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CHAPTER 1

Introduction to spacetime geometries

In this doctoral work, we will determine the requirements that a pair (M,G) of a finite-

dimensional smooth manifold M and an a priori arbitrary tensor field G must satisfy in order

to provide a classical spacetime geometry. This introductory chapter will be devoted to motivate

our investigation, to make precise which problem we will solve, and to describe the logical path

we will follow. In the first section, we present a review on general relativity based on an idealized

historical logic for its construction, which indeed mirrors how we will determine the conditions

on (M,G). In the second section, we shortly review the main observations interpreted in the

framework of general relativity and the standard model of particle physics. We will argue that

these suggest new tensorial geometries to replace Lorentzian metrics as an appropriate mathe-

matical structure modelling the physical spacetime structure. Finally, in the third section, we

state key conditions that any pair (M,G) must satisfy in order to provide a classical spacetime

geometry. The enterprise undertaken in this thesis is to make these conditions mathematically

precise, derive rigorous conclusions and apply them to physics.

1.1. The conceptual path to general relativity

Historically, Einstein did not directly postulate that spacetime is a pair (M, g) of a finite-

dimensional smooth manifold M equipped with a Lorentzian metric g and then made physical

constructions on it, as sometimes it is the standard textbook presentation of general relativity.

It was rather the study of a matter field, namely the electromagnetic field, that ultimately led

Einstein to conclude that the geometry of spacetime could be encoded in a Lorentzian metric

[1]. Here it will be precisely this logical path followed by Einstein, namely starting from a

study of matter fields, that allows for the identification of the pairs (M,G) that can provide

a classical spacetime structure. So let us review, using modern mathematical language, how

Einstein constructed general relativity by studying Maxwell electrodynamics.

We begin by considering a one-form field A, to be identified with the electromagnetic poten-

tial, on a finite-dimensional smooth manifold M . If the manifold M on which the field A lives is

equipped with a metric g, a priori not necessarily of Lorentzian signature, we can stipulate the

well-known Maxwell action

S[A, g] = −1

4

∫
d4x
√
|det(g)| gabgcdFacFbd (1.1)

to provide dynamics for the field A, where F = dA is defined as the field strength, and the

components of gab and Fab are chosen with respect to some coordinate system. Variation of this

action with respect to the electromagnetic degrees of freedom A yields a consistent set of partial

3



4 1. INTRODUCTION TO SPACETIME GEOMETRIES

differential equations, a priori for any signature of the metric. But if we want to do physics, we

want to predict “future” values of the field A, i.e., we want the field equations for the field A

to be predictive. More precisely, given initial values of the field A and its first derivatives on an

“adequate” hypersurface Σ0 of M , which is all we have access to measure, we want the dynamics

arising from the action above to be able to reconstruct in a unique way the values of the field A

at a “later” hypersurface Σt.

It is a well-known result from the theory of partial differential equations [2, 3] that predictivity

in this sense can only be possible if the field equations arising from the considered action are

of hyperbolic type. This already amounts to the requirement that the inverse metric g−1 in

the action, and therefore the metric g itself, be of Lorentzian signature (and for definiteness, we

choose the mainly minus signature (+−· · ·−) in the following). Thus the predictivity requirement

on the dynamics of the matter field A already restricts a metric manifold (M, g) to be Lorentzian.

The adequate hypersurfaces Σ on which initial data can be provided are then recognized as those

whose co-normals q ∈ T ∗xM at each point x of the hypersurface Σ (which are determined up to a

non-zero scale) are contained in one of the convex cones C or −C, which are defined as the set

of covectors q that are positive with respect to g−1, e.g. the cones defined by

g−1
x (q, q) > 0 , (1.2)

see figure 1.1. The physical interpretation of the covectors k on the boundary of the cones C

and −C, i.e., those satisfying g−1(k, k) = 0, is obtained by studying the geometric optical limit

of the field equations arising from the considered action. This study proceeds by considering

wave-like approximate solutions of the form eiS(x)/λ for the field equations obeyed by A, where

S is a scalar real function on M , and studying these for arbitrary small wavelength λ. These

approximate solutions then correspond to high-frequency propagating waves whenever the wave-

length is negligible in comparison to other relevant length scales. The study of quantities in this

limit is geometric optics, where we therefore can describe the electromagnetic field by light rays.

Crucially, one finds that the function S must satisfy the eikonal equation

g−1(∂S, ∂S) = 0 , (1.3)

such that the g−1-null covectors correspond to co-gradients of the wave front hypersurfaces

defined by S(x) = constant. Equation (1.3) is therefore identified as the massless dispersion

relation and the covectors satisfying this equation are called massless covectors. Notice that this

picture, beginning with the study of a matter field first, has been so far completely developed in

cotangent space, not tangent space. But we now want to find the equations for the worldline of

a free massless particle, which will yield, as a corollary, the tangent space analogue to equation

(1.3) that the tangent vector to a massless particle worldline must satisfy. Indeed, enforcing the

massless dispersion relation by considering a pure constraint Hamiltonian H(x, k) = g−1(x)(k, k),

the particle action takes the Helmholtz form

S[µ, x, k] =

∫
dτ
[
ẋaka − µ g−1(x)(k, k)

]
, (1.4)
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g−1(k, k) = 0
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C

−C

Figure 1.1. Suitable initial value hypersurfaces Σ0 for Maxwell electrodynamics
are those whose co-normals q at each point of the hypersurface are contained in
one of the convex cones C or −C (dashed parts in the figure) defined in each
cotangent space.

where µ is a function of τ . Our aim is to eliminate the massless momentum k from the above

action and thus obtain an action whose Lagrangian only depends on the configuration variables

x and the multiplier µ. In the metric case considered in this introduction, this is easy: variation

of the action with respect to ka yields

ẋa = 2µ gabkb ,

which expression we now want to invert in order to obtain k as function of ẋ. This is only

straightforward for the obtained metric massless dispersion relation g−1(k, k) = 0, since here one

can use the invertibility properties of the metric in order to obtain

ka =
1

2µ
gabẋ

b . (1.5)

However, as we will see, for the more general massless dispersion relations we are faced to consider

later in this thesis, the map between k and ẋ is not linear anymore. There, execution of this

step requires a deep understanding of the mathematics behind the association between massless

momenta with the corresponding worldline tangent vectors: real algebraic geometry. But for the

simple case we now consider, using (1.5) one finally obtains the action

S[µ, x] =

∫
dτ

1

4µ
gabẋ

aẋb

equivalent to the Helmholtz action (1.7), where variation of this action with respect to µ now

shows that the worldline tangent vectors ẋ associated with massless momenta satisfy the condition

g(ẋ, ẋ) = 0 .

In other words, tangent vectors ẋ to worldlines of massless particles associated with massless

momenta must lie in the vanishing set, or “light cone”, defined by the metric g in each tangent

space TxM . One then prescribes a time-orientation on the manifold M by choosing a vector

field T lying at each point of the manifold in one of the convex cones defined now in tangent

space as the set of all vectors v such that g(v, v) > 0. The cone of future observers is then

defined in tangent space as the convex cone containing the time-orientation vector T , see figure
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Figure 1.2. Once a time-orientation vector field T has been chosen, the cone of
future observers is defined in tangent space as the set of all vectors contained in the
connected component (dashed part in the figure) containing the time-orientation
T .

1.2. Thus if Maxwell field dynamics is to be interpretable, the Lorentzian manifold (M, g) must

be time-orientable in order to allow for an unambiguous notion of future-moving observers. This

we will see to be true as well for the more general tensorial manifolds (M,G) considered later in

this thesis.

Furthermore, with the notion of future observers at hand, positive energy covectors q are identi-

fied as those satisfying q0 = e0(q) > 0 for all future observer vectors e0. This allows to distinguish

C before −C in figure 1.1 since only C contains positive energy covectors.

Turning now to the study of massive particles, one stipulates that the momenta q of positive

energy massive particles are those contained in the convex cone C, which contains only positive

energy covectors. The so defined set of positive energy massive momenta is then foliated by the

positive number m identified with the mass of the particle in equation

g−1(q, q) = m2 , m > 0 , (1.6)

which is therefore called the massive dispersion relation. Clearly, the massless momenta on

the boundary of the cone C of positive energy massive momenta are also recognized to have

positive energy. Thus all observers agree on the sign of the energy of massive as well as massless

momenta. This energy-distinguishability property of Lorentzian spacetimes is crucial for Maxwell

electrodynamics to be quantizable, since it allows to perform positive/negative frequency splits

of fundamental solutions of Maxwell field equations in canonical quantization. This energy-

distinguishability property is automatic for Lorentzian metrics, but must be imposed explicitly

for any of the other tensorial spacetime geometries (M,G) considered later in this thesis.

With the knowledge of the massive dispersion relation we can obtain the trajectory of a free

massive particle by considering the Helmholtz action

S[λ, x, q] =

∫
dτ
[
ẋaqa − λ(g−1(x)(q, q)−m2)

]
. (1.7)
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Variation of the action with respect to qa yields

ẋa = 2λ gabqb , (1.8)

and using the invertibility properties of the metric we get (superficially seen: using similar

mathematics as before) the relation

qa =
1

2λ
gabẋ

b . (1.9)

However, as we will see, for massive dispersion relations associated with more general tensorial

spacetimes, the map between q and ẋ is not linear anymore, and solving (1.8) for the now

massive momentum q requires a mathematical theory very different from the projective algebraic

geometry we will use for massless momenta, namely convex analysis. But for the simple case we

now consider, the simple inversion (1.9) suffices and one obtains the action

S[λ, x] =

∫
dτ

[
1

4λ
gabẋ

aẋb + λm2

]
equivalent to the Helmholtz action (1.7), and further variation with respect to λ yields λ =√
g(ẋ, ẋ)/2m, so that one finally obtains the action for a massive particle

S[x] =

∫
dτ m

√
gabẋaẋb .

This action is reparametrization invariant, which allows to consider the natural parametrization

g(ẋ, ẋ) = 1 , (1.10)

which is to correspond to the time shown by any clock which travels along the particle worldline,

up to an affine reparametrization.

The final ingredient to interpret measurements is the introduction of observer frames at any

point x of spacetime, which is defined as a basis {e0, eα} of the tangent space TxM , where

α = 1, . . . ,dimM −1, such that (i) e0 is contained in the cone of observers (dashed part in figure

1.2), and (ii) the frame vectors {e0, eα} are ortho-normalized as

gx(ea, eb) = ηab , (1.11)

where ηab = diag(1,−1, . . . ,−1) is the Minkowski normal form of the Lorentzian metric g at the

point x. The space spanned by the (dimM − 1) vectors {eα} is interpreted as the purely spatial

directions seen by the observer. The introduction of observer frames allows now to interpret

covariant quantities, such as the field strength F , in terms of quantities that can be measured

by observers, such as the electric field Eα = F (e0, eα).

This is essentially the entire kinematical apparatus of general relativity. Our presentation

here deliberately focussed on its foundations in the hyperbolicity, time-orientability and energy-

distinguishability conditions on the geometry (M, g) in order to make Maxwell electrodynamics

predictive, interpretable and quantizable, and therefore to qualify as a spacetime geometry. This

was instructive in so far as we will prove in this thesis that any pair (M,G) satisfying predictivity,

time-orientability and energy-distinguishing conditions can carry predictive, interpretable and

quantizable matter field dynamics and allows for an exactly analogous construction of the entire

kinematical apparatus of general relativity.
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We have thus found properties of the geometry (M, g) that ensure that matter propagates

causally and that can be interpreted in terms of quantities measured by observers. The coeffi-

cients of matter field equations are completely defined by the values of the geometry at every

point x of spacetime. Thus the next logical question is what determines the values of the geom-

etry and, therefore, the coefficients of matter field equations? Remarkably, it has been shown

that the developed kinematical setting also determines, under rather weak physical assumptions,

also the dynamics of the geometry. Indeed, Hojman, Kuchar and Teitelboim [4], by studying the

deformation algebra of initial data hypersurfaces in Lorentzian manifolds, reduced the problem

of finding the dynamics for the Lorentzian metric to the problem of finding a minimal represen-

tation of the commutators of deformation operators of hypersurfaces in terms of geometric phase

space variables defined on a hypersurface. They found a representation which uniquely led to

Einstein’s equations of general relativity,

Rab −
1

2
gabR = 8πGTab + Λgab . (1.12)

where Rab is the Ricci tensor, R the Ricci scalar, Λ a cosmological constant and Tab the energy

momentum tensor. This then completes the picture of classical spacetime in general relativity

and we will summarize in the next section how well the theory fares when confronted with

observations.

1.2. Observations

General relativity has been very successful in making predictions at scales of the solar system1.

However, at cosmological scales, if one assumes that the source Tab in equations (1.12) of the

gravitational field (encoded in the Lorentzian metric g) can only be constituted by standard

model matter, observations do not correspond to the predictions of general relativity. The main

first two issues are only solved by stipulating vast amount of so-called dark matter and dark

energy in addition to the standard model matter.

More precisely, in the simplest possible but realistic cosmology model, one assumes that the four

dimensional spacetime manifold M is foliated by spacelike slices such that each three dimensional

slice is spatially homogeneous and isotropic. The metric tensor g is therefore encoded in an FRW

spacetime line element

ds2 = dt2 − a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
(1.13)

with respect to coordinates {t, r, θ, φ}, where a(t) is a dimensionless scale factor, κ encodes a

constant curvature {−1, 0, 1} of the spatial slices and dΩ2 = dθ2 + sin2 θdφ2 . On the other

hand, the distribution of matter and energy in spacetime is modelled, at cosmological scales,

as a perfect fluid with density and pressure parameters ρ and p, respectively; for instance, for

non-interacting matter or dust, one takes pM = 0. A universe in which most of the energy

density is in the form of dust is called matter-dominated. Radiation is modelled by the equation

of state pR = 1/3ρR, and a universe in which most of the energy density is in the form of

1In fact, there are still some observations that must be explained within the solar system, see [5].
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radiation is called radiation-dominated. Finally, the contribution of a cosmological constant Λ

to the energy contents in the universe can be modelled by an equation of state pΛ = −ρΛ. A

universe in which most of the energy density is in the form of a cosmological constant is called

energy-dominated. In particular, one finds that in our late universe, the contribution of radiation

to the energy contents in the universe is negligible in comparison with the contribution of matter

and a cosmological constant and, therefore, will not be considered in this short discussion, see

[6, 7] for further details.

Thus, at late times, only dust and a cosmological constant as matter source for the gravi-

tational field may be considered, so that from Einstein’s equations one obtains the Friedmann

equations (
ȧ

a

)2

=
8πG

3
(ρM + ρΛ)− κ

a2
and

ä

a
= −4πG

3
(ρM − 2ρΛ) . (1.14)

It is then convinient to define H = ȧ/a as the Hubble parameter whose present value H0 '
72 (km/s)/MpC is known as the Hubble constant, such that the first of the above equations can

be written as

Ωκ = 1− ΩM − ΩΛ , (1.15)

where

ΩM =
8πG

3H2
ρM , ΩΛ =

8πG

3H2
ρΛ , Ωκ =

κ

a2H2
.

One then has the following observational results about the late universe

• Experiments have shown that the expansion of the universe accelerates [8, 9]; this is

meant in the sense that the scale factor a satisfies ä > 0. From the second of the

Friedmann equations in (1.14), one sees that this can only be possible if there is a

sufficient contribution of ρΛ to the energy contents of the universe in comparisson to

the matter contribution ρM .

• Detailed observations of the power spectrum of fluctuations in the cosmic microwave

background [6] set an upper limit Ωκ < |0.05|, which means that the universe is spatially

almost flat and that

ΩM + ΩΛ = 1± 0.05 ,

so that the model κ = 0 seems distinguished.

• The matter density ρM itself is inferred, for instance, by investigating the gravitational

effects of cluster matter. For example, one investigates the necessary matter contents

in order to obtain the correct rotation curves of spiral galaxies [6, 10]. In any case, the

result is

ΩM ≈ 0.3 , and thus ΩΛ ≈ 0.7 .

Hence, approximately, only 30% of the energy contents of the universe is due to matter

and the other 70% is of cosmological constant (dark energy) origin.
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Unfortunately for the idea of a universe governed by general relativity and filled with standard

model matter,

• consistency with the cosmic microwave background spectrum and agreement with pre-

dictions of the abundance of light elements for big bang nucleosynthesis imply that the

baryonic matter contents of the universe (ΩM )baryonic is a mere

(ΩM )baryonic = 0.04± 0.02 ,

which represents, approximately, only the 15 % of matter contents in the universe

because ΩM ≈ 0.3, and so only 4 % of the matter contribution to the energy of the

universe can be provided by standard model matter,

• a naive estimate of the vacuum energy density ρΛ, as it would originate from the vacuum

of matter fields in the standard model of particle physics results in a number 120 orders

of magnitude larger than the measured one.

Thus, if one insists on the validity of general relativity and the standard model of particle

physics, one is forced to conclude that (i) approximately 85 % of the matter contents in the

universe must be of non-baryonic (i.e, dark matter) origin, and (ii) that the energy contents in

the universe ρΛ must be of other (i.e. dark energy) origin than the vacuum energy of matter

fields in the standard model of particle physics. The existence of dark matter and dark energy is

the overwhelming majority opinion on the resolution of the above described discrepancy between

observations and gravity theory sourced by only standard model matter. Indeed, this view is

a logical possibility. The lack of knowledge concerning the precise nature of dark matter and

dark energy, however, justifies the somewhat more sober view that the amounts of 75 % of dark

energy and 21% of dark matter are a pure parametrization of our ignorance of what precisely

is going on. The only thing we know for sure is that there is something we do not understand

about matter, gravity, or both.

But then we may face the daunting possibility to abandon general relativity and/or the

standard model of particle physics in its present form. This view is now greatly supported by

a recent experimental result, namely the observation of neutrino propagation at speeds faster

than that of light: the OPERA collaboration [11] measured, at a reported 6σ confidence level,

that muon neutrinos with mean energy of 17.5 GeV travel 730 km from CERN to the OPERA

detector in the Gran Sasso laboratory arriving 60 nanoseconds less than expected. The conclusion

is that these neutrinos exceed the velocity of light by 25 parts in a million. However, as seen

in the previous section and shown in [12], physical particles cannot propagate faster than light

on Lorentzian manifolds. This observation, if confirmed, shows that the very foundations of

Einstein’s theory, a Lorentzian metric as the spacetime geometry, is contradicted by experiment.
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1.3. New tensorial geometries

General relativity and the standard model of particle physics are both built on the assumption

that spacetime is a pair (M, g) of a finite-dimensional smooth manifold M and a Lorentzian

metric g. However, predictions, as shortly reviewed in the previous section, are not effortless

in agreement with observations. In particular, the reported faster-than-light propagation of

neutrinos is irreconcilable with the idea that spacetime is a Lorentzian manifold. But this

inevitably raises the hard question

What other tensor fields can serve as a spacetime geometry?

which we aim at answering rather comprehensively in this thesis. More precisely, we aim at

identifying the pairs (M,G) of a finite-dimensional smooth manifold M and an a priori arbitrary

smooth tensor field G that can provide a classical spacetime geometry, following the same logical

path as for the construction of general relativity presented in section 1.1. We will thus select the

pairs (M,G) that can provide a classical spacetime geometry by probing matter fields2 on (M,G)

(precisely as Lorentzian manifolds were selected from the set of metric manifolds by studying

the electromagnetic field) and requiring their dynamics to be

I. Predictive ( = hyperbolicity of the geometry). Predicting the “future” values of the

matter fields propagating in spacetime is all what classical physics is about. If a funda-

mental theory of spacetime lacks this predictive power, it must be discarded as a viable

theory. We must therefore require that in order to provide a classical spacetime geom-

etry, the pair (M,G) must be such that the dynamics for the matter fields propagating

in and probing the geometry of (M,G) must be predictive.

II. Interpretable ( = time-orientability of the geometry). There is no future to predict if

we cannot say what future is. Thus, in order to provide a classical spacetime geometry,

we require that the pair (M,G) must allow for the choice of a time-orientation. We will

see that this condition also allows to provide an unambiguous notion of observers and,

therefore, to interpret spacetime quantities in terms of those measured in any observer’s

frame.

III. Quantizable ( = energy-distinguishability of the geometry). In order to quantize a clas-

sical theory, it is crucial to unambiguously distinguish between the positive and the

negative energy solutions of matter field equations. Thus, in order to provide a classical

spacetime geometry that can carry quantizable fields, the pair (M,G) must satisfy the

additional condition of allowing a notion of positive energy of particles on which all

observers agree. This condition will play a crucial classical rôle as it was the case for

metric geometry in section 1.1.

2Physically, this is all we can do; all conclusions about the structure of spacetime are obtained only by probing
matter on it.
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All kinematical constructions known in general relativity will be seen to have an analogue on

spacetime backgrounds (M,G) satisfying the above three fundamental conditions. Hence, any

pair (M,G) satisfying these conditions indeed deserves to be called a spacetime geometry.

The next three technical chapters are devoted to translate the stated predictivity, inter-

pretability and quantizability conditions on the dynamics of matter fields probing the geometry

of (M,G) into precise mathematical requirements on the tensor field G. In particular, in chapter

2, the predictivity condition will be mathematically translated into the requirement that the

differential equations governing the dynamics of matter fields must be of hyperbolic type. This

condition alone will identify a hyperbolic polynomial P in each cotangent space as the tensorial

structure encoding the geometry seen by massless and massive point particles in each cotangent

space. In chapter 3, the interpretability conditon on matter field dynamics, which is equivalent

to the condition that the geometry of (M,G) be time-orientable, will be translated into the

condition that the identified hyperbolic polynomial P in each cotangent space must correspond

to a hyperbolic polynomial P#, the so-called dual polynomial of P , in each tangent space. The

polynomial P# will be shown to provide the geometry seen by massless particles in each tangent

space. A choice of a time-orientation and an unambiguous notion of observers will then be pro-

vided in terms of the tangent bundle function P#. In chapter 4, the quantizability condition of

matter field dynamics, which translates into the the requirement that the geometry (M,G) be

energy-distinguishing, will be formulated as the condition that all observers, defined in terms of

the cotangent bundle function P#, must agree on the sign of the energy of massless particles.

This will also imply that they agree on the sign of the energy of massive particles and allow to

develop a complete theory of massive particles. A generically non-polynomial tangent bundle

function P ∗ will then be shown to encode the geometry seen by massive particles in each tangent

space.

Thus, following the predictivity, interpretability and quantizability conditions on matter field

dynamics, we will arrive at the main result of this work (as presented in [13]), namely that

A pair (M,G) of a finite-dimensional smooth manifold M and a tensor field G can present a

classical spacetime geometry for given matter dynamics coupled to G only if the principal

polynomial P of the matter dynamics is a hyperbolic, time-orientable and energy-distinguishing

homogeneous polynomial in each cotangent fibre of M .

The explicit reference to matter needed here to qualify a geometry as a valid spacetime structure

is to be seen not as a weakness, but rather as an insight; Lorentzian manifolds are a good

spacetime structure for Maxwell electrodynamics but fail to be so if superluminal neutrinos are

added.

Based on this result, the remaining technical chapters (chapters 5 to 9) will be devoted to

investigate generic classical and quantum properties that can be inferred for any spacetime ge-

ometry (M,G). In particular, in chapter 5, we will introduce observer frames and construct

transformations connecting observers. Using the introduced observer frames, we will then be
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able to present the temporal-spatial split of physical dispersion relations, and show that some

proposals do not qualify as viable modified dispersion relations. We will finally show that refined

spacetime geometries (M,G) not only generically admit superluminal propagation of massive

matter but also that infraluminal motion is what particles always tend to, since they can radiate

off Cherenkov radiation in vacuo, but only until they reach infraluminal speed. In chapter 6,

we will show how the developed theory works for concrete proposals of spacetime geometries.

First, we will show how purely based on the general theory developed in chapters 2 to 5, all

known kinematical constructions on Lorentzian manifolds are recovered. Apart from being a

consistency check, the study of Lorentzian manifolds in the framework of our general theory of

spacetime geometries allows us to clearly recognize the different rôles that the metric plays in

general relativity. We will then study the more complicated case of area metric manifolds, which

illustrates how the predictivity, interpretability and quantizability conditions on matter field dy-

namics restrict a concrete non-metric geometry. We then proceed with the study of quantum

matter, in particular, chapter 7 will be concerned with the quantization of the electromagnetic

field on flat area metric backgrounds. The aim of this chapter is two-fold; to show how the con-

ditions imposed on the geometry are important even at the quantum level in order to guarantee

a positive definite Hamiltonian, and to provide an example of how quantization proceeds for a

field satisfying a modified dispersion relation. In chapter 8, we study possible sources for the

electromagnetic field on flat area metric backgrounds. First, we find a covariant propagator for

Maxwell’s equations on area metric spacetimes, and then study point charges coupled to the

electromagnetic field. Thus we can perform a first quantization of free massive particles, and see

that the particle-antiparticle interpretation holds on generic spacetime geometries. Finally, we

study modifications of the Dirac equation and provide an explicit example of a modified Dirac

equation for the case of a bimetric spacetime. Finally, the last technical chapter (chapter 9) will

be devoted to review, how using the theory to be presented in this work, it was achieved [14, 15]

to reduce the problem of finding the gravitational dynamics of any spacetime geometry (G,M)

to a problem of representation theory, and finally to the problem of solving a homogeneous linear

system of partial differential equations.





CHAPTER 2

Condition I: Hyperbolicity

In this first technical chapter, we study tensorial matter field equations on spacetime geome-

tries defined in terms of a (a priori arbitrary) tensor field. The requirement that the dynamics of

matter fields coupled to the geometry be predictive implies that a particular polynomial constructed

in cotangent space from the coefficients of the field equations (and thus the underlying geometric

tensor field) must be hyperbolic. Important first results for the cotangent space geometry of a

spacetime manifold are then collected.

2.1. Initial value problem and hyperbolicity

As explained in the introduction, we wish to investigate which pairs (M,G) of a finite-

dimensional smooth manifold M and a smooth tensor field G of arbitrary valence can provide a

spacetime geometry. In this and the following two chapters we will find necessary restrictions on

G for (M,G) to provide a consistent classical spacetime structure in the sense that the spacetime

(M,G) can carry predictive, interpretable and quantizable matter field dynamics. Along the

way, we will see that for any such spacetime (M,G), the full kinematical apparatus known from

general relativity can be constructed.

This chapter, in particular, is concerned with the first condition, predictivity, which math-

ematically refers to the requirement of the well-posedness of the initial value problem for the

dynamics of matter fields propagating on the geometric background (M,G). So we consider a

field Φ (the “matter”) taking values in some tensor representation space V . The matter field Φ

probes the geometry of the background (M,G) by coupling to the tensor G (the “geometry”)

via the action

S[Φ, G] =

∫
ddimMxL(Φ, ∂Φ, ∂∂Φ, . . . , G, ∂G, ∂∂G, . . . ) ,

where the Lagrangian density L may depend on the tensor field G, on the field Φ and on

finitely many partial derivatives of both. Notice that the matter field dynamics arising from the

variation of the action S[Φ, G] with respect to the field variables ΦA (with A = 1, . . . ,dimV ) may

be restricted from start to those giving rise to linear field equations, since only these can serve

as test matter probing the geometry1. Moreover, the linearity of the matter field equations also

ensures that the superposition principle, which is crucial to perform a quantization of free matter

fields, is satisfied. More precisely, the linear field equations obtained by variation of the action

1This is the case because considering non-linear field equations, in most cases one cannot disentangle the
properties of the underlying geometry from the properties of the matter field.

15
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can be assumed to take the general form of the s-th order linear partial differential equations,[
s∑

n=0

Q[G]i1···inMN (x) ∂i1 · · · ∂in

]
ΦN (x) = 0 , (2.1)

where small spacetime latin indices range from 0 to dimM − 1 and the matrix coefficients Q at

all orders depend only on the tensor field G and its partial derivatives, but not on the value of

the fields ΦN ; note that this is really only true for genuinely linear field equations, and does not

even hold for the linearization of fundamentally non-linear dynamics. The fact that the above

field equation is derived by variation with respect to the tensor field Φ from a scalar action

implies that the entire equation transforms as a tensor. The mathematically weakest form of the

predictivity requirement is then that the field equations have a well-posed initial value problem.

Definition. We say that the Cauchy problem (or initial value problem) for the system of field

equations (2.1) is well-posed if

(1) for initial data on suitable initial value surfaces there exist a unique solution to the

system of field equations, and

(2) the solutions depend continuously on the initial data.

The key mathematical structure needed to formulate a workable criterion for well-posedness

of linear field equations is provided in the following

Definition. The principal symbol [16, 17] of the differential field equations (2.1) is the cotangent

bundle function

P : T ∗M → R , (x, q) 7→ P (x, q)

defined by

P (x, q) = ρ det
M,N

[
Qi1···isMN (x) qi1 · · · qis

]
. (2.2)

This expression is defined solely in terms of the leading order coefficients Qi1···isMN (x) since of all

coefficients Q in (2.1), only these are certain to transform like a tensor. Thus the determinant

is a tensor density whose weight depends on the precise form of the field equations as well as

on the geometry, and is to be countered by the weight ρ, which must be constructed from the

geometry G such that the principal symbol indeed becomes a function, not a function density, on

the cotangent bundle.

An important remark has to be made at this point. When gauge symmetries are present

in the action, it typically happens that the principal symbol P (x, q) is identically zero. In this

case, one either has to first fix the gauge in the action and may only then compute the principal

symbol of the corresponding gauge fixed field equations, or one needs to resort to some other

method to eliminate gauge ambiguities, such as re-writing the field equations in terms of field

strengths and constructing P only from the evolution equations [18].

Provided the function P has been appropriately constructed in some way, we can now state

the main theorem of this section, which already provides the first condition on the geometry.
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Theorem 2.1.1. (theorem 2.1 and 3.1 of [16], and theorem 1.2.1 of [17]) Assume that the Cauchy

problem for the field equations (2.1) is well-posed in a region of spacetime. Then the principal

symbol P defines a homogeneous hyperbolic polynomial Px at every point x of the considered

region. More precisely,

Px : T ∗xM → R , q 7→ Px(q) = P (x, q)

must be a homogeneous hyperbolic polynomial. Moreover, suitable initial value surfaces must

have co-normals hyperbolic with respect to Px.

The suitable initial value surfaces determined by P may justifiedly be called P–spacelike hyper-

surfaces.

Since the notion of a hyperbolic polynomial will play a crucial rôle throughout our investi-

gation, we present the relevant definition and main properties, in a way congenial to our further

developments, in the following section.

2.2. Hyperbolic polynomials

As we have just seen, in order to provide a predictive geometric background, the pair (M,G)

must be such that the cotangent bundle function P (constructed in terms of the geometry G

from the matter field equations) must provide a homogeneous hyperbolic polynomial Px in each

cotangent space T ∗xM .

Homogeneity simply means that Px(λq) = λdegPPx(q) for all q ∈ T ∗xM and λ ∈ R, and it is

convenient to introduce the vanishing set

V (Px) = {k ∈ T ∗xM |Px(k) = 0} , (2.3)

of a homogeneous polynomial Px, which has the structure of a cone2 exactly because of the

homogeneity of Px. We further have the

Definition. A homogeneous polynomial Px is called hyperbolic with respect to some covector h

if Px(h) 6= 0 and for every covector q, any λ solving

Px(q + λh) = 0 (2.4)

is real.

For any polynomial P that is hyperbolic with respect to one covector h one can always arrange

for P (h) > 0 by choosing the appropriate sign for the density ρ in equation (2.2), and we agree

to make precisely this choice in the following3.

Example. (Hyperbolicity of a Lorentzian polynomial) Consider an inverse Lorentzian met-

ric g−1 : T ∗xM × T ∗xM → R and basis covectors {εa} for T ∗xM such that gab = g(εa, εb) =

diag(1,−1, · · · ,−1). Then the Lorentzian polynomial Px(q) = g−1
x (q, q) is hyperbolic with re-

spect to h = (1, 0, · · · , 0) represented in the same basis {εa}. This can be seen by taking an arbi-

trary covector q = (q0, · · · , qdimM−1) because then the discriminant of the second order equation

2A subset C of a real vector space is called a cone if λv ∈ C for any v ∈ C with λ real and positive.
3This corresponds, in the familiar metric case, to a choice of mainly minus signature.
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cotangent space cotangent space

CC

Figure 2.1. Hyperbolicity cones for two prototypical polynomials. On the left,
the familiar second degree Lorentzian cone; on the right, a fourth degree cone
defined, for simplicity, by a product of two Lorentzian metrics.

in λ, gx(q + λh, q + λh) = 0, is simply given by the positive quantity (q0)2 + · · · + (qdimM−1)2.

This implies that the λ-roots are always real, as required from the definition of hyperbolicity.

The definition of a homogeneous hyperbolic polynomial is easy to understand in geometric

terms. It simply means that there is at least one covector h such that every affine line in

cotangent space in the direction of h intersects the cone V (Px) defined by Px in precisely degP

points, see figure 2.1, counting algebraic rather than geometric multiplicities. Any such covector

h identifying Px as hyperbolic is itself called a hyperbolic covector with respect to P at the point

x.

The various connected sets of hyperbolic covectors in the same cotangent space, as for instance

the upper (shaded) cones in figure 2.1, are called the hyperbolicity cones of P at x. More precisely,

Definition. Let h be a covector hyperbolic with respect to Px. Then the hyperbolicity cone

C(Px, h) containing h is constituted by all covectors q with the property that all λ satisfying

Px(q − λh) = 0

are positive, that is, C(Px, h) = {q ∈ T ∗xM |Px(q − λh) = 0 has only positive roots λ}.

From this definition, it follows immediately that C(Px, h) is indeed a cone. The remarkable

properties of hyperbolicity cones, which underlie all further constructions, have been mainly

elucidated by G̊arding [19] a long time ago. Recalling that a subset C ⊂ T ∗xM is called convex

if (1− λ)u+ λv ∈ C for all u, v ∈ C and λ ∈ [0, 1], G̊arding proved the following theorem.

Theorem 2.2.1. (G̊arding [19] and theorem 3.1 of [20]) The hyperbolicity cone C(Px, h) is open

and convex, the hyperbolic polynomial Px is strictly non-zero on C(Px, h) and is equal to zero

on the boundary of C(Px, h). Furthermore, C(Px,−h) = −C(Px, h) and Px is hyperbolic with

respect to any h′ ∈ C(Px, h).
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It is often useful to take a more global point of view and consider a smooth distribution C

of hyperbolicity cones Cx over all spacetime points x, which one simply may think of as the

cone of all smooth covector fields h for which hx ∈ Cx. More precisely, let h be a covector field

hyperbolic with respect to P , that is h defines a hyperbolic covector at every spacetime point.

Then the hyperbolicity cone C(P, h) containing h is constituted by all covector fields q with the

property that all functions λ on M satisfying

P (x, q(x)− λ(x)h(x)) = 0 (2.5)

are positive everywhere on M . The cone C(P, h) induces a cone Cx(P, h) in each cotangent

space T ∗xM , consisting of the values q(x) of all q ∈ C(P, h) evaluated at x, which is called the

hyperbolicity cone of P with respect to h at x. Clearly, Cx(P, h) only depends on the value of

h at x, and thus one may think of C(P, h) simply as the said distribution of the Cx(P, h) over

all x ∈ M . The somewhat implicit definition of hyperbolicity cones, both the local one in (2.4)

and the global one in (2.5), can be cast into the explicit form of degP polynomial inequalities,

as follows from the following

Theorem 2.2.2. (Theorem 5.3 of [20]) Let P be hyperbolic with respect to h and P (h) > 0. Then

the hyperbolicity cone is described by the degP inequalities

detHi(v, h) > 0 for all i = 1, . . . ,degP , (2.6)

where the matrices H1, H2, . . . ,HdegP are constructed as

Hi(v, h) =



h1 h3 h5 . . . h2i−1

h0 h2 h4 . . . h2i−2

0 h1 h3 . . . h2i−3

0 h0 h2 . . . h2i−4
...

...
...

...
...

0 0 0 . . . hi


i×i

where hj is set to 0 for j > i (2.7)

from the coefficients of the expansion

P (x, v + λh) = h0(x, v, h)λdegP + h1(x, v, h)λdegP−1 + · · ·+ hdegP (x, v, h) . (2.8)

There is a rather elaborate theory of semi-algebraic sets [21, 22] defined by polynomial inequali-

ties, of which the hyperbolicity cones are, according to the above theorem, a particular instance,

and we will have the opportunity to use some results from this theory in the proof of lemmas in

chapter 3.

The calculation of hyperbolicity cones is significantly simplified if the polynomial P is fac-

torizable as

Px = P a11x P
a2
2x · · ·P

af
f x .

In this case, P is hyperbolic with respect to h if and only if each of its individual factors is hyper-

bolic with respect to h and the corresponding hyperbolicity cones have non-empty intersection

with each other. For such reducible Px, the determination of the hyperbolicity cone with respect

to some hyperbolic covector h is reduced to the determination of the hyperbolicity cones of the

individual factors, since

Cx(Px, hx) = Cx(P1x, hx) ∩ · · · ∩ Cx(Pf x, hx) . (2.9)
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Thus it is not a coincidence that the hyperbolicity cone indicated in the right half of figure 2.1 is

the intersection of the hyperbolicity cones of the corresponding two Lorentzian cones. Another

mathematical concept which will be of fundamental relevance in chapter 4 is provided in the

following

Definition. A homogeneous hyperbolic polynomial Px is called complete if the lineality space

L(Px) = {q ∈ T ∗xM | for all v ∈ T ∗xM and λ ∈ R : Px(v + λq) = Px(v)} (2.10)

only contains the zero covector.

In other words, in order to be complete, P must depend on all covector components in any chosen

basis. Geometrically, completeness can be read off from the closure of the hyperbolicity cones

since it is equivalent [23] to

closure(C(Px, h)) ∩ closure(C(Px,−h)) = {0} . (2.11)

However, completeness does not need to be postulated here since it will follow in conjunction

with the energy-distinguishing condition we have good reason to impose in chapter 4. We finish

this section by stating the following theorem for complete hyperbolic polynomials, which will

play a significant rôle in chapter 4.

Theorem 2.2.3. Defining the tensor

Px(q1, . . . , qdegP ) =
1

(degP )!

degP∏
J=1

dimT ∗xM∑
i=1

(qJ)i
∂

∂qi

Px(q) , (2.12)

as the totally symmetric polarization of the polynomial P , it follows that if Px is complete,

(1) the reverse triangle inequality

P 1/degP
x (q1 + q2) ≥ P 1/ degP

x (q1) + P 1/ degP
x (q2) (2.13)

is satisfied for all q1 and q2 in the same hyperbolicity cone Cx and

(2) a reverse Cauchy-Schwarz inequality

Px(q1, . . . , qdegP ) ≥ Px(q1)1/ degP · · ·Px(qdegP )1/degP (2.14)

is satisfied for all q1, . . . , qdegP in the same hyperbolicity cone Cx, where equality holds

if and only if all arguments qi are proportional to each other.

Thus we have learnt in this chapter that for a geometry (M,G) to provide a feasible back-

ground for predictive matter field equations, the principal polynomial constructed from the latter

in terms of the former must be a homogeneous hyperbolic polynomial Px in each cotangent space.

This is clearly a property that cannot be weakened. This is a rather well-known result from the

theory of partial differential equations, which has previously been recognized as a condition for

matter field dynamics [24]. But in the course of the next two chapters, we will greatly extend

this result in order to have a geometry that does not only allow for predictivity of matter field

equations, but also for their interpretability from the point of view of observers.



CHAPTER 3

Condition II: Time-orientability

In this chapter, we first show that the principal polynomial P associated with predictive matter

field equations determines the dispersion relation for massless point particles. Based on that

insight, we develop the appropriate duality theory that associates velocity vectors with massless

particle momenta. The key result of this chapter, from a practical point of view, is then the

identification of the hyperbolicity of a dual polynomial P# to the principal polynomial P as a

requirement for the time-orientability of (M,G) and, therefore, for the interpretability condition

to hold.

3.1. The short wave approximation and the massless dispersion relation

The central result of the previous chapter was that the principal symbol of the field equations

governing the dynamics of matter fields must be a homogeneous hyperbolic polynomial Px in

each cotangent space T ∗xM in order to make the theory predictive. Here, we will see that the

principal symbol plays a second important rôle; it provides the massless dispersion relation which

arises in the geometric optical limit of equations (2.1) as the solvability condition

P (x, q) = 0 . (3.1)

This is seen by considering wave-like matter solutions of equation (2.1) taking the form of the

formal series

ΦN (x, λ) = ei
S(x)
λ

∞∑
j=0

φNj (x)λj (3.2)

and then producing an approximate solution by considering the case of very small wavelength

λ. In the above expansion, φNj (x) is a tuple of functions for each j, and the quantity S/λ in the

phase of the considered wave-like solution is required to be real-valued. The function S(x) is

known as the eikonal function or the wave front surface. Physically, considering very small λ can

be thought of as the limit of very short wave lengths, or of waves propagating with extremely

high frequencies. Then the ansatz (3.2) is known as the short wave approximation or the limit

of geometric optics [3, 25, 26, 27].

Substituting the formal series (3.2) into the field equations (2.1), one finds

ei
S(x)
λ λ−s

QMN (x)i1···is∂i1S(x) · · · ∂isS(x)φN0 (x) +

∞∑
j=1

vMj(x)λj

 = 0 , (3.3)

where each of the vMj(x) terms depends on some of the matrix coefficients Q of the differential

equation (2.1), on the coefficients φNj (x) of the expansion (3.2) and on the eikonal function S

and its derivatives of lower than the highest order s. For ΦN (x) to be a solution after any

21
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truncation of the series (3.3), the latter has to vanish order by order in λ. Clearly, the first

term ei
S(x)
λ QMN (x)i1···is∂i1S(x) · · · ∂isS(x)φN0 (x), corresponding to the power λ−s, vanishes with

non-trivial φN0 only if the eikonal function S satisfies the differential equation

P (x, dS)

ρ
= det

(
Q[G]i1···is(x)∂i1S(x) · · · ∂isS(x)

)
= 0 , (3.4)

where P (x, dS) is recognized to be the principal symbol of equation (2.1) evaluated at the point

(x, dS) in cotangent space. Equation (3.4) is known as the eikonal equation and represents the

solvability condition for the first term in (3.3). The relevance of this equation and therefore of

the geometric optical limit, beyond the rôle it plays for us here, is that having this lower order

approximate solution, one can generate higher order approximate solutions converging to the

actual solution.

In case P is a reducible polynomial in each fibre, i.e., a product

P (x, q) = P1(x, q)a1 · · ·Pf (x, q)af

of irreducible1 factors P1, . . . , Pf with positive integer exponents a1, . . . , af , we agree to take as

the cotangent bundle function P the reduced polynomial

P (x, q) = P1(x, q) · · ·Pf (x, q). (3.5)

In other words, one must remove repeated factors in the original polynomial. Thus no information

is lost but degeneracies are removed, see the comment further below. We will have more to say

about the relation between properties of a reduced polynomial and those of its individual factors.

Definition. The set Nx of massless momenta at a spacetime point x is defined as

Nx = {k ∈ T ∗xM |P (x, k) = 0 with P reduced } , (3.6)

which due to the homogeneity of Px constitutes a cone, i.e., every positive real multiple of a

massless momentum is again a massless momentum. For technical reasons, we also define the

subcone N smooth
x of massless momenta

N smooth
x = {k ∈ Nx |DP (x, k) 6= 0} , (3.7)

where DP denotes the derivative of P with respect to the cotangent fibre.

So the cotangent bundle function P determines the (smooth) massless momentum cone.

Clearly, if the principal polynomial were not reduced and one used it to define the set of massless

momenta, the obtained set of massless momenta would coincide with the vanishing set V (Px)

defined in equation (2.3) at a spacetime point x, but not with the set N smooth
x of smooth massless

momenta.

We finish this section by proving two key properties of hyperbolic polynomials, which we will

use repeatedly throughout this work.

1A non-constant real polynomial is irreducible if it cannot be written as a product of two non-constant
polynomials. There is no known algorithm to decide the irreducibility of real polynomials in several real variables;
a case by case analysis is required.
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First Lemma. For a reduced homogeneous hyperbolic polynomial Px, the set N smooth
x is a dense

subset of the cone Nx of massless momenta.

Proof. Since the set of massless momenta Nx is generated from a single polynomial P , it fol-

lows from Definition 3.3.4 of [22] that the set of singular points is Sing(N) = N \ N smooth.

But then dim Sing(N) < dimN = dimM − 1, where the inequality is Proposition 3.3.14

of [22] and the equality follows from the hyperbolicity of P [28]. Thus we know that the

singular set is at most of dimension dimM − 2. Further, we know from the first remark

in 3.4.7 of [21] that Sing(N), being a real algebraic set, can be expressed as a finite union

of analytic semialgebraic manifolds Si and that every such manifold has a finite number of

connected components. From the propositions 2.8.5 and 2.8.14 of [22] we thus obtain that

dim Sing(N) = max(dim(Si)) = max(d(Si)), where d(Si) is the topological dimension of the

semialgebraic submanifold Si ⊂ T ∗xM . Since dim Sing(N) ≤ dimM − 2 we conclude that

Sing(N) consists of only finitely many submanifolds of Rn of topological dimension less or equal

to dimM − 2. Thus its complement N smooth = N \ Sing(N) is dense in N .

Second Lemma. If Px is a reduced homogeneous hyperbolic polynomial with hyperbolicity cone

Cx at some point x ∈ M , then for all covectors s ∈ T ∗xM\closure(Cx) there exists a massless

covector r on the boundary ∂Cx of the hyperbolicity cone such that s(DPx(r)) < 0.

Proof. It is clear that if y ∈ Cx and s 6∈ closure(Cx), the line y + λs intersects the boundary

∂Cx at some r0 = y + λ0s for some positive λ0. Thus Px(r0) = 0 and, since Px(Cx) > 0, we

have Px(r0 − εs) > 0 for sufficiently small positive ε. Now we must distinguish two cases: First

assume that Px(r0 + εs) < 0, from which it follows that d
dεPx(r0 + εs)|ε=0 = s(DPx(r0)) < 0,

which proves the lemma with r := r0; Second, assume that Px(r0 + εs) > 0 which is equivalent

to d
dεPx(r0 + εs)|ε=0 = s(DPx(r0)) = 0 which in turn holds if and only if DPx(r0) = 0 (to see the

latter equivalence assume that, to the contrary, s(DPx(r0)) = 0 and DPx(r0) 6= 0; this implies

that s must be tangential to ∂Cx at r0, but since y lies in Cx and Cx is a convex cone y + λs

could then not intersect ∂Cx at r0, which we however assumed). So to prove the lemma in this

second case, we need to construct another r′0 ∈ ∂Cx that satisfies the condition s(DPx(r′0)) < 0.

Now since the First Lemma guarantees that the set N smooth
x , on which DPx is non-zero, lies

dense in Nx, we can find in every open neighbourhood U around r0 a vector r
′
0 ∈ ∂Cx such that

DPx(r
′
0) 6= 0. We define z := r

′
0 − r0 and y′ := y + z. Since Cx is an open cone, y

′
lies in Cx

if we choose the neighbourhood small enough, and the line y′ + λs intersects ∂Cx at r
′
0. Finally

since r
′
0 ∈ ∂Cx we know that Px(r

′
0) = 0 and Px(r

′
0− εs) > 0. We conclude that s(DPx(r

′
0)) < 0.

This proves the second lemma with r := r
′
0.

3.2. Solution to the eikonal equation

In the previous section, we have seen that the eikonal equation determines the massless

dispersion relation and that its solution guarantees the construction of an approximate solution
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of equation (2.1) to any desired order. However, it still remains to guarantee the existence of a

solution to the eikonal equation. Based on [29], we will see in this section that for our case, with

P hyperbolic, a solution can always be constructed. In fact, the problem is reduced to find a

smooth family of solutions to the system of Hamilton’s equations

ẋa =
∂Px(q)

∂qa
, q̇a = −∂Px(q)

∂xa
, (3.8)

with a = 0, . . . ,dimM − 1 and initial data (x(0), q(0) = (∂S/∂x)(0)) under the condition q(0) ∈
N smooth
x(0) .

A solution γ(τ) = (x(τ), q(τ)) of these equations describes a curve in the cotangent bundle

T ∗M which is called a bicharacteristic. The projection of γ(τ) onto the base manifold M is then

called the ray trajectory associated with that bicharacteristic.

To see that it is indeed sufficient to find a solution to the equations (3.8), let us assume that

S(x) is a solution of the eikonal equation in an open region of M , and γ(τ) a bicharacteristic

passing through the point γ0 = (x(0), (∂S/∂x)(0)). Since the Hamiltonian H(x, q) = Px(q) does

not depend explicitly on τ , and by assumption Px(0)(q(0)) = 0, it follows that Px(τ)(q(τ)) = 0

for all values of the parameter τ . Moreover, we have

qa =
∂S

∂xa

on the ray x(τ), so that

dS

dτ
= ẋa

∂S

∂xa
= qaẋ

a .

If the value S(x(0)) is given, by integrating the above equation we obtain

S(x(τ)) = S(x(0)) +

∫ τ

τ=0
qa(τ

′)dxa(τ ′) ,

which expression provides the value of the eikonal function S along the ray.

Keeping this in mind, we now consider a (dimM − 1)–dimensional manifold Σ embedded in

M by the map

Σ ↪→M , y → x(y) ,

where yα = (y1, . . . , ydimM−1) are local coordinates for Σ. We also provide the values of the

eikonal function S and its gradients

S(x(y)) = S0(y) and
∂S

∂x
(x(y)) = q0(y) (3.9)

along the initial manifold Σ. The conditions

P (x(y), q0(y)) = 0 and (dS)0(y) = q0(y) dx(y) (3.10)

must clearly be satisfied. A crucial assumption is now that q0(y) ∈ N smooth
x (y) for all x(y), which

can be made because we know from the first lemma in the preceding section that N smooth
x (y) is

a dense set.

The initial data (3.9) induce the y−family of initial data

x0 = x(τ = 0) = x(y) , q0 = q(τ = 0) = q0(y) (3.11)
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for equations (3.8). Hence, by solving these equations, one obtains the family of bicharacteristics

γ(τ, y) = (x(τ, y), q(τ, y)), and by integrating the second equation in (3.10) one finds

S(τ, y) = S0(y) +

∫ τ

τ=0
qa(τ

′, y)dxa(τ ′, y) . (3.12)

Finally, we assume that Σ is given such that the vectors {ẋ(y), ∂x/∂yα} provide a basis of

Tx(y)M at all points of Σ (notice that this could never be the case if we did not consider q0(y) ∈
N smooth
x (y)). Because only if the last condition is met, are the functions x(τ, y) locally invertible

and we obtain τ = τ(x) and y = y(x), and thus the solution S = S(x) to the eikonal equation

by replacing the obtained (τ(x), y(x)) into (3.12).

We therefore conclude that a solution to the eikonal equation can always be constructed

under the assumption that P is hyperbolic, because then we can guarantee that the set N smooth
x

at each point of the initial value hypersurface Σ is non-empty.

3.3. Massless duality theory: the Gauss map and action for massless particles

As we saw in section 3.1, the cotangent bundle function P determines the (smooth) massless

momentum cone. The converse question, namely under which conditions the massless momentum

coneNx at a point x determines the polynomial Px up to a constant factor, is subtle, but of central

importance. The vanishing sets associated with polynomials are the subject of study of algebraic

geometry (to be studied in the next section) and we will indeed have opportunity to employ

some elaborate theorems of real algebraic geometry. We begin by clarifying the relation between

vanishing sets of real polynomials and the principal ideals that these polynomials generate, since

this will be relevant for our study of massless particles. Recall that an ideal I ⊂ R in a ring R is

a subset that is closed under addition and under multiplication with an arbitrary ring element.

Concretely, R is here the ring of real polynomials on T ∗xM in dimM real variables. Now on the

one hand, we may consider the situation where we are given an ideal I and define the vanishing

set V(I) as the set of cotangent vectors that are common zeros to all polynomials in I. On the

other hand, we may be given a subset S of cotangent space and consider the set I(S) of all

polynomials in R that vanish on all members of that set S. Now it can be shown that I(S) is

an ideal in the ring of polynomials on cotangent space, and that one always has the inclusion

I(V(I)) ⊇ I . (3.13)

The question under which conditions equality holds is studied in the Nullstellensätze of algebraic

geometry. While this is a relatively straightforward question for polynomials over algebraically

closed fields [30], such as the complex numbers, for the real numbers underlying our study here,

one needs to employ a string of theorems that were originally developed in order to solve Hilbert’s

seventeenth problem. The central result for our purposes is

Proposition 3.3.1. Let Px be a reduced homogeneous hyperbolic polynomial on T ∗xM , then the

equality

I(Nx) = 〈Px〉 (3.14)

holds.
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Proof. From the first lemma in section 3.1, we know that N smooth
x 6= ∅ (as follows from the

hyperbolicity of Px). Here 〈Px〉 denotes the ideal containing all polynomials that have Px as a

factor. Drawing on the said results from real algebraic geometry, this is seen as follows. Let Px i

be the ith irreducible factor of Px. Then there exists a q ∈ N smooth(Px i) so that corollary 2.9

of [31] shows that Px i generates a real ideal, i.e., I(N(Px i)) = 〈Px i〉. According to corollary

2.8 of [31], the reduced polynomial Px thus also generates a real ideal since it does not contain

repeated factors. Finally, theorem 4.5.1 of [22] yields the claim.

The equality (3.14) will play a significant technical rôle in ensuring that we can determine

the vector duals of massless momenta using the elimination theory that will be presented in the

following section.

In order to associate velocity vectors with massless particle momenta in physically meaningful

fashion, we employ the dynamics of free massless point particles. Their dynamics, in turn, are

uniquely determined by the dispersion relation, because the Helmholtz action

I0[x, q, λ] =

∫
dτ [qaẋ

a + λP (x, q)] (3.15)

corresponding to the pure constraint Hamiltonian λP obviously describes free massless particles.

In the following, we wish to eliminate the momentum q and the Lagrange multiplier λ to obtain

an equivalent action in terms of the particle trajectory x only. Variation of the Helmholtz action

with respect to λ of course enforces the null condition for the particle momentum. Now variation

with respect to q yields ẋ = λDPx(q) for all q ∈ N smooth, which implies the weaker equation

[DPx(q)] = [
ẋ

λ
] , (3.16)

where [X] denotes the projective equivalence class of all vectors collinear with the vector X.

In order to solve (3.16) for q, we need the inverse of the projective map [DP ]. We will now

derive that this inverse is given by the gradient of a so-called dual polynomial. Indeed, the

image N#
x of the massless covector cone Nx under the gradient map DP is again described by a

homogeneous polynomial P#
x , albeit of generically different degree than P . More precisely, for

an irreducible cotangent bundle function P , we look for a likewise irreducible tangent bundle

function P# that is uniquely determined up to a real constant factor at each point x of the

manifold by the equation

P#
x (DPx(N smooth

x )) = 0 . (3.17)

The polynomials Px and P#
x given by P and P# at any given point x of the base manifold

are then called dual to each other, and it is convenient to also call the corresponding cotangent

bundle function P and tangent bundle function P# dual to each other. For a cotangent bundle

function P that is reducible into irreducible factors

P (x, k) = P1(x, k) · · ·Pf (x, k) , (3.18)

we define the dual tangent bundle function as the product

P#(x, v) = P#
1 (x, v) · · ·P#

f (x, v) , (3.19)
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Gauss map

cotangent space tangent space

Figure 3.1. Gauss map sending the zero locus of a polynomial to the zero locus
of a dual polynomial

where the P#
i are the irreducible duals of the irreducible Pi determined by equation (3.17). Thus

P# is uniquely determined up to a real factor function on M and satisfies again equation (3.17),

as one easily sees from application of the product rule. The existence of a dual P#
x , and indeed

its algorithmic computability for any reduced hyperbolic polynomial P will be the subject of the

next section. For the remaining part of the present section, we assume that a dual polynomial

P#
x indeed exists.

Thus equipped with the notion of the dual polynomial, we may now return to the projective

gradient map

[DPx] : [N smooth
x ]→ [N#

x ] , [q] 7→ [DPx(q)] (3.20)

first encountered in (3.16), where the brackets denote projective equivalence classes, identifying

parallel vectors (respectively covectors), but not antiparallel ones, andN#
x is the image ofN smooth

x

under DPx. The projective map [DPx] is well-defined due to the homogeneity of Px, and will

be referred to as the Gauss map. The problem of inverting the Gauss map is now solved by

definition of the dual Gauss map [DP#
x ] in terms of the dual polynomial P#

x ,

[DP#
x ] : [N# smooth

x ]→ [Nx] , [X] 7→ [DP#
x (X)] , (3.21)

since we then have for null covectors k ∈ N smooth
x that

[DP#
x ]([DPx]([k])) = [k] if det(DDPx)(k) 6= 0 , (3.22)

so that the dual Gauss map [DP#] acts as the inverse of the Gauss map on the images of all

covectors k satisfying the above determinantal non-degeneracy condition. That relation (3.22)

holds is most easily seen from rewriting the duality condition (3.17) in the form

P#(x,DP (x, k)) = Q(k)P (k) for all covectors k , (3.23)

since this form does not require an explicit restriction to null covectors. Thus differentiation with

respect to k yields, by application of the chain rule and then of Euler’s theorem2 on the right

2Euler’s theorem asserts the simple fact that for any function f that is homogeneous of degree deg f , the
relation Df(v)v = (deg f)f(v) holds for any v in the domain of f .
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hand side, for any null covector k satisfying the non-degeneracy condition in (3.22) that

DP#(x,DP (x, k)) =
Q(x, k)

degP − 1
k , (3.24)

which in projective language takes the form (3.22). In particular, we may thus solve the projective

equation (3.16) for

[q] = [DP#
x ]([ẋ/λ]) . (3.25)

Obviously, the homogeneity of DP#
x in conjunction with the projection brackets allows to dis-

regard the function λ altogether. However, another undetermined function µ appears when

translating this result back to non-projective language,

q = µDP#
x (ẋ) . (3.26)

Now we may replace the momentum in (3.15) by this expression and use again Euler’s theorem

applied to the homogeneous polynomial P#
x to finally obtain the massless point particle action

I0[x, µ] =

∫
dτµP#(x, ẋ) . (3.27)

Relations (3.16) and (3.25) reveal the physical meaning of the Gauss map [DPx] and its inverse

[DP#
x ]: up to some irrelevant conformal factor, they associate null particle momenta in N smooth

x

with the associated null particle velocities in N# smooth
x . The automatic appearance of a final

Lagrange multiplier µ in (3.27) also hardly comes as a surprise, since it is needed to enforce the

null constraint P#
x (ẋ) = 0. This reveals the direct physical relevance of the dual tangent bundle

function P# as the tangent space geometry seen by massless particles.

Furthermore, comparing equation (3.8) with equation (3.16), we also conclude that the prob-

lem of finding the equations which describe the trajectory of rays (and hence of the bicharacteris-

tics in the tangent bundle) in the geometric optical limit is reduced to finding the dual polynomial

of the principal symbol of the associated field equations. This is of high relevance when studying

Maxwell electrodynamics on metric and area metric manifolds (which we will study in chapter

6) since this describes how light rays propagate in linear optical media.

3.4. Existence and computability of the dual polynomial

In the previous section, we have seen that in order to develop the dual theory associating null

particle momenta in N smooth
x with null particle velocities in N# smooth

x , the dual polynomial P#

defined by (3.17) must exist. Proposition 3.4.3 below will indeed imply the existence of a dual

polynomial P# for any hyperbolic polynomial P . Moreover, we describe Buchberger’s algorithm,

which allows to compute the dual polynomial explicitly.

This will require to develop some techniques from algebraic geometry, which we quickly

review following [30]. So we consider the ring R[p1, . . . , pdimM ] of polynomials in the variables

p1, . . . , pdimM having coefficients in the real field R and its respective ideals. We will also use the

multi-index notation α = (α1, . . . , αdimM ) such that an arbitrary element f of R[p1, . . . , pdimM ]

is written as f =
∑

α cαp
α with cα = cα1...αdimM

∈ R and xα = pα1
1 · · · p

αdimM
dimM . By 〈f1, . . . , fr〉 we

will denote the ideal contained in R[p1, . . . , pdimM ] generated by the set of polynomials f1, . . . , fr.
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Given an ideal 〈f1, . . . , fr〉 and an arbitrary polynomial g ∈ R[p1, . . . , pdimM ], we want to decide

whether g ∈ 〈f1, . . . , fr〉. This requires the notion of Gröbner bases and the use of the division

algorithm, which we now review.

Definition. A monomial in R[p1, . . . , pdimM ] is an element of the form pα1
1 · · · p

αdimM
dimM . We say

that > is a monomial order in R[p1, . . . , pdimM ] if > satisfies

(1) if xα > xβ, then xγxα > xγxβ for all multi-indices α, β, γ and

(2) a well-ordering property: an arbitrary set of monomials {xα}α∈A has a least element.

In particular, condition (2) ensures that any decreasing sequence of monomials xα(1) > xα(2) >

· · · eventually terminates.

Example. A monomial order is provided by the so-called lexicographic order. This is defined

such that xα > xβ if the first non-zero entry of (α1 − β1, . . . , αdimM − βdimM ) is positive.

Definition. Given a monomial order > on R[p1, . . . , pdimM ] and one of its elements f =∑
α cαx

α, the leading monomial LM(f) of f is defined as the largest monomial xα such that

cα 6= 0. The leading term LT(f) of f is then defined as LT(f) = cαx
α, where LM(f) = xα.

Definition. Fix a monomial order > and let I ⊂ R[p1, . . . , pdimM ] be an ideal. A Gröbner

basis for I is a collection of non-zero polynomials {f1, . . . , fr} ⊂ I such that LT(f1), . . . ,LT(fr)

generate LT(I), where LT(I) := 〈LT(g)| g ∈ I〉.

With these definitions at hand, we can now present the division algorithm which will then

lead to proposition 3.4.1.

Division algorithm: Fix a monomial order > in the ideal R[p1, . . . , pdimM ] and non-zero

polynomials {f1, . . . , fr} generating the ideal I = 〈f1, . . . , fr〉. Given an arbitrary polynomial

g ∈ R[p1, . . . , pdimM ], the division algorithm proceeds as follows. Put g0 = g and construct the

polynomials

gi+1 = gi − fji
LT(gi)

LT(fji)
,

where fji is one element of the set of polynomials {f1, . . . , fr} such that LM(fji) divides LM(gi).

If there is no polynomial in {f1, . . . , fr} such that LM(fji) divides LM(gi), then the procedure

terminates.

We then have the following

Proposition 3.4.1. (proposition 2.13 of [30]) Let I ⊂ R[p1, . . . , pdimM ] be an ideal and f1, . . . , fr

a Gröbner basis for I. The division algorithm terminates in a finite number of steps, with either

gi = 0 or LT(gi) not divisible by any of the leading terms LT(fj). In the first case, we can

represent g as g =
∑r

s=1 hsfs with hs ∈ R[p1, . . . , pdimM ] and hence g ∈ I. In the second case,

g =
∑r

s=1 hsfs + gi and hence gi /∈ I.

With this proposition, we can decide whether a polynomial g is an element of a given ideal I.

Indeed, in order to decide whether g ∈ I, it is enough to find a Gröbner basis for I and then

apply the division algorithm. As a corollary of this proposition, it also follows that if I is an

ideal and f1, . . . , fr a Gröbner basis for I, then I = 〈f1, . . . , fr〉. Existence of Gröbner bases
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is ensured by the Hilbert’s basis theorem (theorem 2.21 of [30]), which asserts that every ideal

I ⊂ R[p1, . . . , pdimM ] admits a Gröbner basis and, as a consequence, every polynomial ideal is

finitely generated.

Buchberger’s algorithm provides an explicit algorithm for the construction of Gröbner bases.

Before presenting this algorithm, we define the least common multiple LCM of monomials xα

and xβ as

LCM(xα, xβ) = x
max(α1,β1)
1 · · ·xmax(αn,βn)

n .

We then have

Buchberger’s algorithm. Fix a monomial order > on R[p1, . . . , pdimM ]. A Gröbner basis for

the ideal 〈f1, . . . , fr〉 is then obtained by iterating the following procedure: For all i, j apply the

division algorithm to the polynomials

S(fi, fj) =
LCM(LM(fi),LM(fj))

LT(fi)
fi −

LCM(LM(fi),LM(fj))

LT(fj)
fj

in order to get the expressions

S(fi, fj) =
r∑
l=1

h(ij)lfl + r(ij) ,

where each LM(r(ij)) is not divisible by any of the LM(fl). If all remainders r(ij) = 0 then

f1, . . . , fr are already a Gröbner basis. Otherwise we let fr+1, . . . , fr+s denote the non-zero re-

mainders r(ij) and adjoin these to get a new set of generators.

A key result for us is the following theorem on elimination theory.

Theorem 3.4.2. (Elimination theorem in [30]). Let J ⊂ R[p1, . . . , pdimM , v
1, . . . , vdimM ] be

an ideal and > a monomial order in R[p1, . . . , pdimM , v
1, . . . , vdimM ] such that3 if LM(g) ∈

R[v1, . . . , vdimM ], then g ∈ R[v1, . . . , vdimM ]. Let {f1, . . . , fr} be a Gröbner basis for J with

respect to >. Then J ∩ R[v1, . . . , vdimM ] is generated by the elements of the Gröbner basis con-

tained in R[v1, . . . , vdimM ]. More precisely,

J ∩ R[v1, . . . , vdimM ] =
〈
fj | fj ∈ R[v1, . . . , vdimM ]

〉
⊂ R[v1, . . . , vdimM ] .

We now recall that given a real vector space V , the projective space PV associated with V ,

is defined as PV = (V \ {0})/ ∼ , where ∼ denotes the equivalence relation such that u ∼ v if

there is a λ ∈ R with λ 6= 0 such that u = λv for u, v ∈ V \ {0}. The notation [v] is used to

denote the resulting equivalence class containing the element v.

Turning now to our specific problem, given a homogeneous polynomial Px : T ∗xM → R, we

define the hypersurface or projective variety defined by Px as

S(Px) = {[q] ∈ P(T ∗xM) |P (q) = 0} .

3Such a monomial order is called an elimination order, see definition 4.6 of [30].
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More generally, given a homogeneous ideal J ⊂ R[T ∗xM ] (an ideal generated only by homogeneous

polynomials), we define

S(J) = {[q] ∈ P(T ∗xM) |P (q) = 0 for each homogeneous P ∈ J}

as the projective variety defined by J . On the other way around, given S ⊂ P(T ∗xM), the

homogeneous ideal vanishing along S is defined as

J(S) = 〈P ∈ R[T ∗xM ] homogeneous |P (q) = 0 for all q ∈ S〉 .

Given a hypersurface S ⊂ P(T ∗xM) generated by a homogeneous polynomial P : T ∗xM → R, the

dual variety S̃ is defined as the closure4 of the locus of all hyperplanes tangent to S at smooth

points q ∈ S. We say that q ∈ S is a smooth point of S if DqP (q) 6= 0. We then have the

following crucial theorem describing the image of the Gauss map found in the previous section.

Theorem 3.4.3. (Proposition 11.10 of [30]). Let S be a hypersurface with J(S) = 〈Px〉. Then

the dual variety S̃ is the image in the projective tangent space P(TxM) of the so defined Gauss

map

S(Px)→ P(TxM) , [q] 7→ [DPx(q)] .

Furthermore, the equations determining the image of the Gauss map are explicitly given by〈
Px(q), X1 −DPx(q)1, . . . , XdimM −DPx(q)dimM

〉
∩ R[X1, . . . , XdimM ] . (3.28)

But this theorem automatically holds if Px reduced and hyperbolic, as follows from propo-

sition 3.3.1, because then J(S) = 〈Px〉 is satisfied. This already guarantees the existence of the

dual polynomial P#
x because it can then be constructed as follows: from theorem 3.4.2, by using

Buchberger’s algorithm and Gröbner basis, we can compute the elimination ideal in equation

(3.28). The so calculated elimination ideal, however, may turn out to be generated by several

real homogeneous polynomials. However, making use of the fact that we are dealing with real

polynomials, it is easy to construct the dual P# as a sum of appropriate even powers of the

generating polynomials, which obviously vanishes where and only where all generators vanish.

It should be said that while for most polynomials of interest, a direct calculation of dual poly-

nomials using elimination theory exhausts the capability of current computer algebra systems,

in many cases one is nevertheless able to guess the dual polynomial by physical reasoning (as

we will illustrate for the cases of metric and area metric geometry in chapter 6). Once such an

educated guess has been obtained, one may directly use the defining equation (3.17) to verify

that one has found the dual polynomial. In any case, since its existence is guaranteed, we will

simply assume in the following that a dual P# has been found by some method.

3.5. Time-orientability

In section 3.3, we saw that the dual polynomial defined by the tangent bundle function P#

in each tangent space plays an essential rôle.

4The closure S̄ of a set S is the smallest closed set containing S, in this case with respect to the Zariski
topology. In the Zariski topology, the open sets are of the form U = {v ∈ V |Pj(v) 6= 0, j = 1, . . . , r, Pj ∈ R[V ]} .
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Figure 3.2. Example of a hyperbolic polynomial with non-hyperbolic dual
polynomial; shown are the respective vanishing sets.

The condition for matter field dynamics on (M,G) to be interpretable is translated to the

condition that the geometry (M,G) be time-orientable, since time-orientability allows for a good

notion of observers. We will now see that in order to have time-orientability, one needs to restrict

attention to spacetime geometries in which both P and its dual P# are hyperbolic. Thus, when

P and P# are indeed hyperbolic, we will simply say that P is hyperbolic (hyperbolicity of P )

and time-orientable (hyperbolicity of P#). More precisely, this corresponds, from the definition

of a hyperbolic polynomial, to the requirement that there is a vector field T such that for every

vector field R there are only real functions µ on M such that

P#(x,R(x) + µ(x)T (x)) = 0

everywhere. A vector field T satisfying this property will be called a time-orientation on M .

A time-orientation is thus equivalent to a choice of a hyperbolicity cone C# of P# (which is

defined precisely as the hyperbolicity cones of P in section 2.2) and we stipulate that it contain

the tangent vectors to admissible observers at a spacetime point (we will prove a non-trivial

consistency result concerning the stability of the so defined observers in chapter 5). Having

chosen the observer cone C# in the tangent bundle, however, one can immediately see that

those momenta p at a point x whose energy is positive from every observer’s point of view now

constitute a convex cone

(C#
x )⊥ = {p ∈ T ∗xM | p(v) > 0 for all v ∈ C#} . (3.29)

For the simple Lorentzian metric case, this is just (the closure of) what has been chosen as the

forward cone, while in general the situation is more complicated. If the polynomial P is of the

product form (3.5), we find that the positive energy cone is simply the sum of the positive energy

cones coming from the duals of the factors of P [32], i.e.

(C#)⊥ = (C#
1 )⊥ + · · ·+ (C#

l )⊥ , (3.30)

where the sum of two convex sets is just the set of all sums of any two elements of the two sets.

That predictivity (mathematically: hyperbolicity of P ) does not imply interpretability (math-

ematically: hyperbolicity of P#) is illustrated by the counterexample in figure 3.2. Thus the

condition of P and P# being hyperbolic indeed presents a rather stringent condition on the
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geometry underlying a classical spacetime. This will be illustrated in chapter 6, first for the

instructive case of metric geometry, where the hyperbolicity and time-orientability conditions

each amount to the requirement that the metric be Lorentzian, and second for the case of area

metric geometry, where a similar exclusion of algebraic classes follows from the hyperbolicity

and time-orientability condition for P in conjunction with the quantizability condition. A simi-

lar study one may—and indeed must—conduct for any other candidate for a spacetime geometry.

In summary, we have learnt in this chapter that Px defines the massless dispersion relation

as the solvability condition for the eikonal equation, which can always be solved for hyperbolic

polynomials Px. Moreover, in order to obtain the action for massless particles, it is necessary

to invert the Gauss map defined by [DPx]. The inverse of the Gauss map is given by [DP#
x ],

where P#
x is the dual polynomial to Px, and whose existence is guaranteed for a reduced and

hyperbolic polynomial Px. The dual polynomial P#
x also encodes the geometry seen by massless

particles in tangent space. Finally, requiring P# to be hyperbolic one can choose a vector

field that is hyperbolic with respect to P# everywhere on the manifold, which vector field then

corresponds to a time-orientation on the manifold. Thus if matter field dynamics on (M,G)

is to be predictive and interpretable, we found that P must be hyperbolic and time-orientable,

meaning the hyperbolicity of both P and P#.





CHAPTER 4

Condition III: Energy-distinguishability

In this chapter, we introduce the energy-distinguishing condition as the third and last condi-

tion that a pair (M,G) must satisfy in order to be able to carry (in addition to predictive and

interpretable) quantizable matter field dynamics, and therefore to provide a classical spacetime

structure. This condition will enable us to study the behaviour of massive point particles and

thus develop the necessary dual theory relating velocity vectors with massive particle momenta.

4.1. Energy-distinguishing condition

As seen at the end of the previous section, having chosen the observer cone C# in the

tangent bundle by way of a time-orientation, the convex set (C#
x )⊥ constitutes the set of those

momenta p at a point x whose energy is positive from every observer’s point of view. The

quantizability requirement on matter field dynamics now translates into the requirement that

the geometry (M,G) be energy-distinguishing, which refers then to the requirement that any

massless momentum q have either positive or negative energy, independent of which observer

measures the energy. More precisely, we require the set N of massless non-zero covector fields to

disjunctively decompose into positive and negative energy parts

N = N+ ∪̇N− , (4.1)

where N+ is defined as the intersection of N with the positive energy cone (C#)⊥, and N−

as the intersection with the negative energy cone (−C#)⊥. We will refer to such hyperbolic

and time-orientable cotangent bundle functions P as energy-distinguishing. Figure 4.1 shows the

vanishing sets of a hyperbolic, time-orientable and energy-distinguishing polynomial Px and its

dual P#
x .

For geometries that are hyperbolic, time-orientable and energy-distinguishing, we have the

following important

Proposition 4.1.1. For hyperbolic, time-orientable and energy-distinguishing geometries, the

set of massless momenta Nx cannot contain any null planes in spacetime dimensions d ≥ 3,

which in turn implies that the degree of P cannot be odd

Proof. First, we prove that the hyperbolicity and time-orientability of Px implies that

closure(C#⊥
x ) ∩ −closure(C#⊥

x ) = {0} . (4.2)

Let k0 be such that k0 ∈ closure(C#⊥
x ) and k0 ∈ −closure(C#⊥

x ). It follows from the definition

of the dual cone that the following inequalities are true for all x ∈ C#
x : x.k0 ≥ 0 and x.k0 ≤ 0.

If this would be true, the hyperbolicity cone C#
x had to be a plane or a subset of a plane. That

35
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Figure 4.1. A hyperbolic, time-orientable and energy-distinguishing polyno-
mial P .

would contradict the property of C#
x to be open. Second, suppose that the zero set Nx contains

a plane. From closure(C#⊥
x )∩−closure(C#⊥

x ) = {0} it follows that C#⊥
x \ {0} is a proper subset

of a halfspace. A proper subset of a halfspace cannot contain any complete plane through the

origin. Hence the existence of a null plane of Px would obstruct the energy-distinguishing prop-

erty. Third, this fact immediately restricts us to cotangent bundle functions P of even degree.

For suppose degP was odd. Then on the one hand, we would have an odd number of null sheets.

On the other hand, the homogeneity of P implies that null sheets in a cotangent space come in

pairs, of which one partner is the point reflection of the other. Together this implies that we

would have at least one null hyperplane.

At this point, we have finally arrived at the insight that an admissible physical geometry

(M,G) underlying a classical spacetime must be such that the cotangent bundle function P (purely

constructed from the geometry G) is a hyperbolic, time-orientable and energy-distinguishing re-

duced hyperbolic homogeneous polynomial in each fibre. These are now all the conditions on P ,

and therefore on the geometry, we identify in this work. The following sections in this chapter

serve to show that the theory also extends to massive particles.

4.2. The massive dispersion relation

For a hyperbolic, time-orientable and energy-distinguishing cotangent bundle function P ,

there is always a hyperbolicity cone of Px in each cotangent space that is of positive energy

with respect to a chosen time orientation C#. For let C̃x be some hyperbolicity cone of Px,

whose boundary ∂C̃x we know to be a connected set of null covectors. Now on the one hand,

the complete zero set of Px is contained in (C̃#
x )⊥ ∪ −(C̃#

x )⊥ due to the energy-distinguishing

property. On the other hand, we have that (4.2) holds. Hence either C̃x or −C̃x is of positive

energy.
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The covector fields in the thus selected positive energy cone C play two related rôles. The

first rôle, from theorem 2.1.1, was that a hypersurface can only be an initial data surface if its

normal covector field lies in C. Now in order to identify the second rôle of the cone C in relation

to massive matter, first observe that within the hyperbolicity cone C, the sign of P cannot change

(see theorem 2.2.1), which is why we could arrange for P to be positive on C in section 2.2 and

everywhere afterwards. Since it is particularly important again in what follows, we re-emphasize

that this choice has been made. But then we have for any momentum q in Cx at a spacetime

point x that

Px(q) = mdegP (4.3)

for some positive real number m > 0, which we call the mass associated with the momentum q.

It must be emphasized that the definition of mass associated to a momentum, as provided by

(4.3), hinges on the choice of a particular volume density ρ in (2.2). Physically this is understood

from the need to convert mass densities in field theory into point masses in particle theory, which

conversion requires exactly a definition of volume. But then (4.3) represents a massive dispersion

relation whose mass shells foliate the interior of Cx, see figure 4.2. An immediate physical

consequence of the convexity of the cone Cx is that even for modified dispersion relations, a

decay of a positive energy massless particle into positive energy massive particles is kinematically

forbidden.

At this point we derive a further important consequence of the hyperbolicity, time-orientability

and energy-distinguishing properties in the following

Proposition 4.2.1. If the geometry of spacetime is hyperbolic (Px hyperbolic), time-orientable

(P#
x hyperbolic) and energy distinguishing, then Px is complete.

Proof. Recall from section 2.2 that a hyperbolic polynomial Px is called complete if the lineality

space

L(P ) = {a ∈ T ∗xM | for all y ∈ T ∗xM and λ ∈ R : P (y + λa) = P (y)} (4.4)

only contains the zero covector and that completeness is equivalent to

closure(C(Px, h)) ∩ closure(C(Px,−h)) = {0} . (4.5)

Using now the argument given at the start of this section, we know that

closure(C#
x
⊥) ∩ −closure(C#

x
⊥) ⊇ closure(Cx) ∩ −closure(Cx) . (4.6)

Thus if the right hand side differs from {0} (meaning that P is incomplete), the left hand side

will contain non-zero covectors, too (showing that P is not energy-distinguishing). Because of

the inclusion, this only holds in this direction. We thus conclude that the energy-distinguishing

property already implies completeness.

There are three principal reasons why it is so important that completeness holds. First,

completeness will play a crucial rôle in ensuring, as we will see in the next section, that there

is a well-defined duality theory associating massive covectors with their vector counterparts.
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Figure 4.2. Mass shells defined by a hyperbolic, time-orientable and energy-
distinguishing cotangent bundle functions P . On the left, the familiar second
degree Lorentzian case; on the right, a fourth degree case defined by a product of
two Lorentzian metrics.

Thus remarkably, the hyperbolicity, time-orientability and the energy-distinguishing properties,

originally conceived in the context of massless dispersion relations, also take care of this in the

massive case, via completeness. Second, if Px is complete then theorem 2.2.3 holds, so that

taking Px to be positive everywhere on Cx, we have the reverse triangle inequality

P 1/ degP
x (k1 + k2) ≥ P 1/ degP

x (k1) + P 1/ degP
x (k2) (4.7)

for all k1 and k2 in the same hyperbolicity cone Cx. Equality holds if and only if k1 and k2 are

all proportional. Physically, this is necessary for the massive dispersion relation to make sense,

since the reverse triangle inequality generalizes a familiar result from Lorentzian geometry to any

viable dispersion relation in our sense, namely that the decay of a massive particle generically

gives rise to a mass defect. Third, recalling from section 2.2 that defining the tensor

Px(k1, . . . , kdegP ) =
1

(degP )!

degP∏
J=1

(
dimV∑
i=1

(kJ)i
∂

∂ki

)
Px(k) (4.8)

as the totally symmetric polarization of the polynomial Px, we also know from theorem 2.2.3

that the reverse Cauchy-Schwarz inequality

Px(k1, . . . , kdegP ) ≥ Px(k1)1/degP · · ·Px(kdegP )1/ degP (4.9)

holds for all k1, . . . , kdegP in the same hyperbolicity cone Cx. Similar to the reverse triangle

inequality above, equality holds for the reverse Cauchy-Schwarz inequalities if and only if all

arguments ki are proportional to each other.

4.3. Massive duality theory: the Legendre map and action for massive particles

We wish to associate vector duals with massive momenta (having done so for massless mo-

menta in chapter 3), and to this end we employ the Helmholtz action

I[x, q, λ] =

∫
dτ
[
qaẋ

a − λm lnP (x,
q

m
)
]
, (4.10)
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which describes free particles of mass m, since the massive dispersion relation P (x, q) = mdegP

is enforced through variation with respect to λ. The particular form of the Lagrange multiplier

term here has been chosen for the technical reason of having available the theory of Legendre

duals on the open convex cones Cx, see [32]. More precisely, the so-called barrier function,

fx : Cx → R , fx(q) = − 1

degP
lnPx(q) , (4.11)

which we employed in the massive particle action above, is firstly guaranteed to be strictly

convex, i.e., for each λ ∈ (0, 1) we have fx((1− λ)v+ λw) < (1− λ)fx(v) + λfx(w) for all v, w in

the hyperbolicity cone Cx, due to the completeness of P [23], which in turn is guaranteed by the

energy-distinguishing property, as we saw in the previous chapter; secondly, near the boundary

of the convex set, it behaves such that for all q ∈ Cx and b ∈ ∂Cx

lim
λ→0+

(Dq−bfx)(b+ λ(q − b)) = 0 , (4.12)

which property is known as essential smoothness in convex analysis. The important point is that

strict convexity and essential smoothness together ensure that the barrier function fx induces an

invertible Legendre map

Lx : Cx → Lx(Cx) , q 7→ −(Dfx)(q) , (4.13)

where1

Lx(Cx) = interior{v ∈ TxM | q(v) ≥ 0 for all q ∈ Cx} , (4.14)

and a Legendre dual function

fLx : Lx(Cx)→ R, fLx (v) = −L−1
x (v)v − fx(L−1

x (v)) (4.15)

which can be shown, ultimately by virtue of the above conditions, to be an again strictly convex

and essentially smooth function on the open convex set Lx(Cx). Note that the two minus signs

in (4.15) are correct, and due to our sign conventions. In fact, the inverse Legendre map is the

Legendre map of the Legendre dual function fL:

−DfLx = L−1
x (v) +DL−1

x (v)v +DL−1
x (v)Dfx(L−1

x (v)) = L−1
x (v) . (4.16)

In other words, the Legendre dual of the Legendre dual (Lx(Cx), fLx ) of (Cx, fx) is again (Cx, fx),

see theorem 26.5 of [32].

The existence of this Legendre theory now enables us to eliminate the q and λ degrees of

freedom, in order to obtain an equivalent particle action I[x] in terms of the particle trajectory x.

In the process, we will identify the definition of proper time that renders the law of free particle

motion simple. Variation of the action (4.10) with respect to q yields ẋ = (λ degP )Lx(q/m),

which we know may be inverted to yield

q = mL−1
x (ẋ/(λdegP )) . (4.17)

It is now obvious why it was convenient to encode the dispersion relation by a Lagrange

multiplier term involving the barrier function (4.11); while many other ways to enforce the very

1Note that the here defined set Lx(Cx) is equivalent to the set C⊥, where the duality operation ⊥ was defined
in equation (3.29).
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Figure 4.3. Mass shell and Legendre map of massive momenta to tangent space.

same dispersion relation of course do exist, the latter allows to make use of the above theory

of Legendre transformations in a straightforward manner. Using the thus obtained relation and

the definitions of the barrier function and the Legendre dual to eliminate q, one obtains the

equivalent action

I[x, λ] = −mdegP

∫
dτ λfL(ẋ/(λ degP )) = −m degP

∫
dτ
[
λfLx (ẋ) + λ ln(λ degP )

]
, (4.18)

where for the second equality we used the easily verified scaling property fL(αẋ) = fL(ẋ)− lnα.

From variation of the action (4.18) with respect to λ we then learn that

fL(ẋ) + ln(λ degP ) + 1 = 0 . (4.19)

Using this twice, we have λfLx (ẋ) + λ ln(λ degP ) = −λ = − exp(−fLx (ẋ) − 1)/ degP . Noting

that because of ẋ ∈ Lx(Cx) we also have L−1(x, ẋ)(ẋ) = 1 and thus fLx (ẋ) = −1 − fx(L−1(ẋ)),

and defining the tangent bundle function

P ∗x : Lx(Cx)→ R , P ∗x (v) = Px(L−1
x (v))−1 , (4.20)

we eliminate λ in (4.18) and finally arrive at the equivalent action

I[x] = m

∫
dτP ∗(x, ẋ)1/ degP (4.21)

for a free point particle of positive mass m. While the tangent bundle function P ∗ is generically

non-polynomial, it is elementary to see that it is homogeneous of degree degP , and for later

reference we also display the useful relation

L−1
x (v) =

1

degP

DP ∗x (x, v)

P ∗x (x, v)
. (4.22)

The action (4.21) is reparametrization invariant, as it should be. However, parametrizations for

which P (x, L−1(x, ẋ)) = 1 along the curve are distinguished since they yield the simple relation

q = mL−1
x (ẋ) (4.23)

between the free massive particle velocity ẋ and the particle momentum q everywhere along the

trajectory x. As usual, we choose such clocks and call the time they show proper time. Thus

we have established the physical meaning of the Legendre map, and may thus justifiedly call the

open convex cone Lx(Cx) the cone of massive particle velocities, and the function P ∗ the massive
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dual of P , which indeed encodes the tangent bundle geometry seen by massive particles.

4.4. Lorentzian Finsler geometry and freely falling observers

It is often useful to go further and to consider freely falling non-rotating observer frames2.

This is needed, for instance, if one wishes to determine the electric and magnetic field strengths

seen by such an observer for a given electromagnetic field strength two-form F . But the definition

of non-rotating frames requires to establish a meaningful parallel transport, and we will now see

how the latter arises from our general constructions, which will lead to their the identification

of the physical meaningful extension of Finsler geometry to the Lorentzian case. Since we saw

in chapter 4 that observers are necessarily massive, their free motion is governed by an action

functional

S[x] =

∫
dτP ∗(x, ẋ)1/ degP , (4.24)

which we know to represent the trajectories of point particles of non-zero mass. Using the

reparametrization invariance to set P ∗(x, ẋ) = 1 along the curve, it is straightforward to derive

the equations of motion

ẍa + Γa(x, ẋ) = 0 (4.25)

with the geodesic spray coefficients [33, 34]

Γa(x, v) =
1

2
gam(x,v)

(
∂g(x,v)mc

∂xb
+
∂g(x,v) bm

∂xc
−
∂g(x,v) bc

∂xm

)
vbvc . (4.26)

These in turn are constructed from the tangent space Finsler metrics ge0 [33, 34] on tangent

space defined by

g(x,e0)(u, v) =
1

2

∂2P ∗(x, e0 + su+ tv)2/ degP

∂s∂t

∣∣∣∣∣
s=t=0

, (4.27)

whose inverses appearing in the expression (4.26) are guaranteed to exist from the completeness

of the cotangent bundle function P . Indeed, for e0 = L(ε0) with ε0 ∈ C, an explicit expression

for the metric (4.27) in terms of fL is given by

g(x,e0) ab = P ∗x
2/degP (e0)

(
−(DDfLx (e0))ab + 2L−1

x a(e0)L−1
x b(e0)

)
, (4.28)

and for its inverse in terms of f by

gab(x,ε0) = Px
2/degP (ε0)

(
−(DDfx(ε0))ab + 2Lx

a(ε0)Lx
b(ε0)

)
, (4.29)

where (DDfx(ε0))ab(DDfLx (L(ε0)))bc = δac , see [35]. Remarkably, the Finsler metric (4.28) is

automatically Lorentzian as we see in the following

Proposition 4.4.1. The Finsler metric (4.29) and therefore its inverse (4.28) are of Lorentzian

signature.

2The precise definition of observer frames is provided in the next chapter.
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Proof. Consider a cotangent frame εa with εα(L(ε0)) = 0 for all α = 1, . . . ,dimM − 1, then from

expression (4.29) it follows that

gab(x,ε0)ε
0
aε

0
b = Px

2/degP (ε0) > 0, (4.30)

gab(x,ε0)ε
0
aε
α
b = 0. (4.31)

But since any covector ~p on the spatial hyperplane defined by Lx(ε0) can be written as ~p = pαε
α,

we have

gab(x,ε0)pαε
α
apβε

β
b = −P 2/degP

x (ε0)(DDfx(ε0))abpαε
α
apβε

β
b < 0, (4.32)

where the last inequality follows from the positive definiteness of the Hessian of f (see theorem

4.2 and remark 4.3 of [23]). Thus we conclude that the metric (4.29) and hence its inverse (4.28)

are Lorentzian.

The metric (4.28) and its inverse (4.29) will be seen to provide a normalization for local

frames which is preserved along free observer worldlines. The form of equation (4.25) indeed

suggests to identify a parallel transport on the manifold M which, on the one hand, allows to

recast the geodesic equation in the form of an autoparallel equation, and on the other hand,

provides us with the means to define parallel transport also for purely spatial vectors. To this

end, it is known to be convenient to define the derivative operators

δi =
∂

∂xi
− Γj i(x, v)

∂

∂vj
, where Γij(x, v) :=

∂Γi(x, v)

∂vj
, (4.33)

since now one can define, in full formal analogy to the Levi-Civita connection in metric geometry,

the Chern-Rund connection coefficients

Γijk(u, v) =
1

2
gis(x,v)

(
δjg(x,v) sk + δkg(x,v) js − δsg(x,v) ik

)
. (4.34)

These transform, due to the use of the δi operators, precisely as a linear connection would under

a change of coordinates x = x(x̃). It is then straightforward to see that for any vector w ∈ L(C)

and vector field u on M , one may define a new vector field with components

(∇wu)i = wa∂au
i + Γ(x,w)ijkw

juk . (4.35)

Clearly, ∇w acts as a derivation on vector fields, namely ∇w(u+v) = ∇wu+∇wv and ∇w(fu) =

(wf)u+ f∇wu for any function f and vector fields u, v. Thus ∇w may be consistently extended

to act on arbitrary tensor fields S, T on M by imposing the Leibniz rule

∇w(S ⊗ T ) = (∇wS)⊗ T + S ⊗ (∇wT ) (4.36)

for arbitrary tensor fields T and S. The derivation ∇w is not linear in its directional argument

w, though, and thus amounts to what is often called a non-linear connection in the literature.

Nevertheless, the non-linear covariant derivative ∇ achieves the desired reformulation of the

geodesic equation (4.25) as the autoparallel equation

∇ẋ ẋ = 0 . (4.37)
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The non-linear connection ∇ provides sufficient structure for the discussion of freely falling

non-rotating frames. The key technical observation is that for a frame field e0, . . . , ed−1 that is

parallely transported along the first frame vector e0,

∇e0 ea = 0 , (4.38)

we have the conservation equation

∇e0 (ge0(ea, eb)) = 0 . (4.39)

This means in particular that any normalization imposed on spacetime frames by virtue of the

metric (4.28) is preserved along the worldline of a freely falling observer. In turn, (4.38) estab-

lishes a consistent notion of freely falling and non-rotating observer frames, and thus inertial

laboratories.

In summary, we have introduced in this section the energy-distinguishing condition as the

last condition on the geometry in order to provide a consistent classical spacetime structure able

to carry matter field dynamics that are predictive, interpretable and quantizable. The energy-

distinguishing condition also allowed to extend the theory to describe the behaviour of massive

particles. Moreover, comparing the results of this chapter with those of the previous chapter, we

see that there is a fundamental difference between the ways in which null covectors on the one

hand, and massive covectors on the other hand, are mapped to the respective velocities on tangent

space. In the null case, the Gauss maps [DPx] and [DP#
x ] associate massless particle momenta

with the respective null velocities, up to an undetermined real factor. In the massive case, in

contrast, the Legendre map Lx and its inverse L−1
x afford the same for massive particle momenta

and velocities. As a consequence, the dual geometries seen on the tangent bundle by massless

and massive particles differ. For the former, the Gauss dual P# is the relevant structure, and for

the latter the Legendre dual P ∗. We wish to emphasize again that while P# is polynomial in its

fibre argument, P ∗ generically is not. Indeed, to explicitly find the inverse Legendre map L−1,

and thus P ∗, can be very hard in concrete applications, although its existence and uniqueness are

guaranteed. Also in this sense, the tangent bundle geometry (TM,P#, P ∗) is considerably less

straightforward than the cotangent bundle geometry (T ∗M,P ) it dualizes. This explains to some

extent the difficulties noticed by Skakala and Visser in [36, 37] to identify a single Finsler-type

tangent bundle geometry: generically there simply is no such geometry on tangent space that

could give rise, dually, to a hyperbolic, time-orientable and energy-distinguishing geometry on

cotangent space. The case of a Lorentzian geometry presents one notable exception.

On the positive side, on the cotangent bundle, any hyperbolic, time-orientable and energy-

distinguishing reduced homogeneously polynomial geometry, provided by P , provides a perfectly

fine spacetime geometry as far as point particle theory is concerned. And if one wishes to consider

the coupling of fields, one needs to couple to an underlying tensorial geometry G that gives rise,

by the very same field equations, to the cotangent bundle function P at hand, as discussed in

chapter 2. Again, the metric case is degenerate, as we will see in chapter 6, since there one does
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not recognize the difference between the four different rôles played by the metric: the inverse

metric plays the rôle of the fundamental spacetime structure to which fields couple, as well as the

rôle of defining the (structurally very different) cotangent bundle function P , while the metric

plays the rôle of both the dual P# as well as the tangent bundle function P ∗, which define the

tangent space geometries seen by massless and massive particles, respectively. All these different

structures are, strictly conceptually speaking, of course already at play in the familiar metric

case, but display their different nature explicitly only in the general case.



CHAPTER 5

General properties of tensorial spacetimes

In this chapter, we will show general properties of any hyperbolic, time-orientable and energy-

distinguishing spacetime (M,G). In particular, we will construct infinitesimal transformations

connecting observers and show how to perform the temporal-spatial split of the dispersion re-

lations for massless and massive point particles. Furthermore, we will show that superluminal

propagation is generically allowed for any spacetime geometry giving rise to a cotangent bundle

function P with degP > 2.

5.1. Observer frames and observer transformations

As agreed in chapter 3, once a time-orientation vector field T has been chosen, the convex

cone C#
x in tangent space containing the time-orientation T constitutes the cone of tangent

vectors to observer worldlines. More precisely, if λ → x(λ) is to be an observer worldline with

parameter λ, its tangent ẋ(λ) = e0(λ) at any point x of the worldline must be an element of

the observer cone C#
x with P ∗x (e0) = 1. Using the restriction of the inverse of Legendre map

L−1
x : C#

x → L−1
x (C#

x ) ⊂ Cx, we may extend e0(λ) to a frame bundle curve (e0(λ), eα(λ)) with

purely spatial frame vectors eα(λ), i.e.,

L−1
x (e0(λ)) eα(λ) = 0 . (5.1)

The dual basis {ε0(λ), εα(λ)} then, by definition, satisfies (for all λ)

ε0(e0) = 1 and εα(e0) = 0 for all α , (5.2)

so that we find that ε0 = L−1
x (e0). These equations are equivalent to

Px(ε0, . . . , ε0) = 1 (5.3)

Px(ε0, . . . , ε0, εα) = 0 . (5.4)

Again, the first of these equations above simply expresses that the observer e0 carries a clock

that shows proper time, and the second one that the purely spatial sections seen by e0 are those

annihilated by L−1
x (e0), see figure 5.1. Note that there is no distinguished way to further or-

thonormalize the purely spatial frame vectors amongst each other. Depending on various possible

measurement prescriptions corresponding to spatial distance measurements such additional con-

straints on frames might of course be useful, but we will do have to do without such additional

conditions here.

We now study infinitesimal transformations from one observer co-frame to another one. So

we consider ε′0 ∈ Cx satisfying the shell condition Px(ε′0) = mdegP such that ε′0 = ε0 +δε0, where

45
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Figure 5.1. Purely spatial directions with respect to e0 are those annihilated
by L−1

x (e0). For the Lorentzian metric case on the left, this coincides with the
space of vectors g-orthogonal to e0.

δε0 is an infinitesimal variation of ε0 leaving it on the same shell. The condition that ε′0 as well

as ε0 are members of the same shell can also be encoded in the equation

fx(ε0) = fx(ε0 + δε0) ,

with fx the hyperbolic barrier function defined in equation (4.11), because the massive disper-

sion relation is expressed in terms of fx. Expanding the right hand side to first order in a

neighbourhood of ε0, we find of course the condition

Lax(ε0)δε0a = 0 , (5.5)

where Lx(ε0) is the action of the Legendre map Lx on ε0. This equation is satisfied whenever

δε0a = ωabL
b
x(ε0) for any antisymmetric ωab , (5.6)

so that there are dimM (dimM − 1)/2 parameters ωab controlling the infinitesimal transfor-

mation. These transformations are generically non-linear and they achieve to connect any two

near-by covectors on a mass-shell. The infinitesimal transformation (5.6) also determines the

transformation of an observer vector e0. Indeed, if the condition (ε0 + δε0)(e0 + δe0) = 1 is to be

satisfied, it is easy to show that equation

δea0 = ωclP
0···0al
x ec0 , (5.7)

with P 0···0al
x = Px(ε0, · · · , ε0, εa, εl), must hold. However, we would also like to obtain conclusions

about the transformation properties of a complete observer frame {e0, eα}. So let us consider

the infinitesimal variation e′α = eα + δeα of the spatial vectors of an observer frame, which, by

definition, must satisfy

(ε0 + δε0)(eα + δeα) = 0 .

This equation, by using (5.6), yields the infinitesimal transformation rule on purely spatial vectors

δemα = ωclP
0···0ml
x ecα . (5.8)
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Equations (5.8) and (5.7) can now be cast together in the single expression

e′ms =
[
δmk + ωclP

0···0m[l
x δ

c]
k

]
eks . (5.9)

These are now the generically non-linear infinitesimal transformations connecting two near-by

observer frames. In particular, note that for degP = 2 (the metric case), the quantities P
m[l
x δ

c]
k

in equation (5.9) correspond to the generators of the Lorentz group.

5.2. Temporal-spatial split of modified dispersion relations

Converting the covariant dispersion relations for massive (m > 0) and massless (m = 0) point

particles,

Px(p)−mdegP = 0

into non-covariant dispersion relations is conceptually and mathematically straightforward with

the machinery we have already developed. This is so because from section 5.1, we can take an

observer frame {e0, eα} where e0 is an element of the observer cone C#
x such that any spacetime

momentum p can be uniquely decomposed as

p = E L−1(e0) + ~p = E L−1(e0) + pαε
α , (5.10)

namely into an energy E and a purely spatial momentum ~p satisfying ~p(e0) = 0. Employing such

a particular observer-dependent split, one may solve the covariant dispersion relation

P (x,E L−1(e0) + ~p) = mdegP (5.11)

for the energy E in terms of the spatial momentum ~p, and thus obtain an observer-dependent,

non-covariant dispersion relation E = E(~p). For the massless case m = 0, this equation has

degP many real physical solutions. For the massive case, the dispersion relation was introduced

in the Helmholtz action in terms of the hyperbolic barrier function as fx(q/m) = 0, which is

defined only for q lying in one of the hyperbolicity cones of P . Thus, although equation (5.11)

has degP complex solutions for m > 0, only the real solutions lying in Cx and −Cx are physical

and only they must be considered. In any case, by considering only the physical solutions, one

may then expand E in terms of the spatial momentum as

E(~p) =

∞∑
i=0

cα1···αipα1 · · · pαi .

Note that the expression E(~p) depends in two ways on the cotangent bundle function P : Indi-

rectly through the temporal-spatial split (5.10) imposed by it and directly through the dispersion

relation (5.11). This non-covariant version can be useful since it more directly relates to mea-

surable quantities. However, due to Galois theory, we know that the energy will not even be

an analytic expression in terms of the spatial momentum unless degP ≤ 4, and not polynomial

in any case. The crucial properties of the polynomial Px being hyperbolic, time-orientable and

energy-distinguishing are even more hidden in the non-covariant formulation. This is of course

the key reason for having dealt exclusively with a strictly covariant treatment of dispersion

relations for all formal developments throughout this work.
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The conversion of a non-covariant dispersion relation into a covariant one will thus be prohib-

itively difficult in most cases. This is essentially due to the fact that given a relation E = E(~p),

the reconstruction of a spacetime momentum p from E and ~p, and indeed their physical meaning,

is not directly possible without the cotangent bundle function P . We feel that this is often not

considered where modified dispersion relations are proposed. Sometimes recourse to an ‘anyway’

underlying spacetime metric is made, but it is hard to see how this would be consistent with

the stipulation of a modified dispersion relation, due to the above double rôle played by the

cotangent bundle function P .

5.3. ‘Superluminal’ propagation of matter and vacuum Cherenkov process

In this section, we will see that massive matter can causally propagate faster than some

massless particles. For simplicity, we will speak of this phenomenon as ‘superluminal’ massive

motion. However, we will see that although particles can be superluminal, they ultimately tend

to infraluminal propagation, since they can radiate massless particles by means of a Cherenkov

radiation process, but only until they reach infraluminal speed. We will also study the mentioned

Cherenkov process.

Superluminal propagation of massive particles on generic hyperbolic, time-orientable and energy-

distinguishing spacetimes is indeed allowed since the inclusion Lx(Cx) ⊇ C#
x is generically proper

(i.e. equality does not hold), so that there are massive particle velocities (namely those in

Lx(Cx) \ closure(C#
x )) higher than some massless velocities (namely those on the boundary of

C#
x ). Since the above statements, in slightly refined form, will be of central importance in the

proof of proposition 5.3.1, we will formulate them by way of the following two lemmas:

Third Lemma. For any reduced hyperbolic homogeneous cotangent bundle function P we

have1 Lx(Cx) = interior(C⊥x ).

Proof. Since by assumption Px is reduced, hyperbolic and homogeneous, we get from the First

and the Second Lemma at the end of section 3.1 the statement: for all p ∈ T ∗xM \ closure(Cx)

there exists an r ∈ ∂Cx such that p.DPx(r) < 0. Since p.DPx(q) is a continuous function of q,

we conclude that for all p ∈ T ∗xM \ closure(Cx) there exists an q ∈ Cx such that p.DPx(q) < 0.

That implies that the set Lx(Cx)⊥ is a subset of closure(Cx) \ {0}. Since Lx(Cx) is convex, we

get Lx(Cx) ⊇ (closure(Cx) \ {0})⊥ = interior(C⊥x ). Furthermore, we know that Lx(Cx) ⊆ C⊥x .

Since Lx(Cx) is open it follows that Lx(Cx) = interior(C⊥x ).

Fourth Lemma. For any hyperbolic, time-orientable and energy-distinguishing cotangent bun-

dle function P , we have C#
x ⊆ interior(C⊥x ).

Proof. From section 4.2 we know that there exists a hyperbolicity cone Cx of Px that lies

completely in (C#
x )⊥. From (C#

x )⊥ ⊇ Cx and the fact that C#
x is open, we conclude that

1The duality operation ⊥ was defined in equation (3.29).
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p − q

p

q

Figure 5.2. Vertex for the vacuum Cherenkov process. A particle of momentum
p and mass m radiates off a particle of the same mass m and momentum q and a
massless particle of momentum p− q.

C#
x ⊆ interior(C⊥x ).

Hence, since the slowest light is precisely the one on the boundary of C#
x , and C#

x ⊆ Lx(Cx),

it follows that if there is a particle worldline whose tangent ẋ at the point x lies outside C#
x , but

of course inside Lx(Cx), this particle indeed propagates faster than the slowest light. Specializing

to the familiar case of Lorentzian spacetime, one of course obtains that L−1
x (C#

x ) = Cx; in other

words, faster-than-light propagation is simply not allowed.

We now consider a process where a positive energy massive particle of momentum p radiates

off a positive energy massless particle of momentum k and a positive energy massive particle of

momentum q in vacuo (see figure 5.2) such that

Px(p) = Px(q) = mdegP .

This process presents a vacuum Cherenkov radiation and we will prove that such a process is

forbidden if and only if the ingoing momentum p lies in the stability cone

L−1
x (C#

x ) , (5.12)

which in turn always lies entirely within the cone Cx of massive momenta with positive energy.

For the proof of these assertions, see further below; for an illustration, see figure 5.3. Specializing

again to the familiar case of Lorentzian spacetime, we already know that L−1
x (C#

x ) = Cx so that

there is no Cherenkov radiation in vacuo.

Now we turn to the proof of the assertion that the stability cone (5.12) contains precisely

the momenta of those massive particles that cannot radiate off a massless particle in vacuo. To

this end, we will need to employ the first and second lemma proven in chapter 3 as well as the

two lemmas proven in this section.

Proposition 5.3.1. The Cherenkov process as described above is forbidden if and only if the

ingoing momentum p lies in the stability cone L−1
x (C#

x ).

Proof. First of all we get from the Third and Fourth Lemma that every observer corresponds

to a massive momentum, C#
x ⊆ Lx(Cx) = interior(C⊥x ), so that L−1

x (C#
x ) is well defined and
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stable energy cone

L−1(C   )#

#C

observers

inverse Legendre map

cotangent space tangent space

Figure 5.3. Stability cone: if and only if an observer can ride on a particle, the
particle cannot lose energy by a vacuum Cerenkov process

always lies within Cx. It is now easy to see that a massive particle of mass m and positive energy

momentum p may only radiate off a positive energy massless particle if there exists a positive

energy massless momentum r ∈ N+
x such that r(Lx(p)) > 0. For consider the function

u(λ) := − lnPx

(
p− λr
m

)
. (5.13)

Since for any positive λ, the covector −λr ∈ −(C#
x )⊥ lies in some half-space of the cotangent

bundle, while p ∈ Cx ⊂ (C#
x )⊥ lies in the corresponding other half, we conclude that for some

λ0 > 1 the line p−λr will necessarily intersect the boundary of Cx, so that limλ→λ0 u(λ0) = +∞.

Further, from theorem 4.2 and remark 4.3 of [23], we know that for a complete hyperbolic Px

the Hessian of the barrier function − lnPx is positive definite. Hence, we find that u′′(λ) > 0

everywhere on its domain. Now first assume that the massive particle of momentum p decays

into a massive particle of the same mass and of momentum p − r and a massless particle of

momentum r, thus respecting energy-momentum conservation. Then we have from the equality

of masses for the ingoing and outgoing massive particles that u(0) = u(1) = 0. But because

u′′(λ) > 0, the only way for the analytic function u to take the same finite values at λ = 0 and

λ = 1 while tending to +∞ at some λ0 > 1 is to have 0 > u′(0) = −r(Lx(p)). Conversely, assume

that r(Lx(p)) > 0 for some r ∈ N+
x . Then u′(0) < 0 and we conclude by the mean value theorem

that there must be a (because of u′′(λ) > 0 unique) λ1 with 0 < λ1 < λ0 such that u(λ1) = 0,

i.e., there is an outgoing particle of the same mass such that the process occurs. In summary, a

massive particle of momentum p can radiate off a positive energy massless particle if and only if

there exists an r ∈ N+
x such that r(Lx(p)) > 0. Now on the one hand, we have that p 6∈ L−1

x (C#
x )

if r(Lx(p)) < 0 for some r ∈ N+
x . For then r lies certainly in (C#

x )⊥, and thus r(Lx(p)) > 0 for

all p ∈ Lx(C#
x ). On the other hand, if p 6∈ L−1

x (C#
x ), we have r(Lx(p)) < 0 for some r ∈ N+

x .

This one sees essentially from the fact that C#
x is a hyperbolicity cone of P#

x , since then for

every p 6∈ L−1
x (C#

x ) there exists some v on the boundary of C#
x such that DP#

x (v)(Lx(p)) < 0,

as is shown in the Second Lemma in chapter 3. Clearly, the image DP#
x (v) of v under the Gauss

map DP#
x is then a massless covector, and it remains to be shown that it lies inside the positive

energy cone C#
x . Since in an energy-distinguishing spacetime, a null covector is either of positive
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Figure 5.4. Slow Massless momenta (outer), fast massless momenta (inner
cone), mass-shell and points defining decay regions with different properties.

or of negative energy, it suffices to find a single y ∈ C#
x with y(DP#

x (v)) > 0 in order to show

that DP#
x (v) lies indeed in the positive energy cone (C#

x )⊥. But this is easily established from

the convexity of C#
x . For then we certainly find some y ∈ C#

x such that y + v ∈ C#
x . But then

y(DP#
x (v)) = dP#

x (v + sy)/ds|s=0 > 0. In summary, p ∈ L−1
x (C#

x ) if and only if there exists an

r ∈ N+
x with r(Lx(p)) < 0.

Now we illustrate how this mechanism works for the 1+1-dimensional case and dimP = 4, see

also [14]. Extension to the physically relevant 3 + 1-dimensional case presents only calculational,

but no conceptual challenges. Consider a fourth degree hyperbolic, time-orientable and energy-

distinguishing polynomial Px in 1+1 dimensions such as the one whose massless momenta are

indicated by the diagonal straight lines in figure 5.4, and which defines a mass-shell Px(q)−m4 =

0. In cotangent space, the inner cone corresponds to fast massless particles and the outer one to

slow massless particles because the Gauss map sends ‘inner’ massless cones in cotangent space

to ‘outer’ cones in tangent space, and vice versa. The points A1 and A2 are the points where the

outer cone intersects the mass-shell at exactly one point. These points are important because

the mass-shell region between these points defines the stable momenta of mass m and, therefore,

massive covectors in this region cannot radiate off massless particles. Momenta outside the mass-

shell region defined by A1 and A2 can radiate off a massless particle travelling at the speed of

slow massless particles (defined by the outer cone).

The point C in the figure is constructed by the intersection of the slow massless cone centered

at A1 with the mass-shell. Momenta on the mass-shell lying in the region between A2 and C

can radiate at most one massless particle because the outgoing massive particle momentum will

then lie between A1 and A2, which is the region of no decay.

The point B is constructed as the intersection of the slow massless cone centered at the

massive particle momentum of lowest energy with the mass-shell. The significance of B is that if
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Figure 5.5. Detection of superluminal and infraluminal particles according to
their energy.

a massive particle in the region between A2 and B radiates off a massless particle, the outgoing

massive momentum will still propagate in the same direction of the ingoing momenta. On the

other hand, if a massive particle in the region between B and C radiates off a massless particle, the

outgoing massive momentum will propagate in the opposite direction of the ingoing momentum.

Finally, massive particles beyond the region between A2 and C can radiate off several massless

particles until the outgoing massive momentum reaches the stability region between A1 and A2.

We thus have the following pattern of detection of superluminal and infraluminal particles,

as shown in figure 5.5. Consider that the ingoing massive particle has momentum p. If it has

energy in the range m < E < EA2 , the particle cannot radiate because its momentum stays in

the stability region. Hence, the particle is detected with the same initial momentum p. If the

particle has energy in the region EA2 < E < EB, where particles are superluminal, the particle

will be either detected with superlumial velocity and the same initial momentum p or the particle

will decay in a massless particle and it will continue propagating in the initial direction. Finally,

if the particle has energy in the region EB < E < EC , where particles are superluminal too, then

the particle will be either detected with superlumial velocity and the same initial momentum p

or the particle will decay in a massless particle and it will now propagate in a direction opposite

to the initial one.

For the calculation of the decay rates of this Cherenkov processes, one needs to develop the

quantum theory for particles satisfying hyperbolic, time-orientable and energy-distinguishing dis-

persion relations with degP > 2. The essential steps towards the development of such quantum

theory are presented in chapters 7 and 8.



CHAPTER 6

Concrete tensorial spacetime geometries

In this chapter, we illustrate how the cotangent bundle function P is extracted from concrete

field theories on a given tensorial geometry and how the conditions of P being hyperbolic, time-

orientable and energy-distinguishing are used in order to restrict the geometry. We also show

how these conditions can be used in order to test the viability of modified dispersion relations.

6.1. Lorentzian geometry

Purely based on our previous constructions, we study in this section how Lorentzian geome-

try is distinguished as the physical geometry on a metric manifold. In particular, we show how

our constructions reproduce all kinematical results known from general relativity, as presented in

chapter 1. So we consider a four dimensional smooth manifold M equipped with a smooth metric

tensor field g (with inverse g−1) of arbitrary signature encoding the geometry of the manifold

M . We then want to find which metric tensors g can provide a consistent spacetime structure

in the sense of giving rise to a hyperbolic, time-orientable and energy-distinguishing cotangent

bundle function, as discussed in the previous chapters.

The field equations and the principal symbol. The first step is to consider particular matter

field dynamics coupling to the geometry. For this purpose, we consider a gauge field A coupling

to the metric g via the Maxwell action

S[A, g] = −1

4

∫
d4x

√
| det(g) | gamgbnFmnFab , (6.1)

where F = dA is defined as the field strength and gab are the components of the inverse metric

g−1 in a given frame. The manifold M is assumed to be orientable with canonical volume form

(ωg)abcd =| det(g) |1/2 εabcd. Variation of the above action with respect to the electromagnetic

gauge field A together with the definition of the field strength result in the equations of motion

dF = 0 and dH = 0 ,

where H is defined as the field induction and is related to the field strength by

Hab = −1

2

√
|det(g)|εabmngmpgnqFpq .

The field equations above are written in components as(√
|det(g)|

)−1
εabcd∂bFcd = 0 , (6.2)(√

|det(g)|
)−1

∂b

(√
|det(g)|gacgbdFcd

)
= 0 . (6.3)

53
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We now introduce coordinates xa = (t, xα) such that t = 0 provides an initial data surface Σ.

Furthermore, we define the electric and the magnetic fields, Eα and Bα respectively, as

Eα = F (∂t, ∂α) and Bα =
(√
|det(g)|

)−1
ε0αβγF (∂β, ∂γ) . (6.4)

At this point we realize that equations (6.2) and (6.3) constitute a system of eight partial dif-

ferential equations for only six field variables (Eα, B
α). However, one can check that the zero

component of both equations does not contain time derivatives, such that they are not dynam-

ical equations but constraint equations. The evolution equations are thus only provided by the

spatial components of equations (6.2) and (6.3), which we can write as the first order system(
Ab

M
N ∂b +BM

N

)
uN = 0 , (6.5)

where uN = (Eα, B
α) and the 6× 6-matrices Ab are explicitly given by

A0M
N =

[
g00gµν − g0µg0ν 0

0 δµν

]
, (6.6)

and

AαMN =

[
−2(g0(µgν)α − g0αgµν) −1

2

√
|det g|ε0νγδ(gγµgδα − gγαgδµ)

(
√
|det g|)−1ε0µνα 0

]
. (6.7)

The matrices BM
N depend on the metric tensor g and the volume form ωg, but they will not

be relevant for us, since they only define lower order coefficients that do not contribute to the

principal polynomial constructed from equation (2.1) (see [26] for the exact dependence).

Choosing the field strengths as dynamical variables is one of the possibilities to deal with the

gauge symmetry of the action (6.1) under the transformation A → A+ dθ (with θ an arbitrary

differentiable function) as mentioned in section 2.1. The system (6.5) is now just a particular

case of (2.1). Thus we know from chapter 2 that the principal symbol Pg of this system (from

which we will extract the cotangent bundle function providing the geometry of the cotangent

bundle) is proportional to the density P̃g(x, q) = det (Aaqa), which is found to be

P̃g(x, q) = det (Aaqa) = (q0)2(gabx qaqb)
2 . (6.8)

We can now apply our three fundamental conditions.

Condition I: Predictivity (= hyperbolicity of Pg). From chapter 2, we know that the require-

ment of predictivity is translated into the condition that the found cotangent bundle density

P̃g provide a hyperbolic polynomial P̃g x in each cotangent space. This is satisfied if only if

each of the factors in P̃g(x, q), namely P1(q) = q0 and P2(q) = gabx qaqb, are hyperbolic and the

corresponding hyperbolicity cones of each factor have non-zero intersection with each other (see

equation (2.9)). The factor P1(q) = q0 is clearly hyperbolic with respect to any covector h with

h0 6= 0 (in our chosen basis). This is so because (following the definition of hyperbolicity in

equation (2.4)) the equation P1(q+λh) = q0 +λh0 = 0 has only the single real root λ = −q0/h0.

About the factor P2(q) = gabx qaqb we have the following
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Proposition 6.1.1. The metric polynomial P2(q) = gabx qaqb is hyperbolic if and only if the

associated metric g is of Lorentzian signature.

Proof. The proof that the polynomial P2(q) = g−1
x (q, q) is hyperbolic if the metric is Lorentzian

was already given as an example of a hyperbolic polynomial in section 2.2. So here we only

prove that if P2 is hyperbolic, the metric is Lorentzian. For this purpose we consider P2 being

hyperbolic with respect to some covector h such that P2(h) > 0. Hence, the equation P2(q+λh) =

λ2g−1
x (h, h) + 2λg−1

x (h, q) + g−1
x (q, q) = 0 has only real roots. But then the discriminant of this

equation is positive, i.e.,

(g−1
x (h, q))2 − g−1

x (h, h)g−1
x (q, q) > 0 .

We now take a covector basis {ε0, εα} with ε0 = h and such that g−1
x (ε0, εα) = 0. Thus

g−1
x (ε0, ε0) > 0 and the above discriminant condition is written as qαqβg

−1
x (εα, εβ) < 0 for all

qα, qβ, which already proves that g−1
x must be of Lorentzian signature.

Hence, we conclude that condition I, predictivity, already restricts metric manifolds to those of

Lorentzian type for Maxwell theory to be predictive.

Description of the hyperbolicity cones. We now use theorem 2.2.2 (Routh-Hurwitz theorem)

in order to characterize the hyperbolicity cones of P̃g(x, q) = (q0)2(gabx qaqb)
2. For the factor P1(q)

we consider a hyperbolic covector h with P1(h) > 0 so that one trivially obtains the hyperbolicity

cone

C(P1, h) = {q ∈ TxM | q0 > 0} ,

which is a half space. For the second factor P2(q) = gabx qaqb with metric of signature (1,−1,−1,−1),

we consider a hyperbolic covector h such that g−1
x (h, h) > 0. Its corresponding hyperbolicity cone

is therefore

C(P2, h) = {q ∈ TxM | g−1(h, q) > 0 and g−1(q, q) > 0} .

Hence, the hyperbolicity cone C(P̃ , h) of P̃ is obtained as the intersection of both cones as

C(P̃ , h) = C(P1, h) ∩ C(P2, h) = C(P2, h) .

The hyperbolic covectors are therefore only covectors hyperbolic with respect to the metric poly-

nomial.

The geometric optical limit. Following the developments of section 3.1, a condition to con-

struct an asymptotic solution of the system (6.5) to any order is to solve the eikonal equation

(∂0S)2(gab(x) ∂a S∂bS)2 = 0 .

This equation is solved if the eikonal function S satisfies either ∂0S = 0 or gabx ∂aS∂bS = 0. But we

notice that the solution of ∂0S = 0 is non-physical because it corresponds to a non-propagating

solution. This is the case because in the derivation of the eikonal equation, we assumed that the

solution has a wave-like factor eiS , so that the solution of ∂0S = 0 corresponds to a phase without
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time dependence and, hence, it does not propagate. This solution is therefore non-physical and

must be excluded from the description. We thus recognize

gab(x)∂aS∂bS = 0

as the physical eikonal equation whose solutions represent truly field propagation. This equation

already has the form of a reduced polynomial. Hence, we finally identify our covariant cotangent

bundle function

Px g(q) = gabx qaqb

providing the geometry of the cotangent bundle, which is as usual encoded in the Lorentzian

metric g. Recall that the condition Px g(q) = gabx qaqb = 0 defines the massless dispersion relation

with the set of massless momenta Nx at a given point x of M given by

Nx = {q ∈ T ∗xM | gabx qaqb = 0} ,

which in this case coincides with N smooth
x , and which we recognize as the standard massless mo-

menta set in Lorentzian spacetime.

Condition II: Interpretability ( = time-orientability of Px g). In order to satisfy the inter-

pretability condition, we need the cotangent bundle function Px g to be hyperbolic and time-

orientable. So we need to compute the dual polynomial of Pg x. In this case it is easy to

guess a dual, namely P#
g (x, v) = gx(v, v). Indeed, P#

g x(DPg x(q)) = 4gx(g−1
x (q, ·), g−1

x (q, ·)) =

4g−1
x (q, q) = 4Pg x(q), so that the equation (3.17) defining the dual polynomial is satisfied. We

thus take P#
g x(x, v) = gx(v, v) as the dual polynomial of Pg x(q), which is hyperbolic because g is

of Lorentzian signature (since g−1 is of Lorentzian signature). Thus the hyperbolicity and time-

orientability conditions are satisfied. But then picking a hyperbolic vector field e0 with respect

to P#
g corresponds to picking a time-orientation on M . The hyperbolicity cone C# = C(P#

g , e0)

is then defined as the cone of future observers. Moreover, the massless point particle action

governing the kinematics of light rays is, according to equation (3.27),

S[x, µ] =

∫
dτ µ gx(ẋ, ẋ) ,

which reproduces the well-known massless point particle action known from general relativity

(see chapter 1).

Condition III: Quantizability ( = energy-distinguishability of Px g). In this case, the hy-

perbolicity and time-orientability of Pg each separately already imply the energy-distinguishing

property. For from the explicit definition of C# we know that at every point x and for every

vector X ∈ C#
x the covector gx(X, ·) ∈ (C#

x )⊥. Arranging for P#
g x(C#

x ) > 0 and knowing that Pg

is hyperbolic, it is easy to show that gx(ω, v) > 0 for every vector ω ∈ ∂C#
x and v ∈ C#

x , which

shows that for every vector ω ∈ ∂C#
x the covector gx(ω, ·) ∈ (C#

x )⊥ and gx(−ω, ·) ∈ −(C#
x )⊥.

More precisely gx(∂C#
x , ·) ∈ (C#

x )⊥ and gx(−∂C#
x , ·) ∈ −(C#

x )⊥. But gx(∂C#
x , ·) ∈ (C#

x )⊥ is the

image of the dual Gauss map induced from Pg x
# when applied to ∂C#

x . Thus, we conclude that



6.2. AREA METRIC GEOMETRY 57

Lorentzian metric geometry is a hyperbolic, time-orientable and energy-distinguishing geometry,

which therefore can be used, as we know, to provide a classical spacetime structure.

The massive dispersion relation and observer frames. From chapter 4, we now identify the

massive dispersion relation as

g−1
x (q, q)−m2 = 0 .

The hyperbolic barrier function is thus given by f(q) = −1/2 log g−1
x (q, q) which defines the

Legendre map L(q) = g−1
x (q, ·)/g−1

x (q, q). The inverse of this Legendre map is easy to guess,

namely L(v) = gx(v, ·)/gx(v, v). We thus identify the tangent bundle function

P ∗(x, v) = gx(v, v)

as the geometry seen by massive particles in tangent space on a Lorentzian spacetime. This gives

rise, according to equation (4.21), to the well-known action

S[x] =

∫
dτ m

√
gx(ẋ, ẋ)

for massive particles on Lorentzian spacetime. Following now the definitions of section 5.1,

observer frames {e0, eα} must satisfy

gx(e0, e0) = 1 and gx(e0, eα) = 0 .

For the metric case, one can additionally normalize the spatial vectors eα as gx(eα, eβ) = −δαβ.

Thus, one has gx(ea, eb) = ηab where η is the Minkowski metric. This is of course the prescription

for defining g−orthonormal observer frames in a Lorentzian spacetime .

Remarks. In the metric case, as we have seen, one does not recognize the difference between

the four different rôles played by the metric: the inverse metric plays the rôle of the fundamental

spacetime structure G to which fields couple, as well as the rôle of defining the (structurally

very different) cotangent bundle function P , while the metric plays the rôle of both the dual P#

as well as the tangent bundle function P ∗, which define the tangent space geometries seen by

massless and massive particles, respectively. All these different structures are, strictly concep-

tually speaking, of course already at play in the familiar metric case, but display their different

nature explicitly only in the framework of the general theory presented in this work. Moreover,

we have seen that all well-known kinematical results from Lorentzian spacetime were reproduced

by purely following the general constructions of this work. This is simply what Einstein told us:

time-orientable Lorentzian manifolds provide a viable classical spacetime structure.

6.2. Area metric geometry

We now consider the non-trivial case of area metric spacetimes where the conceptually dif-

ferent structures G, P, P# and P ∗ manifest itself in the actual expressions for these quantities,

other than in the familiar metric case discussed above.
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We first provide a short review of [18] about area metric manifolds and the classification of

area metrics. The reader is referred to that work and to [38, 39] for further details on area metric

manifolds.

An are metric is a fourth-rank covariant tensor fieldG, whose componentsGabcd = G(ea, eb, ec, ed)

in any given basis {ea} of TxM features the symmetry conditions

Gabcd = Gbadc = −Gbacd ,

and an invertibility condition in the sense that there is an inverse area metric with components

(G−1)abmn such that

(G−1)abmnGmncd = 4 δ[a
c δ

b]
d .

Due to the symmetries of an area metric, the indices of G may be combined into antisymmetric

Petrov pairs [ab] such that G can be represented by a symmetric square matrix of dimension

D = dimM(dimM − 1)/2. For instance, in four dimensions, which is the case we will consider

here, we have index pairs [01], [02], [03], [23], [31] and [12] with the corresponding Petrov indices

A = 1, . . . , 6. We can then arrange the independent components of an area metric G in four

dimensions as the 6× 6 Petrov matrix

Petrov(G) =



G0101 G0102 G0103 G0123 G0131 G0112

G0202 G0203 G0223 G0231 G0212

. . . G0303 G0323 G0331 G0312

. . . G2323 G2331 G2312

. . . G3131 G3112

. . . G1212


. (6.9)

An area metric manifold (M,G) carries a canonical volume form ωG, defined by

(ωG)a1···adimM
= f(G) εa1···adimM

, (6.10)

where f(G) = |det(Petrov(G))|1/6 and ε is the Levi-Civita tensor density normalized such that

ε01···M−1 = 1 .

A generic area metric contains more algebraic degrees of freedom than a metric, starting from

dimension four. This can be seen by counting the independent components of the symmetric

D ×D Petrov matrix representing the area metric, which amounts to D(D + 1)/2 independent

real numbers. The invertibility requirement does not further reduce this number since it is an

open condition. Thus, for instance, area metrics in dimensions 2, 3, 4 and 5 have 1, 6, 21 and

55 independent components, respectively.

In metric geometry, Sylvester’s theorem allows to get good technical control over all metrics,

classifying them by their signature and giving normal forms that can be obtained by GL(4)

transformations. Four-dimensional area metrics were classified in [18] into GL(4)-equivalent

algebraic classes. More precisely, the area metrics G and H belong to the same class if there is
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a GL(4) transformation t such that

Gabcd = tamt
b
nt
c
pt
d
qH

mnpq .

The obtained classes are labelled by Segré types according to the eigenvalues of the endomorphism

(in the space of two forms)

Jcd
ab = Gabmn(ωg)mncd

as follows: the Segré type of J encodes the size of the Jordan blocks of J , and whether the

corresponding eigenvalues of the corresponding blocks are real or complex. Thus a Segré type

is represented as [AĀ . . . BCD], with A,B,C,D positive integers. An integer labelled by A and

followed by Ā means that the endomorphism J contains a Jordan block of size A with a complex

eigenvalue of J and a Jordan block of the same size with the complex conjugate eigenvalue of J .

Otherwise the endomorphism contains a real Jordan block of sizes B,C and D. For instance, the

metaclass [11̄ 11̄ 11̄] means that the corresponding endomorphism J has a six distinct complex

eigenvalues where three of them are simply the complex conjugates of the other three. The

resulting classification is provided in theorem 4.3 of [18]. The result is that area metrics in four

dimensions are classified into

• three metaclasses where the Jordan blocks of the corresponding endomorphism J only

have complex eigenvalues σi ± iτi, namely

metaclass I [11̄ 11̄ 11̄]
−τ1 0 0 σ1 0 0

0 −τ3 0 0 σ3 0
0 0 −τ2 0 0 σ2

σ1 0 0 τ2 0 0
0 σ3 0 0 τ3 0
0 0 σ2 0 0 τ1

 , (6.11)

metaclass II [22̄ 11̄]
0 0 0 σ1 −τ1 0
0 0 0 τ1 σ1 0
0 0 −τ2 0 0 σ2

σ1 τ1 0 τ2 0 0
−τ1 σ1 0 0 0 1

0 0 σ2 0 1 0

 ,
metaclass III [33̄]

0 0 0 σ1 −τ1 0
0 0 0 τ1 σ1 0
0 0 −τ1 1 0 σ1

σ1 τ1 1 τ1 1 0
−τ1 σ1 0 1 0 0

0 0 σ1 0 0 0

 ,

• four metaclasses with real Jordan blocks in J of at most size one

metaclass IV [11̄ 11̄ 11]
−τ1 0 0 σ1 0 0

0 −τ2 0 0 σ2 0
0 0 λ1 λ2 0 λ2

σ1 0 λ2 λ1 0 0
0 σ2 0 0 τ2 0
0 0 λ2 0 0 τ1

 ,
metaclass V [22̄ 11]

0 0 0 σ1 −τ1 0
0 0 0 τ1 σ1 0
0 0 λ1 0 0 λ2

σ1 τ1 0 λ1 0 0
−τ1 σ1 0 0 0 1

0 0 λ2 0 1 0

 ,
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metaclass VI [11̄ 11 11]
−τ1 0 0 σ1 0 0

0 λ3 0 0 λ4 0
0 0 λ1 0 0 λ2

σ1 0 0 λ1 0 0
0 λ4 0 0 λ3 0
0 0 λ2 0 0 τ1

 ,
metaclass VII [11 11 11]
λ5 0 0 λ6 0 0
0 λ3 0 0 λ4 0
0 0 λ1 0 0 λ2

λ6 0 0 λ1 0 0
0 λ4 0 0 λ3 0
0 0 λ6 0 0 λ5

 ,

• 16 metaclasses with at least one real Jordan block in J of size greater or equal two.

The explicit expression for the last 16 metaclasses is not included here because, as we will

see in lemma 6.2.1, they cannot provide a hyperbolic, time-orientable and energy-distinguishing

cotangent bundle function P for area metric Maxwell electrodynamics.

Remark. Four-dimensional area metrics that are induced by a Lorentzian metric automat-

ically lie in the first metaclass [11̄11̄11̄]. This corresponds to the values τ1 = τ2 = τ3 = 1 and

λ1 = λ2 = λ3 = 0 in equation (6.11). Moreover, the continuous dependence of the eigenvalues of

an endomorphism on the components of a representing matrix implies that any area metric in

the neighbourhood of such a metric-induced area metric is equally of class [11̄11̄11̄]. Thus area

metrics of immediate phenomenological relevance are clearly those of class I.

Equipped with this knowledge on area metric manifolds and the classification of area metrics,

we can proceed with our study, precisely as we did for metric manifolds, of which area metric

manifolds can provide a classical spacetime structure.

The field equations and the principal symbol. The first step is to consider a matter field

coupling to the geometry, in this case the area metric G. For this purpose we consider a one-

form gauge field A coupling to the area metric G according to the action

S[A,G] = −1

8

∫
dx4f(G)

[
FabFcdG

abcd
]
, (6.12)

where F = dA is defined as the field strength and Gabcd are the components of the inverse area

metric G−1 in a given coordinate system, and f is the density used to define the volume form

in (6.10). In fact, this is the most general action for a one-form gauge potential that results in a

linear constitutive law [40, 41]. Variation of the above action together with the definition of the

field strengths results in the equations of motion

dF = 0 and dH = 0 ,

where H is defined as the field induction and is related to the field strength by

Hab = −1

4
f(G) εabmnG

mnpqFpq .
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These field equations are written in components as

f−1(G)εabcd∂bFcd = 0 (6.13)

f−1(G)∂b

(
f(G)gabcdFcd

)
= 0 . (6.14)

We now introduce coordinates xa = (t, xα) such that t = 0 provides an initial data surface Σ,

and define the electric and the magnetic fields, Eα and Bα respectively, as

Eα = F (∂t, ∂α) and Bα = f−1(G)ε0αβγF (∂β, ∂γ) . (6.15)

Equations (6.13) and (6.14) constitute a system of eight partial differential equations for only

six field variables (Eα, B
α). But one can check, as in the metric case, that the zero component

of both equations does not contain time derivatives and they are therefore constraint equations.

The evolution equations are therefore only provided by the spatial components of (6.13) and

(6.14), which we can write precisely as the first order system (6.5) with uN = (Eα, B
α) and the

6× 6 dimensional matrices Ab now given by

A0M
N =

[
G0µ0ν 0

0 δµν

]
, (6.16)

and

AαMN =

[
−2G0(µν)α −1

2f(G)ε0νγδ G
γδµα

f(G)−1ε0µνα 0

]
. (6.17)

The matrices BM
N depend on the area metric tensor G and the volume form ωG, but sence they

present only lower order coefficients, they are not be relevant for us .

By choosing again the field strengths as dynamical variables one does away with the gauge

symmetry of the action. As we know, the system (6.5) is a particular case of (2.1), so that from

chapter 2 the principal symbol P̃G of this system is proportional to the determinant of the matrix

Aaqa, which in this case is

Aaqa =

[
G0µ0νp0 − 2G0(µν)αpα −1

2ε0νγδG
γδµαpα

εµναpα δνµp0

]
. (6.18)

Before computing the determinant, we decompose the area metric G as

Petrov(G)[ab][cd] =

[
M K
KT N

]
, (6.19)

with antisymmetric index pairs [01], [02], [03], [23], [31], [12]. The matrices M,K,N are 3 × 3

matrices related to the area metric through

Mαβ = G0α0β , (6.20)

Kα
β =

1

2
ε0βµνG

0αµν ,

Nαβ =
1

4
ε0αµνε0βσδG

µνσδ,

Using now that for any n× n matrices A,B,C,D

det

[
A B
C D

]
= det(AD −BC) if CD = DC, (6.21)

we can write the determinant of (6.18) as the determinant of a 3× 3 matrix as

f2(G)det(Aaqa) = det
(
G0µ0νq2

0 − 2G0(µν)αqαq0 +Gµανγqαqγ

)
= −q2

0PGx(q) , (6.22)
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where PGx(q) on the right hand side of the equation above is known as the Fresnel polynomial

and is cast into the covariant expression

PGx(q) = − 1

24
(ωGx)mnpq(ωGx)rstuG

mnr(a
x Gb|ps|cx Gd)qtu

x qaqbqcqd . (6.23)

Notice that the factor f2(G) in front of the determinant in equation (6.22) was precisely intro-

duced for PGx to be covariant. Writing now PGx in terms of the constitutive matrices M,K,N

we find
PGx(p0, ~p)

f2(G)
= a p4

0 + b(~p) p3
0 + c(~p) p2

0 + d(~p) p0 + e(~p) (6.24)

with coefficients

a = −det(Mαβ) ,

b(~p) = ε0αβγ G
αγσµ
M Kβ

σpµ ,

c(~p) = −
(
Nρσ G

κρµσ
M + ε0αβγε

0τµρKβ
τK

α
ρM

γκ + 2Kε
αK

[µ
ε M

α]κ + 2Kκ
αK

[α
ε M

µ]ε
)
pκpµ ,

d(~p) = −2ερεν
(

2NεαK
[µ
ρ M

α]σ −Kµ
ρK

σ
αK

α
ε

)
pσpµpν ,

e(~p) = −Nβκε
βµρεκνγ

(
1

2
MλυNργ −Kλ

ρK
υ
γ

)
pλpµpυpν ,

where GαµβνM = MαβMµν −MανMµβ.

Summarizing, we found that the tangent bundle function providing the geometry of the

cotangent bundle on an area metric manifold must be extracted from

P̃G(x, q) = (q0)2PGx(q) , (6.25)

where PGx is the Fresnel polynomial given in expression (6.23). Before we proceed in testing

our three fundamental conditions on an area metric manifold, we provide a short aside on the

application of area metric geometry to materials, to which we will refer later.

Application to materials (review of [18] and see also [40, 41]). For Maxwell electrodynamics

in linear optical materials, the constitutive relations between the electromagnetic field strength

vectors E,B and the electromagnetic induction vector densities D,H are provided by the equa-

tions

D = εE + αB

H = βE + µ−1B . (6.26)

The matrices ε and µ encode the permittivity and permeability of the material, while the matrices

α and β produce magnetoelectric effects. Using the frame {e0, eα} of the observer measuring

these constitutive relations, we now define (in this observer frame) the two form Fab, the bi-vector

density H [ab] and the tensor density χ[ab][cd] such that

Petrov(F ) =

[
E
B

]
, P etrov(H) =

[
D
H

]
, and Petrov(χ) =

[
ε α
β µ−1

]
. (6.27)
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With these definitions, the constitutive relations (6.26) can be encoded in the single equation

H [ab] =
1

2
χabcdFcd .

The tensor density χ[ab][cd] has 35 independent components in general. However, if in the consti-

tutive relations we have β = αT , the tensor density χ[ab][cd] has precisely the symmetries of an

area metric and the equations of motion for the electric and magnetic fields are obtained from

the action
∫
d4xL with Lagrangian density

L = −1

8
χabcdFabFcd . (6.28)

The case where χ has the symmetries of an area metric therefore corresponds to non-dissipative

linear electrodynamics. This is so because the equations of motion are then derived from an

action principle, which leads to an equation for energy-momentum conservation. Moreover, for

many materials one finds α = β = 0 .

Finally, comparing the Lagrangian (6.28) with that of electrodynamics on area metric back-

grounds (6.12) one identifies

χabcd = |det(Petrov(G))|1/6Gabcd .

We thus conclude that all non-dissipative linear optical media are described in terms of area

metric backgrounds, and the dynamics for the electric and magnetic fields are those of area

metric electrodynamics.

So we now return to our study of which area metric manifolds can provide a consistent clas-

sical spacetime structure by investigating our three fundamental conditions on the cotangent

bundle function P .

Condition I: Predictivity (= hyperbolicity of PG). To ensure that this condition is satisfied,

we would have to identify the area metrics for which the polynomial P̃G in equation (6.25) is

hyperbolic. We know that the factor q0 is hyperbolic, so we only have to check for the hyperbol-

icity of the Fresnel polynomial PG. Strictly speaking, we would have to check for which of the

23 area metric metaclasses there exists a hyperbolic covector with respect to PG. But due to the

complexity of the problem (because the metaclasses contain arbitrary scalars which could turn

the roots of equation PG = 0 from real to complex), we will have to wait until the application

of conditions II and III in order to restrict the metaclasses of area metrics to those that could

provide a classical spacetime structure. See [42] for the identification of some conditions for

Maxwell’s equations with a general linear local constitutive law to be hyperbolic.

The geometric optical limit. In this case, the eikonal equation is given by

(∂0S)2PG(x, ∂S) = 0

with real eikonal function S. We know that by solving this equation we can construct an as-

ymptotic solution of the system to any desired order. This eikonal equation is clearly solved

if (∂0S)2 = 0 or PG(x, ∂S) = 0. But for the same arguments we used in the discussion of the
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Figure 6.1. This picture provides the vanishing set of the Fresnel polynomial
arising from class I area metrics for two cases with q0 = 1 in the corresponding
polynomial P (q): (i) class I with parameter values σ1 = σ2 = σ3 = 0 and τ1 =
3/2, τ2 = 1 , τ3 = 2, which corresponds to an irreducible polynomial, and (ii)
class I with parameter values σ1 = σ2 = σ3 = 0 and τ1 = τ3 = 2 , τ2 = 1, which
corresponds to a reducible bi-quadratic polynomial. In both cases, there are
intersection points of the corresponding vanishing sets, which need to be removed
from N to obtain N smooth.

eikonal equation in the metric case, the solution of the equation (∂0S)2 = 0 does not propagate

and must therefore be excluded. We thus recognize

PG(x, ∂S) = 0

as the physical eikonal equation whose solutions represent truly field propagation. This equation

has no repeated factors (unless the area metric G is induced from a metric g by virtue of Gabcd =

gacgbd − gadgbc) and hence is already reduced. We thus identify the covariant cotangent bundle

function providing the geometry of the cotangent bundle as PxG(q). The condition PxG(q) = 0

defines the massless dispersion relation with the set of massless momenta Nx at a given point x

of M given by

Nx = {q ∈ T ∗xM |PGx(q) = 0} ,

which in contrast to the metric case can differ from N smooth (see figure 6.1).

Condition II: Interpretability ( = time-orientability of PGx). In order to satisfy the in-

terpretability condition, we need the cotangent bundle function PG(x, q) to be hyperbolic and

time-orientable. So we need to compute the dual polynomial of PG. But this cotangent bundle

function PG is clearly more complicated than the metric one. At first sight it could seem that

there is simply no way to avoid the use of elimination theory. However, already in four dimen-

sions, elimination theory is prohibitively difficult for current computer algebra programs, even

if full use is made of our knowledge of the normal forms of area metrics. So while in principle

Buchberger’s algorithm applies, practically one is better off obtaining an educated guess for what

the dual polynomial might be, and then verifying that guess employing equation (3.17). Thanks

to the invertibility properties of area metrics, an educated guess for the dual of PG can be done,
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namely the tangent bundle function

PGx(v) = − 1

24
(ω−1
Gx

)mnpq(ω−1
Gx

)rstuGxmnr(aGxb|ps|cGxd)qtuv
avbvcvd , (6.29)

which has practically the same structure as PG but with the inverse area metric G−1 replaced by

G, and contracted with
(
ω−1
G

)mnpq
= f−1(G)εmnpq. Indeed, using the algebraic classification of

area metrics, it is then a simple exercise for Mathematica to verify that for metaclasses I–XI and

XIII–XIX, the cotangent bundle function PG defined in (6.29) indeed satisfies at every point the

defining property of the dual polynomial (3.17). However, the polynomials P arising from the

area metric metaclasses VIII–XXIII are not of interest because, as we will see in what follows,

they can never give rise to physical spacetimes. Anticipating that result, we recognize PG as the

dual polynomial P#
G to PG for all viable area metric spacetime geometries (classes I-VII), which

as we found provides the geometry on the tangent bundle seen by massless particles.

By taking now q = qaε
a ∈ T ∗xM and v = vaea ∈ TxM , where va = (t, x, y, z) and {εa} is

the frame in which the found metaclasses for area metrics are expressed, we provide the explicit

expression for the polynomials PG and their duals P# for metaclasses I–VII.

Class I

P (q) =
1(

(τ2
1 + σ2

1)(τ2
2 + σ2

2)(τ2
3 + σ2

3))
)1/3 [τ1τ2τ3(q4

0 + q4
1 + q4

2 + q4
3)

+τ1(τ2
2 + τ2

3 + (σ3 − σ2)2)(q2
2q

2
3 − q2

0q
2
1) + τ2(τ2

1 + τ2
3 + (σ3 − σ1)2)(q2

1q
2
3 − q2

0q
2
2)

+τ3(τ2
1 + τ2

2 + (σ1 − σ2)2)(q2
1q

2
2 − q2

0q
2
3)

+2q0q1q2q3

(
τ2

2 (−σ3 + σ1) + τ2
1 (σ3 − σ1)− (τ2

3 + (σ3 − σ2)(σ3 − σ1))(σ1 − σ2))
)]

P#(v) =
1(

(τ2
1 + σ2

1)(τ2
2 + σ2

2)(τ2
3 + σ2

3))
)1/3 [τ1τ2τ3(t4 + x4 + y4 + z4)

+τ1(τ2
2 + τ2

3 + (σ3 − σ2)2)(y2z2 − t2x2) + τ2(τ2
1 + τ2

3 + (σ3 − σ1)2)(x2z2 − t2y2)

+τ3(τ2
1 + τ2

2 + (σ1 − σ2)2)(x2y2 − t2z2)

−2txyz
(
τ2

2 (−σ3 + σ1) + τ2
1 (σ3 − σ1)− (τ2

3 + (σ3 − σ2)(σ3 − σ1))(σ1 − σ2))
)]

Class II

P (q) =
1(

(τ2
1 + σ2

1)2(τ2
2 + σ2

2)
)1/3 [−q4

3τ2 + q4
1τ

2
1 τ2 + 2q2

1q
2
2τ

2
1 τ2 + q4

2τ
2
1 τ2 + 4t2q2

3τ
2
1 τ2

+2q1q2q
2
3

(
τ2

1 − τ2
2 − (σ1 − σ2)2

)
− 2q0q

2
1q3τ1

(
τ2

1 + τ2
2 + (σ1 − σ2)2

)
−2tq2

2q3τ1

(
τ2

1 + τ2
2 + (σ1 − σ2)2

)
+ 2q2

1q
2
3τ1(σ1 − σ2) + 2q2

2q
2
3τ1(−σ1 + σ2)

]
P#(v) =

1(
(τ2

1 + σ2
1)2(τ2

2 + σ2
2)
)1/3 [−t4τ2 +

(
x2 + y2

)2
τ2

1 τ2

−2t
(
x2 + y2

)
zτ1

(
τ2

1 + τ2
2 + (σ1 − σ2)2

)
+2t2

(
xy
(
τ2

1 − τ2
2 − (σ1 − σ2)2

)
+ x2τ1(σ1 − σ2) + τ1

(
2z2τ1τ2 + y2(−σ1 + σ2)

))]
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Class III

P (q) =
1

τ1
2 + σ1

2

[
2q2q3

3 − q1
4τ1

3 − q2
4τ1

3 + 2q0q3
2τ1

(
q3 − 2q0τ1

2
)

+ q1
2q3τ1

(
3q3 + 4q0τ1

2
)

+q2
2
(
3q3

2τ1 − 2q1
2τ1

3 + 4q0q3τ1
3
)]

P#(v) = − 5

(τ1
2 + σ1

2)2

[(
x2 + y2

)2
τ1

3 − 4t
(
x2 + y2

)
zτ1

3 + 2t3(y − zτ1)

+t2
(
−3x2τ1 − 3y2τ1 + 4z2τ1

3
)]

Class IV

P (q) = − 1((
τ2

1 + σ2
1

) (
τ2

2 + σ2
2

) (
λ2

1 − λ2
2

))1/3 [τ1τ2λ1

(
q4

0 − q4
1 − q4

2 + q4
3

)
−λ1

(
τ2

1 + τ2
2 + (σ1 − σ2)2

) (
q2

1q
2
2 + q2

0q
2
3

)
+ τ2

(
τ2

1 − λ2
1 + (σ1 − λ2)2

) (
q2

0q
2
2 − q2

1q
2
3

)
+τ1

(
τ2

2 − λ2
1 + (σ2 − λ2)2

) (
q2

0q
2
1 − q2

2q
2
3

)
+2q0q1q2q3

(
λ2

1(−σ1 + σ2) +
(
τ2

1 + (σ1 − σ2)(σ1 − λ2)
)

(σ2 − λ2) + τ2
2 (−σ1 + λ2)

))
P#(v) =

1((
τ2

1 + σ2
1

) (
τ2

2 + σ2
2

) (
λ2

1 − λ2
2

))2/3 [τ1τ2λ1

(
t4 − x4 − y4 + z4

)
−λ1

(
τ2

1 + τ2
2 + (σ1 − σ2)2

) (
x2y2 + t2z2

)
− τ2

(
τ2

1 − λ2
1 + (σ1 − λ2)2

) (
t2y2 − x2z2

)
−τ1

(
τ2

2 − λ2
1 + (σ2 − λ2)2

) (
t2x2 − y2z2

)
+2txyz

(
λ2

1(−σ1 + σ2) +
(
τ2

1 + (σ1 − σ2)(σ1 − λ2)
)

(σ2 − λ2) + τ2
2 (−σ1 + λ2)

))

Class V

P (q) = − 1(
(τ2

1 + σ2
1)2(λ2

1 − λ2
2)
)1/3 [−q4

0λ1 −
(
q2

1 + q2
2

)2
τ2

1λ1

−2q0

(
q2

1 + q2
2

)
q3τ1

(
τ2

1 − λ2
1 + (σ1 − λ2)2

)
+2q2

0

(
q1q2

(
τ2

1 + λ2
1 − (σ1 − λ2)2

)
+ q2

1τ1(σ1 − λ2) + τ1

(
2q2

3τ1λ1 + q2
2(−σ1 + λ2)

))]
P#(v) = − 1(

(τ2
1 + σ2

1)2(λ2
1 − λ2

2)
)2/3 [−t4λ1 −

(
x2 + y2

)2
τ2

1λ1

−2t
(
x2 + y2

)
zτ1

(
τ2

1 − λ2
1 + (σ1 − λ2)2

)
+2t2

(
xy
(
τ2

1 + λ2
1 − (σ1 − λ2)2

)
+ x2τ1(σ1 − λ2) + τ1

(
2z2τ1λ1 + y2(−σ1 + λ2)

))]
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Class VI

P (q) = − 1((
τ2

1 + σ2
1

) (
λ2

4 − λ2
3

) (
λ2

1 − λ2
2

))1/3 [τ1λ1λ3

(
q4

0 + q4
1 − q4

2 − q4
3

)
+λ1

(
τ2

1 + λ2
4 − 2λ4σ1 + σ2

1 − λ2
3

) (
q2

1q
2
2 + q2

0q
2
3

)
+λ3

(
τ2

1 − λ2
1 + (σ1 − λ2)2

) (
q2

0q
2
2 + q2

1q
2
3

)
+
(
λ2

1 − λ2
4 + λ2

3 + 2λ4λ2 − λ2
2

) (
q2

0q
2
1τ1 − q2

2q
2
3

)
−2q0q1q2q3

(
λ2

1(λ4 − σ1) + τ2
1 (λ4 − λ2)− (σ1 − λ2)

(
λ2

4 − λ2
3 + σ1λ2 − λ4(σ1 + λ2)

))]
P#(v) =

1((
τ2

1 + σ2
1

) (
λ2

4 − λ2
3

) (
λ2

1 − λ2
2

))2/3 [τ1λ1λ3

(
t4 + x4 − y4 − z4

)
−λ1

(
τ2

1 + λ2
4 − 2λ4σ1 + σ2

1 − λ2
3

) (
x2y2 + t2z2

)
−λ3

(
τ2

1 − λ2
1 + (σ1 − λ2)2

) (
t2y2 + x2z2

)
+τ1

(
λ2

1 − λ2
4 + λ2

3 + 2λ4λ2 − λ2
2

) (
t2x2 − y2z2

)
−2txyz

(
λ2

1(−λ4 + σ1) + τ2
1 (−λ4 + λ2) + (σ1 − λ2)

(
λ2

4 − λ2
3 + σ1λ2 − λ4(σ1 + λ2)

))]
Class VII

P (q) =
1((

λ2
5 − λ2

6

) (
λ2

4 − λ2
3

) (
λ2

1 − λ2
2

))1/3 [−λ5λ1λ3

(
q4

0 + q4
1 + q4

2 + q4
3

)
−λ1

(
λ2

5 − λ2
4 + 2λ4λ6 − λ2

6 + λ2
3

)
(q2

1q
2
2 + q2

0q
2
3)

−λ3

(
λ2

5 + λ2
1 − (λ6 − λ2)2

)
(q2

0q
2
2 + q2

1q
2
3)

+λ5

(
−λ2

1 + λ2
4 − λ2

3 − 2λ4λ2 + λ2
2

)
(q2

0q
2
1 + q2

2q
2
3)

+2q0q1q2q3

(
λ2

1(−λ4 + λ6) + λ2
5(λ4 − λ2) + (λ6 − λ2)

(
λ2

4 − λ2
3 + λ6λ2 − λ4(λ6 + λ2)

))]
P#(v) =

1((
λ2

5 − λ2
6

) (
λ2

4 − λ2
3

) (
λ2

1 − λ2
2

))2/3 [λ5λ1λ3(t4 + x4 + y4 + z4)

+λ1

(
λ2

5 − λ2
4 + 2λ4λ6 − λ2

6 + λ2
3

)
(x2y2 + t2z2)

+λ3

(
λ2

5 + λ2
1 − (λ6 − λ2)2

)
(t2y2 + x2z2)

+λ5

(
λ2

1 − λ2
4 + λ2

3 + 2λ4λ2 − λ2
2

)
(t2x2 + y2z2)

−2txyz
(
λ2

1(−λ4 + λ6) + λ2
5(λ4 − λ2) + (λ6 − λ2)

(
λ2

4 − λ2
3 + λ6λ2 − λ4(λ6 + λ2)

))]
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Thus having the dual polynomial, we would still have to check the hyperbolicity and time-

orientability conditions. For those classes satisfying the hyperbolicity and time-orientability

conditions, picking a hyperbolic vector e0 with respect to P#
G corresponds to picking a time-

orientation for M . The hyperbolicity cone C# = C(P#
G , e0) is then defined as the cone of future

observers. Moreover, the massless point particle action which defines the trajectory of light rays1

is

S[x] =

∫
dτ µP#

G (x, ẋ) .

Condition III: Quantizability ( = energy-distinguishability of PG). We will now see that the

energy-distinguishing condition truly restricts the area metric metaclasses in order to provide a

classical spacetime structure. This follows from

Lemma 6.2.1. (Lemma 5.1 of [18]) Let (M,G) be a four-dimensional area metric manifold of

metaclass V III to XXIII. Then there exists a plane of null covectors.

But we know from proposition 4.1.1 that the existence of null planes violates the energy-

distinguishing condition. Thus, as previously stated, only classes I to VII can provide a classical

spacetime structure.

The massive dispersion relation and observer frames. We now identify, from chapter 4, that

for this case the massive dispersion relation is

PG(x, q)−m4 = 0 .

The hyperbolic barrier function is in this case given by f(q) = −1/ degP logPGx(q) which

defines the Legendre map

L(q) =
1

degP

DPGx(q)

PGx(q)
.

We know that the inverse of this Legendre map exists if P is bi-hyperbolic and energy-distinguishing.

However, it is prohibitively difficult to obtain an analytical expression for it. Even more, the

function P ∗G is not a polynomial. This is so due to theorem 6.3 in [20], which states that if

the Legendre dual fLx is also a hyperbolic barrier function, then C(P ) must be a cone of the

Lorentzian type.

Following now the definitions of section (5.1), if {ε0, εα} is to be an observer frame, it must

satisfy

PGx(ε0, ε0, ε0, ε0) = P 0000
Gx = 1 (6.30)

PGx(ε0, ε0, ε0, εα) = P 000α
Gx = 0 (6.31)

Thus, in any observer frame, the coefficient b(~p) = 0 in (6.25) must vanish, implying that the

matrices K and M must satisfy

K [µ
ρ M

ν]ρ = 0 (6.32)

1Preliminary results for the propagation of light in area metric electrodynamics have been given [43].
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in any observer frame. In this case, equations (6.25) reduce to

a = −det(Mαβ) ,

b(~p) = 0,

c(~p) = −
(
Nρσ G

κρµσ
M + ε0αβγε

0τµρKβ
τK

α
ρM

γκ + 2Kε
αK

[µ
ε M

α]κ
)
pκpµ , (6.33)

d(~p) = −2ερεν
(

2NεαK
[µ
ρ M

α]σ −Kµ
ρK

σ
αK

α
ε

)
pσpµpν ,

e(~p) = −Nβκε
βµρεκνγ

(
1

2
MλυNργ −Kλ

ρK
υ
γ

)
pλpµpυpν .

Moreover, we notice that the normalization condition in equation (6.30) implies that

det(Mαβ) = det(G0α0β) 6= 0 , (6.34)

such that the matrix G0α0β is invertible.

We can now prove the following

Proposition 6.2.2. Let G be an area metric decomposed as in (6.19). If the area metric G gives

rise to hyperbolic, time-orientable and energy-distinguishing polynomial PG and there exist an

observer frame in which K = φI, then the area metric is of class I.

Proof. From the assumptions we know that there is an observer frame such that G0αβγ = φε0αβγ ,

or equivalently Kα
β = φδαβ . In this case, using equations (6.33), the polynomial PG(p) is further

reduced to

PG(p0, ~p) = −p4
0det(M)− p2

0(NµνG
κµτν
M )pκpτ −

1

2
(M εγpεpγ)(GβκστM Nβσpκpτ ) (6.35)

= −p4
0det(M)− p2

0(NµνG
κµτν
M )pκpτ − det(N)(M εγpεpγ)(N−1)κτpκpτ .

From the energy-distinguishing property of PG, it then follows that P (p0, ~p) = 0 does not have

any solutions p0 = 0 unless ~p = 0. But then the matrix Mαβ must be of definite signature. For

suppose that this is not the case, then one could find ~p 6= 0 such that Mµνpµpν = 0. That would

imply extra zero solutions for p0, in contradiction to the energy-distinguishing condition. The

same holds for the matrix N . Thus, without loss of generality, we assume that M is negative

definite; then using Descarte’s rule of signs, hyperbolicity of P implies that N must be positive

definite. Now, since M is negative definite there is a matrix T such that T M T T = I. We can

extend the transformation T to a GL(4) transformation Λ by taking Λ0
α = Λα0 = 0 and Λ0

0 = 1.

Applying this Λ transformation to the initial area metric, we find that the transformed area

metric G′ takes the form

Petrov(G′) =

[
−I φ det(T )I

φ det(T )I N ′

]
, (6.36)

where N ′ = T̃NT̃ T and T̃ = det(T )T−1. In particular, N ′ remains positive definite under this

transformation. Computing now the eigenvalues of the endomorphism Jcd
ab = Gabmn(ωg)mncd,

one finds the eigenvalues λ±i = φ det(T )± i√µi, where µi are the positive and hence real eigen-

values of N ′. But this corresponds precisely to class I area metrics, which shows the proposition.
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This proposition shows that if there exists a frame so that K = φI, then the area metric

must be of class I in order to provide a classical spacetime structure. But this is important

because in many linear materials there is no mixture of the electric and magnetic fields in the

field induction, and this precisely corresponds to the case φ = 0 in the matrix K.

Remarks. As we have seen, in the case of area metric spacetimes one clearly recognizes the

different rôles played by the different structures G, P, P# and P ∗, although they are all defined

in terms of the area metric tensor: The gauge field A couples directly to the inverse area metric;

however, the geometry of the tangent bundle is provided by the Fresnel polynomial PG, which is

constructed from the inverse area metric but it is clearly structurally different to it; on the other

hand, in the tangent bundle, the geometry seen by massless particles is provided by the dual

polynomial P#
G , which is constructed from the area metric, while the geometry seen by massive

particles is given by P ∗, which cannot even have a polynomial structure. Moreover, we have also

seen that the hyperbolicity, time-orientability and energy-distinguishing conditions imply that

the possible area metric metaclasses are reduced to those belonging to metaclass I to VII. This

restriction is the area metric analogue to the Lorentzian signature condition on metrics.

6.3. Testing modified dispersion relations

The developments of this work are far from academic musings of only remote relevance

to physics. Indeed, the identification of the hyperbolicity, time-orientability and the energy-

distinguishing conditions as inevitable properties of dispersion relations, once known, provide a

simple algebraic check on the physical consistency of any given dispersion relation. How powerful

these conditions are has already been shown when we derived that only for certain classes of area

metric geometries, the general linear electrodynamics formulated on such backgrounds satisfy

the physicality conditions.

In this section, we show that it is equally simple to extract from our results that some rather

popular modifications of electrodynamics, namely those of Gambini-Pullin and Myers-Pospelov,

indeed possess dispersion relations that render the underlying field theory non-predictive. In the

case of Myers-Pospelov, hyperbolicity (and thus predictivity) can be restored, but unfortunately

only at the expense of destroying the energy-distinguishing conditions (and thus a well-defined

notion of positive energy). These theories thus do not have the physical interpretation that

would be required in order to render observational investigations of bounds on their parameters

meaningful. It is obvious that it is both necessary, and indeed simple, to subject also any other

proposal for modified dispersion relations to the same straightforward tests.

Gambini-Pullin field equations. Gambini and Pullin [44] obtained a modified dispersion

relation by studying the interaction Hamiltonian for electromagnetic and gravitational fields in

a semi-classical approximation motivated by loop quantum gravity. More precisely, they found
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the following refined equations for the electromagnetic field

∇× ~B − ∂t ~E + α∇2(∇× ~B) = 0 (6.37)

∇× ~E + ∂t ~B + α∇2(∇× ~E) = 0,

with α being a length scale. In fact, it is easy to see that equations (6.37) are not well-posed.

For if one defines uA = ( ~E, ~B), equations (6.37) become

DAB(∂)uB = 0, (6.38)

with DAB(∂) a matrix-valued differential operator explicitly given by

DAB(∂) =

[
−δik∂t εijk∂j + α εijk∂l∂l∂j

α εijk∂j + εijk∂l∂l∂j δik∂t

]
, (6.39)

where in the above expression εijk is the standard Levi-Civita symbol and Einstein’s summation

convention is used. If we now try to compute the principal symbol of this equation as prescribed

in chapter 2, we will find that it is identically zero. This is not a problem at all for the case of

a linear partial differential equation with constant coefficients, as it is the case here, because we

can then use the following

Proposition 6.3.1. (Lemma 3.2 of [45]) A differential operator D(∂) whose coefficients are

constant square matrices is hyperbolic with respect to a covector q if and only if its determinant

(detD) (∂) has that property.

Hence, in order to test for hyperbolicity and to compute the principal symbol of the operator

(6.38), we only have to compute its determinant and read the principal symbol, as usual, from it.

Thus the polynomial Q(q) = det(D(iq)) associated with the differential operator (6.39) is easily

found to be

Q(q) = det(D(iq)) = −q2
0

(
q2 + 2α(~q · ~q)2 − α2(~q · ~q)3

)2
, (6.40)

with p2 = p2
0 − ~p · ~p, so that its principal part is given by

P (q0, ~q) = α4q2
0(~q · ~q)6 , (6.41)

which cannot be physical. This is so because the factor ~q ·~q is not even hyperbolic, and the factor

q0 is not admissible because it gives rise to non-propagating solutions (as we saw in the discussion

for the geometric optical limit in the metric and area metric cases.) Even if one argues that only

lower orders of α should be considered, the problem remains. Thus, the Gambini-Pullin field

equations are not predictive, and the corresponding dispersion relation is non-physical. It has

been argued [46] that inadequate quantum states were considered by Gambini and Pullin in the

derivation of equations (6.37). Urrutia et. al. [47] performed a re-examination of Gambini-Pullin

calculations, with a more careful motivation for the quantum states considered. However, these

result in only slightly different refined equations (neglecting a non-linear term in the magnetic

field) for the electromagnetic field, and a very similar analysis as above also shows that again

the associated dispersion relation is not hyperbolic.
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Myers-Pospelov field equations. Myers and Pospelov studied dimension 5 operators [48]

leading to cubic modified dispersion relations. Specifically, they proposed the following modified

equations for the electromagnetic field

Db
a(∂)Ab = 0, (6.42)

with Da
b (∂) a matrix-valued differential operator explicitly written as

Da
b (∂) = �δab + γ ηcb ε

cdeand(n · ∂)2∂e, (6.43)

where in the above expression, γ is the free parameter of the theory, η is the standard Lorentzian

metric η = diag(1,−1,−1,−1), and n is a time-like covector with respect to η, i.e. η(n, n) > 0,

that breaks Lorentz invariance. For the operator (6.43), using again proposition 6.3.1, one finds

det(D(iq)) = (q2)2
[
(q2)2 − γ2(n · q)4

(
nanc − ηacn2

)
qaqc

]
, (6.44)

from which we read off the principal part

P (q) = γ2(p2)2(n · p)4
(
nanc − ηacn2

)
papc , (6.45)

which for η(n, n) > 0 is not hyperbolic. This is so, because the matrix nanc − ηacn2, under

the assumption η(n, n) > 0, is positive semi-definite, which implies that one of the factors of

the principal part of P (p), namely
(
nanc − ηacn2

)
papc is not hyperbolic. Hence, the Myers-

Pospelov field equations are non-predictive. Furthermore, even if one were to choose n such that

η(n, n) ≤ 0, one would still have a null-plane due to the term n · p, which we saw at the end

of chapter 4 to obstruct the energy-distinguishing property, and thus to lead to a non-physical

dispersion relation.

In conclusion, the field equations found by Gambini, Pullin and Urrutia in the spirit of loop

quantum gravity, as well as the field equations found by Myers and Pospelov in the framework

of effective field theory do not lead to physical dispersion relations. More precisely, there is no

spacetime hypersurface Σ on which initial data for the electromagnetic field could be given so

that its values on a later hypersurface would be uniquely prescribed. Hence, phenomenological

conclusions, such as the identification of bounds based on these modified dispersion relations,

are unfortunately not conclusive.



CHAPTER 7

Free QED on area metric spacetimes

We carefully develop the Hamiltonian formulation of area metric electrodynamics in four

dimensions from first principles taking into account the fourth-order polynomial dispersion rela-

tion and associated causal structure. Canonical quantization of the resulting constrained system

then results in a quantum vacuum sensitive to the electromagnetic constitutive tensor of the clas-

sical theory. As an application, we calculate the Casimir effect in a bi-refringent linear optical

medium.

7.1. Hamiltonian formulation and gauge fixing for area metric electrodynamics

Consider the action for area metric electrodynamics

S[A,G] = −1

8

∫
d4xf(G)

[
FabFcdG

abcd
]
, (7.1)

whose causal structure is encoded in the cotangent bundle function PG studied in chapter 6

(see equation (6.23)). We will restrict our investigation to flat area metric spacetimes, which

is to say that there are global coordinate systems in which the components of the area metric

have constant values. Moreover, we will assume, without loss of generality, that the factor f(G)

featuring in the volume form (ωG)abcd = f(G)εabcd for area metric spacetimes (see equation

6.10) satisfies f(G) = | det(G)|1/6 = 1, such that the volume form is only given by the totally

antisymmetric Levi-Civita symbol εabcd defined by ε0123 = +1.

We then want to develop the Hamiltonian formulation of the dynamics encoded in the action

(7.1). In the coordinate system we have chosen, we obtain the canonical momenta associated

with the field variables (A0, Ai) from the Lagrangian density L in the action (8.1) as

π0 =
δL

δ(∂0A0)
= 0, (7.2)

πα =
δL

δ(∂0Aα)
= −G0α0β∂0Aβ −G0αβ0∂βA0 −G0αβγ∂βAγ ,

where latin spacetime indices range from 0 to 3, while purely spatial greek indices range from

1 to 3. In the language of the theory of constrained systems [49, 50, 51, 52], we thus identify

φ1 = π0 ≈ 0 as a primary constraint of the dynamics. We now define the matrix Mαβ such that

MαβG
0β0γ = δγα, whose existence is guaranteed from equation (6.34). Using then equation (7.2)

to express ∂0Aα in terms of the canonical momenta πα, we find the total Hamiltonian density

H = −1

2
Mαβπ

απβ −A0∂απ
α − παMβαG

0βγρ∂γAρ (7.3)

+
1

2
Gαβγρ∂αAβ∂γAρ −

1

2
MαβG

0αγκG0βµν∂µAν∂γAκ + u1(x)π0(x).

73



74 7. FREE QED ON AREA METRIC SPACETIMES

Following the Dirac-Bergmann algorithm [50] for obtaining the Hamiltonian formulation of sys-

tems with constraints, we now compute the commutator {π0,H}. If this commutator does not

automatically vanish, we need to impose {π0,H} ≈ 0 as a secondary constraint in order to en-

sure that the primary constraint φ1 ≈ 0 is preserved under time evolution. Indeed, one obtains

{π0,H} = −∂απα. We thus impose φ2 = ∂απ
α ≈ 0 as a secondary constraint, which must be

added to (7.3) with a corresponding Lagrange multiplier. The total Hamiltonian now reads

H = H0 + u1(x)π0(x) + (u2(x)−A0)∂απ
α, (7.4)

with

H0 = −1

2
Mαβπ

απβ − παMβαG
0βρκ∂ρAκ +

1

2
(Gµνγκ −MαρG

0αγκG0ρµν)∂µAν∂γAκ. (7.5)

We then find {φ2,H} = 0, so that the Dirac-Bergmann algorithm ends here and φ1 ≈ 0 and

φ2 ≈ 0 exhaust the constraints. However, {φ1(t, ~x), φ2(t, ~y)} = 0, so that φ1 and φ2 are first class

constraints, implying that the multipliers u1(x) and u2(x) are completely undetermined. The

infinitesimal gauge transformations induced by (φ1, φ2) on the canonical variables (Aa, π
a) are

δAa(t, ~x) =

∫
d3y εI(t, ~y){Aa(t, ~x), φI(t, ~y)} = ε1(t, ~x)δ0

a − δαa ∂αε2(t, ~x) , (7.6)

δπa(t, ~x) =

∫
d3y εI(t, ~y){πa(t, ~x), φI(t, ~y)} = 0, (7.7)

with I = 1, 2 and εI(t, ~x) being the infinitesimal parameters of the transformations. Knowledge of

these generators of gauge transformations allows us to identify classical observables of the theory

as those functionals that are invariant under gauge transformations. Equivalently, observables

O commute with the constraints {O,φI} ≈ 0. In the present case, it can be checked that the

electromagnetic inductions

Dα = −G0α0βF0β −
1

2
G0αβκFβκ (7.8)

= −G0α0β∂0Aβ −G0αβ0∂βA0 −G0αβκ∂βAκ ,

Hα = −1

2
ε0αβκ

[
Gβκµ0Fµ0 +

1

2
GβκµνFµν

]
(7.9)

= −1

2
ε0αβκ

[
Gβκµ0(∂µA0 − ∂0Aµ) +Gβκµν∂µAν

]
,

defined with respect to the chosen foliation of spacetime into spacelike hypersurfaces1, indeed

commute with the constraints, so that they can be used as observables. Thus we are finally able

to write the Hamiltonian (7.5) for our system in terms of gauge-invariant observables Dα and

Hα as

H0 =
1

2
UαβD

αDβ +
1

2
V αβHαHβ, (7.10)

where the matrices U and V are given as

Uαβ = −Mαβ +
1

8
TµνγκG

0σγκG0τµνMσ(βMα)τ (7.11)

V αβ = −1

8
ε0γκ(αε|0|β)µνTµνγκ, (7.12)

1Spacelike hypersurfaces in the general theory developed here are defined in terms the cotangent bundle
function P , see chapter 2.
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with Tµνγκ defined such that

(Gµναβ −G0ρµνG0καβMκρ)Tµντu = −8 δα[τδ
β
u] . (7.13)

The existence of T is guaranteed due to the invertibility properties of area metrics; indeed, it can

be written explicitly in terms of the block matrices in (6.19) constituting the area metric tensor

as2

Tαβγρ = −2ε0γρµε0αβν
(
(N −KTMK)−1

)µν
.

In order to determine the Dirac brackets [50, 51] associated with our system, one needs to

remove the indeterminacy in the Lagrange multipliers by fixing a gauge. This is achieved here

by manually imposing two further constraints φ3 ≈ 0, φ4 ≈ 0 such that det{φI(~x), φJ(~y)} 6= 0,

with I, J = 1, . . . 4, so that the extended set of constraints φI is now of second class. In our case,

the Euler-Lagrange equations for the gauge field A obtained from the action (8.1) are given by

Gabcd ∂b ∂dAc = 0, (7.14)

which is conveniently split into one temporal equation

G0α0β ∂α ∂βA0 +
[
G0αβγ∂α ∂γ −G0α0β∂0 ∂α

]
Aβ = 0 (7.15)

and three spatial equations[
G0βρα ∂α ∂β −G0ρ0µ ∂0 ∂µ

]
A0 +

[
G0ρ0µ∂2

0 − 2G0(ρµ)α∂0 ∂α +Gραµσ∂α ∂σ

]
Aµ = 0 . (7.16)

As the third constraint we impose the Glauber gauge [53]

φ3 = A0(~x)−
∫
d3x′G(~x, ~x′)G0αβγ∂′α ∂

′
γAβ(~x′) ≈ 0 (7.17)

with −G0α0β ∂α ∂β G(~x, ~x′) = δ(~x− ~x′), or more explicitly,

G(~x, ~x′) = − 1

4π
√
−Mαβ(xα − x′α)(xβ − x′β)

. (7.18)

The expression under the square root is non-negative ultimately due to the energy distinguishing

property because then the matrix Mαβ can be chosen to be negative definite (see chapter 5).

Consistency of the gauge (7.17) with the temporal equation (7.15) requires that the further

constraint

φ4 = G0α0β ∂αAβ ≈ 0 (7.19)

holds and one checks that φ3 and φ4 are conserved under time evolution. In summary, the set

{φI} of all constraints is given by

φ1 = π0 ≈ 0, φ3 = A0(~x)−
∫
d3x′G(~x, ~x′)G0αβγ∂′α ∂

′
γAβ(~x′) ≈ 0,

φ2 = ∂απ
α ≈ 0, φ4 = G0α0β ∂αAβ ≈ 0,

(7.20)

and satisfies

{φI(t, ~x), φJ(t, ~y)} =

∫
d3k

(2π3)


0 0 −1 0
0 0 0 −G0α0β kαkβ
1 0 0 0
0 G0α0βkαkβ 0 0

 ei~k.(~x−~y). (7.21)

2This follows from the invertibility of the block G0α0β in the area metric.



76 7. FREE QED ON AREA METRIC SPACETIMES

The matrix above {φI(t, ~x), φJ(t, ~y)} is invertible, so that the constraints φI are now of second

class and the gauge freedom is gone. Its inverse ({φ(~x), φ(~y)}−1)IJ , defined through∫
d3y {φI(~x), φJ(~y)} ({φ(~y), φ(~z)}−1)JM = δMI δ(~x− ~z), (7.22)

is simply given as

{φI(t, ~x), φJ(t, ~y)}−1 =

∫
d3k

(2π3)


0 0 1 0
0 0 0 1

G0α0β kαkβ

−1 0 0 0
0 − 1

G0α0βkαkβ
0 0

 ei~k.(~x−~y). (7.23)

Equipped with equation (7.23) we can now follow Dirac’s procedure and replace the standard

Poisson bracket {, } by the Dirac bracket {, }D, which is defined as

{A(~x), B(~y)}D = {A(~x), B(~y)} −
∫

d3z d3w {A(~x), φI(~z)}({φ(~z), φ(~w)}−1)IJ{φJ(~w), B(~y)}.
(7.24)

Use of the Dirac brackets relieves one from using weak equalities, since by construction insertion

of constraints into the Dirac brackets automatically implements these weak equalities. Thus we

arrive at the fundamental Dirac brackets of the system

{Aa(t, ~x), πb(t, ~y)}D =

∫
d3k

(2π)3

[
δba − δ0

aδ
b
0 −

δσa δ
b
κ kρ kσ G

0ρ0κ

G0µ0νkµ kν
− δ0

aδ
b
σG

0ρσγ kρ kγ
G0µ0νkµ kν

]
ei
~k.(~x−~y) ,

{Aa(t, ~x), Ab(t, ~y)}D = 0 , (7.25)

{πa(t, ~x), πb(t, ~y)}D = 0 ,

which can be used to proceed with the quantization of the system. The dynamics of the system

is therefore generated by the Hamilton equations

∂tAa(t, ~x) ≈
∫
d3y {Aa(t, ~x),H0(~y)}D , (7.26)

∂tπ
a(t, ~x) ≈

∫
d3y {πa(t, ~x),H0(~y)}D ,

where, due to the use of Dirac brackets, only H0 is involved.

So far we have made only implicit use of the requirement that the area metric background

be hyperbolic, time-orientable and energy-distinguishing, namely in the abstract constructions

underlying the definition of spacetime foliations into spacelike leaves. But now we need to

explicitly solve the field equations (7.16) with the gauge imposed by (7.17), and this requires to

restrict attention to concrete hyperbolic, time-orientable and energy-distinguishing area metric

backgrounds. Moreover, for actual calculations it is most convenient to choose a coordinate frame

in which the area metric takes a simple normal form. The normal form theory of area metrics

in four dimensions was already described in chapter 6 where it was shown that the area metric

cannot be hyperbolic, time-orientable and energy-distinguishing unless the endomorphism J on

the space of two-forms defined through

Jcd
ab = Gcdmnωmnab (7.27)

has a complex eigenvalue structure (Segré type) of the form [11̄11̄11̄], [22̄11̄], [33̄], [11̄11̄11], [22̄11],

[11̄1111] or [111111]. We also know that four-dimensional area metrics that are induced by a
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Lorentzian metric automatically lie in the first class, and so does any area metric in the neighbour-

hood of such a metric-induced area metric. Thus area metrics of immediate phenomenological

relevance are clearly those of this first class, which by a GL(4) frame transformation can be be

brought to the normal form

G[ab][cd] =


−τ1 0 0 σ1 0 0

0 −τ2 0 0 σ2 0
0 0 −τ3 0 0 σ3

σ1 0 0 τ1 0 0
0 σ2 0 0 τ2 0
0 0 σ3 0 0 τ3


for real σ1, σ2, σ3 and
real positive τ1, τ2, τ3

(7.28)

It is then straightforward to show that if σ = σ1 = σ2 = σ3, which is equivalent to the condition

G0abc = σ ε0abc , (7.29)

the polynomial

P (q)

f2(G)
= τ1τ2τ3(q4

0 + q4
1 + q4

2 + q4
3) + τ1(τ2

2 + τ2
3 )(q2

2q
2
3 − q2

0q
2
1)

+τ2(τ2
1 + τ2

3 )(q2
1q

2
3 − q2

0q
2
2) + τ3(τ2

1 + τ2
2 )(q2

1q
2
2 − q2

0q
2
3) (7.30)

associated with an area metric of this class is hyperbolic with respect to h = L−1(∂/∂t). This

is most efficiently verified in the normal frame by observing that for h = (1, 0, 0, 0), the real

symmetric Hankel matrix H1(Pq,h) associated with the polynomial Pq,h is positive definite for any

covector q, which implies that P is hyperbolic [54, 55]. The dual polynomial P# takes precisely

the same shape in the normal form frame employed here, and therefore is also hyperbolic.

From now on in this chapter, we will restrict our investigation precisely to class I area metrics

for which (7.29) holds. In this case, the field equations (7.15) and (7.16) significantly simplify

and, hence, we will now be able to obtain their solutions, orthogonalize them appropriately, and

thus perform the diagonalization of the Hamiltonian.

It is worth noting that the hyperbolic polynomial (7.30) only factorizes if at least two of

the scalars τ1, τ2, τ3 coincide, so that area metrics with a bi-metric dispersion relation merely

present a subset of measure zero within the set of area metrics neighbouring Lorentzian metrics.

Indeed, for the generic case of mutually different scalars, the polynomial P is irreducible. Thus

theories trying to account for birefringence in linear electrodynamics by some sort of bi-metric

geometry fail to parametrize almost all relevant geometries near Lorentzian metric ones.

7.2. Quantization

In order to diagonalize the Hamiltonian (7.5) for predictive, interpretable and quantizable

general linear electrodynamics with a higher-order polynomial dispersion relation given by (7.30),

we first need to find the solutions of the classical field equations (7.15) and (7.16). After choosing

the gauges (7.17) and (7.19), the first equation is trivially satisfied, and the second one reduced

to [
G0α0β∂2

0 +Gαµβν∂µ ∂ν

]
Aβ(t, ~x) = 0 , (7.31)
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due to (7.29). Clearly, these field equations are completely equivalent to the field equations

arising from (7.26). Specifically, we look for plane wave solutions

Aα(t, ~x) =

∫
d3p

(2π)3
e−i(ωt+~p.~x)fα(~p), (7.32)

so that introducing (7.32) into (7.31) we observe that the equation[
G0α0β(ω)2 +Gαµβνpµ pν

]
fβ(~p) = 0 (7.33)

must be satisfied if (7.32) is indeed a solution. Equation (7.33) has non-trivial solutions only if

det
(
G0α0β(ω)2 +Gαµβνpµ pν

)
= 0 . (7.34)

The non-zero frequencies ω for which this is the case are precisely the solutions of P (ω, ~p) = 0,

compare (6.22). From the energy distinguishing condition of an area metric spacetime, it follows

that these frequencies are zero only for ~p = 0, but always because of the hyperbolicity of P . It

is then further immediate from (7.30) that if some (without loss of generality positive) ω(~p) is a

solution for some non-zero given ~p in our normal frame, then so is −ω(~p), and that ω(~p) = ω(−~p).
Thus we have four non-zero energy solutions ±ωI(~p) labelled by I = 1, 2, two positive and two

negative ones, for each spatial momentum ~p. Therefore any solution of the field equations for

the real gauge potential A can be expanded as

Aα(t, ~x) =
∑
I=1,2

∫
Nsmooth

d3p

(2π)3

(
e−i(ω

I(~p)t+~p.~x)f Iα(~p) + ei(ω
I(~p)t+~p.~x)f∗Iα (~p)

)
, (7.35)

where strictly speaking, the integral is to be taken only over spatial momenta ~p for which the

roots ω of P (ω, ~p) are non-degenerate, so that the elementary plane wave solutions are linearly

independent. However, the set of covectors for which these zeros are degenerate is of measure

zero as we showed in the first lemma of chapter 3, so that this restriction of the integral domain

can be technically disregarded. It may be worth emphasizing that the standard appearance of

this expansion is somewhat deceptive, since the ωI appearing here are solutions of the fourth

degree polynomial (7.34), rather than the second degree standard Lorentzian dispersion relation.

Having obtained a basis of solutions of the classical field equations, we now identify an

inner product that is preserved under time evolution and positive definite for positive energy

solutions. To this end, consider solutions Aα(~p)(t, ~x) and Ãα(~q)(t, ~x) of the field equation for

specific spatial covectors ~p and ~q, respectively. Using the field equation (7.31), it can be shown

that the continuity equation

∂0

[
G0α0β

(
A∗α(~p)∂0Ãβ(~q)− Ãβ(~p)∂0A

∗
α(~q)

)]
(7.36)

+∂µ

[
−Gα(µν)β

(
A∗α(~p)∂νÃβ(~q)− Ãα(~p)∂νA

∗
β(~q)

)]
= 0 (7.37)

is satisfied. This implies that we have a conserved charge Q given by

Q =

∫
d3xG0α0β

(
A∗α(~p)∂0Ãβ(~q)− Ãβ(~p)∂0A

∗
α(~q)

)
. (7.38)

The above defined charge Q can be used to define a scalar product in the space of solutions,

which then by definition is conserved under time evolution and is defined as (A(~p), Ã(~q)) = −iQ.
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It satisfies the following properties

(A(~p), λÃ(~q)) = λ(A(~p), Ã(~q))

(λA(~p), Ã(~q)) = λ∗(A(~p), Ã(~q)) (7.39)

(A(~p), Ã(~q)) = (Ã(~q), A(~p))∗ = −(A∗(~p), Ã∗(~q)).

Hence, if we define for our different positive frequency solutions

F Iα(~p)(t, ~x) = e−i(ω
I(~p)t+~p.~x)f Iα(~p), (7.40)

we find that (F I(~p), F ∗J(~q)) = 0 and

(F I(~p), F J(~q)) = −(F ∗I(~p), F ∗J(~q)) = −2ωI(~p)G0α0βf I∗α (~p)f Iβ(~p)δIJδ(~p− ~q). (7.41)

In the derivation of the above results we used charge conservation to find that for I 6= J

G0α0βf I∗α (~p)fJ
∗

β (−~p) = G0α0βf I∗α (~p)fJβ (~p) = 0. (7.42)

Moreover, since G0α0β is negative definite due to (7.28), equation (7.41) shows that the posi-

tive energy solutions can be positively normalized, implying in turn that the negative energy

solutions are negatively normalized. This indefiniteness of the scalar product which however is

under control by virtue of our positive/negative frequency split is responsible for creation and

annihilation processes. Renaming, for convenience,

f Iα(~p) =
aIα(~p)√
2ωI(~p)

,

we finally have

(F I(~p), F J(~q)) = −(F ∗I(~p), F ∗J(~q)) = −G0α0βaI∗α (~p)aIβ(~p)δIJδ(~p− ~q), (7.43)

and our general solution reads

Aα(t, ~x) =
∑
I=1,2

∫
d3p

(2π)3

1√
2ωI(~p)

(
e−i(ω

I(~p)t+~p.~x)aIα(~p) + ei(ω
I(~p)t+~p.~x)a∗Iα (~p)

)
. (7.44)

Now that we have the general solution (7.44), we can use it to write the Hamiltonian, evaluated

at a solution, in diagonal form,

H0 =

∫
d3xH0(~x) = −1

2

∫
d3xG0α0β

(
∂0Aα∂0Aβ −Aα∂2

0Aβ
)

(7.45)

=
1

2

∑
I,J

∫
d3p

(2π)3

d3q

(2π)3
ωJ(~p)

[
(F I(~p), F J(~q)) + (F J(~p), F I(~q))

]
= −1

2

∑
I=1,2

∫
d3p

(2π)3
ωI(~p)G0α0β

[
a∗Iα (~p)aIβ(~p)) + aIα(~p)a∗Iβ (~p))

]
.

The last expression shows that the classical Hamiltonian is positive because G0α0β is negative

definite.

Equipped with the results developed so far, we are now ready to quantize the electromagnetic

field. First, notice that if we multiply equation (7.33) by pα then the amplitude eigenvectors

aIβ(~p) satisfy

G0α0βpαa
I
β(~p) = 0, (7.46)
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such that the constraints G0α0β∂αAβ ≈ 0 and ∂απ
α ≈ 0 are satisfied. Now due to the first

lemma in chapter 3, we know that [13] that for almost all spatial momenta ~p, the two associated

positive energies do not coincide, ωI=1(~p) 6= ωI=2(~p), so that the covectors aI=1
β (~p) and aI=2

β (~p)

are determined up to scale, linearly independent and thus form a basis for the space of all purely

spatial covectors v for which G0α0βpαvβ = 0, and diagonalize the Hamiltonian (7.45). Thus the

only freedom left is a choice of normalization, which we choose such that any solution aIβ(~p) is

expressed as aIβ(~p) = aI(~p)εIβ(~p) with the covectors εIβ(~p) normalized as

−G0α0βεI
∗
α (~p)εIβ(~p) = 1, (7.47)

where there is no summation over I. Furthermore, pα and any aIβ(~p) are clearly linearly inde-

pendent, such that the set of covectors{
εI=1
β (~p), εI=2

β (~p),
~p√

−G0α0βpαpβ

}
, (7.48)

which span a three-dimensional vector space, is orthonormalized with respect to G0α0β. Hence,

they satisfy the completeness relation

−G0ρ0σ
∑
I=1,2

εI∗σ (~p)εIβ(~p) = δρβ −
pµpβG

0µ0ρ

G0α0βpαpβ
. (7.49)

Notice that the normalized covectors εIβ(~p) satisfy the orthogonality identities (7.42). Now the

general solution (7.44) takes the form

Aα(t, ~x) =
∑
I=1,2

∫
d3p

(2π)3

1√
2ωI(~p)

(
e−i(ω

I(~p)t+~p.~x)aI(~p)εIα(~p) + ei(ω
I(~p)t+~p.~x)aI∗(~p)ε∗Iα (~p)

)
,

where the independent coefficients aI(~p) correspond to the amplitudes of the solutions and depend

on the initial values that one considers for a specific problem in the classical approach. At the

quantum level, these amplitudes are precisely the mathematical objects that should be promoted

to operators, such that the corresponding quantum field reads

Âα(t, ~x) =
∑
I=1,2

∫
d3p

(2π)3

1√
2ωI(~p)

(
e−i(ω

I(~p)t+~p.~x)âI(~p)εIα(~p) + ei(ω
I(~p)t+~p.~x)âI†(~p)ε∗Iα (~p)

)
.

Using this quantum solution and the expressions for the energy and spatial momentum (which can

be obtained by calculating the energy-momentum tensor) we find that the quantum Hamiltonian

and quantum spatial momentum operators are given by

Ĥ0 =
1

2

∑
I=1,2

∫
d3p

(2π)3
ωI(~p)

[
âI(~p)âI†(~p)) + âI†(~p)âI(~p))

]
, (7.50)

P̂i =
1

2

∑
I=1,2

∫
d3p

(2π)3
pi

[
âI(~p)âI†(~p)) + âI†(~p)âI(~p))

]
. (7.51)

Hence, if we identify the operators âI(~p), âI†(~p) with annihilation and creation operators respec-

tively, a condition for the Hamiltonian to be positive definite is that these operators obey the

bosonic commutation relations

[âI(~p), âJ†(~q)] = (2π)3δIJδ(~p− ~q) , (7.52)

[âI(~p), âJ(~q) ] = [âI†(~p), âJ†(~q)] = 0.
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Hence, the quantum Hamiltonian operator can be written as

Ĥ0 =
∑
I=1,2

∫
d3p

(2π)3
ωI(~p)âI†(~p)âI(~p)) +

∑
I=1,2

1

2

∫
d3pωI(~p)δ(0) , (7.53)

from which expression we identify the energy of the electromagnetic vacuum, which was calculated

here for plane wave solutions without any boundary conditions, as

Evac(no boundaries) =
∑
I=1,2

1

2

∫
d3pωI(~p)δ(0) . (7.54)

In the next section, we will calculate how this expression changes if one imposes boundary

conditions, and thus obtain the associated Casimir effect. Finally, by using the completeness

relation (7.49) one confirms that[
Âα(t, ~x), π̂β(t, ~y)

]
= i

∫
d3p

(2π)3

[
δβα −

pµpαG
0µ0β

G0ρ0σpρpσ

]
ei~p.(~x−~y), (7.55)

which shows the consistency of the quantization procedure with the Dirac brackets (7.25), since

the latter reduce to the above form due to (7.29).

7.3. Casimir effect in a birefringent linear optical medium

The Hamiltonian (7.53) shows that the quantization of general linear electrodynamics leads

to a modified quantum vacuum compared to standard non-birefringent Maxwell theory, because

the ωI(~p) are now solutions to a fourth degree polynomial rather than a second degree one.

In fact, local physical phenomena which only depend on the quantum vacuum can be used to

test and bound the non-metricity of spacetime. In this section we analyse one such phenomenon,

namely the Casimir effect; similar studies can be conducted for the Unruh effect and spontaneous

emission.

The Casimir effect [56] arises because of the energy cost incurred by imposing boundary

conditions on the electromagnetic field strength. Physically, such boundary conditions arise for

instance by introducing perfectly conducting metal plates into the spacetime. For two infinitely

extended plates parallel to the 1-2-plane, and this is the configuration we will study here for

general linear electrodynamics, the electromagnetic field strength must satisfy the boundary

conditions

F01|plates = F02|plates = F12|plates = 0 (7.56)

everywhere on either plate; this follows, by Stokes’ theorem and thus independent of the geometric

background, from the physical assumption that the plates are ideal conductors inside of which

the field strength must vanish.

Now the key point is that having, or not having, boundary conditions for the vacuum amounts

to an energy difference, the so-called Casimir energy

ECasimir = Evac(plate boundaries)− Evac(no boundaries) . (7.57)

But both energies on the right hand side diverge and need to be regularized such that their

difference is independent of the regulator. This is most easily achieved by first considering

boundary conditions analogous to (7.56), but for all six faces of a finite rectangular box with
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faces parallel to the coordinate planes, and separated by coordinate distances L1, L2, L3. In a

second step we will then push all faces a very large coordinate distance L apart in order to

obtain an expression for Evac(no boundaries) regularized by L, and similarly push all but two

faces in order to obtain a corresponding regularized expression for Evac(plate boundaries). The

difference of these two regulated quantities will indeed turn out to be finite per unit area and be

independent of the regulator L.

Now more precisely, a basis of solutions of general linear electrodynamics satisfying the box

boundary conditions is labelled by a triple (n1, n2, n3) of non-negative integers and a polarization

I = 1, 2 and takes the form

Ax(~x) = aIx(n1, n2, n3) cos(n1π
x

L1
) sin(n2π

y

L2
) sin(n3π

z

L3
) ,

Ay(~x) = aIy(n1, n2, n3) sin(n1π
x

L1
) cos(n2π

y

L2
) sin(n3π

z

L3
) , (7.58)

Az(~x) = aIz(n1, n2, n3) sin(n1π
x

L1
) sin(n2π

y

L2
) cos(n3π

z

L3
) ,

where the aIm(n1, n2, n3) are solutions to equation (7.33) for ωI(n1π/L1, n2π/L2, n3π/L3), which

always exist if the dispersion relation is hyperbolic, time-orientable and energy distinguishing.

The vacuum energy in the presence of the box boundary conditions is thus given by the discrete

sum

Evac(box boundaries) =
1

2

∞∑
~n=0

∑
I=1,2

ωI(π
n1

L1
, π
n2

L2
, π
n3

L3
). (7.59)

Removing appropriate faces to a coordinate distance L one finds from this, in the very large L

limit, the L-regularized expression for the vacuum energy without boundary conditions

ELvac(no boundaries) =
L3

2π3

∑
I=1,2

∫ ∞
0

d3pωI(~p), (7.60)

and the L-regularized expression for the vacuum energy in the presence of two plates parallel to

the 1-2-plane and separated by a coordinate distance d

ELvac(plate boundaries) =
L2

2π2

∑
I=1,2

∑
n′

∫ ∞
0

dpxdpy ω
I
(
p2
x, p

2
y, (

nπ

d
)2
)
, (7.61)

where the prime in the summation symbol n means that a factor 1/2 should be inserted if this

integer is zero, for then we have just one independent polarization. Hence we find for the physical

vacuum Casimir energy U(d) = (Evac(plate boundaries)−Evac(no boundaries))/L2 per unit area

U(d) =
1

2π2

∑
I=1,2

[∑
n′

∫ ∞
0

dpxdpy ω
I
(
p2
x, p

2
y, (

nπ

d
)2
)
− d

π

∫ ∞
0

dpxdpydpz ω
I(p2

x, p
2
y, p

2
z)

]
. (7.62)

In principle, the execution of the above integrals can proceed as in the standard case. However,

with the frequencies ωI now being solutions to a quartic, rather than quadratic, dispersion

relation, these integrals are much harder particularly due to the absence of rotational invariance.

Fortunately, the fact that contributions from the two different polarizations I = 1, 2 are simply

added in the above expression allows for an analytic study of the case where the polynomial P

is reducible [57]. In terms of the scalars τ1, τ2, τ3, σ defining the area metric in a normal form

frame, this is the case if and only if two of the scalars τ1, τ2, τ3 coincide, and we may take τ1 = τ2,
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for instance. Even in this simplest of non-trivial cases, the Casimir energy crucially depends on

the birefringence properties of the underlying general linear electrodynamics. More precisely, the

polynomial in (7.30) factorizes into two Lorentzian metrics,

P (p) = τ1(τ1p
2
0 − τ1p

2
3 − τ3(p2

1 + p2
2))(τ3p

2
0 − τ3p

2
3 − τ1(p2

1 + p2
2)) , (7.63)

so that we immediately obtain the positive energy solutions

ωI=1 =

[
1

τ1

(
τ1p

2
3 + τ3p

2
2 + τ3p

2
2

)]1/2

and ωI=2 =

[
1

τ3

(
τ3p

2
3 + τ1p

2
1 + τ1p

2
2

)]1/2

, (7.64)

turning (7.62) into a sum of integrals as they appear in the standard Casimir problem on a

Lorentzian background. Thus from here on the standard calculation of the Casimir effect [58]

can be followed for each of these integrals separately, and one finally obtains the Casimir energy

(7.62)

U(d) = −1

2

(
τ1

τ3
+
τ3

τ1

)
π2

720d3
. (7.65)

This energy difference of course results in a Casimir force

F (d) = −U ′(d) = −1

2

(
τ1

τ3
+
τ3

τ1

)
π2

240d4
(7.66)

between the plates. The standard Casimir force is recovered if and only if τ1 = τ2 = τ3, and

irrespective of the value of the scalar σ defined below (7.30). This in turn is equivalent to

the absence of classical bi-refringence [59]. Note that the amplification of any bi-refringence is

limited only by the technological constraint of how small the separation d between the plates

can be made in any realistic set-up. In contrast to classical bi-refringence tests, which usually

require accumulative effects over large distances (with all the uncertainties present in such non-

local measurements), one sees here that the Casmir force allows for a detection of bi-refringence

by way of a highly local measurement. Conversely, of course, experimental measurements of the

Casimir force agreeing with the standard prediction within the given technological constraints

can be used to put stringent bounds on the non-metricity of the spacetime region where the

measurement is conducted.





CHAPTER 8

Coupling currents

We have seen that general linear electrodynamics can be canonically quantized on area met-

ric geometry. In this chapter, we now study possible sources of the electromagnetic field on area

metric spacetimes. To this end, we first derive a covariant propagator for flat area metric electro-

dynamics in order to get the general classical solution in presence of charged currents. We then

develop the quantum theory of charged massive point particles, which, in particular, will lead us

to a particle-antiparticle interpretation. Finally, we study generalizations of the Dirac equation

for hyperbolic, time-orientable and energy-distinguishing spacetimes and Dirac-type sources for

the electromagnetic field.

8.1. Covariant propagator

We now wish to consider sources for the electromagnetic field on area metric spacetimes. For

this purpose, we consider the action

S[A,G] = −
∫

dx4 f(G)

[
1

8
FabFcdG

abcd + jaAa

]
, (8.1)

where j is a spacetime vector field, which we immediately see to be a conserved current if it is

not to brake the gauge symmetry of the source free theory. For, by variation of this action with

respect to the gauge field A, we obtain the field equations

∂d

[
f(G)

2
GabcdFab

]
= f(G)jc, (8.2)

which govern the dynamics of the gauge field A. The condition that the action (8.1) be invariant

under the gauge transformation A′a = Aa+∂aφ (with φ any differentiable scalar function) implies

that the continuity equation

∂aj
a + ∂a(log f(G))ja = 0 (8.3)

must be satisfied. We now restrict our discussion to flat area metric spacetimes, so that there is a

global coordinate system in which the components of the area metric G are constant throughout

the manifold M . Thus, in particular, f(G) is constant in this coordinate system. In what

follows we will only work in this coordinate system, such that the field equations (8.2) reduce

considerably to

Gabcd∂c∂aAb = jd with the continuity equation ∂aj
a = 0 . (8.4)

In order to solve these field equations, one has to invert the differential operator Gabcd∂c∂a.

However, due to the gauge invariance of the action, this differential operator is not invertible.

This is so because the equation Gabcd∂c∂a∂bθ(x) = 0 holds for any differentiable function θ, which

means that ∂bθ(x) is a null eigenvector of the considered differential operator.

85
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All states connected by a gauge transformation represent the same physical state. Thus, in

order to describe the system, it is enough to select a representative for each class. This is achieved

by fixing the gauge freedom in the action. More precisely, we will use a covariant gauge, which

allows to solve the field equations (8.4) for the physical states. First, we recall from chapter 6

that the field equations for the electric and magnetic fields in area metric electrodynamics gave

rise to the cotangent bundle function PG given in equation (6.23), which essentially arose as the

principal symbol of the field equations for the related field strenghts. We thus require that the

gauge we will impose must give rise to evolution equations for the gauge field A having the same

principal symbol PG. This is achieved, for instance, by choosing the covariant gauge

P abcd∂a∂b∂cAd = 0 ,

which can be thought of as the analogue of the Lorentz gauge in Minkowski spacetime. This

gauge can always be reached; for suppose that we begin with a gauge field Aa(x) not satisfying

this covariant gauge, using then our initial gauge freedom A′a(x) = Aa(x) + ∂aθ(x) we choose

θ(x) to be a solution of the scalar equation P abcd∂a∂b∂c∂dθ = −P abcd∂a∂b∂cAd1. This enforces

A′(x) to satisfy the chosen covariant gauge.

The gauge is adapted at the level of the action by introducing it in the Lagrangian using the

Lagrange multiplier λ as

L = −f(G)

[
1

2
Gabcd∂aAb∂cAd +

1

2
λ
(
P abcd∂a∂b∂cAd

)2
+Aaj

a

]
, (8.5)

Thus variation of L with respect to λ ensures that the covariant gauge P abcd∂a∂b∂cAd = 0 is

satisfied. Using now the Euler-Lagrange equations, variation of the Lagrangian with respect to

the gauge field A results in

Ddb
G (∂)Ab = jd (8.6)

where the differential operator Ddb
G (∂) is given by

Ddb
G (∂) =

(
−Gabcd∂c∂a − λP dceuP vmnb∂v∂m∂n∂c∂e∂u

)
. (8.7)

Calculation of the principal polynomial of this operator as prescribed in chapter 2 gives the result

that it is identically zero. But we already know from chapter 6 that in this case proposition 6.3.1

can be used to obtain the principal polynomial. Thus, according to the mentioned proposition,

a simple calculation shows that for any area metric

det(DG(q)) = λ(PG(q))3 ,

so that the principal symbol of the field equations (8.6) is PG, as desired, and the differential

operator DG(∂) can therefore be inverted now. It can also be derived from the theory presented

in [45] that, for the flat case considered here, the field equations (8.6) are well-posed if and only

if PG is a hyperbolic polynomial.

1The solution of this equation exists and is unique since we asummed that P is a hyperbolic polynomial, see
[60].
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The inverse of the differential operator in (8.6) provides a covariant propagator2 and, fur-

thermore, the general solution to the field equations. Inverting the differential operator, we find

that the inverse 4̃de (in Fourier space) is given as

4̃de = −1

2

εabcdεrsteM
bsM ctvavr

P (q)3
− 1

λ

qdqe
P (q)2

, (8.8)

where

va = P abcdqbqcqd and M cf = Gcafbqaqb. (8.9)

However, due to charge conservation, the second term on the right hand side of (8.8) does not

contribute to the propagator. We therefore finally obtain the actual propagator 4de as

4de(q) = −1

2

εabcdεrsteM
bsM ctvavr

P (q)3
∼ O(q−2). (8.10)

Note that, the above expression does not depend at all on the Lagrange multiplier λ. In terms

of this propagator, the general solution of (8.6) is given as

Aa(x) = −
∫

d4y

[∫
d4p ei p.(x−y) 4ab (p)

]
jb(y) . (8.11)

Providing the explicit expression of the source jb for the gauge field A and solving this integral,

one finds the solution of the field equations (8.6).

For instance, we can consider that the vector current ja is produced by a point particle of

charge e. The charged point particle is assumed to describe a worldline y(τ) with parameter τ

in spacetime, so that the produced vector current is given by

ja(y) = e
dza(τ)

dτ

δ(y − z(τ))

f(G)
. (8.12)

which has support on the worldline of the particle. By integrating (8.11) assuming this current,

one obtains the analogue of the Liénard-Wiechert potentials on area metric spacetimes. We have

thus constructed a covariant propagator for flat area metric spacetimes, which, in particular,

provides the general solution of the classical field equations (8.2) in the presence of sources.

8.2. Quantum point charges

We may now study how a charged quantum particle couples to a gauge field A on a flat

hyperbolic, time-orientable and energy-distinguishing spacetime. We continue working (and we

will do it so in the remaining part of this chapter) in the global coordinate system in which the

components of P are constant throughout the spacetime manifold.

For this purpose, we recall that the classical massive point particle action is given by

S[x] = −m
∫ b

a
dτ P ∗(ẋ)1/degP , (8.13)

where m is the mass of the particle and P ∗ is the tangent bundle function providing the geometry

seen by massive particles in each tangent space, which is related to the cotangent bundle function

P by equation (4.20). Here it is very important to remember that the particle velocity ẋ in the

action is constrained to be an element of L(C)∪L(−C), where L is the Legendre map defined in

2Another one has been found by Itin [61] by avoiding to chose a gauge, which however cannot be used to
perform quantization.
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section 4.3. This is so because, in order to obtain the point particle action above, the Legendre

map played a key rôle, but is only well-defined for C ∪ −C.

This free particle action is invariant under transformations τ 7→ τ ′(τ) that are positive, i.e.,

dτ ′/dτ > 0, and moreover under the inversion τ → −τ . This latter time-inversion invariance is

gone, however, when the particle is given a charge e and coupled to the electromagnetic gauge

field A, according to the action

S[x] = −
∫ b

a
dτ
[
mP ∗(ẋ)1/ degP − e ẋaAa(x)

]
(8.14)

The first degree of homogeneity of the Lagrangian in the velocities ẋ implies, using Euler’s

theorem3 (and the notation Da := ∂/∂ẋa), that the Hamiltonian

H = paẋ
a − L = ẋaDaL − L = L − L = 0 , (8.15)

with a = 0, . . . ,dimM − 1, vanishes. Thus the Hamiltonian is identically zero (as it is the case

for any reparametrization invariant theory [62]) and therefore standard quantization methods

cannot be used because we cannot obtain all canonical momenta in terms of the velocities. This

can also be seen because DaDbL(ẋ)ẋb = 0. In other words, the Hessian of the Lagrangian has

an eigenvector with eigenvalue zero. In this case, in order to perform the canonical quantization

of the system, Dirac’s procedure for constrained systems will be applied in what follows. The

reader is referred to [49, 50, 51] for the theory of constrained systems.

We first compute the canonical momenta π of the particle

πa = DaL(ẋ) = −mP ∗(ẋ)1/ degPL−1
a (ẋ)− eAa , (8.16)

where L−1
a are the components of the inverse Legendre map given in an observer frame εa =

{ε0, εα}. From this equation, we conclude that π + eA = −mP ∗(ẋ)1/ degPL−1(ẋ) is constrained

to be contained in −ζC(P ) (otherwise the Legendre map is not even defined), where ζ is a

parameter given by ζ = sign(ẋ0) = −sign(π0 + A0) encoding whether π + A lies in C(P ) or in

−C(P ). As a consequence of the equation P ∗(ẋ)P (L−1(ẋ)) = 1, which relates P and P ∗, and

the definition of π, it follows now that

P (π + eA)−mdegP = 0 , with π + eA ∈ C(P ) ∪ −C(P ) , (8.17)

which is a primary constraint for the system. We now notice that

(1) if π + eA ∈ −C(P ), then π0 + eA0 < 0 and ẋ0 > 0. In this case, the constraint (8.17)

can be written as

π0 + eA0 − ω−(~π + e ~A) = 0 , (8.18)

where ω−(~π + e ~A) < 0 is the solution of (8.17) lying in −C(P ), i.e.,

P (ω−(~π + e ~A), ~π + e ~A)−mdegP = 0 .

(2) if π + eA ∈ C(P ), then π0 + eA0 > 0 and ẋ0 < 0. In this case, the constraint (8.17) is

written as

π0 + eA0 − ω+(~π + e ~A) = 0 , (8.19)

3Euler’s theorem states that if a function f is homogeneous of degree s, i.e. f(τx) = τsf(x), then Dxf.x = sf .
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where ω+(~π + e ~A) is the solution of (8.17) lying in C(P ) .

Although non-covariant, the expressions (8.18) and (8.19) have the advantage that they explicitly

show the constraint of π + eA to lie in C(P ) ∪ −C(P ).

We can now encode both constraints (8.18) and (8.19) in a single equation by noticing that

ω+ and ω− are related by ω+(~π + e ~A) = −ω−(−~π − e ~A). This comes from the even degree of

homogeneity of the cotangent bundle function P because if ω(~p) is a solution of P (ω(~p), ~p) −
mdegP = 0, by changing ~p → −~p we obtain P (ω(−~p),−~p) −mdegP = P (−ω(−~p), ~p) −mdegP .

Thus we conclude that if ω(~p) is a solution, −ω(−~p) is also a solution. Moreover, we know

from the energy-distinguishing condition that P must be of even degree. But for a hyperbolic

polynomial of even degree degP there are only two solutions of P (p) − mdegP = 0 which are

real for all ~p, so that it follows that ω+(~π + e ~A) = −ω−(−~π − e ~A) . Taking now the notation

ω+(~π + e ~A) = ω(~π + e ~A) > 0 and using the above defined parameter ζ, we finally encode the

constraints (8.18) and (8.19) in the single equation

φ(1) = ζ(π0 + eA0) + ω(−ζ(~π + q ~A)) = 0 . (8.20)

Following now Dirac’s method [50, 51, 52], the Hamiltonian H of the system is a pure constraint

one given by H = λφ(1) , where λ is an undetermined Lagrange multiplier. From this expression

for the Hamiltonian, it follows that φ̇(1) = {H,φ(1)} = 0, so that there are no further constraints

and therefore λ cannot be determined from the requirement φ̇1 = 0. In Dirac’s language, we say

that φ(1) is a first class constraint, so that in order to find the dynamical evolution of the system

in phase space it is necessary to fix the gauge freedom that we have in the action. In order to fix

the gauge, we use the freedom in the action to fix the scale of τ and eliminate all arbitrariness

in the Lagrange multiplier λ. We thus take

φ(2) = x0 − ζτ (8.21)

as a time dependent second constraint fixing the gauge, so that we find that

CIJ = {φI , φJ} =

[
0 −ζ
ζ 0

]
, where I, J = 1, 2 ,

is now invertible, turning the system into a second class one with time dependent constraints.

This is the case because now the Hamiltonian is H = λIφ(I) (with I = 1, 2), such that the

requirement that the constraints φ(I) be preserved in time implies that

φ̇(I) = {φ(I), H}+ ∂τφ(I) = CIJλ
J + ∂τφ(I) = 0,

and since CIJ is invertible, one obtains

λI = −CIJ∂τφ(J) ,

where CIJCJK = δIK . This equation fixes the Lagrange multipliers λI and leaves the parameter

ζ undetermined. This way we can simultaneously deal with the both theories labelled by ζ. In

fact, one finds λ(1) = λ = 1 and λ(2) = 0 .



90 8. COUPLING CURRENTS

The equations of motion are then found to be

ẋ0 = ζ = ±1 , ẋα =
∂ω(−ζ(~π + e ~A))

∂πα
, π̇a = −eζ∂aA0 − ∂aω(−ζ(~π + e ~A)) ,

together with the constraint equations φ(I) = 0. Moreover, since π0 and x0 can be obtained

from the constraint equations φ(I) = 0, only η = (~x, ~π) are independent variables. The equations

of motion for the independent variables can thus be obtained from the effective Hamiltonian

Hζ
eff = eζA0 + ω(−ζ(~π + e ~A)) as

η̇ = {η,Hζ
eff} . (8.22)

These equations do not involve neither time dependence explicitly (which at the quantum level

ensures unitary time evolution [52]) nor constraints.

We are now ready to perform the canonical quantization. We first promote the classical

variables (~x, ~π) to operators (~̂x, ~̂π) acting on a Hilbert space Hζ , whose elements are assumed to

be L2-integrable functions φ with standard L2 scalar product

(ψ, φ) =

∫
d3xψ†φ . (8.23)

The basic commutators are defined through the Poisson brackets as

[x̂a, π̂b] = iδab . (8.24)

We take the following standard representation for the basic operators acting in Hζ

x̂a = xa, and π̂a = −i∂a . (8.25)

Clearly, these basic operators are Hermitian with respect to the defined scalar product (8.23) if

we define the adjoint of an operator by simply taking its complex conjugate.

The dynamics of the physical states Φζ ∈ Hζ is provided by the Schrödinger equation

i∂τΦζ = Ĥζ
effΦζ =

(
eζA0 + ω(−ζ(−i~∂ + e ~A))

)
Φζ ,

which, following [63] and using the definition of φ(2), is given in terms of the physical time x0 as

i∂0Φζ = ζĤζ
effΦζ =

(
eA0 + ζω(−ζ(−i~∂ + e ~A))

)
Φζ . (8.26)

The operator ω(−ζ(−i~∂ + e ~A)) is defined by its classical Taylor expansion as follows; since at

the classical level ω(~P )
∣∣∣
~P=−ζ(~π+e ~A)

comprises the negative and positive real solutions of P (p)−

mdegP = 0, it admits a Taylor expansion, in particular, as

ω(~P )
∣∣∣
~P=−ζ(~π+e ~A)

=

∞∑
n1=0

· · ·
∞∑

nd=0

Cn1···nd
n1! · · ·nd!

(−ζ)n1+···+nd(π1 + e ~A1)n1 · · · (πd + e ~Ad)
nd , (8.27)

where d = dimM − 1 and Cn1···nd are totally symmetric real quantities given by

Cn1···nd =
∂n1+···+ndω(~P )

∂Pn1
1 · · · ∂P

nd
d

∣∣∣∣∣
~P=0

.

Hence, the operator ω(−ζ(−i~∂ + e ~A)) is given at the quantum level as

ω(−ζ(−i~∂ + e ~A)) =

∞∑
n1=0

· · ·
∞∑

nd=0

Cn1···nd
n1! · · ·nd!

(−ζ)n1+···+nd(−i∂1 + e ~A1)n1 · · · (−i∂d + e ~Ad)
nd ,
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which is Hermitian with respect to the defined scalar product if we take its adjoint as the

complex conjugate of the operator. This ensures that the complete Hamiltonian in (8.26) is

itself Hermitian. But this implies that (Ψ,Φ) is conserved under time evolution if Ψ and Φ are

solutions of the Schrödinger equation (8.26) in their respective Hilbert spaces Hζ .
Moreover, writing the explicit values of ζ in equation (8.26), we find that the time evolution for

the physical states φ+ of H+ is given by the equation

i ∂0φ
+(x) =

(
eA0 + ω(i~∂ − e ~A)

)
φ+(x) , (8.28)

and that the time evolution for the physical states φ− of H− is given by the equation

i ∂0φ
−(x) =

(
eA0 − ω(−i~∂ + e ~A)

)
φ−(x) . (8.29)

Taking the complex conjugate of the last equation, we have

i ∂0(φ−)∗(x) =
(
−eA0 + ω(i~∂ − (−e) ~A)

)
(φ−)∗(x) .

From this equation, we see that the operation of taking the complex conjugate of a physical

state in H− describing a particle of charge e produces a physical state of H+ describing a

particle of charge −e. In other words, (φ−)∗ describes an antiparticle in H+ precisely as in the

standard metric description. We thus see that the particle-antiparticle interpretation holds in

any hyperbolic, time-orientable and energy-distinguishing spacetime.

If the massive particle is free, that is, when the gauge potential is switched off, it is simple

to find a solution of equation (8.28). Indeed, in this case, the equation for φ+ (the solution φ−

is obtained by simply taking the complex conjugate of φ+) is reduced to

i ∂0φ
+(x) = ω(i~∂)φ+(x) , (8.30)

and it is straightforward to check that

φ+(x) =

∫
d~p

f(~p)
a+(~p) e−iω(~p)t−i~x.~p , (8.31)

with f(~p) an arbitrary function of ~p, a+(~p) ∈ C and ω(~p) a solution of P (ω(~p), ~p)−mdegP = 0,

is a solution of (8.30). By construction, φ(±) also satisfy(
P (i∂0, i~∂)−mdegP

)
φ(±)(x) = 0 , (8.32)

which can be thought of as a generized Klein-Gordon equation for a degP spacetime geometry.

We have thus studied the canonical quantization of a charged point particle coupled to the elec-

tromagnetic gauge field A on a hyperbolic, time-orientable and energy-distinguishing spacetime,

which assumption has been crucial to perform the energy split which ultimately led us to the

Schödinger equation (8.26). This also allowed us to show the particle-antiparticle interpretation

and to find an explicit solution for the wave function of a free massive particle.

In the next section, we will study how to generate linear field equations whose solutions

satisfy (8.32), but can be more special4.

4On Lorentzian spacetimes, solutions of the Dirac equation satisfy the Klein-Gordon equation, but are more
special.
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8.3. General structure of lower order field equations

In this section, we wish to study lower derivative order incarnations of the field equations

(8.32). In particular, their plane wave solutions have to satisfy the dispersion relations encoded in

the cotangent bundle function P . We find that one can only obtain field equations of a derivative

order that divides the degree of the polynomial P . From this insight, we can then derive the

algebraic constraints on the highest derivative coefficients of any lower degree field equation, and

further conditions if the field equations are to follow from an action principle.

We first recall the massive dispersion relation

P (q)−mdegP = P a1a2···adegP qa1 · · · qadegP −m
degP = 0 , (8.33)

where q is a covector field and P a1a2...adegP is the polarization tensor of the cotangent bundle

function P (see equation (4.8)). We then want to generate linear field equations whose plane

wave solutions e−iq.x satisfy the dispersion relation. This is meant in the sense that the covector

q in any plane wave solution satisfies P (q)−mdegP=0.

Field equations of maximal derivative order. In order to reproduce the dispersion relation

(8.33), these field equations take the form[
idegPP a1···adegP ∂a1 · · · ∂adegP −m

degP
]
φ = 0 , (8.34)

which determines the dynamical evolution of a scalar field φ : M → R. This is so because

obviously φ(q) = e−i q.x is a solution of this field equation if only if q satisfies the massive

dispersion relation. In this case, it is also very easy to find, by using the Euler-Lagrange equations

degP/2∑
l=0

(−1)l∂a1 · · · ∂al
[

∂lL
∂ (∂a1 · · · ∂alφ)

]
= 0 , (8.35)

that a possible Lagrangian density giving rise to the above field equations is

L = (−1)− degP/2 idegP P a1···adegP
1

2
(∂a1 · · · ∂adegP/2φ)(∂adegP/2+1

· · · ∂adegP φ)− 1

2
mdegPφ2 .

For the case of a complex scalar field, one can take the real Lagrangian

L = (−1)− degP/2 idegP P a1···adegP
1

2
(∂a1 · · · ∂adegP/2φ

∗)(∂adegP/2+1
· · · ∂adegP φ)− 1

2
mdegPφ∗φ ,

so that both, φ and φ∗, satisfy the scalar field equation (8.34).

If we now consider that φ and φ′ are solutions of equation (8.34), one obtains that the quantity

Jc(φ, φ′) = i

degP/2−1∑
l=0

(−1)lP ca1···adegP−1 ×[
∂a1 · · · ∂alφ

∗∂al+1
· · · ∂adegP−1

φ′ − ∂a1 · · · ∂alφ
′∂al+1

· · · ∂adegP−1
φ∗
]

(8.36)

satisfies the continuity equation ∂aJ
a = 0. This means that

(φ, φ′) =

∫
ddimM−1xJ0(φ, φ′) (8.37)
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is a conserved quantity and can therefore be used as scalar product on the space of solutions.

To see how the normalization proceeds, we consider two arbitrary solutions, φp = eip.x and

φ′p′ = eip
′.x, of the field equations (8.34), where p0 and p′0 may equally correspond to a real or

complex solution of the dispersion relation (8.33). Introducing these solutions into the scalar

product (8.37) we find

(φp, φ
′
p′) = (2π)dimM−1δdimM−1(~p− ~p′)ei(p0−p′0)x0 × (8.38)

dimP/2−1∑
l=0

P 0a1···adegP−1

[
p∗a1 · · · p

∗
al
p′al+1

· · · p′adegP−1
+ p′a1 · · · p

′
al
p∗al+1

· · · p∗adegP−1

]
.

Moreover, we also obtain that

0 = ∂0(φp, φ
′
p′) = i(p0 − p′∗0)(φp, φ

′
p′) . (8.39)

Combining both equations, (8.38) and (8.39), we finally find

(φp, φ
′
p′) =

{
(2π)dimM−1δdimM−1(~p− ~p′)∇0P (p) if p0 = p∗′0
0 otherwise

(8.40)

We can thus use this inner product in order to normalize the real wave functions φ+(x) for a free

particle found in equation (8.31) by taking

φ+
p (x) =

1√
∇0P (ω(~p), ~p)

e−iω(~p)t−i~x.~p (8.41)

in the free particle wave function (8.31)

φ+(x) =

∫
d~p a+(~p)φ+

p (x) .

General construction of field equations of reduced derivative order. Let us now look for linear

field equations satisfying the dispersion relation P (q) −mdegP = 0 but of derivative order less

than degP . For this purpose, we consider the following differential equation

(P̃ a1...ar∂a1 · · · ∂ar −mr)Φ = 0 (8.42)

of degree r < degP . For Φ a scalar quantity, the plane wave solutions of this equation satisfy

P̃ a1...arpa1 · · · par −mr, which are unable to recover the massive dispersion relation. Hence, in

order to have matter field equations of reduced order, we have to consider equations of the type

(8.42) with Φ : M → V taking values in some finite-dimensional complex vector space V , so that

we may consider equations of the type[
ir (ΓMN )a1···ar∂a1 · · · ∂ar −mrIMN

]
ΦN = 0 . (8.43)

Clearly, plane wave solutions ΦN
q (x) = Φ̃N e−i q.x of this equation with non-trivial Φ̃N satisfy the

massive dispersion relation if and only if the equation

det(Γ(q)−mrI) = c (P (q)−mdegP )α (8.44)

is satisfied for some positive integer α. In this equation, Γ(q) = (AMN )a1···arqa1 · · · qar , I is

the identity matrix on V and c is an arbitrary constant proportionality factor. Using now the
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Hamilton-Cayley theorem5, it follows that if the above equation is satisfied, the matrix Γ(q) must

be such that it satisfies its own characteristic equation. More precisely, the equation[
Γ

degP
r (q)− P (q)I

]α
= 0 (8.45)

must be satisfied. This equation clearly implies that the matrix Γ
degP
r (q) − P (q)I must be

nilpotent, which condition is found to be equivalent6 to

Γ
degP
r (q) = P (q)I . (8.46)

Thus this equation is a necessary condition for equation (8.44) to hold. This equation also gives

the restriction that the allowed field equations of reduced order r are those for which degP/r is

an integer. For instance, for degP = 2 one can only take r = 1, 2, which correspond to the Dirac

and Klein-Gordon equations, for degP = 4 one can take r = 1, 2, 4, for degP = 6 one can take

r = 1, 2, 3, 6, and so on. The following proposition will now provide sufficient conditions for the

matrices Γ(q) satisfying equation (8.46) to satisfy equation (8.44).

Proposition 8.3.1. Let Γ(q) ∈ GL(dimV,C) and degP/r a positive integer. Then

det(Γ(q)−mr I) = (−1)dimV
[
mdegP − (−1)degP/rP (q)

] r dimV
degP

(8.47)

if and only if

Tr(Γ(q)) = 0, · · · ,Tr(Γ(degP/r)−1(q)) = 0 and ΓdegP/r(q) = P (q)

Proof. Assume Tr(Γ(q)) = 0, · · · ,Tr(ΓdegP/r−1(q)) = 0 and ΓdegP/r(q) = P (q)I. By using the

identity

det(I + Γ(q)) =
∞∑
k=0

1

k!

Tr

 ∞∑
j=1

(−1)j+1

j
Γj(q)

k , (8.48)

it immediately follows that

det(I + µΓ(q)) =
[
1− µdegP/r(−1)degP/rP (q)

]
. (8.49)

The result follows by setting µ = (−mr)−1. Conversely, assuming now that equation (8.47) holds

and using again identity (8.48), it follows that Tr(Γ(q)) = 0, · · · ,Tr(ΓdegP/r−1(q)) = 0 and that

Tr

(ΓdegP/r(q)

P

)k = dimV for all k = 0, 1, . . . .

But the only matrix satisfying the last equation is the identity matrix, which implies that

ΓdegP/r(q) = P (q) I, thus proving the proposition.

So this theorem indeed provides necessary and sufficient conditions that the matrices (AMN )a1···ar

must satisfy for equations (8.43) to have plane wave solutions satisfying the massive dispersion

relation. However, additionally to the generation of equations (8.43), we also want these equations

5The Hamilton-Cayley theorem states that every endomorphism on a finite-dimensional vector space satisfies
its own characteristic equation.

6This is shown by using that a matrix A is nilpotent if and only if Tr(Ak) = 0 for all positive integers k.
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to be derived from an action S[Φ] =
∫
ddimMxL[Φ] with real Lagrangian density L because then,

for instance, one can introduce interaction terms by using the symmetries of the Lagrangian

and directly obtain conserved quantities by using Noether’s theorem. The following proposition

provides sufficient conditions in order to derive the considered equations from an action principle.

Proposition 8.3.2. The set of equations (8.43) is derived from the scalar action functional

S[Φ, Φ̄] =

∫
ddimMx Φ̄ [ir (Γ)a1···ar∂a1 · · · ∂ar −mr] Φ , (8.50)

where Φ̄N = Φ†MΓMN and Γ is a matrix on the representation space V , if the matrix Γ is such

that

(Γ†)−1(Γa1···ar)†Γ† = Γa1···ar . (8.51)

Moreover, the action is real if in addition the matrix Γ is Hermitian, i.e., Γ† = Γ.

Proof. Variation of the action above with respect to Φ̄ trivially reproduces equations (8.43). But

we now have to make sure that variation of the action with respect to Φ also gives rise to the

same field equations. But we obtain

(δΦL)† = 0 ⇒ (i)r(Γa1···ar)†Γ†∂a1 · · · ∂arΦ−mrΓ†Φ = 0 .

Multiplying the last expression by (Γ†)−1, we indeed obtain that equation (8.51) must hold.

Concerning the reality of the action, using integration by parts and assuming that equation

(8.51) is satisfied, we obtain

S†[Φ, Φ̄] =

∫
ddimMxΦ†Γ† [ir (Γ)a1···ar∂a1 · · · ∂ar −mr] Φ .

Thus, S†[Φ, Φ̄] = S[Φ, Φ̄] if Γ = Γ†, which proves the proposition.

Clearly, the Lagrangian in the action (8.50) is invariant under the U(1) global transformation

Φ→ eiαΦ, where α is the parameter of the transformation. In this case, we can more efficiently

find a conserved quantity in the space of solutions (which can therefore be used to normalize

them) by applying Noether’s theorem to the underlying U(1) symmetry of the Lagrangian. We

thus find the current

Jc(Φ) = i α
r−1∑
l=0

(−1)l
[
∂a1 · · · ∂al

(
∂L

∂(∂c∂a1 · · · ∂ar−1Φ)

)
∂al+1

· · · ∂ar−1Φ

]
(8.52)

= ir+1 α

r−1∑
l=0

(−1)l
[
∂a1 · · · ∂alΦ̄ (Aca1···ar−1) ∂al+1

· · · ∂ar−1Φ
]

which satisfies the continuity equation ∂cJ
c(Φ) = 0. This implies that the charge

Q(Φ) =

∫
ddimM−1xJ0(Φ)

associated with the U(1) symmetry is a conserved quantity.

We will now focus our investigation on finding a generalized Dirac equation, that is, a first

order field equation [
i (γMN )a∂a −mIMN

]
ΦN = 0 , (8.53)
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which corresponds to the case r = 1 in equation (8.43). Thus, from proposition 8.3.1, if the plane

wave solutions of this generalized Dirac equation are to satisfy the massive dispersion relation

P (q) −mdegP = 0, the matrix γ(q) = γaqa must be constructed such that it satisfies the main

condition

(γaqa)
degP = P (q)I ,

besides the (degP/r)− 1 suplementary trace conditions

Tr(γ(q)) = 0, · · · ,Tr(γ(degP/r)−1(q)) = 0 . (8.54)

The main condition can be equivalently written, by using the polarization tensor of P (4.8), as

γ(a1γa2 · · · γadegP ) = P a1a2···adegP I , (8.55)

where I is the unit matrix in the representation space in which the field Φ takes values. Fur-

thermore, this expression can be thought of as the (degP )–ary generalization7 of the bin–ary

Dirac algebra corresponding to a physical dispersion relation of degree degP . Once matrices

γaqa satisfying the main condition (8.55) have been found, one still has to check that the trace

conditions (8.54) are satisfied.

In the next section, we present concrete examples for lower order field equations with higher

order dispersion relations.

8.4. Examples of second and first order field equations

We now present some examples of how to use the results of the previous section in order to

generate field equations of reduced order.

Second order field equation for four dimensional area metric spacetimes. We now consider

the subclass of class I of area metrics given in equation (6.11) with σ1 = σ2 = σ3, which gives rise

to the irreducible quartic massive dispersion relation P (q)−m4 = 0 with P (q) given in equation

(7.30). Since degP = 4, we can consider equations of reduced degree r = 1, 2. Here we want to

study the case r = 2. So we first want to construct ten matrices γab labelled by the symmetric

pair of indices (ab), such that the plane wave solutions of the linear field equations[
i2γab∂a∂b −m2

]
Φ = 0 (8.56)

satisfy the considered massive quartic dispersion relation. According to proposition 8.3.1, we

then need that the matrices γab satisfy (γabqaqb)
2 = P (q)I, or equivalently

γ(abγcd) = P abcdI (8.57)

as the main condition, and

Tr(γabqaqb) = 0 (8.58)

7The algebra (8.55) for a first order field equation has previously been discussed [24], however, without
identification of sufficient conditions for these algebra to reproduce a massive dispersion relation and without the
determination of the conditions to derived the first order field equation from an action principle.
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as the (degP/r) − 1 = 1 suplementary condition. It is then a simple exercise for Mathematica

to show that the matrices (where f(G) is given in equation (6.10))

γ00 = if(G)(τ1τ2τ3)1/2Γ0 γ23 = −1/2f(G)
(
τ1(τ2

2 + τ2
3 )
)1/2

Γ8

γ01 = 1/2if(G)
(
τ1(τ2

2 + τ2
3 )
)1/2

Γ1 γ31 = −1/2f(G)
(
τ2(τ2

1 + τ2
3 )
)1/2

Γ6

γ02 = 1/2if(G)
(
τ2(τ2

1 + τ2
3 )
)1/2

Γ2 γ12 = −1/2if(G)
(
τ3(τ2

1 + τ2
2 )
)1/2

Γ5

γ03 = 1/2if(G)
(
τ3(τ2

1 + τ2
2 )
)1/2

Γ3 γ22 = −f(G) (τ1τ2τ3)1/2 Γ7

γ11 = −f(G) (τ1τ2τ3)1/2 Γ4 γ33 = −f(G) (τ1τ2τ3)1/2 Γ9

indeed satisfy the condition (8.57) as well as the trace condition (8.58). In this expression, the

ten matrices ΓI provide a 32-dimensional irreducible representation of the Dirac algebra in ten

dimensions, i.e., Γ(IΓJ) = ηIJ with ηIJ = diag(−1, 1, . . . , 1)8. The matrix Γ, which in this case

satisfies the conditions of proposition 8.3.2 in order to derive equations (8.56) from a real action

functional, is found to be

Γ = i2
√

2γ00γ11γ12γ13γ22γ23γ33 .

First order field equation on Lorentzian spacetime. Here we wish to construct a first order field

equation with plane wave solutions satisfying the quadratic metric massive dispersion relation

ηabqaqb −m2 = 0 with η = diag(1,−1,−1,−1) being the Minkowski metric in four dimensions.

In this case, we have that degP = 2. Thus, according to the expression (8.55), we need to find

matrices γ(q) = γaqa satisfying

γ(aγb) = ηab and Tr(γaqa) = 0.

This is of course the standard Dirac algebra and the reader already knows the solution; the

matrices γa are the Dirac gamma matrices (in the Weyl representation)

γa =

[
0 σa

σ̄a 0

]
, (8.59)

where we have labelled σa = (I2×2, σ
α) and σ̄a = (I2×2,−σα), with σα the Pauli matrices

satisfying

σ(aσ̄b) = σ̄(aσb) = ηabI2×2 . (8.60)

Thus the Dirac matrices γa trivially satisfy the conditions of proposition (8.3.1). In this case,

it is found that the Γ matrix satisfying the conditions of proposition 8.3.2 is Γ = γ0, which also

satisfies γ0 = (γ0)−1. Hence, we recover the metric Dirac equation as obtained from the real

Lagrangian

L = iΦ̄γa∂aΦ−mΦ̄Φ .

Using now the general current in expression (8.52), we obtain the conserved charge

Q(Φ) =

∫
d3x qΦ̄γ0Φ ,

which is indeed used to normalize the solutions of the metric Dirac equation.

8For the explicit construction of the ΓI matrices see appendix B of [64].
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First order field equation on bimetric spacetimes and coupling to bimetric electrodynamics.

We now wish to construct a Dirac equation for the considerably more complicated case of a

quartic dispersion relation. More precisely, we consider the quartic massive dispersion relation

g−1(q, q)h−1(q, q)−m4 = 0 ,

where g−1 and h−1 are Lorentzian metrics in four dimensions. Thus, in order to find a modified

Dirac equation whose plane wave solutions satisfy this bimetric quartic dispersion relation, we

have to find (according to the expression (8.55)) matrices Γa satisfying the quaternary algebra

Γ(aΓbΓcΓd) = g(abhcd)I , (8.61)

and the suplementary trace conditions

Tr(Γ(q)) = Tr(Γ2(q)) = Tr(Γ3(q)) = 0 . (8.62)

Since the considered dispersion relation is constituted by the two Lorentzian metrics g−1 and

h−1, we know that there exist frames e and f such that

gabecae
d
b = ηcd and habf caf

d
b = ηcd , (8.63)

where η is the Minkowski metric. In terms of these frames, it is a simple exercise to show that

the 16× 16 matrices

Γa =



0 0 0 eabσ
b 0 0 0 0

0 0 fab σ
b 0 0 0 0 0

fab σ̄
b 0 0 0 0 0 0 0

0 eab σ̄
b 0 0 0 0 0 0

0 0 0 0 0 0 eabσ
b 0

0 0 0 0 0 0 0 fab σ
b

0 0 0 0 0 fab σ̄
b 0 0

0 0 0 0 eab σ̄
b 0 0 0


, (8.64)

with σa and σ̄a precisely defined as in equation (8.60), indeed satisfy the quartic algebra in

equation (8.61) because they satisfy

(Γaqa)
4 = g−1(q, q)h−1(q, q)I16×16 , (8.65)

and the trace conditions (8.62). Thus the modified bimetric Dirac equation is given by equation

(8.43) with the above 16-dimensional Γ–matrices.

The reader can recognize that the two diagonal blocks in (8.64) in fact satisfy equations (8.61)

and (8.62) separately. However, we need both blocks because only then one can find a matrix Γ

satisfying the conditions of proposition 8.3.2. Indeed, it is easy to check that the matrix

Γ =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


(8.66)
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satisfies

Γ† = Γ, Γ−1 = Γ, and Γ Γa† Γ = Γa .

Defining then ψ̄ = ψ†Γ, the bimetric Dirac equation is derived from the real action

S[ψ] =

∫
d4x ψ̄ [iΓa∂a −m]ψ (8.67)

according to proposition 8.3.2. Had we taken only one of the blocks in equation (8.64), we

would not have been able to write a Lagrangian, although we would have gotten a field equation

satisfying the considered bimetric dispersion relation.

Moreover, according to expression (8.52), the charge Q(ψ) =
∫
d3x ψ̄Γaψ is conserved and can

therefore be used to induce a scalar product in the space of solutions.

Finally, promoting now the global U(1) symmetry of the action (which was used to derive

the conserved charge) to a local one, one finds that the Lagrangian density must be

L = ψ̄ [iΓaDa −m]ψ ,

where Da = ∂a + ieAa is a covariant derivative which makes the U(1) symmetry global if A is a

one-form gauge field. One then identifies e with a charge associated with the field ψ. Expanding

the covariant derivative in the expression above, we find

L = ψ̄ [iΓa∂a −m]ψ − eψ̄ΓaψAa .

We already know that area metric electrodynamics provides the most general gauge invariant

action which gives rise to linear field equations for a one-form gauge field A. So restricting atten-

tion to area metrics G giving rise to bimetric dispersion relations PG = g−1h−1 (which have been

identified in [65]), we obtain the complete Lagrangian for bimetric area metric electrodynamics

L(ψ,A) = ψ̄ [iΓa∂a −m]ψ − 1

8
GabcdFabFcd − eψ̄ΓaψAa ,

which describes the interaction of the electromagnetic field Aa and the Dirac field ψ on a bimetric

area metric spacetime. One might proceed with the quantization of this Lagrangian in order to

study, for instance, refinements to quantum electrodynamics on hyperbolic, time-orientable and

energy-distinguishing spacetimes.





CHAPTER 9

Towards gravity

In this chapter, we preview how building on the foundational work presented in this thesis,

it could be shown in subsequent work [14, 15] that the problem of finding modified gravitational

dynamics for tensorial spacetimes that are predictive, time-orientable and energy-distinguishing

reduces to solving a system of homogeneous linear partial differential equations. Thus the for-

midable physical problem of constructing alternative diffeomorphism-invariant gravity theories is

reduced to a well-defined mathematical task.

9.1. Deformation algebra of hypersurfaces.

The aim of this chapter is to preview how one can find the gravitational dynamics for a bi-

hyperbolic and energy-distinguishing geometry (M,G), that is, how to determine the values of

G throughout the manifold. More precisely, one wants to provide “adequate” geometric data on

suitable initial value hypersurfaces for matter field dynamics and then evolve these geometric data

to a neighbouring hypersurface, such that by repeating this procedure, one is able to reconstruct

the geometry G on the entire manifold M . Since adequate geometric data are provided in

terms of projections of the spacetime geometry to an initial data surface with the help of an

embedding map for this hypersurface, one wants to study how functionals of this embedding

map change under normal and tangential deformations of the hypersurface. A representation

(loosely speaking) of the deformation operators on the geometric phase space (spanned by the

geometric degrees of freedom on a hypersurface and canonically conjugate momenta) then yields

first class Hamiltonian and diffeomorphism constraints whose sum determines the pure constraint

Hamiltonian dynamics.

To execute this programme, one needs to derive the commutation algebra of these deformation

operators, and this is where the findings of the present thesis play the pivotal rôle. So we consider

X : Σ ↪→M to be a smooth embedding map of a smooth manifold Σ of dimension dimM−1 with

local coordinates {yα} into the spacetime manifold M with coordinates {xa}. Furthermore, we

consider that the co-normals n(y) at each point X(y) on the hypersurface X(Σ) are hyperbolic

with respect to P , i.e., n(y) is contained in the hyperbolicity cone CX(y) of P . Only such

hypersurfaces can possibly carry initial data. Moreover, we also require that the co-normals n(y)

are normalized with respect to P as

P (n(y)) = 1 . (9.1)

Only thanks to the duality theory for massive particles, which we were only able to show to

hold using the entire technology developed in this thesis, one can now use the Legendre map

101
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L : CX(y) → L(CX(y)) at each point X(y) of the hypersurface X(Σ) in order to define

T (y) := LX(y)(n(y))

as the spacetime tangent vectors normal to the hypersurface X(Σ). But then the dimM vectors

T (y) := LX(y)(n(y)), e1(y) :=
∂Xa(y)

∂y1

∂

∂xa
, . . . , edimM−1(y) :=

∂Xa(y)

∂ydimM−1

∂

∂xa
(9.2)

constitute a basis of each tangent space TX(y)M of M along the hypersurface Σ, where the

co-normals n(y) are uniquely determined by the conditions

n ∈ C, P (n) = 1, n(eα) = 0 for all α = 1, . . . ,dimM − 1 .

The basis vectors e1(y), · · · edimM−1(y) are (spacetime) tangent vectors to X(Σ). The uniquely

determined dual basis to (9.2) then takes the form

n(y), ε1(y), . . . , εdimM−1(y) . (9.3)

Using the bases (9.2) and (9.3) we can now determined the projections of any tensorial geometry

G to the hypersurface Σ. These are obtained by inserting the εα and n into the co-vector slots

and eα and T into the vector slots of the geometric tensor G. In order to obtain the independent

geometric configuration variables which one can give dynamics to, one then needs to eliminate

those contributions to the projections that are eliminated by the frame normalization conditions

P (n) = 1 , and P (εα, n, · · · , n) = 0 .

This will result in a set of tensor fields ĜA on Σ to which one adjoins canonically conjugate

momenta π̂A. So we recognize that the geometry enters in three different ways into gravitational

dynamics: (i) it identifies the admissible initial data hypersurfaces for matter field dynamics,

which have hyperbolic co-normals with respect to P , (ii) it is used in order to calculate the nor-

mal vectors to admissible initial data hypersurfaces, and (iii) it provides the geometry degrees

of freedom after eliminating those fixed by the frame normalization conditions.

The change of functionals F of the embedding map X under infinitesimal deformations of

the hypersurface X(Σ) is now studied by first implementing the deformation of the hypersur-

face X(Σ) by considering a family of hypersurfaces Xt labelled by the parameter t such that

Xt=0 recovers the undeformed hypersurface X(Σ). One can then uniquely decompose the space-

time vector Ẋ = ∂tX (connecting two hypersurfaces of the family Xt) along the undeformed

hypersurface X(Σ) as

Ẋa(y) = N(y)T a(y) +Nα(y)eaα(y) .

In this expression,

N(y) := na(y)(Ẋ(y)) and Nα(y) := εα(y)(Ẋ(y)) (9.4)

are the normal and tangential parts of the deformation, respectively. Any infinitesimal defor-

mation δX = dt Ẋt is therefore completely parametrized by provision of a scalar field N(y) and

vector field Nα(y)eaα(y).
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The normal deformation operator acting on functionals F of the hypersurface X has the form

H(N) :=

∫
Σ
dyN(y)T a(y)

δ

δXa(y)
, (9.5)

while the tangential deformation operator is defined as

D(Nα∂α) :=

∫
Σ
dyNα(y)eaα(y)

δ

δXa(y)
. (9.6)

Thus the linear deformation of a functional F in the normal direction of Ẋ is given by H(N)F ,

while its linear deformation in the purely tangential direction of Ẋ is given by D(Nα∂α)F . This

immediately yields the commutation algebra that these deformation operators satisfy:

Theorem 9.1.1. (First theorem of Lecture VIII in [14]) The normal and tangential deformation

operators, H and D, acting on functionals on an initial data hypersurface, satisfy the hypersurface

deformation algebra

[H(N),H(M)] = −D((degP − 1)Pαβ(M∂βN −N∂βM)∂α) ,

[D(Nα∂α),H(M)] = −H(Nα∂αM) , (9.7)

[D(Nα∂α),D(Mβ∂β)] = −D((Nβ∂βM
α −Mβ∂βN

α)∂α) ,

where

Pαβ = P (n, . . . , n, εα, εβ) . (9.8)

Notice that the background geometry only appears in the first commutation relation between the

normal deformation operators through the spatial tensor Pαβ, while the other two commutation

relations are independent of it.

9.2. Dynamical evolution of the geometry.

The problem of finding gravitational dynamics is to find differential equations which deter-

mine the spatial geometry on a neighbouring hypersurface from the data on the initial hyper-

surface such that all these hypersurface geometries generate a predictive, time-orientable and

energy-distinguishing tensorial geometry on the spacetime manifold M .

Now it is clear why we have to introduce canonically conjugate momenta π̂A in addition to

the hypersurface geometry tensor field ĜA, since in this dynamical picture, they are needed to

compensate the lack of information on how the geometry looks like away from the hypersurface.

The space of tensor fields (GA, πA) is therefore called the geometric phase space if equipped with

the Poisson brackets

{F̂ , Ĝ} =

∫
Σ
dy

[
δF̂

δĜA(y)

δĜ

δπ̂A(y)
− δĜ

δĜA(y)

δF̂

δπ̂A(y)

]
,

where F̂ and Ĝ are arbitrary functionals of the geometric phase space variables (ĜA, π̂A).

More precisely, one constructs the dynamics by requiring the evolution of the initial data

on the initial hypersurface to neighbouring hypersurfaces is consistent with the action of the
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deformation operators on the initial data. This is achieved by requiring that the dynamics for

observables on the geometric phase space are provided by the Hamiltonian

H =

∫
Σ
dy
[
Ĥ(N) + D̂(Nαeα)

]
,

where the so called superhamiltonian Ĥ and supermomentum D̂ are functionals of the geometric

phase space variables (PA, πA) that represent the hypersurface deformation algebra by virtue of

{Ĥ(N), Ĥ(M)} = D̂((degP − 1)P̂αβ(M∂βN −N∂βM)∂α) ,

{D̂(Nα∂α), Ĥ(M)} = Ĥ(Nα∂αM) , (9.9)

{D̂(Nα∂α), D̂(Mβ∂β)} = D̂((Nβ∂βM
α −Mβ∂βN

α)∂α) .

Solving this algebra for the superhamiltonian Ĥ and the supermomentum D̂ then yields the

gravitational dynamics. For the familiar simple case of a Lorentzian metric spacetime structure,

this has been shown in seminal work by Hojman, Kuchar and Teitelboim. In our general case

of predictive, time-orientable and energy-distinguishing tensorial geometries, solving this algebra

at first appears to be the rather difficult problem of solving a non-linear functional-differential

equation. However, in [14, 15] it was shown that this can be remarkably be reduced. It is fair to

say that none of this would have been possible without the groundwork laid in this thesis.



CHAPTER 10

Conclusions

In this thesis, we characterized all tensorial geometries (M,G), whereM is a finite-dimensional

smooth manifold M and G a smooth tensor field of arbitrary rank, that qualify as spacetime

geometries in the sense that they allow for linear matter field dynamics that are predictive, in-

terpretable and quantizable. We showed that these physical conditions on matter field dynamics

translate into three corresponding simple algebraic conditions — hyperbolicity, time-orientability

and energy-distinguishability — on the underlying tensor field G that defines the geometry. More

precisely, these three algebraic conditions are to be imposed on G not directly, but by way of

a totally symmetric contravariant field P of even rank, which is extracted from the principal

polynomial of the matter field dynamics: hyperbolicity means that the polynomial Px defined in

each cotangent space is hyperbolic, time-orientability means that the dual polynomial P#
x to Px

defined in each tangent space is also hyperbolic, and the energy-distinguishing condition means

that all observers, defined in terms of P#, agree on the sign of the energy of massless momenta.

Thus the conditions we identified for a tensorial structure to qualify as a spacetime geometry are

based on the study of given matter field dynamics. This need to specify matter field dynamics

is not seen as a weakness, but rather as an insight of the general theory presented in this thesis.

After all, it was also the study of a matter field, namely the electromagnetic field, that ultimately

led Einstein to conclude that the geometry of spacetime could be encoded in a Lorentzian metric.

And superluminal neutrinos, or indeed any other matter that does not mimick the structure of

Maxwell theory, will force us to choose another tensorial geometry.

We showed that all kinematical constructions known from general relativity exist, for precisely

the same fundamental reasons, on any hyperbolic, time-orientable and energy-distinguishing ge-

ometry. In particular, a complete theory of massive and massless point particles was constructed

on any geometric background satisfying these conditions. On each cotangent spaces, the ge-

ometry seen by massive and massless point particles is encoded in the hyperbolic polynomial

Px. However, in tangent spaces, the geometry seen by massless point particles is encoded in the

dual polynomial P#
x , while the geometry seen by massive particles is encoded in the generically

non-polynomial structure P ∗. Both structures in tangent space (P# and P ∗) are determined by

the polynomial Px in cotangent space and are needed there due to the different duality theories

necessary to associate vector velocities with momenta of massless and massive particles: the

inverse duality map for massless particles is provided in terms of P#, while the inverse duality

map for massive particles is provided in terms of P ∗. In Lorentzian geometry, the conceptually
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different rôle that these mathematical structures play is seriously hidden, since in this case, the

tensorial structure coupling to matter fields is given by the inverse metric, the hyperbolic poly-

nomial P is also given by the inverse the metric, and P# and P ∗ are again both given by the

metric. In any other spacetime geometry with degP > 2, however, P, P# and P ∗ are provided

by entirely structurally different mathematical objects, as we illustrated for the case of area

metric geometry. Furthermore, the three fundamental conditions on the geometry can equally

be used in order to probe the viability of modified dispersion relations, since we know that a

modified dispersion relation, if viable, must be written in terms of a hyperbolic, time-orientable

and energy-distinguishing polynomial P .

This also clarifies why most approaches of Finsler geometry attempting to describe spacetime

beginning with a single geometric structure in the tangent bundle are not entirely compelling.

While these approaches have been right in speculating about a generically non-polynomial

structure on the tangent bundle (by means of a pseudo-norm), we now know that the be-

haviour of massless and massive particles cannot be encoded in a single geometric structure

in the tangent bundle. However, for massive particles, we also showed that a hyperbolic, time-

orientable and energy-distinguishing geometry automatically provides a pseudo-Finslerian ana-

logue of Lorentzian geometry. A generically non-linear connection was then introduced in terms

of such pseudo-Finslerian structure in order to provide a notion of freely falling and non-rotating

frames.

It turned out that massive particles can propagate faster than some massless particles on

spacetime geometries with degP > 2. This is due to the multiple cone structure of the set of

massless momenta that one has for spacetime geometries with degP > 2. The result is that

massive particles whose tangent vectors lie outside the cone of observers propagate faster than

massless particles whose tangent vectors lie on the boundary of the cone of observers. A superlu-

minal massive particle can radiate off energy in form of massless particles, by means of a vacuum

Cherenkov process, but only until its tangent vector reaches the cone of observers, which turns

out to be equivalent to being infraluminal. Thus, although the propagation of massive particles

with velocities higher than some of massless particles is generically allowed, massive particles

always tend to infraluminal propagation. On Lorentzian geometry, superluminal propagation of

massive particles is kinematically forbidden, thus if the observation of superluminal neutrinos

by the OPERA collaboration is confirmed, we are forced to consider more general geometric

backgrounds. But, as we learnt in this thesis, not any. Only those that are hyperbolic, time-

orientable and energy-distinguishing allow superluminal propagation and, at the same time, are

consistent with causality. Fortunately, we now have these geometries under good mathematical

control.
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However, in order to have a complete description of the mentioned Cherenkov process, it is

necessary to be able to compute the corresponding decay rate. This requires the development of

a quantum theory for tensorial spacetime geometries. In this thesis, we provided essential steps

towards the construction of such a quantum theory. In particular, we performed the canonical

quantization of free massive particles and of a special class of area metric electrodynamics. For

the case of massive particles, it was crucial to recognize that only energy solutions lying on the

hyperbolicity cones of P are physical and, therefore, that only they must be considered. However,

for the canonical quantization of a massive matter field, if one wants to preserve microcausality,

all energy solutions must be considered. In that case, a physical interpretation of the energy

solutions lying outside the hyperbolicity cones must be provided, and this remains a question

for further research. For area metric electrodynamics, a canonical quantization was performed

on a particular area metric background. Here further research has to show how to develop a

frame-independent quantization scheme, which is essentially the problem of finding a suitable

gauge. Moreover, we identified necessary and sufficient conditions to generate gauge-free clas-

sical linear field equations of arbitrary differential order with a hyperbolic, time-orientable and

energy-distinguishing dispersion relation. In particular, this led us to the construction of the al-

gebra of generalized Dirac matrices and corresponding field equations on flat tensorial spacetimes.

Building on the kinematical constructions presented in this thesis, it was achieved in sub-

sequent work to find a complete characterization of the gravitational dynamics of the tensorial

spacetimes cosidered here. This was done by means of obtaining the deformation algebra of

hypersurfaces in any hyperbolic, time-orientable and energy-distinguishing geometry. This al-

gebra describes how the geometry induced on a hypersurface changes when the hypersurface is

deformed into normal and tangential directions. Our constructions played the key rôle in that

work by allowing for the association of normal vectors to hypersurface normal co-vectors by

means of the Legendre map, whose existence is indeed only ensured by the hyperbolicity, time-

orientability and energy-distinguishability properties of the underlying geometry. So this allowed

to compute the deformation algebra satisfied by the deformation operators. The gravitational

dynamics one desires are then determined by finding a representation of this deformation algebra

in terms of geometric canonical variables which are functionals of the embedding map of a hyper-

surface. This problem appears to amount to solve a system of non-linear functional-differential

equations. But fortunately, using the techniques of this thesis, the problem can be significantly

reduced namely to a system of homogeneous linear partial differential equations. In combination

with the kinematical results presented in this thesis, one thus has converted the physical question

of what alternative tensorial spacetime geometries there could be, what their dynamics are and

how they are to be interpreted kinematically into a purely mathematical task. Namely to solve

a system of homogeneous linear partial differential equations.
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Exciting open problems that can now be attacked based on the present work are

• to find explicit solutions to the linear partial differential equations that determine mod-

ified gravity theories, and, therefore, to obtain a concrete candidate to refine general

relativity.

• to construct a complete quantum theory on hyperbolic, time-orientable and energy-

distinguishable spacetime geometries.

This will be needed to further probe the alternative spacetime geometries one might well be

forced to consider in the light of the problems of general relativity which motivated this thesis.
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