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Chapter 1

Introduction

The notion of entanglement captures the idea that in a a quantum world one may posses a
maximal knowledge about a composite (pure) state, yet not have access to such complete
information about each individual subsystem. This genuinely quantum feature of physical
systems, which was initially perceived as more of a paradox and curiosity than something
useful, eventually became one of the marvels of modern science. The theory of entangle-
ment, although far from complete, is now well developed and offers many tools that al-
low us to test the presence of such correlations and quantify its content in a given state
(see [Horodecki 09, Gühne 09] for current reviews of the subject). On the one hand, en-
tanglement is treated as a resource with capacity to enable quantum information tasks like
teleportation of quantum states or dense coding of information, which are not achievable
within classical theory [Nielsen 00]. It also turns out to be an essential ingredient for quan-
tum computational speed-up in many algorithms; especially multipartite entanglement draws
a lot of attention in this context [Vidal 03a, Jozsa 03, Bruß 11]. On the other hand, the ap-
paratus of quantum information proved useful for analysis of complex ground states of, e.g.,
quantum critical systems providing some insight into their structure and revealing new prop-
erties [Amico 08]. Moreover, it helps to develop efficient numerical methods for simulation
of complex many-body systems [Verstraete 04b, Vidal 04].

On a more abstract level, quantum correlations, in general not equivalent to quantum
entanglement, are studied within the paradigm of device-independent quantum information
processing [Barrett 05b, Acín 07, Pironio 10]. There, a central role is played by the notion
of correlations between the sets of data, completely detached from their particular physical
origin. The parties do not need to know the details of the devices they use to generate the
data, the only requirement is that the shared correlations are sufficiently strong to enable
a given task. The strength of classical correlations is subject to certain constraints, com-
monly known as Bell inequalities. Violation of these inequalities is the manifestation of
non-locality—displayed, in particular, by quantum mechanics, meaning that quantum me-
chanics can outperform classical physics at tasks associated with such Bell inequalities. For
instance, non-local quantum correlations provide cryptographic security not achievable with
classical theory [Ekert 91, Masanes 11] and outperform classical correlations at communi-
cation complexity problems [Brukner 04, Buhrman 10]. Interestingly, however, there exist
situations in which one does not have any advantage from quantum data and only a stronger
type of correlations (supra-quantum correlations) is of benefit [Almeida 10, Acín 12a].
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1. INTRODUCTION

This thesis deals with the study of multipartite correlations in various physical systems
such as atomic ensembles of non-interacting atoms, systems of interacting spins and disor-
dered Bose gas in an optical lattice. In each case I emphasize a different aspect of this broad
concept. First, I concentrate on generation of multipartite entanglement with atom-light inter-
faces. Then, the focus is shifted to the analysis of multipartite correlations in spin networks
using quantum information tools. Finally, I take a more conventional approach and charac-
terize the disordered Bosonic system with typical observables of Condensed Matter Physics.
I also analyse correlations as an abstract concept concentrating on device-independent mul-
tipartite tasks for which correlations of quantum origin perform equally well as the classical
ones. The thesis is organized as follows.

In chapter 2 I provide a brief survey of the entanglement theory. It begins with the def-
inition of bipartite entanglement and the review of elementary methods of its detection and
quantification. Then, I introduce the well-known results concerning multipartite systems and
the hierarchy of entangled states in this case, which is much richer than in the bipartite sce-
nario. In particular, in the multipartite case a notion of the maximally entangled state does
not exist and, due to this fact, quantification of multipartite correlations becomes an intricate
task. In this chapter I also pay special attention to the concept of bound entanglement in the
bipartite and multipartite case.

In Chapter 3 I study the physical system of atomic ensembles placing a particular empha-
sis on the multipartite entanglement that can be induced between them through the atom-light
interface. Such set-ups have a huge potential as elements of quantum communication net-
works since they incorporate two types of quantum systems, the long-living atomic ensem-
bles and the “�ying” photons [Briegel 98, Sangouard 11]. We show that they offer a universal
toolbox for generation and manipulation of continuous-variable multipartite entanglement
proving to be also an efficient experimental playground for quantum information studies of
foundational character. The results presented in this chapter are reported in [Stasińska 09]
and [Stasińska 12b].

In Chapter 4 we shift our focus to an abstract problem of finding device-independent
tasks for which (i) quantum correlations do not outperform the classical ones but (ii) there
exist supra-quantum non-signalling correlations that do provide an advantage [Acín 12a]. We
demonstrate a systematic way to build such tasks from Unextendible Product Bases — an
important concept in entanglement theory [Bennett 99b]. The fundamental importance of
UPBs stems from the fact that they allowed for the construction of one of the first examples
of bound entangled states [Horodecki 98]–—and, furthermore, that they give rise to non-
locality without entanglement [Bennett 99a], i.e., the impossibility of perfectly distinguishing
orthogonal product states by means of local operations and classical communication. Our
results, reported in [Augusiak 11], establish a link between the structure of composite Hilbert
spaces, which gives rise to this intriguing phenomenon, and the properties of the sets of
correlations.

Chapter 5 is devoted to application of quantum information tools in the study of spin mod-
els. I concentrate on entanglement properties of the ground and thermal states of spin graphs,
in particular on the presence of genuine tripartite entanglement in their subsystems. The role
of entanglement is particularly important in the study of quantum phase transitions (QPT),
where multipartite long-range correlations are believed to play a central role. Even though
in our analysis we are far from the thermodynamic limit, characterization of tripartite en-
tanglement reveals qualitative differences between ground states of spin systems in different
regimes of parameters. The results are reported in [Stasińska 12c].
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In Chapter 6 I move to the study of bosonic lattice gases in the presence of disorder. I
study a particular type of random potential, the so-called Bernoulli potential, obtained through
a random distribution of identical impurities in a lattice. An important advantage of systems
with this particular disorder is that they admit rigorous analytical estimates. I focus on the
regime of weak to intermediate interactions and explore the properties of the ground and
thermal states of 1D and 2D systems characterizing them by means of typical parameters such
as the super�uid fraction, fractal dimension and correlation function. Most of the results of
this chapter are reported in [Stasińska 12a], however, I also include some unpublished results
obtained within an ongoing project in collaboration with L. Sanchez-Palencia, P. Massignan
and M. Lewenstein.

Finally, in Chapter 7 I summarise the obtained results and sketch future research direc-
tions.
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Chapter 2

Preliminaries

In this chapter I review the basic concepts of the theory of composite quantum systems, which
I use throughout the thesis. I explain the notion of entanglement in the bipartite and multi-
partite case and introduce the elementary separability criteria. Then I discuss the distillation
of maximally entangled states, an important problem in the entanglement theory, devoting
special attention to the concept of bound entanglement in multipartite systems. I finish the
chapter with a brief survey of a special class of quantum states, the continuous variable Gaus-
sian states. Their importance follows from the fact that they can be efficiently generated,
manipulated and detected with the current optical technology. Moreover, many other physi-
cal set-ups admit the CV Gaussian description, among others the system of atomic ensembles
interfaced with light, which I inspect in more detail in chapter 3.

2.1 Bipartite entanglement

Consider a quantum system composed of two particles each described by a Hilbert space Hi
of dimension di (i = 1; 2). The composite bipartite Hilbert space is then a tensor product of
the two local spacesH = H1
H2 and a general pure state of the system is the superposition
of product states, which can be written as

jΨi =

d1,d2∑
i,j=1

cij jii 
 jji; (2.1)

with complex coefficient matrix [cij ]
d1,d2
i,j=1. A pure state jΨi is called separable whenever

there exist two local vectors j 1i; j 2i such that jΨi = j 1i
 j 2i, i.e., in the pure state case
separability is equivalent to being a product state. If this is not the case jΨi is called entangled.
Note that it is straightforward to produce a pure separable state locally, however generation of
an entangled state requires some kind of non-local action. Therefore, local producibility (in
the scenario with parties sharing some classical correlations or with allowed communication,
so-called LOCC scenario) is what characterizes separable states. Generalizing this notion to
mixed states we note that obviously a product of two density matrices can be generated with
local resources. Moreover, all convex combinations of such products, giving the most general
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2. PRELIMINARIES

separable mixed state in the form

� =
∑
i

pi�
(i)
2 
 �

(i)
1 ; (2.2)

with non-negative pi. A density matrix that does not admit such decomposition represents an
entangled state.

Deciding whether a given bipartite state is entangled or separable using solely the def-
inition is not an easy task and a general solution to the separability problem is not known.
Nevertheless, there exist some operational criteria that applied to a density matrix imply sep-
arability or entanglement. In what follows I will review the most popular approaches to the
separability problem.

2.1.1 Separability criteria
I begin with the structural criteria, i.e., such that require the full knowledge of the density
matrix to be applied, and therefore are not directly measurable in experiments. In this class
we have, among others, the criteria based on positive maps, on linear contractions and per-
mutations and the algorithmic approaches. I will concentrate on the first of this categories.

Positive linear maps. — Let us denote by B(Hi) a space of linear operators acting on
Hi. A linear map Λ : B(H1) ! B(H2) is called positive (P) if it maps positive operators
onto positive operators. Among all positive maps we distinguish those that preserve positivity
of an operator even if applied to its subsystem, i.e., Λ is called completely positive (CP) if
for any auxiliary HA the map IA 
 Λ is positive [IA is an identity map on B(HA)]. Now,
of particular importance in entanglement detection are those maps which are positive, yet not
completely positive. Such a map when applied to a separable state returns a positive matrix,
however it need not be the case for entangled matrices. It turns out that even a stronger
statement is true [Horodecki 96].

Fact 1. The state � 2 B(H1) 
 B(H2) is separable if and only if for all P but not CP maps
Λ : B(H2)! B(H1) the following holds:

[I1 
 Λ](�) > 0: (2.3)

Consequently, if there exist a P but not CP map for which the above inequality does not hold,
then � must be entangled.

Partial transposition. — A strong necessary separability condition is provided by the
transposition map T [Peres 96, Horodecki 96]. We say that the state � is PPT (positive partial
transpose) if it fulfils the condition

[I1 
 T ](�) � 0, [T 
 I2](�) � 0: (2.4)

Otherwise we call the state NPT (non-positive partial transpose). By Fact 1, all NPT states
are necessarily entangled. More importantly, as it was shown in [Horodecki 96], for low-
dimensional Hilbert spaces, i.e., those of dimensions 2 
 2 and 2 
 3, all PPT states are
separable, which solves completely the separability problem in this cases.

The other group of tests, the so-called scalar criteria, aims at experimental detection of
entanglement. They are formulated in terms of observables on a single or many copies of
a state or require a measurement of several quantities, but much less comparing to the full

6



2.1. BIPARTITE ENTANGLEMENT

state tomography. In this category we include such approaches as entropic and entropic-like
inequalities, entanglement witnesses, criteria based on variances and covariances etc .

Entropic inequalities. — As already pointed out, the concept of entanglement is the
manifestation of the fact that in a a quantum world, unlike in classical systems, one may
posses more information about the global system than about each individual subsystem. This
statement is more precisely expressed through the measure of information, entropy. As proved
in [Vollbrecht 02] for all separable states % 2 B(H1)
 B(H2) it holds that

8
α>0

Sα(�) > Sα(�1) & Sα(�) > Sα(�2); (2.5)

where Sα(�) = (1��)−1 log tr�α is the Renyi �-entropy. Violation of an entropic inequality
indicates that a given state is entangled. Direct measurement of the Renyi entropy is possible
for integer � through a multi-copy observable, and involves � identical and uncorrelated
copies of the state [Horodecki 03, Bovino 05].

Entanglement witnesses. — An entanglement witness is, by definition, a Hermitian
operator (quantum observable) W acting on a composite Hilbert space such that it has a
non-negative mean value for all separable states, and a negative mean value for at least one
entangled state. We say that an entangled state � is detected by the witnessW if tr�W < 0.

Due to the Choi-Jamio�kowski isomorphism, which links entanglement witnesses and P
but not CP maps, entanglement witnesses provide a complete characterization of the set of
separable states in a way analogous to Fact 1.

Fact 2. The state � 2 B(H1) 
 B(H2) is separable if and only if for all entanglement
witnessesW 2 B(H1)
 B(H2) the following holds:

tr�W > 0: (2.6)

It follows that for each entangled state there exist an entanglement witness detecting it.

2.1.2 Entanglement measures

Entanglement is a fundamental resource of quantum information theory and an essential in-
gredient for applications such as quantum teleportation or quantum dense coding. The entan-
glement criteria discussed in the previous subsections give a yes–no answer to the question
about the presence of entanglement, however, usually cannot tell how useful this entangle-
ment is or what is the entanglement contents of a given state. This is the role of entanglement
measures.

There exist entanglement measures which inform us how well does a given state perform
in a specific quantum information protocol; we call them operational measures. For exam-
ple the entanglement cost EC is defined as the number of qubits that have to be communi-
cated in order to produce a given state. The other approach to quantification of entanglement
is purely axiomatic. A function of a state is said to be an entanglement measure if it ful-
fils the monotonicity condition, namely does not increase if the state is transformed through
LOCC. A complete review of entanglement measures and their properties may be found in
[Horodecki 09].

7



2. PRELIMINARIES

2.2 Multipartite entanglement
Multipartite states have a much more complex structure than the bipartite ones. In particular,
there the whole hierarchy of separability classes can be distinguished, in contrast to just one
type of separable states in the bipartite case [Dür 00]. Another phenomenon not encountered
in two-particle systems is the existence of many locally inequivalent types of entangled states,
i.e., states that cannot be converted one to another through stochastic local operations and
classical communication (SLOCC). For this reason it is also very difficult to quantify this
type of correlations, as there is no single representative maximally entangled state.

A direct generalization of the notion of bipartite separability to the N -partite case, based
on the local producibility postulate, is the full separability

� =
∑
i

pi�
(i)
1 
 : : :
 �

(i)
N ; (2.7)

where � is a density matrix acting on a product Hilbert spaceH1 
 : : :
HN . An entangled
state is then one that does not admit this decomposition. However, in the multipartite case
a state that is not fully separable is not immediately fully entangled. There exist a notion of
partial separability, i.e., separability with respect to partitions of a state. Let us refer to the
simplest example of tripartite states to illustrate this concept.

Despite being the simplest multipartite system, the three-qubit states already have the
qualities that do not exist in the bipartite scenario, i.e., the presence of partial separability and
locally inequivalent fully entangled states. Characterization of this class was given in [Dür 00,
Acín 01], where four types of states were distinguished: (i) separable states S , (ii) biseparable
states B, (iii) W-type states, and (iv) GHZ-type states. Each of the classes embraces those
that are lower in the hierarchy, S � B � W � GHZ. Separable states are those that admit
decomposition (2.7). Biseparable states belong to the convex hull of states separable with
respect to one of the bipartite partitions 1j23, 2j13 or 3j12 denoted by B1, B2, B3, respectively.
Hence, B = conv(B1;B2;B3). The division between the W-type states and the GHZ-type
states stems from the fact that in three qubits there exist two SLOCC inequivalent classes of
genuinely entangled states with representative elements being precisely the W state

jWi =
1p
3

(j100i+ j010i+ j001i); (2.8)

and the GHZ state

jGHZi =
1p
2

(j000i+ j111i): (2.9)

Therefore, the W-class is defined as those states that are a convex combination of states
SLOCC-equivalent to jWi. Analogously, the GHZ-class contains all SLOCC-transformations
of jGHZi and is, at the same time, equal to the set of all tripartite states.

The classification of the three-qubit states based on convex sets can be generalized to
arbitrary number of parties and any dimension [Dür 99, Dür 00]. This, however, is not the
unique classification one may think of. As pointed out in [Gühne 09] identifying a state
to belong to one of such sets answers the question: How many partitions are separable?
Other criteria on which a hierarchy of states may be built include the questions: How many
parties are entangled? or How many parties are separable? Each of these issues becomes
important in a different context. For example, the first one tells us what resources are required

8



2.3. DISTILLATION OF ENTANGLEMENT, BOUND ENTANGLEMENT

to produce a given state and may be more adequate for study of entanglement in macroscopic
systems [Gühne 05].

Entanglement detection. — One way of detecting entanglement in the multipartite case
is to reduce the problem to detection of bipartite entanglement between different partitions.
This strategy, however, does not guarantee success, as there exist states separable with respect
to any bipartition, but not fully separable. Several tests have been designed specifically for
multi-particle systems, for instance, criteria based on permutations[Clarisse 06], the spin-
squeezing inequalities[Korbicz 06, Tóth 07], multipartite entanglement witnesses[Acín 01,
Gühne 05, Kaszlikowski 08]. They allow to recognize that a given state belongs to a spe-
cific entanglement class (concentrating usually on the two extreme cases: full separability
and genuine multipartite entanglement).

2.3 Distillation of entanglement, bound entanglement

Distillation of entanglement is the protocol exploiting LOCC operations to convert n copies of
some bipartite entangled state � tom < n copies of the (approximately) maximally entangled
state. Feasibility of such task is of fundamental importance for quantum information as many
basic protocols require pure bipartite entanglement. Moreover, the efficiency of distillation,
measured by the rate r = m=n, is a crucial parameter. The first constructive proof that the
task is achievable was given in [Bennett 96, Deutsch 96], where the first distillation protocols
were proposed.

Then, the question which states are distillable should be answered. Obviously, separable
states are undistillable since one cannot create entanglement via LOCC. Therefore, entangle-
ment is a necessary condition for distillability; it turns out, however, not to be a sufficient one.
As shown in [Horodecki 98], all PPT states are undistillable. As the first example of an en-
tangled PPT state was already known [Horodecki 97], this lead to the astonishing conclusion
that there exist undistillable entangled states, i.e., bound entangled states.

Bound entangled states require some amount of entanglement to be created, but then the
resource becomes so “diluted” that no maximally entangled state can be recovered. One may,
therefore, ask whether such states can still be useful. A positive answer to this question was
given in [Horodecki 99] and since then many other protocols employing bound entanglement
were found. I will come back to this issue in chapter 3, where I discuss a particular example
of a bound entangled state, the Smolin state [Smolin 01].

Let us comment here on entanglement distillation from multipartite states. There, the
problem can be reduced to distillation of maximally entangled states between each pair. Sub-
sequently, the parties can use the distilled resource to prepare a desired multipartite state (in
general, a more efficient strategy converting a number of given states to the desired state may
exist, but the presented approach is more universal). The sufficient condition for distillability
of pure bipartite entanglement from a number of copies of a given N -partite state was given
in [Dür 99, Dür 00]. Precisely, the authors proved that in order to distil entanglement between
parties i and j it must hold that every bipartite split dividing i and j is NPT. Consequently if
there exist a PPT bipartition of the state such that i and j belong to different sets, the state is
undistillable with respect to this two parties. We call a state multipartite bound entangled if
no bipartite entanglement can be distilled from it.

9



2. PRELIMINARIES

2.4 Continuous variable states
Discrete or continuous degrees of freedom of quantum systems manifest themselves upon
measurement of observables with discrete or continuous spectrum. The latter case imposes a
continuous variable description of quantum states which essentially involves infinite-dimensional
Hilbert spaces. In such situation, usually the most convenient characterization is provided by
a quasi-probability distribution in phase space, e.g., the Wigner function. A system with two
canonical degrees of freedomQ and P fulfilling the Canonical Commutation Relation (CCR)

[Q;P ] = i1 (2.10)

and described by a density matrix % is fully characterized by the Wigner function defined as

W%(q; p) =
1

�

∫ ∞
−∞

dxhq + xj%jq � xie2ipx; (2.11)

where jqi are the eigenvectors of Q : Qjqi = qjqi. Such quasi-probability distribution gives
a complete description of measurement outcomes statistics for Q;P and arbitrary functions
of these observables. A particular family of CV states, to which belong the systems of atomic
ensembles studied in chapter 3, are the Gaussian states. Here I review the most basic con-
cepts needed to efficiently describe such systems, with particular emphasis placed on the
atomic ensembles set-up. For a more detailed review of CV systems the reader is referred to
[Giedke 02, Braunstein 05, Adesso 07, Andersen 10] and references therein.

2.4.1 Covariance matrix formalism for Gaussian states
Gaussian states are those whose marginals of the quasi-probability distribution for q and p
are Gaussian. This is the case, e.g., for collective degrees of freedom describing the atomic
ensembles or high-intensity laser beams. They are a sum of identical independent random
variables corresponding to single atoms or photons, respectively and due to the Central Limit
Theorem admit the Gaussian distribution.

Theorem 2.1. (Lindeberg-Levy) If independent random variables Y1; Y2; : : : ; Yn have the
same distribution with mean value � and variance �2 then the distributions of

Zn =

1

n

n∑
i=1

Yi � �

(�=
p
n)

(2.12)

converge (in distribution) to N (0; 1), i.e., the standard normal distribution.

Description of Gaussian states. — Gaussian states are fully characterized by the first
and second moments of the canonical coordinates. For a Gaussian quantum system of N
pairs of canonical degrees of freedom (“position” and “momentum” called also quadratures)
R = (X1; P1; : : : ; XN ; PN ), the first moments of R define the displacement vector (DV) d,

di = tr(%Ri); (2.13)

and the second moments, the covariance matrix (CM) 



ij = tr(%fRi � di; Rj � djg): (2.14)

10



2.4. CONTINUOUS VARIABLE STATES

The Wigner function of Gaussian states has a general form

W (�) =
1

�N
p

det 

exp

[
�(� � d)T 
−1(� � d)

]
; (2.15)

where the variable � = (x1; p1; : : : ; xN ; pN ) is a real phase space vector. The CM corre-
sponding to a quantum state must fulfil the positivity condition


 + iJN > 0; (2.16)

where JN is the symplectic matrix for N modes defined through the commutation relations
as

(JN )ij =
1

i
[Ri; Rj ] (i; j = 1; : : : ; 2N): (2.17)

Equivalently the positivity condition can be formulated using the notion of symplectic spec-
trum f�kgNk=1, i.e., N quantities constituting the non-negative part of the spectrum of iJN
.
If all the symplectic eigenvalues fulfil

�k > 1; (2.18)

the covariance matrix corresponds to a quantum state.
Gaussian operations. — Gaussian operations are those completely positive maps that

preserve the Gaussian character of states. All of them can be applied at the level of CM and
DV using symplectic transformations and homodyne measurements [Andersen 10].

A symplectic transformation of a CM, 

′

= ST 
S, is the analogue of a Gaussianity-
preserving unitary transformation of a density matrix. The matrix S represents a symplectic
transformation if it preserves the CCR, i.e., the transformed canonical degrees of freedom
R′ = SR must still fulfil equation (2.10). Due to relation (2.17) this condition can be shortly
written as

STJ S = J : (2.19)

The set of real matrices of dimension 2N�2N satisfying condition (2.19) forms a symplectic
group Sp(2N;R).

To show how the homodyne measurement of a subsystem in�uence a CM and DV, we
write a general CM in the form


 =

(
A C
CT B

)
; (2.20)

where B is a 1-mode subsystem of a multi-mode state. Homodyne measurement of the
quadrature XB with outcome x̃B leaves the subsystem A in a state described by the co-
variance matrix



′

A = A� C(DBD)−1CT ; (2.21)

and the displacement vector

d
′

A = dA + C(DBD)−1(x̃B ; 0); (2.22)

where the inverse is understood as an inverse on the support whenever the matrix is not of
full rank, and D = Diag(1; 0). The homodyne detection of any other combination of quadra-
tures can be reduced to the present case by applying prior to the measurement an appropriate
symplectic transformation.

11
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2.4.2 Gaussian states of quantized electromagnetic �eld
Here we review the properties of the fundamental Gaussian states: the single-mode vacuum
state, coherent states, squeezed states and the thermal state.

Vacuum state. — The vacuum state, denoted by jΩi, is defined as the lowest energy
eigenstate of the field Hamiltonian Hfield =

∑
n !n

(
a†nan + 1=2

)
. It fulfils the condition

8nanjΩi = 0; (2.23)

which is sometimes used as an alternative definition. From now on we concentrate on a single
mode, and determine first and second moments of field quadratures. Since by equation (2.23)
the expectation values for both a and a† vanish, the mean values of X and P also amount to
zero, i.e.,

hXi =

〈
1p
2

(
a+ a†

)〉
= 0; hP i =

〈
1p
2i

(
a� a†

)〉
= 0: (2.24)

The second moments, i.e., the variances and the covariances, are also easily determined from
the definition and read:

VarX =
1

2
; VarP =

1

2
; hXP i = 0: (2.25)

Using this we immediately write the CM and the DV of the vacuum state


Ω =

(
1 0
0 1

)
; dΩ = (0; 0) : (2.26)

Notice that the variances of X and P have a minimum value allowed by the uncertainty
principle, hence the vacuum state has minimum �uctuations allowed by quantum mechanics.
This is the property shared by all pure Gaussian states.

Coherent states. — By definition the coherent state is an eigenstate of the annihilation
operator

aj�i = �j�i; (2.27)

corresponding to a complex eigenvalue �. One can show that a coherent state is obtained
from a vacuum state through the unitary displacement, i.e., j�i = D(�)jΩi, where

D(�) = exp(�a† � �∗a): (2.28)

The knowledge of the action of the displacement operator on the creation and annihilation
operator, D†(�)aD(�) = a+ �, allows us to determine the mean values for the quadratures
in the coherent state

hXi =
1p
2

(�+ �∗) =
p

2Re�; hPi =
1p
2i

(�� �∗) =
p

2Im�: (2.29)

In a similar manner we obtain the second moments which are exactly the same as those for
the vacuum state (2.32). Therefore, we arrive at the following CM and the DV


α =

(
1 0
0 1

)
; dα =

(p
2Re�;

p
2Im�

)
: (2.30)
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Squeezed vacuum states. — Squeezed states are pure states of electromagnetic field
with reduced �uctuations in one of the quadratures. Since as pure Gaussian states they must
saturate the uncertainty principle, the reduction is obtained at the cost of enlarging the �uc-
tuations of the complementary quadrature, i.e., anti-squeezing. The state can be obtained
through a unitary squeezing transformation of the vacuum state jΩ; �i = S(�)jΩi, with

S(�) = exp
[1

2
�∗a2 � 1

2
�(a†)2

]
: (2.31)

The expectation values for the quadratures in the squeezed vacuum state are the same as those
for the vacuum, while the variances must, by definition, be modified. We have

VarX =
1

2
e−2r; VarP =

1

2
e−2r; (2.32)

where r = Re � is the so-called squeezing parameter. Hence, the CM representation of the
squeezed vacuum state is


Ω,ξ =

(
e−2r 0

0 e2r

)
; dΩ,ξ = (0; 0) : (2.33)

Thermal states. — A thermal state is the equilibrium state of field coupled to a reservoir
at temperature T . A single thermal mode of frequency ! is characterized by an average
number of thermal photons which follows the Bose-Einstein statistics

hniT =
1

exp(�!)� 1
; (2.34)

where � = 1=T , and the following density matrix

�T = Z−1 exp(�!a†a): (2.35)

It is then straightforward to determine the moments of the quadratures:

hXi = hP i = 0; (2.36)

and

VarX = VarP =
1

2

eβω + 1

eβω � 1
= hniT +

1

2
: (2.37)

The symmetrized covariance term equals zero which leads to the following CM and DV:


T =

(
2 hniT + 1 0

0 2 hniT + 1

)
; dT = (0; 0) : (2.38)

2.4.3 Separability of Gaussian states
The covariance matrix and the displacement vector provide a complete knowledge about a
Gaussian state, but in fact it is only the CM that carries information about quantum correla-
tions, i.e., entanglement between modes. This makes verification of entanglement amenable
to covariance matrix entanglement criteria. The necessary and sufficient separability crite-
rion, which may also serve as a definition of separability for bipartite Gaussian systems, was

13
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given in [Werner 01b]. It states that a CM 
 of N +M modes represents a separable state if
and only if there exist two CMs 
1 and 
2 of N and M modes, respectively, such that


 > 
1 � 
2: (2.39)

This criterion, similarly to the definition of separability (2.2), is rather difficult to apply. How-
ever, there exist many operational tests applicable at the level of covariance matrix [Simon 00,
Duan 00b, Giedke 01a, van Loock 03]. In what follows I recall only those that are used in the
thesis.

Partial time reversal map. — A CV counterpart of the PPT criterion, which can only
be applied when the full CM is available, is the partial time reversal of the covariance matrix
[Simon 00]. It corresponds to a change of the sign of momentum for the chosen modes.
We denote the map applied to modes I = i1; : : : ; im by �I . If the partially time reversed
covariance matrix does not fulfil the positivity condition (2.16), i.e.,

�I(
) � iJ ; (2.40)

the state corresponding to 
 is entangled with respect to the partition I � N n I . This test,
however, checks only bipartite entanglement. In the multipartite scenario, a state may be
PPT with respect to all its bipartite divisions and still not be fully separable. Such states are
bound entangled states. For Gaussian states this criterion is necessary and sufficient to detect
entanglement in all partitions of 1�N modes.

Negativity. — Negativity is a bipartite entanglement measure that quantifies the non-
positiveness of a density matrix after the application of the partial transposition map [ �Zyczkowski 98,
Vidal 02]. For a general quantum state % it is defined as

N (%) =

∥∥%TI
∥∥

1
� 1

2
; (2.41)

where k � k1 is the trace norm and TI denotes the partial transposition with respect to parties
from set I . Alternatively one can use the logarithmic negativity defined as

EN (%) = log
∥∥%TI

∥∥
1
: (2.42)

For Gaussian states both the negativity and the logarithmic negativity can be expressed in
terms of the symplectic spectrum f�̃kg of the partially time reversed CM �I(
) as follows

N (
) =


1
2

∏
k:ν̃k<1

�̃−1
k ; if 9k�̃k < 1

0; if 8k�̃k > 1
; (2.43)

and

EN (
) =

 �
∑

k:ν̃k<1

log �̃k; if 9k�̃k < 1

0; if 8k�̃k > 1
: (2.44)

Criterion for full separability of a three-mode state. — In general, it is not an easy task
to distinguish between fully separable and fully PPT entangled states for arbitrary number of
modes. For three-mode Gaussian states, a CM-based full separability criterion was given in
[Giedke 01a]. Its formulation requires several definitions so before we go into the details of
the criterion let us set the notation.
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2.4. CONTINUOUS VARIABLE STATES

We write the three-mode CM in the form


3 =

(
A C
CT B

)
; (2.45)

with A corresponding to the first mode. Then the authors define two matrices

N = A� C(B � iJ )−1CT ; Ñ = A� C(B � iJ̃ )−1CT ; (2.46)

where J̃ = J2 ��J2. Now, we need to define two-dimensional vectors whose elements are
connected to elements of N; Ñ

L =

(
N11 �N22

2ReN12

)
; L̃ =

(
Ñ11 � Ñ22

2ReÑ12

)
: (2.47)

We state the criterion in the following fact:

Fact 3. (adapted from [Giedke 01a]) A three-mode state corresponding to a fully PPT CM 
,
i.e., one that fulfils

�1(
) > iJ ; �2(
) > iJ ; �3(
) > iJ ; (2.48)

is fully separable if and only if it holds that

detN > 0; det Ñ > 0; (2.49)

and at least one of the points (y; z) from the following set:

S =
{
mc;me;mẽ; i

±
eẽ; i

±
ce; i
±
cẽ

}
(2.50)

fulfils all the inequalities:

minftrN; trÑg > 2
√

1 + y2 + z2; (2.51a)

detN + 1 + LT
(
y
z

)
> trN

√
1 + y2 + z2; (2.51b)

det Ñ + 1 + L̃T
(
y
z

)
> trÑ

√
1 + y2 + z2: (2.51c)

The points from the set S are defined as follows

mc = (0; 0);

me =
detN + 1

k1
L;

mẽ =
det Ñ + 1

k̃1

L̃;

i±x = gx + s±x fx (x = eẽ; ce; cẽ); (2.52)

where
k1 = 4

[
detN + (ImN12)2

]
; k̃1 = 4

[
det Ñ + (ImÑ12)2

]
; (2.53)

15



2. PRELIMINARIES

and

geẽ =

(
detN + 1

trN
+

det Ñ + 1

trÑ

)
L
′

kL′k
; L

′
=

L̃

trÑ
� L

trN
;

gce =
(

trN
√
r2
c + 1� detN � 1

) L

kLk
;

gcẽ =
(

trÑ
√
r2
c + 1� det Ñ � 1

) L̃

kL̃k
;

rc = min

{√
(trN)2=4� 1;

√
(trÑ)2=4� 1

}
: (2.54)

The vectors feẽ; fce; fcẽ are defined to be orthogonal toL
′
; L; L̃, respectively, and s±eẽ; s

±
ce; a

±
cẽ

are the real roots of the polynomials

Peẽ(s) =
[
LT (geẽ + sfeẽ) + detN + 1

]2 � (trN)2
(
1 + kgeẽ + sfeẽk2

)
;

Px(s) = r2
c � kgx + sfxk2; (x = ce; cẽ): (2.55)

Variance inequalities. — Experimentally, it is more convenient to check separability via
variances of the combinations of observables, the criterion originally proposed for two mode
states in [Duan 00b] and generalized to many-mode states in [van Loock 03]. The separability
test states that if an N mode state is separable, then the sum of the variances of the following
operators:

U = h1X1 + : : :+ hNXN ;

V = g1P1 + : : :+ gNPN (2.56)

is bounded from below by a function of the coefficients h1; : : : ; hN ; g1; : : : ; gN . Mathemati-
cally, the inequality is expressed as

VarU + VarV > f(h1; : : : ; hN ; g1; : : : ; gN ); (2.57)

where

f(h1; : : : ; hN ; g1; : : : ; gN ) =

∣∣∣∣∣hlgl +
∑
r∈I

hrgr

∣∣∣∣∣+

∣∣∣∣∣hmgm +
∑
s∈I′

hsgs

∣∣∣∣∣ : (2.58)

In the above formula the two modes, l and m, are distinguished and the remaining ones are
grouped into two disjoint sets I and I ′. The criterion (2.58) holds for all bipartite splittings
of a state defined by the sets of indices flg [ I and fmg [ I ′.

A particular case of the above general theory is the criterion for two modes proposed in
[Duan 00b]. It states that for any two-mode separable state and � 2 R n f0g the sum of
variances of j�jP1 + 1

λP2 and j�jX1 � 1
λX2 is bounded as

Var(j�jP1 +
1

�
P2) + Var(j�jX1 �

1

�
X2) > 2 (2.59)

The criterion becomes a necessary and sufficient entanglement test after the CM is trans-
formed into its standard form by local operations [Duan 00b]. This local transformations,
however, are determined by the form of the covariance matrix. In this sense, the knowledge
of the full covariance matrix is essential in order to decide unambiguously whether the state
is entangled.
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Chapter 3

Manipulation of entanglement in
atomic ensembles

The theory of Quantum Information shows how to carry out certain tasks using the laws of
quantum physics for encoding, processing, extracting and transmitting information. Shortly
after this new branch of physics emerged a natural question must have been posed: Can we
obtain such degree of control over quantum physical systems to implement all these fantastic
ideas in reality? Although the quest for a universal quantum device is not yet finished, we
already witness a huge progress in quantum technologies [Kok 07, Duan 10, Saffman 10,
Singer 10, Buluta 11, Weedbrook 12]. All the requirements that a physical set-up must fulfil
to serve the purpose of quantum information processing can be summarized in the form of
DiVincenzo conditions originally proposed in [DiVincenzo 00] and later, as new ideas and
proposals appeared, revised and discusses in, e.g., [DiVincenzo 01, Pérez-Delgado 11].

First of all one needs a scalable quantum system in which, in principle, arbitrary amount
of information can be encoded, manipulated and stored. Here we should distinguish two
types of quantum systems: static and “�ying” ones. The former type is usually associated
with atoms, ions or solid state platforms whose position can be well controlled over long
period of time. The latter, with light being a paradigmatic example, is in constant motion.
Therefore, static systems are a natural choice for storage of information, i.e., a quantum
register, while “�ying” ones are more suitable for transmission of quantum information over
distance. An ideal set-up should be a hybrid of both types of systems and allow for high-
fidelity interconversion of a stationary quantum information and a “�ying” one. Another
requirement is a long decoherence time of the components. Precisely, the lifetime of the
system must be long enough to complete any quantum-information task and perform a readout
of its final state, in which the solution is encoded.

It turned out that fulfilling all this conditions and building a universal quantum machine
is an extremely hard task. However, in many applications we can settle for a special-purpose
quantum set-up, one that cannot perform an arbitrary operation, but is well suited for a specific
task. Quantum simulators, quantum repeaters and quantum secret key distribution devices all
fall into this category.

In this chapter I will discuss the potential of a quantum set-up consisting of macroscopic
samples of non-interacting atoms interfaced with light in such way that the quantum �uctu-
ations between the two systems are exchanged. Atomic ensembles are particularly advanta-
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geous when it comes to information storage as they have decoherence time on the order of
milliseconds. This is due to the fact that for this physical system the relevant degrees of free-
dom have collective nature which makes them insensitive to single particle losses. Another
important inbuilt feature of this set-up is the possibility of interconversion between the static
form of information stored in the ensemble and the “�ying” one encoded in polarization de-
grees of freedom of light. Last but not least, the atom-light interface enables the manipulation
and readout of the state of the system, making the set-up of atomic ensembles and light a
promising candidate for building, at least, some special-purpose quantum devices.

There exist various mechanisms for the quantum interface between an atomic ensem-
ble and light such as the quantum non-demolition-Faraday (QND-Faraday) interaction, Ra-
man interaction, photon echo, and electromagnetically induced transparency (for details see
[Hammerer 10] and references therein). In this chapter we will concentrate on the QND-
Faraday interaction combined with the homodyne detection. The former refers to the rotation
experienced by the polarization of light while it propagates through a magnetic medium. At
the quantum level the interaction leads to an exchange of quantum �uctuations between mat-
ter and light, thus a quantum interface. The seminal results exploiting this scheme include
the experimental demonstration of the spin squeezing of a single ensemble [Kuzmich 00], the
deterministic entanglement of two atomic samples [Julsgaard 01], the quantum memory for
light [Julsgaard 04] and the teleportation protocol [Sherson 06]. This genuine quantum in-
strument also finds applications beyond the quantum information processing; it was shown to
be a powerful tool in quantum metrology and magnetometry [Napolitano 10, Napolitano 11,
Wolfgramm 10] and quantum spectroscopy [Eckert 07b, Eckert 07a, Roscilde 09, Greif 11,
De Chiara 11, Romero-Isart 12].

In recent years there is a growing interest in the role played by multipartite entanglement
in quantum algorithms [Bruß 11], continuous-variable measurement-based quantum com-
puting [Menicucci 06, Gu 09, Ohliger 10], communication protocols [Zhang 09] and high-
precision metrology [Tóth 12, Hyllus 12]. Here, we will show that the set-ups based on
atomic ensembles offer a versatile toolbox for generation and manipulation of multipartite
entanglement in both the pure and mixed-state case. We will also demonstrate that small
modification of the very same setting provides an experimentally feasible scheme for the gen-
eration of bound entanglement, broadening the applicability of atomic ensembles for quantum
information studies of foundational character.

3.1 The QND-Faraday atom-light interface

Efficient atom-photon coupling lays at the heart of storage and retrieval of quantum states
of light from a material medium through a matter-light interface. Historically, it was first
achieved with few atoms in the regime of cavity quantum electrodynamics (cavity QED),
however recent experiments show that it can also be performed with collective degrees of
freedom of large samples of non-interacting atoms, i.e., atomic ensembles. In this case strong
coupling is obtained through the increase of the optical depth by taking the macroscopic or
mesoscopic number of atoms in the sample [Kuzmich 97] and moderate-intensity of light
(typical value for atomic-ensemble experiments reported in [Julsgaard 01, Julsgaard 04] was
I = 1mW=cm2). Figure 3.1 summarizes the Faraday interface set-up. In the next paragraphs
we will describe one by one its elements and derive the effective Hamiltonian governing the
interaction. We will also discuss possible sources of errors and inbuilt imperfections of the
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system.

a)

b) c)

Figure 3.1: Schematic representation of the experimental set-up in which the QND-Faraday
atom-light interface is implemented. In figure a) the light beam polarized along direction x
and propagating in the Y Z plane experiences polarization rotation after the interaction with
the polarized atomic ensemble; in figure b) we depict the angle at which the light impinges
at the atomic sample. Figure c) shows a schematic structure of atomic levels with degenerate
ground state j0i; j1i and excited states jemi.

Atomic ensembles. — The notion of atomic ensembles refers to samples composed
of NA � 106 � 1012 non-interacting atoms, which are typically alkali or alkaline-earth
metals [Julsgaard 01, Julsgaard 04, Sherson 06] but also a proper spin-1=2 171Yb could be
used [Takeuchi 06]. The description of such multilevel atoms can be reduced to two degen-
erate levels j0i; j1i and one can define for each atom the angular momentum operator j with
components (we choose x as a quantization axis):1

jx(t; r) =
1

2
(j0ih0j � j1ih1j); (3.1a)

jy(t; r) =
1

2
(j0ih1j+ j1ih0j); (3.1b)

jz(t; r) =
1

2i
(j0ih1j � j1ih0j): (3.1c)

1Such defined operators fulfil the following commutation rules:

[ji(t, r), jj(t, r
′)] = i

1

Aρ
εijkjk(t, r)δ(r− r′).
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They become convenient microscopic degrees of freedom and the sample as a whole is then
characterized by its collective spin J(t) =

∑NA

i=1 ji �
∫
V

drj(t; r)�(r).
Further preparation of the sample involves putting all the atoms in state j0i, making the

ensemble polarized along the x direction, as schematically depicted in figure 3.1a. Such
state is often referred to as a coherent spin state (CCR). If a macroscopic number of atoms is
considered, the �uctuations of the macroscopic spin Jx are practically negligible, hence we
can approximate the operator with a constant c-number Jx(t) � hJxi = NA=2. Now the
orthogonal collective spin components can be rescaled to fulfil the canonical commutation
relation [Jy=

√
hJxi; Jz=

√
hJxi] = i and thus define the atomic position and momentum

XA =
Jy√
hJxi

; PA =
Jz√
hJxi

: (3.2)

In this way we have defined a continuous-variable system. Furthermore, an ensemble ini-
tialized in this way belongs to an important class of continuous-variable states, the Gaussian
states. Their significance stems from the fact that they are efficiently generated, manipulated
and detected with the current optical technology [Weedbrook 12]. Moreover, Gaussian states
are fully characterized by first and second moments, i.e., the mean values and the covari-
ances, of X and P . Hence, rather than describe such system with an infinite-dimensional
density matrix, one can use a much simpler covariance matrix formalism, which I brie�y in-
troduced in chapter 2. Its application in the particular case of the QND-Faraday interface will
be thoroughly discussed in the next section.

In the language of Gaussian states the polarized ensemble is described by zero mean val-
ues hXAi = hPAi = 0 and balanced variances saturating the uncertainty principlep

VarXA

p
VarPA > 1=2, i.e., VarXA = VarPA = 1=2. This minimum �uctuation state is

the vacuum state denoted usually by jΩi [Mandel 95].
Light. — The light is assumed to propagate along a chosen direction in the Y Z plane

(e.g., along direction z) as depicted in figure 3.1b, be off-resonant from any relevant atomic
transition and linearly polarized along the x-direction. Since we are interested in polarization
degrees of freedom, a convenient description is given by the microscopic Stokes operators,
analogous to single-atom angular momenta j. Precisely speaking, they are defined as:

sx(t; z) =
1

2

[
a†x(t; z)ax(t; z)� a†y(t; z)ay(t; z)

]
; (3.3a)

sy(t; z) =
1

2

[
a†x(t; z)ay(t; z) + a†y(t; z)ax(t; z)

]
; (3.3b)

sz(t; z) =
1

2i
[
a†x(t; z)ay(t; z)� a†y(t; z)ay(t; z)

]
; (3.3c)

where ax(t; z); ay(t; z) are the annihilation operators of modes with linear x and y polariza-
tion, respectively1. We explicitly write here the time and position-dependence of the vari-
ables assuming propagation along direction z. The x; y; z Stokes operators correspond to a
difference between the number of photons with x=y, ��=4 linear polarizations and left/right
circular polarizations, respectively.

1The commutation rules for the Stokes operators following from the creation-annihilation operators read

[si(t, z), sj(t, z
′)] = iεijksk(t, z)δ(z − z′).
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3.1. THE QND-FARADAY ATOM-LIGHT INTERFACE

The Stokes operators are well suited for the microscopic description of interaction with
atoms, however, effectively only the following macroscopic observables will be relevant:
Sk(z) =

∫ T
0

dtsk(t; z), where T is the duration of the light pulse. The so defined operators
obey standard angular momentum commutation rules. Similarly to the case of atomic en-
sembles, the assumption of linear polarization along direction x allows for the approximation
Sx(z) � hSxi � Nph=2. Once more, the remaining orthogonal components Sy and Sz are
appropriately rescaled in order to make them fulfil the CCR,

[
Sy=

√
hSxi; Sz=

√
hSxi

]
= i .

Straightforwardly, a correspondence equivalent to this in equation (3.2) arises:

XL =
Sy√
hSxi

; PL =
Sz√
hSxi

; (3.4)

which allows us to treat the light polarization degrees of freedom on the same footing as the
atomic variables. Similarly, the strongly polarized light constitutes a Gaussian mode in the
vacuum state.

Interaction. — The choice of atomic ensemble and light with properties described in
previous paragraphs makes it possible to approximate the dipole atom-light interaction with
the effective QND-Faraday Hamiltonian. In order to derive it we begin by the most general
Hamiltonian describing the composite system of a single atom interacting with electromag-
netic field

H = HA +HL +Hint; (3.5)

whereHA is the Hamiltonian of a single atom,HL describes the field energy and the coupling
term is taken in the dipole approximation Hint = �E(R) �D. In the latter D = �er denotes
the electric dipole operator of a single atom and E(R), the electric field at position R of an
atom.

In what follows we present the theory for a general atom described by its atomic eigen-
states jai and expand the dipole operator in this basis. We also write the field operators
in terms of creation and annihilation operators a†kλ; akλ for modes characterized by a wave
vector k and polarization � obtaining

H =
∑
a

!ajaihaj+
∑∫
k,λ

!ka
†
kλakλ +

∑
a,b

∑∫
k,λ

[
jaihbjgkdab � ekλakλe ik·R + h:c:

]
; (3.6)

where dab = �ehajrjbi are the dipole matrix elements, ekλ the field polarization vector and
gk =

√
!k=(2"V ), with !k = cjkj and V being the volume of an atom. From this point

we work in the interaction picture and consider only the interaction term with time dependent
light and atomic variables.

Since the laser beam has a well defined wavelength and we assume it to propagate along a
specific direction in the Y Z plane, say direction z, we can reduce the sum over all the modes
k� in the interaction Hamiltonian to the sum over two polarizations x; y or equivalently +;�
corresponding to

e+ = �ex + ieyp
2

; e− =
ex � ieyp

2
: (3.7)

The interaction Hamiltonian thus becomes

Hint =
∑
a,b

∑
λ=+,−

[jaihbjgdab � eλaλ(t; z) + h:c:] ; (3.8)
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3. MANIPULATION OF ENTANGLEMENT IN ATOMIC ENSEMBLES

where we have written explicitly the time and position dependence of field operators. For a
given field frequency we can assume that there are only two relevant atomic states, j0i; j1i,
i.e., two degenerate atomic ground states (see figure 3.1c). We further reduce the Hamilto-
nian distinguishing this two levels and leaving some excited states jemi, which will be later
eliminated by assuming that light is off-resonant with respect to all atomic transitions. In this
step we also substitute gdab with gab and write explicitly the conjugate terms

Hint =
∑
m

∑
λ=+,−

[
j0ihemjg0m � eλaλ(t; z) + jemih0jg∗0m � e∗λa

†
λ(t; z)

+jemih0jgm0 � eλaλ(t; z) + j0ihemjg∗m0 � e∗λa
†
λ(t; z)

+j1ihemjg1m � eλaλ(t; z) + jemih1jg∗1m � e∗λa
†
λ(t; z)

+jemih1jgm1 � eλaλ(t; z) + j1ihemjg∗m1 � e∗λa
†
λ(t; z)

]
: (3.9)

Now we eliminate the non-resonant terms (corresponding to a simultaneous atom excitation
and photon emission, and the conjugate term) from the interaction Hamiltonian, which is
commonly known as the rotating wave approximation, and obtain

Hint =
∑
m

∑
λ=+,−

[
jemih0jgm0 � eλaλ(t; z) + j0ihemjg∗m0 � e∗λa

†
λ(t; z)

+jemih1jgm1 � eλaλ(t; z) + j1ihemjg∗m1 � e∗λa
†
λ(t; z)

]
: (3.10)

Expressing now the interaction Hamiltonian in terms of the microscopic angular momenta
(3.1a)–(3.1c) and the Stokes operators (3.3a)–(3.3c), and taking into account that the excited
states can be adiabatically eliminated due to the light detuning we have

Hint = �cg [a0ρ(t; z) + a1sz(t; z)jz(t; z)] ; (3.11)

where the term containing a0 corresponds to the Stark shift proportional to photon density ρ,
while the term containing a1 is responsible for the Faraday rotation. The coupling constant
is expressed through the system parameters as g = δ

4A∆
λ2

2π , with A being the cross section,
� the wave length of light, ∆ the detuning energy and � the frequency width of the atomic
excited state. Due to the approximations made, this Hamiltonian is valid only for time scales
much longer than ∆−1 and light detuning significantly larger than the width of the atomic
excited state.

So far we have concentrated on a single-atom description. In order to obtain the Hamil-
tonian governing the evolution of the total atomic ensemble of length L (along the direction
of light propagation) and the light, we need to integrate equation (3.11) in the interval [0; L]
with respect to z assuming the interaction cross section A and density of atoms �. By doing
this we obtain a general Hamiltonian describing the interaction of the atomic sample with
off-resonant light propagating along direction z. Since we concentrate on a QND-Faraday in-
teraction, we have neglected in this derivation the higher order terms, leaving only the bilinear
coupling:

Hint,sample = �
∫ L

0

dzA�cg [a0ρ(t; z) + a1sz(t; z)jz(t; z)] : (3.12)

22



3.1. THE QND-FARADAY ATOM-LIGHT INTERFACE

Using the Heisenberg equation and neglecting the retardation effects we obtain the general
propagation equations for jk(t; z); sk(t; z) (k = x; y; z) 1

@

@t
jx(z; t) = cga1sz(z; t)jy(z; t); (3.13a)

@

@t
jy(z; t) = �cga1sz(z; t)jx(z; t); (3.13b)

@

@t
jz(z; t) = 0; (3.13c)

c
@

@z
sx(z; t) = cga1sy(z; t)jz(z; t); (3.13d)

c
@

@z
sy(z; t) = �cga1sx(z; t)jz(z; t); (3.13e)

c
@

@z
sz(z; t) = 0; (3.13f)

Only now we are in the point where we can make use of the fact that both the light and the
atomic ensemble are strongly polarized, and substitute the operators with their mean values
jx(t; z) ! hjx(z)i and sx(t; z) ! hsxi. We also integrate the above equations and intro-
duce new integrated variables Jk(t) =

∫ L
0

dzjk(z; t) and Sk(z) = c
∫ T

0
dtsk(z; t) (T is the

duration of the light pulse), obtaining

Jout
y = J in

y � ga1S
in
z J

in
x ; (3.14a)

Jout
z = J in

z ; (3.14b)

Sout
y = Sin

y � ga1S
in
x J

in
z ; (3.14c)

Sout
z = Sin

z ; (3.14d)

where we have introduced the variables with indices in=out for input and output variables
corresponding to z = 0=L for light and t = 0=T for atoms.

As demonstrated in previous paragraphs the new variables Sk(z); Jk(t) fulfil, after rescal-
ing, the canonical commutation rules, hence the equations and the effective Hamiltonian can
be rewritten in terms of the canonical variables X and P . Moreover, we introduce an addi-
tional parameter � which specifies the direction of the beam propagation in the Y Z plane as
depicted in figure 3.1b. This can be easily included in the equations through rotation of the
reference frame for atoms as Jy = J ′y cos� � J ′z sin� and Jz = J ′y sin� + J ′z cos�. All

1The evolution equations are different for the Stokes operators and the spin operators:

∂

∂t
jk(t, z) = [sk(t, z), Hint,sample],

(
∂

∂t
+ c

∂

∂z

)
sk(t, z) = [sk(t, z), Hint,sample].

Neglecting of retardation effects reduces to omitting the term ∂
∂t

in the second equation.
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3. MANIPULATION OF ENTANGLEMENT IN ATOMIC ENSEMBLES

these steps lead to the following set of equations

Xout
A = X in

A � �P in
L cos�; (3.15a)

P out
A = P in

A + �P in
L sin�; (3.15b)

Xout
L = X in

L � �(P in
A cos�+X in

A sin�); (3.15c)

P out
L = P in

L ; (3.15d)

with the parameter � = ga1

√
hJxi hSxi being a new coupling constant. Note that the effec-

tive interaction Hamiltonian can be now rewritten in the form

Heff
int = ��PL(PA cos�+XA sin�): (3.16)

We observe from equation (3.15c) [or equation (3.14c)] that the rotation of light polar-
ization is proportional to the atomic spin in the direction of propagation, as in the classical
Faraday effect. Note that this property enables probing of the atomic spin component in
the direction of light propagation in a quantum-non-demolition manner, i.e., with minimum
disturbance of the measured system. This is due to the fact that the measured observable com-
mutes with the interaction Hamiltonian (3.16), hence the name QND-Faraday interface. One
should also note that the Hamiltonian is bilinear in atomic and light variables, leading thus
to linear propagation equations. Transformation induced by such Hamiltonian is a Gaussian
operation, therefore if the state of the system is Gaussian at the beginning (which is the case
for the system under consideration) it remains Gaussian after the interaction. This important
property will allow us to describe the system with an elegant and simple covariance matrix
formalism, which we introduce in the next subsection.

By now we have considered only a single sample interacting with a single light beam,
which is useful for a quantum memory set-up or generation of spin squeezing. However, the
situations like generation of entanglement essentially involve multiple samples. To deal with
the multi-sample set-up we treat the output light from one ensemble as an input to another one.
In this way, the one-sample scheme provides a universal description which can be applied
to more complicated situations. We denote the variables characterizing the nth sample by
(XA,n; PA,n) and �n corresponds to the angle at which the light beam propagates through
the nth ensemble. For completeness we write here the most general Hamiltonian for a single
beam interacting consecutively with Ns samples

Ĥint(α;κ) = �
Ns∑
i=1

�iPL (PA,i cos�i +XA,i sin�i) ; (3.17)

and the corresponding propagation equations:

Xout
A,i = X in

A � �iP in
L cos�i; (3.18a)

P out
A,i = P in

A + �iP
in
L sin�i; (3.18b)

Xout
L = X in

L �
Ns∑
i=1

�i(P
in
A,i cos�i +X in

A,i sin�i); (3.18c)

P out
L = P in

L ; (3.18d)

where α = (�1; : : : ; �Ns
) refers to the incident angles at which the light impinges at each

atomic samples, and we include the possibility of having a different coupling constant for
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3.1. THE QND-FARADAY ATOM-LIGHT INTERFACE

every atomic ensemble using κ = (�1; : : : ; �Ns). This is a starting point for the geometric
scheme, which we discuss further in the next section.

Measurement. — In many applications of the QND-Faraday interface a polarimetric
(polarization homodyne) measurement of light following the interaction and a subsequent
feedback onto atoms is a central part of the protocol. The class of such “measurement-
based” schemes includes spin squeezing [Braginsky 96, Kuzmich 97, Kuzmich 00], gener-
ation of pure-state entanglement [Duan 00a, Julsgaard 01, Stasińska 09] and quantum mem-
ory [Julsgaard 04]. The main idea behind this method is that the light beam serves as a probe
of the spin components (see equation (3.15c)). Its homodyne measurement, by providing
information about the spin component, reduces the �uctuations of the spin.

Another possibility, which was discussed in [Stasińska 12a], is the situation in which the
light beam is not measured after the interaction. Such action corresponds to a truly random
displacement of atomic variables that has a Gaussian distribution [see equations (3.15a) and
(3.15b)]. One cannot produce entanglement through such procedure, however it enables ma-
nipulation of the entanglement already present in the system. In this way one obtains mixed
entangled states, in particular exploiting this technique we are able to explore the important
class of bound entangled states.

Imperfect atom-light interface. — An experimental system is never a perfect imple-
mentation of the theoretical model presented in previous paragraphs. In practice it is always
subject to certain imperfections due to particle loss, spontaneous emission, �uctuations of
the laser amplitude, population of atomic excited states due to photon absorption, inhomo-
geneities of the sample and light beam, etc . Moreover, the polarized atomic samples have a
finite life-time due to collisions and spin relaxation.

A complete description of the effect of inhomogeneities on atom-light interfaces is pro-
vided in [Koschorreck 09]. Here, following [Madsen 04, Sherson 05, Julsgaard 03], we will
assume our systems to be homogeneous and analyse the errors due to the decay of the atomic
spin-polarized state modelled as:

X in′

A,n =
√

1� �τX in
A,n +

p
�τVx; (3.19a)

P in′

A,n =
√

1� �τP in
A,n +

p
�τVp; (3.19b)

where Vp; Vx are the vacuum modes. The parameter �τ is a decay rate during the time interval
of length � hence its value is bounded as 0 � �τ � 1. Since the interaction time is much
shorter than the atomic spin relaxation time, we safely assume the interaction to be instanta-
neous. Thus, the atomic decoherence corresponds to the time window between the different
pulses applied in the protocol. In such case it is safe to consider �τ < 0:1. In the next sub-
section we will introduce the covariance matrix formalism for the QND-Faraday interface,
therefore, going a bit beforehand, we show the effect of decoherence at this level; it can be
expressed as:



′
(�τ ) = (1� �τ )
 + �τ1: (3.20)

Additionally, we study the effect of the uncertainty in the coupling constant, ��∆�, and
the uncertainty in the homodyne detection measuring process. Typical values and uncertain-
ties for the coupling strengths, atomic spin decay rate, and for the light and spin variances are
based on recent experimental results [Appel 09].
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3.1.1 QND-Faraday interface with the covariance matrix formalism
Our aim in this chapter is to discuss the generation of multipartite entanglement between
the atomic ensembles. To this end, we will need a convenient description of the system
consisting of many samples that interact with multiple light beams. It should incorporate
both the sample-light interaction and the possibility of light measurement, as well as enable
to include decoherence effects. The atomic ensembles and the light are in a Gaussian state
at each stage of the discussed protocols. For such systems, the suitable description is given
in terms of the covariance matrix (CM) formalism, which I brie�y introduced in chapter 2.
Here, I present all the steps of the QND-Faraday interface in terms of covariance matrices,
symplectic transformations and Gaussian measurements.

Let us first characterize with this formalism the initial state of the system. As previously
explained the state of both the light and the atomic ensembles directly after preparation is a
Gaussian vacuum state jΩi represented by the following CM


Ω =

(
1 0
0 1

)
; (3.21)

where the diagonal elements are proportional to the variances of X and P , both equal 1=2.
The mean values of the canonical variables define the displacement vector (DV). In the case
of the vacuum state these, by definition, equal zero giving the initial DV dΩ = (0; 0). In
multipartite protocols, we begin with uncorrelated ensembles, each in a vacuum state. The
corresponding multi-mode CM is, therefore, a direct sum of 
Ωs.

The next step of the interface is the atom-light interaction. We demonstrate how to recon-
struct the equations of evolution at the level of the covariance matrix from the most general
propagation equations (3.18), i.e., find the corresponding symplectic transformation. Due to
the bilinearity of the interaction Hamiltonian, the variables characterizing the system after the
interaction (out) are expressed as a linear combination of the initial ones (in). Let us denote
this linear transformation by K

K :



Xout
A,1

P out
A,1
...

Xout
A,Ns

P out
A,Ns

Xout
L

P out
L


= K



X in
A,1

P in
A,1
...

X in
A,Ns

P in
A,Ns

X in
L

P in
L


: (3.22)

Comparing equation (3.22) and equations (3.18) we immediately see that the transformation
reads:

K =



0 ��1 cos�1

0 �1 sin�1

1
(A)
2Ns

...
0 ��Ns

cos�Ns

0 �Ns
sin�Ns

��1 sin�1 ��1 cos�1 : : : ��Ns sin�Ns ��Ns cos�Ns

0 0 0 0 1
(L)
2


:

(3.23)
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The matrix K can be directly applied to a phase space vector � = (x1; p1; : : : ; xNs ; pNs ;
xL; pL) and correspondingly to the covariance matrix, however, the sign of the coupling
constants �i should be changed. This is due to the fact that the phase space variables evolve
according to the Schrödinger picture, whereas the quadratures, being operators transform
according to the Heisenberg picture. Therefore, we define K̃ = K

∣∣
κ→(−κ)

, which we apply
to the phase space vector and the covariance matrix as

�Tout

−1
in �out = �TinK̃T 
−1

in K̃�in = �Tin

[
K̃−1
in(K̃T )−1

]−1

�in = �Tin

−1
out�in; (3.24)

and obtain S = (K̃T )−1. Hence, a general symplectic matrix describing the QND-Faraday
interaction is given by:

Sint =


G1

1
(A)
2Ns

...
GNs

M1 � � � MNs
1

(L)
2

 ; (3.25)

with

Gi =

(
��i sin�i 0
��i cos�i 0

)
; Mi =

(
0 0

��i cos�i �i sin�i

)
: (3.26)

Now the covariance matrix of the output state is straightforwardly obtained through the for-
mula:


out = STint
inSint; (3.27)

and at the same time the DV of the system after the interaction is calculated as follows:

dout = STintdin: (3.28)

Note that if the initial state of the atoms and the light is the vacuum, the displacement does not
change due to the interaction. However, looking at equations (3.18a) and (3.18b) we observe
that the atomic quadratures are modified by a random variable with Gaussian distribution P in

L ,
which can be expressed in the following manner

dA,out = dA,in + (��
〈
P in
L

〉
cos�; �

〈
P in
L

〉
sin�): (3.29)

Due to this fact, any subsequent manipulation of the light mode may affect the DV and, quite
obviously, also the CM corresponding to the atomic ensemble. As we will see in the next
section, the reason for that is the entanglement generated between the sample and the light
through the interaction.

A particular example of such manipulation of the light mode is the homodyne detection
of the field. In the case of the QND-Faraday interface it is the variable Xout

L that is measured,
leaving the sample in the state characterized by the CM [compare equation (2.21)]


A,fin = 
A,out � C(D
L,outD)−1CT ; (3.30)

and the DV [compare equation (2.22)]

dA,fin = dA,out + C(D
L,outD)−1(x̃L; 0); (3.31)
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where x̃L is the measurement outcome, the subscript A=L corresponds to atomic and light
modes in the CM 
out, C is the rectangular submatrix containing the atom–light correlation
terms, and D = Diag(1; 0).

In the case when the light is not measured, but just discarded from the system, the final
state can be interpreted as a mixture of pure states corresponding to all possible outcomes of
the homodyne measurement. The corresponding CM and DV are obtained from (3.27) and
(3.28) by choosing only the submatrix containing the atomic modes.

Throughout the chapter I will use the following notation for the covariance matrix and the
displacement vector:


i,x; di,x

with i = 1; : : : ; n denoting the step of the protocol and x 2 fin; out;fing, its stage. The
index 'in' corresponds to the initial state of the system, note that it does not have to be the
vacuum state, but rather 
i,in = 
i−1,fin� 
L, i = 2; 3; : : :. The index 'out' denotes the state
after the interaction and 'fin' the final state after the ith step of the protocol is complete.

3.2 Pure multipartite entanglement

3.2.1 Bipartite entanglement: a brief review

Figure 3.2: A picture of the experimental set-up with two atomic ensembles used to demon-
strate bipartite entanglement in [Julsgaard 01]. The visible elements are the magnetic shields
which protect the cells with Caesium atoms from magnetic disturbance. One can also notice
that the laser access is possible from orthogonal directions.

We begin by brie�y reviewing the seminal experiment demonstrating bipartite entangle-
ment between two spatially separated macroscopic objects. The experiment was aimed at
generation of the paradigmatic EPR state, which is by definition a pure state with suppressed
�uctuations in XA,1 � XA,2 and PA,1 + PA,2. Note that these particular combinations can
be squeezed simultaneously because their commutator vanishes. A crucial part of the task
was the verification of the presence of entanglement, which was done through the variance
inequalities criterion. The set-up in which the entangling protocol was implemented is shown
in figure 3.2 and the details of the scheme are summarized in figure 3.3. The system con-
sists of two atomic ensembles of approximately 1012 atoms at room temperature and strongly
polarized along the x-axis. They are interfaced with the linearly polarized light propagating
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a) b)

Figure 3.3: Two possible set-ups for generation of EPR-like entanglement between the op-
positely polarized atomic ensembles as proposed in [Julsgaard 01, Julsgaard 03]. In set-up a)
the first beam squeezes the combination P1 +P2 then the atomic spins are rotated and the sec-
ond beam probes the combination X1 +X2. In figure b) a parallel magnetic field causes the
Larmor precession of atomic spin which enables to squeeze both combinations of variables
with a single beam.

along direction z which leads to an exchange of quantum �uctuations between the beam and
the ensembles. The subsequent measurement of light establishes entanglement between the
samples by projecting them on a squeezed state.

The detailed procedure is the following. The atomic ensembles are prepared in a spin-
polarized state such that their collective spin has a strong, classical component along x. The
spins are pointing in the opposite directions which makes the combinations of field quadra-
tures XA,1 + XA,2 and PA,1 + PA,2 commute. Then, the first beam applied along direction
z (figure 3.3a upper picture), probes the variable PA,1 + PA,2 imprinting it in quadrature
XL [see equation (3.18c)]. The subsequent homodyne detection of XL establishes entangle-
ment between the samples. In order to squeeze the other combination, XA,1 + XA,2, the
second beam along the y direction is applied and measured. Equivalently, the atomic spins
can be rotated by �=2 around the x-axis using magnetic field and probed with the light pulse
propagating along direction z (figure 3.3a).

As an alternative to the above scheme, which requires two light passes to produce opti-
mal amount of entanglement, the authors of [Julsgaard 01] propose to use a magnetic field
parallel to spin polarization to cause the Larmor precession of spin components (figure 3.3b).
The advantage of this approach is that the information about both transverse atomic spin
components is accumulated in a single light beam and can be then separated through signal
post-processing. This is possible because the period of spin precession is much shorter than
T , the duration of the light pulse.

Note that in this measurement-based scheme, entanglement is generated irrespectively of
the outcome of the measurement. However, the result has to be recorded to make the produced
correlations useful. To show it we consider the method used in [Julsgaard 01, Julsgaard 03]
to verify that entanglement was indeed generated by the first pulse. The criterion applied for
this purpose is the variance inequality (2.59) forXA,1 +XA,2 and PA,1 +PA,2. Let us denote
by M (x)

1 ;M
(p)
1 the outcomes of the first, entangling, measurements. In the verification step,

the two combinations are probed again (using either two consecutive beams or a single beam
in the protocol using the magnetic field) and the results M (x)

2 ;M
(p)
2 are obtained. Now the

variances of M (x)
2 ;M

(p)
2 , conditioned on the outcomes M (x)

1 ;M
(p)
1 need to be determined.
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Precisely speaking, it is assumed that〈
M

(x)
2

〉
/M (x)

1 ;
〈
M

(p)
2

〉
/M (p)

1 ; (3.32)

and therefore

Var (XA,1 +XA,2) + light noise = Var
(
M

(x)
2

∣∣∣M (x)
1

)
=

〈(
M

(x)
2 �

〈
M

(x)
2

〉)2
〉

=

〈(
M

(x)
2 � #M (x)

1

)2
〉
; (3.33a)

Var (PA,1 + PA,2) + light noise =

〈(
M

(p)
2 � #M (p)

1

)2
〉
; (3.33b)

The mean values in equations (3.33b) and (3.33a) are obtained by averaging over many
repetitions of the experiment. If instead the variances ofM (x)

2 ;M
(p)
2 were computed, without

taking into account the outcome of the first measurement, the obtained results would not
re�ect the squeezing of the variables XA,1 + XA,2 and PA,1 + PA,2. This is because the
variables M (x)

2 ;M
(p)
2 have distribution corresponding to the initial state of ensembles, i.e.,

the product of the vacuum states [Julsgaard 03].
Covariance matrix analysis. — The CM formalism can be straightforwardly applied to

the bipartite entanglement protocol and the amount of entanglement produced can be easily
quantified using, for instance, the logarithmic negativity. We use this simple example also to
demonstrate the utility of the CM formalism.

We begin with the set-up in which both the atomic ensembles and the light are in the
vacuum state, i.e., the one characterized by zero displacement and the following CM


1,in = 1
(A)
4 � 1

(L)
2 ; (3.34)

and we assume that both atomic samples couple to light with the same strength � (�1 = �2 =
�) simplifying the symplectic matrix (3.25). In the first step of the interaction (figure 3.3a) the
angles �1; �2 are both equal zero, hence we obtain the following output CM of the system:


1,out = ST1 
1,inS1

=


1 + �2 0 �2 0 0 �

0 1 0 0 � 0
�2 0 1 + �2 0 0 �
0 0 0 1 � 0
0 � 0 � 1 + 2�2 0
� 0 � 0 0 1

 : (3.35)

Now, using, e.g., the logarithmic negativity it is easy to check that due to the interaction
both atomic modes are entangled with light; however, the reduced state of the two ensembles
[represented by the 4�4 upper left block matrix of equation (3.35)] is separable (figure 3.4a).
This indeed indicates that entanglement between atomic samples is not produced through sole
interaction with light. Next, the quadrature of light X(out)

L is measured with outcome x̃L,1
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Figure 3.4: Amount of entanglement generated in the bipartite entanglement protocol
[Julsgaard 01] quantified by the logarithmic negativity. In figure a) the purple line corre-
sponds to the amount of entanglement between the samples and the light while the blue
line is the amount of entanglement in the reduced state of two atomic ensembles. Figure
b) shows the logarithmic negativity of the state of ensembles after the homodyne detection is
performed. There, the orange line corresponds to a single step protocol (the first line of figure
3.3a), while the red line to the complete procedure depicted in figure 3.3a.

and one obtains the final state of the system described by the CM [see equations (3.30) and
(3.31)]


1,fin =


1 + �2 0 �2 0

0 κ2+1
2κ2+1 0 � κ2

2κ2+1

�2 0 1 + �2 0

0 � κ2

2κ2+1 0 κ2+1
2κ2+1

 ; (3.36)

and the displacement vector

d1,fin =

(
0;� x̃L,1�

2�2 + 1
; 0;� x̃L,1�

2�2 + 1

)
: (3.37)

The logarithmic negativity of the state after the homodyne detection of light is depicted in
figure 3.4b.

In the second step, introducing more entanglement, the ensembles again interact with a
light beam in the vacuum state, hence we add one mode to the final CM of the previous step
obtaining:


2,in = 
1,fin � 1
(L)
2 : (3.38)

The interaction at angles �1 = ��2 = �=2 with the same coupling constant � leads to the
state characterized by the following matrix


2,out =



1 + �2 0 �2 0 �� 0

0 2κ4+2κ2+1
2κ2+1 0 � 2κ2(κ2+1)

2κ2+1 0 �

�2 0 1 + �2 0 � 0

0 � 2κ2(κ2+1)
2κ2+1 0 2κ4+2κ2+1

2κ2+1 0 ��
�� 0 � 0 1 + 2�2 0
0 � 0 �� 0 1


: (3.39)
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Finally, the homodyne measurement of Xout
L , this time with outcome x̃L,2, leads to the ex-

pected EPR-like state with CM


2,fin =


2κ4+2κ2+1

2κ2+1 0
2κ2(κ2+1)

2κ2+1 0

0 2κ4+2κ2+1
2κ2+1 0 � 2κ2(κ2+1)

2κ2+1
2κ2(κ2+1)

2κ2+1 0 2κ4+2κ2+1
2κ2+1 0

0 � 2κ2(κ2+1)
2κ2+1 0 2κ4+2κ2+1

2κ2+1

 ; (3.40)

and displacement vector

d2,fin =

(
� �x̃L,2

2�2 + 1
;� �x̃L,1

2�2 + 1
;
�x̃L,2

2�2 + 1
;� �x̃L,1

2�2 + 1

)
: (3.41)

It is important to note that the covariance matrix is independent of the measurement out-
comes, but the latter are clearly present in the displacement vector of the atomic modes. This
is a general rule in this kind of protocols indicating once more that the entanglement is gener-
ated independently of the results of the measurements, nevertheless, can be used only if those
results are recorded. The logarithmic negativity of the state generated in the two-step pro-
cedure is depicted in figure 3.4b. Clearly, as expected, the squeezing of the complementary
combination of variables step increases the amount of entanglement between the ensembles.

Variance inequalities are strong and experimentally-friendly criteria to test the presence
of entanglement in the CV system [Duan 00b, van Loock 03]. However, their efficiency is
limited, which we will demonstrate here. The simplest inequality, yet most useful in our case,
reads [see also equation (2.59)]:

Var(P1 + P2) + Var(X1 �X2) > 2: (3.42)

The required variances can be immediately computed from matrix elements of CMs (3.36)
and (3.40) as follows:

Var (PA,1 + PA,2)
∣∣
γj,fin

=
1

2
[(
j,fin)22 + (
j,fin)44 + 2(
j,fin)24] ; (3.43)

Var (XA,1 �XA,2)
∣∣
γj,fin

=
1

2
[(
j,fin)11 + (
j,fin)33 � 2(
j,fin)13] (j = 1; 2):

In figure 3.5 we depict the left-hand side of inequality (3.42) as a function of the coupling
constant. The plot shows that the criterion based on variances is efficient in this case since
it detects entanglement for arbitrarily small � > 0. Note, however, that the variances are
measured with finite precision and this establishes a lower bound on � for which we can trust
the obtained result.

To determine experimentally the required sum of variances one can simply repeat the two
steps used for entanglement generation (or a single step in the set-up with magnetic field),
record the result and compute the conditional variance as it was described in equations (3.33).
In such case we obtain

VarXout
L,1 = VarX in

L,1 + �2Var(PA,1 + PA,2); (3.44a)

VarXout
L,2 = VarX in

L,2 + �2Var(XA,1 �XA,2): (3.44b)
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Figure 3.5: We plot the left-hand side of equation (3.42) in order to show the efficiency of the
entanglement criterion base on variances of squeezed variables. The purple line corresponds
to the state produced in the first step of the protocol, and the blue line to the final EPR-like
state. The dashed line is the bound below which the variance inequality criterion is violated.

Since there are two separate measurements of each variance, the uncertainty of the obtained
result increases. In [Stasińska 09] we proposed an alternative geometric scheme in which a
single beam is used as depicted in figure 3.6 to probe the following combination of variables

Xout
L = X in

L �
�p
2

(PA,1 + PA,1 +XA,1 �XA,2) : (3.45)

Now, since the atomic variables XA,j and PA,j were not correlated by the entangling pulses,
we have hXA,iPA,ji = hXA,ii hPA,ji (i; j = 1; 2) and the variance of (3.45) amounts to

VarXout
L = VarX in

L +
�2

2
[Var(PA,1 + PA,1) + Var(XA,1 �XA,2)] : (3.46)

Figure 3.6: Set-up for verification of bipartite entanglement.

We see that the sum of the variances, which we will denote by F , is proportional to the
variances ofX in/out

L , hence in the error analysis we treat it as a complex expression depending
on a number of experimental values qi with relative errors �i and determine the cumulative
relative error through the formula

�(F ) =

√√√√∑
i

(
@

@qi
F

)2

�2
i ; (3.47)

with
q =

(
VarX in

L ;VarXout
L ; �

)
; (3.48)
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and we take the relative error of variances and � to be 5%. The error computed in this way is
smaller than 10% for � > 1, however grows quickly for smaller �. This values suggest that in
order to to certify the presence of entanglement the coupling constant should be greater than
1 and in this case the measured variances must give the total smaller then 1:8, which is well
within reach of today's technology [Appel 09].

3.2.2 Geometric scheme for multipartite entanglement

There exist experimental situations in which it is not possible to address each sample with
individual magnetic field. For instance, the atomic ensembles of mesoscopic size produced
in the set-up of optical micro-traps are too close to each other to achieve individual address-
ing [Kruse 10, Schlosser 11]. Moreover, the scheme with oppositely polarized atomic en-
sembles and magnetic fields fails to preserve the QND character when an odd number of
samples is involved, since in this case it is not possible to make the total spin along x equal
zero. These restrictions can be overcome with the geometric scheme for multipartite set-
up [Stasińska 09, Stasińska 12b] in which light passes through the ensembles at specific an-
gles. We will demonstrate how using this scheme one can explore the multipartite scenario
and not only produce GHZ-like and cluster-like states but also verify their entanglement. In
contrast to the bipartite case, where only one type of entanglement exists, the issue of detec-
tion of multipartite entanglement with variance inequalities (2.57) becomes an intricate task,
however in the pure-state scenario, which we study in this section, it is still feasible.

GHZ-like states. — By definition the CV GHZ state is an eigenstate of zero total mo-
mentum P1 + : : : + PNs

and zero pairwise relative positions Xi � Xj (i; j = 1; : : : ; Ns,
i < j) [van Loock 00]. Note that all such combinations of variables commute which, in turn,
implies they can be squeezed simultaneously. Generation of this state is feasible in the set-up
of atomic ensembles for any number Ns of atomic samples. The first step, being a trivial
extension of the bipartite entangling strategy [figure 3.3a (upper picture)], is the following. A
single beam passes through all the samples along direction z (see figure 3.7a) and the light
quadrature Xout

1,L is measured afterwards. The state produced in this way possesses entangle-
ment of GHZ type, however it is squeezed in a single combination of variables P1+: : :+PNs

,
which clearly leads to weak correlations. In order to increase the amount of entanglement,

a) b)

Figure 3.7: Set-up for generation of multipartite GHZ-like entanglement. In figure a) the
geometry for squeezing the combination P1 + : : : + PNs

; in b) the way to introduce more
entanglement between the samples by squeezing all the combinations Xi �Xj (i < j).

all the combinations of variables defining the GHZ state should be squeezed. Note, however,
that this requires Ns(Ns � 1)=2 separate beams and measurements, which may be feasible
for several parties but becomes problematic for larger systems due to the decay of the atomic
spin-polarized state in time windows between the consecutive beams (3.19).

34



3.2. PURE MULTIPARTITE ENTANGLEMENT

For an ideal system, the final genuine Ns-partite entangled state is characterized by the
variances

Var (P1 + : : :+ PNs) =
Ns

2 + 2Ns�2
; (3.49a)

Var (Xi �Xj) =
1

1 +Ns�2
(i < j); (3.49b)

which violate the variance inequalities of the type (2.57)

Var (P1 + : : :+ PNs
) + Var (Xi �Xj) > 2 (i < j); (3.50)

certifying the presence of entanglement. If the system is subject to some kind of decoherence,
we model the process by appropriately modifying the CM [see equation (3.20)] after each
interaction–measurement step. The effects of decoherence are displayed in figure 3.8, where
we plot the value of the left-hand side of equation (3.50) for different values of parameter �t
and �, and compare the results with those for the perfect system, i.e., �t = 0.
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Figure 3.8: Violation of the variance inequality criterion for GHZ state (3.50) generated in a
system subject to spin decay measured by parameter �t depicted in the pictures. The coupling
constants are a) � = 1, b) � = 3. Value below 2 indicates the presence of GHZ entanglement.

We observe that decoherence does not destroy the GHZ-type entanglement in the system
even for large number of samples Ns where numerous light passages are required and the
generation process becomes long. On the contrary, for large Ns the sum of the variances
(3.50) saturates to a value well below the threshold (equal 2) indicating that the proposed
procedure is efficient even if a large number of ensembles is involved, especially for strong
coupling � > 1. Note, however, that in order to determine the variances (3.49) one needs
to perform another Ns(Ns � 1)=2 measurements of the same variables once the state is gen-
erated. Therefore, the whole generation-verification procedure becomes complicated with
increasing number of parties.

To overcome the problem of such large number of measurements we again exploit the
geometric scheme. The alternative protocol still generates multipartite entanglement, and at
the same time the number of light-beam passes is significantly reduced. Nevertheless, it is
valid only for an even number of ensembles Ns = 2M [Stasińska 09].

The set-up is depicted in figure 3.9a. In the first step we generate squeezing in PA,1+: : :+
PA,2M . Next we squeeze the observables XA,1 �XA,2 + : : : + (�1)2M−1XA,2M with the
second beam passing through the ith sample at an angle (�1)i−1�=2. In order to detect the
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3. MANIPULATION OF ENTANGLEMENT IN ATOMIC ENSEMBLES

a) b)

Figure 3.9: Alternative scheme for generation of multipartite entanglement.

entanglement of this state we use the variance inequality for two squeezed variables discussed
in this paragraph. To probe them, we generalize the scheme described in the previous section
(see figure 3.6) in the way summarized in figure 3.9b.

The measurement of light propagating through the ith sample at an angle (�1)i−1�=4
gives at the level of variances

VarXout
L = VarX in

L

+
�2

2
Var(XA,1 �XA,2 + : : :+ (�1)2M−1XA,2M )

+
�2

2
Var(PA,1 + : : :+ PA,2M ): (3.51)

Therefore, only a single beam is required for verification of entanglement. The same criterion
and the above measurement scheme can be applied not only to detect the entanglement in
the above set-up but also in those proposed before, i.e., (i) the state with squeezing only in
PA,1 + : : : + PA,2M (after interaction and measurement of the first beam), and (ii) the state
with squeezing in PA,1 + : : : + PA,2M and all combinations XA,i � XA,j (i 6= j). The
reduction in the number of measurements in the verification step is significant.

Optimization of the scheme for odd number of atomic ensembles within this geometric
approach is to our knowledge not possible. Even though it is possible to find independent
variables involving all the samples, it is not clear what geometry should be applied in order
to squeeze these operators.

Cluster-like states. — Continuous-variable cluster states were introduced in [Zhang 06]
and further explored in a number of works including [van Loock 07, Yukawa 08, Menicucci 10,
Aolita 11]. Their efficient generation and further manipulation is particularly important in
the context of universal measurement-based scheme for quantum computation with Gaussian
cluster states [Nielsen 04, Menicucci 06, Gu 09, Ohliger 10]. By definition a cluster state is
a graph state based on a connected graph. One associates with each vertex of a graph G a
CV mode. The edges between the vertices define the notion of the nearest neighbour. By Na
we denote the set of nearest neighbours of the vertex a. Graph states in CV are defined only
asymptotically as those with infinite squeezing in the variables

Pa �
∑
b∈Na

Xb; for all a 2 G: (3.52)

We talk about graph-like or cluster-like states when the squeezing is finite.
Given a set of atomic ensembles, it is possible to create a chosen cluster-like state by

squeezing the required combinations of variables (3.52). Since they commute, it is possible
to squeeze them sequentially. The procedure is as follows.
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Figure 3.10: A unit entangling operation for graph states. The light beam probes the combi-
nation (3.52) for a particular vertex labelled by a which has two neighbours Na.

1. Each graph vertex is associated with an atomic ensemble.

2. For every vertex a a unit entangling operation is executed. It consists of (i) probing
the atomic momentum of the ensemble associated with a by passing a beam at the
angle � = 0 and (ii) probing the positions of the adjacent vertices by propagating a
beam at the angle � = ��=2 through the samples corresponding to elements ofNa (as
schematically depicted in figure 3.10).

a)

b)

Figure 3.11: The set-up for generation of the cluster state corresponding to the linear graph
depicted in figure a).

We illustrate the method by considering a simple example consisting in the four-mode
linear cluster state, yet the protocol is general. The corresponding graph is depicted in figure
3.11a while figures 3.11b show how the light should propagate through the samples in order
to squeeze the required combinations of variables. For example, the squeezing of PA,1�XA,2

is generated by passing light through samples 1 and 2 at angles 0 and ��=2, respectively.
In order to verify that the state is entangled it is enough to check the set of variance

inequalities that involve the variables squeezed in the protocol [Yukawa 08]. Explicitly, the
criteria read:

Var (PA,1 �XA,2) + Var (PA,2 �XA,1 �XA,3) > 2; (3.53a)
Var (PA,2 �XA,1 �XA,3) + Var (PA,3 �XA,2 �XA,4) > 2; (3.53b)

Var (PA,3 �XA,2 �XA,4) + Var (PA,4 �XA,3) > 2: (3.53c)
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It turns out that the so generated linear cluster state violates all the inequalities if the coupling
constant � > 0:4.

It is interesting to perform the analysis of the protocol assuming that the atomic spins
decay in the time window between the entangling pulses. The analysis is analogous to the
one for the GHZ state, namely we compute the maximal value attained by the left-hand sides
of the inequalities (3.53) generalized to an arbitrary number of atomic ensembles. The results
are depicted in figure 3.12 for different values of parameters � and �t.
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Figure 3.12: The maximum of the left-hand sides of inequalities of type (3.53) generalized to
arbitrary number of parties for values of parameter �t depicted in the picture and a) � = 1, b)
� = 3.

Comparing figures 3.8 and 3.12 we see that the two types of entanglement behave com-
pletely differently under decoherence during the generation process. For large systems the
linear cluster-like entanglement is completely destroyed by strong decoherence, unlike the
GHZ-like entanglement which is present even in large systems and �t � 0:1. However, one
sees that the cluster states are more robust to small atomic decay �t � 0:01. We should also
mention that the atomic spin decay destroys the purity of the generated state which, as we
will see in the next section, affects detectability of entanglement by the variance inequalities.

3.3 Extension to mixed entangled states
The generation of pure Gaussian entangled states analysed so far is important for quantum
information protocols [Braunstein 05, Andersen 10, Weedbrook 12]. Therefore, it is crucial
to evaluate its experimental feasibility with novel systems such as atomic ensembles. How-
ever the QND-Faraday interface offers also all the tools necessary to generate mixed-state
entanglement, in particular bound entanglement [Stasińska 12b]. In this section we show two
possible approaches to generation of mixed states. The first one demonstrates the robustness
of the entanglement induced via QND-Faraday interface when the initial state of atoms is
thermal instead of pure (vacuum). In such case the subsequent standard entangling opera-
tions cannot purify the state of the samples, consequently the obtained state is mixed. The
second method consists in generation of pure state entanglement and its manipulation through
interaction with a light beam that is not measured afterwards. This procedures introduces a
random displacement classically correlated between the samples. Both methods can lead to
various types of bound entangled states. In what follows we show how a three-mode state gen-
erated through cluster-like procedure from thermal samples changes its entanglement prop-
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erties with the temperature parameter. Then we illustrate the potential of the second method
showing how to create a four-mode Smolin-like state [Zhang 11], which possesses a special
type of entanglement, unlockable bound entanglement.

3.3.1 Initial mixedness
Let us start with the set-up in which the atomic samples are not in the minimum-�uctuation
coherent state (vacuum), but in a general thermal state. The thermal �uctuations can be
imposed in a controlled way, for instance, by mapping to each sample separately a thermal
state of light. The initial state of the composite system is in this case given by the following
covariance matrix for atoms and light


in = n11
A
2 � � � � � nNs

1A2 � 1L2 ; (3.54)

where the parameters n1; : : : ; nN are related to temperature as ni = coth[�i!=2] (i =
1; � � � ; N ), � is the inverse of the temperature, and ! is the effective frequency of the lo-
cal oscillator of a single sample.

Bipartite entanglement of thermal states. — In this paragraph we generalize the bi-
partite set-up of section 3.2.1. Starting from two ensembles in thermal states characterized by
n1 and n2, and performing the first entangling step analogous to equations (3.35)-(3.36) we
obtain the state characterized by the CM


1,fin =


n1 + �2 0 �2 0

0 n1n2κ
2+n1

(n1+n2)κ2+1 0 � n1n2κ
2

(n1+n2)κ2+1

�2 0 n2 + �2 0

0 � n1n2κ
2

(n1+n2)κ2+1 0 n1n2κ
2+n2

(n1+n2)κ2+1

 ; (3.55)

and the displacement vector

d1,fin =

(
0;� x̃L,1�n1

(n1 + n2)�2 + 1
; 0;� x̃L,1�n1

(n1 + n2)�2 + 1

)
: (3.56)

For n1 = n2 = 1 we reproduce trivially the results for the pure state case. In the second step,
in order to increase the amount of entanglement we perform the squeezing operation on the
complementary combination of quadratures obtaining:


2,fin =


a+n1

κ2(n1+n2)+1 0 a
κ2(n1+n2)+1 0

0 a+n1

κ2(n1+n2)+1 0 −a
κ2(n1+n2)+1

a
κ2(n1+n2)+1 0 a+n2

κ2(n1+n2)+1 0

0 −a
κ2(n1+n2)+1 0 a+n2

κ2(n1+n2)+1

 ; (3.57)

with a = �4(n1 + n2) + �2(1 + n1n2), and

d2,fin =

(
��n1x̃L,2

�2 (n1 + n2) + 1
;
��n1x̃L,1

�2 (n1 + n2) + 1
;

�n2x̃L,2
�2 (n1 + n2) + 1

;
��n2x̃L,1

�2 (n1 + n2) + 1

)
:

(3.58)

In order to see the effect of the initial thermal noise imposed on the samples, we now
quantify the entanglement produced in each step with logarithmic negativity. We also check
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Figure 3.13: The negativity of the states produced in the bipartite entangling protocol in a)
the first and b) the second step for the values of thermal noise depicted in the pictures.

if the noise affects the detectability of entanglement with variance inequality (3.42). In figure
3.13 we depict the negativities of the states produced in both steps as a function of n1 = n2 =
n and the coupling constant �. This analysis shows that, contrary to the case of initially pure
states (n = 1), in which an arbitrarily small coupling produces entanglement, the protocol
beginning with thermal states requires a stronger coupling with light to be successful.
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Figure 3.14: The value of the left-hand side of inequality (3.42) for the states produced in
the bipartite entangling protocol in the first (dashed) and the second (continuous) step for the
values of thermal noise depicted in the pictures. In figure b) we compare the set of parameters
�; n1; n2 for which the state 
2,fin of the ensembles remains separable (brown inner region)
and the one for which the state is not detected by the variance criterion (transparent outer
region).

In figure 3.14a we show the corresponding plots for the left-hand side of the bipartite
variance inequality. Comparing the curves of the negativity with those of the variance test,
we notice that the latter performs particularly poor for the weakly entangled state produced
after the first step of the protocol, where it does not detect any entanglement for n > 2. This
is due to the fact that only one combination of variables, i.e., P1 + P2 is squeezed and the
thermal �uctuations, still present in X1 � X2, keep the sum in equation (3.42) above the
bound. The detectability very much improves when the two-step procedure is applied. There,
the inequality detects all the states with positive negativity for the choice n1 = n2 = n.
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3.3. EXTENSION TO MIXED ENTANGLED STATES

In figure 3.14b we compare the set of states with positive negativity and the set of states
not detected by the variance inequality. We observe that some states with n1 6= n2 are not
detected.

If we consider the decay of atomic spin in the course of the protocol, as in equation (3.20),
we see that the amount of entanglement is not affected significantly. For the decay constant
� � 0:05 the region of entangled states shrinks very little, especially for the admissible
parameter � > 1. The feasibility of the detection of entanglement through the variance
inequality was studied already in section 3.2.1 and the obtained results remain valid for the
protocol with thermal samples. For achievable parameters, i.e, � > 1 and � � 0:05 detection
is always feasible in the set-up consisting of two light beams, however is limited to n1 +n2 �
2 (initial vacuum state) if only one entangling beam is used.

Bipartite entanglement eraser. — In [Stasińska 09, Stasińska 12b] we have shown that
the measurement-induced entanglement between two atomic samples reported in the previous
paragraphs can be deleted by exploiting the squeezing and anti-squeezing mechanism. Let us
recall here the results for the bipartite entanglement generated from initially mixed states with
CM (3.55) and DV (3.56).

Figure 3.15: The geometric set-up for entanglement eraser.

For simplicity we begin with the entangled state produced in the one-step protocol. Then,
interaction with strength � with a second light beam impinging on each atomic sample at
�1 = �2 = �=2 (as depicted in Figure 3.15) followed by the light measurement erases the
entanglement produced by the interface with the first light beam if the properties of light are
appropriately adjusted. To this aim, it is sufficient to take the erasing light beam characterized
by the covariance matrix


L =

(
2VarX 0

0 2VarP

)
; (3.59)

with

2VarX = �2(n1 + n2) + n1n2; (3.60a)

2VarP =
n1n2

�2(n1 + n2) + 1
: (3.60b)

The covariance matrix of the final state is then given by:


1,er =


κ2(n1+n2)+n1n2

2κ2+n2
0 0 0

0
n1(2κ2n2+1)
κ2(n1+n2)+1 0 0

0 0 κ2(n1+n2)+n1n2

2κ2+n1
0

0 0 0
n2(2κ2n1+1)
κ2(n1+n2)+1

 ; (3.61)
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and the corresponding displacement is:

d1,er =

(
� �x̃L,er

2�2 + n2
;� �n1x̃L,1

�2 (n1 + n2) + 1
;� �x̃L,er

2�2 + n1
;� �n1x̃L,1

�2 (n1 + n2) + 1

)
; (3.62)

where x̃L,er is the outcome of the measurement of the erasing beam. Note that the state (3.61)
is separable. It is identical to the initial one, however, only if n2 = n1 = 1.

An analogous procedure can be applied to the state generated in the two-step protocol
characterized by CM (3.57) and DV (3.58). In this case the properties of light should be
chosen as

2VarX =
�2(n1 + n2) + n1n2

�2(n1 + n2) + n1n2 + 1
; (3.63a)

2VarP =
�2(n1 + n2) + n1n2 + 1

�2(n1 + n2) + 1
: (3.63b)

In this case, after the interaction and the light detection the state of the ensembles is charac-
terized by the CM


2,er =


κ2(n1+n2)+n1n2

2a+n2
0 0 0

0 2a+n1

κ2(n1+n2)+1 0 0

0 0 κ2(n1+n2)+n1n2

2a+n1
0

0 0 0 2a+n2

κ2(n1+n2)+1

 ; (3.64)

with a = �4(n1 + n2) + �2(n1n2 + 1), and

d2,er = d2,fin +

(
� ax̃L,er

�(2a+ n2)
; 0;� ax̃L,er

�(2a+ n1)
; 0

)
: (3.65)

Again we see that the entanglement was erased, however the initial state is not recovered even
for the pure-state case, i.e., n1 = n2 = 1. In the latter case, each sample after the erasing
protocol is in a squeezed vacuum state.

Bound entanglement in three-mode states. — We move now to the truly multipartite
entanglement and aim at analysing bound entanglement, which exist only in the mixed state
case. We focus on the simplest scenario of the three atomic samples, since the entanglement
of this states was already fully classified by Giedke and co-workers in [Giedke 01b]. There are
five classes of states: states inseparable with respect to every bipartite splitting are denoted as
class 1. States which are biseparable with respect to one (and only one) bipartition belong to
class 2. States that are biseparable with respect to two or three bipartitions, but still entangled,
belong to class 3 and class 4, respectively. These two classes of states are bound entangled.
Finally, class 5 are the separable states. While classes 1-3 are fully characterized by the
PPT criterion, in order to distinguish class 4 and 5, a different strategy is necessary. The
authors of [Giedke 01b] provide the necessary and sufficient test for full separability which
we summarized in section 2.4.3 of chapter 2. It will allow us to distinguish unambiguously
the two classes.

Using the geometric set-up for cluster states described in section 3.2.2 we analyse two
states, one based on the linear graph and the other based on the triangular one (corresponding
graphs are depicted in figure 3.16), however produced from initially thermal samples as in
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3.3. EXTENSION TO MIXED ENTANGLED STATES

equation (3.54). For simplicity we choose the same temperature parameter and coupling con-
stant for each sample. We demonstrate that in such set-up bound entangled states of various
types are produced for certain choices of temperature and coupling. This research can be
placed in the context of [Cavalcanti 10] where the authors study the presence of undistillable
entanglement in thermal finite-dimensional systems.
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Figure 3.16: Range of parameters for a) the linear and b) the triangular cluster state for which
the produced state belongs to different entanglement classes (see explanation it the text).

In figure 3.16 we summarize our results. We depict sets of states with different entangle-
ment types as a function of the temperature T through n(T ) = 1= tanh (!=2T ) and coupling
�. In the case of the linear cluster state (figure 3.16a), for a fixed value of the parameter �,
the state is NPT with respect to all the three cuts in the interval 0 < T < Ta, meaning that it
belongs to class 1. For Ta < T < Tb the state is PPT with respect to the bipartition 2� (1; 3)
and NPT with respect to others. Hence, it belongs to bound entangled class 3. For T > Tb
the state becomes PPT with respect to all the cuts. Using the full-separability criterion, we
see that within the range Tb < T < Tc the state is class-4, while for T > Tc it becomes fully
separable. Figure 3.16b shows different entanglement classes for a triangular cluster state. In
this case, because of the permutational invariance, class 3 is never recovered. Nevertheless, a
class-4 region still appears between the genuine tripartite class-1 states and the fully separable
states of class 5.

Even though at the level of covariance matrix we are able to distinguish all the entan-
glement classes it may be challenging to recover them in experiment. On one hand, the
�uctuations of the coupling constant (�� � 0:05) that are always present in the system due
to particle loss, spontaneous emission, �uctuations of laser intensity etc make the states be-
longing to class-4 practically undistinguishable from those belonging to class-3 and -5. On
the other hand bound entangled states belonging to entanglement class-3 are well separated
from other types of states, hence experimentally distinguishable.

3.3.2 Manipulation of pure entanglement
So far, all the presented protocols were “measurement-based”, i.e., involved a final projective
measurement on the light, and only in this type of procedures, the entanglement can be gen-
erated. In this section we look closer at the situation in which the light beam is not measured
after the interaction. In this case, the interaction with the light beam mixes all the possible
outcomes of the measurement-based experiment with a Gaussian weight. We propose to ex-

43
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ploit this Gaussian randomness that is inherently present in the system, due to uncertainty of
the outcome of the light measurement, to manipulate the entanglement previously created in
the system. Using this procedure, starting from two pure bipartite entangled states, it is pos-
sible to produce the CV analogue of the so-called Smolin state [Smolin 01, Zhang 11] which
is an example of an unlockable bound entangled state.

The CV Smolin state. — The Smolin state introduced in [Smolin 01] for qubits an
experimentally demonstrated in [Amselem 09, Lavoie 10] is an interesting example of an
undistillable multipartite entangled state that can be unlocked if several parties perform a
collective measurement and send the outcome to the remaining parties. The Smolin state is
formed by an equal-weight mixture of products of the four Bell states  i(i = 1; : : : ; 4)

%Smolin =

4∑
i=1

j iih ijAB 
 j iih ijCD: (3.66)

One sees that parties AB and CD share the same Bell state but none of the pairs know which
one it is. Such state is clearly separable with respect to partition ABjCD. Moreover, since
it is permutationally invariant, the above statement holds for every two pairs, not only for
AB and CD. Hence, according to the definition, the state is undistillable with respect to two
arbitrary parties, since there always exists a separable bipartition dividing them.

The fact that two arbitrary pairs share the same, yet unknown Bell state makes the en-
tanglement present in the Smolin state unlockable. Imagine the situation in which two of
the parties, say C and D, meet in one laboratory and perform collectively a discriminating
measurement in the Bell basis, identifying thus the state they possess. This measurement
projects the state shared by AB to be the same one. Hence, if A and B, still being in separate
laboratories, obtain (by classical communication) the information about the outcome of CD,
they can use their maximally entangled state. We emphasize that the otherwise unknown Bell
state is useless.

The Smolin state possesses many other interesting features. Apart from being unlock-
able, its entanglement can be activated through a cooperation of five parties sharing two
copies of the state [Shor 03]. Despite being bound entangled, the Smolin state has several
applications, among others, it can be used in the remote quantum information concentration
protocol [Murao 01]. It was also shown to maximally violate a Bell inequality being at the
same time useless for the secret key distillation [Augusiak 06]. This particular result implies
that in the multipartite scenario the security of key distribution is not equivalent to violation
of Bell inequalities, unlike in the bipartite case [Ekert 91].

Recently, Zhang has generalized the discrete Smolin state to the Gaussian CV scenario us-
ing the mathematical formalism of stabilizers [Zhang 11]. It turns out that the state proposed
by Zhang can be understood as a mixture of products of the continuous variables maximally
entangled states, only this intuitive definition must be appropriately interpreted. Let us con-
sider two EPR(-like) states with known displacement and randomly displace both of them in
the opposite unknown directions in the phase space, as schematically depicted in figure 3.17.
The only constraint imposed on the random displacement is that it has a Gaussian distribution.
In this way we obtain a Gaussian mixture of two displaced EPR pairs.

The properties of the CV Smolin state are slightly different from those of the qubit state.
First and most important, we loose the permutational invariance [Zhang 11]. Second, since
the maximally entangled EPR-state corresponds to infinite squeezing, which is not physical,
we always have to deal with EPR-like states and therefore it is necessary to analyse the effect
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x1+x2

p1-p2

EPR1
x3+x4

p3-p4

EPR2

Figure 3.17: The intuitive explanation of how the CV Smolin state is generated. Different
shades denote the Gaussian distribution of the displacement centred at 0.

of the finite squeezing on the separability properties of the Smolin-like state. It turns out that
the state is bound entangled only within a particular range of the squeezing parameter and
width of the Gaussian distribution characterizing the random displacement.

Let us demonstrate how the set-up generating the Smolin-like state proposed in [Zhang 11]
greatly simplifies in the atomic-ensemble realization. We characterize each step of the proce-
dure using the CM and the DV. Finally, we demonstrate the unlocking of entanglement and
analyse the entanglement of the obtained state as a function of the system parameters.

The Smolin-like state can be generated in two steps [Zhang 11]:

1. generation of two EPR-like pairs with reduced �uctuations (squeezing) inX1 +X2 and
P1 � P2 (X3 +X4 and P3 � P4 for modes 3 and 4) and known displacement

2. displacement of the EPR pairs by random Gaussian variables �1 and �2 such that the
quadratures transform in the following way:

X1 +X2 +X3 +X4 ! (X1 � �1) + (X2 � �1) + (X3 + �1) + (X4 + �1); (3.67)

and

P1 � P2 + P3 � P4 ! (P1 + �2)� (P2 � �2) + (P3 � �2)� (P4 + �2): (3.68)

Note that indeed the squeezed combinations in modes 1 � 2 and 3 � 4 are displaced in
the opposite directions. Moreover, implementation of each of these steps is experimentally
feasible in the geometrical set-up of atomic ensembles. Step 1 concerns the generation of
EPR-like states with known displacement which is achieved as described in section 3.2.1.
Step 2 corresponds to the generation of random Gaussian displacements correlated between
the samples. In our geometrical set-up this can be achieved by shining two light beams so
that they interact with the ensembles at angles(

�
(1)
1 ; �

(1)
2 ; �

(1)
3 ; �

(1)
4

)
= (0; 0; �; �) ; (3.69)

and (
�

(2)
1 ; �

(2)
2 ; �

(2)
3 ; �

(2)
4

)
=
(�

2
;��

2
;��

2
;
�

2

)
: (3.70)

A straightforward application of (3.18) shows that the procedure modifies the quadratures of
the atomic ensembles in the following way:

X1+X2+X3+X4 ! (X1��PL,1)+(X2��PL,1)+(X3+�PL,1)+(X4+�PL,1); (3.71)
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and

P1�P2 +P3�P4 ! (P1 +�PL,2)� (P2��PL,2)+(P3��PL,2)� (P4 +�PL,2): (3.72)

Comparing now equations (3.67) and (3.68) to equations (3.71) and (3.72), respectively, one
observes that our set-up reproduces precisely the required displacements. Now, if the output
light is not measured, �PL,1 and �PL,2 remain unknown, i.e., become the aforementioned
random Gaussian displacement with expectation value and variance that can be easily ad-
justed by choosing the input light with specific properties (vacuum squeezed, thermal etc ).
From now on we will denote these random variables by PL,1; PL,2. It should be emphasized
that, since this procedure does not involve the final projective measurement, it cannot produce
extra entanglement. Its only effect is introduction of randomness in the system, which makes
the entanglement bound.

We switch to the covariance matrix formalism that allows us to get a better insight into
the process and the properties of the final state. We begin directly with two EPR pairs with
zero displacement and characterized by the squeezing parameter r, and a general light mode
characterized by the variances: VarXL,1;VarPL,1 and zero displacement. The initial state of
the set-up is thus described by:


1,in = 
EPR1 � 
EPR2 �
(

2VarXL,1 0
0 2VarPL,1

)
: (3.73)

The interaction between the atomic ensembles and the light leads to the following CM for
atoms


1,out =



a1 0 c1 0 e1 0 e1 0
0 b 0 d 0 0 0 0
c1 0 a1 0 e1 0 e1 0
0 d 0 b 0 0 0 0
e1 0 e1 0 a1 0 c1 0
0 0 0 0 0 b 0 d
e1 0 e1 0 c1 0 a1 0
0 0 0 0 0 d 0 b


; (3.74)

with

a1 = 2�2VarPL,1 + ch2r; b = ch2r; c1 = 2�2VarPL,1 � sh2r;

d = sh2r; e1 = �2�2VarPL,1:

Interaction with the second light beam characterized by variances VarXL,2 and VarPL,2,
leads to the following CM:


2,out =



a1 0 c1 0 e1 0 e1 0
0 a2 0 �c2 0 e2 0 �e2

c1 0 a1 0 e1 0 e1 0
0 �c2 0 a2 0 �e2 0 e2

e1 0 e1 0 a1 0 c1 0
0 e2 0 �e2 0 a2 0 �c2
e1 0 e1 0 c1 0 a1 0
0 �e2 0 e2 0 �c2 0 a2


; (3.75)
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with

a1 = 2�2VarPL,1 + ch2r; c1 = 2�2VarPL,1 � sh2r; e1 = �2�2VarPL,1;

a2 = 2�2VarPL,2 + ch2r; c2 = 2�2VarPL,2 � sh2r; e2 = �2�2VarPL,2;

and the displacement of the final state is given by:

d2,out =
(
��PL,1; �PL,2;��PL,1;��PL,2; �PL,1;��PL,2; �PL,1; �PL,2

)
: (3.76)

We verify separability of the obtained state using the PPT criterion and see that the state
has the following properties:

1. It is PPT with respect to partition 12j34 for any choice of �; r;VarPL,1;VarPL,2.

2. It is always NPT with respect to partition 13j24.

3. The state is PPT with respect to partition 14j23 only if

�2VarPL,1 �
1

8

(
e2r � e−2r

)
or �2VarPL,2 �

1

8

(
e2r � e−2r

)
: (3.77)

4. All the partitions one vs three modes are always NPT, in agreement with the results
obtained in [Zhang 11].

By definition it is not possible to distil a maximally entangled state between two parties Ai
and Aj belonging to some N -partite state if there exists a PPT bipartition of the N parties
such that Ai and Aj belong to different sets [Dür 99, Dür 00]. We see that in the case of the
CV Smolin state with parameters that fulfil condition (3.77) there exists a PPT bipartition of
the state for every pair of modes. This indicates that no maximally entangled bipartite state
can be distilled from it.

We mentioned at the beginning of the section that the bipartite entanglement of the Smolin
state can be unlocked by means of a collective measurement performed by two of the parties.
In the case of the discrete state this is true for any choice of parties, however, in the CV
scenario only the entanglement between modes 1� 2 (equivalently 3� 4) can be straightfor-
wardly unlocked. This is due to the lack of the permutational invariance. In what follows we
demonstrate the unlocking protocol for pair 1 � 2. It is not clear if an analogous procedure
exists for for other bipartite splittings.

Unlocking protocol. — In order to show the unlockability of the obtained state, we
write the CM and the DV in the basis in which the EPR states are diagonal, i.e., REPR =
(1=
p

2) (X1 +X2; : : : ; P3 � P4). For simplicity we also assume that VarXL,1 = VarXL,2 =
VarXL and VarPL,1 = VarPL,2 = VarPL. Then we have


S =



e−2r + f 0 0 0 �f 0 0 0
0 e2r 0 0 0 0 0 0
0 0 e2r 0 0 0 0 0
0 0 0 e−2r + f 0 0 0 �f
�f 0 0 0 e−2r + f 0 0 0
0 0 0 0 0 e2r 0 0
0 0 0 0 0 0 e2r 0
0 0 0 �f 0 0 0 e−2r + f


; (3.78)
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with f = 4�2VarPL, and

dS =
(
�
p

2�PL,1; 0; 0;
p

2�PL,2;
p

2�PL,1; 0; 0;�
p

2�PL,2

)
: (3.79)

Now inspection of equations (3.78) and (3.79) shows clearly that we have two correlated EPR
pairs displaced by random vectors pointing in the opposite directions in the phase space of
the squeezed variables, exactly as depicted in figure 3.17. Since we do not know where in
the phase space are the EPR pairs, we cannot use them for quantum tasks. Therefore, by
analogy to the discrete case [Smolin 01, Augusiak 06], unlocking of entanglement is under-
stood as learning which of the displaced EPR pairs is shared by pair 1 � 2 by measuring the
displacement of the other EPR pair shared by 3� 4.

The unlocking protocol for the Smolin state can be performed within the operations avail-
able in the QND-Faraday atom-light interface. We will demonstrate all the steps of the pro-
cedure, i.e., the measurement of the displacement of X3 + X4 and P3 � P4 using the CM
formalism. This can be done in a quantum non-demolition way with two probe light beams
(each with quadratures X(i)

P ; P
(i)
P , i = 1; 2) with reduced �uctuations in X(i)

P , i.e., such that
VarX

(i)
P ≤ 1=2 [Sørensen 98]. The probe beams pass through the samples 3�4 at the angles(

�
(1)
3 ; �

(1)
4

)
=
(�

2
;
�

2

)
;

(
�

(2)
3 ; �

(2)
4

)
= (0; �) ;

respectively, and X(i)
P is measured afterwards. If the measurement outcomes are x̃+, p̃−, the

final state of modes 1 � 2 is characterized by the following CM and DV (still in the EPR
basis), where for simplicity we put VarX

(1)
P = VarX

(2)
P = VarXP :


12 =


e−2r + f(1� g�) 0 0 0

0 e2r 0 0
0 0 e2r 0
0 0 0 e−2r + f(1� g�)

 ; (3.80)

and
d12 = (gp−; 0; 0; gx+) ; (3.81)

with

g =
f�e2r

�2 + e2r (2VarXP + f�2)
:

The smaller the variance of the probe beam VarXP the better the precision of the measure-
ment. In the limit VarXP ! 0 [VarXP = o

(
e−2r

)
] we obtain:

g
∣∣∣
VarXP→0

=
f e2r

�+ f�e2r
=

1

�

1

e−2r=f + 1
: (3.82)

Remembering that f is constrained by equation (3.77) we see that for large initial squeezing r,
the term converges to 1=�. Therefore, if the initial EPR pairs were entangled strongly enough,
the outcomes x̃+; p̃− obtained for the displacement of X3 + X4 and P3 � P4, respectively,
approximate very well the displacement ofX1+X2 and P1�P2. Otherwise, the displacement
is still a function of known parameters. In comparison to the initial EPR state, the covariance
matrix (3.80) has an additional positive term in diagonal elements, which makes the state less
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Figure 3.18: Negativity of the unlocked state (3.80) as a function of the squeezing parameter
and the variance of the probe beam.

entangled and mixed. The above analysis shows that in the limit of high squeezing r and
perfect measurement 1��g vanishes recovering thus the initial EPR-like state. Nevertheless,
we check that for admissible values of parameters the obtained state, even though not pure, is
still distillable, which is equivalent to being NPT (see figure 3.18 where we plot the negativity
of the unlocked state).

3.4 Conclusions
In this chapter, by exploiting the geometrical setting for the quantum atom-light interface we
have demonstrated that atomic ensembles may successfully serve for quantum information
processing in protocols that require multipartite entanglement of various types. Moreover, we
have shown that slight modification of the typical setting provides an experimentally feasible
scheme for generation of mixed states, broadening the applicability of atomic ensembles for
quantum information studies.

The analysed set-ups admit the Gaussian continuous-variable description which enables
a complete study of correlations between the ensembles and the light beam induced at each
step of the considered protocols. Using the covariance matrix formalism, we have assessed
the robustness of the multipartite set-ups against the atomic spin decay and the noisy input.
We conclude that the atomic spin decay affects very little the generation of bipartite and
multipartite entangled states with several ensembles, however may become problematic if
more atomic samples are involved. We observe a particularly strong effect in the case of
the linear cluster state. The in�uence of the noisy input on the generation of entanglement
is twofold. First, it affects the feasibility of experimental detection of entanglement through
variance inequalities. Second, for sufficient amount of noise the generated state becomes
undistillable.

Last but not least, we have studied the properties of continuous variable Smolin state.
We have applied the covariance matrix criteria to shown its undistillability and analyse the
unlocking protocol. Our results provide, to the best of our knowledge, the first experimentally
feasible way to generate and unlock this bound entangled state in the Gaussian scenario.
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Chapter 4

Multipartite correlations

Quantum non-local correlations and quantum entanglement are both resources of Quantum
Information Theory (QIT) [Horodecki 09, Barrett 05b], however they cannot be considered
equivalent [Brunner 05, Cerf 05, Acín 12b]. While the presence of entanglement is a nec-
essary condition for non-locality of the measurement statistics of a state, the seminal work
of Werner [Werner 89] proves that it is not a sufficient one. In order to show this, the au-
thor provided the first example of entangled states, the famous Werner states, for which any
local projective measurement gives outcomes compatible with some classical model. An-
other striking fact showing the inequivalence of this two resources is that the most entangled
states are at the same time not the most non-local ones according to all known measures of
non-locality (see [Methot 07] and the references therein). For multipartite entanglement and
multipartite non-local correlations the situation is even less clear, as the notion of maximally
entangled state is not precise. Hence, it seems that presently the main goal of QIT is to
distinguish which quantum features manifest themselves in quantum information protocols,
identify the resources necessary to accomplish a given information tasks, and understand the
interconversion rules between the quantum resources.

The notion of correlations detached from their particular physical origin plays the central
role in device-independent quantum information processing [Barrett 05a, Acín 07, Pironio 10,
Horodecki 10, Masanes 11, Colbeck 11]. In this paradigm, one concentrates on achieving an
information task and not on the particulars of the devices used by the participants. In the most
general scenario, schematically depicted in figure 4.1, we consider N non-communicating
distant observers having access to N physical systems. Observer i (i = 1; : : : ; N ) can per-
form on his system one of Mi possible measurements. His choice of the measurement is
denoted by xi, and the obtained result by ai. Each measurement has a specified number of
different outcomes dixi

. In the device-independent scenario each user has access to a black
box, which upon input xi returns output ai. The correlations among the parties are described
by the conditional probabilities p(ajx), where we introduce a short notation x = (x1; : : : ; xn)
and a = (a1; : : : ; an). We will use the short and full notation interchangeably, depending
which is more convenient.

The existence of correlations is an inherent property of composite physical systems and,
as such, is fundamental to our understanding of physical phenomena. On the other hand,
physical principles impose limits on the correlations between the results of measurements
performed on distant systems. If the measurements correspond to space-like separated events,
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Figure 4.1: Schematic depiction of the most general multipartite scenario.

the observed correlations should obey the principle of no signalling, which prevents any in-
stantaneous information transmission among the parties. Formally, this intuitive notion is
expressed as follows

8
j
8

xj ,x′j

∑
aj

P (a1; : : : ; aj ; : : : ; aN jx1; : : : ; xj ; : : : ; xN )

=
∑
aj

P (a1; : : : ; aj ; : : : ; aN jx1; : : : ; x
′
j ; : : : ; xN ); (4.1)

which means that the marginal probability distribution obtained by tracing out the jth party
is independent of the measurement choices xj ; x′j of this party. And this must hold for every
party j, and all choices of a;x. The no-signalling condition in this form implies that the
marginal probability for each subset of observers is independent of the measurement settings
of the remaining parties.

Among all the non-signalling correlations there are those that can be achieved through
local measurements of a global quantum state %, the quantum correlations (QC). We write
them as follows

P (a1; : : : ; aN jx1; : : : ; xN ) = tr
(
%Mx1

a1 
 : : :
M
xN
aN

)
; (4.2)

whereMx1
a1 ; : : : ;M

xN
aN are generalized local measurements1. Interestingly, what distinguishes

the quantum correlations among the general non-signalling correlations (NC) is an axiom
telling us how to reconstruct the outcome probabilities. So far, we are not able to tell what
physical principle limits the strength of quantum correlations, except in the bipartite case
[Barnum 10, Acín 10].

Finally, the observed correlations are said to be classical (or local) if they are attainable
with shared classical randomness, i.e., reproduced by a local hidden-variable model. The
corresponding conditional probabilities can be always written as

P (a1; : : : ; aN jx1; : : : ; xN ) =
∑
λ

P (�)P (a1jx1; �) : : : P (aN jxN ; �); (4.3)

where � is a local variable (or a set of local variables) common to all parties distributed among
them with probability P (�) and correlating the outcomes of their measurements.

1Generalized positive semi-definite operators on a local Hilbert space such that
∑
ai
M
xi
ai = 1 (i = 1, . . . , N ).
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It was John Bell who first pointed out that classical correlations (CC) are constrained by
certain inequalities (the famous Bell inequalities) [Bell 64]. Correlations which violate a
Bell inequality, and thus do not correspond to any classical model, are known as non-local (as
opposed to classical/local correlations). Bell's theorem guarantees the existence of quantum
correlations that are non-local. However, as shown by Popescu and Rohlich [Popescu 94],
there exist non-local correlations which fulfil the no-signalling condition but are not quantum
(they are called supra-quantum). All this results contribute to our current understanding of
the hierarchy of correlations.

The three kinds of correlations correspond to sets of probabilities of measurement out-
comes and, as such, form convex sets, represented schematically in Fig. 4.2. From equation
(4.3) we infer that the set of classical correlations is a polytope with vertices corresponding to
local deterministic strategies P (a1; : : : ; aN jx1; : : : ; xN ) = P (a1jx1) : : : P (aN jxN ), where
the local conditional probabilities can be either 0 or 1. This polytope is strictly smaller than
the set of quantum correlations which itself is not a polytope. The quantum set, in turn, is
a proper subset of the set of all non-signalling probabilities. The latter is fully characterized
by linear conditions: (i) equation (4.1), (ii) normalization and positivity of all conditional
probabilities P (ajx), and therefore forms a polytope.

a) b)

Figure 4.2: Schematically depicted sets of classical, quantum and non-signalling correlations.
Tight Bell inequalities correspond to facets of the classical set. B denotes a Bell inequality
with no quantum violation which is a) not tight, b) tight. Note that a tight Bell inequality
guarantees that a region in which quantum and classical correlations coincide is a facet. A
non-tight inequality may define a common region of the classical and quantum sets that does
not have maximal dimension.

In order to distinguish between the different types of correlations one designs a family of
Bell tests for a specific scenario (number of parties, measurements and outcomes). It takes
the form of an inequality for linear combinations of conditional probabilities:∑

x,a

Tx,aP (ajx) 6 �C ; (4.4)

where Tx,a is a 2N -index matrix of coefficients and �C is the maximum value of the left-
hand side attainable with any local model. Analogously, for QC and NC we obtain bounds
�Q; �N . Such inequalities constrain the respective sets of correlations. They are non-trivial if
the bounds do not coincide with general non-signalling correlations, i.e., , �N > �C. A Bell
inequality (with bound �C) is called tight if it corresponds to a facet1 of a classical set (see
figure 4.2). Hence, we need a finite number of tight bell inequalities to fully characterize the
polytope of CC. Since, as we said before, the quantum set has a more complicated structure,
its full characterization requires an infinite number of Bell tests (with a quantum bound �Q).

1A facet is a face of a polytope P with dimension dimP − 1.
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Apart from its fundamental importance, understanding the relations among the sets of cor-
relations is crucial from a practical point of view, since correlations find application as an in-
formation resource. In particular, one of the goals of quantum information theory is to under-
stand when QC give an advantage over CC. For instance, non-local QC provide cryptographic
security not achievable with classical theory [Ekert 91, Barrett 05a, Acín 07, Masanes 11].
They can also be used to certify the presence of randomness [Pironio 10, Colbeck 11] and
outperform CC at communication complexity problems [Brukner 04, Buhrman 10].

While QC are in general more powerful than CC, there are some intriguing situations in
which CC and QC perform equally well. This equivalence can be detected by Bell inequalities
which are not violated by QC, i.e., for them �C = �Q < �N . Of particular interest are tight
inequalities with this property since they guarantee that the classical and quantum correlations
coincide in a non-trivial region, i.e., share a facet of the classical polytope as depicted in
figure 4.2b. The first examples of such inequalities were given in [Linden 07] for two parties.
Unfortunately, none of these is tight [Almeida ]. The first example of tight multipartite Bell
inequalities with no quantum violation was provided later in [Almeida 10, Acín 12a] (see
also [Augusiak 12]).

In [Augusiak 11] we provided a general construction of Bell inequalities that cannot be
violated by quantum mechanics and demonstrate an a priori unexpected link between such
inequalities and Unextendible Product Bases (UPBs) [Bennett 99b], which is an important
notion in the theory of bound entanglement. Our construction covers some of the inequalities
previously derived in [Almeida 10] which indicates that it can lead to tight Bell inequalities
(cf. [Augusiak 12].

4.1 Preliminaries

4.1.1 Basic properties of Bell polytopes
In the introduction we have mentioned that all possible conditional probabilities for a given
scenario form a convex set. Here I am going to give a more detailed description of these
sets discussing, in particular, the dimensions of the sets of correlations (CC, QC and NC) and
the notion of tightness. In general, full characterization of the set of non-signalling correla-
tions is a hard task and was solved only for various bipartite scenarios [Fine 82, Khalfin 85,
Pitowsky 01, Śliwa 03, Werner 01a, Barrett 05b] and the simplest tripartite case [Pironio 11].
The notation used is based on the work [Pironio 05].

Each scenario is characterized by a number of parties, possible measurements and out-
comes, which we denote by a triple (N;M;d). The number of measurements may be dif-
ferent for each party, which is expressed as M = (M1; : : : ;MN ), and each measurement
may yield different number of possible outcomes specified by d = [(d11; : : : ; d1M1

); : : : ;
(dN1; : : : ; dNMN

)]. We are going to use short notation for situations in which the number of
measurements per site or outcomes per measurement is the same. For instance the scenario
with M1 = : : : = MN = 2 will be denoted by (N; 2;d) and the scenario in which each ob-
servable has three outcomes will be (N;M; 3). Now the number of all possible conditional
probabilities within a given scenario is equal to

t =
N∏
i=1

Mi∑
j=1

dij

 ; (4.5)
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and is defining the dimension of the real space Rt in which the convex sets of correlations are
built.

We lower the dimension of the considered structures by imposing the following equality
conditions: the normalization of probabilities and the non-signalling defined in equation (4.1).
Note that the former implies that we are not going to deal with a subspace of Rt, but rather
with an affine space1, since the zero vector is excluded. The dimension2 of this affine set is

D =
N∏
i=1

Mi∑
j=1

(dij � 1) + 1

� 1: (4.6)

Now in such defined affine space, the polytope of all non-signalling correlations is constrained
by the inequality conditions: the positivity of all conditional probabilities. It is said that the
inequalities support its facets. This is the region of all correlations fulfilling the no-signalling
constraint.

The region of local correlations, called a Bell polytope, defined in equation (4.3) is strictly
smaller than the polytope of all non-signalling correlations, however it has the same affine
dimension. It is fully characterized by a finite set of inequalities of type (4.4) supporting its
facets, themselves affine sets of dimension D � 1. There are, however, two kinds of facets
delimiting the polytope. The first kind are given by trivial Bell tests and overlap with the
facets of the non-signalling polytope. The second type, are the proper tight Bell inequalities
which can be violated by non-local correlations. In order to identify a tight Bell test one needs
to check that among the probabilities that saturate the inequality there are exactly D affinely
independent points corresponding to extreme product probabilities.

P (ajx) = P (a1jx1) : : : P (aN jxN ) = �a1,ã1(x1) : : : �aN ,ãN (xN ); (4.7)

where ã(x) is a fixed choice of predetermined outcomes.

4.1.2 Gleason's theorem
Gleason's theorem is a seminal result at the foundations of quantum mechanics. It implies that
having a complete set of measurement operators fMx

a gkx=1 on a Hilbert spaceH (k 6 dimH)
and assuming that (i) the probability of each outcome is non-negative and (ii) sum of all these
probabilities equals one, we recover the Born rule for quantum probabilities p(ajx) = tr%Mx

a ,
where % is a density matrix.

The generalization of this result to multipartite composite systems was studied in
[Wallach 02]. In this scenario, except for natural extension of the positivity and normalization
conditions (i) and (ii), an additional requirement must be fulfilled, i.e., (iii) the no-signalling
principle defined in (4.1). It turns out that in the multipartite scenario all the probabilities
fulfilling constraints (i)–(iii) are recovered through the following trace formula

p(ajx) = tr(WMx1
a1 
 : : :
M

xN
aN ); (4.8)

1A set S is an affine space in Rn if for any points v1, . . . , vk ∈ S (k > 0) and for any scalars λ1, . . . , λk ∈ R
satisfying

∑k
i=1 λi = 1, the point v =

∑k
i=1 λkvk belongs to S.

2We say that the points v1, . . . , vk in Rn are affinely independent if the unique solution to
∑k
i=1 λivi =

0&
∑k
i=1 λi = 0 is λ1 = . . . = λk = 0. The dimension of an affine set is one less than the maximum number of

affinely independent points it contains.
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where W is a Hermitian operator fulfilling for all product vectors Ψ: hΨjWjΨi > 0 and
trW = 1. We see immediately that this coincides with the definition of a normalized en-
tanglement witness. As the set of entanglement witnesses is strictly larger then the set of
density matrices, there must exist probability distributions which cannot be reproduced from
quantum states, but fulfilling conditions (i)–(iii). A single exception is the bipartite sce-
nario for which it was shown that for every bipartite witness there exists a quantum state
giving the same correlations [Barnum 10, Acín 10]. Nevertheless, for more than two par-
ties there always exist witnesses giving correlations not compatible with quantum mechanics
[Almeida 10, Augusiak 11].

Consequently, as mentioned in the previous section, for truly multipartite correlations, the
three principles are not sufficient to distinguish the quantum set and we still await formulation
of a physical principle which would complement conditions (i)-(iii) and single out quantum
mechanics from the more general non-signalling model.

4.1.3 Unextendible Product Bases

The fundamental physical importance of Unextendible Product Bases (UPBs) [Bennett 99b]
stems from the fact that they lay at the heart of the first systematic procedure for the con-
struction of bound (i.e., undistillable) entangled states—–being one of the most intriguing
concepts in quantum information theory [Horodecki 98]. By definition a UPB in a composite
Hilbert space H is a set of orthogonal product vectors with the property that the comple-
mentary (non-zero) subspace does not contain any product states. We will denote this set by
SUPB.

The bound entangled state constructed from a UPB is supported on the complementary
subspace, i.e.,

�BE =
1

dim(H)� jSUPBj
(1H �ΠUPB) ; (4.9)

where ΠUPB is a projector on SUPB and jSUPBj denotes the number of vectors in the set.
Clearly, the state is entangled, since by definition the subspace 1 � ΠUPB does not contain
any product states. In order to verify that �BE is undistillable, one needs to check that it
remains positive under partial transposition (PT) with respect to any bipartite cut. This is
straightforward since all vectors from SUPB transform under PT to orthogonal product vectors
and 1 is PT-invariant. It is easy to construct an entanglement witness for this class of states
and we provide it here since we are going to use it in the next section

W =
1

jSUPBj � �dim(H)
(ΠUPB � �1) ; (4.10)

with � = minψprod
h prodjΠUPBj prodi [Lewenstein 01].

Another interesting property of UPBs is the impossibility to distinguish the states from
this set through local measurements and classical communication. The phenomenon is called
non-locality without entanglement and was first studied by Bennett [Bennett 99a]. As we
will see in the next section the properties of UPBs can be translated to correlations leading to
uncompletable sets of orthogonal conditional probabilities.
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4.2 From Unextendible Product Bases to Bell inequalities
We start the construction for general sets of product vectors and only later restrict our attention
to UPBs. Consider an N -partite composite Hilbert space H =

⊗N
i=1Cdi and a set S of

orthogonal product vectors fromH: S = fj (1)
j i 
 : : :
 j 

(N)
j ig|S|j=1; with j (i)

j i 2 Cdi . We
group the jSj local states belonging to each party to N local sets, each denoted by S(i). In
the next step we further partition each S(i) into disjoint subsets S(i)

k (k = 1; : : :) containing
mutually orthogonal vectors (we remove repeating elements); the range of k depends on the
specific choice of S. In order to remove the ambiguity in splitting the local sets S(i) into
subsets, we restrict ourselves to sets S having the property that no two vectors belonging to
different subsets S(i)

k are orthogonal. Henceforth, we refer to this property as (P). Next, we

label all vectors within sets S(i)
k with numbers from the set

{
1; : : : ;

∣∣∣S(i)
k

∣∣∣}.

Identify local sets:

S(1)

%
S ! S(2)

&
...
S(N)

Partition each local set:

S(i)
1

%
S(i) ! S(i)

2

&
...

S(i)
k : disjoined, contain
orthogonal vectors

Label vectors within
each S(i)

k with{
1; : : : ;

∣∣S(i)
k

∣∣}

Assign p(aj jxj) to each j (1)
j i 
 : : : 
 j 

(N)
j i

1. If j (i)
j i 2 S

(i)
k ) xi = k

2. If
{
j (i)
j i has label l in S(i)

k

}
) ai = l.

Figure 4.3: Construction of conditional probabilities from set of product vectors with property
(P).

We make S(i)
k define a measurement (input), while the different vectors within every such

subset are associated to the measurement outcomes (output). Now, in order to assign to
each vector j (1)

j i 
 : : : 
 j 
(N)
j i from S a sequence of inputs and outputs for conditional

probability p(aj jxj) we do the following for each i: identify the set S(i)
k to which j (i)

j i
belongs and put xi = k; identify the label given to j (i)

j i and substitute it for ai. The scheme
is summarized in figure 4.3. In this way we obtain a set of orthogonal probabilities. Indeed,
due to (P), orthogonality of any two vectors from S means that at some position they have
different vectors from the same local subset. At the level of probabilities, this means that if
one of them, say p(aj jxj), equals unity, the rest have to be zero, as they always have at some
position the same input but a different output.

We now consider linear combinations of the conditional probabilities with such defined
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aj and xj and weights qj
|S|∑
j=1

qjp(aj jxj) � �C : (4.11)

This expression constitutes a Bell test, hence we write a classical bound �C that we now de-
rive. In order to find the maximum of such a linear combination over all local strategies it is
enough to consider the deterministic scenarios, i.e., p(aj jxj) = p(a

(1)
j jx

(1)
j ) : : : p(a

(N)
j jx(N)

j ).
Due to the local orthogonality of the probabilities, if we choose one of p(aj jxj) equal 1, all
the others are immediately zero. Therefore, the maximum of such a linear combination over
all local strategies corresponds to assigning 1 to probability with the maximal coefficient qj ,
i.e., �C = maxfqjg.

We will now prove that the maximum value achievable within quantum mechanics is the
same, as the classical bound, i.e., that the inequality is not violated by quantum correlations.

Fact 1. Let S be a set of orthogonal product vectors possessing the property (P). Then for the
corresponding Bell inequality (4.11) it holds that �C = �Q = maxfqjg.

Proof. Finding the maximum value attained by (4.11) for quantum correlations consists in
finding the maximal eigenvalue of the corresponding Bell operator. The latter is constructed
from measurement operators Mxi

ai and for a general Bell inequality (4.4) takes form:

B =
∑
x,a

Tx,aM
x1
a1 
 : : :M

xN
aN ; (4.12)

where we sum over all possible configurations x;a, however some of the weights Tx,a may
equal zero. Since the dimension of a Hilbert space is arbitrary, we can restrict the analysis to
projective measurements.

Let us assign projectors P (i)
j (we enumerate them in the same way as the vectors j (i)

j i)
to the outcomes of the local observables, and construct the Bell operator

BS =

|S|∑
j=1

qj

N⊗
i=1

P
(i)
j : (4.13)

In general, P (i)
j can be multidimensional projectors, nevertheless, they must inherit the lo-

cal orthogonality properties of the vectors from S, encoded in the input and the output of
conditional probabilities. Precisely, any pair of projectors

⊗n
i=1 P

(i)
j have at some posi-

tion local projectors corresponding to the same observable but different outcomes, mean-
ing that all of them are orthogonal. Thus the maximal eigenvalue of BS is maxfqjg, and
�Q = �C = maxfqjg. �

Our construction offers a systematic and easy way of generating Bell inequalities with
no quantum violation from sets of orthogonal product vectors. However, it could be the case
that all the derived inequalities are trivial, in the sense that they are not violated by any non-
signalling correlations. This is where the concept of UPB becomes relevant. To show it we
prove the following fact

Fact 2. If S = SUPB is a UPB with the property (P), the resulting Bell inequality (4.11) with
8jqj = 1 is violated by non-signalling correlations.
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Proof. The multipartite Gleason theorem ensures that every probability of outcome measure-
ments for a composite system fulfilling the no-signalling condition can be obtained through
trace formula (4.8). Consequently, to prove the violation of (4.11) by general non-signalling
correlations it is enough to find a Bell operator and a normalized entanglement witness such
that trWBS > 1. We will show that in the case when S is a UPB, the witness given in
equation (4.10) gives rise to correlations violating the corresponding Bell inequality.

Let ΠUPB be a projector onto the subspace of H spanned by SUPB. Then, the simplest
Bell operator BS with all qj = 1 and the measurements defined by projectors on vectors from
local sets S(i) is exactly ΠUPB. We consider now the normalized entanglement witness (4.10)
and compute its trace with our Bell operator

trWBS = trWΠUPB

= �trW(1�ΠUPB) + trW1

= �(dim(H)� jSUPB j)trW�BE + 1

> 1: (4.14)

In the third line we use the normalization of the entanglement witness and the definition of
the bound entangled state �BE associated with UPB [see equation (4.9)]. Since the state is
detected by the witness, we have trW�BE < 0 and the first term becomes positive giving rise
to violation of the bound �C = 1. �

The converse statement was proven in [Augusiak 12], where it was shown that for sets S
completable to a full product basis inH the corresponding Bell inequality is trivial, i.e., never
violated.

Our construction, shows how to derive non-trivial Bell inequalities with no quantum vio-
lation from any UPB with property (P). Any Bell inequality can also be seen as a non-local
game, in which the parties are given the input x and have to produce the output a, in a dis-
tributed manner, all the possibilities being weighted by the tensor Tx,a. The maximum values
of the inequalities give the optimal winning probability for the different sets of correlations.
One can, therefore, view our results as a general construction of non-local games for which
access to quantum correlations does not provide any advantage.

Examples. — Let us illustrate the construction with several examples. For two par-
ties there does not exists any UPB with property (P) as otherwise there would exist a bipar-
tite witness violating a Bell inequality beyond the quantum bound, contradicting the results
of [Barnum 10, Acín 10] (see discussion in section 4.1.2).

Moving to three parties we have one class of UPBs for qubits with representative set
called Shifts UPB [DiVincenzo 03]

S3 = fj000i; j1e⊥2 e3i; je11e⊥3 i; je⊥1 e21ig; (4.15)

where jeii 6= j0i; j1i and he⊥i jeiii = 0 (i = 1; 2; 3). As it was shown in [Bravyi 04] all other
three-qubit UPBs can be brought to this one by local unitary operations and permutations of
particles.

Following the algorithm summarized in figure 4.3, at each site we identify the following
vectors S(i) = fj0i; j1i; jeii; je⊥i ig. Now we see that each set S(i) can be partitioned to two
subsets of mutually orthogonal vectors, namely S(i)

1 = fj0i; j1ig and S(i)
2 = fjeii; je⊥i ig.

We label vectors j0i and jeii with 1 and j1i and je⊥i i with 2. Then, following the recipe, we
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assign to each element in S3 the following probabilities:

j000i ! p(111j111); (4.16a)

j1e⊥2 e3i ! p(221j122); (4.16b)

je11e⊥3 i ! p(122j212); (4.16c)

je⊥1 e21i ! p(212j221): (4.16d)

Summing them up, we obtain the inequality

p(111j111) + p(221j122) + p(122j212) + p(212j221) � 1; (4.17)

which corresponds to the three-partite non-local game called Guess Your Neighbours Input
(GYNI)1 studied in reference [Almeida 10]. We know it is tight [Śliwa 03], which confirms
that the construction indeed can produce tight Bell tests.

However, we know that not all UPBs can be associated to tight Bell inequalities. We
tested our construction on several examples known from the literature. In [DiVincenzo 03]
the Shifts UPB were generalized to arbitrary odd number of qubits (GenShifts). We have
checked that the corresponding inequality for n = 5 is not tight. It also does not correspond
any more to the GYNI game. Moving to dimensions larger than two, we have examples of
UPB given in [Niset 06]. We verified the tightness of the inequalities obtained from the four-
partite qutrit UPB and got a negative result. Therefore, additional conditions are required to
conclude that a Bell test derived from a UPB is tight.

4.3 From Bell inequalities to Unextendible Product Bases
Clearly, the above procedure can be reversed: given a Bell inequality (4.11) with locally
orthogonal probabilities, one can derive, following analogous rules, a set of product vectors.
The number of different inputs xi at each position gives the number of different local subsets
for each party, while the number of different outputs ai for a particular input xi corresponds
to the number of elements in the subset. The maximal number of different outputs at the ith
position gives the dimension of the local Hilbert space di. Note that in the general case, i.e.,
for general Bell tests, the derived vectors need not be orthogonal. It is the local orthogonality
of the conditional probabilities that ensures the success of the procedure.

In what follows, we consider the set of GYNI Bell inequalities with no quantum violation
[Almeida 10] for arbitrary number of parties. Remarkably, as we will see shortly, one can
derive from it a new class of UPBs. We consider odd and even number of parties separately.
The explicit form of these inequalities for odd N reads

p(1j1) +

(N−1)/2∑
k=1

N∑
i1<...<i2k=1

Di1...i2kp(1j1) � 1; (4.18)

where 1 = (1; : : : ; 1) andDi1,...,in �ips (1$ 2) the inputs and outputs at positions i1; : : : ; in
and i1 � 1; : : : ; in � 1, respectively (if ij = 1 then ij � 1 = N ). For even N the structure is

1Note that for each probability the output a is equal to the left-shifted input x, hence the name of the game:
Guess Your Neighbour's Input.
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slightly more complicated, but the principle is the same. We have

p(1j1) + p(1 : : : 12j21 : : : 1)

+

(N−2)/2∑
k=1

N∑
i1<...<i2k=2

Di1...i2k [p(1j1) + p(1 : : : 12j21 : : : 1)] � 1: (4.19)

We now derive the product vectors corresponding to the configurations of inputs and outputs
appearing in the inequality. Note that in the GYNI inequalities there are always two different
inputs and outputs for each party. Therefore we obtain N -qubit product vectors with two
different local bases per party. Without any loss of generality, we can take the bases to be
equal for all sites; say S(i)

1 = fj0i; j1ig and S(i)
2 = fjei; je⊥ig with jei 6= j0i; j1i.

To write the vectors in a concise way we define a unitary operation V , which changes the
local basis from S(i)

1 to S(i)
2

V = jeih0j+ je⊥ih1j: (4.20)

We associate the in-out sequence (1j1) with vector j0i⊗N , while (1 : : : 12j21 : : : 1) becomes
jeij0i⊗N−2j1i = V1�N j0i⊗N . In the latter we apply V to the first subsystem, and the qubit
�ip � to the last one. We observe that each shift operator Di1,...,in can be translated to qubits
with the help of � and V in the following manner

Di1,...,in ! Vi1 : : : Vin�i1−1 : : : �in−1: (4.21)

Then, the 2N−1 product vectors derived from (4.18) can be written as

j0i⊗N (4.22a)

Vi1 : : : Vik�i1−1 : : : �ik−1j0i⊗N ; (4.22b)

i1 < : : : < ik = 1; : : : ; N; k = 2; 4; : : : ; N � 1;

while those corresponding to even number of parties (4.19) are

j0i⊗N ; (4.23a)

V1�N j0i⊗N ; (4.23b)

Vi1 : : : Vik�i1−1 : : : �ik−1j0i⊗N ; (4.23c)

V1Vi1 : : : Vik�i1−1 : : : �ik−1�N j0i⊗N ; (4.23d)

i1 < : : : < ik = 2; : : : ; N; k = 2; 4; : : : ; N � 2:

We have constructed sets of product vectors, however we still need to demonstrate that they
are orthogonal to each other for each N and that there does not exist any other product vector
orthogonal to all of them. Therefore, we prove the following fact:

Fact 3. The vectors (4.22) and (4.23), form N -qubit UPBs.

Proof. The proof consists of two steps. First we show that for any N , the above vectors can
be generated from the Shifts UPB by a recursive protocol. Then we prove that this protocol
preserves the property of being a UPB.

Let us start with the case of odd N . We denote the set of vectors in equation (4.22) by
U1 and divide it into two subsets U (j)

1 (j = 1; 2) consisting of vectors with the first qubit
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from S(1)
j . Then, we create another group of vectors U (j)

2 by �ipping the last qubit of U (j)
1

to the orthogonal one (this action will be referred to as orthogonalization), we also define
U2 = U

(1)
2 [ U (2)

2 . Finally, direct algebra shows that the following set of vectors{
j0i 
 U (1)

1 ; j1i 
 U (2)
2 ; jei 
 U (1)

2 ; je⊥i 
 U (2)
1

}
(4.24)

is exactly the same as the vectors in (4.23) with N + 1 parties.
Almost exactly the same procedure produces (N+1)-partite vectors (4.22) fromN -partite

set with even N . The only difference is that to obtain U2 from U1 one has to orthogonalize
the last but one qubit and apply the transformation j0i $ je⊥i and j1i $ jei to the last one.
Starting with three-qubits Shifts UPB, we can now generate recursively any of the sets of
vectors (4.22) and (4.23). We demonstrate the first two steps in the diagram below. In what
follows we show that the algorithm preserves the UPB property.

Three to four

U
(1)
1

{
|000〉
|1e⊥e〉

orth.−−−→ U
(1)
2

{
|001〉
|1e⊥e⊥〉

U
(2)
1

{
|e1e⊥〉
|e⊥e1〉

orth.−−−→ U
(2)
2

{
|e1e〉
|e⊥e0〉

Four to five

U
(1)
1


|0000〉
|01e⊥e〉
|1e1e〉
|1e⊥e0〉

orth.−−−→
transf.

U
(1)
2


|001e⊥〉
|01e1〉
|1e01〉
|1e⊥e⊥e⊥〉

U
(2)
1


|e001〉
|e1e⊥e⊥〉
|e⊥e1e⊥〉
|e⊥e⊥e1〉

orth.−−−→
transf.

U
(2)
2


|e01e〉
|e1e0〉
|e⊥e00〉
|e⊥e⊥e⊥e〉

|0〉 ⊗ U (1)
1

|1〉 ⊗ U (2)
2

|e〉 ⊗ U (1)
2

|e⊥〉 ⊗ U (2)
1

First, we prove that all the vectors (4.24) are orthogonal. For odd number of parties it
suffices to demonstrate that vectors from U

(1)
1 and U (1)

2 are orthogonal and that the same
holds for U (2)

1 and U (2)
2 (notice that U (1)

j ? U
(2)
j by definition). The orthogonality can be

inferred immediately if we recall thatU (j)
2 is obtained from U

(j)
1 (a set of mutually orthogonal

product vectors) through orthogonalization of the last qubit. Hence, for a specific vector from
U

(j)
2 the orthogonality to all but one vectors from U

(j)
1 holds due to first N � 1 qubits and to

the remaining one, due to the last (orthogonalized) qubit.
For even N , similarly to the previous case, the sets U (1)

1 and U
(2)
1 are orthogonal by

definition. Since to construct the sets U (j)
2 (j = 1; 2) we consistently applied local unitary

operations on the last two qubits, the vectors remain orthogonal between each other. There-
fore, we only need to prove orthogonality of vectors from U

(j)
1 and U (j)

2 (j = 1; 2). Note that
due to the recursive construction, orthogonality of vectors within one set is assured on first
N � 2 qubits (underlined in the diagram). Due to this fact the operation on the last qubit does
not affect orthogonality between sets U (j)

1 and U (j)
2 . Again for a specific vector from U

(j)
2

the orthogonality to all but one vectors from U
(j)
1 holds due to first N � 2 qubits and to the

remaining one, due to the last but one (orthogonalized) qubit.
Second, we show that there does not exist any product vector orthogonal to the set (4.24)

if U1 is a UPB (note that in such case U2 is also a UPB). For this purpose, assume the contrary
and write the vector orthogonal to all vectors in the set defined by equation (4.24) as jxij i
with jxi 2 C2 and j i denoting the product state of the remaining N � 1 qubits. If jxi = j0i,
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then j i has to be orthogonal to U (1)
1 , U (2)

1 and U (1)
2 . However, U (1)

1 [ U (2)
1 = U1 is a UPB,

which leads to contradiction. A similar argument holds for jxi = j1i; jei; je⊥i. In the case
jxi =2 fj0i; j1i; jei; je⊥ig, j i must be orthogonal to both UPBs U1; U2, which also leads to
contradiction. �

This example shows that indeed the inverse procedure can lead to UPB. Note, however
that we have considered the simplest scenario with two observables and two outcomes per
site. In the general case, the obtained set of vectors has a weaker property: PUPB, i.e., is
unextendible within the vectors from the local sets S(i) [Augusiak 12].

4.4 Conclusions
Non-trivial Bell inequalities lacking a quantum violation are rare and intriguing objects. In
this chapter we have demonstrated a systematic way to build inequalities of this kind with
the property �C = �Q < �N from Unextendible Product Bases — themselves an important
concept in entanglement theory. Moreover, due to the connection with UPBs we have been
automatically able to provide entanglement witnesses which reproduces the non-signalling
correlations violating the inequalities. A still open problem is to understand when the con-
struction leads to tight Bell inequalities, and whether one can infer this fact from some prop-
erties of UPBs.

These findings are strongly related to recent work on the relationship between quantum
correlations and multipartite versions of Gleason's theorem [Barnum 10, Acín 10]. Precisely,
we provide further examples of multipartite Bell scenarios for which correlations reproduced
by an entanglement witness are not equivalent to quantum correlations.

Finally, we have shown that the construction can be applied in the reverse direction, i.e.,
starting from a Bell inequality known to have the same classical and quantum bound and
consisting of locally orthogonal conditional probabilities, one can derive a set of product
vectors that constitutes a UPB. Applying this connection we have derived a new class of
UPBs, and consequently a new class of bound entangled states, from the existing GYNI Bell
inequalities.
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Chapter 5

Multipartite entanglement in
spin-1/2 systems

The characterization of quantum correlations in multi-particle systems is crucial for under-
standing the structure of many-body quantum states. Typical methods used so far to study
many-body systems were developed within the field of condensed matter and include the re-
sponse to external perturbation, the behaviour of order parameters and the analysis of the
excitation spectrum. Recently, a new family of tools emerged from quantum information
theory. They are based on the qualitative and quantitative study of bipartite and multipartite
entanglement between parts of the multi-particle state and have proved useful for revealing
the structure of many-body states [Amico 08].

The role of entanglement becomes particularly clear in the study of quantum phase tran-
sitions (QPT), where correlations play a crucial role. For instance, a measure of the nearest-
neighbour pairwise entanglement allows one to detect the critical point in the Ising model in
1D [Osborne 02, Osterloh 02]. An important notion is also the scaling of the entanglement
between two disjoint connected parts of the system A and S n A [Vidal 03b, Audenaert 02].
This quantity is deeply connected to the range of quantum correlations in strongly correlated
systems. For those with finite correlation length the entanglement between blocks, as mea-
sured by the entropy of entanglement, fulfils the so called area law, i.e., depends only on the
surface separating A and S n A (cf. [Hastings 07a, Hastings 07b] for rigorous results in 1D).
In critical 1D systems when the correlation length becomes infinite, the area law is violated
indicating the presence of long-range entanglement. Yet another way to adapt the bipartite
techniques to the analysis of the multipartite systems is the concept of localizable entangle-
ment introduced in [Verstraete 04a]. The study of this quantity in the vicinity of critical points
shows that there exist situations in which the correlation length is finite, nevertheless the (lo-
calizable) entanglement length diverges, which supports the idea that global entanglement
plays an important role in QPT.

While these examples regard bipartite entanglement, the multipartite scenario is much
less explored, even though it is believed to play an important role in many-body systems.
The multipartite correlations are much richer than the bipartite ones and thus this type of
entanglement is much more difficult to detect and quantify [Gühne 09]. Nevertheless, several
works demonstrate the presence of genuine multipartite entanglement in ground states of
certain spin models [Wang 02, Štelmachovi�c 04, Bruß 05, Gühne 05]. More importantly, as it
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was shown in [Wei 03, de Oliveira 06], some multipartite entanglement measures are sensitive
to the presence of a quantum phase transition signalling that the quantum critical point is
indeed connected to emergence of multi-particle entanglement.

Here we focus on quite specific systems, ground and thermal states of rotationally in-
variant spin Hamiltonians. A prominent example is the Heisenberg interaction Hamiltonian
which arises from a particle exchange mechanism in tight-binding models in solid-state sys-
tems. The same interaction can be implemented in quantum simulators of condensed matter
models: ultracold atoms in optical lattices. We will concentrate on the presence of genuine
tripartite entanglement in the subsystems of the ground and thermal states of spins networks
(spin systems with nearest neighbours defined through the edges of a graph), with and with-
out defects in the coupling constant. To this end we use the fact that for spin-1=2 particles
the rotational invariance is equivalent to SU(2) symmetry. This allows us to use the results
of Eggeling [Eggeling 01] and unambiguously characterize the entanglement properties of
an arbitrary three-party reduction of a given rotationally invariant state with the set of scalar
inequalities. In particular, the inequalities will allow us to distinguish fully separable states
from those biseparable with respect to each partition. Moreover, we demonstrate that the
inequalities detect genuine tripartite entanglement also in states without the rotational sym-
metry. To this end we use the twirling map, i.e., project a given state on the rotationally
invariant subspace and subsequently apply the test. It should be emphasized, however, that in
this situation the inequalities provide only a necessary separability test.

5.1 Representation and classi�cation of rotationally invari-
ant states

We begin the characterization of separability properties of tripartite rotationally invariant
states by brie�y recalling the class of bipartite rotationally symmetric states described by
Schliemann [Schliemann 03, Schliemann 05] and Breuer [Breuer 05, Breuer 06]. Let us con-
sider the quantum state of a system composed of two spins ji = (di � 1)=2 (i = 1; 2), where
di is the dimension of the ith local space. The state is then represented by a density matrix %
acting on a product Hilbert spaceH1 
H2 = Cd1 
Cd2 . A class of rotationally (or SO(3))
invariant states is defined through the following relation

8̂
n,θ

[
Dj1(n̂; �)
Dj2(n̂; �); %

]
= 0; (5.1)

where Dji(n̂; �) denote the unitary irreducible representation of the rotation R(n̂; �) from
the SO(3) group. Any rotation transformation can be written in terms of the total angular
momentum operator J = j1 + j2 as: R(n̂; �) = exp(in̂ � J�).

According to Schur's lemma the density operator acts as a scalar on each irreducible
representation of the total angular momentum operator J = j1 + j2 and therefore can be
written as

% =

j1+j2∑
J=|j1−j2|

�J
2J + 1

PJ ; (5.2)

where �J are non negative coefficients fulfilling the normalization condition
∑
J �J = 1

and the operator PJ is a 2J + 1-dimensional projector onto the subspace with total angular
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momentum J :

PJ =
J∑

M=−J
jJ;MihJ;M j: (5.3)

Here jJ;Mi are the common eigenvectors of the square of the total angular momentum J2

and its z-component Jz with eigenvalues J(J + 1) and M , respectively.
The simplest case corresponds to two spin-1=2 particles. There are only two invariant

subspaces: J = j1 � j2 = 0 of dimension 1 and J = j1 + j2 = 1 of dimension 3. Hence,
there exist only one pure SO(3) invariant state, the singlet state represented by the density
matrix %sing = P0. The projector onto the subspace of J = 1, P1 is separable and the entan-
glement of an arbitrary combination of the two projectors is fully characterized by the PPT
criterion [Horodecki 96]. Characterization using the PPT test is also possible for rotationally
symmetric states in other specific cases [Schliemann 03, Schliemann 05, Breuer 05], how-
ever bound entanglement is found already in a system with j1 = 1 and j2 = 3=2 and higher
dimensions [Breuer 06, Augusiak 07].

Now we move to the more complex situation of three spin-1=2 particles with angular
momentum operators j1; j2 and j3. In this case we can first couple the angular momenta of
the first two particles J12 = j1 +j2 and then add the third one, which we schematically write:

1

2

 1

2

 1

2
= (0� 1)
 1

2
;

=

(
1

2

)
0

�
(

1

2

)
1

� 3

2
: (5.4)

The subscripts in the two non equivalent spin 1=2 doublets remind that the first two spins are
in a singlet or in a triplet. Now in order to specify the state of the three particles one needs
not only the modulus of the total angular momentum J and its component M along some
axis, but also another quantum number. Here it is natural to take the modulus of J12. Note,
however, that equally well we can begin by coupling the angular momenta j1 and j3 or j2
and j3. This ambiguity is very well known from the theory of angular momentum.

In order to express a rotationally invariant density operator in the product Hilbert space
H1 
 H2 
 H3, we apply again the Schur's lemma which tells us that % acts trivially in the
subspace of total angular momentum 1=2 and 3=2. However, since in general [%;J12] 6= 0, the
two subspaces (1=2)0 and (1=2)1 can be mixed. Therefore, we proceed as follows. Using the
decomposition (5.4), we define a basis for (1=2)i: j � 1=2ii. Now we mix the two subspaces
(1=2)0 and (1=2)1 obtaining two new orthogonal subspaces (1=2)a and (1=2)b with vectors:

j � 1

2
ia = cos

�

2
j � 1

2
i0 + eiφ sin

�

2
j � 1

2
i1; (5.5a)

j � 1

2
ib = � sin

�

2
j � 1

2
i0 + eiφ cos

�

2
j � 1

2
i1; (5.5b)

where � 2 [0; �] and ρ 2 [0; 2�]. The corresponding orthogonal projectors on the subspaces
of total angular momentum 1=2 read:

P1/2,α = j1
2
iαh

1

2
j+ j � 1

2
iαh�

1

2
j; � = a; b; (5.6)

leading to the density operator in the form

% =
p

2
P1/2,a +

q

2
P1/2,b +

1� p� q
4

P3/2; (5.7)
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where 0 � p; q � 1. We see that 4 parameters are required to describe the set of SO(3)-
invariant states of three spins 1=2, i.e., p; q; �; ρ. This construction can be extended to higher
spins by taking adequate superpositions of vectors from the subspaces of the same total spin,
however the number of parameters grows dramatically, e.g., for spin-1 particles 13 variables
are required.

Even though the representation based on the coupling of the angular momenta is simple
and intuitive it involves nonlinear functions of parameters, which are not easy to deal with.
Because of this we make a connection to another representation of rotationally symmetric
states of three spin-1=2 particles. We use the fact that for two level systems, the SO(3)
rotations are the most general unitary operations. Hence, the state % invariant under rotations
is also invariant under all local unitary transformations of the form U 
U 
U . This class of
states has been completely characterized by Eggeling and Werner in [Eggeling 01]. We recall
their results and establish a mapping between the two constructions.

Following [Eggeling 01] we introduce permutation operators V12, V13 and V23
1 which

exchange the corresponding particles, and the two operators which cyclically permute all
three particles: V123 = V12V23 and V321 = V23V12. The Hermitian operators that are used to
represent the unitary invariant density matrix are then defined as

R+ =
1

6
(I+ V12 + V23 + V13 + V123 + V321) ; (5.8a)

R0 =
1

3
(2I� V123 � V321) ; (5.8b)

R1 =
1

3
(2V23 � V13 � V12) ; (5.8c)

R2 =
1p
3

(V12 � V13) ; (5.8d)

R3 =
ip
3

(V123 � V321) : (5.8e)

Now any density matrix invariant under all unitary operators U 
U 
U can be written in the
following form:

� =
∑

k=+,0,1,2,3

rk
4

Rk; (5.9)

where rk = tr�Rk and the factor 1=4 ensures the normalization tr� = 1. Comparing our rep-
resentation (5.7) with the one proposed by Eggeling and Werner (5.9) we obtain the following
correspondence between the parameters:

r+ = 1� p� q; (5.10a)
r0 = p+ q; (5.10b)

r1 =
1

2
(p� q)(cos � +

p
3 cosρ sin �); (5.10c)

r2 = �1

2
(p� q)(

p
3 cos � � cosρ sin �); (5.10d)

r3 = (p� q) sin � sinρ: (5.10e)

1The two-particle swap operator is defined as Vij = |ij〉〈ji|+ |ji〉〈ij|.
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From equations (5.10a) and (5.10b) one immediately sees that the operatorR+ is proportional
to the projector P3/2 and the operator R0 to P1/2 = P1/2,a + P1/2,b. The three remaining
matrices Ri (i = 1; 2; 3) act on the 4-dimensional subspace of spin 1=2 and follow the angu-
lar momentum commutation rules, therefore are traceless. They are responsible for mixing
between the two distinct spin-1=2 subspaces (1=2)0 and (1=2)1. Due to the above properties
the description of spin-1=2 subspace resembles very much the Bloch representation of one-
qubit with R0 being the identity matrix and Ri the Pauli matrices. Hence, the coefficients rk
(k = +; 0; 1; 2; 3) must fulfil the following conditions in order that (5.9) represents a state:

r+; r0 > 0; (5.11a)
r+ + r0 = 1; (5.11b)

r2
1 + r2

2 + r2
3 6 r

2
0: (5.11c)

It turns out that in the case of three rotationally symmetric qubits, the PPT criterion suf-
fices to unambiguous characterize the classes of biseparable states. However, the set of fully
separable states does not coincide with the intersection B1\B2\B3. In [Eggeling 01] the sets
S of fully separable and B of biseparable states are fully described in terms of inequalities for
the coefficients rk. In particular, the authors have proven that the set S is constrained by the
following conditions:

1

4
6 r+ 6 1; (5.12a)

3r2
3 + (1� 3r+)2 6(r1 + r+)[(r1 � 2r+)2 � 3r2

2]: (5.12b)

Analogously, the states separable with respect to partition 1j23, belonging to the set B1, can
be shown to fulfil the conditions:

jhj < 1; (5.13a)

3(r2
2 + r2

3) 6

{
(h+ 1)2 � [h+ (r1 � r+)]2, if h < 0
(h� 1)2 � [h� (r1 � r+)]2, if h > 0

; (5.13b)

where h = 1 + r1 � 2r+. The corresponding sets B2 and B3 are found by rotating the set B1

by �2�=3 around the axis r0 (see figure 5.1(c)). The total set of biseparable states B is the
convex hull of the sets B1;B2;B3. Finally, the set T of genuine tripartite entangled states is
found as the complement of B in the set of all admissible parameters (5.11).

The fact that we are going to analyse ground and thermal states of real symmetric Hamil-
tonians, a very common situation for spin interactions, further facilitates this already simple
description. It allows us to reduce the number of parameters by using the property that such
states are represented by real density operators. Inspecting the representations we find that
this is equivalent to putting ρ = 0 in (5.7) or r3 = 0 in (5.9). This leaves us with three param-
eters and enables visualization of the sets in the space r1; r2; r0 (figure 5.1). The complete set
of states is a cone with symmetry axis parallel to the axis r0. In particular figure 5.1(a) shows
the set of separable states S and figure 5.1(b) the set of biseparable states B. The unshaded
area inside the cone in figure 5.1(b) contains genuine tripartite entangled states. Finally, fig-
ure 5.1(c) is a section of the cone for a fixed r0. We notice that the necessary condition for a
state to be tripartite entangled is r0 > 2=3. In fact below this value biseparable states fill the
cone completely.
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Figure 5.1: Graphical representation of the set of real rotationally invariant states and its
subsets with various types of entanglement in the space of r1; r2; r0.

5.2 Tripartite entanglement in rotationally-invariant spin
networks

We now consider several exemplary spin systems with Heisenberg interaction

H =
∑
〈i,j〉

Jijσi � σj ; (5.14)

where the sum over indices hi; ji is restricted to edges in the graph describing the system. For
each case we first construct the ground and the thermal state in equilibrium at temperature T

� =
e−βH

tre−βH
; (5.15)

and then trace out all the spins in the network except three chosen spins A;B;C. The ground
state is rotationally symmetric only if it is non-degenerate. Note that any subsystem of a
rotationally invariant state is also rotationally invariant, hence the reduced density matrix
can be analysed with the criterion from the previous section by computing the coefficients
r0; r1; r2 from equation (5.9) and checking to which set the state belongs.

5.2.1 A spin star
We start by considering a spin star network consisting of four spins, shown in figure 5.2a.
The couplings are chosen so that J14 = J24 = J while J34 = �J . The dimensionless pa-
rameter � fixes the ratio, positive or negative, between the couplings of the central spin with
spins 1; 2 and 3. We trace out the central spin, choosing the three relevant spins to be A = 1,
B = 2, C = 3. We want to understand if, and under which conditions, the central spin in-
duces tripartite entanglement in the outer spins. A similar model has been recently studied in
[Militello 11] for non rotational invariant Hamiltonians for which, however, necessary sepa-
rability conditions are not known. Here, we emphasize that, although we consider a restricted
class of Hamiltonians, the detection of tripartite entangled states is unambiguous.

We distinguish two cases: repulsive interaction J > 0 and the attractive one J < 0. Let
us start with J > 0, for which we plot a complete phase diagram in figure 5.2b. In this case
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Figure 5.2: Regions of genuine tripartite entanglement, biseparability and full separability in
of three outer spins of a four-spin star with inhomogeneous couplings (as depicted in picture
a) We distinguish b) the repulsive interactions J > 0 and c) the attractive case J < 0. (T and
λ are expressed in the units of J)

we find that independently of the choice of λ > 0 the reduced state is never genuine tripartite
entangled. To see this it is sufficient to determine the coefficient r0 for the reduced density
matrix ρABC

r0 =
−7− 2λ+ 3

√
4λ2 − 4λ+ 9

6
√

4λ2 − 4λ+ 9
, (5.16)

whose maximum as a function of λ is 1/3. Since a necessary condition for a state to be
genuinely tripartite entangled is r0 > 2/3 we conclude that for λ > 0 the state is always
biseparable or fully separable. By checking the remaining parameters we verify that the state
is separable.

By looking at the eigenenergies of Hamiltonian H , we observe a level crossing at λ = 0.
For λ < 0 the ground state is given by:

| ψG〉=
1√
3
| 0011〉+

1√
3
| 1100〉− 1√

6
(| 01〉+ | 10〉)( | 01〉+ | 10〉) (5.17)

independently of the particular value of λ. The corresponding reduced density matrix of the
first three spins is genuinely tripartite entangled.

Now let us consider the case J < 0. For λ > 0 the ground state reads:

| ψG〉=
1√
6

(| 0011〉+ | 0101〉+ | 1001〉+ | 0110〉+ | 1010〉+ | 1100〉). (5.18)

The reduced density matrix of the first three spins (actually of any three spins, since the
state is permutationally invariant) is separable for all values of λ because r0 = 0. Instead,
for −1.24 < λ < 0 the ground state is genuine tripartite entangled and fully separable
outside this range. The complete entanglement diagram, shown in figure 5.2c, indicates that
for intermediate temperatures the state becomes biseparable, and finally as the temperature
increase, fully separable.
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5.2.2 A spin chain

As the second example we consider a closed ring topology for the spin chain, as depicted in
figure 5.3. We study the Heisenberg Hamiltonian with dimerization:

Ji(i+1) = J [1 + (−1)iλ]. (5.19)

We choose J > 0 and 0≤λ≤1. Analogously to the spin star, we calculate the thermal state,
given in equation (5.15), of the chain. This time, however, we diagonalize the Hamiltonian
numerically. We then analyse the reduced density matrix of three spins ABC marked in the
figure 5.3a.

a)
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2 � B 3 � C
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Figure 5.3: The spin chain with L = 8 spins. The regions of temperature and dimerization
parameter λ for which the three spins ABC are in a genuine tripartite entangled, biseparable
or fully separable state. The interaction constant J is b) positive and c) negative.

The case of neighbouring spins is translationally invariant, i.e., the results do not change
if we shift the three spins along the chain. The resulting phase diagram as a function of the
dimerization λ and the temperature T is shown in figure 5.3. Note that in the absence of
dimerization, a homogeneous Heisenberg chain, the three neighbouring spins are genuinely
tripartite entangled up to a temperature kBT � 1.39J when they become biseparable. This
agrees with the results found in [Gühne 05]. For increasing dimerization λ, the critical tem-
perature for tripartite entanglement decreases as the system tends to form strongly correlated
dimers, i.e. singlets. This pairing tendency destroys the tripartite entanglement, leaving the
state biseparable for smaller temperatures. The situation is even more striking for λ = 1 for
which the chain is broken and is exactly made of singlets. For this value we never observe
tripartite entanglement.

The ferromagnetic case J < 0 and | λ| < 1 is trivial as all the spins are parallel to each
other. For λ > 1 the sign of the interaction changes for alternate spins and we observe
genuine tripartite entanglement in the ground state and at low temperatures and biseparability
for higher T .
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5.3 Tripartite entanglement in spin systems without rota-
tional symmetry

In the previous section we have concentrated on rotationally invariant states since there we
can unambiguously decide to which entanglement class a given state belongs. Here we show
that the separability criterion for rotationally invariant states can be applied even for a more
general class of states by the use of the twirling map defined for a particular group G as

Π� =

∫
G

dUU�U†: (5.20)

If the group G consist of local operators, the twirling map preserves the separability of a
state [Vollbrecht 01]. We formulate the following fact for the specific case considered in this
chapter, which establishes a necessary separability criterion for any class of tripartite states.

Fact 1 (Twirling criterion). Assume that the group G consists of local unitaries and consider
the tripartite states �;Π�. The state Π� is clearly SU(2) invariant; moreover

(i) if � is separable then Π� is separable,

(ii) if � is biseparable then Π� is separable or biseparable.

We conclude that if Π� is genuine tripartite entangled then so is � and in what follows
we demonstrate the applicability of the twirling criterion for systems with XXZ interaction
Hamiltonian with magnetic field.

5.3.1 Spin-1/2 XXZ model
We consider the system of spin-1=2 particles with XXZ Hamiltonian describing the nearest
neighbour interaction and magnetic field along direction z:

HXXZ = J
∑
〈i,j〉

[
(�xi �

x
j + �yi �

y
j ) + ��zi �

z
j

]
+ h

∑
i

�zi : (5.21)

a)

Figure 5.4: Phase diagram for the XXZ model for spin 1=2. (based on [Mikeska 04])

We focus on a spin-chain geometry and J > 0 and in figure 5.4 we show a complete
phase diagram of the system. In the absence of magnetic field for � < �1 the attractive
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Figure 5.5: The XXZ spin chain with a) L = 7, b) L = 8, c) L = 9 spins.

interactions in direction z dominate over other interaction terms and all the spins are oriented
along �z (degeneracy); the ground state is, therefore, a ferromagnet. In the other extremal
case, � > 1, the repulsive interaction between z-oriented spins dominates and the system is
in an anti-ferromagnetic phase, which has a long range order. The larger j�j, the more the
ground state resembles the classical Ising or Néel phase. For � in the interval (�1; 1) the
XY term dominates over the Z term and the system is in the XY phase. The presence of the
magnetic field shifts the transition points extending the region of ferromagnetic order. It also
removes the degeneracy of the ground state � < �1.

First, we set the magnetic field to zero and determine numerically the equilibrium thermal
state for the system of even (L = 8) and odd (L = 7; 9) number of spins and test the entan-
glement of their reduced density matrices of three consecutive spins �ABC using the twirling
criterion, i.e., we test the separability properties of the rotationally invariant state Π�ABC.
The results are presented in figure 5.5. We observe that for � < �1, where the ground state is
a ferromagnet, the twirled state is fully separable. We also expect the state �ABC to be fully
separable in this regime independently of the size of the system. For � > �1 we notice a
difference between odd and even system size. In this region the system of 8 spins has genuine
tripartite entanglement for arbitrary � and at low temperatures, whereas for 9 spins we see
that in the interval �1 < � < 0 the twirled state is biseparable and only for � > 0 becomes
tripartite entangled (we observe a similar behaviour for 7 spins). This is explained by the fact
that periodic boundary conditions may cause a geometric frustration for a finite system with
odd number of spins. The qualitative difference between the states with odd and even number
of particles is, therefore, signalled by the presence of multipartite entanglement.
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Figure 5.6: The XXZ spin chain in magnetic field with a) L = 7, b) L = 8 spins.
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5.4. CONCLUSIONS

In figure 5.6 we depict the entanglement properties of the ground state of the XXZ model
with magnetic field. For this system we also observe a qualitative difference between odd and
even number of particles. As expected, the region of fully separable states coincides with the
occurrence of the ferromagnetic phase. The other two phases cannot be distinguished with
our method.

5.4 Conclusions
We have studied entanglement in several exemplary spin arrays with Heisenberg interaction
using the necessary and sufficient separability criteria for three-qubit rotationally invariant
states. We have found the range of Hamiltonian parameters and temperatures for which these
systems have genuine multipartite entanglement in their ground and thermal states. Moreover,
we show that the criterion for tripartite entanglement can be applied to systems that do not
possess the rotational symmetry if the twirling map is used. In this case, however, it becomes
only a sufficient separability test. Nevertheless, applied to a periodic spin-1=2 chain with
XXZ interaction, the criterion detects genuine tripartite entanglement in its subsystems.
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Chapter 6

Glass to super�uid transition for a
disordered bosonic system

The presence of disorder, understood as random impurities and defects in a regular config-
uration, is an inherent property of real physical systems and often the fundamental factor
underlying their behaviour [Akkermans 06]. One of the most noted phenomena linked to dis-
order is the exponential localization of the electronic wave-function in a dirty crystal. The
phenomenon is named after its discoverer: the Anderson localization [Anderson 58], and
occurs due to interference of paths resulting from multiple coherent scattering events from a
random potential. At its heart, Anderson localization is a wave phenomenon and indeed it was
first observed experimentally for classical electromagnetic and acoustic waves [Wiersma 97,
Schwartz 07, Hu 08]. After a long search, Anderson localization of matter waves was finally
reported for ultracold gases in one dimension (1D) [Billy 08, Roati 08], and very recently also
in 3D [Kondov 11, Jendrzejewski 12].

The physics of disordered quantum systems is a very active field of research and in the
past decades there have appeared an enormous literature on the topic; for reviews see, e.g.,
[Ando 88, Kramer 93, Fallani 08, Sanchez-Palencia 10]. Although, due to the complexity of
the subject, mathematically rigorous results are still scarce, a great deal of work has been
done on random Schrödinger operators, which describe the single particle behaviour (see
[Kirsch 07] for an introduction to the topic). Yet, non-interacting particles in a disordered
potential provide an oversimplified picture, as the theory of dirty solids (crystals) is much
more complex due to long-range Coulomb interaction between particles, underlying periodic
structure, interaction with phonons, magnetic effects etc . At this point it is important to
stress the fundamental difference between disordered fermionic and bosonic systems. For
fermions the crucial role is played by the Fermi energy: the question whether a given system
is a conductor or an insulator depends on whether the single particle states close to Fermi
level are localized or not. Bosons, in contrast, tend to condense in the lowest energy state
(or states). The question whether they constitute a super�uid or an insulator reduces then to
understanding if the low-energy states are localized or not (for discussion see for instance
[Sanchez-Palencia 10, Lewenstein 12]). In this chapter I concentrate on bosonic systems.

A new playground for the investigation of quantum disordered systems is offered by the
field of ultracold atomic gases. The vast degree of control achieved in these genuinely quan-
tum systems enables simulation of fundamental processes underlying the properties of con-
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densed matter [Lewenstein 12]. Current technology makes it possible to produce cold atomic
gases following a chosen statistics (Bose or Fermi) and adjust the interaction between the par-
ticles by means of Feshbach resonances. Moreover, modern experimental techniques give a
full control over the optical trapping potential and therefore allow for analysing systems with
reduced dimensionality. Finally, what is most important in the present context, a controllable
amount of disorder potential can be implemented in many ways, which will be discussed in
more detail in section 6.1.2.

A challenging and still open problem is the understanding of the interplay between the
delocalizing effect of repulsive interactions and localization in disordered bosonic systems.
Experimentally, the problem has been recently addressed by a number of groups [Fallani 07,
Pasienski 10, Gadway 11]. In the regime where disorder dominates over interactions, it was
shown that the ground state of the bosonic system can be described by a glassy phase, called
Lifshits (or Anderson) glass [Lugan 07, Deissler 10], characterized by exponentially localized
and well separated “islands” in the regions of space where the potential is small. As repulsive
interactions are strengthened, an increasing number of islands is populated, until their overlap
becomes sufficient to establish phase coherence and transport between them. Then the gas
as a whole undergoes a phase transition towards an extended super�uid (SF) phase. For the
gas confined in a lattice, as the interactions further increase the repulsion between particles
becomes so strong that on-site density �uctuations characteristic of the SF state become en-
ergetically unfavourable. In this situation the gas undergoes a transition out of the SF, first
to the Bose glass phase and then into the Mott state [Giamarchi 88, Fisher 89]. Between the
Lifshits and the Bose glasses there is no phase transition, nonetheless the two states are qual-
itatively different, in the sense that in the former the gas is fragmented into independent and
distant islands, while the latter tends to extend over a large portion of the available volume.

In this chapter we will consider disorder of Bernoulli type, i.e., the potential generated
by identical localized impurities randomly-distributed in a lattice. An important feature of
systems with this particular disorder is that they allow for rigorous analytical estimates. In
a recent paper, Bishop and Wehr [Bishop 12] have provided rigorous tight bounds on the
single-particle ground state energy, as well as approximations of the ground state and excited
states wave-functions for this potential in a 1D lattice. Since the shape of the low-energy
states is known the results can be, at least partially, generalized to interacting 1D and 2D
systems. Here we recall the work of Bishop and Wehr discussing the typical size of zero-
potential islands and the energy of the localized eigenstates in 1D and conjecture the analo-
gous properties in arbitrary dimension. Then we focus on the regime of weak to intermediate
interactions and explore the properties of ground states of 1D and 2D systems by compar-
ing the performance of three theoretical methods. The first one is a simple version of the
multi-orbital Hartree–Fock method (sMOHF), a variational method based on an expansion
into single-particle states. This approximation is appropriate to describe the weak interac-
tion regime where super�uidity is suppressed by disorder [Lugan 07]. The second method is
the standard Gross–Pitaevskii (GP) approach, which generally yields an appropriate descrip-
tion for weak and moderate interactions (

√
g=� ≤ 1), however fails in the strong coupling

regime. The third method, a multi-orbital Gross–Pitaevskii equation (MOGP), interpolates
between the sMOHF and GP. It incorporates the fragmentation of the ground state achieved
with sMOHF but allows for a self-consistent adjustment of the shape of specific orbitals as
the GP approach [Cederbaum 03]. The results concerning the application of MOGP to dis-
ordered systems were obtained in collaboration with L. Sanchez-Palencia, P. Massignan and
M. Lewenstein and have not been published.
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6.1 Ultracold atomic gases in a lattice
The technological advancement in the field of ultracold atomic gases occurred over the last
twenty years, during which several breakthroughs were made; the development of laser and
evaporative cooling techniques, and optical trapping and manipulation of atoms being the
most prominent examples. In this section I brie�y review the basic tools used to create and
manipulate ultracold lattice gases and parameters that can be controlled in experiments, and
give a short survey of experimental implementations of disorder. Later, I shortly discuss the
ideal homogeneous Bose-Hubbard model, which provides a perfect description of bosonic
atoms in a lattice. Finally, I switch to description of bosons in random potentials. For com-
plete review on the current developments in the discipline of ultracold atomic gases see, e.g.,
[Lewenstein 07, Bloch 08, Lewenstein 12].

6.1.1 Experimental techniques

Cooling. — Reaching the regime of temperatures on the order of nanoKelvins requires
special cooling techniques, laser cooling and evaporative cooling. Laser cooling is based on
momentum transfer from an atom to a scattered photon. When the laser with frequency just
below the atomic resonance shines at the atomic cloud, the atoms moving towards the light
source “see” the light Doppler-shifted. Fast atoms are closer to resonance than the slow ones,
hence scatter more photons and loose momentum. By shining light from orthogonal direc-
tions, it is possible to slow down the atoms obtaining a velocity distribution corresponding to
temperatures below 1 mK. This procedure is called Doppler cooling.

Another step, which enables to reach the microKelvin regime is a sub-Doppler cooling.
There, a standing wave optical potential with modulated polarization is created. An atom
moving “uphill” in this potential looses kinetic energy. Reaching the top of the potential it is
reoriented through optical excitation and photon emission to an internal state that “feels” the
opposite potential. In this way, moving atoms constantly run up the potential hills and their
kinetic energy is converted to photon energy, lowering the temperature of the atomic cloud.

To decrease the temperature even further, to the order of nK, evaporative cooling method
is used. The idea behind the procedure is to selectively release the energetic atoms from the
trap by lowering the potential barrier or pumping the fast atoms to a non-trapped state. Once
the hot atoms are removed, the sample rethermalizes through atomic collisions. A crucial role
in evaporative cooling of diluted gases is played by Feshbach resonances (described in more
detail below) which enhance the collisions rate in the sample and speed up the process.

Optical potentials. — The confinement of cold atoms in a lattice structure is achieved
with optical potentials. An off-resonant oscillating electric field of a laser induces in an atom
an alternating quadratic Stark shift. The energy shift of atomic levels is proportional to the
square of the electric field ∆E(r) = �(!L)

〈
E(r; t)2

〉
, where �(!L) is the polarizability

of the atom depending on the light frequency !L. The largest shift is obtained for levels
close to the resonance, for which �(!L) / 1=∆ is inversely proportional to the detuning
∆ = !0 � !L. We see that for a spatially varying field, a standing wave, the potential takes
the form

Vopt(r) =
I(r)

∆
; (6.1)

and atoms are attracted towards the region of high or low intensity depending on the sign
of the detuning. The potential depth is controlled by the amplitude of the field. Lattices
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of various dimensionality and geometry can be built by overlapping optical standing waves
along different directions. To avoid interference effects light with orthogonal polarizations or
slightly different frequencies is used.

Atomic interactions. — The strength of the short range two-body interactions in a
diluted ultracold gas is governed by the scattering length as. In such systems only the lowest
angular momentum spherical wave contributes to the collision process, which is the s-wave
for bosons and the p-wave for fermions. There exist atomic species (for instance, 6Li, 40K
for fermions and 7Li, 85Rb for bosons) for which the interaction constant can be manipulated
over a wide range of values with magnetic field. It is possible due to a magnetically-tuned
Feshbach resonance which modifies the scattering length of an s-wave collision as

a(B) = abg

(
1� ∆

B �B0

)
; (6.2)

with abg being the off-resonant value of the scattering length, ∆ denoting the width of the res-
onance andB0 its position. The importance of Feshbach resonances in ultracold gases cannot
be overrated. They not only provide a way to reach the strong-coupling regime, important
for condensed matter physics, but also enable studies of truly non-interacting particles, a
paradigm of statistical physics, by setting B = B0 + ∆.

6.1.2 Implementations of disordered potentials
Ultracold atomic gases offer a unique possibility of studying disordered systems with a well
controlled strength and type of disorder. A random potential can be engineered in sev-
eral ways. In what follows we review the most popular approaches (see, e.g., [Fallani 08,
Lewenstein 12] for a more thorough discussion).

Λ1= 462.29nm

Λ2 = 628.31nm

Λ1= 462.29nm
+

Λ2 = 628.31nm

Figure 6.1: Bichromatic lattice obtained by superposing two optical standing waves of in-
commensurate wavelengths.

Bichromatic lattice. — The bichromatic potential depicted in figure 6.1 is created by
superimposing two optical standing waves of incommensurate wavelengths, normally one
having larger intensity than the other[Damski 03, Fallani 07]. This kind of pseudo-random
potential takes the following value at each point:

V (x) = V1 sin2

(
2�x

�1

)
+ V2 sin2

(
2�x

�2
+ ρ

)
; (6.3)

where Vi > 0 (i = 1; 2) is the intensity of each standing wave and �i its wavelength. The po-
tential can be viewed as random if the ratio �1=�2 has an irrational value, however effectively
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such lattice serves as a good realization of disorder whenever the period of the bichromatic
potential is larger than the system size.

a)

Figure 6.2: A two-dimensional speckle potential [Sanchez-Palencia 10].

Speckle pattern. — An example of a truly random optical potential is the speckle pat-
tern. It is obtained, e.g., through diffraction of a coherent laser beam on a ground-glass plate
and its subsequent focusing with a converging lens. The former imprints a random phase
on a light profile which afterwards leads to a random interference pattern in a focal plane of
the lens. The random intensity, proportional to the optical potential, follows the exponential
distribution

P (I(r)) / e−I(r)/〈I〉 : (6.4)

The potential is then superimposed on the lattice system. Note that in this way one can pro-
duce 1D and 2D disordered patterns, however not a 3D one [Jendrzejewski 12]. Moreover, the
potential amplitude on each site is not an independent random variable since the correlation
length of the speckle pattern is on the order of 1�m.

a) b)

Figure 6.3: Random impurities potential; a) the second atomic species is quenched in a sec-
ondary 1D lattice [Gadway 11]; b) 3D lattice with quenched impurities [Massignan 06].

Random impurities. — This kind of potential is ideally realized by using a two-
component gas, i.e., atoms of two different kinds or internal states and a species-selective lat-
tice which deeply traps only one of the components [Gavish 05, Massignan 06, Gadway 11].
At sufficiently low energies, the component which is not trapped experiences s-wave col-
lisions against localized scatterers. The potential that is created in this way has only two
values 0 and V , occurring with probability p and 1 � p, respectively (1 � p is the density of
impurities).
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The presence of quenched impurities may lead to a different type of disorder in the limit
of weak interaction between the two atom types. Imagine two atomic species � and �, where
� are frozen in random lattice sites. In this case, the presence of an impurity atom on site
j may affect (i) the on-site interaction between � atoms if they “meet” in site j, and (ii)
the tunnelling of �s between j and the neighbouring sites. This effectively leads to disorder
in the on-site interaction and the tunnelling parameters. The occupation-dependence of the
parameters of a clean homogeneous systems was studied in [Dutta 11].

6.1.3 Quantum phases in a clean bosonic system and their properties
The physical system of ultracold atoms in a lattice is described by a Hubbard Hamiltonian
which, in the simplest case, contains a hopping part, describing the tunnelling of atoms be-
tween lattice sites, an interaction term containing short- and long-range couplings between
atoms, and a potential term combining the external trapping potential, the chemical potential
and the additional, e.g., disordered, potentials.

We are interested in a limited situation ofN spinless bosonic atoms of a single type placed
in a cubic lattice, with interactions of contact type, and at zero temperature. Such physical
system is described by the ideal homogeneous Bose-Hubbard Hamiltonian

HBH = �t
∑
〈i,j〉

(b†i bj + b†jbi) +
g

2

∑
i

ni(ni � 1) + �
∑
i

ni; (6.5)

where hi; ji denotes the indices corresponding to the nearest neighbours, t is the tunnelling
energy and g the interaction strength. We concentrate on a system with integer number of
particles n̄ per site (filling). Its behaviour depends solely on the ratio t=g. In the limit of weak
interactions or large tunnelling, all the bosons occupy the lowest band and are in a super�uid
(SF) state being gapless and compressible, and extended over the whole lattice. In the other
extreme, strong on-site interactions or suppressed tunnelling, the atoms are confined to lattice
sites and the energy minimum is achieved when there are exactly n̄ bosons in each site; this
state is a Mott insulator (MI) defined as a gapped and incompressible phase. The system
undergoes a quantum phase transition from SF to MI at critical t=g, denoted (t=g)c. Apart
from the already mentioned compressibility and the presence of a gap in the excitation spec-
trum, the two phases can be distinguished with a number of other parameters: the superfluid
fraction, condensate fraction. We define them more precisely below.

Super�uid fraction. — The super�uid fraction �sf can be defined in terms of the energy
change of a periodic system in response to twisted boundary conditions along one direction.
For a 2D system of linear size L we impose  i+L,j = e iΦ i,j and express the parameter as

�sf =
2mL2

~2

E(Φ)� E(0)

Φ2
; (6.6)

where E(Φ) is the energy per particle of a system with the total phase shift Φ. The super�uid
fraction vanishes in the Mott phase and is discontinuous at the critical point (t=g)c (see, e.g.,
[Pai 96]).

Condensate fraction. — The condensate fraction describes the off-diagonal long-range
order in the condensate

lim
|i−j|→∞

hb†i bji 6= 0: (6.7)
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It has the interpretation of the ratio between the number of particles in the lowest energy
super�uid state and the total number of particles in the system, and can be computed as the
largest eigenvalue of a normalized single particle density matrix defined by the equation

Gij =
hb†i bji
N

: (6.8)

The condensate fraction drops continuously from 1 in the limit t=g 〉 1 and vanishes at
(t=g)c in all dimensions.

Compressibility. — Compressibility measures the change in the number of particles
with varying chemical potential

�s =
@

@�
N: (6.9)

Vanishing compressibility is the property defining the Mott insulator phase. At the MI-SF
phase transition point (t=g)c it increases discontinuously to finite values and remains finite in
the SF phase.

Excitation spectrum. — A meaningful parameter in the context of excitation spectrum
is whether there is a gap between the ground state and the first excited state and how does
this gap scale in the neighbourhood of the phase transition point. A system is gapped if its
excitation requires some finite amount of energy, whereas in gapless systems the ground state
and excited states form a continuum. Excitation spectrum has to be analysed in the thermo-
dynamic limit, since for finite systems the gap is always non-zero. In the point corresponding
to the second order quantum phase transition all the systems become gapless. This is the case
in the SF-MI transition; there the MI phase has a gap, which closes as the system approaches
the critical point, while the SF phase is gapless.

Table 6.1: Summary of phases for clean bosons in a lattice, and associated properties.
Super�uid Compressible Gapless

SF(BEC) Y Y Y
Mott insulator N N N

6.1.4 Ground states of dirty bosonic systems and their properties
The properties of the system discussed in the previous section dramatically change in the pres-
ence of external random potentials. We assume the potential to be bounded, i.e., distributed in
the interval [�∆;∆]. In such case the ground state of the system has several universal prop-
erties, independent of the particular potential distribution. The Bose-Hubbard Hamiltonian
(6.5) now takes the form

HBH = �t
∑
〈i,j〉

(b†i bj + b†jbi) +
g

2

∑
i

ni(ni � 1) +
∑
i

(�+ Vi)ni; (6.10)

with Vi being a site-dependent potential. The phase diagram summarising various regimes
of parameters and the corresponding phases is sketched in figure 6.4, and the most important
properties of the ground state are listed in table 6.2.
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Table 6.2: Summary of most common phases for dirty bosons in a lattice, and associated
properties.

Super�uid Compressible Gapless Fragmented
BEC Y Y Y N

Glass Lifshits N Y Y Y
Bose N Y Y N

Mott insulator N N N N

The first difference with respect to the clean system is the presence of an intermediate
glassy phase between the SF and MI which though being compressible and gapless is not
an extended super�uid. The two distinguished states, the Lifshits (Anderson) and the Bose
glass, belong to the same phase, however are qualitatively different. The former appears
in the regime of weak interactions and is characterized by exponentially localized and well
separated “islands” in the regions of space where the potential is small. Since the repulsion
between the bosons is weak, the on-site density �uctuations within an island can be large.
In contrast, the Bose glass tends to extend over a large portion of the available volume. It
arises when the repulsion between particles grows so strong that on-site density �uctuations,
characteristic of the super�uid state, become energetically unfavourable, however before the
system becomes the Mott insulator.
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Figure 6.4: Schematic phase diagram for dirty bosons at zero temperature as a function of in-
teractions (U ) and chemical potential (�) containing glassy (G), super�uid (BEC), and Mott
insulating (MI) phases. The continuous and dashed lines mark respectively the super�uid-
insulator and glass-Mott transition, while the dotted line indicates a crossover from the Lif-
shits glass (heavily fragmented) to the Bose glass (extended) region.
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6.2 Description of weakly interacting many-body systems

In the limit of weak interactions, in which a macroscopic number of bosons occupy a single
or few orbitals, rather than describe the lattice system with the Bose-Hubbard model one can
capture its physics with a much simpler mean-field approach.

6.2.1 Multi-orbital Gross–Pitaevskii equation

Following Cederbaum and Streltsov [Cederbaum 03] we consider a system of N interacting
bosons and assume that the particles condense into a number of orthonormalized orbitals. In
such case the bosonic wave function is a symmetrized product of all the functions describing
the individual condensates

Ψ(r1; r2; : : : ; rN ) = Sρ1(r1)ρ2(r2) : : : ρN (rN ); (6.11)

where ri is the position of each boson and S is the symmetrizing operator. Among the wave
functions ρi (i = 1; : : : ; N ) only 1 � Q � N are different. They form the orbitals 'j
(j = 1; : : : ; Q), each occupied by Nj particles, with

∑Q
j=1Nj = N . When there is a single

orbital, i.e., Q = 1, we recover the so-called Hartree approximation, which leads to the
celebrated Gross-Pitaevskii (or nonlinear Schrödinger) equation.

We are interested in finding the stationary state of the system which minimizes the mean-
field energy, expressed as

E =
∑
i

Nihii + g
∑
i

Ni(Ni � 1)

2

∫
drj'i(r)j4 + g

∑
i

∑
j 6=i

NiNj

∫
drj'i(r)j2j'j(r)j2;

(6.12)
where hii =

∫
dr'∗i (r)H'i(r) is the mean value of the non-interacting Hamiltonian on the

ith orbital and g is the interaction constant. As we assume that there is a large number of
particles in each orbital, we may safely approximate Ni(Ni � 1) � N2

i and proceed by
renormalizing each 'i as 'i =

p
Ni'i. Now the expression for energy can be rewritten in a

compact form:

E =
∑
i

hii +
∑
i

g

2

∫
drj'i(r)j4 + g

∑
i

∑
j 6=i

∫
drj'i(r)j2j'j(r)j2; (6.13)

where hii = Nihii. We minimize the energy with respect to the orbitals and under the
constraint of fixed number of particles

∑
i

∫
drj'i(r)j2 = N , which leads to the following

set of equations

@

@'∗k(r)

[
E � �

(∑
i

∫
dr′j'i(r′)j2 �N

)]
= 0; (6.14)

with � being the Lagrange multiplier having the physical interpretation of chemical potential.
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Expanding the left-hand side, we obtain:

@

@'∗k(r)

[
E � �

(∑
i

∫
dr′j'i(r′)j2 �N

)]
=
∑
i

H'i(r)�ki + g
∑
i

∑
j 6=i

(
'i(r)j'j(r)j2�ki + j'i(r)j2'j(r)�kj

)
+
g

2

∑
i

2j'i(r)j2'i(r)�ki � �
∑
i

'i(r)�ki

= H'k(r) + gj'k(r)j2'k(r) + 2g
∑
i6=k

'k(r)j'i(r)j2 � �'k(r): (6.15)

Therefore, minimization of the energy reduces to solving the set ofQ coupled Gross-Pitaevskii
equationsH + gj'k(r)j2 + 2g

∑
i6=k

j'i(r)j2
'k(r) = �'k(r); k = 1; : : : ; Q: (6.16)

When there is a single orbital we recover the Gross-Pitaevskii (GP) equation(
H + gj'(r)j2

)
'(r) = �'(r): (6.17)

At the beginning of the section we have assumed that the orbitals are orthogonal, however
we have not used this condition during the derivation of the multi-orbital Gross-Pitaevskii
(MOGP) equation (6.16), they may thus lead to non-orthogonal solutions. One way to solve
this problem would be to introduce additional Lagrange multipliers in equation (6.14) to
account for the condition h'ij'ji = �ij , however this increases the number of variational pa-
rameters. Another possibility, convenient in numerical solution of the equations, is to enforce
the orthogonality of wave functions after every integration step using, e.g., the Gram-Schmidt
procedure. However, to avoid any bias towards one orbital or the other one must each time
change the order of vectors in the orthogonalization algorithm.

The MOGP equation recovers the GP solution whenever it is the one with lowest possi-
ble energy since in this case the occupation of the super�uous orbitals becomes zero. In this
sense MOGP is the “Best Mean Field” technique [Cederbaum 03]. Moreover, there exist situ-
ations in which fragmentation of the condensate is energetically favourable, e.g., for repulsive
bosons in an asymmetric double well in 1D [Streltsov 05], or when a fragmented state is a
metastable solution of a problem to which no stable solution exists, e.g., for attractive bosons
in 3D [Cederbaum 08]. To the best of our knowledge the method was not applied to disor-
dered systems before. However, since the ground state of the weakly interacting system is
known to be highly fragmented, one expects that the MOGP would capture the properties of
the disordered system better then the standard GP equation. Indeed, we observe that sepa-
rate orbitals form on the low-potential islands and the ground state of the system becomes
fragmented.

6.2.2 Fixed-orbitals method
Taking into account our intuition about the behaviour of weakly interacting disordered bosons,
we may simplify even further the description of such system. We fix the shape of the orbitals
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to be the eigenstates of the corresponding single-particle problem and minimize the energy of
the system with respect to occupation of such orbitals. The method will be referred to as the
simple multi-orbital Hartree-Fock (sMOHF) approach.

We take the wave function in the Fock representation

jΨi =
∏
k

(â†k)nk

p
nk!
j0i = jn1; n2; : : : ; nLi; (6.18)

where j0i is the vacuum of the system and a†k creates a particle in the kth non-interacting
eigenstate (k = 1; : : : ; L). Repulsive interactions of strength g > 0 yield an interaction
energy given by

hÛinti =
g

2

〈
Ψ

∣∣∣∣ ∫ dr  ̂†(r) ̂†(r) ̂(r) ̂(r)

∣∣∣∣Ψ〉
=

g

2

∑
k

∫
dr ∗k1(r) ∗k2(r) k3(r) k4(r)hn1; : : : ; nLjâ†k1 â

†
k2
âk3 âk4 jn1; : : : ; nLi

=
g

2

∑
k

[
nk(nk � 1)Ok,k + 2

∑
j 6=k

nknjOk,j

]
; (6.19)

where in the second line k = fk1; k2; k3; k4g, and in the last line the only terms that survive
are those with k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3 (hence the factor two), and the
term with k1 = k2 = k3 = k4. In the equation we use a short notation for the integrals, i.e.,
Ok,j =

∫
drj k(r)j2j j(r)j2.

The occupation probabilities nk giving the ground state may now be found by minimizing
the total energy subject to the constraints of normalization and positivity of all nk:

E =
∑
k

nk

[
Ek +

g

2

∑
j

(nj � �k,j)Õk,j
]
; (6.20)

∑
k

nk = N; 8
k
nk � 0;

where we write (6.20) using Õ = 2O � Diag(O) and Ek is the energy of the kth single-
particle eigenstate. The minimization yields the linear system (one equation for each k):

∑
j

njÕj,k =
�+ 
k � Ek

g
+
Õk,k

2
; (6.21)

where the Lagrange multipliers 
k and � correspond to the conditions of positivity of each nk
and global normalization, respectively. Now, γ and � should be adjusted following the well
known Karush–Kuhn–Tucker (KKT) conditions [Boyd 04], which allow for solving the opti-
mization problem in the case in which some of the constraints are in the form of inequalities.
They read: ∑

k

nk = N & 8
k

k � 0 & 
knk = 0; (6.22)

and together with (6.21) yield a nonlinear system of equations for n;γ; �.
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pick n � 1

J = {1, . . . , n}

remove indices
occupation of which

is energetically
unfavourable

calculate
n̄(µ) = Ô−1v(µ)

update J removing indices
j in the following way:
1. determine
µ̄ : min{n̄(µ̄)} = 0
2. determine all j such that
nj(µ̄) = 0 or dnj(µ)

dµ
< 0

3. J = J \ {j}

exists µ:
min{n̄(µ)} = 0 &∑

nk(µ) 6 N
|J | > 1

calculate
µfin :

∑
bnk(µfin)c =

N n̄(µ) = bn̄(µfin)c
n--

∀
k
nk > 0 n > 2

save n̄(µfin)

compute energy
for all saved
n̄ and choose

the occupations
n̄min giving the

lowest value

end

no

yes

no

yes

yes

no

yes

no

Figure 6.5: Flow diagram of the minimization algorithm

We solve the equations using the following algorithm. First we define the set of indices
J = fj : nj > 0g and using conditions (6.22) we rewrite equations (6.21) as

∑
j∈J

njÕj,k =
�� Ek
g

+
Õk,k

2
; for k 2 J : (6.23)

This is a system of jJ j equations for occupations nj > 0, which we arrange in a vector
n̄ = [nj ]j∈J . In order to write a formal solution of the problem we also define the following
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vector and matrix

v(�) =

[
�� Ej
g

+
Õj,j

2

]
j∈J

; Ô = [Õk,j ]k,j∈J : (6.24)

We can now write the solution in the form

n̄(�) = Ô−1v(�); (6.25)

and the problem reduces to finding the set J and adjusting the chemical potential � to make
the occupations fulfil the normalization constraint. Normally, in the weakly interacting regime
only the low-energy eigenstates are occupied, which gives an indication as to how to look for
the set J . Moreover, in the search for the optimal set J one should take into account that
moving a particle to an eigenstate which has a significant overlap with another eigenstate
and higher energy (e.g., higher harmonics in a 1D well) is in most cases energetically un-
favourable. The particular condition that should be applied to eliminate such eigenstates from
set J are system-dependent and should be derived separately for each case. Our approach is
summarized in the diagram in figure 6.5.

6.3 Bose gas in the random-impurities potential
In this section I am going to discuss the results published in [Stasińska 12a] concerning the
properties of a bosonic gas on disordered 1D and 2D square lattices of linear dimension L.
We consider the potential of randomly distributed impurities discussed in section 6.1.2 (the
so-called Bernoulli potential), which on each site assumes the value:

Vi =

{
V > 0 with probability 1� p
0 with probability p

; (6.26)

with Vi being independent random variables (i = 1; : : : ; LD).
The use of the Bernoulli disorder is particularly appealing because its asymptotic proper-

ties become apparent even for small lattices (e.g., with � 50D sites). The Bernoulli potential
has also optimal properties of convergence. Therefore, the random-impurities disorder is
suitable for numerical simulations and due to its simple form, it allows for various analytical
estimates.

6.3.1 Properties of a non-interacting gas
Let us start by discussing the properties of a non-interacting system, and in particular look at
its ground state energy, and the density of low energy excited states. We consider a discretized
system, i.e., the wave function is supported on equally spaced lattice sites and the 1D system
Hamiltonian reads

H = �∆ + V; (6.27)

with �∆ i = 2 i �  i−1 �  i+1 (we set ~2=2m = 1).
Ground state energy. — Minimization of a single-particle energy in a large 1D system

with Bernoulli disorder reduces to finding the wave function minimizing the functional:

h jH i =
L∑
i=1

[( i �  i+1)2 + Vij ij2] = jr j2 +
L∑
i=1

Vij ij2: (6.28)
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One observes that in order to minimize the potential term, the wave function can take non-zero
values only on the sites of potential zero. On the other hand, the kinetic energy is minimized
when the function is maximally spread over available volume. It turns out that the ground
state of the non-interacting bosonic gas in such a potential is supported on the largest island
of zero potential.

The linear size L(1D)
max of the largest island scales as L(1D)

max / logL [Bishop 12]. The proof
of this fact is based on the following observation. The probability of an island having length
k = 1; 2; : : : is P (` = k) = pk−1(1 � p), which is the geometric distribution describing the
probability of k = 1; 2; : : : failures (potential 0) until the first success (potential V ). Then
assuming that the number of all zero potential islands is Nisl we have

pL =
∞∑
k=1

NislkP (` = k) =
Nisl

1� p
; (6.29)

which tells that the total number of islands is proportional to the size of the system, namely
Nisl = p(1� p)L. Now the maximal size of an island f(L) should scale with the system size
in such way that it yields a non-zero and finite number of such islands in the limit L!1

lim
L→∞

NislP (` = f(L)) = lim
L→∞

p(1� p)Lpf(L)−1 = lim
L→∞

(1� p)Lpf(L) = const: (6.30)

The function f must be sub-linear since for f(L) / L or any expression polynomial in L the
right-hand side of (6.30) gives 0. The correct scaling turns out to be f(L) = logL=j log pj,
which is also confirmed by numerical simulations. Now, the ground-state energy is bounded
from above by the energy of the first harmonic, i.e., a half-sine function, of the square well of
the largest island. A lower bound of the same order was proved in [Bishop 12], showing that
the minimum energy behaves asymptotically as �2=(logL)2 when L!1.

Similarly, one can argue that in a large D-dimensional system the ground state will oc-
cupy the largest spherical island of zero-potential sites since this shape minimizes the kinetic
energy [Antal 95]. Its diameter can be shown to grow as L(D)

max / (logL)1/D, and therefore
we expect the energy of the ground state to scale as E0 / logL−2/D. The proof of scaling
of the island size is based on a similar argument as in the 1D case, although is a bit more
involved. The numerical confirmation of the scaling for the 2D case is shown in the inset of
figure 6.6.

Lifshits tail. — Since the disordered potential is chosen to be finite, the spectrum of
the system is bounded from below. As a consequence, the spectrum is expected to exhibit a
so-called Lifshits tail [Lugan 07, Simon 85], in the sense that the cumulative density of states
(cDOS) N (�) =

∫ ε
d�′ D(�′) behaves at low energies as

N (�) � exp
[
�c(�� Vmin)−D/2

]
: (6.31)

The cDOS and the associated Lifshits tail for the considered 2D system were obtained nu-
merically and are shown in figure 6.6.

Excited states. — We expect that the Lifshits states lie on well-separated islands, and
have almost degenerate energies since the islands' linear sizes are approximately the same.
This is true for 1D system, irrespectively of potential density 1 � p, as depicted in figure
6.7, where the low-energy eigenstates are shown. In a 2D system, however, the location
of excited states depends on potential density. In figure 6.8 we show the ground state and
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Figure 6.6: Properties of non-interacting dirty bosons in 2D. Main figure: the cumulative den-
sity of states N (�) shows a Lifshits tail (purple dashed line) given by (6.31). Here we have
taken a 200�200 lattice, and averaged over 10 realizations. Inset: ground state energy E0 in
2D plotted versus linear size of the system L; results for Bernoulli disorder are plotted in blue
and scale as � 1= logL, while results for random-amplitude disorder (by random-amplitude
disorder we understand the potential V being at each site a random variable uniformly dis-
tributed in the interval [0;∆]) are plotted in orange and scale as � log logL= logL.

several eigenstates for 2D systems with moderate and low potential densities (1 � p = 0:6
and 1� p = 0:2). One can observe that in a finite system in the case when the scatterers are
sparse, the ground state is localized on a single island however the excited states spread over
several islands and overlap. This is not the case when the potential is dense, as clearly seen
in the picture.

a)

200 400 600 800

1,10 2 3456 7

b)

200 400 600 800 1000

1,82 34 567

Figure 6.7: The ground state and excited states of a 1D system with a) p = 0:4 and b)
p = 0:8. The eigenstates occupy well separated islands of zero potential in the order of
length. An important point to note is that at some point an orthogonal wave function (second
harmonic) on an already occupied island has lower energy than a sine wave placed on the
next largest island.

The structure of excited states affects the minimisation procedure described in section
6.2.2. Whenever the eigenstates are localized on isolated islands they overlap only if they
constitute different harmonics on the same island. In such case occupation of the second har-
monic increases the interaction energy. Consequently, all the indices j fulfilling the following
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a) b)

Figure 6.8: Eigenstates of a 2D system with a) p = 0:4 and b) p = 0:8. The eigenstates
are marked by ellipsis of various colours, whenever there are several shapes of the same
colour it means that the eigenstate spreads over several islands, several ellipsis of different
colours surrounding the same area denote the overlap of the wave functions in this region.
One observes that in the case of dense scatterers, the wave functions are situated on separate
islands. On the other hand, when the potential is sparse the excited states are spread over
several islands and may have significant overlap.

condition should be removed from J

Ok,k 6 Oj,j & Ok,k < Oj,k: (6.32)

In the case in which excited states are more extended than the ground state it may be advan-
tageous to occupy the states with higher energy but smaller self-interaction term / gnj(nj �
1)Oj,j .

6.3.2 Interacting case
Here we characterize the interacting system with the methods described in section 6.2. We
present the numerical solutions of the sMOHF and MOGP equations (GP as a particular case
of the latter), comparing the performance of the two methods. In particular, we discuss and
compare the ground state energy, the super�uid fraction, and the fractal dimension.

As we will see, sMOHF approach is suitable to describe a weakly-interacting system,
whose ground state occupies few large islands of zero potential. The second method, the
standard Gross–Pitaevskii (GP) equation, correctly describes the energy in both regimes, i.e.,
for weak and moderate (g=� ≤ 1) interactions. In the latter large overlaps between the is-
lands and self-interaction on each island play an important role and the sMOHF approach
fails to capture the physics of such system. We check that in 1D the MOGP method describes
correctly the energy in both the regimes. Moreover, we observe that it captures the fragmenta-
tion of the ground state in the limit of weak interactions and gives the momentum distribution
with much smaller zero-momentum peak than the GP equation. This, and the fact that also
MOHF yields correct results in this regime confirms the intuition that the particles populate
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low-lying well separated eigenstates, the Lifshits islands, that are not correlated among each
other.

Before going into details, let us estimate when the sMOHF description based on non-
interacting single particle states should be valid. As we have discussed, this regime corre-
sponds to the Lifshits glass region. Let us assume that we have s filled islands of the charac-
teristic linear size `0 / logL, and “volume” / `D0 , so that the wave function is supported on
a proportion of a total volume of the system

s`D0 = cLD: (6.33)

The proportionality constant c depends in general on p, � = N=LD and V , which is discussed
more thoroughly later in this section. Since we are interested in the weak interaction regime
we can ignore this dependence.

The Lifshits glass regime occurs then for an inter-particle interaction coupling g smaller
than the characteristic value gch, at which the kinetic energy is comparable to the interac-
tion energy. An estimate of the characteristic coupling is obtained by equating the kinetic
energy per particle ' �2=`20, with the interaction energy per particle ' gN=(s`D0 ). Using the
expression (6.33) for s`D0 , we obtain

gch '
c�2LD

N`20
' c�2

�

(
j log pj
logL

)2/D

: (6.34)

This scaling provides a good estimate of the order of the coupling constant at which the two
energies depicted in figure 6.9 start to diverge.

Below we present the results of numerical simulations. Unless otherwise noted, the results
presented in this section are obtained for a system on either a 1D or a 2D lattice with 1024
or 32 � 32 sites, respectively, N = 104 particles, and the Bernoulli potential with V = 5
or V = 50. Where needed, we perform appropriate averages to obtain results which are
independent of the particular disorder configuration.
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Figure 6.9: Ground state energies obtained by sMOHF (dashed) and GP (continuous) for
various disorder densities p for a) 1D and b) 2D system. The value of the coupling constant
at which the energies obtained by the two methods start to diverge is estimated by equation
(6.34). Results obtained by averaging over 5 simulations and V = 5.

Energy. — In figure 6.9 we compare the energies obtained through the sMOHF approach
with those obtained from the GP equation as a function of the interaction strength g (we do not
observe significant energy difference between the GP and MOGP approach, therefore here we
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show only the results for the former). For a coupling constant g smaller than a characteristic
value gch, the minimization of expression (6.20) and the GP equation yield the same values
of energy proving that sMOHF method correctly describes the system in this limit. The
characteristic value gch estimates the interaction strength at which the energy obtained from
the sMOHF starts to differ from the one obtained through the GP equation. For values of the
interaction g 〉 gch, the disorder plays a negligible role and the energy per particle saturates
to the analytic value E = E + g�=2, where E is a constant that depends on V and p. This
analytic solution is recovered by the numerical results for the GP equation, but not by the
sMOHF approach.

a) 5 10 15 20 25 30
k

5

10

15

20

g H k L

Q = 1

b) 5 10 15 20 25 30
k

5

10

15

20

g H k L

Q = 3

c) 5 10 15 20 25 30
k

5

10

15

20

g H k L

Q = 8

Figure 6.10: Momentum distribution g(k) for 102 particles in a 1D lattice with 1024 sites,
g = 0:001, and potential characterized by p = 0:8; V = 5. Results averaged over 10 realiza-
tions of the potential; the strongly �uctuating results for each potential are also visible in the
pictures. Number of components enforced in the MOGP equation is depicted in each figure.

Momentum distribution. — In order to see that the MOGP approach provides an ade-
quate description of fragmentation of the system, we compute the momentum distribution for
the MOGP and GP wave functions defined as

g(k) =
1

2�

1

N

∫
dr dr′

Q∑
i=1

'∗i (r)'i(r
′)e−ik(r−r′): (6.35)

We enforce MOGP wave-function to occupy fixed number of orbitals to compare several
distributions. The obtained results are depicted in figure 6.10. As we may see, GP yields
g(k) strongly-peaked at k = 0, indicating that a large number of particles occupy a single and
large BEC component. Instead, the MOGP gives a much lower peak, which confirms that the
particles are distributed among different orbitals. The behaviour of g(k) at large momentum
is similar for GP and MOGP.

Super�uid fraction. — We compute the super�uid fraction �sf solving numerically the
GP equation for a periodic system with twisted boundary conditions along one direction. Our
results are depicted in figure 6.11. In the regime where sMOHF provides a good description,
the SF fraction is negligible because the localized single-particle eigenstates experience an
exponentially small energy change due to the imposed phase shift. The region in which GP
equation yields a perceptibly lower energy than sMOHF coincides with the range of interac-
tion for which the super�uid fraction �sf becomes sufficiently large (�sf & 0:1). Note that for
large values of potential (V 〉 1), the curve of the super�uid fraction levels off at intermedi-
ate values of g. This corresponds to the situation in which the wave function fills all the area
of potential zero. Since the positive value of potential is high, it is energetically unfavourable
to put a significant mass of a wave-function outside the zero potential region. Consequently,
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as the repulsion between the particles increases the shape of the wave-function squares off to
decrease the interaction energy.
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Figure 6.11: Super�uid fraction �sf as a function of potential density p and interaction
strength g for a) V = 5 b) V = 50.

Fractal dimension. — As we have discussed in the previous sections, the ground state
of a weakly-interacting gas is localized on one or several Lifshits islands. When interactions
start to play an important role, the extension of the ground state increases, generally, until the
gas occupies all available space. In order to provide a quantitative measure of the extension
of the ground state, we calculate its fractal dimension d∗ [Kramer 93], and introduce here the
concept of fractional occupation c.

Figure 6.12: Scaling of the logarithm of the participation number logL P versus the inverse
of the logarithm of the lattice size. The slope of the lines, being the logarithm of c, allows
for determining the fraction of space occupied by the state. Main figure: 1D lattice of length
L, and interaction strengths g = 0:1 (empty) and g = 10 (filled). The potential densities
are respectively p = 0:4 (red circles) and 0:7 (blue squares). Inset: 2D lattice of linear size
L, interaction strength g = 10, potential parameter p = 0:6 (green diamonds), 0:8 (purple
triangles).

The fractal dimension is defined as a minimum d∗ such that

lim
L→∞

P

Ld∗
= c; c > 0: (6.36)

HereP = 1=
∫

drjρ(r)j4 is the so-called “participation number” of the ground state [Kramer 93].
For an extended state such as a plane wave one finds that P is proportional to the volume of
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Figure 6.13: Fractional occupation c of the ground state as a function of potential density p
and interaction strength g for a) V = 5 and b) V = 50. Here we have considered a 2D lattice
and c was obtained by averaging over 5 potential realizations.

the system, and therefore the fractal dimension equals the Euclidean dimension, d∗ = D.
Instead, for a state which is localized in a volume Q, the participation number behaves as Q,
and the corresponding fractal dimension vanishes ifQ grows slower than any power of L. For
instance, the ground state of the non-interacting disordered system with Bernoulli disorder is
localized on an island of volume Q � logL which for all � grows slower then Lα giving
d∗ = 0. Hence, in general, one has 0 � d∗ � D.

Analysing the results obtained from both sMOHF and GP approaches, we find that d∗ =
D for any g > 0. This may be understood as follows. Assuming that d∗ is bounded strictly
below D, we see that the interaction energy per particle (gN=2)

∫
dr jρ(r)j4 diverges. Physi-

cally, there is not enough space for the particles to keep the interaction energy bounded unless
they spread out through a non-zero proportion of the whole space. If logL P = D � f(L),
and limL→∞ LD=Ld

∗
= c, then it must be that Lf(L) ! c, so f(L) � log(c)= log(L). Nu-

merical results confirm this behaviour in both 1D and 2D. To show this, in figure 6.12 we plot
logL P as a function of 1= logL for a 1D system and a 2D system (inset).

The quantity c, which takes values between 0 and 1, can be interpreted as the fraction of
space occupied by the ground state, and we will therefore refer to it as the fractional occu-
pation of the ground state. We show our results for the fractional occupation in figure 6.13.
For strong disorder (V 〉 t) the fractional occupation c displays at intermediate interactions
a plateau at � p which coincides with a similar plateau in the plot of the super�uid fraction
(cf. figures 6.11b and 6.13b). Due to a fairly simple structure of the system we can estimate
the range of g with such behaviour of c and �sf . We concentrate on a 1D case for simplicity.

For large interactions one may use the Thomas-Fermi approximation (neglect the kinetic
energy). Suppose we choose an ansatz such that the wave function equals m=

p
pL on sites of

zero potential and
p

1�m2=
p
qL on the remaining sites (0 6 m 6 1), then the value of m2

minimizing the energy ism2 = p+pqV=(g�). If g� < pV , the above ansatz becomes invalid,
and the ground state stays exclusively on sites of zero potential. This estimates the value of g
at which the plateau begins; to derive the value of g at which it finishes we compare the energy
of a wave function equal to 1=

p
pL on sites of zero potential and zero elsewhere to a wave

function that is equal to 1=
p
L everywhere. Ignoring the kinetic energy terms (which we can

control by another parameter), we see that the first wave function provides a better variational
ansatz if g�=2 � pV . This means that for pV . g� . 2pV , we are in an area where c � p,
that is, the kinetic energy and interaction energy are balancing, but any significant support of
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Figure 6.14: Occupations of the single particle states for the 1D system with a) p = 0:4, b)
p = 0:8. In the left column gN = 5:62, in the right gN = 50:6 and the temperatures were ad-
justed to agree with the density profile and are slightly higher for Bose-Einstein distribution.
The lines are: Boltzmann, Bose-Einstein, and sMOHF. Results averaged over 5 simulations.

the ground state on the sites occupied by scatterers is too costly. Since the wave function does
not spread significantly in this regime, also the super�uid fraction remains constant.

6.3.3 Comparison of temperature and interaction effects

In this section we turn to the analysis of the effects of non-zero temperature in a non-interacting
system. We will see that those remind very much the effects of interactions at zero tempera-
ture.

For free boson systems, the effects of temperature may be studied by expanding arbitrary
states in the basis of non-interacting eigenstates, in analogy with what we did to treat the
interacting case (sMOHF). In this approximation, the average density of the gas reads

�(x) = L−D
∑

nkj k(x)j2: (6.37)

The occupation factors depend on the statistics of the particles. Identical bosons follow the
Bose–Einstein distribution

nk =
1

e(Ek−µ)/T � 1
: (6.38)

Distinguishable (or classical) particles would instead populate the non-interacting eigenstates
following a Boltzmann distribution, nk = e−(Ek−µ)/T .
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Figure 6.15: Occupations of the single particle states for the 2D system with a) p = 0:4, b)
p = 0:8. In the left column gN = 5:62, in the right gN = 17:8 and the temperatures were
adjusted to agree with the density profile of the interacting gas. The lines are: Boltzmann,
Bose-Einstein (covered by Boltzman), and sMOHF. Results averaged over 5 simulations.

At zero temperature, only the lowest energy state has a non-zero population, i.e., nk =
N�0,k. Non-zero temperatures modify the occupation probabilities, redistributing the popu-
lation over the higher energy states, but we expect that for T ≤ 1 only the lowest energy
states (the Lifshits states) are populated.

We note here that in an interacting 2D Bose gas of finite extension one generally expects
a crossover between two qualitatively different regimes. At very low temperatures (T < TC)
phase correlations in the gas decay algebraically with distance. For temperatures larger than
the critical value TC instead, phase correlations decay exponentially with distance. This
switch in the decay of correlations can be traced back to the dissociation of bound vortex-
antivortex pairs at T > TC . The crossover becomes a real phase transition in an infinite sys-
tem, and the underlying mechanism goes under the name of Berezinskii-Kosterlitz-Thouless
(BKT) transition [Berezinskii 72, Kosterlitz 73].

Our approach to finite temperatures is rather crude, and is not well suited to describe the
BKT physics, which requires considering both temperature and interactions at the same time.
However, for the range of parameters considered in this manuscript, our model provides a
qualitative, although simplified, explanation of the complementary roles played by tempera-
ture and interactions. Moreover, a similar scenario to the one considered here is present in
three dimensions, where a true BEC exists at low temperatures contrary to 1D and 2D where
condensation occurs only at T = 0, while at T < Tc there are phase �uctuations and a
quasi-condensate is formed.
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As the temperature raises, the cloud gets to occupy more and more islands; when T . V it
will populate only the unoccupied sites, and for T 〉 V it will occupy even sites inhabited by
scatterers. While a classical cloud quickly spreads over various low energy states, a bosonic
gas at low temperatures tends to condense in a single or few Lifshits states. Interaction effects
in a bosonic cloud at T = 0, instead, yield at first sight a state which very much resembles
the finite temperature case. Even for moderate repulsive interactions, the cloud spreads over
various Lifshits states.

The occupation nk for the three cases analysed above (Boltzmann, Bose, and interacting)
are shown in figures 6.14 and 6.15 for a 1D and 2D systems, respectively. Since the lowest-
energy single-particle states for a 1D system and 2D system with large or moderate potential
density 1 � p correspond to the localized and well separated Lifshits states, a population
distribution is narrow with a peak at low energies. On the other hand, in a 2D system with
sparse potential peaks the excited states tend to be more extended than the ground state (cf.
discussion in section 6.3.1), consequently their occupation lowers the interaction energy and
may be more advantageous for stronger interaction. Therefore, as can be seen in figure 6.15b,
the 2D interacting gas in a potential with 1 � p = 0:2 has an occupation distribution with a
peak at the ground state for weak interaction and at an excited state for slightly higher g.

As the temperature increases the Bose liquid tends to have narrow population distribution,
while the Boltzmann and interacting distributions spread more quickly. As a result, the tem-
perature of a Bose gas that gives the density matching the interacting case is slightly higher
than the corresponding temperature for the Boltzman gas.

6.4 Conclusions
We have considered a bosonic lattice gas in the presence of Bernoulli disorder, realised, e.g.,
by localising in a lattice identical random scatterers. We have shown that in this case it is
possible to provide precise analytical estimates of ground state wave function and energy
even for the interacting case. We have compared two theoretical schemes, the simplified
multi-orbital Hartree–Fock and the (multi-orbital) Gross–Pitaevskii approaches, showing how
the first is very accurate in the glassy regime of strong disorder, but fails when interactions
bring the system into an extended state and the super�uid fraction reaches values �sf & 0:1.

Further, we have shown analytically that the fractal dimension for this kind of potential
tends to the physical dimension of the system. As a result, we have introduced a quantity
termed fractional occupation, which characterizes the typical extension of the system. It is
expected that when the latter becomes of order p, i.e., the fraction of physical space where
scatterers are absent, the system crosses over from the Lifshits to the Bose glass. Finally,
we have discussed the similarities and differences between effects due to interaction and
temperature. This question is of fundamental importance for ongoing experiments, since in a
laboratory the two effects are often difficult to distinguish.

The numerical results presented in this chapter were obtained using software written by
the author. The numerical simulations for MOGP are based on the Suzuki-Trotter algo-
rithm for the imaginary time evolution. The algorithm used for the minimization problem
of sMOHF was design for this specific application.
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Chapter 7

Summary and outlook

In the thesis we have considered several physical systems in which correlations, either in-
trinsically present or specially engineered, play a crucial role. In particular, we have shown
how the application of what we call the geometric set-up for the QND-Faraday atom-light
interface facilitates generation, manipulation and detection of multipartite entanglement be-
tween atomic ensembles. Second, we have analysed the separability properties of tripartite
subsystems of spin networks. We have concentrated on spin-1=2 particles and applying the
necessary and sufficient separability criteria for rotationally invariant three-qubit systems we
verified the presence of tripartite entanglement in ground and thermal states of Heisenberg
and XXZ Hamiltonians. Finally, we have studied the properties of the system of bosons in
the presence of random-impurities disorder, contributing to the understanding of the interplay
between the localization caused by disorder and the counteractive effect of repulsive inter-
actions. Due to the simplicity of the disordered potential we were able to provide several
analytical estimates, e.g., assess the applicability of the simple multi-orbital Hartree-Fock
description of the system.

n this thesis, I have as well consider the problem of characterization of correlations as
a resource for quantum information. We have studied tasks (Bell inequalities) for which
quantum and classical resources work equally well, and only more general non-signalling
correlations enable one to perform them more efficiently. We have provided a systematic
method for construction of such tasks, showing an intriguing connection to Unextendible
Product Bases.

There are several research directions to follow. The studies of multipartite correlations
in many-body systems and its connection to quantum phase transitions is at an early stage.
The systems we have analysed in chapter 5 are far from the many-body limit and it would
be interesting to investigate the separability properties in larger networks and higher spins,
in particular spin-1 systems, with certain symmetries. For example, recent work reveals that
multipartite entanglement may be a better indicator of quantum phase transitions in spin mod-
els if the interaction involves more than two spins [Bera 12].

The link between Unextendible Product Bases (UPB) and Bell inequalities that are not
violated by quantum mechanics, studied in chapter 4 is also not fully understood. As it was
shown in [Augusiak 12], the construction may lead to tight Bell tests, however, it is not clear
which (if any) properties of a UPB decide whether a corresponding Bell inequality is tight.

Finally, the topic of Bose gas in the presence of random-impurities can be explored from
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a different perspective. In chapter 6 we have concentrated on the limit of strong interaction
between the Bose gas and the impurity atoms. In this case, the latter act effectively as a
disordered potential. In the limit of weak interaction, however, the impurities induce disor-
der of a different type, i.e., they may affect (i) the on-site interaction between bosons, and
(ii) their tunnelling constant. This observation may pave the way for experimental realisation
of this kind of disorder, however a detailed feasibility study is still missing.
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