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Abstract

Sequence alignment is one of the basic methods to compare biological sequences and the
cornerstone of a wide range of different analyses. Due to this privileged position at the
beginning of many studies its accuracy is of great importance, in fact, each result based on
an alignment is depending on the alignment quality. This has been confirmed in several
recent papers investigating the effect of alignment methods on phylogenetic reconstruc-
tion and the estimation of positive selection. In this thesis, I present several projects
dedicated to the problem of developing more accurate multiple sequence alignments and
how to evaluate them. I addressed the problem of structural protein alignment evaluation,
the accurate structural alignment of RNA sequences and the alignment of large sequence

data sets.

Resumen

El alineamiento es uno de los métodos bdsicos en la comparaciéon de secuencias bi-
ologicas, y a menudo el primer paso en analisis posteriores. Por su posicion privilegiada
al principio de muchos estudios, la calidad del alineamiento es de gran importancia, de
hecho cada resultado basado en un alineamiento depende en gran medida de la calidad
de éste. Este hecho se ha confirmado en diversos articulos recientes, en los cuales se ha
investigado los efectos de la eleccién del método de alineamiento en la reconstruccién
filogenética y la estimacion de la seleccion positiva. En esta tesis, presento varios proyec-
tos enfocados en la implementacion de mejoras tanto en los métodos de alineamiento
multiple de secuencias como en la evaluacion de estos. Concretamente, he tratado pro-
blemas como la evaluacién de alineamientos estructurales de proteinas, la construccién
de alineamientos estructurales y precisos de ARN y también el alineamiento de grandes

conjuntos de secuencias.






Preface

Medical and biological research has changed a lot in the last 10-20 years. With the pos-
sibility of sequencing whole genomes new areas of research have been opened, allowing
a more complete understanding of the molecular basis of life. Now it is possible to trace
genetic diseases back to their location in the genome, it is feasible to perform large-scale
analyses of gene expression, and the availability of different sequencing methods allows
many other lines of investigation. These approaches produce huge amounts of data which
need to be analyzed. Hence, computational approaches are needed an idea which is still
relatively new to biology. When I started studying few people had an idea about bioin-
formatics and its utility. Today, bioinformatics is a well-established field of research. In
this thesis I contribute to the improvement of the first method in sequence analysis, the

multiple sequence alignment, which, due to its difficulty, still provides challenges.
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1 Introduction

The following text in the extended version of a review (Kemena and Notredame, 2009),
written at the beginning of my thesis and further adapted so as to include more recent

developments in the field.

During the time of my thesis I have focused my interest on the development of methods
for the comparison of biological sequences. In this introduction I will describe the bio-
logical and algorithmic basis of my work as well as the utility of the tools I developed.
The work presented relies on the theory of evolution that was first published in the book
“The origin of species” by Charles Darwin (1859). The core of this theory is that all
living organisms have developed over millions of years starting from a single common
ancestor and slowly evolved into different species. Darwin got this idea during a stay on
the Galdpagos Islands, where he noticed that finches living on this group of islands have
different characteristics on different islands. From this observation he concluded that the
different finches adapted themselves to the specific conditions of each island. He called
this process of adaptation natural selection, a process in which only those organisms sur-
vive that are best adapted to their surrounding environment. Herbert Spencer phrased it
in the famous words “Survival of the fittest”. Of course at that time, the deoxyribonucleic
acid (DNA) was still an unknown molecule, as was its involvement in the mechanisms of

evolution.

Today it is known that the cells of each living organism contain large molecules of DNA,
the genome. It contains the blueprint of the organism, coding for functional complexes
like genes or regulatory motifs necessary for the production and the regulation of the cell
machinery. When an organism reproduces, a copy of the DNA is passed on to its off-
spring. The copying mechanism is not perfect, mutations can occur, which together with
other mechanisms like recombination and horizontal gene transfer can alter the DNA.

These changes may be beneficial, neutral or detrimental. Under certain conditions, these



mutations can lead to the emergence of new species. According to the theory of speci-

ation, a population can develop into two separate species when two groups of the same
population stop to interbreed with each other, for example when a population is divided
into two subpopulations in distinct areas due to some geographic event. From genera-
tion to generation these populations diverge more and more until they cannot produce
offspring with each other anymore, a new species has emerged. All species and all or-
ganism are therefore related with each other, and the less time has passed since the last
common ancestor, the closer two species or organisms are related. These relationships
are reflected on the molecular level and thus comparisons between biological sequences,
being it DNA, RNA or protein sequences allow to infer biological knowledge. A good
way to perform this comparison and to detect specific areas of similarity and dissimilarity

is the construction of a sequence alignment.

They are of importance for an ever increasing number of biological modeling methods.
Chapter 1.2 describes the most important of these applications. While the vast majority
of published applications are based on protein sequence alignments, recent biological dis-
coveries coupled with the massive delivery of functional, structural and genomic data are
rapidly expanding the potential scope of alignment methods. In order to make the best
of the available data, sequence aligners will have to evolve and become able to deal with
a very large number of sequences because the known quantity of sequences in public se-
quence databases like the ones from the European Molecular Biology Laboratory (EMBL)
or its American counterpart, the National Center for Biotechnology Information (NCBI)
(Karsch-Mizrachi et al., 2012) is growing exponentially (Figure 1.1). Merely aligning
all the known orthologues of a given gene will soon require aligning several thousand se-
quences, and the massive re-sequencing effort currently underway (Siva, 2008) could even
mean that within a few decades, multiple comparison methods may be required to align
billions of closely related sequences. Besides this alignment programs will need to be
able to integrate highly heterogeneous information types such as evolutionary, structural

and functional data.

During my thesis I engaged in several projects concerned with some of these problems.
The projects were not limited to the problem of computing highly accurate alignments but
also included the estimation of their accuracy. The following sections contain a descrip-
tion of the alignment problem, as well as an introduction to the current state-of-the-art

approaches to solve it under different contexts. The next chapters describe the results of
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Figure 1.1: Number of nucleotides in the EBML-bank in the latest release of each year.

several of my projects. Chapter 2 deals with the problem of evaluating protein alignments
using a single experimental structure. The subsequent chapters present new algorithms
I developed to increase the accuracy of an alignment. I especially addressed the prob-
lem of multiple structural RNA alignments (Chapter 3) and the alignment of large protein

datasets (Chapter 4). The last chapter contains a discussion of the results presented here.

1.1 What is a sequence alignment?

Starting from a set of sequences, an alignment of these can be constructed by inserting
gap characters into the sequences without changing the order of characters in them. An
alignment has two technical properties which need to be fulfilled: (i) all gap-extended
sequences have the same length and (ii) no column consists of gap characters only. An
example of an alignment can be seen in Figure 1.2. It has been produced using the de-
fault mode of T-Coffee (Notredame et al., 2000). The coloring schema represents the
consistency of the multiple sequence alignment (MSA) with the pairwise alignments.
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Figure 1.2: A multiple sequence alignment produced by T-Coffee. The coloring of the amino acids repre-
sents consistency with pairwise alignments. Green nucleotides correspond to low consistency,
red nucleotides to high consistency.

Biologically, an alignment is a method to detect the evolutionary or functional relation-
ship between two or more biological sequences. It organizes data so that similar sequence
features are aligned together. A feature can be any relevant biological information: struc-
ture, function or homology to the common ancestor. The goal is either to reveal patterns
that may be shared by many sequences, or identify modifications that may explain func-
tional and phenotypic variability. The features one is interested in and the way in which
these features are described ultimately define the correct alignment, and in theory, given a
set of sequences, each feature type may define a distinct optimal alignment. For instance,
a structurally correct alignment is an alignment where aligned residues play similar role
in the 3D structure. Given a set of distantly related sequences, there may be more than
one alignment equally optimal from a structural point of view. An alternative to structural
conservation is homology (meant in a phylogenetic sense). In that case, the alignment of
two residues is a statement that these two residues share a similar relation to their closest
common ancestor. Aside from evolutionary inertia, there is no well defined reason why
a structure and a homology based alignment of the same sequences should be identical.

Likewise, in a functionally correct alignment, residues having the same function need to



be aligned, even if their similarity results from convergent evolution. Overall, a multiple

sequence alignment is simply a way of confronting and organizing the specific data one

1s interested in.

These relationships can be either detected between two sequences in which case one
speaks of pairwise alignments or in case of three or more sequences of multiple sequence
alignments. In either case, the homology does not need to span the whole length of the
sequences in which case the computation of a global alignments which spans the whole
sequences, would result in inaccurate alignments. In this case preferably a local align-
ment method is used which is able to identify homologous segments inside the sequences
and only align these. This is useful for example when aligning genes to a genome or
when aligning proteins with each other. Proteins are often composed of several different
domains, which are often associated with a specific function and have the capacity to fold
independently from the rest of the protein. These domains are often reused in different
proteins but the composition of each protein varies. Thus, when aligning proteins sharing
only a subset of common domains, a local alignment might be the method of choice. A
different classification of alignments can be achieved when classifying alignments accord-
ing to the used information type. For example one can distinguish sequence alignments,
profile alignments and structural alignments. The most basic alignment type is the simple
sequence alignment. It can be used for all kinds of sequences (DNA, RNA and proteins)
but as it uses only the information incorporated in the sequence, the accuracy of the re-
sulting alignment greatly depends on the sequence identity. Sequence identity denotes
the number of identical residue pairings compared to the overall number of pairs of two
aligned sequences. Generally, the higher the identity the easier it is to derive an accurate
alignment. Depending on the sequence type, the limit for achieving meaningful align-
ments varies. The minimum sequence identity for protein sequences is considered to be
about 30% (Rost, 1999), while in contrast, for RNA alignments the limit is assumed to
be around 60% identity (Abraham et al., 2008; Capriotti and Marti-Renom, 2010). The
areas around these thresholds are called twilight zone because the signal derived from
sequence identity gets disturbed. The identity threshold for DNA and RNA sequences is
higher because the alphabet of nucleotide sequences is much smaller than for amino acid
sequences (4 versus 20), hence it is less informative. The meta-alphabet of proteins helps
to keep accurate track of sequence homology over time as often several codons can code
for the same amino acid. For many amino acid the third base of the codon, the wobble

base, can change without changing the amino acid. Furthermore, coding sequences are



often more conserved than non-coding sequences due to a higher evolutionary pressure

to keep functionality. Moreover, in non-coding RNA the secondary structure plays an
important role for its functionality and is often conserved while the nucleotides involved
change more frequently. When reaching the twilight zone, additional information, which
can be acquired from different sources, is needed to construct meaningful alignments, for

example structural information for RNA or protein sequences.

The amount of data that could be integrated when building an MSA is rising by the day.
It includes new sequences coming from large scale genome sequencing, with a density of
information that will make it more and more possible to reconstruct evolutionary correct
alignments (Frazer et al., 2007). Other high throughput based projects are delivering func-
tional data in the form of transcript structure (The ENCODE Project Consortium, 2007)
and structural data is following a similar trend thanks to coordinated efforts like targetDB
(Chandonia et al., 2006). Another ongoing trend is the delivery of large-scale functional
data, resulting from the use of robotic techniques. These make it possible to gather large
amounts of functional information associated with homologous sequences (Fabian et al.,
2005). This data is usually applied to Quantitative Structure and Activity Relationships
(QSAR) analysis, but it could just as well be used when comparing protein sequences.
Finally, the massive use of Chlp-Chip data makes it possible to reveal important pro-
tein/DNA interaction, thus allowing the enrichment of genomic data with functional data,
an extra layer of information that could certainly be incorporated in sequence alignment

strategies such as the ones described in the following chapters.

These trends have not gone unnoticed and over the last years, regular efforts have been
made at developing and improving multiple sequence alignments methods so that they
could take advantage of newly available data. Three areas have been actively explored: (i)
accuracy improvement, achieved through the use of consistency based methods (Notredame
et al., 2000; Do et al., 2005) (i) an expansion of MSA methods scope, thanks to the devel-
opment of template-based approaches (Armougom et al., 2006b; Pei and Grishin, 2007;
Pei et al., 2008; Wallace et al., 2006; Wilm et al., 2008), a natural development of con-
sistency based methods that makes it possible to efficiently integrate alternative methods
and alternative types of data. (ii1) large-scale alignments (Edgar, 2004a; Lassmann and
Sonnhammer, 2005b; Katoh and Toh, 2008; Sievers et al., 2011). Most of the MSA
methods currently available have been described and compared at length in several very
complete reviews (Wallace et al., 2005a; Edgar and Batzoglou, 2006; Notredame, 2007;



Pei, 2008).

1.2 The purpose of calculating alignments

Alignments are calculated to discover similarities and dissimilarities between sequences
to obtain information allowing to infer relationships between sequences, or, on a lower
level, between characters of these sequences. This chapter will cover the most important
applications of how this information can be used, giving examples from various areas,

beginning with evolutionary biology.

One of the objectives of evolutionary biology is to determine the relationships between
species or genes. A common way to infer these relationships is to identify mutations in
a set of sequences and construct a phylogenetic tree using this information. An accurate
method to detect these changes is via the construction of an MSA. Different methods ex-
ist to reconstruct a phylogentic tree from an alignment. The first methods developed turn
an alignment into a matrix of pairwise distances and use a clustering algorithms to con-
struct the tree (e.g. UPGMA (Sokal and Michener, 1958) or Neighbour Joining (Saitou
and Nei, 1987)). These distance based methods regard the sequences as a whole and
represent all differences between two sequences in a single value. The maximum parsi-
mony method on the other hand belongs to the character-based methods, methods which
treat residues of a sequence individually. For instance, the Fitch algorithm (Fitch, 1971)
constructs a tree minimizing the overall number of changes necessary to explain the dif-
ferences in the sequences as denoted by the alignment. More accurate character-based
methods try to model the evolutionary process using probabilities. To this class of meth-
ods belong maximum likelihood estimation methods (e.g. RAXML (Stamatakis, 2006) or
PhyML (Guindon et al., 2010)) and Bayesian approaches (e.g. MRBAYES (Huelsenbeck
and Ronquist, 2001)). The increased accuracy of these methods is accompanied by longer
running times when compared to distance or maximum parsimony methods. Some nodes
in the reconstructed tree can have higher support from the alignment than others, infor-
mation which can help to estimate the accuracy of a specific node. A widely used method
for this purpose is the bootstrap value (Felsenstein, 1985), which reports the fraction of

trees computed from sampled alignment columns supporting a given topology.

Another example from evolutionary studies is the inference of homology and orthology



between genes. One of the most commonly used methods to infer homology is BLAST
(Basic local alignment search tool) (Altschul et al., 1990). A widely used ad-hoc method

to determine orthology between sequences is the reciprocal best hit method in which two
genes are considered to be ortholog when they find each other as the best hit when one
is blasted against the genome of the other and vice versa. The establishment of these
relationships allow for large-scale transfer of functional annotations from one genome to

another.

However, annotating whole genomes still remains difficult and many functional elements
remain unidentified. Using multiple genome alignments can help as they allow the identi-
fication of positions under purifying, positive and neutral selection. Widely used programs
for the identification of elements under purifying selections are Gerp/Gerp++ (Cooper
et al., 2005; Davydov et al., 2010) and PhastCons (Siepel et al., 2005). Gerp measures
the difference between expected and observed rate of mutation to detect conserved sites
in an alignment. PhastCons models conserved elements using a phylogenetic HMM. This
HMM consists of two states, one for conserved regions and one for unconserved regions.
Not only can regions under purifying selection be of interest but regions under positive
selection as well as they may indicate newly functional elements. An alignment based
program to discover these segments has been developed by Massingham and Goldman
(2005). Whereas purifying and positive selection is detected by comparing sequences
from different species with each other, alignments of sequences from the same species
can help to detect single nucleotide polymorphisms, variations in a sequence occurring in
a subgroup of a population. The identification of SNPs is important because certain SNPs
have been associated with higher risks for certain diseases like diabetes (Qi et al., 2009) or
Huntington’s disease (Weydt et al., 2009). Thus identifying SNPs causing an illness may
increase the probability of understanding it and may facilitate the search for a treatment.
The SNPsFinder (Song et al., 2005) program, for example, is able to find SNPs inside a

genome alignment.

In the examples above, the main source of information is the primary sequence but often
sequences have a structural component which is of great importance for its correct func-
tionality as, for example, in proteins or non-coding RNAs. Non-coding RNA is a class
of RNA with a rapidly increasing number of known transcripts (Gardner et al., 2011;
Djebali et al., 2012; Harrow et al., 2012). These RNAs have in common that inside an

RNA family the secondary structure is often maintained while the primary sequence is



evolving rapidly. Knowing the structure of an RNA may help understanding the func-

tional properties of it. Several approaches to predict the secondary structure from a single
sequence have been proposed. Most of them are based on thermodynamics and predict
the secondary structure by minimizing the free energy as implemented in Mfold (Zuker,
1989). Still, predicting the correct secondary structure from a single sequence is very
difficult. As a consequence, different strategies to estimate the common RNA structure
from a set of aligned homologus sequences have been proposed. The two most preva-
lent strategies are the prediction using stochastic context-free grammars (SCFGs) and the
prediction using hybrid methods, methods which are a combination of thermodynamics
and compensated mutation approaches. An often used representative of the first group is
the PFOLD program (Knudsen and Hein, 2003) which besides SCFGs uses additionally
an evolutionary model. RNAalifold (Hofacker et al., 2002) on the other hand calculates
the linear combination of base pairing energies and covariation of base pairs found in the
alignment. Compensated mutations cannot only be used to predict a secondary structure
but can be used as well to identify so far unknown RNA genes. Rivas and Eddy (2001) for
example applied three different hidden Markov models (HMMs) on pairwise alignments
to distinguish which segment of the sequences can be attributed to RNA, protein coding
and the NULL model. The protein coding model checks for mutations in the third base
of the DNA, whereas the RNA model detects compensated mutations inside a secondary
structure. All these methods depend on accurate RNA alignments, a difficult problem
I addressed in Chapter 3 proposing a new algorithm to produce multiple RNA structure

alignments.

Similar to RNA, the structure of proteins is important and usually conserved during evo-
lution, to keep its function. Thus, knowing the structure of a protein can help in its
functional analysis. Experimental determination of a protein structure is often possible
but is still too expensive for a large-scale application. Hence, computational approaches
on different levels have been developed. An important strategy is to predict contacts in
protein sequences. A contact is the bond formed between two amino acids, due to their
physicochemical properties. These contacts introduce evolutionary constraints onto the
amino acids involved because mutations in only one of them need to be compensated by
a mutation in the corresponding amino acid. This can be used to predict contacts by de-
tecting compensated mutations using MSAs as, for example, described by Goebel et al.
(1994). Similar approches have been developed to detect interactions between proteins

(e.g. (Pazos and Valencia, 2002)) or using Bayesian networks (Burger and van Nimwe-



gen, 2008). On the level of secondary structure prediction, Cuff and Barton (2000) used

alignments in combination with neural networks. Many algorithms were proposed to pre-
dict the tertiary structure of a sequence including 3D-Jigsaw (Bates et al., 2001), SWISS-
MODEL (Schwede et al., 2003) and Modeller (Eswar et al., 2007). These commonly
predict a three-dimensional structure of a given protein sequence using an alignment be-
tween the target sequence and one or more template sequences with a known structure as
basis. While these methods need accurate alignments to predict a structure, one can also
use a structure to evaluate the accuracy of an alignment. An example is the CAO score
(Lin et al., 2003) or the STRIKE score proposed in Chapter 2.

1.3 Basic approaches of sequence alignment computation

Multiple sequence alignment computation stands at a cross-road between computation
and biology. The computational issue is as complex to solve as it is straightforward to
describe: given any sensible biological criterion, the computation of an exact MSA is NP-
Complete and therefore impossible for all but unrealistically small datasets (Wang and
Jiang, 1994). MSA computation therefore depends on approximate algorithms or heuris-
tics and it is worth mentioning that almost every conceivable optimization technique has
been adapted into a heuristic multiple sequence aligner. Over the last 30 years, more
than a 100 multiple sequence alignment methods have been published, based on all kind
of heuristics, including simulated annealing (Abhiman et al., 2006), genetic algorithms
(Gondro and Kinghorn, 2007; Notredame and Higgins, 1996), Tabu search (Riaz et al.,
2005), branch and bound algorithms (Reinert et al., 1997), Hidden Markov Modeling
(Eddy, 1995) and countless agglomerative approaches including the progressive align-
ment algorithm (Hogeweg and Hesper, 1984), by far the most widely used nowadays.
The biological issue surrounding MSAs is even more complex: given a set of sequences,
we do not know how to estimate similarity in a way that will guaranty the biological cor-
rectness of an alignment, whether this correctness is defined in evolutionary, structural
or functional terms. In fact, one could argue that being able to compare the biological
features coded by a DNA sequence implies having solved most of the ab-initio problems
associated with genetic information interpretation, including protein structure prediction.
These problems are not solved and in practice multiple alignments are estimated by max-

imizing identity, in the hope that this simplistic criterion will be sufficiently informative

10



to yield models usable for most type of biological inference.

The objective function thus maximized is usually defined with a substitution matrix and
a gap penalty scheme, the first one modeling mutations or the lack of them by assigning
scores for aligning two residues with each other using a scoring scheme and a second
one modeling insertions and deletions by assigning costs to a gap, where a gap is a con-
secutive row of gap characters. Most aligners do not distinguish between insertions and
deletions as it is usually unknown which of the two is being handled and consequently
assign the same costs to both. An exception from this general rule is PRANK (Ldytynoja
and Goldman, 2005). For nucleotide alignments the scoring schema is usually kept very
simple by using an identity matrix assigning a single score for all kinds of matches and
another score for all kinds of mismatches. Exceptions from this rule are for example
BLASTZ (Schwartz et al., 2003), which uses two different values to score mismatches,
and Pro-Coffee (Erb et al., 2012), which uses a scoring matrix to score matches of neigh-
boring nucleotides. In the case of amino acids a more elaborate scoring schema is used
to reflect the more complex relationships between amino acids. Each match/mismatch
of two amino acids has its own score reflecting the similarity or dissimilarity between
the physicochemical properties of the amino acids involved. The most common scoring
matrices are the BLOcks SUbstitution Matrix (BLOSUM) (Henikoff and Henikoff, 1992)
and the Point Accepted Mutations matrices (PAM) (Dayhoff et al., 1978). Different ver-
sions of these matrices are available to reflect the evolutionary distance between the se-
quences to align, as the probabilities to see mismatches increases with time of evolution.
The BLOSUM matrix has been computed on blocks of local alignments and represents the
log-odds score of observed frequencies of mutation versus the expected rate. The PAM
matrices are computed very similarly on the mutation rate. These matrices are context
independent, they assume that the pairing of a pair of residues is independent of any other
residues in the sequence. This simplification often does not reflect biological reality for
example in RNA and proteins the structure can introduce dependencies between different

amino acids, but ignoring it allows for a faster and simpler computation.

Several gap cost functions have been developed to model insertions and deletions (gaps in
general) in sequences. The simplest schema treats all gap characters the same way, each
gap character is given a score which is then added to the objective function. This linear
model is called homologous gap costs. Although the biological truth of how insertions

and deletions appear is not known, this model is generally considered to be too simplistic,

11



as it assumes the same costs for each gap character. A better model would incorporate

the assumption that the event of introducing a gap is more important than the length of
it, as even short gaps can lead to frameshifts in proteins. This idea is modeled in the so
called affine gap costs, which does not only consist of costs given to each character (gap
extension costs), but gives an extra cost for each opening of a gap, the gap opening costs.
As a consequence, when compared to homologous gaps, it is less likely to open a gap but
more probable to produce longer gaps which should represent the biological assumptions
better, as the probability of a frameshift drops. In endgap free alignments, gaps at the end
and the beginning of an alignment are not penalized to avoid stretching of sequences of
different lengths. In Probcons (Do et al., 2005), a biphasic gap cost scheme is proposed,
scoring short and long gaps differently. Short gaps are more probable of being inserted
but have higher extension costs compared to large gaps which have a low probability of

being inserted.

Independent of scoring matrix and gap cost schema most aligners, use a dynamic pro-
gramming approach to maximize the objective function. Needleman and Wunsch (1970)
were the first to adopt this approach from computer science to the pairwise alignment
problem and proposed an algorithm that is able to produce the alignment in O(n?) time
and space using homologous gap costs. In dynamic programming, intermediate results
are calculated once and then stored, so that they can be reused in later steps. In the case
of alignment computation these intermediate results are alignments of prefixes which are
reused to compute the next elongation. This kind of approach guarantees the discovery
of the optimal solution given an objective function with context independent matching
scores. Although methods became more sophisticated over time, the basic idea is still the
same and is used in most alignment programs in one way or another. The importance of
its development can also be seen in the many extensions and variations which have been
developed for this algorithm. With slight changes in the algorithm it is possible to produce
local alignments (Smith and Waterman, 1981) or alignments in linear space (Myers and
Miller, 1988). A version which is able to incorporate affine gapcosts and keeping time
and space requirements quadratic was developed by Gotoh (Gotoh, 1982). Even when in-
cluding secondary structure predictions while computing alignments the basic algorithm
is very similar to the original one (Sankoff, 1985). However, due to the incorporation of

a non-independent scoring schema the running time strongly increases.

Recently probabilistic techniques have been implemented that rely on pair-Hidden Markov

12



Models (HMMs) and take advantage of a better defined statistical framework (Durbin
et al., 1998). While DP and HMM based approaches are mostly interchangeable, the

latter ones make it easier to explore the parameter space using off-the-shelves statistical
tools such as Baum-Welch and Viterbi training. HMM modeling also offers easy access
to a wider range of scoring possibilities, thanks to posterior decoding, thus making it
possible to assess complex alignment scoring schemes. For instance, a significant share
of the improvements measured in the ProbCons (Do et al., 2005) algorithm over other
consistency based packages seems to result from the use of a bi-phasic penalty scheme
(Table 1.1), predefined as a finite state automata (FSA) and parameterized by applying the
Baum-Welsch algorithm on BALiBASE.

Sequence identity is only a crude substitute to biological homology, and in practice, it
has often been argued that structurally correct alignments are those more likely to be
useful for further biological modeling. Similarity based alignment methods have therefore
been carefully tuned in order to produce structurally correct alignments. This tuning
(or validation) has relied on the systematic usage of structure based reference multiple
sequence alignments. This procedure has now been in use for more than a decade and has
been a major shaping force on this entire field of research. We will now review the most

common validation procedures with their associated databases.

1.4 Accuracy Estimation using reference alignments

The first systematic validation of a multiple sequence alignment using reference align-
ments was carried out by McClure (1994). McClure was evaluating her alignments by
assessing the correct alignment of predefined functional motifs. Shortly after, Notredame
and Higgins made the first attempt to systematically use structure based alignments while
evaluating the biological accuracy of the SAGA package (Notredame and Higgins, 1996).
The validation was carried out on a relatively small dataset named 3d-ali (Pascarella et al.,
1996). A few years later Thompson developed a purpose built dataset named BALiBASE I
(Thompson et al., 1999). The main specificity of BALiBASE was to address a wide range
of different issues related to multiple sequence alignments. This included the alignment
of distantly related homologues, the ability of alternative methods to deal with long inser-
tions/deletions and their ability to properly integrate outliers. Its main weakness was the

questionable accuracy of some alignments and the relatively small size (82) of the dataset.
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Most of these issues have been addressed in the latest version of BALIiBASE (BALiBASE

3) (Thompson et al., 2005) and this database is now one of the most widely used reference

standard. Nonetheless, BALIBASE remains a handmade dataset, with potential arbitrary
and uneven biases resulting from human intervention. The main alternative to BALiBASE
is Prefab (Edgar, 2004b), a very extensive collection of over a 1000 pairs of homologous
structures, each embedded in a collection of about 50 homologues (25 for each structure)
gathered by PSI-BLAST. In Prefab, the reference alignment is defined as the portions of
alignments consistently aligned by two structural aligners: CE (Shindyalov and Bourne,
1998) and DALI (Holm and Sander, 1995). Prefab, however, is not a multiple sequence
alignment collection since each dataset only contains a pair of structures thus making it a
less stringent than BALiBASE where accuracy can be tested on entire multiple alignment
columns rather than pairs of residues. Other commonly used databases for protein mul-
tiple sequence alignments include HOMSTRAD (Stebbings and Mizuguchi, 2004) and
SABmark (Van Walle et al., 2005). One may ask why so many resources for addressing
an apparently simple question. The answer probably lies in the complexity of structural
alignments. While reasonably accurate structure based alignments are easy enough to
generate, owing to the strength of the structural signal, it is nonetheless very hard to
objectively assess the relative merits of alternative structure based alignments (Kolodny
et al., 2005). Several alternative references are therefore available and no simple way
exists to objectively evaluate their relative merits. In practice, the authors have taken
the habit of running their methods on two or three datasets, verifying trend agreement.
Recently Blackshield and Higgins(2006) produced an extensive benchmarking, compar-
ing the 10 main MSA methods using 6 available datasets. The main trend uncovered by
this analysis is that all the empirical reference datasets tend to yield similar results, quite
significantly distinct from those measured on artificial datasets such as IRMbase (Subra-
manian et al., 2005), a collection of artificially generated alignments with local similarity.
We checked by re-analyzing some of the Blackshield and Higgins benchmark data (Ta-
ble 1.2). The methodology is very straightforward: each reference dataset is divided in
subcategories, and altogether the 6 datasets make a total of 77 subcategories (68 for the
empirical datasets, 9 for the artificial). Given two MSA methods A and B, we counted
how many times the ranking suggested by one subcategory is in agreement with the rank-
ing suggested by another subcategories (Agreement in Table 1.2). We then compared all
the subcategories of a dataset against all the subcategories of the other datasets and re-

ported the average figure in Table 1.2. We also computed the average agreement within
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every dataset by measuring the agreement across different categories within a dataset. The

results on Table 1.2 suggest that the 5 main empirical datasets are on average 72.4% con-
sistent with one another. It means that any prediction of accuracy made on the basis of a
single reference dataset is likely to be supported by 72.4% of similar measurements made
on the 5 other empirical reference datasets. A striking observation is the lower agreement
between the artificial dataset (IRMdb) and the empirical ones. Observations made on IR-
Mdb are on average only supported by 58.1% of the observations made on the empirical
datasets. Two factors could explain this discrepancy: the local nature of IRMdb, mostly
designed for assessing local alignment capacities, or its artificial nature. The fact that
empirical datasets biased toward local similarity (BALiBASE RV50, long indels, 76.8%
agreement) do not show a similar trend suggest that the discrepancy between IRMdb and
the empirical datasets owes much to its simulated component. Furthermore, at least three
other studies reported similar findings, with results established on artificial datasets con-
flicting with empirical ones (Lassmann and Sonnhammer, 2002, 2005b; Loytynoja and
Goldman, 2008).

While there is no clear consensus on this matter, we would argue here that the discrepancy
between artificial and empirical datasets pleads in favor on not using the artificial ones.
The use of artificial dataset should probably be restricted to situations where the process
responsible for the sequence generation is well known and properly modeled, as happens
in sequence assembly for instance. It is interesting to note that some sub-categories of
BALIBASE are extremely informative albeit relatively small. RV11 for instance is 77.4%
consistent with the entire collection of empirical dataset which makes it one of the most
compact and informative dataset. This is not so surprising if one considers the nature of
RV11, made of 38 highly divergent sequences (less than 25% id in the reference align-
ment). So far, this dataset has proven fairly resistant to heavy tuning and over-fitting and
it is a striking observation that ProbCons, the only package explicitly trained on BAL-
1BASE is not the most accurate (as shown on Table 1.1). Table 1.1 shows a systematic
benchmarking of most methods discussed here on the RV11 dataset. Results are in broad
agreement with those reported in most benchmarking studies published over these last
10 years, but the challenging nature of the dataset makes it easier to reveal significant

difference in accuracy that are otherwise blurred by other less challenging datasets.

BALIBASE has had a strong influence on the field, prompting the design of novel ref-

erence datasets for sequences other than proteins. Similar to BALIBASE a reference

16



Table 1.2: Comparison of alternative reference datasets (adapted from Blackshield and Higgins). Black-
shield and Higgins published the average accuracy of 10 MSA packages (Mafft, Muscle, POA,
Dialign-T, Dialign2, PCMA ,align_m, T-Coffee, Clustalw, ProbCons) on 6 reference databases.
This table shows a new analysis of the original data. Dataset indicates the considered dataset.
In this column, RV11 and RV50 are two BALiBASE categories, Empirical Dataset refers to the
5 empirical datasets (BALiBASE3, SabMark, Oxbench and Prefab). All datasets includes IR-
Mdb as well. #Categories indicates the number of sub-categories contained in the considered
datasets. Agreement: average agreement between all the considered categories of a given dataset
and all the categories of the other databases. The agreement is defined as the number of times
two given databases subcategories agree on the relative accuracy of two methods. The Empiri-
cal dataset average is obtained by considering all possible pairs of methods across all possible
pairs of categories within the empirical datasets (i.e. all datasets except IRMdb). Self-agreement:
same measure but restricted to a single database (i.e. each category in turn against all the other
categories of the considered database).

Dataset #Categories Agreement (%) Self-agreement
BaliBase 11 71.4 82.9
RV11 1 77.4 83.3
RV50 1 76.8 80.6
SabMark 4 69.8 81.3
Oxbench 10 65.0 70.8
Prefab 5 64.6 72.3
Homstrad 4 66.8 76.9
IRMdb 9 58.1 88.1
Empirical datasets 68 72.4 —
All datasets 77 66.1 —

dataset exists to validate ncRNA alignment methods, called BRAliBase (Wilm et al.,
2006). BRAIliBase works along the same lines as BALIiBASE and relies on a compar-
ison between an RNA alignment and its structure based counterpart. There is, nonethe-
less, a clear difference between these two reference datasets: in BRAliBase the reference
structures are only predicted, and the final evaluation combines a comparison with the
reference and an estimation of the predictive capacity of the new alignment. As such,
BRAIliBase is at the same time more sophisticated than BALiBASE (because it evalu-
ates the prediction capacity of the alignment) and less powerful because it is not based
on a sequence-independent method (unlike BALiBASE that uses structural comparison).
This limitation results from the relative lack of RNA 3D structures in databases. Current
benchmarking strategies have some short comings and cannot address all the situations
relevant to MSA evaluation. These methods have nonetheless been used to validate all

the currently available multiple sequence alignment packages and can certainly be cred-
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ited (or blamed...) for having refocused the entire methodological development toward

the production of structurally correct alignments. Well standardized reference datasets
have also gradually pushed the MSA field toward becoming a fairly codified discipline,
where all contenders try to improve over each other’s methods by developing increasingly
sophisticated algorithms, all tested in the same arena. Given the increased accuracies re-
ported these last years, one may either consider the case closed, or suspect that time has

come to change arena.

1.5 Common frameworks for MSA computation

An interesting consequence of the systematic use of benchmarking methods has been the
gradual phase-off of most packages not based on the progressive algorithm (Hogeweg
and Hesper, 1984). With the exception of POA (Lee et al., 2002), most of the methods
commonly used nowadays are built around the progressive alignment. This popular MSA
assembly algorithm is a straightforward agglomerative procedure. Sequences are first
compared two by two in order to fill up a distance matrix, containing the percent iden-
tity. A clustering algorithm (UPGMA or NJ) is then applied onto this distance matrix to
generate a rooted binary tree (guide tree). The agglomerative algorithm follows the tree
topology thus defined and works its way from the leaf to the root, aligning two by two each
sequence pair (or profile) associated with each encountered node. The procedure can be
applied using any algorithm able to align two sequences or two alignments. In most pack-
ages, this algorithm is the Needleman and Wunsch (1970) or more recently the Viterbi
algorithm (Durbin et al., 1998). As simple as it may seem, the progressive alignment strat-
egy affords many possible adjustments, the most notable ones being the tree computing
algorithm, the sequence weighting method and the gap weighting scheme. In recent work
(Wheeler and Kececioglu, 2007), the authors have shown that that a proper tuning of these
various components can take a standard method up to the level of the most accurate ones.
ClustalW (Thompson et al., 1994) is often considered to be the archetype of progressive
alignments. It is a bit paradoxical since its implementation of the progressive alignment
significantly differs from the canonical one, in that it delays the incorporation of the most
distantly related sequences until the second and unique iteration. This delaying procedure
was incorporated in ClustalW in order to address the main drawback of the progressive

alignment strategy: the greediness. When progressing from the leaves toward the root, a
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progressive aligner ignores most of the information contained in the dataset, especially at

the early stage. Whenever mistakes are made on these initial alignments, they cannot be
corrected and tend to propagate in the entire alignment, thus affecting the entire process.
With a large number of sequences, the propagation and the resulting degradation can have
extreme effects. This is a well known problem, usually addressed via an iterative strategy.
In an iterative scheme, groups of sequences are realigned a certain number of time, using
either random splits or splits suggested by the guide tree. The most sophisticated iterative
strategies (incorporated in Muscle and PRRP (Gotoh, 1996)), involve two nested itera-
tive loops, an inner one in which the alignment is optimized with the respect to a guide
tree, and an outer one in which the current MSA is used to re-estimate the guide tree.
The procedure keeps going until both the alignment and the guide tree converge. It was
recently shown that these iterations almost always improve the MSA accuracy (Wallace

et al., 2005b), especially when they are deeply embedded within the assembly algorithm.

1.5.1 Consistency based MSA Methods

The greediness of progressive aligners limits their accuracy, and even when using sophis-
ticated iteration schemes, it can be very hard to correct mistakes committed early in the
alignment process. In theory, these mistakes could easily be avoided if all the information
contained in the sequences was simultaneously used. Unfortunately this goal is computa-
tionally unrealistic, a limitation that has prompted the development of consistency based
methods. In their vast majority, algorithms based on consistency are also greedy heuris-
tics (with the exception of the Maximum Weight Trace problem (MWT) formulation of
Kececioglu (Kececioglu, 1993), but even so, they have been designed to incorporate a
larger fraction of the available information at a reasonable computational cost. The use
of consistency for improved alignment accuracy was originally described Gotoh (1990)
and later refined by Vingron and Argos (1991). Kececioglu provided an exact solution to
this problem, reformulated as a maximum weigh trace problem. This exact approach is
limited to small datasets but was further expanded by Morgenstern who proposed the first
heuristic to solve this problem for large instances, thanks to the concept of overlapping
weights (Morgenstern et al., 1996). While the notions developed in these four approaches
are not totally identical, they have in common the idea of evaluating pairwise alignments
through the comparison of a third sequences (i.e. considering an intermediate sequence).

In practice, Gotoh did not use consistency to construct alignments, but rather to evaluate
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them, and only considering three sequences. The consistency described by Vingron is

very strict because it results from dot-matrices multiplications, therefore requiring strict
triplet consistency in order to deliver an alignment. The overlapping weights described
by Morgenstern also involve considering the support given by an intermediate sequence
to a pairwise alignment, but in this context, the goal is to help guiding the incorporation
of pairwise segments into the final MSA. While the overlapping weights bear a strong
resemblance to the most commonly used definition of consistency, it is important to point
out that Morgenstern also uses the term consistency but gives it a different meaning to
describe the compatibility of a pair of matched segments within the rest of a partly de-
fined multiple sequence alignments. The first combination of a consistency based scoring
scheme with the progressive alignment algorithm was later developed in the T-Coffee
package (Notredame et al., 2000). The main feature of a consistency based algorithm is
its scoring scheme, largely inspired by the Dialign overlapping weights. Regular scor-
ing schemes are based on a substitution matrix, used to reward identities and penalize
mismatches. In a consistency based algorithm, the reward for aligning two residues is
estimated from a collection of pairwise residue alignments named the library. Given the
library, any pair of residues receives an alignment score equal to the number of time these
two residues have been found aligned, either directly or indirectly through a third residue
(Figure 1.3). The indirect alignments are estimated by combining every possible pair of
pairwise alignments (i.e. XY + YZ = X-Y-Z). Each observation can be weighted with
a score reflecting the expected accuracy of the alignment on which the observation was
made. In the original T-Coffee, the residue pairs contained in the library were generated
using a global (ClustalW) and a local (Lalign) method applied on each pair of sequences.
At the time, the T-Coffee protocol resulted in a significant improvement over all alter-
native methods. This protocol was later brought into a probabilistic framework with the
package ProbCons. In ProbCons, the sequences are compared using a pair HMM with a
bi-phasic gap penalty (i.e. a gap extension penalty higher for short gaps than long gaps).
A posterior HMM decoding of this HMM is then used to identify the high scoring pairs
that are incorporated in the library, using their posterior probability as a weight. The li-
brary is then used to score the alignment with the T-Coffee triplet extension. Because it
uses a library generated with a probabilistic method, this protocols is often referred to
as probabilistic consistency” and has been incorporated in several packages, including
SPEM (Zhou and Zhou, 2005), MUMMALS and PROMMAL (Pei and Grishin, 2006,
2007) as well as the latest versions of T-Coffee (version 6.00 and higher). Interestingly,
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COMPILATION

(Template Based)
Pair-Wise
Comparison

Extended Library Primary Library
XY 7 XY 2
ML 1 EXTENSION ML 1
XZ 8 XY= XY + Min (XZ,ZY) XZ 6
NL 1 XE-XZ +Min (XY.Y2) NL 1
VA 4 i zY 5

Figure 1.3: Generic overview for the derivation of a consistency based scoring scheme. The sequences are
originally compared two by two using any suitable methods. The second box shows the pro-
jection of pairwise comparisons. These projections may equally come from multiple sequence
alignments, pairwise comparison, or any method able to generate such projections, including
posterior decoding of an HMM. They may also come from a template based comparison such
as the one described in Figure 1.4. Pairs thus identified are incorporated in the primary li-
brary. These pairs are then associated with weights used during the extension. The figure shows
the T-Coffee extension protocol. When using probabilistic consistency, the probabilities are
treated as weights and triplet extension is made by multiplying the weights rather than taking
the minimum.

the improvement is usually considered to be a consequence of the probabilistic frame-
work when in fact it seems to result mostly from the use of a more appropriate gap penalty
scheme at the pairwise level. For instance, Table 1.1 shows the effect of applying a regular
gap penalty scheme (monophasic) when compared to the bi-phasic gap penalty scheme
that ProbCons uses by default. This improvement has also been observed when incorpo-
rating the bi-phasic scheme in T-Coffee. Consistency based methods are typically 40%
accurate when considering the column score measured on the RV11 dataset. This makes
consistency based aligners about 10 points more accurate than regular iterative progres-
sive aligners like ClustalW, Kalign, Muscle or Mafft. This increased accuracy comes at a
cost and consistency based methods require on average N times more CPU time (N being

the number of sequences) than a regular progressive aligner.
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Aside from improved accuracy, an important aspect of consistency based scheme is the

conceptual separation it defines between the computation of the original alignments,
merged into a library, and the final transformation of this library into a multiple sequence
alignment. This procedure made it straightforward to combine seemingly heterogeneous
algorithms, such as ClustalW and Lalign in the original T-Coffee package, but it also
opened the way towards a more generic combination of aligners. For instance, the latest
versions of T-Coffee (Version 6.00 and newer) is able to combine up to 15 different align-
ment methods, including pairwise structural aligners, regular multiple sequence alignment
methods, and even RNA alignment methods such as Consan (Dowell and Eddy, 2006).
From the start, the T-Coffee framework made it possible to turn any pairwise method into
a multiple alignment method, thus opening the way to two major developments under-
gone by multiple aligners these last years: meta alignment methods and template based

alignments.

1.5.2 Meta-methods as an alternative to regular MSA methods

The wealth of available methods and the lack of a globally accepted solution make it
harder than ever for biologists to choose a specific method. This dilemma is real and
has recently received some renewed attention with a high impact report establishing the
tight dependency of phylogenetic modeling on the chosen aligner. According to Wong
and collaborators, phylogenetic trees may significantly vary depending on the methods
used to compute the underlying alignment (Wong et al., 2008). In a similar way, several
editions of the CASP (Battey et al., 2007) contest have revealed that a proper multiple
alignment is an essential component of any successful structural modeling approach. A
commonly advocated strategy is to use the method performing best on average, as es-
timated by benchmarking against structure based reference datasets. It is a reasonable
martingale, like betting on the horse with the best odds. One wins on average, but not
always... Unsurprisingly, benchmarks also make it clear that no method outperforms all
the others, and that it is almost impossible to predict with enough certainty which method
will outperform all the others on a specific dataset. It is quite clear that the chosen method
is irrelevant on datasets made of sufficiently similar sequences (more than 50% pairwise
identity). Yet, whenever remote homologues need to be considered, the accuracy drops
and one would like to run all the available methods before selecting the best resulting

alignment. This can be achieved when enough structural data is available (by selecting
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T-COFFEE, Version_7.38(Thu Nov 20 17:26:38 WEST 2008)
Cedric Notredame
CPU TIME:0 sec.

Figure 1.4: Typical colored output of M-Coffee. This output was obtained on the RV11033 BaliBase
dataset, made of 11 distantly related bacterial NADH dehydrogenases. The alignment was ob-
tained by combining Muscle, T-Coffee, Kalign and Mafft with M-Coffee. Correctly aligned
residues (correctly aligned with 50% of their column, as judged from the reference) are in upper
case, non-correct ones are in lower case. In this colored output, each residue has a color that
indicates the agreement of the four initial MSAs with respect to the alignment of that specific
residue. Dark red indicates residues aligned in a similar fashion among all the individual MSAs,
blue indicates a very low agreement. Dark yellow, orange and red residues can be considered to
be reliably aligned.

the alignment supporting the best structural superposition), or when functional informa-
tion is at hand (by evaluating the alignment of similar features, such as catalytic residues).
Unfortunately, experimental data is rarely available in sufficient amount, and when using
several packages, one is usually left with a collection of alignments whose respective
value is hard to assess in absolute terms. Chapter 2 presents a new method able to do
this. Another method to address this issue are meta-methods. So far, M-Coffee (Wallace
et al., 2006) has been the only package explicitly engineered to be used as a meta-method,
although in theory all consistency based packages could follow suit. Given a multiple se-
quence dataset, M-Coffee computes alternative MSAs using any selected method. Each of
the alignments thus produced is then turned into a primary library and merged to the main

T-Coftee library. The resulting library is used to compute an MSA consistent with the
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original alignments. This final MSA may be considered as some sort of average of all the

considered alignments. When combining 8 of the most accurate and distinct MSA pack-
ages, M-Coffee produces alignments that are on average better than any of the individual
methods. The improvement is not very high (1-2 point percent) but relatively consistent
since the meta-method outperforms the best individual method (ProbCons) on about 2/3
of the 2000 considered datasets (HOMSTRAD, Prefab and BALiBASE)(Wallace et al.,
2006). On a dataset like RV11, the improvement is much less marked (M-Coffee de-
livered alignments having an average accuracy of 37.5%) and one needs to restrict the
combination to the 4 best non template based methods in order to obtain alignments with
accuracy comparable to the best methods (Table 1.1). Yet, as desirable as it may be, the
improved accuracy is not the main goal of M-Coffee and one may argue that rather than
its accuracy, M-Coffee’s main advantage is its ability to provide an estimate of local con-
sistency between the final alignment and the combined MSAs. This measure (the CORE
index (Notredame and Abergel, 2003)) not only estimates the agreement among the var-
ious methods (Figure 1.3) in a graphical way but it also gives precious indication on the
local structural correctness (Notredame and Abergel, 2003; Lassmann and Sonnhammer,
2005a) and can therefore be considered as a good predictor of alignment accuracy. Pre-
vious benchmarking made on the original CORE measure suggest that a position with a
consistency score of 50% or higher (i.e. 50% of the methods agreeing on a position) is
90% likely to be correct from a structural point of view. These results are consistent with
those reported by Lassman and Sonnhammer (2005a) who recently re-implemented this
measure while basing it on libraries made of alternative multiple sequence alignments.
Even though these predictions are only restricted to a subset of the alignment, they can
be an invaluable asset whenever a modeling process is very sensitive to alignment accu-
racy. For instance, the CORE index is used by the CASPER server to guide molecular
replacement (Claude et al., 2004). From a computational point of view, meta-methods
are relatively efficient. Provided fast methods are used to generate the original alignment,
the meta-alignment procedure of M-Coffee can use a sparse dynamic programming pro-
cedure that takes advantage of the strong agreement between the considered alignments.
A recent re-implementation of M-Coffee in the SeqAn (Doring et al., 2008) alignment
library shows that the multiple alignment step of M-Coffee is about twice faster than
standard consistency based aligners based on pairwise alignments like ProbCons or Pro-
mals (Rausch et al., 2008). Yet, all things considered, meta-methods only offer a marginal

improvement over single methods, and they even suggest that the current state of the art
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aligners are reaching a limit that may hard to break without some novel development in

the field of sequence alignment. While waiting for a method able to accurately align two
remote homologues in an ab-initio fashion (i.e. without using any other information than
the sequences themselves), the best alternative is to use extra information, evolutionary,
structural or functional. Template based MSA methods have been design to precisely

address this aspect of data integration.

1.5.3 Template based MSA methods

The word template based alignment was originally coined by Taylor (1986) with refer-
ence to sequence/structure alignments. The notion was later extended within the T-Coffee
package in a series of publications dedicated to protein and RNA alignments (Armougom
et al., 2006b; Notredame and Higgins, 1996; O’Sullivan et al., 2004; Wilm et al., 2008).
Template base alignment refers to the notion of enriching a sequence with the informa-
tion contained in a template (Figure 1.5). The template can either be a 3D-structure,
a profile, or a prediction of any kind. Once the template is precisely mapped onto the
sequence, its information content can be used to guide the sequence alignment in a se-
quence independent fashion. Depending on the nature of the template one refers to its
usage as structural extension or homology extension (sequence profile). Structural exten-
sion is the most straightforward protocol. It takes advantage of the increasing number of
sequences with an experimentally characterized homologue in the PDB database. Given
two sequences with a homologue in PDB, one can accurately superpose the PDB struc-
tures (Templates) and map the resulting alignment onto the original sequences. Provided
the sequence/template alignment is unambiguous, this protocol yields an alignment of
the original sequences having all the properties of a structure based sequence alignment.
This approach only defines pair-wise alignments, but the alignment thus compiled can be
integrated into a T-Coffee library and turned into a consistency based multiple sequence
alignment (Figure 1.3 and 1.5). Structural extension was initially implemented in 3D-
Coffee (O’Sullivan et al., 2004). EXPRESSO, a special mode of 3D-Coffee was then
designed so that templates could be automatically selected via a BLAST against the PDB
database. This protocol has recently been reimplemented in the PROMAL-3D (Pei et al.,
2008) package. Structural extension is not limited to proteins, and recently several ap-
proaches have been described using RNA secondary structures as templates, these include
T-Lara (Bauer et al., 2005), MARNA (Siebert and Backofen, 2005) and R-Coffee (Wilm
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et al., 2008). In all these packages, sequences are associated with a predicted structural

template (RNA secondary structure). The templates are then used by add-hoc algorithms
to accurately align the sequences while taking into account the predicted structures (tem-
plates). The resulting pairwise alignments are combined into a regular T-Coffee library
and fed to T-Coffee. Chapter 3 describes a new method SARA-Coffee which is able to
produce structural informed RNA alignments. Homology extension works along the same
principle as structural extension but uses profiles rather than structures. In practice, each
sequence is replaced with a profile containing homologues. The profiles could be built us-
ing any available techniques although fast methods like PSI-BLAST have been favored.
The first homology extension protocol was described by Heringa and implemented in
the PRALINE package (Simossis and Heringa, 2005). PROMALS was described shortly
afterwards (Pei and Grishin, 2007). PROMALS is a consistency based aligner, using li-
braries generated with the ProbCons pair-HMM posterior decoding strategy. PROMALS
also uses secondary structure predictions in order to increase the alignment accuracy,
although this extra information seems to only have a limited effect on the alignment ac-
curacy. In Praline and PROMALS sequences are associated with a PSI-BLAST profile.
A similar mode is also available in T-Coffee (Version 6.00+, mode=psicoffee) based on
BLAST profiles (Table 1.1). The use of structural and homology extended templates
results in increased accuracy in all cases. For instance, the combination of RNAplfold
(Bernhart, et al., 2006) predicted secondary structures made R-Coffee more accurate at
aligning RNA sequences than any of the alternative regular aligners, with a 4 point net im-
provement as estimated on BRAliBase (Wilm et al., 2008). The improvements resulting
from homology extension on proteins are even more significant. On Prefab, the authors
of PROMALS reported 9 points of improvement over the next best method (ProbCons).
A similar usage of PROMALS or PSI-Coffee on category RV11 (distant homologues) of
BALIBASE resulted in more than 10 points of improvement over the next best regular non
template based aligner (Table 1.1). Of course, the most accurate alignments are obtained
when using structural extension. In a recent work, Grishin and collaborators reported
an extensive validation using a combination of structure and homology extension (Pei,
2008). Their results suggest that template based alignments achieve the best results when
using structural extension. They also indicate that the choice of the structural aligner
can make a difference, with DALI-Lite possibly more accurate than SAP. Given the same
structural extension protocol, the authors report similar results between 3D-Coffee and

PROMALS-3D, suggesting that the structural aligner is the most important component of
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Figure 1.5: Overview of template-based protocols. Templates are identified and mapped onto the target
sequences. The figure shows three possible types of templates: homology extension, structure
and functional annotation. The templates are then compared with a suitable method (profile
aligner, structural aligner, etc.) and the resulting alignment (or comparison) is mapped onto
the final alignment of the original target sequences. The residue pairs thus identified are then
incorporated in the primary library.

the protocol. The improvement is very significant, and on Prefab for instance, the com-
bined use of DaliLite with homology extension resulted in nearly 30 points improvement
over alternative non template based protocols. Results in Table 1.1 confirm these claims
and suggest that the use of structural extension is the best way to obtain highly accurate
alignments. This very high accuracy, obtained when using structural information is, how-
ever, to be interpreted with some caution. On the one hand, these high figures suggest a
broad agreement between PROMALS-3D or 3D-Coffee alignments with the references.
On the other hand, one should not forget that these methods use 3D information. As such,
they are not any different from the methods used to derive the reference benchmarks them-
selves. It therefore means that PROAMLS-3D or 3D-Coffee/Expresso alignments may be
seen as new reference datasets, generated with a different structural alignment protocol.
Whether these are more or less accurate than the benchmarks themselves is open to in-

terpretations, as it amounts to comparing alternative multiple structure based sequence
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alignments.

1.5.4 New issues with the validation of template based methods

As reported by Kolodny et al. (2005), the task of comparing alternative structure based
alignments is complex. In order to address it, authors have recently started using align-
ment free evaluation methods. These methods consider the target alignment as a list of
structurally equivalent residues and estimate how good would be the resulting structural
superposition. These measures are either based on the RMSD (Root Mean Squared Devi-
ation: average squared distance between homologous alpha carbons) or the dRMSD (dis-
tance RMSD: average square difference of distances between equivalent pairs of amino
acids) like the DALI score (Holm and Sander, 1995), APDB (O’Sullivan et al., 2003)
or the iRMSD (Armougom et al., 2006a). So far, three extensive studies (Armougom
et al., 2006a; O’Sullivan et al., 2003; Pei et al., 2008) have suggested that the results
obtained with these alignment-free benchmarking methods are in broad agreement with
those reported when using regular benchmarks. The main drawback of these alignment
free evaluation methods is their reliance on distance measures strongly correlated with the
methodology used by some structural aligners (Dali in particular) thus raising the question
whether they might be biased toward this particular structural aligner. A simpler and not
yet widely used alternative would be to evaluate the modeling potential of the alignments,
by measuring the accuracy of structural predictions based upon it. This could probably

achieved by recycling some components of the CASP evaluation pipelines.

1.5.5 Alignment of very large datasets

Accuracy has been a traditional limitation of multiple sequence alignments for the last
20 years, and it is no surprise that this issue has been the most actively addressed, if
only because inaccurate alignments are simply useless. The other interesting develop-
ment has been the increase of the number of sequences. Traditionally, the length of the
sequences (L) was greater than the number of sequences (N), and most methods were
tuned so that they could deal with any value of L, assuming N would not be a problem.
This is especially true of consistency based methods that are cubic in complexity with N,

but only quadratic with L. With N< <L, the extra-cost incurred by consistency remains
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manageable, but things degrade rapidly when N becomes big. Yet, it is now clear that L is

bounded, at most by the average length of a genome. N, on the other hand, has no foresee-
able limit and could reflect the total number of species or the total number of individuals
(past and present) in a population or even the total number of haplotypes in a system.
Dealing with large values of N should therefore be considered a prime goal. In the con-
text of a progressive algorithm, the first easy step is to speed up the guide tree estimation,
for instance using a ktup based method, as most packages currently do (-quicktree option
in ClustalW). The second step is to use an efficient tree reconstruction algorithm. The
default UPGMA and NJ algorithms are cubic with the number of sequences, but these
algorithms can be adapted in order to become quadratic, as is the case with the current
ClustalW implementation. Even so, quadratic algorithms will not be efficient enough
when dealing with very large datasets and more efficient data compression methods (such
as those used to decrease redundancy in databases) will probably need to be used in the
close future (Blackshields et al., 2008). The next step for decreasing CPU requirements
is to use an efficient dynamic programming strategy. This is the strategy used by MAFFT
that relies on a very efficient dynamic programming. Consistency based methods have
a disadvantage because of the N-cubic requirement of consistency. Yet, the protocol is
relatively flexible and heuristics can probably be designed to estimate the original library
more efficiently. For instance, PCMA (Pei et al., 2003) starts by identifying subgroup of
sequences closely related enough to be prealigned. SeqAn (Rausch et al., 2008) takes ad-
vantage of the sparse matrix defined by the extended library and only does the minimum
required computation to guarantee optimality. SeqAn also makes an attempt to treat the
sequences as a chain of segments rather than a chain of residues thus considerably re-
ducing the CPU requirements for closely related sequences. The SeqAn library has been
designed to be linked with any of the consistency based aligners. Even so, the complexity
of most consistency based aligners remains too high to deal with the very large datasets
that are expected to come. Chapter 4 presents a solution to reduce the complexity of
the consistency approach on large datasets. Phylogeny being one of the main application
of large-scale alignments, it will also be worth evaluating the phylogenetic potential of
these large-scale methods. Doing so is far from trivial as it connects with the delicate
issue of establishing reference tree collections. More generally it addresses the problem

of predicting accurate trees from multiple sequence alignments.
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1.5.6 Phylogenetic relevance of multiple sequence alignments

The pace of accumulation of new entire bacterial genomes (and to a lesser extend eu-
karyotic genomes) can only be compared with the discovery of new species along the
XIXth century. Never have we had so much molecular data at hand to reconstruct the nat-
ural history of life, a real challenge for intelligent design supporters. Multiple sequence
alignments constitute the ideal compost on which to grow these trees, and although there
have been a few reports of alignment free tree reconstruction methods (Ferragina et al.,
2007), the difficulty of aligning distantly related sequences probably means that unless a
breakthrough happens in the field of sequence alignments and guarantees error free pair-
wise alignments, MSAs will remain the starting point for most phylogenetic analysis. An
interesting paradox of the whole MSA field is that although most methods are defined
within some sort of phylogenetic framework (progressive alignment), they are only eval-
uated for their capacity of producing structurally correct MSAs. As a consequence, we
do not really know how MSA methods fare with respect to phylogenetic reconstruction
and, assuming the current structural benchmarks reflect well enough the evolutionary re-
lation among proteins, we do not really know if this analysis can be safely extrapolated
to ncRNAs. Recent work suggest (Katoh and Toh, 2008) that the accuracy ranking of the
best packages is roughly the same when benchmarking on RNA sequences (BRAliBase)
or protein sequences, but little is known about the accurate reconstruction of RNA based
phylogenetic tree. This is a paradoxical situation when considering that most trees of
life are derived from a multiple sequence alignment of ribosomal RNA sequences. Two
high impact publications have made an attempt to raise the attention of the community
on the issue of phylogenetic reconstruction (Loytynoja and Goldman, 2008; Wong et al.,
2008). The work by Wong shows that phylogenetic reconstruction can be very sensitive
to the MSA method used to deliver the alignment. The authors stopped short of propos-
ing a way for selecting the best phylogenetic trees, but they make it clear that various
methods can lead to different models, a new concept in a field where MSAs had always
been considered to be data rather than models. It is a context where meta-methods could
certainly provide an element of answer, mostly by helping selecting the sites on the basis
of their expected accuracy, using the CORE index or any related method. In this context
the main advantage of the CORE index is to provide a filter independent from sequence
conservation, as opposed to other accuracy predictors. An MSA region can have a low
level of conservation but a high CORE index, provided all the pairwise alignments are

in agreement with respect to the considered position. Regions where conservation is low
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and consistency high may be considered prime targets for phylogenetic reconstruction.
The PRANK+F (Loytynoja and Goldman, 2008) algorithm was described shortly after-

ward and also addresses the issue of accurate phylogenetic reconstruction seen from an

MSA perspective. PRANK+F is a novel attempt to model the gap insertion required by
the alignment process in a phylogenetically meaningful way. This new approach opens
up the possibility of incorporating the indel signal in the reconstruction of evolutionary
scenarios, but it also raises an equally important question: given that alternative align-
ers lead to different trees, and given that the signal contained in the alignments can be
used in many different ways, how are we going to evaluate the phylogenetic potential
of multiple sequence alignment methods? Building reference datasets is a very difficult
task in phylogeny where an objective, independent source of information for establishing
the correct history of a set of sequences is usually lacking. Fossil records provide little
help when it comes to selecting true orthologous sequences. Given a sequence dataset,
it is therefore very hard, and maybe impossible to establish a correct reference tree. So
far, the validation of tree reconstruction methods has therefore focused on the method’s
ability to optimize a mathematical model (Guindon and Gascuel, 2003). Even when this
optimization is highly successful, the only guarantee is the mathematical correctness of
the final tree with no clear guarantee on its biological relevance, except that provided by
expert diagnostic of the tree (i.e. the observation that related species are grouped by the
tree in a biologically meaningful way). This situation is very similar to that encountered
with MSA computation where one has on the one hand the mathematical correctness of a
method, estimated by its capacity to optimize a given objective function (sums-of-pairs,
viterbi, etc...) and on the other hand, the biological accuracy, estimated by comparison
with a reference alignment. In the context of MSA analysis, the use of structure made it
clear that there could be a significant discrepancy between mathematical correctness and
biological accuracy. Unfortunately, the equivalent of structural information is not avail-
able in phylogeny, and most current strategies, including Prank+F are validated on simu-
lated data. The simplest approaches simulate both the data and the trees using generators
like ROSE (Stoye et al., 1997). As pointed out earlier, the results obtained on simulated
data differ significantly from those measured on empirical data, and for instance, PRANK
outperforms all alternative packages on phylogenetic simulated data, but performs poorly
when it comes to reconstructing structural alignments. Assuming the relevance of results
established on the simulated data, this suggests there could major differences between

phylogenetically accurate alignments and structurally accurate ones, an hypothesis that
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remains to be further tested and confirmed.

1.6 Genome alignments

Alignments of genomes allow the discovery of conserved regions like enhancers and sim-
ilar motifs which are often located outside of genetic regions, and can also detect large
genome rearrangements. Now that the number of newly sequenced genomes increases
rapidly, there is a high demand of the community for accurate genome alignments. For
several reasons, computing genome alignments is much more challenging than the com-
putation of short sequence alignments of proteins, RNA, promoter or genes. Obviously,
the first difficulty encountered is the size of genomic sequences which can reach sev-
eral hundreds of millions base pairs (Mbp). For example the human genome consists of
around 3,137 Mbp in its version GRCh37.p7. Currently, bacteria, with several hundred
new sequences each year, are the domain for which the number of new genomes is grow-
ing the fastest (Karsch-Mizrachi et al., 2012). Of course compared to eukaryotic genomes
their genome size is much smaller but can as well reach the size of more than 10Mbp (eg.
Sorangium cellulosum (Schneiker et al., 2007)). Thus applying algorithms developed for
much shorter sequences (not more than a few kb) is generally unfeasible due to time and
memory requirements. As a consequence heuristics have been proposed to reduce the
search space and with it the time and memory needed. After these more technical con-
siderations, the second and arguably more difficult problem is biological. Beside point
mutations, insertions and deletions, which can all be handled by MSAs, genomes gather
during the course of evolution a much larger variety of changes and rearrangements on
a scale which can involve whole chromosomes. These rearrangements range from the
shifting of sequence parts to a new position up to the fusion and fission of chromosomes.
Figure 1.6 shows several of these rearrangements which are not possible to be solved with
MSA programs because they generally assume co-linearity of the sequences. Although
the figure shows the rearrangement of genes they can affect any kind of sequence segment
of any length. Even otherwise very similar genomes can have large-scale rearrangements.
For example the human and chimpanzee genomes are very similar (The Chimpanzee Se-
quencing Analysis Consortium, 2005), but the human genome has one chromosome less
because two ancestor chromosomes fused in the human lineage into a single one and sev-

eral inversions have been found (Yunis et al., 1980; The Chimpanzee Sequencing Analy-
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Figure 1.6: Different genome rearrangements. Black lines denote chromosomes and arrows genes.

sis Consortium, 2005). Normal linear aligners would completely misalign these segments,
resulting in a much higher difference between the genomes than supported by reality. The
number of rearrangements increases with the evolutionary distance between the genomes;
hence, it is a critical point that a genome aligner has to solve. Further problems include
the low information content of the DNA alphabet, and the larger divergence of genomes
in non-coding regions, which makes it harder to identify corresponding nucleotides. Fur-
thermore, approaches associated to MSAs like the usage of structural information or se-
quence profiles cannot be applied to genome alignments as DNA has no fine grained three
dimensional structures as have proteins. Profiles might be of help but would heavily in-
crease the computational time and at the current state not enough organisms have been
fully sequenced.

A common method to address the problem of aligning large sequences is the anchor strat-
egy. The first step is to find sequence segments, the anchor points, which are consid-
ered to be homologous and are aligned with each other. Then the sequences between
the anchor points are aligned using normal dynamic programming. AVID (Bray et al.,
2003), LAGAN (Brudno et al., 2003a), M-GCAT (Treangen and Messeguer, 2006) and
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Pecan (Paten et al., 2009) are examples for alignment programs using this approach. Spe-

cial care has to be taken when choosing the anchor points as they dramatically reduce the
search space by determining which sequence parts can be aligned with each other. Thus
the accuracy of an alignment can be strongly reduced if the anchor points are badly cho-
sen and do not reflect segments which would be aligned in full dynamic programming.
Hence, maximal extended matches (MEMs) and maximal unique matches (MUMs) are
widely used approaches. Maximal unique matches appear only once in the sequences
and thus can be regarded as secure anchor points if they are of sufficient length. MUMs
and MEMs are found efficiently with suffix arrays or suffix trees as done for example in
MUMmer (Kurtz et al., 2004). In order to find good anchor points Cgaln (Nakato and
Gotoh, 2010) splits the genomes into equally sized blocks and uses k-mer frequencies
between blocks to find similar segments. Often the first round of anchor detection is
not sufficient to decrease the space for standard dynamic programming. To solve this,
the anchor detection step is recursively repeated with less restrictive parameters in large
inter-anchor region. GLASS (Batzoglou et al., 2000) and many other aligners use this
recursive step to increase anchor point detection. This very general anchor strategy has
been refined in different ways. The GS-Aligner (Shih and Li, 2003) encodes the DNA se-
quence into a row of two bits and uses lookup tables to efficiently calculate anchor points.
Pecan defines a small frame around the anchor points in which standard dynamic pro-
gramming is applied. Furthermore it uses a consistency approach to improve alignment
accuracy. BlastZ (Schwartz et al., 2003) uses a slightly different approach. Instead of
performing dynamic programming between anchor points it uses an approach similar to
Gapped BLAST (Altschul et al., 1997) end extends the found anchor points until a score
drop of a certain value is reached.

The first approaches to solve rearrangements were based on the usage of a reference se-
quence. When aligning two genomes, one of them is used as a reference (or target)
sequence and the other is split into pieces which can be aligned linearly to the refer-
ence. Shuffle-LAGAN (Brudno et al., 2003b) for example uses local alignments to find
homologous segments. These local alignments are chained together according to their oc-
currence in the reference and merged into larger blocks when having the same direction.
These blocks are then aligned with the reference sequence using the LAGAN algorithm
(Brudno et al., 2003a). The usage of a reference alignment is especially disadvantageous
when aligning more than two genomes, because sequence segments are only aligned when

appearing in the reference, thus common insertions are missed. Furthermore, duplications

34



are not treated or are only treated in one of the sequences. The Shuffle-Lagan approach
was later extended by the VISTA pipeline (Dubchak et al., 2009) which is able to align

multiple genomes without a reference alignment. The chains of local blocks were not

only computed according to one sequence but to both, and the segments were chosen
according to an out-group. TBA (Blanchette et al., 2004) was one of the first methods
to think of a genome alignment as a collection of blocks each representing homologous
segments rather than a single linear alignment. An advantage of such a description is the
possibility to sort the blocks according to any of the included sequences depending on the
need. However, TBA was only able to contain a limited amount of blocks, no inversions
or duplications were treated. Mercator (Dewey, 2007) and Enredo (Paten et al., 2008)
were the first programs to consequently think of a genome alignment to be a collection
of blocks without any use of a reference sequence. Both programs use a similar strat-
egy to split the sequences into homologous blocks. Mercator uses gene annotations and
the BLAST program to find corresponding proteins between the genomes. The principle
is to merge several proteins into a single block when they appear consecutively in the
same direction. As only orthologous protein exons are considered, duplications and rear-
rangements within non-protein regions are not treated in the Mercator algorithm. Another
disadvantage is that due to the usage of BLAST it does not take non-coding RNA regions
into account. These problems have been addressed in the Enredo program, which uses
the more general concept of genome point anchor (GPA) instead of restricting itself to
exons. These GPAs can be any kind of similar segments between two or more sequences
and can be produced, for example, by local alignment programs. Similar to the Mercator
approach a graph is build using a set of non-overlapping GPAs whose nodes are merged
as long as colinearity is given. The resulting blocks of Mercator or Enredo can then be
aligned using any kind of normal MSA program. A schematic overview of this process
can be seen in Figure 1.7. Other algorithms use the A-Bruijn graph (Zhang and Water-
man, 2003; Raphael et al., 2004) to model the different rearrangements. More recently
the cactus graph (Paten et al., 2011) has been proposed to take the place of the A-Bruijn
graphs. These graph methods have in common that nodes represent conserved regions
between two or more genomes whereas the edges represent sequences from one to the
next block. These graphs can contain loops to allow the representation of duplications

inside the sequences.

Even with the many available genome aligners it is still a difficult process to calculate

a genome alignment due to necessary preparations of the sequences (e.g. repeat filter-
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Figure 1.7: Shematic overview of the two steps usually executed to produce multiple genome alignment.

ing) and the often high computational resource demands. Because of this several genome
alignments of the most commonly used species are made available by projects like En-
sembl (Flicek et al., 2012) or the UCSC Genome Browser (Kuhn et al., 2012).

1.6.1 Genome alignment evaluation

For the asessment of protein alignments several gold standard benchmarks exist and are
regularly used for the evaluation of new programs, but not a single benchmark exists
for genome aligners turning the evaluation of an aligner into a complicated undertaking.
Due to this situation many different metrics have been developed for the task of evaluating
genome alignments each with different advantages and disadvantages. A common method
is to evaluate the overall alignment based on the quality of the alignment of exons as done
in LAGAN and the VISTA pipeline (Brudno et al., 2003a; Dubchak et al., 2009). In
this approach one determines orthologous exons and measures how accurately they are

aligned. This method only examines coding regions which is a big drawback because
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they are known to be easier to align than non-coding regions due to a higher conservation

rate. A similar approach using ancestral repeats instead of exons has been used to validate
the Enredo-Pecan pipeline (Paten et al., 2008). The percentage of complete and partial
alignments of ancestral repeats is calculated to estimate the accuracy of the alignment.
Finally, Bray et al. measured the coverage of coding regions and UTRs in their alignments
(2003).

The measurements described so far are confined to very specific segments of sequences
but other metrics exists taking the whole alignment into account. One of these methods is
the accuracy estimation using simulated data sets. Different programs (e.g. Rose (Stoye
et al., 1998), evolver (Edgar et al.)) have been developed to model the evolutionary pro-
cess. Using a simulateddatasethas the advantage that all the information needed to mea-
sure the accuracy of an alignment is known. As the programs evolve the sequences, they
keep track of the changes introduced and thus are able to output not only the generated
sequences but additionally the correct alignment as well. After aligning the sequences
with an alignment program the resulting alignments can then be simply compared to the
reference alignment produced by the simulator software. This approach has been used
to validate several algorithms (Blanchette et al., 2004; Darling et al., 2004, 2010; Paten
etal., 2011). A problem of this approach is that the real process of evolution is unknown,
thus the model that is used might not reflect the reality. An additional problem arises
if the same or a similar model is used in the alignment program which used to align
the sequences as this introduces circularity to the benchmark and the result might only
reflect the similarity of the models used and not the accuracy of the alignment. This ef-
fect has been already shown on proteins (Blackshields et al., 2006). Several programs
have been developed to measure the accuracy of an alignment without knowing the ac-
tual true alignment. Examples for these programs are PSAR (Kim and Ma, 2011) and
StatSigma-W (Prakash and Tompa, 2007; Chen and Tompa, 2010). For a given alignment
PSAR removes iteratively each sequence from it, realigns it to the remaining aligned
genomes using an HMM and then measures the agreement between the two alignments.
A score is thus computed for each column representing the probability that they are cor-
rectly aligned. This approach is related to the alignment uncertainty issue explained in
the next section. StatSigma-w uses a different approach. It tries to identify a branch of
a given phylogenetic tree which separates the alignment into two subsets which might
be misaligned. For this purpose it uses a so-called discordance score, which has high

similarity to a p-value, a measure of the significance of a statistical observation.
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Figure 1.8: The left side shows the dynamic programming path of an alignment of two sequences. Most
aligners choose arbitrarily which of the two paths to follow. The two possible alignments
are shown on the right side. The substring TG switches position depending on which path
is followed.

1.7 Alignment uncertainty

As Wong et al. (2008) stated, a multiple alignment is not a true observation (i.e. data),
but the result of applying a specific model to a givendatasetresulting in an alignment in
dependence of the used model. Several times it has been shown that this can have a
large influence on downstream analysis. In the above-mentioned paper the authors study
the influence of the aligner on the reconstructed phylogeny. Another study (Markova-
Raina and Petrov, 2011) shows the influence of alignments on the detection of positive
selection. While it is obvious that different aligners produce different alignments, it is
less recognized, but not less important, that the same aligner may calculate a different
alignment on the same set of sequences. The reason is that most alignment programs are
sensitive to the direction of the sequence, so that reversing the order of characters in all
sequences would give a different alignment (Landan and Graur, 2007). A similar effect
can also be observed when changing the order of sequences in the input file. Figure 1.8
shows the explanation for this behavior. In the alignment process points exist in which
one can align characters to one position or another with equal score. Usually the choice
is taken arbitrarily, always in the same direction. Thus when changing from aligning
sequence A with sequence B to aligning B with A the tie is broken differently. Most of the
alignment programs suffer from this kind of problems. An exception is the FSA (Bradley
et al., 2009) program which bypasses the issue by aligning nucleotides in the order of
their probability to be aligned. As pairs of nucleotides are added, their consistency with

the set of already chosen pairs needs to be checked, resulting in high running times.
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Several approaches have been suggested to measure the stability of an alignment. The

T-Coftfee package (Notredame et al., 2000) uses the core index, a score reflecting the
agreement of an alignment position with the different pairwise alignments. The heads
and tails method (Landan and Graur, 2007) compares alignments constructed with the
original set (heads) and constructed with the sequences in the reverse order (tails) using
the column and sum of pairs score as described by Thompson et al. (1999). The GUID-
ANCE score (Penn et al., 2010) calculates the robustness of an alignment by comparing
alignments computed with different guide trees which are used in progressive multiple
sequence alignment methods. It is generally possible to apply the methods to multiple
genome alignments as well but problems arise when e.g. a different guide tree leads to a
different splitting of the genomes making a comparison of the resulting alignments dif-
ficult. Often post-processing steps are undertaken to eliminate unreliable columns from
the alignment as they might cause artifacts in downstream analyses. TrimAl (Capella-
Gutiérrez et al., 2009) for example has been developed to identify and remove columns
from an alignment according to different gap criteria allowing automated post-processing
in large-scale approaches. A similar trimming approach is proposed in Chapter 4 for
large data sets, which allows to identify sequences responsible for introducing uncertainty

around gaps.
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2 MSA evaluation using structural information: STRIKE

Kemena C, Taly JF, Kleinjung J, NotredameC, "STRIKE: evaluation of protein MSAs
using a single 3D structure.”, Bioinformatics, vol. 27, no. 24, pp. 3385-3391, 2011.
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3 RNA structural alignment: Sara-Coffee

Title: Using tertiary structure for the computation of highly accurate multiple RNA
alignments with the SARA-Coffee package

Authors: Carsten Kemena+, Giovanni Bussotti+, Emidio Capriotti, Marc A. Marti-Renom,

Cedric Notredame (+ These two authors contributed equally to this work)
Status: (submitted)

Contribution: CK has been doing the NiRMSD evaluation as well as the implementation
in the framework of T-Coffee. GB has been doing the benchmark preparation and the 3SP

evaluation.

3.1 Abstract

Motivation: Aligning RNAs is useful to search for homologous genes, study evolutionary
relationships, detect conserved regions and identify any patterns that may be of biological
relevance. Comparing RNA sequences is, however, difficult owing to the poor level of

conservation among homologues, even when considering evolutionary related sequences.

Results: We describe SARA-Coffee a tertiary structure based multiple RNA aligner and
validate it using BRAIIDARTS, a new benchmark framework designed for evaluating ter-
tiary structure based multiple RNA aligners. We provide two methods to measure the
capacity of alignments to match corresponding secondary and tertiary structure features.
On this benchmark, SARA-Coffee outperforms both regular aligners and those using sec-
ondary structure information. Furthermore we show that on sequences in which less than
60% of the nucleotides form base pairs, primary sequence methods usually perform better

than secondary structure aware aligners.
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Availability and implementation: The package and the datasets are available from:

http://www.tcoffee.org and http://structure.biofold.org/sara/.

3.2 Introduction

Recent reports of a large number of previously unknown RNA coding genes (Guttman
et al., 2009) have prompted a renewed interest in the field of non-coding RNA (ncRNAs)
analysis. This shows well in the growing number of scientific reports uncovering a rapidly
expanding range of new functions and it now appears that non-coding RNAs are involved
in most essential parts of the cell machinery, including X inactivation (Xists (Brown et al.,
1992)), genome integrity maintenance (piRNA (Farazi et al., 2008)), transcript knock-
down and cell differentiation (miRNA (Lee et al., 1993)) as well as nuclear trafficking
(NRON (Willingham et al., 2005)), among others. From a functional standpoint, the
main consequence of high throughput sequencing has certainly been the discovery of
long ncRNA (IncRNA), simultaneously identified as un-reported non-coding ENCODE
transcripts (Orom et al., 2010) and as conserved genomic regions with active promoter
chromatin signatures (Guttman et al., 2009). The exact function of this new class remains
a matter of debate though mounting bodies of evidence suggest their involvement in gene
regulation, either through trans (Rinn et al., 2007) or cis-acting (Orom et al., 2010) mech-
anisms. Other reports are also suggesting the potential usage of IncRNAs as biomarkers
(Romanuik et al., 2009). In human only, the latest ENCODE catalogue lists more than
10,000 IncRNA genes, and probably more have to come as a wider range of tissues get
deep sequenced. Such a pace of discovery makes the elucidation of IncRNA a promising

future milestone in biological research.

Making sense of so much information will depend on our ability to build homology-based
models (Capriotti and Marti-Renom, 2008a). Alignment methods rely on the notion that
key features are usually preserved by evolution through purifying selection. Multiple
comparison models can therefore reveal functional elements that would otherwise be diffi-
cult to identify on a single sequence. This is especially true for structured RNA molecules
where compensated mutations are frequent signatures for evolutionarily maintained stem
loops. This strategy has been extensively used for the successful elucidation of riboso-
mal RNA secondary structures (Gutell and Fox, 1988). Unfortunately, producing align-

ments accurate enough to be used for secondary structure prediction can be a challenging

50



task, especially when dealing with distantly related sequences. Two main obstacles ex-

ist that prevent the computation of informative homology based models. First of all,
RNA sequences use a four-letter alphabet, with no higher order meta-alphabet (like pro-
tein’s amino acid code) that would help powering statistical analysis. As a consequence,
structure similarity becomes hard to infer when sequences have less than 60% identity
(Abraham et al., 2008; Capriotti and Marti-Renom, 2010). Secondly, RNA sequence
evolution is mostly constrained by the maintenance of secondary structure elements sta-
bilized through a combination of canonical and non-canonical base-pairings. Under such
constraints, it has been shown that sequences can evolve rapidly while exploring so-called
neutral networks (Huynen et al., 1996). The combination of a small alphabet with rapid
evolution makes it difficult to use standard alignment tools like BLAST-based approaches
(Altschul et al., 1990). To address these limitations, one can tap into the evolutionary
signal contained in di-nucleotides that results from the co-evolution of adjacent bases.
This approach has been recently shown to be effective enough for the improvement of
database search accuracy (Bussotti et al., 2011). Unfortunately, the signal thus uncov-
ered is very modest and unlikely to result in significantly improved alignments. A more
convincing solution involves the simultaneous estimation of sequence and structural con-
servation using Sankoff’s algorithm (Sankoff, 1985). As effective as it may be in theory,
this approach is hampered by prohibitive memory and CPU requirements, a limitation that
has prompted the development of a large number of faster approximate heuristics for the
inclusion of secondary structure information when aligning RNA. Some of the most pop-
ular tools include R-Coffee (Wilm et al., 2008), LocARNA (Will et al., 2007) and Consan
(Dowell and Eddy, 2006). Consan combines expectation maximization with a sophisti-
cated banded dynamic programming strategy, which results in a heuristic approximation
of Sankoff’s algorithm. The Consan algorithm that only aligns two sequences at a time,
can easily be combined with a consistency based multiple sequence aligner like T-Coffee
(Notredame et al., 2000) or R-Coffee (Wilm et al., 2008) in order to assemble MSAs.

Consistency based aligners (Do et al., 2005; Notredame et al., 2000; Roshan and Livesay,
2006; Wilm et al., 2008) rely on the compilation of an exhaustive library of all-against-all
pairwise alignments. This library is extended in order to derive a position specific scoring
scheme, used to compute a standard progressive alignment. The main strength of multi-
ple aligners like T-Coffee is to allow any third party pairwise aligner to be used for the
library generation. This property was previously used to generate structure based protein

alignments (O’Sullivan et al., 2004) by combining structural pairwise aligners like SAP
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(Taylor and Orengo, 1989). We show here how this approach, originally developed for

proteins, can easily be extended to RNA sequence alignments provided suitable pairwise
tools are used to build the pairwise library. Structure-based RNA alignment algorithms
include SARA (Capriotti and Marti-Renom, 2008b, 2009), DIAL (Ferre et al., 2007),
ARTS (Dror et al., 2005), LaJolla (Bauer et al., 2009), R3D Align (Rahrig et al., 2010)
and SARSA (Chang et al., 2008). These tools all belongs to a recently described class
of aligners that make use of experimentally derived three-dimensional structures. In this
study, we chose SARA but in practice, any of the above mentioned tools could be used

either as a replacement or in combination with SARA.

To derive a structure based alignment, SARA calculates a series of unit vectors between
consecutive C3” atoms and aligns them using dynamic programming, to maximize the set
of superimposed atoms within a root mean square deviation. As a stand-alone pairwise
structural aligner, SARA is directly usable within the T-Coffee framework. In this work,
we describe and benchmark a combination of these two packages named SARA-Coffee

and able to generate multiple structure based RNA alignments.

The main motivation of this work is not only to describe a procedure for structure based
RNA multiple structural alignments but also to assess the relative benefits of using ex-
perimental RNA tertiary and secondary structure, and to determine to which extend these
expensive approaches can benefit modeling projects. Bypassing experimental 3D struc-
tures is very important, since determining RNA structures are much harder to determine
than proteins (hence the much lower number of RNA structures in the PDB). We there-
fore took the opportunity of a pure structure based validation in order to estimate whether
experimental structure is effectively improving modeling accuracy, either at the 2D or
the 3D level. This question is especially relevant in a context where it will soon be rela-
tively easy to use next-generation sequencing in order to do massive secondary structure

estimation at minimal cost (Kertesz et al., 2010; Wan et al., 2012).

For this purpose we built a new benchmarking framework containing enough tertiary
structure data. This framework is named BRAIIDARTS. Its main characteristic is to be in-
dependent from any reference multiple sequence alignment and therefore totally unbiased
towards one method or another. BRAIIDARTS only contains sequences with a known 3D-
structure and is used to evaluate MSAs for their capacity to match homologous structural
features. MSAs are evaluated using the NIRMSD (Armougom et al., 2006a), a method
designed to estimate MSAs structural accuracy (see Methods). BRAIIDARTS is not the
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only benchmark framework for RNA MSA analysis and other approaches have been de-
scribed like BraliBase (Gardner et al., 2005) or Rfam (Griffiths-Jones et al., 2005). Both

benchmarks explicitly rely on reference alignments and are therefore potentially biased

towards specific aligning strategies. It is the lack of such potential bias, together with
full reliance on 3D information that sets BRAIIDARTS aside from other benchmarking

frameworks.

3.3 Methods

3.3.1 Benchmarking Dataset

Our benchmark is a collection of 41 dataset each made of several unaligned homologous
structures. These datasets were compiled from the DARTS database (Abraham et al.,
2008). DARTS stores 1,333 RNA structures that can be clustered in 94 structurally ho-
mogenous subgroups using ARTS (Dror et al., 2005). Not all DARTS sequences are
suitable for the approach described here and some filtering was needed in order to define
a usable subset. The initial dataset was filtered by: (i) removing all sequences tagged
as fragments by DARTS, (ii) converting all non-canonical residue symbols into an N;
(ii1) updating outdated PDB structures with their newer versions; (iv) removing RNA-
DNA hybrids and structures including heteroatoms; (v) removing structures containing
less than 9 nucleotides; (vi) removing clusters in which X3DNA (Lu and Olson, 2003)
failed to extracting at least one secondary structure; (v) removing structures with discrep-
ancies between the ATOM and the SEQRES PDB fields; and (vi) removing clusters with
less than 3 sequences. The final dataset resulted in a total of 41 distinct sequence sets
containing a total of 486 structures (see Suplementary Materials). We named this dataset
collection BRAIIDARTS, by reference to BRAliBase (Gardner et al., 2005), a popular
reference dataset used for RNA aligners benchmarks. BRAIIDARTS can be downloaded
from http://www.tcoffee.org/Projects/saracoffee. Note that all the results presented here
are based on readouts obtained on 31 datasets, since 10 BRAIIDARTS datasets had to be
discarded for being either invariant across all considered methods or for inducing out of
range readouts when using the iRMSD (cf. Result section). We furthermore extracted a
high quality subset (BRAIIDARTS-HQ) from the initial dataset which contains only X-
ray structures with resolution lower than 2.85 A. Besides that we discarded all the RNAs
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Figure 3.1: Schema of the 3SP score computation. Base pairs are colored in orange when they match on
both side, green indicates partial matches.

with low secondary structure density (BP-index < 0.48) representing inter-molecular in-

teractions. This resulted in a set of 10 clusters with a total of 79 sequences.

3.3.2 Benchmark

In BRAIIDARTS, reference datasets do not come along with reference alignments, and are
merely defined as sets of homologous sequences each with an associated 3D structure. Itis
important to stress that the benchmark strategy described here relies on all the considered
sequences having an experimentally known 3D structure. We used two MSA method
independent metrics. The first one is adapted from the NiRMSD citepArmougom2006,
a measure originally defined to evaluate protein MSAs by comparing the variation in
intra-molecular distances (as inferred from the evaluated MSA itself and the 3D structure
of the considered sequences). The NiRMSD can be described as a normalized form of
the distance RMSD. In this work, the original package was adapted in order to evaluate
intra-molecular distances using the RNA ribose C3’ instead of the peptidic alpha carbons.
The principle of a distance RMSD is to compare variations of distances between pairs
of aligned residues. Its main advantage over a standard RMSD is its non-reliance on a
structural superposition. Equivalent residues are declared by the alignments and intra-
molecular distances are directly estimated within the non superposed 3D structures. The
second metric is named Secondary Structure Sum of Pairs (3SP). 3SP is a simple measure
estimating the number base pairs where each side of the pair is aligned with equally

contacting residues. We used the m3 implementation of this measure originally described
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Figure 3.2: Example of 3 alignments showing the agreement across known secondary structure. From left
to right: T-Coffee, R-Coffee, SARA-Coffee. Maximal agreement across all pairs is indicated in
orange, minimal agreement is in dark green. Blue nucleotides are not involved in the secondary
structure.

in (Notredame et al., 1997) and formalized as follows:

> P
3P = — 2 (3.1
>_ min(pi, p;)
17.7

where P, ; is the number of residue pairs found to be in agreement when considering the
pairwise alignment of sequences 1 and j. Figure 3.1 shows a schematic overview of this
metrics. When using a newick-like representation of RNA secondary structures, the 3SP
metrics amounts to estimating the number of matching parenthesis aligned with equally
matching parenthesis and normalize this value by its theoretical maximum. Figure 3.2

shows an example of three colored alignments using this metric.

3.3.3 Sara-Coffee

Our new method is called SARA-Coffee and is based on R-Coffee. R-Coffee is a consis-
tency aligner for RNA. It can be described as a modified version of T-Coffee able to incor-
porate predicted (RNAPIfold (Bernhart et al., 2006)) secondary structure . One advantage
of consistency aligners is their ability to re-construct a multiple sequence alignment out
of any collection of pairwise sequence alignments. SARA-Coffee has two important im-
provements over R-Coffee. First of all, SARA-Coffee uses SARA, a pairwise RNA 3D
structure alignment method to assemble its library. Secondly, it does the sequence align-
ment using true (rather than predicted) secondary structures, as estimated by applying
3DNA onto the PDB files. To determine the influence of 2D/3D structure information
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we also designed two additional T-Coffee: R-CoffeeReal and BestPairs. R-CoffeeReal is

the default R-Coffee ran using experimental secondary structures. BestPair is a mixture
of SARA-Coffee and R-Coffee that runs SARA on a single pair of sequences (the most
closely related) and ignores true structural information for all the other pairs of sequences.

3.3.4 Alignment Comparison

We compared SARA-Coffee to both generic and structure aware aligners. Generic align-
ers include: ClustalW 1.82 (Larkin et al., 2007), MAFFT (default) 6.624b (Katoh et al.,
2005) Probalign 1.4 (Roshan and Livesay, 2006), ProbconsRNA 1.1 (Do et al., 2005) and
T-Coffee 8.28 (Notredame et al., 2000). Structure aware aligners use structural informa-
tion while assembling an MSA. Structural information can either be predicted from single
sequences LocARNA 1.6.2 (Will et al., 2007), MAFFT-qinisi 6.864b, MXSCARNA 2.1
(Tabei et al., 2008) and R-Coffee 8.28 (Wilm et al., 2008), or using compensated muta-
tions as in Consan-Coffee 8.28 (Dowell and Eddy, 2006).

3.4 Implementation/Distribution

SARA-Coffee is part of the standard T-Coffee distribution, an open-source freeware avail-
able from http://www.tcoffee.org. It requires the SARA program as a plugin, which is
available from http://structure.biofold.org/sara/. The benchmark dataset including the

evaluation procedure is available from http://www.tcoffee.org/Projects/saracoffee.

3.5 Results

Our main goal is to estimate the effectiveness of structural information incorporation
when assembling RNA multiple sequence alignments. We were especially interested in
quantifying the usefulness of three-dimensional information and its relative merits in com-
parison with inferred secondary structures. To address this problem we focused a large
part of this work on the design of BRAIIDARTS, a structure based benchmark system.
Aside from its full reliance on 3D information, BRAIIDARTS’ main strength is its total
independence from any reference MSA. This independence makes it possible to avoid any
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Figure 3.3: Correlation between the NiRMSD and the 3SP measure. Each point represents one of the 13
MSA methods tested here. SARA-Coffee is shown in red.

bias towards specific alignment methods. Having assembled BRAIIDARTS, we tested five
generic aligners, five secondary structure aware aligners and the three new methods de-
scribed here on the 41 datasets of BRAIIDARTS. We then calculated 3SP and NiRMSD,
the two metrics developed for BRAIIDARTS. The 3SP estimates the fraction of base pairs
aligned with a potentially homologous pair. This metrics merely requires knowing the
secondary structure of the considered sequences. The NiRMSD is used to estimate the
variation of intra-molecular distances across homologous pairs of residue pairs (as de-
fined by the MSA one evaluates). It relies on the notion that in a correct alignment, the
distance between two residues in a structure should be as similar as possible to the dis-
tance between homologous residues in another structure. The NiRMSD is independent

from any structural superposition, a key property to avoid any circularity when bench-
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marking methods like SARA that depends on a 3D superposition. After evaluating the
3SP and the NiRMSD on the full BRAIIDARTS benchmark (Supplementary Table 3.1),

we decided to remove several datasets on the basis of their readouts. We first excluded 6

datasets for which the NiRMSD values were on average higher than 10 A across the 13
aligners. Such high values suggest either a combination of non-homologous structures, or
some lower level problem in the PDB files. We also excluded 4 more datasets for which
all 3SP or NiRMSD readouts were completely identical across the 13 aligners. This left
us with a total of 31 datasets on which we based all subsequent analysis. Since our aim
was to quantify the importance of structural information when assembling an RNA MSA,
we first estimated the fraction of residues involved in a base pair in each dataset. This
measure, referred to as base pair index (BP-index) in the rest of the text, varies signif-
icantly across datasets and ranges from 6% to 90% with a median close to 73%. We
split the BRAIIDARTS accordingly in two subsets, one containing datasets made of low-
density secondary structures (14 datasets, BP-index <73%) and a second one containing
high-density structures (17 datasets, BP-index >73%) (Supplementary Table 3.1). We
then averaged readouts for each alignment method in both the high and the low-density
bin (Table 3.1). On the low-density dataset, we found the 3SP readouts to behave roughly
according to expectations, with primary methods delivering results about 10 percent point
lower than their secondary counterparts (0.48 vs 0.59). Tertiary methods like SARA-
Coffee were among the best. These observations are in stark disagreements with similar
readouts measured using the NiRMSD where we found the primary methods to outper-
form the secondary (6.16 A vs 6.80 A, with the lowest values being the best ones). By
contrast, SARA-Coffee delivers the best performance, with the lowest NiRMSD mea-
sured across all methods. This result suggests that secondary structure information does
not help building an MSA as they are not a dominant feature in the considered sequences.
In this context, the lack of any strong correlation between the 3SP and the NiRMSD (Fig-
ure 3.3(a)) suggests that secondary structure accuracy (3SP) is a poor proxy for the overall

MSA accuracy when dealing with low-density structures.

Our measures on the other subset of BRAIIDARTS, the one with highly connected struc-
tures gave very different results. On this dataset, the 3SP and the NIRMSD measures
are strongly correlated (-0.74, Figure 3.3(b)). The differences between primary and sec-
ondary or tertiary methods are also much more pronounced. We found more than 20 point
percent improvement on 3SP between the primary methods and SARA-Coffee and more
than 1 A on the NiRMSD. On that same metrics, 5 out of 6 secondary methods outper-
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Table 3.1: The table lists for each method the results of the benchmark as well as the CPU time needed
to align all datasets of BRAIIDARTS. The best readout in each column is indicated with a bold
case.

Structural Method low structured  high structured Time (s)
Information 3SP  NiRMSD 3SP NiRMSD
ClustalW 0.43 5.84 0.55 5.36 2
T-Coftee 0.51 6.35 0.69 5.08 37
Primary Mafft . 0.51 543 0.68 5.03 4
Probalign 0.45 6.24 0.61 5.19 12
ProbconsRNA  0.52 7.00 0.71 5.25 14
Average 0.48 6.16 0.64 5.18 -
Mafft-qinsi 0.54 7.50 0.78 4.97 20
LocARNA 0.66 6.10 0.81 4.81 601
MXSCARNA 0.61 7.14 0.83 5.16 15
Secondary R-Coffee 0.56 6.81 0.80 4.86 229
R-CoffeeReal 0.61 6.45 0.84 4.77 511
Consan-Coffee 0.57 6.52 0.79 491 1168135
Average 0.59 6.80 0.81 4.91 -
Tert./Sec.  BestPair 0.61 6.67 0.82 4.61 551
Tertiary SARA-Coffee 0.61 5.20 0.87 4.11 19324

form all the primary methods. This result suggests that on densely structured sequences,
one can improve MSA accuracy by using secondary or tertiary structural information with
the best results being achieved with 3D information. A possible confounding factor when
observing this correlation might be the effect of low-resolution structures, in which the
BP-Index could have been underestimated. In that case, the correlation might have to do
more with structural data quality than with base-pairing density. To rule out this possi-
bility we used BRALIDARTS-HQ a third reference dataset made of a small number of
carefully selected high quality structures and found the correlation to be even stronger
(-0.91, Figure 3.3(c)).

Of course, one may argue that the superiority of SARA-Coffee is merely the result from
using experimental secondary structures instead of predicted ones and not the result of
using tertiary structure information. We addressed this question with R-CoffeeReal, an
adaptation of R-Coffee, using experimental rather than predicted secondary structures.
Results (Table 3.1) show the effectiveness of this approach. On the high structural density
dataset, R-CoffeeReal manages to outperform all the other non-tertiary based methods. It

remains nonetheless significantly less accurate than SARA-Coffee. The burden of requir-
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Figure 3.4: Dependency of the NiRMSD/3SP correlation on structural density Each point corresponds to
one of the 31 datasets used for benchmark. The horizontal axis indicates the fraction of nu-
cleotides involved in a base pair in the considered dataset. The vertical axis corresponds to the
Pearson correlation coefficient between the NIRMSD and the 3SP readouts measured on the
MSAs produced using the 13 alternative methods displayed on Table 3.1

ing an experimental for each RNA sequence one wants to align dramatically limits the
scope of SARA-Coffee. We therefore asked whether using only a handful of structures
might be enough to significantly improve MSA modeling (BestPair method). BestPair
results are in par with those achieved with other methods (Table 3.1). On the high struc-
tural density subset, its 3SP score is the second best one (ignoring R-CoffeeReal) and
its NiIRMSD is better than that of any secondary structure albeit significantly less good
than that measured on SARA-Coffee. All combined together, the results measured on the
low and the high-density BRAIIDARTS subsets suggest some heterogeneity and a strong
sensitivity to datasets structural composition. When dealing with highly structured se-
quences, secondary and tertiary methods perform better, and result in highly correlated
secondary (3SP) and tertiary readouts (NiRMSD). This correlation seems to disappear
when analyzing low-density structures. We tested this hypothesis a bit further by taking
advantage of the availability of 13 alternative MSAs for each single dataset. This variety
allowed us to estimate a Pearson correlation coefficient between the 3SP and the NIRMSD
of each single dataset and plot the resulting values against the BP-index (Figure 3.4). De-

spite a rather weak correlation, the trend shows an increasing correlation above a BP-index
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Figure 3.5: Relative usefulness of structural information. Each point corresponds to one the 31 datasets
used for benchmarking.

of 60%, with most datasets above 80% BP-index having very strong correlations. This re-
sult suggests that secondary structure-based methods to be best suited for datasets having
a BP-index higher than 80%. We tested this hypothesis by measuring on each dataset, the
difference in NiRMSD readouts between primary and secondary methods (Figure 3.5(a)).
As expected, we found that below a BP-index of 60%, primary methods tend to give bet-
ter results, while above this value, secondary structure aware methods often result in an
improvement. A similar analysis carried out by comparing primary and the tertiary meth-
ods (Figure 3.5(b)) shows that SARA-Coffee yields its most significant improvements on
datasets with a BP-index above 60% but rarely degrades the MSAs below this value.

We finished our analysis by doing a pairwise comparison of all the methods considered
here and by counting, for each metrics, the number of time any method outperform any
other method (Supplementary Figure 3.1 and 3.2). Such a comparison is important as it
makes it possible to estimate the statistical support for the observed differences. We found
most differences to be statistically significant on the 3SP method, while on the NIRMSD,
SARA-Coffee is the only aligner whose behavior appears to be statistically different from
most alternatives on most datasets. These comparisons, that reflect individual dataset
readouts also support the notion of secondary structure information being more useful

when dealing with highly structured sequences.
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3.6 Conclusion-Discussion

In this work we introduce SARA-Coffee, a new tool for generating multiple RNA struc-
ture alignments and we show how the usage of tertiary information can result in signif-
icantly improved RNA alignments. We quantified these improvements using a purpose
built benchmark framework named BRAIIDARTS. BRAIIDARTS is made of 41 collec-
tions of homologous RNA sequences with known 3D structures and two evaluation met-
rics independent from any reference alignment. An important focus of our work has been
the precise quantification of structural information usefulness when assembling an RNA
MSA. By doing in parallel similar analysis on 3 categories of methods that use primary,
secondary and tertiary structure information, we have shown that aligners using secondary
structure information are rarely suitable when dealing with sequences in which less than
80% of the nucleotides are involved in a base pair. Below this figure, methods that rely
on predictions appear to induce a degradation of MSA accuracy. By contrast, tertiary
methods like SARA-Coffee, almost always manage to improve MSA models accuracy,

regardless of the fraction of structured nucleotides.

In the real world, RNA tertiary information is rather scarce and we therefore had to ask
whether alternative sources of information could be reasonable substitutes for tertiary
data. For instance, it is now possible to do large scale secondary structure prediction
using high throughput sequencing and the two leading technologies for single molecule
sequencing techniques, PacBio and Nanopore, have been announcing kits dedicated to
large scale secondary structure determination. It is therefore realistic to consider that a
wide amount of secondary structure information will soon be available. We tested the ef-
fect of using this information of a variation of the R-Coffee method named R-CoffeeReal.
Our results are encouraging. They show that when dealing with highly structured RNAs
(>73%) the use of experimental secondary structure results in MSAs significantly better
than those obtained with alternative secondary methods, even though accuracy does not
reach the level of pure tertiary structure based alignments. This result was also supported
by the high correlation (0.91) observed when measured on BRAIIDARTS-HQ.

The main limitation of our work is probably its reliance on a rather small collection of
dataset. Indeed, starting from 41 BRAIIDARTS datasets, we ended up doing the valida-
tion on 31 collections only. Furthermore, sequences making up this dataset are also rather

short (44 nucleotides on average, 213 at most). In that context, it is not entirely clear how
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the behavior of methods relying on secondary structure prediction can be extrapolated to

longer sequences, since it is well known that length tends to impact structure prediction
accuracy (Ding et al., 2008; Doshi et al., 2004). By contrast, it is quite likely that the
good performances measured on R-CoffeeReal and all methods using experimental data

will hold reasonably well.

Overall, we conclude that no ideal substitute exists for experimental data when model-
ing RNA homology. Experimentally proven secondary structures are the next best thing
after tertiary information, but they appear to merely provide models accurate enough for
secondary structure analysis. This however, should already be enough for a variety of
modeling applications, and especially when building stochastic context free grammars in

order to look for remote homologues.
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3.7 Supplementary Material

Supplementary Table 3.1: DARTS-Sub clusters. This table lists for each cluster the average percent pair-
wise identity as estimated on the Sara-Coffee alignments, the number of se-
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quences and the average sequence length.

Cluster % identity Sara-Coffee # sequences avg sequence length
1 43.43 8 27
2 78.87 11 36
3 67.73 8 47
4 66.14 4 31
5 40.56 16 21
6 42.25 6 28
7 61.52 10 31
8 57.66 71 76
9 63.23 11 29

10 30.76 16 16
11 51.56 22 22
12 39.94 4 24
13 39.27 13 23
14 61.34 12 39
15 80.81 11 213
16 61.06 6 31
17 86.36 4 23
18 44.62 10 49
19 75.85 8 26
20 83.92 10 29
21 36.52 24 16
22 31.71 3 25
23 55.80 7 47
24 50.72 5 62
25 44.40 24 15

Continued on next page ‘
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Cluster % identity Sara-Coffee # sequences avg sequence length
26 35.86 5 18
27 49.33 3 31
28 72.12 43 24
29 51.05 3 157
30 55.56 4 20
31 32.81 3 27
32 62.16 5 30
33 91.39 6 23
34 65.23 5 36
35 85.91 3 59
36 99.21 12 75
37 72.07 48 122
38 85.17 7 81
39 33.04 3 36
40 71.93 5 61
41 54.76 7 30

AVG 58.87 11.9 44.2

Supplementary Table 3.2: The 31 clusters divided into two sets depending on the amount of structure

included.

BP-index Cluster Ids

<73
>73

10, 28, 11, 21, 25, 32, 2, 26, 1, 27, 38, 16, 20, 40
17,8,37,6,15,34,7, 13,41, 3, 19, 22,5, 35,9, 14, 4
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Supplementary Figure 3.1: Number of times the upper method is winning against the horizontal method
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5 Discussion

The development of new algorithms comes along with the need establish their accuracy
as compared with existing algorithms. In the area of multiple sequence alignments,
the method of choice is the usage of community accepted reference alignments like
BALiIBASE (Thompson et al., 2005) used as benchmarks. They provide an objective cri-
terion to decide which alignment program performs best and allows the developers to
evaluate the new program against a known standard. Some important problems exist when
using such a procedure, the main one being the risk to over-fit an algorithm to a specific
benchmark or a certain kind of data (Blackshields et al., 2006; Boulesteix, 2010). Hence,
some benchmark sets like BALiBASE contain subsets addressing different problems to
prevent over-fitting to specific data properties. Another problem is the experimental de-
sign of the benchmark. Some level of automation is usually needed, that often results
in reference alignments which are not completely trustworthy. To address this issue, the
correctness of a method is only evaluated on a certain subset or subregion of the models.
For example in BALiBASE only certain columns are evaluated when using the associ-
ated scoring program. It is also sometimes unclear to which extend the reference dataset
reflects accuracy. For instance, in the Homfam benchmark (Sievers et al., 2011), each
dataset contains on average 10 reference sequences coming along with more than 10,000
homologues. Such a setup will be highly sensitive to the order in which the sequences
are being aligned and this order may be a strong confounding factor, making it hard to
determine if the variations in accuracy result from true sequence matching improvements,
or from subtle variation in the handling of the reference sequences. Moreover, reference
alignment benchmarks only determine the program which is best on average but they do
not predict which alignment program will perform best on a specific data set. Thus al-
though very useful, reference benchmarks have limits and these limits need to be kept
in mind when developing alignment tools or deciding which alignment program to use
for a specific data set. Aniba et al. (2010) proposed with AlexSys a method to address

this last problem. They try to predict, in dependence of certain sequence features, which
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alignment methods will perform best on a given dataset. They show that using AlexSys

decreases the running time with only a small decrease in the score compared to the best

performing program (ProbCons) on the used data set.

With STRIKE we tried to address the same problem specifically for protein alignments
using structural information. The goal of STRIKE is to detect the most accurate alignment
among a set of alternative alignments of the same set of sequences. Although some meth-
ods exist, e.g. the sum-of-pairs score or the NIRMSD, they are not often used in practice
as they have several drawbacks. The sum-of-pairs score performs a simple sequence sim-
ilarity evaluation, therefore the results are only accurate for highly similar sequences. By
contrast, the NIRMSD measures structural accuracy and allows distinguishing between
alignments of sequences with very low similarity. This metrics, however, requires at least
two structures and ideally one structure for each sequence, an unrealistic requirement in
most cases. The STRIKE score tries to get the best of both metrics. It uses a single struc-
ture only, therefore it can be used on a much larger set of sequences while at the same time
still being structural informative. Simultaneously, the projection of the structure over the
whole alignment permits the evaluation of a much larger fraction of the alignment com-
pared to the NiIRMSD when given less than the full set of structures. STRIKE enables
a user to evaluate his specificdataseton different alignment methods and chooses the one
with the highest accuracy to be used in further steps. This is, with the growing number of
protein structures in the PDB database, a realistic scenario. Our benchmarking shows that

STRIKE is an accurate method and we believe that it will be useful for the community.

Another project where the evaluation of alignments played an important role was the
SARA-Coffee project during which a new multiple RNA structural aligner was devel-
oped. The difficulty for the evaluation was that no benchmarking set for RNA tertiary
structure alignment exists. Instead of providing reference alignments, which would intro-
duce circularity, we decided to use objective criteria to avoid the problem of constructing
our own reference alignments. We applied two different, albeit related, metrics to mea-
sure the accuracy of an alignment. The first one measures the agreement in the secondary
structure alignment, a property widely used for accuracy estimation in RNA alignments.
The second one compares the superposition of the three dimensional structures. Although
these measurements are correlated because the secondary structure strongly influences the
tertiary structure, we showed that differences can arise especially if no dense secondary

structure exists. Additionally we demonstrated that our method performs very well on
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both metrics, unfortunately the limited number of available RNA structures (currently

less than 1000 structures are published in the PDB) limits is applicability. But as this
number is steadily growing and new methods are developed to deduce the structural con-
formation of RNAs (e.g. experiment informed prediction (Ding et al., 2012)) the usability

of Sara-Coffee will increase as well.

While for RNA relatively few sequences and even less structures are known making struc-
tural alignments a difficult undertaking, in proteins this problem is not as pronounced and
the method of structural alignment is common and several programs exist. However, the
amount of sequences is still much higher than the number of known structures rendering
this method useless for large datasets. The largest family in the Pfam database (COXT1)
for example has almost 290,000 sequences but only 34 of them have known structures.
This large datasets are in general very difficult to align and currently only very few pro-
grams exist being able to do it at all. With growing number of sequences it gets more and
more difficult to align the sequences accurately (Sievers et al., 2011) as mistakes at the
beginning propagate through the whole alignment with each following alignment step.
We tried to address this problems in two ways, the first one is to adapt the consistency
approach to be able to align large number of sequences and on the other to propose a gen-
eral method to trim the alignment according to gap occurrence. Usually columns which
contain a high number of gaps are deleted because it is known that columns with a lot
of gaps are less trustworthy. For large datasets we propose a different procedure, instead
of deleting columns with a high gap number we delete the sequences from the set which
introduce these gaps and realign the reduced set. This approach is not useful for small
datasets because the sequences are often carefully selected but for large datasets the loss

of information is minimal.

Of course not all current problems in the alignment field can be addressed by a single
thesis. Among these are the genome alignment problem and the alignment uncertainty,
which were already mentioned in the introduction. Open problems in genome alignments
include for example the splitting of the genomes, which even with recent improvements
is still a challenge especially with only partly assembled genomes consisting of a high
number of short scaffolds. Current genome alignment methods cannot incorporate these
scaffolds into blocks because they are not able to find a sufficient number of anchors in
them. Thus a large part of the sequence information is not included in the homologous
blocks.
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The problem of alignment uncertainty is a problem which cannot be solved conceptually.

As we do not know how evolution really proceeded, for alignments of divergent enough
sequences we will never know how the true alignment would look like. Thus different
models will always produce different alignments. As this cannot be really solved, other
methods need to be used. Approaches identifying those alignment parts which are more
and which are less trustworthy are a good starting point. However, most of the time
this information is not really used in the following steps. First approaches have been
undertaken to keep track of the uncertainty in the alignment process but research in this

area is still at the beginning.

All in all, computing accurate alignments is a challenge and will stay one as long as

alignments are being used.
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6 Conclusion

The following points give a summary of the presented projects:

1. The STRIKE score developed during this thesis allows to estimate the structural
accuracy of an alignment using a single experimentally derived three dimensional
structure. This method permits to use different aligners to align a set of sequences

and choose the best alignment according to the STRIKE score.

2. The structural RNA alignment project did not only include a new algorithm to cal-
culate RNA structural alignments but as well a new benchmarking system for RNA
structure alignments. The benchmark comes with two reference-independent accu-

racy measurements which will be useful for future alignment method testing.

3. KM-Coffee addressed the problem of aligning large data sets. Beside the algorithm
that produces large-scale alignments, a method is presented to clean up the initial

data set, which results in improved alignments.
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