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Dr. Josep Brugada Terradellas Hospital Cĺınic, Universitat de Barcelona, Spain
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Abstract / Resumen

Abstract. The definition of optimal selection criteria for maximizing the
response rate to Cardiac Resynchronization Therapy (CRT) is still an issue
under active debate. Recent clinical approaches propose a classification of
patients into classes of mechanisms that could lead to heart failure and study
their response to the therapy. In this line of research, the computation of
a metric between the motion and deformation patterns of a given subject
and well identified classes of CRT responders is considered in this thesis,
as the basis of a new strategy to compute patient selection indexes. The
thesis proposes first an improved design for the construction of statistical
atlases of myocardial motion and deformation, and applies it to the charac-
terization of populations of patients involved in CRT. The added-value of
our approach is highlighted in a clinical study, applying the methodology to
a large population of patients with a given pattern of dyssynchrony (septal
flash) and understanding the link between its correction and CRT response.
Finally, we propose a method to extend the analysis to the comparison of
individuals to reference populations, either healthy or pathological, using
manifold learning techniques to model a disease as progressive deviations
from normality along a manifold structure, and demonstrate the potential
of our method for inter-subject comparison in CRT patients.

Resumen. La definición de un criterio óptimo para mejorar la respuesta
a la Terapia de Resincronización Card́ıaca (TRC) sigue siendo un debate
abierto. Estudio cĺınicos recientemente publicados proponen clasificar pa-
cientes según diversos mecanismos patofisiológicos que pueden inducir insu-
ficiencia card́ıaca y estudian su respuesta a la terapia. Siguiendo esta ĺınea
de investigación, esta tesis considera el cálculo de una distancia entre los
patrones de movimiento y deformación de un individuo y las clases de re-
spondedores a la TRC, siendo la base de una nueva estrategia para calcular
ı́ndices para seleccionar pacientes. Esta tesis presenta primero un método
para construir un atlas estad́ıstico de movimiento y deformación miocárdica,
y su aplicación posterior a la caracterización de poblaciones de potenciales
candidatos a la TRC. El valor añadido de nuestro método se enfatiza en un
estudio cĺınico, en el cual se aplica la metodoloǵıa a una gran población de
pacientes con un patrón espećıfico de disincrońıa card́ıaca (llamado septal
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flash), y se relaciona su corrección y la respuesta a la TRC. Finalmente, se
extiende el método para comparar individuos a una población de referencia,
sana o patológica, usando técnicas de manifold learning para representar una
patoloǵıa como una desviación progresiva de la normalidad, con una estruc-
tura no lineal espećıfica, y se demuestra el potencial de nuestro método para
comparar entre si candidatos a la TRC.
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Introduction

1.1 Preamble

Starting from (1) a concrete clinical problem, this thesis aimed at (2) de-
signing novel algorithmic tools to understand this problem, and (3) showing
these tools are clinically applicable on large datasets.

1.1.1 Clinical context

This thesis was oriented towards the implementation of computational tools
to study cardiac dyssynchrony, facing the current limitations of Cardiac
Resynchronization Therapy (CRT) [1] studies. As briefly reviewed in Sec. 2.1.1,
the main current clinical challenge behind CRT is certainly the improvement
of the patient selection process. Recent editorials and studies have debated
on the importance of primarily understanding the physiological mechanisms
of cardiac dyssynchrony, and as a first step, their quantification [2] [3] [4]
(Sec. 2.1.2).

In this context, the design of quantitative tools for characterizing these
mechanisms of cardiac dyssynchrony stood as one of the initial targets of
this thesis. Section 2.2 reviews the literature about myocardial motion and
deformation estimation, while Sec. 2.3 gives an overview of the different
options available to perform intra- and inter-subject statistical comparison.

1.1.2 Algorithmic implementation

Motion and deformation were quantified in this thesis using dense regis-
tration algorithms. These algorithms were made compliant with specific
constraints associated to the processing of cardiac sequences (preservation
of the topology and orientation of the registered anatomical structures, spa-
tiotemporal smoothness and regularization of the estimated transformations,
Sec. 2.2.2).
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Besides being able to measure myocardial motion and deformation in
a similar manner, most CRT studies still lack of a clear system of coordi-
nates to perform relevant inter-subject comparison. This point is relatively
paradoxical, as one would expect a relevant quantitative comparison for any
information extracted in a quantitative manner. In such studies, spatial
synchronization of the data is limited to the definition specific observation
points, which are generally a limited set of observer-defined landmarks, or the
cardiac segments defined according to the NYHA convention [5]. The defini-
tion of these points is highly subjective and patient-dependent, and therefore
a potential factor of bias in the analysis. Temporal synchronization of the
whole data is avoided in a large number of CRT studies by computing few
representative values for the whole sequence (average value within a specific
time interval, or single values such as time-to-peak or -onset measurements,
all of them being highly controversial [6] [7]).

Thus, the core of this thesis was the design of a robust framework to
perform subject comparison at a population scale and proposing technical
solutions for the above-mentioned synchronization issues. Depending on the
population of subject considered in the analysis, different solutions were
found:

• We first proposed a complete pipeline for the construction of a sta-
tistical atlas of motion built from a healthy population, allowing the local
quantification of myocardial motion abnormalities. In the context of CRT,
we demonstrated the potential of this approach for the characterization of
specific patterns of mechanical dyssynchrony, at baseline (Chap. 3); and as
a first step towards the understanding of the link between these mechanisms
and CRT response, looking at the evolution of these abnormalities with the
therapy (Chap. 4).

• The tools used for statistically modelling the variability of healthy sub-
jects may not be adequate if the strategy is extended to build an atlas for a
population of patients with a specific pattern of dyssynchrony. Spatiotem-
poral variations of the studied pattern may bias the estimation of the local
variability for this population, despite its synchronization to a common sys-
tem of spatiotemporal coordinates. Thus, a second part of the thesis was
centered on the inclusion of more complex statistics (manifold-learning tech-
niques) to achieve the comparison of individuals to a population with a
specific pattern, taking into account the topology of this pattern (Chap. 5).

1.1.3 Clinical application

In a clinical perspective, part of the thesis work focused on the value of our
approach for the characterization of CRT responders. The use of image reg-
istration, statistical atlases and manifold learning may appear as a complex
machinery, the utility of which should be clearly demonstrated. We there-
fore intended to demonstrate the usefulness of the proposed quantification
and statistical characterization of motion and deformation abnormalities in
its application to a large database of patients.

The first expected output from the implantation of a CRT device on
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one patient (getting closer to a synchronous contraction, Sec. 2.1.1) is easily
transposable at the atlas output level (reducing the observed abnormalities).
Part of the work performed in this thesis was centered on the analysis of
these abnormalities. The analysis can be performed either locally, at each
instant of the cardiac cycle and each location of the myocardial wall (Chap. 3
and 4), or globally, therefore focusing on the whole patterns of abnormality
observed, when present (Chap. 5).

As suggested by the findings of [8], and encouraged by recent editorials
[2] [3] [4], we centered our clinical analysis on specific patterns of dyssyn-
chrony that may condition CRT response. Encouraging results confirmed
the relevance of an atlas-based approach to quantify the effect of CRT on
such abnormal patterns (Chap. 4). These observations encouraged the de-
sign of the latest part of the thesis work, which consisted in implementing
manifold-learning techniques to represent a pathological pattern and perform
population-wise comparison (Chap. 5).

1.2 Objectives of this thesis

The overall aim of this thesis was to propose technical solutions for the
characterization of motion and deformation abnormalities. On the clinical
side, the underlying objective was to apply these tools in the context of CRT,
and demonstrate their added-value. Main requirements were:

• the quantification of motion and deformation for any subject.

• the definition of statistical indexes to characterize the degree of
abnormality of each subject and its location.

• the design of statistical tools for the analysis of patterns of dyssyn-
chrony, using the information provided by the estimated abnormalities in-
dexes.

1.3 Contributions of this thesis

• One of the main contributions of this work consists in the computation
of statistical indexes for the quantification of motion and deformation ab-
normalities (Chap. 3). The novelty of such indexes is that they intrinsically
perform a comparison to normality. This concept is analogue to the learn-
ing process made by a clinical observer, namely characterizing pathological
motion and deformation patterns in a patient using learnt patterns from
healthy and pathological sequences as reference. In our case, the analysis
is completely quantitative, as recommended by recent statements about the
study of cardiac dyssynchrony [3] [4].

•With the use of statistical atlases to analyze populations, patient data is
normalized to a common anatomical reference. The computation of statisti-
cal indexes is therefore automatic and more accurate than methods requiring
input from clinical observers (Chap. 3).
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Initial problem:
Understanding CRT response

Methods design:
Atlases and manifold-learning

Clinical impact:
CRT clinical studies

Figure 1.1: Research lines for this thesis.

• On a clinical side, the recognition of specific motion and deformation
patterns may have better predicting capability of CRT response than the
classical indexes of dyssynchrony used for CRT. This work attempted to
demonstrate the added-value of the proposed statistical atlases tools for the
understanding the effect of CRT on such abnormal patterns (Chap. 4).
• The atlas framework proposed in this thesis allows the representation

of any subject by a map of local abnormalities. One part of this thesis
focused on the advanced analysis of these maps, using manifold-learning
techniques to represent a pathological pattern as a deviation from normality
along a smooth manifold, and then comparing individuals to this pattern
(Chap. 5). This concept is a first step towards the reproducible comparison
of a new candidate to specific patterns of mechanical dyssynchrony that
actively condition CRT response.

1.4 Overview of this thesis

The whole structure of the thesis is articulated around atlas-based techniques
for inter-subject comparison, from the construction of a statistical atlas to
the extension of its output under a manifold-learning perspective, and its
application to the study of CRT response (Fig. 1.1). The core contents of
this thesis are articulated in four chapters.

Chapter 2 presents a review of the state-of-the-art for the most of the
concepts studied in this thesis, therefore situating each specific part of the
thesis within either the clinical or image analysis communities (or both).

Chapter 3 describes a complete pipeline for the construction of a sta-
tistical atlas of motion built from a healthy population. The atlas is built in
a three steps process: motion extraction from cardiac sequences using image
registration techniques, normalizing the different sequences to a spatiotem-
poral reference anatomy, and computing local statistics on motion fields. The
atlas is then used for the comparison of individuals to a healthy population,
both represented by myocardial velocities, using abnormality indexes avail-
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able at any spatiotemporal location. The method is applied to the analysis
of a population of CRT candidates with left ventricular dyssynchrony, look-
ing for the presence of a specific pattern of intra-ventricular dyssynchrony
called septal flash (SF).

Chapter 4 consists in a clinical study to demonstrate the value of the
proposed approach for the understanding the effect of CRT on patterns of
abnormal motion. The method is applied to the computation of motion
abnormalities in a large dataset of 88 CRT candidates before and after the
therapy. The study focuses on the usefulness of the atlas-based tools to quan-
tify motion abnormalities. The study highlights the importance of statistical
indexes that intrinsically embed the notion of “normality”, to characterize
patterns of mechanical dyssynchrony and their evolution with the therapy.

Chapter 5 presents a new method for representing a pathological pat-
tern as a deviation from normality along a smooth manifold, and comparing
individuals to the population for which the manifold structure is estimated.
Each subject is represented by a 2D map of local motion abnormalities, ob-
tained from its comparison to a statistical atlas of motion constructed for
a healthy population following the pipeline introduced in Chap. 3. The al-
gorithm estimates a manifold from a set of patients with varying degrees
of the same disease, and compares individuals to the training population
using a mapping to the manifold and a distance to normality along the man-
ifold. The method is applied in the context of CRT, comparing both healthy
subjects and patients to a population with SF [8].

Each chapter is self-contained, and corresponds to a peer-reviewed jour-
nal article, published or under review. Some concepts may therefore be re-
peated, sometimes including some improvements introduced along the thesis
progression.
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2

State-of-the-art

2.1 Looking for CRT responders

2.1.1 Cardiac dyssynchrony in the context of CRT

The role of CRT [1] in improving both clinical condition and cardiac function
of heart failure patients has been now clearly demonstrated [9] [10] [11].

In this therapy, a biventricular pacing device is positioned on the my-
ocardium of the treated patients, to pace both the septal and lateral wall of
the left ventricle (LV), and compensates deficiencies in the heart conduction
system. The primary objective of CRT is to recover a synchronous contrac-
tion of the cardiac chambers. With optimized resynchronization, cardiac
function is expected to improve, leading to notable improvements in pa-
tient condition (clinical response) and allowing reverse remodelling of the
LV (volume or echocardiographic response) [12] [13].

Current CRT devices have two or three leads, depending on the pacing
strategy. The septum is activated through a lead positioned in the right
ventricle, while the lateral wall is paced at the coronary sinus level. A third
lead may be placed in the right atrium to optimize the atrio-ventricular con-
traction. The accuracy of the pacing site and its influence on CRT response
is discussed in [14] [1].

Importance of the patient selection process

Between 25 and 50 % of heart failure patients (at least 15 million people in
Europe [15] [16]) may be candidates for CRT based on the current guide-
lines [16]. This high potential societal impact, combined to the high cost of
the pacing device and the whole cardiac care cycle, makes the definition of
relevant patient selection criteria a priority [17] [18] [13] [19].

Established international guidelines for the selection of patients currently
select subjects with symptomatic heart failure, electrical abnormalities and
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decreased LV function (ejection fraction < 35%, QRS duration > 120ms,
and NYHA classification ≥ 3 despite optimal medical treatment) [20] [15].

However, with such selection criteria, the therapy fails to “improve enough”
(Sec. 2.1.1) patient condition for approximately 30% of the subjects, and re-
verse remodelling for 50% of the patients [21]. The guidelines were softened
according to these observations and clinical practice [13], but making the
patient selection more efficient remains an open issue. In a research perspec-
tive, improving patient selection supposes reaching a clear understanding
of the physiological factors (both electrical and mechanical) that condition
positive or negative response.

Definition of CRT response

There is currently no consensus about the definition of CRT response [22]
[7], even between two different papers from the same authors published in
the same issue of the same journal [8] [23]. Studies generally define volume
response by measuring reverse remodelling (reduction of LV end-systolic vol-
ume in a majority of studies), while clinical response is set by estimating
the improvement of the patient condition (6 minutes walking test, NYHA
functional class reduction, peak-oxygen consumption, etc.). The relevance
of interpretations based on the clinical response may be discussed, due to
non-negligible placebo effects [24].

In any case, the criteria for CRT response should be considered carefully
[4] [21]. Indeed, the use of fixed thresholds for defining response is certainly
a limitation to a clear understanding of CRT response, in comparison with
the use of a spectrum of responses, involving additional measures of CRT
outcome, as recently suggested [25] [18].

2.1.2 Understanding the mechanisms leading to cardiac
dyssynchrony

There is still a huge paradox about CRT studies: CRT targets the correction
of the dyssynchrony in the motion of the cardiac chambers, but the patient
selection process still discards dyssynchrony (both electrical and mechanical
[22]) as a selection criteria. The duration of the QRS complex is the only
exception to this, but the guidelines have been revised to make its influence
lower [13].

Regarding mechanical dyssynchrony, there is currently no consensus for
its accurate characterization and its link with CRT response, therefore bring-
ing no conclusions about the way to include it within the patient selection
process [3] [4] [26] [27]. This low enthusiasm is reinforced by the abun-
dance of publications about mechanical dyssynchrony measurements, includ-
ing promising and extensively advertised, but deceiving, large-scale multi-
center studies [28] [29] [30] [24].

The indexes proposed in the literature are mostly based on the direct
comparisons of temporal measurements (QRS duration and time-to-peak
or time-to-onset measures), which remain highly suboptimal [6] [7] and still
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discard the complexity of the etiologies of cardiac dyssynchrony. The combi-
nation of these single parameters into a multi-parametric analysis did neither
bring any clear conclusions [31] [32] [33] for similar reasons.

Recent editorials encouraged rather different strategies, which privileged
a mechanistic approach for the understanding of CRT response, rather than
looking for a single or multiple phenomenologically predictive indexes [2] [3]
[4]. The high predictive value associated to the correction of specific ab-
normal mechanisms, each one amenable to a certain type of dyssynchrony,
was discussed in [8]. This study proposed a separation of patients accord-
ing to specific groups of mechanical dyssynchrony (inter-, intra- and atrio-
ventricular dyssynchrony), each of these groups being associated to one spe-
cific pathological pattern of myocardial motion and deformation, with differ-
ent grades of abnormality with respect to a healthy cardiac function. Pos-
terior works also considering similar patterns of mechanical dyssynchrony
supported such a strategy [34] [35] [23].

According to this specific line of research, a straightforward improvement
of the patient selection process for CRT could integrate the recognition of
such patterns in new candidates, under the condition that the response rate
of each of these patterns is roughly known.

The algorithm for improving patient selection proposed in [8] is however
an algorithmic model, the limitations of which should be carefully consid-
ered before adapting it. We summarized some of these points in Sec. 6.2,
complemented by the critical view we gained about this strategy during the
realization of this thesis.

2.2 Imaging strategies for analyzing myocar-
dial dynamics

2.2.1 Myocardial imaging modalities

A large amount of imaging techniques are used in the clinical practice to an-
alyze the dynamics of the myocardial wall, such as magnetic resonance imag-
ing (MRI), tagged MRI (t-MRI), computed tomography (CT) and 2D/3D
ultrasound (US), and techniques derived from US properties such as tissue
doppler (TDI) and strain rate imaging (SRI). In MRI, t-MRI, CT and stan-
dard US imaging, wall motion and deformation can be obtained by using
segmentation, tracking or registration techniques on image sequences. MRI
and CT provide a better spatial resolution but a reduced temporal one com-
pared to US imaging, which is in addition of easier access in hospitals, with
less expensive and constraining devices (MRI for example cannot be used
for patients equipped with pacemakers, due to the use of a high magnetic
field). US and t-MRI allow a more accurate estimation of myocardial defor-
mation due to the presence of local features on the myocardial wall (speckles
[Sec. 2.2.2] or tags).

TDI and SRI provide complementary analyzing tools [36] [37]. Both use
the Doppler effect on US signals to provide information regarding velocities

9



(TDI, [38]) and strain (SRI, [39] [40]) along the myocardial wall. An up-to-
date review on US-based techniques can be found in [36].

In this thesis, we tried to keep the formulation of the algorithms irrespec-
tive of the input imaging modality. We preferred to apply image processing
techniques on standard sequences of images where the gray-level is directly
related to the anatomy, rather than using functional images. Indeed, TDI
only provides a 1D measurement (the projection of the velocity vector along
the observation beam), namely limited information, and is highly dependent
of the insonation angle [36]. SRI is still under development and needs to be
improved for a completely reliable clinical use.

2.2.2 Image-based tracking

Recovering myocardial motion and strain has been targeted by a large num-
ber of computer-assisted techniques, which can be separated in three main
trends: identifying anatomical features of the myocardial wall (using land-
mark extraction or image segmentation, based on Active Shape [41] and
Appearance [42] [43] Models) (1) along the whole sequence, or on one frame
of the sequence and propagate this information using (2) feature-tracking or
(3) motion and deformation estimation directly from the image sequences,
which is the strategy chosen for this thesis.

Image-based tracking techniques are not specific to a given imaging modal-
ity, but some popular exceptions were specifically designed for t-MRI and
US, as reviewed in the following paragraphs.

Frequency-based tracking of t-MRI sequences

Frequency-based methods can be used to track the information contained in
t-MRI sequences, the main ones being HARP [44] [45], SinMod [46] and Ga-
bor filter methods [47] [48]. All techniques are based on the principle that
the phase of a material point is constant along the cardiac cycle. HARP
works in the frequency domain to process phase information, phase shifts
being associated to motion. SinMod improves the HARP technique by al-
lowing the recovery of the both local spatial phase shift and spatial frequency
of the tagged images, and not only local spatial phase. Gabor filters also
allow tracking the anatomy from the phase response to the filter. A detailed
review of these techniques can be found in [49].

Speckle-tracking

Speckle tracking is a rather recent technique which uses block-matching al-
gorithms to track local speckle patterns along US sequences. Speckle is a
random interference pattern of US imaging which is mainly visible on the my-
ocardial wall, and is conserved over “large enough” temporal neighborhoods
of frames. Thus, tracking the local speckles allows tracking the myocardial
wall along the whole sequence. In this sense, the concept of speckle tracking
is very similar to the tracking achieved through image registration along car-
diac sequences, with the specificity of computing image similarities locally.
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A majority of speckle tracking applications in clinical practice process 2D
US [36] [50], but its extensions to 3D start gaining popularity as they do not
suffer from out-of-plane motion artifacts [51] [52] [53] [54] [55] [56].

Pairwise image registration

Basic registration takes as input two objects and computes an optimal trans-
formation that matches one of these two objects to the second one. In
our case the input objects are cardiac images and the expected outputs are
displacement fields, reflecting inter-subject changes (in case the processed
images come from two different subjects at the same phase of the cardiac
cycle) or intra-subject changes, namely motion along the sequence. Due
to the complexity of the way the heart moves and deforms, the computed
transformations are required to be non-rigid.

Among the large variety of non-rigid registration techniques that have
been developed, two can be said of very common use: demons algorithm,
which is non-parametric [57], and Free Form Deformation (FFD) [58], which
displaces a set a control points and therefore is parametric. For both tech-
niques, matching mainly consists in the minimization of an energy including
a similarity term between the images to match, and a constraint term on
the transformation to control its smoothness.

Demons algorithm considers non-rigid registration as a diffusion process.
It performs successive updates of a displacement field by adding a small
vector field to it, whose expression is derived from optical flow equations.
Smoothing by a Gaussian kernel serves as regularization technique. Detailed
attempts to find a unified theory for demons-based algorithms can be found
in [59] [60] [61] [62].

FFD settles a set of control points over the object to deform and moves
them iteratively according to the optimization scheme. A major character-
istic of this registration technique is that a whole continuous transformation
can be characterized by a small number of parameters (the control points
positions). The transform is then obtained over the whole image domain by
interpolation on a B-spline basis [63] [64].

Diffeomorphic registration

Tracking the anatomy implies imposing strong constraints on the estimated
transformations: the topology and the orientation of anatomical structures
should be preserved by the registration scheme. Indeed, in case of large
displacements, simple registration schemes are likely to present folding arti-
facts [65], where image structures could overlap, appear or disappear, which
is completely unrealistic in terms of anatomy. The previous registration
schemes can therefore be adapted to provide diffeomorphic transformations
(invertible, smooth and with smooth inverse) [66] [65].

Intuitive construction of diffeomorphic transformations. During the last
decade, specific works took advantage of the definition of diffeomorphisms
to provide optimal trajectories between two images parameterized by flows
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of velocities. We refer to these techniques as the Large Deformation Diffeo-
morphic Metric Mapping framework (LDDMM), initiated by the works of
[67] and [68].

The intuition behind these works is directly linked to the group structure
of the space of diffeomorphic transformation, the group operator being the
composition operator [69]. A large diffeomorphic transformation is built
as the composition of small transformations, computed during an iterative
process. A parametrization of this composition process is generally defined as
a time scale between times 0 and 1, which correspond to the fixed and moving
images, respectively. For numerical solvers, the problem is formulated using
a discretized time scale denoted {ti}i∈[0,N ], with t0 = 0 and tN = 1. Thus,
the composition process can be intuitively expressed as:

ϕ(., 1) =©N−1
i=0 (Id + v(., ti)∆ti), (2.1)

where each v(., ti) is a “smooth enough” vector field, Id being the iden-
tity transformation, ∆ti = ti+1 − ti is a “small enough” time interval, and
ϕ(., ti) is the diffeomorphic transformation built until time ti, initialized with
ϕ(., 0) = Id.

The composition of the small transformations {Id + v(., ti)∆ti}i∈[0,N−1]

is more commonly written in an additive way, directly operating on the
“small enough” vector fields {v(., ti)}i∈[0,N−1]:

ϕ(., 1) = ϕ(., 0) +

N−1∑
i=0

v(ϕ(., ti), ti)∆ti, (2.2)

The notion of “smooth enough” conditions the space in which the trans-
formations are optimized, and should be defined before any computation. In
practice, most of LDDMM algorithms reformulate the registration problem
using reproducible kernel Hilbert spaces [70] [71] [69], which allow control-
ling the type of desired smoothness depending on the kernel expression and
width [72].

The notion of “small enough” is related to the discretization of the time
scale, as conditions the accuracy of replacing the composition of transforms
(Eq. 2.1) by the addition of vector fields (Eq. 2.2). This last notion is easier
to understand using a continuous formulation, as follows:

ϕ(., 1) = ϕ(., 0) +

∫ 1

0

v(ϕ(., t), t)dt, (2.3)

or its differential version:

∂ϕ

∂t
|(t=τ) = v(ϕ(., τ), τ). (2.4)

The last formulation of Eq. 2.4 highlights the fact that v(ϕ(., τ), τ) cor-
responds to the tangent of the trajectory at time τ , dt being an infinitesimal
interval of the temporal scale. The discretized formulation of Eq. 2.2 is there-
fore valid only if the {∆ti}i∈[0,N−1] are “small enough”. Some considerations
about the choice of the discretization interval can be found in [73].
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Figure 2.1: Illustration of folding artifacts on large transforms, with FFD as registration
method. (a) fixed image, (b) moving image, (c) diffeomorphic transform, and (d) non-
diffeomorphic transform.

The above-mentioned formulations underline the fact that the group of
diffeomorphisms is of infinite dimension, as there is an infinity of velocity
fields v to define a path going from time 0 to time 1. Some variants of this
problem have been proposed in the literature, restraining the search to a
one-parameter subgroup of the group of diffeorphisms by the use of station-
ary velocity fields [74] [75] [76] Younes et al., 2009). This computational
option may reduce the computational cost associated to the image registra-
tion process, but may present some limitations when the LDDMM frame-
work is extended to perform image registration along temporal sequences
(Sec. 2.2.2).

Adapting classic registration algorithms to the diffeomorphic framework. Aside
the registration algorithms purely based on the LDDMM framework, the al-
gorithms described in Sec. 2.2.2 were adapted to be diffeomorphic.

Diffeomorphic demons algorithm used a smoothing of the displacement
field at each iteration to make the transformation invertible [77] [62].

In the FFD method, the displacement of control points is kept within a
sphere of influence to prevent from folding artifacts [78]. An illustration of
non-diffeomorphic and diffeomorphic FFD outputs is shown in Fig. 2.1.

Anatomically consistent refinements of the registration scheme

Higher performance of the registration can be achieved through the addition
of anatomically consistent constraints.

Increased flexibility and accuracy are obtained by making the registration
multi-scale or a locally consistent definition of its parameters (adaptation of
the FFD grid to the anatomical structures, as targeted in Thin-Plate Splines
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approaches [79] [80]). Multi-scale demons adapt the size of the smoothing
kernel in the regularization process [81] [82], while in FFD the grid spacing is
progressively reduced [83] [73]. Most of the algorithms derived from the LD-
DMM framework redefine the registration problem using reproducible ker-
nel Hilbert spaces to reach smooth transformations and fast computations,
which can therefore be made multi-scale by changing the kernel width, as
discussed in [69] [84].

A second point would rather impose physically-consistent constraints on
the computed transformations, as attempted for example in some works on
incompressibility [85] [86] [87] [88] [89] [90] [91] [92] [73]. There is some
controversy in the literature concerning the fully incompressible nature of
the myocardial tissue, some elements being detailed in [73].

Registration along temporal sequences

Image registration algorithms are generally pairwise. Their extension to
align simultaneously all the images contained in one sequence allows the
estimation of cardiac motion, as initiated in [93], and improved in [94] [95].

The formulation of the LDDMM registration between two images (Eq. 2.2
and 2.3) can be also slightly adapted to make the tracking along temporal
image sequences diffeomorphic. First formulations only adapted the for-
mulation of the image similarity to include the temporal dimension in the
registration algorithm [96] [97] [98]. Temporal continuity of the trajectories
is guaranteed, but the whole transformation is only piecewise diffeomorphic
(between all instants at which image data exists). This means that the
temporal continuity of the recovered velocities is not necessarily guaranteed,
which could be a strong limitation to the construction of a statistical atlas of
motion, where the velocity data is required at each instant of the continuous
timescale.

Recently proposed methods solve this problem, using trajectory interpo-
lation in a second-order scheme [99] [100], or simply formulating the regis-
tration as a full 4D diffeomorphic problem [101] [73] [102] [103].

Formulation. In the following we denote {ti}i∈[0,N ] the temporal instants
at which image data is available, t0 and tN being the beginning and the end
of the image sequence.

The transformation from time t0 to time tn can be therefore be written
using a continuous time scale:

∀n ∈ [0, N ], ϕ(., tn) = ϕ(., t0) +

∫ tN

t0

v(ϕ(., t), t)dt, (2.5)

or a discretized time scale:

∀n ∈ [0, N ], ϕ(., tn) = ϕ(., t0) +

N−1∑
i=0

v(ϕ(., ti), ti)∆ti. (2.6)
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Figure 2.2: Artifacts due to a non-diffeomorphic temporal image registration scheme.
(a) Determinant of the jacobian of the mapping from time t0 to time tn, n ∈ [0, N ]. (b)
Determinant of its inverse, which is involved in reorienting features to a reference anatomy.
(c) Longitudinal component of the velocity, after reorientation to the reference anatomy.
Artifacts are present when the jacobian is no longer invertible (vertical red lines).

Sequential or non-sequential similarity metric? The choice of the image
correspondence to include in the registration scheme highly conditions the
registration performance, as discussed in [104]. The image similarity can be
computed between pairs of consecutive images (with the risk of presenting
drift artifacts when chaining all the transformations along the sequence) [83],
between each frame and one relevant reference chosen within the sequence
[101] [73] [102] [103], or a combination of both [104] (Fig. 2.3).

Computation of velocities. The computation of velocities is not straightfor-
ward for the registration schemes not issued from the LDDMM framework.
They often require the additional assumptions such as the stationarity of the
velocities between each pair of consecutive frames [83], or advanced interpo-
lation techniques to guarantee the velocities are differentiable [99] [100].

In contrast, the formulation derived from the LDDMM framework im-
mediately provides an exact expression for the velocities by Eq. 2.4.

2.3 Statistical tools for inter-subject compar-
ison

Methods derived from recent advances in computational anatomy [105] [106]
[107], computational functional anatomy [108], and statistical atlases [109]
[110], are particularly of interest for performing inter-subject comparison in
our application. The data of each subject (shape or information defined at
each point of this shape) is synchronized to a common anatomical reference,
so that there is no need to define specific comparison points between patients.
It consists in a robust alternative to the methods used in current clinical
studies, which suffer of low reproducibility, as discussed in [3] [4].

Issues related to the integration of the temporal dimension contained
in the cardiac sequences should be integrated in our analysis. This mainly
differs from neuroimaging applications, which represent a majority of the
computational anatomy applications. For these studies, temporal dimension
of the data stands for longitudinal studies, making the challenges related
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Figure 2.3: Propagation of a synthetic grid using the TDFFD tracking. Results for
three different weights λ of the image similarity metrics (comparison frame-to-frame and
to the reference image). Drift errors (top row) and tag jumps (bottom row) are pointed
out by the red ellipses. Image taken from [73] with the permission of the authors.

to its integration different from cardiac studies: focus on growth processes,
with few temporal samples for each subject, while studying cardiac function
supposes looking at cyclic information with much more temporal samples for
each subject (from 20 to 60 images per cycle in US sequences). Note that
longitudinal studies also exist in cardiac applications, when looking at the
evolution of the cardiac function of one subject before and after the therapy.

2.3.1 Computing statistics on motion and deformation
fields

A majority of computational anatomy approaches directly compute statis-
tics on shape, which has the advantage of allowing the use of Riemannian
metrics. In the scope of this thesis, we aim at characterizing specific aspects
of the cardiac function, namely motion and deformation along the cardiac
cycle, and we therefore process velocity and strain information, which is at-
tached to the cardiac shape, therefore entering the field of computational
functional anatomy [108]. In comparison with statistical atlases of shape,
few works did the statistical analysis of the velocity and strain informa-
tion attached to the myocardial shape [111] [112] [113], initiating the efforts
on the statistical analysis of this information, and the preliminary steps to
achieve it (transportation and reorientation).
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Figure 2.4: Statistical artifacts for the group of 2D rotations. From left to right: ro-
tation of 30, −30, composition and sum of the related displacement fields. As for diffeo-
morphisms, these transformations belong to a group structure with the composition law
as group action. Hence, classical statistics cannot be done directly on displacement fields
but within the algebraic structure of the corresponding tangent space.

In particular, the computation of statistics on diffeomorphic transforma-
tions, deformation fields or tensor fields requires some specific precautions,
due to the fact that the space of diffeomorphisms only has a group struc-
ture for the composition operator [69], as illustrated in Fig. 2.4. Statistics
compliant with the group of diffeomorphisms should be computed within its
tangent space, as commented in [114] [74] [115] [116] [117].

2.3.2 Where to compute statistics?

The statistical analysis of velocity fields and strain fields can be performed
either at each temporal instant, or at the time-point initiating the sequence.
Both strategies have been adopted in the literature about statistical atlases
built for longitudinal or temporal data, and correspond to the Eulerian or
Lagrangian frameworks, respectively. Computations in an Eulerian system
of coordinates [118] [98] [119] [120] raised the issue of estimating the infor-
mation at each desired temporal instant, using temporal neighborhoods or
interpolation techniques, while computations in a Lagrangian system of co-
ordinates [121] [97] [122] [123] [124] [125] suppose being able to transport
the information along each sequence to have its definition at the reference
time at which statistics are computed.

2.3.3 Which statistics? Local vs. global analysis

Statistical parametric mapping

The popularity of voxel-based image analysis methods has increased in the
recent years for analyzing group-wise and inter-groups differences, and are
generally referred to as statistical parametric mapping (SPM) techniques
[126] [127] [128] [129] [130] [131] [132] [133]. When constructing a SPM,
the information attached to the anatomy of each subject is mapped to a
common template and voxel-wise statistics are used to compute local in-
dexes characterizing the studied populations [134] [135] [136]. This means
that the statistical analysis is performed locally, each voxel being considered
independently from the others. This strategy is distinct from more conven-
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tional atlas studies, based on a global statistical analysis (such as principal
component analysis [PCA]) or using localized kernels such as kernel-PCA or
independent component analysis (ICA).

According to the objectives of this thesis, namely characterizing patterns
of mechanical dyssynchrony, a global approach may discard the local aspect
of the studied patterns, despite some efforts realized to highlight local infor-
mation within a global analysis, as discussed in Sec. 2.3.3. For this reason,
we initially used in this thesis SPM tools to perform the analysis (Chap. 3),
which were adapted to handle multivariate data such as velocity and strain
fields, similarly to the works that have been proposed for diffusion tensor
fields [137] [138]. The limitations of local models are discussed in [139] [140]
[141].

In these works and Chap. 3, the regional link between pixels was not
taken into account. This link may come from to the input data (mechanical
properties of the studied anatomy, regional noise patterns such as speckle)
or algorithmic issues (image smoothing or spatiotemporal smoothness of the
computed velocity and strain fields inherent to the registration algorithms
used). Keeping a SPM approach, a regional correction could be used to
compensate this voxel-wise dependence, as proposed in multiple comparison
correction strategies. Voxel-wise observations can be considered as indepen-
dent [142] [143] (the limitations of such a model being discussed in [144]),
or dependent on a local neighborhood [126] [127] [128] [129] [130] [131] [132]
[133].

Advanced pattern analysis techniques

Specific dimensionality reduction techniques can be used to perform inter-
subject comparison taking into account local spatiotemporal patterns that
may present on each subject, and therefore overcoming some limitations of
both voxel-based and basic global analysis.

The common link between these methods is the search for an optimal
space to perform inter-subject comparison, in function of a primarily set
criteria.

Characterizing the variability within a population can be achieved by
multivariate techniques such as PCA, Canonical Correlation Analysis (CCA)
and Multivariate Analysis of Variance (MANOVA), based on functional [145]
[132] [146] and structural [147] data. Improvements of these techniques made
the analysis more local (ICA [148] [149] [150] [151]), or respectful of the
global structure of the data (non-linear methods such as kernel-PCA [152],
principal geodesic analysis (PGA) [115], or manifold-learning techniques,
initiated by the algorithms of [153] [154], which optimize geodesic distances
along the manifold [Isomap [153]] or the local planarity of the estimated
manifold [Laplacian eigenmaps [154]], respectively).

A well-documented review on multivariate techniques to find the optimal
discrimination between groups of subjects was made by [155]. Classical mul-
tivariate analysis of data is achieved by linear discriminant analysis (LDA)
[156], a special case of Canonical Correlation Analysis [157]. An article uni-

18



fying the theory of multivariate analysis can be found in [158].
Advanced classification of subjects is achieved by pattern-recognition

techniques [159] [160] [161] [162], support-vector machine (SVM) [163] [164]
[165], Non-linear pattern classifiers [166] [167], and pattern-based morphom-
etry [168], this non-exhaustive list being complemented in [155].

For the characterization of patterns of mechanical dyssynchrony, as tar-
geted in this thesis, we decided to rely on non-linear techniques to overcome
the limitation of a voxel-wise analysis, looking for adaptations of manifold-
learning techniques to our problem. This allows subject comparison to a
specific population, while modeling the non-linear structure of this reference
population (Chap. 5).
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3

A spatiotemporal statistical atlas of

motion for the quantification of

abnormalities in myocardial tissue

velocities

This chapter presents a new method for the automatic comparison of myocar-
dial motion patterns and the characterization of their degree of abnormality,
based on a statistical atlas of motion built from a reference healthy popula-
tion. Our main contribution is the computation of atlas-based indexes that
quantify the abnormality in the motion of a given subject against a reference
population, at every location in time and space. The critical computational
cost inherent to the construction of an atlas is highly reduced by the defi-
nition of myocardial velocities under a small displacements hypothesis. The
indexes we propose are of notable interest for the assessment of anomalies in
cardiac mobility and synchronicity when applied, for instance, to candidate
selection for cardiac resynchronization therapy (CRT). We built an atlas of
normality using 2D ultrasound cardiac sequences from 21 healthy volunteers,
to which we compared 14 CRT candidates with left ventricular dyssynchrony
(LVDYS). We illustrate the potential of our approach in characterizing septal
flash, a specific motion pattern related to LVDYS and recently introduced
as a very good predictor of response to CRT.

The content of this chapter is adapted from the following publication:

N. Duchateau, M. De Craene, G. Piella, E. Silva, A. Doltra, M. Sitges, B.H. Bijnens, and
A.F. Frangi. A spatiotemporal statistical atlas of motion for the quantification of abnormal
myocardial tissue velocities. Medical Image Analysis, 15:316-328, 2011.
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3.1 Introduction

3.1.1 Patient selection for CRT

Cardiac resynchronization therapy (CRT) has proved its benefits over the
last few years for the treatment of patients with heart failure and evidence
of ventricular conduction delays [11]. The objective of CRT is to restore
the coordination in the motion of the cardiac chambers, leading to notable
improvements in cardiac function and reverse remodeling [12]. However, with
current selection criteria, the therapy fails to improve patient condition for
approximately 30% of the subjects [169]. The main current clinical challenge
behind CRT is therefore the understanding of the physiological mechanisms
conditioning positive or negative response.

In recent years, a large number of studies focused on the computation of
quantitative indexes for cardiac dyssynchrony, with the underlying objective
of predicting CRT response [22]. The indexes proposed in the literature
are mostly based on direct comparisons of temporal measurements (QRS
duration and “time-to-peak” measures) [170], but they remain suboptimal
as discussed in [2] and [3] (poor reproducibility and over simplification of
the complex mechanisms involved in CRT response to single observations of
dyssychrony). The lack of consensus about indexes able to accurately predict
CRT response proves that generic indexes that try to capture dyssynchrony
with limited reference to pathophysiology fail in the CRT context [3]. To
fundamentally improve the prognostic value of novel indexes it is crucial
that they are inspired in a deep understanding of the pathophysiological
mechanisms involved in electrical and mechanical dyssynchrony. Recently,
[8] proposed a classification of patients into specific etiologies of heart failure,
and evaluated the response of each of these groups. Using this classification,
one group showing a specific left ventricle (LV) dyssynchrony pattern called
septal flash (SF) [23] demonstrated a very high response rate to CRT [8].

3.1.2 Quantifying abnormality in cardiac motion

The SF pattern has been characterized in [8] [23], using M-mode echocar-
diography. The protocol presented allows quantitative assessment of the
SF (presence, timing and maximal excursion). More automatic methods fo-
cusing on abnormal patterns associated with dyssynchrony have also been
proposed, using speckle tracking strain analysis from 2D ultrasound (2D US)
[171], volume curves analysis from 3D US [172], and circumferential shorten-
ing indexes from tagged magnetic resonance (t-MRI) images [173]. However,
for such methods, the analysis is only performed in a limited set of points
that are observer-defined or only representative of specific heart segments.
The definition of these points is therefore highly subjective and patient-
dependent. Thus, the variability in their localization limits the relevance of
defining statistical indexes at such locations. In methods derived from re-
cent advances in computational anatomy [105], and particularly when using
statistical atlases [110], patient data is normalized to a common anatomical
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reference, so that there is no need to define specific comparison points be-
tween patients. Such methods represent a promising alternative to compute
relevant statistical indexes for the whole cardiac anatomy.

In our study, we aim at characterizing one aspect of the cardiac function,
namely, motion throughout the heart cycle. Hence we rely on dynamic
atlases, taking advantage of previous works on statistical atlases of motion
and deformation initiated in [112], [111] and [113]. We can distinguish three
steps in the process of building such a statistical atlas:

Extracting motion from cardiac sequences. [93] [174] [175]. In [96] and
[176] [101] the tracking along longitudinal datasets is combined with the
diffeomorphic framework [66], particularly suitable when handling cardiac
sequences, since it preserves the topology and the orientation of anatomical
structures.

Normalizing the different sequences to a reference anatomy. A pipeline
adapted to cardiac studies was used in [177] and [178]. In [97] and [98],
the synchronization of longitudinal datasets is combined with the use of
diffeomorphic paths to compare the evolution of shapes along different se-
quences. These approaches still need to prove their feasibility (e.g. in terms
of robustness and computational cost) when applied to real data, especially
when the topology of the structure of interest is not preserved along the
sequence, due to the presence of image artifacts, noise or the motion itself.

Computing statistics on motion fields. To preserve the diffeomorphic prop-
erties of the computed vector fields, the use of log-Euclidean metrics is rec-
ommended when computing statistics, as summarized in [117]. Abnormality
assessment at every desired point of the anatomy requires the use of voxel-
based morphometry tools (VBM) [135], for which an overview of some appli-
cations in brain morphometry can be found in [136]. Extending VBM tools
to multivariate statistics [158] allows to handle statistics on vector fields,
similarly to the works that have been proposed for tensor fields [137] [138].

3.1.3 Proposed approach

In this paper, we propose a complete and flexible pipeline for the construction
of an atlas of motion based on these three construction steps, which were
kept as simple as possible to minimize the computational burden. Thus, each
of these steps can further be improved using a more elaborated technique,
provided this guarantees a noticeable improvement in the identification of
abnormal motion patterns.

Cardiac anatomy is tracked using the chaining of diffeomorphic paths
between pairs of consecutive frames. We take advantage of the high tem-
poral resolution of 2D US to work under a small displacements hypothesis.
The use of small displacements reduces the computational complexity of es-
timating velocities over the whole continuous timescale, and allows direct
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computation of classical statistics on the velocity fields without the need of
the log-Euclidean framework.

The atlas is then used for the comparison of individuals to a healthy
population, both represented by myocardial velocities, using abnormality
indexes available at any location (x, t). One interesting feature of such in-
dexes is that they intrinsically perform a comparison to normality. This
contrasts with the indexes generally used for CRT, which usually measure
one clinical parameter, and subsequently compare the ranges obtained for
populations of healthy and diseased subjects to define an optimal separation
threshold.

The method is applied to the analysis of a population of CRT candi-
dates with left ventricular dyssynchrony, looking for the presence of SF. A
first preliminary version of this work was presented in [179], in which we
illustrated the feasibility of such an approach for assessing abnormality on a
reduced number of patients.

3.2 Computation of myocardial velocities

3.2.1 Intra-series registration

In the following sections we will denote S = {S(t0), ...,S(ti), ...,S(tN−1)} the
temporal series of 2D images for one given patient, which contains N images
taken at time-points ti. To track the anatomy along cardiac cycles, pairwise
registration between consecutive frames provides a sequence of transforma-
tions ϕti,ti+1

: x 7→ x′ for each series, which map any point x of image S(ti) to
its corresponding point x′ in the following frame S(ti+1). Our non-rigid reg-
istration uses the diffeomorphic free-form deformation (FFD) method [78],
which is made multi-resolution to improve its robustness to the position and
spacing of control points. We used spacings of 64, 32 and 16 mm, and mutual
information as matching term. The L-BFGS-B algorithm [180] was chosen
as optimizer for the registration procedure.

3.2.2 Small displacement hypothesis and definition of
velocities

As explained in [74], a diffeomorphism can be represented as the flow of a
stationary velocity field uniquely defined by its logarithm. In compliance
with the registration scheme we use, velocities can be written as piecewise
stationary, using:

v(ϕti,t(x), t) = v(x, ti), (3.1)

where ti is the closest time-point that precedes t at which the series S is
defined, and ϕti,t(x) is the estimated position at time t of the anatomical
point that was at x at time ti.

If the displacements are small, the logarithm of a transformation log
(
ϕti,ti+1

)
can be approximated at the first order by its corresponding displacement field
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ϕti,ti+1
− I (where I is the identity). Velocities are directly obtained at the

discrete time-points ti where the data is defined using:

(ti+1 − ti) · v(., ti) = log
(
ϕti,ti+1

)
(3.2)

≈ ϕti,ti+1 − I. (3.3)

These equations are coherent with the classical definition of velocities in
mechanics, that is to say a displacement normalized by time.

The use of small displacements allows some additional simplifications in
the computation of velocities at every time t, initially based on Eq. 3.1.
First, ϕti,t can be estimated from ϕti,ti+1

using:

ϕti,t − I ≈ t− ti
ti+1 − ti

·
(
ϕti,ti+1 − I

)
. (3.4)

In a similar way, its inverse can be written as:

ϕ−1
ti,t = ϕt,ti ≈ −ϕti,t. (3.5)

This leads to the following simplified expressions for the velocities:

v(., t) ≈

{(
ϕti,ti+1

− I
)
/(ti+1 − ti) if t = ti,

v
(
− ϕti,t(.), ti

)
otherwise.

(3.6)

3.2.3 Verifying the small displacements hypothesis on
2D US sequences

We can reasonably assume that the displacements between consecutive frames
are small. Such a choice is justified by the good temporal resolution of 2D US
imaging (around 60 frames/s [fps] for the healthy subjects and 30 fps for the
CRT ones, details are in Sec. 3.4.1). We demonstrated the validity of this
assumption by comparing the computed displacement fields to the logarithm
of their relative transformations. We used

dsmall(ϕ1, ϕ2) =
1

card(Ω)
·
∑
x∈Ω

|ϕ2 ◦ ϕ−1
1 − I|

|ϕ1 − I|
(x)

as normalized dissimilarity measure between two transformations ϕ1 and
ϕ2, where Ω is the image domain. Details about the computation of the
logarithm and the inverse of the transformations ϕti,ti+1

are given in [74].
This comparison is illustrated in Fig. 3.1 for seven healthy volunteers

and seven CRT candidates with SF. The computation involved all the frames
contained into one cardiac cycle. The distance is computed for the mappings
between consecutive frames (dots), showing there is on average less than 5%
difference between the computed displacement fields and the logarithm of
their relative transformations. This confirms that the displacements can be
considered small, and that the velocities can therefore be computed using the
simplified expression of Eq. 3.6. For comparison purposes, this computation
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Figure 3.1: Distribution of the dissimilarity measure dsmall for all the mappings between
consecutive frames of seven volunteers and seven CRT candidates with SF (blue and red
dots). The same distance was computed for the mapping between the initial frame in the
cycle and the frame at aortic valve closure (AVC), which produces larger displacements
(crosses).

was also carried out for the transformation mapping the initial frame in the
cycle and the frame at end-systole (aortic valve closure event, defined in
Sec. 3.3.1), resulting in larger displacements (crosses), and a distance dsmall
between 20 and 40%.

Small displacements and computational speed-up

The use of the small displacements hypothesis and the simplifications from
Eq. 3.3, 3.4, and 3.5 allow much faster computations, which are particularly
recommended in the context of building an atlas involving a large amount of
data. Without the use of small displacements, computing velocities at times
ti (Eq. 3.2) and t (Eq. 3.1) requires 50 and 15 seconds respectively, using a
Intel Core i7 920 (2.66 GHz CPU, 6 GB RAM) computer. In comparison,
the computational time is negligible when using the simplified expressions
summarized in Eq. 3.6, since no logarithm nor inverse computation is re-
quired.

3.3 Construction of the Atlas

The registration steps previously explained provide velocity fields defined
in the anatomy of each patient. Building an atlas requires bringing these
fields to a common spatiotemporal coordinate system, so that a statistical
representation of the data can be provided at every desired location (x, t).

In the following, we use k to refer to the k-th sample patient, and we
index variable names accordingly.
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Figure 3.2: Temporal synchronization of two patients with different heart rates (71 bpm
and 80 bpm, respectively), and different dynamics within their cardiac cycles (A: onset of
QRS, B: aortic valve opening, C: aortic valve closure). Left: non-synchronized ECG, in
seconds. Right: synchronized ECG, normalized timescale.

3.3.1 Temporal synchronization

The heart rate variability across patients changes the length of their re-
spective cardiac cycles, as well as the synchronization of the different phases
composing each cycle. Sequences may also differ in terms of trigger time and
frame rate. Temporal synchronization will therefore consist in establishing
correspondences between the cardiac events of the considered sequences and
in bringing them to a normalized timescale.

Landmark-based piecewise linear warping is applied to the electrocar-
diogram (ECG) signals to map the sequences to a normalized timescale, as
illustrated in Fig. 3.2. We use the following three landmarks:

• The onset of the QRS complex, which is located on the ECG using tools
from the EchoPac software (GE Vingmed Ultrasound A.S., Horten, Norway).

• The aortic valve opening (AVO) and closure (AVC), which are determined
using continuous wave Doppler imaging on the aortic valve. AVO serves as a
marker for the identification of the end of the isovolumic contraction (IVC)
period, where SF is expected to be over. We used the absolute timing of
ECG events proposed in the EchoPac software to locate these two events
on the ECG associated to the studied sequence. This is done under the as-
sumption that the timing between these events does not change between the
sequences. This assumption is valid because the sequences have close heart
rates, as they belong to the same session of acquisitions. In addition, in
case of changes in heart rates, the diastolic period is mainly affected, while
the timing of the events we chose is preserved as they belong to the systolic
period.

Similar synchronization methods [177] identified a set of control points
over sequences from MRI, but used image similarity. We preferred to rely on
physiological information, as for US images the identification of these points
using image data can be biased by respiratory or probe motion. In addition,
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the use of physiological events as temporal landmarks is believed to be more
robust to pathology, as commented in [178].

3.3.2 Spatial normalization

Spatial normalization consists in reorienting the computed velocity fields
vk(x, t), initially defined according to the anatomy of patient k, to a reference
anatomy used for local statistical comparison. We chose a simple strategy
for spatial reorientation, which is illustrated in Fig. 3.3. It consists of four
consecutive stages: defining a reference anatomy for the atlas, estimating
mappings between every patient and the atlas at time t = 0 (by convention,
time t = 0 was defined as the onset of the QRS complex), chaining paths to
compute these mappings at time t, and reorienting the velocity fields vk to
the atlas anatomy at every time t using these inter-series mappings.

Definition of a reference anatomy. The importance of using an average
anatomy as reference to limit statistical bias has been commented in some
publications about atlas construction [181] [182] [183]. In the case of atlases
of shape, the distance between the compared shapes is defined from the
mappings between the patients and the atlas. In our case, these mappings
only serve for reorientation purposes, and do not directly intervene in the
computation of a distance between patients. We therefore preferred to choose
one series as reference for the sake of simplicity.

The choice of a reference among the set of healthy volunteers was ad-
dressed using the group-wise normalized mutual information metric (GWNMI)
proposed in [184], and criteria based on image quality (LV fully visible along
the whole sequence, and low heart rate to achieve a higher temporal reso-
lution of the atlas). The influence of such a reference choice is discussed in
Sec. 3.4.4, showing that the statistical bias it may introduce on the abnor-
mality indexes remains small.

Mapping patients to the atlas at t = 0. For every patient k, we compute the
transformation ϕk→ref (0), which maps the initial frame of this patient to

Figure 3.3: Illustration of the spatial reorientation at time t.
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Figure 3.4: Illustration of the drift correction on one cycle. Black: tracking along the
longitudinal direction without drift correction. Red: idem with drift correction.

the reference at time t = 0. This mapping is estimated using diffeomorphic
FFDs as in Sec. 3.2.1.

Aside from speckle noise, the visible anatomy differs in each sequence
because of intrinsic characteristics of each patient (heart size and shape)
and extrinsic parameters due to the US acquisition (probe orientation and
US window size adapted to see the whole LV). As a consequence, we made
the FFD registration start from a bulk affine transform. This step models
rough differences common to the whole sequence, namely the ones due to
US acquisition parameters and heart size.

Tracking the anatomy along sequences. Chaining the pairwise transforma-
tions defined in Sec. 3.2.1 allows to track the anatomy of each patient along
the sequence. We obtain the transformations ϕk0,t, which map the anatomy
between times t = 0 and t.

When chaining transformations resulting from registrations of consecu-
tive frames, small errors accumulate, manifesting themselves as net drifts
observed in the final myocardial point positions when computing full tra-
jectories. These artifacts can be removed by applying to each point of the
trajectory a correction ensuring that:

©
tS≤ti<tE

ϕti,ti+1
= ϕ̂tS ,tE .

Here,© denotes the composition operator, tS and tE are the time-points
starting two consecutive cardiac cycles, and ϕ̂tS ,tE is the estimated transfor-
mation mapping frames at these time-points.

This correction is illustrated in Fig. 3.4. The transformation ϕ̂tS ,tE is
estimated using diffeomorphic FFDs as in Sec. 3.2.1, preceded by an affine
registration step. It aims at taking into account probe motion during the
acquisition, and adds robustness toward out-of-plane motion and filling vari-
ations between the different cardiac cycles, as the assumption ϕ̂tS ,tE = I
generally made in other works [93] does not hold true in our database of
2D US sequences.
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Figure 3.5: Illustration of the push-forward action on velocity fields at each location
(x, t)

Mapping patients to the atlas at every time t. We estimate the transfor-
mations ϕk→ref at time t using the following chaining of transformations,
which is illustrated in Fig. 3.3:

ϕk→ref (t) = ϕref0,t ◦ ϕk→ref (0) ◦ ϕkt,0. (3.7)

This strategy could later on be improved using the tools presented in
[178], in terms of robustness in the estimation of ϕk→ref at every time t.

Reorientation to the reference. Reorientation of the velocity fields vk is
achieved at every point (x, t) using a push-forward action on vector fields
[185]:

Pφ(v) =
(
Dφ ◦ φ−1

)
·
(
v ◦ φ−1

)
, (3.8)

where v = vk, φ = ϕk→ref and D is the Jacobian operator. In Eq. 3.8,
Dφ ◦ φ−1 represents the reorienting action on the vector fields moved to the
new anatomical location by v ◦ φ−1.

Reorientation of vector fields is illustrated in Fig. 3.5 and Fig. 3.6, which
display the velocity field of one healthy subject before reorientation, i.e.
directly over the anatomy of this subject, and after reorientation to the
reference anatomy.

3.3.3 Statistics on velocities

Velocities as defined in Sec. 3.2.2 belong to the tangent space of the group
of diffeomorphisms. It means that because of the algebraic structure of the
tangent space, classical statistics can be computed directly on the spatiotem-
porally normalized velocity fields, without the need of the log-Euclidean
metrics described in [117].

We first compute their average and covariance to characterize the atlas
population. Given K different sample series

{
Sk| k = 1...K

}
, we obtain at

any desired point (x, t) the average v and the covariance matrix Σv from
the set of velocities vk, defined as:
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Figure 3.6: Velocity field vk over the anatomy of subject k (a) and after reorientation
to the anatomy of subject ref (b). Images correspond to the LV region during systole.
Arrows have been scaled for optimal visibility.

v =
1

K

K∑
k=1

vk and Σv =
1

K − 1
Vt ·V

Here Vt =
[
(v1 − v)|...|(vK − v)

]
is the M ×K matrix whose columns

are the centered velocity samples at (x, t) and M is the dimensionality of
the data. In our case, M = 2 (2D US).

Then, we use the atlas for the comparison of the velocities of a given
patient to the population used for its construction. We chose Hotelling’s
T -square statistic [186] to perform abnormality tests on multivariate data,
which is equivalent to the Mahalanobis distance in the particular case where
a single sample is compared to a population:

τ2 = α (v − v)t · Σ−1
v · (v − v), (3.9)

where α = K/(K+1), v is the velocity to compare to the atlas, and v and
Σv are the previously described average and covariance matrix computed for
the population atlas.

We use the p-value obtained from the Hotelling’s T -test as quantitative
index assessing abnormality. The p-value is computed from the cumulative
function associated to the studied statistical distribution. This computation
is performed under the assumption that the local distribution of myocardial
velocities within the atlas population is Gaussian. This assumption is jus-
tified in Sec. 3.4.3. Leave-one-out cross-validation is used to compute the
p-values within the atlas population.

In the following sections, we apply the previously described framework to
build a statistical atlas of motion from a population of healthy subjects. We

31



then use the atlas for the individual comparison of CRT candidates to the
atlas population chosen as reference, using the tools described in Sec. 3.3.3.

3.4 Validation on 2D US image sequences

In this section, the atlas construction steps are validated in terms of registra-
tion accuracy and reproducibility of the spatiotemporal alignment scheme.
Special attention is paid to the quality of the atlas population (number of
subjects, statistical distribution, chosen reference, and temporal resolution
compared to the population of CRT candidates).

3.4.1 Patient population and data acquisition

Two-dimensional echocardiographic image sequences were acquired in an
apical 4-chamber view for two populations of subjects, using a GE Vivid 7
echographic system (GE Vingmed Ultrasound A.S., Horten, Norway). The
choice of the apical 4-chamber view is led by the fact that it is the one used
in clinical routine for the assessment of the fast SF pattern. The atlas of
normal velocities was constructed from 21 healthy volunteers (age 30 ± 5
years, 14 male). The patient population studied included 14 patients (age
67 ± 8 years, 8 male) that were candidates for CRT based on current clinical
guidelines (symptomatic heart failure with long QRS length and low ejection
fraction) and that visually had abnormal septal motion on a transthoracic
echocardiographic examination. The study protocol was approved by the
Hospital Cĺınic (Barcelona, Spain) ethics committee and written informed
consent was obtained from all patients.

Physiological differences between patients constrain the acquisition pa-
rameters, which will differ in terms of temporal resolution and image quality.
Images were acquired during breath-hold to minimize the influence of respi-
ratory motion. Resolution was optimized during the acquisition of healthy
subjects’ sequences, and corresponds to an average frame rate of 60 fps and
a pixel size of 0.24× 0.24 mm2. The CRT candidates involved in this study
have dilated hearts compared to the healthy population. Thus, they require
the use of a broader US sector so that the whole LV is still covered by the
US beam. The temporal resolution of the sequences is thus lower for these
patients due to this constraint (around half the frame rate). Their average
pixel size is 0.29× 0.29 mm2.

3.4.2 Tools for visualizing spatiotemporal abnormali-
ties

The statistical tools described in Sec. 3.3.3 return a p-value index at every
location (x, t), which can be visualized with the following tools, depending
on the type of application targeted. Decoupling the spatial and temporal
dimensions is particularly adapted for a precise localization of any motion
abnormality (Sec. 3.5.1). In the following sections, another convenient mode
of representation is used to visualize abnormalities in both spatiotemporal
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Figure 3.7: Left: Local representation of radial and longitudinal, defined as orthogonal
and tangential to the septum medial line (dashed line), respectively. Right: Represen-
tation of the septal segments visible in the 4-chamber view (basal inferoseptal [BI], mid
inferoseptal [MI], and apical septal [AS]) and used as vertical axis in the spatiotemporal
maps of abnormality.

dimensions at the same time. In such maps, the horizontal axis represents
time and the position in the septum (basal inferoseptal [BI], mid inferoseptal
[MI], and apical septal [AS]) is used as vertical axis (right part of Fig. 3.7).
The representation of the p-value in this space is similar to anatomical M-
mode echocardiographic images, classically used to visualize wall motion over
time. To highlight the inward and outward events of SF, in comparison with
other patterns of abnormal motion of the septum (Sec. 3.5.3), the color-code
used in these maps encodes the p-value in a logarithmic scale, multiplied by
the sign of the radial velocity. Blue color represents highly abnormal inward
motion of the septum, red color representing highly abnormal outward mo-
tion. The definition of local longitudinal and radial directions is illustrated
in the left part of Fig.3.7.

3.4.3 Relevance of the atlas population

The computation of a distance to normality assumes that the atlas popula-
tion is representative of normality. In this study, the atlas population has
non-dilated hearts, no cardiac dysfunction, and its baseline characteristics
(QRS width, LV volumes and ejection fraction) match with the values found
in the literature for a population of patients with normal cardiac function
[187].

Number of subjects. To justify that the statistics are not biased due to
the number of subjects in the atlas population (K = 21), we computed the
evolution of the motion abnormality index (p-value) for an atlas population
made of Ks < K subjects. This experiment is summarized in Fig. 3.8, in
which the indexes were computed for a reduced set of 14 CRT candidates at
each spatiotemporal location (x, t). These values were normalized towards
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(%) Segment SW LF

v1

BI 93.5± 4.2 14.4± 4.0
MI 92.8± 4.7 15.0± 3.8
AS 92.9± 4.9 14.7± 4.0

v2

BI 88.7± 8.3 17.7± 5.0
MI 89.6± 7.7 17.1± 5.4
AS 86.9± 10.1 18.6± 6.0

randn(21, 10000) 95.2± 0.3 13.1± 3.1

Table 3.1: Shapiro-Wilk (SW) and Lilliefors (LF) tests for the distribution of myocardial
velocities from 21 healthy volunteers, at each septal segment. The components of velocities
along each eigendirection (v1 and v2) were treated independently. Bottom line: generation
of 21 normally distributed random numbers, repeated 10000 times.

the value obtained for the largest atlas population, so that the evolution is
represented in the same magnitude scale (%). The plot on the top represents
this evolution for the three septal segments of one CRT candidate. For each
value of Ks < K, the experiment was repeated for 100 random combinations
of Ks subjects (vertical error bars). In each spatiotemporal region, the
number of subjects above which this evolution stabilizes to its final value
±5% is summarized in the table of Fig. 3.8 (average ± standard deviation
over the set of 14 CRT candidates). Based on these values, we can reasonably
trust an atlas built with all the available healthy volunteers (21 subjects).

Statistical distribution assumptions. We computed the Shapiro-Wilk and
the Lilliefors tests [188] [189] at each location (x, t) to check the gaussianity
of the local distribution of the atlas velocities, as assumed for the com-
putation of local p-values. The results are summarized in Tab. 3.1, which
shows the average values and standard deviation of these tests over the three
septal segments, along each eigendirection of the velocity distribution, inde-
pendently. The last line presents the values of these tests for the generation
of 21 normally distributed random numbers, repeated 10000 times. Based
on these values, we can reasonably consider that the distribution of velocities
is Gaussian at each point (x, t).

3.4.4 Validation of the atlas construction steps

Intra-sequence registration accuracy

We first evaluated the quality of our intra-sequence registration by com-
paring it to manual landmarking. Three observers manually segmented the
endocardium border of the septal wall for the whole set of subjects (21 vol-
unteers and 14 CRT candidates), at four temporal instants: onset of QRS,
AVO, AVC and onset of QRS for the subsequent cycle. For each observer,
the shape delineated at the first of these instants was then propagated along
the whole cycle using the displacement fields computed by our registration
algorithm. Finally, its position at the three remaining instants was com-
pared to the delineation made by the observer at these instants. Intra- and
inter-operator variability (δintra and δinter) were computed at each of the
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four instants listed above. For the intra-operator variability, each observer
repeated the manual delineation ten times for one healthy volunteer, while
inter-operator variability was obtained by comparing the delineations made
by the three observers, for the whole set of subjects. We used a point-to-
line distance for the comparison of the delineated curves and the propagated
ones (average over the points of each septal segment). Table 3.2 presents the
distance between the automatically propagated shapes and the delineation
made by the observers, and compares it to the intra- and inter-observer vari-
ability. The intra-sequence tracking showed a precision comparable to the
observers variability for all the instants. Lower accuracy is observed near the
apex, due to the lower quality of the US images in this region, as commented
in the discussion section of this paper.

Inter-sequence registration accuracy

The accuracy of the inter-sequence registration was evaluated in a similar
way to the experiment described in Sec. 3.4.4 for the intra-sequence regis-
tration. For each subject, the shape delineated in the initial frame of the
cycle was mapped to the reference anatomy using the transformation esti-
mated by the inter-sequence registration. Then, the distance between the
mapped shape and the shape delineated in the reference anatomy was used
as an estimator of the inter-sequence registration accuracy. The experiment
showed that inter-sequence registration accuracy is comparable to the ob-
servers variability.

Influence of the temporal resolution

In principle, differences in the temporal resolution of the atlas population
and the set of CRT candidates could introduce bias on the abnormality
measured. The two following experiments illustrate the influence of different
frame rates on the computation of the p-value maps.

In the first experiment (left part of Fig. 3.9), a volunteer was compared
to the atlas (using leave-one-out cross-correlation) at its original frame rate
(around 60 fps) and at a reduced frame rate, obtained by using one frame out
of every two in the volunteer’s sequence. As can be inferred from Fig. 3.9,
the two abnormality maps are very consistent with each other in spite of
their large frame-rate differences: the pattern in both maps indicates low
statistical support for abnormal motion. This confirms that the spots of
motion abnormality observed on the p-value maps of the CRT candidates
cannot just originate from the lower frame rate of these patients, compared
to the atlas frame rate.

The second experiment illustrates the effect of a lower temporal resolution
for the whole atlas population on the p-value maps. In the right part of
Fig. 3.9, a CRT candidate with SF is compared to the atlas built with its
original temporal resolution (around 60 fps, left column) and at a lower frame
rate (around 30 fps, right column). The figure shows that the localization
of motion abnormalities is still feasible with an atlas built at a lower frame
rate, but with seemingly less contrast and less resolution along the timescale.
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Influence of the reference choice

To understand the effects of the reference choice on the p-value maps, we
repeated the atlas construction using different subjects as reference. We
chose the subjects with the three best GWNMI scores (VOL #15, which is
the one used in the rest of the paper, #6 and #1), and the two worst ones
(VOL #13 and #21). Few influence is observed on the p-value maps, as
shown in Fig. 3.10 for CRT candidate #6. This confirms the assumption
introduced in Sec. 3.3.2, namely that the bias on the abnormality indexes
introduced by the use of another reference anatomy remains small.

Overall synchronization

To evaluate the quality of the spatiotemporal synchronization described in
Sec. 3.3, we acquired four sequences for the same subject and checked that
the estimated velocities overlapped after the synchronization to the refer-
ence spatiotemporal system of coordinates. A bad overlap would directly
reflect artifacts introduced by the spatiotemporal synchronization. These
sequences differ in terms of probe orientation and zoom of the US window,
which were changed intentionally between the different acquisitions. They
also differ in terms of heart rate, and have therefore different numbers of
frames (56, 59, 62 and 64 frames for one cardiac cycle, respectively). In that
way, the variability in the acquisition parameters is comparable to the one
reached for the acquisition of different patients. Figure 3.11 illustrates the
overlap between the velocities at four levels of the septum. The dispersion
of the reoriented velocities (vertical bars) is measured in each direction from
the corresponding diagonal coefficient of the covariance matrix Σv, defined
in Sec. 3.3.3. This dispersion reflects the accuracy of the spatiotemporal
synchronization scheme, but may also result from differences in the myocar-
dial velocities and the speckle patterns of the four acquisitions, which could
not be quantified with the imaging tools available for this study.

3.5 Application to the analysis of the CRT
population

The experiments described in this section demonstrate the performance of
the proposed method for the accurate characterization of septal motion ab-
normalities, with particular attention paid to the SF mechanism. This char-
acterization comprises a two-stage analysis: first, the localization of abnor-
mal motion patterns in time and space (Sec. 3.5.1), then the interpretation of
the observed patterns, which is done regionally focusing on the magnitude of
the observed abnormalities (Sec. 3.5.2), and locally on p-value maps coupling
the temporal and spatial dimensions (Sec. 3.5.3). The underlying objective
of this section is to check whether the abnormality information obtained by
our method is in agreement with the observations made by clinicians.
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Figure 3.11: Repeatability in the normalization of velocities from four different acquisi-
tions of the same subject, at four levels of the septum. Left: longitudinal velocities after
reorientation; average ± 1 standard deviation in the longitudinal direction. Right: idem
with radial velocities. We only display one bar plot out of every three temporal instants
for the sake of clarity.

3.5.1 Localization of motion abnormalities

Temporal localization of septal flash. The left part of Fig. 3.12 illustrates
the temporal analysis on two CRT candidates presenting SF, at the location
of the septum where maximal excursion is observed, including both velocity
and p-value curves along one cardiac cycle. Low p-value means high degree of
abnormality. Both plots exhibit a large abnormal inward velocity when the
septum is activated, which is almost immediately followed by a fast outward
motion at the time when the infero-lateral wall contracts. This specific fast
pattern, when occurring during the IVC period, determines the presence of
SF, as described in [190].

Spatial localization of septal flash. The p-value indexes obtained from our
method directly allow a quantitative diagnosis at every point in space, as
illustrated in the right part of Fig. 3.12. We display p-value maps at in-
ward and outward events to analyze the way SF abnormality is distributed
along the septum. For each block, we represent the initial velocity field
in the anatomy of the studied patient, together with the corresponding p-
value map, defined in the reference anatomy. This mode of representation
illustrates the agreement in the location of SF between our abnormality
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Figure 3.13: Comparison between regional p-values and clinical diagnosis. Arrows on
the right represent the value of 0.05 below which abnormality is considered significant.
Dashed line indicates the median value of the atlas population.

maps (warmer colors) and the existing velocity fields (septum moves in-
ward/outward, faster than the normal [higher magnitude of the velocities].
In contrast, healthy hearts would contract along the longitudinal direction).

3.5.2 Accuracy in the quantification of abnormalities

Three experts characterized the whole set of CRT candidates involved in the
study, using analysis tools similar to those proposed in [8]. As a precise and
objective localization using echographic tools is hard to reproduce, we asked
the observers to make their diagnosis for three regions along the septum
(basal inferoseptal, mid inferoseptal and apical septal). For each zone, they
associated a score to the patient, among four possible values related to the
degree of observed abnormality: 1 (no SF), 2 (uncertain), 3 (small SF), and
4 (large SF). For each zone of comparison, an agreement value between the
observations from the different experts was obtained from the median value
of their respective scores. The observed zone was marked as uncertain if the
standard deviation between the different scores exceeded 1.

For each zone, we compared the previous observations to the motion
abnormality indexes obtained from our analysis, as summarized in Fig. 3.13.
For the patients with SF, the comparison was performed within the temporal
window in which the inward and outward events occur, which were defined
specifically for each patient, using the information on radial velocity vρ as
follows:

IN =
{
t ∈ IV C

∣∣ vρ(t) < 0
}

OUT =
{
t ∈ IV C

∣∣ vρ(t) > 0
}

IN precedes OUT

The analysis was carried out on the whole IVC interval for the subjects

43



#1 - Large #2 - Large #3 - Large #4 - Large

CRT candidates
#5 - No SF #6 - Large #7 - Small

#8 - Large #9 - Large #10 - Large #11 - No SF #12 - Ambiguous #13 - Ambiguous #14 - Small

v ρ −20
0

20

−20
0

20

(m
m

/
s)

v ρ
(m
m

/s
)

−10

−5

0

5

10

log(p)    sign(v ρ ).

Figure 3.14: Motion abnormality maps and radial velocity profiles at the level of the
septum with highest abnormality, during systole, for the whole set of CRT candidates.
Black arrows point out the inward and outward motion during SF events, when present.

with normal motion (atlas population) and for the patients without SF.

The diagnosis from the experts is only available regionally in time (within
the temporal windows previously described) and space (the three regions
along the septum). Thus, the comparison of their observations to the atlas-
based quantification of abnormality was also done regionally. As the atlas-
based p-values locally define a distance to normality, a representative p-value
was computed for each region from their median over the spatiotemporal
comparison zone.

A range for normality was obtained by including the atlas subjects in
the analysis, for which p-values were obtained using leave-one-out cross-
validation on the atlas population.

Figure 3.13 presents the comparison between the atlas-based diagnosis
and the experts classification. In this figure, we observe the agreement be-
tween the comparison methods at the basal inferoseptal and mid inferoseptal
levels. Indeed, each group of patients show lower abnormality than the at-
las group, with noticeable differences depending on the grade of SF. This is
mainly visible at the mid inferoseptal level, for which the septum has the
highest amplitude of motion on the tested patients. In contrast, the whole
atlas population lays in the normality range (p-value < 0.05). The differ-
ent populations remain harder to distinguish at the apical septal level. The
quality of the analysis in this region is commented in Sec. 3.6, together with
the interpretation of the results for the zones for which the diagnosis was
uncertain.

3.5.3 How to differentiate between patterns? Added-
value of spatiotemporal maps of motion abnor-
malities

Combining both spatial and temporal quantification of motion abnormali-
ties into a single map, as described in Sec. 3.4.2, facilitates the interpretation
of the observed patterns and their comparison across patients. Figure 3.14
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Figure 3.15: Motion abnormality maps during systole, for the set of volunteers.

represents these abnormality maps for all the 14 CRT candidates, during
the systole period. These maps are accompanied with a plot of the radial
component of the velocity at the level of the septum with the highest mo-
tion abnormality for a better understanding of the observed abnormality
patterns. The grade of SF obtained from experienced observers (Sec. 3.5.2)
is indicated on the top. In this figure, a clear succession of inward (blue)
and outward (red) abnormal motion starting during the IVC is visible on
patients #1, #2, #6, #8, #9 and #10, which were all diagnosed as “large
SF” by the observers. Patients #3 and #4 were also diagnosed as “large
SF,” but the degree of motion abnormality is lower for both events. The
inward motion pattern is almost absent for patient #7, while both events
are less visible for patient #14. These two patients were diagnosed as “small
SF.” The SF pattern is absent in the remaining patients (#5, #11, #12 and
#13), which were all categorized as “ambiguous SF” or “no SF.” Patients
#5, #11 and #12 only show inward motion abnormalities. These patterns
are interpreted in Sec. 3.6.

As a comparison, Fig. 3.15 represents these abnormality maps for the
whole set of volunteers. Almost no abnormality is observed for most of these
subjects. Volunteers for which abnormality is visible on these maps gener-
ally have higher velocities during the whole sequence, which is particularly
noticeable on the radial velocity of #12 and #19. However, all these sub-
jects belong to the atlas population, which means that these deviations from
the average velocity profile are part of the atlas variance, and are therefore
taken into account in the quantification of abnormalities for the set of CRT
candidates.

3.6 Discussion

We have described a complete framework for the computation of a statis-
tical atlas of motion, from its construction steps to the comparison of the
atlas-based diagnosis to the observations made by experts. Our experiments
demonstrate the feasibility of the proposed method on 2D US sequences. We
first evaluated the quality of the atlas construction steps, and then demon-
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strated its applicability for an accurate localization of abnormal motion pat-
terns, focusing on a specific pattern of the septum, namely SF.

The localization and quantification tools illustrated in Fig. 3.12, 3.13,
3.14 and 3.15 shed light on the added value of the proposed indexes for the
characterization of cardiac motion, in comparison with the tools currently
used in clinical practice. By comparing patients within an atlas framework,
we propose a local analysis of motion abnormalities, at every point in time
and space (Fig. 3.12, 3.14 and 3.15) of a standardized anatomy. The use
of our atlas-based indexes, which intrinsically embed a notion of normality,
allows an accurate quantification of abnormality at every desired location.
As illustrated in Fig. 3.13, our method agrees with the regional diagnosis
performed by experts along the septum. In addition, it refines the informa-
tion on the degree of abnormality observed and proposes some elements of
interpretation for the zones where the diagnosis remained ambiguous.

In the case the subendocardium of the concerned region is infarcted,
passive motion of the septal wall is observed when the lateral wall starts
contracting and pushes the septum. Septal motion is therefore in the outward
direction, but lasts longer than the IVC and is not a flash anymore. These
patients are likely to belong to the left-right interaction class pointed out in
[8]. In both cases, the observed zone will show lower abnormality (higher
p-value) for the outward event, which is visible in particular in the plot of
Fig. 3.13 representing the mid inferoseptal level, and in the maps of Fig. 3.14
for patients #5, #11 and #12. A complementary analysis based on strain
may help in discarding the ambiguities between true SF and infarcted zones
with passive motion.

For clarity reasons, we preferred to set the focus of this paper on the
construction of an atlas based on velocities, and the demonstration of the
atlas performance in localizing and quantifying abnormalities in motion. Ex-
tension of the present method to strain measurements will be included in
further work for a more complete characterization of the cardiac function,
as recommended in [191], and the assessment of other cardiac abnormalities.

Limitations. We chose to work with 2D US as it is the only modality used
in clinical practice with sufficient temporal resolution to accurately iden-
tify fast motion patterns such as SF. However, the concepts developed in
this paper could readily be applied to 3D US and other imaging modalities
once the required temporal resolution is available in standard clinical ac-
quisition protocols. The use of real-time 3D echocardiography [192] [101] is
particularly of interest to capture out-of-plane motion, which may increase
the accuracy of the proposed analysis, and extend it to specific 3D motion
patterns currently not captured by our method, such as torsion.

The quality of US images is however determinant for the relevance of the
observations made in this study. Depending on the tissue properties of each
patient, the structure of the LV can be masked on some frames, especially
at the apical level. Both the tracking accuracy and the clinical observations
are affected, making the separation between the different populations less
evident in this zone of the septum, as observed in Fig. 3.13.
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3.7 Conclusion

In this paper, we proposed a new framework for the construction of an atlas
that represents motion in a standard spatiotemporal coordinate system, and
allows the comparison of patients against the atlas using quantitative indexes
of abnormality. We evaluated the quality of the atlas construction steps, and
illustrated the accuracy of the proposed indexes by applying the methodology
to a population of healthy volunteers and CRT candidates with left ventric-
ular dyssynchrony. Our experimental results demonstrated the ability of the
proposed method to quantify motion abnormalities at every location in time
and space. The underlying objective was the characterization of the septal
flash mechanism, which proved its interest for understanding response to
CRT. Our pipeline could easily be extended to the quantification of abnor-
malities in strain for a more advanced characterization of the mechanisms
influencing the response to CRT.
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4

Atlas-based Quantification of

Myocardial Motion Abnormalities:

added-value for Understanding the

effect of Cardiac Resynchronization

Therapy

In this chapter, we take advantage of the atlas-based indexes introduced in
Chap. 3, which intrinsically contain a definition of “normality”, to quantify
the evolution of motion abnormalities in a large group of patients pre- and
post- CRT, and link it to CRT response. The aim of this study is to validate
the clinical value of a statistical atlas of myocardial motion on a large set of
patients treated with cardiac resynchronization therapy (CRT) and to better
understand the effect of CRT by the use of this atlas.

The content of this chapter is adapted from the following publication:

N. Duchateau, A. Doltra, E. Silva, M. De Craene, G. Piella, M.A. Castel, L. Mont, J.
Brugada, A.F. Frangi, and M. Sitges. Atlas-based Quantification of Myocardial Motion Ab-
normalities: added-value for Understanding the effect of Cardiac Resynchronization Therapy.
2012. Under review.
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4.1 Introduction

The role of cardiac resynchronization therapy (CRT) in improving both clin-
ical condition and cardiac function of heart failure patients has been clearly
demonstrated [9]. The recovery of a synchronous contraction is a first neces-
sary step to guarantee such an improvement, and from a broader perspective,
that the patient can respond to the therapy. The importance of understand-
ing the complexity and variety of the etiologies of cardiac dyssynchrony has
been recently highlighted [8] [193], as an explanation to the limitations of
single measurements of mechanical dyssynchrony [3] [4]. Echocardiography
[36] with tissue Doppler and speckle tracking has shown its potential for
estimating myocardial motion and deformation locally, and therefore quan-
tifying mechanical dyssynchrony on individuals. However, its capability for
intra- and inter- population comparison is limited, the analysis being per-
formed at the regional level (myocardial segments) at some specific instants
of the cardiac cycle, due to the lack of a common spatiotemporal system
of coordinates to perform this comparison at any spatiotemporal location.
In contrast, in methods derived from statistical atlases [109] [110], the data
from each subject of a given population (shape or information defined at
each point of this shape) is synchronized to a common reference anatomy,
which provides a multivariate representation of the local anatomical and
functional features of this population. For example, a statistical atlas of
the left ventricle (LV) can contain information about myocardial velocities,
strain or fiber structure at any spatiotemporal location of a reference shape
of the LV. Recently, an atlas-based quantification of myocardial motion ab-
normalities was proposed [83], where the velocities of each studied patient
were characterized according to their distance to normality. In the present
study, we aim at demonstrating the usefulness of this technique for the char-
acterization of abnormal patterns of cardiac motion, specifically applied to
the field of CRT. Accordingly, we aim at showing the value of the atlas ap-
proach to characterize patterns of abnormal septal motion and the relation
between their evolution and CRT response in a large group of patients pre-
and post- CRT.

4.2 Methods

4.2.1 Patient population

For the present study, data was collected from 21 healthy volunteers and
88 patients undergoing CRT implantation. The baseline characteristics for
these subjects are summarized in Tab. 4.1. Data from the healthy volunteers
(age 30 ± 5 years, 14 male) served as control group for the construction
of an atlas of normal motion. Enrollment criteria were that they had no
history of cardiac disease and a normal echocardiographic exam. All of them
showed a QRS duration < 120 ms, and their baseline characteristics matched
the values found in the literature for a population of patients with normal
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CRT (N=88) VOL (N=21)
Age (years) 68 ± 9 30 ± 5
Male gender 64 (73%) 14 (67%)
Ischemic etiology 29 (33%) 0
QRS width (ms) 178 ± 29 81 ± 10
6 min walking test (m) 271 (168-332) .

I 0 21 (100%)
NYHA II 23 (26%) 0
class III 56 (66%) 0

IV 7 (8%) 0
LV end-diastolic volume (mL) 247 ± 88 104 ± 27
LV end-systolic volume (mL) 186 ± 76 41 ± 9
LV ejection fraction (%) 25 ± 8 60 ± 5
MR grade III-IV (%) 26 (43%) 0
TDI Septum-to-lateral delay (ms) 63 ± 41 .
ST anteroseptal-to-posterior delay (ms) 66 (28-158) 17 ± 27
LV: left ventricular; MR: mitral regurgitation.

Table 4.1: Baseline characteristics of volunteers and CRT candidates.

cardiac function [187]. Differences in age with the set of CRT candidates
may be a limitation of this study, and is discussed at the end of this paper.
Additional justifications about this population were extensively described
in [83]. The use of 21 healthy volunteers was justified by computing the
evolution of the motion abnormality index depending on the size of the
atlas population, and leave-one-out was used to check the normality of the
motion of healthy volunteers. The 88 patients compared to the atlas (age
68 ± 9 years, 64 male) were patients treated with CRT based on current
international clinical guidelines [13]: left ventricular ejection fraction (LVEF)
< 35%, QRS duration > 120 ms, and NYHA classification III-IV or NYHA
II who covered less than 500 meters in the 6 minutes walking test. The
research complied with the Declaration of Helsinki and the study protocol
was accepted by our local ethics committee. Written informed consent was
obtained from all subjects.

4.2.2 Definition of response

Response was defined as a reduction ≥ 15% in the LV end-systolic volume
[21]. Patients who died or had heart transplantation during the study were
also considered as non-responders. Clinical improvement was defined as an
increase ≥ 10% in the 6 minutes walking test, or a NYHA functional class
reduction ≥ 1 point for patients unable to complete the 6 minutes walking
test at baseline.

4.2.3 Echocardiographic acquisition

An echocardiographic examination using a commercially available system
(Vivid 7, GE Healthcare, Milwaukee, WI) was performed in all patients
at baseline and at 12 months follow-up after the implant. A zoomed-in 4-
chamber view of the LV was acquired during breath-hold to minimize the
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influence of respiratory motion. LV volumes and ejection fraction were mea-
sured using the 2D Simpson’s method (biplane). Mitral regurgitation was
semi-quantitatively classified into 4 degrees according to the color flow jet
area method. LV dyssynchrony was also evaluated by two techniques: (1)
measuring differences in time-to-peak myocardial velocity between the septal
and the lateral walls of the LV, derived from color tissue Doppler 4 chamber
views [17]; (2) measuring the time difference between peak systolic strain of
the anteroseptal and posterior LV walls [171].

4.2.4 Automatic quantification of myocardial motion
abnormalities

The atlas pipeline described in [83] was applied to the acquired 4-chamber
views of the LV, focusing on the septal region (Fig. 4.1). Myocardial ve-
locities were extracted from each sequence using speckle tracking based on
image registration algorithms. Each sequence was spatiotemporally aligned
to a common reference anatomy, chosen among the set of healthy volunteers,
using ECG matching (time) and image registration (space). The impor-
tance of this alignment step is commented in the Results section. Average
and covariance of myocardial velocities over the set of healthy volunteers
encoded a representation of normal motion. Abnormality in local motion
was computed through a statistical distance on velocities, between each in-
dividual and the atlas population (Mahalanobis distance). This computation
returned a p-value at every location of the myocardial wall, low p-value in-
dicating high degree of abnormality. A convenient way of representing this
information consists of color-coded maps, inspired from anatomical M-mode
echocardiographic images, in which the septal wall has been unfold around
its medial line and used as vertical dimension, time being used as horizon-
tal axis (Fig. 4.1). The color code for these maps encodes the p-value in a
logarithmic scale, multiplied by the sign of the radial velocity, to distinguish
between septal abnormal motion patterns (Fig. 4.1 and Sec. 4.3). Blue color
represents highly abnormal inward motion of the septum, while red color
represents highly abnormal outward motion. No abnormality is therefore
represented by white color.

4.2.5 Statistical analysis

Normal distribution of quantitative variables was assessed using the Kolmogorov-
Smirnov test. Normally distributed quantitative variables were expressed as
mean ± standard deviation, and unpaired Student’s t-test was used for inter-
groups comparison. When large deviations from the Gaussian distribution
were noticed, the variable was expressed as median and (interquartile) range,
and Mann-Whitney U -test was preferred for inter-groups comparison, while
Wilcoxon signed-rank test was used for the comparison of paired data. Cat-
egorical variables were expressed in percentage over the number of patients
for which data was available, and were compared using Fisher’s exact test.
p-values below 0.05 were considered as statistically significant difference be-

52



time (s)0 0.20.1 0.3

EC
G

base

apex

septum

−10
−5

0
5

10
log(p)   sign(vρ).

IN

OUT

Healthy subjects Patient to test
1) Extraction of myocardial velocities 4) Maps of motion abnormalities

2) Atlas synchronization 3) Distance computation

y 
ax

is

x axis

Figure 4.1: Pipeline for the atlas-based quantification of septal motion abnormalities,
as described in [83]. Right part represents the motion abnormality map computed for
one patient with SF during systole (p-value in logarithmic scale weighted by the sign of
the radial velocity vp). Red arrows indicate the localization of inward (IN) and outward
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Figure 4.2: Variety of the patterns observed on the motion abnormality maps.

tween the tested groups. All data were analyzed using the SPSS statistical
package (version 15.0, SPSS, Inc., Chicago, IL).

4.3 Results

4.3.1 Patterns of motion abnormality at baseline

Figure 4.2 represents the motion abnormality maps of five different subjects
at baseline, during systole, illustrating the variety of patterns of abnormal
motion that may be observed along the septal wall: (A) intra-ventricular
dyssynchrony, assessed by the presence of a fast inward / outward motion of
the septum during the isovolumic contraction period, otherwise called septal
flash (SF) [8]. Variations in the amplitude of SF are associated to varia-
tions in the intensity of the blue- and red-colored abnormalities on the map
(Fig. 4.2a and 4.2b). This pattern was present in 60 patients (68%) of our
study group; (B) inter-ventricular dyssynchrony, with late systolic outward
motion (Fig. 4.2c), or with inward motion only (Fig. 4.2d), referenced in the
literature as left-right interaction (LR) [8] [193]. In contrast, no abnormal
pattern is observed on a healthy volunteer (Fig. 4.2e).
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Figure 4.3: Radial velocity and motion abnormality map for one patient and one healthy
volunteer without and with the atlas spatiotemporal synchronization.

4.3.2 Importance of the atlas spatiotemporal alignment

Figure 4.3 compares the maps of abnormality obtained for one patient with
SF and one healthy volunteer, without (left) and with (right) the spatiotem-
poral alignment step inherent to the atlas construction. On the SF patient,
the lack of spatiotemporal alignment overestimates the abnormality and the
duration of the abnormality pattern, which does not fit anymore within
the isovolumic contraction period. On the healthy volunteer, the lack of
spatiotemporal alignment induces large abnormalities at the end of systole,
which would make the subject being considered a false positive.

4.3.3 Response to CRT

Fifty-three patients (60%) showed significant reverse remodeling and were
considered responders. The clinical condition improved in 72 patients (82%),
46 of them being also volume responders. One patient had heart transplan-
tation, and died during the study. A second patient died from heart failure
without heart transplantation.

4.3.4 Overall effects of CRT

There were no statistically significant differences at baseline between respon-
ders and non-responders for all the parameters (Tab. 4.2), except for (1) the
amount of mitral regurgitation, moderate-severe mitral regurgitation being
more frequent in non-responders (p = 0.04), and (2) septal-to-lateral de-
lay derived from tissue Doppler, responders having more dyssynchrony at
baseline as measured by this parameter (p = 0.04). Evolution of motion
abnormalities with CRT The population of responders showed lower abnor-
malities at follow-up, and higher reduction of abnormalities in comparison
with baseline. Values for the evolution of motion abnormalities in each
spatiotemporal region are displayed in Tab.4.3, the highest reduction being
observed for responders at basal- and mid-inferoseptal levels (p < 0.001).
The spatiotemporal localization of the motion abnormalities at baseline and
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Figure 4.4: Average abnormality map for the set of volume responders and non-
responders, at baseline and follow-up.

follow-up is visible in Fig. 4.4, which represents the average abnormality map
for the groups of responders and non-responders. Little abnormality in sep-
tal motion was observed at follow-up for the group of responders, while non-
responders still presented a peak of abnormality with inward motion at the
end of the isovolumic contraction period, predominant at mid-inferoseptal
level, supporting the regional observations of Tab. 4.3. The patterns visible
at baseline also indicated that large SF predominated in the group of respon-
ders, and was corrected at follow-up, while small SF and LR predominated
in the group of non-responders.

4.4 Discussion

The results of this study demonstrate the usefulness of the proposed atlas-
based quantification of myocardial motion abnormalities for CRT studies,
highlighting (1) the relevance of statistical indexes that intrinsically embed
the notion of “normality”, to characterize patterns of mechanical dyssyn-
chrony and their evolution with the therapy; and (2) the need for a spa-
tiotemporal synchronization of the data to avoid bias in the inter-subject
comparison.

4.4.1 Abnormal patterns of septal motion and cardiac
dyssynchrony

[8] proposed a classification of patients according to their pattern of me-
chanical dyssynchrony, and studied CRT response for each of these groups.
Half of the patients had SF, which was associated to CRT response when
the mechanism had been corrected at follow-up. Similar observations were
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Resp. (N=53) Non-resp. (N=35) p-value
Age (years) 67 ± 9 69 ± 8 NS
Male gender 36 (68%) 28 (80%) NS
Ischemic etiology 15 (28%) 14 (31%) NS
QRS width (ms) 181 ± 27 172 ± 31 NS
6 min walking test (m) 275 (197-320) 270 (0-336) NS

I 0 0 .
NYHA II 14 (27%) 9 (27%) NS
class III 36 (69%) 20 (59%) NS

IV 2 (4%) 5 (15%) NS
LV end-diastolic volume (mL) 256 ± 95 231 ± 75 NS
LV end-systolic volume (mL) 196 ± 79 172 ± 68 NS
LV ejection fraction (%) 25 ± 7 27 ± 9 NS
MR grade III-IV (%) 10 (29%) 16 (59%) 0.04
TDI Septum-to-lateral delay (ms) 70 ± 36 51 ± 46 0.04
ST anteroseptal-to-posterior delay (ms) 70 (33-182) 48 (21-120) NS
LV: left ventricular; MR: mitral regurgitation.

NS: Non-significant statistical difference (p-value ≥ 0.05).

Table 4.2: Baseline characteristics of CRT candidates according to the response at
follow-up.

made on patients with contractile reserve, for which SF was induced by dobu-
tamine stress echocardiography [23]. The presence of an abnormal motion
of the septum associated to an intra-ventricular type of dyssynchrony was
first reported from M-mode observations [194] [195] [196] [197]. The authors
described a specific pattern of mechanical dyssynchrony interpretable as a di-
rect consequence of Left Bundle-Branch Block (LBBB) [8] [193] [198]. [199]
interpreted it as the result of active septal contraction during LBBB and
therefore suggested its inclusion in LV dyssynchrony studies. High response
rates were recently reported for septal rebound stretch [34] and apical rocking
[35], two patterns very closely related to SF. Inter-ventricular dyssynchrony
(LR) was described as a passive motion of the septum [8] [193] due to the
presence of infarcted septal regions and a long inter-ventricular delay, the
correction of which led to clinical improvement but not volume response.
More complex patterns were also reported, resulting from prolonged atrio-
ventricular delays or combined mechanisms [8]. The objective of the present
study was to consider all types of septal motion abnormalities that may
be observed on our study group (Fig. 4.2). This was achieved through the
comparison of the motion of any individual to a control group with nor-
mal cardiac function, using a common system of coordinates to perform this
comparison. This framework also allowed intra-subject comparison between
baseline and follow-up data (Fig. 4.4 and Tab. 4.3).

4.4.2 Conventional methods for dyssynchrony assess-
ment

The limits of single measurements from current echocardiographic tech-
niques6 such as tissue Doppler and speckle tracking have been largely dis-
cussed [3] [4]. In particular, the relevance of considering individual compo-
nents of the measured parameters (either temporally using time-to-peak or
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time-to-onset measurements, or spatially by considering segmental values)
has been pointed out. The practical difficulties of identifying the peak val-
ues [6] may bias the analysis, despite the fact that statistical difference may
be observed between responders and non-responders using these parameters
(Tab. 4.2). To overcome these limitations, we chose a mechanistic approach
inspired from the protocol presented in [8], therefore considering the whole
patterns of dyssynchrony that may be observed along the septum (Fig. 4.2).

4.4.3 Added-value of atlas-based quantification of mo-
tion abnormalities

The protocol described in [8] allows quantitative assessment of the abnormal
patterns of septal motion (presence, timing and maximal excursion, if mea-
surable), but is not automatic, pattern-dependent, and requires expert inter-
pretation. Current echocardiographic techniques [36] such as tissue Doppler
and speckle tracking allow the quantification of motion and deformation
locally, but are still not adapted to perform intra- and inter-subject com-
parisons. Tissue Doppler is highly dependent of the insonation angle and
only provides a one-dimensional measurement (the projection of the velocity
vector along the observation beam), which limits its interest for our applica-
tion. Both techniques process the sequence of each patient individually, but
do not allow any comparison at any spatiotemporal location of a common
system of coordinates. The need for such a comparison space, guaranteed
by the use of a statistical atlas framework, was illustrated in Fig. 4.3. One
of the main contributions of the present work consists in the computation
of statistical indexes that intrinsically perform a comparison to normality.
This concept is analogue to the learning process made by a clinical observer,
which uses healthy and pathological sequences to learn the representations
of specific patterns of abnormal motion. In our case, the analysis is com-
pletely quantitative, which allows baseline and follow-up comparisons, either
regionally (Tab. 4.3) or locally at every point of the septal wall (Fig. 4.4).

4.4.4 Changes in LV dyssynchrony induced by CRT

The primary objective of CRT is to restore the coordination in the motion of
the cardiac chambers. With optimized resynchronization, cardiac function is
expected to improve, leading to notable improvements in patient condition
and allowing reverse remodeling of the LV [12]. The link between mechanical
dyssynchrony and CRT response is still a controversial issue, partially due
to the limitations of single measurements of mechanical dyssynchrony [3] [4].
In contrast, mechanistic approaches [8] [193] do not discard the complexity
of the etiologies of cardiac dyssynchrony and shed new light on the under-
standing of the effects of CRT. The therapy is expected to be highly efficient
on patients with SF, for which mechanical dyssynchrony is mainly the con-
sequence of an electrical problem (LBBB) [193] [198] [199]. In contrast, the
therapy may have lower effect in case of passive motion of the septum (LR)
or more complex mechanisms where mechanical dyssynchrony is a conse-

58



quence of wall necrosis and akynesia of a given LV segment, rather unable
to be corrected through electrical resynchronization [8]. Additional factors
may also condition the ability of a patient to respond despite the reduction
of the abnormal dyssynchrony patterns present at baseline. The presence of
an extensive scar can limit the ability of the LV to show reverse remodeling
in this region. The lack of contractile reserve [200], the presence of atrial fib-
rillation [201], an inappropriate lead position [202], and the patient condition
at baseline (too advanced heart failure so that the patient could not respond
[203]) may also strongly influence CRT response. The inclusion of additional
variables of non-response such as the ones identified above is highly recom-
mendable, and will lead to refinements of current multi-parametric analysis
of CRT response [31] [32].

4.4.5 Other potential clinical applications of statistical
atlases of motion to cardiac imaging

We chose to work with 2D echocardiography as it is the most widespread
modality in clinical practice with sufficient temporal resolution to accurately
identify fast motion patterns such as SF. Using 3D echocardiography would
allow the characterization of all myocardial segments, but this modality does
not currently fulfill the above-mentioned technical requirement. We consid-
ered that apical 4-chamber represented the most relevant 2D view for our
application, as we focus on types of mechanical dyssynchrony that may af-
fect the whole septum, from base to apex. A reproducible position of the
observation plane is harder to achieve in short axis views, which may be a
strong limitation for building a statistical atlas from this view. Nonethe-
less, the methodology applied in this study is not specific to echocardiogra-
phy and abnormal septal motion, and could be readily applicable to other
imaging modalities (magnetic resonance, computed tomography ...), other
clinical settings (stress echocardiography, ischemic cardiomyopathy ...), and
other mechanisms of abnormal motion. The proposed technique could also
be extended to compare individuals to a population with one of these spe-
cific abnormal motion patterns, and not only to normality, as described
elsewhere.32 Limitations The study focuses on motion abnormalities only.
Computing maps of strain abnormalities would certainly help refining the
analysis for patients who may have similar motion abnormality patterns de-
spite different mechanisms. In particular, this may improve the understand-
ing of CRT response, as the presence of local infarction may affect both
the dyssynchrony patterns and the ability of the LV to remodel, and there-
fore, condition CRT response. The atlas of normal motion was built from a
group of healthy volunteers recruited for research purposes, within our insti-
tution, which explains the difference in age with the set of CRT candidates,
and may be a limitation to our study. Recruitment of older volunteers was
not performed for practical reasons. Nonetheless, the definition of a normal
cardiac function still remains a paradigm. Cardiac efficiency may not be
preserved when the subject gets older, resulting in a less “normal” function.
In addition, the parameter we look at, namely, motion, may not be as sen-
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sitive to such aging changes as compared to other motion parameters such
as strain. The current study focused on observations of voxel-wise motion
abnormalities and did not attempt to do any classification of patients based
on the observed patterns of abnormal motion, which would require the use
of specific pattern analysis techniques [204]. The relation between patterns
of mechanical dyssynchrony and CRT response is still complex [8] and such
an analysis may also take into account external factors that condition CRT
response, as commented in the Discussion section. Finally, the criteria for
CRT response should also be considered carefully [205] [206]. In particular,
the definition of fixed thresholds for defining response is certainly a limit for
a clear understanding of the effects of CRT, in comparison with the use of a
spectrum of responses, involving additional measures of CRT outcome [25].

4.5 Conclusion

The results presented in this study demonstrated the usefulness of an atlas-
based quantification of motion abnormalities for characterizing the evolution
of specific patterns of dyssynchrony with CRT. In particular, its combina-
tion with a comprehensive understanding of the etiologies of cardiac dyssyn-
chrony allowed a better interpretation of the effects of the therapy.
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5

Constrained manifold learning for the

characterization of pathological

deviations from normality

This chapter presents a technique to (1) learn the representation of a patho-
logical motion pattern, modeling its deviation from normal motion using
non-linear embedding techniques, and (2) compare individuals to this pat-
tern. Each subject is represented by a 2D map of local motion abnormalities,
obtained from a statistical atlas of myocardial motion built from a healthy
population. The algorithm estimates a manifold from a set of patients with
varying degrees of the same disease, and compares individuals to the train-
ing population using a mapping to the manifold and a distance to normality
along the manifold. The approach extends recent manifold learning tech-
niques by constraining the manifold to pass by a physiologically meaningful
origin representing a normal motion pattern. Interpolation techniques using
locally adjustable kernel improve the accuracy of the method. The method is
applied in the context of cardiac resynchronization therapy (CRT), focusing
on a specific motion pattern of intra-ventricular dyssynchrony called septal
flash (SF). We estimate the manifold from 50 CRT candidates with SF and
test it on 37 CRT candidates and 21 healthy volunteers. Experiments high-
light the relevance of nonlinear techniques to learn the studied data and to
compare individuals to a specific pathological pattern.

The content of this chapter is adapted from the following publication:

N. Duchateau, M. De Craene, G. Piella, and A.F. Frangi. Constrained manifold learning
for the characterization of pathological deviations from normality. 2012. Under review.
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5.1 Introduction

5.1.1 Patient selection for CRT

Different grades of a same disease, for a patient or within a population,
form a coherent group of progressive impairments of the normal condition
of an organism or part of it. This notion is particularly of interest for the
understanding of this disease, from the early detection of its onset to the
quantification of its progression and its monitoring post-treatment. In this
paper, we would like to apply these considerations to cardiac resynchro-
nization therapy (CRT) studies, supported by the following paradigm: CRT
targets the correction of the dyssynchrony in the motion of the cardiac cham-
bers, leading to improvements in the cardiac function, the patient condition,
and ventricular size [12]; however, CRT patient selection still discards me-
chanical dyssynchrony as a selection criteria [13]. There are several reasons
to this: there is currently no consensus regarding the accurate characteriza-
tion of mechanical dyssynchrony, its link with CRT outcome, and the way
to include it within the patient selection process [3] [4] [26] [27].

Recently, [8] discussed the advantages of considering specific groups of
mechanical dyssynchrony in the CRT selection process. Each of these groups
was associated to one specific pathological pattern of myocardial motion and
deformation, with different grades of abnormality with respect to a healthy
cardiac function. The relevance of similar patterns of mechanical dyssyn-
chrony was also described in [34] [35], using more quantitative measurements.
Based on these findings, a straightforward improvement of CRT patient se-
lection would be achieved through the recognition of such patterns in new
CRT candidates, as the response rate of each of these patterns is roughly
known. The same concept could also be applied to quantitatively grading
the severity of the disease or the response to the therapy. Nonetheless, all the
above-cited methods still lack of reproducible population comparison tools,
as discussed in [4], which limits their applicability.

5.1.2 Robust comparison through statistical atlases

Statistical atlases were initially designed for representing instances of a given
population, by modelling the statistical distribution of anatomical and func-
tional features within this population [109] [110]. In these frameworks, the
data of each subject is normalized to a common anatomical reference, which
allows reproducible intra- and inter- population comparison. Atlases of mo-
tion and deformation [112] [111] [113] fit for the study of cardiac dyssyn-
chrony, namely comparing the myocardial velocities and strain of individuals
to a reference population (either healthy or with the same disease) used to
build the atlas. In particular, [83] proposed a pipeline for the characteriza-
tion of abnormal patterns of ventricular dyssynchrony, in comparison with a
healthy population, using an atlas-based quantification of local myocardial
motion abnormalities. However, the tools used for statistically modelling
the variability of healthy subjects may not be adequate if the strategy is
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Figure 5.1: (a) Set of synthetic images representing a black disk over a white background.
The maximum dimensionality of the space of images corresponds to the number of pixels
of each image, but each synthetic image lies in a 2D subspace, the position of each disk
being associated to a coordinate in a 2D space (blue dots). (b) Average image, without
considering that data is arranged according to a 2D structure. (c) Fréchet mean image
on the data-driven manifold, corresponding to coordinates (25, 0).

extended to build an atlas for a specific pattern of dyssynchrony. Variations
of the pattern localization within the cardiac cycle and along the myocar-
dial wall may bias the estimation of the local variability for this population,
despite its synchronization to a common system of spatiotemporal coordi-
nates, therefore requiring the inclusion of more complex statistics or pattern
analysis techniques in the atlas construction.

5.1.3 Comparison to a given population

Principal component analysis (PCA), Kernel-PCA [152], principal geodesic
analysis (PGA) [115], linear discriminant analysis (LDA) [156] or multivari-
ate statistics [158] are dimensionality reduction techniques that target the
definition of an optimal space for the comparison of different populations
[155]. For the comparison of individuals to a specific pattern of dyssyn-
chrony, linear techniques such as PCA, LDA and multivariate statistics are
of limited interest, as they do not take into account the local topology of the
dataset (Fig. 5.1) and assimilate all distances to Euclidean distances [153].
Non-linear techniques such as Kernel-PCA and PGA intrinsically take into
account this geometry. However, for both methods, individuals are com-
pared to the mean or centroid of the reference population, while we target
the comparison to the whole population. The comparison of an individual to
its k-nearest neighbours (k-NN) does not take into account the local topol-
ogy of the dataset and assimilates all distances to Euclidean distances [207]
[153]. In contrast, manifold learning techniques fit for our application, being
non-linear and allowing the definition of a mapping distance between indi-
viduals and the learnt population. This mapping results from the “pre-image
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problem,” used in the literature for denoising [152] [208], segmentation [209],
face recognition [210], and regression [118] [211]. [212] proposed a distance
based on this mapping mechanism, but its use was limited to the estimation
of reconstruction errors inherent to a reduction of dimensionality.

5.1.4 Proposed approach

In this paper, we propose a framework for comparing the myocardial motion
of individuals to a population with a specific pattern of abnormal motion,
using manifold learning techniques to represent this population as a pro-
gressive deviation from normality. We extend manifold learning techniques
to embed the definition of a relevant origin within the manifold, and use
kernels with locally adjustable bandwidth to improve the accuracy of the
mappings between the space of input images and the space of coordinates
parametrizing the manifold.

The originality of our method resides in the use of 2D maps of local my-
ocardial motion abnormalities as input, as introduced in [83]. This highlights
the presence of specific abnormal motion patterns, which can be represented
by a manifold structure specific to each pattern, and allows the definition of a
physiologically meaningful origin within the manifold, representing a normal
motion pattern. Each pathological pattern is therefore considered a devia-
tion from normality along a manifold structure. The proposed technique
represents a step forward for patient comparison in clinical applications, as
it facilitates the identification of the closest class a sample falls in (distance
to the manifold) and the localization of this sample within the identified
class (distance to normality along the manifold).

The method is applied in the context of CRT, comparing both healthy
subjects and patients to a population with a specific pattern of intra-ventricular
dyssynchrony called septal flash (SF) [8]. This pattern consists in a fast
inward / outward radial motion of the septum during the isovolumic con-
traction period, contrasting with healthy hearts, which contract along the
longitudinal direction (Fig. 5.2, 5.3 and 5.4). [199] interpreted SF as the re-
sult of active septal contraction during left bundle-branch block, which was
shown to actively condition CRT outcome [8] [198].

A preliminary version of this work was presented in [204], in which we
illustrated the feasibility of such an approach. The current paper improves
the whole methodology, from the atlas construction steps (use of temporal
diffeomorphic free-form deformation, [73]) to the patient comparison to the
manifold (use of locally adjustabe kernels) and in-depth tuning of the whole
set of parameters, using both synthetic and real data.

5.2 Methods

The computation of a distance between individuals and a given population
considered as a pathological deviation from normality consists of three steps:
(1) the quantification of motion abnormalities for all the subjects in the
dataset, (2) the estimation of a relevant manifold for the training population,
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Figure 5.2: Radial velocities at one point of the septum (mid-inferoseptal level) during
one cardiac cycle, for one CRT candidate with SF (black, arrows indicate the inward
and outward events of SF), and the atlas of healthy volunteers (gray, average velocity ±
standard deviation). Comparison between diffeomorphic FFD between each pair of con-
secutive frames, providing piece-wise stationary velocities [83], and temporal diffeomorphic
free-form deformation (TDFFD, [73]), which enforces temporal consistency and provides
differentiable velocities, all pairs of frames being considered simultaneously during the
computation.

constrained to pass by an origin representing normal motion, and (3) the
mapping of any subject to the manifold.

5.2.1 Atlas-based computation of myocardial motion ab-
normalities

The input images for our method consist of 2D spatiotemporal maps of my-
ocardial motion abnormalities, obtained from a statistical atlas of motion
built from healthy volunteers. The implementation used in the current pa-
per for computing these maps improves the pipeline proposed in [83], as
described in the following paragraphs.

Motion extraction

Myocardial velocities are extracted from the image sequence of each volun-
teer, at each point in time and space, using image-based registration. The
diffeomorphic free-form deformation (FFD) implementation used in [83] pro-
vides piece-wise stationary velocities, which may be a limitation for the tem-
poral synchronization step of the atlas building (Fig. 5.2). In our current
implementation, we preferred the temporal diffeomorphic free-form deforma-
tion (TDFFD) method proposed in [73], which enforces temporal consistency
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Figure 5.3: Map of septal motion abnormalities during systole, for one CRT candidate
with SF. The color-scale encodes abnormality (p-value) in a logarithmic scale, multiplied
by the sign of the radial velocity vρ to highlight the inward and outward events of SF.

and provides differentiable velocities.
We used a multi-resolution implementation of the TDFFD, the final grid

size being of 5 x 3 control points in the spatial direction and 1 control point
per frame in the temporal direction. Mean square error was used as similarity
metric, combining a comparison to the first frame of the sequence and the
comparison of consecutive frames [104], with equal weights. The L-BFGS-B
algorithm [180] was chosen as optimizer for the whole registration procedure.

Atlas-based comparison to normality

The velocities extracted from each sequence are spatiotemporally synchro-
nized to a common reference anatomy, using ECG matching (time) and
local reorientation derived from image registration (multiscale diffeomorphic
FFD, [78]) between the first frames of each sequence (space). Average and
covariance of myocardial velocities over the set of healthy volunteers encode
a representation of normal motion. The computation of a statistical distance
between the velocities of each individual and the distribution of velocities
for the atlas population (Hotelling’s T -square statistic [186], under the as-
sumption that velocities for the atlas population are normally distributed),
returns a two-tailed p-value at every location of the myocardium, low p-
value indicating high degree of abnormality. In contrast, a p-value close to
1 indicates normal motion.

Representation of p-value maps of abnormalities

We chose to represent this spatiotemporal information by means of color-
coded maps, in which the horizontal axis is time (systole) and the vertical
one is the position along the septum (Fig. 5.3). Similar displays, inspired
from anatomical M-mode echocardiographic images, were previously used in
strain rate imaging [40] or speckle tracking applications [50]. In the current
paper, each pixel value corresponds to the p-value index used to locally en-
code abnormality, in a logarithmic scale, multiplied by the sign of the radial
velocity. The color-code associates blue and red color to highly abnormal
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Figure 5.4: Abnormality maps for four different subjects: two with SF [(a) and (b),
arrows indicate the inward and outward events of SF], one with left-right interaction (c),
a type of inter-ventricular dyssynchrony [8] where the septum moves passively inward, as
indicated by the black arrow, and one healthy volunteer (d).

inward and outward motion of the septum, respectively. This choice was
made to highlight the inward and outward events of SF, in comparison with
other patterns of left ventricular dyssynchrony (Fig. 5.4). According to these
conventions, the origin used to constrain the manifold (Sec. 5.2.4) is defined
as an image having 0 value at every pixel, representing a normal motion
pattern.

5.2.2 Definition of variables

Each of the abnormality maps described in Sec. 5.2.1 corresponds to one
subject in the dataset, and is used as a 2D input image for the manifold
learning process. The rationale of manifold learning on maps of statistical
significance is discussed later in this paper (Sec. 5.4).

All the images considered in this paper belong to an ambient space A.
We denote I = {I0, ..., IN} ⊂ A the dataset of N + 1 images used for
the manifold estimation. The image I0 corresponds to the image origin for
normality. This image is added to the original dataset {I1, ..., IN} before any
computation, so that every image Ii, i > 0 is connected to I0 through the
isomap graph resulting from the computations described below (Sec. 5.2.3).
This amounts to considering every element of I as a deviation from the
origin along a specific path on the manifold structure.

The coordinates space of the surface estimating the manifold is denoted
C ⊂ RM , M being the estimated dimensionality of the manifold. Note that
M < N + 1 due to its estimation from a training set of N + 1 images,
this size being lower than the number of pixels of each image. We denote
f : A → C and g : C → A the correspondence functions between A and
C. The computation of these functions is based on interpolation techniques
adapted from [118], as explained in Sec. 5.2.4.

We preferred to keep notations general for the formulation of our problem,
and we denote SA : A × A → R and SC : C × C → R the metrics used to
compare elements of A and C, respectively. In our implementation, we used
the Euclidean distance for both metrics SA and SC , for both synthetic and
CRT datasets, this choice being discussed in Sec. 5.4.

67



Studied subject Interpolated coordinates

Ii i2[0,N]

k-NN graph

Isomap

f g

Training set   I = {  }  ½A

?

Mapped image

(a) Manifold learning through isomap (training set) (c) Distance computation

(b) Mapping new subjects (testing set)

f(I) g(f(I))I

Origin

Studied subject

Mapped image

xi i2[0,N]X = {  }  ½ C
Corresponding coordinates

Figure 5.5: Pipeline for the method presented in this paper.

5.2.3 Manifold learning through Isomap

The isomap algorithm [153] is used to estimate the manifold (Fig. 5.5a).
First, a graph is built for the dataset I, based on the k-NN algorithm,
connecting all the images among themselves according to the metric SA.
The geodesic distance between two points, defined as the shortest path con-
necting these two points, along the graph, is denoted dkNN. Then, Eu-
clidean embedding of this k-NN connected graph provides a set of coordi-
nates X = {x0, ...,xN} ⊂ C.

5.2.4 Mapping new patients: from A to C
The estimation of f : A → C is an interpolation problem, which can be re-
defined on a reproducible kernel Hilbert space [70] [71] V of functions A → C,
equipped with a norm ‖.‖V reflecting the smoothness of these functions. We
denote KV the kernel associated to V, and the norm ‖.‖V is defined as:∥∥∥∥∥

N∑
i=0

KV(., Ii) · ai

∥∥∥∥∥
2

V

=

N∑
i=0

N∑
j=0

atj ·KV(Ij , Ii) · ai ≥ 0, (5.1)

for all vectors
(
ai
)
i∈[0,N ]

and
(
Ii
)
i∈[0,N ]

, with .t being the transposition
operator.

In the following subsections, we describe the basic formulation of these
problems and the improvements made to adapt them to our framework.

Exact matching

If noise does not affect the distribution of the manifold dataset, the inter-
polation can be formulated as an exact matching problem, looking for the
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optimal f : A → C passing by all the coordinates xi ∈ X at the data points
Ii ∈ I:  argmin

f∈V

(
1
2‖f‖

2
V

)
,

under the constraint f(Ii) = xi, ∀i ∈ [0, N ].
(5.2)

Equation 5.2 has the following analytical solution:{
f(I) =

∑N
i=0KV(I, Ii) · ai,

with aI = K−1
f · xI ,

(5.3)

where Kf is the matrix
(
KV(Ii, Ij)

)
(i,j)∈[0,N ]2

, the kernel KV being cho-

sen of the exponential form KV(I,J) = exp
(
− SA(I,J)2/σ2

V
)
, (I,J) ∈

A2, σV being its bandwidth, and aI and xI the vectors
(
ai
)
i∈[0,N ]

and(
xi
)
i∈[0,N ]

, respectively.

The choice of a relevant bandwidth σV is discussed in Sec. 5.2.4.

Inexact matching

If noise affects the distribution of the manifold dataset, the previous interpo-
lation needs to be re-written as an inexact matching problem, now looking
for the optimal f : A → C best approximating the coordinates xi ∈ X at the
data points Ii ∈ I:

argmin
f∈V

(1

2
‖f‖2V +

γf
2

N∑
i=0

SC
(
f(Ii),xi

)2)
, (5.4)

where γf is a weighting coefficient balancing the smoothness of the in-
terpolation and the adherence to the data.

Equation 5.4 has the following analytical solution:{
f(I) =

∑N
i=0KV(I, Ii) · ai,

with aI =
(
Kf + 1

γf
Id
)−1 · xI ,

(5.5)

where Id is the identity matrix.

Constrained problem

In this paper, the formulation of Eq. 5.4 is adapted to force the interpolation
function to pass by the coordinates origin x0: argmin

f∈V

(
1
2‖f‖

2
V +

γf
2

∑N
i=1 SC

(
f(Ii),xi

)2)
,

under the constraint f(I0) = x0.
(5.6)

The analytical solution for this problem is written as:{
f(I) =

∑N
i=0KV(I, Ii) · ai,

with aI =
(
Kf + 1

γf
M
)−1 · xI ,

(5.7)
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without constraint
with constraint

Figure 5.6: Interpolation of a 1D synthetic dataset using inexact matching, before and
after the addition of a constraint forcing the curve to pass by the point indicated by the
black arrow.

where M is the matrix
(
Mi,j

)
(i,j)∈[0,N ]2

, with Mi,i = 1 ∀i 6= 0 and 0

otherwise.

With this formulation, xi =
∑N
j=0

(
KV(Ii, Ij) + 1

γf
Mi,j

)
·aj . Thus, x0 =∑N

j=0KV(I0, Ij) · aj , which corresponds to the exact matching formulation
of Eq. 5.3, meaning that the constraint f(I0) = x0 is satisfied.

The addition of such a constraint is illustrated in Fig. 5.6, which displays
the curve interpolated from a 1D synthetic dataset, using inexact matching,
before and after forcing the curve to pass by a given point, as described in
Eq. 5.6.

Use of locally adjustable kernel

In the previous formulations, no constraint is made on the kernel bandwidth,
which fully conditions the accuracy of the interpolation. Previous works used
a fixed bandwidth, defined as average k-NN distance, namely:
σV = 1

N+1

∑N
i=0 SA(Ii,nnk(Ii)), where nnk(Ii) is the kth neighbour of Ii

[212].

In fact, the use of a fixed bandwidth has some limitations in case the
points distribution is not uniform, which is our case. Indeed, a small kernel
in a sparse region of the dataset would result in mapping points in this region
to zero, or closer to zero than they should. On the contrary, a kernel with a
too large bandwidth could result in a too planar interpolation in comparison
with the manifold curvature, therefore mapping points far from the manifold
structure. Similar concerns were raised in the literature about probabilistic
density estimation [213] [214]. The manifold learning algorithm described in
[215] used a linear interpolation scheme with equal weights on each neigbour-
hood, proposing to locally adapt the number of k-NN to adress this issue.
In the sequel, we propose to use a varying bandwidth for the interpolation
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kernel, which is locally adapted depending on the neighbourhood size:

σV(I) =
1

K2

K∑
k=1

K∑
l=1
l 6=k

SA(nnk(I),nnl(I)), (5.8)

where the right term in the equation is the average distance between the
K nearest neighbours of I.

The advantage of using such a varying bandwidth over a formulation
with a fixed bandwidth is demonstrated in Sec. 5.3.1.

5.2.5 Mapping new patients: from C to A
The formulation for the estimation of g : C → A is similar to the one of
f : A → C, namely a matching problem on a reproducible kernel Hilbert
space W of functions C → A, equipped with a norm ‖.‖W : argmin

g∈W

(
1
2‖g‖

2
W +

γg
2

∑N
i=1 SA

(
g(xi), Ii

)2)
,

under the constraint g(x0) = I0,
(5.9)

with solution: {
g(x) =

∑N
i=0KW(x,xi) · bi,

with bI =
(
Kg + 1

γg
M
)−1 · II ,

(5.10)

where Kg is the matrix
(
KW(xi,xj)

)
(i,j)∈[0,N ]2

, the kernel KW being

chosen of the exponential form KW(x,y) = exp
(
−SC(x,y)2/σ2

W
)
, (x,y) ∈

C2, σW = 1
K2

∑K
k=1

∑K
l=1,l 6=k SC(nnk(x),nnl(x)) being its bandwidth, γg is a

weighting coefficient balancing the smoothness of the interpolation and the
adherence to the data, and bI and II the vectors

(
bi
)
i∈[0,N ]

and
(
Ii
)
i∈[0,N ]

,

respectively.

5.2.6 Distance computation

With the previous formulations of the mappings f and g, any image I ∈ A
is associated to another image Î belonging to the manifold, by means of the
composition of these mappings, using Î = g

(
f(I)

)
. This composition allows

defining a distance between any image I ∈ A and the manifold [212], namely:

dP (I) = SA(Î, I). (5.11)

This distance is complemented by a second one, which compares individ-
uals to normality along the manifold structure:

dM (I) = SC
(
f(I),x0

)
. (5.12)

Total distance to normality is then written as
√

(dP )2 + (dM )2.
Note that this distance notion differs from the total abnormality con-

tained in each map I, defined as SA(I, I0).
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5.2.7 Additional metrics

We used the objective metrics described in [216] to evaluate the quality
of the dimensionality reduction, in comparison with linear dimensionality
reduction techniques.

Compactness

Compactness estimates the convergence speed of the dimensionality reduc-
tion, namely its ability to represent the studied objects by the very first
dimensions. We measure compactness as:

C(M) =
1

Γ

M∑
m=1

λm, (5.13)

where M is the number of retained dimensions for the coordinates space
C, λm is the eigenvalue corresponding to the mth dimension, and Γ =∑N+1
m=1 λm.
The eigenvalues for the non-linear dimensionality reduction technique

(ML) are obtained from the diagonalization of the k-NN distance matrix
τ(DI) involved in the isomap process [153], where τ(DI) = −HIDIHI/2,
with DI =

(
dkNN(xi,xj)

2
)

(i,j)∈[0,N ]2
, and HI =

(
δij −1/(N + 1)

)
(i,j)∈[0,N ]2

is a centering operator. Each λm is associated to the mth principal direction
along the manifold structure.

The eigenvalues for the linear dimensionality reduction technique (PCA)
come from the diagonalization of the covariance matrix computed for the
images of the training set I. Each λm is associated to the mth principal
direction along which the data variance is maximal.

The standard error of C(M) is defined as:

σC(M) =
1

Γ

M∑
m=1

√
2

N + 1
λm. (5.14)

Generalization ability

The generalization ability estimates the reconstruction error for points in-
cluded within the range of noise of the training set. It represents the ability
of the method to describe instances outside the training set. Each point in
the training set Ii ∈ I is reconstructed using leave-one-out, namely, estimat-
ing the space of reduced dimensionality from the other points in the dataset.
This leads to the following reconstruction error:

G(Ii,M) = SA(ÎLV Oi , Ii), (5.15)

where M is the number of retained dimensions, and ÎLV Oi is the recon-
struction of Ii using the reduced set I\Ii, as detailed in Sec. 5.2.6.

We computed the median, the 1st and 3rd quartiles of G(Ii,M) for all
Ii ∈ I to fully characterize the generalization ability, the normality of its
distribution not being guaranteed.
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Figure 5.7: 3D swiss roll and 2D random distribution of points used as 2D parametriza-
tion for its construction.

Specificity

Specificity characterizes the relevance of objects generated from the lowest
dimensional coordinates, with respect to the training set:

S(x,M) = SA
(
g(x),nn1(g(x))

)
, (5.16)

where g(x) is the image generated from the M -dimensional coordinate
x, and nn1(g(x)) is its first nearest neighbour.

We computed the median, the 1st and 3rd quartiles of S(x,M) over a
set of randomly generated coordinates x to fully characterize the specificity,
the normality of its distribution not being guaranteed.

5.3 Experiments

In the sequel, we detail the experiments designed for tuning the parameters of
our method, namely: the manifold dimensionality, the number of k-NN, the
bandwidth of the interpolation kernels, and the inexact matching weights γf
and γg. We first use a synthetic dataset to understand the behaviour of some
specific parameters. Then, these parameters are tuned for a real dataset of
CRT candidates. The algorithm with optimal values is finally applied to
compare a set of individuals to a specific population.

5.3.1 Parameter tuning - Synthetic data

We created a three dimensional dataset of 1000 points, arranged according
to a 2D structure in the 3D space (swiss roll, Fig. 5.7), defined as:

x = cos
(
3π/2 · (1 + 2r)

)
,

y = sin
(
3π/2 · (1 + 2r)

)
,

z ∈ [0, 20],

(5.17)

(x, y, z) being the coordinates in the 3D space, and (r, z) the coordinates
of the 2D parametrization, randomly generated from a uniform distribution.
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Figure 5.8: Influence of the number of k-NN on the isomap output, for the 3D swiss roll
data. Left: isomap output for K = {5, 8, 13, 14}. Right: evolution of the isomap error
εI (Eq. 5.18) with the number of k-NN. Mean error over all the pairs (xi,xj) ∈ X 2. A
jump is present on this curve for K = 14, reflecting the apparition of a short-circuit in
the k-NN graph.

For this synthetic dataset, the Euclidean distance ‖.‖ was used for both
metrics SA and SC .

Number of k-NN

The output from the isomap algorithm is a low-dimensional approximation
of a Riemannian space. We used the metric described in [217] to estimate the
quality of this approximation. The error in the approximation of the path
between two coordinates (xi,xj) ∈ X 2 is defined as the relative difference
between the geodesic distance dkNN, and the distance defined by SC :

εI(xi,xj) = 1− SC(xi,xj)

dkNN(xi,xj)
. (5.18)

We evaluated the influence of the number of k-NN on the isomap output
using this error. The experiment is illustrated in Fig. 5.8, and displays the
mean error over all the pairs (xi,xj) ∈ X 2. When the number of k-NN
increases, the 2D distribution of points estimated by the isomap algorithm
gets closer to the 2D parametrization used for building the swiss roll, until
a short-circuit appears for K = 14, visible both in the curve representing
the isomap error εI and in the picture of the isomap output. The optimal
number of k-NN for this dataset is therefore K = 13.

The error εI could also be used for parameter tuning in case the dimen-
sionality M is unknown (Sec. 5.3.2), but this strategy may not be optimal to
assess the presence or absence of a short-circuit, in particular if the number
of samples in the training set is low. We adapted the measurement of node
flow on a graph [218] to assess the apparition of a short-circuit in the k-NN
graph. We first defined the flow of a given edge Fedge(edgexi 7→xj

) as the
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Figure 5.9: Influence of the graph number of k-NN and the spatial arrangement of the
graph nodes on the the node flow distribution. Synthetic dataset of 1000 points within a
given spatial domain. (a) Initial spatial domain with K = 20. (b) Same spatial domain
with K = 5. Large local variations of the node flow are locally observed, reflecting a too
low connectivity within the graph. (c) Modified spatial domain with K = 20. Node flow
is higher where the spatial domain is narrow, reflecting that a large number of shortest
paths along the graph pass within this region.

number of shortest paths
(
pathxr 7→xs

)
(r,s)∈[0,N ]2

of the graph passing on the

edge. The total flow at a node xi ∈ X is therefore defined as:

Fnode(xi) =

K∑
k=1

Fedge(edgexi 7→nnk(xi)). (5.19)

The node flow reflects the spatial arrangement of the nodes of the graph,
conditioned by the number of k-NN used. Optimal K should minimize εI
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Figure 5.10: Influence of the number of k-NN on the node flow, for the 3D swiss roll
data. Left: isomap output for K = {5, 8, 13, 14}, where each node is colored according
to its flow (Eq. 5.19). For all points, the variability of the flow distribution is low when
K ≤ 13, while the apparition of a short-circuit for K = 14 makes one specific point
having almost the highest flow possible (black arrow). Right: evolution of the node flow
distribution with the number of k-NN. Black arrow indicates the value of the node flow
for the point where the short-circuit appears.
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Figure 5.11: Comparison of locally adjustable kernel (red) and fixed bandwidth kernels
(green levels) in terms of interpolation error εK (Eq. 5.21), for 100 testing points belonging
to the swiss roll, generated using Eq. 5.17. (a) Median and 1st/3rd quartiles for each
kernel size. (b) Results grouped per intervals of distance between neighbours (right term
in Eq. 5.8), highlighting the accuracy of the locally adjustable kernel for each type of
neighbourhood.

within the spatial domain occupied by the nodes of the graph. The uni-
formity of the spatial arrangement of the nodes (K being being set to its
optimal value) leads to the uniformity of the node flow distribution. In the
absence of short-circuit, the local density of the graph and local variations of
the spatial domain occupied by the nodes of the graph may change the node
flow locally (Fig. 5.9). The evolution of the node flow distribution with the
number of k-NN, for all the points of the k-NN graph, is shown in Fig. 5.10.
Low variability of the node flow distribution is observed when the estimated
coordinates xi tend to be uniformly distributed (K getting closer to 13).
Note that the points on the border of the graph have slightly lower node
flow, due to a lower probability that a shortest path passes by these points.
When a short-circuit appears at a specific point (K = 14, black arrow), a
majority of the shortest paths pass by this point, which has therefore a much
higher node flow.

Varying kernel

The accuracy of an interpolation based on a locally adjustable kernel (Sec. 5.2.4)
was compared to the one of kernels with fixed bandwidth. We first generated
a testing set of 100 points belonging to the swiss roll, using the parametriza-
tion described in Eq. 5.17. Note that these 100 points are different from
the already existing set of 1000 points generated in Sec. 5.3.1. Then, we
computed the weighted center of mass of the neighbourhood of each point I:

W (I,p) =

K∑
k=1

pk · nnk(I), (5.20)
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where p is a vector of weights pk, randomly generated for each image I
from a uniform distribution, such that

∑K
k=1 pk = 1.

The kernel interpolation is accurate if the point W (I,p) is mapped to the
weighted center of mass of the coordinates f(nnk(I)), with the same weights
pk. We defined the interpolation error as:

εK(I) = SC

(
f
( K∑
k=1

pk · nnk(I)
)
,

K∑
k=1

pkf(nnk(I))
)
. (5.21)

The median and 1st/3rd quartiles of the interpolation error εK over the
generated set of 100 points, for each kernel size, is represented in Fig. 5.11a,
and is complemented by Fig. 5.11b, illustrating the performance of each
kernel in function of the distance between the neighbours of each neighbour-
hood (right term in Eq. 5.8). As commented in Sec. 5.2.4, small kernels
(dark green) introduce more errors for large neighbourhoods, while on the
contrary, larger kernels (light green) are less accurate for small neighbour-
hoods. In contrast, the proposed kernel (red) with adjustable bandwidth
results in an accurate interpolation for any neighbourhood size.

5.3.2 Parameter tuning - CRT data

Dataset description

Using the method presented in Sec. 5.2.3, a manifold was estimated from
a population of 50 CRT candidates with SF. This manifold is expected to
represent pathological deviations from normal motion, each point of the
manifold being a SF pattern. A second dataset was used for testing the
distances proposed in Sec. 5.2.6, as described in Sec. 5.3.3. This population
was made of 37 CRT candidates (6 having SF and 31 without SF) and 21
healthy volunteers. All patient data was acquired before the implantation of
the CRT device. The presence of SF was assessed by two experienced car-
diologists, from the visual inspection of echocardiographic M-mode images,
as described in [8].

A 2D spatiotemporal map of myocardial motion abnormalities obtained
from a statistical atlas of motion [83] was associated to each subject, as
explained in Sec. 5.2.1. The atlas was built from the set of 21 healthy
volunteers. Abnormality maps for the set of volunteers used for the atlas
construction were computed using leave-one-out on this population. The
abnormality maps had a size of 20×31 pixels, corresponding to the sampling
of the systolic period (horizontal dimension) and the septum along its medial
line (vertical dimension), respectively.

For this dataset, the Euclidean distance ‖.‖ was used for both metrics
SA and SC . The choice of this distance for SA is discussed in Sec. 5.4. This
distance was used for the metric SC : C → R due to the Euclidean embedding
of the coordinates space provided by the isomap algorithm (Sec. 5.2.3).
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Figure 5.13: (a) Evolution of the isomap error εI with the dimensionality M and the
number of k-NN, for the training set of CRT candidates with SF. White crosses indicate
the minimum value of εI for each value of k-NN. (b) Evolution of the isomap error εI with
the number of k-NN, for M = 4.

Dimensionality reduction and k-NN

An overview of methods for estimating the intrinsic dimensionality of a
dataset was given in [219], but there is no standard manner of performing
this step. For the CRT dataset, both optimal dimensionality and number
of k-NN were unknown, and were determined using the same experimental
design than in Sec. 5.3.1.

We first computed the evolution of the node flow distribution (Eq. 5.19)
with the number of k-NN, as represented in Fig. 5.12. Note that this mea-
surement is directly performed on the k-NN graph, before the dimensionality
reduction step, and is therefore independent of the retained dimensionality
M . No jump in the node flow distribution was observed when the number
of k-NN increased, meaning that no short-circuit had been introduced. We
therefore chose the dimensionality looking at the value of M minimizing the
isomap error εI for each value of K (white crosses on Fig. 5.13a), taking its
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Figure 5.14: 2D embedding of the manifold of SF p-value maps (output of isomap)
according to its two first dimensions. The black arrow indicates the origin image used to
constrain the manifold, representing a normal motion pattern.

median value as final value for M . Then, we determined the value of K from
the evolution of εI with the number of k-NN, when M is set to its optimal
value (Fig. 5.13b). According to this experiment, we set M = 4 and K = 5,
as hardly any influence on εI is observed for values of K < 30, and high
values of K represent a substantial increase in terms of computational time.

A 2D embedding of the computed manifold (output of isomap) is rep-
resented in Fig. 5.14 for illustration purposes, showing the link in the co-
ordinates space between each image and its nearest neighbours. We can
qualitatively observe that subjects are arranged in the 2D space according
to the pattern present on the map. In particular, subjects with high abnor-
mal motion patterns are located on the border zone of the graph, while the
closest subjects to normality are located at the center.

Kernel bandwidth

We used a locally adjustable kernel for the interpolation performed by f :
A → C and g : C → A, as described in Sec. 5.2.4. The accuracy of such a
kernel, in comparison with kernels of fixed bandwidth, was already demon-
strated on synthetic data, for which ground truth is known (Sec. 5.3.1).

Weighting the closeness to the data

The generalization ability metric (Sec. 5.2.7) was used to determine the opti-
mal values of the weighting terms γf and γg in Eq. 5.6 and 5.9, respectively.
Both weights were determined jointly, as illustrated in Fig. 5.15. Optimal
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values were those that minimized the median generalization ability. These
values were found to be log(γf ) = 1 and log(γg) = 0.5 for our dataset.

Figure 5.16 represents the reconstruction of five patients from the training
set (using leave-one-out), for the optimal values of γf and γg.

Performance of the dimensionality reduction

We used the objective metrics described in Sec. 5.2.7 to evaluate the perfor-
mance of the non-linear dimensionality reduction technique (manifold learn-
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Figure 5.16: Reconstruction of five patients from the training set of CRT candidates
with SF (using leave-one-out), for the optimal values of γf and γg .
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ML PCA p-value
Compactness 0.52± 0.03 0.77± 0.04 0.000a

Generalization ability 21.37(17.26− 32.23) 17.26(13.83− 22.78) 0.002b

Specificity 13.39(11.04− 15.01) 17.00(14.29− 19.20) 0.000b

a unpaired Student’s t-test; b Mann-Whitney U -test.

Table 5.1: Comparison between non-linear (ML) and linear (PCA) dimensionality re-
duction techniques using the objective metrics described in Sec. 5.2.4. Values are given for
the retained dimensionality M = 4, and expressed as mean ± standard deviation (com-
pactness) or median and 1st/3rd quartiles (generalization ability and specificity) over the
the training set of CRT candidates with SF. Unpaired Student’s t-test (a) and Mann-
Whitney U -test (b) were used for inter-groups comparison (last column), depending if
normal distribution of the values can be assumed or not.

ing, ML) we used, in comparison with a linear technique (PCA). This com-
parison is presented in Tab. 5.1.

The PCA approach is more compact than the ML one, as PCA was orig-
inally designed to optimize compactness, and generalizes better to unknown
instances of the training set, as measured by the generalization ability. How-
ever, these two metrics do not reflect the fact that linear techniques may not
preserve the topology of the studied data, in comparison with ML, which was
designed for it. Specificity evaluates the closeness between the objects gen-
erated and the training set, and directly reflects whether the data topology
is preserved or not. Specificity for ML is lower than the PCA one, meaning
that the generated objects are closer to the training set, which shows the
relevance of using non-linear techniques to estimate the manifold structure.
This affirmation is supported by the result shown in Fig. 5.17, which repre-
sents progressive deviations from the map used as origin for normality I0,
along the two first principal directions of the manifold dataset I, obtained
using either PCA or ML. As indicated by the black arrows, PCA does not
guarantee that the computed maps still contain the characteristic inward
and outward events of SF, while this pattern is preserved by the use of ML.

5.3.3 Patient analysis - CRT data

Figure 5.18a represents the distance between all the subjects involved in this
study and the manifold. We separated the analysis between dP and dM for
interpretation purposes. The patients from the training set have low dP
(distance to the manifold), which corresponds to the reconstruction error
inherent to the estimation of f and g using an inexact matching formulation
(Eq. 5.6 and 5.9), and largely span the space associated to dM (distance to
normality along the manifold). As the training population size is finite, the
density in the space of coordinates around patients with the most abnor-
mal patterns is lower, and these patients have higher reconstruction error,
namely higher dP . Few patients from the training set are close to the origin
according to dM , in comparison with the healthy volunteers. This may come
from the accuracy of the patient selection process using M-mode images [8],
small SF being harder to identify, and from the accuracy of the abnormality
maps to detect low abnormalities [83]. Among the testing subjects, patients
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the two first principal directions of the manifold dataset I, obtained using either PCA or
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having SF are closer to the manifold than patients without SF, according to
dP , and almost within the range of the reconstruction error for the train-
ing set. Higher values of dM are observed in the subjects having higher SF
abnormalities on the maps. Large values of dP can be observed for some
volunteers. These subjects actually have higher velocities during the car-
diac cycle, reflected by high values of abnormality on their associated 2D
maps. However, all these subjects belong to the atlas population, meaning
that these deviations from the average velocity profile are part of the atlas
variance, and are therefore taken into account in the computation of the
abnormality maps for the whole set of subjects involved in this study.

Figure 5.18b uses a similar display to represent the ordering of subjects
obtained using PCA, separating the analysis between dPCAP and dPCAM , de-
fined as: {

dPCAP (I) = SA(Î, I),

dPCAM (I) = SC(x
PCA,xPCA0 ),

(5.22)

where Î is the reconstruction of I using the first M principal directions
obtained from PCA, and xPCA are the M -dimensional coordinates of I in the
PCA space. Note that due to the choice of the Euclidean distance for both
metrics SA and SC , d

PCA
M is equivalent to computing the Euclidean distance∥∥Î − I0

∥∥, as both images are obtained from their respective coordinates

through the addition of the average image of the training set 1
N+1

∑N
i=0 Ii.

This figure highlights the limitations of PCA to perform patient compar-
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Figure 5.18: (a) Subject ordering according to dM and dP (Sec. 5.2.6), used as hori-
zontal and vertical axis, respectively. (b) Subject ordering according to dPCAM and dPCAP
(Eq. 5.22), used as horizontal and vertical axis, respectively. The blue dot corresponds
to the image used to constrain the manifold, representing a normal motion pattern, and
used as origin.

ison to a population with a specific abnormal pattern. Little discrimination
is observed between the healthy volunteers, the testing patients having SF,
and patients without SF. Both patients with and without SF appear equally
distant from the SF training set according to dPCAP , and volunteers do not
have necessarily low values of dPCAM . The PCA-based approach therefore
does not guarantee that our main objectives for CRT studies (characterizing
patients according to their distance to patterns of dyssynchrony for which
the response rate is roughly known, and grading of the disease severity) are
fulfilled, in comparison with the manifold learning approach.

5.3.4 Total distance to normality

Each 2D map processed in this study locally contains a measure of abnor-
mality, and the total abnormality contained in each map is therefore defined
as SA(I, I0) (Sec. 5.2.6). In our case, we used the Euclidean distance for
both metrics SA and SC . This implies that:

(
dPCAM (I)

)2
=

M∑
m=1

(xPCAm )2, (5.23)

where xPCAm is the mth component of xPCA, and:

(
dPCAP (I)

)2
=

∥∥∥∥∥
N+1∑
m=1

xPCAm −
M∑
m=1

xPCAm

∥∥∥∥∥
2

,

=

N+1∑
m=M+1

(xPCAm )2.

(5.24)
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Figure 5.19: Subject ordering according to the amount of total abnormality SA(I, I0)

and (a) the PCA-based distance to normality
√

(dPCAP )2 + (dPCAM )2 (Sec. 5.3.3) or (b)

the total distance to normality
√

(dP )2 + (dM )2 (Sec. 5.2.6). The blue dot corresponds
to the image used to constrain the manifold, representing a normal motion pattern, and
used as origin.

Thus:

(
dPCAP (I)

)2
+
(
dPCAM (I)

)2
=

N+1∑
m=1

(xPCAm )2, (5.25)

meaning that the total distance
√

(dPCAP )2 + (dPCAM )2 corresponds to

the Euclidean norm of each map, namely the total abnormality of each map.
This is illustrated in Fig. 5.19a, confirming that both expressions they are
equal. Negligible deviations from the regression line can be observed, reflect-

ing the fact that
√∑N+1

m=1(xPCAm )2 is actually a PCA-based approximation

of the Euclidean norm of each map using N + 1 dimensions, this number
being lower than the number of pixels of each map.

This property is not satisfied by the distances dP and dM (Fig. 5.19b),
linear regression over the plotted data leading to slope coefficients of 0.75
(manifold data only, dashed red line) and 0.78 (whole data, black line), as-
sociated to R2 coefficients of 0.84 and 0.89, respectively. The dimensionality
reduction inherent to the manifold estimation still preserves the concept of
abnormality embedded in the input maps, but also takes into account the
geometry of the training set, as illustrated in Fig. 5.20.

5.4 Discussion

We have described a complete pipeline to compare individuals and a popula-
tion with a specific pattern of abnormal motion in terms of myocardial mo-
tion. The extension of manifold learning techniques to embed the definition
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(SA(I, I0), Sec. 5.2.6), and the proposed distances for comparing subjects to the training
population.

of a physiologically meaningful origin allowed representing the learnt popu-
lation as progressive deviations from normality along a manifold structure.
The originality of our work resides in using 2D maps of motion abnormalities
as input, obtained from a statistical atlas of myocardial motion built from
a set of healthy volunteers, which facilitates the definition of an origin for
normality. Our experiments demonstrated the relevance of manifold learning
techniques to learn a population with a specific pathological pattern, and to
compare individuals to this pattern. We first selected the optimal values for
the parameters involved in our method, using a synthetic dataset and the
training set of CRT candidates for which the manifold is learnt. Then, we
demonstrated the performance of our method to characterize both training
and testing datasets.

As described in Sec. 5.3.2, we used the Euclidean distance for the metric
SA. This metric evaluates pixel-wise the difference between two maps of
abnormality, being considered as 2D images. The relationship between this
metric and the statistical information locally contained in each map will be
addressed in further work. Choosing the Euclidean distance may introduce
some bias towards global and local shifts of the observed patterns. However,
the use of TDFFD [73] guarantees the velocities computed for each subject to
be differentiable, and therefore introduces smoothness on the abnormality
maps, which limits the above-mentioned bias. We preferred to choose a
simple metric for the sake of computational speed. Metrics based on image
registration (as used in other manifold learning applications working directly
on real images [212]) or image correlation-based metrics cannot be applied
in our case as they require the processed images to share the same topology.
Indeed, a large variety of patterns are observed on the maps of abnormality
we used either for the manifold estimation or for the comparison to the
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manifold, as visible in Fig. 5.4. In particular, these alternative metrics would
certainly fail in case of the lack of abnormal pattern, typically for the maps
of healthy volunteers.

We preferred a strategy in which the manifold is estimated for one specific
population only (SF patients). This approach differs from classic methods for
population comparison [155], which generally consider all subjects as part of
a single dataset, and look for the space of reduced dimensionality that allows
the best discrimination between different pre-identified groups. Nonetheless,
the flexibility of these techniques is limited when a new subject or a new
population is added to the existing dataset, as dimensionality reduction is
applied to the whole set of studied subjects. In addition, the dimensionality
reduction could be biased towards certain populations if they show higher
variability. An alternative for moving beyond these limitations consists in
separating the analysis for each coherent group of subjects, which is the
strategy we have opted for.

The approach we proposed represents a potential step forward to im-
prove patient selection in the context of CRT. As highlighted in [4], current
approaches lack of reproducible tools to perform patient comparison pre-
and post- therapy. Our method is ready to be used in both cases: (1) using
baseline data, it would allow grading a pattern (distance to normality) and
estimating the ability of a patient to respond (distance to patterns for which
the response rate is known [8]); (2) using baseline and follow-up data, it
would improve the understanding of the link between the evolution of ab-
normal patterns and CRT outcome. Both aspects will be studied in further
work as part of a thorough clinical study.

Limitations. The pipeline presented in this study was applied to the char-
acterization of individuals against patients with SF, as this pattern is clearly
defined on the maps we used as input, which were validated in [83]. Besides,
this pattern has been shown to highly condition CRT outcome [8] [198].

The maps were computed from 2D echocardiographic sequences, as it is
currently the most clinically widespread modality with sufficient temporal
resolution to accurately quantify SF.

The study focused on motion abnormalities only. Its extension to strain
abnormalities may refine the analysis of the patterns of cardiac dyssynchrony
by allowing the characterization of locally infarcted segments, which may
affect CRT outcome [220].

Nonetheless, the methodology described in the present work is generic,
and therefore not specific to SF, or abnormality maps obtained from 2D
echocardiography. Other potential strategies for building the maps of abnor-
mality could include other imaging modalities (3D echocardiography, mag-
netic resonance and tagged magnetic resonance, ...) and other pathological
cardiac mechanisms such as the classes of mechanical dyssynchrony identified
in [8].

The quality of the maps of abnormality is primordial for the accuracy of
the proposed method. Both the echocardiographic acquisition and the atlas
construction steps (velocity extraction and spatiotemporal synchronization)

86



may influence the patterns observed on the maps and the subject compar-
ison, within the manifold learning process (construction of the k-NN graph
and intra-manifold distance) and when mapping patients to the manifold.

5.5 Conclusion

We have proposed a method for representing a specific pathological motion
pattern as a deviation from normality along a manifold structure, normal-
ity being by construction the manifold origin. The method was used to
characterize individuals according to their distance to normality, and to the
pathological pattern used to estimate the manifold. We first evaluated the
optimal set of parameters involved in our pipeline. Then, we illustrated
the performance of such an approach in the context of CRT, learning the
manifold for a set of patients with SF, a specific pattern of intra-ventricular
dyssynchrony, and comparing both healthy volunteers and CRT candidates
to this population. Experiments demonstrated the advantage of non-linear
embedding of the training set, and the relevance of the proposed method for
grading different stages of motion abnormalities and comparing subjects to
a specific pathological pattern.
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6

Conclusions

6.1 Overview

During the realization of this thesis, we investigated ways of characteriz-
ing myocardial motion and deformation patterns, and to include this in-
formation in a robust computational scheme for inter-subject comparison.
Requirements for this approach (Sec. 1.2) were:
• Quantifying myocardial motion and deformation on each subject. Our

solutions for this objective were reported in Chap. 3.
• Estimating the degree of abnormality for each subject, based on the

statistical analysis of groups of subjects. This objective was reached in
Chap. 3 and 4.
• Being able to compare patients in terms of patterns of dyssynchrony,

and not only on a voxel-wise basis. This contribution was reported in
Chap. 5.

The underlying clinical objective was to apply these tools to a population
of CRT candidates, and demonstrate their added-value for the characteriza-
tion of pattern-related abnormalities and their evolution. A clinical study
was designed on this specific point in Chap. 4.

6.2 Outlook and future work

The work carried out in this thesis constitutes a first step towards the use
of motion and deformation patterns to understand the effects of CRT and
consequently improve the patient selection process. We expect that the
work done in this thesis will definitely contribute to further progress in this
direction, as discussed in the following paragraphs.

Registration-based motion and deformation estimation. The estimation of
myocardial motion and deformation has been achieved in this thesis using im-
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age registration techniques to track the myocardium along cardiac sequences.
As a first step, the registration scheme considered independently each pair
of consecutive frames (Chap. 3). The estimated transformations were esti-
mated using a parametric approach (multiscale FFD), and constrained to
be diffeomorphic. This approach provided piece-wise stationary velocities,
which may be a limitation for the temporal synchronization step of the atlas
building, as discussed in Chap. 5.

The design of the atlas pipeline allows the improvement of the registra-
tion step independently from the synchronization and statistical steps com-
ing further. Thus, in a subsequent application to the initial atlas publication
[83], we improved this step by using temporal diffeomorphic free-form de-
formation (TDFFD) [73], which enforces temporal consistency and provides
differentiable velocities at each instant of the cardiac sequence.

Further work at this level of the atlas pipeline could consist in the im-
provement of the registration accuracy for any imaging modality, as initiated
by some recent registration challenges [221].

Voxel-based vs. pattern-based inter-subject comparison. As discussed in
Sec. 2.3, the statistical comparison of motion and deformation in sets of
subjects can be performed on a voxel-wise or a pattern-wise basis, this lat-
ter option being conditioned by the definition of a relevant comparison space.
We preferred to keep the analysis general in the first part of the thesis work
(Chap. 3) and therefore started with observations at the voxel level. Thus,
the interpretation of the patterns of dyssynchrony that may be observed
for each patient remained qualitative in a first time. Pattern-based analysis
were proposed in Chap. 4 and 5, extending the voxel-wise analysis to groups
of voxels or to a space of reduced dimensionality. In particular, the work
described in Chap. 4 illustrated the importance of analyzing dyssynchrony
in patients at a pattern level before relating it with the therapy outcome.

Future work on this field should first clearly state the space or arrange-
ment of voxels to be considered, depending on the observations to be made:
introducing smoothness in the voxel-based analysis (as a consequence of a
smooth registration scheme), recognizing abnormal patterns, or comparing
subjects to a population (Chap. 5), for example.

Going beyond Parsai’s paper. The paper of Parsai et al. [8] pointed out
several interesting issues for CRT studies that we can answer or comment
after the work developed in this thesis:
• Value of SF: The results presented in [8] may suggest that due to

its high response rate, SF should be used as criteria for selecting CRT can-
didates. Nonetheless, we would like to nuance this statement, based the
findings described in Chap. 4. In our data, the detection of SF at baseline
led to a modest sensitivity to predict CRT response. There are still few
studies about SF targeting the physiological understanding of this mecha-
nism [199] [198]. In terms of its link with CRT response, we agreed with the
findings of [8] and [23] in that the correction of SF highly conditions CRT
response, but this is not a sufficient condition for CRT response, particu-
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larly regarding reverse remodeling. The inclusion of additional variables of
non-response such as the ones discussed in Chap. 4 (presence of atrial fibril-
lation [201], lack of contractile reserve [200], lead position [220], etc.) would
be highly recommendable before any consideration of the SF mechanism for
selecting patients.

• Baseline comparison to specific patterns of dyssynchrony: The
paper of Parsai et al. [8] invited the cardiologists to rethink their strategy for
patient selection. The comparison of a new patient to different mechanisms
of dyssynchrony for which the response rate is known may help for estimating
the probability of a patient to respond. We started investigating this line of
research in Chap. 5 through the proposition of an algorithm for comparing
the patterns of abnormal motion of a patient to a population with a given
pattern of dyssynchrony. The method is currently applied to baseline data,
for the SF pattern. Future work should (1) extend it to the patterns proposed
in [8], looking at the predictive value of these classes using baseline data only;
(2) apply it to baseline and follow-up data to complement the findings of the
study performed in Chap. 4.

•Which patterns of dyssynchrony? The paper of [8] presents an al-
gorithmic approach to improve patient selection for CRT, based on the clas-
sification of patients according to specific patterns of dyssynchrony (inter-,
intra- and atrio-ventricular dyssynchrony). The rationale behind such a
classification is that it covers the most common types of patterns of dyssyn-
chrony affecting the LV. Additional patterns of dyssynchrony such as the
ones affecting the right ventricle, or a combination of mechanisms (which
forms a specific group of patients in [8]) may also be observed. Their in-
fluence on CRT response requires further analysis, in particular due to the
implantation of the CRT device on the septal and lateral wall of the LV only.

• A threshold for CRT response? As discussed in Sec. 2.1.1, a
strong limitation to CRT studies may be the definition of CRT response.
The concept of quantifying motion and deformation abnormality is partic-
ularly interesting with respect to this point, as it overcomes the limitations
of a qualitative description or a binary recognition of the mechanisms of
dyssynchrony conditioning CRT response. Further studies should not rely
on a binary threshold for defining CRT response, but rather consider a spec-
trum of responses, which may include measures of the abnormality evolution
with the therapy.

Application to other imaging modalities and other mechanisms. Most of
the work realized during this thesis was applied to 2D echocardiographic se-
quences of the LV, acquired in a 4-chamber view. The 2D US modality was
chosen for its high temporal resolution, and its availability pre- and post-
implant. The apical 4-chamber view represented the most relevant 2D view
to visualize the type of LV dyssynchrony we focused on. Using 3D echocar-
diography would allow the characterization of all myocardial segments, but
with a lower temporal resolution. The application of the atlas framework
to other 2D US views, other imaging modalities (magnetic resonance, com-
puted tomography ...) and other clinical settings (stress echocardiography,
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ischemic cardiomyopathy ...) is relatively straightforward, and only requires
a careful tuning of the registration parameters, as we started to do in [73]
for 3D US and [104] for t-MRI.

In a similar manner, the methodology developed during the thesis is not
specific to the study of LV dyssynchrony and more particularly patterns of
intra-ventricular dyssynchrony such as SF, but could perfectly be applied
to the characterization of other mechanisms of abnormal motion and defor-
mation. The only requirement to this would be that the use of a complex
framework such as building a statistical atlas or learning a manifold repre-
sents an added-value for the quantification and the characterization of these
mechanisms, as we attempted to demonstrate in Chap. 4 and 5.
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