
Advanced and Complete Functional Series Time-Dependent ARMA

(FS-TARMA) Methods for the Identification and Fault Diagnosis of

Non-Stationary Stochastic Structural Systems

Minas Spiridonakos

Department of Mechanical Engineering and Aeronautics

University of Patras

A thesis submitted for the degree of

Doctor of Philosophy

April 2, 2012

mailto:mspirid@mech.upatras.gr
http://www.mead.upatras.gr
http://www.upatras.gr




Examination Committee

• Spilios Fassois, Professor (supervisor)

Department of Mechanical Engineering & Aeronautics

University of Patras, Greece

• Anthony Tzes, Professor (advising committee member)

Department of Electrical & Computer Engineering

University of Patras, Greece

• Kostas Berberidis, Professor (advising committee member)

Department of Computer Engineering & Informatics

University of Patras, Greece

• Tassos Bountis, Professor

Department of Mathematics

University of Patras, Greece

• Ioannis Antoniadis, Associate Professor

School of Mechanical Engineering

National Technical University of Athens, Greece

• Manolis Manatakis, Assistant Professor

Department of Mechanical Engineering & Aeronautics

University of Patras, Greece

• Ioannis Sakellariou, Lecturer

Department of Mechanical Engineering & Aeronautics

University of Patras, Greece

i



ii



I would like to dedicate this thesis to my wife Angeliki and my family. Without their support

I would not have been able to complete this work.



iv



Acknowledgements

This thesis arose out of years of research that has been done since I came to SMSA group. By

that time, I have worked with a great number of people whose contribution to the research

and the making of the thesis deserves special mention. It is a pleasure to convey my gratitude

to them all in my humble acknowledgement.

Firstly, I ’m grateful to my supervisor, Prof. Fassois, whose expertise, vast knowledge and

skills in many areas added considerably to my graduate experience and guidance during

the writing process. A very special thanks goes also to my advisory committee members,

Prof. Anthony Tzes (Department of Electrical & Computer Engineering) and Prof. Kostas

Berberidis (Department of Computer Engineering & Informatics), whose recommendations

have been critical to my work.

I would like also to thank my beloved family and wife for the support they provide me through

my life, in particular, without their love, encouragement and assistance, I would not have

finished this thesis. I also feel obliged and I deeply appreciate my colleagues and friends

Fotis, Aggelos, Vangelis, Dimos, Giannis, Paulos, Thodoris, Thanasis, Nikos and Zisis for

the excellent cooperation and support during all these years. Although any expression of

acknowledgment will fail to fully capture the importance of their role, I would still like to

thank each of them, and also to say how much I appreciated their contributions and enjoyed

our interactions.

Finally, I would like to thank everybody who was important to the successful realization of

the thesis, as well as expressing my apology that I could not mention personally one by one.



vi



Abstract

Non-stationary signals, that is signals with statistical properties that depend upon time, are

commonly encountered in engineering practice. The vibration responses of structures, such

as traffic-excited bridges, robotic devices, rotating machinery, deployable structures and so

on, constitute typical examples of non-stationary signals. Such structures characterized by

properties, either physical or geometrical, that vary with time are referred as Time-Varying

(TV) structures and their vibration-based identification under normal operating conditions is

a significant and yet challenging problem.

An important class of parametric methods for the effective solution of the above problem

is based on Functional Series Time-dependent AutoRegressive Moving Average (FS-TARMA)

models. These models have parameters that explicitly depend on time, with the dependence

described by deterministic functions belonging to specific functional subspaces. The advan-

tages of FS-TARMA models over alternative non-stationary models have been demonstrated

in a number of studies and involve improved accuracy, improved tracking of the time-varying

dynamics, increased predictive ability, and representation parsimony. The potential of FS-

TARMA models for accurate vibration-based non-stationary modelling constitutes the pri-

mary motivation for this thesis.

The specific goal of the present work is the development of advanced and complete methods

that offer important improvements in overcoming the drawbacks of existent FS-TARMA meth-

ods mainly regarding the functional subspace estimation problem. Additionally, a number

of practical issues are presently considered. These include the extension of FS-TARMA mod-

elling for non-stationary identification based on multivariate response measurements that are

usually available in modern structures and the problem of fault detection and identification

for time-varying structures.

More specifically, in Chapter 2 and after the introduction of this thesis, an experimental as-

sessment and comparison of vibration based non-stationary parametric identification meth-

ods is presented. The methods considered are classified according to the mathematical struc-

ture imposed on the TV parameter evolution as unstructured, stochastic, and deterministic

parameter evolution. A representative identification method from each class is outlined,

while their performance characteristics are examined through their application to the prob-

lem of identification and model-based dynamic analysis of a “bridge-like” laboratory structure

consisting of a beam with a mass moving on it. The results of this study demonstrate the

parametric methods’ applicability, effectiveness, and high potential for parsimonious and ac-

curate identification and dynamic analysis of TV structures under unobservable excitation,

with FS-TARMA method achieving the best performance in terms of TV dynamics tracking

accuracy.

The problem of parametric output-only identification of a time-varying structure based on

measured vector vibration response signals is considered in Chapter 3 of this thesis. More

specifically, a Functional Series Vector Time-dependent AutoRegressive Moving Average (FS-

VTARMA) method is introduced and employed for the identification of the aforementioned

“bridge-like” laboratory structure. In this case, the identification is based on three simultane-

ously measured vibration response signals. The method is judged against baseline modelling

based on multiple “frozen-configuration” stationary experiments, and is shown to be effective

and capable of accurately tracking the structure’s dynamics. Additional comparisons with



recursive and short-time subspace methods are made and demonstrate the FS-VTARMA

method’s superior achievable accuracy and model representation economy.

In Chapter 4 a new class of Adaptable FS-TARMA (AFS-TARMA) models is introduced. The

novel models utilize adaptable functional subspaces with a-priori unknown characteristics

for the expansion of their time-dependent parameters.In this way, the basis may be automat-

ically adapted on the data in order to track the evolution of the system parameters with the

highest possible accuracy. This is accomplished via proper basis function parametrizations

and a Separable Nonlinear Least Squares (SNLS) type procedure which leads to a constrained

nonlinear optimization problem of reduced dimensionality that is tackled via a hybrid opti-

mization scheme. The latter consists of a global search procedure based on the gradient-free

evolutionary Particle Swarm Optimization (PSO) algorithm and a gradient-type refinement

based on an interior point algorithm. The method’s effectiveness is shown in both numerical

and experimental case studies. The numerical case studies concern Monte Carlo experi-

ments based on the identification of simulated models characterized by abrupt parameter

evolution, while the introduced method is also applied for the output-only identification of

the time-varying dynamics of a pick-and-place mechanism. Comparisons with the classical

FS-TARMA and alternative non-stationary methods are also presented. The results confirm

the excellent performance and superior accuracy achieved by the introduced AFS-TARMA

method with adaptable basis functions.

A critical survey with exhaustive literature review of FS-TARMA type methods for the iden-

tification and analysis of non-stationary signals and structures is presented in Chapter 5.

The aim of this chapter is to provide a critical overview of the various FS-TARMA estimation

methods and model structure selection schemes that have been proposed in the literature.

The estimation methods considered include regression type methods based on the minimiza-

tion of Prediction Error (PE) criteria, recursive estimation methods, multistage methods and

the Maximum Likelihood (ML) method. For the model structure selection problem integer

optimization schemes, and schemes based on the concept of backward and forward regres-

sion are reviewed. The study covers both theoretical and practical aspects on the subject

while special emphasis is placed on promising new methods that aim at overcoming problems

of previous approaches. The detailed comparison and assessment of the reviewed methods

based on Monte Carlo experiments is also performed. More specifically, the most significant

methods for FS-TARMA parameter estimation are employed for the identification of simu-

lated systems. Several functional bases and various model structure selection methods are

contrasted, while comparisons with alternative non-stationary methods are also carried out.

The results of the study demonstrate the effectiveness and improvements offered by new

FS-TARMA methods over previous counterparts, as well as the FS-TARMA approach overall

accuracy and effectiveness.

Finally, in the last chapter of this thesis the problem of vibration-based fault detection and

identification in inherently non-stationary structures is considered via a statistical time series

method based on FS-TAR models combined with an appropriate statistical decision frame-

work. Its performance is experimentally assessed via its application on the fault detection

and identification in a time-varying pick-and-place mechanism. The mechanism consists

of two electromagnetic linear motors that follow prescribed motion profiles while the whole

mechanism is subject to broadband random force excitation. The faults considered are of

various types and occurrence locations, while their detection is based solely on a single non-

stationary vibration response signal acquired during operation. The method is shown to

achieve effective fault detection and identification for all the fault scenarios.



Εξελιγµένες και Πλήρεις Μέθοδοι Συναρτησιακών Χρονικά

Μεταβαλλόµενων Μοντέλων Αυτοπαλινδρόµησης και Κινητού Μέσου

΄Ορου (FS-TARMA) για την ∆υναµική Αναγνώριση και ∆ιάγνωση Βλαβών σε

Μη-Στάσιµα Στοχαστικά Συστήµατα Κατασκευών

Περίληψη

Μη-στάσιµα σήµατα, δηλαδή σήµατα µε στατιστικές ιδιότητες οι οποίες µεταβάλλονται µε τον

χρόνο, απαντώνται συχνά στην επιστήµη του µηχανικού. Τυπικά παραδείγµατα αποτελούν οι

ταλαντωτικές αποκρίσεις κατασκευών, όπως γέφυρες διεγειρόµενες από την κίνηση των οχη-

µάτων, ϱοµποτικές διατάξεις, περιστρεφόµενες µηχανές, αναδιπλούµενες και επεκτεινόµενες

κατασκευές, και άλλες. Τέτοιες κατασκευές οι οποίες χαρακτηρίζονται από ιδιότητες, είτε

ϕυσικές είτε γεωµετρικές, οι οποίες µεταβάλλονται µε τον χρόνο αναφέρονται ως µη-στάσιµες

ή αλλιώς χρονικά µεταβαλλόµενες κατασκευές και η δυναµική αναγνώριση και ανάλυση τους

επί τη ϐάση ταλαντωτικών σηµάτων απόκρισης αποτελεί σηµαντικό και ταυτόχρονα δύσκολο

πρόβληµα.

Ο τελικός στόχος της διαδικασίας της δυναµικής αναγνώρισης µιας κατασκευή είναι η ανάπ-

τυξη ενός µαθηµατικού µοντέλου για την ακριβή περιγραφή της. Συνήθως, ϑεωρείται πως το

µετρούµενο σήµα ταλαντωτικής απόκρισης µιας κατασκευής υπακούει σε µια παρόµοια αλλά

άγνωστη σε εµάς µαθηµατική έκφραση, η οποία ϑα αναπαριστά τα υποκείµενα δυναµικά χαρακ-

τηριστικά της και αναφέρεται ως πραγµατικό µοντέλο της κατασκευής. Εν συνεχεία, το εκτιµη-

µένο µοντέλο µπορεί να χρησιµοποιηθεί για µη-στάσιµη δυναµική ανάλυση µέσω της εξαγωγής

χρήσιµων ϕυσικών πληροφοριών όπως οι στατιστικές ϱοπές ή συνηθέστερα κάποια µορφή της

χρονικά µεταβαλλόµενης συνάρτησης πυκνότητας ϕάσµατος ισχύος και των χρονικά µεταβαλ-

λόµενων ιδιοµορφών. Επιπρόσθετα της δυναµικής ανάλυσης, ένα εκτιµηµένο µοντέλο µπορεί

να χρησιµοποιηθεί για σκοπούς πρόβλεψης, προσοµοίωσης, διάγνωσης ϐλαβών και αυτοµάτου

ελέγχου.

Η µοντελοποίηση µη-στάσιµων ταλαντώσεων έχει λάβει ιδιαίτερη προσοχή τα τελευταία χρό-

νια. Οι διαθέσιµες µέθοδοι µη-στάσιµης µοντελοποίησης µπορούν κατ΄ αρχήν να ταξινοµηθούν

σε µη-παραµετρικές ή παραµετρικές. ΄Εως σήµερα, οι µη-παραµετρικές µέθοδοι λαµβάνουν

περισσότερης προσοχής, κυρίως λόγω της απλότητας τους. Βασίζονται σε µη-παραµετρικές ανα-

παραστάσεις του ταλαντωτικού σήµατος ως συνάρτηση του χρόνου και της συχνότητας ταυτόχρονα

(κατανοµές χρόνου-συχνότητας). Οι µέθοδοι αυτές περιλαµβάνουν το ευρέως χρησιµοποιούµενο

ϕασµατογράφηµα (spectrogram) το οποίο ϐασίζεται στον µετασχηµατισµό Fourier ϐραχέως χρό-

νου (Short-Time Fourier Transform, STFT) και τις παραλλαγές του [Hammond and White,

1996], το εξελικτικό ϕάσµα του Priestley [Priestley, 1988], κατανοµές όπως η Wigner-Ville και

η Choi-Williams οι οποίες ανήκουν στην τάξη των κατανοµών Cohen [Cohen, 1995], µέθοδοι οι

οποίοι ϐασίζονται σε κυµατίδια [Spanos and Failla, 2005] και άλλες.

Εν γένει, συγκρινόµενες µε τις µη-παραµετρικές µεθόδους, οι µη-στάσιµες µέθοδοι που ϐασί-

Ϲονται σε παραµετροποιηµένες αναπαραστάσεις έχει δειχθεί πως δυνητικά προσφέρουν ένα

πλήθος πλεονεκτηµάτων, όπως (για παράδειγµα ϐλ. [Poulimenos and Fassois, 2006, Petsou-

nis and Fassois, 2000, Conforto and D’Alessio, 1999b, Ben Mrad et al., 1998b, Fouski-

takis and Fassois, 2002, Poulimenos and Fassois, 2009a, Zhan and Jardine, 2005a]): (i)

ix



οικονοµία παραµετροποίησης, καθώς τα εκτιµηµένα µοντέλα συνήθως ορίζονται από περιορισ-

µένο αριθµό παραµέτρων, (ii) αυξηµένη ακρίβεια, (iii) ϐελτιωµένη ανάλυση στις αναπαραστάσεις

των συναρτήσεων χρόνου-συχνότητας, (iv) καλύτερη ανίχνευση των χρονικά µεταβαλλόµενων

δυναµικών χαρακτηριστικών, (v) ευελιξία κατά την ανάλυση, καθώς οι παραµετρικές µέθοδοι

είναι ικανές για την άµεση αναπαράσταση των δυναµικών χαρακτηριστικών της κατασκευής

τα οποία ευθύνονται για την µη-στάσιµη συµπεριφορά, και (vi) ευελιξία στην χρήση τους για

σκοπούς προσοµοίωσης και πρόβλεψης, διάγνωσης ϐλαβών και αυτοµάτου ελέγχου.

Η παρούσα διατριβή εστιάζει στην µοντελοποίηση και ανάλυση µη-στάσιµων στοχαστικών σηµά-

των ταλάντωσης µέσω µιας συγκεκριµένης οικογένειας παραµετρικών χρονικά µεταβαλλόµενων

µοντέλων. Τα µοντέλα αυτά ονοµάζονται συναρτησιακά χρονικά µεταβαλλόµενα µοντέλα αυ-

τοπαλινδρόµησης κινητού µέσου όρου (FS-TARMA, Functional Series Time-Dependent Au-

toRegressive Moving Average) και ϐασίζονται στην παραδοχή ότι οι παράµετροι τους ακολου-

ϑούν ένα καθοριστικό πρότυπο και κατά συνέπεια µπορούν να προβληθούν σε κατάλληλα επι-

λεγµένους συναρτησιακούς υποχώρους. Βάσει της κλασσικής προσέγγισης αυτοί οι συναρτη-

σιακοί υποχώροι επιλέγονται απο ένα σύνολο γραµµικά ανεξάρτητων συναρτήσεων ϐάσης µιας

συγκεκριµένης οικογένειας (όπως πολυωνυµικές, τριγωνοµετρικές, κυµατιδίων, ή άλλες). Υιο-

ϑετώντας αυτή την προσέγγιση, ένα κλασσικό παραµετρικό µοντέλο FS-TARMA(na, nc)[pa,pc,ps],

µε na, nc να υποδηλώνουν τις τάξεις του AR και MA µέρους, αντίστοιχα, και pa, pc, ps τις δι-

αστάσεις των συναρτησιακών υποχώρων του AR, MA µέρους και της διασποράς της καινοτόµου

ακολουθίας, ορίζεται ως ακολούθως [Poulimenos and Fassois, 2006]:

x[t] +

na∑

i=1

ai[t] · x[t− i]
︸ ︷︷ ︸

AR µέρος

= e[t] +

nc∑

i=1

ci[t] · e[t− i]
︸ ︷︷ ︸

MA µέρος

, e[t] ∼ NID(0, σ2
e [t])

FAR =
{
Gda(1)[t], . . . , Gda(pa)[t]

}
, FMA =

{
Gdc(1)[t], . . . , Gdc(pc)[t]

}
,

Fσ2
e [t] =

{
Gds(1)[t], . . . , Gds(ps)[t]

}

ai[t] =

pa∑

j=1

ai,j ·Gda(j)[t], ci[t] =

pc∑

j=1

ci,j ·Gdc(j)[t], σ2
e [t] =

ps∑

j=1

sj ·Gds(j)[t]

όπου x[t] υποδηλώνει την χρονοσειρά της ταλαντωτικής απόκρισης του συστήµατος, e[t] την

καινοτόµο ακολουθία (ή αλλιώς τα υπόλοιπα) του µοντέλου, «F» τον συναρτησιακό υποχώρο

της υποδεικνυόµενης ποσότητας, da(i) (i = 1, . . . , pa), dc(i) (i = 1, . . . , pc) και ds(i) (i =
1, . . . , ps) τους δείκτες των συγκεκριµένων συναρτήσεων ϐάσης που περιλαµβάνονται σε κάθε

υποχώρο, ενώ ai,j , ci,j , και sj αντιπροσωπεύουν τους συντελεστές προβολής του AR, MA µέρους

και της διασποράς της καινοτόµου ακολουθίας, αντίστοιχα. ΄Ετσι, το πλήρες διάνυσµα των

παραµέτρων θ του µοντέλου αποτελείται από αυτούς τους συντελεστές προβολής, ενώ ϑεωρών-

τας µια συγκεκριµένη οικογένεια συναρτήσεων ϐάσης η διαδικασία επιλογής της δοµής ενός

µοντέλου FS-TARMA αφορά τον καθορισµό των AR και MA τάξεων na, nc, και τα διανύσµατα

των δεικτών των συναρτήσεων ϐάσεων da = [da(1), . . . , da(pa)]
T
, dc = [dc(1), . . . , dc(pc)]

T
, και

ds = [ds(1), . . . , ds(ps)]
T

του AR, MA µέρους και της διασποράς της καινοτόµου ακολουθίας,

αντίστοιχα, δηλαδή:

θ = [ϑTa ϑ
T
c ϑ

T
s ]T = [a1,1, . . . , ana,pa c1,1, . . . , cnc,pc s1, . . . , sps ]

T

M = {na, nc,da,dc,ds}

x



Βάσει των παραπάνω, τα κύρια χαρακτηριστικά των µοντέλων FS-TARMA µπορούν να συνοψ-

ισθούν ως εξής :

• Είναι στοχαστικά παραµετρικά µοντέλα συγκεντρωµένων παραµέτρων. Στοχαστικά καθώς

περιλαµβάνουν τυχαίες µεταβλητές, οι οποίες αντικατοπτρίζουν τους συντελεστές αβεβαιότη-

τας που υπάρχουν στα σήµατα ταλάντωσης και καθιστούν αδύνατη την ακριβή πρόβλεψη

της απόκρισης των υπό µοντελοποίηση συστηµάτων, και συγκεντρωµένων παραµέτρων κα-

ϑώς περιγράφονται από πεπερασµένο αριθµό εξισώσεων διαφορών.

• Είναι µοντέλα διακριτού χρόνου καθώς αναπαριστούν το ταλαντωτικό σήµα σε διακριτές

χρονικές στιγµές (για παράδειγµα t = 1, 2, . . . , N ), µέσω ενός σχετικά µικρού αριθµού

παραµέτρων.

• Είναι γραµµικά µοντέλα απόκρισης, καθώς αναπαριστούν τα ταλαντωτικά σήµατα µέσω

γραµµικών σχέσεων που συµπεριλαµβάνουν παρελθοντικές τιµές µόνο των σηµάτων απόκρ-

ισης και τυχαίων µεταβλητών.

Το πλήρες πρόβληµα αναγνώρισης ενός µοντέλου FS-TARMA µπορεί να διατυπωθεί ως εξής :

«∆οθέντων N παρατηρήσεων της ταλαντωτικής απόκρισης, έστω xN = {x[1] . . . x[N ]} και το

σύνολο των µοντέλων FS-TARMA:

M ∆
=

{
M(θ) : x[t] +

na∑

i=1

ai[t,θ] · x[t− i] = e[t,θ] +

nc∑

i=1

ci[t,θ] · e[t− i,θ];

σ2
e [t] =E

{
e2[t,θ]

}
, t = 1, . . . N, θ ∈ Rdim(θ)

}
,

επιλέξτε το στοιχείο του συνόλουM το οποίο περιγράφει κατά τον ϐέλτιστο τρόπο τις παρατηρήσεις».

Στην παραπάνω µαθηµατική έκφραση, e[t,θ] αναπαριστά την ακολουθία του σφάλµατος πρόβ-

λεψης ενός ϐήµατος του µοντέλου (ακολουθία των υπολοίπων), η οποία, όπως και στην στάσιµη

περίπτωση, συµπίπτει µε την καινοτόµο ακολουθία του µοντέλου e[t] [Poulimenos and Fassois,

2006]. ΄Ετσι, η αναγνώριση µπορεί να ϑεωρηθεί ως το πρόβληµα προσδιορισµού του µοντέλου

το οποίο περιγράφει κατά τον ϐέλτιστο τρόπο τις παρατηρήσεις της ταλαντωτικής απόκρισης

xN . Η καταλληλότητα του µοντέλου µπορεί να κριθεί επί τη ϐάση διαφόρων κριτηρίων, όπως η

συνάρτηση πιθανοφάνειας ή κριτήρια σχετικά µε το σφάλµα πρόβλεψης [Fassois, 2001a]. Τόσο

η δοµή M όσο και το διάνυσµα των παραµέτρων του µοντέλου θ το οποίο αποτελείται από τους

συντελεστές προβολής ai,j , ci,j , sj πρέπει να εκτιµηθούν από το δοθέν σήµα της ταλαντωτικής

απόκρισης.

Τα µοντέλα FS-TARMA ανήκουν στην τάξη των µεθόδων Καθοριστικής Εξέλιξης των Παραµέτρων

(Deterministic Parameter Evolution (DPE)) καθώς επιβάλλουν καθοριστική «δοµή» στην εξέλιξη

των χρονικά µεταβαλλόµενων παραµέτρων τους. Κατ΄ αυτόν τον τρόπο, µπορούν να ϑεωρηθούν

ως ιδιαίτερα αποτελεσµατικά για την αναγνώριση χρονικά µεταβαλλόµενων µηχανολογικών

κατασκευών, οι οποίες συνήθως χαρακτηρίζονται από έναν καθοριστικό ϕυσικό µηχανισµό

ο οποίος ευθύνεται για την µεταβλητότητα τους. Επιπλέον, συγκρινόµενα µε εναλλακτικές

παραµετρικές µεθόδους που ανήκουν στις τάξεις των µεθόδων αδόµητης εξέλιξης των παραµέτρων

(Unstructured Parameter Evolution, UPE) ή στοχαστικής εξέλιξης των παραµέτρων (Stochas-

tic Parameter Evolution, SPE), οι µέθοδοι που ϐασίζονται σε FS-TARMA µοντέλα παρουσιά-

Ϲουν ένα πλήθος επιθυµητών ιδιοτήτων όπως [Poulimenos and Fassois, 2006, Conforto and

D’Alessio, 1999b,Ben Mrad et al., 1998b,Petsounis and Fassois, 2000,Fouskitakis and Fas-

sois, 2001,Niedźwiecki, 2000]: (i) Επιβάλλουν την µέγιστη «δοµή» στην εξέλιξη των παραµέτρων

επιτυγχάνοντας υψηλό ϐαθµό οικονοµίας παραµετροποίησης, (ii) είναι ικανές να ανιχνεύουν

τόσο οµαλές/αργές όσο και απότοµες/γρήγορες µεταβολές των παραµέτρων µέσω της κατάλληλης

επιλογής των συναρτήσεων ϐάσης, και (iii) επιτυγχάνουν υψηλή ακρίβεια µοντελοποίησης και

ανάλυσης των αναπαραστάσεων των δυναµικών χαρακτηριστικών της κατασκευής.
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Πράγµατι, οι µέθοδοι της αδόµητης εξέλιξης αποτυγχάνουν να µοντελοποιήσουν τα µεταβατικά

ϕαινόµενα των µη-στάσιµων ταλαντώσεων και είναι κατάλληλες για την περιγραφή κυρίως

«αργών» µεταβολών των χαρακτηριστικών του σήµατος, απαιτούν συµβιβασµό µεταξύ της δυνατότη-

τας ανίχνευσης και της επιτυγχανόµενης ακρίβειας, και δεν οδηγούν σε οικονοµικές ανα-

παραστάσεις. Οι µέθοδοι της στοχαστικής εξέλιξης, από την άλλη µεριά, προσφέρουν αυξηµένη

οικονοµία, αλλά είναι κατάλληλες κυρίως για την περιγραφή στοχαστικών µεταβολών των χαρακ-

τηριστικών του συστήµατος. Τα πλεονεκτήµατα των µοντέλων FS-TARMA έναντι εναλλακτικών

µη-στάσιµων µοντέλων έχουν µάλιστα δειχθεί µέσω συγκριτικής µελέτης επί την ϐάση Monte

Carlo πειραµάτων [Poulimenos and Fassois, 2006] αν και έως σήµερα τα αποτελέσµατα αυτά

δεν έχουν επιβεβαιωθεί από πειραµατική µελέτη.

Τα µοντέλα FS-TARMA έχουν διαδραµατίσει σηµαντικό ϱόλο στην ανάπτυξη και την εξέλιξη της

µη-στάσιµης στοχαστικής µοντελοποίησης σηµάτων τα τελευταία σαράντα χρόνια. Τα συναρτη-

σιακά µοντέλα, στην απλούστερη µορφή των µοντέλων αυτοπαλινδρόµησης TAR εισήχθησαν

το 1970 από τον Rao [Rao, 1970]. FS-TAR µοντέλα µε παραµέτρους που ανήκουν σε υπο-

χώρους πολυωνυµικών συναρτήσεων Legendre χρησιµοποιήθηκαν για πρώτη ϕορά εντός του

πλαισίου της µοντελοποίησης και προσοµοίωσης στοχαστικών σηµάτων ταλάντωσης, και πιο

συγκεκριµένα σεισµογραφηµάτων, σε άρθρο του Kozin το 1977 [Kozin, 1977]. Ωστόσο, τα

συναρτησιακά µοντέλα δεν ϐρήκαν µεγάλη απήχηση στην διεθνή επιστηµονική κοινότητα πριν

τις αρχές της δεκαετίας του 1980, οπότε και πλήθος ερευνητών ξεκίνησε να µελετά τις ιδιότητες

τους και να εξετάζει την ικανότητα τους για ακριβή µοντελοποίηση µη-στασίµων σηµάτων [Gre-

nier, 1983b,Hall et al., 1983,Clergeot, 1984,Charbonnier et al., 1987,Niedźwiecki, 1988].

΄Εκτοτε, τα µοντέλα FS-TAR/TARMA έχουν χρησιµοποιηθεί σε διάφορες εφαρµογές γύρω από

την δυναµική ανάλυση κατασκευών µέσω σηµάτων ταλάντωσης, όπως για την ταλαντωτική

ανάλυση περιστρεφόµενων µηχανών [Bardou and Sidahmed, 1994, Conforto and D’Alessio,

1999b,Zhang et al., 2010a], την µοντελοποίηση και την πρόβλεψη της κατανάλωσης ενέργειας

σε σύστηµα ενεργητικής ανάρτησης αυτοκινήτου [Ben Mrad et al., 1998b], την µοντελοποίηση

και την ανάλυση προσοµοιωµένης ταλάντωσης ϱοµποτικού µηχανισµού [Petsounis and Fassois,

2000], και την µοντελοποίηση και δυναµική ανάλυση πρότυπης εργαστηριακής κατασκευής η

οποία αναπαριστά σύστηµα γέφυρας µε ϐαρύ κινούµενο όχηµα επ΄ αυτής [Poulimenos and

Fassois, 2009b].

Παρ΄ όλα αυτά, η πλειοψηφία των εργασιών που εξετάζουν ή εφαρµόζουν FS-TARMA µοντέλα

περιορίζονται στην απλή ϐαθµωτή περίπτωση και την µοντελοποίηση µέσω ενός µόνο σήµατος

ταλάντωσης. Αν και η περίπτωση µοντελοποίησης πολλαπλών σηµάτων ταλαντωτικής απόκρισης

(διανυσµατική ή πολυµεταβλητή) περίπτωση είναι πολύ πιο σηµαντική από πρακτικής σκοπιάς,

έως σήµερα έχει τύχει περιορισµένης προσοχής. Εν γένει, η διανυσµατική αναγνώριση µπορεί

να οδηγήσει σε πιο πλήρεις αναπαραστάσεις, µικρότερους χρόνους λήψης δεδοµένων και χρόνων

επεξεργασίας και επίσης αυξηµένη ακρίβεια των µορφικών παραµέτρων [Fassois, 2001b]. Αν και

η υποκατηγορία των διανυσµατικών µοντέλων FS-TAR έχει χρησιµοποιηθεί σε ένα γενικότερο

πλαίσιο από τους Gersch ανδ Kitagawa [Gersch and Kitagawa, 1982] και τον Sato και τους

συνεργάτες του [Sato et al., 2007] για την µοντελοποίηση και ανάλυση οικονοµετρικών και

ϐιοϊατρικών χρονοσειρών αντίστοιχα, η περίπτωση των πληρέστερων διανυσµατικών µοντέλων

FS-TARMA δεν έχει ϑεωρηθεί έως σήµερα.

Σχετικά µε το πρόβληµα της επιλογής της δοµής των µοντέλων FS-TARMA, και παρότι η σηµαν-

τικότητα του προβλήµατος της επιλογής των κατάλληλων συναρτησιακών υποχώρων είχε υπ-

ογραµµιστεί σε πάρα πολλές δηµοσιεύσεις από τα πρώτα χρόνια της ιστορίας των µοντέλων FS-

TARMA, µόλις το 1993 οι Tsatsanis και Giannakis παρουσίασαν ένα πλήρες σχήµα για την επι-

λογή της δοµής των µοντέλων ϐασισµένο στην έννοια της οπισθοδροµικής παλινδρόµησης [Tsat-

sanis and Giannakis, 1993]. Πιο συστηµατική διερεύνηση του Ϲητήµατος έχει λάβει χώρα

την τελευταία δεκαετία. Για παράδειγµα, ένα απλοποιηµένο σχήµα ϐασιζόµενο στην οπισθο-

δροµική παλινδρόµηση έχει προταθεί από τους Poulimenos και Fassois [Poulimenos and Fas-
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sois, 2003b] ενώ µια διαδικασία ϐασισµένη στην πρόσω παλινδρόµηση (forward regression) και

την ορθογωνοποίηση κατά Gram-Schmidt έχει επίσης προταθεί από τους Wei και Billings [Wei

and Billings, 2002]. Τέλος, πρόσφατα έχει προταθεί µια πιο αυτοµατοποιηµένη διαδικασία η

οποία ϐασίζεται σε σχήµα ϐελτιστοποίησης ακεραίων και γενετικούς αλγορίθµους [Poulimenos

and Fassois, 2003a].

Προφανώς, πέρα από την µέθοδο επιλογής της δοµής του µοντέλου, η επιλογή της οικογένειας

των συναρτήσεων ϐάσης για την προβολή των χρονικά µεταβαλλόµενων παραµέτρων ενός συναρτη-

σιακού µοντέλου είναι επίσης κρίσιµης σηµασίας. Οι ϐάσεις που έχουν προταθεί στην ϐιβ-

λιογραφία περιλαµβάνουν πολυωνυµικές συναρτήσεις ϐάσης όπως Chebyshev [Fouskitakis

and Fassois, 2002] και Legendre [Kozin, 1977,Grenier, 1983b], τριγωνοµετρικές συναρτήσεις

ϐάσης [Petsounis and Fassois, 2000,Poulimenos and Fassois, 2009a], διάφορες οικογένειες

κυµατιδίων [Tsatsanis and Giannakis, 1993,Li et al., 2011] και άλλες. Πρόσφατα, έχουν επίσης

προταθεί µέθοδοι για την ταυτόχρονη χρήση δύο ή περισσότερων οικογενειών συναρτήσεων

ϐάσης οι οποίες στοχεύουν στον συνδυασµό των ετερόκλητων χαρακτηριστικών τους σε περιπ-

τώσεις µε µεταβολές των χρονικά µεταβαλλόµενων παραµέτρων που περιλαµβάνουν συνδυασµό

οµαλών και απότοµων µεταβολών κατά την διάρκεια του πειράµατος [Chon et al., 2005, Li

et al., 2011]. Ωστόσο, το κοινό χαρακτηριστικό όλων των προαναφερθέντων µελετών είναι ότι

οι συναρτησιακοί υποχώροι τους οποίους ϑεωρούν, όπως κι αν αυτοί επιλέγονται, αποτελούνται

πάντα από συναρτήσεις ϐάσης προκαθορισµένης µορφής, επιλεγµένων από ένα επίσης προκα-

ϑορισµένο σύνολο συναρτήσεων. Συνεπώς, η ακρίβεια της περιγραφής των δεδοµένων είναι

συνάρτηση της επιλεγµένης οικογένειας συναρτήσεων ϐάσης.

Τέλος, όπως ήδη αναφέρθηκε ένας από τους σηµαντικότερους τοµείς στους οποίους ϐρίσκουν

πρακτική εφαρµογή τα παραµετρικά µοντέλα κατασκευών είναι η διάγνωση ϐλαβών, η οποία

είναι κρίσιµης σηµασίας για λόγους που σχετίζονται τόσο µε την ασφάλεια λειτουργίας όσο και το

κόστος συντήρησης των κατασκευών. Τα τελευταία χρόνια µάλιστα ιδιαίτερη έµφαση έχει δοθεί

στην ανάπτυξη µεθόδων που ϐασίζονται σε µοντέλα τα οποία έχουν αναγνωρισθεί επί τη ϐάση

σηµάτων ταλάντωσης. Ωστόσο, η ϱαγδαία εξέλιξη τέτοιων µεθόδων για την διάγνωση ϐλαβών σε

στάσιµες κατασκευές δεν έχει ακολουθηθεί από αντίστοιχη εξέλιξη στην περίπτωση των εγγενώς

µη-στάσιµων κατασκευών. ΄Εως σήµερα µόνο ένας µικρός αριθµός εργασιών έχει παρουσιασθεί

στην διεθνή ϐιβλιογραφία επί του ϑέµατος. Για παράδειγµα ένα στατιστικό πλαίσιο λήψης

αποφάσεων το οποίο χρησιµοποιεί την ακολουθία των υπολοίπων ενός χρονικά µεταβαλλόµενου

συναρτησιακού µοντέλου αυτοπαλινδρόµησης µε εξωγενή διέγερση FS-TARX έχει εφαρµοσθεί

για την διάγνωση ϐλάβης στην εργαστηριακή προαναφερθείσα κατασκευή που προσοµοιάζει

την αλληλεπίδραση γέφυρας µε ϐαρύ κινούµενο όχηµα επ΄ αυτής [Poulimenos and Fassois,

2004b]. Επίσης, για την αποτίµηση της επίδρασης ϐλάβης στα µορφικά χαρακτηριστικά ενός

ενισχυµένου πλαισίου σκυροδέµατος έχει εφαρµοστεί µοντελοποίηση FS-TARX σε δεδοµένα

ταλάντωσης από τον Huang και τους συνεργάτες του [Huang et al., 2009]. Εντούτοις, το κύριο

µειονέκτηµα των εργασιών που έχουν παρουσιασθεί έως σήµερα είναι ότι χρησιµοποιούν µοντέλα

εισόδου-εξόδου, και έτσι απαιτούν πρόσβαση στην διέγερση της κατασκευής για την εφαρµογή

τους. Τέτοια πληροφορία όµως, συνήθως δεν είναι διαθέσιµη σε πρακτικές εφαρµογές.

Λαµβάνοντας υπόψη τα παραπάνω, ως ϐασικός στόχος της παρούσας διατριβής ορίζεται η ανάπ-

τυξη εξελιγµένων µεθόδων µοντελοποίησης FS-TARMA οι οποίες ϑα προσφέρουν σηµαντικές

ϐελτιώσεις στις υπάρχουσες προσεγγίσεις και ϑα ϐοηθήσουν στην αντιµετώπιση πρακτικών προβ-

ληµάτων που σχετίζονται τόσο µε την αναγνώριση των δυναµικών χαρακτηριστικών όσο και την

διάγνωση ϐλαβών σε µη-στάσιµες κατασκευές. Πιο συγκεκριµένα, η διατριβή αυτή επικεντρώνε-

ται στο πρόβληµα της ϐέλτιστης εκτίµησης των συναρτησιακών υποχώρων FS-TARMA µοντέλων,

την µη-στάσιµη αναγνώριση κατασκευών επί τη ϐάση πολυµεταβλητών µετρήσεων ταλαντωτικής

απόκρισης καθώς και την ανάπτυξη µια στατιστικής µεθόδου για την αποτελεσµατική λύση του

προβλήµατος της διάγνωσης ϐλαβών σε εγγενώς µη-στάσιµες κατασκευές.

Συνοψίζοντας, οι συγκεκριµένοι στόχοι της παρούσας διατριβής µπορούν να περιγραφούν ως
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ακολούθως:

(i). Πειραµατική αποτίµηση και σύγκριση των κυριοτέρων µεθόδων στοχαστικής µοντελοποίησης

µη-στάσιµων σηµάτων ταλάντωσης µέσω της εφαρµογής τους για την αναγνώριση µιας

προτύπου εργαστηριακής κατασκευής. Περιγραφή των κυριοτέρων χαρακτηριστικών των

µεθόδων και της εφαρµοσιµότητας τους, καθώς και διερεύνηση των πλεονεκτηµάτων και

µειονεκτηµάτων τους.

(ii). Η ανάπτυξη µιας διανυσµατικής (πολυµεταβλητής) µεθόδου εκτίµησης µοντέλων FS-TARMA

για την αναγνώριση των δυναµικών χαρακτηριστικών κατασκευών µέσα από διανυσµατικά

σήµατα ταλαντωτικής απόκρισης. Ανάπτυξη αποδοτικών εργαλείων τόσο για το πρόβληµα

εκτίµησης των παραµέτρων όσο και της επιλογής της δοµής του µοντέλου. Αποτίµηση της

µεθόδου µέσω εφαρµογής της για την αναγνώριση χρονικά µεταβαλλόµενης εργαστηριακής

κατασκευής που προσοµοιάζει κατασκευή γέφυρας µε κινούµενο όχηµα επ΄ αυτής.

(iii). Η εισαγωγή µιας καινοτόµου τάξης προσαρµόσιµων AFS-TARMA µοντέλων και η ανάπτυξη

κατάλληλης µεθόδου για την αποτελεσµατική εκτίµηση τους. Τα µοντέλα AFS-TARMA εί-

ναι προσαρµόσιµα υπό την έννοια ότι δεν ϐασίζονται συναρτήσεις ϐάσης προκαθορισµένης

µορφής, αλλά αντιθέτως, χρησιµοποιούν συναρτήσεις ϐάσης µε εκ των προτέρων άγνω-

στες ιδιότητες και οι οποίες µπορούν να προσαρµοστούν στα χαρακτηριστικά συγκεκριµέ-

νου στοχαστικού σήµατος. ∆ιερεύνηση της αποτελεσµατικότητας της µεθόδου µέσω της

εφαρµογής της σε αριθµητικές και πειραµατικές µελέτες και συγκρίσεις µε υπάρχουσες

µη-στάσιµες µεθόδους αναγνώρισης σηµάτων.

(iv). Η παρουσίαση – για πρώτη ϕορά – µιας διεξοδικής επισκόπησης των µοντέλων FS-TARMA

η οποία καλύπτει τόσο ϑεωρητικά όσο και πρακτικά Ϲητήµατα των προβληµάτων της εκ-

τίµησης των παραµέτρων και της επιλογής της δοµής των µοντέλων FS-TARMA. Προβολή

υποσχόµενων νέων µεθόδων οι οποίες ευελπιστούν να ξεπεράσουν προβλήµατα προηγού-

µενων προσεγγίσεων. ∆ιεξοδική σύγκριση και αποτίµηση των ϑεωρηµένων µεθόδων επί τη

ϐάση Monte Carlo πειραµάτων και σύγκριση µε εναλλακτικές µη-στάσιµες µεθόδους.

(v). Η εισαγωγή µιας στατιστικής µεθόδου για την διάγνωση ϐλαβών σε εγγενώς µη-στάσιµες

κατασκευές η οποία χρησιµοποιεί, για πρώτη ϕορά σε πρακτική εφαρµογή, τις ασυµπτωτικές

ιδιότητες µιας πρόσφατα εισηγµένης εκτιµήτριας FS-TAR πολλαπλών σταδίων [Poulimenos

and Fassois, 2007]. Εφαρµογή, της µεθόδου για την διάγνωση ϐλαβών σε έναν χρονικά

µεταβαλλόµενο µηχανισµό δύο ϐαθµών ελευθερίας ο οποίος αποτελείται από ισάριθµους

ηλεκτροµαγνητικούς γραµµικούς κινητήρες. Αποτίµηση της αποτελεσµατικότητας της

µεθόδου σε όρους ικανότητας επιτυχούς διάγνωσης για τα διάφορα σενάρια ϐλάβης που

ϑεωρούνται.

Πιο συγκεκριµένα, στο Κεφάλαιο 2 και µετά την εισαγωγή αυτής της διατριβής, παρουσιάζε-

ται µια πειραµατική µελέτη για την αποτίµηση και σύγκριση των κυριοτέρων µη-στάσιµων

παραµετρικών µεθόδων για την αναγνώριση κατασκευών µέσω σηµάτων ταλάντωσης. Οι µέθοδοι

που εξετάζονται ταξινοµούνται σύµφωνα µε την δοµή την οποία επιβάλλουν στην εξέλιξη των

χρονικά µεταβαλλόµενων παραµέτρων ως µέθοδοι αδόµητης, στοχαστικής και καθοριστικής

εξέλιξης των παραµέτρων. Μια αντιπροσωπευτική µέθοδος από κάθε τάξη µεθόδων παρουσιάζε-

ται συνοπτικά, ενώ τα κύρια χαρακτηριστικά τους εξετάζονται µέσω της εφαρµογής τους στο

πρόβληµα της δυναµικής αναγνώρισης και ανάλυσης προτύπου εργαστηριακής κατασκευής η

οποία προσοµοιάζει κατασκευή γέφυρας µε ϐαρύ κινούµενο όχηµα επ΄ αυτής. Τα αποτελέσµατα

της µελέτης επιδεικνύουν την ικανότητα των παραµετρικών µοντέλων να παρέχουν ακριβείς και

«οικονοµικές» αναπαραστάσεις χρονικά µεταβαλλόµενων κατασκευών, ενώ σε όρους ακρίβειας

ανίχνευσης των χρονικά µεταβαλλόµενων δυναµικών χαρακτηριστικών της κατασκευής, η µέθοδος

µοντελοποίησης FS-TARMA επιτυγχάνει την συνολικά καλύτερη επίδοση µεταξύ των µεθόδων

που χρησιµοποιούνται.
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Το πρόβληµα της παραµετρικής αναγνώρισης χρονικά µεταβαλλόµενων κατασκευών επί τη

ϐάση πολυµεταβλητών σηµάτων ταλαντωτικής απόκρισης αντιµετωπίζεται στο Κεφάλαιο 3 της

παρούσας διατριβής. Για το σκοπό αυτό, εισάγεται µια διανυσµατική µέθοδος συναρτησιακών

µοντέλων FS-TARMA η οποία χρησιµοποιείται για την αναγνώριση της προαναφερθείσας προ-

τύπου εργαστηριακής κατασκευής που προσοµοιάζει γέφυρα µε ϐαρύ κινούµενο όχηµα. Η

αναγνώριση ϐασίζεται σε τρία ταυτόχρονα µετρούµενα ταλαντωτικά σήµατα απόκρισης τα οποία

λαµβάνονται κατά την διάρκεια ενός µη-στάσιµου πειράµατος. Η αποτελεσµατικότητα της µεθό-

δου κρίνεται σε σύγκριση µε ένα µοντέλο το οποίο εκτιµάται επί τη ϐάση πολλαπλών στάσιµων

πειραµάτων µε την κατασκευή να ϐρίσκεται σε «παγωµένη διάταξη» και αποδεικνύεται πως εί-

ναι κατάλληλη για την επακριβή ανίχνευση των δυναµικών χαρακτηριστικών της κατασκευής.

Συγκρίσεις µε επαναληπτικές µεθόδους και µεθόδους που ϐασίζονται σε µοντέλα χώρου κατάσ-

τασης επιδεικνύουν την υπεροχή των διανυσµατικών µοντέλων FS-TARMA τόσο ως προς την

επιτυγχανόµενη ακρίβεια όσο και ως προς την οικονοµία της παραµετροποίησης.

Στο τέταρτο κεφάλαιο, προτείνεται µια νέα τάξη προσαρµόσιµων µοντέλων AFS-TARMA τα οποία

χρησιµοποιούν προσαρµόσιµους συναρτησιακούς υποχώρους µε αρχικά άγνωστα χαρακτηρισ-

τικά για την προβολή των χρονικά µεταβαλλόµενων παραµέτρων τους. Αυτό επιτυγχάνεται

µέσω κατάλληλων παραµετροποιήσεων των συναρτήσεων ϐάσης και τον ορισµό ενός προβλήµα-

τος διαχωριζόµενων µη-γραµµικών ελαχίστων τετραγώνων (Separable Nonlinear Least Squares

(SNLS)), το οποίο αντιµετωπίζεται µέσω υβριδικού σχήµατος ϐελτιστοποίησης. Η αποτελεσ-

µατικότητα των µοντέλων αποτιµάται µέσω προσοµοιώσεων και πειραµατικής µελέτης. Πιο

συγκεκριµένα, οι αριθµητικές µελέτες αφορούν Monte Carlo πειράµατα για την αναγνώριση

προσοµοιωµένων µοντέλων που χαρακτηρίζονται από απότοµη εξέλιξη των χρονικά µεταβαλλό-

µενων παραµέτρων τους, ενώ η εισηγµένη µέθοδος εφαρµόζεται επίσης για το πρόβληµα της

αναγνώρισης των χρονικά µεταβαλλόµενων δυναµικών χαρακτηριστικών ενός µηχανισµού δυο

ϐαθµών ελευθερίας. Τέλος, παρουσιάζονται συγκρίσεις µε την κλασσική µέθοδο FS-TARMA

η οποία ϐασίζεται σε προκαθορισµένες συναρτησιακές ϐάσεις καθώς και µε εναλλακτικές µη-

στάσιµες µεθόδους. Τα αποτελέσµατα ϕανερώνουν την εξαιρετική απόδοση και ακρίβεια που

επιτυγχάνεται µέσω των νέων µοντέλων AFS-TARMA µε προσαρµόσιµες συναρτήσεις ϐάσης.

Μια εκτενής παρουσίαση της ϐιβλιογραφίας και ενδελεχής επισκόπηση των µεθόδων για την

αναγνώριση και ανάλυση µη-στάσιµων σηµάτων µέσω µοντέλων FS-TARMA παρουσιάζεται στο

Κεφάλαιο 5. Στόχος αυτού του κεφαλαίου είναι να παρέχει µια κριτική ϑεώρηση των διαφόρων

µεθόδων που έχουν προταθεί έως σήµερα για την επίλυση των προβληµάτων της εκτίµησης των

παραµέτρων και της επιλογής της δοµής των µοντέλων FS-TARMA. Οι µέθοδοι εκτίµησης που

εξετάζονται συµπεριλαµβάνουν µεθόδους παλινδρόµησης που ϐασίζονται στην ελαχιστοποίηση

κριτηρίων πρόβλεψης, επαναληπτικές µεθόδους, µεθόδους πολλαπλών σταδίων και την µέθοδο

µέγιστης πιθανοφάνειας. Αντίστοιχα για το πρόβληµα της επιλογής της δοµής των µοντέλων,

εξετάζονται διάφορα σχήµατα που ϐασίζονται στις έννοιες της πρόσω και οπισθοδροµικής παλιν-

δρόµησης άλλα και σε σχήµατα ϐελτιστοποίησης ακεραίων. Στην εργασία αυτή εξετάζονται

τόσο ϑεωρητικά όσο και πρακτικά Ϲητήµατα ενώ ιδιαίτερη έµφαση δίνεται σε υποσχόµενες νέες

µεθόδους που προσπαθούν να ξεπεράσουν προβλήµατα προηγούµενων προσεγγίσεων. Η αποτε-

λεσµατικότητα των κυριότερων µεθόδων αποτιµάται µέσω πειραµάτων Monte Carlo για την αναγ-

νώριση προσοµοιωµένων µοντέλων και συγκρίσεις µε εναλλακτικές µη-στάσιµες µεθόδους αναγ-

νώρισης. Τα αποτελέσµατα του κεφαλαίου επιβεβαιώνουν την γενικότερη αποτελεσµατικότητα

των µοντέλων FS-TARMA αλλά και τα πλεονεκτήµατα που προσφέρουν πρόσφατα ανεπτυγµένες

µέθοδοι.

Τέλος, στο Κεφάλαιο 6 εξετάζεται το πρόβληµα της διάγνωσης ϐλαβών επί τη ϐάση σηµάτων

ταλάντωσης σε µη-στάσιµες κατασκευές. Η µέθοδος που προτείνεται ϐασίζεται σε µοντέλα FS-

TAR τα οποία συνδυάζονται µε κατάλληλο στατιστικό πλαίσιο λήψης αποφάσεων. Η απόδοση της

µεθόδου εξετάζεται πειραµατικά µέσω της εφαρµογής της στο πρόβληµα της διάγνωση ϐλαβών

σε χρονικά µεταβαλλόµενο µηχανισµό δυο ϐαθµών ελευθερίας. Ο µηχανισµός αποτελείται από
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δυο ηλεκτροµαγνητικούς γραµµικούς κινητήρες οι οποίοι ακολουθούν προκαθορισµένα προφίλ

κίνησης ενώ ο µηχανισµός υπόκειται σε τυχαία ακολουθία διέγερσης. Τέτοιοι µηχανισµοί απαν-

τώνται σε πλήθος ϐιοµηχανικών εφαρµογών και η ϑεώρηση τους κατά την διάρκεια της λει-

τουργίας τους µέσω αυτοµατοποιηµένου πλαισίου λήψης αποφάσεως είναι κρίσιµης σηµασίας.

Οι ϐλάβες που εξετάζονται είναι διαφόρων τύπων και λαµβάνουν χώρα σε διάφορα σηµεία του

µηχανισµού, ενώ η διάγνωση τους ϐασίζεται αποκλειστικά σε σήµα της ταλαντωτικής απόκρισης

του µηχανισµού το οποίο καταγράφεται κατά την διάρκεια ενός κύκλου λειτουργίας του. Η

µέθοδος επιτυγχάνει εξαιρετικά αποτελέσµατα όσο αφορά την διάγνωση των ϐλαβών για όλα τα

σενάρια ϐλάβης που εξετάζονται.
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Chapter 1

Introduction

1.1 The General Problem

The general problem that the present thesis deals with is the non-stationary vibration modelling (identi-

fication) and analysis based upon equispaced in time digital sampled vibration signal measurements of

finite length obtained from a single realization. The problem of modelling based upon signal measure-

ments is in general referred to as an identification problem (for instance see [Ljung, 1999, Soderstrom

and Stoica, 1989]) and – in a broader sense – is a type of inverse problem.

Non-stationary signals, that is signals with statistical properties that depend on time, are commonly

encountered in engineering practice. The vibration responses of structures, such as traffic-excited

bridges [Poulimenos and Fassois, 2009b], robotic devices [Petsounis and Fassois, 2000], rotating ma-

chinery [Conforto and D’Alessio, 1999b], deployable structures [Xun and Yan, 2008] and so on, consti-

tute typical examples of non-stationary signals (Fig. 1.1). Such structures characterized by properties,

either physical or geometrical, that vary with time are referred as Time-Varying (TV) structures. However,

non-stationary vibration may also arise in cases of time-invariant structures subject to non-stationary

excitation, such as earthquake [Fouskitakis and Fassois, 2002] and turbulence [Mevel et al., 2005], or

in the case of structures with inherently nonlinear dynamics [Ben Mrad, 2002].

The final goal of the identification process is to build a mathematical model that will be able to

represent the underlying structural dynamics and is, in general, of the form of an appropriate stochas-

tic difference equation. It is tacitly assumed that the measured signal actually obeys a similar (but

unknown) mathematical expression, which reflects the underlying structural dynamics and is subse-

quently referred to as the actual or true model or representation. The obtained model may subse-

quently be employed for the non-stationary signal vibration analysis through the extraction of physically

meaningful information from the obtained model such as signal moments or more often a form of time-

dependent power spectral density function and the time-dependent vibration modes [Petsounis and

Fassois, 2000,Poulimenos and Fassois, 2006,Hammond and White, 1996] [Preumont, 1994, ch. 8]. In

addition to analysis, an obtained model may be also used for purposes of prediction [Ben Mrad et al.,

1998b], fault diagnosis [Poulimenos and Fassois, 2004b], classification [Staszewski et al., 1997] and

control [Niedźwiecki, 1987,Xianya and Evans, 1984].

1.1.1 Non-stationary vibration modelling methods

The modelling of non-stationary vibration is an important and yet challenging problem which has received

significant attention in recent years [Poulimenos and Fassois, 2006,Niedźwiecki, 2000,Staszewski and

Robertson, 2007,Cohen, 1995,Hammond and White, 1996]. The available non-stationary identification
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1.1. The General Problem

Figure 1.1: Typical examples of time-varying structures.

methods may be broadly classified as non-parametric or parametric. To date, non-parametric methods

have received most of the attention, mainly due to their simplicity. They are based on non-parametrized

representations of the vibration signal as a simultaneous function of time and frequency (time-frequency

distributions). These methods include the widely used spectrogram based on the Short-Time Fourier

Transform (STFT) and its ramifications [Hammond and White, 1996], Priestley’s evolutionary spectrum

[Priestley, 1988], distributions such as the Wigner-Ville and the Choi-Williams that are unified under

the Cohen class of distributions [Cohen, 1995, Hammond and White, 1996], wavelet-based methods

[Newland, 1993,Spanos and Failla, 2005] and others.

On the other hand, parametric methods are based on parametrized time-dependent representa-

tions, mainly of the Time-dependent AutoRegressive Moving Average (TARMA) type or respective Time-

dependent State-Space (TSS) types. These representations differ from their conventional, stationary,

counterparts in that their parameters are time-dependent (for instance see [Poulimenos and Fassois,

2006,Niedźwiecki, 2000]). Thus, a TARMA(na, nc) model, with na, nc designating its AR and MA orders

is of the general form:

x[t] +

na∑

i=1

ai[t] · x[t− i]
︸ ︷︷ ︸

AR part

= e[t] +

nc∑

i=1

ci[t] · e[t− i]
︸ ︷︷ ︸

MA part

, e[t] ∼ NID(0, σ2
e [t]) (1.1)

with t designating normalized discrete time, x[t] the non-stationary vibration signal modelled, e[t] an

unobservable uncorrelated (white) innovations (residual) sequence with zero mean and potentially time-

dependent variance σ2
e [t], and ai[t], ci[t] the model’s time-dependent AR and MA parameters, respectively.

NID(·, ·) stands for Normally Independently Distributed with the indicated mean and variance. Analo-

gously a TSS(n) model of order n is of the general form:

State equation : z[t+ 1] = A[t] · z[t] +K[t] · e[t] (1.2a)

Output equation : x[t] = C[t] · z[t] + e[t], e[t] ∼ NID(0, σ2
e [t]) (1.2b)

where z[t](n×1) indicates the model’s state vector and A[t](n×n), K[t](n×1), C[t](1×n) the state-space

system, Kalman gain and output matrices, respectively.

In general, contrasted to their non-parametric counterparts, non-stationary methods based on

parametrized representations are known to offer a number of potential advantages such as (for instance

see [Poulimenos and Fassois, 2006, Petsounis and Fassois, 2000, Conforto and D’Alessio, 1999b, Ben

Mrad et al., 1998b,Fouskitakis and Fassois, 2002,Poulimenos and Fassois, 2009a,Zhan and Jardine,

2005a]): (i) Representation parsimony, as models may be potentially specified by a limited number of

parameters; (ii) improved accuracy; (iii) improved resolution; (iv) improved tracking of the time-varying

dynamics; (v) flexibility in analysis, as parametric methods are capable of “directly” capturing the un-

derlying structural dynamics responsible for the non-stationary behavior; (vi) flexibility in synthesis

(simulation) and prediction, as they are more suitable for both purposes; (vii) flexibility in fault diagno-

sis, as they allow for the use of the broad class of parametric diagnosis techniques; and, (viii) flexibility

in control, for which they are also particularly suitable.

2



1. Introduction

1.2 The Focus of the Present Thesis

The focus of the present thesis is on the non-stationary random vibration modelling and analysis based

on parametric Functional Series TARMA (FS-TARMA) models.

FS-TARMA models are based on the assumption that their parameters follow a deterministic pattern

and thus they may be expanded on properly selected functional subspaces. According to the classical

approach these functional subspaces are considered to be selected from an ordered set of linearly in-

dependent basis functions of a particular family (such as polynomial, trigonometric, wavelets or other).

Using this approach, a classical parametric FS-TARMA(na, nc)[pa,pc,ps] model, with na, nc designating its

AR and MA orders, respectively, and pa, pc, ps its AR, MA, and innovations variance functional subspace

dimensionalities, is defined as follows [Poulimenos and Fassois, 2006]:

x[t] +

na∑

i=1

ai[t] · x[t− i] = e[t] +

nc∑

i=1

ci[t] · e[t− i], e[t] ∼ NID(0, σ2
e [t]) (1.3a)

FAR =
{
Gda(1)[t], . . . , Gda(pa)[t]

}
, FMA =

{
Gdc(1)[t], . . . , Gdc(pc)[t]

}
,

Fσ2
e [t] =

{
Gds(1)[t], . . . , Gds(ps)[t]

} (1.3b)

ai[t] =

pa∑

j=1

ai,j ·Gda(j)[t], ci[t] =

pc∑

j=1

ci,j ·Gdc(j)[t], σ2
e [t] =

ps∑

j=1

sj ·Gds(j)[t] (1.3c)

with ‘F” designating functional subspace of the indicated quantity, da(i) (i = 1, . . . , pa), dc(i) (i =
1, . . . , pc) and ds(i) (i = 1, . . . , ps) the indices of the specific basis functions that are included in each

subspace, while ai,j , ci,j , and sj stand for the AR, MA, and innovations variance, respectively, coefficients

of projection. Thus, in this classical approach the complete model parameter vector θ consists of these

coefficients of projection, while considering a specific basis function family the FS-TARMA model struc-

ture selection procedure concerns the determination of the AR and MA orders na, nc, and the AR, MA

and innovations variance basis functions indices vectors da = [da(1), . . . , da(pa)]
T

, dc = [dc(1), . . . , dc(pc)]
T

,

and ds = [ds(1), . . . , ds(ps)]
T

, that is:

θ = [ϑTa ϑ
T
c ϑ

T
s ]T = [a1,1, . . . , ana,pa c1,1, . . . , cnc,pc s1, . . . , sps ]

T
(1.3d)

M = {na, nc,da,dc,ds} (1.3e)

Thus, the basic features of FS-TAR/TARMA models may be summarized as follows:

• They are lumped parameter stochastic models. Stochastic as they include random variables, which

reflect the factors of uncertainty that exist in the vibration signal and make the accurate prediction

of the model’s response impossible, and of lumped parameters as they are described by a finite

number of difference equations.

• They are discrete time domain models as they represent the vibration signal in discrete time

instants (for instance t = 1, 2, . . . , N ), through a relatively small number of parameters.

• They are output-only linear models, that is they represent vibration signals through linear rela-

tionships that include past values of response-only signals and random variables.

The complete FS-TARMA identification problem may be stated as follows:
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“Given N observations of the vibration response, say xN = {x[1] . . . x[N ]} and the FS-TARMA model set:

M ∆
=

{
M(θ) : x[t] +

na∑

i=1

ai[t,θ] · x[t− i] = e[t,θ] +

nc∑

i=1

ci[t,θ] · e[t− i,θ];

σ2
e [t] = E

{
e2[t,θ]

}
, t = 1, . . . N, θ ∈ Rdim(θ)

}
, (1.4)

select an element of M that best fits the observations”.

In this expression e[t,θ] stands for the model’s one-step-ahead prediction error (residual) sequence,

which, as in the stationary case, coincides with the model’s innovations sequence e[t] [Poulimenos and

Fassois, 2006]. The identification may be thus viewed as the problem of determining the model that best

“fits” the vibration response observations xN . Model “fitness” may be judged in terms of various criteria,

like the likelihood function or prediction error criteria [Fassois, 2001a]. Both the model structure M and

model parameter vector θ consisting of the projection coefficients ai,j , ci,j , sj have to be estimated from

the available vibration response.

FS-TARMA models belong to the class of Deterministic Parameter Evolution (DPE) methods as they

impose deterministic “structure” upon the evolution of their time-varying parameters. Thus, they may be

considered particularly effective for the identification of time-varying engineering structures, which are

usually characterized by a deterministic physical mechanism responsible for their variability. Further-

more, FS-TARMA methods are particularly attractive over alternative parametric methods belonging to

the classes of Unstructured Parameter Evolution (UPE) or Stochastic Parameter Evolution (SPE) methods,

as they [Poulimenos and Fassois, 2006,Conforto and D’Alessio, 1999b,Ben Mrad et al., 1998b,Petsounis

and Fassois, 2000,Fouskitakis and Fassois, 2001,Niedźwiecki, 2000]: (a) Impose maximum “structure”

on parameter evolution, achieving a high degree of parsimony, (b) are capable of tracking “fast” and

“abrupt” variations via proper functional bases and, (c) achieve high modelling accuracy and resolution.

Indeed, UPE methods fail to model the transient phenomena of non-stationary vibration and are

suitable only for describing “slow” evolutions in the signal characteristics, involve a trade-off between

tracking ability and achievable accuracy, and do not lead to parsimonious representations. SPE meth-

ods, on the other hand, offer improved parsimony, but are most suitable for describing random evolutions

in the signal’s characteristics. Yet, the advantages of FS-TARMA models over alternative non-stationary

models (such as segmentation, adaptive, or smoothness priors models), have also been demonstrated

via a Monte Carlo comparison study in [Poulimenos and Fassois, 2006]

Despite the long history of FS-TARMA models in non-stationary identification and their successful

application in a number of studies, FS-TARMA modelling still remains challenging, mainly due to model

structure estimation, including the selection of suitable subspace basis functions. Moreover, practical

issues such as the FS-TARMA modelling based on vector random vibration signal measurements, and

the development of statistical time series method for the effective solution of the Fault Detection and

Identification (FDI) problems in inherently non-stationary structures have hardly been considered.

1.3 Current State-of-the-Art

FS-TARMA models have played an important role in the development and evolution of non-stationary

random signal identification and analysis over the last forty years. They were introduced in 1970 by

Rao [Rao, 1970] who proposed the truncated Taylor series expansion of a TAR model parameters – this is

equivalent to assuming time-dependent parameters that can be described as polynomials of time. Three

years later, Mendel [Mendel, 1973] classified the available non-stationary identification methods into the

aforementioned three classes (UPE, SPE and DPE) and defined a general FS linear regression model as

appropriate for the case in which a set of time-invariant or slowly TV parameters may be distinguished

from the rest of the parameters which evolve rapidly with time.

Functional Series models of the pure TAR form with parameters belonging to a subspace spanned

by Legendre polynomials were used for first time within the context of random vibration, and more
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specifically earthquake ground motion, modelling and simulation in an early paper by Kozin in 1977

[Kozin, 1977]. Nevertheless, FS models did not enjoy widespread popularity before the early 1980’s,

when a number of researchers start studying their properties and examining their potential for accurate

non-stationary signal modelling [Grenier, 1983b, Hall et al., 1983, Clergeot, 1984, Charbonnier et al.,

1987,Niedźwiecki, 1988].

Since then, FS-TAR/TARMA models have been used in various structural dynamics related appli-

cations, such as the modelling and simulation of earthquake ground motion [Fouskitakis and Fassois,

2002], vibration analysis in rotating machinery [Bardou and Sidahmed, 1994, Conforto and D’Alessio,

1999b,Zhang et al., 2010a], the modelling and prediction of power consumption in an automobile active

suspension [Ben Mrad et al., 1998b], the modelling and analysis of simulated robot vibration [Petsou-

nis and Fassois, 2000], and the modelling and vibration analysis of a bridge with heavy vehicle type

laboratory structure [Poulimenos and Fassois, 2009b]. However, the majority of FS-TARMA studies are

limited to the simple single vibration response signal (univariate) case. Although the multiple vibration

response (vector or multivariate) case is much more important from a practical standpoint, it has thus

far received limited attention. Yet, vector identification can lead to much more complete descriptions, re-

duced data acquisition and processing times, improved data set “consistency”, and also improved modal

parameter accuracy [Fassois, 2001b]. Even if the subclass of Functional Series Vector Time-dependent

Autoregressive (FS-VTAR) models has been used in a broader context by Gersch and Kitagawa [Gersch

and Kitagawa, 1982] and Sato et al. [Sato et al., 2007] for the modelling and analysis of econometric and

biomedical time series, respectively, full FS-VTARMA models have not been previously considered.

Regarding the FS-TARMA model structure selection problem, although the significance of the proper

functional subspace selection was underlined in many publications within the first twenty years of FS-

TARMA models history, it was only in 1993 when Tsatsanis and Giannakis presented a complete model

structure selection scheme based on the concept of backward regression [Tsatsanis and Giannakis,

1993]. However, a more systematic examination of the subject has take place over the last decade. For

instance, a simplified scheme based on the backward regression concept was proposed in [Poulimenos

and Fassois, 2003b] which decomposes the structure selection problem into two subproblems treated in

equal phases: i) the model orders (na, nc) selection, and (ii) the functional subspaces selection. The goal

of this scheme is to reduce the computational time that is required for the exhaustive search that is done

by Tsatsanis and Giannakis scheme. Forward regression procedure based on Gram-Schmidt orthogo-

nalization was also proposed by Wei and Billings in [Wei and Billings, 2002]. Finally, a more automated

procedure based on integer optimization and Genetic Algorithm (GA) was proposed in [Poulimenos and

Fassois, 2003a].

Most certainly, beyond the model structure selection scheme utilized, the family of basis functions

selected for the expansion of the FS model time-dependent parameters is of crucial importance. The

bases that have been proposed in the literature include time polynomials of arbitrary order [Liporace,

1975], polynomial basis functions like Chebyshev [Fouskitakis and Fassois, 2002] and Legendre [Kozin,

1977,Grenier, 1983b], trigonometric basis functions [Petsounis and Fassois, 2000,Poulimenos and Fas-

sois, 2009a], discrete prolate spheroidal functions [Grenier, 1983b], various wavelet families [Tsatsanis

and Giannakis, 1993, Li et al., 2011], and others. Recently, methods based on multiple basis func-

tions which try to combine the characteristics of two or more bases have also been proposed [Li et al.,

2011,Chon et al., 2005].

However, the common characteristic of all the aforementioned studies is that the functional sub-

spaces, either selected arbitrarily or by taking advantage of any prior information regarding the param-

eter evolution, always consist of basis functions of fixed form which are selected from a pre-selected list.

Hence, the goodness of model fit is heavily dependent on the chosen family of basis functions.

As already mentioned, identified parametric models may be used for a number of purposes with fault

diagnosis being one of the most important for reasons related with operational safety and service costs.

Within the fault diagnosis context, in recent years, significant attention has been paid to vibration-

based methods, which are founded upon the fundamental principle that small changes (faults) in a

structure cause discrepancies in the dynamics and consequently on the vibration response, which may
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be detected and associated with a specific cause (fault type) [Doebling et al., 1998,Farrar et al., 2001].

However, despite the progress achieved for stationary (time-invariant) structures, this is not the case

for structures with inherent non-stationarities. Only a small number of studies have been presented

up to date in the literature. For instance, a statistical decision framework utilizing the residuals of

an FS-TARX model was applied for the on-line damage detection in the aforementioned “bridle-like”

structure [Poulimenos and Fassois, 2004b]. In order to assess the impact of a damage on the modal

characteristics of a reinforced concrete frame, Huang et al. [Huang et al., 2009] also applied FS-TARX

modelling on segments of vibrational data. Nevertheless, the main drawback of the aforementioned

methods is that they use input-output data. Thus, access to the structure’s excitation, which is usually

unavailable in practical applications, is required for their application.

1.4 Thesis Objectives

The specific objectives of the present thesis may be summarized as follows:

(i). Experimental assessment and comparison of the main non-stationary random vibration modelling

methods via their application to a benchmark laboratory structure. Discussion of the methods’

main features, operational characteristics and applicability, as well as investigation of their pros

and cons.

(ii). The postulation of a vector (multivariate) FS-TARMA method for output-only structural dynamics

identification. Development of effective tools for both model parameter estimation and model

structure selection. Assessment of the method effectiveness by its application to the output-only

identification of a TV “bridge-like” laboratory structure.

(iii). The introduction of a novel class of Adaptable FS-TARMA (AFS-TARMA) models and the develop-

ment of a method for their effective identification. AFS-TARMA models are adaptable in the sense

that they are not based on basis functions of a fixed form, but instead, they use basis functions

with a-priori unknown properties that may adapt to the specific random signal characteristics.

Validation of the method through its application in numerical and experimental case studies and

comparisons with currently available non-stationary signal identification methods.

(iv). The presentation – for first time – of a thorough review on FS-TARMA models covering both the-

oretical and practical aspects of the subject such as the FS-TARMA model parameter estimation

and structure selection problems, with special emphasis being placed on promising new methods

that aim at overcoming problems of previous approaches. Detailed comparison and assessment

of the reviewed methods based on Monte Carlo experiments and comparisons with alternative

non-stationary methods.

(v). The introduction of a statistical method for vibration-based fault detection and identification in

inherently non-stationary structures, which utilizes – for first time in an real application – the

asymptotic properties of recently introduced multi-stage FS-TAR estimator [Poulimenos and Fas-

sois, 2007]. Application of the introduced method for the fault detection and identification in a

TV pick-and-place mechanism consisting of two electromagnetic linear motors. Evaluation of the

method’s effectiveness in terms of its fault detection capability under various fault scenarios.

The thesis chapters and their specific contribution are analytically presented in the next section.

1.5 Organization and Contributions of this Thesis

The chapters of the thesis are summarized in Table 1.1:
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Table 1.1: Thesis chapters.

Chapter Title

2 Output-Only Identification and Dynamic Analysis of Time-Varying Mechanical

Structures Under Random Excitation: A comparative assessment of parametric

methods

3 Parametric Identification of Time-Varying Structures Based on Vector Vibration Re-

sponse Measurements via FS-VTARMA Models

4 Adaptable FS-TARMA Models for Non-Stationary Signal Modelling

5 Non-Stationary Random Vibration Modelling and Analysis via FS-TARMA Models –

A critical survey

6 An FS-TAR Based Statistical Method for the Modelling and Fault Diagnosis in Time-

Varying Structures: A pick-and-place mechanism application study

Chapter 2: Output-Only Identification and Dynamic Analysis of Time-Varying Mechanical

Structures Under Random Excitation: A comparative assessment of parametric methods

This chapter addresses the problem of parametric time-domain identification and dynamic analysis for

TV mechanical structures under unobservable random excitation. The methods presented are based on

TARMA models, and are classified according to the mathematical structure imposed on the TV param-

eter evolution as unstructured parameter evolution, stochastic parameter evolution, and deterministic

parameter evolution. The features and relative merits of each class are outlined. A representative

method from each is then assessed through its application to the identification and dynamic analysis of

a “bridge-like” laboratory TV structure consisting of a beam with a mass moving on it. The results are

mutually compared and contrasted to those obtained through “frozen-configuration” (multiple experi-

ment) baseline identification.

Main contributions:

(i). Provides a concise overview of the techniques of TARMA based methods for TV structural identifi-

cation.

(ii). Comparative assessment of the methods through a case study, pertaining to the modelling and

dynamic analysis of the non-stationary random vibration of a time-varying “bridge-like” laboratory

structure.

Chapter 3: Parametric Identification of Time-Varying Structures Based on Vector Vibra-

tion Response Measurements via FS-VTARMA Models.

The problem of parametric output-only identification of time-varying structures based on vector random

vibration signal measurements is considered in this chapter.

Although FS-TARMA models are known to outperform the classes of unstructured and stochastic

parameter evolution methods in the simpler univariate case [Poulimenos and Fassois, 2006], they have

not been used for multivariate TV structural identification. The goal of this chapter is to fill this gap by

introducing a Functional Series Vector Time-dependent AutoRegressive Moving Average (FS-VTARMA)

method and to provide effective tools for both model parameter estimation and model structure selec-

tion problems. The method is also employed for the identification of a “bridge-like” laboratory structure

consisting of a beam and a moving mass. The identification is based on three simultaneously measured

vibration response signals obtained during a single experiment. The method is judged against baseline

modelling based on multiple “frozen-configuration” stationary experiments, and is shown to be effective

and capable of accurately tracking the dynamics. The structure was previously identified via univariate

FS-TARMA models [Poulimenos and Fassois, 2009a], which offered the possibility of comparisons with

the simpler univariate (single response measurement) case. Additional comparisons with a recursive
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Pseudo-Linear Regression VTARMA (PLR-VTARMA) method and a Short Time Stochastic Subspace Iden-

tification (ST-SSI) method are made in order to demonstrate the method’s superior achievable accuracy

and model parsimony.

Main contributions:

(i). Extension of the FS-TARMA models to the multivariate case.

(ii). Identification of a time-varying laboratory structure based on the FS-VTARMA models.

(iii). Comparison with alternative multivariate methods.

Chapter 4: Adaptable FS-TARMA Models for Non-Stationary Signal Modelling

The application of FS-TARMA identification still has its difficulties, as model estimation and particularly

the model structure selection may be a complicated problem. This is due to the fact that in order to solve

this problem effectively numerous multi-branch decisions have to be taken, with the most significant

being the choice of a specific family of basis functions and the selection of the optimal functional sub-

space. To date, the literature on FS-TARMA models has mainly focused on the first problem of functional

basis selection, while the equally significant problem of functional subspace selection has been treated

thoroughly only in a small number of studies. However, the common characteristic of all the studies on

FS-TARMA models is that the functional subspaces, either selected arbitrarily or by taking advantage

of any prior information regarding the parameter evolution, is always formed by fixed basis functions

belonging to a prescribed set. Hence, the goodness of model fit is heavily dependent on the chosen basis.

The aim of this chapter is to approach the FS-TARMA identification problem from a different data-

centered perspective. Toward this end, a new class of Adaptable FS-TARMA (AFS-TARMA) models is

introduced. AFS-TARMA models are adaptable in the sense that they are not based on basis func-

tions of a fixed form, but instead, they use basis functions with a-priori unknown properties that may

adapt to the specific random signal characteristics. This is accomplished via: (a) proper basis function

parametrizations which allow their decay rate and frequency (decaying trigonometric functions) or knots

(B-splines) to be directly estimated, and (b) a Separable Nonlinear Least Squares (SNLS) type procedure

( [Golub and Pereyra, 1973]) that achieves simultaneous estimation of the basis functions and the coeffi-

cients of projection through a reduced dimensionality, constrained non-quadratic optimization problem

tackled via Particle Swarm Optimization (PSO) and gradient-type refinement. The model structure pa-

rameters, that is model orders and the functional subspace dimensionalities, are estimated based on

suitable criteria and PSO.

The method’s effectiveness is evaluated through numerical and experimental case studies and com-

parisons between the introduced method, the classical FS-TARMA approach and other existent non-

stationary methods.

Main contributions:

(i). Introduction of a novel class of Adaptable FS-TARMA (AFS-TARMA) models.

(ii). Introduction of a novel identification framework for AFS-TARMA models exemplified to two types

of adaptable basis functions: B-splines and decaying trigonometric functions.

(iii). Assessment of the methods via Monte Carlo simulations and comparisons with classical counter-

parts.

(iv). Application of the method to an experimental case study pertaining to the identification of a time-

varying pick-and-place mechanism.

Chapter 5: Non-Stationary Random Vibration Modelling and Analysis via FS-TARMA Mod-

els – A critical survey

Even though the advantages of FS-TARMA models over alternative non-stationary models (such as

segmentation, adaptive, or smoothness priors models), have been demonstrated via a Monte Carlo com-
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1. Introduction

parison study in [Poulimenos and Fassois, 2006], there is a number of issues that have hardly been

considered. These include the assessment of the various FS-TARMA estimation methods, the compar-

ison of the various model structure selection schemes, and the problem of time-dependent variance

estimation. The aim of this chapter is to provide a critical overview of the FS-TAR/TARMA methods that

have been proposed in the literature and the assessment of these methods via an extended comparison

study based on the identification of simulated systems. The estimation methods considered include

regression type methods based on the minimization of Prediction Error (PE) criteria, recursive estima-

tion methods, multistage methods and the Maximum Likelihood (ML) method. For the model structure

selection problem integer optimization schemes, and schemes based on the concept of backward and

forward regression are reviewed.

Finally, the effectiveness of FS-TARMA methods over alternative parametric and non-parametric

methods is demonstrated through a critical comparison study based on Monte Carlo experiments on the

identification of simulated TAR and TARMA models.

Main contributions:

(i). Presentation of a critical survey on FS-TARMA models and their variants regarding:

• parameter estimation methods

• model structure selection criteria and methods

• innovations time-dependent variance estimation

• variants, alternative methods, applications

• recent advances.

(ii). Comparison study of the main methods for FS-TARMA parameter estimation and structure selec-

tion based on Monte Carlo experiments.

Chapter 6: An FS-TAR based method for vibration-response-based fault diagnosis in

stochastic time-varying structures: Experimental application to a pick-and-place mech-

anism.

In recent years, significant attention has been paid to fault detection via vibration based methods.

These appear promising and offer potential advantages over alternative fault detection methods, as they

require no visual inspection, are “global” (in the sense of covering large areas) and capable of working at

a “system level”, can be automated, and also tend to be time and cost effective [Fassois and Sakellariou,

2007]. Nevertheless, although there is a large number of studies on the vibration based fault detection

for stationary structures this is not the case for non-stationary ones.

The goal of this chapter is the introduction of a statistical (parametric) model based method for vi-

bration based fault detection in inherently non-stationary structures. The proposed method is based

on non-stationary FS-TAR modelling and a proper statistical decision making scheme which utilizes the

asymptotic properties of a Multi-Stage (MS) estimator. The method is validated and its effectiveness

is experimentally assessed via its application to fault detection and identification on a pick–and–place

mechanism consisting of two industrial type linear motors. Random force excitation is provided via

an electromechanical shaker, while the vibration responses are measured at various positions via ac-

celerometers. The fault scenarios considered consist of loosening or removal of bolts from various points

of the mechanism and small added masses attached to the structure. The method is shown to achieve

effective fault detection and identification based solely on the response signal of the structure acquired

by a single sensor.

Main contributions:

(i). Introduction of a statistical (parametric) model based method for vibration-based structural dy-

namics modelling and fault diagnosis (that is fault detection and identification), in inherently TV

structures.
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(ii). Application of the introduced statistical time series method in a TV pick-and-place mechanism

consisting of two electromagnetic linear motors.

(iii). Assessment of the method in terms of both modelling accuracy and fault detection capability under

various fault scenarios considered.

10



Chapter 2

Output-Only Identification and Dynamic Analysis

of Time-Varying Mechanical Structures Under

Random Excitation: A comparative assessment of

parametric methods

The problem of parametric time-domain identification and dynamic analysis for Time-Varying (TV) me-

chanical structures under unobservable random excitation is addressed in this chapter. The methods

presented are based on Time-dependent AutoRegressive Moving Average (TARMA) models, and are clas-

sified according to the mathematical structure imposed on the TV parameter evolution as unstructured

parameter evolution, stochastic parameter evolution, and deterministic parameter evolution. The fea-

tures and relative merits of each class are outlined. A representative method from each is then assessed

through its application to the identification and dynamic analysis of a laboratory TV structure consisting

of a beam with a mass moving on it. The results are mutually compared and contrasted to those obtained

through “frozen-configuration” (multiple experiment) baseline identification.
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2.1. Introduction

2.1 Introduction

Time-varying (TV), or else non-stationary, mechanical structures are those characterized by (mass, stiff-

ness, power dissipation) properties that vary with time. Prime examples include crane and similar

structures, robotic and other variable configuration structures, railway bridges, rocket and aircraft

structures, rotating structures, vehicle suspensions with adjustable characteristics, deployable space

structures, and so on. Continuously variable configuration structures, that is structures with geometrical

characteristics varying with time, constitute an important subclass of TV structures.

TV structures are often subject to random excitation producing random vibration responses. In con-

trast to Time-invariant (TI) structures which produce vibration responses with TI (stationary) statistical

characteristics, the responses of TV structures are characterized by TV (non-stationary) statistical char-

acteristics [Bendat and Piersol, 2000, ch. 12], [Poulimenos and Fassois, 2006,Preumont, 1994,Priestley,

1988,Hammond and White, 1996,Kitagawa and Gersch, 1996]. Non-stationary responses may be also

produced by TI structures subject to non-stationary excitation (such as earthquakes and atmospheric

turbulence), or by structures with inherent nonlinear dynamics. Although these cases may be also

treated by the methods presented in the following, our main focus will be on TV structures.

In many cases it is useful to identify a model of a TV structure which may be subsequently used

for dynamic analysis [Conforto and D’Alessio, 1999b,Petsounis and Fassois, 2000,Ghanem and Romeo,

2000,Liu and Deng, 2006,Poulimenos and Fassois, 2009a], for the refinement of analytic models [Dim-

itriadis et al., 2004], for simulation [Fouskitakis and Fassois, 2002], for damage detection and identi-

fication [Bardou and Sidahmed, 1994, Poulimenos and Fassois, 2004b, Zhan et al., 2006], as well as

for prediction and control [Ben Mrad et al., 1998b]. Oftentimes, this identification has to be based on

vibration response-only measurements (the output-only problem). This is so because the force excitation

may be due to various sources that are difficult or impossible to precisely isolate and measure (this is the

case of oscillations in a crane system, a rocket, a railway bridge, and so on). The focus of this chapter is

precisely on this case, although the methods may be extended to the observable excitation case as well

(for instance see [Dimitriadis et al., 2004,Poulimenos and Fassois, 2004b,Ben Mrad, 2002]). A recent

survey on the topic is Ref. [Poulimenos and Fassois, 2006], where the methods surveyed are compared

by means of a Monte Carlo study based on a TV suspension model.

The mathematical models for the output-only identification of TV structures may be of the parametric

or non-parametric types. Attention is presently restricted to the former category, which is known to offer

a number of potential advantages compared to the category of non-parametric methods [Poulimenos and

Fassois, 2006,Hammond and White, 1996,Conforto and D’Alessio, 1999b,Petsounis and Fassois, 2000].

These include (i) representation parsimony, (ii) improved accuracy, (iii) improved frequency resolution,

(iv) improved tracking of the time-varying dynamics, and (v) flexibility in analysis, as parametric methods

are capable of directly capturing the underlying dynamics responsible for the time-varying behavior. The

reader may consult references such as [Hammond and White, 1996,Newland, 1994,Spanos and Failla,

2005] for non-parametric methods.

Parametric mathematical models are of the TARMA type or corresponding state space forms [Liu and

Deng, 2006]. TARMA models resemble their conventional, stationary ARMA counterparts [Box et al.,

1994, p. 53], with the significant difference being that they allow their parameters to depend upon time

[Poulimenos and Fassois, 2006,Petsounis and Fassois, 2000,Niedźwiecki, 2000,Grenier, 1989a,Owen

et al., 2001,Cooper and Worden, 2000]. Depending on the nature of the mathematical structure imposed

on the time evolution of their parameters, TARMA models may be classified as unstructured parameter

evolution, stochastic parameter evolution, and deterministic parameter evolution.

Unstructured parameter evolution TARMA (UPE-TARMA) models impose no mathematical structure

on the time evolution of their parameters, which are thus free to change with time. Such a model is

thus directly parametrized in terms of its TV parameters. As the complete description of a TV structure

requires knowledge of the model parameters at each time instant, UPE-TARMA models are character-

ized by low parsimony (low model parametrization economy) and are mainly capable of tracking slow

evolutions in the dynamics. Due to their simplicity and ease of use, they are frequently used in practice
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2. Output-Only Identification and Dynamic Analysis of TV Mechanical Structures

(for instance see [Owen et al., 2001, Cooper and Worden, 2000, Gersch and Brotherton, 1982, Cooper,

1990]).

The class of stochastic parameter evolution TARMA models impose stochastic structure on the time

evolution of their parameters. The latter are thus assumed to be autocorrelated random variables allowed

to change with time, but with their evolution being subject to certain smoothness constraints. These are

often referred to as smoothness priors constraints, and the models are thus referred to as smoothness

priors TARMA (SP-TARMA) models. SP-TARMA models achieve low parsimony, as knowledge of the model

parameters at each time instant is still required. At the same time, they may still leave an unnecessarily

high number of degrees of freedom in parameter evolution. SP-TARMA models have been used primarily

for the modelling and analysis of earthquake ground motion signals (for instance see [Kitagawa and

Gersch, 1996,Gersch and Kitagawa, 1985,Kitagawa and Gersch, 1985]).

Finally, deterministic parameter evolution TARMA models impose deterministic structure on the

time evolution of their parameters. This is achieved by postulating model parameters as deterministic

functions of time belonging to specific functional subspaces [Poulimenos and Fassois, 2006,Conforto and

D’Alessio, 1999b,Bardou and Sidahmed, 1994], [Niedźwiecki, 2000, ch. 6], [Grenier, 1989a,Ben Mrad

et al., 1998a]. These models are specifically referred to as Functional Series TARMA (FS-TARMA) models.

FS-TARMA models achieve high parsimony, as they use a limited number of parameters. Through proper

selection of the functional subspaces, FS-TARMA models may represent various types of evolution in

the dynamics, including slow, fast or even discontinuous evolutions [Conforto and D’Alessio, 1999b,

Petsounis and Fassois, 2000, Fouskitakis and Fassois, 2002, Ben Mrad et al., 1998b], [Niedźwiecki,

2000, p. 215], [Fouskitakis and Fassois, 2001].

FS-TAR/TARMA models have been used in various structural dynamics related applications, such as

the modelling and simulation of earthquake ground motion [Fouskitakis and Fassois, 2002,Kozin, 1977],

vibration analysis in rotating machinery [Conforto and D’Alessio, 1999b], the modelling and prediction

of power consumption in an automobile active suspension [Ben Mrad et al., 1998b], the modelling and

analysis of simulated robot vibration [Petsounis and Fassois, 2000], and the modelling and vibration

analysis of a bridge with heavy vehicle type laboratory structure [Poulimenos and Fassois, 2009a].

The aim of the present study is twofold: (i) To provide a concise overview of the techniques of

time-dependent ARMA methods for TV structural identification, and (ii) to present an application and

comparative assessment of the methods through a case study, pertaining to the modelling and dynamic

analysis of the non-stationary random vibration of a time-varying bridge with heavy vehicle type labora-

tory structure. Comparisons with a “frozen-configuration” baseline model based on multiple stationary

experiments are also made.

The remainder of this chapter is organized as follows: The mathematical description of a TV and a

continuously variable configuration structure and their connection are discussed in Section 2.2. The

parametric models for the output-only identification of TV structures are presented in Section 2.3, while

in Section 2.4 the model parameter estimation and model structure selection problems are considered.

In Section 2.5 the TV (continuously variable configuration) structure under study is presented. The

identification results and the dynamic analysis of the structure based on the identified TARMA models

are in the focus of Sections 2.6 and 2.7, respectively. Finally the conclusions of the study are summarized

in Section 2.8.

2.2 Time-Varying and Continuously Variable Configuration Structures and

Their Response

A lumped parameter model of a TV viscously damped structure is provided by the ordinary differential

equation (ODE)

M(t)ẍ(t) +C(t)ẋ(t) +K(t)x(t) = f(t), t ∈ [t0, tf ], (2.1)

with t designating analog time, x(t) the structural displacement response vector, and f(t) the force

excitation vector. M(t), C(t), andK(t) stand for the TV mass, viscous damping, and stiffness matrices,
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respectively, which are responsible for the TV nature of the structure.

By “freezing” the mass, viscous damping, and stiffness matrices successively at each time instant τ
(τ ∈ [t0, tf ]), one may associate a noncountable sequence of TI structures with the TV structure of Eq.

(2.1). Each such “frozen” structure is described by the ODE

M(τ)ẍ(t) +C(τ)ẋ(t) +K(τ)x(t) = f(t), for all t, (2.2)

which is TI for the selected time instant τ . This sequence of TI structures may be thought of as a

“frozen-time” representation of the TV structure. The knowledge of the frozen-time representation of a TV

structure is equivalent to knowledge of the TV structure and vice versa, as it provides the characteristics

that the structure would have if it were indeed frozen at each time instant.

As already noted, continuously variable configuration structures characterized by geometrical char-

acteristics that vary with time, form an important subclass of TV structures. Defining a configuration

vector r(t) that fully describes the geometry of the continuously variable configuration structure at each

time instant, the structure matrices of Eq. (2.1) become functions of r(t), that is M(t) ≡ M(r(t)),
C(t) ≡ C(r(t)), and K(t) ≡K(r(t)).

By analogy to the frozen-time representation of a TV structure, the “frozen-configuration” representa-

tion of a continuously variable configuration structure may be thought of as consisting of a noncountable

sequence of TI structures obtained by “freezing” the configuration vector successively at each time in-

stant τ (τ ∈ [t0, tf ]). Designating the frozen-configuration vector r(τ) = ρ, each such frozen structure is

described by the ODE

M(ρ)ẍ(t) +C(ρ)ẋ(t) +K(ρ)x(t) = f(t), for all t, (2.3)

and is TI for the selected ρ. Obviously, the frozen-time and frozen-configuration representations are

equivalent for a continuously variable configuration structure with known time variation of its configu-

ration vector.

A practically important feature of continuously variable configuration structures is that it is often

possible to obtain access to a (configuration-vector-discretized) version of its frozen-configuration rep-

resentation by “freezing” the configuration vector at selected discrete values (say ρ1,ρ2, . . . ,ρM ). The

dynamics of the structure for each value of ρ are described by Eq. (2.3), and identification of its frozen-

configuration representation may be based on data sets obtained from M distinct experiments. This

procedure is referred to as baseline identification and is used in the present study as well. Its advantage

is twofold: Conventional TI identification is used, and the achievable accuracy may be high due to the

availability of (large) data sets from M experiments. Yet, its disadvantage is exactly the need for running

M distinct experiments and identification cycles. Moreover, TI identification does not directly provide

information on the actual non-stationary vibration response.

The above concepts and ideas obviously extend to the discrete-time case. The ODE representation

of Eq. (2.1) is then converted into a vector second-order difference equation. When the single excitation

single vibration response is considered, the (partial) dynamics may be described by a scalar difference

equation

x[t] +

na∑

i=1

ai[t]x[t− i] =

nc∑

i=0

ci[t]f [t− i], t = 1, . . . , N, (2.4)

in which t designates normalized discrete-time (absolute time normalized by the sampling period), f [t],
x[t] the discretized versions of the scalar force and observed vibration displacement response, respec-

tively, ai[t], ci[t] the discrete-time TV parameters, na, nc the equation orders, and N the signals’ length

in samples. The expressions for the discrete-time frozen-time and frozen-configuration representations

are analogous to their continuous-time counterparts.

2.3 Parametric Models for the Identification of Time-Varying Structures

Parametric models typically are of the TARMA type or proper extensions (for instance TARMAX models

– that is TARMA models with exogenous excitation, which additionally account for measurable force
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excitations). A TARMA(na, nc) model, with na, nc designating its autoregressive (AR) and moving average

(MA) orders, respectively, is thus of the form (compare with Eq. (2.4))

x[t] +

na∑

i=1

ai[t]x[t− i]
︸ ︷︷ ︸

AR part

= e[t] +

nc∑

i=1

ci[t]e[t− i],
︸ ︷︷ ︸

MA part

e[t] ∼ NID(0, σ2
e [t]), (2.5)

with t designating normalized discrete time, x[t] the non-stationary vibration response signal, e[t] an

unobservable uncorrelated (white) non-stationary innovations, or else residual signal characterized by

zero mean and TV variance σ2
e [t], and ai[t], ci[t] the model’s TV AR and MA parameters, respectively.

NID(·, ·) stands for normally independently distributed random variables with the indicated mean and

variance.

As already indicated, depending on the nature of the mathematical structure imposed on the time

evolution of their parameters, TARMA models may be classified as unstructured parameter evolution,

stochastic parameter evolution, and deterministic parameter evolution.

2.3.1 Unstructured parameter evolution TARMA models

Unstructured Parameter Evolution TARMA (UPE-TARMA) models impose no mathematical structure on

the time evolution of their parameters, which are thus free to change with time. Such a model is thus

directly parametrized in terms of its TV parameters ai[t], ci[t], σ
2
e [t], and a specific model structure, say

MUPE , is defined by the representation orders na, nc, that is:

MUPE
∆
= {nα, nc} (2.6)

2.3.2 Stochastic parameter evolution TARMA models

Stochastic parameter evolution TARMA models impose stochastic structure on the time evolution of their

parameters. The latter are thus assumed to be autocorrelated random variables allowed to change with

time, but with their evolution being subject to certain smoothness constraints. These are often referred

to as smoothness priors constraints, and the models are thus referred to as Smoothness Priors TARMA

(SP-TARMA) models. The smoothness priors constraints typically are stochastic difference equations of

the forms

∆κai[t] = wai [t], wai [t] ∼ NID(0, σ2
wai

[t]), (2.7a)

∆κci[t] = wci [t], wci [t] ∼ NID(0, σ2
wci

[t]), (2.7b)

acting on each one of the AR and MA parameters. In these expressions κ designates the difference

equation order, ∆κ
the κ-th order difference operator (∆κ ∆

= (1 − B)κ; where B the backshift operator

Bix[t]
∆
= x[t − i]) and wai [t], wci [t] zero-mean, uncorrelated (white) and mutually uncorrelated, and

uncrosscorrelated with e[t], Gaussian sequences with potentially TV variances. The degree of smoothness

of the time evolution of each parameter is controlled by the corresponding white sequence variance, and

increases for decreasing variance. A specific SP-TARMA model structure is defined by the model orders

na, nc and the smoothness constraints order κ (the latter being typically assumed to be common for all

AR and MA parameters):

MSP
∆
= {na, nc, κ} (2.8)

2.3.3 Deterministic parameter evolution TARMA models

Deterministic parameter evolution TARMA models impose deterministic structure on the time evolution

of their parameters. This is achieved by postulating model parameters as deterministic functions of

time belonging to specific functional subspaces [Poulimenos and Fassois, 2006,Conforto and D’Alessio,
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1999b, Bardou and Sidahmed, 1994], [Niedźwiecki, 2000, ch. 6], [Grenier, 1989a], [Ben Mrad et al.,

1998a]. These models are specifically referred to as Functional Series TARMA (FS-TARMA) models.

Their AR and MA parameters, as well as their innovations variance, are thus expanded on the selected

functional subspaces:

FAR
∆
=
{
Gda(1)[t], ..., Gda(pa)[t]

}
, FMA

∆
=
{
Gdc(1)[t], ..., Gdc(pc)[t]

}
,

Fσ2
e

∆
=
{
Gds(1)[t], ..., Gds(ps)[t]

}

Each functional subspace consists of a set of orthogonal basis functions selected from a suitable family

(such as a polynomial family, a trigonometric family, and so on). The AR, MA, and variance subspace

dimensionalities are indicated as pa, pc, ps, respectively, while the indices da(i) (i = 1, . . . , pa), dc(i)
(i = 1, . . . , pc) and ds(i) (i = 1, . . . , ps) designate the specific basis functions of a particular family that

are included in each subspace. The TV AR and MA parameters and the innovations variance of an

FS-TARMA(na, nc)[pa,pc,ps] model are then expressed as

ai[t]
∆
=

pa∑

j=1

ai,jGda(j)[t], ci[t]
∆
=

pc∑

j=1

ci,jGdc(j)[t], σ2
e [t]

∆
=

ps∑

j=1

sjGds(j)[t],

with ai,j , ci,j , and sj designating the AR, MA, and innovations variance, respectively, coefficients of

projection. An FS-TARMA model is thus parametrized in terms of its projection coefficients ai,j , ci,j , sj ,
while a specific model structure MFS is defined by the model orders na, nc, and the functional subspaces

FAR,FMA,Fσ2
e
.

MFS
∆
= {na, nc,FAR,FMA,Fσ2

e
} (2.9)

FS-TARMA models achieve high parsimony, as they use a limited number of parameters. Through proper

selection of the functional subspaces, FS-TARMA models may represent various types of evolution in

the dynamics, including slow, fast or even discontinuous evolutions [Conforto and D’Alessio, 1999b,

Petsounis and Fassois, 2000, Fouskitakis and Fassois, 2002, Ben Mrad et al., 1998b, Fouskitakis and

Fassois, 2001], [Niedźwiecki, 2000, p. 215].

2.4 The Identification Problem and Methods

Given a single, N -sample-long, non-stationary vibration response signal xN
∆
= {x[1] . . . x[N ]} and a

selected model class (unstructured, stochastic, or deterministic parameter evolution), the TARMA iden-

tification problem may be posed as the problem of selecting the corresponding model structure M, the

model AR/MA parameter vector θ[t]
∆
= [ a1[t] . . . ana [t]

.

.

. c1[t] . . . cnc [t] ]T and the innovations variance

σ2
e [t] that best “fit” the observed response. Model “fitness” may be understood in various ways. In all

of them a key role is assigned to the model predictive ability, that is the ability of a specific model in

providing accurate one-step-ahead predictions.

Based on Eq. (2.5) it is straightforward to verify that the minimum mean square error one-step-ahead

prediction x̂[t|t− 1] of the signal value x[t] made at time t− 1 is equal to

x̂[t|t− 1] = −
na∑

i=1

ai[t]x[t− i] +

nc∑

i=1

ci[t]e[t− i], (2.10)

(note that the hat generally designates estimator/estimate of the indicated quantity). Comparing Eq.

(2.10) with the TARMA model of Eq. (2.5) it is also straightforward to verify that the one-step-ahead

prediction error ê[t|t− 1]
∆
= x[t]− x̂[t|t− 1] is equal to e[t].
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2. Output-Only Identification and Dynamic Analysis of TV Mechanical Structures

Common “fitness” functions include the residual sum of squares (RSS), the Gaussian negative log-

likelihood function, and the Bayesian information criterion (BIC) defined as [Box et al., 1994, pp. 200-

202], [Ljung, 1999, pp. 505-507]

RSS =
N∑

t=1

e2[t], (2.11)

− lnL
(
xN
)

=
N

2
ln 2π +

1

2

N∑

t=1

(
ln
(
σ2
e [t]
)

+
e2[t]

σ2
e [t]

)
, (2.12)

BIC = − lnL
(
xN
)

+
lnN

2
d, (2.13)

respectively. In the BIC expression d designates the number of independently estimated model param-

eters. Also note that the BIC consists of the superposition of the negative log-likelihood function and a

term that penalizes the model size (complexity), thus discouraging model overfitting. For this reason it

may be used for both parameter estimation and model structure selection. Nevertheless, it may not be

formally used within the context of UPE-TARMA and SP-TARMA models, the parameters of which are

(recursively) updated at each time instant. In principle, a model is thus identified as that minimizing a

selected “fitness” function.

For purposes of practicality and conceptual simplicity, the identification problem is commonly dis-

tinguished into two subproblems: (a) Model parameter estimation, and (b) model structure selection.

Model parameter estimation is subsequently discussed first, as it is an essential part of model structure

selection as well.

2.4.1 Model parameter estimation

Model parameter estimation refers to the determination, for a given model form and structure, of the

AR/MA parameter vector θ[t] and the residual variance σ2
e [t] at all time instants t = 1, . . . , N .

2.4.1.1 Unstructured parameter evolution TARMA models

The estimation of UPE-TARMA models is often based on recursive methods, which update the parameter

vector estimate each time a new signal sample becomes available [Cooper and Worden, 2000], [Ljung,

1999, ch. 11], [Ben Mrad and Fassois, 1991a,Ben Mrad and Fassois, 1991b]. Presently, the recursive

maximum likelihood (RML) algorithm [Ljung, 1999, p. 372] is used for UPE-TARMA model parameter

estimation and the corresponding method is thus referred to as RML-TARMA. A summary of the method

is provided in Table 2.1. The quantity λ of these equations is referred to as the forgetting factor; its

selection is critical and represents the basic trade-off between tracking ability in the dynamics and

achievable parameter accuracy.

Following parameter estimation, the innovations (one-step-ahead prediction error) variance σ2
e [t] may

be estimated by using a window of length 2K + 1, centered at the time instant t, that slides over the

prediction error (residual) sequence, that is

σ̂2
e [t] =

1

2K + 1

t+K∑

τ=t−K
ê2[τ |τ − 1] (2.14)

2.4.1.2 Stochastic parameter evolution TARMA models

Model parameter estimation for the SP-TARMA models of Eq. (2.7) may be developed by setting the

latter, along with the TARMA model expression of Eq. (2.5), into linear state space form.
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2.4. The Identification Problem and Methods

Table 2.1: RML-TARMA estimation.

Estimator update θ̂[t] = θ̂[t− 1] + k[t]ê[t|t− 1]

Prediction error ê[t|t− 1] = x[t]− x̂[t|t− 1] = x[t]− φT [t]θ̂[t− 1]

Gain: k[t] = P [t−1]ψ[t]

λ+ψT [t]P [t−1]ψ[t]

“Covariance” update P [t] = 1
λ

(
P [t− 1]− P [t−1]ψ[t]ψT [t]P [t−1]

λ+ψT [t]P [t−1]ψ[t]

)

Filtering ψ[t] + ĉ1[t− 1]ψ[t− 1] + . . .+ ĉnc [t− 1]ψ[t− nc] = φ[t]

A-posteriori error ê[t|t] = x[t]− φT [t]θ̂[t]

φ[t]
∆
=

[
−x[t− 1] . . . − x[t− nα]

.

.

. ê[t− 1|t− 1] . . . ê[t− nc|t− nc]
]T

Initialization: θ̂[0] = 0, P [0] = αI with α designating a “large” positive number. The signal and a-posteriori

error initial values are set to zero.

It can be shown that in the general (κ-th order) smoothness constraint SP-TARMA(na, nc) model is

expressed as [Poulimenos and Fassois, 2006,Kitagawa and Gersch, 1996]:

z[t] = F · z[t− 1] +G ·w[t], x[t] = hT [t, zt−1] · z[t] + e[t] (2.15a)

[
w[t]

e[t]

]
∼ NID







0

.

.

.

0


 ,



Q[t]

0
.
.
.

0

0 . . . 0 σ2
e [t]





 , Q[t] = σ2

w[t] · Ina+nc (2.15b)

with:

h[t, zt−1]
∆
=

[
−x[t− 1] . . .− x[t− na]

.

.

. e[t− 1, zt−1] . . . e[t− nc, zt−nc ]
.
.
. 0 . . . 0

]T

κ·(na+nc)×1

(2.15c)

z[t]
∆
=

[
a1[t] . . . ana [t] c1[t] . . . cnc [t]

.

.

. . . .
.
.
.a1[t−κ+1] . . . ana [t−κ+1] c1[t−κ+1] . . . cnc [t−κ+1]

]T

κ·(na+nc)×1

(2.15d)

w[t]
∆
=

[
wa1 [t] wa2 [t] . . . wana [t]

.

.

. wc1 [t] wc2 [t] . . . wcnc [t]

]T

na+nc×1

(2.15e)

zt designating a vector containing all state vectors z[t] up to time t, and F , G matrices of the following

forms (depending on the value of κ):

κ = 1 : F
∆
= Ina+nc , G

∆
= Ina+nc

κ = 2 : F
∆
=

[
2 · Ina+nc −Ina+nc

Ina+nc 0na+nc

]
, G

∆
=

[
Ina+nc

0na+nc

]

κ = 3 : F
∆
=




3 · Ina+nc −3 · Ina+nc Ina+nc

Ina+nc 0na+nc 0na+nc

0na+nc Ina+nc 0na+nc


 , G

∆
=



Ina+nc

0na+nc

0na+nc




and so on,

where In and 0n designate the n× n dimensional identity and zero matrices, respectively. As indicated

by the above expressions, z[t] forms a state vector (Eq. (2.15a)), whereas w[t] consists of the scalar

innovations entering in each constraint expression.
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2. Output-Only Identification and Dynamic Analysis of TV Mechanical Structures

Table 2.2: Kalman filter and backward smoothing for the estimation of SP-TARMA models (normalized

form).

Time update (prediction):

State prediction ẑ[t|t− 1] = F ẑ[t− 1|t− 1]

Prediction error ê[t|t− 1] = x[t]− hT [t]ẑ[t|t− 1]

“Covariance” update P̃ [t|t− 1] = F P̃ [t− 1|t− 1]F T +GQ̃[t]GT

Observation update (filtering):

Gain k[t] = P̃ [t|t− 1]h[t]
(
hT [t]P̃ [t|t− 1]h[t] + 1

)−1

State update ẑ[t|t] = ẑ[t|t− 1] + k[t]ê[t|t− 1]

“Covariance” update P̃ [t|t] =
(
I − k[t]hT [t]

)
P̃ [t|t− 1]

Smoothing:

A[t] = P̃ [t|t]F T P̃
−1

[t+ 1|t]
ẑ[t|N ] = ẑ[t|t] +A[t] (ẑ[t+ 1|N ]− ẑ[t+ 1|t])
P̃ [t|N ] = P̃ [t|t] +A[t]

(
P̃ [t+ 1|N ]− P̃ [t+ 1|t]

)
AT [t]

P̃ [t|t] ∆
= P [t|t]

σ2
e [t]

, P̃ [t|t− 1]
∆
= P [t|t−1]

σ2
e [t]

, Q̃[t]
∆
=
Q[t]
σ2
e [t]

=
σ2
w[t]

σ2
e [t]︸ ︷︷ ︸
ν[t]

Ina+nc

Initialization: θ̂[0] = 0, P [0] = αI with α designating a “large” positive number.

The second of Eqs. (2.15a) is a non-linear function of z[t]. SP-TARMA parameter estimation may

be then based on an extended least squares (ELS)-like algorithm, by replacing the theoretical prediction

errors e[t, zt] in Eq. (2.15c) with their respective posterior estimates ê[t|t] (which are then treated as

measurements). SP-TARMA parameter estimation may be then achieved via the ordinary Kalman filter

(KF) algorithm with:

h[t] =

[
−x[t− 1] . . . − x[t− na]

.

.

. ê[t− 1|t− 1] . . . ê[t− nc|t− nc]
.
.
. 0 . . . 0

]T

κ·(na+nc)×1

(2.16)

ê[t|t] = x[t]− hT [t] · ẑ[t|t]
A summary of a normalized version of the method, including a final backward smoothing phase,

is provided in Table 2.2. It should be noted that the ratio ν[t] of the constraint model innovations

variance σ2
w[t] (assumed to be common for all constraints) over the residual variance σ2

e [t], which is for

simplicity assumed to be constant (ν[t] = ν), constitutes a user selected design parameter that controls

the equivalent memory of the estimation algorithm (similar to the forgetting factor in the RML-TARMA

estimation method). Indeed, ν → 0 implies a locally deterministic (polynomial) parameter evolution,

while ν → ∞ implies no structure on parameter evolution. Of course, it is also possible to optimize

(estimate) ν based on a suitable criterion (such as minimization of the RSS).

Innovations variance estimation may be achieved either via the scheme described in Ref. [Kitagawa

and Gersch, 1985], or through that of the previous (RML-TARMA) method (Eq. (2.14)).

2.4.1.3 Deterministic parameter evolution TARMA models

Parameter estimation for FS-TARMA models consists of determining the AR/MA and innovations vari-

ance projection coefficient vectors

ϑa|c
∆
= [ ϑTa | ϑTc ]T(napa+ncpc)×1, and ϑs

∆
= [ s1 . . . sps ]Tps×1, (2.17)
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2.4. The Identification Problem and Methods

Figure 2.1: Two multistage methods for FS-TARMA model identification.

respectively, with

ϑa
∆
= [ a1,1 . . . a1,pa | . . . | ana,1 . . . ana,pa ]T(napa)×1, ϑc

∆
= [ c1,1 . . . c1,pc | . . . | cnc,1 . . . cnc,pc ]T(ncpc)×1

Estimation of the parameter vector ϑa|c may be based on a prediction error criterion consisting of the

sum of squares of the model’s one-step-ahead prediction errors (RSS):

ϑ̂a|c = arg min
ϑa|c

N∑

t=1

e2[t,ϑa|c] (2.18)

It is obvious, that the residual e[t,ϑa|c] depends nonlinearly on the MA projection coefficient vector ϑc,
implying that minimization of a prediction error criterion constitutes a nonquadratic problem that has

to be tackled through nonlinear optimization techniques. This necessitates the use of rather accurate

initial parameter values, which may be obtained through linear multi stage methods (recursive methods

may be also used).

Linear multistage methods attempt to approximate the original prediction error problem by a se-

quence of subproblems that may be tackled by means of linear techniques. Two such methods, the two

stage least squares (2SLS) method [Poulimenos and Fassois, 2006,Grenier, 1983b] and the polynomial-

algebraic (P-A) method [Ben Mrad et al., 1998a] are outlined in Fig. 2.1.

Finally, the estimation of the innovations variance projection coefficients may be achieved by the

following procedure. An initial, non-parametric, estimate of the innovations variance may be based on a

sliding time window that uses the estimated residual series e[t, ϑ̂a|c] (as in Eq. (2.14)), and an estimate
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2. Output-Only Identification and Dynamic Analysis of TV Mechanical Structures

of the projection coefficient vector ϑs may be subsequently obtained by fitting the estimated variance

σ̂2
e [t] to a selected functional subspace Fσ2

e
. This leads to the overdetermined set of equations

σ̂2
e [t] =

ps∑

j=1

sjGds(j)[t] = gT [t]ϑs, (2.19)

with g[t]
∆
=
[
Gds(1)[t] Gds(2)[t] . . . Gds(ps)[t]

]T
ps×1

, which is then solved in a least squares sense.

2.4.2 Model structure selection

Model structure selection refers to the estimation of the proper model structure within a selected model

class. The model structure includes the AR and MA orders na and nc, respectively, as well as additional

structural parameters that depend on the particular model class considered [see Eqs. (2.6), (2.8), and

(2.9) that define the model structure MUPE/MSP / MFS for each class].

A search scheme for locating the best “fitness” model, is subsequently discussed for the most general

case of FS-TARMA models which have the “richest” structure and are characterized by the maximum

number of “structural” parameters. The key characteristic of this scheme is the approximate decompo-

sition of the “structure” selection problem into two subproblems: (i) model order (na, nc) selection, and

(ii) functional subspace [pa, pc, ps, da(j), dc(j), ds(j)] selection.

Phase I: Model Order Selection.

In order to “decouple” the selection of the model orders from that of functional subspaces, their

interaction has to be minimized. This may be achieved by ensuring functional subspace adequacy

by initially adopting an “extended” (high dimensionality) and “complete” (in the sense of including all

consecutive functions up to the subspace dimensionality) functional subspaces. Using them, model

order selection may be achieved through trial and error techniques based on the optimization of the

fitness function.

Phase II: Functional subspace selection.

The aim of this phase is the optimization of the functional subspaces, in the sense of increasing the

representation parsimony without significantly reducing model accuracy. This may be accomplished

through trial and error techniques detecting “excess” basis functions by using either the fitness function

or the aggregate parameter deviation (APD). The latter constitutes a measure for the aggregate deviation

of the parameter trajectories of the current model from those of the initial (phase I) model

APD
∆
=

na∑

i=1

∆ai +

nc∑

i=1

∆ci + ∆s, (2.20)

with

∆qi
∆
=

∑N
t=1 |q◦i [t]− qi[t]|∑N

t=1 |q◦i [t]|
,

in which q◦i [t] designates the initial model AR/MA/innovations variance parameter trajectories and qi[t]
the respective trajectories of the currently considered model. Basis functions may be thus successively

dropped (one at a time) as long as no significant changes in the fitness function or in the APD are

produced.

A specific basis function family (such as a proper polynomial or trigonometric family) is generally

pre-selected (although not the specific functions that define the model’s functional subspaces). This pre-

selection may be based on various factors, including physical insight, prior knowledge, or experience.

Yet, it should be stressed that, although the pre-selection does affect the final identified model structure

(thus the model “size”) and parameters, it does not critically affect model accuracy. The reason is that

essentially any functional family may be used for approximating any given curve with arbitrary accuracy

as long as a sufficient number of functions is used [Walter, 1994, p. 77]. In practice a good strategy
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2.5. The Laboratory Time-Varying Structure and Preliminary Analysis

is to use two or more families, obtain the best (according to the selected “fitness” function) under each

one, have them properly validated, and finally select the globally optimum (best) model.

A few words are finally in order regarding model validation: Any identified model should be normally

validated. Although such validation may be based on various criteria, which may generally depend on

the model’s intended use, the Gaussianity and, in particular, the whiteness of the identified model’s

one-step-ahead prediction error (residual) sequence are parts of standard validation procedures. Due to

the TV nature of the model residual variance, the usual residual whiteness tests are not applicable in

the present case. Yet, a simple test that may be applied is the residual sign test – see Refs. [Poulimenos

and Fassois, 2006], [Draper and Smith, 1998, pp. 192–198].

2.5 The Laboratory Time-Varying Structure and Preliminary Analysis

The laboratory TV structure is shown in Fig. 2.2. It is a bridge with heavy vehicle type structure

consisting of a steel beam of dimensions 2670 × 50 × 12 mm (L×W ×H), clamped close to its both

ends on vertical stands, and a steel cylindrical mass of dimension 52.5 × 75.0 mm (R×H) sliding on

it (being pulled by a DC motor with constant speed u). As the ratio of the two masses is significant

(m/M ≈ 0.4), the structure is clearly TV, with the rate of variation depending on the selected speed u.

Evidently, the structure belongs to the subclass of continuously variable configuration structures, and

the configuration vector may be defined as pointing at the moving mass position. This structure has

been used in a previous study by employing FS-TARMA models [Poulimenos and Fassois, 2009a].

The beam is subject to zero-mean, Gaussian, random force excitation vertically exerted through an

electromechanical shaker (MB Dynamics Modal Exciter 50A, max load 225 N) equipped with a stinger.

The resulting beam vibration is measured at three selected locations [Fig. 2.2(a); locations 1-3] by

piezoelectric accelerometers (PCB 352A10 ICP accelerometers, frequency range 0.003−10 kHz, sensitivity

∼ 1.052 mV/m/sec
2
), although only that at location 3 is presently used. The measured vibration signals

are conditioned and subsequently driven into a 20-42 SigLab data acquisition module (featuring four

20-bit simultaneously sampled A/D, two 16-bit D/A channels, and analog anti-aliasing filters).

In a single experiment the cylindrical mass traverses the beam (from left to right) once, at a constant

speed of u = 33.4 mm/s. At this speed the structure may be characterized as relatively slowly TV. The

vertical vibration (acceleration) signal is sampled at fs = 128 Hz and is N = 10, 113 samples (79.0078 s)

long. The study focuses on the 4− 60 Hz frequency range, hence the signal is digitally bandpass filtered.

The obtained response signal is shown in Fig. 2.3(a) and is evidently variance non-stationary. Non-

parametric time-frequency analysis based on the short-time Fourier transform (STFT; 512-sample-long

moving Hamming data window advanced by one sample each time) yields the TV power spectral density

(PSD) function of Figs. 2.3(b) and 2.3(c). Evidently, the structure is characterized by three TV vibration

modes (three natural frequencies) and the response signal is non-stationary in terms of its spectral

content as well.

2.6 Output-Only Identification Results

Model order estimation, which is the part of model structure selection shared by all parametric methods,

is based on the successive identification of TARMA(n, n) models of orders n = 2, . . . , 12 and the opti-

mization of a proper “fitness” function – specifically the RSS in the RML-TARMA and SP-TARMA cases,

and the BIC in the FS-TARMA case.

In the RML-TARMA case the RSS leads to a UPE-TARMA(8, 8) model estimated with forgetting factor

λ = 0.9905 and initial covariance matrix 104I. Note that this result is optimized with respect to the

forgetting factor (an exhaustive search has been implemented). Furthermore, in order to reduce the

effects of arbitrary initial conditions in the estimation, three sequential passes (forward, backward, and

final forward) are executed over the entire data record.
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Figure 2.2: The laboratory TV structure. A bridge with heavy vehicle type structure consisting of a steel

beam, clamped close to its both ends on vertical stands, and a cylindrical mass sliding on it at a selected

speed. (a) Schematic diagram. (b) Photo of the experimental setup [Poulimenos and Fassois, 2009a].

In the SP-TARMA case and for each estimated model, three possible orders are considered for the

smoothness priors constraints, namely κ = 1, 2, 3, while optimization (of the RSS) with respect to ratio

of the smoothness priors constraints innovations variance over the residual variance ν is also carried

out. Like in the RML-TARMA case, three sequential passes (forward, backward, and a final forward) are

executed over the entire data record, while a final backward smoothing algorithm is also applied. For

the initialization of the KF algorithm the covariance matrix is set to 104I. The κ = 1, 2 selections provide

reasonable results, with almost identical RSS values for large model orders (na, nc > 7; see Fig. 2.4).

Yet, the κ = 1 selection leads to somewhat increased variability in the TV natural frequency and PSD

estimates (see also the results in Appendix 2.B.1). The κ = 3 selection leads to numerical problems as

the obtained ν is very small (10−16
). Based on the above, the selected model is SP-TARMA(8, 8) with

κ = 2 and ν̂ = 2.757× 10−11
.
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Figure 2.3: The non-stationary vibration response and preliminary analysis: (a) The vibration response

signal (sampling frequency fs = 128 Hz, signal length N = 10, 113 samples or 79.0078 s). (b) 2D plot of

the non-parametrically obtained TV PSD estimate (STFT employing a 512-sample-long moving Hamming

data window advanced by one sample each time). (c) 3D plot of the non-parametrically obtained TV PSD

estimate.

In the FS-TARMA case functional bases spanned by trigonometric functions of the form

G0[t] = 1, G2k−1[t] = sin

(
kπ(t− 1)

N − 1

)
, G2k[t] = cos

(
kπ(t− 1)

N − 1

)
,

with t = 1, . . . , N and k = 1, 2, . . . are employed. Their selection is motivated by the non-parametric

estimates of Figs. 2.3(b) and 2.3(c). Model order selection is achieved using phase I of the search scheme

described in Section 2.4.2, the BIC, and an extended and complete functional subspace of dimensionality

21 (pa = pc = ps = 21). An FS-TARMA(8, 8)[21,21,21] model is thus initially selected as adequate (see Fig.

2.5(a)). Functional subspace selection is subsequently pursued based on phase II and the APD criterion
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Figure 2.4: SP-TARMA model structure selection. AR/MA order and smoothness constraints order

selection based on the RSS/SSS function.
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Figure 2.5: FS-TARMA model structure selection: (a) AR/MA order selection based on the BIC using

an extended and complete functional subspace (pa = pc = ps = 21). (b) Combined AR/MA functional

subspace selection. APD values obtained by iteratively rejecting the least significant basis function

versus the number of rejected functions. The model just before the first significant increment is selected

(16 functions are presently rejected and 26 are maintained in the AR/MA subspaces).

combined with the backward procedure. This leads to the AR/MA functional subspaces (Fig. 2.5(b))

FAR = {G0[t], . . . , G10[t]}, FMA = {G0[t], . . . , G14[t]},

and, similarly, to the innovations variance subspace

Fσ2
e

= {G0[t], . . . , G6[t], G8[t], G9[t], G10[t], G12[t], G13[t], G14[t], G17[t], G19[t]}.

Hence an FS-TARMA(8, 8)[11,15,15] model is finally selected (further details in [Poulimenos and Fassois,

2009a]).

The three identified TARMA models are validated, whereas their characteristics are summarized in

Table 2.3.

The obtained RSS normalized by the series sum of squares (RSS/SSS) and the negative log-likelihood

function of the estimated TARMA models are depicted in Fig. 2.6(a). Indicative one-step-ahead signal

predictions obtained by the estimated TARMA models are (for a short time segment of the signal) com-

pared to the actual signal values in Fig. 2.6(b). It is observed that all methods provide more or less good
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Table 2.3: Identification methods, their characteristics, and the identified models.

Model Class Identification Method Method Characteristics Identified Model

Unstructured RML-TARMA λ = 0.9905 UPE-TARMA(8, 8)

Parameter Evolution α = 104

Stochastic SP-TARMA ν = 2.757× 10−11 SP-TARMA(8, 8)κ=2

Parameter Evolution α = 104

Deterministic FS-TARMA Prediction error method FS-TARMA(8, 8)[11,15,15]

Parameter Evolution Gauss-Newton optimization

predictions, with the FS-TARMA model achieving the best prediction accuracy (RSS/SSS= 3.255%),

followed by the RML-estimated UPE-TARMA model, and, finally, the SP-TARMA model. It should be

mentioned that the RSS/SSS and negative log-likelihood function for the SP-TARMA(8, 8) model may be

reduced somewhat (to 4.893 and 2.336 × 104
, respectively) when using first order (κ = 1) smoothness

priors constraints. As already mentioned, this model is nevertheless not selected, as the corresponding

natural frequency estimates and the TV PSD exhibit higher variability.

The residual variance estimates for the three TARMA models are compared in Fig. 2.6(c), in which

the baseline model innovations variance (although not directly comparable; description in the next

paragraph) is presented as well. As it may observed, the FS-TARMA model provides, almost uniformly,

the lowest variance, followed by the UPE-TARMA, and finally the SP-TARMA model.

Frozen-configuration baseline identification

In order to establish an additional basis for judging identification accuracy, a space-discretized

version of the structure’s frozen-configuration representation is obtained by “freezing” the mass at M =
120 equispaced locations and performing an equal number of stationary experiments. The stationary

vibration response at location 3 on the beam is, in each case, obtained (fs = 128 Hz, signal length

N = 3, 962 samples) and a conventional (stationary) ARMA model is identified by using the linear

multi stage (LMS) estimation method [Fassois, 2001a] and maximum-likelihood (ML) refinement [Ljung,

1999, pp. 216-217]. This leads to M = 120 ARMA(8, 8) models which constitute what is henceforth

referred to as the baseline (frozen-configuration) representation of the structure.

2.7 Model-Based Dynamic Analysis Results

The TV structural dynamics are now recovered based on the identified models. The vibration response

signal’s frozen-time PSD is obtained as

S(ω, t) =

∣∣∣∣
1 +

∑nc
i=1 ci[t]e

−jωTsi

1 +
∑na

i=1 ai[t]e
−jωTsi

∣∣∣∣
2

σ2
e [t], (2.21)

with the model parameters and innovations variance being replaced by their respective estimates, ω
designating frequency in rad/s, Ts the sampling period in s, and j the imaginary unit. The system’s

frozen-time natural frequencies and damping ratios are computed as

ωni[t] =

∣∣lnλi[t]
∣∣

Ts
(rad/s), and ζi[t] = − cos

(
arg(lnλi[t])

)
(2.22)

respectively, with λi[t] designating the i-th TV frozen model pole. The antiresonance natural frequencies

and damping ratios are similarly obtained from the frozen model zeros.

The frozen-time PSD estimates corresponding to the three estimated TARMA(8, 8) models are con-

trasted to that obtained from the frozen-configuration baseline modelling in Fig. 2.7. Obviously, all

TARMA PSD estimates are in good overall agreement with their baseline counterpart. Yet, smoother,

and also clear and informative, estimates are obtained based on the FS-TARMA and SP-TARMA models.
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Figure 2.6: Comparative TARMA identification results. (a) The RSS/SSS and the negative log-likelihood

function for the estimated TARMA models. (b) Segment of the vibration response signal and TARMA-

based one-step-ahead predictions. (c) The residual variance for the estimated TARMA models (although

not directly comparable, the “frozen-configuration” innovations variance is also provided).

On the other hand, the estimate obtained based on the UPE-TARMA model exhibits significantly more

scatter.

Figure 2.8 depicts the structure’s TV natural frequency estimates along with their baseline model

counterparts. Note that non-parametric PSD estimates (Welch-based; 512-sample-long Hamming data

window) obtained during baseline identification by using the 120 measured signals are also shown in

the background.

The UPE-TARMA estimates track their baseline counterparts adequately well, although with some

scatter observed for the second and third natural frequency trajectories. On the other hand, the SP-

TARMA estimates appear unable of tracking the second natural frequency during the last 30 s. This is

probably due to pole-zero cancellations occurring. A possible remedy could be the increase of the model

order to 10 or higher. Such an action, though, introduces false (computational) modes in the time-

frequency plane (see Fig. 2.9) which are characterized by damping ratios smaller than 10% and being

difficult to distinguish from the true modes. Finally, the excellent tracking of the natural frequencies

achieved by the FS-TARMA estimates is certainly worth noting.

Similar comments may be made for the estimated frozen-time antiresonance natural frequencies

(Fig. 2.10). The SP-TARMA based estimates seem unable of tracking the evolution of their baseline

counterparts for significant periods of time, in contrast to the UPE-TARMA based estimates which exhibit

a good overall agreement with them, but also significant scatter. On the other hand, the FS-TARMA based
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(a) (b)

(c) (d)

Figure 2.7: Comparison of TV PSD estimates. (a) The “frozen-configuration” baseline estimate. (b)

The UPE-TARMA(8, 8) estimate. (c) The SP-TARMA(8, 8)κ=2 estimate. (d) The FS-TARMA(8, 8)[11,15,15]

estimate.

estimates clearly exhibit the best performance (Welch-based non-parametric PSD estimates obtained

during baseline identification are also shown in the background).

2.8 Conclusions

An overview and comparative assessment of parametric TARMA methods for the identification and model-

based analysis of TV structures under unobservable excitation was presented. The methods were clas-

sified according to the mathematical structure imposed on the TV parameter evolution as unstructured

parameter evolution, stochastic parameter evolution, and deterministic parameter evolution. A repre-

sentative identification method (RML-TARMA, SP-TARMA, FS-TARMA) from each class was outlined.

The performance characteristics of the three classes of methods were examined through their applica-

tion to the problem of identification and model-based dynamic analysis of a laboratory TV (continuously

variable configuration) structure consisting of a beam with a mass moving on it. The frozen-configuration

(baseline) characteristics of the structure were also extracted and used as an additional basis of com-

parison.

The three methods were compared to each other in terms of achievable prediction accuracy and

model-based analysis. Although the TV structure used is characterized by relatively slowly varying

dynamics, the best performance characteristics were achieved by the FS-TARMA method, followed by

the RML-TARMA and, finally, the SP-TARMA method. This is also true for the model-based dynamics,

including the resonance and antiresonance natural frequencies and the TV PSD of the vibration response,
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Figure 2.8: Comparison of TV natural frequency estimates. The UPE-TARMA, SP-TARMA, and FS-

TARMA based estimates are plotted against the “frozen-configuration” baseline estimates (baseline

Welch-based PSD estimates are shown in the background).
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Figure 2.9: Comparison of the SP-TARMA(10, 10) based natural frequency estimates against the “frozen-

configuration” baseline estimates (baseline Welch-based PSD estimates are shown in the background).
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Figure 2.10: Comparison of TV antiresonance natural frequency estimates. (a) The UPE-TARMA, (b) SP-

TARMA, and (c) FS-TARMA based estimates plotted against the “frozen-configuration” baseline estimates

(baseline Welch-based PSD estimates are shown in the background).

that were most accurately captured by the FS-TARMA method. These results came as no surprise, and,

reveal good identification performance, owing to the deterministic nature of the time variation in the

structural dynamics which is best reflected in the FS-TARMA models. Overall, the results demonstrate

the parametric methods’ applicability, effectiveness, and high potential for parsimonious and accurate

identification and dynamic analysis of TV structures under unobservable excitation.
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Figure 2.A.1: Comparison of TV AR and MA parameters. The UPE-TARMA, SP-TARMA, and FS-TARMA

based estimates are plotted against the “frozen-configuration” baseline estimates.

Appendix 2.A Additional Identification Results

The TARMA(8, 8) models parameters estimated through the UPE-TARMA, SP-TARMA and FS-TARMA

methods are illustrated along with the corresponding “frozen-configuration” baseline model counterparts

in Fig. 2.A.1 (the “time” axis is derived from the correspondence between time and mass position).

It may be noted that the estimated AR parameters are grossly similar in terms of their trajectories

while some differences are evident for the parameters of the MA polynomial. However, both AR and

MA parameters of the identified models depict comparable variability it terms of their amplitude and
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Figure 2.B.1: Comparison of the SP-TARMA(8, 8), SP-TARMA(9, 9), and SP-TARMA(10, 10) based natural

frequency estimates against the “frozen-configuration” baseline estimates (κ = 1 and κ = 2; baseline

Welch-based PSD estimates are shown in the background).

frequency content while only the UPE-TARMA based estimates are shown to be characterized by high

frequency variability.

Appendix 2.B Additional Model-Based Dynamic Analysis Results

2.B.1 SP-TARMA based natural frequency estimates

The SP-TARMA based natural frequency estimates are compared against the “frozen-configuration” base-

line estimates for κ = 1, 2 and AR/MA orders na = nc = 8, 9, 10 in Fig. 2.B.1. It may be noted, that even

if the SP-TARMA(9, 9) and SP-TARMA(10, 10) models provide improved tracking for the second natural

frequency, which as already mentioned is the most difficult to track due to pole-zero cancellations that

take place after the first 50 s of the experiment, they also introduce spurious modes especially in the

higher frequency band (40-60 Hz). Thus, the SP-TARMA(8, 8) is considered more appropriate for the
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Figure 2.B.2: Comparison of TV damping ratio estimates. The UPE-TARMA, SP-TARMA, and FS-TARMA

based estimates are plotted against the “frozen-configuration” baseline estimates.

description of the structural dynamics. At the same time, the increased scatter in the natural frequency

estimates that are based on SP-TARMA models with κ = 1 is apparent in all cases na = nc = 8, 9, 10 and

thus the SP-TARMA(8, 8) model with κ = 2 is finally chosen.

2.B.2 Estimated time-dependent damping ratios

The time-dependent “frozen” damping ratio estimates obtained by the TARMA(8, 8) models are con-

trasted to the “frozen-configuration” baseline modelling counterparts in Fig. 2.B.2. As it may be ob-

served, smooth estimates are obtained based on the FS-TARMA and the SP-TARMA models. However,

particularly the SP-TARMA based estimates depict high variability not in accordance with the “frozen-

configuration” baseline model estimates which exhibit only small variability. This inconsistency is even

more pronounced in the case of the UPE-TARMA estimates.
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Chapter 3

Parametric Identification of a Time-Varying

Structure Based on Vector Vibration Response

Measurements

The problem of parametric output-only identification of a time-varying structure based on vector random

vibration signal measurements is considered in this chapter. A Functional Series Vector Time-dependent

AutoRegressive Moving Average (FS-VTARMA) method is introduced and employed for the identification

of a “bridge-like” laboratory structure consisting of a beam and a moving mass. The identification is

based on three simultaneously measured vibration response signals obtained during a single experiment.

The method is judged against baseline modelling based on multiple “frozen-configuration” stationary ex-

periments, and is shown to be effective and capable of accurately tracking the dynamics. Additional

comparisons with a recursive Pseudo-Linear Regression VTARMA (PLR-VTARMA) method and a Short

Time Stochastic Subspace Identification (ST-SSI) method are made and demonstrate the method’s su-

perior achievable accuracy and model parsimony.
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3.1 Introduction

Many engineering structures, such as traffic-excited bridges [Li et al., 2003, Garibaldi and March-

esiello, 2006], cranes [Kullaa, 2004], robotic devices and flexible mechanisms [Petsounis and Fas-

sois, 2000,Zhou et al., 2007], rotating machinery [Ouyang, 2007,Zhan et al., 2006], variable geometry

aerospace structures [Senba and Furuya, 2008] and so on, exhibit characteristics that vary with time.

These structures are referred to as time-varying (TV) or non-stationary. Structures with variability due

to changing geometric configuration form an important subclass of TV structures. In case that the

geometric configuration changes continuously with time, the term continuously variable configuration

structure is used. Robotic devices, cranes, and deployable structures constitute primary examples of

this subclass.

The problem of TV structural identification involves the determination of a mathematical model rep-

resenting the underlying time-varying dynamics based on excitation and/or vibration response signals.

In contrast to Time-Invariant (TI) structures, which produce stationary vibration responses with time-

invariant statistical characteristics, the responses of TV structures are non-stationary, characterized

by time-dependent statistical characteristics [Poulimenos and Fassois, 2006], [Niedźwiecki, 2000, pp.

52-55]. TV structural identification thus is a rather complicated issue, in which non-stationary signal

analysis techniques need to be employed [Poulimenos and Fassois, 2006, Niedźwiecki, 2000, Conforto

and D’Alessio, 1999b,Liu and Deng, 2006].

In many occasions, such as in railway bridges, aircraft, surface vehicles and so on, controlled testing

may not be feasible under realistic operating conditions, so that structural identification is pursued by

exclusively using measured vibration response signals. This is the output-only TV identification problem

which is in the focus of the present study.

Output-only TV structural identification methods are classified as non-parametric or parametric. The

former are based on non-parametric representations of the non-stationary response as a simultane-

ous function of time and frequency (time-frequency representations). The Short Time Fourier Transform

(STFT) [Hammond and White, 1996], the Cohen class of distributions [Cohen, 1995], and wavelet based

methods [Ghanem and Romeo, 2000] constitute some of the main and most frequently used meth-

ods. Non-parametric methods are easy to use, but lack in terms of representation parsimony (economy),

frequency resolution, tracking accuracy – especially in cases of fast variations in the dynamics – and flex-

ibility in analysis [Petsounis and Fassois, 2000,Poulimenos and Fassois, 2006,Conforto and D’Alessio,

1999b].

Parametric methods are based on Time-dependent AutoRegressive Moving Average (TARMA) and time-

dependent state space models which may be thought of as conceptual extensions of their conventional,

stationary, counterparts, in that their parameters are time-dependent (for instance see [Poulimenos and

Fassois, 2006, Niedźwiecki, 2000]). Parametric models and the corresponding identification methods

may be further classified according to the type of mathematical structure imposed on the evolution of

the time-varying model parameters as unstructured, stochastic, or deterministic parameter evolution.

The reader is referred to the recent survey by Poulimenos and Fassois [Poulimenos and Fassois, 2006]

for a detailed account and assessment of various parametric methods.

The majority of parametric TV structural identification methods are limited to the simple single vibra-

tion response signal (univariate) case. Although the multiple vibration response (vector or multivariate)

case is much more important from a practical standpoint, it has thus far received limited attention. Yet,

vector identification can lead to much more complete descriptions, reduced data acquisition and pro-

cessing times, improved data set “consistency”, and also improved modal parameter accuracy [Fassois,

2001b].

The majority of available vector parametric output-only methods are of the unstructured parame-

ter evolution type, which imposes no mathematical structure upon the evolution of their time-varying

parameters. Kirkegaard et al. [Kirkegaard et al., 1996] use Recursive Vector TARMA models for the iden-

tification of the TV parameters of a simulated reinforced concrete structure under earthquake excitation.

A similar identification problem is considered by Yang et al. [Yang and Lin, 2005, Yang et al., 2007],
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who use recursive least squares estimation based on the physical model of the structure and adaptive

forgetting factors. Various recursive and short time subspace methods have been also used for vector TV

structural identification over the last decade. Although most of them have been limited to the analysis

of simulated TV structures (for instance [Shi et al., 2007,Kameyama and Ohsumi, 2007]), Goethals et

al. [Goethals et al., 2004] and Mevel et al. [Mevel et al., 2005] use a recursive and a short time subspace

method, respectively, in order to track the time-varying modal characteristics of an aircraft during flut-

ter vibration. Bosse et al. [Bosse et al., 1998] consider the identification of a TV truss structure via a

recursive subspace based algorithm. A subspace method is also utilized by Liu and Deng [Liu and Deng,

2006] in order to capture the TV dynamics of an axially moving cantilever beam. In contrast to the pre-

viously mentioned studies, their analysis requires a significant number of signal realizations (and thus

experiments). It should be additionally remarked that unstructured parameter evolution methods may

not be suitable for fast varying structures, while also achieving low representation parsimony (economy).

Noticeably fewer studies are available on vector TV structural identification using stochastic parame-

ter evolution methods, which impose stochastic mathematical structure upon the evolution of the time-

varying model parameters through stochastic smoothness constraints. Kitagawa et al. [Kitagawa and

Gersch, 1996, pp. 172-174], [Jiang and Kitagawa, 1993] use such methods for the modelling and analy-

sis of earthquake ground motion signals, while the modelling of wind speed time histories is considered

by Chen [Chen, 2005]. Stochastic parameter evolution methods have also been used for the identification

of structural variations of a bridge under construction and varying operating conditions [Omenzetter and

Brownjohn, 2006], as well as for the identification, analysis and health monitoring of gearboxes [Zhan

and Jardine, 2005a,Zhan and Jardine, 2005b]. Stochastic parameter evolution methods may offer im-

provements in accuracy and tracking over the unstructured parameter evolution methods, but model

parsimony remains an issue.

The class of deterministic parameter evolution methods is known to offer a number of advantages and

improved accuracy and model parsimony in the single signal (univariate) case [Poulimenos and Fassois,

2006], yet it has not been thus far used for vector TV structural identification. These methods impose

deterministic evolution on the model parameters by postulating them as deterministic functions of

time belonging to specific functional subspaces [Poulimenos and Fassois, 2006,Conforto and D’Alessio,

1999b,Poulimenos and Fassois, 2004a,Fouskitakis and Fassois, 2002,Ben Mrad et al., 1998a]. They are

often referred to as Functional Series TARMA (FS-TARMA) methods, and are physically motivated by the

fact that the underlying structural dynamics often change with time in a smooth, deterministic, fashion.

In a broader context, the subclass of Functional Series Vector Time-dependent Autoregressive (FS-

VTAR) models has been used by Gersch and Kitagawa [Gersch and Kitagawa, 1982] and Sato et al. [Sato

et al., 2007] for the modelling and analysis of econometric and biomedical time series, respectively.

Nevertheless, full FS-VTARMA models have not been previously considered.

This study focuses on the Functional Series Vector TARMA (FS-VTARMA) modelling of TV structural

dynamics by using response-only (output-only) measurements. The specific goals of the study are:

(a) The postulation of a vector (multivariate) Functional Series Vector TARMA method for output-only

structural dynamics identification. This may be viewed as an extension of the univariate (scalar)

method in [Poulimenos and Fassois, 2006], and is complete, providing effective tools for both model

parameter estimation and model structure selection.

(b) The application of the method to the output-only identification of a TV (continuously variable con-

figuration) “bridge-like” laboratory structure based on three non-stationary vibration responses.

The structure was previously identified via univariate FS-TARMA models [Poulimenos and Fassois,

2009b], which offers the possibility of comparisons with the simpler, single response (univariate)

case.

(c) The detailed assessment of the method via critical comparisons against baseline modelling which

is based on multiple “frozen-configuration” stationary experiments, as well as against a recursive

Pseudo-Linear Regression VTARMA (PLR-VTARMA) [Soderstrom and Stoica, 1989, pp. 328-334]
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Figure 3.2.1: (a) Schematic diagram, and (b) photo of the TV structure and the experimental setup.

Table 3.1: The main structural characteristics.

Beam Cylinder

Length Width Height Mass M Radius Height Mass m

(mm) (mm) (mm) (kg) (mm) (mm) (kg)

2670 50 12 13.2 52.5 75 5.2

and a Short Time Stochastic Subspace Identification (ST-SSI) method based on the Canonical

Variate Analysis (CVA) algorithm [Overschee and Moor, 1989, pp. 80-81].

The rest of this chapter is organized as follows: The laboratory TV structure, its non-stationary re-

sponses, and the determination of the underlying dynamics via multiple “frozen-configuration” stationary

experiments (baseline modelling) are presented in Section 3.2. The FS-VTARMA structural identification

method, along with brief outlines of the PLR-VTARMA and the ST-SSI methods, is presented in Section

3.3. The identification results and the model based time-varying structural dynamics are presented in

Section 3.4, while concluding remarks are summarized in Section 3.5.

3.2 The Laboratory Time-Varying Structure

3.2.1 Description of the structure and the test rig

The laboratory structure is shown in Fig. 3.2.1. It is meant to model a bridge structure with a heavy

passing vehicle, and it consists of a fixed-fixed steel beam and a steel cylindrical mass sliding on it,

being pulled by a DC motor at a constant speed u. The structure has been used in a recent study by the

second author and his co-worker within a univariate (single signal) analysis framework [Poulimenos and

Fassois, 2009b]. Its geometry and mass characteristics are summarized in Table 3.1. The structure is

clearly time-varying as the ratio of the two masses is significant (m/M = 0.4), while the rate of variation

of the dynamics depends upon the selected speed.

In the test rig of Fig. 3.2.1, an electromechanical shaker (MB Dynamics Modal 50A with maximum

load of 225 N) equipped with a stinger exerts a vertical zero-mean Gaussian random force excitation to the

beam. Lightweight piezoelectric accelerometers (PCB 352A10 ICP accelerometers, frequency range 0.003-

10 kHz, sensitivity ∼ 1.052 mV/m/s
2
, 0.7 gr) are used for the measurement of the resulting vertical

random vibration response at three locations (locations 1-3). The measured signals are conditioned and

subsequently driven into a SigLab 20-42 data acquisition module (featuring four 20-bit simultaneously

sampled A/D channels, two 16-bit D/A channels, and analog 4
th

-order quasi elliptic anti-aliasing filter).
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Figure 3.2.2: The non-stationary vibration response signals.

3.2.2 The non-stationary vibration signals and non-parametric analysis

A non-stationary experiment is conducted with the cylindrical mass traversing the beam (from left to

right) once, at a constant speed of u=33.4 mm/s. The vertical random vibration (acceleration) signals are

79.0078 s long, sampled at 256 Hz. The study focuses on the 4-60 Hz frequency range (the frequency

range of 0-4 Hz is not considered in order to avoid dealing with the exciter nonlinearities). Thus the

signals are digitally band-pass filtered (Chebyshev Type I filter; high-pass attenuation 10 dB; low-pass

attenuation 30 dB; pass-band ripple 10
−3

dB) and downsampled to fs=128 Hz. This producesN=10,113

sample-long versions of the signals.

The obtained signals are depicted in Fig. 3.2.2 and are evidently variance non-stationary. Non-

parametric time-frequency analysis based on the sampled continuous Smoothed Pseudo Wigner-Ville

(SPWV) distribution [Auger et al., 1996, pp. 69-72] (tfrspwv MATLAB function; Blackman data and

frequency smoothing windows of 513 samples) yields the time-dependent Power Spectral Density (PSD)

matrix S(ω, t) of Fig. 3.2.3 (ω and t designate frequency and time, respectively). Note that in this figure

Sii denotes a diagonal element (the auto spectral density of the i-th response signal), while Sij(i 6= j)
denotes an off-diagonal element (the cross spectral density relating the i-th and j-th response signals).

The dependence of all spectral densities upon time, and hence the signals non-stationarity, is evident.

Moreover, three main time-varying modes of flexural vibration are visible, in the 10-15, 25-35, and 45-55

Hz ranges, respectively.

It should be also noticed from Fig. 3.2.3 that the frequency content of the time-variation of the

dynamics is significantly narrower than that of the structural dynamics. Therefore, the structure may,

for the particular mass speed of u=33.4 mm/s, be characterized as slowly time-varying.

3.2.3 Baseline modelling of the underlying dynamics via multiple stationary experi-

ments

A TV structure may be associated with an uncountable sequence of TI structures, generated by “freez-

ing” the structure at each time instant. This set of TI structures may be referred to as the “frozen-

time” representation of the original TV structure. By analogy, a continuously variable configuration

structure may be associated with an uncountable sequence of TI structures produced by “freezing” the
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Figure 3.2.3: Non-parametric estimate of the time-dependent PSD matrix: Magnitude of the auto (upper

row) and cross (lower row) spectral densities (SPWV method; Blackman time and frequency windows of

513 samples).

configuration (geometrical characteristics) of the structure. This leads to a “frozen-configuration” rep-

resentation of a continuously variable configuration structure. Obviously, for a continuously variable

configuration structure characterized by known time-variation of its configuration, “frozen-time” and

“frozen-configuration” representations are equivalent (for further details see [Poulimenos and Fassois,

2009b]).

Based on the former observation, and in order to establish a basis for assessing modelling accuracy,

the “frozen-configuration” (fixed mass location) structural dynamics are extracted via an exhaustive and

accurate, but very time-consuming, baseline modelling procedure. The identification of the baseline

model is based on a series of 120 stationary experiments, each one corresponding to distinct and fixed

location of the sliding mass. A respective set of 120 stationary trivariate vibration signals (the responses

at the three locations) is collected. Similarly to the non-stationary case, these stationary vibration

signals are sampled at 256 Hz each one being 28.8438 s long, digitally band-pass filtered in the 4-60 Hz

frequency range and downsampled to fs=128 Hz (final length of N=3,962 samples).

Stationary Vector ARMA (VARMA) [Reinsel, 1993,Papakos and Fassois, 2003] identification is sub-

sequently applied separately to each stationary vector signal. Thus, a sequence of stationary VARMA

models, corresponding to the 120 configurations is identified. VARMA parameter estimation is (for a

given model order) achieved via the recursive Pseudo-Linear Regression (PLR) estimation method [Soder-

strom and Stoica, 1989, pp. 328-334], which is subsequently refined by the off-line Prediction Error (PE)

method [Ljung, 1999, pp. 199-203]. Model order estimation is based on minimization of the Bayesian

Information Criterion (BIC) [Reinsel, 1993, pp. 92-93].

Model order estimation is achieved via a two-phase procedure:

(i). VARMA(n, n) models for orders (n = 2, . . . , 8) are estimated, and the proper AR order is selected

based on minimization of the BIC criterion (Fig. 3.2.4).

(ii). Following AR order selection, the possibility of MA order reduction is examined in a similar manner.

The VARMA identification procedure leads to a set of 120 VARMA(4, 4) models for representing the

dynamics under the various configurations. From this, and the corresponding set of transfer func-

tion matrices [Reinsel, 1993, p. 10], the baseline “frozen-configuration” poles and zeros and modal
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Figure 3.2.4: Baseline VARMA order selection based on minimization of the BIC criterion: BIC values

(+) for each AR/MA order considered (120 cases) and their sample means ( ◦ ).

parameters are obtained. The lightly damped (damping ratio < 5%) “frozen-configuration” natural fre-

quency estimates and their corresponding damping ratios are depicted in Fig. 3.2.5 (the “time” axis is

derived from the correspondence between time and mass position). As illustrated in Fig. 3.2.5(a) the

“frozen-configuration” natural frequency estimates (ωn1, ωn2, ωn3; note that the numbering refers to the

frequency range considered) coincide with the resonances in the non-stationary SPWV based PSD func-

tion S11(ω, t). Some discontinuities in vibration mode ωn2 are probably due to zero-pole cancellations

(resonance-antiresonance intersections in Fig. 3.2.3). Furthermore, the initial indication for smooth and

periodic curves for the structural time-varying modes obtained from the non-parametrically estimated

PSD matrix is confirmed by the “frozen-configuration” natural frequency estimates. On the other hand,

the “frozen-configuration” damping ratio estimates (Fig. 3.2.5(b)) exhibit only small variability.

Indicative “frozen-configuration” antiresonant frequency estimates (characterized by damping ratio

< 20%) are depicted in Fig. 3.2.6. In particular, the antiresonances corresponding to the elements

(2, 2) and (3, 2) of the “frozen-configuration” transfer function matrix are shown in Fig. 3.2.6(a) and (b),

respectively.

3.3 Parametric Vector Model Identification Methods

3.3.1 The Functional Series VTARMA model identification method

Functional Series Vector Time-dependent AutoRegressive Moving Average (FS-VTARMA) models consti-

tute conceptual extensions of their conventional (stationary) Vector ARMA counterparts, in that their pa-

rameters and the innovations covariance matrix are explicit functions of time, by belonging to functional

subspaces spanned by selected functions (basis functions). Thus, an FS-VTARMA(na, nc)[pa,pc,ps] model,

with na, nc denoting its AutoRegressive (AR) and Moving Average (MA) orders, respectively, pa, pc, ps the

AR, MA, and innovations covariance matrix functional basis dimensionalities, respectively, is of the form:

x[t] +

na∑

i=1

Ai[t] · x[t− i] = e[t] +

nc∑

i=1

Ci[t] · e[t− i], e[t] ∼ NID(0,Σ[t]) (3.3.1)

with t designating normalized discrete time, x[t](k×1) the non-stationary vibration response (vector) sig-

nal, and e[t](k×1) the innovations (residual) sequence which is serially uncorrelated and characterized by

zero-mean and time-dependent non-singular (and generally non-diagonal) covariance matrix Σ[t](k×k).

Ai[t](k×k), Ci[t](k×k) are the model’s AR and MA time-dependent parameter matrices, respectively, while

NID(·, ·) stands for Normally Independently Distributed with the indicated mean and covariance.

Using the backshift operator B (Bi · x[t] = x[t − i]), the VTARMA representation of Eq. (3.3.1) is

compactly rewritten as:

x[t] +

na∑

i=1

Ai[t] ·Bi · x[t] = e[t] +

nc∑

i=1

Ci[t] ·Bi · e[t] ⇐⇒ A[B, t] · x[t] = C[B, t] · e[t], (3.3.2a)
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Figure 3.2.5: Baseline “frozen-configuration” VARMA(4, 4) based identification: (a) Natural frequency

estimates (◦) (only those with damping ratio < 5%) and the S11(ω, t) SPWV based PSD estimate (back-

ground), and, (b) the corresponding damping ratio estimates.

with:

A[B, t] = Ik +

na∑

i=1

Ai[t] ·Bi, C[B, t] = Ik +

nc∑

i=1

Ci[t] ·Bi, (3.3.2b)

designating the AR and MA time-dependent matrix polynomial operators, respectively, while clearly

A0[t] ≡ C0[t] ≡ Ik, with Ik indicating the identity matrix of order k.

The model parameter matrices Ai[t],Ci[t], along with the innovations time-dependent covariance

matrix Σ[t], belong to functional subspaces with respective bases:

FAR

∆
= {Gda(1)[t], . . . , Gda(pa)[t] }, FMA

∆
= {Gdc(1)[t], . . . , Gdc(pc)[t] }, (3.3.3a)

FΣ
∆
= {Gds(1)[t], . . . , Gds(ps)[t] }, (3.3.3b)

where the indices da(i)(i = 1, . . . , pa), dc(i)(i = 1, . . . , pc), and ds(i)(i = 1, . . . , ps) denote the functions

that are included in each basis. These functions may be selected from any properly ordered functional

family, including the Chebyshev, Legendre, trigonometric (sine/cosine) and other families. The elements

of the time-dependent model parameter matrices, along with the innovations time-dependent covariance

matrix, may be thus expressed as:

Ai[t]{ai`,m[t]} : ai`,m[t] =

pa∑

j=1

ai,j`,m ·Gda(j)[t], Ci[t]{ci`,m[t]} : ci`,m[t] =

pc∑

j=1

ci,j`,m ·Gdc(j)[t], (3.3.4a)
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Figure 3.2.6: Baseline “frozen-configuration” VARMA(4, 4) based antiresonant frequency estimates: (a)

Antiresonances corresponding to the element (2,2) of the “frozen-configuration” transfer function matrix,

and, (b) antiresonances corresponding to the element (3,2) of the “frozen-configuration” transfer function

matrix (only those with damping ratio < 20% are depicted; the corresponding elements of the SPWV based

PSD matrix estimate are shown in the background).

Σ[t]{s`,m[t]} : s`,m[t] =

ps∑

j=1

sj`,m ·Gds(j)[t], (3.3.4b)

with `,m = 1, . . . , k, and ai,j`,m, c
i,j
`,m, s

j
`,m designating the AR, MA and innovations covariance matrix

coefficients of projection, respectively. An FS-VTARMA model is thus parametrized in terms of the time-

invariant projection coefficients ai,j`,m, c
i,j
`,m, s

j
`,m, while a specific model structure, say M, is defined by the

model orders na, nc, and the functional subspaces FAR,FMA and FΣ:

M
∆
= {na, nc,FAR,FMA,FΣ} (3.3.5)

The identification may be thus viewed as the problem of determining the model that best “fits” the

vibration response observations xN = {x[1] . . .x[N ]}. Model “fitness” may be judged in terms of the

BIC or other prediction error criteria [Reinsel, 1993, pp. 92-93]. Both the model structure M and

model parameter vector θ consisting of the projection coefficients ai,j`,m, c
i,j
`,m, s

j
`,m have to be estimated

from the available vibration response. Yet, for purposes that have to do with practicality and conceptual

simplicity, the complete (parameter and model structure) estimation problem is distinguished into two

subproblems: (a) parameter estimation (for a given model structure M), and (b) the model structure

selection. These subproblems are discussed in the following subsections.

3.3.1.1 Parameter estimation

Model parameter estimation refers to the determination, for a selected model structure M, of the AR, MA

and innovations covariance matrix projection coefficient vectors, ϑa,ϑc and ϑs, respectively:

θ =
[
ϑTa|c | ϑsT

]T
k2(na·pa+nc·pc+ps)×1

, ϑa|c =
[
ϑa

T | ϑcT
]T
k2(na·pa+nc·pc)×1

, ϑs =
[
s1

1,1 . . . s
ps
k,k

]T
k2·ps×1

,

ϑa =
[
a1,1

1,1, . . . a
1,1
k,1 | . . . | a

na,pa
1,k , . . . ana,pak,k

]T
k2·na·pa×1

,

ϑc =
[
c1,1

1,1, . . . c
1,1
k,1 | . . . | c

nc,pc
1,k , . . . cnc,pck,k

]T
k2·nc·pc×1

,
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based on available signal samples xN = {x[1], . . . ,x[N ]}. The estimation of the AR/MA projection

coefficient vector ϑa|c is presently based on the Prediction Error (PE) principle [Ljung, 1999, p. 203], ac-

cording to which a quadratic functional of the model’s one-step-ahead prediction error e[t,ϑa|c] (residual)

sequence (also referred to as Residual Sum of Squares, RSS) is minimized:

ϑ̂a|c = arg min
ϑa|c

N∑

t=1

eT [t,ϑa|c] · e[t,ϑa|c] (3.3.6)

with arg min designating “argument minimizing” and e[t,ϑa|c] being obtained as:

e[t,ϑa|c] = x[t] +

na∑

i=1

Ai[t,ϑa] · x[t− i]−
nc∑

i=1

Ci[t,ϑc] · e[t− i,ϑa|c] (3.3.7)

The estimation of ϑa|c based on the PE criterion of Eq. (3.3.6) constitutes a nonlinear optimization

problem due to the nonlinear dependence of the residual vector e[t,ϑa|c] on the MA parameters (see

Eq. (3.3.7)). Therefore, its estimation has to be handled via iterative optimization techniques which are,

nevertheless, amenable to wrong convergence problems which may be due to local minima in the PE

criterion [Ljung, 1999, p. 338]. For this reason relatively accurate initial guess parameter values for

the AR/MA coefficient of projection are necessary, and this is presently attained via the Two Stage Least

Squares (2SLS) method [Poulimenos and Fassois, 2006,Grenier, 1983b] outlined in the sequel.

The Two-Stage Least Squares (2SLS) method

The 2SLS method utilizes a (theoretically infinite order) FS-VTAR representation (also referred to as

the inverse function representation) of the original FS-VTARMA model. The inverse function of an FS-

VTARMA model may be obtained by pre-multiplying the latter by C−1[B, t] (see [Ghosh and Bouthellier,

1993] on the existence of the inverse of a time-varying polynomial operator matrix):

C−1[B, t] ◦A[B, t] · x[t] = C−1[B, t] ◦C[B, t] · e[t], ⇐⇒ H[B, t] · x[t] = e[t] (3.3.8)

with H[B, t]
∆
= C−1[B, t] ◦A[B, t] = Ik +

∑∞
i=1H i[t] ·Bi

denoting the inverse function matrix polynomial

operator. The symbol “◦” designates a non-commutative (“skew”) multiplication operation relationship

defined via the expressions Bi ◦ Bj = Bi+j , and Bi ◦ x[t] = x[t − i] · Bi
[Poulimenos and Fassois,

2006,Kamen, 1988].

Stage 1. Inverse Function Estimation.

A truncated nh-order, inverse function model that corresponds to the representation of Eq. (3.3.8) is

considered as follows:

H[B, t,ϑh] · x[t] = e[t,ϑh] ⇐⇒ x[t] +

nh∑

i=1

H i[t] · x[t− i] = e[t,ϑh] ⇐⇒

⇐⇒ x[t] +

nh∑

i=1




∑phi
j=1 h

i,j
1,1 ·Gdhi (j)[t] · · ·

∑phi
j=1 h

i,j
1,k ·Gdhi (j)[t]

.

.

.
. . .

.

.

.∑phi
j=1 h

i,j
k,1 ·Gdhi (j)[t] · · ·

∑phi
j=1 h

i,j
k,k ·Gdhi (j)[t]


 · x[t− i] = e[t,ϑh] ⇐⇒

⇐⇒ x[t] =

nh∑

i=1




hi,11,1 · · · h
i,phi
1,1 · · · hi,11,k · · · h

i,phi
1,k

.

.

.
. . .

.

.

.

hi,1k,1 · · · h
i,phi
k,1 · · · hi,1k,k · · · h

i,phi
k,k


 ·
(
−x[t− i]⊗ gdhi [t]

)
+ e[t,ϑh] ⇐⇒

⇐⇒ x[t] =




h1,1
1,1 · · · h

1,ph1
1,1 · · · hnh,11,k · · · h

nh,phnh
1,k

.

.

.
. . .

.

.

.

h1,1
k,1 · · · h

1,ph1
k,1 · · · hnh,1k,k · · · h

nh,phnh
k,k


 ·




−x[t− 1]⊗ gdh1
[t]

−x[t− 2]⊗ gdh2
[t]

.

.

.

−x[t− nh]⊗ gdhnh [t]




+e[t,ϑh] ⇐⇒
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⇐⇒ vec (x[t]) =
(
φTH [t]⊗ Ik

)
· ϑh + vec (e[t,ϑh]) ⇐⇒

⇐⇒ x[t] = ΦT
H [t] · ϑh + e[t,ϑh], (3.3.9)

where vec(·)1
is the column stacking operator (vectorization operator), ⊗ the Kronecker product, e[t,ϑh]

the model residual vector, ϑh the vector consisting of the truncated inverse function coefficients of

projection:

ϑh
∆
=

[
h1,1

1,1 . . . h1,1
k,1 | . . . | h

nh,phnh
1,k . . . h

nh,phnh
k,k

]T
(
∑nh
i=1 phi )×1

,

φH [t]
∆
=

[(
−x[t− 1]⊗ gdh1

[t]
)T (

−x[t− 2]⊗ gdh2
[t]
)T

. . .
(
−x[t− nh]⊗ gdhnh [t]

)T ]T
k·(

∑nh
i=1 phi )×1

,

gdhi
[t]

∆
=

[
Gdhi (1)[t] Gdhi (2)[t] . . . Gdhi (phi )

[t]
]T
phi×1

,

and ΦH [t] the corresponding regression matrix. The basis functions Gdhi (j)
[t] (j = 1, . . . , phi) involved

in the above, constitute the phi-dimensional inverse function functional subspace Fhi for each H i[t]
[Poulimenos and Fassois, 2003a].

Since the model residuals (prediction errors) depend linearly on ϑh, minimization of the RSS leads

to the following Ordinary Least Squares (OLS) estimator:

ϑ̂h =

(
1

N
·
N∑

t=1

ΦH [t] ·ΦT
H [t]

)−1

·
(

1

N
·
N∑

t=1

ΦH [t] · x[t]

)
(3.3.10)

Stage 2. AR/MA Projection Coefficient Estimation.

The FS-VTARMA model of Eq. (3.3.2a) may be approximated by replacing the past, but not the

current, values of the prediction error e[t,ϑa|c] by those obtained in the previous stage (that is e[t, ϑ̂h]).
Thus:

x[t] +

na∑

i=1

Ai[t] · x[t− i] =

nc∑

i=1

Ci[t] · e[t− i, ϑ̂h] + e[t,ϑa|c] ⇐⇒

⇐⇒ x[t]+

na∑

i=1




∑pa
j=1 a

i,j
1,1 ·Gda(j)[t] · · ·

∑pa
j=1 a

i,j
1,k ·Gda(j)[t]

.

.

.
. . .

.

.

.∑pa
j=1 a

i,j
k,1 ·Gda(j)[t] · · ·

∑pa
j=1 a

i,j
k,k ·Gda(j)[t]


·x[t−i] =

=

nc∑

i=1




∑pc
j=1 c

i,j
1,1 ·Gdc(j)[t] · · ·

∑pc
j=1 c

i,j
1,k ·Gdc(j)[t]

.

.

.
. . .

.

.

.∑pc
j=1 c

i,j
k,1 ·Gdc(j)[t] · · ·

∑pc
j=1 c

i,j
k,k ·Gdc(j)[t]


 · e[t− i, ϑ̂h] + e[t,ϑa|c] ⇐⇒

⇐⇒ x[t] =



a1,1

1,1 · · · a1,pa
1,1 · · · cnc,11,k · · · cnc,pc1,k

.

.

.
. . .

.

.

.

a1,1
k,1 · · · a1,pa

k,1 · · · cnc,1k,k · · · cnc,pck,k


 ·




−x[t− 1]⊗ gda [t]
−x[t− 2]⊗ gda [t]

.

.

.

−x[t− na]⊗ gda [t]
· · ·

e[t− 1, ϑ̂h]⊗ gdc [t]
e[t− 2, ϑ̂h]⊗ gdc [t]

.

.

.

e[t− nc, ϑ̂h]⊗ gdc [t]




+ e[t,ϑa|c] ⇐⇒

1
vec(AB) = (BT ⊗ Im) · vec(A), for matrices A(m×n) and B(n×p) [Lütkepohl, 1996, p. 97]
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⇐⇒ vec (x[t]) =
(
φT [t]⊗ Ik

)
· ϑa|c + vec

(
e[t,ϑa|c]

)
⇐⇒

⇐⇒ x[t] = ΦT [t] · ϑa|c + e[t,ϑa|c] (3.3.11)

with:

φ[t]
∆
=

[(
−x[t− 1]⊗ gda [t]

)T
. . .

(
−x[t− na]⊗ gda [t]

)T
(
e[t− 1, ϑ̂h]⊗ gdc [t]

)T
. . .

(
e[t− nc, ϑ̂h]⊗ gdc [t]

)T ]T
k·(na·pa+nc·pc)×1

gda [t]
∆
=

[
Gda(1)[t] Gda(2)[t] . . . Gda(pa)[t]

]T
pa×1

gdc [t]
∆
=

[
Gdc(1)[t] Gdc(2)[t] . . . Gdc(pc)[t]

]T
pc×1

and Φ[t] designating the corresponding regression matrix. As the residual e[t,ϑa|c] depends linearly

upon the AR/MA projection coefficient vector ϑa|c, OLS estimation of the latter may be achieved by using

the current regression matrix Φ[t] in the linear OLS estimator of Eq. (3.3.10).

Stage 2 may be (optionally) iterated until a minimum value in the RSS criterion of Eq. (3.3.6) is

achieved.

Innovations covariance matrix projection coefficient estimation

The innovations (residual) sequence vector e[t,ϑa|c] may be estimated based on the estimated vector

ϑ̂a|c and Eq. (3.3.7). Its covariance matrix may be initially obtained via a moving average filter (sliding

time-window) as follows:

Σ̂[t] =
1

2M + 1

t+M∑

τ=t−M
e[τ, ϑ̂a|c] · eT [τ, ϑ̂a|c] (3.3.12)

with 2M + 1 designating the window length. In a second step, its elements are projected onto the

corresponding functional subspace FΣ:

Σ̂[t] =



s1,1[t] · · · s1,k[t]

.

.

.
. . .

.

.

.

sk,1[t] · · · sk,k[t]


 =




∑ps
i=1 s

i
1,1Gds(i)[t] · · ·

∑ps
i=1 s

i
1,kGds(i)[t]

.

.

.
. . .

.

.

.∑ps
i=1 s

i
k,1Gds(i)[t] · · ·

∑ps
i=1 s

i
k,kGds(i)[t]


 =

=



s1

1,1 · · · sps1,1 · · · s1
1,k · · · sps1,k

.

.

.
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 · (gds [t]⊗ Ik) ⇐⇒

⇐⇒ vec(Σ̂[t]) = (gTds [t]⊗ Ik ⊗ Ik) · ϑs (3.3.13)

gds [t]
∆
=
[
Gds(1)[t] Gds(2)[t] . . . Gds(ps)[t]

]T
ps×1

.

The projection coefficient vector ϑs is obtained by solving the above in a linear least squares sense (Nk2

equations for k2ps unknowns) under the covariance matrix positive definiteness constraint. This con-

straint may be circumvented either by using the Cholesky decomposition or appropriate regularization

of the residual covariance matrix. Nevertheless, the constraint is strictly necessary only in the case of

non-positive definiteness of the initial (non-parametrically obtained) covariance matrix Σ̂[t].

3.3.1.2 Structure selection

The first step in model structure selection is choosing a proper functional family, such as Chebyshev,

Legendre, trigonometric, wavelets, and so on [Weisstein, 1998]. This is mostly done by using physical

understanding and the expected form of model parameter variation. Fortunately, for the majority of
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3. Parametric Identification of a TV Structure Based on Vector Vibration Response Measurements

cases, this is not a critical selection, as any function can be expanded in a space spanned by any set

of functions. Just the number of necessary functions included in the various functional subspaces

(subspace dimensionalities) shall be generally affected.

Once a functional family has been selected, model structure estimation refers to the estimation of

the set of integers:

M = {na, nc, pa, pc, ps, da(j), dc(j), ds(j)}
where na, nc, designate the model orders, pa, pc and ps the AR, MA and innovations covariance matrix

subspace dimensionalities, respectively, and da(j), dc(j) and ds(j) the integers indicating the specific

functions used in the corresponding subspaces.

Model structure selection may be viewed as a discrete variable selection problem that can be tackled

via a hybrid integer optimization method [Poulimenos and Fassois, 2006] consisting of two distinct

phases:

Phase I. Coarse (“global”) Optimization.

Phase I aims at determining promising subregions of the complete search space within which optimal

model structures (either in the local or global sense) might be located. This is achieved via a Genetic

Algorithm (GA) [Mathworks, 2008] which minimizes the BIC [Reinsel, 1993, pp. 92-93] used as “fitness”

function:

BIC =
Nk

2
ln 2π +

1

2

N∑

t=1

(
ln |Σ[t,ϑs]|+ eT [t,ϑa|c] ·Σ−1[t,ϑs] · e[t,ϑa|c]

)
+

lnN

2
· d (3.3.14)

where d stands for the number of independently “adjusted” (estimated) model parameters, k the vibration

signal dimensionality, and N its length in samples. The GA starts with the random creation of an initial

population of individual solutions, which constitute the first generation. In each subsequent generation,

the GA selects the best, in terms of the BIC criterion, individuals to be parents, and uses them to produce

the children for the next generation through crossover and mutation rules. In this way the GA evolves

toward an optimal solution, imitating the natural selection process of biological evolution.

The population individuals are bit strings whose length depends on the initial search space. For

instance, the initial search space for the AR order na ∈ [0, 15] = [00002, 11112] corresponds to a length

of 4 bits for an individual, while 5 bits are needed for the description of an initial search space of the AR

functional subspace FAR = {G0[t], G1[t], G2[t], G3[t], G4[t]}, with each bit denoting the existence (1) or

not (0) of the corresponding basis function in the specific model structure (see Fig. 3.3.1). The outcome

of this phase is one or more candidate model structures.

Phase II. Fine (“local”) Optimization.

Phase II aims at refining each candidate model structure obtained in phase I and selecting the best

structure. It operates in a (suitably defined) neighbourhood of each candidate model structure, and is

based on the backward regression concept [Haber and Keviczky, 1999, pp. 582-584]. It thus starts

with maximum values of the arguments (within the selected neighbourhood) and subsequently reduces

either one of the model orders (na, nc), or one of the subspace dimensionalities (pa, pc, ps), until no further

reduction in the BIC is achieved. The procedure is repeated for all initial solutions (phase I results), and

the model “structure” corresponding to the globally optimum BIC is selected.

3.3.2 The Recursive Pseudo-Linear Regression VTARMA model identification method

Recursive VTARMA models essentially are unstructured parameter evolution models that are estimated

via recursive identification techniques [Poulimenos and Fassois, 2006], [Soderstrom and Stoica, 1989,

ch. 9], [Ben Mrad and Fassois, 1991a]. They are similar to those of Eq. (3.3.1), with the difference being

that their parameters do not have a “structured” time-dependency and thus are “free” to change with

time (for more details see the survey of Poulimenos and Fassois [Poulimenos and Fassois, 2006]).
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Figure 3.3.1: Flowchart of the FS-VTARMA model structure selection method Phase I based on genetic

algorithm.

Overlooking - for a moment - the dependence of the VTARMA model’s one-step-ahead prediction error

e[t] on the unknown MA parameters, the “unstructured” parameter evolution VTARMA model may be

rewritten in a pseudo-linear regression form:

x[t] = ΦT [t] · ϑ[t] + e[t] (3.3.15)

with

ϑ[t] =
[
a1

1,1[t] a1
2,1[t] . . . anak−1,k[t] a

na
k,k[t] | c1

1,1[t] c1
2,1[t] . . . cnck−1,k[t] c

nc
k,k[t]

]T
k2(na+nc)×1

being the time-dependent parameter vector, and

Φ[t] =



−x1[t− 1] · · · 0 −xk[t− na] · · · 0

.

.

.
. . .

.

.

. · · · .
.
.

. . .
.
.
.

0 · · · −x1[t− 1] 0 · · · −xk[t− na]

e1[t− 1] · · · 0 ek[t− nc] · · · 0
.
.
.

. . .
.
.
. · · · .

.

.
. . .

.

.

.

0 · · · e1[t− 1] 0 · · · ek[t− nc]




T

k2·(na+nc)×k

the corresponding regression matrix. The unknown prediction errors in this expression are approximated

as e[t − i] ≈ ê[t, ϑ̂[t − i − 1]] (the prediction error estimates obtained at time t − i using the estimated

parameters at time t− i− 1).

At each time instant parameter estimation is accomplished by the Pseudo-Linear Regression (PLR)

algorithm [Soderstrom and Stoica, 1989, pp. 328-334] :

Estimator update: ϑ̂[t] = ϑ̂[t− 1] +K[t] · ê[t|t− 1] (3.3.16a)

Prediction error: ê[t|t− 1] = x[t]− x̂[t|t− 1] = x[t]−ΦT [t] · ϑ̂[t− 1] (3.3.16b)

Gain: K[t] = P [t− 1] ·Φ[t] ·
{
λIk + ΦT [t] · P [t− 1] ·Φ[t]

}−1
(3.3.16c)

“Covariance” update: P [t] = λ−1
{
P [t− 1]−K[t] ·ΦT [t] · P [t− 1]

}
(3.3.16d)
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3. Parametric Identification of a TV Structure Based on Vector Vibration Response Measurements

Table 3.2: Identification methods, their selected characteristics, and the identified models

Identification Method Method Characteristics Identified Model

ST-SSI Q = 301, q = 10, M = 256 ST-SSI(8)

PLR-VTARMA λ = 0.985, α = 104, M = 256 PLR-VTARMA(4, 4)

FS-VTARMA 2SLS, nh = 8, 2 iterations, FS-VTARMA(4, 4)[16,7,8]

QR implementation of OLS, M = 256

with x̂[t|t− 1] indicating the one-step-ahead prediction of the vector signal at time t made at time t− 1,

and ê[t|t − 1] ≡ e[t, ϑ̂[t − 1]] the corresponding prediction error vector. λ stands for a forgetting factor

which determines how older signal samples are forgotten (diminishing influence on the estimate) by the

algorithm, K[t] for the adaptation gain, and P [t] for the model parameter “covariance” matrix. For the

initialization of the method it is customary to set ϑ̂[0] = 0, P [0] = αI, with α designating a “large”

positive number.

The innovations covariance matrix Σ[t] is subsequently estimated via a moving average filter just as

in Eq. (3.3.12). Model order selection may be based on the RSS criterion, as the BIC cannot be formally

used with recursive models.

3.3.3 The Short Time Stochastic Subspace Identification method

This method employs unstructured parameter evolution models in state space form, while estimation is

not recursive but based on the batch Canonical Variate Analysis (CVA) subspace identification algorithm

[Overschee and Moor, 1989, pp. 80-81]. The method operates on a “short” time segment (Q samples long)

of the signal at a time. Within this segment the signal may be considered as approximately stationary,

and a model is identified that is then associated with the segment’s “central” time instant. The operation

is repeated for the “next” time segment, produced by an advance of q samples, until the complete signal

record is exhausted. The complete method is referred to as ST-SSI.

The output-only state-space model used is of the form:

z[t+ 1] = Az[t] +Ke[t] (3.3.17a)

x[t] = Cz[t] + e[t], e[t] ∼ NID(0,Σ) (3.3.17b)

with z[t]n×1 indicating the state vector, x[t]k×1 the non-stationary signal modelled, e[t]n×1 the innova-

tions vector, and An×n, Kn×k, Ck×n the state, Kalman gain and output matrices, respectively.

The critical quantities in this method is the segment length Q and the advance q. While a short Q
will lead to better time resolution, accuracy will be poorer. On the other hand, a unit advance is best

for time resolution, but heavily penalizes the computational effort. Hence reasonable compromises are

necessary. The innovations covariance matrix Σ[t] is estimated via a moving average filter just as in Eq.

(3.3.12).

3.4 TV Structural Dynamics Identification

3.4.1 Parametric identification results

The parametric identification of the time-varying structure is now considered based on the three iden-

tification methods presented in the previous section. The selected characteristics of the methods are

shown in Table 3.2.
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Figure 3.4.1: FS-VTARMA order selection: BIC ( ◦ ) and RSS/SSS ( 2 ) values versus AR/MA order.

[A] The FS-VTARMA Method

A functional basis spanned by trigonometric (sine and cosine) functions of the form:

G0[t] = 1, G2κ−1[t] = sin

[
κπ (t− 1)

N−1

]
, G2κ[t] = cos

[
κπ (t− 1)

N−1

]
, κ = 1, 2, . . . , t = 1, . . . , N

(3.4.1)

(N=10,113) is selected, partly motivated by the approximately periodic nature of the evolution of the

dynamics (Figs. 3.2.2 and 3.2.5). For the model structure selection problem, FS-VTARMA(n, n) (n =
2, . . . , 8) models are considered, with the integer optimization scheme of subsection 3.3.1.2 utilized only

for the estimation of the AR/MA and innovations covariance matrix functional basis subspace. Thus,

for each FS-VTARMA(n, n) model a coarse optimization phase based on a GA (ga MATLAB function,

population size 100, number of generations equal to 100, crossover fraction equal to 0.8, mutation

fraction equal to 0.2) and a fine optimization phase based on the concept of backward regression are

used for the estimation of the set {pa, pc, ps, da(j), dc(j), ds(j)}. Initial search spaces are set as FAR =
FMA = FΣ = {G0[t], . . . , G19[t]}. The BIC criterion and the RSS normalized by the sum of squares of the

signal samples (Series Sum of Squares, SSS) for the obtained FS-VTARMA(n, n) (n = 2, . . . , 8) models are

shown in Fig. 3.4.1.

AR/MA order selection is additionally based on the stabilization diagram of the FS-VTARMA(n, n)

based “frozen-time” natural frequency estimates depicted in Fig. 3.4.2. Using these, the AR/MA order is

selected as n = 4, while the obtained AR, MA and innovations covariance matrix functional subspaces

are of dimensionalities pa = 16, pc = 7, and ps = 8, respectively, and of the following forms:

FAR = { G0[t], . . . , G10[t], G12[t], G13[t], . . . , G16[t] }, FMA = { G0[t], . . . G6[t] }

FΣ = { G0[t], . . . , G7[t] }.
[B] The PLR-VTARMA Method

Model order selection is in this case achieved via the RSS criterion and the stabilization plot (see Ap-

pendix 3.A.1). The forgetting factor is also optimized based on minimization of the RSS criterion (search

space [0.940, 0.941, . . . , 0.999]). For the initialization of the PLR algorithm α = 104
is used, while three

sequential phases (a forward pass, a backward pass, and a final forward pass) are applied in order to

reduce the effects of the arbitrary initial conditions. The results suggest a PLR-VTARMA(4, 4) model,

with the order being in agreement with that of the selected FS-VTARMA model.

[C] The ST-SSI Method

The segment length and the model order are in this case (n4sid MATLAB function) selected based on the

RSS criterion, the singular values of the corresponding Hankel matrix [Overschee and Moor, 1989, p.

76], and inspection of the “frozen-time” natural frequency estimates stabilization plot (Appendix 3.A.2).

It should be noted that for segment length higher than Q=400 samples, the method seems incapable of

tracking the variations in the dynamics. In addition, a lower limit on the segment length is imposed in

order to attain sufficient estimation accuracy. The advance is set at q=10 samples (0.078125 s), and the

selection procedure has led to a segment length of Q=301 samples and an ST-SSI(8) model.
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Figure 3.4.2: FS-VTARMA based “frozen-time” natural frequency estimate stabilization plot. The baseline

natural frequency estimates are depicted at the bottom level whereas each level above it corresponds to

its indicated AR/MA order (only natural frequency estimates with damping ratio < 5% are depicted).

[D] Comments on the obtained results

The RSS/SSS values for each vibration response signal, as obtained by each one of the three estimated

models, are presented in Fig. 3.4.3(a). Evidently, the identified FS-VTARMA model attains better predic-

tions (lower RSS/SSS value) than its ST-SSI and PLR-VTARMA counterparts. It is also worth noting that

the FS-VTARMA(4, 4)[16,7,8] model provides drastically (by more than an order of magnitude) improved

predictions for vibration response 3 (Fig. 3.2.1(a)) over the corresponding predictions attained previ-

ously [Poulimenos and Fassois, 2009b] by a univariate (scalar) FS-TARMA(8, 8)[11,15,15] model (current

RSS/SSS is 0.138% whereas the previously attained value was 3.210 %).

The normalized processing (CPU) times necessary for the estimation of the non-stationary model

parameters (for the selected model structures) are depicted in Fig. 3.4.3(b). These values are indicative

of the computational complexity associated with each method, and suggest that the FS-VTARMA method

is computationally quite simpler in this respect.

Last but not least is the parametrization parsimony (economy) attained by the FS-VTARMA model as

compared to its ST-SSI and PLR-VTARMA counterparts. Indeed, while the FS-VTARMA model is fully

described by 900 parameters (coefficients of projection), the ST-SSI and PLR-VTARMA models require

118,822 and 819,153 parameters, respectively. This excessive difference is due to the need of the ST-SSI

and PLR-VTARMA models to store their parameter and innovations covariance matrix values for each

time instant.

3.4.2 The model based time-varying structural dynamics

The non-stationary vibration response characteristics and the underlying structural dynamics are ana-

lyzed based on the estimated parametric models.
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Figure 3.4.3: Comparison of the three estimated non-stationary models: (a) Prediction error (RSS/SSS)

values, and (b) normalized processing times required for parameter estimation.

[A] The estimated “frozen–time” PSD matrix

The vibration response “frozen-time” PSD is, for each time instant, obtained as [Reinsel, 1993, p. 34]:

SF (ω, t) =
1

2π
A−1[e−jωTs , t] ·C[e−jωTs , t] ·Σ[t] ·CT [e−jωTs , t] ·A−T [e−jωTs , t], t = 1, . . . , N (3.4.2)

in which the model parameter matrices and innovations covariance matrix are replaced by their re-

spective estimates, ω designates frequency in rad/s, Ts the sampling period in s, and j the imaginary

unit.

The “frozen-time” PSD matrices corresponding to the estimated ST-SSI(8), PLR-VTARMA(4, 4), and

FS-VTARMA(4, 4)[16,7,8] models are, along with the baseline PSD matrix, presented in Figs. 3.4.4 and

3.4.5. Recall that the baseline result is based on exhaustive modelling using multiple stationary data

records, and is therefore considered as an accurate description of the actual “frozen” characteristics.

Based on the presented results, the ST-SSI(8) based estimates seem unable to track the sharp antires-

onances that are evident in a major portion of the time-frequency plane in the baseline estimates (for

instance see the regions highlighted by the transparent frames A, B, C, D and E in Fig. 3.4.4). The

frames A, C and E also reveal the difficulty of the ST-SSI model to accurately track the time-varying

mode close to 30 Hz in the regions where pole-zero cancellations occur.

On the other hand, although specific elements of the PLR-VTARMA(4, 4) model based PSD matrix

achieve improved tracking of the antiresonances (especially for the auto spectral densities; see frames F,

G and H in Fig. 3.4.5), this is not the case for the cross-spectral density estimates where no significant

improvement relatively to the ST-SSI(8) estimates is achieved (see the regions below the I, J, K and L

frames in Fig. 3.4.5). For both auto and cross-spectral densities one could say that the PLR-VTARMA

model renders the PSD valleys less sharp than those of the baseline estimates. Nevertheless, the effects

of pole-zero cancellations in this case are less pronounced compared to the ST-SSI(8) based estimates

(compare the regions indicated by the F, H, K frames against those indicated by the A, C and E frames)

and the densities are in agreement with their baseline counterparts.

The FS-VTARMA(4, 4)[16,7,8] based PSD matrix estimate exhibits very good tracking accuracy (the best

among all non-stationary models considered), with respect to both the resonances and antiresonances

(for instance see frames M, N, O, P, Q, and S in Fig. 3.4.5). Overall, the identified FS-VTARMA model

provides much more clear, smooth and informative PSD estimates than its PLR-VTARMA and ST-SSI

counterparts. Somewhat increased variability of the identified modes, which is not in agreement with
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Figure 3.4.4: Baseline “frozen-configuration” VARMA(4,4) based and “frozen-time” ST-SSI(8) based PSD

estimates.

the baseline estimates, may be observed for only small regions of the time-frequency plane (such as in

frame R in Fig. 3.4.5).

[B] The estimated “frozen-time” modal characteristics

The structure’s “frozen-time” global modal parameters (natural frequencies and damping ratios) are

obtained as:

ωni[t] =

∣∣lnλi[t]
∣∣

Ts
(rad/time unit) , ζi[t] = − cos

(
arg
(
lnλi[t]

))
(3.4.3)

with λi designating the i-th “frozen-time” model pole.

The “frozen-time” FS-VTARMA(4, 4)[16,7,8] based natural frequency estimates (with ζi[t] < 5%) are,

along with their ST-SSI(8), PLR-VTARMA(4, 4), and baseline counterparts, depicted in Fig. 3.4.6(a).
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Figure 3.4.5: “Frozen-time” PLR-VTARMA(4, 4) and FS-VTARMA(4, 4)[16,7,8] based PSD estimates.

Evidently, the FS-VTARMA(4, 4)[16,7,8] estimates track the baseline model natural frequency estimates

adequately well via smooth curves. The “frozen-time” ST-SSI(8) based natural frequencies also seem to

track the three time-varying modes quite well, except for the time regions where pole-zero cancellations

occur over the mode ωn2. Finally, the PLR-VTARMA(4, 4) based natural frequencies exhibit increased

scatter (compared to the smooth evolution of the baseline model estimates), while they provide additional

false (computational) modes for extended periods of time. False modes close to the natural frequency

ωn3 are also provided by the FS-VTARMA(4, 4)[16,7,8] and the ST-SSI(8) models, yet only for short time

periods.

It is also noted that, compared to the estimates obtained by the univariate FS-TARMA(8, 8)[11,15,15]

model in [Poulimenos and Fassois, 2009b], the vector (FS-VTARMA(4, 4)[16,7,8]) model attains better

tracking accuracy for the time-varying mode ωn2, although some false modes are introduced in the
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Figure 3.4.6: “Frozen-time” ST-SSI(8), PLR-VTARMA(4, 4), and FS-VTARMA(4, 4)[16,7,8] based modal

parameter estimates against their baseline VARMA(4, 4) based counterparts: (a) Natural frequency es-

timates (◦) and the S11(ω, t) SPWV based PSD estimate (background), and, (b) damping ratio estimates

(only natural frequencies with damping ratio < 5% are depicted).

time-frequency area of the structural mode ωn3.

The “frozen-time” damping ratio estimates based on the identified non-stationary models are plotted

against their baseline estimates in Fig. 3.4.6(b). In contrast to the natural frequencies, “frozen-time”

damping ratio estimates do not seem to follow very smooth curves, but they more likely constitute noisy

estimates of the more or less constant over time actual damping ratios. Overall, the ST-SSI(8) and FS-

VTARMA(4, 4)[16,7,8] models provide better damping ratio estimates (closer to their baseline counterparts

and exhibiting lower variability) compared to those of the PLR-VTARMA(4, 4) model.

Finally, the results pertaining to the “frozen-time” antiresonant frequency estimates provided by the

estimated non-stationary models (Fig. 3.4.7) confirm that (as in the stationary case) their accurate

estimation is a rather difficult problem. Nevertheless, the FS-VTARMA(4, 4)[16,7,8] based estimates again

achieve better tracking of their baseline counterparts.
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Figure 3.4.7: “Frozen-time” ST-SSI(8), PLR-VTARMA(4, 4), and FS-VTARMA(4, 4)[16,7,8] based antires-

onant frequency estimates against their baseline VARMA(4, 4) counterparts: (a) Antiresonances cor-

responding to the element (2,2) of the “frozen-time” transfer function matrix, and, (b) antiresonances

corresponding to the element (3,2) of the “frozen-time” transfer function matrix (only antiresonances

with damping ratio < 20% are depicted, while the respective element of the SPWV based PSD matrix

estimate is shown in the background).

3.5 Concluding Remarks

A multivariate (vector) FS-VTARMA method for TV structural identification based on vector vibration

response measurements was introduced. The method was employed for the identification of a “bridge-

like” laboratory structure consisting of a beam and moving mass based on three non-stationary vibration

response signals. The identified FS-VTARMA(4, 4)[16,7,8] model was contrasted to a baseline model based

on multiple “frozen-configuration” stationary experiments, as well as a recursively identified multivariate

PLR-VTARMA(4, 4) model and an ST-SSI(8) model. The estimated FS-VTARMA(4, 4)[16,7,8] model was

shown to provide PSD and modal parameter estimates that are in good agreement with those of its

baseline counterpart. It was also shown to surpass the PLR-VTARMA and ST-SSI models in terms of

predictive ability and tracking accuracy for the “frozen-time” structural dynamics. The identification

and model based analysis results demonstrated the ability of the FS-VTARMA method for accurate and

parsimonious (economical) output-only multivariate identification of TV structures.

Appendix 3.A Additional Model Structure Selection Results

3.A.1 PLR-VTARMA Method

In the case of PLR-VTARMA method the model order is selected through inspection of the RSS criterion

values and the stabilization plot versus AR/MA orders na = nc = 2, . . . , 8, which are shown in Fig.

3.A.1 and 3.A.2, respectively. The results suggest a PLR-VTARMA(4, 4) model, with the order being in

agreement with that of the selected FS-VTARMA model.
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Figure 3.A.1: PLR-VTARMA order selection: RSS/SSS ( ◦ ) and − lnL ( 2 ) values versus AR/MA order.
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Figure 3.A.2: PLR-VTARMA based “frozen-time” natural frequency estimate stabilization plot. The base-

line natural frequency estimates are depicted at the bottom level whereas each level above it corresponds

to its indicated AR/MA order (only natural frequency estimates with damping ratio < 5% are depicted).

3.A.2 ST-SSI Method

For the ST-SSI model structure selection, the RSS criterion values are calculated for a number of es-

timated models with various orders (n = 6, . . . , 12) and windows lengths (Q = 101, 151, . . . , 551). The

results are plotted in Fig. 3.A.3 and indicate a window of length equal to 301 samples as appropriate

for most of the orders considered – trade-off between model tracking ability and statistical reliability is

also taken into account for this selection. The final ST-SSI model order is selected by also inspecting the

“frozen-time” natural frequency estimates stabilization plot versus state-space model order n = 6, . . . , 12
shown in Fig. 3.A.4. The results lead to the selection of a ST-SSI(8) model for the representation of the

structural time-varying dynamics, with models of higher order being characterized by spurious modes

located at the frequency band between 40 and 60 Hz.
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Figure 3.A.3: ST-SSI order and window length selection: RSS values versus window length and state-

space model order.
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Figure 3.A.4: ST-SSI based “frozen-time” natural frequency estimate stabilization plot. The baseline

natural frequency estimates are depicted at the bottom level whereas each level above it corresponds to

its indicated state-space model order (only natural frequency estimates with damping ratio < 5% are

depicted).
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Chapter 4

Adaptable FS-TARMA Models for Non-Stationary

Signal Modelling

Functional Series Time-dependent Autoregressive Moving Average (FS-TARMA) models are effective for

representing non-stationary random signals arising in a wide variety of applications. Yet, their identifi-

cation is challenging as, in addition to coefficient of projection estimation, functional subspace selection

is also required. In this study the difficulties arising from the latter problem are alleviated by postulating

a new class of Adaptable FS-TARMA (AFS-TARMA) models and a method for their effective identification.

The new models are adaptable in the sense that they are based on adaptable basis functions with a-

priori unknown characteristics. This is accomplished via proper basis function parametrizations while

the AFS-TARMA model identification is based on a Separable Nonlinear Least Squares (SNLS) type proce-

dure which leads to a reduced dimensionality, constrained non-quadratic optimization problem tackled

via Particle Swarm Optimization (PSO) and gradient-type refinement. The model orders and subspace

dimensionalities are also estimated based on PSO optimization and suitable criteria. The method’s ef-

fectiveness is demonstrated via Monte Carlo experiments and comparisons with current schemes. An

experimental case study pertaining to the identification of a time-varying pick-and-place mechanism is

also presented.
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4.1. Introduction

4.1 Introduction

Functional Series Time-dependent AutoRegressive Moving Average (FS-TARMA) models, that is ARMA

models with time-dependent parameters projected on deterministic basis functions, have been demon-

strated to effectively model a wide variety of non-stationary random signals. These range from vibration

responses of time-varying structures [Poulimenos and Fassois, 2009a] and earthquake ground mo-

tion [Fouskitakis and Fassois, 2002] to biomedical processes [Chon et al., 2005,Li et al., 2011], speech

signals [Grenier, 1983b,Kacha et al., 2005], and many others (see [Poulimenos and Fassois, 2006] and

the references therein).

The main asset of FS-TARMA models is that they are fully described by time-invariant coefficients

of projection of the model parameters onto the selected functional subspaces, while also proper selec-

tion of the latter makes them capable of tracking fast or slow evolutions of the non-stationary signal

dynamics [Poulimenos and Fassois, 2006]. Yet, the advantages of FS-TARMA models over alterna-

tive non-stationary models (such as segmentation, recursive, or smoothness priors models), have been

demonstrated via a Monte Carlo comparison study in [Poulimenos and Fassois, 2006] and an experi-

mental study based on the output-only identification of a laboratory “bridge-like” structure in Chapter

2 of this thesis.

However, the price to pay for rendering the estimation of a TARMA model into a time-invariant

problem, is the increased complexity of the FS-TARMA model structure problem which, in addition to

the model orders, involves the selection of an appropriate family of linearly independent basis functions

and the corresponding functional subspaces. With regard to the first problem, several types of functional

families have been considered, including time polynomials of arbitrary order [Liporace, 1975], polynomial

basis functions [Fouskitakis and Fassois, 2002,Grenier, 1983b,Mukhopadhyay and Sircar, 1997,Kozin,

1977], trigonometric basis functions [Poulimenos and Fassois, 2009a, Hall et al., 1983, Petsounis and

Fassois, 2000, Eom, 1999a], uniform B-splines functions (defined on predetermined knot sequences)

[Flaherty, 1988,Salcedo et al., 2008], discrete prolate spheroidal functions [Grenier, 1983b,Charbonnier

et al., 1987], various wavelet families [Fouskitakis and Fassois, 2002, Li et al., 2011, Tsatsanis and

Giannakis, 1993, Wei and Billings, 2002], and others. Recently, methods based on multiple basis

functions which try to combine the characteristics of two or more bases have also been proposed.

Within this context, Li et al. in [Li et al., 2011] propose the simultaneous use of B-spline wavelet

functions of various orders along with an appropriate model structure selection scheme, while a method

combining the smooth Legendre polynomial functions with the abrupt Walsh functions via a Gram-

Schmidt orthogonalization procedure is utilized in [Chon et al., 2005].

Nevertheless, despite the fact that any family may approximate any given curve with arbitrary ac-

curacy, as long as a sufficient number of basis functions is used [Walter, 1994, p. 77], due to reasons

of statistical efficiency and model parsimony (economy of representation) the real issue is the selection

of a family that may provide the necessary accuracy with a small (or minimal) number of functions. In

practice, this problem may shown to be particularly complex when various candidate families of basis

functions are considered with the appropriate functional subspaces being searched among a practically

infinite set of basis functions.

Although the significance of the proper functional subspace selection has been underlined in many

FS-TARMA studies this issue has been treated thoroughly only in a small number of them. Tsatsanis

and Giannakis were the first to treat this problem via a complete model structure selection scheme

based on the concept of backward regression. More specifically, the researchers proposed a scheme

which starts with the construction of an initial FS-TAR or FS-TARMA model of high orders and high

subspace dimensionalities in order to assure model adequacy for representing the non-stationary system.

Subsequently a statistical hypothesis F-test, or the AIC criterion is used in order to reject insignificant

terms (basis functions) and reduce the model dimensionality. The idea of using an inverse “bottom-up”

procedure based on forward regression, that is constructing the model by adding basis functions terms

to a model of low dimension was also given in the same study and extended in [Tsatsanis, 1995].

The FS-TARMA model structure selection problem has been studied more systematically over the last
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decade. For instance, a scheme based on the backward regression concept was proposed in [Poulimenos

and Fassois, 2003b] which decomposes the structure selection problem into two subproblems treated in

equal phases: i) the model orders (na, nc) selection, and (ii) the functional subspaces selection. The goal

of this scheme is to reduce the computational time that is required for the exhaustive search that is done

by Tsatsanis and Giannakis scheme. Forward regression procedure based on Gram-Schmidt orthogo-

nalization was also proposed by Wei and Billings in [Wei and Billings, 2002]. Finally, a more automated

procedure based on integer optimization and Genetic Algorithm (GA) was proposed in [Poulimenos and

Fassois, 2003a].

However, the common characteristic of all the aforementioned studies is that the functional sub-

spaces, either selected via one of the aforementioned schemes or by taking advantage of any prior

information regarding the parameter evolution, always consist of basis functions of fixed form which are

selected from a pre-selected list. Hence, the goodness of model fit is heavily dependent on the chosen

basis functions.

On the other hand, Bakkoury et al. [Bakkoury et al., 2000] in a preliminary study used parametrized

basis functions which had to be estimated along with the corresponding coefficients of projection. In

this way they tried to adapt basis functions onto a specific identification problem in order to achieve

higher tracking accuracy of the time-varying dynamics. However, in this study there is no complete

framework developed for the effective identification of the FS models considered. More specifically, there

are no conditions defined under which the parametrized basis functions are linearly independent which

is of critical importance for the models identifiability. Moreover, although the separability of the ba-

sis parameter vector and the coefficient of projection parameter vector was recognised, the estimation

method proposed therein is based on suboptimal scheme which does not take into account the inter-

relationships between these two parameter sets. Thus, and as mentioned by the authors of the study,

this identification problem wasn’t solved efficiently due to the existence of several local minima in the

objective function. For the same reason no results were presented in this study.

The aim of the present study is to circumvent the aforementioned difficulties associated with FS-

TARMA functional subspace selection and extend the idea of [Bakkoury et al., 2000] by developing a

robust identification framework for FS models based on parametrized basis functions. Toward this

end, a new class of Adaptable FS-TARMA (AFS-TARMA) models is introduced. AFS-TARMA models are

adaptable in the sense that they are not based on basis functions of a fixed form, but instead, they

use basis functions with a-priori unknown properties that may adapt to the specific random signal

characteristics. This is accomplished via: (a) proper basis function parametrizations which allow their

decay rate and frequency (decaying trigonometric functions) or knots (B-splines) to be directly estimated,

and (b) a Separable Nonlinear Least Squares (SNLS) type procedure ( [Golub and Pereyra, 1973]) that

achieves simultaneous estimation of the basis functions and the coefficients of projection through a

reduced dimensionality, constrained non-quadratic optimization problem tackled via Particle Swarm

Optimization (PSO) and gradient-type refinement. The model structure parameters, that is model orders

and the functional subspace dimensionalities, are estimated based on suitable criteria and PSO. The

method’s effectiveness is examined via a Monte Carlo study and comparisons with current non-stationary

signal identification methods are made.

Specifically, the main contributions of this study are:

(i). The introduction of a novel class of Adaptable FS-TARMA (AFS-TARMA) models.

(ii). The introduction of a novel identification framework for AFS-TARMA models exemplified to two

types of adaptable basis functions: B-splines and decaying trigonometric.

(iii). The assessment of the methods via Monte Carlo simulations and comparisons with classical meth-

ods.

(iv). Application of the method to an experimental case study pertaining to the identification of a time-

varying pick-and-place mechanism.
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The remaining of this chapter is organized as follows: The class of AFS-TARMA models is presented

in Section 4.2 along with the definition of B-splines and the decaying trigonometric basis functions. The

problems of AFS-TAR/TARMA parameter estimation and model structure selection are considered in

Section 4.3, while the assessment of the introduced method through numerical case studies and the

modelling problem of a 2-DOF mechanism through vibration response data are presented in Sections

4.4 and 4.5, respectively. Finally, the conclusions of the study are summarized in Section 4.6.

4.2 Classical and Adaptable FS-TARMA Models

A TARMA(na, nc) model, with na, nc designating its AutoRegressive (AR) and Moving Average (MA) orders,

respectively, is of the form:

x[t] +

na∑

i=1

ai[t] · x[t− i]
︸ ︷︷ ︸

AR part

= w[t] +

nc∑

i=1

ci[t] · w[t− i]
︸ ︷︷ ︸

MA part

, w[t] ∼ NID(0, σ2
w[t]), t = 1, . . . , N (4.2.1)

with t designating normalized discrete time, x[t] the non-stationary vibration response signal, w[t] an

unobservable uncorrelated (white) non-stationary innovations, or else residual signal characterized by

zero mean and time-varying variance σ2
w[t], and ai[t], ci[t] the model’s time-varying AR and MA param-

eters, respectively. NID(·, ·) stands for normally independently distributed random variables with the

indicated mean and variance.

In the case of Functional Series TARMA (FS-TARMA) models the evolution of the time-dependent

AR/MA parameters and innovations standard deviation has a deterministic “structure” reflecting the

corresponding nature of the underlying dynamics responsible for the non-stationary behaviour. This

is achieved by postulating model parameters as deterministic functions of time, belonging to specific

functional subspaces:

FAR =
{
Ga(1)[t], ..., Ga(pa)[t]

}
, FMA =

{
Gc(1)[t], ..., Gc(pc)[t]

}
, Fσw =

{
Gs(1)[t], ..., Gs(ps)[t]

}

where F designates functional subspace of the indicated part/quantity each one consisting of a set of

basis functionsGj [t], while pa, pc, ps stand for the AR, MA, and innovations standard deviation functional

subspace dimensionalities. In this way, the time-dependent AR,MA parameters and the innovations

standard deviation of an FS-TARMA(na, nc)[pa,pc,ps] model may be expressed as:

ai[t] =

pa∑

j=1

ai,j ·Ga(j)[t], ci[t] =

pc∑

j=1

ci,j ·Gc(j)[t], σw[t] =

ps∑

j=1

sj ·Gs(j)[t] (4.2.2)

with ai,j , ci,j , and sj designating the AR, MA, and innovations standard deviation, respectively, co-

efficients of projection. Thus, the problem of FS-TARMA model parameter estimation, reduces to the

determination of the time-invariant AR/MA and innovations standard deviation projection coefficient

vectors ϑa, ϑc and ϑs, respectively:

ϑ = [ ϑa
T | ϑcT | ϑsT ]T = [ a1,1, . . . , ana,pa | c1,1, . . . , cnc,pc | s1, . . . , sps ]T(na·pa+nc·pc+ps)×1 (4.2.3)

where T designates matrix transposition. It should be noted that, alternatively, the innovations variance

σ2
w[t] may be projected onto the selected functional subspace. However, the standard deviation is the

square root version of the variance and is thus characterized by lower variability. For this reason,

standard deviation normally requires a functional subspace of lower dimensionality for its accurate

tracking compared to the one required for tracking the variance.

As already mentioned, the main drawback of the classical FS-TARMA approach is the rather compli-

cated model structure selection related with the choice of a specific family of linearly independent basis

functions and the appropriate functional subspaces FAR,FMA, and Fσw . Even if this is only a small

62



4. Adaptable FS-TARMA Models for Non-Stationary Signal Modelling

price to pay for rendering the estimation of a TARMA model a time-invariant problem, the selection of

the appropriate model structure parameters is of crucial importance for accurate modelling. Indeed,

despite the fact that theoretically an “extended” (high dimensionality) functional subspace may achieve

good tracking of the parameter evolution irrespectively of the selected family of basis functions, this is

not true when only a small number of functions has to be selected due to reasons of statistical efficiency

and model parsimony (economy of representation).

On the contrary, the advantage of the proposed Adaptable FS-TARMA (AFS-TARMA) approach is

that the basis functions are not selected among an essentially infinite number of candidates, but are

considered to be fully determined by an a-priori unknown vector of parameters δ which has also to

be estimated along with the coefficients of projection ϑ. In this way, the basis may be automatically

adapted on the data in order to track the evolution of the system parameters with the highest possible

accuracy. Two different functional families are considered in the sequel: A B-splines family and a

decaying trigonometric family. These are collectively capable of effectively modelling a wide variety of

parameter evolutions, from slow and smooth to fast and abrupt, but also periodic or quasi-periodic.

For purposes of brevity, the general case of a time-dependent parameter v[t] is considered in the

subsequent sections. Thus, substituting v[t] by ai[t] in the following relationships the case of an AR

parameter is obtained, v[t] ≡ ci[t] for the MA parameters, while v[t] ≡ σw[t] for the case of the innovations

standard deviation.

4.2.1 Adaptable models with B-spline basis functions

In this case we assume that the values of a time-varying parameter v[t](t =, 1 . . . , N) are data samples

drawn from an underlying continuous piecewise polynomial function of order k [de Boor, 2001, Chs. 7-8].

Then, according to the Curry and Schoenberg Theorem [de Boor, 2001, pp. 97-98] a basis of splines (B-

splines) may be constructed for the corresponding piecewise polynomial space. This basis is fully defined

by an appropriate non-decreasing sequence of points (knots) τ = [τ1, . . . , τp+k] ∈ [1, N ] ⊂ < (where p is

the basis dimensionality). This theorem leaves open the selection of the first k and last k knots. However,

imposing no continuity conditions at the endpoints, τ1 = . . . = τk = 1 and τp+1 = . . . = τp+k = N may

be selected. This choice is also consistent with the fact that the constructed basis provides a valid

representation only for the interval [τk, τp+1], that is [1, N ].

Thus, in terms of the above quantities the B-splines of order k may be described by the functional

subspace parameter vector δ
∆
= [τk+1, . . . , τp]

T
of dimension dim(δ) = p − k consisting of the non-

decreasing sequence of the free internal knots. The parameter v[t] ∈ [1, N ] is then expressed as:

v[t] =

p∑

j=1

vj ·Gkj [t, δ] (4.2.4)

where Gkj [t, δ] denotes the sequence of B-splines of order k. Although, there are several ways to define

the B-spline functions Gj [t, δ], a convenient one is by the means of the Cox-de Boor recursion formula

for the normalized B-splines [de Boor, 2001, p. 90]

G1
j [t, δ] =

{
1 if τj ≤ t < τj+1

0 otherwise

(4.2.5a)

Gij [t, δ] = ξj,i[t] ·Gi−1
j [t, δ] + (1− ξj,i[t]) ·Gi−1

j+1[t, δ], for 1 < i ≤ k (4.2.5b)

where

ξj,i[t] =

{
t−τj

τj+i−1−τj if τj < τj+i−1,

0 otherwise.

(4.2.5c)

63



4.2. Classical and Adaptable FS-TARMA Models

0

0.5

1
G

j
[t
,δ
]

δ= [100, 200, 900]T

k = 1

0

0.5

1

G
j
[t
,δ
]

k = 2

200 400 600 800 1000
0

0.5

1

G
j
[t
,δ
]

Sample

k = 3

200 400 600 800 1000
0

0.5

1

G
j
[t
,δ
]

k = 4

Sample

Figure 4.2.1: The B-splines of order k = 1, 2, 3, 4 for N = 1000 and functional subspace parameter vector

δ = [100, 200, 900]T .

The B-splines of order k = 1, 2, 3, 4 for N = 1000 and functional subspace parameter vector δ =
[100, 200, 900]T are shown, for purposes of illustration, in Fig. 4.2.1.

B-splines have a number of properties that make them particularly attractive. First, they may achieve

various degrees of smoothness depending on k. For instance, for k = 1 the basis consists of piecewise

constant functions, for k = 2 linear B-splines, for k = 3 quadratic, for k = 4 cubic, and so on (see Fig.

4.2.1). Yet, smoothness may also be controlled by the proximity of knots [de Boor, 2001, Ch. 9].

Another useful property of the B-splines is their local support, that is Gkj [t, δ] 6= 0 only for t ∈
[τj , τj+k). Due to this local support, the resulting basis may consist of splines with various characteristics

and therefore may be capable of tracking time-varying parameters with mixed type of evolution, that is

alternating patterns of smooth and abrupt changes. Finally, B-splines are locally linear independent,

that is they provide a basis for the piecewise polynomial space even for an interval [α, β] ⊆ [τ1, τp+k]. A

thorough analysis of B-splines and their properties may be found in [de Boor, 2001, Ch. 9].

Remark. Although the time-varying parameters are defined on the discrete time-domain, a continuous

time-domain representation via B-splines is presently considered. The advantage of using such a repre-

sentation is the fact that the derivatives of B-splines with respect to their knots may be computed with

relative ease and thus fast optimization schemes, which typically rely on at least first order derivatives

may be employed for the estimation of δ (see Section 4.3).

Constraints on δ. From the above, it is obvious that the internal knots τk+1, . . . , τp are defined in the

open set (1, N) while they have also to satisfy an appropriate order relation as they form a non-decreasing

sequence of real numbers. Hence, constraints need to be imposed on the parameter vector δ.

In order to come up with reasonably simple forms of constraints, only the case of internal knots

with multiplicity one is considered. This is not restrictive in view of the fact that a B-spline with an

internal knot of multiplicity m > 1 may be approximated by replacing this knot by m simple knots

nearby [de Boor, 2001, p. 106].

Thus, an appropriate order relation constraint, suitable for numerical purposes (as it prevents the

knots from coalescing when their distance becomes practically equal to zero) is:

τj − τj−1 > ε, j = k + 1, . . . , p+ 1, (0 < ε� N)

where ε > 0 is a selected, sufficiently small separation parameter.
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Figure 4.2.2: Constraints imposed on δ for the case of B-splines. The distance between two internal

knots has to be larger than ε > 0. The first and last internal knots, τk+1 and τp respectively, have also

to be ε away from the endpoints 1 and N , respectively.

Therefore, the following p− k + 1 inequality constraints are imposed on the parameter vector δ:

τk+1 − τk = τk+1 − 1 ≥ ε
τk+2 − τk+1 ≥ ε
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which are also depicted schematically in Fig. 4.2.2.

4.2.2 Adaptable models with decaying trigonometric basis functions

Even though the family of B-splines is capable of accurately representing a wide variety of evolutions,

including abrupt and fast changes, a second family of basis functions which may be more effective for

the case of periodic or quasi-periodic evolutions is now considered.

For purposes of physical interpretation, it is convenient to begin our analysis by considering that

the time-varying parameter v[t] obeys the following homogeneous linear difference equation [Cull et al.,

2005, Ch. 2]:

v[t] = ψ1 · v[t− 1] + . . .+ ψp · v[t− p]
with ψ’s designating real constant coefficients and p the order of the difference equation. Then, v[t] may

be expressed by the means of the general solutions of the above equation as:

v[t] =
[v1

2
+
√
−1 · vq+1

2

]
· λt1 +

[v1

2
−
√
−1 · vq+1

2

]
· (λ∗1)t + . . .

+
[vq

2
+
√
−1 · v2q

2

]
· λtq +

[vq
2
−
√
−1 · v2q

2

]
· (λ∗q)t + v2q+1 · λt2q+1 + . . .+ vi,p · λtp =

=

q∑

j=1

(
vjr

t
j cos(ωjt) + vj+qr

t
j sin(ωjt)

]
+

p−2q∑

j=1

vj+2qρ
t
j =

p∑

j=1

vj ·Gj [t, δ]

where

Gj [t, δ] = rtj cos(ωjt), Gj+q[t, δ] = rtj sin(ωjt), for j = 1, . . . , q, and (4.2.7a)

Gj+2q[t, δ] = ρtj , for j = 1, . . . , p− 2q (4.2.7b)

and q is the number of pairs of complex conjugate roots. In the above relations, δ
∆
= [ r1, . . . , rq,

ω1, . . . , ωq, ρ1, . . . , ρp−2q ]T is the functional subspace parameter vector, rj and ωj are the magnitude

and phase of the complex root λj in polar coordinates, that is λj = rj · [cos(ωj) + i · sin(ωj)], with

j = 1, . . . , q, and λ2q+j ≡ ρj ∈ < , with j = 1, . . . , p − 2q, are the real roots. The asterisk
∗

indicates

complex conjugate. Note that in this study only the case of distinct complex roots is considered while

extensions to other cases may be readily obtained.
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G1[t,δ] = rt cos(ωt) G2[t,δ] = rt sin(ωt)

Figure 4.2.3: The decaying trigonometric basis functions G1[t, δ] = rt cos(ωt) and G2[t, δ] = rt sin(ωt)
for N = 1000 and various rates of decay and frequencies (δ = [r, ω]T ).

Apparently, the resulting time-invariant parameter vector δ includes the characteristics of the de-

caying trigonometric functional basis. In contrast to the trigonometric bases that have been used in

the literature, the one just described does not consist of discrete frequency trigonometric functions and

thus may achieve accurate estimation of the underlying frequencies. Moreover, the rate of decay makes

it more flexible for tracking also piecewise periodic or quasi-periodic evolutions.

The decaying trigonometric basis functionsG1[t, δ] = rt cos(ωt) andG2[t, δ] = rt sin(ωt) forN = 1000
and various rates of decay and frequencies are shown in Fig. 4.2.3.

Constraints on δ. The magnitudes r and ρ must be constrained close to unity, that is

1− ε

N
< [ri, ρj ] < 1 +

ε

N
, (with i = 1, . . . , q, j = 1, . . . , p− 2q and 0 < ε < N) (4.2.8a)

In that way, the corresponding trigonometric functions do not decay or increase too fast and as a result

the case of a practically null or infinite basis function is circumvented (i.e. for ρj � 1 the basis ρtj is

practically equal to zero for almost every t). Lower bounds should also be placed on the phases ωj ,
preventing the corresponding pair of complex roots from falling on the real axis giving again a null basis

[for ωj = 0 the basis rtj sin(ωjt) equals to zero ∀t]:

0 < ωmin ≤ ωj ≤ ωmax, (with j = 1, . . . , q) (4.2.8b)

Furthermore, as only distinct roots are considered, the distance between two adjacent roots must be

constrained by a lower limit d0. This constraint leads to the following nonlinear inequalities:

√
(rj cosωj − ri cosωi)2 + (rj sinωj − ri sinωi)2 ≥ d0 =⇒

√
r2
i + r2

j − rirj cos(ωi − ωj) ≥ d0 =⇒
r2
i + r2

j − rirj cos(ωi − ωj)− d2
0 ≥ 0, (i, j = 1, . . . , q; j > i) (4.2.8c)

and

√
(ρj − ρi)2 ≥ d0 =⇒ |ρj − ρi| − d2

0 ≥ 0, (i, j = 1, . . . , p− 2q; j > i) (4.2.8d)
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Figure 4.2.4: Constraints imposed on an hypothetical functional subspace parameter vector δ for the

case of decaying trigonometric basis functions. The roots magnitudes have to be in the proximity of

the unit circle, the distance between two distinct roots have to be larger than d0 while also for practical

reasons the roots phases are constrained by simple bounds.

Table 4.1: Functional subspace parametrization and constraints.

δ dim(δ) Type of constraints # of constraint functions

B-splines τj ’s p− k Linear inequalities p− k + 1

Decaying trigonometric rj ’s, ωj ’s, ρj ’s p
Simple bounds

2p+ q(q−1)
2 + (p−2q)(p−2q−1)

2and nonlinear inequalities

k: B-splines order, q: number of pairs of complex conjugate roots

The total number of constraint functions in this case is 2p + q!
2!(q−2)! + p−2q!

2!(p−2q−2)! = 2p + q(q−1)
2 +

(p−2q)(p−2q−1)
2 , that is 2p inequalities for the imposed lower and upper bounds and

q(q−1)
2 + (p−2q)(p−2q−1)

2
nonlinear constraint functions that is all the possible pairs of complex roots and pairs of real roots.

The three types of constraints are represented graphically for a hypothetical set of basis functions in

Fig. 4.2.4.

4.2.3 Summary

Two different families of adaptable basis functions were described in the previous paragraphs: a B-

splines family characterized by initially unknown knots, and a decaying trigonometric family with initially

unknown rates of decay and frequencies. The characteristics of the functional subspace parameter

vector δ for these families are summarized in Table 4.1. In the sequel, the constraints for both cases are

expressed as H(δ) ≤ 0.

It is reminded that the basis of the AR, MA parts and the innovations standard deviation are described

analogously with the corresponding basis functions being determined by the functional subspace pa-

rameter vectors δa, δc and δs, respectively.
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4.3. AFS-TARMA Model Identification

4.3 AFS-TARMA Model Identification

The AFS-TARMA model identification problem may be posed as follows:

“Given N observations of the non-stationary signal xN
∆
= {x[1] . . . x[N ]} and the AFS-

TARMA model set:

M =
{
M(δ,ϑ) : x[t] +

na∑

i=1

ai[t, δ,ϑ] · x[t− i] = e[t, δ,ϑ] +

nc∑

i=1

ci[t, δ,ϑ] · e[t− i, δ,ϑ];

σ2
e [t, δ,ϑ] = E{e2[t, δ,ϑ]}, t = 1, . . . , N, δ ∈ Ω ⊂ <dim(δ), ϑ ∈ <dim(ϑ)

}
(4.3.1)

select an element of M that best fits the observations”.

In this expression E{·} indicates statistical expectation, δ = [ δTa | δTc | δTs ]T the functional subspace pa-

rameter vector, ϑ = [ ϑTa | ϑTc | ϑTs ]T the model parameter vector consisting of the projection coefficients

ai,j , ci,j , sj , while e[t, δ,ϑ] stands for the model’s one-step-ahead prediction error (residual) sequence,

which, as in the stationary case, coincide with the model’s innovations sequence w[t] when the true

parameter vector responsible for the generation of x[t] is used in Eq. (4.3.1).

For this adaptable approach the complete parameter vector contains the AR, MA, and innovations

variance functional subspace parameters and the corresponding coefficients of projection, while the

model structure is defined by the model orders na, nc, and the basis dimensionalities pa, pc, ps:

θ = [δT | ϑT ]T (4.3.2a)

M = {na, nc, pa, pc, ps} (4.3.2b)

Both θ and M need to be estimated from available data with the complete identification problem

being usually distinguished into two subproblems: (a) the parameter estimation subproblem (for a given

model structure M), and (b) the model structure selection subproblem. These are discussed in the

following subsections.

Remark. In the classical FS-TARMA approach the complete parameter vector consists only of the

coefficients of projection parameter vectors θ = [ ϑTa ϑ
T
c ϑ

T
s ]T since the functional subspaces are not

estimated but are selected from an ordered set of fixed basis functions. At the same time the structure

of a classical FS-TARMA model is fully defined by the model orders (na, nc), the functional subspace

dimensionalities (pa, pc, ps), and in addition the indeces of the specific basis functions that are included

in each functional subspace [Poulimenos and Fassois, 2006].

Comparing the two approaches, classical and adaptable, it becomes clear that in the latter the

model structure selection problem is significantly reduced at the price of the increased dimension of

the complete parameter vector θ and the increased algorithmic complexity of the corresponding estima-

tion problem. However, the main advantage of the adaptable approach is that the parametrized basis

functions are able to automatically adapt on the data in order to track the evolution of the system

parameters with the highest possible accuracy, while in the classical approach the tracking accuracy

depends heavily on the selected set of fixed basis functions.

4.3.1 Parameter estimation

4.3.1.1 The AFS-TAR case

Ignoring the MA part of the general AFS-TARMA model of Eq. (4.2.1), the AFS-TAR model may be

re-written in the nonlinear regression form:
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x[t] = −
na∑

i=1

pa∑

j=1

ai,j ·Ga(j)[t, δa] · x[t− i] + e[t, δa,ϑa]

= −
(
a1,1 ·Ga(1)[t, δa] + . . .+ a1,pa ·Ga(pa)[t, δa]

)
· x[t− 1]− . . .

−
(
ana,1 ·Ga(1)[t, δa] + . . .+ ana,pa ·Ga(pa)[t, δa]

)
· x[t− na] + e[t, δa,ϑa] =⇒

=⇒ x[t] =




−x[t− 1] ·Ga(1)[t, δa]

−x[t− 1] ·Ga(2)[t, δa]
.
.
.

−x[t− 1] ·Ga(pa)[t, δa]
.
.
.

−x[t− na] ·Ga(1)[t, δa]

−x[t− na] ·Ga(2)[t, δa]
.
.
.

−x[t− na] ·Ga(pa)[t, δa]




T

︸ ︷︷ ︸
φT [t,δa](na·pa×1)

·




a1,1

a1,2
.
.
.

a1,pa
.
.
.

ana,1
ana,2

.

.

.

ana,pa




︸ ︷︷ ︸
ϑa(na·pa×1)

+ e[t, δa,ϑa], t = 1, . . . , N (4.3.3)

Using the stacked signal and innovations sequence vectors x =
[
x[1], . . . , x[N ]

]T
and e(δa,ϑa) =[

e[1, δa,ϑa], . . . , e[N, δa,ϑa]
]T

:

x = Φ(δa) · ϑa + e(δa,ϑa) (4.3.4)

where Φ(δa) =
[
φ[1, δa], . . . ,φ[N, δa]

]T
.

The estimation of the model parameter vectors δa and ϑa may be based on the minimization of the

Prediction Error (PE) criterion V (δa,ϑa) = ‖e(δa,ϑa)‖2 consisting of the sum of squares of the model’s

one-step-ahead prediction errors, subject to the constraints discussed in the previous section, that is:

[δ̂
T

a , ϑ̂
T

a ]T = arg min
δa,ϑa

V (δa,ϑa) = arg min
δa,ϑa

‖e(δa,ϑa)‖2

subject to H(δa) ≤ 0

(4.3.5)

In this relation, arg min stands for “argument minimizing”, e(δa,ϑa) the model one-step-ahead prediction

error, while ‖ · ‖ indicates Euclidean norm. The hat designates estimator/estimate of the indicated

quantity.

Due to the nonlinear dependence of the basis functions Ga(j)[t, δa] on the parameter vector δa the

above minimization problem is non-quadratic with linear inequality constraints for the case of the B-

splines and nonlinear inequality constraints for the case of the decaying trigonometric functions. This

problem may be, in principle, solved through iterative constrained nonlinear optimization schemes with

respect to dim(ϑa) + dim(δa) = pa · na + dim(δa) parameters. Interior point methods may be used

in this context [Nocedal and Wright, 2006, Ch. 19]. These methods handle inequality constraints

through a logarithmic barrier function and have been shown to be particularly effective for large-scale

applications [Nocedal and Wright, 2006, pp. 592-593].

Nevertheless, an effective solution may be achieved by taking advantage of the separable nonlinear

regression structure of Eq. (4.3.4), that is the fact that the parameters ϑa and δa form two completely

disjoint parameter sets. The problem is a Separable Nonlinear Least Squares (SNLS) one that may be

solved by the Variable Projection (VP) method introduced by Golub and Pereyra [Golub and Pereyra,

1973], which is based on the fact that ϑa appears linearly in the model. Thus, assuming that the

“nonlinear parameter vector” δa is known, a ϑa estimate may be obtained through the Ordinary Least

Squares (OLS) estimator:

ϑ̂a =
(
ΦT (δa) ·Φ(δa)

)−1 ·ΦT (δa) · x = Φ†(ηa) · x (4.3.6)
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with
†

designating pseudo-inverse. Hence, after substituting ϑ̂a in Eq. (4.3.4), the model innovations

may be expressed in a VP functional form e
VP

(δa) which depends only on δa as follows:

e(δa, ϑ̂a) = x−Φ(δa) · ϑ̂a =⇒ e
VP

(δa) = x−Φ(δa) ·Φ†(δa) · x =⇒
e

VP
(δa) =

(
I −Φ(δa) ·Φ†(δa)

)
· x (4.3.7)

and the estimator of Eq. (4.3.5) takes the form:

δ̂a = arg min
δa

V
VP

(δa) = arg min
δa
‖e

VP
(δa)‖2 = arg min

δa
‖
(
I −Φ(δa) ·Φ†(δa)

)
· x‖2

subject to H(δa) ≤ 0
(4.3.8)

with V
VP

(δa) designating the variable projection functional. The nonlinear parameter vector δa may be

thus estimated by means of iterative constrained nonlinear optimization techniques with only dim(δa)
unknown parameters, while ϑa may be subsequently estimated through linear OLS (Eq. (4.3.6)), after

substituting δa by the obtained estimate δ̂a. The method is referred to as VP method as the matrix(
I − Φ(δa) · Φ†(δa)

)
is the projector on the orthogonal complement of the column space of Φ(δa). A

topical review on the VP method and its applications may be found in [Golub and Pereyra, 2003].

This formulation leads to the reduction of the dimensionality of the nonlinear optimization problem,

while not affecting the stationary points (minima and maxima) of the original problem. This holds under

the rather mild condition of constant (not necessarily maximum) rank of the regression matrix Φ(δa)
over the whole parameter search space of δa ( [Golub and Pereyra, 1973, Theorem 2.1]; Appendix 4.A).

The constraints described in the previous section in fact guarantee the linear independence for both

the B-spline and decaying trigonometric basis functions and thus they define an appropriate parameter

space on which Φ(δa) has constant and full rank.

The cost for reducing the dimension of the nonlinear optimization problem is the increased complexity

of the gradient computation for the VP objective function V
VP

(δa). Golub and Pereyra [Golub and Pereyra,

1973] have derived the necessary relationships for the differentiation of pseudoinverses and the required

gradient of Φ† with respect to the nonlinear parameter vector for the general SNLS problem. Approximate

solutions which aim at computational time reduction have also been proposed. A comparison and

asymptotic analysis study for the three most frequently used algorithms may be found in [Ruhe and Å.

Wedin, 1980]. In the present study the original, exact, approach is followed with the resulting gradient

being given in 4.B. The algorithmic steps for the estimation of δa and ϑa through the VP method are

summarized in Table 4.2.

Estimation of the innovations std parameter vector [δTs ,ϑ
T
s ]T may also be obtained via the VP method.

In particular, based on the normality of the innovations sequence E{|e[t]|} =
√

2/π · σe[t] [Grenier,

1983b] and by utilizing the absolute values of the estimated residual series e[t, δ̂a, ϑ̂a], the following

overdetermined set of equations may be obtained

∣∣e[t, δ̂a, ϑ̂a]
∣∣=
√

2

π
·
ps∑

j=1

sj ·Gs(j)[t, δs] = gTs [t, δs] · s (4.3.9)

which solved in the least squares sense leads to a constrained SNLS problem of the following VP form:

δ̂s = arg min
δs

V
VP

(δs) = arg min
δs
‖
(
I −Gs(δs) ·G†s(δs)

)
· |e(δ̂a, ϑ̂a)| ‖2

subject to H(δs) ≤ 0
(4.3.10)

In the above gs[t, δs] =
√

2
π ·
[
Gs(1)[t, δs], . . . , Gs(ps)[t, δs]

]T
andGs(δs) =

[
gs[1, δs], . . . , gs[N, δs]

]T
. The

algorithmic details for the estimation of δs through the VP method are summarized in Table 4.3.

Remark: Gradient-based iterative nonlinear optimization methods are sensitive to initialization, thus

may guarantee only local convergence. For this reason rather accurate initial guess parameter values
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Table 4.2: AFS-TAR model identification – Algorithm details for δa andϑa estimation through the variable

projection method.

Input: Non-stationary data x, AR order na, AR functional sub-

space dimensionality pa

(1) Choose initial δa appropriately

(2) For j = 1, 2, . . . , until convergence

(i) Compute e
V P

(δa) =
(
I −Φ(δa) ·Φ†(δa)

)
· x

(ii) Test for convergence

(iii) Increment δ(j+1)
a = δ(j)a + µ(j) · V ′

VP
(δa)

(3) Compute ϑa =
(
Φ(δa) ·ΦT (δa)

)−1
·
(
Φ(δa) · x

)

Ouput: δ̂a, ϑ̂a

µ(j)
: Step-length

V ′
VP

(δa): Gradient of the VP functional with respect to δa

Table 4.3: AFS-TAR model identification – Algorithm details for δs and ϑs estimation through the variable

projection method.

Input: Innovations sequence e(δ̂a, ϑ̂a), σe[t] functional sub-

space dimensionality ps

(1) Choose initial δs appropriately

(2) For j = 1, 2, . . . , until convergence

(i) Compute

(
I −Gs(δs) ·G†s(δs)

)
· |e(δa,ϑa)|

(ii) Test for convergence

(iii) Increment δ(j+1)
s = δ(j)s + µ(j) · V ′

VP
(δs)

(3) Compute ϑs =
(
Gs(δs) ·GT

s (δs)
)−1
·
(
Gs(δs) · x

)

Ouput: δ̂s, ϑ̂s

µ(j)
: Step-length

V ′
VP

(δs): Gradient of the VP functional with respect to δs

are normally required. In order to overcome this difficulty, as a first step optimization may be based on

a non-gradient probabilistic search algorithm, such as Particle Swarm Optimization (PSO; see Appendix

4.C) followed by refinement through iterative nonlinear optimization methods (interior point methods are

presently used in this context [Nocedal and Wright, 2006, Ch. 19]). The proposed estimation procedure

is illustrated in the flowchart of Fig. 4.3.1.
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Figure 4.3.1: Flowchart of the AFS-TAR identification method.

4.3.1.2 The AFS-TARMA case

A similar procedure leads to the following nonlinear regression form for the AFS-TARMA model:

=⇒ x[t] =




−x[t− 1] ·Ga(1)[t, δa]

−x[t− 1] ·Ga(2)[t, δa]
.
.
.

−x[t− na] ·Ga(pa−1)[t, δa]

−x[t− na] ·Ga(pa)[t, δa]

e[t− 1, δa|c,ϑa|c] ·Gc(1)[t, δc]

e[t− 1, δa|c,ϑa|c] ·Gc(2)[t, δc]
.
.
.

e[t− nc, δa|c,ϑa|c] ·Gc(pc−1)[t, δc]

e[t− nc, δa|c,ϑa|c] ·Gc(pc)[t, δc]




︸ ︷︷ ︸
φ[t,δa|c,ϑa|c](na·pa+nc·pc×1)

T

·




a1,1

a1,2
.
.
.

ana,pa−1

ana,pa
c1,1

c1,2
.
.
.

cnc,pc−1

cnc,pc




︸ ︷︷ ︸
ϑa|c(na·pa+nc·pc×1)

+ e[t, δa|c,ϑa|c], t = 1, . . . , N

(4.3.11)

or, using the stacked signal and innovations sequence vectors:

x = Φ(δa|c,ϑa|c) · ϑa|c + e(δa|c,ϑa|c) (4.3.12)

In these relations δa|c = [ δTa | δTc ]T designates the AR/MA functional subspace parameter vector and

ϑa|c = [ ϑTa | ϑTc ]T the AR/MA coefficients of projection vector.

Again, the estimation of the parameter vectors δa|c and ϑa|c may be based on the minimization of the

PE criterion V (δa|c,ϑa|c) = ‖e(δa|c,ϑa|c)‖2 subject to the constraints H(δa) ≤ 0 and H(δc) ≤ 0, that is:

[δ̂
T

a|c, ϑ̂
T

a|c]
T = arg min

δa|c,ϑa|c
V (δa|c,ϑa|c) = arg min

δa|c,ϑa|c
‖e(δa|c,ϑa|c)‖2

subject to H(δa) ≤ 0 and H(δc) ≤ 0

(4.3.13)

Nevertheless, this cost function does not have an equivalent VP functional form due to the presence

of the unknown residuals e[t, δa|c,ϑa|c], which depend on both δa|c and ϑa|c, in the regression matrix

Φ(δa|c,ϑa|c). Thus in this case, the solution may be based solely on the full functional form of Eq.

(4.3.13). However, the nature of the PE criterion along with the high dimensionality of the optimization

problem (dim(δa|c)+dim(ϑa|c) = dim(δa)+dim(δc)+napa+ncpc) renders optimization difficult
1
. Simu-

1
To draw a clearer picture, an AFS-TARMA(6, 6)[5,5,5] model with parameters expanded on decaying trigonometric functions

involves 10 AR/MA functional subspace parameters and 60 AR/MA coefficients of projection, that is in total 70 parameters.
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lations have shown that such problems are very sensitive to initial parameter values, so the minimization

procedure is very likely to converge to a local minimum when arbitrary or inaccurate initial values are

utilized. Yet, the minimization of the PE criterion has been shown to be of increased complexity even for

the simpler classical FS-TARMA approach and for problems of much smaller dimensionality [Ben Mrad

et al., 1998a].

Therefore, before dealing with the optimization of the full functional problem of Eq. (4.3.13) a

suboptimal two-stage pseudo-SNLS procedure is employed in order to obtain good initial estimates. This

method is based on a long (of high AR order) AFS-TAR model which is meant to approximate the inverse

function representation of the original AFS-TARMA model of Eq. (4.2.1). Theoretically, the inverse

function representation is an AFS-TAR model of infinite order [Poulimenos and Fassois, 2006]. The

two-stage method is briefly described in the sequel.

Two Stage Variable Projection (2SVP) method

In order to approximate the minimization problem of Eq. (4.3.13) by a pseudo-SNLS problem, the

unknown residuals e[t, δa|c,ϑa|c] of the regression matrix Φ(δa|c,ϑa|c) have to be replaced by respective

estimates. The method consists of the following stages:

Stage 1: Inverse function estimation. A truncated, nq-order, inverse function model that ap-

proximates the infinite order inverse function representation of an AFS-TARMA model is considered as

follows:

x[t]−
nq∑

i=1

pq∑

j=1

qi,j ·Gq(j)[t, δq] · x[t− i] + e[t, δq,ϑq] (4.3.14)

with nq � max(na, nc). The identification of this long AFS-TAR model based on the minimization of

the PE criterion is a SNLS problem which (as previously shown) may be solved by the VP method.

Consequently, estimates of the model residuals e[t, δ̂q, ϑ̂q] may be readily obtained.

Stage 2: AR/MA parameter vector estimation. The AFS-TARMA model is approximated by replac-

ing the past, but not the current, values of the prediction error e[t, δa|c,ϑa|c] by the previously obtained

estimates e[t, δ̂q, ϑ̂q] in Eq. (4.3.12)

x = Φ(δa|c, δ̂q, ϑ̂q) · ϑa|c + e(δa|c,ϑa|c) (4.3.15)

and solving the resultant SNLS problem utilizing the VP functional. The final residual sequence is

estimated based on the estimate [ δ̂
T

a|c, ϑ̂
T

a|c ]T and the TARMA model expression of Eq. (4.2.1), while its

standard deviation may be estimated via the procedure described in the AFS-TAR case.

Remarks: (i) The second stage of the 2SVP method may be iterated, replacing in every iteration the past

values of the prediction error e[t, δa|c,ϑa|c] by the most recent estimates e[t, δ̂a|c, ϑ̂a|c], until a minimum

value of the Residual Sum of Squares (RSS) criterion is achieved. (ii) The 2SVP method is also realized

via a hybrid optimization scheme combining global search through PSO and local optimization through

iterative gradient based nonlinear techniques. (iii) After obtaining the 2SVP estimates, the minimization

of the original full functional problem may be viewed as a subsequent (potential) refinement stage . (iv)

Usually nq is selected as nq = (2, . . . , 5) ·max(na, nc). Yet, its value may also be optimized based on the

model structure selection scheme of the following section.

4.3.2 Model structure selection

For a selected functional family (B-splines of order k or decaying trigonometric functions) model structure

selection for the full AFS-TARMA case refers to the estimation of the set of integers:

M = {na;nc; pa; pc; ps}

where na, nc, designate the model orders, pa, pc and ps the AR, MA and innovations standard deviation

basis dimensionalities, respectively.
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Table 4.4: AFS-TARMA model identification – Algorithm details for δa|c and ϑa|c estimation through the

2SVP method.

Input: Non-stationary data x, initial innovation sequence estimate

e(δ̂q, ϑ̂q), AR order na, MA order nc, AR functional subspace dimen-

sionality pa, MA functional subspace dimensionality pc

(1) Choose initial δa|c appropriately

(2) For j = 1, 2, . . . , until convergence

(i) Compute e
V P

(δa|c) =
(
I −Φ(δa|c, δ̂q, ϑ̂q) ·Φ†(δa|c, δ̂q, ϑ̂q)

)
· x

(ii) Test for convergence

(iii) Increment δ
(j+1)
a|c = δ

(j)
a|c + µ(j) · V ′

VP
(δa|c)

(3) Compute ϑa|c =
(
Φ(δa|c, δ̂q, ϑ̂q) · ΦT (δa|c, δ̂q, ϑ̂q)

)−1
·

(
Φ(δa|c, δ̂q, ϑ̂q) · x

)

Ouput: δ̂a|c, ϑ̂a|c

µ(j)
: Step-length

V ′
VP

(δa|c): Gradient of the VP functional with respect to δa|c

The optimal way to solve such a problem is to use a combinatorial approach [Gill et al., 1981, pp.

282-283] by estimating an AFS-TARMA model for every possible combination of the values that the

integer variables can assume and selecting as best the AFS-TARMA model which minimizes a suitable

“fitness” function. However, such an approach is practical only when each variable can take only a small

number of values, say less than three.

Unfortunately, even for a moderate number of possible values for each variable, the combinatorial

approach becomes to expensive computationally as the number of possible cases grows extremely large

very quickly. Moreover, usually there is no or little knowledge regarding the values that some of these

variables may take. In order to solve the AFS-TARMA model structure selection problem more effectively

and render the whole AFS-TARMA identification more automated, a two phase model structure selection

scheme is presently proposed, which in its first phase treats the integer variables as continuous in order

to locate a promising region of the initial discrete search space [Gill et al., 1981, p. 283]. This solution

may serve as a guide to the likely values of the integer variables, while in the second phase a combinatorial

approach may be utilized for a more thorough search within a suitably selected neighbourhood of the

first phase solution.

Phase I. Coarse search. For this first phase, the model structure selection is embodied within the

global search procedure. More particularly, the PSO algorithm explores a combined parameter space de-

fined by the aforementioned set of integers and the parameter space of δ, that is [na;nc; pa; pc; ps; δ
T
a ; δTc ; δTs ]T ,

trying to minimize a suitable “fitness” function – presently the the Bayesian Information Criterion

(BIC) [Poulimenos and Fassois, 2006]:

BIC = − lnL(M(θ|xN ))+d · lnN
2

=
1

2
·
N∑

t=1

(
ln
((
gT [t, δs] · ϑs

)2)
+

e2[t,ϑa|c, δa|c]

(gT [t, δs] · ϑs)2

)
+d · lnN

2
(4.3.16)

where lnL designates the model log-likelihood and d = dim(θ) the number of independently “adjusted”

(estimated) model parameters.

The proposed approach is illustrated through a paradigm of a hypothetical AFS-TAR model structure

selection problem. Specifically, the case of searching for an appropriate AFS-TAR model with order

na ∈ [6, 10] and AR functional subspace consisting of at most five decaying trigonometric functions

is considered. The initial search space in which the PSO is called to look for the optimal solution,
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Figure 4.3.2: The search space and a potential solution for the case of an hypothetical AFS-TAR model

structure selection problem with respect to the model order na, the basis dimensionality pa and the

functional subspace parameter vector δa.

and a solution that could have been obtained are depicted in Fig. 4.3.2. Two main points should

be noted: First, as long as the basis dimensionality pa is treated as a variable the dimension of the

corresponding functional subspace parameter vector δa would be of variable length. To overcome this

hindrance, additional threshold activation variables (flags) are introduced. These variables determine

the participation (flag ≥ 0.5) or not (flag < 0.5) of a specific root in a candidate solution with the pa being

finally obtained by the total number of the active roots. Secondly, the integer variable na is treated as a

continuous one in order to avoid a more complicated mixed-variable optimization approach. Thus, the

na estimate is obtained by rounding to the nearest integer.

Following these two rules, the potential solution depicted in Fig. 4.3.2 corresponds to an AFS-TAR

model of order na = 9 with only three basis functions (note that the second complex root is inactive due

to the low flag 2 value) and the characteristics of these basis functions are ra(1) = 1.028, ωa(1) = 8.025
and ρa = 0.999. Analogously, the model structure parameter vector could be extended to include the

MA order nc and the MA functional subspace parameters and/or the innovations standard deviation

functional subspace parameters for the case of an AFS-TARMA model structure selection problem. For

the case of B-splines an activation variable (flag) should be connected which each internal knot variable.

Phase II. Fine (“local”) Optimization. This second phase aims at refining the results of phase I and

selecting the globally optimum “structure” based on a combinatorial approach. It thus operates in a

neighbourhood of phase I solution and estimates an AFS-TARMA model for each possible combination

of a confined space of the integer variables. The procedure is repeated for all initial solutions (phase I

results), and the model “structure” corresponding to the globally optimum BIC is selected.

Remarks. (i) The pre-selection of the basis function family may be based on prior knowledge regarding

the evolution of the underlying time-varying dynamics. In case of lack of prior information, B-splines of

order k equal to three or four may be considered, as this family is capable of tracking a wide range of

evolutions. (ii) The aforementioned scheme offers the possibility of fixing certain structural parameters

in case they happen to be a priori known.

4.4 Performance Assessment via Monte Carlo Studies

The performance characteristics of the introduced AFS-TARMA identification method are first examined

via Monte Carlo experiments. Specifically, the identification problem of three TAR(6) models with abrupt

parameter evolution of different kinds is considered. The goal of this test case studies is to demonstrate

the effectiveness and applicability of the introduced general purpose method even for the difficult problem

of identifying a model with parameters characterized by abrupt changes in their evolution.

For the purposes of comparison and in order to evaluate the effectiveness of the introduced method

with respect to available non-stationary identification methods the classical FS-TAR method based on
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fixed basis functions, the Smoothness Priors TAR (SP-TAR) method [Kitagawa and Gersch, 1996] and

finally a Recursive Least Squares TAR (RLS-TAR) method with variable forgetting factor (suitable for

tracking abrupt parameter changes) [Paleologu et al., 2008] are also employed.

AFS-TAR identification method. Within the context of the AFS-TAR models as long as no prior in-

formation with respect to the time-varying parameter evolution is taken into consideration, quadratic

B-splines functions (k = 3), which as already mentioned are capable of tracking various types of evolu-

tion, are employed. Only distinct knots are considered and thus a knot proximity constraint is introduced

(ε = 20 samples). Regarding the configuration of the PSO algorithm typical values are chosen for its

parameters, that is inertia weight w = 1, individual confidence factor c1 = 1.45, and swarm confidence

factor c2 = 1.45 [Perez and Behdinan, 2007], while the population size is set equal to 200. The PSO

convergence criteria, that is the stall generation limit and the tolerance of the fitness function (BIC)

are set equal to 20 and 10−6
, respectively. An interior point optimization algorithm that combines line

search and trust region steps is employed for the constrained nonlinear optimization (termination rules

are shown in Table 4.5).

Classical FS-TAR identification method. For the classical FS-TAR method, which is based on fixed

basis functions, the appropriate functional subspaces are sought among three functional bases: the

Discrete Cosine Transform (DCT) basis functions, Chebyshev type I polynomial functions, and Haar

functions (see Appendix A). More specifically, in each test case and for every functional basis a model

structure selection scheme based on Genetic Algorithm (GA) [Poulimenos and Fassois, 2006] and the

minimization of the BIC is searching for the appropriate functional subspace among the first 50 basis

functions of each family. The best overall, in terms of the BIC, model structure is selected. The estimation

of the FS-TAR model coefficients of projection is based on the minimization of the PE criterion and the

OLS estimator.

SP-TAR identification method. Regarding the SP-TAR case three possible orders are considered for

the smoothness priors constraints, namely κ = 1, 2, 3 while optimization (of the BIC) with respect to ratio

of the smoothness priors constraints innovations variance over the residual variance ν is also carried

out. For the initialization of the Kalman filter algorithm the diagonal elements of the covariance matrix

are also set equal to 104
. In order to reduce the effects of arbitrary initial conditions in the estimation,

three sequential passes (forward, backward, and final forward) are executed over the entire data record,

while a final backward smoothing algorithm is also applied.

RLS-TAR identification method. In the RLS-TAR case the exponential window parameters Ka and

Kb are set equal to 2 and 10 respectively, while the threshold ratio γ between the a-priori and the a-

posteriori prediction error sequence variance is set equal to 1.5. The maximum value of the forgetting

factor λmax is set equal to 0.99. For the algorithm initialization the initial parameter vector is set equal

to zero while the diagonal elements of the initial covariance matrix are set equal to 104
, while like in the

SP-TAR case, three sequential passes (forward, backward, and a final forward) are executed over the

entire data record in order to reduce the effects of arbitrary initial conditions.

Innovations variance estimation method. For fair comparison, for all the identification methods

considered the innovations variance is estimated non-parametrically through a moving time-window of

length equal to 129 samples advanced by one sample.

The estimation method characteristics and implementation details for all methods considered are

summarized in Table 4.5.

For the subsequent analysis and in order to quantify the achievable time-varying parameter tracking

accuracy, percentage accumulated parameter errors are computed as:

errai[t]
∆
= 100× ‖ âi[t]− ai[t] ‖

2

‖ ai[t] ‖2
% (4.4.1)

Moreover, the Residual Sum of Squares normalized by the Series Sum of Squares (RSS/SSS) criterion

is employed as a measure of model fit. The RSS/SSS criterion is given by the following relationship:

RSS/SSS
∆
= 100× ‖ ê[t, δ̂a, ϑ̂a] ‖

2

‖ x[t] ‖2 % (4.4.2)
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Table 4.5: Characteristics of the identification methods.

Method Parameter estimation Model structure and algorithmic Model structure

details parameters (search space) selection scheme (criterion)

AFS-TAR VP (Interior point method; basis dimensionality pa PSO (MATLAB pso function)

MATLAB fmincon function) (pa = 4, . . . , 10) population size = 200,

TolFun = 10
−6

, TolX = 10
−9

, stall generation limit = 50,

TolCon = 10
−6

, w = 1, c1 = 1.45, c2 = 1.45,

B-splines (order k = 3), TolFun = 10
−6

,

ε = 0.01 ·N = 20 samples (BIC)

Classical FS-TAR OLS (QR factorization; functional basis Genetic Algorithm (MATLAB ga function)

MATLAB mldivide function) (discrete cosine transform functions, population size = 100,

Chebyshev polynomials, stall generation limit = 20,

Haar functions) crossover fraction = 0.8,

functional subspace ba mutation rate = 0.2, elite children = 5,

(ba = {0, . . . , 49}) (BIC)

SP-TAR three passes followed by a smoothness constraints order κ trial & error

backward smoothing pass, (κ = 1, 2, 3) (BIC)

variance ratio ν
(ν = 10−12, 10−11, . . . , 10−1

)

RLS-TAR three passes

—– —–
(forward-backward-forward)

Ka = 2,Kb = 10
γ = 1.5, λmax = 0.99

Innovations moving time-window

—– —–variance (window length = 129 samples,

advance = 1 sample,)

Table 4.6: Signal details for Test Case I.

Time a1[t] a2[t] a3[t] a4[t] a5[t] a6[t]

1 ≤ t ≤ 770 -0.30 -0.25 0.14 -0.26 -0.19 0.88

771 ≤ t ≤ 2000 -1.31 0.77 -0.49 0.68 -1.13 0.88

σ2
w[t] = 1

Signal length: N = 2000 samples

Number of Monte Carlo experiments: 500

where ê[t, δ̂a, ϑ̂a] designate the estimated model residuals and x[t] the simulated signal under study.

4.4.1 Test case I – TAR Model with piecewise constant time-varying parameters

A TAR(6) model with piecewise constant parameters is considered in this test case. The true AR pa-

rameters are given in Table 4.6 and are shown in Fig. 4.4.1(a). The driving noise sequence variance

is constant and equal to unity (σ2
w = 1), while 500 realizations were generated by using different seed

numbers. One of these realizations is shown in Fig. 4.4.1(b).

At a first stage, and in order to assess the performance of the proposed model structure selection

scheme, no information regarding the true model order and the evolution of the model parameters is

considered as available. Thus, the analysis begins with the first phase of the model structure selection

scheme described in Section 4.3.2 and the PSO algorithm being employed for the estimation of the

appropriate AR model orders and the AR functional subspace dimensionalities for each signal realization.

The initial search space is na ∈ [2, 10] and pa ∈ [3, 13], that is the dimension of the functional subspace

parameter vector is varying from zero to ten (dim(δa) = pa − k ∈ [0, 10]).

The results of the Monte Carlo experiments for this phase are depicted in Fig. 4.4.2 and give the

correct AR model order (na = 6) for 73.4 % of the cases, while also indicating that a functional subspace

dimensionsionality between six and eight is adequate. The second phase of the model structure selection

scheme based on the combinatorial approach for the integer sets na ∈ [6, 7] and pa ∈ [6, 8] indicates

that an AFS-TAR(6)[6] model is, with respect to the BIC, the most adequate for representing the system

under study. Thus, an AFS-TAR(6)[6] model is identified for each one of the 500 realizations with the

mean estimate of the AR functional subspace parameter vector being δ̂a = [750.2, 770.7, 791.9]T . The
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Figure 4.4.1: True model for Test Case I: (a) AR parameters, and (b) signal realization.
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Figure 4.4.2: Test Case I – Phase I of the AFS-TAR model structure selection scheme results based on

PSO (500 realizations): (a) AR order estimation, and (b) functional subspace dimensionality estimation.

AR basis functions constructed based on this parameter vector are shown in Fig. 4.4.3.

TAR models of the true order (na = 6) are also estimated and for the rest of the methods considered.

The finally selected model structure parameters for all methods are summarized in Table 4.7.

Indicative comparison results regarding the tracking of model parameters as obtained from a single

realization are shown in Fig. 4.4.4, while a clearer picture is drawn by the sample mean over 500

realizations estimated parameters trajectories for a short time window centred at the sample where the

discontinuity takes place (Fig. 4.4.5). Clearly, in regard to the tracking of the time-varying AR parameters

the introduced AFS-TAR outperforms its candidates. Specifically, the AFS-TAR method successfully

adapts to the given data and detects accurately the discontinuity in the parameters. Regarding the

innovations sequence variance the AFS-TAR based estimate is much closer to the true constant variance

while the estimates based on the rest of the models show large changes in their values within a small

Table 4.7: Selected model structure parameters.

Method Test Case I Test Case II Test Case III

SP-TAR κ = 1, ν = 9× 10−5 κ = 2, ν = 1× 10−8 κ = 1, ν = 7× 10−9

Classical FS-TAR Haar, ba = [0, 1, 2, 5, 44] DCT, ba = [0, 1, 2, 3, 6] Haar, ba = [0, 6, 12, 25]
AFS-TAR pa = 6 (3 internal knots) pa = 6 (3 internal knots) pa = 7 (4 internal knots)
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Figure 4.4.3: Test Case I – AR basis functions constructed based on the mean δa estimate. (The

respective internal knots are indicated by black dots on the x-axis.)

region of the time axis. Note that variance estimates are available only for t = 65, 130 . . . , 1936 since they

are based on a centred moving time-window of length equal to 129 samples.

In the case of the classical FS-TAR approach, a functional subspace consisting of five Haar functions

is selected as most appropriate for tracking time-varying parameters with abrupt evolution. However, no

basis function in the selected functional subspace depicts a change in the same instant with that of the

true AR parameters. Therefore, even if a discontinuity is clearly detected its exact instant (771
th

sample)

is not accurately estimated. This example, highlights the drawback of the fixed basis approach which is

heavily dependent on the selected functional basis and the model structure selection procedure.

On the other hand, SP-TAR method fails to detect the jump and depicts a big transition zone between

the piecewise constant values. This fact could be accredited to the constant ratio ν between the variance

of the parameters and the variance of the innovations sequence which permits the model to track smooth

evolutions or evolutions of high variability but not mixed types with alternating patterns.

Finally, the RLS-TAR method even if detects precisely and without delay the existence of an abrupt

change in the first five AR parameters it fails to track parameter a6[t] detecting a big discontinuity even

if this parameter is constant through time.

Monte Carlo results of the parameter tracking error errai[t] and the RSS/SSS criterion are depicted in

Fig. 4.4.6 and provide further support to the previous comments. Indeed, the mean parameter tracking

errors for the AFS-TAR models with parameters expanded on adaptable basis functions lie between 0.15

and 1.5%, that is up to six times lower than the errors achieved by the rest of the methods for some

of the time-varying parameters. Moreover, the AFS-TAR method gives the best mean RSS/SSS value.

Second best with respect to its parameter tracking accuracy is the classical FS-TAR method while it is

worth noting that the errors obtained by the RLS-TAR and SP-TAR models not only are of higher mean

value but also depict high variability among the 500 realizations.

4.4.2 Test case II – TAR model with piecewise polynomial parameters

This test case concerns a TAR(6) model with fourth order polynomial parameters that have piecewise

constant coefficients. That is, each AR parameter follows the relation:

ai[t] = `i,1[t] ·
(
t

N

)
+ `i,2[t] ·

(
t

N

)2

+ `i,3[t] ·
(
t

N

)3

+ `i,4[t] ·
(
t

N

)4

(4.4.3)
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Figure 4.4.4: Test Case I. True and estimated by various methods AR parameter and σ2
e [t] trajectories

(single experiment).

Table 4.8: Signal details for Test Case II.

j = 1 j = 2 j = 3 j = 4
A B C A B C A B C A B C

`1,j -0.79 136.51 -1.06 -2.07 -1274.08 -7.49 0.61 3996.46 12.38 3.84 -4199.07 -5.09

`2,j 0.27 -176.11 -1.34 4.51 1682.36 23.29 -1.48 -5373.11 -38.10 -7.40 5715.71 15.84

`3,j -0.15 156.90 3.10 -4.84 -1527.04 -31.64 1.36 4928.74 61.54 8.57 -5272.07 -21.53

`4,j 0.21 163.10 -1.34 4.13 1560.03 -21.83 -1.33 -4986.17 -35.70 -6.80 5305.57 14.85

`5,j -0.58 123.67 -0.83 -1.83 -1153.52 -6.66 0.52 3618.43 11.01 3.41 -3801.15 -4.53

`6,j 0.81 0.81 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

σ2
w[t] = 1

Signal length: N = 2000 samples

Number of Monte Carlo experiments: 500

with

`i,j [t] =





`Ai,j for t = 1, . . . , 771

`Bi,j for t = 772, . . . , 779

`Ci,j for t = 800, . . . , 2000

The true `i,j values are summarized in Table 4.8 while the resulting time-varying AR parameters are

illustrated in Fig. 4.4.7(a). Again constant variance is considered for the driving noise sequence σ2
w = 1.

The first phase of the model structure selection scheme for the AFS-TAR method gives similar results
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Figure 4.4.6: Test Case I. (a) AR parameter estimation errors and (b) RSS/SSS for the various estimated

models (sample mean ± std also shown via boxes; 500 Monte Carlo experiments).

with those in Test Case I (see Fig. 4.4.8). More specifically, the correct order na = 6 is selected 372

times out of 500 (74.4 %) while a basis dimensionality between five and eight seems to be adequate for
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Figure 4.4.7: True model for Test Case II: (a) AR parameters, and (b) signal realization.
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Figure 4.4.8: Test Case II – Phase I of the AFS-TAR model structure selection scheme results based on

PSO (500 realizations): (a) AR order estimation, and (b) functional subspace dimensionality estimation.

the specific identification problem. A FS-TAR(6)[6] model is finally selected based on the BIC criterion

and the second phase of the scheme (see Table 4.7). The mean estimate of the AR functional subspace

parameter vector for this test case is δ̂a = [760.84, 786.24, 813.83]T while the corresponding AR basis

functions are shown in Fig. 4.4.9.

The true parameters and the model estimates as obtained from a single realization and the four

non-stationary identification methods considered are depicted in Fig. 4.4.10, while the mean estimated

values are shown in Fig. 4.4.11. The AFS-TAR method estimates based on parametrized B-splines

again track almost perfectly the time-varying parameters giving a clear indication of the mixed type of

evolution, that is transitions between smooth and abrupt changes.

The rest of the identified models show a delay of several samples and barely track the parameters

during their fast transition between the 772
th

and 799
th

sample. The RLS-TAR models, although they

adequately well detect the abrupt change in the parameters, depict high variability in the estimated

parameter values even for the time-regions within which the true model parameters evolve smoothly.

Moreover, again they are not capable of tracking with accuracy the parameter a6[t] which is actually

constant through time. Finally, the AFS-TAR based innovations variance estimate again is very close to

unity and almost constant for the complete time-axis, in contrast to the estimates based on the rest of

the models.
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Figure 4.4.9: Test Case II – AR basis functions constructed based on the mean δa estimate. (The

respective internal knots are indicated by black dots on the x-axis.)
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Figure 4.4.10: Test Case II. True and estimated by various methods AR parameter and σ2
e [t] trajectories

(single experiment).

Note also that the classical FS-TAR models with parameters expanded on DCT basis functions are

not capable of tracking parameters with inhomogeneous evolution. Most certainly, an increased number
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Figure 4.4.11: Test Case II. True and mean estimated by various methods AR parameter and σ2
e [t]

trajectories (500 experiments).

of basis functions may improve the models’ tracking ability, however at the price of reduced model

parsimony. On the other hand, the AFS-TAR model involves only three nonlinear parameters and six

basis functions.

The parameter tracking errors errai[t] and the RSS/SSS criterion (Fig. 4.4.12) confirm the big differ-

ence in the performance of the AFS-TAR method compared to its counterparts. Note that the parameter

tracking errors for the AFS-TAR method lie between 0 and 2 %, that is up to five times better than the

values achieved by the rest of the methods.

4.4.3 Test case III – TAR Model with parameters exhibiting short-term variability

The AR model parameters of this test case depict variability only within a small partition of the time axis

(between samples 1100 and 1200) while remain constant for the rest of the axis. More specifically, the

AR parameters follow a Gaussian function of the form:

ai[t] = `i,1 +
`i,2

18
√

2π
· exp

(
− t− 1155

648

)
, t = 1, . . . , 2000 (4.4.4)

with `i’s given in Table 4.9. A realization used for the model identification and the true time-varying

parameters are depicted in Fig. 4.4.13. Also in this case σ2
w = 1.

The model structure selection phase I results (Fig. 4.4.14) indicate in a percentage of 67.8 % the

correct AR model order and in 24.8 % na equal to seven. However, the second phase of the proposed
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Figure 4.4.12: Test Case II. (a) AR parameter estimation errors and (b) RSS/SSS for the various estimated

models (sample mean ± std also shown via boxes; 500 Monte Carlo experiments).

Table 4.9: Signal details for Test Case III.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
`i,1 -1.40 0.92 -0.50 0.79 -1.13 0.81

`i,2 75 -65 20 -60 70 0

σ2
w[t] = 1

Signal length: N = 2000 samples

Number of Monte Carlo experiments: 500
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Figure 4.4.13: True model for Test Case III: (a) AR parameters, and (b) signal realization.

scheme leads to the correct AR order and a FS-TAR(6)[7] model as the most appropriate (sample mean

over 500 realizations δ̂a = [1094.50, 1135.99, 1168.20, 1206.68]T , Fig. 4.4.15).

The fast evolution of the time-varying parameters in a short time region makes this problem chal-
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Figure 4.4.14: Test Case III – Phase I of the AFS-TAR model structure selection scheme results based on

PSO (500 realizations): (a) AR order estimation, and (b) functional subspace dimensionality estimation.
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Figure 4.4.15: Test Case III – AR basis functions constructed based on the mean δa estimate. (The

respective internal knots are indicated by black dots on the x-axis.)

lenging for all the non-stationary identification methods considered in this study. This is apparent from

the results that concern the estimated parameter tracking accuracy shown in Figs. 4.4.16, 4.4.17, and

4.4.18. The novel AFS-TAR method, even for this demanding problem, attains exceptional results, while

the classical FS-TAR method with Haar basis functions achieves rather good results. However, the prob-

lem of the fixed basis approach is also evident in this case, since the classical FS-TAR model parameter

estimates approximate the Gaussian curves by the square shaped Haar functions.

Finally, the recursive methods (RLS-TAR and SP-TAR) seem inadequate of tracking the time-varying

parameters. They both show large convergence times and difficulty in tracking the parameter trajectories

during the fast transition region.

4.5 Experimental Case Study

4.5.1 The experimental setup and the non-stationary vibration signal

The structure under study is a 2-DOF pick-and-place mechanism consisting of two coaxially aligned

linear motors (LinMot P01-37×120) that carry prismatic links (arms) connected to their ends, with the

whole mechanism being clamped on an aluminium base (Fig. 4.1(a)). The motors are electromagnetic

drives able to generate linear motion with no intermediary mechanical transmission. They are made up

of two parts: the slider, that is a high-precision stainless steel tube containing neodymium magnets and
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Figure 4.4.16: Test Case III. True and estimated by various methods AR parameter and σ2
e [t] trajectories

(single experiment).

the stator that contains the motor windings, slider bearings, position sensors, temperature monitoring,

and a microprocessor circuitry. The stators are enclosed in linear guides (LinMot HS01-37x166-GF)

that are used for mounting the prismatic links, while they also provide resistance to external forces,

rotational and bending moments, contributing in this way to the precise positioning of the stator. A four

channel servo controller (LinMot E400-AT) is used to control and measure the position of both motors

which may move independently on preselected motion profiles. Note that in this case, in contrast to

what their name suggests, the sliders are fixed at one of their ends with the stators sliding on them.

The structure is subject to zero-mean Gaussian random force excitation which is vertically (with re-

spect to the base) exerted via an electromechanical shaker (LDS V201, max load 17.8 N, useful frequency

range 5-13,000 Hz) equipped with a stinger (Figs. 4.1(a) and (b)). The vertical (with respect to the base)

vibration of the structure is measured at six selected locations (locations 1-6; Fig. 4.1(b)) via lightweight

piezoelectric accelerometers (PCB 352C22 ICP accelerometers, frequency range 1 - 10,000 Hz, sensitivity

∼ 1.0 mV/m/s
2
, weight 0.5 g). The measured vibration signals are conditioned and subsequently driven

into SigLab 20-42 data acquisition modules (featuring four 20-bit simultaneously sampled A/D, two

16-bit D/A channels, and 4th-order quasi elliptic analog anti-aliasing filters).

The motion scenario considered is the movement of the motors from their leftmost to their rightmost

position and back (Fig. 4.5.2(a); A1–B1 → A2–B2 → A1–B1) following a reference position profile (Fig.

4.5.2(b); dashed line). The exact position of motor B is measured by embodied magnetic (Hall) sensors

with a sampling period of 39.2 ms (Fig. 4.5.2(b); continuous line). The error between the reference and

actual position during the experiment is depicted in Fig. 4.5.2(c). The vibration (acceleration) signals are
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Figure 4.4.17: Test Case III. True and mean estimated by various methods AR parameter and σ2
e [t]

trajectories (500 experiments).
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Figure 4.4.18: Test Case III. (a) AR parameter estimation errors and (b) RSS/SSS for the various esti-

mated models (sample mean ± std also shown via boxes; 500 Monte Carlo experiments).

sampled at fs = 512 Hz, each one being 10 s long. However, the study focuses on the 5 - 125 Hz range,

thus the signals are lowpass filtered (Chebyshev II filter of order n = 27 with cut-off frequency of 125 Hz)
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Figure 4.5.1: The pick–and–place mechanism and the experimental setup: (a) photo, (b) schematic

diagram.

Table 4.10: Experimental set-up and vibration signal details.

Pick-and-place mechanism

Linear motors: LinMot P01-37×120

Linear guides: LinMot HS01-37x166-GF

Servo controller: LinMot E400-AT

Excitation

Excitation signal: Gaussian white noise

Actuator: LDS V201 electromechanical shaker

Excitation signal amplifier: LDS PA500L-CE

Vibration response

Sensors: PCB 352C22 lightweight piezoelectric accelerometers

Response signal amplifier: PCB F482A20

Data acquisition device: Spectral Dynamics Siglab 20-42

Analysis bandwidth: 5 - 125 Hz

Sampling frequency: fs = 128 Hz (downsampled from 512 Hz)

Lowpass filter: Chebyshev II filter, order n = 27, cut-off frequency = 125 Hz)

Signal length: N = 2560 samples (= 10 s)

and downsampled by a factor of two, resulting into N = 2,560 sample long versions. The experimental

and vibration signal details are summarized in Table 4.10.

The present identification and analysis of the mechanism time-varying dynamics is based on the

non-stationary vibration response measured at location 4 (Fig. 4.1(b)). The signal employed is depicted

in Fig. 4.5.3(a). A rough estimate of its time-varying Power Spectral Density (PSD) is obtained through

non-parametric time-frequency analysis based on the Short-Time Fourier Transform (STFT) [Hammond

and White, 1996] from which non-stationary behaviour is evident (Fig. 4.5.3(b); MATLAB spectrogram

function, Hamming moving data window of 256 samples advanced by one sample and 256 samples

zero-padding).

4.5.2 Structural identification and analysis results

The AFS-TARMA modelling of the time-varying mechanism is presently considered. Again the effec-

tiveness of the introduced method is judged in comparison with available non-stationary identification

methods, namely the Smoothness Priors TARMA (SP-TARMA) method [Kitagawa and Gersch, 1996] and

a Short-Time version of a Stochastic Subspace Identification (ST-SSI) method based on the Canonical
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position of motor B during the experiment, (c) motor B position error.
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Figure 4.5.3: (a) The non–stationary normalized acceleration signal measured at location 4, and (b) its

Short Time Fourier Transform (STFT) based time-varying PSD estimate.

Variate Analysis (CVA) algorithm [Overschee and Moor, 1989, pp. 80-81].

AFS-TARMA identification method. Motivated by the periodic motion profile of the linear motors,

functional subspaces consisting of decaying trigonometric basis functions are considered for this case.

The 2SVP method is utilized for the AFS-TARMA model parameter estimation initialized by the resid-

ual estimates of an AFS-TAR(23)[5] model, with the structure of the latter being selected through the

minimization of the BIC criterion.

The AFS-TARMA model structure selection scheme is started off with an initial search space consist-

ing of AR/MA model orders na = nc = 2, . . . , 20 and functional subspace dimensionalities pa = 1, . . . , 9,
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Table 4.11: Characteristics of the identification methods utilized for the identification of the pick-and-

place mechanism.

Method Parameter estimation Model structure and algorithmic Model structure

details parameters (search space) selection scheme (criterion)

AFS-TARMA 2SVP (Interior point method; AR/MA orders na, nc PSO (MATLAB pso function)

MATLAB fmincon function; Initial residuals ( na = nc = 2, . . . , 20), population size = 500,

provided by an AFS-TAR(23)[5] model) basis dimensionalities pa, pc, ps stall generation limit = 50,

TolFun = 10
−6

, TolX = 10
−9

, (pa = 1, . . . , 9, pc = 1, . . . , 9, w = 1, c1 = 1.45, c2 = 1.45,

TolCon = 10
−6

, ps = 1, . . . , 9) TolFun = 10
−9

,

decaying trigonometric basis functions, (BIC)

rmin = 1− 5/N = 0.998,

rmax = 1 + 5/N = 1.002,

ωmin = 1/N ' 0.0004 rad/sample,

ωmax = 20/N ' 0.008 rad/sample,

d0 = 10−4

SP-TARMA three passes followed by a smoothness constraints order κ trial & error

backward smoothing pass, (κ = 1, 2, 3) (BIC)

variance ratio ν
(ν = 10−12, 10−11, . . . , 101

)

ST-SSI MATLAB n4sid function model order n trial & error

q = 10 (6, . . . , 20) (RSS)

data segment length Q
(101, 151, 201, . . . , 551 samples)
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Figure 4.5.4: AFS-TARMA model structure selection (second phase): BIC values attained by the esti-

mated models utilizing the combinatorial approach for na = nc ∈ [14, 16], pa ∈ [4, 6], pc ∈ [1, 3] (ps = 5
for all models).

pc = 1, . . . , 9, and ps = 1, . . . , 9. Note that for this test case and for purposes of simplicity equal AR and

MA orders, and functional bases with at most one single real root (for odd basis dimensionality) are con-

sidered. The constraints imposed for the rates of decay ({ra(j), ρa, rc(j), ρc, rs(j), ρs}), the frequencies

({ωa(j), ωc(j), ωs(j)}), and the distance between two close roots are selected as shown in Table 4.11.

The 2SVP, PSO and the interior point optimization configuration parameters are also indicated in Table

4.11.

The first phase of the model structure selection scheme leads to an AFS-TARMA(15, 15)[5,2,5] model

while the combinatorial approach of the second phase with na = nc ∈ [14, 16], pa ∈ [4, 6], pc ∈ [1, 3],
and ps = [4, 6] leads to a AFS-TARMA(15, 15)[5,1,5] model as the most appropriate, with respect to the

BIC criterion, for the description of the mechanism time-varying dynamics. The estimated functional

subspace parameter vectors are given in Table 4.12, while the corresponding AR and MA basis functions

are illustrated in Fig. 4.5.5.

SP-TARMA identification method. Regarding the SP-TARMA method, minimization of the BIC with

respect to ratio of the smoothness priors constraints innovations variance over the residual variance ν
and the smoothness priors constraints is carried out. For the initialization of the Kalman filter algorithm
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Table 4.12: Estimated functional subspace parameters vectors of the AFS-TARMA(15, 15)[5,1,5] model

(frequencies ωj are given in rad/sample).

δa δc δs
ra(1) 0.99987 ρc 0.99994 rs(1) 1.00140

ωa(1) 0.00199 ωs(1) 0.00363

ra(2) 0.99999 rs(2) 1.00011

ωa(2) 0.00531 ωs(2) 0.00667

ρa 0.99991 ρs 0.99987
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Figure 4.5.5: The estimated AR and MA basis functions of the identified AFS-TARMA(15,15)[5,1,5] model.

the diagonal elements of the covariance matrix are also set equal to 104
while also in this case the

algorithm is applied in sequential passes over the data record (Table 4.11).

The trial and error model structure selection scheme based on the BIC criterion leads to an SP-

TARMA(15,15) model with κ = 1 and ν = 11.6 for the representation of the mechanism time-varying

dynamics. The innovations variance in this case is estimated non-parametrically through a moving

time-window of length equal to 201 samples advanced by one sample.

ST-SSI identification method. This method employs a model in state space form, while estimation is

based on the batch CVA stochastic subspace identification algorithm. The method operates on a “short”

data segment (Q samples long) of the signal at a time. Within this segment the signal may be considered

as approximately stationary, and a model is identified. The operation keeps repeated for the “next”

segment, produced by an advance of q samples, until the complete signal record is exhausted.

The critical quantities in this method are the segment length Q and the order of the state space

model (considered constant for all time segments). Both quantities are selected based on the RSS

criterion while compromise between the model order and the segment length is also taken into account

for reasons related with statistical efficiency. A trial and error approach searching for the appropriate

model order within n = 6, . . . , 20 and segment length Q = 201, 251, . . . , 701 is employed for the selection

of these parameters which results in Q equal to 351 samples and n equal to 15. The advancement of

the time segments is pre-selected as q = 10 (see Table 4.11).

The model structure details for all the identified models considered are summarized in Table 4.13. Fi-

nally, some of the AR and MA parameters of the estimated SP-TARMA(15,15) and AFS-TARMA(15,15)[5,1,5]

are contrasted in Fig. 4.5.6.
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Figure 4.5.6: Comparison of the estimated SP-TARMA(15,15) and AFS-TARMA(15,15)[5,1,5] model pa-

rameters.

Table 4.13: Identified model structure parameters.

Method

ST-SSI n = 15, Q = 351, q = 10
SP-TARMA na = nc = 15, κ = 1, ν = 11.6

AFS-TARMA
deacying trigonometric basis functions,

na = nc = 15, pa = 5, pc = 1, ps = 5
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Figure 4.5.7: Predictive ability of the estimated models: (a) RSS/SSS and (b) the residual variance for

the various estimated models (a sliding window of 201 samples is used for variance estimation in the

case of ST-SSI and SP-TARMA models).

4.5.3 Discussion

The RSS/SSS values attained by the estimated models are provided in Fig. 4.5.7(a). As it may be

observed, the estimated AFS-TARMA model attains the best predictive performance, while the worst

RSS/SSS value is obtained by the SP-TARMA model. The estimated time-varying variance of the AFS-

TARMA model residual is also lower than those obtained by all other models (Fig. 4.5.7(b)).

The AFS-TARMA(15, 15)[5,1,5] based “frozen-time” time-varying PSD estimate [Poulimenos and Fas-
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(a) (b)

(c) (d)

Figure 4.5.8: Comparison of the “frozen-time” time-varying PSD estimates: (a) Non-parametric STFT es-

timate, (b) ST-SSI(15) estimate, (c) SP-TARMA(15,15) estimate, and (d) AFS-TARMA(15,15)[5,1,5] estimate.

sois, 2006] is also contrasted to those obtained by the SP-TARMA(15, 15) and ST-SSI(15) models and

the non-parametric STFT method in Fig. 4.5.8. The AFS-TARMA(15, 15)[5,1,5] estimate is in good over-

all agreement with the STFT estimate, but of course much more clear, smooth and informative due to

the functional structure of the model and in accordance with the smooth variation of the structural

geometry. The estimate obtained by the identified SP-TARMA(15,15) model shows very good tracking

of the underlying dynamics. On the contrary, the subspace ST-SSI estimate exhibits significant scatter

and seems incapable of tracking the time-varying dynamics for specific time periods; this could not be

alleviated through higher model orders or different data segments.

The model-based “frozen-time” natural frequency estimates are depicted in Fig. 4.5.9(a). As it may

be observed, the agreement of the AFS-TARMA(15,15)[5,1,5] with the non-parametric resonant natural

frequency estimates (shown in the background) is very good. SP-TARMA(15,15) based estimates are also

good, however higher frequencies depict increased variability. Most of all, the sixth natural frequency

estimate varying between 100 and 120 Hz is not symmetric with respect to the mid-time, in opposition

to the symmetric nature of the underlying time-varying dynamics. The problem of ST-SSI model to track

the time-varying dynamics is even more pronounced in this case. The problem may be attributed to the

short length of the data segments, however longer segments lead to estimates incapable of following the

rather quickly varying dynamics.

Finally, the model-based “frozen-time” antiresonance natural frequency estimates are depicted in

Fig. 4.5.9(b). It is worth noting that the almost constant antiresonance frequency estimates provided by

the AFS-TARMA(15,15)[5,1,5] model also agree with the SP-TARMA estimates, despite the fact that the MA

parameters of the latter depict a much higher variability compared to that of the former (Fig. 4.5.6). Both
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Figure 4.5.9: Comparison of the estimated “frozen-time” modal characteristics: (a) resonance and (b)

antiresonance natural frequency estimates (STFT-based time-varying PSD estimate in the background).

models seem to provide spurious antiresonant frequencies but this fact is not totally unexpected since

the MA order was constrained and not selected to be equal to the AR model order, and thus probably

higher than the true model order.

Summing up, the identified AFS-TARMA model, followed by its SP-TARMA counterpart, seems to

exhibit the best tracking of the mechanism dynamics, while also attaining the best predictive ability.

4.6 Conclusions

The class of AFS-TARMA models with adaptable basis functions and an appropriate identification method

which achieves simultaneous estimation of coefficient of projection and functional subspace parameters

were introduced. The method has been based on proper basis function parametrizations and a SNLS type

procedure which leads to a reduced dimensionality, constrained, non-quadratic optimization problem

tackled via PSO and gradient-type refinement. The model orders and subspace dimensionalities are

estimated based on suitable criteria and PSO. The method’s effectiveness was examined via Monte Carlo

studies employing TAR model characterized by abrupt parameter evolution and an experimental case

study pertaining to the identification of a time-varying pick-and-place mechanism. Comparisons with

the classical FS-TARMA method and non-stationary identification methods were also performed.
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4.A. Correspondence Between Full and Reduced Functional

The results of both the numerical and experimental case studies demonstrated the excellent perfor-

mance and improved accuracy of the proposed method, which is shown to be capable of automatically,

and yet effectively, estimating the functional subspaces and coefficients of projection for specified AFS-

TAR/TARMA models.

Appendix 4.A Correspondence Between Full and Reduced Functional

The following theorem [Golub and Pereyra, 1973, Theorem 2.1] defines the conditions under which the

transformation of the full functional into the VP functional is feasible and the equivalence of the two

forms with respect to their stationary points (see [Golub and Pereyra, 1973] for the proof):

Theorem. Let V (δa,ϑa) and Vvp(δa) be defined as in Section 4.3.1.1. The constant rank r ≤ min(N, dim(ϑa))

of Φ(δa) is assumed within the open set Ω ⊂ Rdim(δa)
.

(1) If ϑ̂a is a critical point (or a global minimizer in Ω) of Vvp(δa), and

ϑ̂a = Φ†(δ̂a) · x (4.A.1)

then (δ̂a, ϑ̂a) is a critical point of V (δa,ϑa) (or a global minimizer for δa ∈ Ω) and V (δ̂a, ϑ̂a) = Vvp(δ̂a).

(2) If (δ̂a, ϑ̂a) is a global minimizer of V (δa,ϑa), for δa ∈ Ω, then δ̂a is a global minimizer of

Vvp(δa) in Ω and V (δ̂a, ϑ̂a) = Vvp(δ̂a). Furthermore, if there is an unique ϑ̂a among the minimizing

pairs of V (δa,ϑa), then ϑ̂a must satisfy Eq. (4.A.1).

Appendix 4.B Objective Function Gradient

4.B.1 FS-TAR case

4.B.1.1 Full functional

The gradient of the PE criterion with respect to the complete AR parameter vector [δTa ,ϑ
T
a ]T may be

calculated as follows:

V ′(δa,ϑa) =




∂V (δa,ϑa)

∂δa
∂V (δa,ϑa)

∂ϑa


 =




∂‖e(δa,ϑa)‖2

∂δa
∂‖e(δa,ϑa)‖2

∂ϑa


 =




∂(
∑N
t=1 e[t,δa,ϑa]2)

∂δa
∂(

∑N
t=1 e[t,δa,ϑa]2)

∂ϑa


 =

=
N∑

t=1




∂(e[t,δa,ϑa]2)
∂δa

∂(e[t,δa,ϑa]2)
∂ϑa


 = 2 ·

N∑

t=1

e[t, δa,ϑa] ·




∂e[t,δa,ϑa]

∂δa
∂e[t,δa,ϑa]

∂ϑa




where

∂e[t, δa,ϑa]

∂δa
=

∂
(
x[t]− φT [t, δa] · ϑa

)

∂δa
= −∂φ

T [t, δa]

∂δa
· ϑa =

= −




−x[t− 1] · ∂Ga(1)[t,δa]

∂δa(1)
. . . −x[t− na] · ∂Ga(pa)[t,δa]

∂δa(1)

−x[t− 1] · ∂Ga(1)[t,δa]

∂δa(2)
. . . −x[t− na] · ∂Ga(pa)[t,δa]

∂δa(2)

.

.

.
. . .

.

.

.

−x[t− 1] · ∂Ga(1)[t,δa]

∂δ
a(dim(δa))

. . . −x[t− na] · ∂Ga(pa)[t,δa]

∂δ
a(dim(δa))



· ϑa

with the derivatives
∂Ga(j)[t,δa]

∂δa(i)
for the B-splines and the decaying trigonometric basis functions being

given in 4.B.2 and 4.B.3, respectively, and:

∂e[t, δa,ϑa]

∂ϑa
=
∂
(
x[t]− φT [t, δa] · ϑa

)

∂ϑa
= −φ[t, δa]
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4.B.1.2 Variable projection functional

V ′
VP

(δa) =
∂
(
‖e

VP
(δa)‖2

)

∂δa
= 2 · ∂e

T
VP

(δa)

∂δa︸ ︷︷ ︸
J

· e
VP

(δa) (4.B.1)

The Jacobian of V ′
VP

(δa) with respect to any of the scalar variables δa(i) can be derived by the following

manipulations [Golub and Pereyra, 1973] (the dependence on δa is omitted for the sake of notational

simplicity) :

∂e
VP

∂δa(i)
=

∂
[(
I −ΦΦ†

)
x
]

∂δa(i)
= − ∂Φ

∂δa(i)
Φ†x−Φ

∂Φ†

∂δa(i)
x =

= − ∂Φ

∂δa(i)
Φ†x−Φ

∂

[(
ΦTΦ

)−1
Φ

]

∂δa(i)
x =

= − ∂Φ

∂δa(i)
Φ†x−Φ

(
ΦTΦ

)−1
[
∂Φ

∂δa(i)

T

Φ + ΦT ∂Φ

∂δa(i)

](
ΦTΦ

)−1
ΦTx =

= −
[
∂Φ

∂δa(i)
− (Φ†)T

(
∂Φ

∂δa(i)

)T
Φ + ΦΦ†

∂Φ

∂δa(i)

]
Φ†x

where
∂Φ(δa)
∂δa(i)

=
[
∂φ[1,δa]
∂δa(i)

, . . . ,
∂φ[N,δa]
∂δa(i)

]T

4.B.2 Derivative of B-splines with respect to a knot

Given the B-splines Gkj [t, δ] of order k defined over the knot vector τ = [τ1, . . . , τp+k]
T

(where τi is a knot

of multiplicity less than k and δ = [τk+1, . . . , τp]
T

), the derivative
∂Gkj [t,δ]

∂δi
for 1 ≤ i ≤ p− k is given by the

following relation [Piegl and Tiller, 1998]:

∂Gkj [t, δ]

∂δi
=





0, j = 1, . . . , i− 1

G
k
i+1[t,δ]

τi+k−τi+1
, j = i

G
k
j+1[t,δ]

τj+k−τj+1
− G

k
j [t,δ]

τj+k−1−τj , j = i+ 1, . . . , i+ k − 1

− G
k
i+k[t,δ]

τi+2k−1−τi+k , j = i+ k

0, j = i+ k + 1, . . . , p

(4.B.2)

where G
k
j [t, δ] denotes the basis functions of order k corresponding to the knot vector τ ′ = τ ∪ τi =

[τ1, . . . , τi−1, τi, τi, τi+1 . . . , τp+k]
T

.
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4.B.3 Derivatives of a decaying trigonometric function with respect to its parameters

Given the decaying trigonometric functionGj [t] defined by the parameter vector δ = [r1, . . . , rq, ω1, . . . , ωq, ρ]T

and Eq. (4.2.7), its derivative
∂Gj [t,δ]
∂δi

may be readily obtained as follows:

∂Gj [t, δ]

∂δi
=





t · rt−1
i · cos(ωit), j = i = 1, . . . , q

t · rt−1
i · sin(ωit), j = q + 1, . . . , 2q, i = 1, . . . , q

−t · rti−q · sin(ωi−qt), j = 1, . . . , q, i = q + 1, . . . , 2q

t · rti−q · cos(ωi−qt), j = q + 1, . . . , 2q, i = q + 1, . . . , 2q

t · ρt−1, j = i = p, if p is odd

(4.B.3a)

with

qa =

{
p
2 for p even

p−1
2 for p odd

(4.B.3b)

Appendix 4.C Particle Swarm Optimization (PSO) Algorithm

The idea of PSO has emerged from the observation of swarming behaviors of birds flocks, schools of

fish, swarm of bees, etc that adjust their physical movements to avoid predators and seek the best

food sources [Engelbrecht, 2006,Perez and Behdinan, 2007]. PSO is a non-gradient probabilistic based

search algorithm which has been shown to have a number of advantages compared to other evolutionary

optimization algorithms, mainly due to the effective sharing of information among its particles.

According to the PSO algorithm, a set of candidate parameter vectors χ (the “swarm”) is moving

over the dim(χ)-dimensional search space seeking for the global minima of the objective function. The

position of each particle i at iteration j + 1 is updated as

χj+1
i = χji + uj+1

i (4.C.1)

where uj+1
i is the corresponding updated velocity vector. The velocity vector, which determines the

movement of each particle of the swarm, is determined by three factors: (i) the particle’s inertia, (ii)

the particle’s memory and (iii) the swarm’s memory. Thus, the velocity update rule is expressed by the

following equation

uj+1
i = wuji + c1r1(pji − χ

j
i ) + c2r2(pjg − χji ) (4.C.2)

where r1 and r2 are random numbers uniformly distributed in the interval [0, 1], pji represents the best

ever particle position of particle i, and pjg corresponds to the global best position in the swarm up to

iteration j. The coefficients w, c1 and c2 are user defined parameters and represent the weights on the

aforementioned factors that affect the velocity of a particle. Specifically, w is the inertia weight, c1 is a

“trust” factor representing the confidence that a particle has in itself (and its memory), and c2 is a “trust”

factor representing the confidence that a particle has in the swarm.

A detailed description of the PSO and its derivatives may be found in [Engelbrecht, 2006, Part III].

Interesting details regarding the performance of the algorithm (e.g. convergence and stability analysis,

relation of the algorithm with gradient-based methods) may also be found in [Perez and Behdinan, 2007].

Appendix 4.D Monte Carlo Study on the AFS-TAR Identification of a Sim-

ulated FS-TAR Model

The performance characteristics of the introduced AFS-TAR models are also examined via Monte Carlo

experiments on the identification of a simulated classical FS-TAR model. Specifically, the identification
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Table 4.D.1: True DCT FS-TAR(6)[5] model coefficients of projection.

j = 1 j = 2 j = 3 j = 4 j = 5

a1,j -1.62 0.26 0.41 -0.05 -0.05

a2,j 1.31 0.03 -0.83 0.19 0.01

a3,j -0.88 -0.36 0.95 -0.23 0.05

a4,j 1.17 0.01 -0.74 0.14 -0.02

a5,j -1.27 0.25 0.30 -0.07 -0.02

a6,j 0.76 -0.01 0.02 0.03 -0.02

σ2
w[t] = 1

Signal length: N = 2000 samples

Number of Monte Carlo experiments: 500
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Figure 4.D.1: True classical DCT FS-TAR(6)[5] model: (a) AR parameters, and (b) signal realization.

problem of an FS-TAR(6)[5] model with parameters expanded on DCT basis functions through the AFS-

TAR and the classical FS-TAR method is presently considered. The goal of this test case study is to

demonstrate the effectiveness of the introduced method even when they are disfavored against their

counterparts.

For this purpose, the true AR functional subspace consisting of the first five DCT basis functions is

preselected for the classical FS-TAR approach, while within the context of the AFS-TAR models no prior

information with respect to the time-varying parameter evolution is taken into consideration, and thus

quadratic B-splines functions (k = 3) are employed. In this way, no model structure selection is involved

for the classical approach, while the appropriate dimensionality and characteristics of the adaptable

B-splines functions used for the AFS-TAR models are sought by using the two-phase model structure

selection method described in Section 4.3.2. The estimation method characteristics and implementation

details are selected just as the test cases considered in Section 4.4 (see Table 4.5).

The true AR coefficients of projection of the simulated FS-TAR model are given in Table 4.D.1 with the

corresponding TV AR parameters being depicted in Fig. 4.D.1(a). The driving noise sequence variance is

again considered constant and equal to unity (σ2
w = 1), while 500 realizations were generated by using

different seed numbers. One of these realizations is shown in Fig. 4.D.1(b).

The AFS-TAR model structure selection scheme based on the PSO algorithm and the combinatorial

approach for pa ∈ [4, 10] indicates that an AFS-TAR(6)[6] model is, with respect to the BIC, the most

adequate for representing the true DCT FS-TAR model – the correct AR order is assumed a-priori known.
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Figure 4.D.2: True classical DCT FS-TAR(6)[5] model identified by the AFS-TAR method. Adaptable basis

functions constructed based on the mean δa estimate. (The respective internal knots are indicated by

black dots on the x-axis.)
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Figure 4.D.3: True classical DCT FS-TAR(6)[5] model identified by the AFS-TAR method. True and

estimated AR parameters (single experiment).

Thus, an AFS-TAR(6)[6] model is identified for each one of the 500 realizations with the mean estimate

of the AR functional subspace parameter vector being δ̂a = [727.74, 1261.10, 1603.14]T . The AR basis

functions constructed based on this parameter vector are shown in Fig. 4.D.2.

Indicative comparison results regarding the tracking of the TV model parameters as obtained from

a single realization are shown in Fig. 4.D.3, while the sample mean over 500 realizations estimated

parameters trajectories are depicted in Fig. 4.D.4. Clearly, the AFS-TAR estimates are very close to

the true TV parameters and only slightly worse than the corresponding classical FS-TAR estimates for

which the true AR functional subspace was preselected. It should be also noted that these results could

also be further improved if adaptable decaying trigonometric basis functions were used instead of the

B-splines.
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Figure 4.D.4: True classical DCT FS-TAR(6)[5] model identified by the AFS-TAR method. True and

estimated AR parameters (500 experiments).

Monte Carlo results of the parameter tracking error errai[t] and the RSS/SSS criterion are depicted

in Fig. 4.D.5 and provide further support to the previous comments. Particularly, the mean parameter

tracking errors for the AFS-TAR models with parameters expanded on adaptable basis functions lie

below 0.5% while the errors achieved by the FS-TAR method lie below 0.3%. Moreover, the AFS-TAR

and the classical FS-TAR method give almost equal RSS/SSS values.

0

1

2

3

er
r a

i
[t
]
(%

)

 

 

a1[t] a2[t] a3[t] a4[t] a5[t] a6[t]

AFS−TAR   Classical FS−TAR  

0

0.5

1

1.5

R
S

S
/S

S
S

 (%
)

(a) (b)

Figure 4.D.5: True classical DCT FS-TAR(6)[5] model identified by the AFS-TAR method. (a) AR parame-

ter estimation errors and (b) RSS/SSS for the classical FS-TAR and AFS-TAR estimated models (sample

mean ± std also shown via boxes; 500 Monte Carlo experiments).
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Figure 4.E.1: Numerical reliability problems arising in the case of coalescing knots.

Appendix 4.E Numerical Reliability Problems When No Constraints are

Applied

The numerical reliability problems that may arise when no constraints are applied on the parameters of

the B-splines or the decaying trigonometric functional basis are illustrated through two simple paradigms

in the sequel.

At first, let us assume the case of a B-splines functional basis with k = 1 consisting of four basis

functions G1[t, δ], . . . , G4[t, δ], that is three internal knots or else δ = [τ1, τ2, τ3]T . Two of these knots

are considered fixed (τ2 = 1000, τ3 = 9000) while τ1 varies between 900 and 1100 (N = 10000). For

each discrete value of τ1 the basis functions are obtained by using Eq. (4.2.5) and the regression matrix

G(δ) =
[
g[1, δ], . . . , g[N, δ]

]T
, where g[t, δ] = [G1[t, δ], . . . , G4[t, δ]]T , if formed. This matrix could be

used for any SNLS problem such as the one that emerges when trying to project the innovations sequence

standard deviation of an AFS-TARMA model onto an a-priori unknown functional basis (see Eq. (4.3.10)).

As already mentioned, according to the theorem of Golub and Pereya [Golub and Pereyra, 1973, Theorem

2.1], such a problem may be solved through the VP method only for G(δ) with constant rank over the

complete parameter space. However, from Fig. 4.E.1 which illustrates the condition number of G(δ) as

a function of τ1, is evident that when τ1 coalesces with τ2 the condition number becomes infinite since

the corresponding basis function is zero everywhere reducing automatically the rank of the regression

matrix – due to the local support property of B-splines, that is G2[t, δ] 6= 0 only for t ∈ [τ1, τ2). Thus, in

order to assure the solvability of the corresponding SNLS problem through the VP method the distance

between two sequential knots must be constrained.

Analogous rank deficiencies problems arise also in the case of the decaying trigonometric functional

basis with unconstrained functional subspace parameters. In Fig. 4.E.2(a) the condition number of

G(δ) consisting of three basis functions G1[t, δ] = rt cos(ωt), G2[t, δ] = rt sin(ωt) and G3[t, δ] = ρt, with

t = 1, . . . , 10000, ω = 0.001 rad/sample, ρ = 0.999, and unfixed r is given as a function of r. Apparently,

the condition number of the regression matrix is of low value only within a neighbourhood of r near

unity. Particularly for r > 1, the condition number grows rapidly (note the logarithmic scale of the

y-axis) as the G3[t, δ] basis function, which is always close to unity, becomes insignificant compared to

G1[t, δ] and G2[t, δ].

For a similar decaying trigonometric functional basis consisting of the same tree basis functions

G1[t, δ] = rt cos(ωt), G2[t, δ] = rt sin(ωt) and G3[t, δ] = ρt, but with fixed r = 1 and unknown ω
varying between 0 and 0.0001 rad/sample, the rank of the corresponding regression matrix is changing

from two (for ω very close to zero) to three as ω moves toward infinity. This is due to the fact that

G2[t, δ] = rt sin(ωt) becomes zero everywhere for ω close to zero. This situation is demonstrated in Fig.

4.E.2(b).

Finally, for a functional basis consisting of five functions G1[t, δ] = rt1 cos(ω1t), G2[t, δ] = rt1 sin(ω1t),
G3[t, δ] = rt2 cos(ω2t), G4[t, δ] = rt2 sin(ω2t) and G5[t, δ] = ρt is evident that G1[t, δ] and G2[t, δ] become
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Figure 4.E.2: Numerical reliability problems arising in the case of: (a) too small or too large rate of decay,

(b) frequency ω tending to zero, and (c) the distance between two complex roots tends to zero.

linearly dependent to G3[t, δ] and G4[t, δ] when the pair of parameter values [r1, ω1] gets to close to that

of [r2, ω2] leading also to a bad condition number and rank deficiency problems (see Fig. 4.E.2(c)). Of

course this obstacle could be overcome by considering a multiple homogeneous linear difference equation

root. However, in the present study only discrete roots are considered.
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Chapter 5

Non-Stationary Vibration Modelling and Analysis

via FS-TARMA Models – A critical survey

In this chapter a review of the Functional Series Time-dependent AutoRegressive Moving Average (FS-

TARMA) models for the identification of non-stationary signals is presented. The study contains a critical

review of the past and recent developments in non-stationary signal modelling through Functional Series

models while also focuses on the applications of FS-TARMA models for the identification and dynamic

analysis of time-varying structures based on random vibration data. The objective is to present some

of the main approaches that have been proposed, to illustrate them using numerical case studies, to

highlight their assets and limitations and to identify future directions.
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5.1 Introduction

Non-stationary signals, that is signals with statistical properties that depend on time, are commonly

encountered in engineering practice. The vibration responses of structures, such as traffic-excited

bridges [Poulimenos and Fassois, 2009b], robotic devices [Petsounis and Fassois, 2000], rotating ma-

chinery [Conforto and D’Alessio, 1999b], deployable structures [Xun and Yan, 2008] and so on, con-

stitute typical examples of non-stationary signals. Such structures characterized by properties, either

physical or geometrical, that vary with time are referred as Time-Varying (TV) structures. However,

non-stationary vibration may also arise in cases of time-invariant structures subject to non-stationary

excitation, such as earthquake [Fouskitakis and Fassois, 2002] and turbulence [Mevel et al., 2005], or

in the case of structures with inherently nonlinear dynamics [Ben Mrad, 2002].

Unlike the stationary case, non-stationary random vibration signals are characterized by time-

dependent statistical properties [Poulimenos and Fassois, 2006, Niedźwiecki, 2000]. For instance, the

mean of a non-stationary signal is in general a function of time [Bendat and Piersol, 2000, Ch. 12]:

µ(t) = E {x(t)} =

∫ ∞

−∞
x(t) · f(x(t)) · dx(t) (5.1.1)

while its autocovariance is a function of two considered time instants, that is:

γ(t1, t2) = E {x(t1) · x(t2)} =

∫ ∞

−∞

∫ ∞

−∞
x(t1) · x(t2) · f(x(t1), x(t2)) · dx(t1) · dx(t2) (5.1.2)

with x(t) designating the random vibration signal which is a function of analog time t, E {·} statistical

expectation and f(·) the probability density function. Yet, these first two moments completely define the

probability distribution in the Gaussian case which is on the focus of this study.

Usually, and this is also followed in the present study, the case of non-stationary random vibration

characterized by zero-mean but non-stationary and continually evolving autocovariance function is con-

sidered. This is due to the fact that in many random vibration analysis problems the mean is either

zero or it may be readily estimated and subtracted from the signal by means of curve fitting or high

pass signal filtering in case of time-dependency [Augusti et al., 1984, Sec. 8.3]. On the other hand, the

continual evolution assumption for the autocovariance function is adopted because this is the typical

case in vibration analysis, where a continual evolution of the dynamics is encountered.

The general problem that this study deals with is the non-stationary vibration modelling (identifica-

tion) and analysis based upon equispaced in time digital sampled vibration signal measurements x[t],
of finite length N obtained from a single realization. The final goal of the identification process is to

build a mathematical model that will be able to represent the underlying structural dynamics. The

obtained model may subsequently be employed for the non-stationary signal vibration analysis through

the extraction of physically meaningful information from the obtained model such as signal moments

or more often a form of time-dependent Power Spectral Density (PSD) function and the time-dependent

vibration modes [Petsounis and Fassois, 2000, Poulimenos and Fassois, 2006, Hammond and White,

1996] [Preumont, 1994, ch. 8].

The modelling of non-stationary vibration is an important and yet challenging problem which has re-

ceived significant attention in recent years [Poulimenos and Fassois, 2006,Niedźwiecki, 2000,Staszewski

and Robertson, 2007, Cohen, 1995, Hammond and White, 1996]. The available non-stationary identi-

fication methods may be broadly classified as non-parametric or parametric. To date, non-parametric

methods have received most of the attention, mainly due to their simplicity. They are based on non-

parametrized representations of the vibration signal as a simultaneous function of time and frequency

(time-frequency representations). These methods include the widely used spectrogram based on the

Short-Time Fourier Transform (STFT) and its ramifications [Hammond and White, 1996], distributions

such as the Wigner-Ville and the Choi-Williams that are unified under the Cohen class of distribu-

tions [Cohen, 1995, Hammond and White, 1996], wavelet-based methods [Newland, 1993, Spanos and

Failla, 2005] and others.
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On the other hand, parametric methods are based on parametrized time-dependent representa-

tions, mainly of the Time-dependent AutoRegressive Moving Average (TARMA) type or respective Time-

dependent State-Space (TSS) types. These representations differ from their conventional, stationary,

counterparts in that their parameters are time-dependent [Poulimenos and Fassois, 2006,Niedźwiecki,

2000]. Thus, a TARMA(na, nc) model, with na, nc designating its AR and MA orders is of the general

form:

x[t] +

na∑

i=1

ai[t] · x[t− i] = e[t] +

nc∑

i=1

ci[t] · e[t− i], e[t] ∼ NID(0, σ2
e [t]) (5.1.3)

with t designating normalized discrete time, x[t] the non-stationary vibration signal modelled, e[t] an

unobservable uncorrelated (white) innovations (residual) sequence with zero mean and potentially time-

dependent variance σ2
e [t], and ai[t], ci[t] the model’s time-dependent AR and MA parameters, respectively.

NID(·, ·) stands for Normally Independently Distributed with the indicated mean and variance. Analo-

gously a TSS(n) model of order n is of the general form:

State equation : z[t+ 1] = A[t] · z[t] +K[t] · e[t] (5.1.4a)

Output equation : x[t] = C[t] · z[t] + e[t], e[t] ∼ NID(0, σ2
e [t]) (5.1.4b)

where z[t](n×1) indicates the model’s state vector and A[t](n×n), K[t](n×1), C[t](1×n) the state-space

system, Kalman gain and output matrices, respectively. The general model forms of Eqs. (5.1.3) and

(5.1.4) correspond to scalar output-only models while extensions to the multivariate and/or input-output

case may be readily obtained.

In general, contrasted to their non-parametric counterparts, non-stationary methods based on

parametrized representations are known to offer a number of potential advantages. These include

representation parsimony, improved tracking of the time-varying dynamics, that is translated into im-

proved representation accuracy, and improved resolution [Petsounis and Fassois, 2000, Conforto and

D’Alessio, 1999b, Ben Mrad et al., 1998b]. Moreover, they also offer flexibility in analysis as they are

particularly suitable not only for vibration model-based analysis but also for purposes of prediction

(simulation) [Fouskitakis and Fassois, 2002, Ben Mrad et al., 1998b], fault diagnosis [Poulimenos and

Fassois, 2004b], classification [Bardou and Sidahmed, 1994,Eom, 1999b,Paulik et al., 1992] and control

applications [Xianya and Evans, 1984,Niedźwiecki, 1987].

According to the classification proposed by Mendel [Mendel, 1973, Ch. 6] and followed by many

authors [Poulimenos and Fassois, 2006,Niedźwiecki, 2000,Grenier, 1983b], parametric non-stationary

identification methods may be divided in three main classes: a) the class of Unstructured Parameter Evo-

lution (UPE) methods [Ljung and Soderstrom, 1983,Ljung, 1999,Lin et al., 2005,Verboven et al., 2004],

b) the class of Stochastic Parameter Evolution (SPE) methods [Kitagawa and Gersch, 1996, Kitagawa

and Gersch, 1985,Gersch and Kitagawa, 1985], and finally c) the class of Deterministc Parameter Evo-

lution (DPE) methods [Poulimenos and Fassois, 2006,Grenier, 1983b,Tsatsanis and Giannakis, 1993].

This classification concerns the “structure” that methods impose on the evolution of the time-varying

parameters. Thus, methods of the UPE class impose no-structure on their model parameters which

are thus free to change with time. They are usually based on the assumption that the TV character-

istics of the system to be identified evolve slowly with time and they thus employ stationary methods

in windowed versions of the signal, within which the stationarity assumption is approximately valid.

Typical methods of this class include short-time ARMA or SS models [Niedźwiecki, 2000, Ch. 3], that is

stationary models applied on short segments of the non-stationary signal, and recursive methods that

employ exponential windows in order to estimate their parameters based only on recent values of the

non-stationary signal [Ljung and Soderstrom, 1983, Ljung, 1999]. UPE methods are characterized by

conceptual and algorithmic simplicity, however due to the quasi-stationarity assumption are appropriate

mainly for the identification of systems with slowly evolving parameters. In addition they are character-

ized by low parsimony as the complete description of a non-stationary signal requires knowledge of the

model parameters at each time instant.
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On the other hand, SPE methods rely on non-stationary models with a stochastic “structure” imposed

on the time evolution of their parameters [Kitagawa and Gersch, 1996]. More specifically, the latter

are considered as being random variables allowed to change with time, but with their evolution being

subject to stochastic smoothness constraints. These constraints are often referred to as smoothness

priors constraints and the models are referred to as smoothness priors models. SPE methods have been

shown to be particularly effective for specific problems, such as the modelling of earthquake ground

motion [Gersch and Kitagawa, 1985, Kitagawa and Gersch, 1985] or biomedical signals [Kitagawa and

Gersch, 1996]. However, in general they leave an unnecessarily high number of degrees of freedom in

the parameter evolution, particularly when the physical mechanism responsible for the time-variation

is deterministic, which is the case for a plethora of engineering applications [Poulimenos and Fassois,

2006].

Actually, this is the advantage of the DPE methods, which consider a structured deterministic pattern

for their model parameter evolutions. DPE methods for non-stationary identification through random

vibration data records are mainly based on Functional Series TARMA (FS-TARMA) models [Rao, 1970,

Grenier, 1983b,Tsatsanis and Giannakis, 1993,Poulimenos and Fassois, 2006]. The parameters of these

models depend explicitly upon time being projected on specific functional subspaces that are described

by deterministic basis functions Gj [t] (for instance polynomial or trigonometric) as follows:

ai[t] =

pa∑

j=1

ai,j ·Gj [t], ci[t] =

pc∑

j=1

ci,j ·Gj [t] (5.1.5)

where pa and pc stand for the AR and MA functional subspace dimensionalities, respectively. Therefore,

an FS-TARMA model is fully parametrized by the corresponding time-invariant coefficients of projection

ai,j and ci,j which may be estimated through well established stationary methods adjusted to the specific

model form. However, significant differences are caused by the fact that the innovations variance is also

time-dependent and for this reason distinction should be made between parametric FS-TARMA models

with innovations variance expanded on basis functions, that is σ2
e [t] =

∑ps
j=1 sj ·Gj [t], and those which are

based on non-parametrized expression of the time-dependent variance σ2
e [t] leading to a semi-parametric

FS-TARMA type of model.

The price to pay for rendering the estimation of a TARMA model into a time-invariant problem, is the

increased complexity of the FS-TARMA model structure problem which, in addition to the model orders

na, nc, involves the selection of an appropriate family of linearly independent basis functions and the

corresponding functional subspaces. Actually and despite the fact that any family may approximate any

given curve with arbitrary accuracy, as long as a sufficient number of basis functions is used [Walter,

1994, p. 77], due to reasons of statistical efficiency and model parsimony (economy of representation)

the real issue is the selection of a family that may provide the necessary accuracy with a small (or

minimal) number of functions. In practice, this problem may shown to be particularly complex when

various candidate families of basis functions are considered with the appropriate functional subspaces

being searched among a practically infinite set of basis functions.

Besides the difficulties that arise within their parameter and structure estimation, FS-TARMA models

have been shown to be particularly effective for non-stationary random vibration modelling and analysis.

Yet, the advantages of FS-TARMA models over alternative non-stationary models (such as segmentation,

recursive, or smoothness priors models), have been demonstrated via a Monte Carlo comparison study

in [Poulimenos and Fassois, 2006]. However, despite their long history in non-stationary identification

and their successful application in a number of studies, issues such as structure selection, asymptotic

properties, and the postulation of efficient estimation methods, have only recently been studied in a

systematic way. For instance, a novel method that offers important improvements in overcoming the

drawbacks of the functional subspace selection by simultaneously estimating both the characteristics

of the appropriate basis function along with the corresponding coefficients of projection has just been

developed (Chapter 4). Thus, in contrast to the classical FS-TARMA approach, in this new adaptable

approach the basis functions are not prescribed but are adapted to the data in order to form functional

subspaces that provide the highest achievable accuracy.
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Moreover, the asymptotic properties of the FS-TAR/TARMA models that were studied thoroughly in

[Poulimenos and Fassois, 2007,Poulimenos and Fassois, 2009a] have provided the necessary framework

for the understanding of the statistical properties of the estimators and have also led to the development

of alternative statistically efficient estimation schemes. Hence, multi-stage methods which overcome the

problems related with the nonlinear optimization of Maximum Likelihood (ML) estimation have also been

proposed in these studies.

These advancements along with the accumulated experience of forty years of research and develop-

ment constitute FS-TARMA models today a ripe tool for non-stationary identification. Nonetheless, up

to date there is no study offering a holistic view on the subject. The present work aims to fill this gap

by presenting a thorough review on FS-TARMA models covering both theoretical and practical aspects

on the subject. Toward this end, a critical overview of the available methods for the FS-TARMA model

parameter estimation and structure selection problems is presented while special emphasis is placed on

promising new methods that aim at overcoming problems of previous approaches.

The detailed comparison and assessment of the main methods based on Monte Carlo experiments

is also performed. More specifically, the main methods for FS-TARMA parameter estimation and model

structure selection are employed for the identification of simulated models. Several families of basis

functions and various model structure selection criteria are also compared. Finally, comparisons with

alternative non-stationary methods are also performed. These include methods of the UPE and SPE

families based on both TARMA and TSS models. The results of the study demonstrate the effectiveness

and improvements offered by the new methods over previous counterparts, as well as the FS-TARMA

approach overall accuracy and effectiveness.

Summarizing, the main contributions of the present study are:

a) The presentation of a critical survey on FS-TARMA models and their variants regarding their

parameter estimation methods, model structure selection criteria and methods, innovations time-

dependent variance estimation, applications and recent advances.

b) The comparison study of the main methods for FS-TARMA parameter estimation and structure

selection based on Monte Carlo experiments.

The work may be viewed as an extension and update of the survey paper of [Poulimenos and Fassois,

2006] the comparison study of Chapter 2, and the more focused overview of deterministic parameter

evolution models of [Spiridonakos and Fassois, 2009b]. The univariate (scalar) case is currently treated

– for multivariate (vector) methods the reader is referred to [Spiridonakos and Fassois, 2009c,Sato et al.,

2007,Kacha et al., 2008,Jachan et al., 2009].

The remaining of this chapter is organized as follows: An overview of the FS-TARMA models literature

is given in Section 5.2, while the FS-TARMA models and their variants are presented in Section 5.3. The

methods for FS-TARMA model parameter estimation and structure selection are discussed in Sections

5.4 and 5.5 respectively. The application of the main FS-TAR model estimation and structure selection

methods for the identification of a simulated TAR model is presented in Section 5.6, while a respective

TARMA problem is examined in Section 5.7. Finally, the concluding remarks of the study and a brief

outlook are summarized in Section 5.8.

5.2 Overview of the Literature

FS-TARMA models have played an important role in the development and evolution of non-stationary

stochastic signal identification and analysis over the last forty years. They were introduced in 1970 by

Rao [Rao, 1970] who proposed the truncated Taylor series expansion of a TAR model parameters – this is

equivalent to assuming time-dependent parameters that can be described as polynomials of time. Three

years later, Mendel [Mendel, 1973] classified the available non-stationary identification methods into the

aforementioned three classes (UPE, SPE and DPE) and defined a general FS linear regression model as

109



5.2. Overview of the Literature

appropriate for the case in which a set of time-invariant or slowly TV parameters may be distinguished

from the rest of the parameters which evolve rapidly with time.

Functional Series models of the pure TAR form with parameters belonging to a subspace spanned

by Legendre polynomials were used for first time within the context of random vibration, and more

specifically earthquake ground motion, modelling and simulation in an early paper by Kozin in 1977

[Kozin, 1977]. Nevertheless, FS-TARMA models did not enjoy widespread popularity before the early

1980’s, when a number of researchers start studying their properties and examining their potential

for accurate non-stationary signal modelling. One of the researchers who contributed significantly to

the development of FS models is Grenier who extended FS models for the TARMA case and examined

a number of theoretical issues such as the existence of a TARMA representation for a non-stationary

system and the uniqueness of such a representation [Grenier, 1983b]. The ML and the Two-Stage Least

Squares (2SLS) estimators for an FS-TARMA model were also derived in this pioneering study, while in

the following years Grenier and his colleagues published a number of papers on FS model variants and

speech modelling applications based on such models [Grenier, 1983a, Grenier, 1984, Chevalier et al.,

1985,Grenier, 1986,Lima-Veiga and Grenier, 1991].

Niedźwiecki also contributed to the understanding of the properties and capabilities of FS-TARMA

models with a series of studies in the late 1980’s and early 1990’s – probably he is the first to use

the term “functional series modelling” to describe TAR models with parameters expanded on functional

basis [Niedźwiecki, 1988]. In the latter study, the invariance of the family of basis functions selection

in contrast to the importance of choosing the correct functional subspace was highlighted by the means

of a theorem. Moreover, studying the issue of non-stationary signal modelling under the prism of a

control application Niedźwiecki proposed the Recursive Least Squares (RLS) for the on-line estimation of

FS models with varying coefficients of projection, referred to as “localized” FS model [Niedźwiecki, 1990].

In addition he examined the estimation accuracy of the recursive FS-TAR estimator when utilized for

the identification of a TI system in order to assess the applicability of the method in such problems or

in case in which non-stationarity is in question.

FS-TARMA models with eXogenous input (FS-TARMAX) [Tsatsanis and Giannakis, 1993], FS Time-

dependent Finite Impulse Response (FS-TFIR) models [Tsatsanis and Giannakis, 1996b,Tsatsanis and

Giannakis, 1996a] and a number of issues regarding the properties and the efficient estimation of

these types of models were considered by Tsatsanis and Giannakis. These issues were including the

identifiability of an FS-TFIR model, the PE estimation of FS-TARMAX models, the validity of various

criteria for the FS model structure selection problem while these authors were also the first to propose

a complete model structure selection scheme [Tsatsanis and Giannakis, 1993].

Ben Mrad et al. in 1998 [Ben Mrad et al., 1998a] introduced a multi-stage method for the estimation

of an FS-TARMA model and applied for first time an FS-TARMA model for the modelling of a real world

engineering application, that is the power consumption of an active suspension vehicle [Ben Mrad et al.,

1998b]. Comparisons with the simpler FS-TAR models were also performed in this study. However

a critical comparison between FS-TAR and FS-TARMA models applied for the modelling of a simulated

planar manipulator was presented in [Petsounis and Fassois, 2000]. The comparison was made in terms

of the achievable time-dependent spectrum accuracy, resolution, and tracking, as well as on estimated

modal parameter accuracy and the FS-TARMA models were shown to outperform their counterparts.

A number of studies investigating the properties of FS-TAR and FS-TARMA models and their esti-

mators have been presented by Poulimenos and Fassois over the last decade. The functional subspace

of the inverse function of an FS-TARMA model with known AR and MA functional subspaces was on

focus in [Poulimenos and Fassois, 2003a]. The inverse function representation of an FS-TARMA model

is used within the 2SLS and P-A multi-stage methods that are widely used for FS-TARMA parameter es-

timation. The same authors also recently introduced an appropriate asymptotic analysis framework for

the FS-TAR/FS-TARMA models in which is recognised the dependency of the “true” generating process

of a non-stationary signal on the number of samples [Poulimenos and Fassois, 2007, Poulimenos and

Fassois, 2009a]. In these studies the consistency of the class of Weighted Least Squares (WLS) estima-

tors was proved and the properties under which asymptotic efficiency is attained were also examined.
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Relations for the asymptotic distributions of the WLS estimators were also derived.

Although the majority of FS-TARMA estimation methods rely in time-domain estimators there also

few studies concerned with time-frequency domain methods. These are based on the fitting error min-

imization of an FS model on a non-parametrically obtained time-frequency representation of the signal

under study. Toward this end, the evolutionary spectrum was considered in [Abdrabbo, 1979], the evolu-

tionary periodogram in [Kaderli and Kayhan, 2001] and a time-frequency cepstrum estimate in [Jachan

et al., 2007].

The first steps regarding the rather complex FS-TAR/TARMA model structure selection problem were

taken by Kozin and Nakajima who studied the applicability of the Akaike Information Criterion (AIC) for

the selection of the AR order of a FS-TAR model [Kozin and Nakajima, 1980] under the restrictive

assumption of known and fixed AR basis dimensionality. However, although the significance of the

proper functional subspace selection was underlined in many publications within the first twenty years

of FS-TARMA models history, it was only in 1993 when Tsatsanis and Giannakis presented a complete

model structure selection scheme based on the concept of backward regression. More specifically,

the researchers proposed a scheme which starts with the construction of an initial FS-TAR or FS-

TARMA model of high orders and high subspace dimensionalities in order to assure model adequacy for

representing the non-stationary system. Subsequently a statistical hypothesis F-test is used in order

to reject insignificant terms (basis functions) and reduce the model dimensionality. Recognising the

drawback related with the necessity for selecting a threshold and the subjectivity of such a selection,

authors alternatively proposed the use of the AIC or the Final Prediction Error (FPE) criterion instead

of the F-test. In this case, terms whose removal causes reduction in the criterion values are rejected

until the minimum is achieved. The idea of using an inverse “bottom-up” procedure based on forward

regression, that is constructing the model by adding basis functions terms to a model of low dimension

was also given in the same study and extended in [Tsatsanis, 1995].

The FS-TARMA model structure selection problem has been studied more systematically over the last

decade. For instance, a scheme based on the backward regression concept was proposed in [Poulimenos

and Fassois, 2003b] which decomposes the structure selection problem into two subproblems treated in

equal phases: i) the model orders (na, nc) selection, and (ii) the functional subspaces selection. The goal

of this scheme is to reduce the computational time that is required for the exhaustive search that is done

by Tsatsanis and Giannakis scheme. Forward regression procedure based on Gram-Schmidt orthogo-

nalization was also proposed by Wei and Billings in [Wei and Billings, 2002]. Finally, a more automated

procedure based on integer optimization and Genetic Algorithm (GA) was proposed in [Poulimenos and

Fassois, 2003a].

Most certainly, beyond the model structure selection scheme utilized the family of basis functions

selected for the expansion of the FS model time-dependent parameters is of crucial importance. The

bases that have been proposed in the literature include time polynomials of arbitrary order [Liporace,

1975], polynomial basis functions like Chebyshev [Mukhopadhyay and Sircar, 1997, Ben Mrad et al.,

1994,Fouskitakis and Fassois, 2002], Legendre [Kozin, 1977,Grenier, 1983b] and Jacobi [Poulimenos

and Fassois, 2003a], trigonometric basis functions [Hall et al., 1983, Petsounis and Fassois, 2000,

Poulimenos and Fassois, 2009a, Eom, 1999a], discrete prolate spheroidal functions [Grenier, 1983b,

Charbonnier et al., 1987], various wavelet families [Tsatsanis and Giannakis, 1993, Wei and Billings,

2002,Fouskitakis and Fassois, 2002,Li et al., 2011], and others. Complex exponential basis functions

have also been used for the FS modelling of complex signals or analytic representations of real valued

signals, (for instance see [Tsatsanis and Giannakis, 1996a,Funaki et al., 1998a,Jachan et al., 2007]).

Recently, methods based on multiple basis functions which try to combine the characteristics of two

or more bases have also been proposed. Within this context, Li et al. in [Li et al., 2011] propose

the simultaneous use of B-spline wavelet functions of various orders along with an appropriate model

structure selection scheme, while a method combining the smooth Legendre polynomial functions with

the abrupt Walsh functions via a Gram-Schmidt orthogonalization procedure is utilized in [Chon et al.,

2005].

The FS-TFIR modelling of a cyclostationary signal with parameters expanded on exponential func-
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tions whose frequencies are estimated from the signal’s higher order statistics was also considered

in [Tsatsanis and Giannakis, 1996b]. This study may be considered as a first attempt to adapt basis

functions on a specific problem while a similar approach was followed in [Bakkoury et al., 2000]. A

similar study on the adaptation of sigmoidal basis functions for the modelling of signals with medium

rate transition between two stationary states was also presented in [Kaipio and Karjalainen, 1997]. Even

though in both this paradigms the solutions proposed may be considered as ad-hoc as they were heavily

based on prior knowledge regarding the evolution of the parameters – periodicity in the first case and

transition between two states at an approximately known time instant in the second – both of them

aimed at reducing the basis dimensionality by using this knowledge. On the other hand, a more ad-

vanced method for the simultaneous estimation of both the functional subspaces and the corresponding

coefficients of projection has been introduced in Chapter 4.

Regarding FS-TARMA application on vibration modelling and analysis, Bardou and Sidahmed in

1994 considered the problem of fault detection in a reciprocating compressor [Bardou and Sidahmed,

1994]. To this end, authors utilized Principal Component Analysis (PCA) for extracting an appropriate

feature vector from the FS-TAR coefficients of projection parameters estimated from vibration signals

and subsequently employed neural networks in order to classify the various faults considered. Conforto

and D’Alessio also employ FS-TAR models for the identification and vibrational analysis of rotors with

increasing rotational speed and compared the estimated “frozen” power spectral density with those

obtained by non-parametric methods based on the Short-Time Fourier Transform (STFT) and the Choi-

Williams distribution [Conforto and D’Alessio, 1999b]. In a more recent study Zhang et al. [Zhang et al.,

2010a] applied FS-TAR modelling on rotor vibration during start up under four operating conditions: i)

normal, ii) unbalance, iii) looseness, and iv) rub and they examine the potential of using images of the

estimated PSD for purposes of damage detection.

A number of applications for the identification and dynamic analysis in various laboratory structures

and mechanisms have been performed by the second author and his co-workers during the last decade.

Particularly, in [Poulimenos and Fassois, 2009b] FS-TARMA models were applied for the identification

of a benchmark TV laboratory structure consisting of a beam with moving mass, which is used to

simulate a bridge-like structure with a moving vehicle. The significant advantage of this set-up is

that an accurate baseline model obtained by “freezing” the moving mass at many positions along the

beam was also identified. This baseline model provided a basis for the assessment of the identified

non-stationary models. For this reason this set-up was also used in Chapter 2 for the comparison of FS-

TARMA with alternative non-stationary methods, while multivariate FS-TARMA models were introduced

and used for the same problem in Chapter 3. A finite element model used to represent this structure

was also updated through FS-TARX models in [Dimitriadis et al., 2004]. The identification and dynamic

analysis of a deployable prismatic link structure through FS-TARMA models is on the focus of the studies

[Spiridonakos and Fassois, 2009a,Spiridonakos and Fassois, 2009b] while the identification of adaptable

FS-TARMA which achieves simultaneous estimation of both functional subspaces and coefficients of

projection is introduced and applied for the dynamic analysis of a pick-and-place mechanism in Chapter

4 of the present thesis.

Within the context of vibration-based damage detection, a statistical decision framework utilizing

the residuals of an FS-TARX model was applied for the on-line damage detection in the aforementioned

“bridle-like” structure [Poulimenos and Fassois, 2004b]. A similar framework based on a multivariate

FS-TARX model and the likelihood ratio test was proposed and applied for the fault detection in an

expandable prismatic link laboratory structure in [Spiridonakos and Fassois, 2009d], while a framework

based on the AR coefficients of projection and the asymptotic properties of a multi-stage estimator

were utilized for the damage detection and identification in a time-varying pick-and-place mechanism in

[Spiridonakos and Fassois, 2012]. In order to assess the impact of a damage on the modal characteristics

of a reinforced concrete frame, Huang et al. [Huang et al., 2009] also applied FS-TARX modelling on

segments of vibrational data.

The modelling, analysis and simulation of earthquake ground motion signal records based on FS-

TAR and FS-TARMA models has also been studied in [Fouskitakis and Fassois, 2002], while FS-TARMA

112



5. Non-Stationary Vibration Modelling and Analysis via FS-TARMA Models

models have been used also for the identification of automobile subsystems. Particularly, Ben Mrad and

his colleagues worked on the FS-TARMA modelling of the power consumption of an active suspension

vehicle [Ben Mrad et al., 1998b,Ben Mrad and Farag, 2002] based on acceleration signals.

Beyond non-stationary vibration modelling applications, FS-TARMA models have been also utilized

in a number of disciplines. For instance, in 1980’s FS-TARMA models found fertile ground in the field

of speech signal analysis as a competitor of the widely used short-time approach and a number of

application studies were presented [Hall et al., 1983, Chevalier et al., 1985, Grenier, 1986, Boudaoud

and Chaparro, 1987, Flaherty, 1988], while similar studies are performed up to date [Nathan et al.,

1991, Tsatsanis and Giannakis, 1993, Akan and Chaparro, 1994, Ha and Ann, 1995, Funaki et al.,

1998b, Conforto and D’Alessio, 1999a, Funaki, 2001, Kacha et al., 2005, Evers and Hopgood, 2007,

Schnell and Lacroix, 2007]. The main advantage that FS models offered within this application area is

the high compression rates as they are characterized only by a small number of parameters. Beyond

speech signals, FS-TARMA modelling has been applied also on various acoustic signals. For instance, the

FS-TAR and FS-TARMA modelling of bat echolocation calls is performed in [Grenier, 1985] and [Jachan

et al., 2007], respectively, while dolphins whistle sounds are analysed by time-varying notch filters

based on FS-TARMA models of a special form in [Johansson and White, 2008]. Finally, the “frozen”

characteristics of identified FS-TAR models are used for the classification of vehicle acoustic signatures

through neural networks in [Eom, 1999a].

Furthermore, even though the modelling of biomedical signals, and more specifically ElectroEn-

cephaloGram (EEG) signals, that is recordings of the electrical activity along the scalp of human subjects,

was one of the first FS-TAR applications on real data [Gersch et al., 1983], the interest of the biomedical

scientific community on FS-TARMA models was rekindled during the last fifteen years. Beyond stud-

ies on EEG analysis [Kaipio and Karjalainen, 1997, Juntunen et al., 1998, Hiltunen et al., 1999, Sato

et al., 2007, Kacha et al., 2008, Salcedo et al., 2008, Pachori and Sircar, 2008, Zhang et al., 2010b, Li

et al., 2011], FS-TARMA models have also been applied for the modelling of heart rate and blood ve-

locity signals [Thonet and Vesin, 1997, Girault et al., 2000, Zou et al., 2003, Chon et al., 2005, Chon

et al., 2008,Yang and Chon, 2010], electromyographic signals [Korosec, 2000,Zhang et al., 2010c] the

modelling of the respiratory airflow [Ciftci and Kahya, 2008], modelling of the human elbow dynamic

stiffness [Sanyal et al., 2005] and data acquired during an experiment of functional magnetic resonance

imaging [Salcedo et al., 2008]. The aim of these studies is the detection of diseases or disorders through

the classification of biomedical processes signals acquired from healthy and unhealthy subjects.

Finally, besides the aforementioned applications, models of the FS-TARMA class have also been

utilized for the modelling of the nonlinear process of mass air flow going into an automobile engine [Ben

Mrad, 2002], the modelling of communication channels [Jachan and Matz, 2005,Zheng et al., 2001b],

the analysis of financial data [Hinich and Roll, 1981,Gersch and Kitagawa, 1982,Salcedo et al., 2008],

for purposes of classification of objects through contour images [Paulik et al., 1992, Eom, 2000], the

modelling of sunspot data and the identification of a flight vehicle experimental simulator [Wei and

Billings, 2002], for the reliability analysis of railway vehicles based on the modelling of times between

failures series [Stavropoulos and Fassois, 2000], and others.

5.3 FS-TARMA Identification Problem Statement

The goal of the present section is to provide a more complete description of the FS-TARMA models, report

on the various extensions and variants and classify them putting together all the different pieces.

FS-TARMA models are based on the assumption that their parameters follow a deterministic pattern

and thus they may be expanded on properly selected functional subspaces. According to the classical

approach these functional subspaces are considered to be selected from an ordered set of linearly in-

dependent basis functions of a particular family (such as polynomial, trigonometric, wavelets or other).

In early FS-TARMA studies this subspace was formed by consecutive basis functions up to a maximum

index – note that for purposes of simplicity this notation was also used in Eq. (5.1.5). Nevertheless, more

economic representations may be obtained by using an appropriate model structure selection method in
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order to pick out only the most significant non-consecutive basis functions.

Using this approach, a classical parametric FS-TARMA(na, nc)[pa,pc,ps] model, with na, nc designating

its AR and MA orders, respectively, and pa, pc, ps its AR, MA, and innovations variance functional

subspace dimensionalities, is defined as follows [Poulimenos and Fassois, 2006]:

x[t] +

na∑

i=1

ai[t] · x[t− i] = e[t] +

nc∑

i=1

ci[t] · e[t− i], e[t] ∼ NID(0, σ2
e [t]) (5.3.1a)

FAR =
{
Gda(1)[t], . . . , Gda(pa)[t]

}
, FMA =

{
Gdc(1)[t], . . . , Gdc(pc)[t]

}
,

Fσ2
e [t] =

{
Gds(1)[t], . . . , Gds(ps)[t]

} (5.3.1b)

ai[t] =

pa∑

j=1

ai,j ·Gda(j)[t], ci[t] =

pc∑

j=1

ci,j ·Gdc(j)[t], σ2
e [t] =

ps∑

j=1

sj ·Gds(j)[t] (5.3.1c)

with ‘F” designating functional subspace of the indicated quantity, da(i) (i = 1, . . . , pa), dc(i) (i =
1, . . . , pc) and ds(i) (i = 1, . . . , ps) the indices of the specific basis functions that are included in each

subspace, while ai,j , ci,j , and sj stand for the AR, MA, and innovations variance, respectively, coefficients

of projection. Thus, in this classical approach the complete model parameter vector θ consists of these

coefficients of projection, while considering a specific basis function family the FS-TARMA model struc-

ture selection procedure concerns the determination of the AR and MA orders na, nc, and the AR, MA

and innovations variance basis functions indices vectors da = [da(1), . . . , da(pa)]
T

, dc = [dc(1), . . . , dc(pc)]
T

,

and ds = [ds(1), . . . , ds(ps)]
T

, that is:

θ = [ϑTa ϑ
T
c ϑ

T
s ]T = [a1,1, . . . , ana,pa c1,1, . . . , cnc,pc s1, . . . , sps ]

T
(5.3.1d)

M = {na, nc,da,dc,ds} (5.3.1e)

Apparently in this case, the functional subspace dimensionalities are given by the length of the basis

indices vectors, that is pa = dim(da), pc = dim(dc) and ps = dim(ds), where dim(·) indicates the

dimension of the indicated vector. A classical semi-parametric FS-TARMA(na, nc)[pa,pc] model may be

obtained when the innovations variance is not expanded on basis functions, either because its estimation

is not of direct interest or for the purposes of simplification as in this case there is no need for estimating

the parameters sj and ds.

In contrast to the classical, an alternative Adaptable FS-TARMA (AFS-TARMA) approach consid-

ers functional subspaces which are not selected from a prescribed set of basis functions, but uses

parametrized basis functions which are fully determined by an a-priori unknown vector of parameters

δ (Chapter 4). The latter has also to be estimated along with the coefficients of projection vector ϑ and

in this way the basis functions may be automatically adapted to the data in order to track the evolution

of the system parameters with the highest possible accuracy. A parametric AFS-TARMA(na, nc)[pa,pc,ps]

model is defined as follows:

x[t] +

na∑

i=1

ai[t] · x[t− i] = e[t] +

nc∑

i=1

ci[t] · e[t− i], e[t] ∼ NID(0, σ2
e [t]) (5.3.2a)

FAR =
{
Ga(1)[t, δa], . . . , Ga(pa)[t, δa]

}
, FMA =

{
Gc(1)[t, δc], . . . , Gc(pc)[t, δc]

}
,

Fσ2
e [t] =

{
Gs(1)[t, δs], . . . , Gs(ps)[t, δs]

} (5.3.2b)

ai[t] =

pa∑

j=1

ai,j ·Ga(j)[t, δa], ci[t] =

pc∑

j=1

ci,j ·Gc(j)[t, δc], σ2
e [t] =

ps∑

j=1

sj ·Gs(j)[t, δs] (5.3.2c)
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Table 5.3.1: Types of FS-TARMA models.

Classical Model Adaptable Model

Semi-parametric

FS-TARMA(na, nc)[pa,pc] AFS-TARMA(na, nc)[pa,pc]

θ = [ϑTa ϑ
T
c ]T θ = [ϑTa ϑ

T
c δ

T
a δ

T
c ]T

M = {na, nc,da,dc} M = {na, nc, pa, pc}

Parametric

FS-TARMA(na, nc)[pa,pc,ps] AFS-TARMA(na, nc)[pa,pc,ps]

θ = [ϑTa ϑ
T
c ϑ

T
s ]T θ = [ϑTa ϑ

T
c ϑ

T
s δ

T
a δ

T
c δ

T
s ]T

M = {na, nc,da,dc,ds} M = {na, nc, pa, pc, ps}
θ : complete model parameter vector

M : set of model structure parameters

where δa, δc, and δs indicate the AR, MA, and innovations variance functional subspace parameter

vector, respectively. For this adaptable approach the model structure is defined by the model orders

na, nc, and the basis dimensionalities pa, pc, ps, while the complete parameter vector now contains also

the functional subspace parameters:

θ = [ϑTa ϑ
T
c ϑ

T
s δ

T
a δ

T
c δ

T
s ]T (5.3.2d)

M = {na, nc, pa, pc, ps} (5.3.2e)

Comparing Eq. (5.3.2e) with Eq. (5.3.1e) is observed that in the adaptable approach the model struc-

ture selection problem is significantly reduced at the price of the increased dimension of the complete

parameter vector θ.

As already mentioned two different families of adaptable basis functions have been proposed (Chap-

ter 4): A B-splines family characterized by initially unknown control points (knots), and a decaying

trigonometric family with initially unknown rates of decay and frequencies. However, within this context

several other families of adaptable basis functions could be proposed such as orthogonal polynomials

generated by a recurrence relation with initially unknown coefficients, wavelets with initially unknown

scaling and shifting parameters, and others. It should be noticed that in all the aforementioned cases

constraints apply on the functional subspace parameter vectors δ’s which for example in the case of

non-uniform B-splines with a-priori unknown knots have to do with the limits imposed by the time axis

limits (t ∈ [1, N ]) while additional constraints may apply if only distinct knots are considered (for more

details see Chapter 4).

Apparently, also in this case a semi-parametric AFS-TARMA(na, nc)[pa,pc] model may be obtained by

ignoring the parametric representation of the innovations variance of Eq. (5.3.2c). The types of FS-

TARMA models outlined in the preceding paragraphs are summarized in Table 5.3.1.

Remarks:

(i) In case of known input the FS-TARMA model may be readily extended to the FS-TARMA with eX-

ogenous input (FS-TARMAX) model [Ben Mrad, 2002,Niedźwiecki, 2000,Tsatsanis and Giannakis,

1993,Zheng et al., 2001a]:

x[t] +

na∑

i=1

ai[t] · x[t− i] =

nb∑

i=nd

bi[t] · u[t− i] + e[t] +

nc∑

i=1

ci[t] · e[t− i], e[t] ∼ NID(0, σ2
e [t]) (5.3.3)

where u[t] designates the input signal, nb the corresponding order and nd the excitation delay,

with the time-dependent parameters bi[t] being also expanded on selected or estimated functional

subspace depending on which approach is followed, classical or adaptable. Of course, FS-TARX

models may also be obtained by omitting the MA part [Niedźwiecki, 1990,Tsatsanis, 1995,Bakkoury
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et al., 2000,Poulimenos and Fassois, 2004b], while omitting both the AR and MA parts results in an

FS-TFIR model [Niedźwiecki, 1988,Tsatsanis and Giannakis, 1996a]. Although this study focuses

on the output-only FS-TAR and FS-TARMA models, the methods described in the sequel may also

be adapted to the identification of the aforementioned input-output types of models.

(ii) A more general FS-TARMA model may be defined by considering uncommon functional subspaces

for the AR and MA parameters, that is FAR =
{
Fa1[t], . . . ,Fana [t]

}
and FMA =

{
Fc1[t], . . . ,Fcnc [t]

}
.

However, for the purposes of notational simplicity common functional subspaces have been con-

sidered in the above definitions.

(iii) In this study the most widely used “shifted” TARMA model form in which the model parameters

are not “synchronized” with the lagged variables x[t − i] and e[t − i] is adopted. However, a

“synchronous” TARMA model of the following form:

x[t] +

na∑

i=1

ai[t− i] · x[t− i] = e[t] +

nc∑

i=1

ci[t− i] · e[t− i] (5.3.4)

may also be used [Grenier, 1983b, Grenier, 1989b]. Even though the distinction between the

two forms is only superficial, the “shifted” form is conceptually simpler and easily connected to

the “frozen-time” concept that is often used during model-based analysis [Grenier, 1989b, pp.

156-157].

(iv) It should be noted that, alternatively, the innovations standard deviation σe[t] may be projected

onto the selected functional subspace, that is σe[t] =
∑ps

j=1 sj ·Gds(j)[t]. In this case ϑs represents

the innovations standard deviation coefficient of projection vector. Yet, this choice leads to more

economic representations since the standard deviation depicts lower variability than its squared

version (variance) and normally requires less basis functions for its accurate description.

(v) In the majority of FS-TARMA studies the innovations sequence is considered to be a stationary

process, that is its variance is constant through time σe[t] = c, which of course constitutes a special

case of the general model of Eq. (5.3.1). Stationary innovation sequences following non-Gaussian

distributions have also been considered in [Funaki et al., 1998b,Zheng et al., 2001b,Bakrim et al.,

1994,Sanubari and Tokuda, 1997].

5.3.1 The identification problem

The complete FS-TARMA/AFS-TARMA identification problem may be stated as follows:

Definition. “Given N observations of the vibration response, say xN = {x[1] . . . x[N ]} and the FS-TARMA

or AFS-TARMA model set:

M ∆
=

{
M(θ) : x[t] +

na∑

i=1

ai[t,θ] · x[t− i] = e[t,θ] +

nc∑

i=1

ci[t,θ] · e[t− i,θ];

σ2
e [t] = E

{
e2[t,θ]

}
, t = 1, . . . N, θ ∈ Θ ⊆ Rdim(θ)

}
,

(5.3.5)

select an element of M that best fits the observations”.

In this expression θ designates the complete model parameter vector, Θ the parameter space defined

by the parameter constraints (Θ ≡ Rdim(θ)
for the classical FS-TARMA approach), while e[t,θ] stands

for the model’s one-step-ahead prediction error (residual) sequence, which, as in the stationary case,

coincides with the model’s innovations sequence e[t] [Poulimenos and Fassois, 2006].

The parameter vector θ and the model structure M have to be estimated from available data. These

quantities are given in Table 5.3.1 for each FS-TARMA type. The complete problem is usually distin-

guished into two subproblems: (a) the parameter estimation subproblem (for a given model structure

M), and (b) the model structure selection subproblem. These are discussed in the following sections.
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5.4 Parameter Estimation Methods

The estimation of the model parameter vector θ based on a given, N -sample long, non-stationary signal

record xN and a selected specific model “structure” M is presently considered.

5.4.1 The Maximum Likelihood (ML) method

Semi-Parametric Models. The ML estimator of θ may be obtained through the maximization of the

log-likelihood function, which for the semi-parametric FS-TARMA/AFS-TARMA model and under the

Gaussian assumption for the innovations sequence is given as [Poulimenos and Fassois, 2006, Pouli-

menos and Fassois, 2007,Poulimenos and Fassois, 2009a,Tsatsanis and Giannakis, 1993]:

lnL(θ,σe|xN ) = −N
2
· ln 2π − 1

2
·
N∑

t=1

(
ln
(
σ2
e [t]
)

+
e2[t,θ]

σ2
e [t]

)
(5.4.1)

with σe =
[
σ2
e [1], . . . , σ2

e [N ]
]T

constituting a nuisance parameter vector of high dimensionality while θ is

a parameter vector of low dimensionality. In such cases, the nuisance parameter vector may be “profiled

out” from the log-likelihood function by considering the Conditional Maximum Likelihood (CML) estimate

of σ̂e for known θ and substituting it into Eq. (5.4.1). Toward this end,

∂ lnL

∂σ2
e [t]

= 0 =⇒ −1

2
·
[

1

σ2
e [t]
− e2[t,θ]

σ4
e [t]

]
= 0 =⇒ σ̂2

e [t] = e2[t,θ], for t = 1, . . . , N (5.4.2)

This estimate indeed leads to a maxima of the conditional log-likelihood function as:

∂2 lnL

∂(σ2
e [t])

2

∣∣∣∣
σ2
e [t]=e2[t,θ]

= −1

2
·
[ −1

σ4
e [t]

+
2e2[t,θ]

σ6
e [t]

]

σ2
e [t]=e2[t,θ]

= −1

2
·
[

2

σ4
e [t]
− 1

σ4
e [t]

]
= − 1

2σ4
e [t]

< 0 (5.4.3)

From the above it follows that:

θ̂ = arg max
θ

{
lnL

(
θ, σ̂e|xN

)}
= arg max

θ

{
−1

2

N∑

t=1

ln e2[t,θ]

}
(5.4.4)

θ̂ is actually a pseudo-likelihood estimator which however leads to the same point estimate with the

original ML estimator of θ and σe [Garthwaite et al., 2002, p. 55]. Profile likelihood is one of the several

modifications of the likelihood, collectively known as pseudo-likelihoods, which are based on a derived

likelihood for a subset of parameters [Garthwaite et al., 2002]. The derived maximization problem is

a non-quadratic one which has to be solved through nonlinear optimization techniques for both FS-

TAR/AFS-TAR and FS-TARMA/AFS-TARMA cases. Note that in the adaptable approach constraints

apply for the δa, δc parameter vectors and thus appropriate methods have to be applied for θ estimation

(for instance interior point methods may be used in this context [Nocedal and Wright, 2006, Ch. 19]).

Parametric Classical Models. In the fully parametrized classical FS-TARMA approach (θ = [ϑTa ϑ
T
c ϑ

T
s ]T =

[ϑTa|c ϑ
T
s ]T ), and under Gaussian innovations, the log-likelihood function is:

lnL(θ|xN ) = −N
2
· ln 2π − 1

2
·
N∑

t=1

(
ln
(
σ2
e [t,ϑs]

)
+
e2[t,ϑa|c]

σ2
e [t,ϑs]

)
(5.4.5)

In this case, the derivation of the profile likelihood function does not lead to a simplified form while the

dimension of the innovations variance parameter vector ϑs is usually much lower than the dimension

of ϑa|c. Finally, it must be added that also in this case, and even for the simpler FS-TAR model, the

log-likelihood function is still non-quadratic in terms of ϑs.
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Parametric Adaptable Models. The θ ML estimator for a parametric AFS-TARMA model (θ = [ϑTa|c ϑ
T
s

δTa|c δ
T
s ]T ) may be obtained from the maximization of the following equation:

lnL(θ|xN ) = −N
2
· ln 2π − 1

2
·
N∑

t=1

(
ln
(
σ2
e [t,ϑs, δs]

)
+
e2[t,ϑa|c, δa|c]

σ2
e [t,ϑs, δs]

)
(5.4.6)

subject to the constraints that apply for the functional subspace parameter vectors δa, δc, δs. This

optimization problem has to be handled via appropriate constrained nonlinear optimization techniques.

Remarks:

(i) The ML estimation problem in all of the aforementioned cases has to be handled via iterative

optimization techniques. Normally, these techniques require rather accurate initial estimates in

order to overcome potential local maxima. These initial estimates may be provided by regression

type methods, a summary of which is outlined in the subsequent sections.

(ii) When stationary innovation sequence is considered the ML estimator coincides with the Weighted

Least Squares (WLS) estimator [Tsatsanis and Giannakis, 1993,Eom, 1999b].

5.4.2 Regression type methods for classical models

In general, regression type methods are based on a regression-type model representation:

x[t] = −
na∑

i=1

pa∑

j=1

ai,j ·Gda(j)
[t] · x[t− i] +

nc∑

i=1

pc∑

j=1

ci,j ·Gdc(j) [t] · e[t− i,ϑa|c] + e[t,ϑa|c] =

= −
(
a1,1 ·Gda(1)

[t] + . . .+ a1,pa ·Gda(pa)
[t]
)
· x[t− 1]− . . .

+
(
cnc,1 ·Gdc(1)

[t] + . . .+ cnc,pc ·Gdc(pc) [t]
)
· e[t− nc,ϑa|c] + e[t,ϑa|c] =⇒

=⇒ x[t] =




−x[t− 1] ·Gda(1)
[t]

−x[t− 1] ·Gda(2)
[t]

.

.

.

−x[t− na] ·Gda(pa−1)
[t]

−x[t− na] ·Gda(pa)
[t]

e[t− 1,ϑa|c] ·Gdc(1)
[t]

e[t− 1,ϑa|c] ·Gdc(2)
[t]

.

.

.

e[t− nc,ϑa|c] ·Gdc(pc−1)
[t]

e[t− nc,ϑa|c] ·Gdc(pc) [t]




︸ ︷︷ ︸
φ[t,ϑa|c]

T

·




a1,1

a1,2
.
.
.

ana,pa−1

ana,pa
c1,1

c1,2
.
.
.

cnc,pc−1

cnc,pc




︸ ︷︷ ︸
ϑa|c

+ e[t,ϑa|c] (5.4.7)

or, using the stacked signal and innovations sequence vectors x =
[
x[1], . . . , x[N ]

]T
and e(ϑa|c) =[

e[1,ϑa|c], . . . , e[N,ϑa|c]
]T

:

x = Φ(ϑa|c) · ϑa|c + e(ϑa|c) (5.4.8)

where Φ(ϑa|c) =
[
φ[1,ϑa|c], . . . ,φ[N,ϑa|c]

]T
is the regression matrix. It may be observed that this model

form may be used only for the estimation of the AR/MA coefficients of projection parameter vector ϑa|c,
while ϑs, if it is of interest (parametric FS-TARMA model type), may be subsequently estimated based

on the model’s one-step-ahead prediction error (residual) sequence e[t, ϑ̂a|c].
Thus, within the context of regression type methods, the estimation of the parameter vectors ϑa|c

and ϑs is achieved in distinct sequential phases. More specifically, for the more general parametric
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FS-TARMA model type each regression method includes at least the following phases: (a) Estimation

of ϑa|c based on the minimization of a suitable Prediction Error (PE) criterion and (b) estimation of ϑs

based on e[t, ϑ̂a|c] obtained from the first phase.

5.4.2.1 Phase A: Estimation of AR/MA coefficients of projection parameter vector

The estimation of the coefficients of projection parameter vector ϑa|c is in general based on the mini-

mization of the Weighted Least Squares (WLS) criterion:

ϑ̂a|c = arg min
ϑa|c

{
N∑

t=1

e2[t,ϑa|c]

w2[t]

}
= arg min

ϑa|c

{
e(ϑa|c)

T ·W · e(ϑa|c)
}

(5.4.9)

where w2[t] is a user defined weighting sequence and W = diag{1/w2[1], . . . , 1/w2[N ]} the respective

N ×N diagonal weighting matrix. Poulimenos and Fassois in their recent studies on asymptotic analysis

of FS-TAR [Poulimenos and Fassois, 2007, Theorem 1] and FS-TARMA [Poulimenos and Fassois, 2009a]

model estimators have proven that any weighting sequence w2[t] being bounded uniformly in t, that is

0 < w2 ≤ w2[t] ≤ w2 <∞ (for every t), leads to a consistent estimator of the true parameter vector ϑoa|c.
The consistency of the WLS estimator is valid under some rather mild regularity conditions with respect to

model stability and of course under the condition that the candidate model to be estimated has the same

structure M with the true model that generated the non-stationary signal under study [Poulimenos and

Fassois, 2007,Poulimenos and Fassois, 2009a]. Note that the weighting sequence bounding condition

is equivalent with the condition for a positive definite weighing matrix W .

However, despite consistency is guaranteed for any positive definite weighting sequence w2[t], an

asymptotically efficient estimator, that is the WLS estimator with the smallest asymptotic covariance

matrix, is achieved when the weighting sequence utilized is proportional to the true innovations variance

w[t] = c ·σ2
e [t] [Poulimenos and Fassois, 2007,Poulimenos and Fassois, 2009a]. Yet, the true innovations

variance is a-priori unknown and has to be replaced by an appropriate estimate σ̂2
e [t], and thus multi-

stage methods including both Phase A and Phase B methods must be employed.

Apparently, depending on the specific weighting sequence employed various ϑa|c estimation methods

may be proposed. The most important of them are described in the sequel. However, before proceeding

with them it must be noted that due to the dependence of the model residual on the model parameter

vector ϑa|c the regression model of Eq. (5.4.8) is nonlinear in the full FS-TARMA case but linear for the

simpler FS-TAR case (x = Φ · ϑa + e(ϑa)). This significant difference between FS-TAR and FS-TARMA

models makes the separate examination of the corresponding estimation methods imperative.

The FS-TAR case

The Weighted Least Squares (WLS) method. The linear dependence of the innovations sequence e[t,ϑa]
on the parameter vector ϑa leads to a linear WLS estimator for the latter:

ϑ̂a =
(
ΦT ·W ·Φ

)−1 ·
(
ΦT ·W · x

)
(5.4.10)

independently of the weighting matrix W utilized.

The Ordinary Least Squares (OLS) method. As long as the true innovations variance σ2
e [t] is a-priori

unknown and consistency is guaranteed for any uniformly bounded weighting sequence, the simplest

and obvious choice for w2[t] is to set it equal to unity. In this case, estimation of ϑa is achieved through

the Ordinary Least Squares (OLS) estimator:

ϑ̂a =
(
ΦT ·Φ

)−1 ·
(
ΦT · x

)
(5.4.11)

Nevertheless, it is reminded that this choice is suboptimal with respect to the achieved asymptotic

efficiency [Poulimenos and Fassois, 2007].
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The Recursive Least Squares (RLS) method. The OLS estimator may be also realized recursively

through the classic Recursive Least Squares (RLS) scheme [Niedźwiecki, 2000, pp. 203-205] [Niedźwiecki

and Klaput, 2002]. The RLS method was initially proposed for on-line applications [Xianya and Evans,

1984,Niedźwiecki, 1990] and/or the problem of slowly varying coefficients of projection ϑa[t] [Boudaoud

and Chaparro, 1987,Charbonnier et al., 1987]. For the latter case the RLS method may be based on an

exponentially weighed PE criterion introduced through a suitably selected forgetting factor λ. However, it

should be stressed that problems related to the selection of λ arise in this case while also FS-TAR models

with only partially structured parameter evolution are obtained as long as the coefficient of projection

vector has to be stored for every time instant t = 1, . . . , N .

On the other hand, when batch processing and TI coefficients of projection are considered, the RLS

estimation method must be (recursively) applied to the data record, with the final AR coefficient of

projection estimate ϑ̂a[N ] being maintained. In this case, improved RLS estimates may be obtained by

applying the method in sequential phases (for instance a forward pass, a backward pass and a final

forward pass over the data) in order to reduce the effects of arbitrary initial conditions.

The Multi-Stage (MS) method. A Multi-Stage (MS) method which approximates the optimal, in terms

of asymptotic efficiency WLS estimator has been introduced in [Poulimenos and Fassois, 2007]. The MS

method consists of three stages:

Stage 1. Initial AR projection coefficient vector estimation: In this stage an initial estimation of the AR

projection coefficient vector is obtained through the OLS estimator (Eq. (5.4.11)).

Stage 2. Innovations variance projection coefficient vector estimation: Estimation of the innovations

variance parameter vector ϑs, is achieved by maximizing the conditional log-likelihood function with

respect to ϑs replacing the innovations e[t,ϑa] by their respective estimates e[t, ϑ̂a] = x[t] − φT [t] · ϑ̂a
in Eq. (5.4.5). This stage is described in more detail in Section 5.4.2.2 where Phase B of regression

methods dealing with estimation of ϑs is discussed.

Stage 3. Final AR projection coefficient vector estimation: Final estimation of the AR projection coefficient

vector is obtained by the WLS estimator of Eq. (5.4.10) by utilizing the innovations standard deviation

CML estimate for the weighting sequence, that is w2[t] = σ̂2
e [t] =

∑ps
j=1 ŝj ·Gds(j)[t].

Stages 2 and 3 of the MS method may be iterated until a convergence criterion with respect to

the estimated parameters and/or the PE criterion is met. Further simplification may be achieved by

relaxing the requirement for a ML estimator of ϑs which as shown in Section 5.4.2.2 necessitates the

use of nonlinear optimization techniques. In such a case a “relaxed” version of the aforementioned MS

method may be derived (Relaxed Multi-Stage; RMS). Yet, the RMS method does not share the same

asymptotic properties with the MS.

The FS-TARMA case

The WLS and OLS methods. Distinction should be made again between the simple w2[t] = 1 case

leading to an OLS estimator and the general WLS estimator for any other weighting sequence. However,

as already mentioned, in the case of FS-TARMA models the innovations are nonlinearly dependent on

the MA coefficients of projection vector ϑc (Eq. (5.4.7)), and thus minimization of the PE criterion is a

non-quadratic optimization problem regardless of the weighting sequence w2[t] utilized [Poulimenos and

Fassois, 2006]. Such problems may be tackled via common iterative nonlinear optimization techniques

– usually the Gauss-Newton or the Levenberg-Marquardt algorithm [Nocedal and Wright, 2006, Ch.

10] – utilizing the Jacobian matrix of the model innovations with respect to the AR/MA coefficients of

projection vector ϑa|c. A detailed description of the Jacobian matrix construction may be found in [Ben

Mrad et al., 1998a].

Yet, nonlinear least squares techniques are sensitive to the initial parameter values and if no accurate

estimates are available the minimization procedure is very likely to converge to a local minima. The

minimization of the PE criterion through OLS estimation has been shown to be of increased complexity

even for problems of low dimensionality [Ben Mrad et al., 1998a]. Due to the potential wrong convergence

problems when arbitrary initial estimates are utilized, suboptimal multi-stage methods such as the Two
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Stage Least Squares (2SLS; [Grenier, 1983b,Poulimenos and Fassois, 2006]) or the Polynomial-Algebraic

(P-A; [Ben Mrad et al., 1998a, Fouskitakis and Fassois, 2001, Poulimenos and Fassois, 2006]) may be

used either as suboptimal solutions or just in order to provide initial estimates to be refined via iterative

techniques.

The Two Stage Least Squares (2SLS) method. The main idea behind this method is the approximation

of the nonlinear OLS problem by a pseudo-linear problem through the replacement of the unknown

innovations e[t,ϑa|c] of the regression matrix Φ(ϑa|c) (Eq. (5.4.8)) by respective estimates. The 2SLS

method consists of the following stages:

Stage 1. Inverse function estimation. A long (of high AR order) FS-TAR(nq)[pq ] model which is meant to

approximate the inverse function representation of the original FS-TARMA model is considered as follows

(see [Poulimenos and Fassois, 2006] on the existence and the properties of such a representation):

x[t]−
nq∑

i=1

pq∑

j=1

qi,j ·Gq(j)[t] · x[t− i] + e[t,ϑq] (5.4.12)

with nq � max(na, nc). The identification of this long FS-TAR model based on the minimization of the

PE criterion is a linear optimization problem which (as previously shown) may be solved by the OLS

method. Consequently, estimates of the model innovations e[t, ϑ̂q] may be readily obtained.

Stage 2: AR/MA projection coefficient estimation. The FS-TARMA model is approximated by replacing the

past, but not the current, values of the prediction error e[t,ϑa|c] by the previously obtained estimates

e[t, ϑ̂q] in Eq. (5.4.8):

x = Φ(ϑ̂q) · ϑa|c + e(ϑa|c) (5.4.13)

and solving the resultant linear regression problem in the OLS sense. The final residual sequence is

estimated based on the estimate ϑ̂a|c and the TARMA model expression of Eq. (5.1.3).

Remarks:

(i) The second stage of the 2SLS method may be iterated, replacing in every iteration the past values

of the prediction error e[t,ϑa|c] by the most recent estimates e[t, ϑ̂a|c], until a minimum value of

the PE criterion is achieved.

(ii) Usually selecting nq between two and five times of max(na, nc) is adequate, however its value may

also be optimized based on an appropriate model structure selection scheme (see Section 5.5).

(iii) Theoretically, the inverse function representation is an FS-TAR model of infinite order [Poulimenos

and Fassois, 2006], while its TV parameters are expanded onto functional subspaces that stem

from the combination of the subspaces of the initial FS-TARMA model [Poulimenos and Fassois,

2003a]. However, these functional subspaces may, in certain cases (for instance in cases of high MA

subspace dimensionalities), become of quite high dimensionalities. This may lead to statistically

unreliable estimates if the ratio of the number of available signal samples over the number of

projection coefficients to be estimated is smaller than, say, 20. In such a case it is preferable to

use truncated functional subspaces for the inverse function parameters.

(iv) A Two Stage Weighted Least Squares (2SWLS) method is obtained if the estimation of the AR/MA

coefficients of projection vector taking place at the second stage of the method, is achieved by

solving the approximate linear regression model x = Φ(ϑ̂q) · ϑa|c + e(ϑa|c) in the WLS sense. An

estimate of the innovations variance based on the residuals e[t, ϑ̂q] may be utilized for this purpose.

(v) 2SLS, 2SWLS and P-A methods do not lead to consistent estimators.

The Recursive Extended Least Squares (RELS) method. The OLS estimator may be also approximated

through the Recursive Extended Least Squares (RELS) method [Niedźwiecki, 2000, pp. 136-137]. In this

method, at a given time instant t the unknown innovations e[t − i,ϑa|c] that appear in the regression

matrix of Eq. (5.4.8) are replaced by the respective a-posteriori one-step ahead predictions of the algo-

rithm obtained during the previous time instant t − 1. This estimation method is (recursively) applied
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Table 5.4.1: RELS estimation method.

Estimator update ϑ̂a|c[t] = ϑ̂a|c[t− 1] + k[t] ·
(
x[t]− φT [t] · ϑ̂a|c[t− 1]

)

Gain
∗
: k[t] =

P [t− 1] · φ[t]

λ+ φT [t] · P [t] · φ[t]

Covariance” update
∗ P [t] =

1

λ
·
(
P [t− 1]− P [t− 1] · φ[t] · φT [t] · P [t− 1]

λ+ φT [t] · P [t] · φ[t]

)

A-posteriori error ê[t|t] = x[t]− φT [t] · ϑ̂a|c[t]

φ[t]
∆
=
[
−Gda(1)[t] · x[t− 1] . . . −Gda(pa)[t] · x[t− na]

.

.

. Gdc(1)[t] · ê[t− 1|t− 1] . . . Gdc(pc)[t] · ê[t− nc|t− nc]
]T

∗λ = 1 for time-invariant coefficients of projection.

Initialization: ϑ̂a|c[0] = 0, P [0] = αI with α designating a “large” positive number. The signal and a-posteriori

error initial values are set to zero.

to the data record, with the final AR/MA coefficient of projection estimate being equal to ϑ̂a|c[N ]. The

method is presented in Table 5.4.1. To reduce the effects of arbitrary initial conditions, recursions on

the available signal may be applied in sequential phases (for instance a forward pass, a backward pass

and a final forward pass).

Similarly with the RLS algorithm in the FS-TAR case, a forgetting factor λ may be introduced into the

method for tracking a time-dependent projection coefficient vector ϑa|c[t]. However, the same problems

related to the selection of λ and the partially structured parameter evolution also apply in this case.

Finally it is noted that RELS is just an approximation of the original OLS method and thus may not

be connected with asymptotic consistency.

The Multi-Stage (MS) method. As in the FS-TAR case [Poulimenos and Fassois, 2009a], the WLS

estimator with the smallest asymptotic covariance matrix, is achieved forw2[t] = c·σ2
e [t]. Since again σ2

e [t]
is a-priori unknown a Multi-Stage (MS) method which approximates the optimal, in terms of asymptotic

efficiency, WLS estimator may be implemented as follows [Poulimenos and Fassois, 2007]:

Stage 1. Initial AR/MA projection coefficient vector estimation: Initial estimation of ϑa|c obtained through

the OLS method.

Stage 2. Innovations variance projection coefficient vector estimation: Estimation of the innovations

variance parameter vector ϑs achieved by maximizing the conditional log-likelihood function with respect

to ϑs replacing the innovations e[t,ϑa|c] with their respective estimates e[t, ϑ̂a|c] in Eq. (5.4.5).

Stage 3. Final AR/MA projection coefficient vector estimation: Final estimation of the AR/MA projection

coefficient vector obtained by the WLS estimator by utilizingw2[t] = σ̂2
e [t] =

∑ps
j=1 ŝj ·Gds(j)[t] as estimated

from the second stage.

It is reminded that both OLS and WLS estimation methods of Stages 1 and 3, lead to non-quadratic

optimization problems, while also the ϑs ML estimate of Stage 2 has to be obtained through nonlinear

optimization techniques. A family of “Relaxed” MS (RMS) methods may be realized by substituting the

nonlinear stages of MS by respective linear ones. Indicatively, such a method may be realized as shown

schematically in Fig. 5.4.1. However, RMS methods do not share the same asymptotic properties with

the original MS method.

5.4.2.2 Phase B: Estimation of innovations variance coefficients of projection parameter vector

The estimation of the parameter vector ϑs for the fully parametrized classical FS-TARMA model may be

based on one of the following methods.

The Moving Window (MW) method [Poulimenos and Fassois, 2006]. An initial smoothed non-

parametric estimate of the variance is obtained via a window of length, say 2K + 1, centred at the
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"Relaxed" Multi-Stage method

2SLS estimation
 of         

Estimation of      
(linear regression method)

2SWLS estimation
 of          

Estimation of      
(linear regression method)

YES

NO

Initialization

Iterative refinement

Figure 5.4.1: Flowchart of an indicative “Relaxed” Multi-Stage (RLS) method for FS-TARMA model esti-

mation.

time instant t, that slides over the innovation sequence, that is:

σ̂2
e [t] =

1

2K + 1
·

t+K∑

τ=t−K
e2[τ, ϑ̂a|c] (5.4.14)

An estimate of the projection coefficient vector ϑs may be then obtained by fitting the non-parametrically

obtained variance σ̂2
e [t] to a selected functional subspace Fσ2

e [t]. This leads to the overdetermined set of

equations:

σ̂2
e [t] =

ps∑

j=1

sj ·Gds(j)[t] = gTs [t] · ϑs (5.4.15)

which solved in an OLS sense gives:

ϑ̂s =
(
GT
s ·Gs

)−1 ·
(
GT
s · σ̂e

)
(5.4.16)

where gs[t] =
[
Gds(1)[t], . . . Gds(ps)[t]

]T
, Gs =

[
gs[1], . . . , gs[N ]

]T
and σ̂e =

[
σ̂2
e [1], . . . , σ̂2

e [N ]
]T

.

The main disadvantage of this method is the necessity for the additional selection of an appropriate

window length parameter K. This parameter consists a trade-off between the statistical accuracy and

the tracking ability of the non-parametric variance estimator, so it should be deliberately selected.

The Instantaneous Variance (IV) method [Boudaoud and Chaparro, 1987]. According to the definition

of the general TARMA model of Eq. (5.1.3), the innovation sequence e[t] is white with zero mean and

time-dependent variance σ2
e [t]. Therefore, a reasonable estimator for σ2

e [t] is the squared innovation

e2[t, ϑ̂a|c] – actually the unbiasedness of e2[t, ϑ̂a|c] as an estimator of σ2
e [t] was also proved in Eq. (5.4.2).

Therefore, an estimate for ϑs is obtained by solving the following equation:

e2[t, ϑ̂a|c] =

ps∑

j=1

sj ·Gds(j)[t] = gTs [t] · ϑs (5.4.17)

in the OLS sense.

The Instantaneous Standard Deviation (ISD) method [Grenier, 1983b]. In this case the innovations

standard deviation σe[t] is projected onto the selected functional subspace. In particular, based on the

fact that E{|e[t]|} =
√

2/π · σe[t], with E{·} designating statistical expectation, the following is solved

for ϑs again in the OLS sense

|e[t, ϑ̂a]| =
√

2

π
·
ps∑

j=1

sj ·Gbs(j)[t] =

√
2

π
· gTs [t] · ϑs (5.4.18)

The Conditional Maximum Likelihood (CML) [Poulimenos and Fassois, 2006]. In regression type

methods estimation of ϑs may be achieved by maximizing the conditional log-likelihood function

lnL(ϑs|ϑ̂a|c, xN ) of Eq. (5.4.5) with respect to ϑs, treating the estimated innovation sequence e[t, ϑ̂a|c]
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provided by Phase A as measurements. This estimation constitutes a nonlinear optimization problem

of low dimensionality (ps) that may be tackled via iterative optimization techniques. An estimator of

ϑs based on the previous methods may be used for the initialization of this nonlinear optimization

procedure.

Remarks:

(i) The estimation of the innovations variance or standard deviation coefficients of projection is actually

a constrained optimization problem as long as these statistical quantities are by definition positive.

Hence, the estimation of ϑs should be subject to the constraints
∑ps

j=1 sj ·Gbs(j)[t] > 0, for every t.
This fact is usually overlooked in the literature, probably because violation of this constraint rarely

occurs in practical problems. Nonetheless, if such a difficulty occurs, constrained optimization

may be avoided by adding a constant mean value to the innovations sequence before estimating

ϑs. Of course this mean value has to be subtracted from the final estimate.

(ii) The smoothed non-parametric estimate of the variance obtained through a moving window, that is

the first step of the MW method, may also provide a smoothed estimate of the innovations variance

for the semi-parametric FS-TARMA type of mode.

(iii) One could argue that the instantaneous estimates of the innovations variance or standard deviation

are inaccurate and therefore of limited practical value. Notwithstanding, these instant values are

unbiased estimates and the collection of a large number of them makes the corresponding methods

reliable. Yet, instantaneous estimates of higher order statistics have also been successfully applied

for the estimation of the coefficients of projection of FS-FIR models [Tsatsanis, 1995,Tsatsanis and

Giannakis, 1996a,Tsatsanis and Giannakis, 1997].

5.4.3 Regression type methods for adaptable models

Regression type methods for AFS-TARMA models are based on an equivalent to Eq. (5.4.7) regression

model form:

x[t] =




−x[t− 1] ·Ga(1)[t, δa]

−x[t− 1] ·Ga(2)[t, δa]
.
.
.

−x[t− na] ·Ga(pa−1)[t, δa]

−x[t− na] ·Ga(pa)[t, δa]

e[t− 1,ϑa|c] ·Gc(1)[t, δc]

e[t− 1,ϑa|c] ·Gc(2)[t, δc]
.
.
.

e[t− nc,ϑa|c] ·Gc(pc−1)[t, δc]

e[t− nc,ϑa|c] ·Gc(pc)[t, δc]




︸ ︷︷ ︸
φ[t,δa|c,ϑa|c]

T

·




a1,1

a1,2
.
.
.

ana,pa−1

ana,pa
c1,1

c1,2
.
.
.

cnc,pc−1

cnc,pc




︸ ︷︷ ︸
ϑa|c

+ e[t, δa|c,ϑa|c] (5.4.19)

or, using the stacked signal and innovations sequence vectors:

x = Φ(δa|c,ϑa|c) · ϑa|c + e(δa|c,ϑa|c) (5.4.20)

Similarly with the regression type methods for classical FS-TARMA models the estimation of the

parameter vectors δa|c,ϑa|c and δs,ϑs is achieved in distinct sequential phases.
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5.4.3.1 Phase A: Estimation of AR/MA functional subspace and coefficients of projection param-

eter vectors

This phase is based on the minimization of the general WLS criterion:

[δ̂
T

a|c, ϑ̂
T

a|c]
T = arg min

δa|c,ϑa|c

{
N∑

t=1

e2[t, δa|c,ϑa|c]

w2[t]

}
= arg min

δa|c,ϑa|c

{
e(δa|c,ϑa|c)

T ·W · e(δa|c,ϑa|c)
}

(5.4.21)

with various methods obtained depending on the weighting sequence w2[t] selected. However, no asymp-

totic properties have been derived for the methods of this recently introduced type of models.

The simpler AFS-TAR case is characterized by a nonlinear regression model special form x = Φ(δa) ·
ϑa + e(δa,ϑa) in which the parameter vectors ϑa and δa form two completely disjoint parameter sets.

This special form makes the estimation of the parameter vectors involved simpler compared to that of

the complete AFS-TARMA model, and hence the two cases are examined separately.

The AFS-TAR case

The WLS and OLS methods. Due to the nonlinear dependence of the basis functions Ga(j)[t, δa] on

the parameter vector δa the AFS-TAR estimation problem based on the minimization of the PE criterion

constitutes a nonlinear optimization problem independently of the weighting sequence w2[t] utilized.

This problem may be, in principle, solved through iterative constrained nonlinear optimization methods

with respect to dim(ϑa) + dim(δa) = pa · na + dim(δa) parameters. However, again this optimization

problem is usually of high dimensionality and wrong convergence problems may arise when arbitrary or

inaccurate estimates are used for its initialization.

The Separable Nonlinear Least Squares (SNLS) method. An effective approach for minimizing the PE

criterion is to take advantage of the separable nonlinear regression structure of Eq. (5.4.19), that is the

fact that the parameters ϑa and δa form two completely disjoint parameter sets. Such special structure

regression problems may be solved through the Separable Nonlinear Least Squares (SNLS) method and

more specifically by the Variable Projection (VP) algorithm introduced by Golub and Pereyra [Golub and

Pereyra, 1973]. This algorithm is based on the fact that ϑa appears linearly in the model and thus,

assuming that the nonlinear parameter vector δa is known, an ϑa estimate may be obtained through

the linear OLS estimator:

ϑ̂a =
(
ΦT (δa) ·Φ(δa)

)−1 ·ΦT (δa) · x = Φ†(δa) · x (5.4.22)

where
†

denotes pseudo-inverse. Hence, the model innovations may be obtained by a functional form

which depends solely on δa, that is:

e(δa,ϑa) = x−Φ(δa) · ϑ̂a =⇒ e
VP

(δa) = x−Φ(δa) ·Φ†(δa) · x =⇒ e
VP

(δa) =
(
I −Φ(δa) ·Φ†(δa)

)
· x

(5.4.23)

Thus, the estimator of Eq. (5.4.21) for w2[t] = 1 takes the form:

δ̂a = arg min
δa

{
e

VP
(δa)

T · e
VP

(δa)
}

= arg min
δa
‖
(
I −Φ(δa) ·Φ(δa)

†) · x‖2 (5.4.24)

The nonlinear parameter vector δa may be thus estimated by means of iterative constrained nonlin-

ear optimization techniques with only dim(δa) unknown parameters, while ϑa may be subsequently

estimated through linear OLS (Eq. (5.4.22)), after substituting δa by the obtained estimate δ̂a.
This formulation leads to the reduction of the dimensionality of the nonlinear optimization problem,

while not affecting the stationary points (minima and maxima) of the original problem. This holds under

the rather mild condition of constant (not necessarily maximum) rank of the regression matrix Φ(δa)
over the whole parameter search space of δa ( [Golub and Pereyra, 1973, Theorem 2.1]). The cost for

reducing the dimension of the nonlinear optimization problem is the increased complexity of the gradient
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computation for the innovation sequence e
VP

(δa) that is required for the construction of the Jacobian

matrix (see Chapter 4 for more details on the subject).

The Separable Nonlinear Weighted Least Squares (SNWLS) method. The SNLS method is readily

extended to a SNWLS method for any uniformly bounded weighting sequence w2[t] (that is 0 < w2 ≤
w2[t] ≤ w2 <∞ for every t). In this case the weighting matrix W is positive definite and may be written

asW = DT ·D, whereD is an invertible (N ×N ) matrix. Hence, the OLS estimator of Eq. (5.4.22) may

be substituted by the WLS estimator of the following equation:

ϑ̂a =
(
Φ(δa)

T ·W ·Φ(δa)
)−1 (

Φ(δa)
T ·W · x

)

=
(
Φ(δa)

T ·DT ·D ·Φ(δa)
)−1 ·

(
Φ(δa)

T ·DT ·D · x
)

= Φ̃(ηa)
† · x̃

(5.4.25)

where Φ̃(ηa) = D ·Φ(ηa) and x̃ = D · x. Therefore, the model innovations may be obtained as

ẽ(δa,ϑa) = x̃− Φ̃(δa) · ϑ̂a =⇒ ẽ
VP

(δa) = x̃− Φ̃(δa) · Φ̃(δa)
† · x̃ =⇒ ẽ

VP
(δa) =

(
I − Φ̃(δa) · Φ̃(δa)

†) · x̃
(5.4.26)

and the estimator of δa is given from the following minimization problem:

δ̂a = arg min
δa

{
ẽ

VP
(δa)

T · ẽ
VP

(δa)
}

= arg min
δa
‖
(
I − Φ̃(δa) · Φ̃(δa)

†) · x̃‖2 (5.4.27)

Remark. A corresponding with that of the classical FS-TAR case MS method consisting of the same

three stages may be also derived.

The AFS-TARMA case

The WLS and OLS methods. Once more the WLS method constitutes a nonlinear optimization problem

independently of the weighting sequence w2[t] utilized and yet of increased dimension since dim(ϑa|c) +
dim(δa|c) = pa · na + pc · nc + dim(δa|c) parameters have to be estimated.

Moreover, the nonlinear regression model of Eq. (5.4.20) does not have a separable structure due

to the presence of the unknown innovations e[t, δa|c,ϑa|c], which depend on both δa|c and ϑa|c, in the

regression matrix Φ(δa|c,ϑa|c). Thus, the SNLS method may not be used in order to reduce the number

of parameters that have to be estimated through nonlinear optimization. To overcome this obstacle

a suboptimal two-stage pseudo-SNLS procedure, analogous to the 2SLS method for the classical FS-

TARMA model parameter estimation, may be employed.

The Two Stage Separable Nonlinear Least Squares (2SSNLS) method. The two-stage method consists

of the following stages:

Stage 1: Inverse function estimation. A truncated, nq-order, inverse function model that approximates

the infinite order inverse function representation of an AFS-TARMA model is considered as follows:

x[t]−
nq∑

i=1

pq∑

j=1

qi,j ·Gq(j)[t, δq] · x[t− i] + e[t, δq,ϑq] (5.4.28)

with nq � max(na, nc). The identification of this long AFS-TAR model based on the minimization of

the PE criterion is a SNLS problem which (as previously shown) may be solved by the SNLS method.

Consequently, estimates of the model innovations e[t, δ̂q, ϑ̂q] may be readily obtained.

Stage 2: AR/MA parameter vector estimation. The FS-TARMA model is approximated by replacing the

past, but not the current, values of the prediction error e[t, δa|c,ϑa|c] by the previously obtained estimates

e[t, δ̂q, ϑ̂q].

x = Φ(δa|c, δ̂q, ϑ̂q) · ϑa|c + e(δa|c,ϑa|c) (5.4.29)

and solving the resultant separable nonlinear regression problem through the SNLS method. The final

innovation sequence is estimated based on the estimates δ̂a|c, ϑ̂a|c and the TARMA model expression of

Eq. (5.1.3).

Remarks:
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(i) The second stage of the 2SSNLS method may be iterated, replacing in every iteration the past values

of the prediction error e[t, δa|c,ϑa|c] by the most recent estimates e[t, δ̂a|c, ϑ̂a|c], until a minimum

value of the PE criterion is achieved.

(ii) After obtaining the 2SSNLS estimates, minimization of the original full functional problem may be

viewed as a subsequent (potential) refinement stage.

(iii) A positive definite weighting matrix W may also be used during the stage of the 2SSNLS method

leading to a 2SSNWLS.

5.4.3.2 Phase B: Estimation of innovations variance functional subspace and coefficients of pro-

jection parameter vectors

The estimation of the innovations variance parameter vectors δs and ϑs for the parametric AFS-TARMA

model may also be obtained via the VP algorithm and one of the following methods.

The Moving Window (MW) method. An initial smoothed non-parametric estimate of the variance is

obtained via a window of length, say 2K+1, centred at the time instant t, that slides over the innovation

sequence, that is:

σ̂2
e [t] =

1

2K + 1
·

t+K∑

τ=t−K
e2[τ, δ̂a|c, ϑ̂a|c] (5.4.30)

An estimate of the functional subspace parameter vector δs and the projection coefficient vector ϑs may

be then obtained by fitting the obtained variance σ̂2
e [t] to the a-priori unknown functional subspace as

follows:

σ̂2
e [t] =

ps∑

j=1

sj ·Gs(j)[t, δs] = gTs [t, δs] · ϑs (5.4.31)

which solved in the SNLS sense with respect to the functional subspace parameter vector δs:

δ̂s = arg min
δs
‖
(
I −Gs(δs) ·Gs(δs)

†) · σ̂e‖2 (5.4.32)

subject to the constraints of the functional subspace parameter vector δs. In the above gs[t, δs] =[
Gs(1)[t, δs], . . . , Gs(ps)[t, δs]

]T
, Gs(δs) =

[
gs[1, δs], . . . , gs[N, δs]

]T
and σe =

[
σ̂2
e [1], . . . , σ̂2

e [N ]
]T

. The

coefficient of projection vector ϑs is subsequently obtained by the linear OLS estimator:

ϑ̂s =
(
Gs(δs)

T ·Gs(δs)
)−1 ·

(
Gs(δs)

T · σ̂e
)

(5.4.33)

The necessity for the additional selection of an appropriate window length parameter K is again noted.

The Instantaneous Variance (IV) method. Using the estimated from Phase A innovations sequence

as an initial rough estimate of the instantaneous variance, the parameter vectors δs and ϑs may be

estimated by the projection of the adaptable basis functions as:

e2[t, δ̂a|c, ϑ̂a|c] =

ps∑

j=1

sj ·Gs(j)[t, δs] = gTs [t, δs] · s (5.4.34)

which solved in the SNLS sense gives:

δ̂s = arg min
δs
‖
(
I −Gs(δs) ·Gs(δs)

†) · es(δ̂a|c, ϑ̂a|c) ‖2 (5.4.35)

subject to the constraints to the functional subspace parameter vector δs. In the above gs[t, δs] =[
Gs(1)[t, δs], . . . Gs(ps)[t, δs]

]T
,Gs(δs) =

[
gs[1, δs], . . . , gs[N, δs]

]T
and es(δ̂a|c, ϑ̂a|c) =

[
e2[1, δ̂a|c, ϑ̂a|c], . . . ,

e2[N, δ̂a|c, ϑ̂a|c]
]T

. Of course, constraints on the functional subspace parameter vector δs also apply in

this case.
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As before Phase B is completed by the estimation of the coefficient of projection vector ϑs through

the linear OLS estimator:

ϑ̂s =
(
Gs(δs)

T ·Gs(δs)
)−1 ·

(
Gs(δs)

T · es(δ̂a|c, ϑ̂a|c)
)

(5.4.36)

The Instantaneous Standard Deviation (ISD) method. Based on the normality of the innovations

sequence E{|e[t]|} =
√

2/π · σe[t] and by utilizing the absolute values of the estimated innovation series

e[t, δ̂a|c, ϑ̂a|c], the following overdetermined set of equations may be obtained

∣∣e[t, δ̂a|c, ϑ̂a|c]
∣∣=
√

2

π
·
ps∑

j=1

sj ·Gs(j)[t, δs] = gTs [t, δs] · s (5.4.37)

which solved in the SNLS sense:

δ̂s = arg min
δs
‖
(
I −Gs(δs) ·Gs(δs)

†) · |e(δ̂a|c, ϑ̂a|c)| ‖2 (5.4.38)

subject to the constraints to the functional subspace parameter vector δs. In the above gs[t, δs] =√
2
π ·
[
Gs(1)[t, δs] . . . Gs(ps)[t, δs]

]T
and Gs(δs) =

[
gs[1, δs], . . . , gs[N, δs]

]T
.

Finally, the ϑs estimator is obtained by the following equation:

ϑ̂s =
(
Gs(δs)

T ·Gs(δs)
)−1 ·

(
Gs(δs)

T · |e(δ̂a|c, ϑ̂a|c)|
)

(5.4.39)

The Conditional Maximum Likelihood (CML) method. In regression type methods, estimation of the

parameter vectors δs and ϑs may be achieved by maximizing the conditional log-likelihood function

lnL(δs,ϑs|δ̂a|c, ϑ̂a|c, xN ) of Eq. (5.4.6) with respect to δs and ϑs, treating the estimated innovation

sequence e[t, δ̂a|c, ϑ̂a|c] provided by Phase A as measurements. The CML estimation also constitutes a

constrained nonlinear optimization problem. Estimators of δs and ϑs based on the previous methods

may be used for the initialization of this nonlinear optimization procedure.

Remarks: The same comments as in the estimation of the innovations variance coefficients of projection

for the classical fully parametrized FS-TARMA model approach also apply in this case.

The estimation methods described in the preceding paragraphs are summarized in Table 5.4.2.

5.4.4 Model validation

Once a model has been obtained, it must be validated with respect to the assumptions behind the iden-

tification method used [Fassois, 2001a]. Although such validation may be based on various criteria

depending on the model’s intended use, the Gaussianity and in particular the whiteness of the iden-

tified model’s one-step-ahead prediction error (innovations) sequence are parts of standard validation

procedures. However, due to the TV nature of the model innovations variance, the usual innovation

whiteness tests are not applicable. Although this hindrance may be overcome by standardizing the

random sequence of e[t] to ε[t] as follows [Fouskitakis and Fassois, 2002]:

ε[t] =
e[t]

σe[t]
, ε[t] ∼ NID(0, 1) (5.4.40)

this procedure is heavily dependent on the accuracy of the innovations time-dependent variance estima-

tion.

Alternatively, a relatively simple test based on the number of sign changes in the innovation sequence

may be applied (residual sign test) [Poulimenos and Fassois, 2006], [Draper and Smith, 1998, pp. 192-

198]. This test is based on the number of observed “runs”, that is groups of sequential innovations with

common sign (+ and −) in the estimated innovations sequence and examines whether the pattern of
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runs is “unusual” for a zero-mean uncorrelated series or not. The test is based on a distribution-free

hypothesis testing procedure.

Remarks: The typical validation procedure in stationary stochastic methods is based on the cross-

validation principle, and presumes the availability of an additional data set, referred to as the validation

set. This is usually obtained by splitting the data into estimation and validation sets, with the former

used exclusively for estimation and the latter for validation [Fassois, 2001a]. However, such an approach

is not applicable to non-stationary modelling as long as a model represents the underlying system or

process only within the timespan for which it is identified.

5.5 Model Structure Selection Methods

5.5.1 Main ideas and criteria

Model structure selection is an optimization procedure according to which models corresponding to

various candidate “structures” are estimated (via the methods of the previous section), and the one

providing the “best fitness” to the non-stationary signal is selected.

Model “fitness” may be judged in terms of various criteria with the Residual Sum of Squares (RSS)

[Boudaoud and Chaparro, 1987,Liporace, 1975]:

RSS =
N∑

t=1

e2[t] (5.5.1)

or the equivalent Mean Squared Error (MSE = RSS/N ), the negative Gaussian log-likelihood function

(Eq. (5.4.1)), the Akaike Information Criterion (AIC) [Kozin and Nakajima, 1980,Clergeot, 1984]:

AIC = −2 · lnL(θ|xN ) + 2 · k (5.5.2)

and the Bayesian Information Criterion (BIC) [Petsounis and Fassois, 2000,Thonet and Vesin, 1997]:

BIC = − lnL(θ|xN ) +
lnN

2
· k (5.5.3)

being the more widely used. In the relations above k designates the number of independently adjusted

model parameters, that is k = dim(θ). The problem with the negative Gaussian log-likelihood function

and the criteria related with the model’s predictive ability (RSS and MSE) is that they may monotonically

decrease with increasing model structure (that is models of higher orders and/or subspace dimension-

alities), and as a result lead to overfitting. For this reason, criteria such as the AIC and the BIC are

often preferred as they include a term that penalizes the model size (structural complexity) and thus

they discourage model overfitting. It must be also noticed that the RSS and MSE criteria do not depend

on ϑs (and δs for the AFS-TARMA model type) in contrast to the rest of the aforementioned criteria.

Although, one or more of the criteria just described may be used for the final model selection, the

candidate models should also be checked in terms of statistical and numerical reliability. A criterion that

is usually used as an indication of the statistical reliability is the Samples Per Parameter (SPP) criterion,

that is the ratio of the number of samples N to the number of estimated parameters. For the latter

issue of numerical reliability and for the regression type methods which usually include the inversion of

a regression matrix, the condition number, that is the ratio of the maximum to the minimum eigenvalue

of the matrix inverted should always be checked.

In general, FS-TARMA model structure selection is an intricate procedure; especially for the classical

approach which is characterized by the maximum number of “structural” parameters. The main difficulty

stems from the fact that except from the estimation of the AR and MA orders (which is necessary even

for the simple stationary ARMA case), the model structure procedure involves the choice of a specific

family of linearly independent basis functions and the appropriate functional subspaces FAR, FMA, and
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Fσ2
e [t]. Even if this is only a small price to pay for rendering the estimation of a TARMA model into a time-

invariant problem, the selection of the appropriate model structure parameters is of crucial importance

for accurate modelling. This fact has been ignored by the majority of the studies on FS-TARMA models,

which utilize either no model structure selection procedure or are based on heuristic procedures.

Despite the fact that theoretically an “extended” (of high dimensionality) functional subspace may

achieve good tracking of the parameter evolution irrespectively of the selected family of basis func-

tions [Walter, 1994, p. 77], this is not true when, due to reasons of statistical efficiency and model

parsimony (economy of representation) only a small number of functions has to be selected. Therefore,

an appropriate functional basis that will be able to describe the TV evolution of the model parameters

adequately with the smallest possible number of basis functions, that is with the smallest appropriate

subspace dimensionality, must be initially selected. Thus, every FS-TARMA model structure procedure

begins with the choice of an appropriate family of basis functions.

In general, the selection of the basis function family may be based on prior knowledge regarding

the evolution of the time-varying model parameters or physical understanding of the system to be

identified. For instance, a trigonometric basis should normally be selected when periodic or quasi-

periodic evolutions are expected while wavelets or Walsh functions should be chosen for the identification

of a system characterized by abrupt changes in its properties. A first, however usually rough picture,

of the TV parameters evolution that could potentially facilitate the choice of a specific basis functions

family may also be provided by a non-parametric estimation of the Power Spectral Density (PSD) of the

non-stationary signal under study (such as the spectrogram or the scalogram [Hammond and White,

1996]).

In cases where no-prior information is available or no indication stems from the use of an non-

parametric PSD estimate, a good strategy is to use two or more families, obtain the best (according to

the selected “fitness” function) under each one and finally select the globally optimum (best) model.

Once a specific family of basis functions for the expansion of the TV parameters has been selected,

the remaining model structure selection procedure for a parametric FS-TARMA model concerns the

determination of the set of pa + pc + ps + 2 integers (M = {na, nc,da,dc,ds}) for obtaining the best fitting

model or pa + pc + 2 integers (M = {na, nc,da,dc}) for a semi-parametric. The corresponding model

structure for a parametric AFS-TARMA model and a given family of adaptable basis functions concerns

the set of five integers (M = {na, nc, pa, pc, ps}) or four (M = {na, nc, pa, pc}) for the semi-parametric

case. Thus, in general model structure selection may be viewed as a discrete optimization problem that

may be tackled via one of the following schemes.

5.5.2 Integer optimization scheme

This is a hybrid optimization scheme consisting of two distinct phases [Poulimenos and Fassois, 2003b,

Poulimenos and Fassois, 2006].

Phase I. Coarse (“global”) Optimization. Phase I aims at determining promising subregions of the

complete search space within which optimal model “structures” (either in the local or global sense)

might be located. This is achieved via a Genetic Algorithm [Coley, 1999] which minimizes the AIC/BIC

(“fitness” function).

GA starts with the random creation of an initial population of individual solutions, which constitute

the first generation. At each generation GA selects the best, in terms of the “fitness” function criterion,

individuals to be parents, and uses them to produce the children (individuals) for the next generation

through crossover and mutation rules. In this way GA evolves toward an optimal solution, imitating the

natural selection process of biological evolution.

Phase II. Fine (“local”) Optimization. Phase II aims at refining the results of phase I and selecting

the globally optimum “structure” based on the concept of backward regression. It thus operates in

a neighbourhood of phase I solution and reduces either one of the model orders (na, nc), or one of

the subspace dimensionalities (pa, pc, ps), until no further reduction in the AIC/BIC is achieved. The

procedure is repeated for all initial solutions (phase I results), and the model “structure” corresponding

131



5.5. Model Structure Selection Methods

to the globally optimum AIC/BIC is selected.

Remarks:

(i) The most important advantage of the scheme is that it is automated. Yet, at the same time and

depending upon the occasion, this may be a disadvantage as the search is exclusively based upon

the “fitness” function and may lead to overparameterizations.

(ii) Even though GAs are capable of solving difficult optimization problems with local extrema, their

configuration necessities the selection of a number of algorithmic characteristics (such as crossover

and mutation ratios, and the number of elite children [Coley, 1999]), which highly affect their

performance. Moreover, problems of premature convergence to local extrema may also be observed

in cases of high dimensional search spaces. In such cases, the adoption of more exhaustive search

schemes is proposed; for instance optimal “structural” parameters may be sought for each selected

model orders pair (na, nc), with the overall optimal model being finally selected.

(iii) The population individuals are bit strings whose length depends on the initial search space. For

instance, four bits are required in order to describe an initial search space of na ∈ {1, . . . , 16} since

this set of integers may be assigned to the set of bit strings {00002, . . . , 11112} which consists of the

same number of elements. Respectively, for the AFS-TARMA model structure selection problem

the initial search space of the AR functional subspace dimensionality pa ∈ {1, . . . , 8} would require

three bits for its description.

In the FS-TARMA case, and for the hypothetical scenario of searching for the AR functional sub-

space among the first five functional basis of an appropriate family, that is initial search space

{G0[t], G1[t], G2[t], G3[t], G4[t]}, five bits will be required for its description with each bit denoting

the existence (1) or not (0) of the corresponding basis function in the specific model structure.

(iv) A similar scheme that may be used within the AFS-TARMA approach is proposed in Chapter 4.

According to this a Particle Swarm Optimization (PSO) algorithm [Engelbrecht, 2006, Part III] is

employed in order to search simultaneously for both the functional subspace parameters (δ’s) and

the model structure parameters M in a combined search space.

5.5.3 Regression schemes

A number of model structure selection methods proposed in the literature are based on the regression

concept. These may be divided in two main categories: a) those based on the concept of backward

regression and b) those based on the inverse concept of forward regression. Methods of the former

category start by considering an initial FS-TAR/FS-TARMA (or AFS-TAR/AFS-TARMA) model of high

orders and high subspace dimensionalities in order to assure model adequacy for representing the non-

stationary signal. Subsequently, they attempt to reduce the model dimensionality by rejecting (one

at a time) the insignificant terms (basis functions). On the contrary, methods based on the forward

regression concept start with a low dimension model and construct the final model structure by adding

one at a time the significant terms. In both cases, the significance of a specific term may be judged

by various criteria while various schemes have been proposed for the reduction or augmentation of the

initial model.

5.5.3.1 Backward regression schemes

The first method based on the backward regression concept was proposed by Tsatsanis and Giannakis

[Tsatsanis and Giannakis, 1993]. According to the procedure they proposed the reduction of the basis

functions is realized by the means of an appropriate F-test that actually compares, in a statistical sense,

the RSS values obtained by a model that includes a specific basis function and by a second one obtained

by the removal of the latter accounting also for the dimensionality of the candidate models. In the same

study the use of the AIC or the Final Prediction Error (FPE) criterion instead of the F-test was proposed,

since the drawback related with the selection of an appropriate threshold, and the subjectivity of such
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a selection, that is required for the F-test was recognised by the authors. In the AIC or FPE based

scheme, terms whose removal causes reduction in the criterion values are rejected until the minimum

is achieved.

This scheme is exhaustive as it considers uncommon functional subspaces for the time-dependent

parameters with the whole procedure being very time-consuming particularly for initial models of high

initial orders and large functional subspaces. A simplified scheme that attempts to approximately

decompose the “structure” selection problem into two subproblems: (i) the model orders (na, nc) selection,

and (ii) the functional subspaces selection [da,dc,ds] was proposed in [Poulimenos and Fassois, 2006,

Poulimenos and Fassois, 2009a]. This scheme consists of two phases as follows:

Phase I. Model Orders Selection. In order to “decouple” the selection of the model orders from that of

functional subspaces, their interaction has to be minimized. This may be achieved by ensuring functional

subspace adequacy by initially adopting an “extended” (high dimensionality) and “complete” (in the

sense of including all consecutive functions up to the subspace dimensionality) functional subspaces.

Using them, model order selection may be achieved through trial and error techniques based on the

optimization of the fitness function (typically the AIC or the BIC).

Phase II. Functional Subspace Selection. The aim of this phase is the optimization of the “extended”

(redundant) functional subspaces, in the sense of increasing the representation parsimony without

significantly reducing model accuracy. This may be accomplished via trial and error techniques detecting

“excess” basis functions by using the “fitness” function (the AIC or the BIC). Basis functions may be

thus consecutively dropped (one at a time) as long as no significant values of the criterion employed are

produced.

Remarks:

(i) From a practical standpoint the simplified two-phase scheme is effective, as it is simple to imple-

ment, of low computational complexity, and “flexible” in accounting for user provided “structural”

information. However both backward regression method may be considered as suboptimal, in

the sense that it may not provide the globally optimal model “structure”. Their main limitation is

associated with the use of models with “extended” and “complete” functional subspaces. These

will typically be highly overparameterized, and the estimation of the associated high number of

coefficients of projection may pose statistical difficulties (in the sense that the number of available

signal samples may be inadequate for this purpose).

(ii) For the implementation of the second phase of the scheme, that is the detection of the “excess”

basis functions, the use of a measure for the aggregate deviation of the parameter trajectories

has also been proposed [Poulimenos and Fassois, 2006]. However, as in the F-test case the main

limitation of this approach is the additional requirement for the subjective selection of appropriate

threshold.

5.5.3.2 Forward regression scheme

This scheme introduced by Wei and Billings [Wei and Billings, 2002] was initially proposed for the equally

complicated structure selection problem of stochastic nonlinear ARMAX models [Chen et al., 1989]. Is

based on the orthogonal least squares algorithm in order to transform al linear regression model into an

auxiliary model given as

x = Ψ · η + e(η) (5.5.4)

where Ψ is a transformed regressor matrix consisting of orthogonal columns such as ψi ·ψj = 0 for i 6= j
and i, j = 1, . . . , napa + ncpc, while η is the corresponding transformed coefficients of parameter vector.

The orthogonalization of the initial regression model may be realized by applying the Gram-Schmidt

procedure as described in [Chen et al., 1989].

The orthogonality of the transformed regressors permits estimating the novel parameters ηi one at a

time. As a consequence, the significance of each regressor term towards the reduction in the total mean

133



5.6. The TAR Case: A Monte Carlo Study and Comparison

square error may be quantified through the Error Reduction Ratio (ERR):

ERRi =
η̂2
i

(
ψTi ·ψi

)
∑N

t=1 x
2[t]

(5.5.5)

The larger the value of ERR, the more significant the term will be in the final model, while terms with

low ERR values may be excluded as trivial.

Nevertheless, simply orthogonalizing candidate terms in an arbitrary order may result in incorrect

information regarding the significance of terms, since the ERR values depend on the order in which

candidate terms are orthogonalized. In order to overcome this problem, the Orthogonal Forward Regres-

sion (OFR) algorithm [Chen et al., 1989] may be utilized. OFR arranges the candidate model terms in

the order of significance and provides a simple method of selecting the most relevant model terms. The

selection procedure is completed when:

1−
Nr∑

i=1

ERRi < ρ (5.5.6)

where ρ(0 < ρ ≤ 1) is a desired tolerance, and Nr the number of the finally selected regressors.

Remarks:

(i) The ideal tolerance ρ is case dependent and not known a-priori. Thus, its value has to be found

by trial and error.

(ii) The termination criterion of Eq. (5.5.6) does not take into account model complexity. Alternatively,

criteria such as the AIC or BIC could be employed with significant model terms being added to the

final model as long as their inclusion entails a reduction of these criteria.

(iii) The forward regression method builds FS models with uncommon functional subspaces. But in

contrast to the backward regression methods this is not accomplished at the price of increased

computational times.

(iv) For the FS-TARMA case OFR algorithm may be used only within the second stage of the 2SLS

method as long as the initial regressor Φ must be given. For the AFS-TAR it may be used only after

the estimation of the functional subspace parameter vector δa and the formation of the regressor

matrix Φ(δa). Respectively, for the AFS-TARMA case it may be used only within the 2SSNLS

method and after the estimation of the functional subspace parameter vectors δa and δc and the

formation of the regressor matrix Φ(δa|c, δ̂q, ϑ̂q).

(v) The idea of using an inverse “bottom-up” procedure based on forward regression, that is construct-

ing the model by adding basis functions terms to a model of low dimension was also proposed by

Tsatsanis and Giannakis in [Tsatsanis and Giannakis, 1993] and extended in [Tsatsanis, 1995].

(vi) A similar scheme has been proposed by Zou et al. in [Zou et al., 2003] who also try to find the

linearly independent regressors from a pool of candidate vectors. However, they test the candidate

terms in an arbitrary order, so their approach could be characterized as suboptimal.

5.6 The TAR Case: A Monte Carlo Study and Comparison

The FS-TAR model parameter estimation and structure selection methods reviewed in Sections 5.4 and

5.5 are presently applied to the identification problem of a TAR(6) model with piecewise polynomial TV

parameters. For this purpose 200 Monte Carlo experiments are performed based on an equal number

of realizations of the model’s response. The methods performance is judged in terms of various criteria

regarding tracking of the TV parameters, time-frequency representation accuracy, predictive ability and

others.
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5.6.1 The signals

The true TV parameters of the considered TAR(6) model were selected pointwisely and depict variability

characterized by transitions between smooth and abrupt changes of their values (Fig. 5.6.1).

The model’s “frozen-time” PSD and the corresponding global modal characteristics (natural frequen-

cies and damping ratios) are illustrated in Fig. 5.6.2. The simulated model is characterized by three

almost equally strong TV modes with their damping ratios taking values between 0.01 and 0.05.

The identification of the true model is based on 4000-sample long realizations of its responses. For

each Monte Carlo run a different realization is used which is produced by different excitation signals –

different seed numbers are used to produce stationary white noise sequences which are subsequently

multiplied by the true time-dependent standard deviation of the model. A typical response signal real-

ization is depicted in Fig. 5.6.3.
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Figure 5.6.1: The true TAR(6) model parameters: (a) AR and (b) innovations standard deviation.

5.6.2 Identification results

The main FS-TAR identification results are now presented. Special emphasis is placed on model struc-

ture selection by using the schemes outlined in Section 5.5. The true AR model order and the type

of parameters evolution are considered unknown. For this reason the correct AR order is searched

within the range na ∈ [5, 12] while various families of basis functions are considered. Specifically, for

the classical FS-TAR approach the Discrete Cosine Transform (DCT) basis functions, Legendre poly-

nomials, uniform B-splines of order equal to three, and Haar functions are utilized (see Appendix A).

Non-uniform B-splines with a-priori unknown knots are utilized for the AFS-TAR models, while in both

cases parametric models are considered. Relations for the construction of the bases used are given in

A.6.

The algorithmic details for the model structure selection methods presently used are indicated in

Table 5.6.1. All methods are based on the BIC criterion, while the OLS-ISD regression method is used

for the estimation of the coefficients of projection parameter vectors ϑa and ϑs of the FS-TAR models,
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Figure 5.6.2: “Frozen-time” analysis of the true TAR(6) model: (a) power spectral density, (b) natural

frequencies and (c) damping ratios.
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Figure 5.6.3: A single realization of the non-stationary response signal of the true TAR(6) model.

while the SNLS-ISD regression method is used for the estimation of the functional subspace parameter

vectors δa, δs and the corresponding coefficients of projection vectors ϑa,ϑs of the AFS-TAR models. The

algorithms, the MATLAB functions and the termination rules used for the optimization problems that

the aforementioned estimation methods and the methods used in the sequel involve are summarized in

Table 5.6.2.

Model structure selection. Starting with the simplified model structure selection scheme based on
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Table 5.6.1: Model structure selection methods and algorithmic details.

Method Functional basis Algorithmic details

F
S
-
T

A
R

Integer Optimization Genetic Algorithm (MATLAB ga function),

Discrete Cosine Transform (DCT) functions population size = 100, elite children = 5,

Legendre polynomials crossover fraction = 0.8, mutation rate = 0.2,

Uniform B-splines (order k = 3) stall generation limit = 20

Backward Regression Haar functions

Forward Regression

A
F
S
-
T

A
R

Integer Optimization Non-uniform B-splines (order k = 3) Particle Swarm Optimization

(MATLAB pso function),

population size = 100, inertia weight w = 1,

cognitive parameter c1 = 1.45,

social parameter c2 = 1.45,

stall generation limit = 20

Table 5.6.2: Optimization method details.

Optimization Optimization Termination rules

method algorithm ‖ϑ̂i − ϑ̂i−1‖ ‖f(ϑ̂i)− f(ϑ̂i−1)‖†

Linear Least Squares QR implementation – –

(Matlab mldivide function)

Nonlinear Least Squares Levenberg-Marquardt method < 10−9 < 10−6

(Matlab lsqnonlin function)

ML BFGS Quasi-Newton method < 10−8 < 10−3

(Matlab fminunc function)

CML BFGS Quasi-Newton method < 10−12 < 10−6

(Matlab fminunc function)

†ϑ: parameter vector to be estimated, f(·): nonlinear cost function, ‖ · ‖: Euclidian norm, i: iteration number

BFGS: Broyden-Fletcher-Goldfarb-Shanno method

the concept of backward regression and for the classical FS-TAR model, initial “extended” functional

subspaces dimensionalities pa and pc equal to 21 are selected for its first phase. The mean, over 200 runs,

values of the BIC, AIC, and the RSS/SSS obtained by the estimated FS-TAR(na)[21,21] (na = 5, . . . , 12)
models are depicted in Fig. 5.6.4. In the same figure the mean condition numbers of the regressor matrix

Φ – whose inversion is involved during OLS estimation – are also shown. It must be noted that the SPP

value for the FS-TAR(12)[21,21] models which are characterized by the maximum number of parameters

among the models considered (k = na · pa + ps = 12 · 21 + 21 = 273) equals to 14.65. This value may be

considered as low but not prohibitive with respect to the statistical reliability of the estimators.

Evidently, with these “extended” subspaces, the models with parameters expanded on one of the first

three families attain more or less the same performance, while those with parameters expanded on Haar

basis functions show inferior performance. This result, confirms practically the fact that the modelling

accuracy of an FS model depends on the choice of the subspace and not on the particular choice of the

basis functions family. Thus, bases with similar characteristics, in the particular case basis functions

characterized by smooth evolution, and “extended” subspace dimensionality offer the same potential for

accurate modelling. On the other hand, the square-shaped Haar functions do not seem capable of good

tracking of the TV parameters, despite the fact that the latter show an abrupt change for a small region

of time.

Nonetheless, irrespectively of the basis function family considered, the FS-TAR(6)[21,21] model achieves

the minimum BIC. Even though in general AIC is known to suffer from the problem of overfitting, in this

case study the AIC also indicates the correct AR order. On the other hand, as expected the RSS/SSS

137



5.6. The TAR Case: A Monte Carlo Study and Comparison

5 6 7 8 9 10 11 12
0.8

0.9

1

1.1

1.2

1.3
x 10

4

na

m
ea

n(
B

IC
)

 

 

DCT Legendre B−splines Haar

5 6 7 8 9 10 11 12
7000

8000

9000

10000

11000

12000

na

m
ea

n(
A

IC
)

5 6 7 8 9 10 11 12
2

4

6

8

na

m
ea

n(
R

S
S

/S
S

S
)

5 6 7 8 9 10 11 12
0

400

800

1200

na

m
ea

n(
C

on
d.

 n
um

be
r)

(a)

(c)

(b)

(d)

Figure 5.6.4: FS-TAR model structure selection (backward regression search scheme – phase I). Mean

values of the (a) BIC, (b) AIC, (c) RSS/SSS and (d) condition number of the regressor matrix Φ versus

AR order for OLS-ISD estimated FS-TAR(na)[21,21] models and various functional families (the first 21
functions of each family are used pa = ps = 21).

criterion depicts a descending trend for increasing AR orders. It must be noted that special concern

should be given to the selection of the “extended” subspaces used in the first phase of the backward

regression scheme. An excessive number of basis functions may lead to a regressor matrix with large

condition number and thus numerical problems.

After the selection of the appropriate AR order (na = 6), the second phase of the model structure

selection scheme focuses on the reduction of the functional subspaces by rejecting the basis func-

tions whose removal entails reduction of the BIC. The procedure is repeated for every run and leads

to 200 models FS-TAR(6)[pa,ps] for every family of basis functions. The BIC values obtained by the

estimated models during this phase are shown in Fig. 5.6.5. The results lead to the selection of the

DCT functional basis. In Fig. 5.6.6 the frequency of observations for the AR and innovations standard

deviation subspaces dimensionality pa and ps respectively, and the corresponding frequency of existence

of the functional basis into the finally selected subspaces are shown. According to these results an

FS-TAR(6)[10,6] with parameters expanded on subspaces defined by DCT basis functions with indices

da = [1, . . . , 10]T ,ds = [1, . . . , 5, 7]T should be selected as the most appropriate to model the system

under study. It must be noted that, even if the FS-TAR(6)[pa,ps] models with parameters expanded on

Haar functions attain better RSS/SSS values, that is better predictive ability, this is achieved by using

the initial extended functional subspace of 21 basis functions as none of the candidate functions is

rejected during the second phase of the scheme.

On the contrary, the forward regression scheme based on the BIC employed for the selection of the
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Figure 5.6.5: FS-TAR model structure selection (backward regression search scheme – phase II): (a)

BIC, (b) AIC, (c) RSS/SSS, and (d) regressor condition number values of the models identified during

the second phase of the method for OLS-ISD estimated FS-TAR(6) models and various families of basis

functions (Mean ± one std values of the criteria are shown with boxes).
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Figure 5.6.6: FS-TAR model structure selection (backward regression search scheme – phase II): The

frequency of observations for the AR and innovations standard deviation subspace dimensionalities and

the corresponding basis indices (DCT basis functions).

most significant terms from the regressor matrix of an initial FS-TAR(12)[21,21] model was not capable

of correctly estimating the true AR order na = 6 for any of the functional bases considered (Fig. 5.6.7).

Specifically in percentages over 90 % the specific model structure method selects as significant regressors
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Figure 5.6.7: FS-TAR model structure selection (forward regression scheme): AR orders frequency of

observations for each family of basis functions considered.
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Figure 5.6.8: FS-TAR model structure selection (integer optimization scheme): BIC values of the models

obtained for OLS-ISD estimated FS-TAR(6) models and various functional families.

that correspond to AR orders between 10 and 12.

However, for an initial FS-TAR(6)[21,21] model the method estimates similar functional subspaces

with those obtained by the previous method. The results were worse when the criterion of Eq. (5.5.6)

based on ERR was used.

Figure 5.6.8 depicts the results of the integer optimization based model structure selection. The

scheme is based on a genetic algorithm and the OLS-ISD method for each family of basis functions

considered in order to find the optimal AR order and functional subspaces. The initial search space for

the AR order is as before na ∈ [5, . . . , 12] while the optimal functional subspaces are searched among the

first 21 basis function of each family. The obtained BIC values shown in Fig. 5.6.9 agree with those of

the previous analysis as the minimum BIC is achieved by the DCT FS-TAR models, while the histograms

with the frequency of observations indicate the same functional subspaces as more appropriate (Fig.

5.6.8). It is also noted that the correct AR order is selected 199 times for the DCT and Legendre bases,

165 times for the B-splines basis and 200 times out of 200 for the Haar.

An integer optimization scheme based on the PSO algorithm is also employed for the model structure

selection problem in the case of AFS-TAR models with parameters expanded on non-uniform B-spline

basis functions with a-priori unknown internal knots. It is reminded that for this approach the model

structure is defined only by the model orders na, and the basis dimensionalities pa, ps, since for a given

basis dimension the corresponding functions are not selected but constructed based on the estimates
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Figure 5.6.9: FS-TAR model structure selection (integer optimization scheme): The frequency of obser-

vations for the AR order, the AR and the innovations standard deviation subspace dimensionalities and

the corresponding basis indices (DCT basis functions).

of the functional subspace parameter vectors δa and δs. The results for the estimated na, and pa, ps in

this case depict a higher variability (Fig. 5.6.10). Although, the correct AR order is the most frequently

selected while a second phase based on the backward regression finally leads to an AFS-TAR(6)[8,8]

model for all the test cases. This model is compared to the DCT FS-TAR(6)[10,6] model selected by the

previous schemes in the subsequent analysis and the model parameter estimation results.

Model parameter estimation. Firstly, a comparison of the methods for the estimation of the innovations

variance coefficient of projection vector ϑs within the context of classic FS-TAR models is performed.

Particularly, the MW, IV, ISD and CML(ISD) methods are applied on the residuals of the OLS estimated

DCT FS-TAR(6)[10,ps] models. The mean BIC values achieved are presented in Fig. 5.6.11(a). It must

be noted that the functional subspaces for the MW method and the IV method in which the innovations

variance is expanded on functional basis are also selected based on the integer optimization model

structure selection scheme. The obtained functional subspace consists of 12 basis functions (ds =
[1, . . . , 9, 11, 13, 15]T ), that is the double number of basis functions compared to those selected for the

ISD method (ds = [1, . . . , 5, 7]T ). This result comes as no surprise since the variance depicts higher

variability than its square root, that is the standard deviation and normally this higher variability will

require more basis functions for its accurate description. For this reason, the ISD method achieves lower

BIC values, while this value is of course improved when the CML nonlinear optimization is employed for

the refinement of the parameter vector ϑs. For this reason, the ISD method is preferred in the sequel,

while the CML(ISD) method is used for ML refinement of ϑs whenever this is required.

It is reminded that the necessity for window length (K) selection for the MW is an additional potential

drawback for this method (an optimization procedure based on BIC presently leads to K = 250 which
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Figure 5.6.10: AFS-TAR model structure selection (integer optimization scheme based on PSO algorithm;

non-uniform B-splines basis functions): The frequency of observations for (a) the AR order, (b) the AR

functional subspaces dimensionality, and (c) the innovations standard deviation functional subspace

dimensionality.

MW IV ISD CML(ISD)
7850

7900

7950

7918.78 7920.75

7878.24 7875.41

m
ea

n(
B

IC
)

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

Time (s)

σ
2 e
[t
]

 

 
True MW  IV ISD CML(ISD) 

(a)

(b)

Figure 5.6.11: Comparison of methods for innovations variance coefficient of projection estimation:

(a) mean BIC values, and (b) mean estimated innovations variance versus time contrasted to the true

variance of the model’s excitation (OLS estimated DCT FS-TAR(6)[10,ps] models; ps = 12 for MW and IV

and ps = 6 for ISD and CML).

was used for the methods compared; see Fig. 5.6.12).

The performance of the various FS-TAR estimation methods considered for the parameter estimation
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Figure 5.6.12: Optimization procedure for the selection of the window length parameter K (MW method

for the coefficient of projection estimation): (a) mean BIC values, and (b)mean estimated innovations

variance versus time for the various windows considered contrasted to the true variance of the system’s

driving noise. (DCT FS-TAR(6)[10,12] models; OLS estimation).

of a DCT FS-TAR(6)[10,6] model and a non-uniform B-splines AFS-TAR(6)[8,8] model is judged in terms of

BIC, RSS/SSS and normalized execution times in Fig. 5.6.13 (it is reminded that the RSS/SSS doesn’t

depend on ϑs and ϑs). As it may be observed, the SNLS-ISD estimated AFS-TAR models with parameters

expanded on the adaptable basis functions outperform their DCT counterparts. However, the estimation

of the functional subspace parameters is achieved at the price of increased computational complexity as

the adaptable approach includes additional nonlinear least squares stages for the SNLS method.

For the classical FS-TAR(6)[10,6] models the OLS-ISD estimation method normally achieves the best

predictive performance while the MS, ML(OLS-ISD), and ML(WLS-ISD) methods achieve the best BIC.

Thus, the theoretical analysis concerning the statistical efficiency of the MS method is confirmed while

the MS has the additional advantage of smaller execution time (5 and 3 times faster in mean compu-

tational time value than the ML(OLS-ISD) and ML(WLS-ISD) methods, respectively). It is also worth

noting that the ML method initialized with the parameter estimates provided by the OLS-ISD regression

method needs many more iterations and computational time in order to converge compared to the case

of initialization by WLS-ISD estimates. At this point it should be mentioned that the ML converges to

local minima when arbitrary initial values are used (for instance, see the results in Appendix 5.A). This

results may be attributed to the highly nonlinear nature of the log-likelihood function and they high

dimensionality (na · pa + ps) of the corresponding optimization problem.

The estimated FS-TAR models were also validated using a distribution-free sign test [Poulimenos and

Fassois, 2006] [Draper and Smith, 1998, pp. 192-198]. Validation results are presented in Fig. 5.6.14.

The superior performance of the novel AFS-TAR approach is even more pronounced by the compar-

ison of Figs. 5.6.15 and 5.6.16 where the MS estimated (DCT FS-TAR(6)[10,6] models) and SNLS-ISD

estimated (non-uniform B-splines AFS-TAR(6)[8,8] models) time-dependent AR parameters and innova-

tions standard deviation are illustrated. Clearly the functional subspaces provided by the adaptable
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Figure 5.6.13: Performance comparison for various FS-TAR and AF-TAR models estimated by various
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Figure 5.6.14: FS-TAR models validation through the residual sign test at the α = 0.01 risk level (the

model is accepted if the test statistic is within the critical limits): DCT FS-TAR(6)[10,6] models estimated

through various methods and AFS-TAR(6)[8,8] models estimated through SNLS-ISD method.

B-splines functions increase the potential for excellent tracking of the parameters even for the regions

where transitions between smooth and abrupt changes take place. On the contrary, the DCT FS-

TAR(6)[10,6] based estimates smooth out the abrupt change and barely track the parameters during their
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Figure 5.6.15: True TAR(6) model parameter trajectories and estimated values based on the DCT FS-

TAR(6)[10,6] models (MS method).

fast transition at the middle of the time axis span. Both models fail to track the sixth TV AR parameter

which is characterized by small variability compared to the rest of the parameters.

In order to quantify the achievable TV parameter tracking accuracy, percentage accumulated param-

eter errors are computed as:

errai[t]
∆
= 100× ‖ âi[t]− ai[t] ‖

2

‖ ai[t] ‖2
% (5.6.1a)

and

errσe[t]
∆
= 100× ‖ σ̂e[t]− σe[t] ‖

2

‖ σe[t] ‖2
% (5.6.1b)

The parameter tracking errors errai[t] and errσe[t] (Fig. 5.6.17) confirm the big difference in the

performance of the AFS-TAR models compared to the classical. Note that the mean parameter tracking

errors for the AFS-TAR method lie between 0.2 and 0.8 %, that is two to five times better than the values

achieved by the MS estimated FS-TAR models.

Similar results are obtained for the estimates of the global modal characteristics. The “frozen-time”

natural frequencies and damping ratios as estimated via the MS method for the DCT FS-TAR(6)[10,6]

and the SNLS-ISD method for the non-uniform B-splines FS-TAR(6)[8,8] models are shown in Figs.

5.6.18 and 5.6.19, respectively. The mean over 200 runs values are also depicted in these figures.

The corresponding accumulated tracking error computed by relations similar to those of Eq. (5.6.1)

are depicted in Fig. 5.6.20. Despite the good tracking of the time-dependent natural frequencies the

corresponding damping ratios are tracked with an accumulated error which exceeds 20% for the case of

DCT FS-TAR(6)[10,6] models and is bigger than 8% for all damping ratios ζi. Nevertheless, the difficulty

in estimating the true damping ratios is a well known problem even in the stationary case.
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Figure 5.6.16: True TAR(6) model parameter trajectories and estimated values based on the non-uniform

B-splines AFS-TAR(6)[8,8] models (SNLS-ISD method).
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Figure 5.6.17: Accumulated parameter tracking errors for the MS estimated DCT FS-TAR(6)[10,6] models

and the SNLS-ISD estimated non-uniform B-splines AFS-TAR(6)[8,8] models. (Mean ± one std values of

the percentage errors are shown with boxes).

Finally, the mean values of the “frozen-time” PSD estimates along with the mean absolute errors for

each point of the time-frequency plane are illustrated in Fig. 5.6.21. These estimates are calculated for a

grid of 1000 × 1000 points. The absolute error is in general of small magnitude but again the adaptable

model-based estimates are closer to the true “frozen-time” PSD.
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Figure 5.6.18: True TAR(6) model “frozen-time” natural frequency and damping ratios and estimated

values based on the DCT FS-TAR(6)[10,6] models (MS method).

Figure 5.6.19: True TAR(6) model “frozen-time” natural frequency and damping ratios and estimated

values based on the non-uniform B-splines AFS-TAR(6)[8,8] models (SNLS-ISD method).
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Figure 5.6.20: Accumulated modal parameter tracking errors for the MS estimated DCT FS-TAR(6)[10,6]

models and the SNLS-ISD estimated non-uniform B-splines AFS-TAR(6)[8,8] models. (Mean ± one std

values of the percentage errors are shown with boxes).

5.6.3 Discussion

The discussion on the FS-TAR models estimated by the various methods focuses on the following issues:

(a) Achievable overall modelling accuracy in terms of model-based one-step-ahead predictions. The

achievable overall modelling accuracy is presently judged in terms of models predictive ability quanti-

fied by the one-step-ahead ahead predictions of the models considered. Summary results, taking into

account all 200 Monte Carlo runs, and expressed in terms of the RSS normalized by the Series Sum of

Squares (SSS), are for all methods, provided in Figure 5.6.13(b). It is observed that all models provide

excellent predictions, with the AFS-TAR (SNLS-ISD) being the best followed by the OLS-ISD estimated

FS-TAR models.

(b) Achievable time-dependent parameter tracking accuracy. The achievable model parameter tracking

accuracy of the AFS-TAR models was shown to be superior compared to that of the classic FS-TAR

models. The latter even though they may accurately track model parameters with either smooth or

abrupt evolution in the model parameters they normally need excessive functional subspaces in order

to track parameters with inhomogeneous type of evolution. On the other hand the adaptable approach

along with the use of non-uniform B-splines was shown to provide a basis with mixed characteristics

capable of tracking the model parameters accurately.

(c) Achievable time-dependent power spectral density and modal parameter accuracy, resolution and

tracking. The true model “frozen-time” natural frequencies are also tracked with higher accuracy by the

SNLS-ISD estimated AFS-TAR(6)[8,8] model and yet the 200 estimates depict small variability. This is

not the case for the corresponding damping ratios which are estimated with large errors. The fact of

large uncertainties in the damping ratio estimates even for the stationary case is a well known issue.

However, the mean estimates of the AFS-TAR models are again better than those obtained by the MS

estimated FS-TAR models.

Finally, the “frozen-time” PSD mean estimate obtained by the AFS-TAR model is of higher accuracy

with mean absolute errors lower that 5 dB for the 99.8% of the time-frequency grid consisting of 1000 ×
1000 points. The largest mean absolute error is of 10.7 dB and is observed in the time-region where fast

transitions take place. The performance attained by the classic FS-TAR model estimated through the

MS method is slightly reduced. In this case the mean absolute error is lower of 5 dB within the 98.49 %

of the total surface and the maximum mean absolute error value is equal to 16.8 dB.

(d) Computational simplicity. As indicated in Fig. 5.6.13(c), which provides relative computer ex-

ecution (CPU) times for the various methods considered the computational burden of the SNLS-ISD
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Figure 5.6.21: “Frozen-time” PSD mean estimates and mean absolute errors: (a) 3d-view of the mean

PSD estimate, (b) 2d-view of the mean PSD estimate, and (c) mean absolute error as obtained by the DCT

FS-TAR(6)[10,6] models (MS method). (d) 3d-view of the mean PSD estimate, (e) 2d-view of the mean PSD

estimate, and (f) mean absolute error as obtained by the non-uniform B-splines AFS-TAR(6)[8,8] models

(SNLS-ISD method).

estimation method is particularly high compared to the rest estimation methods considered for the

classical FS-TAR models (observe that the scale on the vertical axis is logarithmic). In fact, the compu-

tationally simplest method is the OLS-ISD method with the WLS-ISD and MS methods being close. It is

also worth observing that the ML estimation method is computationally quite expensive compared to the

regression type methods due to the nonlinear optimization method required for the estimation of both

ϑa and ϑs.

(e) Ease of use. The classic FS-TAR models estimation methods may be considered as particularly

simple even for the inexperienced user while this is not valid for the adaptable models. This is due to

the fact that even the simplest SNLS-ISD method includes constrained nonlinear optimization problems,
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while the respective OLS-ISD method for the classic models is a linear problem of low complexity.

However, in both cases the model structure selection is a task requiring caution and expertise. Although

it may be automated to a certain degree (see Section 5.5), some user familiarity is still necessary. Also,

the selection of the method parameters and characteristics, as well as the interpretation of the method’s

behavior or results, may require attention.

5.7 The TARMA Case: A Monte Carlo Study and Comparison

The identification problem of a true TARMA(6, 5) model with piecewise polynomial TV parameters is

presently addressed. Also in this case study 200 Monte Carlo experiments are performed based on an

equal number of realizations of the model’s response. For the purposes of comparison except from the

various FS-TARMA and AFS-TARMA methods considered the true model is also identified by the means

of alternative estimation methods belonging to the classes of UPE and SPE methods. The methods’ per-

formance is judged in terms of various criteria regarding tracking of the TV parameters, time-frequency

representation accuracy, predictive ability and others.

5.7.1 The signals

The true TV parameters of the considered TARMA(6, 5) simulated model are depicted in Fig. 5.7.1. It

should be mentioned that the simulated TARMA model is created pointwisely and it is partly based on

the identified characteristics of a laboratory deployable link structure as these were identified through an

experimental vibration-based modelling and analysis study [Spiridonakos and Fassois, 2009a]. However,

for this hypothetical scenario the case of a deployable link structure which extends, is then loaded with

a linearly increasing mass and finally retracts back to its initial position is considered.

The model’s “frozen-time” PSD, natural frequencies and damping ratios are illustrated in Fig. 5.7.2.

The non-stationarity of the simulated models is evident in their theoretical “frozen” time-frequency char-

acteristics. The model is characterised by three almost equally strong TV modes and two antiresonant

modes.

The identification of the true model is based on 4000-sample long realizations of its response. For

each Monte Carlo run a different realization is used which is produced by different excitation signals. A

typical response signal realization is depicted in Fig. 5.7.3.

5.7.2 Identification results

For the reasons outlined in Section 5.4, the FS-TARMA modelling problem is much more complicated

than the corresponding FS-TAR. It must be added that except the potential existence of local minima,

instability problems often arise when ML or WLS methods are utilized with inaccurate initial values.

These methods require the use of nonlinear optimization techniques which have to be started off from a

feasible solution.

In addition, in many cases, an “excess” MA functional subspace leads to algorithmic instability,

that results in excessive residual estimates. As a consequence, in such cases the model estimation

cannot even be completed. For instance, this kind of problem may be confronted during the backward

regression search scheme for FS-TARMA model selection which considers functional subspaces of high

dimensionality in its first phase in order to determine the appropriate model orders.

It is also reminded that the forward regression scheme may be utilized only in cases of a given initial

regression matrix. For this reason it may be used along the 2SLS estimation method, with this method

being in general a good choice for the implementation of the model structure selection schemes as it is

significantly faster that the rest of the methods. Nevertheless, its accuracy is highly dependent on the

inverse function approximation, that is the long FS-TAR model which provides approximate estimates

for the innovations residuals. The order and the functional subspaces of this inverse representation

have to be selected with caution.
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Figure 5.7.1: The true TARMA(6,5) model parameters: (a) AR, (b) MA, and (c) innovations standard

deviation.

For the TARMA modelling problem under study and regarding the classical FS-TARMA models, the

model structure selection schemes of Section 5.5 utilized for the selection of the appropriate func-

tional subspaces, considering known the true AR and MA orders, lead to the selection of a DCT FS-

TARMA(6, 5)[7,4,4] model with da = [1, . . . , 6, 8]T , dc = [1, . . . , 4]T , and ds = [1, 3, 4, 9]T (2SLS-ISD esti-

mation) and non-uniform B-splines AFS-TARMA(6, 5)[6,6,6] model (2SSNLS-ISD estimation). The inverse

function representation was approximated by OLS estimated DCT FS-TAR(20)[12] models for the classi-

cal FS-TARMA models and SNLS estimated non-uniform B-splines AFS-TAR(20)[9] for the AFS-TARMA

models. The functional subspaces of this long FS-TAR models were selected by the BIC.

The performance of the finally obtained FS-TARMA and AFS-TARMA models and the various estima-

tion methods considered is judged in terms of the BIC, RSS/SSS and normalized execution times in Fig.

5.7.4. With regard to the FS-TARMA estimation methods, it may be observed that the RELS method does

not attain good results when only one pass over the data is performed. This may attributed primarily to

the zero initial conditions and secondly to the abrupt change of the TV parameters taking place at the

middle of the time axis which is reflected to a change of the optimal coefficients of projection (see Fig.

5.7.5). However, the estimates are improved when three passes are performed (RELS3 method; RELS

applied on the non-stationary signal in a forward, backward and final forward pass). In general, the

RELS3 method has been shown to be a robust solution for FS-TARMA model estimation while it also has

the additional assets of minimal user expertise and small execution times.

Regarding the 2SLS method, the importance of an accurate approximation of the FS-TARMA inverse

function representation, that is the long FS-TAR model used during the first stage of the 2SLS, is

highlighted by the results of Fig. 5.7.4. Apparently, the results obtained by the 2SLS method with initial

innovation estimates provided by an FS-TAR(20)[12] model are significantly improved compared to that

obtained when the innovation estimates are provided by an FS-TAR(9)[12] model. The RMS method is

implemented as shown in Fig. 5.4.1 and doesn’t seem to provide any significant improvement compared

to the simpler 2SLS-ISD method.
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Figure 5.7.2: “Frozen-time” analysis of the true TARMA(6, 5) model: (a) power spectral density, (b)

natural frequencies, and (c) damping ratios.
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Figure 5.7.3: A single realization of the non-stationary response signal of the true TARMA(6, 5) model.

Yet, the best results in terms of the BIC and RSS/SSS are attained by the OLS-ISD and MS methods

(irrespectively of the parameter estimation method used for its initialization since similar results are

obtained when estimates based on RELS3 are utilized).

Finally, note that the AFS-TARMA models with parameters expanded on non-uniform B-splines again

outperform those that use fixed DCT basis. For this reason the former is maintained for the subsequent

model-based analysis. However, before proceeding with this analysis the results of the identification of

the TARMA model through alternative non-stationary methods are presented in the next section.
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Figure 5.7.4: Performance comparison for various FS-TARMA and AFS-TARMA models estimated by

various methods: Mean (a) BIC, (b) RSS/SSS, and (c) normalized execution times.
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Figure 5.7.5: Estimation of the a1,1 coefficient of projection parameter through the RELS method applied

in three sequential passes over the non-stationary signal (DCT FS-TARMA(6, 5)[7,4,4]).
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Table 5.7.1: Identification methods, their characteristics, and the identified models.

Model Class Identification Method Method Characteristics Identified Model

Unstructured Canonical Variate Analysis (CVA) Q = 401, q = 10 ST-SS(6)

Parameter Evolution (MATLAB n4sid function)

Recursive Maximum Likelihood (RML) λ = 0.989 RML-TARMA(6, 5)

(MATLAB rarmax function) α = 104

Stochastic Kalman Filter (KF) κ = 1, ν = 7.9× 10−5 SP-TARMA(6, 5)

Parameter Evolution α = 104

5.7.3 Comparisons with UPE and SPE methods

The alternative identification methods used, their characteristics, as well as the finally obtained models

are summarized in Table 5.7.1.

Regarding the ST-SS model, the case of overlapping segments is considered with the active segment

being forwarded by q=10 samples. The segment length and the model order are selected based on the

RSS criterion and the singular values of the corresponding Hankel matrix. It should be noted that for

data segments of more than 500 samples, the method seems incapable of tracking the variations of the

true system variability. Obviously, depending on the model order, a lower limit of the segments length

is imposed by the requirement for statistically reliability. The selection procedure has suggested a data

segment of 401 samples and a ST-SS(6) model.

In the case of RML method the true model orders are considered (na = 6, nc = 5) while the forgetting

factor is optimized based on the minimization of the RSS criterion (search space [0.950, 0.951, . . . , 0.999]).
For the initialization of the RML algorithm the covariance matrix was selected equal to 104I, while three

sequential phases (a forward pass, a backward pass and a final forward pass) are applied in order to

reduce the effects of the arbitrary initial conditions.

In the SP-TARMA case the selected stochastic smoothness constraints and the ratio of the constraint

model innovations variance over the residual variance ν was optimized based on minimization of the

BIC for a model with na = 6, nc = 5. The finally obtained model is an SP-TARMA(6, 5) with κ = 1
and variance ratio ν̂ = 7.9 × 10−5

. For the initialization of the Kalman filter the covariance matrix was

selected equal to 104I and three sequential passes (forward, backward, forward and a final backward

smoothing pass) were executed.

5.7.4 Discussion

The discussion on the FS-TAR models estimated by the various methods focuses on the following issues:

(a) Achievable overall modelling accuracy in terms of model-based one-step-ahead predictions. The

obtained mean RSS/SSS values achieved by the estimated TARMA and ST-SS models are depicted in

Fig. 5.7.6(a). Indicative one-step-ahead signal predictions obtained by the estimated models are (for

a short time segment of the signal) compared to the actual signal values for a single realization in

Fig. 5.7.6(b). It is observed that the AFS-TARMA model achieves the best prediction accuracy (mean

RSS/SSS = 9.59%), followed by the RML-TARMA models, while SP-TARMA and ST-SS models attain

equally bad performance with mean RSS/SSS values around 12.5%.

(b) Achievable time-dependent parameter tracking accuracy. The TV AR, MA and innovation standard

deviation estimates obtained by the AFS-TARMA(6, 5)[6,6,6], SP-TARMA(6, 5), and RML-TARMA(6, 5) mod-

els are compared with the true ones in Figs. 5.7.7, 5.7.8 and 5.7.9, respectively. For fair comparison

in all cases the innovations standard deviation was estimated non-parametrically through a moving

time-window of length equal to 401 samples advanced by one sample (for this reason standard deviation

estimates are available for t = 201, 202 . . . , 3800).

As it may be observed, the AFS-TARMA model estimates provide the highest tracking accuracy

followed by those obtained by the RML-TARMA models which however depict high variability even for the
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Figure 5.7.6: Estimated models predictive ability: (a) RSS/SSS values as calculated for the 200 Monte

Carlo experiments (mean± one std are also shown with boxes), and (b) the true signal corresponding to a

single realization and the corresponding one-step-ahead predictions based on the FS-TARMA(6, 5)[6,6,6],

the SP-TARMA(6, 5), the RML-TARMA(6, 5), and the ST-SS(6) models.

Figure 5.7.7: True TARMA(6, 5) model parameter trajectories and estimated values based on the AFS-

TARMA(6, 5)[6,6,6] models.
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Figure 5.7.8: True TARMA(6, 5) model parameter trajectories and estimated values based on the SP-

TARMA(6, 5) models.

Figure 5.7.9: True TARMA(6, 5) model parameter trajectories and estimated values based on the RML-

TARMA(6, 5) models.

regions of time where the parameters evolve smoothly. However, the mean values provided by the RML-

TARMA model estimates track very well the TV parameters. On the contrary SP-TARMA models fails to

track the TV parameters during the time region where fast changes take place, that is between samples

1950 and 2050. This fact may be attributed to the constant variance ratio between the parameter

variance and the innovations variance (ν) which makes the model inflexible for tracking inhomogeneous

types of evolution.
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Figure 5.7.10: Mean percentage accumulated parameter errors for the FS-TARMA(6, 5)[7,4,4], the SP-

TARMA(6, 5) and RML-TARMA(6, 5) models.

The parameter tracking errors obtained through Eq. (5.6.1) shown in Fig. 5.7.10 give an even

clearer picture regarding the estimated models tracking accuracy. The AFS-TARMA model outperforms

its counterparts with error less than 5% in all cases and yet below 1% for the AR parameters and the

innovations standard deviation. Only, the MA parameter c5[t] is tracked with higher accuracy by the

RML-TARMA model which depicts also good tracking performance. It is noted that the parameters of the

ST-SS model may not be directly compared as they correspond to different type of model.

(c) Achievable time-dependent power spectral density and modal parameter accuracy, resolution and

tracking. The “frozen-time” AFS-TARMA(6, 5)[6,6,6] natural frequency, antiresonant frequency, and damp-

ing ratio estimates are, along with true TARMA(6, 5) model values depicted in Fig. 5.7.11. Corresponding

figures for the SP-TARMA(6, 5), RML-TARMA(6, 5) and the ST-SS(6) model-based estimates are shown

in Figs. 5.7.12, 5.7.13, and 5.7.14, respectively. It must be noted that the modal characteristic are es-

timated for the time instants for which ST-SS models were estimated, that is t = 201, 211, 221, . . . , 3791.

Overall, the AFS-TARMA(6, 5)[6,6,6] models provide very good estimates (closer to the true values and

exhibiting lower variability) compared to those obtained by the rest of the models. On the contrary

the SP-TARMA and ST-SS models fail to track in accuracy the antiresonant frequencies even in their

mean value estimates. This observation is made more clear by the accumulated parameter tracking

errors obtained through similar relationships with those of Eq. (5.6.1) shown in Fig. 5.7.15. Clearly,

again the AFS-TARMA model outperforms its counterparts with error less than 0.2% for the natural and

antiresonant frequencies. The largest errors are obtained by the SP-TARMA(6, 5) models followed by the

ST-SS(6). It is worth noting that the RML-TARMA(6, 5) based estimates depict very good performance.

Nevertheless, as in the TAR case study the damping ratios are estimated with large deviations.

The frozen-time PSD mean estimates corresponding to the AFS, SP and RML TARMA(6, 5) and the ST-

SS(6) models are depicted in Fig. 5.7.16. In the same figure the plots of the mean absolute error between

the true and the estimated PSDs are illustrated. The non-parametric estimates of the innovations

standard deviation are utilized for the calculation of the PSD estimation, while these estimates are

calculated for a grid of 360 points along the time axis (t = 201, 211, 221, . . . , 3791) and 500 points for the

frequency axis (ω = 0.001, 0.002, 0.003, . . . , 0.5 Hz). The points on the time-axis are those on which the

ST-SS model was estimated.

Obviously, the AFS-TARMA based PSD mean estimate attains the smallest mean error with the

largest errors occurring between 0.1 and 0.2 Hz due to its incapability of estimating in accuracy the

sharpness of the first valley (antiresonant frequency). Second is the RTM-TARMA model based mean

estimate with some difficulty on the representation of the sharp transition that takes places at the
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Figure 5.7.11: True TARMA(6, 5) “frozen-time” global modal characteristics and estimated values based

on the AFS-TARMA(6, 5)[6,6,6] models.

mid span of the time axis. Regarding the performance of the SP-TARMA models, even though their

tracking performance may be judged as satisfactory for the resonant modes this is not true for the

antiresonant ones corresponding to the values of the spectrum. The problem is much more intense

for the regions where modes and antiresonances close in. Similar deficiencies had been observed in

experimental comparison study based on the identification of a TV bridge-like laboratory structure for

various TARMA based methods (Chapter 2). Finally, ST-SS models seem not only to be incapable of

tracking the antiresonant modes but also overestimate the spectrum magnitude and thus the sharpness

of the identified peaks and valleys that exist in the PSD.

(d) Ease of use. Both FS-TARMA and AFS-TARMA estimation methods may be considered as partic-

ularly complicated when compared to the rest of the non-stationary methods considered. This is due to

the fact that most of them involve nonlinear optimization problems and a lot of algorithmic parameters

that have to be selected. However, the 2SLS and RELS methods, which are of comparable algorithmic

and computational complexity with respect to the CVA, RML, and KF methods, may provide adequate

estimates.

At the same time, the FS model structure selection procedure usually necessitates user expertise

and a lot of decisions have to be taken with respect to the family of basis functions to be used, the

specific structure selection method and the tuning of these methods. On the contrary the number of

structural parameters that have to be selected for methods belonging to the UPE and SPE classes are

usually significantly less.
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Figure 5.7.12: True TARMA(6, 5) “frozen-time” global modal characteristics and estimated values based

on the SP-TARMA(6, 5) models.

5.8 Concluding Remarks and Outlook

The problem of non-stationary random vibration modelling and analysis via Functional Series TARMA

models was addressed. An overview of the various identification methods was presented, and a compar-

ative assessment study focusing on the identification of simulated systems was performed.

More specifically, the main FS-TARMA and AFS-TARMA estimation methods for both parametric

and semi-parametric type of models were summarized. The methods were distinguished in Maximum

Likelihood and regression type methods with emphasis given to both theoretical and practical issues.

FS-TARMA model structure selection methods were also reviewed and classified in two major cat-

egories: the integer optimization methods and those based on the concept of regression (backward or

forward). The advantages and disadvantages of each method and the various parameters that are re-

quired for the realization of each method were discussed, while the performance of four model structure

selection methods was examined via their application to the problem of FS-TAR model structure selection

for the identification of a simulated TAR(6) model. For the same identification problem various FS-TAR

and AFS-TAR estimation methods were employed and their results were compared in terms of achieved

predictive ability, model parameter tracking accuracy, model-based analysis, computational simplicity

and ease of use.

The performance characteristics of various FS-TARMA and AFS-TARMA estimation methods were

also examined via their application to the problem of modelling and analysis of a simulated TARMA

model via Monte Carlo experiments. Alternative non-stationary identification methods belonging to the

classes of SPE and UPE methods were also employed for this problem and the various models estimated

were also compared in terms of various criteria. The simulated non-stationary model is characterized

by inhomogeneous evolution of its parameters, that is they are characterized by transitions between
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Figure 5.7.13: True TARMA(6, 5) “frozen-time” global modal characteristics and estimated values based

on the RML-TARMA(6, 5) models.

smooth and abrupt changes in their values, and its identification was found to be particularly difficult

for most of the methods considered. However, the best (in fact excellent) performance characteristics

were achieved by AFS-TARMA models followed by RML-TARMA.

Some of the conclusions drawn from the study are:

(i) Model structure and basis functional family selection play an important role in achieving high

modelling accuracy. The adaptable approach based on parametrized functional subspaces offers,

at the price of increased computational complexity, significant improvement particularly for cases

of inhomogeneous evolution of the time-dependent parameters.

(ii) The MS method was found to be superior to its counterparts for classic FS-TAR model estimation,

while also of reduced computational complexity when compared to the ML estimates. Yet, the OLS

method was found to be the best choice as long as predictive ability and simplicity are of interest.

(iii) Regarding classical FS-TARMA model estimation again the MS method provided the best results,

however the best trade-off between computational complexity and achievable accuracy was pro-

vided by the 2SLS method.

(iv) AFS-TARMA models with parameters expanded on adaptable non-uniform B-spline basis functions

were shown to be able to track parameters with inhomogeneous type of evolution, in contrast with

the fixed bases which are used for the classical FS model types.

Despite the progress achieved thus far and the increasing number of successful applications, FS-

TARMA model based non-stationary vibration analysis remains somewhat challenging for the newcomer.

This is due to the elaborate model structure selection procedures, the complexity of the identification

cost functions and the potential existence of local extrema, as well as problems related to estimated
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Figure 5.7.14: True TARMA(6, 5) “frozen-time” global modal characteristics and estimated values based

on the ST-SS(6) models.
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Figure 5.7.15: Mean percentage modal parameter errors for the FS-TARMA(6, 5)[7,4,4], the SP-

TARMA(6, 5) and RML-TARMA(6, 5) models.
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Figure 5.7.16: Mean values of the estimated through the AFS-TARMA, SP-TARMA, RML-TARMA, and

ST-SS methods (left column) and the corresponding mean absolute errors (right column).

model stability and invertibility and the difficulties these may pose to both estimation and analysis.

These problems need to be resolved or significantly alleviated in order to further foster practical use and

applications. In spite of the remaining difficulties, the FS-TARMA models present a number of wonderful

possibilities and lead to very interesting and useful results in non-stationary vibration analysis!

Appendix 5.A FS-TAR(6)[10,6] ML Estimates with Arbitrary Initial Values

The effectiveness of the ML estimation method initialized by random arbitrary values (normally dis-

tributed N(0, 1)) is presently examined. The first ten AR coefficient of projection estimates for 200 Monte

Carlo runs and the corresponding negative log-likelihood function values are compared with those ob-
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Figure 5.A.1: Performance comparison for FS-TAR ML estimation initialized by random arbitrary values

(normally distributed N(0, 1)) and by estimates provided by the WLS-ISD method (DCT FS-TAR(6)[10,6]

models): (a) the first 10 AR coefficient of projection estimates, and (b) the negative log-likelihood function

values obtained.

tained by the ML method initialized by WLS-ISD estimates. As it may readily observed the ML method

initialized by arbitrary values converges in all cases to a local minima while the large variability of the

obtained values is an indication for the multi-modality of the log-likelihood function.
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Chapter 6

An FS-TAR Based Statistical Method for the

Modelling and Fault Diagnosis in Time-Varying

Structures: A pick-and-place mechanism

application study

The problem of vibration-response-based fault diagnosis, that is fault detection and identification, in

stochastic time-varying structures is considered via a statistical time series method. The method is based

on stochastic Functional Series Time-dependent AutoRegressive (FS-TAR) modelling of the structural

dynamics, as well as on an appropriate statistical decision making scheme for fault diagnosis. It is an

output-only method, capable of operating with a minimal number of random vibration response signals,

even of limited time duration and frequency bandwidth, under normal operating conditions, and in a

potentially automated way. The method is applied to the problem of fault diagnosis in a pick-and-

place mechanism based on a single vibration response signal. Its performance characteristics are thus

confirmed using various fault scenarios and a number of experimental test cases.
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6.1. Introduction

6.1 Introduction

Structures characterized by properties, either physical or geometric, that vary with time are referred as

Time-Varying (TV), or else non-stationary. Such structures are widely used in a significant number of

applications, such as robotics and mechanisms, variable geometry structures in aerospace technology,

bridges with passing heavy vehicles, crane systems, rotating machinery, wind turbines, and so on.

In a significant number of cases the TV structures operate endlessly on a repeating basis following a

prescribed pattern, so their in-operation inspection based on automated decision making is of critical

importance.

In recent years, significant attention has been paid to structural fault detection and identification,

collectively referred to as fault diagnosis, via vibration-based methods. These are founded upon the

fundamental principle that small changes (faults) in a structure cause discrepancies in the dynamics

and consequently on the vibration response, which may be detected and associated with a specific cause

(fault type) [Doebling et al., 1998,Farrar et al., 2001]. Vibration-based methods for fault diagnosis offer

a number of potential advantages, as they require no visual inspection, are “global” (in the sense of

covering large areas) and capable of working at a “system level”, can operate in an automated mode

during normal use/operation of the structure, and also tend to be time and cost effective [Doebling

et al., 1998,Fassois and Sakellariou, 2007].

Statistical time series methods form an important category within the vibration-based fault diagno-

sis methods [Doebling et al., 1998, Farrar et al., 2001]. They utilize random vibration signals under

healthy and potentially faulty structural states, identification of suitable time series models describ-

ing the dynamics under each structural state, and extraction of a statistical characteristic quantity Q
characterizing the structural state in each case (baseline phase). Fault diagnosis is then accomplished

via statistical decision making consisting of comparing, in a statistical sense, the current characteristic

quantity Qu with that of each potential state as pre-determined in the baseline phase (inspection phase).

Statistical time series methods offer a number of advantages, including no requirement for physics based

or finite element models, no requirement for complete modal models, no need to interrupt normal op-

eration, effective treatment of uncertainties, and statistical decision making with specified performance

characteristics. For an extended overview of the principles and also descriptions of the main methods

the interested reader is referred to [Fassois and Sakellariou, 2007,Fassois and Sakellariou, 2009].

The aforementioned advantages render statistical time series fault diagnosis methods particularly

attractive for TV structures. Yet, despite the progress achieved for stationary (time-invariant) structures

(for instance see [Doebling et al., 1998,Fassois and Sakellariou, 2007,Carden and Fanning, 2004] and

the references therein), this is not the case for non-stationary (TV) ones. A main difficulty encoun-

tered when dealing with TV structures is that their vibration responses are non-stationary, that is they

are characterized by time-dependent statistical properties [Poulimenos and Fassois, 2006,Niedźwiecki,

2000]. This fact renders TV structural modelling a complicated issue, requiring the use of non-stationary

modelling and analysis techniques [Poulimenos and Fassois, 2006,Staszewski and Robertson, 2007].

Depending on the nature of model used, non-stationary statistical time series methods may be

broadly classified as non-parametric and parametric. Non-parametric are those methods that are based

on non-parametric time-frequency representations, such as the Short-Time Fourier Transform (STFT)

[Wang and McFadden, 1993], the Wigner-Ville distribution [Staszewski et al., 1997, Chengdong et al.,

2008] or wavelet-based methods [Staszewski and Robertson, 2007,Peng and Chu, 2004]. Even though

such methods have been extensively applied for fault diagnosis (mainly in rotating machinery), they are

rarely based on statistical decision making. Hitherto, these methods rely either on visual inspection

of certain characteristics (such as a time-frequency diagram) on part of the user, or more often, on

classification and pattern recognition techniques capable of detecting the “fingerprint” of, say, nonlinear

vibration behaviour often caused by a defect [Staszewski and Robertson, 2007]. Yet, the selection (and

often the required compression) of a feature vector to be used for effective classification usually requires

prior knowledge regarding the regions of the time-frequency plane in which the changes due to the defect

are more pronounced, while user expertise is also required for the training phase of pattern recognition
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methods. Additional problems arise due to the limited achievable accuracy (including the trade-off

between time and frequency resolution) of non-parametric time-frequency representations [Staszewski

and Robertson, 2007].

On the other hand, parametric statistical time series methods, even though they are known to

offer potentially increased modelling accuracy and resolution when compared to their non-parametric

counterparts [Poulimenos and Fassois, 2006,Conforto and D’Alessio, 1999b], have, thus far, been seldom

used for fault diagnosis in non-stationary (TV) structures. The problem that has somewhat more been

studied is that in which a stationary structure operates under non-stationary environment or operating

conditions, in which case the problem of interest is that of distinguishing changes in the dynamics (say

model parameters) caused by a fault from those caused by the non-stationary environment [Basseville

et al., 2007]. This is a totally different problem from (and should not be confused with) the one considered

in the present study, in which the structure itself is non-stationary (TV) irrespectively of environmental

or operating conditions.

An early fault detection study for inherently TV structures based on a parametric time series method

has been developed by the second author and a co-worker [Poulimenos and Fassois, 2004b]. The method

is based on statistical decision making utilizing the residuals of a Functional Series Time Dependent

Autoregressive with eXogenous excitation (FS-TARX) model and was successively applied for the on-

line fault detection in a “bridle-like” laboratory structure. A similar method based on a multivariate

FS-TARX model and likelihood ratio hypothesis testing has been recently introduced and applied to

the problem of fault detection in an expandable prismatic link laboratory structure [Spiridonakos and

Fassois, 2009a]. In both of these studies fault diagnosis is based on availability (measurement) of both

excitation (input) and response (output) signals. Yet, as in many practical applications (for instance

wind turbines) excitation measurement is normally unavailable, it is important to have methods capable

of achieving fault diagnosis based on response measurement(s) alone (the output-only case).

Additional statistical parametric model based methods have been utilized within the context of

fault diagnosis in rotating machinery, for instance see [Zhan and Jardine, 2005a, Zhan and Jardine,

2005b,Wang et al., 2008]. However, such methods are developed for a special form of non-stationarity,

specifically cyclostationarity which originates from the periodic motion of rotating machinery. These

methods take advantage of the cyclic statistics and use synchronous average versions of the vibration

signals obtained during a number of successive cycles of operation. For this reason, the methods are

considered as special purpose and cannot be applied to any inherently TV structure, and/or when a

decision has to be based on vibration signals acquired during a single operational cycle of the structure.

The goal of the present study is the introduction of a parametric statistical time series method for

the effective fault diagnosis in inherently non-stationary (TV) structures with prescribed time-varying

evolution. The introduced method is output-only and capable of operating with a minimal number of

random vibration response signals (minimal number of sensors – presently a single signal) measured

under normal operation, and of limited time duration (that may be as short as a single operational cycle,

leading to limited signal duration and prompt diagnosis capability) and frequency bandwidth. Its normal

operation (in the inspection phase) may be automated, requiring no human intervention.

The method is presently formulated such as to employ a single (scalar) random vibration response

signal from the structure in its healthy state, as well as from a number of potential faulty states during

a single operation cycle, identifying suitable non-stationary Functional Series Time-Dependent AutoRe-

gressive (FS-TAR) statistical time series models describing the structure in each state. The AR coefficients

of projection parameter vector is subsequently extracted and utilized as the characteristic quantity rep-

resenting the structural state in each case (baseline phase). In its normal operation, fault detection

and identification is accomplished via statistical decision making consisting of comparing, in a statis-

tical sense, the current characteristic quantity (obtained from a fresh signal record) with that of each

potential state as determined in the baseline phase (inspection phase).

The effectiveness of the method is assessed by its application to a laboratory pick-and-place mech-

anism which is a TV structure consisting of two electromagnetic linear motors that follow prescribed

motion profiles. To this end, a number of test cases (experiments) are considered, each one correspond-
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Figure 6.2.1: The pick-and-place mechanism and the experimental setup: (a) photo, (b) schematic

diagram.

ing either to the nominal (healthy) state of the mechanism or to a specific fault scenario (loosening or

removing one or more bolts from various parts of the mechanism or adding small mass on the slider

of a motor). It is worth mentioning that linear motors, due to their advantages over rotary-motors [Yao

and Xu, 2002] (less friction and no backlash, no mechanical limitations on achievable accelerations

and velocities, higher reliability, longer lifetime) are met in a number of industrial applications such as

manufacturing, packaging, in parallel kinematic machines, and others [Howe, 2000].

The remaining of this chapter is organized as follows: The pick-and-place mechanism, the exper-

imental set-up, the fault scenarios, and the non-stationary experiments are presented in Section 6.2.

The structural identification (modelling) of the nominal (healthy) TV dynamics is presented in Section

6.3, while the fault diagnosis method is introduced in Section 6.4. Identification results for the healthy

mechanism are presented in Section 6.5, while fault detection and identification results are provided in

Section 6.6. The conclusions of the study are finally summarized in Section 6.7.

6.2 The Mechanism, the Experimental Set-Up and the Faults

6.2.1 The mechanism

The system under study is a 2-DOF pick-and-place mechanism consisting of two coaxially aligned linear

motors (LinMot P01-37×120) that carry prismatic links (arms) connected to their ends, with the whole

mechanism being clamped on an aluminum base (Fig. 6.1(a)). The motors are electromagnetic drives

able to generate linear motion with no intermediary mechanical transmission. They are made up of two

parts: the slider, that is a high-precision stainless steel tube containing neodymium magnets and the

stator that contains the motor windings, slider bearings, position sensors, temperature monitoring, and

a microprocessor circuitry. The stators are enclosed in linear guides (LinMot HS01-37x166-GF) that are

used for mounting the prismatic links, while they also provide resistance to external forces, rotational

and bending moments, contributing in this way to the precise positioning of the stator. A four channel

servo controller (LinMot E400-AT) is used to control and measure the position of both motors which may

move independently on preselected motion profiles. Note that in this case, in contrast to what their

name suggests, the sliders are fixed at one of their ends with the stators sliding on them.

6.2.2 The experimental set-up and the fault scenarios

The mechanism is suspended through two bungee cords from a long rigid beam sustained by two heavy-

type stands. The suspension is designed in a way as to exhibit a pendulum rigid body mode below the
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Figure 6.2.2: The considered fault types (A,B,C,D,E and F ).

frequency range of interest, as the boundary conditions are free-free.

The excitation is a zero-mean Gaussian random stationary force which is vertically (with respect

to the base) exerted via an electromechanical shaker (LDS V201, max load 17.8 N, useful frequency

range 5-13,000 Hz) equipped with a stinger (Figs. 6.1(a) and (b)). The vertical with respect to the base

vibration of the mechanism is measured at six selected locations (locations 1-6; Fig. 6.1(b)) via lightweight

piezoelectric accelerometers (PCB 352C22 ICP accelerometers, frequency range 1 - 10,000 Hz, sensitivity

∼ 1.0 mV/m/s
2
, mass 0.5 g). The measured vibration signals are conditioned and subsequently driven

into SigLab 20-42 data acquisition modules (featuring four 20-bit simultaneously sampled A/D, two

16-bit D/A channels, and 4th-order quasi elliptic analog anti-aliasing filters).

The fault scenarios utilized for the purpose of assessing the effectiveness of the method correspond

to the loosening or removal of various bolts at different points of the mechanism, loosening the slider of

motor B, and adding a mass at the free end of the slider of motor A. In total, six distinct fault scenarios

(types) are considered (Fig. 6.2.2): The first, referred to as fault type A, corresponds to the removal

of bolt A1 joining one of the horizontal bars of motor B linear guide to the rightmost vertical stand of

the aluminium base. The second, referred to as damage type B, corresponds to the removal of one of

the two bolts joining together the leftmost vertical stand with the horizontal element of the base. The

third, referred to as damage type C, corresponds to the removal of bolts C1 and C2 joining together the

horizontal element of the base with two of the vertical stands. The fourth, referred to as damage type D,

corresponds to the loosening of the motor B slider. The fifth, fault type E, corresponds to the loosening

of the hook bolt through which the right bungee cord passes. Finally, the sixth, referred to as damage

type F, corresponds to attaching a bolt to the motor A slider near its free end – the added mass is equal to

44.7 g. Note that these fault scenarios are, of course, not exhaustive, as the objective is the assessment

of the effectiveness of the method. All fault types considered are summarized in Table 6.2.1.

6.2.3 The non-stationary experiments

The assessment of the statistical time series method with respect to the fault detection and identification

subproblems is based on 40 experiments for the healthy and 40 experiments for each considered fault

state of the mechanism (fault types A,B, . . . , F – see Table 6.2.1). However, an additional experiment
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Table 6.2.1: The considered fault types, number of experiments, and vibration signal details.

Structural State Description Added mass
†

Total number of

(g) fault diagnosis experiments

Healthy — — 40

Fault Type A removal of bolt A1 −5.1 40

Fault Type B removal of bolt B1 −4.9 40

Fault Type C removal of bolts C1 and C2 −9.8 40

Fault Type D loosening of motor B slider — 40

Fault Type E loosening of bolt E1 — 40

Fault Type F adding a mass on motor A slider + 44.7 40

Analysis bandwidth: 5–200 Hz

Sampling frequency: fs = 512 Hz

Signal length: N = 5,120 samples (= 10 s)

†
The total mass of the mechanism is 14.5 kg

with the mechanism under its healthy state and one for each faulty state (fault types A,B, . . . , F ) are

executed for the modelling of the mechanism (baseline phase).

During a single experiment the linear motors move from their rightmost to their leftmost position

and back (Fig. 6.2.3(a); from endpoints A1–B1 to A2–B2 and back to A1–B1) following a reference position

profile lasting 10 s (Figs. 6.2.3(b) and (c); dashed lines). The exact positions of the motors are measured

by embodied magnetic Hall sensors with a sampling period of 39.2 ms (Figs. 6.2.3(b) and (c); continuous

thick lines). The error between the reference and actual position in all test cases varies stochastically

between −2 and 2 mm, introducing in this way an additional uncertainty. The position error curve

obtained during the healthy baseline experiment is also depicted in Figs. 6.2.3(b) and (c) (continuous

thin lines).

The frequency range of interest is selected as 5–200 Hz, with the lower limit set in order to avoid

instrument dynamics and rigid body modes. Thus, the vibration (acceleration) signals are sampled at

fs = 512 Hz, resulting to N = 5,120 samples long (10 s) signals, with each signal subsequently being

sample mean corrected (Table 6.2.1). The modelling and fault diagnosis of the time-varying mechanism is

presently based on the non-stationary vibration response measured at location 4 (Fig. 6.1(b)). Of course,

other locations could be alternatively used with largely similar (although not identical) results. The

important fact is the use of a single response signal, which also is of limited bandwidth; characteristics

that render the fault diagnosis problem challenging!

The signal employed for the modelling of the healthy TV structural dynamics of the mechanism, is

depicted in Fig. 6.2.4(a). A rough estimate of its TV Power Spectral Density (PSD) obtained through

the Short-Time Fourier Transform (STFT) [Hammond and White, 1996] employing a 512-sample-long

moving Gaussian data window advanced by five samples (MATLAB spectrogram function) is depicted in

Figs. 6.2.4(b) and (c). Even though the low resolution of this non-parametric representation does not

permit the extraction of safe conclusions regarding the precise number of vibration modes and the way

they evolve with time, it is apparent that the spectral content of the mechanism is concentrated in three

frequency zones: (i) from 20 to 50 Hz, (ii) from 90 to 130 Hz, and (iii) from 140 to 190 Hz, with each zone

including at least two modes.

6.3 Modelling the TV Structural Dynamics

The modelling of the TV structural dynamics is presently based on scalar FS-TAR models [Poulimenos

and Fassois, 2006]. Extensions to vector models are, of course, possible (see Chapter 3). FS-TAR

models constitute conceptual extensions of their conventional (stationary) AR counterparts, in that their

parameters are explicit functions of time, by belonging to functional subspaces spanned by selected

170



6. An FS-TAR Based Statistical Method for the Modelling and Fault Diagnosis in TV Structures

0

100

200

 

 
A

1
A

2
A

1

Actual pos. Reference pos. Error

0 2 4 6 8 10
−2

0

2

D
is

ta
nc

e
fr

om
 A

1 (
m

m
) E

rror (m
m

)

Time (s)

0

100

200

 

 
B

1
B

2
B

1

Actual pos. Reference pos. Error

0 2 4 6 8 10
−2

0

2

D
is

ta
nc

e
fr

om
 B

1 (
m

m
) E

rror (m
m

)

Time (s)

B1A2 B2A1
180 mm 180 mm

motor A motor B

(a)

(b) (c)

Figure 6.2.3: (a) The pick-and-place mechanism and the motor end positions, (b) actual, reference and

corresponding error position of motor A, and (c) actual, reference and corresponding error position of

motor B during the healthy baseline experiment.
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Figure 6.2.4: The healthy baseline non-stationary vibration response and preliminary analysis: (a)

The vibration response signal, (b) 2D plot of the non-parametrically obtained TV PSD estimate (Short-

Time Fourier Transform employing a 512-sample-long moving Gaussian data window advanced by five

samples), (c) 3D plot of the non-parametrically obtained TV PSD estimate.

basis functions. They belong to the class of deterministic parameter evolution methods as they impose

deterministic structure on the time evolution of their parameters [Poulimenos and Fassois, 2006].

An FS-TAR(na)[pa,ps] model, with na denoting its AutoRegressive (AR) order, pa and ps the AR and

innovations standard deviation functional basis dimensionalities, respectively, is of the form:

x[t] +

na∑

i=1

ai[t] · x[t− i] = e[t], e[t] ∼ NID(0, σ2
e [t]), t = 1, . . . , N (6.3.1)

with t designating discrete time normalized by the sampling period, x[t] the non-stationary response

signal, and e[t] the corresponding innovations (residual) sequence which is characterized by zero-mean
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6.3. Modelling the TV Structural Dynamics

and time-dependent standard deviation σe[t]. NID(·) stands for Normally Independently Distributed with

the indicated mean and variance.

Let, FAR
∆
=
{
Gda(1)[t], ..., Gda(pa)[t]

}
and Fσe

∆
=
{
Gds(1)[t], ..., Gds(ps)[t]

}
designate the AR and

innovations standard deviation functional subspaces, respectively, where the indices da(j)(j = 1, ..., pa)
and ds(j)(j = 1, ..., ps) designate the functions included in each basis. Then, the FS-TAR model time-

dependent parameters, along with the innovations time-dependent standard deviation, may be expressed

as:

ai[t]
∆
=

pa∑

j=1

ai,j ·Gda(j)[t], σ2
e [t]

∆
=

ps∑

j=1

sj ·Gds(j)[t] (6.3.2)

An FS-TAR model is thus parametrized in terms of its time-invariant projection coefficients ai,j , sj , while

a specific model structure, say M, is defined by the AR model order na and the functional subspaces

FAR,Fσe .

The model parameter vector and the model structure are both estimated from available vibration

response data. The complete problem is distinguished into (a) the parameter estimation subproblem (for

a given model structure), and (b) the model structure selection subproblem.

6.3.1 Model parameter estimation

The estimation of the projection coefficient vector θ, consisting of the AR and innovations standard

deviation vectors, ϑa and ϑs, respectively (the subscripts to brackets designate vector dimension):

θ
∆
= [ ϑTa | ϑTs ]T , ϑa

∆
= [ a1,1 . . . a1,pa | . . . | ana,1 . . . ana,pa ]T(napa)×1, and ϑs

∆
= [ s1 . . . sps ]Tps×1,

(6.3.3)

is based on available vibration response signal (from a single non-stationary experiment) X
∆
= {x[1], x[2],

. . . , x[N ]} and a selected specific model structure M.

In the present study the estimation of the parameter vector θ is based on the Multi-Stage (MS)

method which has been proven to provide consistent and asymptotically efficient estimates, that is the

asymptotic covariance matrix of the MS estimator achieves the Cramér-Rao lower bound [Poulimenos

and Fassois, 2007]. The MS method is implemented in three stages which are very briefly presented

below.

Stage 1. Initial AR projection coefficient vector estimation: In this stage an initial estimation of the AR

projection coefficient vector ϑa is obtained through the Ordinary Least Squares (OLS) estimator:

ϑ̂
OLS

a =

[
1

N

N∑

t=1

φ[t] · φT [t]

]−1

·
[

1

N

N∑

t=1

φ[t] · x[t]

]
(6.3.4)

where φ[t]
∆
= [ −Gda(1)[t] · x[t− 1], . . . ,−Gda(pa)[t] · x[t− na] ]T .

Stage 2. Innovations standard deviation projection coefficient vector estimation: Estimation of the

innovations standard deviation vector ϑs, is achieved by maximizing the log-likelihood of the FS-TAR

model with respect to ϑs:

ϑ̂
ML

s = arg min
ϑs

[− lnL (M(θ) | X)] = arg min
ϑs

1

N

N∑

t=1

[
ln
((
gTs [t] · ϑs

)2)
+

e2[t, ϑ̂
OLS

a ]

(gTs [t] · ϑs)2

]
(6.3.5)

where L (M(θ) | X) indicates the likelihood function of the model M(θ) given the vibration response data

X, while gs[t]
∆
=
[
Gds(1)[t] Gds(2)[t] . . . Gds(ps)[t]

]T
ps×1

. The prediction errors e[t, ϑ̂
OLS

a ] are obtained by

the relation e[t, ϑ̂
OLS

a ] = x[t]−φT [t] · ϑ̂OLS

a . Estimation of ϑs based on Eq. (6.3.5) constitutes a nonlinear

optimization problem, usually of low dimensionality (ps), that may be tackled via iterative optimization

techniques.
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Figure 6.3.1: Flowchart of the Multi-Stage estimation method. Convergence criteria with respect to the

estimated parameters and the value of the RSS are used for the termination of the iterative refinement.

Stage 3. Final AR projection coefficient vector estimation: Final estimation of the AR projection coef-

ficient vector ϑa is obtained by a Weighted Least Squares (WLS) estimator by utilizing the innovations

standard deviation projection coefficient vector ϑ̂
ML

s for the weighting sequence:

ϑ̂a =


 1

N

N∑

t=1

φ[t] · φT [t]
(
gTs [t] · ϑ̂ML

s

)2




−1

·


 1

N

N∑

t=1

φ[t] · x[t]
(
gTs [t] · ϑ̂ML

s

)2


 (6.3.6)

Remarks. (a) An OLS estimator of ϑs is used for the initialization of the nonlinear optimization procedure

of Stage 2. This is obtained by using the innovation sequence based on ϑ̂
OLS

a and the normality of the

residual sequence e[t, ϑ̂
OLS

a ], as follows [Grenier, 1983b]:

ϑ̂
OLS

s =

√
π

2
·
[
N∑

t=1

gs[t] · gTs [t]

]−1

·
[
N∑

t=1

gs[t] ·
∣∣∣e[t, ϑ̂OLS

a ]
∣∣∣
]

(6.3.7)

(b) Stages 2 and 3 may be iterated until a convergence criterion with respect to the estimated parameters

and/or the value of a suitable prediction error function, such as the Residual Sum of Squares (RSS =∑N
t=1 e

2[t, ϑ̂a]), is achieved. Presently, the convergence of the iterative procedure is considered with

respect to both the aforementioned criteria. A flowchart of the complete MS method is depicted in Fig.

6.3.1.

6.3.2 Model structure estimation

Given a basis function family, model structure estimation refers to the estimation of the set of integers

M = {na, pa, ps, da(j), ds(j)} for obtaining the best fitting model. Thus, model structure selection may

be viewed as a discrete variable selection problem that may be tackled via a two-phase procedure based

on the concept of backward regression [Poulimenos and Fassois, 2006]. The key characteristic of this

scheme is the approximate decomposition of the “structure” selection problem into two subproblems:

(i) the model order (na) selection subproblem, and (ii) the functional subspaces selection subproblem

{pa, ps, da(j), ds(j)}.
Thus, in the first phase, in order to “isolate” the selection of the model orders from that of the

functional subspaces, their interaction has to be minimized. For this reason, FS-TAR models of various

orders with “extended” (high) and “complete” (in the sense of including all consecutive functions up to the

selected subspace dimensionality) functional subspaces are estimated, with the appropriate AR order

being selected based on the minimization of the Bayesian Information Criterion (BIC) [Poulimenos and

Fassois, 2006]:

BIC = − lnL(M(θ)|X)+d· lnN
2

=
N

2
·ln 2π+

1

2
·
N∑

t=1

(
ln
((
gTs [t] · ϑs

)2)
+

e2[t,ϑa]

(gTs [t] · ϑs)2

)
+d· lnN

2
(6.3.8)
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where d = na · pa + ps is the number of independently “adjusted” (estimated) model parameters.

The second phase focuses on the optimization of the functional subspaces, in the sense of increasing

the representation parsimony without significantly reducing model accuracy. This is accomplished by

successively dropping (one at a time) basis functions whose removal leads to the reduction of the BIC.

In each iteration the specific basis function whose removal leads to the largest decrease of the BIC is

dropped while the procedure is repeated until no further reduction of the BIC is possible.

6.4 The Fault Diagnosis Method

The fault diagnosis method consists of two phases: (a) The baseline phase, which includes the modelling

of the TV dynamics of the mechanism based on the baseline measured response signals, and (b) the

inspection phase that is performed periodically or on demand during the mechanism’s service cycle.

This second phase utilizes the current vibration response signal – with the mechanism being under its

current (unknown) state – and performs fault diagnosis through statistical decision making tests.

More specifically, let So designate the mechanism in its nominal (healthy) state and Su the mechanism

in an unknown (to be determined) state. Furthermore, let SA, SB, . . . , SF designate the mechanism under

fault of type A,B, . . . , F , respectively. The complete response signals obtained during the baseline

phase are analogously designated as Xo, XA, XB, . . . , XF , while the data record Xu, corresponding to

an unknown (to be determined) structural state, is obtained and analyzed in the inspection phase.

The obtained signals are subsequently used for parametric modelling following the method described

in Section 6.3. From each estimated FS-TAR model, the corresponding MS estimate of the AR coefficients

of projection parameter vector ϑa is extracted (ϑ̂ao , ϑ̂aA , ϑ̂aB , . . . , ϑ̂aF in the baseline phase; ϑ̂au in the

inspection phase).

Fault detection is then based on testing for statistically significant changes in the parameter vector

ϑa between the nominal and current state of the TV mechanism through the hypothesis testing problem

[Fassois and Sakellariou, 2007]:

H0 : δϑa = ϑao − ϑau = 0 (null hypothesis – healthy mechanism)

H1 : δϑa = ϑao − ϑau 6= 0 (alternative hypothesis – faulty mechanism)
(6.4.1)

For sufficiently long signals the ϑa MS estimator is (under mild conditions [Poulimenos and Fassois,

2007]; Appendix 6.A) Gaussian distributed with mean equal to its true value ϑ̊a and covariance matrix

[Poulimenos and Fassois, 2007]:

P =
1

N
·





1

N

N∑

t=1

φ[t] · φT [t]
(
gTs [t] · ϑ̂ML

s

)2





−1

·





1

N

N∑

t=1

σ2
e [t] · φ[t] · φT [t]
(
gTs [t] · ϑ̂ML

s

)4




·





1

N

N∑

t=1

φ[t] · φT [t]
(
gTs [t] · ϑ̂ML

s

)2





−1

(6.4.2)

Hence,

ϑa ∼ N(ϑ̊a,P ) (6.4.3)

The difference between the two parameter vector estimators also follows Gaussian distribution [Fassois

and Sakellariou, 2007], that is

δϑ̂a = ϑ̂ao − ϑ̂au ∼ N(δϑa, δP ) (6.4.4)

with δϑa = ϑao − ϑau and δP = P o + P u , where P o,P u designate the corresponding covariance

matrices. Under the null (H0) hypothesis δϑ̂a = ϑ̂ao − ϑ̂au ∼ N(0, 2P o) and the quantity

χ2
ϑa

= δϑ̂
T

a · δP−1 · δϑ̂a (6.4.5)

with δP = 2P o follows χ2
distribution with napa (parameter vector ϑa dimensionality) degrees of freedom

[Fassois and Sakellariou, 2007], [Ljung, 1999, p. 558]. As the covariance matrix P o corresponding to the

healthy structure is unavailable, its estimated version P̂ o is used, obtained from Eq. (6.4.2) substituting
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Table 6.4.1: Statistical hypothesis testing problems for the fault detection and identification tasks.

Fault Detection

H0 : ϑau ∼ ϑao null hypothesis – healthy state

H1 : ϑau � ϑao alternative hypothesis – faulty state

Fault Identification

HA : ϑau ∼ ϑaA hypothesis A – fault type A

HB : ϑau ∼ ϑaB hypothesis B – fault type B

.

.

.

.

.

.

σ2
e [t] by

(
gTs [t] · ϑ̂ML

s

)2
. Then, the following test is constructed at the α (type I) risk level (that is the

probability of rejecting the null hypothesis H0 although it is true, or else the false alarm probability):

χ2
ϑa
≤ χ2

1−α(napa) =⇒ H0 is accepted (healthy mechanism)

Else =⇒ H1 is accepted (faulty mechanism)

(6.4.6)

with χ2
1−α(napa) designating the χ2

distribution’s 1− α critical point.

Fault identification may be based on the hypotheses testing problems of Table 6.4.1 comparing the

parameter vector ϑau belonging to the current state of the structure to those corresponding to different

fault types ϑaA ,ϑaB , . . . ,ϑaF . The complete fault diagnosis framework is depicted in Fig. 6.4.1. It

should be noted that the fault identification is presently based on successive binary hypothesis tests –

as opposed to multiple hypothesis tests [Fassois and Sakellariou, 2007].

6.4.1 Brief summary of the method

Baseline Phase

Step 1. Modelling of the healthy structural dynamics. Use a vibration response signal Xo (sample mean

subtracted) from the healthy structure to estimate an appropriate FS-TAR model using the proce-

dure of Sections 3.1 and 3.2 (Eqs. (4)-(8)).

Step 2. Modelling of the structural dynamics for each fault type. If fault identification is desired, repeat

Step 1 as necessary, each time using a vibration response signal XA or XB or . . . or XF (sample

mean subtracted) from the structure under each one of the faults A or B or . . . or F , respectively.

Inspection Phase

Step 3. Modelling of the current structural dynamics using the healthy model structure. Use a fresh

response signal Xu (sample mean subtracted) from the current (in unknown state) structure to

estimate an FS-TAR model of order and subspaces identical to that of the healthy baseline model

estimated in Step 1 using the procedure of Section 3.1 (Eqs. (4)-(7); no model structure selection

procedure implemented here).

Step 4. Fault detection. Compare the current model to its baseline phase counterpart (obtained in Step

1) via the statistical hypothesis testing procedure of Eqs. (9)-(10), (12)-(14) and decide (at a selected

α risk level) whether the structure is healthy or faulty.

Step 5. If the structure is healthy the method terminates. Otherwise proceed to Step 6.

Step 6. Modelling of the current structural dynamics using the various fault type model structures. Use the

same fresh response signal Xu (sample mean subtracted) and the procedure of Step 3 to estimate

current FS-TAR models of identical (in each fault type case) orders and functional subspaces to

those determined in the baseline phase (Step 2) using the procedure of Section 3.1 (Eqs. (4)-(7);

no model structure selection implemented here).
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Figure 6.4.1: Flowchart of the fault diagnosis method.

Step 7. Fault identification. Compare the current FS-TAR model (corresponding to fault type A and

obtained in Step 6) to its baseline phase counterpart (obtained in Step 2) via the statistical hypoth-

esis testing procedure of Eqs. (9)-(10), (12)-(14) to decide (at a selected α risk level) whether the

structure is under fault type A. If not, then repeat for each additional fault type (B,C, . . . , F ) until

the fault type is determined.

6.5 Modelling Results for the Healthy TV Structural Dynamics

The FS-TAR modelling of the TV mechanism dynamics under its healthy (nominal) structural state is

presently considered. A functional basis spanned by the Discrete Fourier Transform (DFT) functions:

G0[t] = 1, G2κ−1[t] = cos

[
2κπ (t− 1)

N−1

]
, G2κ[t] = sin

[
2κπ (t− 1)

N−1

]
, with κ = 1, 2, . . . , and t = 1, . . . , N

(6.5.1)

is adopted, prescribed by the periodic nature of the linear motors motion profile. The model structure

selection is achieved using the search scheme described in Section 6.3.2. Thus, at first an extended

and complete functional subspaces of dimensionality equal to 13 (pa = ps = 13) is employed and FS-

TAR(na)[13,13] models with na = 10, . . . , 30 are estimated, with the optimal AR order being selected

based on the BIC. The initial functional subspaces are subsequently reduced based on the BIC and the

backward regression procedure.

The BIC values for the obtained FS-TAR(na)[13,13] (na = 10, . . . , 30) are shown in Fig. 6.5.1(a).

The optimal AR order is selected as na = 21, while the finally obtained AR and innovations standard

deviation functional subspaces are of dimensionalities pa = 3 (FAR = {G0[t], G1[t], G3[t]}) and ps = 4
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Table 6.5.1: Parameter estimation method implementation details.

OLS MATLAB mldivide function (Householder transformation)

ϑa MS estimation termination rules:
| RSSi−RSSi−1 |

1+ | RSSi−1 |
≤ 10−8 and

‖ ϑa(i)−ϑa(i−1) ‖
1+ ‖ ϑa(i−1) ‖

≤ 10−8

ϑs ML nonlinear optimization MATLAB fminsearch function (Nelder-Mead simplex method),

termination rules:
| (lnL)i−(lnL)i−1 |

1+ | (lnL)i−1 |
≤ 10−8 and

‖ ϑs(i)−ϑs(i−1) ‖
1+ ‖ ϑs(i−1) ‖

< 10−12
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Figure 6.5.1: Baseline Phase: FS-TAR model structure selection for the healthy structural dynamics. (a)

AR order selection based on the BIC using an extended and complete functional subspace (pa = ps = 13),

and (b) BIC values obtained by sequentially dropping each of the indicated basis functions until no further

reduction is possible.

(Fσ2
e [t] = {G0[t], G1[t], G3[t], G5[t]}), respectively (Fig. 6.5.1(b)). The implementation details for the

parameter estimation method are summarized in Table 6.5.1, while as shown in Fig. 6.5.2 the finally

estimated FS-TAR model is successfully validated (at the 0.01 risk level) using a distribution-free sign

test [Poulimenos and Fassois, 2006] [Draper and Smith, 1998, pp. 192-198].

It must be noticed that the AR functional subspace consists of the basis functions G0[t] = 1, G1[t] =

cos
[

2π(t−1)
N−1

]
and G3[t] = cos

[
4π (t−1)
N−1

]
, that is the constant function and the first two cosine functions

of the DFT basis. The time-dependent basis functions correspond to frequencies f1 = 0.1 Hz and

f2 = 0.2 Hz, or else and as shown in Fig. 6.5.3(a) are cosine functions with one and two periods,

respectively, during the complete non-stationary experiment. In the same figure, the motors passage

from the rightmost endpoints A1-B1, the midpoints Am-Bm, and the leftmost endpoints A2-B2 of the

motors motion trajectories are associated with time and indicated by dot-dashed vertical lines which

may provide a guide for illustrating the relationship of f1 and f2 with the motion of the motors and the

geometry of the mechanism. More specifically, the fact that each motor returns to its initial position

following sinusoidal motion profiles is reflected in f1 (it is reminded that the motors move from A1-B1

to A2-B2 and back to A1-B1). To illustrate the connection of f2 with the evolution of the underlying TV
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Figure 6.5.2: Baseline Phase: FS-TAR model validation through the residual sign test (risk level α = 0.01;

a model is successfully validated if the test statistic is below the critical limit designated by the dashed

horizontal line).
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Figure 6.5.3: (a) The basis functionsG0[t], G1[t] andG3[t], (b) the “frozen” configuration of the mechanism

with the motors having covered a distance of 50 mm from their initial position A1-B1, and (c) the “frozen”

configuration of the mechanism with the motors having covered a distance of 130 mm from their initial

positions A1-B1.

structural dynamics, let consider the time instants t1 and t2 with the motors having covered 50 mm and

130 mm, respectively, from their initial positions (rightmost endpoints A1-B1). On the contrary, at time

instant t1 the distance of the motors from their leftmost endpoints A2-B2 is 130 mm while at t2 is 50 mm.

As shown in Figs. 6.5.3(b) and (c) the “frozen” configuration of the mechanism at t1 is a reflected image

of the respective configuration of the mechanism at t2. As a consequence the global characteristics of

the mechanism TV structural dynamics, which are represented by the time-dependent AR parameters,

will be the same for these two time instants. Thus, there is an additional symmetry with respect to the

midpoints Am-Bm which is directly related with f2.

The accuracy of the FS-TAR model representing the mechanism under its healthy state is also judged

in terms of the model-based analysis of the mechanism TV dynamics. For this purpose, the vibration
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(b)(a)

Figure 6.5.4: Healthy baseline dynamics: (a)“Frozen-time” TV-PSD estimate based on the FS-

TAR(21)[3,4] model, and (b) sample mean spectrogram obtained from the total of 41 non-stationary

experiments.

response signal’s “frozen-time” PSD is obtained as [Poulimenos and Fassois, 2006]:

S(ω, t) =
σ2
e [t]∣∣1 +

∑na
i=1 ai[t]e

−jωTsi
∣∣2 , (6.5.2)

with the model parameters and innovations variance being replaced by their respective estimates, ω
designating frequency in rad/s, Ts the sampling period in s, and j the imaginary unit, while the system’s

“frozen-time” natural frequencies and damping ratios are also computed by the TV frozen model poles.

The “frozen-time” PSD estimated based on the FS-TAR(21)[3,4] model is depicted in Fig. 6.5.4. The

model-based PSD estimate is contrasted to the sample mean spectrogram obtained from the 41 non-

stationary experiments with the mechanism being under its healthy state. As it may be observed the

FS-TAR based estimate is in good agreement with its non-parametric counterpart but much more clear

smooth and informative. This result is indicative of the potential of non-stationary parametric based

methods for accurate modelling and the advantages that they offer contrasted to their non-parametric

counterparts with respect to the achievable resolution.

The corresponding “frozen-time” natural frequency estimates are illustrated in Fig. 6.5.5 (with the

sample mean spectrogram shown in the background) along with the corresponding damping ratios. In

total, eight natural frequencies are identified in the analyzed bandwidth which, as already indicated

from the preprocessing analysis of Section 6.2.3, are concentrated in three distinct frequency zones

(20-50 Hz, 90-130 Hz, and 140-190 Hz). Most of these modes are characterized by low damping ratios

(< 10%), while all of them depict high variability characterized by the f1 and f2 frequencies of the AR

basis functions.

6.6 Fault Diagnosis Results

6.6.1 Baseline phase

The FS-TAR model parameter and structure estimation procedure described in Section 6.3 is subse-

quently employed for the estimation of the remaining baseline models, each one corresponding to each

fault type (scenario), that is A,B, . . . , F . The model structure details for the estimated models are sum-

marized in Table 6.6.1 (the model structure selection results are given in Appendix 6.B), while the finally

estimated FS-TAR models are also successfully validated (see Fig. 6.5.2).

Summary results expressed in terms of various performance criteria are, for all baseline models, pro-

vided in Fig. 6.6.1. It is observed that in all cases baseline models attain similar predictive performance

(RSS/SSS values) except from the baseline models representing the mechanism under fault states C
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Figure 6.5.5: Healthy baseline dynamics based on the FS-TAR(21)[3,4] model: (a) “Frozen-time” natural

frequency estimates (sample mean spectrogram shown in the background), and (b) the corresponding

“frozen-time” damping ratios.

Table 6.6.1: Model structure details for the identified baseline FS-TAR models.

Structural State na da pa ds ps

Healthy 21 [0 1 3] 3 [0 1 3 5] 4

Fault Type A 22 [0 1 3] 3 [0 1 3 5] 4

Fault Type B 22 [0 1 3] 3 [0 3 5 7] 4

Fault Type C 21 [0 1 3] 3 [0 3 5 9 11 12] 6

Fault Type D 22 [0 1 3] 3 [0 1 3] 3

Fault Type E 21 [0 1 3] 3 [0 1 3] 3

Fault Type F 22 [0 1 3] 3 [0 3] 2

and D. Therefore, these baseline models may be considered as less capable of representing the faulty

mechanism dynamics. On the other hand, the good Samples Per Parameters (SPP) values and the low

regression matrix conditions numbers indicate good statistical and numerical reliability for all estimated

models.

The “frozen-time” natural frequency and damping ratio estimates obtained by the baseline FS-TAR

models representing the mechanism under fault states C and E are also illustrated in Figs. 6.6.2 and

6.6.3, respectively. Although, when compared to the corresponding healthy model based estimates (Fig.

6.5.5) small changes are observed in the case of fault E, this is not true for fault C, with the changes

being more pronounced in the modes above 100 Hz. The increased sensitivity of the higher modes to local

damage has also been observed in a number of previous studies (see [Salawu, 1997] and the references

therein). Similar comments apply to faults B and D, while smaller changes are observed for faults A
and F . These results constitute an indication for the severity of each fault and are in agreement with the

RSS/SSS values attained by the identified baseline models, which constitute a model fitting criterion.

At this point it must be noted, that the symmetries of the mechanism which in the health case

are reflected by f1 and f2 are only approximately valid for the fault cases since faults do not occur

in a symmetric way. Thus, it is expected that more severe faults will cause increased deviation from

symmetry and FS-TAR models with parameters expanded on DFT basis functions, which are by definition
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Figure 6.6.2: Baseline dynamics under fault C based on the FS-TAR(21)[3,6] model: (a) “Frozen-time”

natural frequency estimates (sample mean spectrogram shown in the background), and (b) the corre-

sponding “frozen-time” damping ratios.

symmetric, will be less capable of accurately describing the TV structural dynamics of the mechanism.

However, this is a disadvantage only as long as modelling of the faulty mechanism is considered, but

actually consists an asset for fault diagnosis.
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Figure 6.6.3: Baseline dynamics under fault E based on the FS-TAR(21)[3,3] model: (a) “Frozen-time”

natural frequency estimates (sample mean spectrogram shown in the background), and (b) the corre-

sponding “frozen-time” damping ratios.

6.6.2 Inspection phase

As already mentioned the fault diagnosis method is based on the vibration response of a single accelerom-

eter (Fig. 6.2.1 - location 4) along with the FS-TAR(21)[3,4] model identified in the baseline phase. In

addition, corresponding FS-TAR models are identified in each test case using the current response signal

(inspection phase).

Figure 6.6.4 presents the fault detection results. The test statistics corresponding to the healthy

mechanism are shown in circles (40 experiments), while the test statistics corresponding to the various

fault types are presented with symbols of different color (different for each fault type). Evidently, correct

detection is obtained in each test case, as the test statistic is shown not to exceed the critical limit (at

the α = 10−8
risk level) in the healthy cases, while it exceeds it in all fault cases (note the logarithmic

scale at the vertical axis in Fig. 6.6.4). It should be added, that in each test case (experiment) the

motion profiles considered in Fig. 6.2.3 (a) and (b) is only approximately followed by the linear motors

of the mechanism. It is thus evident that the method effectively accounts for such stochastic effects and

inherent variabilities. The “global” fault detection capability of the method is also worth noting. This is

to say that both “local” and “remote” (with respect to the proximity of the fault location to the sensor) are

effectively handled (for instance faults of both A and B types; Fig. 6.2.2.

Similarly, fault identification is based on the mechanism vibration response of accelerometer at

location 4 and the baseline FS-TAR models identified for each faulty case. The fault identification

results for all 240 test cases related to a faulty state are presented in Figs. 6.6.5(a) - 6.6.5(f). Evidently,

for fault types A to D correct identification is obtained as the test statistics are shown not to exceed the

critical point for the fault type considered, while the test cases corresponding to the other fault types

exceed it. Note the logarithmic scale on the vertical axis which indicates significant difference between

the correct fault type statistics and the rest fault types statistics. It is reminded that faults A to C
correspond to the removal of various bolts from specific parts of the mechanism, while fault type D
corresponds to the loosening of the slider of motor B.

On the other hand, the fault identification results for fault cases E and F , that is loosening the

bolt E1 connecting the right bungee cord hook with the aluminium base and adding a mass at the free

end of the motor A slider respectively (see Fig. 6.2.2), depicted in Fig. 6.6.5 show that there is a small
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Figure 6.6.4: Inspection phase: Fault detection results for all 280 test cases (risk level α = 10−8
; a fault

is detected if the test statistic exceeds the critical limit designated by the dashed horizontal line.
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Figure 6.6.5: Inspection Phase: Fault identification results (240 test cases) with the actual fault being

of the indicated type (risk level α = 10−8
).

number of fault misclassifications in these cases. Summary fault detection and identification results

are presented in Table 6.6.2.
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Table 6.6.2: Inspection phase: Summary of the fault detection and identification results.

Fault Detection

False Alarms Missed Faults

Healthy Fault A Fault B Fault C Fault D Fault E Fault F

0/40 0/40 0/40 0/40 0/40 0/40 0/40

Fault Identification (misclassifications)

— Fault A Fault B Fault C Fault D Fault E Fault F

— 0/240 0/240 0/240 0/240 10/240 9/240

6.7 Conclusions

A statistical time series vibration-response-based method for fault diagnosis in inherently TV structures

was introduced. The method is based on non-stationary Functional Series AutoRegressive (FS-TAR)

models and a proper statistical decision making scheme. It is an output-only method, capable of operat-

ing with a minimal number of random vibration response signals which may be of limited time duration

and frequency bandwidth, under normal operating conditions, and in a potentially automated way. It is

of general applicability, but particularly suitable for TV structures that work repeatedly on an operational

cycle characterized by prescribed evolution of their time-varying properties (physical or geometrical).

The method was applied to the problem of fault diagnosis in a pick-and-place mechanism based on

a single vibration response signal. Various fault scenarios were employed along with a number of case

studies (experiments). The method’s very good performance characteristics were confirmed, as no false

alarms or missed faults occurred, while the fault identification (classification) performance was also very

good.

Appendix 6.A Regularity Conditions

The asymptotic analysis framework, based on which the covariance matrix of the AR coefficients of

projection vector is derived, is valid under some general regularity conditions which the true FS-TAR

data generating process should follow [Poulimenos and Fassois, 2007]:

CD 1: The innovations standard deviation is bounded, uniformly in t, as follows:

0 < σe ≤ gTs [t] · ϑ̊s ≤ σe <∞, ∀t. (6.A.1a)

CD 2: The basis functions are linearly independent and bounded, uniformly in t, that is:

max
i,j

(
|Gda(i)[t]|, |Gds(j)[t]|

)
≤ g <∞, ∀t. (6.A.1b)

CD 3: The impulse response polynomial operators of the FS-TAR data generating process are absolutely

summable, uniformly in t, that is:

∞∑

r=0

sup
t

∣∣∣hr[t, ϑ̊a]
∣∣∣ = h <∞. (6.A.1c)

where hr[t, ϑ̊a] = −år[t]−
∑r−1

j=1 åj [t] · hr−j [t− j, ϑ̊a], r = 1, 2, . . . , with åi[t] ≡ 0 for i > na.

In the above relations ϑ̊a and ϑ̊s designate the true AR and innovations sequence standard deviation

coefficients of projection vector, respectively. Conditions CD 1,2 are quite natural. Condition CD 3 may

be seen as a stability condition, since Eq. (6.A.1c) suffices for the Bounded Input Bounded Output

(BIBO) stability of the FS-TAR models.
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6.A.1 A-posteriori validation of the regularity conditions

The a-posteriori validation of the regularity conditions that are used in the derivation of the asymptotic

properties of the MS estimator (Eqs. (6.A.1)) is presently considered for the FS-TAR(21)[3,4] baseline

model representing the mechanism under its healthy state. As it may be observed in Fig. 6.A.1 the

estimated standard deviation and the functional basis are uniformly bounded while also the impulse

response polynomial operators of the identified FS-TAR model are absolutely summable uniformly in t.

∑
r j=

0

∣ ∣ ∣h
r
[t
,ϑ̂

a
]∣ ∣ ∣

Figure 6.A.1: A-posteriori validation of the regularity conditions. The estimated standard deviation and

the functional basis are uniformly bounded while also the impulse response polynomial operators of the

identified FS-TAR model are absolutely summable, uniformly in t.

Appendix 6.B Model Structure Selection Details

The BIC, RSS/SSS, SPP, and regression matrix condition number values obtained by the candidate

baseline models estimated during the model structure selection procedure are shown in Figs. 6.B.1 -

6.B.7 (healthy and faulty cases A,B, . . . , F ). For each baseline model extended and complete functional

subspaces of dimensionality equal to 13 (pa = ps = 13) are employed and FS-TAR(na)[13,13] models

with na = 10, . . . , 30 are estimated, with the optimal AR order being selected based on the BIC (Phase

A). The initial functional subspaces are subsequently reduced based again on the BIC and a backward

regression procedure (Phase B). It is noted that only the values obtained by the candidate models during

the reduction of the AR functional subspace are depicted in these figures.

Appendix 6.C Coefficients of Projection and Time-Dependent Parameters

The coefficients of projection of the MS estimated FS-TAR(21)[3,4] model representing the structure under

its healthy state are given in Table 6.C.1. The standard deviation values of the estimated parameters are

also given in this table while the corresponding time-dependent parameters are depicted in Fig. 6.C.1.
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Figure 6.B.1: Healthy baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.
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Figure 6.B.2: Fault A baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.

Appendix 6.D One-Step-Ahead Signal Predictions

Indicative one-step-ahead signal predictions obtained by the estimated baseline FS-TAR models are (for

a short time segment of the signals) compared to the actual signal values in Fig. 6.D.1. It is observed

that all models provide more or less good predictions with RSS normalized by the Series Sum of Squares

(RSS/SSS) values varying between 11.66% (fault case E) and 19.58% (fault case C).
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Figure 6.B.3: Fault B baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.
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Figure 6.B.4: Fault C baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.

Appendix 6.E Fault Diagnosis Based on a Reduced Dimensionality Coef-

ficient of Projection Vector

Fault detection results utilizing Principal Component Analysis (PCA [Jolliffe, 2002]; MATLAB pcacov

function) for the reduction of the parameter vector space are summarized in Table 6.E.1. Various

percentages of the explained variance and respective compression of the parameter spaces are examined

(Fig. 6.E.1). The results indicate that for a percentage of almost 70% of the initial parameter space,

which corresponds to 99% of the explained variance, the fault detection results are almost the same (one

missed fault instead of zero missed faults) with those obtained by using the initial full length parameter
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Figure 6.B.5: Fault D baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.
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Figure 6.B.6: Fault E baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.

vector ϑ̂ao .

Fault identification results using the principal components which explain 99% of the variance are

summarized in Table 6.E.2. Even if a decreased number of misclassifications is obtained for Fault

E, the corresponding misclassifications for Fault F are more than double compared to those obtained

by using the initial full length parameter vectors ϑ̂aV (with V = A,B, . . . , F ), while at the same time

8 misclassifications for Fault A and 1 for Fault D arise. Concluding, although in this case study the

identified baseline models consists of AR coefficients of projection parameter vectors of low dimensionality

(63 parameters for the healthy case, the faulty case C and the faulty case E, and 66 for the rest of the

cases) and the compression is not of critical importance, PCA may be particularly helpful in cases of
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Figure 6.B.7: Fault F baseline FS-TAR model structure selection. Phase A: AR order selection based

on the BIC using an extended and complete functional subspace pa = ps = 13. Phase B: BIC values

obtained by sequentially dropping the indicated basis functions until no further reduction is possible.

The Residual Sum of Squares (RSS), Sample Per Parameters (SPP) and the condition number of the

regression matrix of the identified models are also illustrated.

Table 6.C.1: Coefficients of projection ± one standard deviation of the estimated baseline FS-TAR(21)[3,4]

model representing the mechanism under its healthy state.

i ai,1 ± std(ai,1) ai,2 ± std(ai,2) ai,3 ± std(ai,3)

1 −0.124± 0.014 0.003± 0.021 0.073± 0.019
2 1.073± 0.014 −0.108± 0.021 −0.127± 0.019
3 −0.552± 0.021 −0.066± 0.029 0.236± 0.028
4 0.464± 0.023 0.061± 0.032 −0.294± 0.030
5 −0.702± 0.024 −0.007± 0.033 0.372± 0.032
6 0.293± 0.026 0.042± 0.035 −0.237± 0.035
7 0.079± 0.026 −0.012± 0.035 0.341± 0.035
8 0.674± 0.026 −0.247± 0.034 −0.294± 0.035
9 0.098± 0.027 −0.025± 0.035 0.237± 0.036
10 0.251± 0.027 −0.246± 0.034 −0.211± 0.035
11 −0.503± 0.027 0.184± 0.033 0.108± 0.034
12 −0.165± 0.027 0.036± 0.034 −0.121± 0.035
13 −0.475± 0.027 0.200± 0.034 0.102± 0.035
14 0.000± 0.026 −0.061± 0.033 −0.062± 0.034
15 −0.025± 0.026 −0.028± 0.033 0.073± 0.034
16 0.188± 0.025 −0.130± 0.033 −0.124± 0.033
17 −0.259± 0.023 −0.007± 0.031 0.085± 0.031
18 −0.150± 0.022 −0.021± 0.030 −0.087± 0.029
19 −0.421± 0.020 0.123± 0.028 0.074± 0.028
20 −0.151± 0.014 0.071± 0.020 −0.041± 0.019
21 −0.246± 0.014 0.060± 0.020 0.060± 0.019

s1 ± std(s1) s2 ± std(s2) s3 ± std(s3) s4 ± std(s4)
5.480·10−3 ± 5.536·10−5 6.634·10−4 ± 7.401·10−5 −7.365·10−5 ± 7.891·10−5 4.712·10−4 ± 7.739·10−5

baseline models of high AR orders and extended functional subspaces.
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Figure 6.C.1: The time-varying parameters of the identified FS-TAR(21)[3,4] model representing the mech-

anism under its healthy state: (a) AR parameters and (b) innovations sequence standard deviation.

Table 6.E.1: Fault detection results based on reduced dimensionality coefficient of projection vectors.

Variance Number False Alarms Missed Faults

explained (%) of PCs Healthy Fault A Fault B Fault C Fault D Fault E Fault F

80 14/63 (22.22 %) 1/40 22/40 39/40 12/40 0/40 13/40 12/40

90 21/63 (33.33 %) 0/40 4/40 19/40 0/40 0/40 5/40 7/40

95 28/63 (44.44 %) 0/40 0/40 7/40 0/40 0/40 6/40 6/40

97.5 35/63 (55.56 %) 0/40 0/40 0/40 0/40 0/40 5/40 5/40

99 44/63 (69.84 %) 0/40 0/40 0/40 0/40 0/40 0/40 1/40

Table 6.E.2: Fault identification (misclassifications) results based on the reduced dimensionality coeffi-

cient of projection vectors which explain 99% of the variance.

Fault A Fault B Fault C Fault D Fault E Fault F

8/239 0/239 0/239 1/239 5/239 23/239
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Figure 6.D.1: Segment of the vibration response signals acquired during the baseline experiments with

the mechanism under the states considered and the corresponding one-step-ahead predictions obtained

by the identified baseline FS-TAR models (see Table 6.6.1).
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Appendix 6.F Residual-Based Methods for Fault Diagnosis (Inspection Phase)

6.F.1 Method A: Using the likelihood function

In this method, fault detection is based upon the likelihood function under the null (H0) hypothesis of

a healthy mechanism (see [Gertler, 1998, pp. 119-120]). The hypothesis testing problem considered is:

H0: θo = θu (null hypothesis – healthy mechanism)

H1: θo 6= θu (alternative hypothesis – faulty mechanism)

with θo and θu designating the healthy and current structure’s complete parameter vectors, respectively.

Assuming independence of the innovations sequence, the Gaussian likelihood function for the data X
is given as [Poulimenos and Fassois, 2006]:

lnL
(
M(θ)

∣∣ X
)

= ln f
(
X
∣∣ M(θ)

)
= ln

N∏

t=1

f (e[t,θ]) = −
N∑

t=1

(
ln
(
σ2
e [t,ϑs]

)
+
e2[t,ϑa]

σ2
e [t,ϑs]

)
(6.F.1)

with f(·) designating the Gaussian probability density function. Under the null (H0) hypothesis, the

residual series eu[t,ϑao ] generated by driving the current signal through the nominal model M(θo) is

(just like the healthy baseline model residual sequence eo[t,ϑao ]) normally independently distributed with

zero mean and variance σ2
eo [t,ϑso ]. Decision making may be then based upon the likelihood function

under H0 evaluated for the current data, by requiring it to be larger or equal to a threshold ` (which is

to be selected) in order for the null (H0) hypothesis to be accepted, that is:

lnL
(
M(θo)

∣∣ Xu

)
≥ ` =⇒ H0 is accepted (healthy mechanism)

Else =⇒ H1 is accepted (faulty mechanism)
(6.F.2)

The evaluation of the log-likelihood lnL
(
M(θo)

∣∣ Xu

)
requires knowledge of the true innovations

variance σ2
eo [t,ϑso ]. If this quantity is known, or may be estimated with very good accuracy in the

baseline phase (which is reasonable for estimation based upon a large number of samples N ) so that it

may be treated as a fixed quantity of negligible variability, the condition for the acceptance of the null

hypothesis may be written as:

lnL
(
M(θo)

∣∣ Xu

)
≥ ` =⇒ −

N∑

t=1

(
ln
((
gTs [t] · ϑso

)2)
+

e2
u[t,ϑao ]

(gTs [t] · ϑso)2

)
≥ ` =⇒

N∑

t=1

e2
u[t,ϑao ]

(gTs [t] · ϑso)2 ≤ `∗

where `∗ = `+
∑N

t=1 ln
((
gTs [t] · ϑso

)2)
, since the projected innovations standard deviation (gTs [t] · ϑso)

as already mentioned is considered as constant after its estimation. Thus, the decision-making rule of

Eq. (6.F.2) may be re-expressed as:

∑N
t=1

e2u[t,ϑao ]

(gTs [t]·ϑso)
2 ≤ ` =⇒ H0 is accepted (healthy mechanism)

Else =⇒ H1 is accepted (faulty mechanism)

(6.F.3)

The fault detection results based on the above likelihood-based test with `∗ selected equal to 5, 800
are illustrated in Fig. 6.F.1. As shown the statistic attains similar values for the healthy case and the

faulty cases of type B and E and as a result gives a high percentage of missed faults (81/240).

6.F.2 Method B: Using the innovations standard deviation coefficients of projection

parameter vector

In this method the characteristic quantity Q used for the fault detection and identification problems is

the innovation standard deviation coefficients of projection parameter vector ϑs of the identified FS-TAR

models.
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Figure 6.F.1: Fault detection results based on the likelihood statistic. A fault is detected if the test

statistic exceeds the critical user-defined limit `∗ (− − −).

Let M(θo), eo[t,ϑao ],and ϑso represent the healthy baseline model, the corresponding residual se-

quence and the residuals standard deviation coefficients of projection vector, respectively, obtained in

the baseline modelling phase. Also, let eu[t,ϑao ] and ϑsu represent the current residual sequence and

the corresponding standard deviation coefficients of projection vector, respectively, obtained by using

the baseline model and the current available vibration response signals (with the mechanism being in its

current unknown state). The latter is estimated through the maximization of the log-likelihood function

of Eq. (6.3.5) conditional to the innovations sequence eu[t,ϑao ].
For sufficiently long signals the ϑs MS estimator is Gaussian distributed with mean equal to its

true value ϑ̊s and covariance matrix P s (see [Poulimenos and Fassois, 2007] for details). Thus, in case

that the system in its current state does not present a fault, ϑso and ϑsu will follow the same normal

distribution. Therefore, following a similar procedure with that described in Section 6.4 the following

test may be constructed at the α (type I) risk level:

χ2
ϑs
≤ χ2

1−α(ps) =⇒ H0 is accepted (healthy mechanism)

Else =⇒ H1 is accepted (faulty mechanism)

(6.F.4)

with χ2
1−α(ps) designating the χ2

distribution’s 1− α critical point.

The fault detection results for this method are shown in Fig. 6.F.2 and although they are slightly

better than those obtained by the likelihood-based test the number of missed faults is still large and

concerns again the fault cases B and E.
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Figure 6.F.2: Fault detection results based on the innovations standard deviation coefficients of projec-

tion vector for all 280 test cases at the α = 10−8
risk level. A fault is detected if the test statistic exceeds

the critical limit (− − −).
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Chapter 7

Conclusions and Future Work

The problem of non-stationary random vibration modelling and analysis via Functional Series TARMA

was addressed in the present thesis. Within this context, a number of practical and theoretical issues

of particular significance for accurate FS-TARMA modelling were considered. An overall discussion and

outlook of the issues treated in this thesis, the thesis chapters and their specific objectives is given in

Section 7.1, while a brief summary of the main outcomes of this study are discussed in Section 7.2.

Future perspectives of the main subjects of the thesis are finally discussed in Section 7.3.

7.1 General Conclusions

Deterministic parameter evolution methods for stochastic identification of TV structures through random

output-only vibration data records are mainly based on Functional Series Time-dependent AutoRegres-

sive Moving Average (FS-TARMA) models [Poulimenos and Fassois, 2006,Niedźwiecki, 2000]. Their AR,

MA parameters and residual sequence innovations variance that explicitly depend upon time, are de-

scribed by deterministic functions belonging to specific functional subspaces; and as a consequence

the FS-TARMA model is fully parametrized by the corresponding TI coefficients of projection. They were

introduced in 1970 by Rao who proposed the truncated Taylor series expansion of a TAR model param-

eters [Rao, 1970] – this is equivalent to assuming time-dependent parameters that can be described as

polynomials of time – and they have played key role in the development and evolution of non-stationary

stochastic signal identification and analysis over the last forty years.

They naturally emerged from the necessity for development of effective tools for non-stationary signal

analysis in a time where the limitations of stationary analysis into a continuously evolving world had

already been recognised. For this reason, and due to their simplicity and the fact that they are based

on well known estimation methods FS-TARMA models rapidly evolved and were successfully applied in

a number of signal analysis studies in various scientific areas: from financial data modelling [Hinich

and Roll, 1981,Gersch and Kitagawa, 1982] to speech analysis [Liporace, 1975,Grenier, 1983b] and the

modelling of biomedical processes [Gersch et al., 1983, Amir and Gath, 1989] and from the modelling

of communication channels [Tsatsanis, 1995, Jachan and Matz, 2005] to the vibrational analysis of

engineering structures [Bardou and Sidahmed, 1994, Conforto and D’Alessio, 1999b, Poulimenos and

Fassois, 2009b].

The accumulated experience of forty years of research and development constitute FS-TARMA models

today a ripe tool for non-stationary identification. However, despite the progress achieved thus far and

the increasing number of successful applications, the FS-TARMA model based non-stationary vibration

analysis remains a challenging problem. This is due to the elaborate model structure selection proce-
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dures, the complexity of the identification cost functions, as well as problems related to estimated model

stability and invertibility and the difficulties these may pose to both estimation and analysis. Further-

more, a number of technologically important issues such as the multivariate FS-TARMA identification

have hardly been considered up to date. In order to alleviate some of these problems and significantly fa-

cilitate the application of FS-TARMA models the present thesis focused on the development of advanced

and complete FS-TARMA identification methods that try to overcome drawbacks of previous approaches.

At first, and in order to assess the effectiveness of FS-TARMA models, a critical overview and com-

parative assessment of parametric TARMA methods for the identification and model-based analysis of a

benchmark laboratory TV structure under unobservable excitation was performed in Chapter 2 of this

thesis. The methods were classified according to the mathematical structure imposed on the TV pa-

rameter evolution as unstructured, stochastic, and deterministic parameter evolution. The features and

relative merits of each class were outlined while a representative method from each was then assessed

through its application to the identification and dynamic analysis of a laboratory TV structure consisting

of a beam with a mass moving on it. The methods were compared to each other in terms of achiev-

able prediction accuracy and model-based analysis and the results demonstrated the FS-TARMA based

methods’ applicability, effectiveness, and high potential for parsimonious and accurate identification

and dynamic analysis of TV structures under unobservable excitation.

The problem of parametric output-only identification of a time-varying structure based on vector ran-

dom vibration signal measurements was considered in the third chapter of this thesis. For this reason, a

Functional Series Vector Time-dependent AutoRegressive Moving Average (FS-VTARMA) method was in-

troduced and employed for the identification of a “bridge-like” laboratory structure consisting of a beam

and a moving mass. The identification was based on three simultaneously measured vibration response

signals obtained during a single experiment. The method was judged against baseline modelling based

on multiple “frozen-configuration” stationary experiments, and was shown to be effective and capable of

accurately tracking the dynamics. Additional comparisons with a recursive Pseudo-Linear Regression

VTARMA (PLR-VTARMA) method and a Short Time Stochastic Subspace Identification (ST-SSI) method

were made. The identification and model based analysis results demonstrated the ability of the FS-

VTARMA method for accurate and parsimonious (economical) output-only multivariate identification of

TV structures.

The development of a new class of Adaptable FS-TARMA (AFS-TARMA) models was presented in

Chapter 4 of this thesis. AFS-TARMA models utilize adaptable basis functions characterized by a fi-

nite number of a-priori unknown parameters which have to be estimated along with the coefficients of

projection. Thus, the corresponding functional subspaces used for the expansion of the TV parameters

are automatically adapted on the specific identification problem, in contrast to the classical FS-TARMA

approach which uses basis functions with fixed and predetermined characteristics. The estimation of

the introduced models was based on a Separable Nonlinear Least Squares (SNLS) type procedure which

leads to a constrained non-quadratic optimization problem tackled via Particle Swarm Optimization

(PSO) and gradient-type refinement. The model orders and subspace dimensionalities were estimated

based on suitable criteria and PSO. The method’s effectiveness was shown in both simulation and ex-

perimental case studies through comparisons with currently available schemes. The results showed

excellent performance and superior accuracy achieved by the AFS-TARMA models with adaptable basis

functions.

A review of the FS-TARMA models for the identification of non-stationary signals was on the focus of

Chapter 5. Toward this end, a critical overview of the available methods for the FS-TARMA model param-

eter estimation and structure selection problems was presented while special emphasis was placed on

promising new methods that aim at overcoming problems of previous approaches. More specifically, the

main FS-TARMA and AFS-TARMA estimation methods for both parametric and semi-parametric type of

models were summarized. The methods were distinguished in Maximum Likelihood and regression type

methods with emphasis given to both theoretical and practical issues. FS-TARMA model structure selec-

tion methods were also reviewed and classified in two major categories: the integer optimization methods

and those based on the concept of regression (backward or forward). The advantages and disadvantages
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of each method and the various parameters that are required for the realization of each method were

discussed. The performance characteristics of various FS-TARMA and AFS-TARMA estimation methods

were also examined via their application to the problem of modelling and analysis of a simulated TARMA

model via Monte Carlo experiments. Alternative non-stationary identification methods belonging to the

classes of SPE and UPE methods were also employed for this problem and the various models estimated

were also compared in terms of various criteria. The simulated non-stationary model was characterized

by inhomogeneous evolution of its parameters, that is they were characterized by transitions between

smooth and abrupt changes in their values, and its identification was found to be particularly difficult

for most of the methods considered. However, the best (in fact excellent) performance characteristics

were achieved by the novel AFS-TARMA models.

Finally, this thesis dealt with the development of an efficient statistical time series vibration-based

method for fault detection and identification in inherently non-stationary structures. The method is

based on non-stationary FS-TAR models and a proper statistical decision making scheme. It employs a

single vibration response signal acquired from the structure during its normal operation and it is partic-

ularly suitable for non-stationary structures that work repeatedly on an operational cycle characterized

by prescribed evolution of their time-varying properties. The method’s effectiveness was assessed via its

application on the fault detection and identification of a pick-and-place mechanism consisting of two

electromagnetic linear motors that follow prescribed motion profiles. Faults of various types and occur-

rence locations were simulated and a number of experiments was conducted. The considered faults were

successfully detected with no false alarms or missed faults while also the faults were correctly identified

for most of the test cases.

The main conclusions of the aforementioned studies are summarized in the following section.

7.2 Summary

Chapter 1

Chapter 1 contains an introduction to this thesis. More specifically, the general problem of non-

stationary vibration modelling and its significance were described. Furthermore, the current state-

of-the-art was reviewed and discussed, and the specific scope of the work was presented. Finally, the

thesis chapters were analytically presented and their individual contributions were outlined.

Chapter 2

The main conclusions obtained from the comparative experimental assessment of non-stationary vibra-

tion modelling methods via their application to the identification of a “bridge-like” laboratory structure

may be summarized as follows:

• Parametric methods are more elaborate and demand increased user expertise compared to their

generally simpler non-parametric counterparts. Yet, they were shown to offer increased tracking

accuracy and resolution.

• Parametric non-stationary identification methods are particularly adequate for the identification

and dynamic analysis of TV structures under unobservable excitation.

• The model-based dynamics, including the resonance and antiresonance natural frequencies and

the TV PSD of the vibration response, were most accurately captured by the FS-TARMA method.

• Overall, the results of the study demonstrated the applicability, effectiveness, and high potential

for parsimonious and accurate time-varying structural dynamics representation of FS-TARMA

models.
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Chapter 3

The main issues addressed with respect to the identification of time-varying structures under unobserv-

able excitation through multivariate vibration response measurements and FS-VTARMA models are the

following:

• The introduced FS-VTARMA methods applied on the identification of a TV “bridge-like” structure

was shown to provide PSD and modal parameter estimates that are in good agreement with those

obtained by a baseline “frozen-configuration” model.

• The identified FS-VTARMA model attained better predictive performance than its ST-SSI and

PLR-VTARMA counterparts. The FS-VTARMA model provided drastically (by more than an order

of magnitude) improved predictions over the corresponding predictions attained previously [Pouli-

menos and Fassois, 2009a] by a univariate (scalar) FS-TARMA model.

• The estimated FS-VTARMA model was shown to surpass the PLR-VTARMA and ST-SSI models in

terms of tracking accuracy for the “frozen-time” structural dynamics.

• The estimated FS-VTARMA model is characterized by a high degree of parametrization parsimony

(economy) as compared to its ST-SSI and PLR-VTARMA counterparts. This difference is due to the

need of the ST-SSI and PLR-VTARMA models to store their estimated parameter values for each

time instant.

• Overall, the identification and model based analysis results demonstrated the ability of the FS-

VTARMA method for accurate and parsimonious (economical) output-only multivariate identifica-

tion of TV structures.

Chapter 4

Chapter 4 which dealt with the introduction of a novel Adaptable FS-TARMA model class and the devel-

opment of effective identification method lead to the following main conclusions:

• The proposed adaptable basis functions (B-splines and decaying trigonometric) are collectively

capable of effectively modelling a wide variety of parameter evolutions, from slow and smooth to

fast and abrupt, but also periodic or quasi-periodic. However, a number of other adaptable basis

functions may be used within the context of FS-TARMA modelling.

• The introduced AFS-TARMA method was shown to be capable of automatically, and yet effectively,

estimating the functional subspaces and coefficients of projection for specified AFS-TARMA models.

This is also true for cases of parameter characterized by abrupt or even mixed types of evolution.

• The hybrid optimization scheme utilized for the AFS-TARMA identification method provides ac-

curate solutions even for problems characterized by a large number of local extrema in the fitness

function.

• Comparisons with the classical FS-TARMA method, and methods of the UPE and SPE classes

confirmed the excellent performance and superior accuracy achieved by the AFS-TARMA method

with adaptable basis functions.

• The results of the experimental case study, that is the identification of a TV pick-and-place

mechanism, demonstrated the high achievable accuracy of the proposed approach.
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Chapter 5

The main conclusions drawn from the review study on the FS-TARMA models and the corresponding

parameter estimation and model structure selection methods may be summarized as follows:

• Model structure and basis functional family selection play an important role in achieving high

modelling accuracy.

• The classical FS-TARMA model structure selection was shown to be an elaborate procedure which

normally requires high user-expertise and inference.

• The classical FS-TARMA methods based on fixed basis and the Smoothness Priors TARMA (SP-

TARMA) methods was shown to be incapable of estimating with accuracy parameters which are

characterized by inhomogeneous evolution.

• The adaptable approach based on parametrized functional subspaces offers significant improve-

ment regarding parameter tracking accuracy, particularly for cases of inhomogeneous evolution of

the time-dependent parameters. This improvement is achieved at the price of increased computa-

tional complexity.

• The Multi-Stage (MS) method was found to be superior for classical FS-TAR model estimation,

while also of reduced computational complexity when compared to the ML estimates. This result

also confirmed practically the fact that the MS method leads to statistically efficient estimators.

• Regarding classical FS-TARMA model estimation again the MS method provided the best results,

however the best trade-off between computational complexity and achievable accuracy was pro-

vided by the Two Stage Least Squares (2SLS) method.

• The Maximum Likelihood (ML) method was shown to be of increased complexity even for the simple

FS-TAR case. The likelihood function was also shown to be characterized by a large number of

local extrema making its optimization a difficult task.

Chapter 6

The concluding remarks of the study on the statistical time series vibration-based method for fault

detection and identification in inherently non-stationary structures may be outlined as follows:

• The proposed method is particularly suitable for time-varying structures that work repeatedly on

an operational cycle characterized by prescribed evolution of their time-varying properties (physical

or geometrical). Furthermore, it is noted that the method may work on the basis of a single cycle

of operation of the structure.

• The introduced method was shown to effectively tackle fault detection and identification, achieving

excellent performance with zero false alarms, missed faults, and low damage misclassification

rates.

• The proposed method was also shown to be capable of effectively accounting for stochastic effects

and the inherent variability of test data (experimental uncertainty).

• The study has demonstrated the very significant amount of information on the state of the struc-

ture embedded even in a single response signal. Thus an important message is that it may not be

necessary to employ a “high” number of sensors for precise fault detection; instead, a “few” sen-

sors and powerful signal analysis for extracting the embedded information may be a much more

practical and effective approach.
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• The availability of data records corresponding to various potential fault scenarios is necessary in

order to treat damage identification. This may not be possible with the actual structure itself, but

analytical (Finite Element) models may be used for this purpose.

7.3 Suggestions for Future Work

Despite the significant progress that has been achieved on non-stationary vibration modelling through

FS-TAR/TARMA models, there are still open issues for further research. Some ideas for further work

are:

• The combination of deterministic and stochastic parameter evolution methods for the development

of models with parameters characterized by both deterministic and stochastic parts. This extension

will give the opportunity to track parameter evolutions that also have stochastic characteristics

due to environmental or excitation conditions (temperature, wind, tides, etc).

• The extension of FS-TARMA models to the case of non-stationary linear parameter varying models

with parameters dependent not only on time but also to an exogenous measurable variable k (for

instance, the weight of a train or a heavy vehicle, the velocity of travelling). This type of models will

be able to describe a specific structure under a wide range of operating conditions taking advantage

of non-stationary analysis.

• The treatment of algorithmic instability that may occur through FS-TARMA models estimation

via Prediction Error (PE) methods where the estimated model is characterized by an unstable MA

polynomial.

• The development of criteria to be used within the context of FS-TARMA model structure selection

suitable for the non-stationary vibration modelling and analysis problems – it has been observed

that the BIC, AIC criteria tend to overestimate the structure of FS-TARMA models, resulting in the

identification of a significant number of spurious modes.

• The asymptotic properties of the AFS-TARMA models estimators would facilitate the development

of more efficient estimation methods.

• The AFS-TARMA models developed in this thesis may be the basic instrument for the development

of statistical frameworks for the problems of change and non-stationarity detection.

• The successful application of FS-TARMA models for the non-stationary vibration modelling and

analysis of laboratory time-varying structures, encourages the use of methods on real-world and

more complex structures outside the laboratory environment.
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Appendix A

Functional Basis Families

A.1 Discrete Fourier Transform (DFT) Functions

The DFT basis functions are given by the following relations:

G0[t] = 1, G2k−1[t] = cos

[
2πk · t− 1

N

]
, G2k[t] = sin

[
2πk · t− 1

N

]
, k = 1, 2, 3, . . . , t = 1, . . . , N

(A.1.1)

with N designating the non-stationary signal length (in samples). The first four DFT basis functions are

depicted in Fig. A.1.1.
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Figure A.1.1: The first four discrete Fourier transform basis functions.
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A.2. Discrete Cosine Transform (DCT) Functions
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Figure A.2.1: The first four discrete cosine transform basis functions.

A.2 Discrete Cosine Transform (DCT) Functions

The DCT basis functions are given by the following equation:

Gk[t] = ak · cos

[
πk · 2(t− 1) + 1

2N

]
, k = 0, 1, 2, . . . , t = 1, . . . , N (A.2.1)

with

ak =





√
1
N for k = 0√
2
N for k 6= 0

and N the non-stationary signal length (in samples). The first four DCT basis functions are depicted in

Fig. A.2.1.

A.3 Chebyshev Polynomials

The Chebyshev polynomials belong to the broader family of orthogonal polynomials obeying the recur-

rence relation [Abramowitz and Stegun, 1972, p. 782] :

a1 ·Gk+1[ t−1
N−1 ] = (a2 + a3

t−1
N−1) ·Gk[ t−1

N−1 ]− a4 ·Gk−1[ t−1
N−1 ], k = 0, 1, 2, . . . , t = 1, . . . , N (A.3.1)

For a1 = a4 = 1, a2 = 0, a3 = 2, and G−1[ t−1
N−1 ] = 0, G0[ t−1

N−1 ] = 1, this expression yields the shifted

Chebyshev polynomials of the first kind (see Fig. A.3.1).

A.4 Legendre Polynomials

The Legendre polynomials also obey the recurrence relation of Eq. A.3.1 with a1 = k + 1, a2 = 0, a3 =
2k + 1, a4 = k, and G0[t] = 1, G1[t] = t. The first four Legendre polynomials are depicted in Fig. A.4.1.
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Figure A.3.1: The first four Chebyshev polynomials of the first kind.
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Figure A.4.1: The first four Legendre polynomials.

A.5 Haar Functions

The Haar functions form a group of square waves with magnitude ±1 in certain intervals and zero

elsewhere. The first two are defined as:

G0[t] = 1 G1[t] =

{
1 t ∈

[
1, N2

]

−1 t ∈
[
N
2 + 1, N

] (A.5.1)

G1[t] is referred to as the fundamental square wave of length N . The rest are defined in families of

2j , j = 1, 2, . . ., functions (G2[t] up to G3[t], G4[t] up to G7[t], G2j [t] up to G2j+1−1[t] in general). In each

family (comprising 2j functions) the interval [1, N ] is divided into 2j equal segments of length
N
2j

within

which G1[t] is compressed (forming the fundamental square wave of length
N
2j

) and successively located

(from left to right) in each segment, while the remaining portions of the [1, N ] interval are filled up with
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A.6. Normalized B-Splines
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Figure A.5.1: The first four Haar basis functions.

zeros. For instance:

G2[t] =





1 t ∈
[
1, N4

]

−1 t ∈
[
N
4 + 1, N2

]

0 t ∈
[
N
2 + 1, N

] G3[t] =





0 t ∈
[
1, N2

]

1 t ∈
[
N
2 + 1, 3N

4

]

−1 t ∈
[

3N
4 + 1, N

] (A.5.2)

The first four Haar basis functions are depicted in Fig. A.5.1.

A.6 Normalized B-Splines

Although, there are several ways to define the B-spline functions Gκj [t, τ ] of order κ, a convenient one is

by the means of the Cox-de Boor recursion formula for the normalized B-splines [de Boor, 2001, p. 90].

G1
j [t, τ ] =

{
1 if τj ≤ t < τj+1

0 otherwise

(A.6.1a)

Gij [t, τ ] = wj,i[t] ·Gi−1
j [t, τ ] + (1− wj,i[t]) ·Gi−1

j+1[t, τ ], for 1 < i ≤ κ (A.6.1b)

where

wj,i[t] =





t− τj
τj+i−1 − τj

if τj < τj+i−1,

0 otherwise.

(A.6.1c)
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Figure A.6.1: The six functions of a uniform B-spline basis of order p = 3 with N = 1000 and internal

knots τ4 = 250, τ5 = 500, τ6 = 750.

In the above relationships, τ = [τ1, . . . , τp+κ] ∈ [1, N ] designates the non-decreasing sequence of knots,

and p the basis dimensionality. According to the Curry and Schoenberg Theorem [de Boor, 2001, pp.

97-98] and by imposing no continuity conditions at the endpoints, the first κ and last κ knots may be

selected as τ1 = . . . = τκ = 1 and τp+1 = . . . = τp+κ = N with the B-splines basis being fully determined

by the p− κ free internal knots [τκ+1, . . . , τp]
T

.

The uniform B-spline basis may be obtained by using a grid of equidistant internal knots. For

instance, the uniform quadratic B-splines basis (κ = 3) consisting of six basis functions (p = 3) are

depicted in Fig. A.6.1.
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