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Summary. 

Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3`,5`-

cyclic monophosphate (cGMP) from guanosine 5`-triphosphate (GTP).  Cyclic GMP has 

been implicated in an increasing number of plant processes, including responses to abiotic 

stresses such as dehydration and salt, as well as hormones.  However, the identification of 

cGMP generating molecules in higher plants has been elusive.  To identify such molecules, 

we propose a rational search strategy based on conserved and functionally assigned residues 

in the catalytic centre of annotated GCs in animal species and use the resulting search terms 

to query the Arabidopsis thaliana proteome.  A number of the identified candidate molecules 

belong to the family of leucine rich repeat receptor like kinases and include the 

Brassinosteroid (AtBR1) and the Phytosulfokine receptors (AtPSKR1).  The typical 

architecture of these receptors is such that they have an extracellular domain with which to 

perceive the signal, a single transmembrane domain and an intracellular kinase domain within 

which the GC domain is found.  Brassinosteroids are polyhydroxylated plant steroid 

hormones with an essential role in co-regulating many processes including embryogenesis 

and cell elongation.  Brassinosteroids have potential use in industry due to their 

characteristics as plant growth promoters for the increase of crop yields and increases in 

resistance to biotic and abiotic stresses.  In turn, Phytosulfokines (PSK) are peptidic plant 

growth factors that are perceived by the Phytosulfokine receptor (AtPSKR1).  PSK has been 

shown to stimulate development of sugar beet (Beta vulgaris L.) mesophyll protoplasts 

therefore suggesting applications in agriculture.   

In this thesis, we have firstly cloned and expressed the domains that harbours the putative 

catalytic GC domain in these receptor molecules and demonstrate that these molecules can 

convert GTP to cGMP in vitro. 
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Secondly, we show that exogenous application of both Phytosulfokine and Brassinosteroid 

increase changes of intracellular cGMP levels in Arabidopsis mesophyll protoplast 

demonstrating that these molecules have GC activity in vivo and therefore provide a link as 

second messenger between the hormones and down-stream responses. 

In order to elucidate a relationship between the kinase and GC domains of the PSK receptor, 

we have used the AtPSKR1 receptor as a model and show that it has Serine/Threonine kinase 

activity using the Ser/Thr peptide 1 as a substrate.  In addition, we show that the receptor`s 

ability to phosphorylate a substrate is affected by the product (cGMP) of its co-domain (GC) 

and that the receptor autophosphorylates on serine residues and this step was also observed to 

be affected by cGMP.  When Arabidopsis plants are treated with a cell permeable analogue of 

cGMP, we note that this can affect changes in the phosphoproteome in Arabidopsis and 

conclude therefore that the cGMP plays a role in kinase-dependent downstream signalling. 

The obtained results suggest that the receptor molecules investigated here belong to a novel 

class of GCs that contains both a cytosolic kinase and GC domains, and thus have a domain 

organisation that is not dissimilar to that of atrial natriuretic peptide receptors NPR1 and 

NPR2.  The findings also strongly suggest that cGMP has a role as a second messenger in 

both Brassinosteroid and Phytosulfokine signalling.  We speculate that other proteins with 

similar domain organisations may also have dual catalytic activities and that a significant 

number of GCs, both in plants and animals, remain to be discovered and characterised. 
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Chapter 1: Literature review. 

 

1.1 Introduction. 

Life depends on the maintenance of physiological processes like growth and development in 

single cellular and multicellular organisms, plants and animals.  The life-supporting state of 

homeostasis is often disturbed by abiotic and biotic stresses.  Enzymes and hormones 

produced by an organism play crucial roles in stress responses, their regulation and 

transduction of these signals at the intracellular and intercellular level.  Signal transduction of 

environmental or developmental signals commonly activate a signalling cascade that involves 

downstream processes, which in turn carry out the required response (Vogler and 

Kuhlemeier, 2003).  Hormones play a role in the regulation of a number of cellular processes 

ranging from cell division, cell elongation to cell differentiation (Johri and Mitra, 2001; 

Kende and Zeevaart, 1997).  Auxin was the first hormone discovered and subsequently other 

hormones were identified and these include Gibberellins, Cytokinins, Abscisic acid and 

Ethylene.  These five hormones are commonly known as the “classical” five and are non-

protein molecules that have specific effects on a variety of developmental and physiological 

processes (Johri and Mitra, 2001).  In plants there are other compounds known as the “non-

classical” hormones and they have been shown to affect plant growth and development and 

include Oligosaccharides, Jasmonates, Brassinosteroids, Salicylic acid and Polyamines 

(Creelman and Mullet, 1997; Gaspar et al., 1996).  In addition, another group of signalling 

molecules has been show to be present in plants and these are peptide hormones.  These 

peptidic signalling compounds include Systemin (Pearce et al., 1991), Phytosulfokines (PSK) 

(Matsubayashi and Sakagami 1996), Rapid Alkalinization Factor (RALF) (Pearce et al., 
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2001), CLAVATA 3 (Trotochaud et al., 1999), Secreted Cys-rich proteins (SCR) (Schopfer 

et al., 1999) and plant natriuretic peptides (PNP) (Gehring, 1999). 

In plants, the action of a hormone involves its perception to initiate a specific response 

pathway that may be independent of transcriptional or translational control (Johri and Mitra, 

2001; Vogler and Kuhlemeier, 2003).  One of the mechanisms through which cells 

communicate in multicellular organisms is through the secretion of ligands, examples of 

which are mentioned above.  These may then bind to cell surface receptors amongst some of 

which contain and signal through protein kinase catalytic activities (Dievart and Clark, 2004).  

The family of enzymes known as the Receptor Like Kinases (RLK`s) are widely distributed 

in the plant kingdom and are known to be involved in the perception and modulation of a 

number of cellular processes including responses to environmental and development signals 

such as light (Deeken and Kaldenhoff, 1997), hormones (Li and Chory, 1997), expression of 

defence related genes in tobacco (Durner et al., 1998).  The major subgroup of RLKs is the 

leucine-rich repeat receptor like kinases (LRR-RLKs).  The early responses would typically 

involve changes at the level of ion fluxes and generation of second messengers such as Ca
2+

, 

cyclic adenosine diphosphate ribose (cADPR) or cyclic guanosine 3`,5`-monophosphate 

(cGMP) (Johri and Mitra, 2001; Vogler and Kuhlemeier, 2003).  

 

In this thesis will be examining the downstream signalling of hormone signalling by 

Brassinosteroids and Phytosulfokines.  We will begin by providing some brief descriptions of 

the functions of the five classical plant hormones and plant peptide signalling molecules.  We 

shall consider how these molecules are perceived and the types of receptors that are involved 

their signalling.  We will then briefly describe Guanylyl cyclases which have been implicated 

in downstream hormone signalling and signal transduction and finally outline the roles of the 

second messenger guanosine 3`, 5`-monophosphate in plants. 
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1.2 Signalling in plants. 

1.2.1 Classical hormones. 

The classical plant hormones are amino acid derivatives that have specific effects on a large 

number of developmental and physiological processes (Vogler and Kuhlemeier, 2003).  Plant 

hormones play pivotal roles in plant growth, development, and response to biotic and abiotic 

cues (McCourt, 2001).  Plant hormones are structurally diverse compounds that are grouped 

into the following major classes: Auxins, Cytokinins, Abscisic acid, Gibberellins and 

Ethylene.  Though each class of these hormones elicits characteristic biological effects, 

multiple plant hormones often mediate development and stress responses through synergistic 

and/or antagonistic actions (Wolters and Jurgens 2009). 

 

Auxin, whose primary form is indole-3-acetic acid (IAA), was the first plant hormone 

identified and is synthesized primarily in the shoot tips and growing tissues (Bartel, 1997; 

Palme and Nagy, 2008).  Auxins promote plant growth by stimulating formation of lateral 

root primordia and through the promotion of cell elongation (Kende and Zeevaart, 1997).  

The hormone has also been shown to act synergistically with Cytokinins in the regulation of 

cell division (John et al., 1993). 

Cytokinins on the other hand are also found in sites of active cell growth in plants where they 

play a role in cell division and are important in cell differentiation as well as in organogenesis 

e.g. in plant tissue cultures (John et al., 1993; Pernisova et al., 2009). 

Gibberellic acids are a large family of tetracyclic compounds widespread throughout the plant 

kingdom with over 112 members identified (Hisamatsu et al., 1997).  Among other 

responses, Gibberellins regulate the mobilization of soluble sugars from the starch in cereal 

grains and co-regulate germination and growth (Kende and Zeevaart, 1997).  
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Abscisic acids are synthesized from carotenoids and are involved in the regulation of 

stomatal closure, adaptation to various stresses, induction of dormancy and seed formation 

(Davies, 2010; Mundy and Chua, 1988; Walton, 1980).  Abscisic acids also controls seed 

maturation and synthesis of storage proteins (Xu and Bewley, 1995). 

Ethylene is a simple gaseous hydrocarbon produced from an amino acid and appears in most 

plant tissues in large amounts when they are stressed.  The hormone Ethylene also has effects 

on plant growth and development (Chang and Shockey, 1999), and is involved in promotion 

or inhibition of flowering which evokes the classical triple response in Arabidopsis thaliana 

seedlings grown in the dark.  These responses are characterized by an exaggerated curvature 

of the apical hook, a radial swelling of the hypocotyl and an inhibition of hypocotyl and root 

elongation which is critically associated with ripening of fruits (Johri and Mitra, 2001).  

Environmental stresses such as wounding, pathogen attack, and flooding can induce Ethylene 

production and this in turn can lead to defence responses such as accelerated senescence, 

apoptosis and abscission of infected organs as well as the induction of specific defence 

proteins (Chang and Shockey, 1999). 

 

1.2.2 The non-classical hormones. 

Brassinosteroids, Jasmonate and Salicylic acid, are now also being viewed as phytohormones 

(Boller, 2005) and are classified as the “non-classical” hormones.  In addition to the classical 

hormones, which also included Polyamines and Oligosaccharins (Gross and Parthier, 1994).  

Polyamines are involved in a wide range of growth and developmental processes and plant 

tissues that are deficient in Polyamines exhibit abnormal growth.  At a physiological pH, 

Polyamines act as polycations and complexing agents that bind strongly to phospholipid 

groups and to other anionic sites on membranes thus affecting membrane fluidity (Schuber et 
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al., 1983).  It is has been reported that Polyamines can also compensate for ionic deficiencies 

or the damaging effects of some stresses on membranes (Gaspar et al., 1996). 

 

Oligosaccharins as the name implies are complex carbohydrates (short chains of sugar 

residues connected by glycosidic linkages) that are capable of modulating plant growth and 

development (Creelman and Mullet, 1997).  These type of hormone at low concentration 

affect biological processes in plant tissues other than the break-down of the carbon to 

generate ATP (Gaspar et al., 1996).  Some Oligosaccharins, such as Oligogalacturonids have 

been reported to act as elicitors and raise the pathogen defence responses which results in the 

accumulation of proteinase inhibitors and peroxidases amongst others components (Darvill et 

al., 1992; Eder et al., 1994). 

 

Responses to Jasmonates in plants vary according to the function of the tissue and cell type 

and in response to several different environmental stimuli (Creelman and Mullet, 1997). 

Jasmonates have been reported to be involved in the cellular transduction processes between 

external stress and macromolecular components involved in the stress responses that in turn 

involve the expression of defence genes and production of Jasmonate induced proteins 

(Reinbothe et al., 1994). 

 

To-date many different steroids have been identified, but only Brassinosteroids (BR`s) are 

widely distributed throughout the plant kingdom and are known to effect plant growth (Li and 

Chory, 1997).  Brassinosteroids are involved in various growth processes such as stem 

elongation, leaf development and pollen tube growth (Li and Chory, 1997; Li and Chory, 

1999). Brassinosteroids are naturally occurring polyhydroxy steroids which were originally 

isolated from Brassica napus L (Grove et al., 1979).  In addition to their growth-promoting 
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activities, these hormones have been reported to inhibit root growth, enhance gravitropism 

(Kim et al., 2000), retard leaf abscission (Lawlor 2004), enhance resistance to stress 

(Nakashita et al., 2003), and promote xylem differentiation (Sakurai and Fujioka 1993). 

 

1.3 Peptide hormones signalling. 

Defensive and development cues in plants can be activated and mediated by several different 

types of signalling molecules and we have briefly reviewed some of these above.  Plants have 

also evolved a number of mechanisms to respond rapidly to environmental changes to 

continue normal growth and development.  In addition to the classical and none-classic 

hormones, they also have signalling processes mediated through networks of regulatory 

peptidic hormones and these signalling molecules (ranging in size from ~60 to 180 amino 

acids) usually containing an N-terminal secretory signal sequence (Denecke et al., 1990).  

The first peptide signalling molecule identified was Systemin, which was isolated from 

wounded tomato leaves (Solanum lycopersicum L.) where it induces the synthesis of 

proteinase inhibitors (Pearce et al., 1991).   

 

Systemin is a proteolytically processed form of a 200 amino acid residue precursor called 

pro-Systemin (Pearce et al., 1991).  In addition to Systemin, two more Prosystemin isoforms 

produced by an alternative splicing mechanism were also shown to be active as signals in the 

wound response (McGurl and Ryan, 1992).  Several other non-classic hormones identified 

recently include S-locus cysteine rich (SCR) proteins that acts in self-incompatibility 

(Schopfer et al., 1999), the rapid alkalinization factor (RALF) which arrests root growth and 

development (Pearce et al., 2001), and other molecules that are involved in antimicrobial 

activities (Garcia-Olmedo et al., 2001).  Further examples of signalling peptides with their 

site of action and function are listed in Table 1.3.1.  One group of these and of particular 
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interest here are the Phytosulfokines (PSK).  Phytosulfokines are signalling peptides that 

have been purified from dispersed asparagus mesophyll suspension cell culture medium 

(Fang and Hirsch, 1998) and to-date, are the only group of peptides reported to be produced 

from post-translational sulfation of tyrosine residues, sulfated in the active pentapeptide 

region in plants (Hanai et al., 2000; Takayama and Sakagami, 2002).  PSK is widely 

distributed in higher plants and is present in both monocotyledon and dicotyledon cell lines 

(Fang and Hirsch 1998).  The peptide can induce dedifferentiation and callus growth at very 

low concentrations (≥10
-8 

M) and at low cell density (~300 cells/ml) (Matsubayashi and 

Sakagami 1996).  However it has been suggested that at these concentration levels PSK alone 

does not induce cellular dedifferentiation and re-differentiation and may do so in conjunction 

with of Auxins and Cytokinins (Matsubayashi et al., 1999). 

 

Table 1.3.1 Summary of plant peptide molecules present in A. thaliana their receptors and 

function.  The table represents the receptors and as well as the biological activities into which these 

different signal peptides are involved.  [Table adapted from (Wheeler and Irving, 2010)]. 
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1.4 Perception of hormones signals in plants. 

Integration of the message carried by the hormone into a physiological response requires both 

perception and relay.  Plants perceive and respond to a variety of environmental and 

endogenous signals, some of which have been described in Sections 1.2 and 1.3 and these 

modulate their growth and development (Hooley, 1998).  Receptors for both the none-

peptidic phytohormones and the peptidic signalling molecules have be proposed and 

identified. 

 

Ethylene has been shown to be perceived by a family of high-affinity receptors, the Ethylene 

response 1 (ETR1) protein in Arabidopsis (Chang et al., 1993; Hua et al., 1998). 

The ETR1 gene encodes a protein which contains a hydrophobic N-terminal domain that 

binds Ethylene and a C- terminal domain that is related in sequence to the histidine kinase 

response regulator two-component signal transducers of environmental stimuli in a variety of 

adaptative responses in bacteria (Chang et al., 1993; Parkinson and Kofoid 1992).  The ETR1 

amino-terminal harbours a sensor domain which consists of three hydrophobic sub-domains 

that are membrane-associated and has been shown to contain elements necessary and 

sufficient high affinity for binding Ethylene (Schaller and Bleecker, 1995).  The ETR1 has 

been demonstrated to be an Ethylene receptor based on the observations that an etr1 mutant is 

dominant and insensitive to Ethylene in all the Ethylene responses (Bleecker et al., 1988), 

and the ETR1 gene acts upstream of the rest of the Ethylene signal transduction pathway 

(Kieber et al., 1993).  

The receptor Cytokinin independent-1 (CKI1), a hisitidine kinase homolog has been 

suggested to perceive Cytokinins (Kakimoto 1996).  Overexpression of CKI1 in Arabidopsis 

calli derived from hypocotyl results in the characteristic effects of Cytokinin action, 
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suggesting that the product acts in regulation of Cytokinin levels, in Cytokinin recognition or 

at an early stage of signal transduction (Kakimoto 1996). 

In many other instances where receptors have been identified, they have the typical 

architecture of receptor-like kinases (RLKs) or at least seem to signal through a kinase 

mediated process.  The exceptions are Auxin and Jasmonate with the F-box protein Transport 

Inhibitor Response1 (TIR1) for the former (Dharmasiri et al., 2005; Gray et al., 2001; 

Kepinski and Leyser, 2005) and the F-box protein Coronatine
 
Insensitive1 (COI1) (Yan et al., 

2009) for the latter.  Previous studies had implicated the Auxin binding protein 1 (ABP1) as 

the most likely candidate receptor for Auxin due to the fact that it could bind Auxin (Napier 

et al., 2002). 

Although ABP1 shows characteristic receptor function, its role in Auxin signalling is not 

entirely clear (Dharmasiri et al., 2005).  In addition, two families of transcription factors, the 

Auxin response factor (ARF) and Aux/IAA proteins had also been implicated in Auxin 

signalling.  The ARF proteins bind DNA directly to either activate or repress transcription 

whilst Aux/IAA proteins exert their effects by binding to the ARF proteins through a 

conserved dimerization domain (Liscum and Reed 2002; Reed 2001).  Auxin regulates 

transcription by stimulating the degradation of the Aux/IAA proteins (Gray et al., 2001; Tian 

et al., 2003; Tiwari et al., 2001; Zenser et al., 2001).  Some studies have indicated that Auxin 

acts by promoting an interaction between the Aux/IAA proteins and the ubiquitin protein 

ligase SCFTIR1(Gray et al., 2001) and substrate recognition requires an Auxin-dependent 

modification of TIR1 or an associated protein, rather than the substrate (Kepinski and Leyser, 

2004).  When an in vitro pull-down assay of total protein was performed on proteins 

extracted from Arabidopsis seedlings, the interaction between the transport inhibitor response 

1 (TIR1) and Aux/IAA proteins was shown not to require stable modification of either 

protein.  Instead Auxin promotes the Aux/IAA-SCF (TIR1) interaction by binding directly to 
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SCF (TIR1).  Furthermore it was shown that the loss of TIR1 and three related F-box proteins 

eliminates Auxin binding in plant extracts thereby confirming that TIR1 is the Auxin receptor 

that mediates Aux/IAA degradation and Auxin-regulated transcription (Gray et al., 2001). 

The Jasmonate receptor was identified by first constructing a high-quality structural model of 

COI1 followed by a molecular modelling of COI1–Jasmonate interactions.  The obtained 

results implied that COI1 has the structural traits necessary for binding Jasmonate.  The direct 

binding of these molecules with COI1 was further examined using a combination of 

molecular and biochemical approaches.  Secondly, immobilized Jasmonate was shown to be 

able to bind the COI1 protein from crude leaf extracts.  Together, these results with additional 

confirmatory assays demonstrated that COI1 directly binds to Jasmonate (Yan et al., 2009). 

Receptors for some of the known signalling peptides are listed in Table 1.3.1.  Perhaps the 

best of characterised receptor super-family in plants is the Receptor-like kinase family.  It has 

been shown to have roles in a variety of biological processes including growth, development, 

hormone perception, and plant-microbe interactions (Afzal et al., 2008; He et al., 2000; Li 

and Chory, 1997; Matsubayashi et al., 2002).  Receptor-like kinases belong to a large gene 

family with at least 610 members that represent nearly 2.5 % of Arabidopsis protein coding 

genes (Shiu and Bleecker, 2001b).  The major subgroup of RLK is the leucine-rich repeat 

receptor like kinases (LRR) RLK`s and makes up of at least 120 genes in Arabidopsis (He et 

al., 2000).  This family of receptors has a characteristic imperfect repeat of 24-amino acid 

leucine-rich motif in the extracellular domain, a single trans-membrane domain and an 

intracellular kinase domain (Braun and Walker, 1996; Zhang, 1998).  A diagramatic 

representation of the architecture of the family of receptors is presented in Figure 1.2.1. 

Though the most common length of an LRR is 24 residues, repeats containing any number 

between 20 and 29 residues are also found (Kobe and Deisenhofer 1994).  The leucine-rich 

repeats form amphipathic α helices that are believed to mediate protein–protein interactions 
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including the binding of protein ligands with their receptors with each repeat forming a loop 

which is partially embedded in an exposed β-sheet (Kobe and Deisenhofer 1994). 

The LRRs whose ligands have been identified in plants are the Arabidopsis Brassinosteroid 

insensitive receptor1 (AtBRI1, At4g39400) (He et al., 2000; Li and Chory 1997) and the 

Arabidopsis thaliana Phytosulfokine receptor 1 (AtPSKR1, AT2G02220) (Matsubayashi et 

al., 2002).  In living organisms, many different steroids have been identified, but only 

Brassinosteroids (BR`s) are widely distributed throughout the plant kingdom and are known 

to affect plant growth (Li and Chory 1997).  The AtBRI1 receptor is ubiquitously expressed 

and plasma membrane-localized in all tissues in plants (Friedrichsen et al., 2000). 

The organization of the AtBRI1 receptor is such that it has an extracellular domain containing 

21 tandem amino-terminal LRRs, a 70-amino acid island domain and four additional LRRs 

preceding the transmembrane domain (Friedrichsen et al., 2000).  It was reported that (Li and 

Chory, 1997) loss of function mutations in both the extracellular and the intracellular kinase 

domains of AtBRI1 lead to BR-insensitive dwarf phenotypes identical to those of BR-

deficient mutants, providing evidence that AtBRI1 is a BR receptor.  More recently, when the 

extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis 

Brassinosteroid receptor were fused to the Serine/Threonine kinase domain of XA21, a rice 

disease resistance receptor (Song et al., 1995) it was shown that the chimeric receptor was 

able to initiate plant defence responses in rice cells upon treatment with Brassinosteroids 

indicating that the extracellular domain of AtBRI1 perceives Brassinosteroids (He et al., 

2000). 

Using ligand based affinity chromatography, with PSK as the ligand, a 120-kilodalton 

membrane protein, specifically interacting with the immobilised PSK, from carrot 

microsomal fractions was purified (Matsubayashi et al., 2002).  This provided evidence for 
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the existence of high-affinity binding sites for PSK that was subsequently identified as an 

LRR.  The Phytosulfokine receptor has an extracellular LRR domain that contains 21 tandem 

copies of a 24 amino acid LRR and in addition also exhibits an island domain of 36 amino 

acids at LRR 18 (Matsubayashi et al., 2002). 

In RLK-LRR mediated hormonal signalling ligand binding induces dimerization of the 

intracellular kinase domains into proximity and allows them to transphosphorylate and 

activate one another (Becraft, 2002).  However there are exceptions to this general model as 

several documented plant RLKs are multimers in their inactive form (Giranton et al., 2000; 

Trotochaud et al., 1999). 

Another common manner through which these molecules function is through an 

intramolecular kinase activity phosphorylation signalling cascade (Schulze-Muth et al., 

1996). 

We have recently reported that the intracellular kinase domains of the Brassinosteroid and 

Pytosulfokine and another RLK-LRR, AtWAKL10, receptors harbour guanylyl cyclase (GC) 

domains that are active in in vitro (Kwezi et al, in revision) (Kwezi et al., 2007; Meier et al., 

2010).  Although signal transduction through the intracellular kinase domain has been well 

documented, the role of the GC domains in the RLK-LRR kinase transduction pathways 

remains to be defined. 
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Figure 1.4.1 Structural topology of receptor-like kinases (RLKs).  The figure represents the 

architecture of a RLK, with the extracellular, transmembrane and intracellular domains represented. 

The names of examples of receptors and their biological functions are shown at the top of the figure. 

The extracytoplasmic LRR domain of CLV2, Cf9, and BRI1 are intercepted at an identical position, 

between the fourth and fifth LRRs from the transmembrane domain.  In the LRR-RLKs a pair of 

cysteines exists at the beginning and the end of the LRR domain and the paired cysteines are 

presumed to act as a receptor dimerization motif.  Figure adapted from Torii (2000). 
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1.5 The family of guanylyl cyclases. 

Guanylyl cyclases (GCs) are enzymes that catalyze the formation of the second messenger 

guanosine 3`,5`-cyclic monophosphate (cGMP) from guanosine 5`-triphosphate (GTP) and 

the first GC in higher plants has been identified recently (Ludidi and Gehring, 2003a).  

Guanylate Cyclase (GC) activity is found in both the soluble and particulate fractions of most 

prokaryotes and all eukaryotes including plants (Lucas et al., 2000; Ludidi and Gehring, 

2003a).   

The particulate GCs have been reported to be receptors for natriuretic peptides (NP) and 

exhibit highly conserved domain structures which include an N-terminal extracellular binding 

domain, a hydrophobic transmembrane domain, a regulatory domain that shows homology to 

protein kinases, a hinge region and an intracellular domain at the C-terminal of the protein on 

the cytoplasmic side of the cell (in which the GC catalytic domain resides) (Lucas et al., 

2000).  Soluble GCs are heterodimeric proteins consisting α and β subunit of ~70kDa and 73-

82 kDa respectively (Gerzer et al., 1981; Lucas et al., 2000) where generally both subunits 

are required for the catalytic activity of the molecule (Lucas et al., 2000).  Each of the 

subunits has a regulatory domain at the N-terminus and a catalytic domain at the C-terminus 

(Lucas et al., 2000) while the β-subunit also contains a heme-domain that acts as a binding 

site for nitric oxide (Gerzer et al., 1981; Namiki et al., 2001). 

Cyclic GMP is increasingly being reported to be involved in a large number of plant 

processes including responses to abiotic stresses such as dehydration and salt (Donaldson et 

al., 2004), hormone dependent signalling (Penson et al., 1996) and changes of the 

transcriptome of A. thaliana (Maathuis 2006).  GCs synthesize cGMP in response to diverse 

signals such as nitric oxide (NO), peptide ligands and fluxes in intracellular Ca
2+

 (Lucas et 

al., 2000; Cann, 2003; Lucas et al., 2000). 
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Recently (Maathuis 2006) characterized a voltage-independent channel in Arabidopsis roots, 

the opening of which decreases with the presence of micromolar concentrations of 

cytoplasmic cGMP.  Cyclic GMP has also been shown to be involved in plant defences since 

it has been shown that NO in tobacco suspension cells triggers the expression of defence 

related genes which are also induced by cGMP (Durner et al., 1998). 

The role of cyclic nucleotides as second messengers in animals has been well-established 

where cAMP and cGMP have, as main targets, specific kinases whose activity is modulated 

by binding of ligands to particular regulatory subunits (Newton and Smith 2004).  Though 

there have been reports of cGMP-dependent kinase signalling in plants this mechanism is not 

as well characterised as in animals. 
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Chapter 2: The Arabidopsis thaliana Brassinosteroid Receptor (AtBRI1) 

contains a Domain that functions as a Guanylyl cyclase in vitro. 

 

Abstract. 

Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3`,5`-

cyclic monophosphate (cGMP) from guanosine 5`-triphosphate (GTP).  Cyclic GMP has 

been implicated in an increasing number of plant processes, including responses to abiotic 

stresses such as dehydration and salt, as well as hormones.  Here we have used a rational 

search strategy based on conserved and functionally assigned residues in the catalytic centre 

of annotated GCs to identify candidate GCs in Arabidopsis thaliana and show that one of the 

candidates is the Brassinosteroid receptor AtBRI1, a leucine rich repeat receptor like kinase. 

We have cloned and expressed a 114 amino acid recombinant protein (AtBRI1-GC) that 

harbours the putative catalytic domain, and demonstrate that this molecule can convert GTP 

to cGMP in vitro.  The obtained results suggest that AtBRI1 may belong to a novel class of 

GCs that contain both a cytosolic kinase and GC domain, and thus have a domain 

organisation that is not dissimilar to that of atrial natriuretic peptide receptors, NPR1 and 

NPR2.  The findings also suggest that cGMP may have a role as a second messenger in 

Brassinosteroid signalling.  In addition, it is conceivable that other proteins containing the 

extended GC search motif may also have catalytic activity, thus implying that a significant 

number of GCs, both in plants and animals, remain to be discovered, and this is in keeping 

with the fact that the single cellular green alga Chlamydomonas reinhardtii contains over 90 

annotated putative CGs. 
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2.1 Introduction 

The family of proteins, Guanylyl cyclases (GCs), find a wide and diverse distribution 

amongst organisms from prokaryotes to eukaryotes, where they catalyse the synthesis of the 

second messenger guanosine 3`,5`-cyclic monophosphate (cGMP) from guanosine 5`-

triphosphate (GTP) (Schaap, 2005).  In higher plants cGMP has been shown to act as a 

second messenger in a large number of physiological responses (Newton and Smith, 2004) 

that include cGMP-mediated changes of the transcriptome (Maathuis 2006), NO-dependent 

signalling (Prado et al., 2004) as well as gravitropic responses (Hu et al., 2005) and plant 

hormone-dependent responses (Pagnussat et al., 2004; Penson et al., 1996; Pharmawati et al., 

2001).  Furthermore, significant and transient increases in intracellular cGMP levels have 

also been reported in response to plant natriuretic peptides (PNPs) (Pharmawati et al., 1998; 

Pharmawati et al., 2001) as well as NaCl and drought stress (Donaldson et al., 2004).  The 

first functional GC in higher plants was identified with a search motif based on several 

functionally assigned amino acids in the catalytic domain of known GCs from lower 

eukaryotes and animals (Ludidi and Gehring, 2003a).  Here we show that a rationally 

designed search motif of the catalytic domain identifies several members of the family of 

Leucine Rich Repeat Receptor-Like Kinases (LRR RLKs) including an Arabidopsis thaliana 

Brassinosteroid receptor (AtBRI1).  A recombinant domain protein was made which tested 

positive for GC activity in vitro.  The implications of this finding for both the projected 

number of different classes of GCs and the role of cGMP in Brassinosteroid signalling are 

discussed. 
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2.2 Materials and Methods. 

2.2.1 Identification of the GC catalytic domain. 

Catalytic domains (McCue et al., 2000) of protein sequences annotated as GCs in the 

“National Center for Biotechnology Information” (NCBI) were retrieved and used for Blast 

searches of ‘‘The Arabidopsis Information Resource’’ (TAIR) database and GenBank. 

Multiple alignments of the retrieved catalytic domains were done using Clustal X, with 

alignments at the catalytic centre of these domains used to deduce the original search motif 

(Ludidi and Gehring, 2003a).  Since an ideal search motif will have to have stringent 

detection parameters, the derived search motifs were tested for accuraccy and specificity in 

detecting nucleotide cyclases.  This was done through querying both the Protein Information 

Resource (www-nbrf.georgetown.edu) using the Pattern Match option on the PIR-NREF link 

and the Arabidopsis genome using the ‘‘Patmatch” option on the Arabidopsis server 

(www.arabidopsis.org) (Ludidi and Gehring, 2003a). 

 

2.2.2 Extension of the GC search motif to identify AtBRI1. 

When the Arabidopsis genome was queried with the original search motif it returned seven 

candidate proteins including AtGC1 that has been demonstrated to have GC activity in vitro 

(Ludidi and Gehring, 2003a).  Amongst the seven, two were annotated kinases, with one of 

these: (At1g79680) belonging to the group of Wall Associated Kinase-Like proteins 

(WAKLs). 

To further identify other candidate GCs in plants, position seven in the original search motif 

was mutated from an Aspartic acid [D] to a Leucine [L] and we subsequently added [L] at 
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position seven to give [DNAL].  This extended motif retrieves 123 Arabidopsis thaliana 

proteins including the Brassinosteroid receptor AtBRI1. 

2.2.3 Preparation of Arabidopsis thaliana plant material.  

Arabidopsis seeds were obtained from Dr Shane Murray from the Centre for Proteomic and 

Genomic Research (CPGR), Cape Town, South Africa.  Plants were germinated in seedling 

germination soil from the Environmental Education Resource Unit (EERU - University of the 

Western Cape, Cape Town, South Africa) under measured light intensity and humidity at 23 

O
C.  A light and dark regime of 16 hours light and 8 hours dark photoperiods were applied. 

 

2.2.4 Genomic DNA extraction. 

Plants were grown to three weeks and 0.10g of leaf tissue was harvested and homogenised 

with pestle and sand in 500 µL buffer (200 mM Tris pH 7.5, 250 mM NaCl, 25 mM EDTA 

and 0.5 % SDS) in an eppendorf tube.  The homogenate was incubated at 60 
O
C for 10 

minutes and genomic DNA was extracted with 500 µL chloroform: isoamyl alcohol (24:1) by 

briefly vortexing followed by centrifuging at 12 x 4 g for 10 minutes at room temperature on 

a bench top centrifuge (Eppendorf, Hamburg, Germany).  The supernatant was collected into 

a clean eppendorf tube and DNA was precipitated with 2x volume ice cold 70 % Ethanol and 

a tenth the volume with 3 M Sodium Acetate; pH 5.2 for one hour at -20 
O
C.  Precipitated 

DNA was collected by centrifuging at 12 x 4 g for 10 minutes, supernatant was discarded as 

waste, and the pellet was washed with 500µL of 70 % Ethanol and air dried at room 

temperature for 10 minutes.  Genomic DNA was resuspended in 50 µL of sdH2O and treated 

with 10 mg/mL RNase (Fermentas International Inc., Burlington, Canada) and this was 

incubated for one hour at 37 
O
C.  Genomic DNA was the purified using the GFX DNA 
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purification kit (GE Healthcare, Wisconsin) as per manufacturer`s instructions and stored at 4 

O
C short term and -20 

O
C long term.  
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2.2.5 Isolation of the AtBRI1 GC catalytic center. 

2.2.5.1 Primer design. 

The genomic sequence of AtBRI1 gene as retrieved from The Arabidopsis Information 

Resource (TAIR) revealed that the gene has no introns.  Primers were designed to amplify, 

directly from genomic DNA, the catalytic center that would subsequently give a gene product 

of 50 amino acids on either side (N and C terminus).  Based on the sequence flanking 

position 3132 and 3638 of the Brassinosteroid gene, the following forward and reverse 

primers could be designed to specifically prime and amplify this region:  Forward primer: 5` 

GCTAGGATCCTGGAAGCTCGGGTTT 3`.  Reverse primer: 5` 

TCCAGAATTCTCAAGCAACTTTTAAATGT 3`.  The bold and underlined regions are 

BamH1 (Fwd.) and EcoR1 (Rev.).  Four bases on the 5` side were added to provide a scaffold 

for restriction enzymes. 

 

2.2.5.2 Polymerase Chain Reaction (PCR) amplification of AtBRI1from genomic DNA. 

Genomic DNA from Arabidopsis was used as the DNA template in the PCR reactions.  

Amplifications were performed on a Mastercycler
®

 personal (Eppendorf, Hamburg, 

Germany) in a 50µL reaction.  Each reaction contained 1.5 mM MgCl2, 200 µM dNTPs, 0.5 

µM reverse and forward primer, 7.4 ng of genomic DNA, and 2.5 units Econo Taq 

polymerase (Fermentas International Inc., Burlington, Canada).  The thermal cycling 

parameters were: initial denaturation at 96 
O
C for 3 minutes, followed by 30 seconds at 96 

O
C, 50 

O
C for 45 seconds and 72 

O
C for 1 minute for 32 cycles, followed by a final extension 

at 72 
O
C for 10 minutes.  PCR products were resolved on a 0.8 % agarose at 7V/cm for an 

hour.  
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Visualisation was done under short wavelength UV illumination using the Alphaimager
™

 Gel 

Imaging System (Alpha Innotech Corp., California).  DNA fragments corresponding to 342 

base pairs (bp) in size were excised from the gel and purified using the GFX purification kit 

as per manufacturer`s instruction (GE Healthcare, Wisconsin).  Concentrations of the AtBRI1 

PCR product were quantified using a Nanodrop ND 1000 spectrophotometer (Thermo Fisher 

Scientific Inc., Massachusetts). 

 

2.2.6 Preparation of pCR-T7/NT-TOPO-AtBRI1 construct. 

2.2.6.1 Restriction digest of AtBRI1. 

To prepare the AtBRI1 insert for ligation into pCR
®

T7/NT-TOPO
®

 (Invitrogen Corp., 

California) the insert was digested in two steps.  The insert was first digested in a 50 µL 

reaction containing, 32 ng of insert, 1 X Tango Buffer and 3 units of BamHI (Fermentas 

International Inc., Burlington, Canada).  The reaction was incubated at 37 
O
C for 3 hours.  

After the 3 hour incubation the Tango Buffer concentration was increased to two times (2x) 

in the same reaction tube after which 3 units of EcoRI (Fermentas International Inc., 

Burlington, Canada) were added and the reaction volume was increased to 60 µL with sdH2O 

and incubated at 37 
O
C for 3 hours.  The digest was resolved on a 0.8 % agarose gel at 7V/cm 

an hour and a band corresponding to 342 bp was excised out of the gel and purified using the 

GFX purification kit (GE Healthcare, Wisconsin) as per manufacturer’s specifications. 
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2.2.6.2 Restriction digest of pCR
®

T7/NT-TOPO
®

 vector. 

The same two step procedure as described in section 2.2.6.1 was performed using the BamHI 

and EcoRI enzymes to digest 60 ng of the pCR
®

T7/NT-TOPO
®

 vector (Invitrogen Corp., 

California).  The digest was then resolved on a 0.8 % agarose at 7V/cm 100 V for 45 min. 

Digested vector was excised and purified with the GFX purification kit (GE Healthcare, 

Wisconsin). 

 

2.2.7 Construction of a pCRT7/NT-TOPO-AtBRI1 expression vector. 

2.2.7.1 Ligation of AtBRI1 into pCR
®

T7/NT-TOPO
®

 vector. 

The ligation of AtBRI1 into pCR
®

T7 TOPO
®

 vector was performed in a final reaction 

volume of 50 µL in an eppendorf tube, with reaction mixture containing: 2 units of T4 DNA 

ligase (Fermentas International Inc., Burlington, Canada), 1X Ligase Buffer, 6 ng of 

EcoRI/BamHI (Fermentas International Inc., Burlington, Canada) digested vector and 42 ng 

of EcoRI/BamHI digested AtBRI1 PCR product.  The reaction mixture was incubated at 4 
O
C 

over night.  Aliquots were resolved on a 0.8 % agarose at 7V/cm for an hour and the 

construct excised and purified using the GFX purification Kit (GE Healthcare, Wisconsin).  

Plasmid DNA was eluted in sterile dH2O and store at 4 
O
C short term, -20 

O
C long term.  

Recombinant vectors were confirmed by sequencing and PCR with gene specific primers as 

described in section 2.2.5.1. 
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2.2.8 Preparation of an expression host. 

2.2.8.1 Transforming pCRT7/NT-TOPO-AtBRI1 construct into E.coli 

BL21(DE3)pLysS. 

Expression host of choice, E.coli BL2 (DE3) pLysS (Invitrogen Corp., California) competent 

cells were transformed with 10ng of pCRT7/NT-TOPO-AtBRI1 in a 100 µL reaction. 

This was heat shocked at 37 
O
C for 5 minutes and was supplemented with 900 µL of Luria 

Broth (LB) (1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl and 0.4 % glucose) and cells 

grown at 37 
O
C, with shaking for 1 hour.  Aliquots of 100 µL were spread plated on LB agar 

supplemented with 100 µg/mL ampicillin and 32 µg/mL chloramphenicol, and incubated at 

37 
O
C over night.  Negative controls were also setup, substituting recombinant vector with 

either non-recombinant vector or sdH2O. 

 

2.2.8.2 Colony PCR. 

Selected colonies were resuspended in 10 µL of sdH2O, boiled at 94 
O
C for 2 minutes and 

1µL of the lysate was used as a template in gene specific primer verification PCR.  Cycling 

conditions were as described in section 2.2.5.2.  Positive colonies were subsequently 

inoculated in ten 10 mL of LB, supplemented with 100 µg/mL ampicllin and 32 µg/mL of 

chloramphenicol and these were grown over night at 37 
O
C and glycerol stocks were prepared 

for long term storage at -80 
O
C. 
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2.2.9 Heterelogous expression of the AtBRI1 recombinant protein.  

2.2.9.1 Culture enrichment and induction. 

Ten mL of LB containing 100 µg/mL of ampicllin and 32 µg/mL chloramphenicol were 

inoculated with 200 µL of cells carrying the pCR T7/NT-TOPO-AtBRI1 construct and grown 

at 37 
O
C over night with shaking at 200 rpm.  Following over night incubation, enriched 

culture was used to inoculate 2 ml into 500 mL of fresh LB supplemented with 100 µg/mL 

ampicillin and 32 µg/mL chloramphenicol.  Inoculated culture was allowed to grow to OD600 

of 0.5 at which expression was induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside 

(IPTG) and allowed to grow further for 3 hours. 

Aliquots from time zero and each hour were analysed on sodium dodecyl sulphate 

polyacrylamide gel (SDS-PAGE).  After expression cells were harvested by centrifugation at 

12 x 4 g for 30 minutes at 5 
O
C. 

 

2.2.10 Purification of recombinant pCR T7/NT-TOPO-AtBRI1. 

Recombinant pCR T7/NT-TOPO-AtBRI1 was purified under denaturing conditions as 

described in (Kwezi et al., 2007).  Cells were lysed in buffer (8 M urea, 100 mM NaH2PO4, 

10 mM Tris-Cl; pH 8.0, 500 mM NaCl, 20 mM β-mercaptoethanol, and 15 % (v/v) glycerol, 

45 mM Imidazole), cellular debris were then separated through centrifugation and the lysate 

kept for downstream purification.  Cleared lysate was purified with 50 % NI-NTA slurry 

according to the QIAexpressionist denaturing protocol (Qiagen, Venlo, Netherlands).  In a 50 

mL polypropylene tube 5 mL of NI-NTA was mixed with 5 column volumes (25 mL) of 

cleared lysate and this was mixed at room temperature for 1 hour. 
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Unbound protein was washed off with a buffer containing 8 M urea, 100 mM NaH2PO4, 10 

mM Tris-Cl; pH 8.0, 500 mM NaCl, 20 mM β-mercaptoethanol and 15 % (v/v) glycerol, 45 

mM Imidazole, pH 7.0.  Bound protein was refolded through a controlled gradient system, 

using Fast Protein Liquid Chromatography (FPLC) (GE Healthcare, Wisconsin).  The 

gradient gradually reduces the urea concentration and replaces it with refolding buffer [200 

mM NaCl, 50 mM Tris-Cl; pH 8.0, 500 mM glucose, 0.05 % (w/v) poly-ethyl glycol (PEG), 

4 mM reduced glutathione, 0.04 mM oxidized glutathione, 100 mM non-detergent 

sulfobateine, and 0.5 mM phenylmethanesulfonylfluoride (PMSF)].  Recombinant protein 

was eluted and subsequently de-salted and concentrated using Centriplus filtration devices 

(Millipore Corp., Massachusetts). 

 

2.2.11 Cyclic nucleotide activity assays on the recombinant AtBRI1 catalytic.  

2.2.11.1 Enzyme immunoassay. 

Enzymatic activity of the recombinant AtBRI1catlytic domain to convert GTP to cGMP was 

assessed with two methods, a cGMP enzyme immunoassay Biotrak (EIA) system (GE 

Healthcare, Wisconsin) and Mass Spectrometry (Kwezi et al., 2007).  To determine activity 

10 µg of purified recombinant AtBRI1 were assessed in a 50 µL a reaction system containing 

50 mM Tris-HCl; pH 8.0, 2 mM IBMX, 5 mM Mg
2+

 and/or 5 mM Mn
2+

 and 1 mM GTP.  

Reactions were incubated at room temperature for 5 to 20 minutes, followed by termination 

of the reaction by adding 4 mM EDTA and rapid chilling at 4 
O
C for 10 minutes.  Cyclic 

nucleotide levels were assessed using the cGMP enzyme immunoassay Biotrak (EIA) system 

based on the acetylation protocol as is described in the manufacturer’s manual (GE 

Healthcare, Wisconsin). 
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2.2.11.2 Mass spectrometry. 

Mass spectroscopic determinations of cGMP were done with a Waters API Q-TOF Ultima in 

the W-mode.  The samples were introduced with a Waters Acquity UPLC (Waters Microsep, 

Johannesburg, South Africa) at a flow rate of 180 mL/min and separation was achieved by a 

Phenomenex Synergi (Torrance, California) 4 mm Fusion -RP (25062.0 mm) column. A 

gradient of solvent ‘‘A’’ (0.1 % formic acid) and solvent ‘‘B’’ (100 % Acetonitrile) over 18 

minutes was applied.  During the first 7 minutes the solvent composition was kept at 100 % 

‘‘A’’ followed by a linear gradient of 3 minutes to 80 % ‘‘B’’ and re-equilibration to the 

initial conditions.  Electrospray ionisation in the negative mode was used at a cone voltage of 

35 V.  The running parameters were optimised for sensitivity and specificity. 
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2.3 Results. 

The design of a search motif that can specifically identify GC`s was based on the assumption 

that the catalytic centre of known GCs should at least in part be conserved across kingdoms.  

Consequently a search motif (Figure 2.3.1 A) based on several functionally assigned amino 

acids in the catalytic domain of known GCs from lower eukaryotes and animals was designed 

(Ludidi and Gehring, 2003a).  Two of the seven candidate proteins are annotated kinase 

(Figure 2.3.1 B) and one of the two (At1g79680) belongs to the group of wall associated 

kinase-like proteins (WAKLs) that are closely related to the wall-associated kinases (WAKs) 

(Verica and He, 2002).  A BLAST search against the NCBI database with the catalytic centre 

containing the immediate fourteen N-terminal and thirteen C-terminal amino acids of both 

candidate kinase-GC identified over 50 plant kinases with e-values < 0.001.  The alignment 

(Figure 2.3.1 B) suggests firstly a high degree of conservation at the catalytic centre and 

secondly, that none of these kinase molecules contains an asparagine [D], aspartic acid [N] or 

alanine [A] in the seventh position of the GC motif which is proposed to be responsible for 

the stabilisation of the dimer interphase.  Instead, these molecules contain a [L] and when [D] 

in position 7 is substituted by [L] in a 100 amino acid recombinant AtGC1 (1–100), no 

significant loss in catalytic GC activity was observed (Kwezi et al., 2007). 
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Figure 2.3.1 Alignment of Arabidopsis GC catalytic domains with the original search motif.  (A) 

The 14 amino acid long original search motif.  Red amino acids are functionally assigned residues of 

the catalytic centre. The residue in position 1 does the hydrogen bonding with the guanine, the amino 

acid in position 3 confers substrate specificity and the residues in positions 10 and 14 stabilise the 

transition (GTP/cGMP).  Amino acid substitutions are represented by [ ], X= any amino acid and {n} 

is number of amino acids.  (B) Alignment of seven catalytic domains that were identified with the 

original search motif.  

 

A query of the Arabidopsis genome with the extended motif (Figure 2.3.2 A) identifies 123 

Arabidopsis protein including the Brassinosteroid receptor AtBRI1 (Arabidopsis thaliana 

Brassinosteroid insensitive 1 (At4g39400.1).  The Brassinosteroid receptor is a members of 

the family of leucine rich repeat receptor-like kinases (LRR RLKs) (Li and Chory, 1997) and 

has an architecture as depicted in Figure 2.3.2 B.  Closer inspection of the receptor reveals 
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that the GC catalytic center is embedded within the cytosolic kinase domain, a characteristic 

that is also observed in AtWAKL10 (Meier et al., 2010). 

Brassinosteroids, are physiologically well characterised growth regulators and their receptors 

have been identified in several other species and these also contain the conserved GC motif 

(Figure 2.3.2 D).  Considering that the derived search motif is based on functionally assigned 

amino acids in the catalytic center of several GC`s, AtBRI1 was chosen as a good model to 

investigate whether the extended GC motif can identify an active GC.  

 

Figure 2.3.2 Structural features of the GC catalytic domain and the Arabidopsis thaliana 

Brassinosteroid receptor (AtBRI1).  (A) The 14 amino acid long original search motif (modified 

after (Ludidi and Gehring, 2003b) with an inclusion of [L] in position 7). Red amino acids are 

functionally assigned residues of the catalytic centre. The residue in position 1 does the hydrogen 

bonding with the guanine, the amino acid in position 3 confers substrate specificity and the residues in 

positions 10 and 14 stabilise the transition (GTP/cGMP).  (B) Representation of the domain 

organisation of AtBRI1 containing a signal peptide (SP), leucine rich repeats (LLRs) including an 

island, a transmembrane domain (TM), a GC centre embedded in the kinase domain. The position (16 

or 17) outside the catalytic centre is implicated in Mg
2+

/Mn
2+

-binding (aquamarine).  (C) Amino acid 

sequence of the intracellular C-terminal region of AtBRI1. The kinase domain is underlined (yellow), 
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the GC domain is boxed in green, putative Mg
2+

/Mn
2+

-binding sites are highlighted (aquamarine), the 

proposed PPi binding is underlined in black, and the recombinant protein (AtBRI1-GC) tested for GC 

activity in vitro is delineated by solid triangles (s).  (D) Alignment of AtBRI1-like sequences. AtBRI1 

(At4g39400), LeBRI1 (tomato|TC185049, Q9LJF3), OsBRI1 (Os06g0691800), VvBRI1 (grape 

|TC70352, Q9ZWC8), PlBRI1 (poplar|TC57820, Q9ZWC8), PsBR (BAC99050), OsBR 

(Os08g25380), OsSR160 (BAD34326.1, AP006156.2). doi:10.1371/journal.pone.0000449.g002. 

To test whether a candidate protein that has been identified and conforms to the criteria as 

specified by the extended search motif (Figure2.3.2.A), the catalytic domain fragment of the 

AtBRI1 gene was isolated from genomic DNA (Figure 2.3 A) and cloned into pCR T7/NT-

TOPO.  The recombinant vector was transformed into BL21 (plysS) (DE3) and positive 

transformants were confirmed with gene specific PCR (Figure 2.3 B) and sequencing. 

 

 

Figure 2.3.3 Isolation of AtBRI1-GC and preparation of expression vector.  Genomic DNA (C) 

was extracted from Arabidopsis and used as a template to specifically amplify the 342 base pair long 

gene fragment (A).  The gene was cloned into of pCR-T7/NT-TOPO (Invitrogen).  The contruct was 

used to transform E. coli BL21 (pLysS) (DE3) (Invitrogen).  (B) Verification of recombinant vector 

using gene specific primer was subsequently used to identify cell that were successfully transformed 

with the recombinant pCR T7/NT-TOPO-AtBRI1. 

 

The recombinant protein that was synthesised and tested for in vitro activity contains the GC 

catalytic centre as predicted for AtBRI1 (At4g39400) and 50 additional amino acids on both 

the N-terminus and the C-terminus (Fig. 2.2 C).  The 114 amino acid long peptide (AtBRI1-
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GC) is part of the cytoplasmic kinase domain containing the N-terminal part aspartic acid 

([D] at 233 from the catalytic centre) implicated in metal binding (Tang and Hurley, 1998) as 

well as a metal binding [D] in position 17 relative to the C-terminus of the motif. 
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The expression vector that was used allows expression of a His-tagged recombinant protein. 

The protein was over-expressed and purified from inclusion bodies (Lilie et al., 1998; Suttnar 

et al., 1994)  under denaturing conditions and purified on an NI-NTA affinity column. 

 

 

Figure 2.3.4 Expression and purification of recombinant AtBRI-GC.  (A) SDS PAGE analysis of 

uninduced (Cont) and induced (L) proteins from E. coli BL21 (pLysS) (DE3) (Invitrogen) habouring 

the pCRT7/NT-TOPO-AtBRI1 expression construct.  (B) Purification of the recombinant AtBRI1 at 

different steps (B) is protein bound to Ni-NTA agarose matrix, (E) is the eluted protein after it had 

been refolded.  The arrows mark the recombinant AtBRI1 bands while (M) represents the low 

molecular weight markers. 

 

The results indicate that the recombinant protein can cyclase GTP and does so preferably in 

the presence of Mg
2+

 (Fig. 2.3.5 A).  In order to verify the result obtained with this anti-body 

based detection method we also used mass spectrometry.  Firstly, we established that the Q-

TOF mass chromatogram could detect cGMP at fmol concentrations (Fig. 2.3.5 D, right 

inset) much like the enzyme immunoassay.  We detected neither cGMP in the solution 

containing the recombinant protein only (Fig. 2.3.5 B) nor in the reaction mix in the absence 

of the protein (Fig. 2.3.5 C).   
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The recombinant generates cGMP in a time dependent way (Fig. 2.3.5 D), within just after 5 

minutes of incubation in the presence of 1 mM GTP, 100 fmoles cGMP/mg and increased 

amounts after 20 minutes (3 pmoles cGMP/mg protein (Fig. 2.3.5 D).   

Notably, the values of the amount of cGMP generated, as obtained with the mass 

spectroscopy read higher than those obtained with the enzymatic assay and this observation 

has been made consistently in independent in vitro experiments with recombinant proteins 

(Kwezi et al., 2007).  In addition, it has been noted that plant GC activities are reportedly low 

and not at the levels observed for some soluble animal GCs (Newton et al., 1999).  The 

proposed reason for this is that higher activities may require co-factors (e.g. Ca
2+

, chaperones 

or co-proteins) or post-translational modifications that do not occur in the recombinant tested 

in vitro.  Mass spectrometric analysis was also used to assess the capacity of AtBRI1 

recombinant to act as an adenylyl cyclase in the presence of 1 mM ATP as the substrate and 

no significant amounts of cAMP were generated after 20 minutes (Kwezi et al., 2007).  These 

observations indicate that, at least in vitro, the recombinant protein has the predicted substrate 

preference for GTP rather than ATP. 
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Figure 2.3.5 Preparation of recombinant AtBRI1-GC and functional testing in vitro.  (A) Testing 

of GC activity with an enzyme immunoassay. The control contains the reaction mixture without the 

substrate (10 mg recombinant protein in 50 mM Tris-HCl (pH 7.5), 2 mM isobutyl methylxanthine 

(IBMX), 5 mM Mg
2+

 and 5 mM Mn
2+

), the other columns represent cGMP generated in the presence 

of 1 mM GTP and either Mn
2+

 or Mg
2+

 after 20 min.  The bar values represent the mean (+/2SEM).  

(B) Extracted mass chromatogram of m/z 344 [M-1]21 ion of cGMP generated by 10 mg recombinant 

protein. The inset shows an SDS-PAGE of AtBRI1-GC expressed in E. coli BL21 (pLysS) (DE3) and 

purified with Ni-NTA agarose under denaturing conditions. Cleared lysate (lane 1), flow through 

(lane 2), first wash (lane 3), second wash (lane 4) and eluted recombinant protein (lane 5). ‘M’ is the 

molecular weight marker.  (C) Extracted mass chromatogram of m/z 344 [M-1]21 ion of the reaction 

mix without AtBRI1-GC.  (D) Two superimposed extracted mass chromatogram of m/z 344 [M-1]21 

ion of cGMP generated by 10 mg recombinant protein after 5 and 20 min.respectively in the presence 

of 5 mM Mg
2+

. (Note that the sample was diluted 200 times as compared to the experiment presented 

in Fig. 2A). The left inset represents the mass of the peak in the chromatogram, the right inset is the 

calibration curve with 1.25, 10 and 50 fmoles on the column. doi:10.1371/journal.pone.0000449.g003 

Brassinosteroid Receptor PLoS ONE. 
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2.4 Discussion 

Brassinosteroids (BRs) are polyhydroxylated plant steroid hormones and have been shown to 

induce diverse cellular responses such as stem elongation, pollen tube growth, leaf bending 

(Clouse et al., 1996; Mandava 1988).  Brassinosteroid Insensitive-1 (BRI1) was first 

identified from mutant analysis and then cloned and found to be a leucine rich repeat receptor 

like kinase (Li and Chory, 1997) located in the plasma membrane (Friedrichsen et al., 2000). 

Based on the binding of the ligand BR to the leucine rich repeat extracellular domain, BRI1 

has been proposed as a BR receptor in Arabidopsis (Kinoshita et al., 2005; Wang et al., 2001) 

and therefore is potentially a critical signal component.  AtBRI1 is ubiquitously expressed in 

Arabidopsis and potential AtBRI1 kinase substrates have been identified such as 

transthyretin-like protein which is phosphorylated in vitro by the kinase domain of AtBRI1 

(Nam and Li 2004).  Several models have been developed to describe the signalling events 

following perception of BR by AtBRI1 (Goda et al., 2002) involving other membrane 

associated proteins and activation of transcription factors (Wang et al., 2006).  The 

observation that AtBRI1 harbours a functional GC domain within the cytosolic part of the 

molecule suggests that cGMP is a second messenger in some BR dependent processes.  

However, this hypothesis remains to be tested.  Several genes that regulate physiological 

functions are stimulated by BR and these may be dependent on the generation of cGMP.  An 

example for this dual dependence is plant cell elongation (Haubrick and Assmann, 2006).  

Microarray studies reveal that genes involved in cell wall expansion such as Expansins and 

Pectinesterases are up-regulated by both BR (Goda et al., 2002) and membrane permeable 

cGMP treatments (Maathuis 2006).  Both BR and Gibberellin interact to regulate plant 

growth and it is conceivable that both hormones signal via cGMP.  Some of these interactions 

are antagonistic but in other cases, BR can potentiate Gibberellin activity (Bouquin et al., 

2001). 
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Gibberellin itself causes increases in cGMP (Penson et al., 1996).  It is possible that in some 

instances the GC domain of AtBRI1 could stimulate cGMP production and so potentiate 

gibberellin activity.  On a speculative note, there may be key molecules within specific cells 

that specify decreased cytoplasmic kinase activity and enhance the GC activity of the AtBRI1 

receptor.  There are several recessive alleles of AtBRI1 with mutations in the cytoplasmic 

kinase domain.  One of these mutants, bri-101 is the only mutant in the GC catalytic region 

(Glutamic acid [E] at position 1078 to a Leucine [L]) and it is insensitive to BR and also has 

reduced kinase activity when tested in a heterologous system (Friedrichsen et al., 2000; Li 

and Chory, 1997).  This mutation should not affect the GC activity as it occurs at position 8 

which can be any amino acid.  Three other mutants have been found in the region that is 

shown to confer GC activity in vitro and they are : bri-103,104 from an Alanine [A] at 

position 1031 to a Threonine, bri1-105-107 has a Glutamine [Q] at position 1059 which 

introduces a stop codon (which would exclude the GC catalytic domain from the truncated 

protein) and bri1-115 mutates from a Glycine [G] at position 1048 to an Aspartic acid [N] 

(Friedrichsen et al., 2000).  The GC domain, in AtBRI1 that has been identified occurs within 

the kinase domain (Friedrichsen et al., 2000).  We demonstrate that the isolated 114 amino 

acid recombinant peptide (AtBRI1-GC) has GC activity in vitro (Fig. 2.3.5 A).  The relative 

importance of the two functions in the action of the receptor remains to be demonstrated 

bearing in mind that previously work has focused on the kinase domain as the GC domain 

had not been identified.  Interestingly, a number of enzymes have recently been identified as 

‘‘moonlighting’’ proteins with dual functions (Jeffery, 2003); the kinase and GC activity of 

AtBRI1 could be yet another example.  On a more general level, the finding implies that 

functional GC domains may be part of a large variety of different multifunctional signalling 

molecules and receptors in particular. 
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It is noteworthy that the atrial natriuretic peptide receptors NPR1 and NPR2 both signal 

through cGMP and have an AtBRI1-like domain organisation with an extracellular ligand-

binding domain, a transmembrane domain and an intracellular kinase and GC domain 

(Chinkers et al., 1989; Garbers and Lowe, 1994).  Finally, the fact that two recombinant 

proteins AtGC1(1–100) and AtBRI1 - GC of less than 120 amino acids have GC activity in 

vitro begs a re-examination of the minimal catalytic requirement for GCs and may suggest 

that the number of different potentially functional GC domains is significantly higher than 

currently assumed.  This is in keeping with the fact that the single cellular green alga 

Chlamydomonas reinhardtii contains a surprisingly large number (up to 90) annotated 

putative GCs (Schaap, 2005).  It is possible that an increasing number of biological processes 

will be discovered that are modulated by the second messenger cGMP (Meier et al., 2007). 
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Chapter 3: The Arabidopsis thaliana Phytosulfokine (AtPSKR1) Receptor 

has dual Enzymatic function in vitro.  

 

Abstact. 

Cell proliferation is important for the growth and development of plants and this is process is 

mediated by a number of factors.  One such factor is the five amino acid peptide 

Phytosulfokine (PSK).  Phytosulfokines (PSKs) are sulphated pentapeptides that stimulate 

plant growth and differentiation mediated by the PSK receptor (AtPSKR1) which is a leucine 

rich repeat receptor like kinase.  We identified a putative guanylate cyclase (GC) catalytic 

centre in PSKR1 that is embedded within the kinase domain and hypothesised that the GC 

works in conjunction with the kinase in downstream PSK signalling.  We expressed the 

complete cytoplasmic kinase domain of AtPSKR1 as a recombinant protein and showed that 

it has Serine/Threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an 

approximate Km of 7.5 µM and Vmax of 1800 nmol min
-1

 mg
-1

 protein.  This same 

recombinant protein also has GC activity in vitro that is dependent on the presence of either 

Mg
2+

 or Mn
2+

.  In addition, we show that the receptor`s ability to phosphorylate a substrate is 

affected by the product (cGMP) of its co-domain (GC) and that the receptor 

autophosphorylates Serine residues.  We have also observed that autophosphorylation is 

affected by cGMP.  Together these results indicate that the AtPSKR1 receptor contains dual 

GC and kinase catalytic activities that operate in vitro and that this receptor constitutes a 

novel class of enzymes with overlapping catalytic domains that could be co-regulating each 

other. 
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3.1 Introduction. 

In order for plants to maximize access to essential resources, responses to environmental 

factors and regulation of physiological processes (e.g. development and growth) and 

facilitation of cell to cell communication have evolved and they are capable of detecting the 

direction of incoming physical, chemical, and light signals (Braun and Walker, 1996; Deeken 

and Kaldenhoff, 1997).  Many of these signals are initially perceived by transmembrane 

receptors, a large number of which function by activation of an intrinsic protein kinase 

domain activity (Braun and Walker, 1996).  A number of these well characterized receptors 

are kinases (Trewavas and Malho, 1997).  Receptor kinases are known to be present and to 

play important roles in animal cellular signalling processes (Zhang, 1998).  In plants, a 

number of membrane localized receptor proteins with architectures that are characteristic of 

receptor kinases have been identified (Yin et al., 2002).  These are the Receptor-Like Kinases 

(RLKs) whose sequence homology and structural similarity with that of animal receptor 

kinases suggests that they have a similar biological function and use similar mechanisms 

(Zhang, 1998).  Receptor Like-Kinases mediate signal transduction of a variety of cellular 

processes, amongst these are responses to environmental signals such as light (Deeken and 

Kaldenhoff, 1997) and hormones (Li and Chory, 1997).  However even though these 

receptors share structural similarities current insight indicates that plant RLKs which 

generally show Serine/Threonine kinase activity have evolved independently of animal 

Receptor Tyrosine Kinases (RTKs) and Receptor Serine/Threonine Kinases (RSKs) (Johnson 

and Ingram, 2005).  The major sub-group of RLKs are the leucine-rich repeat (LRR) RLKs, 

which contain imperfect repeats of a 24-amino acid leucine-rich motif in the extracellular 

domain (Braun and Walker, 1996; Zhang, 1998).  The classical model that typically describes 

kinase activation and subsequent signal transduction as reported by (Tichtinsky et al., 2003; 

Torii, 2000) includes ligand binding to the extracellular domain which causes the receptor to 
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dimerise.  This in turn triggers the subsequent activation of the intracellular kinase domain.  

The activated kinases then phosphorylate, by transfer of a phosphate group from a donor, 

typically a tri-phosphate e.g. Adenosine 5`- triphosphate (ATP) to substrate proteins within 

the cell.  This action may result in transduction of a signal that forms part of the signal 

transduction cascade.  Downstream responses include further activation of other proteins, 

synthesis and transduction of signals by second messengers which in turn may lead to 

changes in the patterns and levels of gene expression (Maathuis, 2006).  Receptor protein 

kinases (RPKs) are known to activate a number of intracellular signalling pathways in 

response to the extracellular environment (van der Geer et al., 1994).  Receptor Protein 

Kinases (RPKs) are single-pass transmembrane proteins that contain an amino-terminal 

signal sequence, extracellular domains unique for each receptor and a cytoplasmic kinase 

domain (Shiu and Bleecker, 2001a).  Generally in this type of receptor, ligand binding will 

induce homo or heterodimerization of RPKs, and the resultant close proximity of the 

cytoplasmic domains results in kinase activation by autophosphorylation and/or trans-

phosphorylation (Friedrichsen et al., 2000) and/or the synthesis of signal transduction 

intermediates. 

In eukaryotes some of the key signalling intermediates are cyclic nucleotides amongst these 

are cGMP and cAMP.  Particularly in higher plants cGMP has been identified as an important 

molecule involved in regulating a wide variety of physiological effects ranging from 

chloroplast development, plant hormone dependent responses to the induction of plant 

defence responses (Kaplan et al., 2007; Newton et al., 1999; Newton and Smith, 2004).  

Nitric oxide (NO) signalling is thought to stimulate cGMP production in defence and stress 

responses but how it generates cGMP is still uncertain (Leitner et al., 2009; Wilson et al., 

2008).  Cyclic GMP can act on cyclic nucleotide gated ion channels (Leng et al., 1999), 
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various other downstream molecules and the transcriptome (Kaplan et al., 2007; Maathuis, 

2006) to modulate plant responses.  

In a previous study we hypothesised that several different functional GCs exist in higher 

plants and embarked on a quest to search for them.  In summary, our strategy was based on 

the assumption that the catalytic centre of known GCs is at least in part conserved across the 

different kingdoms.  Consequently, we designed and tested a search motif based on several 

functionally assigned amino acids in the catalytic domain of known GCs from lower 

eukaryotes and animals (Figure 3.3.1 A) and identified and experimentally confirmed the first 

three molecules with GC activity in higher plants (Ludidi and Gehring, 2003a; Kwezi et al., 

2007; Meier et al., 2010).  The first GC to be identified in higher plants, AtGC1 is a soluble 

protein with the GC domain towards the N terminus but does not contain a haem binding 

motif essential for nitric oxide binding (Ludidi and Gehring, 2003a). Since NO had been 

shown to stimulate synthesis of cGMP we concluded that other GCs are likely to be present. 

Recently, a GC1 homologue has been characterised in Pharbitis nil (Morning Glory) and the 

expression of this molecule is regulated by light (Szmidt-Jaworska et al., 2009).  The second 

functional GC was identified by relaxing the initial search motif and, surprisingly, is the 

Brassinosteroid receptor AtBRI1.  The GC domain is found within the intracellular kinase 

domain and it is this region that has been shown to have activity in vitro (Kwezi et al., 2007). 

AtBRI1 is a leucine rich repeat receptor like kinase (Oh et al., 2009) and was one of several 

LRR RLKs identified in the screen which all shared a similar kinase-GC domain structure 

(Kwezi et al., 2007). 

In addition, we have recently reported another membrane associated kinase molecule, the 

wall associated kinase-like 10 (WAKL10) and shown that it has GC activity in vitro as well 

as being transcriptionally up-regulated in response to biotic stress (Meier et al., 2010).  

Amongst the other LRR RLKs detected in this screen for novel GCs we identified the 
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Phytosulfokine (PSK) receptor.  AtPSKR1 and its domain organization are shown in (Figure 

3.3.1 B).  AtPSKR1 is a typical LRR-RLK with an island that binds PSK in its extracellular 

leucine rich repeat domain, a single transmembrane spanning domain and an intracellular 

kinase domain (Matsubayashi et al., 2006a; Matsubayashi et al., 2002).  AtPSKR1 has been 

identified in several other species where the GC domain is also present (Figure 3.3.1 C) 

indicating that this domain organisation is widespread.  Mutant studies indicate that 

AtPSKR1 is involved in regulating root elongation.  Here we show that the kinase domain of 

AtPSKR1 has both kinase and GC activity and that its kinase activity is affected by cGMP in 

vitro.  It is a well know characteristic of kinases that they do not only phosphorylate one or 

more intracellular target proteins (heterophosphorylation) but can phosphorylate themselves, 

a process termed autophosphorylation (Smith et al., 1993).  Protein kinase 

autophosphorylation is functionally important, since it can also play a major role in the 

protein kinase function.  Therefore, we also tested a possible modulation of the kinase by the 

cyclic nucleotide.  Together the results presented here indicate that AtPSKR1 contains dual 

functioning GC and kinase catalytic activity and that this type of activity represents a novel 

class of kinases with overlapping catalytic domains that may co-regulate each other.  
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3.2 Methods and Materials. 

3.2.1 Preparation of the expression host. 

The recombinant Gateway
®

 vector pDEST-PSKR1-KD2 harbouring the full cytoplasmic 

kinase domains of AtPSKR1 insert was provided by Dr. Sylvana Iacuone (Medicinal 

Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash 

University, Parkville, Australia) and processed further as detailed elsewhere (Kwezi et al, 

under revision).  The construct was transformed into E. coli BL21-AI
™

 One Shot
®

 

Chemically Competent cells (Invitrogen Corp., California) and selected colonies were used 

for protein expression.  Recombinant cells were enriched in 10 mL of double strength yeast-

tryptone medium (1.6 % (w/v) tryptone powder, 1 % (w/v) yeast extract, 0.5 % (w/v) NaCl) 

supplemented with double strength antibiotic (200 µg/mL ampicillin) for stringent selection 

and propagation.  Cultures were grown at 37 
O
C with shaking on an orbital shaker at 200 rpm 

over night. 

 

3.2.2 Synthesis of the recombinant AtPSKR1-KD2 and cytoplasmic kinase domains. 

3.2.2.1 Expression of kinase domains under native condition. 

Following overnight enrichment, 100 mL of double strength yeast-tryptone (YT) medium 

were inoculated with 2 mL of the overnight culture under “relaxed” antibiotic selection 

conditions (100 mg/mL of ampicllin).  This was grown further at 37 
O
C with shaking at 200 

rpm until an OD600 of 0.4 to 0.5 was reached.  Cultures were cooled down on ice for 5 

minutes and protein expression was induced with 0.2 % L-Arabinose (Sigma-Aldrich Corp., 

Missouri) and 100 µM isopropyl-β-D-thiogalactopyranoside [(IPTG), (Sigma-Aldrich Corp., 

Missouri)] and expressed at 30
 O

C for 8 hours.  Aliquots for each hour were analysed on 
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SDS-PAGE and the rest of culture was harvested by centrifugation at 12 x 4 g for 30 minutes 

at 5 
O
C. 

 

 

Figure 3.2.1 Structural features of the Gateway
®
 pDEST

™
17 expression vector.  (A) Physical 

map depicting the elements of the Gateway
®
 pDEST

™
17 expression vector (Invitrogen Corp., 

California), which allows expression of a His-tagged fusion protein.  (B) The sequence map of the 

vector shows the cloning site into which the insert was recombined in between the attB1 and attB2 

and other cis-elements. (Figure from Invitrogen Gateway
® 

manual) 

 

3.2.2.2 Protein extraction and preparation of lysate. 

Soluble proteins were purified under native conditions on Ni-NTA beads (Qiagen, Venlo, 

Netherlands) following a modified protocol 12 in the QIAexpressionist manual (Qiagen, 

Venlo, Netherlands).  Harvested cells were resuspended in ice cold Lysis buffer [50 mM 

NaH2PO4:H2O, 300 mM, NaCl pH 8.0, 45 mM imidazole supplemented with 1 mM PMSF 

 

 

 

 



57 

 

(phenylmethylsulphonyl fluoride)] and incubated on ice for 30 minutes with 50 µg/mL 

Lysozyme (Sigma-Aldrich Corp., Missouri).  The crude lysate was further homogenised 

through sonication (5 second pulses for 2 minutes at 50% power on an Ultrasonic 

homogenizer (Cole-Palmer, Illinois).  The lysate was clarified by centrifuging at 12 x 4 g for 

10 minutes on a bench top centrifuge at 5 
O
C.  The supernatant was decanted and kept as 

clarified lysate from which aliquots were analysed on SDS-PAGE. 

 

3.2.2.3 Batch purification of Kinase domain under native conditions. 

All steps in the purification procedure were either carried out in a 5 
O
C cold room or on ice. 

The recombinant kinase domain was purified under native conditions on Ni-NTA beads 

(Qiagen, Venlo, Netherlands).  A 4 mL volume of 50 % Ni-NTA bead slurry was first 

equilibrated with 5 X column volumes (20 mL) ice cold Lysis buffer and mixed on a rotary 

mixer for 30 minutes, beads were collected by centrifugation at 12 x 4 g for 1 minute and the 

supernatant was discarded as waste, equilibration was repeated three times before the beads 

were used for purification.  In a 50 mL tube, 4 mL of beads were mixed with 5 X column 

volumes (20 mL) of lysate for 1 hour and beads were collected by centrifugation at 12 x 4 g 

for 1 minute.  The supernatant was decanted and kept as Flow through (FL).  The beads were 

transferred to a Glass Econo-Column (Bio-Rad Laboratories, Inc., California) and unbound 

protein was washed off three times with 5 X column volumes wash buffer (50 mM 

NaH2PO4:H2O, 300 mM, NaCl pH 7.0, 45 mM imidazole and 1 mM PMSF).  Bound 

recombinant kinase was then eluted in (50 mM NaH2PO4:H2O, 300 mM, NaCl pH 8.0, 300 

mM imidazole and 1 mM PMSF).  The eluted protein was concentrated using Centriplus
®

 

filtration columns (3 000 MWCO PES, Millipore Corp., Massachusetts) by centrifugation (2 

hours at 4300×g at 5 
O
C) and de-salted with washing buffer (20 mM Tris, pH 8.0, 1 mM 
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PMSF) at 43 300 × g for 60 minutes at 5 
O
C.  The protein concentration was determined 

using a Quant-iT
™

 protein assay kit in a Qubit
®

 fluorometer (Invitrogen Corp., California). 

 

3.2.2.4 Cyclic nucleotide assays. 

The GC activity of AtPSKR1-KD2 was measured in vitro by incubating 10 µg of protein in 

50 mM Tris-HCl (pH 8.0), 5 mM MgCl2 or 5 mM MnCl2 and 1 mM GTP in a final volume 

100 µL and 2 mM isobutyl methylxanthine (IBMX).  Incubations were performed for 5, 10, 

15 and 20 minutes at room temperature (~25 
O
C) and terminated by the addition of 10 mM 

EDTA.  Tubes were then boiled for 3 minutes, cooled on ice for 2 minutes and centrifuged at 

2300 x g for 3 minutes and the supernatant was kept to assess cGMP content.  The cGMP 

content produced by the recombinant protein was analysed using the Amersham cGMP 

enzyme immunoassay (EIA) Biotrak
™

 System following the acetylation (protocol 4) as 

described in the supplier’s manual (GE Healthcare, Wisconsin).  The optical density was read 

at 450 nm using an Envision 2101 plate reader (Perkin Elmer Inc., Massachusetts).  Cyclic 

GMP levels were then calculated as fmol / µg protein. All assays in the described 

experiments were carried out in triplicate. 

 

3.2.2.5 Determination of the kinase activity of AtPSKR1-KD2 and the effects of cGMP 

on Substrate directed phosphorylation. 

The kinase activity of the recombinant AtPSKR1-KD2 was assessed in vitro by measuring its 

capacity to phosphorylated a substrate peptide, a flourophore namely SOX (Ser/Thr peptide 

1) (Shults and Imperiali, 2003) as described in the Omnia
™

 Ser/Thr-Recombinant Kit1 

(BioSource, Nivelles, Belgium; code KNZ2011).  Reactions were set up in white FluoroNunc
™

 

Maxisorp
™

 96 well plates (Thermo Fisher Scientific, Massachusetts).   
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In a 50 µL reaction, 1 µg of purified recombinant AtPSKR1-KD2 was incubated in 1 X 

reaction buffer (20 mM Tris-HCl, pH 7.5, 15 mM MgCl2) with 1 mM ATP, 0.2 mM DTT, 

with 0 to 50 µM of Ser/Thr substrate peptide1 to prepare the standard curve.  Under the same 

experimental conditions but in a different reaction system recombinant AtPSKR1-KD2 was 

incubated with either 0.1 or 1 µM cGMP followed by measuring the levels of 

phosphorylation on an Envision 2101 plate reader (Perkin Elmer Inc., Massachusetts) at an 

excitation of 405 nm (λex 405) and emission of 492 nm (λem 492).  Readings were recorded in 

relative fluorescence units (RFUs) every 10 seconds for 30 minutes at room temperature (~25 

O
C). 

 

3.2.2.6 Determination of the effects of cyclic nucleotides on the autophosphorylation 

state.  

To determine the effects of cyclic nucleotides on the autophosphorylation state of the kinases 

and its specificity, cGMP, cAMP and 8-bromo-cGMP (Sigma-Aldrich Corp., Missouri) were 

used.  Experiments were setup in 50 µL reaction containing 1 X buffer (20 mM Tris-HCl, pH 

7.5 and 15 mM MgCl2) and with either 0.05 µM, 0.1 µM or 1 µM of cyclic nucleotide.  The 

reaction mix was incubated at 30 
O
C for 5 minutes and 10 µg of kinase were added and 

incubated further for 10 minutes at room temperature (~25 
O
C).  The reaction was initiated by 

adding 1mM ATP and incubated at room temperature for 30 minutes  Reaction were halted 

by adding SDS sample buffer [125 mM Tris-HCl pH 6.8, 20 % (v/v) glycerol, 0.01 %( w/v) 

bromophenol blue, 4 % (w/v) SDS and 200 mM DTT] and inactivated for 5 minutes at 95°C.  

The samples were then cooled down on the bench and then centrifuged at 12 x 4 g for 1 

minute.  Samples were loaded on a 12 % SDS polyacrylamide gel composed of a 5 % 

stacking gel [0.5 M Tris-HCl, pH 6.8, 40 % Acrylamide/Bis solution (37.5:1) (Sigma-Aldrich 

Corp., Missouri) , 10 % (v/v) SDS, 10 % (v/v) APS (Ammonium persulfate) and TEMED 
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[1,2-Bis(dimethylamino)ethane] (Sigma-Aldrich Corp., Missouri) and 12 % Resolving gel 

composed of 1.5 M Tris-HCl pH 8.8, 40 % Acrylamide/Bis solution (37.5:1) (Sigma-Aldrich 

Corp., Missouri) , 10 % (v/v) SDS, 10 % (v/v) APS and TEMED (Sigma-Aldrich Corp., 

Missouri). 

Electrophoresis was carried out in 1 X SDS PAGE running buffer (SDS, Tris, Glycin and 

H
2
O), using a Bio-Rad Mini-Protean 3 electrophoresis module assembly system and a Bio-

Rad PowerPac™ Basic power supply.  The gels were first run at 100 V for the samples to 

reach the resolving gel then at 120 V for +/- 45 minutes. 

 

3.2.2.7 Western Blot analysis 

The Western blotting experiments were performed to detect possible cyclic nucleotide 

mediated changes in the autophosphorylation state of the cytoplasmic kinase domain. 

Proteins were transferred using Protean II 
™

 system (Bio-Rad Laboratories Inc., California) at 

100V and 350 amps for 1hour onto PVDF-P nitrocellulose membrane (GE Healthcare, 

Wisconsin).  The membrane was transferred to a clean container and left to dry over night to 

fix the protein on the membrane.  The membranes were briefly rehydrated with 1 X 

Phosphate Buffered Saline (PBS) (150 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 1.4 mM 

KH2HPO4, pH 7.3) and placed in blocking solution [1 % (w/v) Bovine serum albumin (BSA), 

0.1 % Tween 20 in 1x PBS] for 1 hour.  The blocking solution was decanted and the 

membranes were probed with the primary (1°) antibody solution [1/50000 dilutions of 0.1 

µg/mL Anti-Phosphothreonine Mouse mAB and PhosphoDetect™ Anti-Phosphoserine 

Mouse mAb (Merck
®

, Darmstadt, Germany) in blocking solution] on a shaker for 2 hours at 

room temperature (~25 
O
C).  The membranes were then washed in 1x PBS containing 0.1 % 

(v/v) Tween 20 (PBST) solution for 3 x 5 minutes at room temperature followed by treatment 

of the membranes with secondary (2°) antibody [1/ 3000 dilutions of 1 µg/µl Anti-Mouse IgG 
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(H+L), HRP conjugate (Biomol international, U.S.A.) in blocking solution] and incubated on 

a shaker for 1 hour on a shaking platform at room temperature (~25 
O
C) in the dark.  The 

membranes were then washed with PBST for 3 x 5 minutes followed with 1 x 5 minutes with 

PBS.  Detection was done by pouring 5 mL of 3,3’,5,5’-Tetramethylbenzidine (TMB)( 

Millipore Corp., Massachusetts) and the signal was developed for 5 minutes by monitoring 

visually until signal strength was sufficient for protein bands to be detected. 
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3.3 Results. 

The domain organization of both AtPSKR1-KD2 is a typical of LRR RLKs with a highly 

conserved leucine rich repeat domain in the extracellular space with a single transmembrane 

domain and a carboxyl-terminal intracellular kinase (Shiu and Bleecker, 2001a; Torii, 2004) 

which forms the majority of the intracellular protein (Shiu and Bleecker, 2001a).  The protein 

has similar domain organisation as reported for AtBRI1 (Kwezi et al., 2007) in that a putative 

GC catalytic centre is also found in the latter part of the kinase domain just downstream of 

the key kinase catalytic residues and the predicted activation loop (Figure 3.3.1 B) 
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Figure 3.3.1 Structural features of the guanylate cyclase catalytic domain of AtPSKR1.  (A) The 

14 amino acid core catalytic centre motif generated diagnostic for guanylate cyclases (GC) is found in 

the cytoplasmic carboxyl terminus of AtPSKR1 starting at amino acid number 920. Amino acids in 

red are functionally assigned residues in the catalytic centre.  Square brackets ([ ]) contain different 

possible amino acids in this position, “X” represents any amino acid and the number in the curly 

brackets ({}) indicates the number of residues that could be any amino acid.  The search motif has 

been extended at the C terminal to include at position 17/18 [D] or [E] proposed to be involved in 

metal (Mg
2+

 / Mn
2+

) binding.  (B) Representation of domain organisation of AtPSKR1 containing a 

signal peptide (SP, magenta), an extracellular domain (grey) leucine rich repeats (LRR) region 

inclusive of an island (green) region, a transmembrane domain (TM, blue), and a GC catalytic centre 

(red) embedded in the kinase domain (yellow).  The glutamic acid at position 17 is implicated in Mg
2+

 

/ Mn
2+

 binding (aquarmarine).  The glycine residues (underlined) N-terminal to the catalytic centre 

may have a role in stabilizing the centre.  The two black triangles indicate the kinase domain that was 

expressed as a recombinant protein.  (C) Alignment of the GC catalytic centres of PSKR1 

(AT2G02220) orthologues present in genomes of other plant species: Daucus carota, BAC00995.1; 

Poplus trichocarpa, XP_002312507.1; Oryza sativa, OS02G0629400; Sorghum bicolor; 

XP_002454207.1.  Also aligned is the functionally confirmed GC catalytic centre of AtBRI1 

(AT4G39400).  The putative GC catalytic domain is highlighted in the red box and the metal binding 

site in the blue box and the N terminal glycine residues are underlined as they can a characteristic 

feature of GCs.  (D) The amino acid sequence of the intracellular C terminal region of PSKR1.  The 

two black triangles demarcate the kinase domain that was cloned into pDEST17 for expression of the 

recombinant AtPSKR1 kinase domain (PSKR1-KD2) His-tag protein.  The sequence highlighted in 

red represents the GC catalytic centre with the aquamarine being the metal binding residue.  The 

sequences highlighted in yellow indicate amino acids that form essential components of the kinase 

catalytic domain and the black underlined sequence indicates the activation loop.  The asterisk points 

to the position that was mutated from glycine (G) to a lysine (K).  The sequences in blue indicate the 

protein kinase ATP-binding region signature and those in pink the Serine / Threonine protein kinases 
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active-site signature (prosite scan (November 1994) and the yellow underlined sequence corresponds 

to the complete kinase domain. 

To test if the putative GC domain in AtPSKR1-KD1 was functional a pDEST17 construct 

that contains the complete intracellular domain of AtPSKR1 (AtPSKR1-KD2) which 

constitutes the kinase domain was used to express the recombinant protein in BL21-AI cells 

as an N terminal His-tag protein with a predicted molecular weight of 38.9 kDa (Figure 

3.3.2).  The recombinant protein was expressed in BL21-AI cells as an N terminal His-tag 

protein and purified under native conditions. 

 

 

Figure 3.3.2 Expression and purification of the complete cytoplasmic domain of AtPSKR1-KD.  
AtPSKR1-KD2 was cloned into pDEST17 (Invitrogen Corp., California) to express it as a N-terminal 

His-tagged protein.  The vector contains an IPTG inducible promoter, the expression hosts that was 

used BL21-AI (Invitrogen Corp., California) in addition has a genomic insertion of an Arabinose 

inducible promoter.  The expression of  the fusion protein was done under two condition i.e induced 

with 0.2% L-Arabinose (I) only at 30
0
C shaking 200 rpm. Expression was also done under the 

combination of 100µM IPTG and 0.2 % L-Arabinose (AI) at 30
0
C, shaking at 250 rpm. The SDS 

PAGE shows the uninduced (-) and both expression conditions.  Purification was under native 

conditions on a Ni-NTA matrix (Qiagen, Venlo, Netherlands), the arrows marks the purified 

recombinant AtPSKR1-KD2 bands with (M) representing the low molecular weight marker 

(Fermentas International Inc., Burlington, Canada).  

 

To test if the kinase and GC domain were both functional, the constructs were also used for in 

vitro GC and phosphorylation studies.  First the GC activity was assessed and the obtained 
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results demonstrate that AtPSKR1-KD2 also exhibited GC activity as shown for AtBRI1 

(Kwezi et al., 2007) (Figure 3.3.3). 

Unlike the AtBRI1 GC domain, the AtPSKR1 GC catalytic center shows no preference in 

metal ion selectivity between Mn
2+

 or Mg
2+

 ions however the presence of one or the other 

metal ions was essential to observe activity (Figure 3.3.3). 

 

Figure 3.3.3 Demonstration of GC activity of the complete cytoplasmic domain of PSKR1-KD2.  

GC activity of PSKR1-KD2 (residues 686 to 1008).  The control contained all reaction components 

without the protein and reactions contained 10 µg protein with 1 mM GTP in the presence of either 5 

mM Mn
2+

 or Mg
2+

.  The cGMP levels were measured after two time intervals using the enzyme 

immunoassay and all experiments were done in triplicate and error bars represent the error. 

 

Secondly, using the Omnia
™

 kinase assay, we also show that AtPSKR1-KD2 has 

serine/threonine kinase activity through its capacity to phosphorylated the Ser/Thr peptide 1 

Under these conditions, AtPSKR1-KD2 has a Km of ~7.5 µM and a Vmax of ~1800 nmol min
-

1
 mg

-1
 protein (Figure 3.3.4 B).  To our knowledge, this is the first reported kinetic value for 

AtPSKR1 kinase activity and it is similar to the Km values reported for WAKL10-KD using 

the same substrate (Meier et al., 2010). 
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Figure 3.3.4 Demonstration of the recombinant AtPSKR1-D2 kinase activity with Ser/Thr 
Peptide 1.  (A) Calibration curve produced with 1 µg  of recombinant AtPSKR1-KD2 in a reaction 

mixture containing 1x reaction buffer, 1 mM ATP, 0.2 mM DTT, and 12.5 µM Ser/Thr-peptide 1, 

followed by measurement of the peptide phosphorylation levels with an Omnia
TM

 Ser/Thr-

Recombinant system (BioSource, Nivelles, Belgium).  Peptide phosphorylation levels generated with 

no protein (control) and with 1 µg recombinant AtPSKR1-KD2 as was determined by an Omnia
TM

 

Ser/Thr-Recombinant system.  (B) Hanes-Woolf plot of the kinetic determinants of serine-threonine 

kinase activity of the recombinant AtPSKR1-KD2 (shown) using the Ser/Thr peptide 1 as a substrate 

and measuring activity with the Omnia
TM

 kinase assay (BioSource, Nivelles, Belgium).  Peptide 

phosphorylation levels were measured on an Envision 2101 Multilabel plate reader (Perkin Elmer 

Inc., Massachusetts) with excitation at 405 nm (λex 405) and emission at 492 nm (λem 492).  Readings 

taken every 10 seconds for 15 minutes and the values represent the means of three experiments with 

standard error bars. 

 

The catalytic end-product of the GC domain, cGMP was tested to determine if it had any 

effects on the enzymatic activity of the kinase domain as is shown in (Figure 3.3.5 B). The 

presence of 0.1 and 1.0 µM cGMP in a 30 minute kinase reaction resulted in a decrease of 

AtPSKR1 kinase activity.  The obtained results indicate that the effect of cGMP on the kinase 

activity of the recombinant AtPSKR1 are not only concentration dependent but are also time-

dependent (between 0.1 to 1.0 µM cGMP) (Figure 3.3.5 A). 
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Figure 3.3.5 Demonstration of the effect of cGMP on the kinase activity of AtPSKR1.  (A) A 

time dependent curve of the effect of cGMP on AtPSKR1 kinase activity.  In a reaction system, 1 µg 

of recombinant AtPSKR1-KD2 was incubated with either 0.1 or 1 µM cGMP for 10 minutes in 1 X 

reaction buffer with Ser/Thr peptide 1(BioSource, Nivelles, Belgium).  The reaction was initiated by 

adding 1 mM ATP and readings were monitored over time.  (B) End point determination of the effect 

of cGMP on AtPSKR1.  Peptide phosphorylation levels were measured on an Envision 2101 

Multilabel plate reader (Perkin Elmer Inc., Massachusetts ) with excitation at 405 nm (λex 405) and 

emission at 492 nm (λem 492).  Readings taken every 10 seconds for 15 minutes and the values 

represent the mean of three experiments with standard error bars. 

 

Protein kinases play a critical role as regulators for most cellular processes and 

autophosphorylation is a characteristic regulatory mechanism in these phosphorylation- 

dependent signalling cascades (Pike et al., 2008).  This reversible phosphorylation  can 

influence its activity by inducing a conformational change that in turn could expose and 

therefore activate or hide, thereby deactivating binding sites for interaction partners (Hutti et 

al., 2004).  When AtPSKR1 was incubated with  cGMP, cAMP and 8-bromo-cGMP in a 

kinase autophosphorylation reaction we observed a capacity to autophosphorylate in vitro 

that was inhibited by cGMP but not cAMP indicating that this reaction is cGMP specific 

(Figure 3.3.6).  
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Figure 3.3.6 Demonstration of the effects of cyclic nucleotides on the autophosphorylation state 
of AtPSKR1.  Recombinant AtPSKR1-KD protein was expressed and purified under native 

conditions and the effects of cyclic nucleotides were assessed.  In a reaction system containing1 X 

reaction buffer (20 mM Tris pH 7.5 15 mM MgCl2, 0.2 mM DTT) recombinant protein was pre-

incubated with 01 or 1 µM of either cGMP, cAMP or 8-bromo-cGMP (Sigma-Aldrich Corp., 

Missouri)  for 10 minutes.  Kinase reaction was initiated by addition of 1 mM ATP followed by a 20 

minute incubation at room temperature. AtPSKR1 autophosphorylation controls contained either 

protein only with no cyclic nucleotide or ATP (-) or protein with ATP and no cyclic nucleotide (+) 

and positive control contained a phosphopeptide mixture (C)(Merck®, Darmstadt, Germany)  

Reaction were halted by adding SDS loading buffer and resolved on 12 % SDS-PAGE.  Gels were 

blotted on to PVDF-P nitrocellulose membrane (GE Healthcare, Wisconsin) and probed with Anti-

Phosphoserine Mouse mAb (Merck®, Darmstadt, Germany) and band were visualised with 3,3’,5,5’-

Tetramethylbenzidine (TMB)(Millipore Corp., Massachusetts). 
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3.4 Discussion 

In a previous study we demonstrated that the AtBRI1 receptor has a functional GC domain 

within its kinase domain (Kwezi et al., 2007), these findings prompted the suggestion that the 

GC or at least the catalytic product of this domain may also be involved or contribute to 

downstream signalling cascade of the receptor.  We had also identified a number of other 

candidate GC e.g. WAKL10 (Wall Associated Kinase-like 10) a member of the family of 

LRR-RLKs, that contain a functional GCs embedded within kinase domains (Meier et al., 

2010). 

This could be an indication that we are looking at a widespread and novel molecular 

architecture that may play a complex role in second messenger signalling.  In order to further 

investigate this possibility we undertook to investigate both the GC and kinase activity of 

another of these molecules, namely AtPSKR1.  We demonstrated that the kinase domain of 

the PSKR1 has both functional kinase and GC activity in vitro and that mutating a key 

residue in the GC catalytic centre removes GC activity (Kwezi et al.,; under revision).  In 

animals all characterised GCs contain sequence similarity to adenylyl cyclase class III 

cyclases and are predicted to function as dimers (Schaap, 2005).  Changes in two residues 

(Asp and Lys to Glu and Cys) can convert a mammalian membrane bound GC, GUCY2D 

(human retGC-1) to an adenylate cyclase (Tucker et al., 1998).  The mammalian receptor 

GCs are well characterised and include receptors for natriuretic peptides and the guanylin 

peptide family as well as GUCY2D (retinal specific membrane Guanylate cyclase 2D) 

(Aparicio and Applebury 1996; Chinkers et al., 1989).  In a recent study (Biswas et al., 2009) 

analysed the relationship between the receptor GC catalytic domains and kinase homology 

domains and suggested that these domains co-evolved.  The kinase domain is separated from 

the GC domain by a linker domain whose length appears to have been evolutionary 

conserved (Biswas et al., 2009). 
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Animal receptor GC domain topology is thus distinctly different from that observed in the 

plant receptor GCs where the kinase domain encapsulates the GC catalytic centre (Figure 

3.3.1 B).  Interestingly, GUCY2D appears to be the only receptor GC to contain an active 

kinase domain that autophosphorylates (Aparicio and Applebury, 1996) as the kinase 

homology domains in other receptor GCs are predicted to be inactive (Biswas et al., 2009).  

Membrane bound GCs also occur in lower eukaryotes and have a topology more similar to 

mammalian adenylate cyclases with two cassettes of six transmembrane spans that fold 

together to form the functional GC (Linder and Schultz 2002).  Unicellular GCs generally do 

not contain kinase homology domains (Biswas et al., 2009).  Hence, the plant receptor GCs 

AtPSKR1, AtBRI1 (Kwezi et al., 2007) and AtWAKL10 (Meier et al., 2010) appear to be 

unique molecules as they contain overlapping functional kinase and GC catalytic domains.  

To the best of our knowledge, this is the first report of kinase activity established for the 

PSKR1 receptor.  The recombinant kinase domain has a Km value of ~7.5 µM obtained using 

a standard commercial substrate developed for serine / threonine kinases (Figure 3.3.4 B).  

This value is comparable to the values obtained for WAKL10-KD of 2.7 µM (Meier et al., 

2010) and for mouse cAMP-dependent kinase (PKA) catalytic subunit of 1.8 µM (Shults and 

Imperiali, 2003) using the same substrate.  However, it is lower than the Km values of 71 or 

82 µM reported for the related LRR RLK kinase domain BRI1-KD using the BRI12 peptide 

substrate (Oh et al., 2000; Wang et al., 2005).  Hence the kinase domain has a typical 

functioning catalytic ability at least in vitro.  To date there are no reports on the natural 

downstream substrates of PSKR1 kinase activity.  One possibility might be the BRI1-

associated kinase 1 (BAK1) which partners other LRR RLKs such as BRI1 and FLAGELLIN 

SENSING 2 (FLS2) (Chinchilla et al., 2009; Chinchilla et al., 2007; Li et al., 2002; Nam and 

Li, 2002). 
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BAK1 is a promiscuous LRR RLK that interacts with AtBRI1 or FLS2 and other receptors to 

form heterodimers that initiate trans- or cross-phosphorylation of the intracellular domains of 

the receptor and this in turn generates a downstream signalling cascade (Chinchilla et al., 

2009). 

The same recombinant protein preparations of AtPSKR1-KD were used to demonstrate both 

kinase and GC activity.  Initial experiments revealed a relatively low GC activity in vitro with 

no preference for either Mn
2+

 or Mg
2+

 although their presence was critical for activity (Figure 

3.4)  It is noteworthy that we have noticed before that the low GC activity we observe in 

these in vitro  experiments are possibly due to the lack of other essential co-factors in the in 

vitro assay buffer (Kwezi et al., 2007) and we have subsequently showed that inclusion of 

Ca
2+

 does enhance GC activity in vitro (Kwezi et al., under revision).  Residues at position 3 

in the catalytic centre of the GC that are predicted to enable specificity for GTP in the active 

site include Gly, Cys, Thr, His and Ser (Biswas et al., 2009; Linder and Schultz, 2002; Liu et 

al., 1997; McCue et al., 2000; Schaap, 2005; Sunahara et al., 1998; Tucker et al., 1998).  

AtPSKR1 contains a Gly at this position in the GC catalytic centre and when it was mutated 

to a Lys, GC activity was removed (Kwezi under revision).  This is a significant finding as it 

shows that GC activity is dependent upon the predicted catalytic centre and the presence of 

specific amino acids predicted to directly interact with the guanine moiety.  Since both these 

domain show activity in vitro we investigated whether these domains can co-regulate each 

other.  Low concentrations (0.1 and 1.0 µM) of cGMP (a product of the GC domain) were 

added to a kinase reaction with ATP as the substrate for the kinase activity.  The observations 

were such that the ability of the kinase to phosphorylated its substrate was significantly 

reduced Figure 3.3.5 A and B). 
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Cyclic guanosine 3`,5`-monophosphate has been shown to promote phosphorylation in a 

soluble protein kinase that was purified from Pharbitis nil seedlings where such a promotion 

was also concentration-dependent with a maximal activity level reached at 1.0 µM cGMP 

concentration (Szmidt-Jaworska et al., 2003).  Protein kinases have diverse roles in a 

physiological system and phosphorylation of a target protein usually results in a functional 

change of that target protein.  Although this inhibitory effect of cGMP on the AtPSKR1 

kinase activity is not a common trait of most characterized cGMP dependent/regulated 

kinases, here we suggest a possibly unconventional manner in which cGMP can affect a 

protein kinase.  The mechanism of action of cGMP in the AtPSKR1 signalling pathway may 

involve a negative feedback loop to down-regulate transphosphorylation and possibly 

autophosphorylation to either inhibit kinase activity or the GC domain. If this turns out to be 

the case for these receptors with this novel architecture it may mean that they regulate 

directed phosphorylation more specifically.  We also investigated the effects of cGMP on 

autophosphorylation.  The protein family of RLKs are known to phosphorylate either Serine 

or Threonine residue and recently for AtBRI1 kinase it has been shown to autophosphorylate 

Tyrosine residues (Oh et al., 2009).  To test this we chose an antibody based strategy to 

investigate the effects of cGMP on the autophosphorylation state of the receptor in order to 

gain insights as to whether cGMP can mediate autophosphorylation in a residue specific 

manner.  When Anti-Phosphothreonine Mouse mAB and PhosphoDetect
™

 Anti-

Phosphoserine Mouse mAb (Merck
®

, Darmstadt, Germany) were used to probe AtPSKR1 

after it had been incubated with cGMP during kinase autophosphorylation activity 

assessment, only a signal for the PhosphoDetect
™

 Anti-Phosphoserine could be detected and 

none for the Anti-phosphothreonine could be detected (Figure 3.3.6). 
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This could indicate that AtPSKR1 autophosphorylates on Serine rather than Threonine 

residues and this is affected by cGMP.  It has been shown previously that a cAMP-dependent 

kinase can be altered to bind cGMP by mutating some key residues (Shabb et al., 1991). 

In order to determine which cyclic nucleotide is selectively bound by the AtPSKR1 kinase 

domain, cAMP, cGMP and 8-bromo-cGMP, an analogue of cGMP were used (Figure 3.3.6).  

The obtained results indicate that cyclic nucleotide inhibition of AtPSKR1 

autophosphorylation is specific for cGMP.  Compared to the strength that is obtained when 

cGMP and its analogue are incubated with AtPSKR1 when incubated with cAMP and to that 

of the control, the signal is lower.  Therefore cAMP seems to have no effect on the kinase or 

at least the autophosphorylation of the kinase domain (Figure 3.3.6).  These results implicate 

cGMP in the kinase signalling cascade of AtPSKR1 and so raise the possibility that cGMP 

dependent proteins kinases as well as their substrates form part of the signal relay network.  

This in turn highlights the role of cGMP in PSK signalling and is in keeping with the fact that 

it has been reported that cGMP modulates various intracellular processes i.e. cyclic 

nucleotide gated ion channel gating (Kaupp and Seifert, 2002), the transcriptome (Maathuis, 

2006) and chloroplast development (Bowler et al., 1994).  In addition, cGMP has been 

implicated as a signalling molecule in cell expansion (Volotovski et al., 1998; Wang et al., 

2007b) which is one of the described functional responses to α-PSK (Kutschmar et al., 2009; 

Matsubayashi et al., 2006b).  It is also conceivable that cGMP has a role in regulating the 

kinase activity of AtPSKR1 itself possibly by allosterically modulating the receptor. 
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Chapter 4: The Arabidopsis thaliana Brassinosteroid and Phytosulfokine 

Receptors have Guanylyl Cyclase activity in vivo. 

 

Abstract. 

Intercellular communication is a crucial trait in multicelluar organisms as it facilitates not 

only growth and development but also localised and systemic responses to environmental 

stimuli.  In plants this communication is at least in parts modulated by peptide hormone 

signalling.  Amongst some of the well characterised signalling molecules in plants are 

Brassinosteroids and Phytosulfokines which are involved in development and cell 

proliferation respectively.  The receptors for both these signalling peptides have been 

identified in plants as the AtBRI1 for Brassinosteroids and AtPSKR1 for Phytosulfokines.  

To signal from the point of stimulus perception to organelles and molecules within the cell 

where the appropriate response can occur, plants use receptors and one of the most abundant 

receptor families are the Leucine Rich Repeat Receptor-like kinases (LRR-RLK) and they 

include AtBRI1 and AtPSKR1.  Here we demonstrate how exogenous application of both 

Phytosulfokine and Brassinosteroid increases changes of intracellular cGMP levels in 

Arabidopsis mesophyll protoplasts demonstrating that these molecules have GC activity in 

vivo and therefore provide a link as second messenger between the hormones and down-

stream responses.  In addition, Arabidopsis plants were treated with a cell permeable 

analogue of cGMP and it was noted that this can affect changes in the phosphoproteome in 

Arabidopsis.  We therefore conclude that cGMP plays a role in kinase-dependent downstream 

signalling possibly from cGMP generated as a result of ligand binding. 
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4.1 Introduction. 

For sessile multicellular organism like plants, it is important for their cells to be able to 

communicate, to coordinate and systematically respond to stimuli.  In plants some of the 

ways through which this intercellular communication is possible is via peptide hormone and 

phytohormones signalling.  The first identified plant signalling peptide in plants was the 

tomato Systemin, a peptide hormone that is involved in the modulation of the wound 

response (Pearce et al., 1991).  Since then a number of other signalling molecules have been 

identified, amongst them are the phytohormone Brassinosteroids (Boller, 2005) and the 

pentapeptides Phytosulfokines.  Brassinosteroids are growth promoting steroids in plants with 

Brassinolide being the most bioactive form (Bishop and Koncz, 2002).  The latter is the most 

widely distributed in the plant kingdom and perceived by the Brassinosteroid receptor 

(AtBRI1) (Li and Chory, 1997).  Phytosulfokine was first discovered as a cell proliferation 

agent essential for low density cell cultures and several precursor proteins for PSK (proPSK) 

have been identified in different species that contain an N terminal secretory signal sequence 

and a PSK sequence near the C terminus (Lorbiecke and Sauter, 2002; Matsubayashi and 

Sakagami, 1996; Yang et al., 2001).  

The action of a hormone involves perception and Receptor-Like Kinases (RLKs) that have 

been implicated in peptide signalling and of particular interest are the RLKs with an 

extracellular leucine rich repeat (LRR) domain implicated in protein-protein or protein-

peptide interactions (He et al., 2000; Kinoshita et al., 2005; Kobe and Deisenhofer, 1994).  

These receptors typically have an island ligand binding domain embedded within the leucine 

repeats and it is thought that the non-globular shape of these domains are such that they 

expose sufficient surface area for optimum interaction with smaller globular proteins or other 

ligands, making them optimal for protein binding by facilitating more interactions, and as a 

result increased affinity for the ligand (Kobe and Deisenhofer, 1994). 
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The Brassinosteroid and Phytosulfokine receptors (AtBRI1 and AtPSKR1 respectively) are 

amongst the LRRs whose natural ligands have been characterized (Li and Chory, 1997; 

Matsubayashi et al., 2002).  α-PSK is the natural ligand for AtPSKR1 and it is a pentapeptide 

that is sulphated on its two tyrosine residues (Y(SO3H)IY(SO3H)TQ) with cellular activity 

dependent on sulphation of the tyrosine residues (Matsubayashi and Sakagami 1996).  It is 

likely that pro-PSK is sulphated by tyrosyl protein sulphotransferase as the protein is 

processed through the Golgi network before secretion (Hanai et al., 2000). 

Arabidopsis mesophyll protoplasts have been used and have provided a reliable tool for 

conducting cell-based experiments using molecular elicitors followed by biochemical 

analysis to characterise the functions and molecular components within diverse signalling 

pathways (Yoo et al., 2007).  Protoplasts are plants cells with cell walls removed and thus 

having the extracellular domains (e.g. LRRs) of membrane bound receptors (e.g. RLKs) 

exposed directly.  Here we demonstrate how we have used protoplast as an experimental 

system to administer Brassinosteroid and Phytosulfokine and report for the first time in vivo 

GC activity for both the Brassinosteroid and Phytosulfokine receptors.  Responses to stimuli 

in organisms include signalling networks that often rely on post-translational modifications 

and amongst these is protein phosphorylation.  In Chapter 3, (Figure 3.3.6), we showed how 

the ability of AtPSKR1 to phosphorylate a substrate is affected by cGMP in vitro.  In order to 

gain further understanding as to what are the effects of cGMP on the global phosphorylation 

within a cell we have taken a phosphoproteomics approach.  Phosphoproteomics coupled 

with mass spectrometry is versatile technique for large scale characterization of complex 

proteins samples (de la Fuente van Bentem and Hirt, 2007).  Using this approach we 

demonstrate the effects of cGMP on the Arabidopsis thaliana phosphoproteome. 
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4.2 Methods and Materials. 

4.2.1 Preparation of plant material for protoplast isolation. 

Arabidopsis thaliana Columbia (Col-0) seeds were surface-sterilized by washing in 70 % 

Ethanol through a brief vortexing cycle, seeds were allowed to settle at the bottom and the 

supernatant was discarded as waste.  This was followed by washing with a 10 % solution of 

commercial bleach (Sodium hypochlorite) (v/v) and subsequently rinsed 5 times with sterile 

distilled H2O.  Seeds were transferred onto MS-agar plates [0.44 % Murashige and Skoog 

basal medium  (w/v), 3 % Sucrose (w/v) and 0.4 % Agar  (w/v), pH 5.7 (all reagants were 

from Sigma-Aldrich Corp., Missouri)] and vernalised at 4 
O
C for three days.  The seeds were 

germinated at 23 
O
C with a light and dark regime of 16/8 hours light/dark photoperiod cycle 

for two weeks.  Seeds were transferred to seed trays (15 cm x 20 cm) filled with ⅔ 

commercial pot mix at the bottom filled with seedling germination soil and further grown 

under the same light and temperature conditions until they were 4 weeks old.  

 

4.2.2 Preparation of plant material for phosphoproteomics. 

Arabidopsis thaliana Columbia (Col-0) seeds were surfaced sterilized as described in 

(Section 4.2.1) and germinated in MS media [0.44 % Murashige and Skoog basal medium  

(w/v), 3 % Sucrose (w/v) and, pH 5.7 (all reagants were from Sigma-Aldrich Corp., 

Missouri)].  The seeds were germinated at room temperature in sterile 250 mL conical flasks 

capped with 4 layers of foil with shaking on an orbital shaker shaking at 130 rpm under long 

day conditions (16 hours light and 8 hours dark) until use when they were 4 weeks old.  At 

this stage plants were treated with cell permeant 8-bromo-cGMP and allowed to grow further 

for 3 hours after which growth was halted by flash freezing the plants in liquid Nitrogen. 

 

 

 

 



78 

 

 

4.2.3 Preparation and isolation of mesophyll protoplasts from Arabidopsis thaliana 

leaves. 

Protoplasts were prepared based on a protocol by (Yoo et al., 2007).  Leaves were sliced in a 

Petri dish with a sterile surgical blade into thin strips in W5 buffer [0.4 M Manitol, 7 mM 

CaCl2 and 3 mM MES (4-Morpholineethanesulfonic acid), pH 5.7].  Buffer was discarded as 

waste and leaf strips were incubated in enzyme solution [1.5 % (w/v) Cellulase R10 (Yakult 

Pharmaceutical Ind. Co., Ltd., Japan), 0.4 % (w/v) Macerozyme R10 (Yakult Pharmaceutical 

Ind. Co., Ltd., Japan), 0.4 mM D-Mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2 and 0.1 

% (w/v) Bovine Serum Albumin (BSA), pH 5.7 (all reagants excluding the enzyme were 

from Sigma-Aldrich Corp., Missouri).  The Petri dishes were covered with foil and digestion 

was carried in the dark at room temperature with slow shaking at ~40 rpm on an orbital 

shaker for 2 hours.  The solution was filtered through a nylon mesh, pore size 60 µm 

(Millipore Corp., Massachusetts), the filtrate was centrifuged at 100g for 3 minutes to pellet 

the protoplast.  Protoplast pellets were resuspended in W1 buffer [0.4 M D-Mannitol, 4 mM 

MES, 20 mM KCl, pH 5.7 (all reagants were from Sigma-Aldrich Corp., Missouri)] and cell 

density was counted using a Hemocytometer. 

 

4.2.3.1 Treatment of protoplast and measurement of intracellular cGMP. 

The prepared protoplasts were subjected to two treatments.  Firstly with the active sulphated 

form of Phytosulfokine-α (Α-PSK) and the inactive non-sulphated form (n-PSK) as the 

control.  The Phytosulfokine peptides were obtained from Professor Helen Irving (Medicinal 

Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash 

University, Australia) and were synthesised as detailed elsewhere (Kwezi et al, under 

revision). 
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The protoplasts (2.9 x 10
5
 / treatment) were treated with 0.1 µM of either Α-PSK or n-PSK 

for intervals of 2, 5 and 15 minutes.  Secondly protoplasts (2.5 x 10
5
 /treatment) were treated 

with 10 µM Epibrassinolide for the same time intervals.  Protoplasts were then collected by 

briefly spinning at 100 g and flash frozen in liquid nitrogen.  The cGMP content from 

protoplast assays was analysed using the Amersham cGMP enzyme immunoassay (EIA) 

Biotrak System following protocol “4”, an acetylation protocol which allows for 

measurement of intracellular cGMP, as described in the supplier’s manual (GE Healthcare, 

Wisconsin).  The optical density was read at 450 nm using an Envision 2101 plate reader 

(Perkin Elmer Inc., Massachusetts).  Cyclic GMP levels were calculated and expressed in 

fmol / µg protein or fmol / well (treatment).  

 

4.2.4 Protein sample preparation for phosphosproteome analysis. 

4.2.4.1 Protein extraction. 

Proteins were extracted based on a method for preparation of microsomes by (Komatsu and 

Hirano, 1993) in which protein fractionation and enrichment can be achieved by centrifuging 

in sucrose and in the presence of detergents and buffering salts.  Plant tissues were ground in 

liquid N2 and homogenized at 4 
O
C with a homogenization buffer composed of [20 mM Tris-

HCl pH 8.8, 0.25 M Sucrose, 10 mM EGTA, 1 mM DTT, Phosphatase Inhibitor Cocktail Set 

II (Merck , Darmstadt, Germany)] and Protease inhibitors (Merck , Darmstadt, Germany). all 

reagent except those specified were from Sigma-Aldrich Corp. Missouri].  The homogenates 

were then centrifuged at 3000 g for 15 minutes.  The supernatant was decanted and kept as 

total soluble protein (TSP) and aliquots from these were subsequently analysed on SDS-PGE.  
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4.2.4.2 Sample Preparation for Two-Dimensional Gel Electrophoresis. 

Total soluble protein were precipitated from extraction buffer using 4 X volume 80 % ice 

cold Acetone and a tenth of the final volume 1 mM Tris-HCl, pH 8.8 and by incubating at -20 

O
C over night.  Precipitated proteins were collected through centrifugation at 3000 g at room 

temperature for 15 minutes.  The pellets were washed three times with in ice cold 80 % (v/v) 

acetone equivalent to the amount of acetone precipitated with by vortexing for 5 x 3 minutes 

and then centrifuged at max speed using a bench centrifuge at 4 
O
C for 15 minutes.  The 

resulting pellets were air dried on to remove excess Acetone.  All pellets were solubilized in 

urea lysis buffer suitable for 2-DE analysis composed of [9 M Urea, 2 M Thiourea and 4 % 

(w/v) CHAPS, all reagents for the urea lysis buffer were from Sigma-Aldrich Corp., 

Missouri].  Proteins were solubilised at room temperature for an hour and quantified using 

the Bradford assay (Bradford, 1976). 

 

4.2.5 Two Dimensional Gel Electrophoresis (2DE). 

4.2.5.1 Rehydration of Immobilized pH Gradient (IPG) strips.  

Protein samples were prepared by mixing the protein samples with 0.8 % (v/v) DTT, 0.2 % 

(v/v) pH 3-10 Ampholytes (Bio-Rad Laboratories Inc., California), 5 µl 0.1 % (w/v) 

Bromophenol Blue (BPB) and made up to a final volume of 125 µl with urea lysis buffer [9 

M Urea, 2 M Thiourea and 4 % (w/v) CHAPS, all reagents for the urea lysis buffer were from 

Sigma-Aldrich Corp., Missouri]. This mixture was vortexed for 10 seconds and centrifuged 

for 1 minute at 12.4 x g to pellet the insoluble material.  Protein samples (200 µg) were 

rehydrated passively into 7 cm IPG (Immobilized pH gradient)(Gorg et al., 2004) strips of a 

pH gradient of pH 4 - 7 (Bio-Rad Laboratories Inc., California) on a re-swelling tray (GE 
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Healthcare, Wisconsin) and overlayered with mineral oil (GE Healthcare, Wisconsin) over 

night at room temperature. 

4.2.5.1 Isoelectric focusing (IEF) of total soluble proteins. 

Isoelectric focusing is the first dimension of the two dimensional electrophoresis.  

Rehydrated strips were removed from the re-swelling tray and rinsed with a stream of de-

ionized water to remove crystallized urea and unabsorbed sample.  The strips were gently 

blotted on filter paper.  Isoelectric focusing was done on an Ettan
™

 IPGphor II
™

 IEF machine 

(GE Healthcare, Wisconsin). 

The ends of the gel strips covered with 0.5 cm damp IEF (Isoelectric focusing) electrode 

strips (GE Healthcare, Wisconsin) to ensure conductivity and collection of salts and other 

ionic contaminants in the sample.  Isoelectric focusing was carried out at 20 
O
C in three steps 

- Step 1: 0 – 250 V for 10 minutes, step 2: 250 V – 4000 V for 1 hour and step 3: 4000 V – 

4000 V for 12000 Vhrs (Volt hours).  Strips were then removed and rinsed with distilled 

H2O, followed with an equilibration step to bring the protein to their reduced state by 

incubating in equilibration buffer 1 [6 M Urea, 0.375 M Tris-HCl pH 8.8, 2 % SDS, 20 % 

Glycerol, 2 % (w/v) Dithiothreitol (DTT)] with gentle agitation for 20 minutes.  This was 

followed by an alkylation step in equilibration 2 (6 M Urea, 0.375 M Tris-HCl pH 8.8, 2 % 

SDS, 20 % Glycerol, 2.5 % (w/v) Iodoacetamide) with gentle agitation for 20 minutes.  The 

proteins were finally resolved by mass by loading the equilibrated strips in on top of a 12 % 

SDS-PAGE gel and sealed with 1 % agarose supplemented with a tint of Bromophenol Blue 

to track migration. 
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4.2.6 Phosphoproteome Analysis with Pro-Q Diamond stain. 

After proteins were resolved according their mass the gels were used for phosphoproteome 

analysis.  The gels were fixed overnight in a solution containing 50 % (v/v) Methanol and 10 

% (v/v) Acetic acid.  The following day gels were washed with ultra pure distilled H2O for 15 

minutes (3 times) followed by staining the gels with Pro-Q diamond
™ 

stain (Invitrogen Corp., 

California) for 90 minutes in the dark.  The gels were then destained in 50 mM Sodium 

acetate (pH 4.0) and 20 % (v/v) Acetonitrile (Sigma-Aldrich Corp., Missouri) for 30 minutes 

with gentle agitation in the dark at room temperature.  Gels were imaged using the Pharos 

FX™ plus molecular imager (Bio-Rad Laboratories, Inc., California) with the multiplexing 

application set to detect Pro-Q Diamond stain.  Excitation was set at 532 nm (λex 532) and 

emission at 605 nm (λex 605). 

 

4.2.7 Mass spectrometric analysis. 

4.2.7.1 In-gel tryptic digestion. 

Spots of interest were excised manually and transferred into sterile microcentrifuge tubes. 

The gel pieces were washed twice with 50 mM ammonium bicarbonate for 5 minutes each 

time and a third time for 30 minutes with occasional vortexing.  The gel pieces were then 

destained twice with 50 % (v/v) 50 mM ammonium bicarbonate and 50 % (v/v) Acetonitrile 

for 30 minutes with occasional vortexing.  The gel pieces were dehydrated with 100 µL of 

100 % (v/v) Acetonitrile for 5 minutes, and then completely dried using the Speed Vacuum 

SC100 (ThermoSavant, , Massachusetts ).  Proteins were in-gel digested with approximately 

120 ng sequencing grade modified trypsin (Promega Corp., Wisconsin) dissolved in 25 mM 

ammonium bicarbonate for 6 h at 37 
O
C.  The protein digestion was stopped by adding 50 µL 
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of 1 % (v/v) trifluoroacetic acid (TFA) and incubating for 2-4 hours at room temperature 

before storage at 4 
O
C until further analysis. 

 

4.2.7.2 Protein identification by MALDI-TOF mass spectrometry. 

Digested proteins (1 µL) were mixed separately with the same volume of α-cyna-hydroxy-

cinnamic (CHCA) matrix and spotted onto a MALDI target plate for analysis by MALDI-

TOF mass spectrometry using a Voyager DE Pro Biospectrometry workstation (Applied 

Biosystems Inc., California) operated by Dr Ludivine Thomas (King Abdullah University of 

Science and Technology, Kingdom of Saudi Arabia) to generate a peptide mass fingerprint 

(PMF).  The MALDI-TOF was operated in the positive ion delayed extraction reflector mode 

for highest resolution and mass accuracy.  Peptides were ionized with a 337 nm laser and 

spectra were acquired at 20 kV acceleration potential with optimized parameters.  Close 

external calibration was employed using the Sequazyme calibration
TM

 mixture II containing 

angiotensin I, ACTH (1-17 clip), ACTH (18-39 clip) and bovine insulin (Applied Biosystems 

Inc., California).  This calibration method typically provided mass accuracy of 100 to 200 

ppm across the mass range 900 to 5000 Da.  Peptide spectra of accumulated 1200 shots each 

were automatically processed for baseline correction, noise removal, and peak de-isotoping. 

The threshold was manually adjusted between 2 and 8 % base peak intensity.  All searches 

were performed against the National Center for Biotechnology Information (NCBI) and Mass 

Spectrometry DataBase (MSDB) peptide mass databases using MASCOT 

(http://www.matrixscience.com/search_form_select.html).  Candidate identifications with 

Molecular weight search (MOWSE) scores higher than 85 were automatically considered as 

positive assignments.  If more than one protein satisfied mentioned threshold criteria, the 

entry with the highest MOWSE score was assigned. 
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4.2.7.3 Confirmation of the expression of AtBIKI in Arabidopsis leaves with RT-PCR. 

Total RNA was extracted from leaf tissue using the RNeasy Plant Mini Kit (Qiagen, Venlo, 

Netherlands) and RNA was digested with DNase I (Ambion) for 1 hour at 37 
O
C.  Total RNA 

(1 µg) was reverse transcribed with SuperScript III Reverse Transcriptase (Invitrogen Corp., 

California) using oligo dT15 primers according to the manufacturer’s specifications in a total 

volume of 20 µL.  PCR reaction mixtures contained 1 µL cDNA (or negative RT reaction), 

1x PCR coral load buffer (Qiagen, Venlo, Netherlands), 0.1 µM primers, 200 µM dNTPs and 

0.2 U Taq DNA polymerase (Qiagen, Venlo, Netherlands) per 20 µL reaction.  Gene specific 

primers were used to amplify AtBIKI, Forward: 5`TTGCCTTGTGGGTTGAAAT3` and 

Reverse: 5`ATGGGACATGTAACCGGAAA 3`.  All reactions were denatured at 94 
O
C for 

3 minutes and then 35 cycles of amplification were performed (60 seconds denaturation at 94 

O
C, 60 seconds annealing at 52 

O
C and 60 seconds extension at 72 

O
C) with a final extension 

at 72 
O
C for 10 minutes in a MyCycler thermal Cycler (Bio-Rad Laboratories Inc., 

California).  The quality of cDNA produced was assessed by amplifying cDNA for the UBQ-

10 gene (A.thaliana, AT4G05320).  After PCR amplification, equal volumes of PCR products 

were separated in 1.5 % agarose gels, stained with ethidium bromide and visualised under 

UV light. 
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4.3 Results. 

Previously we demonstrated that two members of the Leucine Rich Repeat Receptor-Like 

Kinases family, AtPSKR1 (see Chapter 3) and AtBRI1 have GC activity in vitro (Kwezi et 

al., 2007).  If the GC activity observed in vitro for both these molecules has a biological role 

in general and a signalling function in particular, then we might also expect to observe it in 

vivo.  To test this possibility we isolated protoplasts from Arabidopsis leaves and treated 

them with the natural ligands for both these receptors and assessed whether they can 

stimulate cGMP production.  Protoplasts have been suggested as an ideal system to carry out 

investigations into the roles of cyclic nucleotide signalling as they can respond rapidly to 

extracellular signals (Assmann, 1995).  The Brassinosteroid insensitive receptor is 

ubiquitously expressed (Friedrichsen et al., 2000) and AtPSKR1 is expressed in leaves of 

higher plants (Kutschmar et al., 2008; Yang et al., 2001).  Therefore it is conceivably that the 

mesophyll protoplasts would have naturally occurring ligand binding sites for both the Α-

PSK and Epibrassinolide.  In the presence of α-PSK and Epibrassinolide but not nPSK, 

cGMP levels were raised in protoplasts (Figure 4.3.1).  This increase in cGMP levels was 

measured in the absence of any intracellular phosphodiesterase inhibitors and the levels of 

cGMP that were detected in the protoplasts are consistent with those reported in plants 

(Pharmawati et al., 1998; Szmidt-Jaworska et al., 2008; Wang et al., 2007a).  The observed 

increases in intracellular cGMP levels were time dependent with the highest level reached at 

five minutes for Epibrassinolide (Figure 4.3.1 A) and 5 minutes to 15 minutes for α-PSK 

(Figure 4.3.1 B). 
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Figure 4.3.1 Demonstration of the in vivo GC activity of AtPSKR1 and AtBRI1.  (A) Freshly 

isolated leaf mesophyll protoplasts were treated with 10 µM of an analogue of the natural ligand of 

the Brassinonosteroid receptor (Epibrassinolide) (Sigma-Aldrich Corp., Missouri) for 2, 5 and 15 

minutes Control were treated with ethanol and the insert shows a picture of the protoplast that were 

used.  (B) Cyclic GMP production following treatment with α-PSK (0.1 µM) or nPSK (0.1 µM) in 

protoplasts over 15 minutes in the absence of any phosphodiesterase inhibitor.  Intracellular cGMP 

were assessed with the enzyme immunoassay and error bars represent the SEM of the means of three 

independent and representative assays (N = 3). 

 

Cyclic GMP has increasingly become implicated in a large number of plant processes 

including responses to abiotic stresses such as dehydration and salt (Donaldson et al., 2004), 

hormone dependent signalling and changes of the transcriptome of A. thaliana (Maathuis, 

2006).  In chapter 3 we have also shown that one of these downstream processes and targets 

of by cGMP are kinases.  In order to further determine the effects of cGMP on intracellular 

kinases and their substrates, we have used a proteomics approach to gain some insight into 

the phosphoproteome as modulated by cGMP.   
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Through phosphoproteomics it is possible to quantitatively asses phosphate group as a post-

translational modification on individual proteins within complex protein samples (Schreiber 

et al., 2008).  We have used 2-dimensional electrophoresis (2-DE) as it provides an 

opportunity to profile complex protein samples (Gorg et al., 2004).  Firstly, we analyzed the 

protein on one dimension (separation by mass) from all prepared protein samples so as to 

analyze for protein sample quantity and preview quality and representation of each of the 

extractions.  To quantitatively profile the phosphoproteome at the first dimension we used 

Pro-Q
®

 Diamond stain, a stain that selectively stains phosphoproteins in polyacrylamide gels 

(Figure 4.3.2 A).  The stain reveals that the extraction procedure is able to maintain proteins 

in their phosphorylated state.  From this we were able to detect changes in the 

phosphorylation state as indicated by the arrows (Figure 4.3.2 A).  To determine the 

representation of the extracted total soluble proteins, we used a Coomassie blue based 

detection which stains all proteins present in the samples and from this were able to observe 

the quality and representation as would be expected from a complex sample as total soluble 

proteins (Figure 4.3.2 B).  
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Figure 4.3.2 Demonstration of cGMP mediated changes in the phosphoproteome of A.thaliana.  
(A) Proteins were extracted, from plants treated with 10 µM, resolved on 12 % SDS-PAGE and 

stained with Pro-Q
®
 Diamond (Invitrogen Corp., California).  Controls (Con) were treated with H20 

and, (M) is the molecular weight marker (Fermentas) with a phosprotein positive control.  (B) A 

Coomassie blue stained SDS-PAGE of treated plant protein extracts Experiments were done in 

duplicate and 20µg of protein was loaded per well and arrows indicate some of the notable changes in 

the first dimension. 

 

Secondly, we have used 2-D analysis as a method to identifying individual proteins, 

specifically kinases and their targets that are affected by cGMP (Figure 4.3.3).  Protein 

samples were separated by charge over a pH gradient of 4 – 7 on 7 cm IPG strips.  The strips 

allow for separation of one sample at a time i.e. one experimental condition and represented 

below are the control (Figure 4.3.3 A) and the treatment with cGMP (Figure 4.3.3 B).  

Changes in phosphorylation are observed as both as a decrease or increase in intensity of the 

protein spots on SDS-PAGE as indicated by arrows.  Out of the observed protein spots 

stained with Pro-Q
®

CF protein spots, seven were selected for identification by MALDI-TOF 

and database searches.  Spot selection was done on the basis of high abundance and good 

resolution on the IPG strip pH ranges used.  Selected protein spots are numbered 1-7 (Figure 

4.3.3 A and B).  These protein spots of interest were picked and trypsinised and peptide 
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digests were analysed using MALDI-TOF.  The resultant peptide mass fingerprints generated 

by MALDI-TOF MS were used in sequence database searching to find their matching protein 

identities.  One of the protein spots was of particular interest as indicated by the red arrow 

(Figure 4.3.3 A and B) since it is a kinases and identified as the Arabidopsis Botrytis induced 

kinase (AtBIKI) (Figure 4.3.3 C) 

 

 

 

 

Figure 4.3.3 Two dimensional protein analysis of cGMP induced phosphophorylation and 
MALDI-TOF mass spectrometry identification in A. thaliana.  (A) Untreated plant protein.  (B) 

Protein extract (100µg) from 10µM 8-bromo-cGMP treated plants were passively absorbed into 7cm 

IPG (Immobilised pH gradient) strips and focused over a pH gradient of 4-7 followed by resolution by 

mass on 12 % SDS-PAGE.  Arrows indicate notable changes between control and treatment with red 

indicating the Botrytis induced kinase (AtBIKI, At2g39660).  (C) Protein that exhibited changes in 

the autophosphorylation state were excised from the gel and digested with trypsin to gain their mass 

fingerprint and identified with MALDI-TOF mass spectrometry.  The insert indicates the protein spots 
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of interest.  Mass spectra were obtained for the spot and allowed for the interrogation of databases and 

thereby identification of protein. 

RT-PCR is an efficient way for testing for temporal and spatial “expression of a protein”.  

We have therefore used a PCR approach here and extracted total RNA from leaves of the 

same plants that were used in the phosphoproteomics study and reverse transcribed to 

produce cDNA.  When the cDNA was probed with AtBIKI gene specific primers, the PCR 

product corresponded to the expected size of AtBIKI (1946 base pairs) (Figure 4.3.4 A). This 

then confirmed that AtBIKI is expressed in the tissue that was used.  Since RNA is highly 

unstable and is prone to degradation we tested for any degradation by using the cDNA to 

amplify the Ubiquitin gene which comfirmed that the cDNA had remained stable from 

extraction to use as a template in the RT-PCR. (Figure 4.3.4 B). 

  

 

Figure 4.3.4 Determination of the expression of AtBIKI in A. thalina leaves using RT-PCR.  (A) 

Total RNA was extracted from 4 week old leaf tissue using the RNeasy Plant Mini Kit (Qiagen, 

Venlo, Netherlands).  Total RNA was then reverse transcribed with SuperScript III Reverse 

Transcriptase (Invitrogen Corp., California). The cDNA was used as a template and gene specific 

primers were used to amplify AtBIKI with high fidelity Taq DNA polymerase (Qiagen, Venlo, 

Netherlands) on a MyCycler thermal Cycler (BioRad Laboratories).  (B) The quality of cDNA 

produced was assessed by amplifying cDNA for the UBQ-10 gene.  After PCR amplification, equal 

volumes of PCR products were separated in 1.5% agarose gels, stained with ethidium bromide and 

visualised under UV light. 
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4.4 Discussion. 

Receptor like kinases play a critical role in mediation of extracellular signals and a major 

subgroup of this super family of protein receptor are the leucine-rich repeat receptor kinases 

(LRRRLKs).  These types of receptors perceive signal through their extracellular domains 

with the consensus residues within the LRR motif providing a structural scaffold for protein-

protein interactions whilst the non-consensus residues within LRRs are thought to determine 

the specificity for the interactions (Kobe and Deisenhofer, 1994).  Though some redundancy 

in the binding of ligands in this type of receptors has been reported where systemin was 

shown to bind to the tomato homologue of AtBRI1 (Scheer and Ryan, 2002).  However, 

although it binds specifically, Systemin does not activate the BRI1 receptor 

autophosphorylation cascade (Malinowski et al., 2009).  We have previously shown that 

three members of the family of LRR have GC activity in vitro, AtWAKL (Meier et al., 2010), 

AtBRI1 (Kwezi et al., 2007) and AtPSKR1 (see Chapter 3).  To investigate whether this 

activity is exhibited in vivo we have used the natural ligands for two of these receptors, 

Phtysulfokine and Brassinolide the most biologically active Brassinosteroid (Li and Chory, 

1997), to treat protoplast and monitor whether they do affect intracellular cGMP levels. 

Plant protoplasts are without cell walls and therefore provide a versatile cell-based 

experimental system to study environmental and biological cues and monitor and to monitor 

these within that biological system.  When PSK and Epibrrassinolide were applied to 

protoplast, increases in cGMP levels were observed within minutes following application of 

both α-PSK but not the non-sulphated nPSK and Epibrassinolide but not its control (Figure 

4.3.1).  The increases in intracellular cGMP levels are of similar orders of magnitude to those 

reported previously in response to extracellular signals such as Gibberellic acid (Penson et 

al., 1996) or plant natriuretic peptide (Pharmawati et al., 1998; Pharmawati et al., 2001; 
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Wang et al., 2007a) and here they have proven both sufficient and essential for a downstream 

response. 

Furthermore, these observed increases in cGMP occur in a time frame that is consistent with 

activating the GC catalytic function of the AtPSKR1 and AtBRI receptor.  A similar time 

frame would be expected to result in protein phosphorylation from the kinase as well as it is 

ligand binding that induces these changes and the kinases are also activated.  Importantly, 

cGMP levels are consistently observed to rise in response to α-PSK but not the non-sulphated 

PSK backbone and this is also observed for Epibrassinolide indicating that cGMP production 

is part of the Phytosulfokine and Brassinosteroid signalling cascade as was speculated for the 

Brassinosteroid signalling pathway in (Kwezi et al., 2007). 

These early effects are unlikely to have been previously observed as the initial assays used to 

identify and characterise PSK activity were over considerably longer periods of three to six 

days where cell growth was assessed (Matsubayashi et al., 1996).  Unlike for the 

Brassinosteroid receptor whose downstream signalling cascade is well characterised, the 

actual proteins and other components relaying the downstream signalling cascade following 

binding of α-PSK to AtPSKR1 are not known.  Our results implicate cGMP in the early 

events and so raise the possibility that cGMP dependent proteins as well as kinase substrates 

form part of the relay network of not only that of AtPSRK1 but also for AtBRI1.  The 

involvement of cyclic nucleotide is a novel and may be one of the ways in which to explain 

the signal transduction and amplification from the ligand to the nucleus.  Communication 

with the nucleus is relevant since cGMP does effect transcription (Maathuis 2006).  Changes 

in the transcriptome as induced by hormones is know and has been shown in mammalian 

systems (Beato et al., 1995). 
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Contrary to plants, the hormones are perceived by intracellular receptors, which act as ligand- 

dependent transcription factors that regulate gene expression and belong to nuclear receptor 

super family (Beato et al., 1995; Bishop and Koncz, 2002).   

However in plants, hormone perception occurs at the extracellular levels and therefore in case 

AtPSKR1 and AtBRI1 may be transducing the hormone signal to the nucleus  

Cyclic nucleotide have been shown to affect kinase activity in vitro with a recent example 

shown in Pharbitis nil (Szmidt-Jaworska et al., 2003).  In addition, we have reported 

(Chapter 3) that this characteristic is also observed in PSKR which has kinase activity.  

However, cGMP mediated changes at the phosphosproteome (Ficarro et al., 2002) level is 

still far from established let alone understood.  Most cellular processes involve or are 

regulated by the reversible phosphorylation of proteins on serine and threonine residues and 

this phosphorylation serves as good modulator of protein function (Hubbard and Cohen, 

1993).  Phosphoproteomics followed by identification of candidate proteins by Mass 

spectrometry is a versatile and novel technology for the identification of these 

phosphorylation targets (Ficarro et al., 2002).  To test, but not with the intent to profile, we 

adopted this strategy in order to determine whether the effects of cGMP on protein kinases 

and their ability to phosphorylated a substrate in vitro are can also be observed in vivo.  When 

Arabidopsis plants were treated with a cell permeable form of cGMP (8-bromo-cGMP), 

changes in the phosphorylation levels of kinases and/or their substrates was observed (Figure 

4.3.3 B).  The resulting proteins were identified by Mass Spectrometry.  Amongst the 

identified protein spots were Ribulose biphosphate carboxylase, a GTP binding protein, a 

Botrytis induced kinase (AtBIKI), a serine/threonine-protein kinase and a hypothetical 

protein.   
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Both forms of phosphorylation were observed, firstly, promotion of kinase activity, a 

common trait of previously documented cGMP regulated kinases for example a GC 

homologue in Pharbitis nil (Szmidt-Jaworska et al., 2003) and for an LRR AtWAKL 10 (Dr 

Oziniel Ruzvidzo, personal communication).  Secondly, inhibition of phosphorylation was 

also observed and this is consistent with what was observed for AtPSKR1 in vitro kinase 

activity assessment in which we demonstrated that the ability of the kinase is inhibited by 

cGMP.  These effects of cGMP may vary from protein to protein, in AtPSKR1 it may be the 

inhibition of in vitro kinase activity (see Chapter 3) whilst in AtWAKL10 which is also a 

LRR it may promote of in vitro kinase activity (Dr Oziniel Ruzvidzo, personal 

communication) and this may be indicative of the complexity of cGMP responses and tell us 

that the second messenger has many different functions within a signalling cascade.  Perhaps 

the most interesting phosphorylated protein identified is the Botrytis induced kinase (AtBIKI. 

At2g39660), Figure 4.3.3 C).  It is a plasma membrane-localized Ser/thr protein kinase that is 

a crucial component of host response signalling required to activate the resistance responses 

to necrotrophic and biotrophic pathogens (Veronese et al., 2006).  When an alignment was 

done against other kinases that we have shown to be affected by cGMP, AtPSKR1 and 

AtBRI1, we also identified a putative GC catalytic center (Figure 4.4.1 B and C).  This 

further highlights the diversity and importance of cGMP and its pivotal role in stress 

responses (Donaldson et al., 2004) and suggests that GCs may be involved in the Botrytis 

signalling cascade.  For some of the proteins, their identities could not be assigned which 

may be due to the phosphorylation dependent change in mass which “masks” the resulting 

peptide fingerprint after tryptic digestion.  

 

 

 

 



96 

 

 

 

 

Figure 4.4.1  Clustal W alignment of AtBIKI with AtBRI1 and AtPSKR1. (A) Original guanyl 

cyclase (GC) search motif, within the square brackets are allowed residues within each position with 

the X indicating any redidues in the 14 amino acid conserved GC motif. (Must tell us what the “red” 

residues stand for).   (B) Clustal W alignment of matched sequence against AtPSKR1, AtBRI and 

AtBIKI.  The black arrows depict the start and end of the search motif of the catalytic centre.  (C) 

Protein sequence of AtBIKI in which the sequence underlined in green indicates candidate GC motif 

and residues in bold red being matched sequences from trypsin digest. Compared to a known GC 

(AtBRI) it has the conserved amino acids that are characteristic of a putative GC i.e. position 1, 3 and 

14 which are important for hydrogen bonding with the guanine, substrate specificity and stabilization 

of the transition state respectively. 

 

The Phytolsulfokine and Brassinosteroid receptors amongst other LLRs have identified 

ligands.  The binding domain for Brassinosteroids consists of a 70-amino acid island domain 

situated between LRR21 and LRR22 in the extracellular domain of AtBRI1 (Tang et al., 

2010) and AtPSKR1 a 36-amino acid island domain between the LLR17 and LRR18 

(Matsubayashi et al., 2006b; Shinohara et al., 2007). 
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Our main interest in this study was to elucidate the role of cGMP in the downstream 

signalling cascade of these LLRs we have therefore used AtPSKR1 and developed a 

speculative model (Figure 4.4.2). 

The model takes into account the novel finding that AtPSKR1 has overlapping dual 

enzymatic activity that is also observed for AtBRI1 and therefore also speculates the role of 

cGMP in Brassinosteroid signalling.  The model proposes that in its inactive form, AtPSKR1 

can be either a monomer or a dimer.  Upon binding of α-PSK, AtPSKR1 becomes 

catalytically active and forms cGMP which modulates cGMP dependent proteins such as 

various cyclic nucleotide dependent ion channels (Kaplan et al., 2007; Leng et al., 1999).  It 

is possible that cyclic nucleotide activity may require the homodimer to correctly form the 

GC catalytic site.  Alternatively, it is conceivable that cross phosphorylation of AtPSKR1 

may enhance dimerisation and lead to formation of cGMP-PSKR1 complexes.  These in turn 

may promote association with receptor associated kinases such as BAK1 an interaction which 

is not dissimilar to Brassinosteroid signal transduction and forms a key component thereof.  

What is also interesting is that the GC catalytic center specifically position 1 which is 

involved in hydrogen bonding with the guanine in cGMP catalysis falls within the kinase 

domain IX of AtPSKR1.  This residue in AtPSKR1 is a Serine and we have shown (Chapter 

3) that cGMP inhibits autophosphorylation.  It is therefore possible that once the cGMP-

AtPSKR1 complex has formed it may serve as a negative feedback mechanism to switch off 

the cGMP production and may lead to desensitisation of the receptor.  Although we have no 

evidence for the involvement of BAK1 in this system, BAK1 has been shown to be a 

promiscuous molecule that associates with several LRR RLKs including AtBRI1 and FLS2 

(Chinchilla et al., 2009).  Once these complexes are formed, further binding of α-PSK leads 

to PSKR1-BAK1 cross phosphorylation (and perhaps autophosphorylation) and this can then 

enable the delayed adaptive response to α-PSK which may involve the activation of cGMP 
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dependent transcriptome.  Several previous studies have implicated cGMP and calcium 

crosstalk in plant cell expansion (Bowler et al., 1994; Donaldson et al., 2004; Pharmawati et 

al., 2001) which could be  supported by the in vitro studies where AtPSKR1 GC activity was 

enhanced in the presence of the another second messenger, cytosolic free calcium (Kwezi et 

al; under revision). 

 

 

Figure 4.4.2  A Speculative model of the activation of AtPSKR1 by α-PSK and how this may 
relate to kinase and GC activity.  In its inactive form PSKR1 could be either a monomer (pictured) 

or dimer that may be autophosphorylated.  Upon binding of α-PSK, AtPSKR1 (probably in the dimer 

form as pictured) activates GC activity and this in turn may stimulate cGMP binding to the receptor.  

Increases in cytoplasmic Ca
2+

 may also stimulate the GC activity and there is likely to be crosstalk 

between the two messengers.  Other rapid responses to cGMP may be initiated as well (e.g. opening 

of ion channels).  The cGMP-PSKR1 complex may in turn promote association with receptor 

associated kinases such as BAK1.  Once these complexes are formed, further binding of α-PSK leads 

to AtPSKR1-BAK1 cross phosphorylation (and perhaps autophosphorylation) and this in turn 

activates the delayed adaptive responses to α-PSK (e.g. activation of cGMP dependent transcriptome). 
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General conclusion and outlook. 

Pathogens, drought and salinity are amongst the major negative determinants of plant growth 

and contribute to crop loss especially in marginal semi-arid agricultural areas (Denby and 

Gehring, 2005).  This is a situation that will inevitably lead to rise in demand and therefore a 

rise in cost of limited resources.  Food security is therefore heavily dependent on the 

development of crop plants with increased resistance to environmental and pathogenic 

factors.  This continues to call for advances in the area of plant biotechnology, some of which 

may including overexpression of some genes be able to confer increased tolerance to biotic 

and abiotic stresses in plant systems.  This approach has not only sparked ethical issues 

because of the  transfer of antibiotic genes as selective markers but this approach also may 

have the down side in that it may cause a metabolic burden that is unprofitable (Meier and 

Gehring, 2006).  To overcome the problems of metabolic imbalance a more rational and 

systemic approach will be required and bioengineering and may have to concentrate on 

regulatory genes and/or genes encoding molecules that activate signalling cascades in a 

stimulus specific way (Denby and Gehring, 2005).  Guanylyl cyclases may be a promising 

target group of genes that hold potential for such approaches for the following three reasons.  

Firstly, it has been shown that cGMP is a specific second messenger in both salinity and 

drought responses (Donaldson et al., 2004).  Secondly, it has been demonstrated that 

increasing cytosolic cGMP levels caused by external addition of cell permeant cGMP 

analogues can increase salinity tolerance in A. thaliana by directly affecting sodium up-take 

in roots (Maathuis 2006).  Thirdly, cGMP induced transcripts (Maathuis, 2006) include genes 

encoding proteins that are directly involved in the maintenance of ion and water homeostasis 

such as monovalent cation transporters including nonselective ion channels and cation proton 

antiporters.  
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In Chapter 2 it was demonstrated that the Brassinosteroid receptor has an active GC domain 

in vitro and subsequently it was be shown (Chapter 4) that this activity is also observed in 

vivo.  Brassinosteroids are of agricultural interest as they have been shown to promote plant 

growth (Mitchell, 1972) as well as acceleration (Braun, 1984; Gregory, 1981).  The 

application of Brassinosteroid in corn was shown to increase the ear fresh weight by about 7 

% (Lim, 1988) whilst in wheat an increase of 25-33 % and seed weight by 4-37 % was 

achieved (Takematsu, 1988). 

Brassinosteroids have also been shown to enhance resistance to infection by various 

pathogens (Nakashita et al., 2003).  Infection by tobacco mosaic virus (TMV) causes a 

necrotic lesion as the result of a defence response in Nicotiana tabacum cv. Xanthi nc, which 

possesses the N gene, a gene that confers resistance to TMV (Whitham et al., 1994). It was 

reported (Nakashita et al., 2003) lesions decrease in the size up to about 50 % in response to 

Brassinosteroid treatment.  These effects were shown to not be limited to the treated leaves 

but also on the distal upper leaves indicating that the effects of Brassinosteroids and their role 

in disease resistance are not only local but are also systemic (Nakashita et al., 2003).  This 

would suggest that there are mobile signal components in the Brassinosteroid response that 

amplify and transduce the signal to other parts of the plant.  The Brassinosteroid signalling 

pathway has been shown to transduce downstream signals through a phosphorylation 

cascade.  However this phosphorylation on its own may not be sufficient in regulating the 

systematic pathogen resistance related roles of Brassinosteroid.  There have been studies that 

have been done to look at Brassinosteroid responsive genes (Hu et al., 2001) and proteins 

(Deng et al., 2007) and amongst these some are involved in secretion and membrane 

trafficking (Deng et al., 2007) and signal trasnsduction (Deng et al., 2007; Hu et al., 2001) 

and they may well be involved in systematic effects of Brassinosteroid.   
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Here we suggest that cGMP may have a role in the Brassinosteroid response and its role in 

disease resistance and that this effect includes a transcriptional response and the 

phosphorylation cascade which is a characteristic of Brassinosteroid signalling (Chapter 4). 

The phosphorylation cascade may be mediated by cGMP and be reflected in the 

phosphoproteome.  It is also conceivable that cGMP may be involved in transducing the 

systematic effects of Brassinosteroid as cGMP has been shown to affect membrane channels 

that in turn could transduce these signals to mobile units within the apoplast which directly or 

indirectly may initiate a systematic response. 

In addition we have also shown that the Phytosulfokine receptor has GC activity both in vitro 

and in vivo.  Phytosulfokines have been shown to cause strong proliferation in rice (Oryza 

sativa L.) (Matsubayashi et al., 1997) and therefore are also of agronomic interest in 

accelerating growth.  Our findings suggest that cGMP is involved in both Brassinosteroid and 

Phytosulfokine and that their effects on plant growth may be mediated by cGMP further 

highlighting the prospects of using GCs as targets for improving crops with agronomic value. 

Furthermore, protein kinases play a central role in signalling during pathogen recognition and 

the subsequent activation of plant defence mechanisms (Romeis, 2001) and for this reason 

make good candidates as targets for enhancing crop resistance to diseases and environmental 

stresses.  Several protein kinases, especially the family of Arabidopsis receptor-like kinases, 

have been implicated in osmotic stress responses based on their transcriptional responses to 

different environmental stimuli (Boudsocq and Lauriere, 2005; Chae et al., 2009).  

While the effects of cGMP and its role in plants defence mechanism have been shown, most 

of the work done demonstrates its involvement in the induction of gene expression but few 

studies show a direct effect of cGMP on defence related proteins and more specifically those 

that involve kinase signalling cascades. 

 

 

 

 



102 

 

Here we also demonstrated (Chapter 4) that direct application of cGMP activates a disease 

resistance protein (Botrytis induced kinase, AtBIKI).  This observation is of interest as it may 

mean that it would be possible to avert from using vectors to confer disease resistance to crop 

plants of agronomic interest and in turn use cGMP or derivatives thereof to switch on these 

responses.  On a more speculative note, this could be indicative of the possibility to use 

cGMP or cGMP derivatives as biological switches to specifically activate the required 

response as we have shown (Chapter 3) that these cyclic nucleotide dependent changes in 

phosphorylation are very specific.   

 

To further investigate the effects of cGMP and to use it as a potential molecular switch in 

specifically turning on responses depending on what plants may be susceptible to under 

specific conditions, it would be useful to study the interaction of this second messenger with 

specific targets.  This could be done by isolating cGMP responsive protein and doing in silico 

homology modelling and virtual docking of cGMP to potential binding sites so that the 

specific residues that are involved in binding cGMP can be identified.  An alternative 

approach would be do nuclear magnetic resonance (NMR) on the protein in the presence of 

cGMP so that these interactions can be determined empirically.  Data gathered from these can 

then provide a platform to design cGMP derivatives with high affinity to activate and/or 

modulate the response. 
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