer Test program in excel sheet. With the 

help of peak groundwater level data and information on aquifer stratigraphy, maximum 

aquifer saturated thickness was calculated at the two sites for the estimation of k-values. 

Transmissivity values were then calculated as a product of the corresponding hydraulic 

conductivity and maximum saturated aquifer thickness. Given the optimal aquifer diffusivity 

and transmissivity, storage coefficients at sites UWC and iThemba were estimated. 

 

In order to determine the aquifer parameters in the study area, many data sets (from four 

pumping tests, each on the two sites: UWC and iThemba) have been interpreted both by 

manual and by EXCEL-written programs. Figure 32 shows a sample of the plots for pumping 

and recovery tests conducted during the study while the results of aquifer test interpretations 

are tabulated (Tables 8 and 9). 

 

 

Table 8: Estimates of k-values from the recent pumping test data using different methods 

Method-> 
HURR 
1966 

HÖLTING 
1984 

BOGOMOLOW 
1958 

ZANGAR 
1958 

LOGAN (in 
Kruseman & de 
Ridder 1994) Average 

Parameter-> k k k k k k 

Unit-> m/day m/day m/day m/day m/day m/day 

iThemba (Test 3) (REC 1. SEGMNT) 3.80E-01 4.58E-01 3.37E+00 1.30E+01 2.68E+01 8.79E+00 

iThemba (Test 2) 2.94E-01 4.92E-01 3.63E+00 1.38E+01 8.64E-01 3.82E+00 

iThemba (Test 1) 3.37E-01 6.22E-01 4.67E+00 1.73E+01 1.12E+00 4.81E+00 

Obs. w. to iThemba (REC 1. SEGMNT) 4.23E-01 1.73E+01 1.04E+02 4.32E+02 2.51E+01 1.16E+02 

UWC BH4 1.38E-01 1.64E+00 3.46E+00 2.42E+01 1.90E+00 6.27E+00 

Obs. w. to UWC BH4 9.50E-02 1.30E+01 1.64E+01 4.06E+02 9.50E+00 8.90E+01 

Maximal value 4.23E-01 1.73E+01 1.04E+02 4.32E+02 2.68E+01 1.16E+02 

Minimal value 9.50E-02 4.58E-01 3.37E+00 1.30E+01 8.64E-01 3.55E+00 

Average value 2.76E-01 5.62E+00 2.33E+01 1.47E+02 1.12E+01 3.75E+01 

Median value 3.11E-01 1.12E+00 4.15E+00 2.07E+01 5.79E+00 6.42E+00 

UWC BH5 (REC 1. SEGMNT) 1.56E-01 5.01E-01 2.51E+00 5.44E+00 1.38E+00 2.00E+00 
Obs. w. to UWC BH5 (REC 1. 
SEGMNT) 9.50E-02 1.04E+00 4.92E+00 1.73E+01 2.33E+00 5.13E+00 

Maximal value 4.23E-01 1.73E+01 1.04E+02 4.32E+02 2.68E+01 1.16E+02 

Minimal value 9.50E-02 4.58E-01 2.51E+00 5.44E+00 8.64E-01 1.87E+00 

Average value 2.58E-01 5.90E+00 2.93E+01 1.50E+02 1.07E+01 3.93E+01 

Median value 2.94E-01 1.12E+00 4.67E+00 2.07E+01 5.79E+00 6.52E+00 

*Holting (1984) and Hurr (1966) methods showed values not comparable with previous data  
*The details of the methods are in the appendix 4,8  
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Table 9: Aquifer tests results interpretation, with indication of the exploited formations  

Well number Type Exploited formation T (m
2
 day

–1
) S 

UWC 4 Borehole Cape Flats 618.82 1.00E-02 

iThemba 1 Borehole Cape Flats 32.47 2.20E-02 

UWC 5 Borehole Malmesbury 19.29 2.26E-04 

Notes:  
*iThemba1 has several pumping rate changes 
*iThemba1 show a relatively fast recovery compare to other wells 
*Well 5 draw water directly from the Malmesbury Formation, which underlies the Cape Flats 
*T and S values are the results of the best adjustment to the Jacob and Theis models, taking into 
account well capacity effects, backwater flow disturbance and effective diameter. 
 
 

4.2.3.4 Hydraulic Characteristics 

Wells in the Cape Flats have a high water storage capacity, but unfortunately most well-points 

are not available for pumping test (as they are mostly private wells used for gardening) and 

are not required to be registered. Industrial and agricultural wells with high discharge are also 

not available for long pumping and recovery times. Despite the legal registration of most 

industrial wells and their discharge rates, there are no mandatory requirements to include 

elementary pumping test with water level measurements in the conditions for registration of 

new borehole. Consequently, no data exist in the study area where such information leading to 

estimates of hydraulic characteristics or aquifer parameters can be found. 
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Figure 32: Typical drawdown and recovery data used to estimate T and S in the Cape Flats aquifer 

(from the recent pumping tests) 

 

 

Earlier work showed a detailed and broader estimation of aquifer parameter in the Cape Flats 

(Gerber 1981, Vandoolaeghe 1989). Four production boreholes drilled to facilitate the 

interpretation of geophysical borehole logs were subjected to two types of tests 

(Vandoolaeghe 1989). Step drawdown tests were performed to determine the efficiency of the 

boreholes and the optimal abstraction rates for the subsequent constant discharge rate test. 

Table 10(a) and Table 10(b) show the results of the step drawdown and constant discharge 

rates test. The resultant transmissivity and hydraulic conductivity values are given in the 

Tables (10 a&b). The drawdown-time data were interpreted to indicate that vertical leakage is 

an important component of flow, at least in the very early (48 hours) stage of pumping. The 

description of calculations and results, which are given in Table 10, can be found in 

Vandoolaeghe (1989) and Gerber (1981). 
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Table 10(a): Constant discharge rate test data (after Vandoolaeghe 1989) 

Yield 

BH No. 

Depth of pumping intake 

(m) m3/day Kl/d RWL Max drawdown (m) 

G32963 20 13.7 1187 3.94 5.83 

G32965 18 20.1 1735 4.25 12.28 

G32966 24 12.9 1115 5.71 8.83 

G32967 27 22.9 1980 7.28 8.78 

G32968 30 32.8 2838 7.36 10.28 

G32969 24 10.2 879 6.12 12.52 

G32978 33 22.5 2023 5.9 7.78 

G32979 18 25.8 2231 4.77 9.77 

G32981 33 14 1187 5.29 11.88 

Total    174.9 15176 

 

 

Table 10(b): Hydraulic parameters estimated from constant discharge rate tests (Vandoolaeghe 1989) 
BH No. T (m2/d) Aquifer Thickness (m) k (m/d) 

G32963 133.8 32 4.2 

G32965 116 28 4.1 

G32966 76.5 19 4.0 

G32967 106.5 21 5.1 

G32968 117.6 27 4.3 

G32969 27.8 19 1.4 

G32978 203.8 32 6.3 

G32979 115.6 32 3.6 

 

 

The hydraulic conductivity of the Cape Flats aquifer has been evaluated by different methods 

in the past. From the work of Gerber (1976, 1981) a transmissivity distribution map (Figure 

33) has been produced and refined to delineate the best areas of the Cape Flats for 

implementing groundwater development schemes. The refined transmissivity values for the 

Cape Flats aquifer range from <50 m2/d to 600 m2/d (based on Gerber 1981). This is not 

significantly different from estimates obtained in this study (Table 8) based on 2006-2007 

pumping test data. 
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Figure 33: Transmissivity distribution map (after Gerber 1981, Wright & Conrad 1995) 
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4.2.3.5 Grain size characteristics  

Several studies on coastal sediments bordering on the Cape Flats area have been published by 

Fuller & Lamming (1967), Bowie et al. (1969), Hill & Theron (1981), and Cole & Viljoen 

(2001). In these studies, the following properties of the coastal sediments were reported: the 

deposits consist predominantly of quartz sands with 20-40 % shell debris, the size distribution 

reflects a clear bimodality of the samples, and the size range lies between 0.06 and 4.00 mm 

with a dominance of the 0.09-1.50 mm fraction. Sieving results from the shallow (2-4 m) 

auger holes in the sixties were reported in details by Theron (1966) and Jansen (1967).  

Samples from 25 deep holes drilled for Geological Survey in the seventies were sampled and 

sieved in a similar manner and together with the data of Henzen (1973). The recent grain size 

distribution was obtained from a total of 78 samples from deep boreholes distributed in the 

greater Cape Town area and reported in Cole & Viljoen (2001); under the more exhaustive 

sedimentological study of sand along the South-Western Cape coastal plain (including the 

Cape Flats) undertaken by the Geological Survey.   

 

Figure 34 shows a series of cumulative size-frequency curves of a typical sand succession in a 

Cape Flats borehole illustrating the size range and the generally well-sorted nature of the 

Cape sand (Hill & Theron 1981, Cole & Viljoen 2001). The description of the various sand 

types in the greater Cape Town region is given in Cole & Viljoen (2001). Sieving results from 

two augured holes (at the UWC test site and iThemba Labs, carried out in 2006) has shown 

that the sand of both sites is well sorted with grain sizes ranging from 0.75 to 3.25 phi, with 

minor amounts of granules, silt and clay fractions (Figure 35). 
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Figure 34: Grain-size frequency curves at various depth intervals in a typical hole on the Cape Flats 

(After Hill & Theron 1981) 
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Figure 35: Grain size distribution of the unconsolidated Cape Flats aquifer material at the UWC site 

determined during the present study 
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4.3 Summary 

The hydrogeological framework presented in this chapter a better understanding of the Cape 

Flats aquifer. The climatic parameters have been described and statistically interpreted to 

show the fluctuating pattern and the impact of climate variability on groundwater. Long-term 

climatic data shows the dropping level of mean of every ten years (from 1841-2007) and the 

rising tendency of temperature due to global warming. Analyses of rainfall time series and 

stream flow hydrographs were interpreted and discussed in relation to groundwater recharge. 

Groundwater occurs under water table conditions. Series of pumping tests carried out at the 

UWC test site (near the main gate, Bellville South) and at iThemba Labs (Faure), used to 

determine the aquifer characteristics.  A mean annual yield of 4.1 Mm3yr-1 was calculated 

from the ten production wells in the period May 1985 to April 1988.  The yield, drawdown 

and constant discharge rate of each of the wells are discussed in section 4.2.3.4.  Parameters 

like transmissivity, specific yield and storage coefficient were estimated. Information 

available indicated a conceptual model with an unconfined sand aquifer, grading into semi-

confined conditions in some places where lenses of clay and peat exist, and underlain by the 

impervious Malmesbury Shale.  
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CHAPTER 5: ESTIMATION OF GROUNDWATER RECHARGE 

 

5.1 Introduction 

Estimating recharge is essential in any analysis of groundwater systems and the impacts of 

withdrawing water from the aquifer. Identification of all the recharge mechanisms and the 

estimation of the magnitude of the different components of recharge are now recognised as 

one of the most important aspects of groundwater resource studies. Recharge is also an 

important factor for vulnerability assessment because it provides the contaminant transport 

mechanisms through the soil and the unsaturated zone. Therefore, the determination of 

groundwater recharge is a crucial variable in groundwater resources planning.  Without a 

good estimate of recharge, the impacts of withdrawing groundwater from an aquifer cannot be 

properly assessed, and the long-term behaviour of an aquifer under various management 

schemes cannot be reliably estimated (Sophocleous 2004).   

 

The Cape Flats represents a highly productive area with intense water use and with multi-

stakeholder interest in water. Although previous groundwater use for municipal water supply 

in the City of Cape Town is less than 5%, plans are now to augment supply from surface 

water with groundwater. Therefore, to properly manage groundwater resources in the City of 

Cape Town, in relation with the available surface sources, accurate information about the 

inputs (recharge) and outputs (natural discharge and pumpage) within the area is needed so 

that the long-term behaviour of the aquifers and their sustainable yields can be estimated. To 

assist in this effort, a study of this nature was undertaken to assess the various recharge 

estimates for the Cape Flats aquifer.   

 

The quantification of recharge of the TMG aquifer (one of the aquifers under consideration 

for the City of Cape Town water augmentation scheme) have been attempted by Wu (2005) 

with the most recent results and case studies presented in Xu et al. (2007).  Although it has 

been recognised that all groundwater sources within the city be developed and utilised 

together, no such quantification or estimation of recharge and recharge processes have been 

attempted for the Cape Flats aquifer.  Knowledge of the recharge rate is crucial for the 

qualitative assessment of the Cape Flats aquifer and for groundwater management. The 

quantification of recharge rates and identification of processes, therefore, represents one of 

the objectives of this research. This chapter provides some estimates of recharge in an attempt 

to elucidate the path towards sustainable use of the Cape Flats aquifer. Although the focus in 
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this research is on the Cape Flats aquifer, the results and analysis presented are believed to be 

characteristic of the entire Coastal Plain sands in the Western Cape.  

 

5.2 Definition of recharge 

Groundwater recharge has been defined in chapter 1 (under operational definitions). 

According to Beekman & Xu (2003), four main modes of recharge can be distinguished:  

i. “Downwards flow of water through the unsaturated zone reaching the water table” 

ii. “Lateral and/or vertical inter-aquifer flow” 

iii. “recharge from nearby surface water bodies induced by groundwater abstraction” 

iv. “Artificial recharge such as from borehole injection or man-made infiltration 

ponds”. 

The concept of recharge in this chapter focuses on the first mode: natural recharge by 

downwards flow of water through the unsaturated zone reaching the water table. This is 

generally the most important component of recharge in semi-arid to arid areas of Southern 

Africa (Beekman & Xu 2003). 

 

There are two main types of recharge: direct (vertical infiltration of precipitation where it falls 

on the ground) and indirect (infiltration following runoff). It is generally acknowledged that in 

semi-arid environments most groundwater replenishment is point recharge (Simmers 1997).  

However, in certain geological situations, this may be direct forming a crucial addition to the 

groundwater reservoir.   

 

 

5.3 Recharge determination in semi-arid regions 

There are two main climatic charcterisitcs that challenge the quantification of groundwater 

recharge in semi-arid climate, and that require an approach different from those often applied 

in temperate zones. The first characteristic is the high share of evapotranspiration in the water 

budget. Due to the importance of evapotranspiration combined with the uncertainty in its 

quantification, the method frequently used in more temperate climates to calculate 

groundwater recharge as the remaining variable in the water balance is less accurate in semi- 

arid climates.   
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Secondly, in many semi-arid zones a large portion of annual rainfalls occurs during storm 

events. This characteristic renders the recharge mechanism slightly more complex than in 

temperate climates, as localised infiltration from accumulated run-offs gain importance and 

direct infiltration through the soil matrix cannot be assumed to be the predominant process. 

Often, this behaviour causes the result of the recharge measurements to depend on the scale of 

observation.  Lorentz et al. (2003) described the various applied techniques for estimating 

recharge at the local, hillslope, catchment, regional and national scales in the semi-arid zones 

of Southern Africa. It is clear that the scale of the problem being investigated is a guiding 

factor in determining the methods used. It is also evident that the processes inherent in 

generating events and low flow discharges must be defined.   

 

Beekman & Xu (2003) reviewed groundwater recharge estimation methods in arid and semi-

arid regions from three decades of recharge studies in Southern Africa. From this review, 

principles of methods currently in use are described with references to Southern African 

region. Although the methods are reviewed in terms of limitations, applicability at different 

fluxes, temporal and spatial scales, and are rated on accuracy, ease of application and costs, 

promising recharge techniques were identified. These are: Chloride Mass Balance (CMB), 

Cumulative Rainfall Departure (CRD), Water Table Fluctuation (WTF), Groundwater 

Modeling (GM), Saturated Volume Fluctuation (SVF) and Extended model for Aquifer 

Recharge and moisture Transport through unsaturated Hardrock (EARTH).  

 

Meyer (2005) in the analysis of groundwater level time series in relation to rainfall and 

recharge, investigated the impact of climate variability and climate change and postulated a 

number different climatic cycles for Southern Africa. The application of drought indicators to 

analyse groundwater fluctuations in order to predict Drought Scenarios is now a common 

global exercise. Meyer (2005) in order to predict the drought scenario of Southern Africa used 

groundwater level data from 400 monitoring wells in South Africa using the Standard 

Precipitation Index (SPI) calculated for a 24 months period.  The results showed good 

correlation between the SPI and the groundwater level record of the dataset leading to the 

development of a “Recharge Index” concept, which incorporates SPI values, groundwater 

level response and climatic indicators (Meyer 2005).  The conclusion of this author is that 

using groundwater level fluctuations as indication of recharge should result in a measure of 

the “effective recharge” and that the development of a recharge index (using the SPI 
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approach) will combine the effects of a number of variables and subsequently reduce the 

uncertainties in recharge estimates in Southern Africa. 

 

More recently is the application of natural isotopes and groundwater quality to improved 

estimation of recharge and flow in Southern Africa. Bredenkamp et al. (2007), following a bi-

modal input of the 14C as part of of the recharge and a two-box mixing model, successfully 

simulated the reappearance of the 14C and tritium in the spring discharge. In the two-box 

mixing model applied, the one box represents the shallow, more recent recharge and the 

second the deeper flow from a period extending further back in time. This reconciled most of 

the inconsistencies and not only provided new insights into the recharge characteristics and 

flow processes, but also a means to derive the mean residence time of water in the aquifer and 

from that the storage of groundwater in relation to the average recharge.  Significant 

contributions of this research is that new method has been used to derive a more reliable 

estimates of the chloride of the rainfall, thereby improving recharge estimation using Chloride 

Mass Balance method. Further, this demonstrates that the 14C, CFC and tritium modelling 

improved understanding of the recharge and flow mechanisms in dolomitic and non-dolomitic 

aquifers in this region. 

 

5.4 Recharge estimation techniques in the study area  

Recharge to groundwater can be estimated by a number of different methods, ranging from 

physical to chemical techniques (Sophocleous 2004, Xu & Beekman 2003, Cook & Herczeg 

2002). The principles and procedures of various techniques applied in the quantification of 

recharge estimates for the study area are discussed in the following subsections. Details and 

the theory of the commonly used methods are in the literature and have been summarized in 

chapter 2. The most important recharge studies carried out in South Africa (Bredenkamp et al. 

1995, van Tonder et al. 2001, Xu & Beekman 2003) have indicated the essentials of different 

methods of analyzing a groundwater system. Recharge estimates (by whatever methods) are 

normally subject to large uncertainties and errors (Simmers 1988). Moreover, choosing 

appropriate techniques is often difficult (Scanlon et al. 2002). Whereas, the determination of 

recharge variability in space and time is often high and can create a number of unresolved 

problems or requiring additional investigations (Sophocleous 1991).   
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The methods used, and the accuracy of predictions will vary at different scales of 

investigation. Methods appropriate for localised recharge estimation may not be useful for 

regional scale assessments because of the size of the study region.  This size does not allow 

the use of sophisticated methods generally used at field scale.  According to Walker et al. 

(2002), having varied techniques available, the best technique to use depends on a number of 

factors. These include: spatial scale of interest, time scale of interest, magnitude of the 

recharge, accuracy required, cost and access to facilities, time lags associated with processes, 

whether variability is required and whether predictions of impacts are required. 

 

Generally usable methods for unconfined aquifers like the present study area are: 

1) The hydrologic or soil-water balance approach 

2) Groundwater-level fluctuation approach 

3) The monthly difference between rainfall and potential evapotranspiration 

4) Cumulative Rainfall Departure Method 

5) Chloride profile in the unsaturated zone/Chloride Mass Balance 

 

The hydrologic or soil-water balance method like the field scale models also normally 

requires a wealth of detailed soil data which is not available for the Cape Flats area.  Soil 

moisture chloride concentrations reflect hydrological conditions over an estimated period of 

time, thus making the chloride profile in the unsaturated zone very applicable in unconfined 

aquifers. However, since the soil-moisture sampler (Eijkelkamp 1201SB Soil moisture 

sampling system) newly acquired by the Groundwater Group (Earth Sciences Department) 

failed due to low suction pressure in the pump it was difficult to collate data for this purpose.  

 

The first stage in the estimation of recharge in the study area involved collection and collation 

of existing data on potential controls of recharge, such as climate, hydrology, geomorphology 

and geology  to develop a conceptual model of recharge into the aquifer system. These have 

been done (Adelana et al. 2006) and also discussed in Chapters 3 and 4. The conceptual 

model describing the location, timing, and likely mechanisms of recharge into the Cape Flats 

aquifer is discussed in this chapter and illustrated in section 5.4.  
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In a natural situation, recharge is the result of rainfall infiltration or infiltration through the 

river beds.  In the intensively cultivated areas of the Cape Flats (such as the Philippi and 

Otery areas) irrigation may also contribute to groundwater recharge. Rainfall and potential 

evapotranspiration in relation to cumulative rainfall have been discussed in the process of 

analysis of hydrological stresses (Adelana et al. 2006). Several empirical methods using 

mathematical formulae were only applied as reconnaissance in the interim during the 

preliminary flow modelling to have a quick estimate of recharge rates. The results of the 

empirical methods (used as a quick reconnaissance) have been discussed in Adelana et al. 

(2006) and summarised in the Appendix (5.1-5.2). The same procedure of chloride technique, 

using chloride and soil moisture can also be used for groundwater for irrigated areas, but 

require more data relating to the quantitiy of irrigation water, soil moisture content, and crop 

water requirements in order to determine water balance calculations. Therefore, recharge 

calculations for the irrigated areas of Cape Town are left for future work when soil water 

balance can be applied with adequate meteorological data for the same consistent period, and 

detailed soil moisture budget calculations peformed on a daily or periodic basis. The three 

approaches therefore adopted in the present study to estimate groundwater recharge: 

groundwater level fluctuation using borehole water level data, hydrograph separation and 

chloride techniques are employed for the non-irrigated areas.  

 

5.4.1 Recharge estimation using water level  

Water table recharge, often referred to by many authors as water-table fluctuation (WTF) 

method (Healy & Cook 2002, Gerhart 1986), is based on the premise that rises in groundwater 

levels in an unconfined aquifer is due to recharging water arriving at the water table. It is 

generally accepted that there is a relation between water level fluctuations and recharge. The 

numerous techniques developed in the past in this field are a proof of this assertion (Meyer 

2005, Healy & Cook 2002, Scanlon et al. 2002, Rehm et al. 1982).  
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5.4.1.1 Theoretical background 

The time lag between rainfall events and a rise in the groundwater table, as well as the 

amplitude of groundwater level fluctuation can give insight into the mechanisms and the 

quantity of groundwater recharge rates.  The water table fluctuation method estimates 

recharge from changes in groundwater storage.  In the consideration of groundwater budget 

for a basin, changes in subsurface water storage can be attributed to recharge and groundwater 

flow into the basin minus baseflow (groundwater discharge to streams or springs), 

evapotranspiration from groundwater, and groundwater flow out of the basin. According to 

Healy & Cook (2002), the budget can be expressed in the following form: 

 

gw

on

gw

off

gwbfgw
QQETQSR −+++∆=                                                                     (5.2.1) 

 

where R is recharge, gw
S∆  is change in groundwater storage, bfQ  is baseflow, gwET  is 

evapotranspiration from groundwater, and gw

on

gw

off QQ −  is net subsurface flow from the study 

area; all terms are expressed as rates (e.g., mm/year, Healy & Cook 2002).   

The Water Table Fluctuation method is based on the assumption that a rise in water level in 

an unconfined aquifer is caused by only recharge (Healy & Cook 2002) and that the 

influences of lateral flow and evapotranspiration on groundwater storage are negligible within 

the evaluated period of time (i.e. all other components of equation 5.2.1 are zero).  In this way, 

is then calculated using the following relationship: 

 

t

h
S

dt

dh
SR yy

∆

∆
==                                                                                                 (5.2.2) 

where Sy is specific yield, h is water-table height, and t is time.  

 

This method has been applied in several previous studies (Meinzer & Sterns 1929, Gerhart 

1986, Healy & Cook 2002, Xu & Beekman 2003, Delin et al. 2007) and the conclusion is that 

it is best applied over short period (few hours or days) in regions having shallow water tables.  

Ideally, water-level fluctuations occur in response to spatially averaged recharge (Scanlon et 

al. 2002). Hence, this method can also be applied over longer period or time intervals (either 

seasonal or annual) to produce an estimate of change in groundwater storage, sometimes 

referred to as “net” recharge (Healy & Cook 2002). In order to achieve this, ∆h is set equal to 

the difference between the peak of the water level rise and the low point of the extrapolated 
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antecedent recession curve at the time of the peak.  According to Healy and Cook (2002) the 

antecedent recession curve is the trace that the well hydrograph would have followed in the 

absence of the rise-producing precipitation. In order to account for drainage from the water 

table that takes place during the rises in water levels, water level prior to each rise was 

extrapolated to the expected position had there been no rainfall event. The rise was then 

estimated as the difference between the peak level and the extrapolated antecedent level at the 

time of the peak (Healy & Cook 2002) and is represented in magnified format (Figure 36) to 

better illustrate how ∆h can be estimated.  

 
 

 

 
 
Figure 36: Hypothetical water-level rise in well in response to rainfall to illustrate recharge estimation 

with WTF method.  ∆h is equal to the difference between the peak of the rise and low point of the 

extrapolated antecedent recession curve (dashed line) 
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5.4.1.2 Results from water table fluctuation 

Several monitoring well data from the study area were evaluated but a number of these have 

missing gaps and inconsistent record.  The Western Cape DWAF maintains a good 

groundwater monitoring network, but even then the time series are highly discontinous.  

Because of the general lack of daily record or the discontinous nature of groundwater level 

data (of at least monthly intervals), observations of groundwater levels in several of the wells 

are only sporadic and by all means insufficient to do this recharge computation. In the end, 

only data from three sites representing clusters of boreholes were used for this recharge 

estimation and are presented in this section.  

 

After the quantitative assessment for the three sites, the results from the monitoring of water 

levels are discussed.  BA80, BA81, BA83 are monitoring boreholes in Schaapkraal/Mitchells 

Plain while DC182, DC183, DC184 are monitoring wells in Bellville (Allotment Office) and 

UWC2, UWC6 (representing the cluster of six boreholes) which are monitored at the UWC 

test site in Bellville. BA80 were monitored 6-hourly using the automated water level recorder 

from March 21, 1979 to March 14, 1984.  ∆h was calculated from the weekly record of water 

level in BA80 (figure 37). The figure shows the average water level representing a cluster of 

boreholes in Mitchells Plain/Schaapkraal area (Lat 34.04889, Long 18.56417) and total 

rainfall on a weekly basis for April 21, 1979 through March 21, 1981.  

 

As described previously, Sy was estimated in the present study from pumping test data as 0.01 

and 0.022 respectively for the Cape Flat aquifer at UWC and iThemba respectively. The tests 

were simply insufficient to generalise for the Cape Flats aquifer. However,  earlier studies 

calculated it to be 0.26 from several pumping tests conducted on boreholes drilled through the 

Cape Flats (Gerber 1976) while from the data of Vandoolaeghe (1989) an average of 0.22 was 

estimated from the pumping tests in ten production boreholes (pilot abstraction wells) around 

Mitchells Plain.  The value for Sy for this exercise was then taken as 0.22. This value fall 

within the range of values listed for fine-medium sand by Healy & Cook (2002). Healy & 

Cook (2002) list values of Sy from different studies and recommend using the usually smaller 

Sy values determined from pumping tests rather those calculated from laboratory experiments. 

∆h was taken as the cumulative rise in water level for each month (i.e. the sum of all rises that 

occurred within the month) as explained in Healy & Cook (2002) and presented in section 

5.4.1.1.   
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Figure 37: Average water level in wells in Schaapkraal/Mitchells Plain and bar graph of weekly rainfall in the 

study area 

 

 

The results of the monthly estimates of groundwater recharge for the period March 1979 

through February 1981 are shown in Table 11. Another borehole (BA081) in Schaapkraal, 

monitored monthly for water level changes was evaluated (Table 12). The result show a rather 

seasonal water level rise with more or less continuous but gradual rise for 6-8 weeks after the 

raining events indicating delayed response (Figure 38a). Other monitoring wells (that do not 

have at least monthly intervals in the meaurements of water levels but are monitored manually 

three or four times a year) were evaluated for seasonal variation in water level.  Results are 

shown in Table 12 and figures 38(b-f). The delayed responses of water levels shown in these 

plots reflect slow infiltration in the study area. 
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Table 11: Monthly change in water level and estimated groundwater recharge for the study area 

(Mitchells Plain) 

Month Change in water level, ∆H (cm) Groundwater recharge, R (cm) 

1979   
April 26.0 6.8 
May 15.0 3.9 
June 31.0 8.1 
July 21.0 5.5 
August 19.0 4.9 
September 29.0 7.5 
October 27.4 7.1 
November 28.8 7.5 
December 39.9 10.4 
1980   
January 31.0 8.1 
February 30.5 7.9 
March 31.0 8.1 
April 17.5 4.6 
May 4.0 1.0 
June 9.0 2.3 
July 4.0 1.0 
August 26.8 7.0 
September 30.5 7.9 
October 0.0 0.0 
November 11.5 3.0 
December 6.0 1.6 
1981   
January 9.0 2.3 
February 4.8 1.2 
March 9.0 2.3 
 

 
 

Table 12: Estimated recharge rates for part of the study area using WTF  

Recharge estimates from WTF 

2003 2004 

Well ID 

∆h (m) R (cm) R (%) ∆h (m) R (cm) R (%) 

BA83 0.82 18.04 42.52 1.25 27.5 42.41 

BA84 0.71 15.62 36.81 1.23 27.06 41.73 

BA322    0.51 11.22 17.30 

BA326 0.52 11.44 26.97 1.4 30.8 47.49 

DC184 0.52 11.44 26.96 0.95 20.9 32.23 

UWC2/6 0.40 8.80 22.11 0.55 12.14 38.17 
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Figure 38(a): Monitoring borehole (BA81) water level with average monthly precipitation 

 

0

50

100

150

200

250

J-
03

M
-0

3

M
-0

3

J-
03

S-
03

N
-0

3

J-
04

M
-0

4

M
-0

4

J-
04

S-
04

N
-0

4

J-
05

R
a
in

fa
ll
  
(m

m
)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

W
a
te

r 
le

v
e
l 
(m

)

Rainfall BA083 

(b)

 
 

Figure 38(b): Water level of monitoring borehole (BA83) with average monthly precipitation 
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Figure 38(c): Water level of monitoring borehole (BA84) with average monthly precipitation 
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Figure 38(d): Water level of borehole (BA322) with average monthly precipitation 
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Figure 38(e): Water level of borehole (BA326) with average monthly precipitation 
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Figure 38(f): Water level of borehole (DC184) with average monthly precipitation 

 

 

 

 

 



 111 

Similarly, precipitation and water level fluctuation at another site (UWC, Bellville South) 

were used to estimate recharge. UWC2 and UWC6 were monitored on hourly basis using the 

automated water level recorder from October 10, 2002 to March 13, 2006. UWC 2 is screened 

in the Cape Flats Sands while UWC 6 is screened in Malmesbury Shale. Figure 39 shows the 

average water level in the wells and total rainfall on a weekly basis for November 2002 

through October 2004.  Precipitation was highest between June and October 2003 and within 

May to August for 2004. Water level fluctuations in the two wells show similar pattern (figure 

39). The water table at this site varies smoothly throughout the year: most rain events do not 

produce measurable changes in the water level in the short-term. This is not attributed to a 

lack of recharge, but rather to attenuation of these short-term signals by the large storage 

capacity of the wells (165 mm PVC).  Recharge was calculated using the same equation 5.2.1. 

Table 12 shows seasonal change in water level for estimates of recharge for January 2003 

through December 2004.   
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Figure 39: Average water level in wells and bar graph of weekly rainfall in UWC 
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Discussion 

The values of recharge estimated and presented in Table 11 tend to be exaggerated than what 

is actually expected. As stated in section 5.2.1, one of the assumptions of the water table 

fluctuation method is that rise in water level in an unconfined aquifer is caused by recharge. 

Rises in the water table could occur after pumping wells are turned off, which is often 

observed in agricultural settings. This may be true for the site as the period of low or no 

rainfall (Januray to April 1980) showed positive ∆h. It may be under the influence of 

continuous pumping of the production bores in the pilot abstraction wellfield which was 

recommended and used as abstraction test in the pre-1980s (Gerber 1980) and mid-1980s 

(Vandoolaeghe 1989). The unfortunate situation is that data was not available since the 

situation became controversial and the pilot abstraction project stopped as reported by 

Vandoolaeghe (1990). The recession extrapolations are sometimes exaggerated, affecting the 

recharge estimates from this method. There is an on-going research to proffer the best 

extrapolation technique like linear and log fit estimation, which provides a good 

approximation of the recession curve and yield reliable recharge estimates (John Sharples, 

Pers.Com. August 16, 2010).  

 

The delayed response of water levels shows that slow infiltration is common to the 

investigated sites in the study area. Changes in climate or land use are not reflected 

immediately at the water table. Time is required for the pressure front from increased deep 

drainage to move downward through the unsaturated zone (Healy & Cook 2002). This time 

delay is related to the recharge rate, the soil-water content, and the depth to the water table 

(Jolly et al. 1989). 

 

Diurnal variations in groundwater levels were observed in most of the wells in November 

through March.  No appreciable diurnal variations were identified during April to September. 

The occurrence of diurnal fluctuations in these months is assumed to correlate with a period 

of low moisture storage within the soil profile. For example, the maximum amplitude in 

groundwater levels observed was 0.05 m in well (UWC2 at the UWC test site) where water 

table was approximately 5.79 m (Figure 40).  
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The figure shows rainfall and depth to water table in the borehole for two successive seasons. 

The water level is in decline for the most of the period from November 13, 2002 (Figure 40a), 

with the exception of a rise that occurred in response to 36 mm of rainfall on 20 March, 2003 

although the effect of delayed response is noticeable. On the other hand, a gradual rise in 

water level (Figure 40b) is in response to the rainfall occurring almost daily through the wet 

season, even though 2003 was one of the driest years in Cape Town.   

 

Although there are gaps in the records, the shallower water table and permeable sediments all 

contributed to the water-level rise at this site. Because the rise in the first few days (in Figure 

40b) was long and gradual, some water arriving at the water table was likely lost to 

evapotranspiration or baseflow prior to the time of water level. These losses, according to 

Healy & Cook (2002), would not be reflected in the estimated recharge rate. The longer 

rainless days before each rain event, the higher contribution to rising water level.  But, each 

rain event does not contribute to the same ratio of the rising water level for a precipitation. 

The effective infiltration rate of rain would depend upon several factors such as no rainy days 

before a rain event, intensity of rainfall, and precipitation amount as well as the size of 

reservoir.  

 

The water table fluctuation method is suitable to identify relative changes in seasonal recharge 

due to differences in rainfall. Inter-annual differences in the estimates of recharge in the 

analysed observation boreholes can be seen as a percentage of total rainfall in Table 12. 

Comparing the values of recharge under year 2003 with that of 2004 reveal a rise in annual 

recharge rates which a reflection of the higher rainfall in 2004. This is similar to annual 

estimates of Allison et al. (1994) from observed groundwater levels in southern Australia, 

where climate and soil types are in the same range with the study area, and value consistent 

with recharge rates determined by other independent methods (Vandoolaeghe 1989). 
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Figure 40: Daily rainfall and depth to water table at UWC showing: (a) dry and (b) wet seasons  

 

Based on annual ET rates (>800 mm/a) that exceed annual precipitation rates (400-800mm/a), 

that small rain events truly do not reach the water table and thus are not recharge events. If ET 

is much larger than precipitation, there is likely a strong upward total potential gradient in the 

vadose zone. Precipitation events would have to overcome this upward gradient to flow 

downward past the zero-flux plane to intercept the water table. These concepts are described 

in the literature (Scanlon and Healy 2002, Scanlon and Goldsmith 1997). More closely-related 

examples are McMahon et al. (2006) and Gurdak et al. (2007) which describe fluctuations in 

the total potential gradients in the High Plains aquifer in the United States, which in many 

ways has a very similar climate to South Africa.  
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Although the water-table fluctuation method is the most widely used method for estimating 

recharge (Healy & Cook 2002), the method does have its limitations. The linear estimation 

will tend to over estimate the recharge volume. By linearly extrapolating the projection does 

not account for the tendency of recession curves to flatten out with time. The attractiveness of 

the WTF method lies in its simplicity and ease of use. No assumptions are made on the 

mechanisms by which water travels through the unsaturated zone (Healy & Cook 2002); 

hence, the presence of preferential flow paths within the unsaturated zone in no way restricts 

its application. Because the water level measured in an observation well is representative of 

an area of at least several square meters, the WTF method can be viewed as an integrated 

approach and less a point measurement than those methods that are based on data in the 

unsaturated zone (Healy & Cook 2002). In the study area other sources of recharge cannot be 

overruled; the net positive change in head without a corresponding change in rainfall in some 

months could be inherent in the limitations of WTF method. This is why other methods of 

recharge are presented in the following sections. 

 

 

5.4.2 Cumulative Rainfall Departure (CRD) 

The Cumulative Rainfall Departure (CRD) method is very similar to the WTF method as it is 

also dependent on accurate determination of storativity or specific yield. Because of its 

versatile and minimal requirements of spatial data, the CRD method gained application in 

Southern Africa (Beekman & Xu, 2003). However, the method cannot be applied in areas 

where there are no groundwater level fluctuations and consistent water level data for at least 

23 months. For most part of the study area there were no consistent records of groundwater 

levels to match the long-term rainfall data available in stations around Cape Town. In attempt 

to validate the recharge estimates by WTF method the CRD and reconstruct the Cape Flats 

aquifer lag-time, water level and rainfall data in Atlantis (located on the north-western end of 

the Cape Flats sand, 33.567°S, 18.483°E) were used in the modified CRD model called 

Recharge Estimation Model in Excel (REME). This is presented in this section. 

The CRD method is based on the premise that water level fluctuations are driven by rainfall 

events. In CRD method, the sum of the departures of monthly rainfall from the long-term 

average of monthly rainfall is modelled to mimic the groundwater level response. 

Bredenkamp et al. (1995), Bredenkamp (2000), Bredenkamp & Xu (2003) extensively applied 

this method with success in South Africa. The method was revised to accommodate for trends 

in rainfall time series (Xu and Van Tonder, 2001). Recharge is then calculated as follows (Xu 

and Van Tonder, 2001): 
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                                                                                                                            (5.2.3) 

 

where r is that fraction of a CRD which contributes to recharge, Sy is specific yield, ∆hi is 

water level change during month i (L), Qp is groundwater abstraction (L3/T), Qout is natural 

outflow, A is recharge area (L2), Pi is rainfall for month i (L/T) and Pt is a threshold value 

representing aquifer boundary conditions. Pt may range from 0 to Pav, with 0 representing a 

closed aquifer (no outflow), and Pav representing an open aquifer system (for instance 

controlled by spring flow). The ratio r/Sy can be estimated based on equation (5.2.3) through 

an optimisation process which minimises the difference between calculated and observed 

water level fluctuations over a specific time interval (Beekman and Xu, 2003). The CRD 

method and estimation of the r/Sy ratio has been built into the REME (a user-friendly Excel 

program for recharge estimation, Xu and Van Tonder, 2001; Beekman and Xu, 2003, 

Bredenkamp and Xu, 2003). 

 

This modified CRD method was applied to 8 (eight) well points with similar pattern to the 

result presented in figure 41. Groundwater level in the Cape Flats is shown in relation to the 

average rainfall simulated with the CRD model. Noticeable deviations in the plot are due to 

pumping influences. This method has provision for the influence of abstraction well on the 

study area. Within the Cape Flats sand in Atlantis (with several boreholes in two wellfields), it 

was also difficult to find well points meeting the following criteria: (a) a shallow water table, 

(b) a long record and (c) wells that are far enough from either the recharge basins or the 

production well fields. The first two criteria also disqualified most well points in Atlantis area. 

The optimisation is implemented with the term (Qpi + Qout) (AS) in equation (5.2.3). Based on 

the method, an average recharge value of 10% of rainfall was calculated and a lag-time of 4-6 

months deduced for the Cape Flats aquifer. 
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Figure 41: Simulation of groundwater fluctuation using the CRD method based on data from Atlantis 

(BH G30944; Atlantis rainfall, 1985-2002). dh(rib) and dh(crd) are both simulated head. 

 

 
5.4.3 Rainfall-recharge relationship 

Generally, in the estimation of recharge rates many attempts have been made to find simple 

relationships between rainfall and recharge. This has led to a number of empirical formulae 

applied (by different authors in different places) to estimate recharge. Particularly with regard 

to the groundwater level fluctuation approach in relation to the Cumulative rainfall departure 

method (CRD), discussed in the previous section. Parallel to the latter is the moving average 

method (MA method) by which groundwater hydrograph could be simulated in relation to 

rainfall using a simple recharge relationship. These methods are powerful techniques that can 

be applied for both assessments of the recharge and its dynamic response in relation to the 

rainfall. These results could be converted to an overall exponential rainfall recharge 

relationship which is of immense value to reconstruct the recharge over an entire period for 

which rainfall data are available. This method has been published and applied in South Africa 

(Bredenkamp 2000, Bredenkamp et al. 2007).  Moreover, Bredenkamp et al (2007), used of 

natural isotopes and groundwater quality (together with these empirical approaches) for 

improved estimation of recharge and flow in dolomitic aquifers, which is equally applicable 

to coastal sandy aquifers.  
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In the present study, however, two empirical methods, using simple mathematical relations 

were employed in the estimation of recharge following the work of Bredenkamp (1990, 

2000), and Sinha and Sharma (1988). These are briefly summarised and results presented in 

this section. In a quantitative study of groundwater recharge in non-dolomitic aquifers in the 

Pretoria-Rietondale area (South Africa) a linear rainfall-recharge relationship was obtained 

(Bredenkamp 1990). This relationship yields a recharge equation as follows: 

 

RE = A (RF – B)                                                         (5.2.4) 

 

where RE is recharge; RF is rainfall (in mm/a): A & B are simulated parameters. 

Considering the general applicability of this method and the soil types together with the range 

of annual rainfall in the study area, the following simulated parameters were applied, bearing 

in mind the various influences on rainfall; A = 0.35 while B = 360 and thus the relation 

becomes:  

 

RE = 0.35 (RF – 360)                                                                                        (5.2.5) 

 

From equation (5.2.4), note that 0.35 is the optimised lumped parameters representing 

threshold rainfall that has to be exceeded to effect recharge while 360 is a constant 

representing integrated accumulated soil moisture deficit adopted for the area. Sinha and 

Sharma (1988) applied similar empirical formula to estimate recharge in a semi-arid region in 

India. Sinha and Sharma (1988) seeing the only variable is rainfall and the local climate is 

semi-arid, and applied to areas where rainfall is greater than 380 mm/a. Rainfall in Cape 

Town rarely drop below 380 mm/a in several decades ( exception of 2000). This formula, as 

applied to define recharge in the study area, is as follows: 

 

RE = 50.8 (RF/25.4-15)
 0.4                                                       (5.2.6) 

where RE and RF are as defined in 5.2.4. 

  The constants are simulated and adjusted parameters.  

Each of these was applied to the data in Cape Town during the preliminary recharge 

assessment of the Cape Flats (Adelana et al. 2006).  The results are summarized in Table 13 

for annual averages over several years of precipitation data (1933-2009 in appendix 5.1 and 

5.2). For years 1935, 1973 and 2000 the values are negative depicting that the threshold value 

of rainfall that can effect recharge was not reached.  
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The recharge estimates using method 2 appear exaggerated. This was attributed to the 

possible errors from the simulation of the parameters used in the empirical formula. It was, 

however, applied here not only for it’s readily usability but as a close comparison with 

recharge relationship developed by Bredenkamp (1990) employed in the study area as 

empirical method 1. Comparing the estimates from these two methods for the year 2003/2004 

(5-8% for 2003; 15-33% for 2004) with values estimated using WTF (Table 12) show some 

variations. WTF for the different sites ranged from 22 to 47% in 2003 and 17 to 42% in 2004. 

The results obtained for annual recharge using method 2 agree closely with those estimated 

using the WTF method. The values estimated for recharge from this method were thought to 

be exaggerated because the estimates used to derive the formula were not checked, for 

example, by a groundwater model as described in Lerner (1986). Moreover, the optimized 

parameters used in method 1 were simulated from data from Atlantis (section 5.4.2) since 

there were no long term records of water level measurements to match the record of rainfall 

data in the present study area.  

 

In summary, the empirical methods were found useful as quick estimates, especially in a 

semi-arid area where hydrogeological information is sparse but cannot be rely upon for 

specific hydrological and management planning (Adelana et al. 2006a,b).  

 

Table 13: Summary of results of empirical methods of recharge estimation  
 MAP (mm) Method 1  Method 2 

  Recharge 
(mm) 

% of MAP  Recharge 
(mm) 

% of MAP 

Max 914 194 21  426 47 

Min 229 14 3.6  16 4 

Mean 599 87 13  182 28 

Note: Method 1 (after Brendenkamp 1990) 
Mwthod 2 (after Sinha & Sharma 1988) 

MAP = Mean Annual Prepecipitation 
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5.4.4 Recharge estimates from water balance model 

5.4.4.1 Background 

Water balance models dates back to the 1940s and 1950s both in their development and 

applications Thornthwaite (1948) and Thornthwaite and Mather (1957).  Their simplicity and 

ease of applicability have made them appealing (Dripps and Bradbury 2007). Some 

researchers (e.g., Alley 1984 quoted in Dripps and Bradbury 2008) have applied the original 

Thornthwaite-Mather model while others (e.g., Eaton 1995; Swanson 1996) have modified 

various components of the original model in an effort to improve the model’s handling of 

certain constituents of the water budget. According to the analysis of the methods by (Dripps 

and Bradbury 2007), these latter attempts certainly improve the performance of the water 

balance original model.  

 

5.4.4.2 The soil-water balance model 

The WaSim water balance simulations have been used with the climate data available in the 

study area as described in section 4.1.2.2. Daily precipitation (in mm) and potential 

evapotranspiration (in mm), are input into the model via an Excel spreadsheet. In addition, the 

crop and soil parameters (and irrigation and drainage) need to be defined. The model code is 

written in Visual Basic and requires Microsoft Excel 2000 to run. WaSim water balance 

model is a one-dimensional soil water balance uses readily available climatic data, soil, crop 

pattern, topographic, and irrigation to estimate groundwater recharge using a simple mass 

balance calculated at a daily time step. It aims to simulate the soil water storage and rates of 

input (net rainfall and irrigation) and output (evaporation, transpiration and drainage) of water 

in response to climate. The upper boundary is the soil surface and the lower boundary is the 

impermeable layer. 

Water is stored between these two boundaries in five stores (layers): 

1. the surface (0 – 0.15m) layer, 

2. the active root zone (0.15m – root depth), 

3. the unsaturated layer below the root zone (root depth – watertable), 

4. the saturated layer above drain depth (watertable – drain depth), 

5. the saturated layer below drain depth (drain depth –impermeable layer). 
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The boundary between layers 2 and 3 will change as the roots grow. Before plant roots reach 

0.15 m, layer 2 will have zero thickness. Similarly, the boundary between layers 3 and 4 will 

fluctuate with the watertable. Soil water moves from upper layers to layers below only when 

the soil water content of the layer exceeds field capacity but the rate of drainage is a function 

of the amount of the excess water. Upward capillary rise occurs from the water table to the 

root zone.  

 

Some of the incoming precipitation is intercepted by the vegetation where it is utilized by 

plants or lost to evaporation, but the rest continues through the canopy as throughfall, 

reaching the ground surface. Interception is estimated in the model using a black-box model 

approach in which a daily initial interception storage capacity must be satisfied before 

precipitation can reach the soil surface. Interception capacities are assigned based on land 

cover type and season. The full description of procedure and theory of application are in Hess 

and Counsell (2000, 2001). Water budget components can be exported at daily, monthly, or 

annual time steps. 

 

5.4.4.3 Results and discussion 

The potential evapotranspiration calculated in section 4.1.1.3 (using CROPWAT 8.0) is 

imported from text files into the model, with daily rainfall. Daily climate data (2000-2009) 

from Cape Town airport were used. Estimates of runoff, precipitation, actual 

evapotranspiration and recharge (as deep percolation) are listed in Appendix 4.5. Table 14 

presents the estimates of annual recharge as a percentage of rainfall. 

 

Table 14: Annual average of rainfall and recharge  

Year Rainfall (mm) Recharge (mm) Recharge 
(as a % of 
rainfall) 

2001 595.3 5.6 0.94 
2002 521.8 8 1.53 
2003 376.1 4.3 1.14 
2004 544.3 4.8 0.88 
2005 517.1 7.5 1.45 
2006 436.1 5.6 1.28 
2007 680.6 19.9 2.92 
2008 628.8 26.9 4.28 
2009 525.4 14.7 2.8 
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Overall, the calculated values of deep percolation shown in appendix 4.5 may appear lower 

than what is assumed, but agrees reasonably with the estimates from other sources in similar 

settings. For example, estimates of 1.2 – 8.5 mm/a (0.4 – 3.4% MAP) has been obtained for 

Graafwater wellfield, 1.4 – 2.3 mm/a (0.9 – 2% of MAP) for Wadrif wellfield, 1.1 – 4.3 mm/a 

(0.5 – 2%) for   Elands Bay wellfield; all are located in the north-western coast of Western 

Cape (Conrad et al. 2004). 

 

Deep percolation amounts are smaller for this site when compared to the work of Cook et al. 

1998 in the tropical of Northern Australia and the rainforest zone of Ghana (Christianse and 

Awadzi 2000). The highest rainfall amount does not necesaarily result in maximum deep 

percolation because the soil can be very dry before the rainfall, and the infiltrated water is 

then used to fill up the soil water capacity.  

 

Some of the incoming precipitation is intercepted by the vegetation where it is utilized by 

plants or lost to evaporation, but the rest continues through the canopy as throughfall, 

reaching the ground surface. Interception is estimated in the model using a bucket model 

approach in which a daily initial interception storage capacity must be satisfied before 

precipitation can reach the soil surface. Runoff is routed iteratively for each precipitation 

event until the daily water input either infiltrates or exits the model domain. 

 

Water that infiltrates helps to satisfy the maximum soil-moisture storage capacity, which is 

calculated as a function of the cell’s soil water holding capacity. Daily infiltration is 

calculated as the difference between the daily net water input (precipitation + incoming runoff 

− interception) and the daily total runoff. The model assumes one-dimensional vertical 

infiltration. If the maximum soil water storage capacity is satisfied in the model cell, any 

excess water exits from the bottom of the cell as groundwater recharge. The actual timing of 

the arrival of recharge to the water table will depend to a certain extent on the thickness of the 

unsaturated zone, which is not explicitly accounted for by the model. The estimated recharge 

here is only precipitation-induced and does not account for recharge from surface water 

bodies. Since the unsaturated zone is typically thin (<10 m), and so recharge and the timing of 

recharge, as estimated by the soil water balance model, should be reasonably comparable. 

 

 

 

 

 

 

 



 123 

Although the model provides reasonable estimates of annual, monthly, and in most cases daily, 

water balance parameters the model does have limitations. WaSim was designed as a teaching 

material to demonstrate a three-layer soil water balance model to estimate the changes in the 

soil water content on a daily basis taking into account inputs of rainfall (and irrigation) and 

outputs of evapotranspiration (modified for the crop cover and soil water status) and deep 

percolation. It can be used as a simple unsaturated zone water balance model for calculation 

of potential recharge to a groundwater system. The author fully recognize that more rigorous, 

and perhaps more accurate, techniques are available to represent many of the hydrologic 

processes simulated by the model, but the often extensive data requirements and personnel 

resources required for utilizing the more rigorous techniques limits their use and makes them 

impractical for many applications. As such, the estimates from the model is intended to 

provide a physically based, cursory estimate of annual and monthly recharge which could be 

used for (1) generating recharge values for input into regional groundwater flow models, (2) 

defining general spatial patterns and the degree of spatial variability of recharge across a 

region, and (3) assessing annual and monthly temporal patterns and the degree of temporal 

variability of recharge for an area. 

 

5.4.5 Chloride Mass Balance method 

5.4.5.1 Theoretical background 

The chloride mass balance (CMB) method for the estimation of groundwater recharge is by 

far economic and effective.  In attempting to determine the mean annual recharge using the 

chloride method it is assumed that the only possible source of chloride ion in groundwater of 

the study area is at the soil surface (either in precipitation or as dry fallout) and that there is no 

contribution from weathering. Since there are no evaporites in the study area there is unlikely 

to be any significant contribution of chloride from the weathering of host rocks.   

 

Chloride ion is a highly soluble, non-absorbing, chemically conservative and easily 

measurable environmental tracer that has successfully been used to estimate recharge in arid 

and semi-arid areas since the last three decades (Allison & Hughes 1978, Sharma & Hughes 

1985, Allison 1988, Cook et al. 1989, Walker et al. 1991, Allison et al. 1994, Edmunds et al. 

2002).  Different recharge mechanisms have been illustrated by Allison (1988).  According to 

Houston (1990) in different rock types significant relationship exists between rainfall and 

chloride content suggesting recharge is a function of rainfall.  Also, most plant species do not 

take up significant quantities of chloride from soil water, thus concentrating chloride by 
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evapotranspiration in the root zone (Allison et al. 1994).  The conditions for a successful 

application of the CMB method according to Wood (1999) are:  

(1) atmospheric chlorine is the only source for chloride in groundwater,  

(2) chloride behaves as a conservative tracer along the flow path,  

(3) chloride uptake by roots and anion exclusion are negligible,  

(4) leaching of chlorine-containing strata at ground surface and in the soil zone is complete,  

(5) groundwater movement in both unsaturated zone and saturated zone can be approximated 

by one-dimensional piston flow, and  

(6) surface run-on and runoff can be neglected.   

Based on these assumptions the ratio of chloride (Cl) in rainfall to that in groundwater is 

proportional to recharge as shown in the following relationship (Allison et al 1994):  

 

gw

rain

Cl

Cl
Rainech ×=argRe                                                                                        (5.2.7) 

 

Two different approaches using chloride mass balance analysis can be found in the literature. 

The first approach is the derivation of groundwater recharge from unsaturated zone pore water 

profiles of chloride. A description can be found in Hendrix & Walker (1997), Bromley et al. 

1997, Edmunds et al. 2002. Ideally the chloride concentration in pore water increases rapidly 

with depth from the soil surface as residence time and evapotranspiration increase, until the 

concentration reaches a constant value equal to that in groundwater. Recharge can then be 

calculated from the chloride gradient. The difficulty in this approach is that pore water 

profiles can show high spatial variability due to soil heterogeneities, and that recharge from 

preferential flow paths is not captured (Edmunds et al. 2002).   

 

5.4.5.2 Sampling and analytical techniques for Chloride method 

Chloride mass balance method is one of the techniques which are often used to estimate 

moisture fluxes through the unsaturated zone thereby enabling the assessment of recharge to 

the groundwater. It is one of the promising methods under the review and classification of 

commonly used recharge methods for semi-arid southern Africa (Beekman & Xu 2003).  In 

the present study, soil moisture chloride profile approach could not be used, because the soil 

moisture sampler (model Eijkelkamp 12.01 SB) acquired in 2006 for this purpose became 

faulty.  
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Four investigation sites were chosen in the study area for rainfall and chloride measurements 

for the Chloride Mass Balance method (UWC, iThemba Labs, Macassar and Mitchells Plain).  

Precipitation Cl concentrations were measured in the first three stations in the months of July-

August 2006 (during the winter rainy period) while the other are obtained from City of Cape 

Town Catchment monitoring data. Analysis of stable isotopes (δ18O and δ2H) was also 

performed in order to identify recharge processes (see section 5.4.5).  Details of the laboratory 

analytical techniques employed for the chloride and isotope measurements were discussed in 

chapter 2. 

 

5.4.5.3 Results of Chloride Mass Balance 

Based on the theory described above chloride method was applied to estimate recharge in the 

study area.  Table 15 shows the results of sampling and measurements in 2006.  Groundwater 

chloride was sampled in the present study at each observation well and by the City of Cape 

Town Catchment Monitoring Department between 2005 and 2006. The results for each site 

were averaged to give the concentrations indicated in Table 16. Result gave an overall mean 

of annual recharge rate of 34.2 mm/a (which is 5.5% of mean annual precipitation, MAP, at 

Cape Town Airport). The recharge estimated using rainfall data and chloride measurements at 

UWC Test Site is as follows: 29.0 mm/a (7% of MAP) for the years 2002-2005; and similarly 

46.6 mm/a, 8.1% of annual precipitation (at Mitchells Plain).  The results show that recharge 

in the study area represents 5.5-8.1 % of annual rainfall at each of the weather stations. 

Results from iThemba were considered not useful in the overall recharge estimate from 

chloride method. This is because of the undue high chloride content in groundwater strongly 

influenced by the pumping exercise in 2005-2006. Direct evaporation from the shallow water 

table (1-3 metres) in the coastal plains as well as intense use of chemical fertilizers, 

particularly in the irrigated areas, could have influence downstream in the wells in Philippi 

and Otery area, near to Mitchells Plain. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



 126 

Table 15: δ18O and chloride data for Cape Flats (rainfall sampling season 2006)  

Sample ID. Sampling 
Date 

Latitude S Longitude E EC Cl 
18

O 

iThrain3107 2006/07/31 -34.02 18.71 9.1 22.1 -2.92 
iThrain0808 2006/08/08 -34.02 18.71 2.3 8.8 -2.30 
iThrain1909 2006/09/19 -34.02 18.71 4.5 19.4 -3.08 
iThrain3110 2006/10/31 -34.02 18.71 3.8 12.4 -4.93 
Uwcrain0607 2006/07/06 -33.93 18.62 4.0 9.7 -2.39 
Uwcrain1707 2006/07/17 -33.93 18.62 3.0 1.8  
Uwcrain2107 2006/07/21 -33.93 18.62 3.0 2.2 -1.74 
Uwcrain2207 2006/07/22 -33.93 18.62 14.0 39.7 -7.84 
Uwcrain2407 2006/07/24 -33.93 18.62 9.0 24.7 -3.24 
Uwcrain2807 2006/08/28 -33.93 18.62 13.0 23.8 -3.28 
UWCrain0211 2006/11/02 33.93 18.62 7.1 14.1  
UWCrain0311 2006/11/03 33.93 18.62 1.5 26.5  
Bel_rain 2006/11/03 -33.94 18.60 2.5 17.9  

 

Since chloride tends to remain in solution and is difficult to remove through most of the 

natural processes, which tend to separate out other major dissolved ions (Davis & De Wiest 

1976; Hem 1985), the samples low in Cl- from the eastern as well as the north-western parts 

of the study area indicate no anthropogenic effect. These samples either originate from 

relatively deeper wells or from the less cultivated areas.  However, these values are higher 

than the minimum long-term average areal recharge (1.2 ± 0.2%) calculated for the eastern 

fringe of the Botswana Kalahari (Selaolo 1998) based on Cl and isotope physical approach. 

This further shows that chloride method is widely applicable in estimating low recharge rates 

as reported (Scanlon et al. 2002) even though higher values of recharge have also been 

recorded elsewhere using this method. Samples of rain water for chloride measurements are 

few and only from three sites in the present study compared to several years of measurements 

in the Kalahari. It is also useful for a first approximation of the recharge flux estimation in 

semi-arid and arid zones (Zhu et al. 2003). 

 

Table 16: Recharge estimates in the Cape Flats based on Chloride Method 

Location UWC Mitchells Plain Macassar 

Coordinates (Lat.) -33.93 -34.04 -34.06 
Coordinates (Long.) 18.62 18.60 18.74 
Mean of Cl concentration in 
groundwater (ppm) 

160.5 138.9 405.0 

Mean of Cl conc. in Rain water 
(ppm) 

11.2 11.3 11.3 

Annual mean of precipitation 
(2002-2005) in mm 

414.0 642.6 576.1 

No of samples 12 30 7 
Annual recharge in mm 29.0 52.4 16.1 

Recharge rate (%) 7.0 8.2 2.8 
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5.5 Recharge sources and mechanism in the Cape Flats 

5.5.1 Sources of recharge  

The first stage is the identification of the various recharge sources.  In the Cape Flats, rain 

recharge seems to be dominant. Possible sources of aquifer recharge through surface flux, 

other than precipitation as highlighted in Adelana et al. (2006) are: 

i. Zeekoevlei, an open water body near the south-west coast between Muizenberg and 

Mitchells Plain 

ii. The sewage treatment stabilization ponds located at the south-east of Zeekoevlei, Macassar, 

Faure, etc. 

iii. The Kuils and Eerste rivers, which cut into the eastern part of the aquifer near Faure. 

iv. The municipal water supply reservoirs located within the sands such as at Tygerberg, 

Blackheath, etc. 

 

The Zeekoevlei may appear at the first glance as a major source of recharge but water table 

analysis shows that this shallow pond is partly maintained by groundwater seepage, with 

possible exception of short periods after heavy downpours when the quasi-equilibrium system 

may be disturbed temporarily (Gerber 1981).   Moreover, the bottom of the Zeekoevlei 

appeared sealed to a large extent as a result of mud and clay deposition. Consequently 

recharge from this water body may be considered insignificant.  

 

The influence of municipal sewage treatment ponds in the Cape Flats was investigated earlier 

by Henzen (1973), who pin-pointed evidence of sewage infiltration but that the quantities 

involved in long established ponds were so small compared to the daily flow as to be 

negligible. This recharge source may not be ignored at such a time as this that the population 

of Cape Town has grown and the wide expanse of fallow land in the suburbs are now covered 

with residential and industrial buildings. However, the resources and logistics to investigate 

this into details are not available at the time of field investigation for this project. 

 

The magnitude and time scale of recharge from the Kuilsriver remain unknown. The Eerste 

River, to a small extent, contributes to groundwater recharge in the eastern end of the project 

area. Its contribution to recharge was investigated from stream discharge measurements at two 

stations with appreciable data. Drainage from the model area into the Lotus and Vygerkraal 

rivers was reported to take place during the winter rains. The waters conveyed in the Lotus 

River system are discharged into Zeekoevlei and subsequently into the sea over a weir in its 
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southern outlet. The Vygerkraal River receives storm runoff and seepage originating in the 

north-western corner of the study area and conveyed through a system of the side feeders. 

This water eventually discharges into Table Bay.  

 

5.5.2 Recharge processes 

For a realistic assessment of groundwater potential and sustainability, it is vital to study the 

recharge processes and mechanism of groundwater flow. In the last four decades, several 

research efforts utilizing multi-disciplinary scientific approach has helped in estimating 

recharge. However, not many of the approaches have been able to explain recharge processes 

and conditions sufficiently. One of the important approaches to characterization of recharge 

processes has been the use of isotopic and geochemical methods (Sukhija et al. 2006, Scanlon 

et al. 2002, de Vries and Simmers 2002). Isotopes and geochemical tracers have been 

employed extensively to identify the source and movement of groundwater (Vogel 1970, 

Geyh and Backhaus 1979, Sukhija 1996, Dahan et al. 2000). This section is based on 

observed isotopic signature and environmental chloride variations of the groundwater system 

in the study area. The purpose is to study the recharge processes and possible flow dynamics 

involving unconfined aquifer using environmental isotopes and geochemical tracer (chloride) 

in the Cape Flats.  

 

The research work was carried out mainly in the suburbs of Cape Town, where there has been 

a huge population increase and rapid urbanization in the last ten years. Apart from a few 

reservoirs been used for domestic water supply, like the Newlands, Blackheath, Faure and 

Tygerberg, many others are evaporating water bodies (like the Vleis and irrigation ponds). 

Surface waters contain a distinct composition of stable isotopes due to enrichment caused by 

evaporation. Oxygen-18 (18O) stable isotope is utilized to identify the recharge process and 

mixing of groundwater from different sources. Therefore, 18O isotope makes it possible to 

distinguish between evaporated waters and waters directly recharged from precipitation.  Soil 

and subsurface waters inherit the isotopic characteristics of the meteoric and surface water 

inputs, and change in isotopic composition occurs as a result of recharge process and mixing 

with waters of different compositions.  
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5.5.2.1 Isotopic composition of water during recharge processes 

According to (Issar & Gat 1981), 18O and 2H in water behave chemically conservatively 

below temperatures of 60–80 °C, and as such their concentrations are not affected by 

geochemical reactions in normal aquifers (Hoefs 1997). Therefore, groundwater preserves its 

isotopic fingerprint reflecting the history and origin before infiltration. This makes it a useful 

tool to interpret recharge mechanisms. With respect to Craig’s relationship (Craig 1961), the 

long-term arithmetic mean for all stations of the International Atomic Energy Agency (IAEA) 

network is: )65.035.10()06.017.8( 182 ±+±= OH δδ  (Rozanski et al. 1993). The last term of the 

equation, the deuterium excess (d-value), can vary locally, primarily as a function of the 

vapour-forming process. For the Cape Town area the regional d-value is +12.8 (Harris et al. 

1999). 

 

(a) Theoretical background 

The use of oxygen and hydrogen isotopes in studying processes of the water cycle is based on 

the different behaviour of heavy and light isotopes during phase changes (Clark & Fritz 

1997). The tendency of the heavier isotopes O
18  and H2  to accumulate in the liquid phase 

rather than the vapour phase in contrast to their lighter counterparts O
16  and H1 , causes 

isotopic fractionation during evaporation and condensation processes. In contrast, 

evapotranspiration doe not cause isotopic fractionation (Kendall & McDonnel 1998). Isotope 

analysis can therefore be used to distinguish between evaporation and evapotranspiration.  

 

The extent of enrichment of the heavier isotope in the liquid phase can be expressed in terms 

of fractionation factor,α : 
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with 

vl−α : Fractionation factor from the liquid to the vapour phase 

lR : Isotope ratio in the liquid phase 

vR : isotope ratio in the vapour phase 
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Other parameters that are frequently used to express fractionation are the enrichment factor ε  

or the delta-valueδ . Both have units of ‰ and their definition is as follows: 

1000*)1(1000*)1( −=−= −− vl

v

l
vl

R

R
αε  (‰)                                                        (5.2.9) 

with 

vl−ε : Enrichment factor from the liquid to vapour phase 
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R

R
δ  (‰)                                                                        (5.2.10) 

 

dardsR tan  is the isotope ratio in Vienna Standard Mean Ocean Water (VSMOW). The delta-

value of SMOW is by definition 0 ‰. Systems of relative humidity close to 100% can be 

desribed by the equilibrium enrichment factor *ε . 

When H
2δ is plotted against O

18δ , average rainwater plots along a straight line with a slope of 

8 and an intercept of 10. This line is called the Global Meteoric Water Line (GMWL) and is 

represented by the linear equation: 

 

108 182 += OH δδ                                                                                                 (5.2.11) 

 

The slope of 8 is due to cloud condensation at 100% relative humidity, while the intercept of 

10 – called the Deuterium excess – is caused by an average 10% kinetic enrichment of 

deuterium during evaporation from the ocean surface (Kendall & McDonnell 1998). Since 

temperature, altitude and distance from the sea influence H
2δ and O

18δ , local meteoric water 

line (LMWL) can be developed to describe the linear relation in rainwater at local conditions.  

Craig and Gordon (1965) developed a model to describe kinetic fractionation during 

evaporation, which was re-established and recently described by Xinping et al. (2005). During 

the evaporation of water from the surface or soil water, enrichment of 18O and 2H occurs 

(Kendall & McDonnel 1998). The rate determining step in this model is the diffusion of water 

molecules across the liquid-vapour boundary layer. The kinetic enrichment factor ε∆  

accounts for the resulting additional enrichment of the heavier isotope in the liquid phase. The 

kinetic enrichment factor depends strongly on relative humidity. The relationship is quantified 

for O
18δ and H

2δ by Gonfiantini (1986): 
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)(2.1418
hlO vl −=∆ −ε     (‰)                                                                               (5.2.12) 

 

)(5.122
hlH vl −=∆ −ε     (‰)                                                                               (5.2.13) 

 

The total enrichment factor ε during evaporation is the sum of the equilibrium enrichment 

factor ε * and the kinetic enrichment factor, ε∆ . The composition of water that has 

undergone evaporation deviates from the Meteoric Water Line (MWL). The extent of 

deviation depends on ambient humidity h and the progress of evaporation while the residual 

fraction is signified by f. 

 

Isotope fractionation is strongly dependent on the temperature. A significant correlation 

between the mean annual concentrations of stable isotopes in precipitation and mean annual 

air temperature has been observed (Daansgard 1964). This knowledge found application in the 

identification of recharge during paleo-climatic periods (e.g. Mazor & Verhagen 1983; 

Darling et al. 1997), distant mountain recharge (e.g. Clark et al. 1987) or seasonality of 

recharge in temperate regions (e.g. Rozanski et al. 1982). On the other hand, large rain events 

are more depleted in isotopic composition than small rain events, due to the preferential 

rainout of heavy isotopes. This effect is intensified by the enrichment of heavy isotopes, due 

to evaporation during minor rain events (Levin et al. 1980). Evaporation process alters the 

original 18O - 2H relationship of the rainfall resulting in slope lower than +8 and deuterium 

excess (d-values) lower than +10, as reported in many arid regions (Gat 1980, Mook 2005). 

The d-values near the coast is smaller than +10‰ and approximately 0 ‰ only in Antarctica. 

In areas where, or during periods in which, the relative humidity immediately above the ocean 

is or was below the present mean value, d is greater than +10 ‰ (Merlivat & Jouzel 1979, 

Mook 2005). Thus, groundwater that has previously been subjected to evaporation can be 

identified on this basis. 
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(b) Results of the application of stable isotopes 

Isotope composition of rainwater and groundwater 

 

The local values of the weighted yearly means of precipitation in Cape Town, as well as the 

long-term average from 1961-2001, were evaluated during this study.  The local meteoric 

water   (LMWL) obtained by linear regression of the monthly mean isotope composition 

display a slope of 5.1 and a deuterium excess of 4.4 (following the 

relation: 4.41.5 182 += OH δδ ). The average δ18O and δ2H values for the months with the 

highest rainfall are -3.39 and -14.72 respectively. This isotopic composition is taken as the 

initial composition in the calculation of evaporation fraction using the Rayleigh equation, as 

seen below. More results and illustrations of the isotopic composition of precipitation are 

presented in section 6.10.1. 

 

The isotopic composition of groundwater from the Cape Flats aquifer is characterized by 

relatively lower δ18O and δD values. The range of values of 18O and 2H data are presented in 

section 6.10.3.  The most isotopically depleted groundwater samples represents the largest 

rainfall events in the area during sampling period and the most enriched groundwater  was 

interpreted to indicate shorter rainfall events.  The correlation of δ 2H against δ18O of the 

recent groundwater sampling (2005-2006), along with springs, rain and surface water in Cape 

Town area are illustrated and discussed in section 6.10.3.  

 

The composition of water that has undergone evaporation deviates from the Global Meteoric 

Water Line (see section 6.10). The extent of deviation usually depends on the ambient 

humidity, h and the progress of evaporation. The residual liquid fraction is signified by f. The 

Rayleigh equation describes the evolution of the isotopic composition during progressing 

evaporation:  

 

      fOOO vlinitialfinal ln181818

−−= εδδ                                                                  (5.2.14) 

 

with  vlvlvl −−− ∆+= εεε *     

f : Residual fraction 
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Using the Rayleigh equation for oxygen isotopes (as these are determined with more accuracy 

than with hydrogen isotopes) with an initial δ18O of -3.39, a final δ18O of -1.25, and an 

enrichment factor calculated for a temperature of 10 ˚C and relative humidity of 0.72 of 

vlO −
18ε  = 10.61 yields a fractionation of: 
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This means that 18% of rainfall is evaporated before the infiltrating water reached the 

groundwater surface. Evaporation is therefore small but significant. 

 

Figure 42(a) indicates that the evaporative enrichment does not produce significant salinity 

increases. Although high NaCl is strongly reflected in the iThemba borehole (probably 

induced by continuous pumping), this is not reflected in other wells. The background 

information on iThemba area also revealed that there are buried river channels, particularly in 

the vicinity of the wells. The fact that 18O and chloride are not correlated significantly may 

suggest that the concentration of salts by evaporation is not an important process in the Cape 

Flats.  Low infiltration rates and frequent overland flow indicate that diffuse recharge is not 

very likely. The probable recharge mechanism obtained from the isotopic evidence and field 

observations, is direct recharge from rainfall; indirect recharge from surface depressions and 

from agricultural lands may be another possibility. However, chloride contents in shallow- 

and intermediate-depth water from agricultural irrigated land on the Cape Flats (where 

intensive use of fertilizers, which contain chloride, could reach the groundwater table) was not 

investigated in this study. Furthermore, increases in chloride concentration are not attributed 

to isotopic enrichment (Figure 42a), which indicates that the presence of chloride is ascribed 

to meteoric accumulation. Detailed discussion on the source of chloride and evolution of 

groundwater in the study area is presented in chapter 6.  

 

From figure 42(b), it can be seen that the 18O values of springs and shallow groundwater 

(depth to water table <20 m) and intermediate-depth are similarly distributed, an indication of 

preferable indirect infiltration for shallow and intermediate water. The isotope content is 

considerably dispersed, reflecting direct recharge and shallow nature of groundwater as 

compared to if it was deep water with minimal evaporative effects at depth.  The stable 

 

 

 

 



 134 

isotope (18O and 2H) contents are a function of a variety of atmospheric conditions such as 

temperature, distance from vapour source, and rates of evaporation.  The mean value 

coincides with the mean value of shallow water varying within the standard deviation of 

spring water.  Additional modifications are possible and may be due to subsurface processes, 

such as mixing.   
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Figure 42: (a) Relationship between chloride and 18O in groundwater and springs; (b) 18O as function 
of temperature for groundwater and springs  
  
 

5.5.2.2 Recharge conceptualisation 

A conceptual hydrogeologic model was developed to elucidate various recharge processes and 

flow mechanisms in the Cape Flats aquifer, based on climate, hydrology, geormophology and 

geology. The results from isotopic and geochemical investigations are integrated into this 

conceptual model about recharge and subsequent geochemical evolution of the Cape Flats 

aquifer (Figure 43). Groundwater of the Cape Flats aquifer is of meteoric origin with an 

isotopic regression line similar to the regional meteoric water line (see chapter 6).  The 

recharge conditions have probably not changed from what it was in the past; there are no 

carbon dating data to determine exact age of groundwater at the moment.  Most rainwater 

infiltrates in the mountainous flanks of the western and southwestern (Cape Peninsula and 

Table Mountains), eastern/southeastern (Cape Granite and Table Mountains) parts of the 

study area.  In these areas, the infiltration rate may locally be a high percentage of the 

precipitation rate (>800 mm e.g. Kirstenbosch).  Runoff passes through overland flow and 

tributaries to the main discharge (Eeste River). 
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Figure 43: A schematic cross-sectional view of sources of recharge and hydrochemical evolution in the 

Cape Flats. Geological formations: Malmesbury shale is shown in light-blue; Quaternary sediments in 

white. Dotted lines show water table and arrowheads indicate general direction of groundwater flow 

 

The model takes into account the following observations: (i) lithology as revealed through a 

number of boreholes in the study area, (ii) geomorphic variations, (iii) groundwater 

fluctuations, (iv) qualitative yields of the aquifer, (v) variation of δ 18O and chloride 

concentration in groundwater. The hydrogeologic model presented above has some 

similarities with a conceptual model of groundwater flow developed by Gerber (1981) for the 

Cape Flats aquifer. In this model, on the basis of two aquifer test sites where groups of 

observation wells were aligned in more than one direction respectively, Gerber presented that 

there was evidence of anisotropy in the sand deposits of the Cape Flats.   

 

In the hydrogeologic model developed in this study, it is believed that this sandy aquifer, 

which is connected to the vadose zone, carry recharge water laterally a few hundreds of 

meters to a few kilometers, which could result in relative ageing of the recharged water. 

However, in contrast to the above situation, younger ages with similar chemical and isotopic 

characterization are obtained. This situation may occur due to the fact that the aquifer system 

is generally unconfined in nature and infiltration and movement of water through the matrix 

result in apparent young age of groundwater. This situation can be described from the model, 

in which wells like AB-7 and BA-6 are located where the source of recharge is some distance 

away. In an actual field situation, the sampled groundwater wells mainly tapping from the 

Cape Flats aquifer represent the above hydrogeological situation. From hydrochemical and 

isotopic data and considering extensive fracture zones in the neighboring TMG with good 

yield (5–7 m3/day) prevalent in the area, it is envisaged that groundwater moves laterally 

through the sands but not for sufficiently long periods as to have resulted in any significant 

depth variation.  
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Furthermore, a significant flux of recharge occurs through fractures under saturated or nearly 

saturated conditions in the TMG (Wu 2005). Then infiltrated water is expected to travel 

laterally through the Cape Flats aquifer until intercepted by deep wells in the weathered shale 

(Malmesbury) and granite. A higher infiltration rate is assumed to take place through fractures 

in the mountainous area while a lower value of infiltration moves through the sands (inter-

mixed with silt, clay and peat in places).  If this conceptualization is correct, the pattern of the 

hydrochemical depth profiles will not necessarily imply the slow passage vertically downward 

of a ‘front’ of urban recharge. Instead, a given profile could be the product of a complex 

series of mixing ‘cells’, slowly evolving as water moves generally downdip in the recharge 

area through the sand aquifer and subsequently into the deeper fractured aquifers. This is 

subject to further investigations and detailed groundwater evolutional studies. 

 

However, despite the fact that the studied area have fractured hard rock aquifer system (with a 

complex geologic environment comprising unsaturated rock matrix and multiple fracture 

network) as its immediate neighboring aquifer, the study has identified dominant recharge 

processes and flow mechanisms operative in the area. The possible sources of errors that 

would offset the conceptual data from its real value could be recharge contributions from 

unidentifiable subsurface regimes as well as contribution from multiple fractured basement 

aquifers  during pumping of wells near the west and east boundaries of the Cape Flats. It was 

regionally assumed that the bedrock is impermeable but report has shown that the 

Malmesbury (bedrock) aquifer is fractured in places causing upward leakage into the Cape 

Flats aquifer. 

 

From an agricultural perspective, where irrigation water in farm dams and irrigation canals 

used for intensive market vegetable gardening and potato cultivation, can contribute to 

recharge. However, it is these areas which are currently experiencing an explosion of urban 

development. This includes the informal, and low-cost formal housing of the Cape Flats, and 

the middle income development of the West Coast (Table View) as well as new developments 

such as Century City. Such areas do not place any particular constraints on construction. In 

fact, the nature of the sandy substrate facilitates the digging of foundations and the 

emplacement of infrastructure (pipes, cables). However, the low-lying nature of these areas 

and their proximity to the ocean implies a high local water table and, in specific areas, 

frequent water-logging and localised flooding in the winter (raining) months. Landfill sites, 

typically sited in such areas in the past, are prone to seepage and groundwater contamination.  
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5.6 Urban recharge in Cape Town in relation to other cities 

Recent studies have shown that the stormwater drainage in a city may have a significant effect 

on recharge to underlying groundwater (Barret 2004, Krothe et al. 2002, Sharp et al., 2000). 

Lerner (2002) gave an up-to-date review of the methods of estimating recharge in urban areas, 

while Foster et al. (1998) highlight the fact that the subsurface is often the major receptor for 

industrial effluents. The effluents may enter directly from casual disposal or indirectly as 

seepage from waste treatment lagoons or from storage tanks. Although urbanization increases 

storm runoff, there is no direct evidence that the increase is at the expense of recharge (Lerner 

1997, Yang et al. 1999).  According to Lerner et al. (1990), urban recharge can be estimated 

either holistically (equation 5.5.1) or as the sum of the components in the equation (5.5.2): 

 

Net recharge = imports of water + groundwater abstraction – consumptive use – effluent 

leaving                                                                                                                       (5.5.1) 

 

Net recharge = rainfall recharge + leakage from mains + leakage from sewers + infiltration 

from septic tanks etc.                                                                                                 (5.5.2) 

 

The impact of urbanisation in the context of the study area (Cape Town) is not viewed in 

terms of groundwater abstraction but as it affects recharge. The impacts of urban processes on 

infiltration to the subsurface are shown in Table 17; indicating the normal direct precipitation 

for non-urbanised areas, impermeabilisation for built-up areas and potential for recharge from 

mains leakage, sewage and urban drainage (stormwater runoff). The map of the City of Cape 

Town (figure 44) shows the extent of urbanization and open land surface, where recharge is 

not restricted or water-proofed. The general concept of urbanisation is that it reduces recharge 

by water-proofing surfaces or impermeabilisation (Barret 2004, Lerner & Barret 1996), but 

this is not always correct and in many instances may not be the case (Barret 2004). 

Urbanisation may result in a net change of overall groundwater recharge, from a major 

reduction to modest increase as illustrated in figure 45.  The effect on recharge arises both 

from modifications to the natural infiltration system, such as surface impermeabilization and 

changes in natural drainage, and from the introduction of a water service network, which is 

invariably associated with large volumes of water mains leakage and wastewater seepage. The 

net effect of recharge on quality is generally adverse (Foster et al. 1998). 
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Table 17: Impacts of urban processes on infiltration (Foster et al. 1998) 

Urbanisation process Rates Effect on 
infiltration 

area 

Time base 

(A) Modifications to natural system 
Surface impermeabilisation & 
drainage 

   

- Storm water soakaways* Increase Extensive Intermittent 
- Mains pluvial drainage Reduction Extensive Intermittent - 

continuous 
- Surface water canalisation* Marginal 

reduction 
Linear Variable 

Irrigation of amenity areas* Increase Restricted Seasonal 
(B) Introduction of water services 
network 
Local groundwater abstraction 

 
Minimal 

 
Extensive 

 
Continuous 

Imported main-water supply leakage Increase Extensive Continuous 
On-site (unsewered) sanitation** Major increase Extensive Continuous 
Mains sewerage    

- In urban areas* Some increase Extensive Continuous 
- Downstream** Major increase Riparian areas Continuous 

*Also has a minor impact on groundwater quality 
**Also has a major impact on groundwater quality 
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Figure 44: Urbanisation pattern in the City of Cape Town (CCT 2006) 
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The network of water-carrying pipes under most cities can be leaky, sometimes old and rusty; 

and in many instances, they are often not water-tight. This in addition to leaking sewers, 

septic tanks, storm drains constitutes high potential for urban recharge (Table 18). According 

to Krothe et al. (2002), sewer lines are designed for leakage (typically about 10 %). In Cape 

Town, it is said that nearly 40 % of the water from the supply dams to consumers are lost 

through pipe bursts and leakages (comparable to 30 % of recharge from utility system leakage 

in San Antonio (Sharp et al. 2000); 12 % in Austin, Texas (Lorenzo-Rigney & Sharp 1999)). 

Although few quantitative data are available, the general belief is that much water is lost 

through the supply mains and distribution channels. Estimates of water main leakage in 5 

urban cities of Sub-Saharan Africa are compared with the City of Cape Town (Adelana et al. 

2008).  This loss, coupled irrigation of farmlands and gardens within the city may contribute 

significantly to recharge and should be a subject for further research in the study area. 

 

Table 18: Sources of aquifer recharge in urban areas with implications for groundwater quality 
(modified Foster et al. 1996) 
Recharge source Importance Water quality 

Leaking water mains Major Good 
On-site sanitation 
systems 

Major Poor 

Leaking sewers Minor Poor 
Surface soakaway 
drainage 

Minor to major Good to poor 

Seepage from canals & 
rivers 

Minor to major Moderate to poor 
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Figure 45: Potential range of subsurface infiltration caused by urbanisation (modified from Barret 2004; 

original source: Foster et al. 1998) 

 

From the records of the City of Cape Town and DWAF, (with the present population of about 

3.8 million people), 3 × 108 m3 is extracted from groundwater; this represents approximately 2 

percent of the total annual water consumption. The consequence of increasing this figure 

through the groundwater augmentation scheme may not be visible in the next decade but on a 

longer-term and such increase calls for strategic resource management. 

 

5.7 Recharge and relation to groundwater resource management 

There are implications for the development and of groundwater under conditions of declining 

rainfall and high urban growth adequate management measures. In the City of Cape Town the 

population is growing (from data presented in chapter 3). The effect of climate variability 

(described and illustrated with rainfall variability in the chapter 4) in the city of Cape Town 

and its suburbs is expected to increase pressure on water resources. In order to properly 

manage groundwater resources, reliable information about recharge and quantification of 

abstraction volumes would be necessary. Sustainable water resource management must go 

along with spatial planning for projected urban population. Sustainable use of groundwater 

must ensure that the future resource is not threatened by overuse, and that natural 

environments that depend on the resource, such as stream baseflows, riparian vegetation, 
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aquatic ecosystems, and wetlands are protected. Regional scale groundwater recharge studies 

on the TMG aquifer (Wu 2005),  

 

The impact of irrigation and cultivation in the Philippi and Kraalfontein areas on recharge is 

likely to appreciably increase the amount of recharge, and in some cases to exceed 

precipitation as the predominant source of recharge as the years go bye and agricultural 

activities increase. The imbalance between the water input (recharge) to the Cape Flats 

aquifer and the output (pumpage and stream baseflows) is not fully known, as the aquifer is 

not intensively used at present.  With the impact of recharge on groundwater quality, part of 

the challenge will be to develop locally-appropriate groundwater protection plans for the city 

and move towards sustainable development of groundwater in the greater city of Cape Town. 

 

 

5.8 Synthesis and summary of results from the different approaches 

Based on the physical conditions and data requirements (with data availability and 

possibility) for recharge estimation, methods used included the analysis of precipitation and 

water table fluctuation (WTF and CRD), rainfall-recharge relationship and water balance 

approachesas well as hydrochemical and isotope physical approach.  From the discussion of 

the results from water table fluctuation, it is obvious that the Cape Flats aquifer shows a 

seasonal groundwater fluctuation and a delayed response to recharge events. The delay 

between recharge event and groundwater response is partially due to the lower permeability 

clay subsoil.  

 

Comparative analysis of the methods applied in this recharge quantification can give useful 

information. Results from the chloride mass balance have to be regarded as long-term 

averages, because groundwater samples in this study represents a mixture over the complete 

residence time of the groundwater body. In contrast the water table fluctuation method and 

water balance approach apply specifically to the observed years or period for which 

information is available. The approaches have their justifications. Long-term average recharge 

rates are most important for water resources planning, and chloride mass balance can serve as 

an easy and relatively fast means to deliver this information. The advantage of the other two 

methods is that they provide the timing of recharge events and can be useful in analysing 

variation of recharge caused by changing rainfall or land use conditions. 
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Annual recharge rates resulting from the applied methods have been presented in Tables 5.2.1 

-5.2.5. Water table fluctuation method gave the higher recharge values. While the WTF can 

be useful to compare the relative change in recharge for different years and identify the 

relative impact of changes in rainfall on recharge, it is unlike the chloride method that is 

generally known to reflect lower recharge rates. Recharge rates vary considerably between 

wet and dry years and between locations, with a range of 17.3% to 47.5%.  

 

The range of values obtained by the other methods, like the water balance and rainfall-

recharge relationship, gave useful guidance in the earlier stages of resource evaluation for the 

Cape Flats aquifer. Values obtained using empirical rainfall-recharge relationship tends to 

agree with the recharge estimates from WTF.  Although one of the empirical methods showed 

exaggerated values of annual recharge rates, the percentage ranges are comparable, in 

particular, to the estimates for the years 2003 and 2004. The soil water balance approach 

presented gave quantitative indication of vertical movement of water of the represented soil 

types (sandy clay), although horizontal movement was neglected. Annual deep percolation as 

calculated from the water balance model are comparatively low  but values agree with 

recharge estimates from series of other methods applied in the north-western end of the Cape 

Flats sand (Grootwater, Sandvecld group by Conrad et al. 2004). Although the credibility of 

the estimates generated for deep percolation by the model may be in question.  

 

In locations where groundwater has been exploited for many years the potential recharge 

estimates from soil water balance, there is need for comparison between the predicted head 

and actual groundwater head hydrographs.  For the present study area where field data are 

limited, and there are no absolute reference values of deep drainage (or percolation) available 

for calibration and validation, the concept of plausibility (as used in Carter et al. 2002, Eilers 

et al. 2007) was adopted. This concept of plausibility includes judgements about the structure 

and the results of the model.  It assumes that if the model is reasonable in representing the 

complex hydrologic system then it will be able to compute a credible water balance (Eilers et 

al. 2007). The CMB method presented annual estimates of recharge for the study area (i.e.5-

8%) that are comparable to other parts of the world where conditions are similar (Cartwright 

et al. 2006a, 4–90 mm/yr, i.e. 2 to 14% of rainfall; Cartwright et al. 2006b). 
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In summary, the variation in recharge rates described in this study is comparable to other 

documented studies of unconfined sand aquifers like Curragh aquifer in Ireland (Misstear & 

Brown 2006), Marcondash Reservoir Catchment area near Melbourne, Australia (Campbell et 

al. 2005), Beaverdam Creek basin, Maryland, USA reported in Healy & Cook (2002), the 

semi-arid plain environments of Kansas Prairies, USA with relatively shallow water table 

(Sophocleous 1991). Isotope and geochemical methods has been demonstrated in this study as 

one of the important approaches to characterization of recharge processes, and possible flow 

dynamics involving the unconfined aquifer.   

 

Based on observed isotopic signature and environmental chloride variations of the 

groundwater system in the study area it was possible to identify the source and movement of 

groundwater.  The sources of urban aquifer recharge in Cape Town (sewers, leakages) 

highlighted in this section has implications for groundwater quality and therefore necessitates 

detailed evaluation of the chemical characteristics of the Cape Flats aquifer, which is the 

focus of the next chapter (chapter 6). The implications of groundwater quality in relation to 

water resources management set the stage for pollution control and aquifer protection 

strategies which are discussed in chapter 7. 
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CHAPTER 6: HYDROCHEMICAL EVALUATION OF GROUNDWATER  
 

6.1 Introduction 

 
Information on geological, hydrogeological, and physical-chemical groundwater data from 

boreholes and well points in the Western Cape is contained in the National Groundwater 

Database (NGDB). Some of the boreholes listed in NGDB are from different public and 

private sources, within the study area. The location, the collar elevation, the depth and the 

source of each well have been so gathered in a detailed database where stratigraphic, 

piezometric, chemical-physical groundwater data have also archieved. The geological and 

hydrogeological features of the study area and the chemical-physical groundwater 

characterisation have been inferred from the data analysis of selected monitoring boreholes. 

 
 

6.1.1 Existing groundwater monitoring network in the Western Cape 

A more appropriate and adequate dataset is essential for the planning and management of 

aquifers. Monitoring is, therefore, closely linked to the aquifer management, since the results 

of monitoring may require changes or modifications in the management practice. The data 

collected from an aquifer monitoring network may reflect the shortage or redundancy of 

information. 

 
In the Western Cape different groundwater monitoring networks exist for: (1) groundwater 

level, (2) groundwater quality. The dataset forms part of the National Groundwater Database 

(NGDB) which is monitored by the Department of Water Affairs and Forestry (DWAF). The 

measurement of water level (HYDSTRA) and hydrochemical (WMS) data are the 

responsibility of the Directorate Geohydrology. All information regarding registered 

groundwater users are encoded onto WARMS (Water use And Registration Management 

System) database.  

 

In the Cape Town area, particularly around and within the Cape Flats, the groundwater 

monitoring data from available records are from 1967-2007 and are also categorized 

according to the two networks above.  A total of 1,984 wells are considered to fall within the 

Cape Town Municipality (Cape Town and suburbs); these have identification numbers on 

map and are referenced as site id’s on NGDB (e.g. 3318 CD: 1-115; 3318 DA: 1-381; 

3318DB:1-386; 3318DC:1-276; 3318DD:1-331; 3418AB:1-77; 3418BA:1-340; 3418BB:1-

78). Most of these wells are within the Cape Flats sand area and periphery of the mountains 
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that borders the sand (east, west and northeast). Approximately 160 wells have hydrochemical 

data but are not being monitored consistently. The groundwater level network measures the 

water level on a monthly basis, using some of these wells, especially the municipal and 

agricultural boreholes. The groundwater quality network measures several variables: EC, 

anions, cations and trace metals. These measurements are now made twice a year (in the past 

6 times per year measurements were recorded) using monitoring boreholes in the area.  

 
According to the records on the DWAF database, as at December 2006, there are about 240 

registered industrial and agricultural boreholes within the greater City of Cape Town, each 

with a registered volume of abstraction per year.  DWAF keeps the record of water use per 

individual or industry or agriculture and monitors quality data in the form of discharge 

information (water use sector, abstraction volume, area value, crop/irrigation type, waste 

composition, etc.).  From this record, there are 211 boreholes used for agriculture, 25 for 

industry and 2 for water supply within the City of Cape Town municipality. There are a 

number of unregistered household boreholes that are used for irrigating gardens and lawns 

especially during the summer season. Nearly every household (especially within the formal 

settlements) has a borehole or well-point for this purpose as the City Council prohibits the use 

of municipal tap water for wetting the lawns and gardens. 

 
Another type of monitoring network is the municipal landfill monitoring wells which measure: 

EC, total dissolved solids (TDS), chloride (Cl), nitrogen (in form of NO3-N, NH4-N), 

phosphate (PO4), alkalinity and COD/BOD. For this purpose, approximately 12 monitoring 

wells are used (Ball and Novella 2003). The measurements are made twice a year in the 

summer and winter. The three networks are used to collect information that describes the 

status of the groundwater quality and quantity of the Cape Metropolitan area. Table 19 

provides a summary of the groundwater monitoring networks in the study area. 
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Table 19: Summary of the groundwater monitoring networks in the Cape Flats area  
 
Monitoring Variables Number of wells 

(Approximate) 
Sampling frequency Data record since 

(year) 

Groundwater level, pH, EC, 
TDS a, z 

160 Monthly 1979-2006 

Full groundwater chemistry 
(Major, minor & trace ions) b, z 

200 Bi-annual 1967-2006 

EC, TDS, Cl, nitrogen (in form 
of NO3-N, NH4-N), phosphate 
(PO4), COD/BOD and 
alkalinity c  

Several sample 
lines of multiple 
mini-wells & 
borehole 

Bi-annual and 
differential depth 
sampling 

1986-1992 

Routine chemistry d 18  4 times per year 1986-1990 
Routine chemistry e 10 Monthly 1992-1995 
Abstraction volume f 242 Yearly 1895-2006 
a Department of Water Affairs & Forestry (DWAF) monthly and bi-annual monitoring 
b Groundwater chemistry (DWAF) 
c Groundwater monitoring at Coastal Park sanitary landfill  
d Groundwater chemistry monitored by the Division of Water Technology, CSIR  

e Bellville Solid Waste, record kept by the City of Cape Town 
f 140 wells have current full record (DWAF-WARMS) 
z Time series for most data not complete; some years are missing, some wells closed/vandalized 
 
 

 

6.1.2 Groundwater monitoring in the Cape Flats 

Review of the existing groundwater quality monitoring network indicates that the majority of 

monitoring has been carried out in wells screened in the Cape Flats sand: shallow (unconfined, 

water table) aquifer. However, a number of wells are screened at deeper level in the 

Malmesbury bedrock aquifer (essentially weathered shale). From the most recent record 

available at the Western Cape Regional Office of the Department of Water Affairs, it was 

found that the total number of active wells in the Cape Flats aquifer could total more than 120 

wells. Most of the wells, used for agricultural purposes, are shallow and are typically screened 

10–30 m below the water table. As shown in Table 19, 630 well records are available and 

about 160 of this have been monitored for water quality status in the area around Cape Town 

(Municipal area and suburbs), mainly the salinity in the form of electrical conductivity and 

total dissolved solids, since 1967. However, the monitoring wells are not production wells nor 

installed near pumping wells. A few of the wells are abandoned and vandalized while some 

are only monitored for groundwater level. The measuring periods are mostly not consistent 

giving a lot of gaps in the water level and chemical data. 
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All historical hydrochemical data from 160 (agricultural, industrial or individual) wells were 

checked and processed. Data quality checks have been made on all the samples discussed in 

this chapter. In these wells, the starting dates for collecting data on groundwater chemistry 

were not the same. Moreover, some of these wells have different terminal reading dates. In 

addition, within the period of measurements, there are missing data. The very few deep wells 

included in this study are treated separately after analysis, since they represent 

hydrogeological characteristics of a different aquifer (in this case the Malmesbury shale). The 

quality of the NGDB chemical data was tested by checking the ionic balance after conversion 

to milliequivalent as discussed in chapter 2.  

 
 

6.2 Sampling and analytical techniques of the current work 

The methodology and data processing have been described in chapter 2. The existing 

chemical data of the NGDB started from 1967 and these were treated in this thesis as historic 

data to show the general groundwater chemistry trend during the last four decades. There 

were no specific quality indices related to the human impact on groundwater, for example, 

pollution with aromatic or polycyclic hydrocarbons, organochlorines, organoposphorus, 

volatile organic compounds (VOC’s) etc., which are common to many developed cities of the 

world (Zhang et al. 2004, Juodkazis et al. 2003, Cox 1996, Barber et al. 1996, Grischek et al. 

1996).  

 

During the course of this research (2005-2007) sampling for chemistry and stable isotope 

analyses have also been carried out on selected wells. This sampling was intended at possibly 

filling the gaps and accommodates recently drilled wells and to show the current trend in 

groundwater chemistry. It was also aimed at sampling for environmental isotopes analyses 

which were not carried out previously. Rain sampling was also included as there were no 

records of rainfall chemistry in the database.  Several rain samples collected from the rain 

samplers installed at UWC, iThemba Laboratory and rainwater from Belhar residential area 

were analysed for chloride as described in chapter 2. Figure 46 shows the distribution of 

sampling points in the study area. Series of pumping tests were carried out on three wells 

from two sites (University of the Western Cape, UWC test site, and iThemba Laboratory 

experimental borehole).  Field parameters, including water temperature and EC were 

determined following the procedure described in chapter 2.  
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For the purpose of data interpretation, the dataset was divided into three in accordance to the 

sequence and consistency of measuring period: 1967-2001, 2003-2007 and wells or 

groundwater sources with consistent few years’ record were singled out for separate 

interpretation (Philippi 1985-1989; Newlands Spring 1994-2006). Further, 25 boreholes, 6 

springs, 8 surface water (included 2 rivers and 6 canals/reservoirs), and selected rain episodes 

between 2005 and 2006 were sampled for hydrochemical analysis; selection was according to 

geographic location and accessibility. These, in addition to the dataset 2003-2007 (from the 

NGDB database), were interpreted to show present day quality status of groundwater from the 

Cape Flats aquifer. All the data sets were prepared in excel and interpreted with HAM (Kan et 

al. 2004) and AquaChem version 3.7 for Windows (Waterloo 1999). Charge balances between 

cations and anions were determined using HAM and AquaChem (Kan et al. 2004, Waterloo 

1999) and the accuracy of determinations discussed in section 2.5.   

 

6.3 General groundwater chemistry 

A chemical and physical characterisation of groundwater in the study area has been carried 

out. This analysis has been inferred from the tests performed on different groundwater 

samples (about 1190 in total): 30 samples (from 4 wells) tapping the weathered Malmesbury 

aquifer and 60 samples (from 7 wells) tapping the Cape granite aquifer while about a 

thousand samples are from the Cape Flats aquifer (from about 170 wells). The location of the 

boreholes is shown in figure 46). The chemical data on groundwater from the Malmesbury 

and Cape Granite are presented and discussed. This is to understand the relationship between 

the Cape Flats and other aquifers in the area and increase the knowledge about the 

characteristics of the aquifer and aid its development and management. It is not the intention 

of this work to discuss the TMG aquifer (TMG).  Much knowledge exists in the literature on 

the TMG aquifer (e.g. Kotze 2000, Xu et al. 2002, Parsons 2009). Several Phd research theses 

(e.g. Wu 2005, Jia 2007, Roets 2008) are completed on the TMG. The chemical and recharge 

characteristics of the TMG have been discussed in Wu (2005), the hydrological significance 

and flow characteristics of the aquifer presented in Jia (2007).   

 
Groundwater temperature ranges between 17.2°C and 23.3°C. The groundwater pH values 

range from 4.8 up to 9.1 and does not show any trend as the water flows from inland towards 

the sea. The minimum, the maximum and the mean values of each chemical parameter and the 

classification according to the lithotype are shown in Table 20.  The major ion chemistry data 

are shown in Appendix 6.1 with the values in ppm.  
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Figure 46: Location of selected NGDB monitoring wells with chemical data and the sampled wells, 
springs and surface water in the current study. (Note that some of the wells are located close to each 
other and therefore plot as clusters or one point. The letter abbreviations on the map represent wells, 
springs, rain and surface water with their chemical data presented in appendix 6.2). 
 
 

6.3.1 Statistical analyses of data 

Statistical analysis for the interpretation of large data sets is common in hydrochemical 

studies (Ashley & Lloyd 1978). Relationships between various chemical parameters were 

identified using statistical methods, specifically correlation matrices and descriptive statistics 

in SPSS version 14. Correlations among the analysed physico-chemical parameters are 

presented in Table 20. Water temperatures, pH, barium, fluorite and nitrate did not show 

meaningful correlation with most of the measured parameters. HCO3 showed the next lowest 

correlations with other parameters but correlated to Ca (0.67). The EC and Cl were highly 

positively correlated with most of the other ions (except for HCO3, F, NO3, and Ba), which 

indicates that these ions are derived from the same source with a limited composition range.  
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Furthermore, the study area shows three main clusters: 1) Na, Cl, and Mg concentrations have 

strong mutual correlations (>0.98) and Ca and SO4 are correlated with this group (>0.69); 2) 

Fe, Na, Ca, and Mg concentrations are strongly mutually correlated (>0.80), Fe, and Mn are 

also mutually correlated (0.72) and correlated to Na, Mg, and Cl (>0.67); and 3) HCO3 and Ca 

have a mutual correlation of (0.67) but HCO3 show weak correlation to the other groups of 

ions. These clusters form the basis for discussing the sources of the solutes in groundwater of 

the study area. 

 
A wide range of values and great standard deviations occur for most parameters measured. In 

particular, concentrations of Na and Cl have ranges of 3-2,285 and 7-5,121 ppm, respectively. 

Concentrations of Ca, Mg and SO4 also showed large variations with ranges of 2-366, 1-321 

and 0-846 ppm, respectively. HCO3 has a range of 0.1-753 while NO3 showed the variation 

(0-248). These wide distributions indicate that chemical composition is affected by multiple 

processes, including seawater mixing. Especially the predominance of Na and Cl indicates 

strong saline water impact. Of the Cl concentrations in groundwater, 21.2% exceeded the 

WHO drinking water standard (250 ppm). Substantial amounts of HCO3 and Ca reflect 

contribution by water-rock interaction (Hem 1985, Park et al. 2005). Figure 47 shows the 

distribution of some of the major ions in groundwater samples from the study area. The most 

abnormal distribution was observed for K and NO3 concentrations, with very low values. Na 

and Cl also show some high density distribution of concentrations (<200 ppm), showing that a 

high percentage of the samples have NaCl values below the WHO limits (85.5% samples 

below 250 ppm Na while 79% are below 250 mgl-1 Cl).   
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Figure 47: Distribution of some of the major ions in groundwater samples from the study area 
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Following the methods of Lepeltier (1969) adopted by Sinclair (1974), Park et al. (2002) and 

Lee & Song (2006), the cumulative frequency curves for two parameters (Cl and HCO3) were 

used to differentiate ‘anomalous’ values from ‘background’ values. The chloride may 

represent effects of salinisation (or seawater mixing) while bicarbonate is indicative of water-

rock interaction, respectively. The threshold values were calculated as 327 ppm for Cl and 

133.8 ppm for HCO3 (Figure 48a, b).  Based on the thresholds values, groundwater in the 

sandy aquifer can be divided into four classes (figure 48c):  

(1) 59.7% are dominantly influenced by the water-rock interaction;  

(2) 30.6% of the groundwater samples show negligible effects by salinisation or water-rock 

interaction processes. 

(3) 7.3% were affected by both water-rock interaction and salinisation; and  

(4) 2.4% of the groundwater samples are dominantly affected by the salinisation process; 

 
 

6.3.2 Chemical characteristics of the groundwater 
6.3.2.1 Major ion chemistry 

The major ion chemistry of groundwater is useful for determining solute sources and for 

describing groundwater evolution. In the last two decades major ion chemistry has been 

employed in determining solute sources and for the evaluation of groundwater evolution (e.g. 

Edmunds et al. 1982, Arad & Evans 1987, Herczeg et al. 1991, 1993, Macumber 1991, 1992, 

Weaver & Bahr 1991, Acworth & Jankowski 1993, Kimblin 1995, Weaver et al. 1995, Elliot 

et al. 1999, Edmunds & Smedley 2000, Herczeg & Edmunds 2000).  

 

Water chemistry within the Cape Flats aquifer is different from the bedrock aquifers, although 

within the aquifer, salinity varies greatly. Total dissolved solids (TDS) of the samples from 

wells screened in the Cape Flat sands are generally low (except iThemba pumping well) 

compared to those in the Malmesbury bedrock aquifer. Mean values of TDS for Cape Flats 

and Malmesbury aquifers are respectively 1229 and 1788 ppm.  Generally, groundwater in 

Cape Town area range in TDS as follows: Cape granite aquifer (48-314 ppm); Malmesbury 

aquifer (264-3367 ppm); the Cape Flats aquifer (67-4314 ppm).  The concentrations of 

calcium and bicarbonate ions in the groundwater are highest in the southern coast, especially 

around Mitchells Plain and lowest inland towards the west coast and the eastern borders of the 

Cape Flats. The concentration of calcium ranges between 1.7 and 366 ppm, whereas that of 

bicarbonate varies between 0.1 and 753 ppm. Bicarbonate concentration of groundwater from 

the granitic aquifer was the lowest (median: 19.3), in exception of well MP 61. 
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Figure 48: Cumulative frequency curves for (a) Cl and (b) HCO3. The inflection points are calculated based 
on Sinclair (1974) and demonstrated by Park et al (2002); Lee & Song (2006). Estimated threshold values 
have been used to differentiate background from anomalous values. Based on the threshold values, 
classification of four groundwater types is also shown in (c). 
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The magnesium content range between 1 and 321.3 ppm and it increases along the coastline, 

especially in the western coast of the Cape Flats between Bloubergstrand southwards, towards 

the Table Mountain.  

 
The iron content of some groundwater is above the WHO limit of 1 ppm for potable drinking 

waters but it is site specific reflecting the variability in chemical composition of the sediments 

in the aquifer. The concentration range of iron in groundwater of the study area is between 0 

and 32.3 ppm. The highest iron concentrations are reflected in the groundwater samples from 

iThemba pumping well. During the four pumping tests conducted a total of 73 samples were 

analysed for chemical constituents. More than 99.9% of this showed iron concentration <10 

ppm.  Apart from this, a few sample of boreholes also showed high Fe concentrations. For 

example, the June 1986 sampling of boreholes BA018 and BA020 (in Mitchells’ Plain) were 

22.9 and 16.9 ppm Fe respectively.  Groundwater samples from the bedrock aquifers (i.e. 

Malmesbury and Cape granite) are all lower than 1 ppm Fe content. 

 

Iron is usually derived from oxidation of pyrite, which also lowers the pH of groundwater, but 

there are no occurrences of pyrite in this area and the pH range is 6-8.  What was noticed 

during field sampling was that the wells had metal casing, but the extent to which this has 

influenced the chemistry of the water could not be determined. However, the high 

concentration of iron may be due to redox conditions in the aquifer and in certain cases the 

concentrations are thought to be related to the corrosion of the borehole casing. Historically, 

the site of iThemba Labs’ natural environment was disturbed during construction. An old 

stream channel was diverted and buried during the construction of the site. The buried stream 

channel is located few metres away from the boreholes.   

 
 

6.4 Hydrochemical characterisation 

The chemical character of groundwater within the study area is discussed in this section. 

Table 20 shows the compositional distribution and variation of the different groundwater 

samples in the study area. The classification of water types based on TDS (ppm) and the 

distribution of the groundwater samples according to the aquifers is as shown in the Table. In 

summary, 81.5% of samples within the Cape Flats sand, 100% within the Cape Granite and 

50% within the Malmesbury Shale aquifers are fresh water samples with less than 1,000 ppm 

total dissolved solids. No brackish or saline water was found within the Cape Granite, but 
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10.8% of the samples in the Cape Flats sand and 50% within the Malmesbury Shale reflect 

brackish with TDS up to 18,000 ppm. It is indicative that saltwater, or hypersaline water with 

TDS >40,000 ppm, was found in the Cape Flats sand only, in 68 or 4 samples, respectively - 

no such strong saltwater influence was found in the other two aquifers.  

 

Schoeller plots are generally useful to identify groundwater with similar ionic ratios and 

concentrations, comparing them to groundwater with different chemical character (Guler et al. 

2002). For classification of the groundwater types in different aquifers of the study area, the 

major ions sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate and 

nitrate were plotted on a Schoeller diagram to illustrate the ionic composition of the different 

waters.  

  
The variability of major ions is related to factors such as the lithologies of the aquifers, 

groundwater mixing, the impact of farming activities and salinisation. The three classes of 

groundwater sampled from wells tapping the Cape Flats, Cape granite and Malmesbury 

aquifers were used to plot the average equivalent concentration of the major ions and ionic 

combinations in the Schoeller diagram to show how the Cape Flats aquifer compares with 

neighbouring aquifers in the study area.  Although the focus of this work is on the Cape Flats 

aquifer, the Cape granite and the Malmesbury aquifers borders and underlies the Cape Flats in 

the east and west. In most cases, the boreholes sampled and located on the Cape Flats are 

screened in the Malmesbury, which extensively underlies the Cape Flats sands.  The pumping 

tests conducted in the study area have wells yielding water from the Malmesbury aquifer in 

places, so it is possible to investigate interconnectivity or interactions of the aquifers.  

However, the degree of mixing is not obvious as wells with multi-screens are not properly 

logged. The Cape granite shows the lowest ionic concentration. The concentration of alkaline 

earth elements in this aquifer is low compared to the other aquifers. 

 

 
Table 20: Water types and distribution of groundwater samples in the study area 

Distribution of groundwater samples TDS 
(ppm) 

Classification 
of water type Cape Flats % Cape 

Granite 
% Malmesbury 

Bedrock 
% 

<1,000 Fresh water 758 81.5 60 100 30 50 
5,000 -
18,000 

Brackish water 100 10.8 - - 30 50 

18,000 -
40,000 

Saltwater 68 7.3 - - - - 

>40,000 Hypersaline 4 0.4 - - - - 
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Samples from the Cape Flats aquifer were further subdivided into groups (1-5) in order to 

illustrate the distinction in composition of the groundwater from the individual boreholes and 

sites of sampling (Table 21). The average equivalent concentrations of groundwater from the 

Cape Granite and Malmesbury bedrock aquifers plotted for comparison. In these groups, 

average concentrations between selected ions and ionic combinations respectively occur more 

or less in the same ratio and display similar pattern. However, the absolute ionic 

concentrations differ between these groups. The number of samples in each group is listed in 

Table 21.  

 

Table 21: Hydrochemical facies classification within the study area 
Group Chemical Type 

Water  
Description/Regime No. 

Wells 
No. 

Samples 
1 Ca-HCO3 Sand aquifer: Belhar-UWC-Otery 10 57 
2 Ca-Na-Cl-HCO3 Sand aquifer: Mitchels Plain-Philippi 22 85 
3 Ca-Na-HCO3-Cl Sand aquifer: MitchellsPlain-Philippi-Macassar 47 496 
4 Na-Ca-Cl-HCO3 Sand aquifer: Mitchells Plain-Bellville-Macassar 31 106 
5 Na-Cl Sand aquifer: Faure-Helderberg-Lakeside 52 216 
6 Na-Ca-Cl-HCO3/ 

Na-Mg-Cl-HCO3 
Cape Granite: fractured bedrock 7 60 

7 Na-Mg-Cl Weathered Malmesbury Bedrock 5 30 
 
 
Although various hydrochemical facies were observed, Na-Cl and Ca-HCO3 types were 

dominant. As the Cape Flats groundwater travels through the unconfined recharge areas 

towards semi-confined coastal discharge zones it may have evolved through Ca-HCO3-Cl 

type via Ca-Na-Cl-HCO3 type to Na-Cl type; or from Ca-Na-HCO3-Cl type directly to Na-Cl 

type or through Na-Ca-Cl-HCO3 to Na-Cl.  These patterns give good indication that the 

various groundwater chemistries are changed by cation exchange reaction, as well as simple 

mixing in certain proportions (Richter et al. 1993; Appelo and Postma 1999; Jeen et al. 2001).  

The semi-logarithmic Schoeller plots in figure 49  shows that in both the Cape Flats and 

Malmesbury bedrock groundwaters the dominant hydrochemical facies is Na-Cl, with Mg>Ca 

and HCO3>>SO4.  Significant proportions of the groundwaters showed Na-Cl type.  

 

The average equivalent concentration of the major ions of the three aquifers: a) the Cape Flats, 

b) Cape Granite, and c) Malmesbury Shale are plotted in the Schoeller diagram (Figure 50). 

The equivalent concentrations of the elements shown compare well within the three aquifers 

as indicated by the similar pattern on the semi-logarithmic plots. This indicates most of the 

waters have similar origin. It is obvious that the Cape Flats and Malmesbury Shale are very 

similar in composition and in concentration as well. Apparently, the Cape Granite (through 
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which some of the boreholes are screened) shows the lowest ionic concentration whereas the 

Malmesbury Shale and the Cape Flats have average concentration 10-times higher. The 

alkaline metals are highest within the Malmesbury Shale, whereas the earth-alkaline metals 

and nitrates are higher within the Capes Flats sands.  

 

It is very difficult to find any significant criterion in the chemical solutions of the groundwater 

for distinction of the various aquifer types. For classification of the chemical groundwater 

types in the Cape Flats aquifer, the major ions sodium, potassium, calcium, magnesium, 

chloride, bicarbonate, sulphate and nitrate were plotted on a Schoeller diagram to illustrate the 

ionic composition. Typical classification of hydrochemical facies for the groundwater of the 

Cape Flats is shown in figure 50. The five groups of groundwater samples formed to plot the 

average equivalent concentration of the major ions and ionic combinations are illustrated in 

this figure. In these five groups, average concentrations between selected ions and ionic 

combinations respectively occur more or less in the same ratio and display similar pattern. 

However, the absolute ionic concentration differs between the groups. Group 1 shows 

altogether the lowest ionic concentration. The concentration of alkali elements in this group is 

very low compared to the other groups (although it seems to measure up with other groups in 

the alkaline earth elements composition). Group 5, show in all ionic concentrations except 

calcium and bicarbonate, the highest values. This group is shown to be predominantly Na-Cl 

type as illustrated in figure 51.  
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Figure 49 (top): Average equivalent concentrations of major ions and ionic combinations in the three 
aquifers in the area around Cape Town (Symbols: MMB is Malmesbury Shale aquifer; CPG is Cape 
Granite Aquifer.  A plot of the nearby seawater sample (from Saldanha Bay, North-western coastal 
border of the study area) is used for comparison. 
Figure 50 (bottom): Average equivalent concentrations of major ions and ionic combinations based on 
the groups 1-5 within Cape Flats Aquifer (Cape Granite and Malmesbury Shale aquifers are included 
for comparison)  
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Figure 51: Scatter plot of Na/Cl versus Cl in groundwaters of the study area (symbols as explained in 
figures 49 and 50) 
 

The hydrochemical composition can further be distinguished plotting the average values in a 

Piper diagram as in Figure 52. In the left cations triangle (figure 53), the Cape Flats groups 1-

5 spread across from group 1 with Ca being dominant towards the right side where in group 5 

the alkaline metals Na and K dominate the composition. However, as shown here, also Cape 

Granite as well as the Malmesbury Shale aquifer plots here in the right lower corner, 

indicating mainly Mg being in lower proportions, below 20 meq/l%. In the right-hand anionic 

triangle the situation is very similar, again showing a development from the Cape Flats group 

1 with a high proportion of bicarbonate towards the right and a very high proportion of 

chloride, >80meq/l%, in group 5. The water of the Malmesbury Shale aquifer plots close to 

group 5 while Cape Granite water touches group 4 in the Na+K/Na-Cl end of the plot. Again, 

here the sulphate content is in general low, as indicated by value mainly <20 meq/l%.  
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Figure 52: Piper diagram of the Cape Flats Aquifer (CFA) groups 1-5, compared to Cape Granite and 
Malmesbury Shale aquifer (based on average concentrations meq/l in %) Note: MMB represents 
Malmesbury Shale aquifer; CPG represents Cape Granite aquifer.) 
 

 
 
Figure 53: Cation triangle plot of groundwater samples from the Cape Flats aquifer (group 1-5) 
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An attempt was made to closely compare the chemical character of groundwater along the 

coastline and further inland. However, because monitoring data were not consistent and 

sampling was over different periods; and as such it is not easy to define a trend in 

groundwater chemistry. Notwithstanding, data from wells along the coastline especially in the 

coastal sector between Muizenberg and Macassar were compared to those farther inland, in 

the northern suburbs (Bellville and Potsdam).   

 
Wells tapping the Cape Flats aquifer in these areas show slightly different groundwater 

chemistry: Potsdam (TDS range: 576-778 ppm); Bellville (TDS range: 310-914 ppm), except 

in the area around the Bellville Waste Disposal Site with higher values (1024-2240 ppm).  

Furthermore, in the Philippi area (inland) many of the wells screened in the Cape Flats sand 

are under the influence of agricultural activities (dominant in the area), showing range of TDS 

between 1198 and 4320 ppm.   

 
River and stream water monitoring by the city of Cape Town Catchment Monitoring unit has 

shown intense pollution in the catchment. The extent of pollution due to leakage of 

river/stream water into the Cape Flats aquifer system is yet to be fully quantified. However, 

the sources of pollution are more likely to be waste water discharge into the streams and 

rivers, since most of the industrial activities and dense population are located on the Cape 

Flats (Adelana & Xu 2006). 

 
 

6.5 Hydrogeochemical relations of groundwater 

Hydrogeochemical relations of groundwater in the study area are illustrated in figure 54. In 

HCO3
− + CO3

2− versus Cl− + SO4
2− diagram (figure 54a). Most groundwater samples tend 

towards the HCO3
− + CO3

2− rather than towards Cl− + SO4
2− of the plot. The plot suggests that 

groundwaters are characterized by HCO3
− + CO3

2− > Cl− + SO4
2−.  In order to describe the 

relation between Na++K+ and Cl−, a Na++K+ versus Cl− plot was done as illustrated in Figure 

54b.  Some groundwater samples fall above the theoretical line (1:1), suggesting that the 

waters are dominated by alkalis (Na+ and K+). This excess alkalis, with respect to those 

associated with Cl− (from seawater), may be ascribed to silicate weathering (Stallard & 

Edmond 1983). Significantly, the excess alkalis are accompanied by an excess of HCO3
− over 

Cl− in the groundwaters (Figure 54c), indicating that most groundwaters should be 

characterized by Na+-HCO3
− facies. However, this is not the case, as Na-Cl and Ca-HCO3 

dominate due to possible ion exchange.  
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Some groundwater samples collected from boreholes close to the sea (see Section 6.4) show 

high concentrations of Cl− and Na+; suggesting that they may be influenced by seawater. 

Cl−/Na+ ratios higher than the seawater value suggest that seawater intrusion is accompanied 

by Na+–Ca2+ exchange, which is a common occurrence in coastal areas (Appelo and 

Willemsen 1987; Appelo et al. 1990, 1993; Appelo 1994). These waters show higher TDS 

values compared to other waters. The general relation of Na-Cl in the groundwaters of the 

study area is illustrated in figures 55 and 56.  While Na-Cl reflects a defined pattern Cl+SO4 

versus Na+K is much dispersed. 

 

The groundwater of the study area (as shown from the hydrochemical relations) displayed 

chemical characteristics, which may be governed by chemical weathering of the rocks, 

salinisation, locally accompanied by ion-exchange, and anthropogenic activities.  Because of 

the high concentrations of Na+, SO4
2−, Cl−, (and in certain instances, NO3

− and F−) in some 

groundwater there are hydrochemical relations which cannot be explained through the water-

rock interaction alone, other processes attempted are  discussed in Section 6.6. 
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Figure 54: Relation of (a) HCO3

− + CO3
2− with Cl− + SO4

2−,  
(b) Na+ + K+ with Cl− and (c) HCO3

− + CO3
2− with Cl− in the study area. 
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Figure 55 (top): Plot of Cl versus Na in the main aquifer types 
Figure 56(bottom): Plot of Cl+SO4 versus Na+Cl in the main aquifer types 
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6.6 Hydrochemical evolution 

Na and Cl concentrations have strong mutual correlation (as shown in 6.4). Despite the strong 

correlation between the concentrations of these ions there is some variation in their ratios as 

well as in relation to other cations and molar ratios, as shown in Figure 57(a-g). Molar Na/Cl 

ratios ranged from as high as 1.95 to 0.17, with many between 0.6 and 1.2 (Figure 57a). The 

high Na/Cl ratios of the freshest groundwater are probably controlled by water–rock 

interaction, for example, albite weathering by  

 
2NaAlSi3O8 + 9H2O + 2H2CO3 → Al2Si2O5(OH)4 + 2Na+ + 2HCO3

- + 4H4SiO4     

      (albite)                                                                           (kaolinite) 

                                                                                                                        (Reaction 6.1) 

Reaction 6.1 also produces kaolinite, which is common in the weathered rocks. Samples with 

Na/Cl ratios of 0.8–0.99 are probably due to evaporation of rainfall which has a Na/Cl ratio of 

0.88±0.1 (in the study area). Samples with low Na/Cl ratios are probably the result of Na loss 

or exchange onto soils and clays. The high HCO3/Cl ratios (up to 2.55, in the fresh 

groundwater, Figure 57b) are due to the weathering of feldspars (as illustrated in Reaction 6.1 

above), which may occur during the initial stages of water rock interaction.  

The Ca and Mg data seem to offer some explanation (figure 57c-e). These cations may be 

derived by dissolution of silicate minerals (e.g., plagioclase feldspar, chlorite, or biotite), 

and/or cation exchange of Na for Ca and Mg on clay minerals. The data further imply that 

calcite, dolomite, and gypsum dissolution does have a measure of control on Ca or Mg 

abundances, while dissolution of K-feldspar may be the major source of K. This is probably 

the case around Mitchells’ Plain, very close to the coastline, where Ca is the dominant cation. 

There is the possibility that the groundwater rich in sodium ions (Na+), as a result of seawater 

interaction, invades organic peat layers rich in calcium (Ca2+). In this case, the sodium ions 

with a valency of (+1) replace the calcium with a valency of (+2).  The reaction showing the 

cation exchange for the peaty layer is as follows: 

2Na+ + Ca – Peat2 → 2Na – Peat + Ca2+                                                                 (6.2) 
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Figure 57 (a-g): Molar ratios for groundwater in the study area 
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As shown in Table 22 and Figs. 57(c-e), there is a good correlation between Ca and Mg (and 

total dissolved inorganic carbon, if measured) may have indicated some level of carbonate 

dissolution, as one of the major processes controlling the Ca and Mg contents of the Cape 

Flats groundwater in the study area.  

 
Sulphate content of groundwater in the study is lowest in the Cape granite (<1 mmol/L) and 

relatively high in all groundwater samples from the Malmesbury (up to 7.3 mmol/L).  

Samples from the Cape Flats aquifer are low but >1 mmol/L in many sampled wells. The low 

sulphate contents (<1 mmol/L), low SO4/Ca ratios of the Cape granite (which represents the 

freshest groundwater in this area); likewise imply that gypsum dissolution does not control Ca 

concentrations in this aquifer. 

 
As discussed above, exchange of Ca and Mg for Na occur but not likely to be a dominant 

process in most of the Cape Flats groundwater. This is in accordance with the argument 

presented in Vandoolaeghe (1989). Concentrations of K are weakly correlated with Na (Table 

22), yet K/Cl vs. Cl trends (Figure 57f) are similar to those of Na/Cl versus Cl and Mg/Cl 

versus Cl (Figure 57 a, g).  Following the method in Petrides & Cartwright (2006), an 

analogous reaction to Reaction (6.1) may be written for K-feldspar that would explain the 

relatively high K/Cl ratios of the freshest waters. K concentrations may also be governed by 

reactions between the clay minerals as K is preferentially sorbed onto clays relative to Na due 

to its smaller ionic radius (Hem 1985, Petrides & Cartwright 2006). The lower potassium than 

sodium content may also be due to greater resistance to weathering of the former and is used 

up in the formation of clay minerals.  

 

Table 22: Correlation coefficients of selected parameters (values in meq/L)  
 Na Ca Mg Cl K Fe Mn HCO3 NO3 SO4 pH EC 
Na 1.00 0.74 0.98 0.99 0.33 0.87 0.67 0.27 -0.03 0.70 -0.28 0.99 
Ca  1.00 0.77 0.75 0.30 0.80 0.53 0.67 0.11 0.72 -0.08 0.81 
Mg   1.00 0.99 0.35 0.87 0.67 0.28 -0.01 0.74 -0.30 0.98 
Cl    1.00 0.31 0.87 0.67 0.26 -0.04 0.69 -0.30 0.99 
K     1.00 0.27 0.22 0.23 0.15 0.43 -0.13 0.34 
Fe      1.00 0.72 0.34 -0.20 0.64 -0.51 0.88 
Mn       1.00 0.15 0.02 0.43 -0.49 0.66 
HCO3        1.00 0.14 0.34 -0.42 0.08 
NO3         1.00 0.28 0.30 0.35 
SO4          1.00 0.07 0.29 
pH           1.00 0.72 
EC            1.00 

 
Note: EC = Electrical conductivity (µS/cm) 
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6.7 Investigations of seawater intrusion 

The theory of salt water interface and the level of seawater encroachment in the Cape Flats 

aquifer has been investigated and discussed by Gerber (1981). The maximum extent of 

seawater intrusion into the Cape Flats aquifer then was estimated to be approximately 1,000 m 

from the coastline. There are no studies since then to show any further inland seawater 

movement. In this study an attempt is made to investigate influence of seawater (if any) using 

the hydrochemical data from boreholes.  

 

From the reviewed literature, the levels of Cl and EC are most simply indicative of 

salinization or seawater intrusion (Mercado 1985; Larabi et al. 2000; El Moujabber et al. 2006; 

Lee & Song 2006). The EC values of groundwater in the study area ranged from 9.2 to 

4320 µS/cm. Field and monitoring data show also that generally groundwater salinization 

increases following the groundwater flow southeastwards. Figure 58 illustrates the electrical 

conductivity areal distribution in the Cape Flats. Samples from the granitic aquifer (at the 

eastern boundary of the Cape Flats) generally showed the lowest EC (< 60 µS/cm). The 

relations of Cl and EC with water levels and well depths are not shown as (in most cases) the 

wells monitored for chemistry and not necessarily monitored for water level.  In figure 59 the 

EC (µS/cm) is plotted as function of the location distance (km) to the sea. About 16% of the 

samples from the Cape Flats Aquifer exceed the threshold value (190 µS/cm), which 

differentiates geogenic background from anomalous values. Values above the threshold may 

indicate saline water encroachment, when close to the coast, and/or anthropogenic 

contamination, least especially for locations inland. 

 

The highest EC levels, towards 10 000 µS/cm, are reached within a distance of 8 km from the 

sea (figure 59a). Further inland the values decline and are mainly below the threshold value.  

In figure 59(b) the Cl concentrations (in ppm) are plotted as function of the location distance 

(km) to the sea. In this plot, however, about 14% of the 128 boreholes (within a distance of 

<10 km from the sea) exceed the threshold value of 327 ppm. Again the highest values are 

found are found within this distance. About 5 boreholes (further inland, beyond the 10 km 

distance) with relatively higher values above the threshold value may indicate other sources of 

salinisation.  
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Figure 58: Areal distribution map of the electrical conductivity in the Cape Flats 
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Figure 59 (a, b): Electrical conductivity (µS/cm) and chloride concentration (ppm) as function of the 
location distance (km) to the sea  
 

 

In the last decade the effects of seawater encroachment into fresh water have also been 

investigated using ionic ratios (Petalas & Diamantis 1999; Sanchez Martos et al. 1999, 2002; 

Vengosh et al. 2002; El Moujabber et al. 2006; Lee & Song 2006; Petrides & Cartwright 

2006). Figure 60 shows molar ratios of Na/Cl and SO4/Cl versus Cl concentrations in 

groundwater of the study area. Generally, conservative seawater-fresh water mixing is 

expected to show a linear increase in Na and Cl (Lee & Song 2006, Sanchez et al. 1999) as 

well as Na/Cl values. Ratio of values of groundwater less than the seawater ratio 0.86 indicate 

that fresh groundwaters have been influenced by the saline water. The range of Na/Cl ratios is 

from 0.1 to 77 and about 5% were below the seawater ratio and exceeded the threshold value 

for chloride (Figure 60a). Values close to or clustering around the seawater (ratio) line may 

indicate recent simple mixing of groundwater with seawater (Mercado 1985; Lee & Song 

2006). The effects of anthropogenic contamination (e.g. fertiliser application) may be 

reflected as very high Na/Cl ratios in groundwater (Lee & Song 2006; Jones et al.1999). High 

Na/Cl ratios have been used in the past to indicate anthropogenic contamination with 
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chemical fertilizers, which often are leached from the soil into the groundwater. Similarly, 

using the same classification, figure 60(b) shows the variations in the molar ratios of SO4/Cl 

against Cl concentrations. In this figure molar ratios ranged between 0.003 and 22.5 while 

6.9% of the groundwater samples are less than seawater value of 0.1 indicating some level of 

seawater contamination. 

 

Other useful ionic ratios indicating seawater influence are Br/Cl and Cl/(HCO3+CO3). Br is 

not in the historic data and could not be measured in recent sampling due to lack of laboratory 

capabilities. However, the range of Cl/(HCO3+CO3) is between 0.16 and 53 and shows a 

positive linear relation with Cl concentrations (Figure 60c), indicating simple mixing of fresh 

water with saline water. The classification based on the methods of Revelle (1941), Todd 

(1980), Lee & Song (2006), and Petrides & Cartwright (2006) show that Cl/(HCO3+CO3 

ratios <0.5 are for “unaffected”, 0.5-6.6 for “slightly/moderately affected”, >6.6 for “strongly 

affected” by seawater. 

The ratio Cl/(HCO3+CO3) shows  4.8% of the samples are below the seawater ratio in figure 

60c and are classified as strongly influenced while another 3.8% are slightly/moderately 

affected by sea water.  

 

In addition to geochemical data, salinization could also be evaluated by annual EC logging. 

Figure 61 shows results of vertical EC loggings at three selected monitoring wells in the study 

area. Generally a large increase of EC with depth was observed for UWC4 and 5 and iThemba 

labs borehole (b,c).  

 

It is obvious from the discussions above and from earlier models (Gerber 1981, Vandoolaeghe 

1989) that seawater intrusion into the Cape Flats aquifer is not an issue to raise alarm in the 

medium- to long-term. However, “cyclic” salt may have a definite influence due to proximity 

to the sea. 
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Figure 60: Molar ratios: (a), (b) Na/Cl and SO4/Cl versus Cl concentration and (c) Cl/(HCO3+CO3) 
versus Cl concentration  
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Figure 61: Vertical EC profiles at iThemba and UWC monitoring wells: (a) 
UWC4 test-hole about 22 m depth screened within the Cape Flats aquifer; 
(b) UWC5 test-hole 105 m deep and screened in the bedrock aquifer; (c) 
and (d) are iThemba borehole 61 m depth (tapping the Cape Flats aquifer) 
before and after pumping respectively. 
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6.8 Surface water chemistry 

Surface water/rivers sampled in this study have TDS of 98-1113 (mean 766 ppm). The TDS 

within surface waters sampled within the study area is, in most cases, lower than in 

groundwater (average TDS: 766 ppm) in exception of the two polluted ponds at iThemba, 

where dissolved solids range between 952 and 1113 ppm during the four sampling episodes. 

Newlands reservoir showed the least TDS (98 ppm). Obviously, this is raw water transported 

from the Berg River and stored in the reservoir to be used for the City water supply (this 

water is only chlorinated and piped into the City supply mains). The average equivalent 

concentration of the major ions and ionic combinations in sampled surface waters of the study 

area are shown in figure 62 and the piper plot in figure 63. 

 
 

 
 
Figure 62: Average equivalent concentration of the major ions and ionic combinations in sampled 
surface waters of the study area (included soil water showed similar pattern) 
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Figure 63: Piper plots of the surface water chemistry in the study area 
 

 

Spring waters have TDS of 67-125 ppm with a mean of 81.4 ppm while rainwater ranges from 

3.2-67 ppm (mean: 32.1 ppm). Elemental ratios and isotopic compositions (i.e., anions, 

cations, and stable isotopes) are also similar to that of groundwater. The average equivalent 

concentration of the major ions and ionic combinations in sampled springs during 2006 

sampling campaign is plotted in figure 64 while the piper diagram in figure 65. The water 

chemistry analyses at the selected springs show low ion concentrations, indicating that the 

groundwater circulation through the basin is rapid. The only exception is the Newlands 

reservoir that showed a more depleted value for stable isotopes (δ18O: -4.78 ‰ and δ2H: -

24.67 ‰). The reason for this is possibly the long distance of transport in pipeline, subjecting 

the water to less evaporation effect. Other surface waters have stable isotope range between -

9.64 to -4.1 ‰ for deuterium and between -2.3 to -1.22 ‰ for oxygen-18.   

 

Rainfall samples were taken in 3 sites, viz: Belhar, UWC, and iThemba. The average 

equivalent concentration of the major ions and ionic combinations in rainwater are plotted in 

figure 66 and piper plot is shown in figure 67. 
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Figure 64: Average equivalent concentration of the major ions and ionic combinations in sampled 
springs during 2006 sampling campaign 
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Figure 65: Piper plots of the spring-water chemistry in the study area 
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Figure 66: Average equivalent concentration of the major ions and ionic combinations in rainwater 

(2005-2006 sampling) 
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Figure 67: Piper plots of rainwater in the study area (2005-2006 sampling) 

 

 

6.9 Groundwater quality 

High salinity (Cl) and concentrations of nitrate (NO3) in some parts of the aquifer are the 

major groundwater quality problems.  

 

6.9.1 Chloride (salinity) 

Salinity in coastal aquifer is most often described by the Cl concentration in groundwater; 

although Wright & Conrad (1995) used the total dissolved solids (TDS) to delineate zones of 

high salinity in the Cape Flats. There is no intensive exploitation of groundwater in the Cape 

Flats in the past 30–40 years to warrant disturbance of the natural equilibrium between fresh 

water and saline water. Therefore, salinity and quality problems are mostly anthropogenic, 

although salinity increase along the False Bay mentioned and has resulted in increasing 

salinity in most areas along the periphery of the coastline (Giljam & Waldron 2002). However, 

the extent of the encroachment inland is yet to be determined. Depending on the location and 
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hydrochemical processes, the rate of salinization may be gradual or sudden. Observed data 

show that 78 percent of the Cape Flats aquifer’s resources contain groundwater that meets the 

WHO water standard for Cl (250 ppm), primarily in the north and along the dune sand in 

areas of the southwest (Adelana et al. in prep).  The other 22 percent showed higher Cl 

concentration sometimes up to 5000 ppm. Of note is the pumping well at iThemba labs, which 

was monitored consistently over a period.  Four sets of samples have been collected for 

groundwater chemistry during different pumping tests (August 2006, November 2006, 

January 2007, and March 2007). During these four sampling and pumping episodes, Cl 

concentration ranges from 1396-5121 ppm (mean value: 4193 ppm). The source of Cl may be 

(1) seawater intrusion where it possibly extends inland (although the distance of this site to 

the coast is approximately 5.3 km) in the northwestern and the southern coast into the Cape 

Flats. However, the data so far (as explained in section6.7) does not seem to support 

encroachment of salt water into the Cape Flats aquifer. The elevated concentration of Na and 

Cl may be due to anthropogenic activities. There are a number of polluting influences in the 

Cape Flats which may be contributing to the degrading quality of groundwater. These include 

the several waste disposal sites, industrial effluents, farming activities and the effects of 

informal settlements.   

 
 

6.9.2 Nitrate (NO3) and phosphate (PO4) 

Most municipal wells in the Cape show nitrate levels (NO3-N) within acceptable limits except 

wells around Ottery/Philippi/Mitchell’s Plain, which are mostly in excess of the drinking 

water standard of 10 ppm (as NO3-N) or 50 ppm (as NO3). These are mostly agricultural wells 

influenced by the active farming activities in this area. The average concentration of NO3
– and 

PO4
– are 2.65 (Standarddeviation 11.0 ppm NO3-N) and 0.10 ppm, respectively. These values 

are less than the South African water quality guideline* 1  values of 6 ppm NO3-N and 

0.35 ppm for phosphate and much less than maximum permissible values of 10 ppm for 

nitrate (as NO3-N) and 6.1 ppm for phosphate. 
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In the worst affected areas (urban-agricultural areas), the NO3-N concentrations are increasing, 

at rates of up to 5 ppm per year (see figure 68b). Figure 68 shows six of the boreholes under 

the regional groundwater quality monitoring of wells in the Cape Town area. Similar pattern 

is shown by the concentrations of SO4 and Cl, indicating increasing tendencies of pollution 

trend (figure 68b-c). The main sources of NO3 in these areas are fertilizers and domestic 

sewage effluents. The quantities of sewage that percolate to the water table on an annual basis 

through effluent discharge and septic tanks may be significant, and should be estimated in 

further studies.  
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Figure 68: Yearly distribution of pollution indicators (Cl, NO3, SO4) in selected monitoring wells on the 
Cape Flats 
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In contrast to salinity, groundwater flowing from the east has relatively low NO3 levels. 

Contrarily, the six shallow boreholes in Macassar showed the highest concentration of nitrate 

(up to 248 ppm as NO3-N). This is because the wells are mostly sunk by the side of the 

household vegetable gardens, where fertilisers and animal manure used are washed into the 

groundwater through the soil zone. The relatively high concentrations of nitrate and phosphate 

in parts of the Cape Flats water are due to the agricultural activities and use of fertilizers in 

the capture zone. Agricultural activities are extensive in the northeast catchment of Macassar. 

This may be comparable to the intensive vegetable farming in the capture zone of the Cape 

Flats aquifer around Philippi/Ottery area, where >70% of vegetable production in the Western 

Cape are derived, and as such a good source of livelihood and income for this community 

dwellers. The current application rate of fertilizers has not been quantified but higher than 

twofold of what it was in the 1980s. Presently, there is no prescribed fertilizer application rate 

by the government as it is in other parts of the world. Moreover, there is home-prepared 

animal manure or composted sludge, which includes phosphate-rich and nitrate-rich types of 

compounds. 

 
Nitrate is considered as a secondary constituent in groundwater (Todd 1980) and has been the 

subject of numerous research studies in Southern Africa during the past two decades (Tredoux 

& Kirchner 1985, Tredoux 1993, Tredoux et al. 2001, Tredoux & Talma 2006). Nitrate 

concentration of 10 ppm or greater may be regarded as a probable indication of contamination 

(Hounslow 1995) and concentrations above 8.5 ppm are in the category of low-level 

contamination according to Hallberg’s (1989) classification. Nevertheless, nitrate 

concentration reached 248 ppm in the study area (as it is in northern parts of South Africa, 

south-eastern parts of Botswana and Namibia (Tredoux & Talma 2006). As high nitrate 

concentrations in drinking water are the cause of methaemoglobinaemia and can aggravate 

other diseases like hypertension, certain cancers, some birth defects, and spontaneous abortion 

(Spalding and Exner 1993), attention must be paid to the nitrate levels in water from parts of 

the Cape Flats at the present level and in the event of a possible increase in the future. The 

average worldwide concentration of PO4
–-P in groundwater is 0.02 ppm and the maximum 

permissible level in drinking water is 6.1 ppm.  
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6.10 Stable isotopes 

In the Cape Flats, Henzen (1973) and Gerber (1981) suggested that groundwater was 

recharged by rainwater infiltration. However, the recharge process was not well understood 

and the groundwater residence time was unknown due to the sparse hydrogeological data. 

Naturally occurring stable (2H, 18O) and radiogenic (3H, 14C) isotopes in water have been used 

over the last 50 years to address problems related to the recharge and the residence time of 

groundwater (e.g. Fontes 1980; Gonfiantini 1986; Clark & Fritz 1997). In this section the 

purpose is to identify sources of recharge, to localize recharge areas and to determine the 

groundwater residence time by employing isotopic measurements.   

 

The corresponding development and management of the groundwater resources in this area 

require detailed and reliable information on the origin and the natural recharge rate of 

groundwater; as sustainable water management is vital for maintaining the ecologic system in 

spite of an increasing demand for water supply. Stable isotope analysis for (δ2H, δ18O) was 

conducted on groundwater samples from the Cape Flats and Malmesbury weathered aquifers 

respectively. No sampling of groundwater from the Cape granite aquifer was done due to lack 

of accessibility and cost. Samples were collected during the winter 2005 and 2006, following 

some significant rain events, and some sampling was carried out in summer 2006.  Samples 

include rainwater (9), springs (6) and surface water (4). Data were from the sampling 

conducted in May 2005 (end of summer/beginning of winter) and in the period 

August/September 2006 (end of winter). Other data are from published reports. The sampling 

and analytical techniques as well as the laboratories involved have been discussed in Section 

6.3. Table 190.1 shows the summary of isotopic composition of samples from the study area. 

 

6.10.1 Stable isotopes in precipitation 

Isotopes in precipitation have been measured monthly for samples collected in Cape Town 

Airport (33° 59' S 18° 36' E, altitude 42 m asl) by the International Atomic Energy Agency 

(IAEA) since 1961. However, the record is partially incomplete. Cape Town has a winter 

rainfall (May-August: >50 mm/month) with low temperatures (<15°C); and relatively dry 

summer (November-April: 10-40 mm/month) with higher temperatures (>20°C). The 

weighted mean values of δ18O and δD are −3.3 and −12.6‰, respectively (Global Network of 

Isotopes in Precipitation Database, 2004). Similarly, rainwater samples were collected at 

University of Cape Town (UCT) and measured for stable isotopes 18O and 2H from 1995-
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1997 (Harris et al. 1999). The weighted monthly mean of δ18O and δD are -3.74 and -11.9‰. 

The plot of δD and δ18O for meteoric water in Cape Town is shown in Figure 69. 
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Figure 69: Correlation of δ 2H (D) against δ 18O of modern rain at Cape Town Airport. Global Meteoric 

Water Line (GMWL) and Local Meteoric Water Line are plotted for comparison. 

 

 

The weighted yearly means of local precipitation, as well as the long-term average from 1961-

2001, plot almost all above the GMWL following the relation 2H = 5.06 × δ 18O + 4.4. Both 

slope and D-excess are significantly lower as compared to the Global MWL. The lower slope 

is affected by secondary evaporation during rainfall, as evaporation lines tend to have a slope 

close to 4. The fact that the samples plot above the GMWL can be explained by a low 

humidity of the air where the first rain will be strongly depleted and the precipitation will plot 

well above the GMWL (Clark & Fritz 1997). The d-excess calculated from the weighted 

average values is 13.8 thus indicating a relatively lower humidity. In fact the average relative 

humidity for Cape Town calculated from available climatic data for a period 1956-2005 

(values at 08:00, 14:00 and 20:00) result in a value of 71.5 %, whereas the GMWL requires 

value of above 85 %. The mean δ18O values of monthly rain samples collected from 

University of Cape Town by Harris et al. (1999) is significantly lower than that at the Cape 
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Town Airport; while the weighted annual values for δD are almost identical (within analytical 

errors discussed in Section 6.3). However, all these data plot around the Global Meteoric 

Water Line (Rozanski et al. 1993) and showed relatively higher deuterium excess, d 

(calculated from the equation defined by Dansgaard, 1964). 

 

Table 23: Summary of isotopic compositions in the study area 
Area n Mean δ

18
O (‰) Mean δD (‰) Mean d-excess (‰) 

     
Rain water in the Cape 
Flats area 

9 -3.5 -14.4 14.5 

Springs 6 -3.2 -13.0  13.3 
Springs2 12 -3.6 -13.1  16.6 
Surface water in the 
mountain area2 

5 -3.1 -9.9 15.2 

Surface water in the 
Cape Flats area 

4 -3.5 -16.4  12.5 

Cape Flats aquifer 16 -3.1 -14.9  10.3 
Cape Flats aquifer1 6 -2.1  -10.2 6.6 
Cape Flats aquifer2 12 -3.4 -15.3 12.8 
Culemborg-Black River 
aquifer2 

18 -2.5 -9.2  11.2 

Malmesbury bedrock 4 -3.4 -16.1 12.0 
1Saayman et al. 2000 
2Harris et al. 1999 

 
 

6.10.2 Stable isotopes in surface water 

Surface water in the study area showed slightly distinct isotopic composition that allowed 

separation into the surface water in the mountain area and surface water on the coastal plain 

sand (Cape Flats) area.  The Liesbeek River (in the mountain area) has values mostly falling 

within the group of rainwater, above the GMWL while the Eerste River (on the Cape Flats) 

plots at the edge of the springs and groundwater samples (figure 70). For the stable isotope 

composition of the Liesbeek River, Harris et al. (1999) found that the mean δ18O values 

increase along the river course, based on the monthly samples collected at two points with 

different altitude (from 1995-1997). The samples of the Liesbeek River from Kirstenbosch 

changes in isotopic composition as it flow towards the sea (Harris et al. 1999).   

 

Six samples of the current study were collected from springs at the foot of the mountain (30-

120 m asl) in the western recharge area in May 2006. These samples had isotopic values of 

which were similar to those of recent rainwater in the area. The δ18O and δD values for these 

samples ranged from −3.6 to −2.7‰ and −15.0 to −10.3‰, respectively (Table 7.5) and with 

the mean δ18O value of -3.2‰ (n=6). The mean δ18O value of surface water, which was 

located at the outlet of the mountain valleys, was −3.1‰ (Harris et al. 1999). This mean value 
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was more negative than the mean value of precipitation in the Cape Flats area (UWC and 

iThemba rain samples). It is the representative for the precipitation in the Table Mountain area. 

The d-excess from the river samples in the basin ranged between +12.5 and +14.2‰. This 

indicated that evaporation is probably occurring in ponds, reservoirs and dams in the study 

area. The relationship between δD and δ18O of water samples in Table 23 was plotted with the 

local meteoric water line (LMWL) and global meteoric water line (GMWL) in Figure 69. 

Samples may be from recent local precipitation and are less subject to evaporation than other 

samples in the area. The other samples (Eerste River, ponds or reservoir) collected in the area 

plotted to the right of the LMWL and show that the river is has been subjected to evaporation 

at the time of sampling, being slightly enriched with δ18O and δD. However, the sample from 

the Newlands reservoir is the most depleted in stable isotopes. This is expected as the water is 

sourced (piped down) from the Berg River, located >300 km NE of Cape Town and from a 

higher elevation. 

 

6.10.3 Stable isotopes in groundwater 

Groundwater from the Cape Flats aquifer was characterized by relatively lower δ18O and δD 

values. The 18O and 2H data vary between –4.4 and –1.4‰, and –22.5 and –7.2‰ VSMOW, 

respectively. The corresponding average values are –3.1‰ and –14.9‰. The mean isotopic 

concentration of the rainwater from which the groundwater was derived suggests that the 

mean 18O of rainfall events resulting in recharge is about –3.35‰ VSMOW (IAEA 2004). 

Three samples (MCS1, UWC2, iThbh1) from current study on the Cape Flats, showed 

relatively lower δ18O and δD values.  This value corresponds to the most isotopically depleted 

groundwater samples, and represents therefore the largest rainfall events in the area during 

sampling period. The most enriched groundwater (–1.4‰) probably represents shorter rainfall 

events.  Figure 70 shows the correlation of δ 2H (D) against δ18O of the recent groundwater 

sampling (2005-2006), along with springs, rain and surface water in Cape Town area. The 

Global Meteoric Water Line (GMWL) and Local Meteoric Water Line (LMWL) are plotted 

for comparison (Rozanski et al. 1993, IAEA 2004). 
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Figure 70: Correlation of δ2H (D) against δ 18O of groundwater, springs, rainwater and riverwater in 

Cape Town area sampled during 2005/2006. The Global Meteoric Water Line (GMWL) and Local 

Meteoric Water Line (LMWL) are plotted for comparison. 

 

6.10.4 Discussion 

In figure 70 the 38 samples collected during 2005 and 2006 are plotted. 20 samples are from 

boreholes, 9 samples represent recent precipitation events 6 were collected from springs, and 

3 are representing surface water, 1 river and 2 local ponds. In order to discuss this exclusively 

data from previous work (included in Table 19) are also plotted.   

Table 23 in section 6.10.1 summarised the average isotopic composition for the different 

types of water analysed in the study area since 1995.  Seasonal variations in these waters are 

not so distinct, even in previous studies (Harris et al. 1999; Saayman et al. 2000) and as such 

it was not investigated here. However, Harris et al. (1999) reported seasonal variation in water 

from treatment plants contributing to Cape Town’s mains water supply. The δ 2H and δ 18O 

values of treated water were found to be higher in April than September (Harris et al. 1999). 

The seasonal difference may be caused by a combination of seasonal changes in isotope 

composition of ambient meteoric water and evaporation from reservoirs. The differences in 

isotope composition which are of the order of 9‰ (δ 2H) and 1.6‰ (δ 18O) should enable 

mains water to be distinguished from groundwater, but would not allow reliable estimates to 

be made of the proportion of mains water contributing to a particular borehole. According to 
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Harris, there is also a degree of seasonal variation in O- and H-isotope ratio of the 

Culemborg-Black River aquifer samples but less isotope distinction between mains water and 

the shallow groundwater in the Culemborg area, but there is evidence that in summer, mixing 

with sea-water occurs. This may be related to evapo-transpiration and/or recharge by rain-

water because these samples were from shallow boreholes (3-5 m depth).  The Culemborg-

Black River aquifer is a freshwater aquifer created by reclamation of land immediately to the 

east of the Cape Town CBD with the water table at an average depth of 0 to 3 m (a.s.l.) and 

groundwater flow towards the Table Bay (Harris et al. 1999; HKS 1995). Groundwater from 

the Culemborg area is said to be locally influenced by the existing and historic drainage 

patterns of the Black and Salt Rivers (HKS, 1995).  

6.10.4.1 Rainwater samples:  

The rainwater samples can be considered as one group as they are plotting well above the 

Global MWL, above the IAEA weighted average (1961-2001) and also mainly above the 

Local MWL (see figure 69). As discussed before, the plotting above the GMWL is an 

indication of a lower humidity during evaporation from the sea, humidity lower than 80%, as 

compared to a humidity 86/87% leading to the GMWL (Clark & Fritz 1997). Most of the rain 

in the greater Cape Town region falls in the winter months (June to September), with 

temperatures less than 10˚C in the early mornings. During the summer months, however, 

rainfall is very low and temperatures higher, resulting in “temperature effects” (e.g. 

Dansgaard, 1964). At the University of Cape Town, on the slopes of Table Mountain rain-

water has, on average, a higher deuterium excess than the rain-water falling on Cape Town 

International Airport in the Cape Flats region (Harris et al. 1999).   

 

6.10.4.2 Spring samples and groundwater samples:  

The spring water samples are representing groundwater flowing out at the intersection of the 

groundwater table with the land surface. Thus they also represent groundwater. The samples 

in figure 70 scatter closely around the IAEA weighted average of the years 1961-2001 just 

below the Local MWL, thus indicating also a high proportion of relatively recent precipitation 

events.  They also plot all above the samples from boreholes, which generally tap lower zones 

from the aquifer, though the position of the screens is not known in most cases. This is in 

agreement with the data discussed in Harris et al. 1999, where spring-waters form an array 

which is enriched in deuterium relative to the global meteoric water line, whereas the Cape 

Flats groundwaters plot closer to the global meteoric water line. This was attributed to the 
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difference in isotope composition of ambient rain-water. However, the more isotopically 

depleted values from the boreholes indicate a possible groundwater formation during slightly 

cooler and more humid periods in the recent past (some decades, or even centuries ago). As 

no data on C-14 or tritium is available, the age of the groundwater samples remains unknown.   

To further discuss this, the regional distribution of deuterium values in groundwater is 

illustrated in figure 71. It can be seen in the figure that groundwater in the mountain area, 

have a similar deuterium excess to the springs but slightly different from groundwater that 

flows inland, south-eastwards to the sea. The reasons for the difference between the Cape 

Flats and the Table Mountain/reservoir signature presumably relate to differences in 

microclimate caused by physiography. 
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Figure 71:  Map showing the regional distribution of δ 2H in Cape Flats groundwater.  
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There is no clear difference between the northern and southern suburbs except that the wells 

closest to the northwest and southeast coast were the more depleted than those inland. The 

deuterium values (-19.4 and -21.5‰) at the centre of the map represents the composition of 

groundwater from the Malmesbury Bedrock aquifer (UWC5 screened at 92.85 m bsl; depth 

greater than the Cape Flats aquifer); all others are from the Cape Flats (depth within 60 m 

below mean sea level).  Also, springs and groundwater in the western end have similar 

isotopic composition (deuterium values).  

 

6.11 Summary 

A study of the hydrogeochemical evaluation of groundwater in the Cape Flats aquifer carried 

out was described in this chapter. The objective was identifying the geochemical processes 

and their relation with groundwater quality as well as to get an insight into the hydrochemical 

characteristics and factors controlling groundwater chemistry in the aquifer. Salinity and 

nitrate contamination are potential threats in the area, which draws attention considering the 

proposal to use this water for municipal drinking supply. Various graphical plots and 

statistical analyses were carried out using chemical data to deduce a hydrochemical evaluation 

of the aquifer system based on ionic constituents, water types, hydrochemical facies and 

factors controlling groundwater quality. The prevailing hydrochemical processes operating in 

the study area are simple dissolution, mixing, weathering processes of silicate, and ion 

exchange. The study further highlights the descriptive capabilities of conventional and 

multivariate techniques and major ion geochemistry as useful tools in the evaluation of this 

groundwater resource. 

 

The naturally occurring stable (2H, 18O) isotopes and hydrochemical data in Cape Town area 

have used to address problems related to recharge processes and the quality of groundwater in 

order to better inform water managers and the public on the need to develop the aquifer.  The 

chemical analyses of long-term observational data on groundwater chemistry of the aquifers 

revealed the need for continuous groundwater monitoring to better inform policy on potential 

impacts and future development consequences. The main features on the evolution of 

groundwater in the Cape Flats aquifer, as well in other nearby aquifers of Cape Town, are 

determined by natural hydrogeological conditions and human impacts. Apart from the shallow 

nature of the water table and general low relief of the Cape Flats, the rate of population 

increase and industrial development make the aquifer more vulnerable to pollution from hum 

impacts.  
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CHAPTER 7: FRAMEWORK FOR GROUNDWATER PROTECTION 

 

7.1 Assessment of aquifer pollution vulnerability 

In the last three decades, the number and diversity of potential groundwater pollutants, 

particularly from the application of chemical fertilisers, pesticides, and herbicides have 

increased making pollution assessment become the subject of groundwater investigations in 

urban and agricultural areas (Foster 1987, Civita 1994, Vrba & Zaporozec 1994, Foster et al. 

2002). Solution to contamination issues in the form of remediation can be very expensive and 

technically demanding. 

 

Therefore, aquifer vulnerability mapping has now become a method for representing spatially 

and semi-quantitatively, the relative susceptibility of aquifers to contamination from surface 

sources. The assessment of vulnerability is based on the environmental characteristics of a 

landscape that facilitate or impede contamination (Bekesi & McConchie 2002), and represents 

the “likelihood of a contaminant to reach a specified position in the groundwater system after 

introduction at the surface” (National Research Council 1993, Van Stempvoort et al. 1993).  

 

There is the need for groundwater vulnerability assessment considering the rate of population 

growth and land use practices in Cape Town area. The City of Cape Town has been 

considering options to develop alternate water supply sources and exploring the possibilities 

of developing the Cape Flats aquifer. Since the work of Gerber (1981) and Vandoolaeghe 

(1989), there seems to be no move to develop the aquifer. There has been a concern on 

pollution in the Cape Flats because of increased agricultural practises (particularly the 

application of chemical fertilisers and manure) and population growth in the informal 

settlement areas. Mowever, the area targeted for the abstraction wellfield is surrounded by 

many polluting influences such as waste disposal sites and industrial estates.  

 

Therefore, the need to have more information and increased understanding about the aquifer’s 

vulnerability to pollution from the surface cannot be over-emphasised. Chapter 6 of this thesis 

has increased the understanding on the quality of groundwater in this area and the aquifer’s 

hydrochemical characteristics from historic and current data. A large area of informal 

settlements is above the aquifer, uncertainties and diversity of opinions exist as to the extent 

to which these could limit the utilisation of the Cape Flats aquifer. Saayman et al. (2007) have 

done a complete overview of several existing methods on groundwater vulnerability 
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assessment in order to determine the approach most adaptable to the Western Cape setting. No 

previous studies have investigated the pollution vulnerability of this aquifer or any part of the 

city of Cape Town. 

 

The intention of this study is to present two methods of vulnerability mapping to assess the 

Cape Flats aquifer and delineate areas of high or low vulnerabilities to pollution. This chapter, 

therefore, summarises the results of the preliminary vulnerability assessments on the Cape 

Flats aquifer using common and readily adaptable methods.  Generally, the prediction of 

groundwater pollution is very complex when evaluating large areas, because a great deal of 

information is needed to represent the process, the variability of natural and anthropogenic 

factors (Bekesi & McConchie 2002; Piscopo 2001). The relationship between pollutant 

sources and the characteristics of the water infiltrating through the ground surface are 

important (Zuquette et al. 2008). The prediction of groundwater pollution can be made using 

several approaches under seven different classification methods: hydrogeological 

environment/setting; index methods, analogue methods; parametric system methods; 

mathematical methods, statistical methods and combined methods (Zuquette et al. 2008). 

 

7.2 Review of some existing aquifer vulnerability assessment methods  

There are several methods for predicting vulnerability of aquifers to pollution or contaminant 

load. Many of these methods were developed and used to solve specific problems or in 

anticipation of future problems relating to groundwater and the environment (Barber et 

al.1993, NRC 1993, Vrba & Zaporozec 1994). Two widely used point count system 

vulnerability methods are the DRASTIC developed by the United States EPA (Aller et al. 

1987) and SINTACS (Civita 1994). A third method, which is not much in use, is the ISIS 

(Civita and De Regibus 1995). The three methods summarized above are too generic with the 

knowledge of too many input parameters required. More recent methodologies have been 

developed with ease of application and more specifically to represent aquifer vulnerability in 

karst landscapes (Goldscheider 2002, 2003). Others are Gogu et al. (2003), Daly et al. 2002; 

Zwahlen (2003), and Ravbar and Goldscheider (2009).   
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The various methods require different levels of data. Generally, the more complex and 

detailed methods require more complex and detailed knowledge of the system being assessed. 

Some of the parameters require specific organizations and procedure to obtain, which is 

lacking in most developing countries. Some of the methods were developed for contaminated 

sites or to address specific environmental issues. There is the need to develop a method that 

accommodates the limited data in the area.  

 

7.3 The method and parameter used for vulnerability assessment in the present study 

A simple  point count index method using a driller s well log and field measurements, 

developed (following the DRASTIC and SINTACS procedures), was found readily applicable 

in the Cape Flats, with limited and sometimes inconsistent data. This method has been applied 

to map and evaluate the vulnerability of a coastal plain aquifer to surface and near surface 

contamination in the coast of southeastern Nigeria (Edet 2004). The input parameters with the 

acronym CALOD include clay layer thickness (C), aquifer media character (A), lateritic layer 

thickness (L), overlying layer character (O) and the depth to groundwater level (D).  The 

CALOD approach is slightly modified to the local hydrogeological setting of the Cape Flats 

and data availability. Therefore, in the Cape Flats the input parameters adopted after the 

CALOD are clay layer thickness (C), aquifer media character (A), calcrete/calcareous layer 

thickness (L), the overlying layer character (O) and the depth to groundwater level (D).  

 

Therefore the CALOD vulnerability potential index (CALOD index) is computed as the sum 

of the products of weights and ratings assigned to each of the input parameters depending on 

the likelihood for contaminants reaching the water table. The CALOD index, divided into four 

classes (Edet 2004), has been modified in this study into five classes like most other common 

methods. In order to compare the results obtained with the more common methods, it was 

necessary to define a standard classification, in which the assess vulnerability can range from 

minimum to maximum predisposition of groundwater to suffer contamination originating 

from the surface or shallow anthropogenic activities. Therefore, the CALOD classification 

(vulnerability potential index) adapted in this study are as follows: (i) Low (<20); (ii) Low-

Medium (20-45); (iii) Medium-High (45-60); (iv) High (60-70) and (v) Very High (>70). The 

data used in this study were compiled from water development agencies and drilling 

companies’ reports in the Western Cape alongside with the data from the Department of 

Water Affairs (DWAF) and CSIR database. 
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Clay layer thickness (C) 

The soil in the Cape Flats area is predominantly yellow, red or brown. It is clayey and quite 

frequently contains small nodules of calcrete (ferricrete and silcrete in some other places) and 

fragments of vein quartz, in addition to a variable quantity of sand grains. This is also 

reflected in the lithology of the area as shown in the borehole (observation and production 

well) logs. In the Cape Flats, clay layers of varied thickness occur and at different levels with 

respect to the ground surface. Such clay layers (aquitard) act as protective cover for water- 

bearing media. Thus, the thicker the clay layer, the less likely the aquifer can be contaminated, 

as it would take the contaminant a longer time to reach the aquifer in comparison to a thin 

clay layer. From the borehole data considered presently in the area, the thickness of the layer 

ranges from less than 0 to 42 m (Table 24). An earlier study and closer examination reveals 

that the Witzand and Springfontein Formations do possess some degree of heterogeneity and 

anisotropy due to the vertical and lateral grain size gradation and the occurrence of sandy clay 

and clayey sand lens (Theron et al. 1992). Where Witzand and Springfontein sediments form 

the aquifer, it is generally unconfined to semi-confined. Wherever calcareous clay and 

calcrete layers of the Wolfgat Formation dominate as the superficial sediments, the 

Bredasdorp aquifer is semi-confined in nature. The Wolfrat sediments therefore act as an 

aquitard.  

 

Aquifer media characteristics (A) 

Generally aquifer materials should be porous and have high permeability. However, the 

degree of permeability varies with the type of materials an aquifer is made of. Therefore the 

character (composition) of aquifer is significant in assessing the rates at which contaminants 

travel through it. The aquifer media generally refers to the consolidated or unconsolidated 

rock, which serves as the water-bearing unit. These water-bearing units are characterized by 

intercalations of silt and clay. Bearing in mind the heterogeneity of these units, a 

quantification of the aquifer referred to as the aquifer media number (A), was carried out as 

Rc×Rt where Rc and Rt are the ratings for aquifer composition and thickness (Tables 24, 25, 

26). This is because a thick sand unit is likely to be less contaminated compared to a thin 

gravel unit. Thus, the higher the aquifer media number, the higher the pollution potential at 

each point and vice versa as shown in the tables.  
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Table 24: The rating for the composition of aquifer and the overlying layers 

Thickness (m) 

Aquifer media Overlying media 

Rating 
Vulnerability 
classes 

<25.0  5 Very high 
25.0–50.0 10.0–20.0 4 High 
50.0–75.0 20.0–30.0 3 Medium 
75.0–100.0 30.0–40.0 2 Low 
>100.0 >40.0 1 Very low 

 

 

Table 25: The rating for thickness of aquifer and the overlying layers 

Composition Rating 
Vulnerability 
classes 

Gravels; Sand, coarse-gravelly, coarse calcrete, 
calcareous, Shelly-gravelly 

5 Very high 

Sands, silty, fine, medium, coarse, calcrete 4 High 
Sands, clayey, fine, silty, medium, coarse 3 Medium 
Sands, clayey, fine, silty, medium, 2 Low 
Sands, clayey, fine, silty / Clay, sandy 1 Very low 

 

 

Table 26: The rating for evaluation scale for aquifer and the overlying layers 

Total number 
Vulnerability 
classes 

>20.0 Very high 
15.0–20.0 High 
10.0–15.0 Medium 
5.0–10.0 Low 
<5.0 Very low 

 

 

 

Calcareous layer thickness (L) 

One peculiarity of the Cape Flats is the occurrence of calcrete and calcareous layer, which lies 

above the unsaturated zone but below the soil layer where present. The composition of this 

layer is yellowish-reddish-brownish silty, sandy clay with low permeability. This is also 

reflected in the lithology of the area as shown in the borehole (observation and production 

well) logs and the geological cross-sections. Thus the thicker the layer, the better the 

contaminant attenuation capacity as the texture and permeability are uniform. The thickness 

of this layer varies between 0 and 25 m.  
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Overlying media characteristics (O) 

The overlying media represents the unsaturated extension of the aquifer media. In the study 

area, the unsaturated layer is sandwiched between the aquifer media and the calcareous layer. 

The layer, in most cases, is composed of the same materials as the aquifer. Therefore, the 

character of this layer was quantified following the method used for the aquifer media. The 

overlying layer number (O) is thus the product of Ro and Rt, where Ro and Rt are the ratings 

for composition and thickness respectively. Data from lithologic logs show the thickness of 

this layer to be in the range 0 to 22.3 m, while the aquifer thickness varied from 9 to 60 m (see 

Table 27). This difference in thickness forms the basis for different ranges applied for 

thickness rating presented in Tables 24, 25, and 26, respectively, for the aquifer media and 

overlying layer. 

 

Depth-to-water level (D) 

The depth-to-water level is defined as the distance from the ground surface to the water level. 

The depth-to-water level is important as it determines the depth of material through which a 

contaminant travels before reaching the aquifer. It is assumed that the deeper the water level, 

the greater the chance for attenuation to occur, as deep water levels infer longer contaminant 

travel time. The recorded depth-to-water level in the study area ranged from less than 1 to 37 

m (Table 27). The locations of the boreholes are shown in figure 72.  
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Figure 72: Location of boreholes used for the CALOD index in the study area with the vulnerability 
index indicated (Note that letter symbols indicate degree of vulnerability: L-M = Low-Medium, M-H = 
Medium-High, H = High, VH = Very High) 
 

 

Table 27: Order of relative importance of the CALOD parameters 

Parameter Code Unit Weight 

Clayey layer thickness C m 1 

Overlying layer character O no 2 

Calcrete and calcareous layer 
thickness 

L m 3 

Aquifer character A no 4 

Depth-to-water level D m 5 
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Table 28: Weight and rating for CALOD parameters 

Rating 

1 2 3 4 5 
Parameter Code Unit Weight 

Very low Low Medium High 
Very 
high 

Clay layer thickness C m 1 >8.0 4.0–8.0 2.0–4.0 1.0–2.0 <1.0 
Aquifer character A no 4 <3.0 3.0–6.0 6.0–9.0 9.0–12.0 >12.0 
Calcrete and calcareous 
layer thickness L m 3 >10.0 7.5–10.0 5.0–7.5 2.5–5.0 <2.5 

Overlying layer 
character O no 2 <5.0 5.0–10.0 10.0–15.0 15.0–20.0 >20.0 

Depth-to-water level D m 5 >40.0 20.0–40.0 10.0–20.0 5.0–10.0 <5.0 

 

 

7.4 The CALOD index (ICALOD) 

The CALOD vulnerability potential index for each cell was computed as:  

I-CALOD ═ CWCR + AWAR + LWLR + OWOR + DWDR 

where w=weight and r=rating for the different CALOD parameters. 

The computed CALOD index values are divided into five classes in this study (as opposed to 

four classes in Edet 2004) to accommodate “very high” vulnerability index. The classes are: 

low (<20), low-medium (20–45), medium-high (45–60), high (60-70), very high (>70) (Table 

29), to assess the vulnerability of the aquifer as summarized in Table 29 full details presented 

in Appendix 7.1.  

 

Table 29: Modified CALOD vulnerability potential class 

Class CALOD Index Vulnerability level Symbol 

1 <20.0 Low L 
2 20.0–45.0 Low-medium LM 

3 45.0–60.0 Medium-high MH 

4 60.0-70.0 High H 
5 >70 Very high VH 
 Note: Vulnerability potential refers to the degree or potential for contamination (pollution potential Edet 2004, Gogy et al. 2003) 
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7.5 CALOD vulnerability potential map 
 

The computed CALOD index values (I-CALOD) for each borehole data point was used to 

produce a vulnerability potential map shown in Figure 73. The resulting map indicates that the 

highest potential area for contamination. The resulting map indicates that the study area 

generally have medium-high pollution potential.  The highest potential area for contamination 

is along a stretch from the central part of the model area to the northwest with I-CALOD values 

ranging from 60-76. In the exception of a small strip of high vulnerability potential index in 

the southwestern corner, the northern and southern ends of the study area are essentially 

medium-high (46-60), and low-medium values (42-44) existing only in the southeastern 

corner. There are no parts of the present study area with I-CALOD potential less than 40 (i.e. the 

low class of vulnerability potential index are not represented) indicating a generally moderate 

to high vulnerability potential for this area. A very small area (<10%) is classified under the 

very high pollution potential index (figure 74). 
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Figure 73 (a): Vulnerability potential index map for the parts of Cape Flats (based on the CALOD index 
value of boreholes in figure 72, modified from Adelana & Xu 2005) 
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Figure 73(b): CALOD vulnerability index contour superimposed on the Cape Flats sand illustrating 

area of data availability and the coast at the extreme south. 

 
 
 
 
 
 
 

 

 

 

 



 203 

 

Figure 74: Distribution of vulnerability index for the study area (Note: Letter abbreviations are as 

explained in Table 29: L-M, low-medium; M-H, medium-high; H, high and VH, very high; the numbers 

in the pie chart indicates number and percentages of total investigated sites with Vulnerability level 

indicated in Table 29) 

 

 

7.6 CALOD and GOD methods 

The adaptation and application of the CALOD method to the Cape Flats was based on similar 

geological setting (Coastal Plain Sands) and the limited data for the more common methods 

(DRASTIC and SINTACS). The required amount of data for the DRASTIC and SINTACS 

methods are reduced and the assessment scheme simplified into the readily available 

parameters. The result of this vulnerability assessment is compared with GOD method; one of 

the most frequently used methods of aquifer pollution vulnerability assessment (Foster 1987).  

The GOD method uses fewer parameters than the DRASTIC and SINTACS, although two of 

these parameters (G and D) also depend on the lithology. In this Chapter, both of the CALOD 

and the GOD methods were applied to the Cape Flats aquifer and the results compared and 

analyzed.  

 

7.6.1 The GOD method of aquifer pollution vulnerability assessment 

The GOD method of aquifer pollution vulnerability assessment has been used extensively in 

Latin America and the Caribbean as well as in Europe (Foster et al. 2002, Vias et al. 2005, 

Debernardi et al. 2008, Polemio et al. 2009) because of its simplicity of concept and 

application. Two basic factors are considered to determine aquifer pollution vulnerability with 

the GOD method: 
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(1) The level of hydraulic inaccessibility of the saturated zone of the aquifer; 

(2) The contaminant attenuation capacity of the strata overlying the saturated aquifers. 

These are, however, not directly measurable and depends in turn on combination of other 

parameters (Foster et al. 2002). Foster (1987) and Foster & Hirata (1988) characterizes 

aquifer pollution vulnerability on the basis of the following (generally available or readily 

determined) variables using the acronym “G-O-D” vulnerability index: 

Groundwater occurrence /groundwater hydraulic confinement; in the aquifer under 

considerations (G), 

Overall lithology of the aquifer/overlying strata (vadose zone); in terms of lithological 

character (O), 

Depth to groundwater table (D). 

 

The range of values for each rating of the GOD parameters is short, varying from 0 (minimum 

vulnerability) to 1 (maximum vulnerability). The final vulnerability index is obtained as 

follows: 

 

VI = G O D                                                                                                                   

The value of the index VI was computed and five vulnerability classes are differentiated by 

the method (Table 30). The results of the method applied to the study area using the same set 

of borehole information is presented in figure 75. 

 

Table 30: Vulnerability parameters and rating values for GOD method (incorporating soil material; Foster 1987, Puez 1999) 

Component of  vulnerability  
Range None overflowing confined Semi-confined Unconfined 

(covered) 
unconfined G (groundwater 

occurrence/degree of 
confinement) Rating 0 0.2 0.4 0.6 1 

Lacustrine
/estuarine 
clays 

Residual soils Alluvial silts, 
loess 

Aeolian 
sands 

Alluvial 
sands 

Alluvial fan 
gravels 

Unconsolidated 
sediment 

Range 

Non-
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Figure 75 (a): Groundwater vulnerability map of study area using the GOD (based on the GOD 

pollution index values of boreholes in figure 72) 
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Figure 75(b): GOD vulnerability index contour superimposed on the Cape Flats sand area. The 

coastline is the southern boundary. 

 
7.6.2 Comparison of the two methods 

Figure 76 shows the aquifer pollution vulnerability results derived both from CALOD and 

GOD methods on a comparative plot. It demonstrates that generally the vulnerability variation 

of the sample sites from the two methods is similar and applicable to the study area: the 

aquifer pollution vulnerability is comparatively high in the GOD classification for nearly all 

of the central part of the model area while the area of high pollution potential is narrowed 

down in the CALOD classification (as shown in Figure 73). While some inconsistency occurs, 

for BA10 and DC232, the vulnerability is relatively low from CALOD method but high from 

the GOD method. Moreover from GOD method, boreholes (BA 14-32) and (BA80-88) have 
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the same index values (as depicted in the straight line\constant in figure 76), which indicate 

the same pollution vulnerability potential. But from CALOD method, their relative 

membership degree values are different which shows that their vulnerability differs from each 

other. 

 

 

Figure 76: Comparison of aquifer pollution vulnerability results of CALOD and GOD methods 

 

The variations in vulnerability between the sites are due differences in the depth of the water 

table and corresponding variations in lithology.  The GOD method seemed to over-estimate 

the vulnerability and to provide a high sensitivity to spatial variation of key hydrogeological 

parameters. This is contrary to the “low” and “moderate” degree of vulnerability observed in 

karst and carbonate rocks respectively using the GOD method (Polemio et al. 2009, Vias et al. 

2005, Coniello et al. 1997, Civita and De Regibus 1995). This further indicate that the GOD 

method may be more applicable in Quaternary sands, alluvial and Lacustrine deposits as 

demonstrated in the several studies in Latin America and the Caribbean (Foster et al. 2002, 

Puez 1999, Hirata et al. 1997, 1991, Chilton et al. 1990). The analysis of the obtained maps 

(see figures 73 and 74) shows that the areas of high vulnerability to pollution (index value 

from 61-76 on the CALOD and 0.70-0.86 on the GOD) predominate in the central part of the 

model area. These cover about 35% of the area underlain by the Cape Flats aquifer. The areas, 

where vulnerability is higher than average (i.e. high, very high and extreme under the two 

classifications), together covers almost half of the aquifer as shown by the area with available  
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Figure 77: Model area superimposed on land use pattern (Source of background landuse map: CCT 

2006) 
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7.7 Validation and sensitivity analysis 

The conceptual basis and proposed method have shown that vulnerability maps can serve as 

the initial step for protection zoning and land use restrictions. On this basis, a vulnerability 

map should be reliable to a reasonable degree, and that can only be checked by validating it. 

There seems to be no commonly accepted method of validation but various techniques have 

been used in the past (Ravbar  & Goldscheider 2009, Neukum et al. 2008, Andreo et al. 2006, 

Perrin et al. 2004, Gogu et al. 2003, Daly et al. 2002). The approaches used by these authors 

range from hydrographs, chemographs, bacteriological analyses, water balances, numerical 

simulations and tracer techniques, all of which have certain limitations.  

 

A sensitivity analysis, as carried out in this study, helped to validate and evaluate the 

consistency of the analytical results and forms the basis for proper evaluation of vulnerability 

maps. Using sensitivity analysis, a more reliable interpretation of the vulnerability index has 

been achieved in vulnerability mapping (e.g. Pathak et al. 2009). Sensitivity analysis has been 

carried out in this study in order to evaluate the sensitivity of each CALOD parameter to the 

overall vulnerability index which was used to generate the map such that subjectivity can be 

reduced to certain extent as demonstrated in the work of Pathak et al. (2009). Pathak et al. 

(2009) computed the relevant variation index in order to assess the magnitude of the variation 

created by the removal of one parameter. Each parameter contributes with an effective weight 

to the vulnerability index. Several of such analyses have been applied in the assessment of 

aquifer vulnerability in different overlay techniques. For example, Lodwik et al. (1990) stated 

the map removal sensitivity measure that represents the sensitivity associated with removing 

one or more parameters or map overlay as follows: 

 

Si = {Vi/N – Vxi/n}                                                                                                           (7.1.7) 

 

This expression is used in the present study to approach sensitivity of the CALOD parameters, 

where, 

Si is sensitivity (for ith unique condition site associated with the removal of one parameter X, 

Vi is vulnerability index computed on its ith site, 

 Vxi is vulnerability index of the ith site excluding one CALOD parameter, 

N is the number of parameters used to compute vulnerability index in equation (7.1.5), 

n number of parameters used for the sensitivity analysis. 
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The results of the sensitivity analysis are summarized in Table 31 showing the behaviour of 

aquifer vulnerability to different values of the vulnerability parameters and input data.  

 

The sensitivity analysis was carried out by computing the relevant variation index in order to 

assess the magnitude of the variation created by the removal of one parameter. This was used 

to compute the variation created by the removal of one DRASTIC parameter (Pathak et al. 

2009), following the map-removal sensitivity measure described in Lodwik et al. (1990). This 

variation index measures the effect of the removal of each parameter and its value can be 

positive or negative, depending on the vulnerability index. The following expression is used 

in the present study for computation of variation index of the removal of one CALOD 

parameter: 

 

Vari = {(Vi – Vxi)/ Vi }*100                                                                                               (7.1.7) 

 

where Vari is the variation index of the removal parameter 

Vi – Vxi are vulnerability index computed using CALOD relationship in 7.15 on the ith site or 

sub-area and vulnerability index of the ith area excluding one map layer or parameter 

respectively. Variation index directly depends upon the weighting system. Each parameter 

contributes with an effective weight to the vulnerability index. This effective weight can be 

computed for each borehole site as follows:  

 

Wxi = (Xix.Xvi)/Vi * 100                                                                                                      (7.1.8)  

 

Where Xix and Xvi are the rating values and the weights for the parameter X assigned on site 

respectively and Vi is the vulnerability index calculated in equation 7.1.5 in the site area. The 

computed effective weighting factor and statistical analysis of effective weight are presented 

in Table 32. 
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Table 31: Statistical analysis on the sensitivity to removing one parameter 

Parameter Minimum 

value 

Maximum 

value 

Mean Standard 

deviation 

C -3.10 -0.90 -1.95 0.43 

A -0.65 2.45 1.36 0.67 

L -2.40 1.10 -0.33 0.98 

O -2.85 0.40 -0.78 0.74 

D -0.40 4.05 1.71 1.14 

 

 

Table 32: Assigned weighting factor and statistics on effective weighting system 

Parameter Assigned 

weight 

Assigned 

weight (%) 

Variation 

index 

(≈Wxi) 

Calculated 

effective 

weight (Xvi) 

Calculated 

effective 

weight (%) 

C 1 6.67 0.57 1.04 6.96 

A 4 26.67 0.39 4.38 29.21 

L 3 20.00 0.28 2.62 17.47 

O 2 13.33 0.23 2.26 15.11 

D 5 33.33 0.12 4.69 31.32 

 

 

7.8 Discussion and Conclusion 

DRASTIC-type parametric system (CALOD) and the GOD methods, used in this research for 

the natural (intrinsic) vulnerability assessment based mainly on hydrogeological and 

geological evaluation, give reliable and clear information on a relative degree of groundwater 

protection. The vulnerability index of the Cape Flats indicates that this rich groundwater 

resource area is highly susceptible and has inherent capacity to become contaminated. If 

contamination and polluting influences are common, contaminants could reach the 

groundwater in this area within a very short time.  
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The resulting range of aquifer pollution potential index values (42 to 76) was used to produce 

the vulnerability maps in figure 74. This was compared with the GOD method (a more 

commonly used method) and the vulnerability index varies produced the map in figure 75. 

Low indexes represent aquifer that is better protected from contaminant leaching by the 

natural environment. On the other hand, a high pollution potential index indicates the capacity 

of the hydrogeologic environment to readily transport contaminants into the groundwater. The 

methods adopted to produce the vulnerability index for the Cape Flats was limited by the 

availability of data. The CALOD and GOD methods use less parameters and readily available 

geologic and hydrogeologic data. This methodology can be easily and effectively applied to 

similar and already modeled aquifer. Good knowledge of the geology and hydrogeology of 

given area is a condition to produce a reliable vulnerability map. It is also necessary to verify 

the vulnerability assessment. This verification is often based on data concerning groundwater 

quality and isotopic investigations. 

 

In this study, a sensitivity analysis was carried out to validate and evaluate the consistency of 

the analytical results and forms the basis for proper evaluation of vulnerability maps. Using 

the results of the sensitivity analysis, a more reliable interpretation of the vulnerability index 

has been achieved. Table 31 shows the statistical analysis of the results indicating the most 

sensitive to contamination is parameter D (groundwater depth). This is followed, in the order 

of sensitivity, by parameters A, L, O and C. The highest value is associated with the depth to 

groundwater table (4.05) while clay layer shows the lowest sensitive value (-0.9).  

The results of the variation index computed for each CALOD parameter, using eq. 7.1.7, 

indicate parameter D has the highest variation index (0.57) followed by parameter A with 

variation index (0.39), L (0.28), O (0.23) and C (0.12), respectively. This variation index 

measures the effect of the removal of each parameter. Variation index directly depends on the 

weighting system (Pathak et al. 2009). The effective weight factor calculated for each 

parameter shown in Table 32 further confirms that parameter D dominates the vulnerability 

index with average weight of 31.3% as against the theoretical assigned weight of 33.3%. The 

presence of shallow groundwater table in the most part of the study area increases the weight 

on parameter D. The real weight and the theoretical assigned weight for the parameter (C), the 

least on the weighting score, show a close agreement of values and percentages.  The 

calculated weights of parameters A (29.2%) and O (15.1%) are respectively higher than the 

theoretical weights (i.e. 26.7% and 13.3%).  
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The depth-to-water level is important as it determines the depth of material through which a 

contaminant travels before reaching the aquifer. It is assumed that the deeper the water level, 

the greater the chance for attenuation to occur, as deep water levels infer longer contaminant 

travel time. Hence, as the depth-to-water level decrease, the risk of contamination increases. 

Also, the CALOD index value is computed with aquifer media character which means that 

areas with high permeability materials and small thickness are more likely to be contaminated 

compared to areas with low permeability but of same thickness.  However, the thicker the 

layer, the lower the risk of contamination of the aquifer from pollution influences from the 

surface. Naturally vulnerable areas are more sensitive zones where the soils, subsoil and 

bedrock do not provide adequate protection and the potential exists for rapid transfer of 

pollutants to groundwater. Areas of concerns are, for example, recharge zones of shallow 

aquifers (Gogu & Dassargues 2000). 

 

The fact that many of the calculated weights are not equal to the theoretical weights assigned 

in CALOD method is a confirmation that weight factors are strongly related to the value of 

single parameter in the context of value chosen for the other parameters. Similar conclusion 

was drawn from the sensitivity analysis to evaluate the influence of single parameters on 

aquifer vulnerability assessment using the DRASTIC method (Pathak et al. 2009). Calculating 

effective weights therefore is useful in order that CALOD method may become more 

scientifically and practically applicable to addressing local hydrogeological conditions. On the 

contrary, the usage of sophisticated and data-intensive methods may be more legitimate only 

where more data, time, finance and technical resources are readily available. 

 

The discussed groundwater vulnerability map can be a useful preliminary tool for the 

planning of groundwater development in the Cape Flats. Based on this vulnerability map it is 

possible to point out priority areas taking into account location of different forms of a land use. 

Comparing the vulnerability map and land use map it is possible to identify the areas where 

there is significant risk of groundwater contamination and higher impact of human activities. 

The presented method of vulnerability mapping can be tested to cover the entire area 

underlain by the Cape Flats aquifer (when more data become available) as well as on the other 

aquifers (Malmesbury and the TMG) to give a balance picture of groundwater in the area 

around the City of Cape Town. 
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CHAPTER 8: SUMMARY AND CONCLUSIONS   

 

8.1 Summary of results and discussions  

The limited availability of water resources and an ever increasing demand for water are major 

issues facing Water Services in the City of Cape Town. This problem demands a carefully 

planned and executed solution; thus making the work on water supply even more complex 

and challenging. This is the main reason that led to the general strategy on augmentation plans 

for using surface water (by construction of more dams and reservoirs on the local streams) 

with groundwater options. The problem of water supply in the City of Cape Town has been on 

since 2001 due to decreasing dam levels as a consequence of the 3 years of below average 

rainfall between 1998 and 2000.  This study was initiated to improve knowledge of the 

hydrogeological situation in the Cape Flats in order to proffer solutions and make relevant 

suggestions based on the utilisation of groundwater, particularly from the Cape Flats aquifer.  

 

The inventory of water resources in the Western Cape has been reviewed with particular 

reference to groundwater situation in Cape Town area. The groundwater situation reveals 

there are three significant aquifers within the Cape Town Municipality: the Newlands aquifer, 

the Atlantis aquifer and the Cape Flats aquifer. The most prominent and the less developed of 

these, the Cape Flats aquifer has been identified as a potential source to be fully utilized to 

augment the City’s water supply. The envisaged initial quantity for extraction was estimated 

at 18 × 106 m3/year.  

 

Groundwater resource investigation has systematically analysed hydrogeological 

characteristics through pumping tests of the Cape Flats aquifer in order to identify parameters 

like transmissivity, specific yield and storage coefficient; and to develop relationship between 

abstraction well reaction and the aquifer.  Information available indicated a conceptual model 

with an unconfined sand aquifer, grading into semi-confined conditions in some places where 

lenses of clay and peat exist, and underlain by the impervious shaly bedrock aquifer 

(Malmesbury Formation).  These findings and the recharge estimates from this study will 

enable a more reliable numerical modeling recommended for further studies.  

A number of techniques commonly used for recharge estimation in arid and semi-arid areas 

have been applied and evaluated to the Cape Flats semi-arid conditions.  These conditions are 

characterized by a flat sandy subsurface, with intense urbanization which restricted vegetative 

cover to Nature Reserves, and average rainfall of 600 mm/a.  The commonly applied methods 
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of recharge estimation in Southern Africa have been reviewed in order to get techniques 

applicable to this study area.  Generally usable methods for unconfined aquifers were 

discussed and the detailed procedures for each of the techniques have been discussed along 

with the results of this study in chapter 5. The estimation of recharge from simple 

relationships between precipitation and recharge provided estimates similar to those of water 

level methods as shown in Table 13 but values are believed to be exaggerated.  Estimated 

recharge values from the water balance method are low, because only the vertical movement 

of water in the represented soil types is considered by the model; horizontal movement is 

neglected. The direct rainfall-relationships show exaggerated values of annual recharge rates 

but are found to be readily usable. Chloride mass balance (CMB) method gave recharge rates 

of 5-8 percent of estimates of mean annual precipitation, MAP, at Cape Town.  

 

A chemical and physical characterization of groundwater in the study area has been carried 

out and described in chapter 6. This characterization has been based on the based on historic 

data and sampling during the current study (2005-2007).  In particular, concentrations of Na 

and Cl have ranges of 3.3-2,285 and 7.0-5,121 ppm, respectively. Concentrations of Ca, Mg 

and SO4 also showed large variations with ranges of 1.7-366, 1-321 and 0.0-846 ppm, 

respectively. HCO3 has a range of 0.1-753 while NO3 showed the least variation (0-248). 

These wide distributions indicate the possibility that chemical composition may be affected 

by multiple processes, including seawater mixing. There is a relative predominance of Na and 

Cl indicating influences of saline water due to the proximity to the sea. About 21% of the 

samples exceeded the WHO drinking water standard for Cl.  Many of the groundwater 

samples analyzed also show high HCO3 and Ca reflecting contributions by water-rock 

interaction.  

 

Na and Cl concentrations have strong mutual correlation. Despite the strong correlation 

between the concentrations of these ions there is some variation in their ratios as well as in 

relation to other cations and molar ratios. Molar Na/Cl ratios ranged from as high as 1.95 to 

0.17, with many between 0.6 and 1.2. The high Na/Cl ratios of the ‘freshest’ groundwater are 

probably controlled by water–rock interaction.  Exchange of Ca and Mg for Na may occur but 

is unlikely to be a dominant process at the low salinities (TDS <800 ppm) in most of the Cape 

Flats groundwater. Although different chemical water types were observed, Na-Cl and Ca-

HCO3 were dominant. As the Cape Flats groundwater travels away from unconfined recharge 

areas towards semi-confined coastal discharge zones it may have evolved through Ca-HCO3-

 

 

 

 



 216 

Cl type via Ca-Na-Cl-HCO3 type to Na-Cl type; or from Ca-Na-HCO3-Cl type directly to Na-

Cl type or through Na-Ca-Cl-HCO3 to Na-Cl.  These patterns give good indication that the 

various groundwater chemistries are changed by cation exchange reaction, as well as simple 

mixing in certain proportions. 

 

High Cl and NO3 concentrations of nitrate in some parts of the aquifer are the major 

groundwater quality problems. In the urban-agricultural areas, the NO3-N concentrations are 

increasing, in some cases rapidly; similar pattern is shown by the concentrations SO4 and Cl, 

indicating increasing pollution trend. The main sources of NO3 in these areas are fertilizers 

and domestic sewage effluents. The quantities of sewage that percolate to the water table on 

an annual basis through effluent discharge and septic tanks may be significant, and should be 

estimated in further studies.   

 

The stable (2H, 18O) isotopesof water molecules have been widely used to address problems 

related to the recharge and the residence time of groundwater. Groundwater from the Cape 

Flats aquifer was characterized by relatively lower δ18O and δD values. The 18O and 2H data 

vary between –4.4 and –1.4‰, and –22.5 and –7.2‰ VSMOW, respectively. The 

corresponding average values are –3.1‰ and –14.9‰. The mean isotopic concentration of the 

rainwater from which the groundwater was derived suggests that the mean 18O of rainfall 

events resulting in recharge is about –3.35‰ VSMOW.  

 

Generally, groundwater under the entire Cape Flats is considered vulnerable. The 

vulnerability assessment carried out covering the greater part of the Cape Flats (where data is 

available) has shown that some areas may be more vulnerable than the others. The Cape Flats 

aquifer underlying most of the southern and central suburbs, towards Cape Town CBD has 

been classified as medium to high on the vulnerability index. The isolated portions on the map 

area indicated from high to very high on the vulnerability scale may require adequate 

protection measures. A sensitivity analysis carried out to validate the consistency of the 

analytical results forms the basis for evaluation of the vulnerability map. Using the results of 

the sensitivity analysis, vulnerability assessment (map) can be extended to cover the entire 

area of the Cape Flats sand extending towards its border with other aquifers. This would be 

necessary in order to allow complete groundwater protection strategies.   
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8.2 Implications for groundwater management and outlook 

Obviously, the Cape Flats aquifer is highly vulnerable to pollution because of its lithological 

units; vulnerable to drought because of the decreasing (fluctuating) rainfall pattern and 

consequently recharge. The legal emphasis, therefore, is on protection for use and not 

necessarily protection at the cost of use. The South African National Water Act requires that 

water quality demand by end users be maintained, not necessarily the pristine quality of the 

aquifer. One of the prerequisites for the rational groundwater management and exploitation is 

defining quantity and quality of water resources, by analyzing the water budget and 

performing water quality analyses. Therefore, certain activities, which are most probable to 

cause pollution to aquifer, will need to be regulated in vulnerable areas of the Cape Flats. 

Setting the stage for participatory groundwater protection in the Cape Flats would be essential 

to water resource management in the region. 

 

Implication from the analysis of results from this study is that abstraction of groundwater 

from the Cape Flats aquifer may not have any large impact on river flow. The evidence 

provided in this research that the Cape Flats aquifer does not contribute largely to river flow 

raises the question of other groundwater sinks, which could not be fully answered. 

Groundwater modeling proved that sub-surface flow leaving the basin within the aquifer is 

only moderate. A rough estimate of run-off within the aquifer suggests that it is even an order 

of magnitude smaller. While it is evident from previous work (e.g. Gerber 1976, 1981, 

Vandoolaeghe 1989) that hydraulic properties are highly variable in space, the location and 

characteristics of fracture zone of high conductivity within the Malmesbury are not known, so 

that they cannot be adequately included into a groundwater model at present. Additional field 

investigations to improve the knowledge of hydraulic properties are therefore necessary to 

further develop the groundwater model. Desirable further investigations can be summarized: 

 

• The identification of the aquifer geometry (variability of the weathered zone, 

location of fracture zones within the underlying bedrock aquifer); 

• long-term pumping test along the coast (regolith and alluvial aquifer) to properly 

define the fresh-salt water wedge; 

• improvement on the assessment of surface and ground water run-off; 

• Continuation and extension of groundwater hydrograph recording at high temporal 

resolution. 
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Annual groundwater use in the Cape Town area is currently less than 5% of the calculated 

groundwater recharge. Neither groundwater recharge nor a potential reduction of river flow 

by groundwater abstraction is therefore limiting a further development of groundwater 

resources on a regional scale. Since water shortage exists and water restricitions still enforced 

while the population is growing, the development and full utilization of this aquifer is 

desirable. Currently groundwater is used for irrigation farming and mostly wetting of lawns 

and household gardens. The actual extent of these use have not been quantified; this is highly 

desirable for future groundwater management.  

 

Finally, the role of groundwater resources for water supply in the city of Cape Town cannot 

be over-emphasized as the need will grow considerably over the next decades. This research 

underlines that the development of the Cape Flats aquifer is sustainable from a geo-scientific 

point of view. The recharge estimates, conditions of recharge and aquifer storage capacity 

would support the development of the aquifer.  Due to its cost and time efficiency and the 

relevance of water resources planning, the chloride mass balance seems especially useful; it is 

recommended that detailed chloride profiling of the unsaturated and saturated zone be carried 

out. This will provide accurate recharge estimates for effective groundwater management, 

should the development of the aquifer proceed. Water balance and groundwater models can 

serve as a useful tool to simulate the impact of climate change on groundwater resources in 

the study area. However, they urgently need to be completed by continuous monitoring, and at 

least monthly, recording of groundwater hydrographs which are required for validation. 

 

 

8.3 Conclusions 

Previous studies on the use of groundwater from the Cape Flats have been developed on an ad 

hoc basis and few data were available. This research study considered a completeapproach to 

the evaluation of the Cape Flats aquifer from a description of the geology to simple 

conceptual hydrogeological model, with many aquifer properties such as transmissivity and 

storage coefficient having to be estimated from recent pumping tests and historic pumping test 

data.  The results have improved understanding of the Cape Flats aquifer, and have confirmed 

that the need for integrated management of both surface and groundwater may be urgent, 

considering the vulnerability of the aquifer to surface pollution and human impacts. There is a 

need for more complete information/data to carry out reliable flow modeling or improve the 

initial knowledge on models in the area.  
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In summary, the study has produced increased understanding on the hydraulic behaviour, 

recharge and hydrochemical characteristics of the Cape Flats aquifer. The overall appraisal of 

the groundwater system confirms the importance of conjunctive use of surface and 

groundwater in water management in order to solve the existing water supply problem.   
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SYMBOLS AND ABBREVIATIONS 

CCT City of CapeTown 

CMC Cape Metropolitan Council 

CSIR Centre for Scientific and International Research 

DWAF Department of water Affairs and Forestry 

GMWL Global Meteoric Water Line  

LMWL Local Meteoric Water Line 

meq Milli-equivalent 

UWC University of the Western Cape 

VSMOW Vienna Standard Mean Ocean Water 

g  Gravitational acceleration, L2/T 

h   Hydraulic head, L 

K   Hydraulic conductivity, L/T 

n   Porosity 

Q 0   Constant well pumping rate, L3/T 

Q(t)  Well pumping-injection rate by volume, L3/T 

r   Radial distance from the pumping well, L 

r max   Radial distance for maximum values of uj and vj, L 

r w   Radius of the pumping well, L 

Rs, reg   solar radiation at the regional location [MJ m-2 day-1], 

Ra, reg  Extra-terrestrial radiation at the regional location [MJ m-2 day-1]. 

Ra  extraterrestrial radiation [MJ m-2 d-1],  Tmin   

Tmax maximum air temperature [°C], 

Tmin minimum air temperature [°C], 

kRs  adjustment coefficient (0.16.. 0.19) [°C-0.5]. 

Rn  is the net radiation 

G is the soil heat flux        

(es - ea) represents the vapour pressure deficit of the air 

cp represents the slope of the saturation vapour pressure temperature 
relationship 

γ  psychrometric constant, 
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rs - ra  the (bulk) surface and aerodynamic resistances 

S s   Specific storage 

t*   (=tK/S s r 
2) dimensionless time 

T   (=bK) transmissivity, L3/T 

T p   Pumping-injection period, 1/T 

δ delta 

d-
excess 

Deuterium excess 

‰ Part per thousand 

2H or (D)  Deuterium or Hydrogen isotope  
18O Oxygen isotope 
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Appendix 2.1: Pictures of vegetation and land surface area open to recharge flux from rain  
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Appendix 4.2: Average Daily Temperature (C) Data for station Cape Town Observatory 
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Appendix 4.4a: Parameters for Potential Evapotranspiration (using CROPWAT 8.0) 
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Appendix 4.5: Water Balance Table for Cape Town (2000-2009) 
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Appendix 4.6.1: Typical pumping test data from the study area  
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Appendix 4.6.2: Typical pumping test data from the study area  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 258 
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Appendix 4.8: Estimation of K values using different methods 
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Appendix 5.1: Estimation of Groundwater Recharge using climatic data from Cape Town  
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Appendix 6.1: Statistics of physical and chemical parameters (historic data & recent sampling) 
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Appendix 6.2: Results of physical and chemical analyses of water samples (2005-2007) 
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Appendix 7.1: CALOD vulnerability input data for the Cape Flats 
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Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOTAL

1841 41.1 82.5 99.1 31.2 60.5 37.8 93.5 26.5 30.2 502.4

1842 22.7 4.7 17.3 24.9 94.8 176.3 43.8 118.8 79.9 30.3 33.8 20.3 667.6

1843 0.2 37.7 8.4 78.7 73.2 174.5 62.4 59.8 33.1 5.9 94.0 2.1 630.0

1844 11.6 48.2 13.9 79.3 8.8 104.2 73.1 66.1 32.8 9.3 20.6 9.0 476.9

1845 80.9 7.5 17.4 22.5 95.4 63.2 48.2 95.1 68.3 9.5 11.0 11.6 530.6

1846 61.4 24.6 12.3 27.6 227.0 52.7 18.7 39.4 56.0 8.3 27.4 10.3 565.7

1847 15.7 2.0 4.2 85.6 58.8 70.0 44.9 153.1 37.5 32.6 36.0 27.7 568.1

1848 1.2 48.9 16.3 53.8 86.8 133.4 88.8 62.8 59.3 5.6 22.7 17.0 596.6

1849 6.4 11.7 12.5 14.8 170.9 88.7 110.4 75.9 58.6 15.3 23.7 36.6 625.5

1850 52.8 5.0 40.6 111.2 64.8 172.5 99.3 91.1 68.6 87.2 47.2 10.5 850.8

1851 6.6 0.9 3.8 24.8 75.8 173.4 97.8 15.1 35.5 53.4 15.1 15.3 517.5

1852 3.3 7.0 38.3 30.2 112.3 41.9 102.1 118.3 61.3 22.5 29.3 8.4 574.9

1853 25.7 12.2 52.1 31.2 71.1 100.9 109.2 79.9 38.0 33.6 2.1 4.4 560.4

1854 8.2 16.0 36.9 29.0 58.6 76.0 71.9 86.0 73.7 29.2 18.7 9.4 513.6

1855 8.8 4.3 26.2 40.1 78.7 113.6 68.7 133.5 124.1 16.5 3.2 0.3 618.0

1856 9.4 9.1 30.3 12.3 100.0 82.3 79.5 80.5 44.2 33.2 35.9 40.5 557.2

1857 4.6 12.8 2.7 64.2 70.5 115.6 78.0 111.4 45.2 33.1 6.6 31.2 575.9

1858 31.0 25.0 21.0 67.1 19.3 75.7 108.6 142.3 68.4 18.6 28.4 11.3 616.7

1859 46.3 24.5 26.7 19.8 175.9 138.6 165.8 124.2 81.8 61.1 65.6 5.4 935.7

1860 21.6 26.5 16.2 30.2 167.3 126.2 125.2 23.5 127.4 53.0 6.0 17.2 740.3

1861 20.3 1.7 22.1 40.3 109.5 193.3 109.2 48.6 64.7 2.7 32.7 1.3 646.4

1862 5.8 5.9 9.5 23.8 31.6 274.0 159.8 103.3 57.1 90.1 40.3 0.0 801.2

1863 5.1 17.1 74.2 65.1 136.6 81.4 60.3 68.1 43.6 68.9 23.4 8.2 652.0

1864 13.7 0.3 7.3 25.7 70.6 111.0 68.2 55.4 50.5 49.8 24.8 3.1 480.4

1865 7.6 3.5 9.9 47.0 98.6 23.9 124.9 42.5 16.6 78.9 14.5 6.9 474.8

1866 0.8 78.9 4.7 38.2 19.4 143.9 60.6 57.8 36.5 25.4 10.1 12.2 488.5

1867 10.0 27.0 26.8 62.0 77.3 90.0 110.2 34.8 36.7 89.5 5.4 14.0 583.7

1868 18.0 26.3 11.8 55.0 47.5 85.3 67.3 17.7 23.0 68.8 60.5 25.5 506.7

1869 4.4 1.7 14.1 47.7 204.6 241.9 77.9 104.6 30.0 26.1 32.8 35.9 821.7

1870 18.3 1.8 4.0 34.7 110.8 133.2 171.4 112.8 33.4 44.9 11.3 37.1 713.7

1871 8.1 4.3 24.7 37.6 78.9 97.8 76.0 89.6 29.5 18.7 18.4 27.7 511.3

1872 18.3 14.7 35.4 6.2 173.6 117.9 60.8 194.9 53.9 23.9 27.6 17.9 745.1

1873 7.3 5.5 14.2 55.9 100.1 126.8 82.5 102.6 27.4 21.5 16.3 44.4 604.5

1874 2.0 1.4 37.7 122.0 49.9 79.3 118.3 95.7 39.8 52.5 65.7 2.1 666.4

1875 0.0 35.0 15.4 34.3 44.9 144.2 29.1 104.0 97.5 53.9 32.9 58.8 650.0

1876 2.7 0.0 57.1 28.0 77.8 87.5 88.9 154.3 47.2 28.5 32.9 66.7 671.6

1877 18.4 41.0 14.0 90.7 344.8 69.4 32.2 93.1 41.0 45.0 76.5 40.7 906.8

1878 21.4 31.0 39.7 33.9 191.0 207.9 194.3 127.8 68.3 80.4 25.1 0.0 1020.8

1880 47.7 12.7 26.7 43.3 32.0 41.8 67.1 85.5 61.5 5.3 12.5 14.0 450.1

1881 9.1 2.8 23.0 90.5 174.8 82.9 71.8 89.8 31.2 27.0 36.7 10.3 649.9

1882 2.8 4.8 112.5 50.7 70.8 83.8 160.8 62.8 54.2 78.2 11.0 77.7 770.1

1883 31.6 10.4 27.7 60.2 148.0 126.1 138.3 108.8 80.4 60.6 1.6 21.0 814.7

1884 10.2 23.0 14.8 58.3 58.5 121.9 119.7 29.6 126.4 88.1 66.5 1.8 718.8

1885 10.7 53.8 29.1 48.8 94.8 157.0 52.4 107.4 39.1 46.4 42.0 27.1 708.6

1886 5.9 0.0 84.6 16.7 61.1 195.1 61.8 98.4 63.5 90.9 7.5 20.2 705.7

Appendix 4.1: Monthly Average of Daily Rain (mm) Data for station - CAPE TOWN
 

 

 

 



1887 96.2 12.7 47.1 54.1 101.8 70.7 73.8 101.0 22.3 72.3 19.5 20.8 692.3

1888 4.2 0.4 18.0 92.2 217.4 247.5 95.4 73.8 72.0 13.2 36.0 29.6 899.7

1889 2.0 31.1 37.8 130.1 136.1 86.8 83.9 126.9 86.1 15.2 12.6 36.0 784.6

1890 11.2 32.3 4.8 54.5 150.5 18.0 162.3 92.4 53.5 37.7 35.8 16.2 669.2

1891 5.2 25.7 9.8 74.7 196.1 80.3 186.7 76.6 81.4 7.1 6.3 19.9 769.8

1892 21.9 4.2 44.3 53.5 105.3 289.7 157.2 143.2 63.7 27.3 50.6 76.8 1037.7

1893 1.6 9.8 3.4 51.0 63.3 117.1 57.1 139.2 94.8 51.0 5.8 1.1 595.2

1894 0.8 25.1 11.5 25.8 63.3 107.6 78.7 80.4 28.7 43.3 32.1 3.3 500.6

1895 16.4 0.0 18.2 77.5 96.0 91.6 41.8 63.6 95.0 50.0 23.7 14.6 588.4

1896 24.6 13.0 42.8 16.0 67.2 97.7 63.3 68.1 33.6 22.9 20.6 0.8 470.6

1897 9.9 22.1 19.5 25.4 46.7 46.6 127.5 71.2 63.1 46.9 17.7 14.1 510.7

1898 34.2 23.3 28.1 85.6 102.9 84.7 155.7 33.9 80.4 63.8 26.9 11.1 730.6

1899 20.3 5.5 10.8 37.4 88.4 51.0 108.0 224.5 33.9 58.4 8.1 33.0 679.3

1900 10.2 22.3 16.7 36.9 83.2 39.8 121.0 70.2 36.1 65.0 21.3 17.1 539.8

1901 129.2 16.3 8.5 18.9 165.6 34.8 129.8 14.8 50.7 20.4 56.8 7.8 653.6

1902 14.9 13.3 22.8 63.7 108.7 117.7 116.5 98.5 151.9 119.7 21.6 7.3 856.6

1903 46.0 5.6 33.9 55.2 131.0 172.2 63.1 81.8 58.1 94.7 6.4 11.3 759.3

1904 8.6 2.3 10.2 150.6 85.6 166.4 62.7 117.9 63.0 71.9 30.6 39.2 809.0

1905 15.3 15.0 25.4 1.3 115.0 337.8 62.7 77.6 40.4 36.2 22.4 17.1 766.2

1906 9.9 1.1 18.5 51.3 92.6 68.2 46.3 72.8 25.3 32.7 13.8 82.1 514.6

1907 14.5 5.8 20.8 49.1 159.5 50.9 35.1 37.7 43.2 30.5 20.8 38.3 506.2

1908 24.8 8.3 11.7 124.7 31.4 147.9 67.7 77.0 44.9 51.7 26.2 11.0 627.3

1909 14.7 1.7 77.0 9.0 48.9 44.7 61.9 185.9 19.8 58.5 12.7 75.3 610.1

1910 0.2 9.9 32.0 29.2 111.3 69.9 109.0 74.2 34.9 37.3 37.3 1.6 546.8

1911 16.0 12.9 6.7 45.1 132.0 115.0 102.8 58.8 116.6 24.5 30.2 35.1 695.7

1912 4.3 8.8 19.5 84.1 69.0 60.7 55.4 89.6 106.9 23.4 36.6 1.5 559.8

1913 9.7 21.2 2.9 60.2 62.2 84.9 101.8 95.6 49.6 38.1 44.6 38.8 609.6

1914 61.4 8.3 8.4 41.4 63.0 100.7 109.1 111.3 77.4 14.1 27.5 13.0 635.6

1915 0.1 0.0 46.2 71.4 49.2 150.6 169.9 52.0 64.7 12.9 30.6 12.7 660.3

1916 10.9 10.1 13.2 25.2 74.4 105.1 82.5 130.0 46.2 19.3 9.3 12.3 538.5

1917 19.6 0.9 12.3 27.9 108.7 97.6 218.5 54.7 43.7 28.0 19.9 11.7 643.5

1918 1.3 12.1 22.9 26.1 117.4 122.1 93.0 5.5 47.1 43.8 55.6 21.8 568.7

1919 24.7 39.7 3.3 43.4 38.3 75.9 96.5 55.7 90.0 8.2 17.2 4.8 497.7

1920 7.3 7.3 4.1 19.3 87.1 138.8 131.6 81.0 92.8 53.8 19.5 42.4 685.0

1921 19.5 34.4 7.2 38.2 8.7 201.3 108.0 102.6 73.1 30.7 13.0 19.3 656.0

1922 42.1 22.1 14.5 28.4 43.5 106.2 59.4 94.2 22.1 37.8 11.1 4.1 485.5

1923 13.5 4.1 17.8 68.9 136.1 139.5 95.0 80.7 46.9 19.1 81.3 5.2 708.1

1924 6.6 0.2 18.7 22.3 48.9 121.1 39.6 100.4 34.9 45.7 38.4 1.1 477.9

1925 14.9 5.1 0.4 12.2 37.1 236.8 101.5 39.6 34.9 82.5 48.6 6.3 619.9

1926 7.6 21.3 5.5 18.3 92.0 44.0 111.6 76.1 46.1 67.4 11.5 1.4 502.8

1927 4.4 33.2 8.5 34.4 76.0 43.1 44.3 129.1 18.5 19.5 38.5 32.5 482.0

1928 13.7 10.5 14.5 17.7 9.2 110.6 39.5 57.8 80.4 22.1 22.4 24.8 423.2

1929 0.0 11.6 12.5 82.4 59.1 72.4 98.6 49.1 46.4 14.6 15.1 34.6 496.4

1930 19.3 27.7 11.8 23.4 7.8 16.6 67.3 62.3 130.5 14.8 26.1 11.3 418.9

1931 0.0 32.6 0.1 97.4 51.6 30.0 39.3 100.8 57.1 54.6 3.2 18.2 484.9

1932 11.4 51.3 19.0 8.6 126.9 121.7 65.5 71.5 56.9 21.2 8.7 41.1 603.8

1933 43.7 6.9 9.6 1.4 49.1 118.6 92.9 60.4 18.7 27.5 10.9 1.7 441.4

 

 

 

 



1934 13.7 11.7 24.6 4.1 111.1 45.7 75.3 85.1 54.0 53.7 11.5 5.4 495.9

1935 8.6 5.6 20.4 32.5 14.8 8.0 15.3 10.1 53.5 24.7 27.9 8.0 229.4

1936 54.1 9.1 30.9 13.2 68.6 72.9 73.4 83.3 64.9 25.1 5.6 31.4 532.5

1937 29.7 7.1 47.1 55.0 87.5 206.0 151.4 35.4 43.3 28.8 27.6 0.8 719.7

1938 24.6 7.0 17.2 80.2 121.7 50.7 69.5 71.0 85.0 61.5 24.2 30.8 643.4

1939 0.3 41.2 10.2 38.9 101.7 49.2 91.4 69.0 30.3 7.7 31.2 16.6 487.7

1940 4.4 44.3 28.5 97.7 88.9 127.0 68.0 27.9 51.8 40.0 29.5 13.1 621.1

1941 25.6 12.8 38.2 135.6 151.3 115.3 95.4 66.5 98.7 53.5 16.4 29.8 839.1

1942 18.1 4.4 13.5 49.4 152.1 196.8 66.2 94.8 52.5 33.1 6.1 9.6 696.6

1943 43.2 13.3 24.8 56.4 86.2 56.2 87.1 93.3 45.3 44.8 20.9 4.0 575.5

1944 50.8 5.3 5.4 43.3 119.4 214.5 135.7 123.8 81.0 50.7 25.7 33.1 888.7

1945 0.8 1.1 5.1 43.5 177.9 166.7 95.2 87.0 5.5 33.6 4.6 171.2 792.2

1946 13.9 17.7 30.0 57.8 89.9 42.5 82.9 83.5 146.2 25.5 11.3 17.4 618.6

1947 13.3 2.1 65.0 30.1 88.3 45.0 196.5 48.0 35.5 0.0 5.6 9.2 538.6

1948 35.1 3.4 40.3 48.2 102.7 73.4 134.3 50.9 68.5 41.0 8.3 20.6 626.7

1949 15.5 5.0 6.2 65.3 41.6 67.7 100.3 95.6 63.6 26.4 31.7 11.1 530.0

1950 6.8 3.1 8.9 117.5 60.5 50.2 234.7 42.0 99.2 31.3 42.7 18.1 715.0

1951 32.5 2.4 17.0 152.4 51.6 179.2 97.9 44.2 66.4 30.5 49.1 0.8 724.0

1952 1.3 10.9 21.1 46.2 76.5 65.0 86.6 144.4 121.0 18.9 47.1 10.8 649.8

1953 2.0 4.4 9.0 162.8 145.3 53.2 100.2 54.3 19.4 29.5 27.4 10.1 617.6

1954 11.4 16.4 12.4 51.5 263.1 82.9 191.7 95.0 42.9 34.6 13.8 21.6 837.3

1955 0.2 70.0 12.5 56.8 16.1 48.3 126.0 141.7 29.2 44.7 36.9 25.9 608.3

1956 10.1 7.3 19.6 39.2 146.1 140.1 129.3 117.5 28.4 51.3 4.0 42.5 735.4

1957 5.4 31.4 32.7 21.2 145.8 115.2 152.7 183.4 37.7 123.0 7.8 0.4 856.7

1958 8.2 62.2 14.3 61.1 117.4 46.4 16.1 95.8 23.3 25.7 18.6 0.0 489.1

1959 17.7 13.6 35.5 132.2 192.7 20.7 32.8 78.1 38.4 33.4 6.2 25.5 626.8

1960 5.8 8.9 30.1 30.5 82.5 172.9 32.3 21.0 18.0 5.5 1.6 18.3 427.4

1961 34.5 6.6 40.9 6.6 44.2 126.3 46.0 72.4 97.1 20.6 0.3 13.8 509.3

1962 2.8 39.6 68.4 77.8 0.0 221.5 64.2 74.0 34.5 112.6 17.2 2.6 715.2

1963 69.2 0.7 5.3 8.6 22.3 77.9 108.4 81.3 26.7 12.4 40.7 16.6 470.1

1964 2.5 28.1 1.9 16.4 39.7 113.5 70.6 87.6 36.6 49.3 30.4 2.7 479.3

1965 25.4 25.9 50.5 57.4 74.1 47.5 68.3 77.3 16.4 40.0 7.0 33.7 523.5

1966 8.9 36.0 66.5 37.3 66.6 48.8 115.5 108.1 43.6 12.7 33.4 15.8 593.2

1967 21.8 0.0 10.0 79.0 48.9 130.1 63.7 39.0 26.9 36.0 41.8 2.8 500.0

1968 33.0 6.3 0.0 54.3 110.8 171.3 103.4 64.5 9.7 68.7 2.2 25.6 649.8

1969 35.0 6.7 19.6 48.2 14.5 114.9 47.5 68.1 51.5 45.0 7.8 5.8 464.6

1970 10.1 18.1 3.8 7.0 132.9 122.4 114.4 100.0 56.4 58.4 12.1 34.8 670.4

1971 9.5 0.0 6.6 20.0 56.4 57.6 86.9 82.6 76.8 24.0 4.3 12.8 437.5

1972 19.7 10.3 15.7 55.2 78.5 65.6 56.7 69.4 42.3 15.2 0.0 34.6 463.2

1973 1.3 0.3 9.1 5.8 42.9 31.6 84.4 71.7 46.6 13.2 13.7 27.2 347.8

1974 20.2 6.2 7.4 18.6 132.8 184.3 49.2 230.1 48.6 52.0 36.0 10.7 796.1

1975 24.2 2.1 7.8 51.1 194.0 53.1 153.2 57.9 4.0 40.1 32.2 3.5 623.2

1976 0.0 3.2 114.4 50.7 63.3 173.2 53.9 71.8 54.1 8.2 64.0 52.0 708.8

1977 14.9 67.2 10.1 64.2 128.1 177.3 123.1 112.7 47.7 13.1 16.4 20.6 795.4

1978 13.6 28.4 13.7 65.0 45.9 23.1 27.2 107.5 57.2 39.1 6.0 16.8 443.5

1979 22.3 22.5 8.2 5.5 80.4 79.8 53.4 22.8 29.6 135.0 8.1 0.4 468.0

1980 14.0 20.5 0.1 60.7 100.8 90.6 20.7 210.1 37.6 26.5 57.1 19.6 658.3

 

 

 

 



1981 62.4 0.0 46.1 55.7 20.9 125.7 129.7 96.9 73.5 8.4 15.1 29.1 663.5

1982 27.3 3.6 5.1 38.3 41.9 75.5 134.3 87.9 13.5 26.2 27.8 27.3 508.7

1983 2.7 27.3 56.4 8.4 115.0 180.2 92.2 45.1 39.4 15.3 6.0 8.2 596.2

1984 4.3 5.6 20.2 36.4 128.5 31.1 76.9 42.6 100.2 54.9 0.8 54.0 555.5

1985 24.5 20.4 79.9 62.6 47.0 128.1 119.1 94.1 38.9 6.0 3.3 3.5 627.4

1986 12.5 8.1 30.3 61.2 45.8 174.1 134.0 136.7 36.4 32.7 18.9 8.5 699.2

1987 74.9 11.8 19.3 48.4 93.0 113.4 186.3 149.7 58.7 8.9 20.3 38.9 823.6

1988 0.0          15.4 41.8 64.4 31.0 87.1 114.8 44.8 40.5 11.5 1.5 452.8

1989 0.0 36.5 85.6 82.4 132.6 69.3 167.5 143.3 110.2 50.3 32.6 3.4 913.7

1990 43.4 62.4 0.0 142.9 86.9 114.3 157.7 36.7 24.3 5.1 16.7 16.3 706.7

1991 3.3 19.8 7.1 17.7 69.7 110.1 190.4 35.4 84.4 50.6 10.4 6.7 605.6

1992 0.0 34.7 10.2 98.4 85.5 133.8 71.6 42.4 73.1 62.3 10.8 16.9 639.7

1993 9.9 49.1 5.3 172.5 198.1 82.5 117.7 82.0 10.5 2.0 5.6 33.7 768.9

1994 17.0 2.2 8.7 34.5 52.4 248.5 75.8 35.3 32.4 16.5 6.2 0.0 529.5

1995 41.4 0.8 0.4 27.7 71.5 102.9 125.9 78.6 3.8 30.2 2.5 14.8 500.5

1996 0.0 29.6 27.6 41.1 37.1 105.9 119.8 88.1 91.2 51.4 36.2 27.2 655.2

1997 8.3 5.6 0.1 57.2 69.1 100.9 27.0 107.1 8.1 22.1 80.2 5.2 490.9

1998 11.3 0.0 17.8 47.6 145.0 71.6 96.8 50.0 27.8 22.1 60.3 50.5 600.8

1999 0.1 1.5 0.0 71.9 33.3 65.6 36.9 98.1 112.4 0.2 20.3 0.0 440.3

2000 13.7 0.0 6.0 10.2 30.9 83.2 67.9 56.4 58.7 8.5 9.2 0.5 345.2

2001 15.0 14.3 0.0 36.5 112.4 81.5 222.3 134.5 111.5 40.1 12.5 3.0 783.6

2002 49.7 14.5 3.5 38.8 70.4 105.3 100.0 57.8 20.0 38.8 20.5 5.0 524.3

2003 3.1 10.6 38.5 14.3 33.5 33.0 46.9 146.1 66.3 19.2 1.0 11.8 424.3

2004 9.8 0.6 12.9 90.0 12.2 75.3 76.5 195.5 43.0 126.0 4.0 2.7 648.5

2005 30.7 1.5 3.8 97.9 134.7 105.6 43.6 157.3 29.7 13.5 20.1 1.2 639.6

2006 0.0 13.0 4.7 30.1 121.8 34.0 71.4 56.2 20 37.2 37.7 10 436.1

2007 0.5 27.3 18.6 65.6 96.0 123.4 151.5 101.5 18.2 18.7 40.8 18.5 680.6

2008 6.8 13.9 5.2 15.2 51.4 63.2 182.4 79.6 138 12.4 53.1 7.8 628.8

2009 1.4 3.6 0.8 24.0 64.4 108.4 88.4 52.0 60.2 31.6 86.2 4.4 525.4

Maximum: 129.2 78.9 114.4 172.5 344.8 337.8 234.7 230.1 151.9 135.0 94.0 171.2 1037.7

Minimum: 0.0 0.0 0.0 1.3 0.0 8.0 15.3 5.5 3.8 0.0 0.0 0.0 229.4

Range: 129.2 78.9 114.4 171.2 344.8 329.8 219.4 224.6 148.1 135.0 94.0 171.2 808.3

Median: 11.4 10.5 15.4 44.3 82.5 99.9 87.8 81.2 47.2 32.7 20.6 14.0 617.8

Mean: 17.5 15.6 21.6 50.3 90.8 106.2 94.2 86.0 54.5 38.2 24.5 19.2 618.2

Std.dev. 19.4 15.8 20.6 33.7 53.2 58.2 44.8 40.9 29.9 26.4 18.7 20.4 134.3

 

 

 

 



Appendix 4.2: Average Daily Temperature (˚C) Data for station - CAPE TOWN  Measured at 08:00
Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Annual mean T(°C)
1933 21.4 21.2 19.0 19.2 14.4 11.9 12.0 12.3 14.9 17.2 19.6 22.4 17.1
1934 22.2 22.5 20.1 19.5 15.8 15.4 12.3 12.6 15.4 17.3 20.1 21.3 17.8
1935 22.1 22.6 19.4 18.4 15.1 13.2 12.3 14.5 13.7 17.0 19.1 20.4 17.3
1936 19.4 19.7 21.2 18.3 13.3 14.1 13.6 14.1 15.7 16.5 19.4 19.9 17.1
1937 21.8 22.3 20.6 18.1 14.6 13.3 12.5 14.2 15.1 17.1 19.1 21.2 17.5
1938 21.1 20.9 20.5 17.6 15.4 14.9 13.8 12.9 14.3 16.1 18.2 19.7 17.1
1939 21.8 21.4 20.6 17.1 16.5 15.3 14.2 13.5 15.7 17.6 19.8 21.1 17.9
1940 22.3 22.4 19.7 16.9 14.8 13.7 14.0 14.7 13.7 18.0 18.1 20.5 17.4
1941 22.2 21.1 20.6 16.7 14.5 13.2 13.2 14.6 14.1 16.7 18.0 20.0 17.1
1942 21.4 22.1 20.7 19.5 15.7 13.2 12.7 12.7 14.3 17.1 20.0 20.3 17.4
1943 20.4 19.9 21.2 17.6 14.3 13.0 11.6 12.9 14.1 16.1 18.4 21.4 16.7
1944 21.9 22.6 20.8 18.2 15.4 13.3 13.0 12.8 14.7 16.9 17.8 19.2 17.2
1945 21.1 22.3 21.4 19.4 15.8 13.8 11.9 12.9 16.4 16.3 19.8 19.2 17.5
1946 20.8 21.4 19.7 17.8 15.3 13.1 11.7 14.1 13.9 16.7 18.9 20.4 17.0
1947 21.1 22.9 21.2 17.3 15.1 12.5 12.3 13.3 15.3 16.6 19.6 20.7 17.3
1948 21.8 22.3 20.0 18.4 16.3 12.3 12.2 13.2 13.7 16.6 19.2 20.2 17.2
1949 21.7 22.5 21.8 17.5 15.6 15.7 12.8 13.7 14.9 17.1 18.4 20.3 17.6
1950 21.7 20.8 20.4 16.7 16.0 13.5 12.3 14.6 14.5 17.5 18.3 19.4 17.1
1951 20.5 21.3 19.9 17.6 16.2 14.5 12.6 13.9 13.3 15.6 17.5 20.1 16.9
1952 21.7 23.0 19.4 18.3 14.5 13.4 12.4 13.4 15.2 16.8 19.6 20.0 17.3
1953 22.8 22.4 21.6 16.5 15.3 13.7 12.5 13.4 16.3 17.1 19.0 20.1 17.5
1954 21.4 21.5 20.9 17.5 14.8 14.1 11.2 13.2 14.4 16.1 18.6 20.0 17.0
1955 22.2 20.6 21.0 16.9 16.0 13.5 12.8 12.3 13.4 15.4 17.9 18.7 16.7
1956 22.1 19.9 20.0 16.7 14.0 12.7 12.9 12.7 15.3 16.2 20.1 20.5 16.9
1957 22.2 21.2 20.3 17.2 15.1 13.5 13.4 13.3 14.8 14.6 17.8 21.4 17.0
1958 21.7 20.4 20.3 17.6 14.4 12.4 13.7 14.0 14.7 16.9 18.3 22.1 17.2
1959 20.8 22.3 20.0 16.9 14.6 13.9 13.1 14.3 15.6 16.6 19.3 20.4 17.3
1960 22.0 22.3 19.8 17.9 15.2 14.5 12.9 13.8 16.4 17.7 21.0 21.8 17.9
1961 21.9 22.1 21.9 19.4 15.4 14.9 14.8 14.3 14.7 15.5 19.9 20.6 17.9
1962 21.8 21.5 20.6 18.6 16.5 14.0 13.4 13.9 15.0 16.9 18.0 20.9 17.6
1963 23.3 21.6 21.6 17.9 16.4 14.8 13.1 14.0 16.3 18.4 20.8 21.7 18.3
1964 22.5 21.2 21.4 18.8 16.8 13.4 13.3 13.3 14.3 16.8 18.2 21.3 17.6
1965 21.4 21.3 20.1 18.6 15.4 12.9 13.7 14.0 16.3 17.5 18.6 19.0 17.4
1966 21.1 19.8 19.8 19.6 16.0 14.5 12.7 14.2 15.5 17.5 19.1 21.0 17.5
1967 20.4 22.0 20.6 17.5 15.2 12.8 13.0 13.4 15.9 17.1 19.5 21.4 17.4
1968 20.4 20.6 21.7 18.7 15.7 13.6 12.5 12.8 15.6 16.3 19.5 20.4 17.3
1969 21.4 22.1 21.6 17.5 15.2 13.3 13.4 14.5 14.5 16.9 18.5 20.8 17.5
1970 21.5 21.4 21.2 19.4 15.1 13.4 11.9 12.8 14.1 18.0 17.7 18.6 17.1
1971 20.8 22.1 20.7 17.8 15.8 13.4 12.9 13.0 13.4 17.3 18.8 20.8 17.2
1972 22.3 22.4 21.2 18.2 16.1 13.9 13.8 13.2 15.6 18.4 21.2 19.7 18.0
1973 21.6 23.4 21.3 20.4 16.1 14.9 14.0 13.6 14.2 18.3 20.1 21.3 18.3
1974 22.3 23.2 21.6 20.1 16.1 15.2 13.6 13.4 14.6 16.1 19.3 20.9 18.0
1975 21.7 22.8 21.2 18.3 16.2 15.1 13.5 13.3 16.6 16.5 18.7 20.7 17.8
1976 23.1 21.9 20.6 19.1 17.5 14.3 13.4 13.5 15.2 17.3 16.4 19.7 17.6
1977 21.1 22.6 21.0 19.2 14.7 14.6 12.7 13.8 15.0 16.3 20.0 21.0 17.6
1978 22.2 21.7 21.2 19.2 15.0 14.3 15.2 13.2 15.9 16.0 20.1 21.3 17.9
1979 21.8 22.4 20.3 19.3 17.4 14.1 14.1 14.8 14.8 16.3 19.5 22.3 18.1
1980 22.3 21.9 22.0 18.1 15.6 14.7 14.9 15.2 16.7 17.1 18.0 20.2 18.0
1981 21.0 22.0 21.2 19.3 17.1 12.8 12.3 13.4 14.4 18.8 19.4 20.9 17.7
1982 21.8 21.3 20.6 18.3 15.8 13.0 13.4 13.7 16.5 18.2 18.3 19.5 17.5
1983 22.0 20.9 20.3 20.1 15.5 13.7 13.1 13.6 14.0 17.8 19.3 21.3 17.6
1984 22.6 22.4 21.8 19.2 15.7 14.8 14.3 14.1 15.3 16.7 20.4 19.8 18.1
1985 22.1 22.3 20.2 18.1 16.6 14.8 13.3 14.5 15.6 17.9 21.8 20.7 18.1
1986 22.4 22.3 20.2 18.9 17.1 14.2 13.5 14.9 16.3 17.8 19.2 20.3 18.1

 

 

 

 



1987 21.1 21.0 21.4 18.2 16.4 14.6 13.7 14.2 15.4 17.6 18.3 19.9 17.6
1988 21.0 22.8 20.4 17.2 16.6 13.2 14.1 14.6 15.2 16.9 19.2 21.2 17.7
1989 22.2 21.8 20.1 18.7 15.5 14.2 13.0 13.9 14.9 16.1 19.4 20.8 17.5
1990 21.9 21.8 21.0 17.8 15.9 12.9 12.3 13.8 15.6 17.0 18.6 20.7 17.4
1991 21.9 21.2 22.0 19.4 17.6 14.0 13.6 13.0 15.3 17.7 19.0 21.0 18.0
1992 22.9 22.0 21.3 18.2 15.0 13.5 13.5 13.9 14.9 16.9 19.5 21.1 17.7
1993 22.6 21.8 21.8 18.0 15.5 14.3 14.9 14.7 15.9 18.1 20.1 20.9 18.2
1994 22.5 22.5 21.2 18.9 15.3 13.9 13.2 14.6 16.1 19.1 20.2 22.2 18.3
1995 22.4 23.1 22.2 18.2 17.3 14.5 12.3 14.3 16.2 16.8 19.9 21.9 18.2
1996 22.5 22.2 20.0 19.5 16.9 14.3 13.1 13.6 14.7 17.1 17.9 20.9 17.7
1997 21.6 21.6 20.8 18.1 16.6 13.1 14.6 14.4 17.6 19.9 19.0 19.9 18.1
1998 21.3 23.6 20.9 19.2 16.2 14.7 13.9 14.9 15.8 18.1 19.5 21.8 18.3
1999 23.0 22.4 22.7 19.4 16.9 15.4 14.3 15.4 15.0 19.8 20.1 24.0 19.0
2000 23.1 23.3 21.4 19.0 17.0 15.6 15.3 15.6 15.4 18.6 20.9 21.3 18.8
2001 22.5 22.7 20.9 18.7 16.5 14.3 14.4 14.4 15.7 18.8 21.1 22.2 18.5
2002 21.7 23.5 22.1 19.1 15.8 13.1 13.4 14.6 17.5 17.3 18.6 22.1 18.2
2003 22.4 22.7 22.0 20.0 17.1 14.8 14.6 12.8 15.6 18.4 19.9 20.6 18.4
2004 22.3 22.9 20.5 18.7 18.2 15.3 14.5 14.3 16.1 18.1 21.2 22.8 18.7
2005 22.8 22.8 22.2 18.6 16.4 13.9 15.8 13.1 14.5 15.8 19.0 19.8 17.9
2006 23.2 23.3 20.6 18.5 15.5 14.8 13.1 13.7 14.5 15.8 19.0 19.8 17.6
2007 22.9 21.3 20.4 18.4 15.4 13.0 12.3 13.0 14.5 15.8 19.0 19.8 17.1
2008 26.5 26.6 26.6 24.1 21.4 17.7 16.7 18.3 18.1 22.0 23.2 25.5 22.2
2009 26.2 28.1 26.9 23.9 20.3 18.6 19.7 18.7 19.1 23 24.1 24.9 22.8

Maximum: 23.3 23.6 22.7 20.4 18.2 15.7 15.8 15.6 17.6 19.9 21.8 24.0 24.0

Minimum: 19.4 19.7 19.0 16.5 13.3 11.9 11.2 12.3 13.3 14.6 16.4 18.6 18.6

Range: 3.9 3.9 3.7 3.9 5.0 3.8 4.6 3.3 4.3 5.3 5.4 5.5 5.5

Median: 21.8 22.1 20.8 18.3 15.7 13.9 13.2 13.7 15.1 17.0 19.2 20.7 20.7

Mean: 21.8 21.9 20.8 18.4 15.8 13.9 13.2 13.7 15.1 17.1 19.2 20.7 20.7

Std.dev. 0.7 0.9 0.8 0.9 0.9 0.9 0.9 0.7 0.9 1.0 1.0 1.0 1.0

 

 

 

 



Appendix 4.3a: Water level contour maps monitoring data (April 2003) 

 

 

 

 

 

 

 

 

 

 



Appendix 4.3b: Water level contour maps monitoring data (September 2003) 

 

 

 

 

 

 

 

 



Appendix 4.3c: Water level contour maps monitoring data (March 2004) 

 

 

 

 

 

 

 

 

 



Appendix 4.3d: Water level contour maps monitoring data (August 2004) 

 

 

 

 

 

 



DAILY ETO PENMAN-MONTEITH DATA Staion: Cape Town (South Africa)

Altitude: 42 m Lat. 33.97°S Long. 18.60°E

Year:2000 Min Temp Max Temp Humidity Wind Sun Rad ETo Year:2005 Min Temp Max Temp Humidity Wind Sun Rad ETo

Month °C °C % km/day hours MJ/m²/day mm/day Month °C °C % km/day hours MJ/m²/day mm/day

January 15.8 28.4 58 338 11.4 28.4 6.62 January 17 27.3 62 16 11.3 15.4 1.63

February 16.9 27.5 64 381 11.2 26.3 5.98 February 16.9 27.2 67 14 11.1 18.1 2.48

March 15.7 26 68 348 9.9 21.4 4.69 March 15 26.3 69 13 9.4 19.5 3.09

April 11.8 24.1 70 248 8.7 16.3 3.23 April 12.1 23.3 78 12 7.7 19.8 3.28

May 10.3 21.2 74 215 6.4 11 1.98 May 10.4 19.2 81 8 5.2 17.5 2.88

June 9.4 20.3 73 216 6.3 9.4 1.86 June 7 17.2 84 9 5.6 18.5 2.79

July 8.1 17.9 74 228 6.6 10.2 1.71 July 7.8 19.7 78 8 6.9 20.1 3.08

August 9.8 19 77 243 7.2 13.3 2.17 August 7.4 15.9 83 8 5.6 17.2 2.44

September 9 18.7 72 243 7.5 16.9 2.87 September 9.5 19.5 77 10 8.1 18.6 2.5

October 10.4 22.5 61 313 10 23.6 4.79 October 9.7 21.8 68 13 9 16.6 1.97

November 13.9 24.7 64 278 9.9 25.5 5.22 November 13.4 24.6 63 15 10.1 14.8 1.5

December 15.3 24.4 61 362 10.9 27.9 5.92 December 14.6 25 59 14 11.8 14.9 1.18

Average 12.2 22.9 68 285 8.8 19.2 3.92 Average 11.7 22.3 72 12 8.5 17.6 2.4

Year:2001 Min Temp Max Temp Humidity Wind Sun Rad ETo Year:2006 Min Temp Max Temp Humidity Wind Sun Rad ETo

Month °C °C % km/day hours MJ/m²/day mm/day Month °C °C % km/day hours MJ/m²/day mm/day

January 15.5 26.3 58 9 11.6 15.7 1.47 January 16.9 27.7 64 19 12 16.1 1.74

February 16 28 60 8 10.8 17.8 2.31 February 16.5 27.7 70 20 10.8 17.8 2.55

March 13.8 25.6 67 8 9.9 20.1 3.05 March 14.1 25.4 65 14 10.2 20.5 3.12

April 12.4 22.6 71 10 7.4 19.4 3.13 April 12 22.8 75 19 8 20.2 3.3

May 10.5 20.6 69 6 6.9 20 3.19 May 9.3 19.9 77 10 5.7 18.3 2.93

June 8.6 18.1 72 7 6.2 19.4 2.98 June 8.1 20.1 76 11 7.3 21 3.27

July 8.3 17.9 71 7 5.3 17.8 2.7 July 8.7 16.9 83 14 5.1 17.5 2.68

August 9.3 17 74 7 5.7 17.4 2.52 August 7.9 17.7 77 6 6.8 18.9 2.67

September 10.2 18.9 73 7 7.3 17.6 2.36 September 10.3 20.9 72 6 8 18.5 2.53

October 12.9 21.8 71 8 7.4 14.8 1.86 October 11.3 22.4 69 14 9.4 17.1 2.1

November 14.8 24.6 65 11 10.7 15.4 1.56 November 13.9 24.6 65 19 10.6 15.3 1.6

December 15.8 25.9 64 10 11.4 14.5 1.28 December 15.4 25 61 7 10.9 14.1 1.13

Average 12.3 22.3 68 8 8.4 17.5 2.37 Average 12 22.6 71 13 8.7 17.9 2.47

Year:2002 Min Temp Max Temp Humidity Wind Sun Rad ETo Year:2007 Min Temp Max Temp Humidity Wind Sun Rad ETo

Month °C °C % km/day hours MJ/m²/day mm/day Month °C °C % km/day hours MJ/m²/day mm/day

January 15.6 25.4 65 12 11.2 15.3 1.55 January 17.6 28.2 64 9 11.7 15.8 1.71

February 16 28.3 64 13 10.8 17.8 2.39 February 16.2 26.4 68 8 10.7 17.7 2.37

March 15 26.9 73 17 9.6 19.7 3.2 March 14.2 26.5 69 8 10.2 20.5 3.14

April 12.2 23.5 77 10 7.4 19.4 3.24 April 12.8 24 75 10 8 20.2 3.36

May 9.8 19.6 77 7 5.7 18.3 2.97 May 9.7 21.1 80 6 7.2 20.5 3.31

June 7.8 16.5 79 6 5.6 18.5 2.79 June 8.1 17.9 80 7 5.5 18.4 2.86

July 7.2 16.8 80 13 6.3 19.3 2.8 July 6.9 17.6 77 7 6.7 19.9 2.9

August 7.1 18.8 74 22 7.6 20.1 2.84 August 8.2 17.8 77 7 6.2 18.1 2.59

September 10.4 21.3 76 13 8.3 18.9 2.66 September 9.2 19.8 72 7 7.9 18.3 2.44

October 10.6 21.2 67 6 9.9 17.7 2.07 October 12.1 23.3 64 8 9.7 17.4 2.12

November 11.3 22.8 63 8 10.8 15.5 1.35 November 12.8 22.2 67 11 9.4 14.1 1.39

December 16.3 26.6 66 10 11 14.2 1.29 December 15.7 26.3 65 10 11 14.2 1.21

Average 11.6 22.3 72 11 8.7 17.9 2.43 Average 12 22.6 72 8 8.7 17.9 2.45

Year:2003 Min Temp Max Temp Humidity Wind Sun Rad ETo Year:2008 Min Temp Max Temp Humidity Wind Sun Rad ETo

Month °C °C % km/day hours MJ/m²/day mm/day Month °C °C % km/day hours MJ/m²/day mm/day

January 16.5 26.5 64 15 11.7 15.8 1.62 January 16.8 26.5 67 15 11.5 15.6 1.68

February 16.7 27.3 68 15 11 18 2.47 February 16.9 26.6 73 15 10 16.9 2.39

March 16 25.7 74 13 9.1 19.1 3.06 March 14.8 26.6 69 13 10.7 21.1 3.28

April 13.6 24.3 76 13 7.9 20.1 3.39 April 12.2 24.1 73 13 8.9 21.5 3.48

May 10.3 21.2 78 10 7.3 20.6 3.37 May 12.9 21.4 80 10 5.1 17.4 3.01

June 6.2 19.5 74 12 7.7 21.6 3.27 June 9.8 17.7 80 12 5.1 17.8 2.86

July 6.8 18 73 12 6.9 20.1 2.97 July 7.5 16.7 83 12 5.7 18.4 2.73

August 6.7 16.8 77 12 6.2 18.1 2.53 August 7.7 18.3 77 12 7.6 20.1 2.86

September 9.5 18.9 74 12 7.4 17.7 2.35 September 7.6 18.1 74 12 7 17.2 2.26

October 11.5 23.2 65 16 8.3 15.8 1.99 October 11 22 69 16 10 17.8 2.11

November 13.4 24.7 60 19 11 15.7 1.59 November 14 23.2 68 19 10.2 14.9 1.53

December 14.5 24.4 61 15 10.5 13.7 1.17 December 16 25.5 67 15 10.9 14.1 1.3

Average 11.8 22.5 70 14 8.8 18 2.48 Average 12.3 22.2 73 14 8.6 17.7 2.46

Year:2004 Min Temp Max Temp Humidity Wind Sun Rad ETo Year:2009 Min Temp Max Temp Humidity Wind Sun Rad ETo

Month °C °C % km/day hours MJ/m²/day mm/day Month °C °C % km/day hours MJ/m²/day mm/day

January 17 27.6 63 20 11.3 15.4 1.72 January 16.4 26.2 66 16 11.7 15.8 1.64

February 16.8 27.3 67 20 10.6 17.6 2.51 February 17 28.1 63 14 11.1 18.1 2.45

March 13.2 24.5 64 18 9.7 19.9 2.99 March 15.7 26.9 71 13 9.6 19.7 3.18

April 12.3 22.8 74 16 6.7 18.4 3.03 April 13.2 23.9 76 12 6.8 18.6 3.17

May 10.7 21.3 80 4 7 20.2 3.29 May 10.6 20.3 82 8 6 18.7 3.07

June 8.2 19.2 78 5 6.2 19.4 3.05 June 9.5 18.6 79 9 5.4 18.2 2.89

July 6.1 18.7 77 3 7.6 21.2 3.09 July 7.7 19.7 72 8 6.8 20 3.04

August 8.6 17.7 82 4 6.4 18.4 2.64 August 8.7 18.7 76 8 6.6 18.7 2.74

September 9.3 20.7 73 25 9.3 20.2 2.76 September 9.8 19.1 73 10 6.8 16.9 2.3

October 11.7 21.4 69 16 9.1 16.8 2.03 October 12.5 23 69 13 9.5 17.2 2.14

November 15.1 24.6 65 12 11.2 15.9 1.57 November 14.1 24.1 65 15 9.9 14.6 1.53

December 16.3 26.5 61 12 11.4 14.5 1.27 December 15.2 24.9 65 14 11.4 14.5 1.27

Average 12.1 22.7 71 13 8.9 18.1 2.5 Average 12.5 22.8 71 12 8.5 17.6 2.45

Appendix 4.4a: Climate paparmeters & calculations of daily Eto

 

 

 

 



Appendix 4.4b: Calculated PET and AET values for Cape Town (2000-2009)

AET (mm)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Annual

2000 82.12 0.00 11.45 11.48 17.53 55.52 49.72 55.03 68.77 16.52 6.80 5.20 380.13

2001 9.00 4.70 2.50 33.59 46.02 42.84 55.30 64.40 87.70 68.35 19.30 6.40 440.10

2002 54.38 15.78 9.30 22.10 33.56 37.20 43.30 66.80 80.10 45.39 22.26 15.79 445.96

2003 2.40 8.40 33.49 19.60 26.48 26.68 33.12 53.25 70.97 35.74 7.06 22.23 339.42

2004 5.80 0.20 9.20 45.12 13.41 31.86 43.55 56.80 81.65 65.19 8.09 9.20 370.08

2005 20.00 5.96 8.70 46.85 44.13 33.80 49.40 50.20 83.00 45.64 19.85 1.36 408.89

2006 0.00 13.00 4.70 17.34 38.35 46.10 43.50 61.90 71.60 27.34 46.46 10.00 380.30

2007 0.50 25.73 18.10 22.24 44.75 46.96 47.20 60.70 90.06 35.07 40.25 19.06 450.62

2008 6.80 13.90 5.20 15.20 23.94 41.89 41.70 60.60 80.20 97.11 48.02 7.81 442.37

2009 1.40 3.60 0.80 15.79 33.97 42.20 55.00 66.70 74.84 40.55 56.68 5.28 396.80

Mean 18.24 9.13 10.34 24.93 32.21 40.50 46.18 59.64 78.89 47.69 27.48 10.23

Rain (mm)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Annual

2000 16.10 0.00 12.90 13.80 62.30 92.60 46.30 46.20 66.60 6.60 6.80 5.90 376.10

2001 8.30 4.70 2.50 39.40 80.60 62.30 207.80 97.30 47.00 26.30 12.70 6.40 595.30

2002 60.90 14.90 9.30 28.00 71.90 76.40 98.20 65.70 26.10 32.50 22.00 15.90 521.80

2003 2.40 8.40 47.60 11.90 37.10 25.00 33.40 100.30 63.90 19.20 5.80 21.10 376.10

2004 5.80 0.20 9.20 63.10 3.90 91.10 64.70 169.70 25.10 98.90 3.40 9.20 544.30

2005 24.50 2.00 8.70 95.30 77.70 90.20 64.60 89.60 29.70 13.50 20.10 1.20 517.10

2006 0.00 13.00 4.70 30.10 121.80 34.00 71.40 56.20 20.00 37.20 37.70 10.00 436.10

2007 0.50 27.30 18.60 65.60 96.00 123.40 151.50 101.50 18.20 18.70 40.80 18.50 680.60

2008 6.80 13.90 5.20 15.20 51.40 63.20 182.40 79.60 137.80 12.40 53.10 7.80 628.80

2009 1.40 3.60 0.80 24.00 64.40 108.40 88.40 52.00 60.20 31.60 86.20 4.40 525.40

Mean 12.67 8.80 11.95 38.64 66.71 76.66 100.87 85.81 49.46 29.69 28.86 10.04

PET_Monthly daily ave (mm)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Annual

2000 6.63 5.98 4.69 3.23 1.98 1.86 1.71 2.17 2.87 4.79 5.22 5.92 47.04

2001 6.25 6.12 4.44 4.44 2.17 1.58 1.78 2.08 2.92 3.84 5.45 6.02 47.09

2002 5.74 5.61 4.16 2.66 1.76 1.23 1.40 2.14 3.07 4.25 5.22 5.96 43.20

2003 6.17 5.39 4.16 2.87 1.80 1.38 1.70 1.85 2.76 4.27 5.60 5.91 43.84

2004 6.41 5.72 4.48 2.70 1.79 1.40 1.43 1.83 3.18 4.03 5.49 6.37 44.82

2005 6.42 5.68 4.50 2.74 1.66 1.12 1.59 1.62 2.76 4.03 5.38 6.43 43.94

2006 6.56 5.52 4.66 2.96 1.70 1.52 1.39 1.99 3.13 4.22 5.50 5.99 45.15

2007 6.26 5.53 4.41 2.97 1.72 1.55 1.53 1.96 3.11 4.47 5.19 5.92 44.63

2008 6.06 5.14 4.60 3.07 1.96 1.46 1.33 1.96 2.66 4.28 5.06 5.83 43.42

2009 6.06 5.98 4.52 2.92 1.74 1.40 1.77 2.15 2.89 4.45 5.29 5.80 44.97

Mean 6.26 5.67 4.46 3.05 1.83 1.45 1.56 1.98 2.94 4.26 5.34 6.02

PET_ave_montly (mm)

2000 212.02 167.39 145.45 96.91 61.47 55.65 52.87 67.34 86.11 148.41 156.63 183.38 1433.63

2001 193.63 171.24 137.76 137.76 67.27 45.93 55.21 64.47 87.56 119.07 163.41 186.57 1429.88

2002 178.01 157.05 128.93 79.73 54.71 37.01 43.30 66.49 92.14 131.66 156.52 184.74 1310.29

2003 191.13 150.91 129.03 86.05 55.67 41.38 52.63 57.27 82.68 132.31 168.07 183.28 1330.41

2004 198.86 160.12 138.91 80.90 55.46 41.94 44.22 56.62 95.44 125.03 164.59 197.33 1359.42

2005 199.11 159.02 139.49 82.14 51.47 33.62 49.35 50.21 82.84 124.94 161.48 199.37 1333.04

2006 203.41 154.62 144.54 88.66 52.72 45.69 43.17 61.84 93.78 130.83 164.92 185.74 1369.92

2007 193.99 154.92 136.56 89.05 53.43 46.60 47.36 60.61 93.42 138.65 155.80 183.64 1354.03

2008 187.88 143.85 142.71 92.12 60.83 43.73 41.30 58.87 79.93 132.63 151.80 180.88 1316.53

2009 188.01 167.38 140.02 87.54 54.06 42.11 54.74 66.68 86.74 137.96 158.66 179.77 1363.67

Mean 194.60 158.65 138.34 92.09 56.71 43.37 48.42 61.04 88.06 132.15 160.19 186.47 1360.08

 

 

 

 



Appendix 4.5: Water Balance Table for Cape Town (2000-2009) 

 
 Method  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

A 
Rainfall (mm) 

Rainfall (WMO) 
gauging 

376.1 595.3 521.8 376.1 544.3 517.1 436.1 680.6 628.8 525.4 

B 

PET (mm) 

CROPWAT 8 
(FAO-56  
Penman-
Monteith eq.) 

1433.6 1429.9 1310.3 1330.4 1359.4 1333.0 1369.9 1354.0 1316.5 1363.7 

C 
AET (mm)  

WaSim (Water 
balance eq.) 

380.1 440.1 446.0 339.4 370.1 408.9 380.3 450.6 442.4 396.8 

D 
Runoff (mm) 

WaSim (Water 
balance eq.) 

60.4 134.4 70.9 39.1 162.2 99.0 55.8 192.6 158.5 128.6 

E Deep 

percolation 

(mm) 

WaSim (Water 
balance eq.) 

0.0 5.6 8.0 4.3 4.8 7.5 5.6 19.9 26.9 14.7 

F Relative 

transpiration 

(%) 

WaSim (Water 
balance eq.) 

27.4 32.3 35.2 27.7 28.0 31.7 29.4 33.9 34.5 29.7 

G Change in soil 

or  

groundwater 

storage 

A-C-D -64.4 20.8 4.9 -2.4 12.0 9.2 0.0 37.4 27.9 0.0 

H Groundwater 

recharge  

which becomes 

baseflow 

E-G 64.4 -15.2 3.1 6.7 -7.2 -1.7 5.6 -17.5 -1.1 14.7 

I Total change in 

soil and  

groundwater 

storage 

G+H 0.0 5.6 8.0 4.3 4.8 7.5 5.6 19.9 26.9 14.7 

 

 

 

 

 



Appendix 4.6.1: Pumping test3 @ iThembaLabs - 09/01/2007 to 12/01/2007

Pumping started at 11.10 am on 09/01/2007 and stopped at 11.32 am on 12/01/2007

Comapany: UWC  Conductor:  Segun                   Date: 09/01/2007

 Constant discharge for borehole:   1.1 L/s                       Pump type: Submersible

 Borehole depth:    62    m;   S.WL:    1.92     m;  pump inlet depth:  28.5 m

Remark

T (min.) SWL(m)Drawdown (m)Q(l/s . ) T (min.)   SWL (m)Residual drawdown (m)

0 1.92 0.00 0 5.49 3.57
0.5 3.30 1.38 0.5 4.34 2.42

1 3.60 1.68 1 4.11 2.19
1.5 3.81 1.89 1.5 3.96 2.04

2 3.89 1.97 2 3.85 1.93
2.5 3.99 2.07 2.5 3.76 1.84

3 4.06 2.14 3 3.70 1.78
4 4.13 2.21 4 3.67 1.75
5 4.22 2.30 5 3.60 1.68
6 4.30 2.38 6 3.55 1.63
7 4.36 2.44 7 3.48 1.56
8 4.42 2.50 8 3.45 1.53
9 4.46 2.54 9 3.41 1.49

10 4.50 2.58 10 3.38 1.46
11 4.54 2.62 11 3.36 1.44
14 4.57 2.65 12 3.33 1.41
15 4.63 2.71 15 3.24 1.32
20 4.75 2.83 20 3.15 1.23
25 4.81 2.89 25 3.07 1.15
30 4.87 2.95 30 3.02 1.10
35 4.91 2.99 35 2.97 1.05
40 4.96 3.04 40 2.93 1.01
45 5.00 3.08 45 2.88 0.96
50 5.02 3.10 50 2.86 0.94
55 5.05 3.13 55 2.84 0.92
60 5.08 3.16 60 2.81 0.89
70 5.11 3.19 70 2.77 0.85
80 5.15 3.23 80 2.74 0.82
90 5.17 3.25 90 2.71 0.79

100 5.20 3.28 100 2.67 0.75
110 5.22 3.30 110 2.66 0.74
120 5.23 3.31 120 2.64 0.72
140 5.26 3.34 140 2.61 0.69
160 5.27 3.35 160 2.58 0.66
180 5.30 3.38 180 2.56 0.64
210 5.32 3.40 210 2.53 0.61
240 5.33 3.41 240 2.51 0.59
270 5.34 3.42 270 2.49 0.57
300 5.35 3.43 330 2.47 0.55
330 5.35 3.43 420 2.45 0.53
360 5.36 3.44 480 2.43 0.51
420 5.37 3.45 540 2.43 0.51
480 5.37 3.45 600 2.42 0.50
540 5.37 3.45 660 2.42 0.50
600 5.39 3.47 1140 2.36 0.44
660 5.39 3.47 1800 2.32 0.40
720 5.39 3.47 2580 2.30 0.38
780 5.40 3.48 4140 2.30 0.38
840 5.40 3.48 4320 2.30 0.38
900 5.40 3.48 4620 2.30 0.38

1000 5.40 3.48 5640 2.33 0.41
1100 5.40 3.48 7020 2.32 0.40
1200 5.41 3.49 8460 2.35 0.43
1300 5.40 3.48 8735 2.34 0.42
1400 5.41 3.49
2700 5.44 3.52
2800 5.45 3.53
2900 5.45 3.53
3000 5.45 3.53
3100 5.45 3.53
3200 5.45 3.53
3400 5.45 3.53
4000 5.48 3.56
4200 5.48 3.56

Constant discharge Recovery 

 

 

 

 



Appendix 4.6.2: Pumping test data

Comapany: UWC  Conductor:  Segun                   Date: 09/03/2007

 Constant discharge for borehole:   1.1 L/s                       Pump type: Submersible, motorised

 Borehole depth:    62    m;   S.WL:    2.53     m;  pump inlet depth:  28.5 m

Constant discharge Recovery Remark

T (min.) SWL(m)Drawdown (m)Q(l/s . ) T (min.)   SWL (m)Residual drawdown (m)

0 2.53 0.00 0 5.49 3.57
0.5 3.70 1.17 0.5 4.34 2.42

1 3.90 1.37 1 4.11 2.19
1.5 4.07 1.54 1.5 3.96 2.04

2 4.23 1.70 2 3.85 1.93
2.5 4.30 1.77 2.5 3.76 1.84

3 4.34 1.81 3 3.70 1.78
4 4.40 1.87 4 3.67 1.75
5 4.50 1.97 5 3.60 1.68
6 4.60 2.07 6 3.55 1.63
7 4.70 2.17 7 3.48 1.56
8 4.71 2.18 8 3.45 1.53
9 4.73 2.20 9 3.41 1.49

10 4.78 2.25 10 3.38 1.46
12 4.82 2.29 11 3.36 1.44
15 4.88 2.35 12 3.33 1.41
20 4.96 2.43 15 3.24 1.32
25 5.05 2.52 20 3.15 1.23
30 5.10 2.57 25 3.07 1.15
35 5.15 2.62 30 3.02 1.10
40 5.20 2.67 35 2.97 1.05
45 5.23 2.70 40 2.93 1.01
50 5.26 2.73 45 2.88 0.96
55 5.30 2.77 50 2.86 0.94
60 5.35 2.82 55 2.84 0.92
80 5.39 2.86 60 2.81 0.89

100 5.41 2.88 70 2.77 0.85
120 5.45 2.92 80 2.74 0.82
140 5.48 2.95 90 2.71 0.79
160 5.50 2.97 100 2.67 0.75
180 5.52 2.99 110 2.66 0.74
210 5.54 3.01 120 2.64 0.72
270 5.58 3.05 140 2.61 0.69
330 5.57 3.04 160 2.58 0.66
390 5.58 3.05 180 2.56 0.64
450 5.60 3.07 210 2.53 0.61
510 5.61 3.08 240 2.51 0.59
570 5.64 3.11 270 2.49 0.57
630 5.64 3.11 330 2.47 0.55
690 5.64 3.11 420 2.45 0.53
750 5.64 3.11 480 2.43 0.51
810 5.64 3.11 540 2.43 0.51
870 5.64 3.11 600 2.42 0.50
930 5.65 3.12 660 2.42 0.50
990 5.65 3.12 1140 2.36 0.44

1050 5.65 3.12 1800 2.32 0.40
1150 5.66 3.13 2580 2.30 0.38
1250 5.67 3.14 4140 2.30 0.38
1350 5.68 3.15 4320 2.30 0.38
1450 5.68 3.15 4620 2.30 0.38
1550 5.68 3.15 5640 2.33 0.41
1650 5.69 3.16 7020 2.32 0.40
1750 5.67 3.14 8460 2.35 0.43
1850 5.67 3.14 8735 2.34 0.42
1950 5.69 3.16
2050 5.70 3.17
2150 5.70 3.17
2250 5.70 3.17
2350 5.70 3.17
2450 5.70 3.17
2550 5.70 3.17
2650 5.70 3.17
2750 5.72 3.19
2850 5.72 3.19
2950 5.72 3.19
3050 5.73 3.20
3150 5.72 3.19
3250 5.73 3.20
3350 5.72 3.19
3450 5.73 3.20
3950 5.70 3.17
4050 5.70 3.17

Pumping started at 10 am on 09/01/2007 and stopped at 09.52 am on 12/01/2007

Pumping test 4 @ iThembaLabs - 09/03/07 to 12/03/07

 

 

 

 



Appendix 4.7: Aquifer parameters

BH No. Pump intake (m) Step I Step II Step III Step IV Step V Step VI
Q (Kl/d) ∑s (m) Q (Kl/d) ∑s (m) Q (Kl/d) ∑s (m) Q (Kl/d) ∑s (m) Q (Kl/d)∑s (m) Q (Kl/d) ∑s (m)

G32963 487.6 2.45 712.3 3.49 888.3 4.35 1045 5.03 1293.4 6.3 - -
G32965 18 483.8 3.35 704.2 4.78 893.7 6.14 1283 8.68 1845.5 12.6 - -
G32966 24 490.7 3.55 621.2 4.61 1005.6 7.34 1128 8.31 1367.7 10.6 - -
G32967 27 537.1 2.45 757.3 3.48 1010 4.48 1539 6.61 2290.4 9.47 2970.7 12.84
G32968 30 508.9 1.87 775.4 2.23 1111.9 3.71 1810 6.5 3168.2 11 - -
G32969 24 365 4 509.7 5.84 657.5 7.87 792.2 10.52 1005.6 14.8 - -
G32978 33 529.6 1.94 788.8 2.93 1111.9 4.16 1540 5.8 2270.6 8.64 3116.4 13.66
G32979 18 478.2 2.02 688.6 2.9 1061.8 4.54 1473 6.31 2185 9.55 - -
G32981 33 533.9 2.86 766.3 4.13 1057.9 5.7 1509 7.91 2290.4 11.6 3665 15.42

BH No. Depth of pumping RWL Max drawdown (m)
 intake (m) L/s Kl/d

G32963 20 13.7 1187 3.94
G32965 18 20.1 1735 4.25
G32966 24 12.9 1115 5.71
G32967 27 22.9 1980 7.28
G32968 30 32.8 2838 7.36
G32969 24 10.2 879 6.12
G32978 33 22.5 2023 5.9
G32979 18 25.8 2231 4.77
G32981 33 14 1187 5.29

Total 174.9

C: Hydraulic parameters estimated from constant discharge rate tests (Vandoolaeghe 1989)

BH No. T (m2/d) Aquifer Thickness (m) k (m/d)
G32963 133.8 4.2
G32965 116 4.1
G32966 76.5 4
G32967 106.5 5.1
G32968 117.6 4.3
G32969 27.8 1.4
G32978 203.8 6.3
G32979 115.6 3.6

8.78

Yield
B: Constant discharge rate test data

A: Step drawdown test data: yields and specific drawdowns

5.83
12.28
8.83

10.28
12.52
7.78
9.77
11.88
15176

19
32
32

32
28
19
21
27

 

 

 

 



Method-> HURR 1966 HÖLTING 1984 BOGOMOLOW 1958 ZANGAR 1958 LOGAN (in Kruseman & de Ridder 1994) Average
Parameter-> k k k k k k
Unit-> m/day m/day m/day m/day m/day m/day
iThemba (Test 3) (REC 1. SEGMNT) 0.38 0.46 3.37 12.96 26.78 8.79
iThemba (Test 2) 0.29 0.49 3.63 13.82 0.86 3.82
iThemba (Test 1) 0.34 0.62 4.67 17.28 1.12 4.81
Obs. well to iThemba (REC 1. SEGMNT) 0.42 17.28 103.68 432.00 25.06 115.69
UWC BH4 0.14 1.64 3.46 24.19 1.90 6.27
Obs. well to UWC BH4 0.10 12.96 16.42 406.08 9.50 89.01
Maximal value 0.42 17.28 103.68 432.00 26.78 116.03
Minimal value 0.10 0.46 3.37 12.96 0.86 3.55
Average value 0.28 5.62 23.33 146.88 11.23 37.47
Median value 0.31 1.12 4.15 20.74 5.79 6.42
UWC BH5 (REC 1. SEGMNT) 0.16 0.50 2.51 5.44 1.38 2.00
Obs. well to UWC BH5 (REC 1. SEGMNT) 0.10 1.04 4.92 17.28 2.33 5.13
Maximal value 0.42 17.28 103.68 432.00 26.78 116.03
Minimal value 0.10 0.46 2.51 5.44 0.86 1.87
Average value 0.26 5.90 29.30 150.49 10.73 39.34
Median value 0.29 1.12 4.67 20.74 5.79 6.52

Appendix 4.8: Estimation of k values using different interpretation methods

 

 

 

 



YEAR Mean Annual rainfall,P Mean Annual temp.,T R.E = ( 0.35*(Ry-360)) Recharge r = 50.8 (p/25.4 - 15)^0.4 Recharge
(in mm/a) (in °C) (in mm/a) after Bredenkamp 1990 (% of rain) (in mm/a) after Sinha & Sharma 1988 (% of rain)

1933 441.40 17.11 28.5 6.5 48.3 10.9
1934 495.90 17.84 47.6 9.6 91.9 18.5
1935 229.40 17.28
1936 532.50 17.08 60.4 11.3 121.2 22.8
1937 719.70 17.46 125.9 17.5 271.0 37.6
1938 643.40 17.09 99.2 15.4 209.9 32.6
1939 487.70 17.86 44.7 9.2 85.4 17.5
1940 621.10 17.38 91.4 14.7 192.1 30.9
1941 839.10 17.07 167.7 20.0 366.5 43.7
1942 696.60 17.44 117.8 16.9 252.5 36.2
1943 575.50 16.70 75.4 13.1 155.6 27.0
1944 888.70 17.19 185.0 20.8 406.2 45.7
1945 792.20 17.50 151.3 19.1 329.0 41.5
1946 618.60 16.95 90.5 14.6 190.1 30.7
1947 538.60 17.31 62.5 11.6 126.1 23.4
1948 626.70 17.15 93.3 14.9 196.6 31.4
1949 530.00 17.64 59.5 11.2 119.2 22.5
1950 715.00 17.12 124.3 17.4 267.2 37.4
1951 724.00 16.89 127.4 17.6 274.4 37.9
1952 649.80 17.28 101.4 15.6 215.0 33.1
1953 617.60 17.53 90.2 14.6 189.3 30.6
1954 837.30 16.96 167.1 20.0 365.0 43.6
1955 608.30 16.69 86.9 14.3 181.8 29.9
1956 735.40 16.91 131.4 17.9 283.5 38.6
1957 856.70 17.05 173.8 20.3 380.6 44.4
1958 489.10 17.18 45.2 9.2 86.5 17.7
1959 626.80 17.28 93.4 14.9 196.6 31.4
1960 427.40 17.91 23.6 5.5 37.1 8.7
1961 509.30 17.92 52.3 10.3 102.6 20.2
1962 715.20 17.57 124.3 17.4 267.4 37.4
1963 470.10 18.30 38.5 8.2 71.3 15.2
1964 479.30 17.58 41.8 8.7 78.6 16.4
1965 523.50 17.36 57.2 10.9 114.0 21.8
1966 593.20 17.54 81.6 13.8 169.8 28.6
1967 500.00 17.38 49.0 9.8 95.2 19.0
1968 610.50 17.29 87.7 14.4 183.6 30.1
1969 464.60 17.46 36.6 7.9 66.9 14.4
1970 670.40 17.07 108.6 16.2 231.5 34.5
1971 437.50 17.21 27.1 6.2 45.2 10.3
1972 463.20 17.97 36.1 7.8 65.8 14.2
1973 347.80 18.25
1974 796.10 18.02 152.6 19.2 332.1 41.7
1975 623.20 17.85 92.1 14.8 193.8 31.1
1976 708.80 17.64 122.1 17.2 262.2 37.0
1977 795.40 17.63 152.4 19.2 331.5 41.7
1978 443.50 17.92 29.2 6.6 50.0 11.3
1979 467.60 18.07 37.7 8.1 69.3 14.8
1980 638.60 18.04 97.5 15.3 206.1 32.3
1981 663.50 17.69 106.2 16.0 226.0 34.1
1982 508.70 17.51 52.0 10.2 102.2 20.1
1983 596.20 17.61 82.7 13.9 172.2 28.9
1984 501.50 18.07 49.5 9.9 96.4 19.2
1985 627.40 18.13 93.6 14.9 197.1 31.4
1986 699.20 18.05 118.7 17.0 254.6 36.4
1987 823.60 17.63 162.3 19.7 354.1 43.0
1988 452.80 17.67 32.5 7.2 57.4 12.7
1989 913.70 17.53 193.8 21.2 426.2 46.6
1990 706.70 17.42 121.3 17.2 260.6 36.9
1991 605.60 17.95 86.0 14.2 179.7 29.7
1992 639.70 17.69 97.9 15.3 207.0 32.4
1993 768.90 18.20 143.1 18.6 310.3 40.4
1994 529.50 18.28 59.3 11.2 118.8 22.4
1995 401.20 18.23 14.4 3.6 16.2 4.0
1996 655.20 17.70 103.3 15.8 219.4 33.5
1997 490.90 18.08 45.8 9.3 87.9 17.9
1998 600.80 18.30 84.3 14.0 175.8 29.3
1999 440.30 19.00 28.1 6.4 47.4 10.8
2000 345.20 18.85
2001 783.60 18.50 148.3 18.9 322.1 41.1
2002 524.30 18.21 57.5 11.0 114.6 21.9
2003 424.30 18.38 22.5 5.3 34.6 8.2
2004 648.50 18.73 101.0 15.6 214.0 33.0
2005 575.10 12.11 75.3 13.1 155.3 27.0
2006 436.10 17.63 26.6 6.1 44.1 10.1
2007 680.60 17.14 112.2 16.5 239.7 35.2
2008 628.80 17.28 94.1 15.0 198.2 31.5
2009 525.4 17.66 57.9 11.0 115.5 22.0

Max 913.70 19.00 193.80 21.21 426.16 46.64
Min 229.40 12.11 14.42 3.59 16.16 4.03
Range 684.30 6.89 179.38 17.62 410.00 42.61
Mean 597.66 17.56 87.30 13.42 182.74 27.81

Median 608.30 17.58 88.92 14.48 186.44 30.36
St. Dev 138.57 0.80 44.64 4.46 102.03 10.79

Appendix 5.1: Yearly estimates of recharge from rainfall in Cape Town (1933-2009) 

 

 

 

 



Appendix 6.1 Statistics of physical and chemical parameters of groundwater samples 
from the Cape Flats aquifer (historic data & recent sampling)

Min Max Average St. Dev. Dev. Coeff Var% No. of samples

pH 4.8 9.1 6.9 6.1 88.4 47 1053

T(Wa) 17.2 25.4 19.9 1.5 7.5 32 130

Cond 48.4 10370.0 1178.9 1825.4 154.8 100 1020

SIO2 0.0 25.5 5.1 3.2 61.8 100 876

Na 3.3 2285.8 229.9 471.0 204.8 100 1051

Ca 1.7 366.0 101.2 75.3 74.4 100 1051

Mg 1.0 321.3 36.3 72.2 199.0 100 1048

Cl 7.0 5121.1 466.8 1064.2 228.0 100 1051

SO4 0.0 846.6 70.0 82.1 117.2 100 1051

HCO3 0.1 753.0 190.7 102.6 53.8 100 1040

NO3 0.0 248.4 2.7 10.9 409.1 100 1046

NH4 0.0 173.0 1.4 9.8 676.3 100 1019

PO4 0.0 11.4 0.1 0.6 692.0 100 1034

F 0.0 3.1 0.2 0.2 106.2 100 1019

Fe 0.0 30.3 2.9 5.9 201.5 100 607

Mn 0.0 2.3 0.1 0.2 246.5 100 598

Ba 0.0 2.0 0.1 0.2 315.1 100 477

Sr 0.0 5.8 1.4 0.8 55.4 100 504

Cu 0.0 2.7 0.0 0.1 772.8 100 573

Zn 0.0 1.3 0.0 0.1 323.6 100 545

Ni 0.0 0.1 0.0 0.0 56.4 100 517

Rb 0.0 0.0 0.0 0.0 46.1 67 10

B 0.0 3.8 0.1 0.2 165.0 100 558

Al 0.0 1.3 0.8 0.4 51.8 100 478

As 0.0 1.0 0.1 0.1 61.3 100 495

Be 0.0 728.0 1.9 37.4 1943.1 100 378

Cd 0.0 0.0 0.0 0.0 62.7 100 513

Co 0.0 0.2 0.0 0.0 53.6 99 380

Cr 0.0 0.1 0.0 0.0 89.9 100 498

Hg 0.0 14.0 0.1 0.8 1530.5 100 334

Mo 0.0 0.1 0.0 0.0 106.9 100 455

Pb 0.0 0.9 0.1 0.1 123.3 100 541

Li 0.0 0.0 0.0 0.0 104.6 100 10

Sr 0.0 5.8 1.4 0.8 55.4 100 504

P 0.0 3.3 0.2 0.6 292.3 100 35

H2S 0.0 11.4 0.7 1.8 276.9 100 39

V 0.0 0.0 0.0 0.0 210.8 100 10

Zr 0.0 1.4 0.0 0.1 293.5 99 355

 

 

 

 



Appendix 7.1:  CALOD vulnerability input data for the Cape Flats 

BH_NO Latitude Longitude Head Depth Calrete CL OL SA AT AM
BA60 -34.059842 18.594444 20 3 0 4 9 30 21 Sfmg 5 5
BA61 -34.047500 18.600000 20 3 8 0 11 30 19 Shrcg 5 5
BA62 -34.051547 18.596389 20 3 9 0 8 31 23 Srhcg 5 5
BA63 -34.051389 18.601389 20 2 4 0 5 26 21 Sfmg 5 5
BA64 -34.058333 18.598611 40 7 0 0 0 29 29 Sfm 3 4
BA65 -34.059722 18.594444 20 3 0 0 7 29 22 Shcg 5 5
BA66 -34.053333 18.596389 20 2 18 0 2 22 20 Srg 4 5
BA67 -34.057500 18.601111 20 3 0 0 7 25 18 Sfmg 5 5
BA68 -34.060833 18.601111 40 6 3 0 5 29 24 Sfmgr 5 5
BA69 -34.051667 18.596389 40 7 6 0 12 32 20 Shcg 4 5
BA70 -34.051667 18.588333 40 1 10 8 22 32 10 Shfmy 3 5
BA71 -34.041944 18.601111 20 3 4 0 9 23 14 Sfmg 5 5
BA72 -34.048611 18.618333 20 3 9 3 5 28 23 Srhmy 3 5
BA73 -34.058333 18.621111 40 4 10 0 2 21 19 Srg 4 5
BA74 -34.041111 18.611667 40 4 21 7 7 26 19 Sry 2 5
BA75 -34.071667 18.602778 40 4 0 0 0 24 24 Gs 5 5
BA76 -34.055000 18.610000 20 4 11 0 0 18 18 Srg 4 5
BA77 -34.043333 18.583333 10 6 4 0 4 21 17 Shrcg 5 5
BA78 -34.066667 18.598611 20 3 11 0 9 30 21 Srg 4 5
BA79 -34.057500 18.594444 20 3 16 0 6 30 24 Srg 4 5
BA80 -34.048890 18.564170 40 2 16 0 8 28 20 Srg 4 5
BA81 -34.060556 18.592500 40 2 3 0 6 33 27 Sfm 3 4
BA82 -34.073611 18.611667 40 1 0 0 10 22 12 Gs 5 5
BA83 -34.078056 18.566667 40 2 14 0 6 29 23 Srg 4 5
BA84 -34.066667 18.583333 40 3 12 0 0 29 29 Sfm 3 4
BA85 -34.051667 18.583333 40 4 4 0 10 33 23 Shcg 5 5
BA86 -34.041940 18.561670 40 3 1 0 10 25 15 Sfmg 5 5
BA87 -34.066667 18.611667 40 1 13 0 2 24 22 Grs 5 5
BA88 -34.053333 18.604444 40 3 11 0 6 25 19 Srhm 5 5
BA31 -34.066670 18.583330 60 4 0 0 0 7 11 S 5 5
BA32 -34.060010 18.594440 60 5 0 6 0 26 21 S 5 5
BA34 -34.062230 18.604440 60 0 17 0 33 28 S 3 4
BA35 -34.041660 18.598610 60 4 0 1 0 17 13 S 5 5
BA36 -34.078060 18.566670 60 6 0 11 0 31 37 Scy 3 4
BA37 -34.057500 18.601110 60 6 0 42 0 54 60 Sy 3 3
BA02 -34.047500 18.600000 10 8 4 0 0 17 24 Sy 3 5
BA04 -34.051670 18.588330 25 19 3 0 0 39 57 Syr 2 3
BA05 -34.074450 18.581110 15 14 0 3 0 7 21 Sr 2 5
BA06 -34.051160 18.558850 16 16 7 0 0 6 22 Syr 2 5
BA07 -34.051670 18.596390 12 8 0 5 0 22 30 Ssc 4 4
BA09 -34.048610 18.601670 11 27 0 2 0 -2 25 Sg 5 5
BA11 -34.073610 18.611670 30 27 5 3 5 11 37 Sr 2 4
BA12 -34.055000 18.591660 25 23 4 1 0 -2 21 Scgr 4 5
BA13 -34.066700 18.611670 21 19 2 0 2 16 34 Sr 2 4
BA14 -34.051670 18.583330 4 2 8 0 0 22 24 Sr 2 5
BA15 -34.040550 18.583330 16 16 2 0 0 20 35 Srg 4 4
BA17 -34.060830 18.601110 14 14 1 0 0 16 30 Sf 3 4
BA18 -34.036660 18.596390 17 11 2 0 0 12 23 Sy 3 5
BA19 -34.062220 18.604440 13 9 2 1 0 22 31 Srg 4 4
BA20 -34.060000 18.594440 11 8 3 0 0 20 28 Sr 2 4
BA23 -34.021950 18.619450 10 7 2 2 0 25 32 Sryg 4 4
BA25 -34.053330 18.604440 10 9 5 0 0 15 25 Srg 4 5
BA30 -34.066670 18.598610 14 10 2 0 0 24 34 Sr 2 4

BA322 -34.075560 18.594170 22 10 7 0 0 39 49 Srg 4 4
BA323 -34.052780 18.582780 9 6 6 0 0 22 28 Sr 2 4

Weighting
 

 

 

 



BA325 -34.084720 18.543610 8 6 0 1 0 20 26 Sy 3 4
BA326 -34.021940 18.616670 11 9 2 0 0 21 30 Sr 2 4
BA327 -34.020000 18.618000 18 14 2 1 0 22 36 Sfr 2 4
BA03 -34.010000 18.500000 19 18 12 1 0 31 49 Sr 2 4

DC231 -33.932720 18.622840 22 18 12 0 0 23 41 Sr 2 4
DC232 -33.932910 18.622520 21 18 13 0 2 32 50 Sr 2 4
DC234 -33.933200 18.622550 17 10 2 0 0 26 36 Srg 4 4
DC235 -33.933110 18.622470 14 12 0 0 0 19 31 Sg 5 4
DC236 -33.933040 18.622250 15 13 5 0 0 35 48 Sr 2 4
DC237 -33.933300 18.622180 19 16 7 0 0 40 56 Srg 4 3
BA08 -33.950000 18.620000 4 2 0 0 0 20 22 Sg 5 5
BA10 -33.900000 18.570000 4 1 0 0 0 24 26 Sg 5 4
BA39 -34.023890 18.613890 5 2 3 0 0 24 26 Sf 3 4
BA40 -34.023060 18.613330 3 2 7 2 0 32 35 Ssg 5 4
BA41 -34.021390 18.612220 22 14 2 0 0 37 51 Sr 2 3
BA45 -34.024170 18.622230 19 15 0 7 0 19 34 Scg 4 4
BA46 -34.021110 18.625840 18 13 2 0 0 24 37 Sr 2 4
BA47 -34.025280 18.616390 17 11 0 0 0 17 28 Sg 5 4
BA48 -34.025000 18.622500 25 10 20 0 0 33 43 Sr 2 4
BA49 -34.024170 18.625000 32 29 5 0 0 -3 27 Sr 2 4
BA50 -34.021110 18.615000 13 10 12 1 0 11 21 Shy 3 5
BA51 -34.025560 18.621110 13 10 10 0 0 16 26 Shy 3 4
BA52 -34.021950 18.623890 11 10 5 2 0 15 25 Shy 3 4
BA53 -34.025840 18.612220 35 29 25 2 0 -9 20 ry 2 5
BA54 -34.020280 18.618060 32 27 7 2 0 6 33 Srcg 4 4
BA55 -34.021390 18.608890 36 32 5 0 0 -10 21 Sr 2 5
BA58 -34.006400 18.580560 37 37 10 3 0 -4 34 Sryg 3 4
BA59 -34.022780 18.628610 16 14 4 2 0 18 33 Src 3 4
BA01 -34.051390 18.603330 16 14 5 2 0 18 32 Scy 3 4
CD51 -33.808350 18.375000 23 11 20 5 0 28 39 Sy 3 4
CD52 -33.808330 18.375030 23 19 3 0 0 15 33 Srg 4 4
DC03 -33.999310 18.615290 28 20 8 0 0 10 31 Srg 4 4
DC04 -33.977780 18.569450 33 27 5 0 0 -4 23 Sr 2 5

DC161 -33.818060 18.516670 18 14 4 0 0 33 47 Srg 4 4
DC177 -33.781110 18.556390 20 16 2 8 0 20 36 Sry 3 4
DC179 -33.774440 18.710280 16 15 2 2 0 -7 9 Sry 3 5
DC182 -33.901760 18.643920 24 23 0 3 0 -13 10 Sy 3 5
DC183 -33.901760 18.643890 22 21 0 2 0 -12 9 Sy 3 5
DC184 -33.902480 18.644080 22 23 0 2 0 -6 17 Sy 3 5
DC226 -33.773610 18.710280 22 18 0 8 0 13 31 Scy 3 4
DC175 -33.820000 18.570000 18 18 0 15 0 23 41 Scf 3 4
DC176 -33.920000 18.560000 7 1 5 0 0 21 23 Srg 4 5
DC180 -33.950000 18.670000 26 2 0 0 0 39 42 S 4 4
DC178 -33.940000 18.530000 11 2 3 0 0 24 25 Srg 4 4
DC237 -33.942220 18.511940 19 16 5 0 0 10 26 Sryg 4 4
DC239 -33.874710 18.561430 10 2 4 1 0 30 32 Scrg 2 4
DC241 -33.780950 18.555350 18 17 8 4 0 22 39 Srh 2 4
DC276 -33.967500 18.598060 18 14 2 3 0 7 20 Sry 3 5
DC185 -33.930000 18.700000 19 17 0 0 0 11 28 S 4 4
DC186 -33.960000 18.750000 34 32 3 2 0 -17 15 Src 3 4
BB94 -33.980000 18.750000 22 11 22 6 0 41 52 Shy 3 3
BB95 -34.060000 18.790000 22 12 20 5 0 41 52 Shcy 3 3
BB96 -34.090000 18.840000 21 11 18 5 0 38 50 Shcy 3 4

G Gravel, S  Sand, C  Clay, g  gravelly, h shelly, r calcrete/calcareous, s  sandy, y  clayey, c  coarse, m  medium, f  fine/silty

CA = calcrete, CL = clayey layer, OL = overlying layer, SA = saturated aquifer thickness, AT = Aquifer thickness, AM = Aquifer media,
V.H = Very High, H = High, M = Medium, L = Low, V.L = Very Low, VI = Vulnerability Index

 

 

 

 



AC OL CR CwCR AR AwAR LR LwLR OR OwOR DR DRDw I_CALOD VI
25 4 5 20 2 2 5 20 5 15 4 8 5 25 70 H
25 3 4 12 5 5 5 20 2 6 3 6 5 25 62 H
25 4 5 20 5 5 5 20 2 6 4 8 5 25 64 H
25 3 5 15 5 5 5 20 4 12 3 6 5 25 68 H
12 5 5 25 5 5 4 16 5 15 5 10 4 20 66 H
25 1 5 5 5 5 5 20 5 15 2 4 5 25 69 H
20 3 5 15 5 5 5 20 1 3 3 6 5 25 59 M-H
25 1 5 5 5 5 5 20 5 15 2 4 5 25 69 H
25 1 5 5 5 5 5 20 4 12 2 4 4 20 61 H
20 3 4 12 5 5 5 20 3 9 3 6 4 20 60 M-H
15 1 3 3 2 2 5 20 2 6 1 2 5 25 55 M-H
25 3 5 15 5 5 5 20 4 12 3 6 5 25 68 H
15 2 5 10 3 3 5 20 2 6 3 6 5 25 60 M-H
20 4 5 20 5 5 5 20 2 6 4 8 5 25 64 H
5 2 5 10 2 2 2 8 1 3 3 6 5 25 44 M-H

25 4 5 20 5 5 5 20 5 15 4 8 5 25 73 H
20 5 5 25 5 5 5 20 1 3 5 10 5 25 63 H
25 2 5 10 5 5 5 20 4 12 3 6 4 20 63 H
20 5 5 25 5 5 5 20 1 3 5 10 5 25 63 H
20 4 5 20 5 5 5 20 1 3 4 8 5 25 61 H
20 3 5 15 5 5 5 20 1 3 3 6 5 25 59 M-H
12 1 5 5 5 5 4 16 4 12 2 4 5 25 62 H
25 5 4 20 5 5 5 20 5 15 4 8 5 25 73 H
20 2 5 10 5 5 5 20 1 3 3 6 5 25 59 M-H
12 5 5 25 5 5 4 16 1 3 5 10 5 25 59 M-H
25 4 4 16 5 5 5 20 4 12 4 8 5 25 70 H
25 3 4 12 5 5 5 20 5 15 3 6 5 25 71 H
25 4 5 20 5 5 5 20 1 3 4 8 5 25 61 H
25 3 5 15 5 5 5 20 1 3 3 6 5 25 59 M-H
25 0 5 0 5 5 5 20 5 15 1 2 5 25 67 H
25 0 5 0 2 2 5 20 5 15 1 2 5 25 64 H
12 0 5 0 1 1 4 16 5 15 1 2 5 25 59 M-H
25 0 5 0 4 4 5 20 5 15 1 2 4 20 61 H
12 5 5 25 1 1 4 16 5 15 5 10 5 25 67 H
9 5 5 25 1 1 3 12 5 15 5 10 4 20 58 M-H

15 5 5 25 5 5 5 20 4 12 5 10 4 20 67 H
6 5 5 25 5 5 3 12 4 12 5 10 4 20 59 M-H

10 5 5 25 4 4 4 16 5 15 5 10 3 15 60 H
10 5 5 25 5 5 4 16 3 9 5 10 3 15 55 M-H
16 5 5 25 2 2 5 20 5 15 5 10 4 20 67 H
25 5 5 25 3 3 5 20 5 15 5 10 2 10 58 M-H
8 4 5 20 3 3 3 12 3 9 4 8 2 10 42 M-H

20 5 5 25 4 4 5 20 4 12 5 10 2 10 56 M-H
8 4 5 20 5 5 3 12 5 15 4 8 3 15 55 M-H

10 5 5 25 5 5 4 16 2 6 5 10 5 25 62 H
16 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
12 5 5 25 5 5 4 16 5 15 5 10 3 15 61 H
15 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
16 5 5 25 4 4 5 20 5 15 5 10 4 20 69 H
8 5 5 25 5 5 3 12 4 12 5 10 4 20 59 M-H

16 5 5 25 3 3 5 20 5 15 5 10 4 20 68 H
20 5 5 25 5 5 5 20 3 9 5 10 4 20 64 H
8 5 5 25 5 5 3 12 5 15 5 10 4 20 62 H

16 5 5 25 5 5 5 20 3 9 5 10 3 15 59 M-H
8 5 5 25 5 5 3 12 3 9 5 10 4 20 56 M-H

Rating
 

 

 

 



12 5 5 25 4 4 4 16 5 15 5 10 4 20 65 H
8 5 5 25 5 5 3 12 5 15 5 10 4 20 62 H
8 5 5 25 4 4 3 12 5 15 5 10 3 15 56 M-H
8 5 5 25 4 4 3 12 1 3 5 10 3 15 44 M-H
8 5 5 25 5 5 3 12 1 3 5 10 3 15 45 M-H
8 4 5 20 5 5 3 12 1 3 4 8 3 15 43 M-H

16 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
20 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
8 5 5 25 5 5 3 12 3 9 5 10 3 15 51 M-H

12 5 5 25 5 5 4 16 3 9 5 10 3 15 55 M-H
25 5 5 25 5 5 5 20 5 15 5 10 5 25 75 H
20 5 5 25 5 5 5 20 5 15 5 10 5 25 75 H
12 5 5 25 5 5 4 16 4 12 5 10 5 25 68 H
20 5 5 25 3 3 5 20 3 9 5 10 5 25 67 H
6 5 5 25 5 5 2 8 5 15 5 10 3 15 53 M-H

16 5 5 25 2 2 5 20 5 15 5 10 3 15 62 H
8 5 5 25 5 5 3 12 5 15 5 10 3 15 57 M-H

20 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
8 5 5 25 5 5 3 12 1 3 5 10 3 15 45 M-H
8 5 5 25 5 5 3 12 3 9 5 10 2 10 46 M-H

15 5 5 25 4 4 5 20 1 3 5 10 4 20 57 M-H
12 5 5 25 5 5 4 16 2 6 5 10 4 20 57 M-H
12 5 5 25 3 3 4 16 3 9 5 10 4 20 58 M-H
10 5 5 25 3 3 4 16 1 3 5 10 2 10 42 M-H
16 5 5 25 3 3 5 20 3 9 5 10 2 10 52 M-H
10 5 5 25 5 5 4 16 3 9 5 10 2 10 50 M-H
12 5 5 25 3 3 4 16 2 6 5 10 2 10 45 M-H
12 5 5 25 3 3 4 16 4 12 5 10 3 15 56 M-H
12 5 5 25 3 3 4 16 3 9 5 10 3 15 53 M-H
12 5 5 25 2 2 4 16 1 3 5 10 3 15 46 M-H
16 5 5 25 5 5 5 20 4 12 5 10 3 15 62 H
16 5 5 25 5 5 5 20 2 6 5 10 2 10 51 M-H
10 5 5 25 5 5 4 16 3 9 5 10 2 10 50 M-H
16 5 5 25 5 5 5 20 4 12 5 10 3 15 62 H
12 5 5 25 2 2 4 16 5 15 5 10 3 15 58 M-H
15 5 5 25 3 3 5 20 5 15 5 10 3 15 63 H
15 5 5 25 3 3 5 20 5 15 5 10 2 10 58 M-H
15 5 5 25 3 3 5 20 5 15 5 10 2 10 58 M-H
15 5 5 25 3 3 5 20 5 15 5 10 2 10 58 M-H
12 5 5 25 2 2 4 16 5 15 5 10 3 15 58 M-H
12 5 5 25 1 1 4 16 5 15 5 10 3 15 57 M-H
20 5 5 25 5 5 5 20 3 9 5 10 5 25 69 H
16 5 5 25 5 5 5 20 5 15 5 10 5 25 75 H
16 5 5 25 5 5 5 20 4 12 5 10 5 25 72 H
16 5 5 25 5 5 5 20 3 9 5 10 3 15 59 M-H
8 5 5 25 4 4 3 12 4 12 5 10 5 25 63 H
8 5 5 25 2 2 3 12 2 6 5 10 3 15 45 M-H

15 5 5 25 3 3 5 20 5 15 5 10 3 15 63 H
16 5 5 25 5 5 5 20 5 15 5 10 3 15 65 H
12 5 5 25 3 3 4 16 4 12 5 10 2 10 51 M-H
9 5 5 25 2 2 4 16 1 3 5 10 3 15 46 M-H
9 5 5 25 2 2 4 16 1 3 5 10 3 15 46 M-H

12 5 5 25 2 2 4 16 1 3 5 10 3 15 46 M-H
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