
Comparaisons de séquences biologiques
sur architecture massivement multi-cœurs

Bioinformatics Sequence Comparisons
on Manycore Processors

THÈSE
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Introduction

In recent years, the trend of producing processors with multiple cores, such as multicore central
processing units (CPUs) and manycore graphic processing units (GPUs), has made parallel
computing more and more popular. The computing power and the parallel architecture of
today’s GPUs can be compared as those of the supercomputers of the last decade. Hundreds of
industrial and research applications have been mapped onto GPUs.

In bioinformatics, with the advances in High-Throughput Sequencing technologies (HTS),
the data to analyze grows even more rapidly than before, requiring efficient algorithms and
execution platforms. Many bioinformatics problems are related to similarities studies between
genetic sequences, and require efficient tools which can compare sequences made of hundred
millions to billions base pairs. Using common short words called seeds, then extending to full
alignments, the seed-based heuristic alignment tools have shown improved speed with relatively
high accuracy. This strategy is now one of the mainstream approaches to design applications
over large genetic databases.

? ? ?

This thesis focuses on the design of parallel data structures and algorithms that can
be efficiently mapped on the GPUs to solve the problem of approximately multiple
pattern matching. This problem can be used in the “neighborhood filtering phase” of the seed-
based heuristics tools to study the similarities in genetic data. This thesis contains 7 chapters.

• Chapter 1 gives the background knowledges related to massively parallel manycore
computing in bioinformatics. After the definition and the introduction of general features
of modern manycore processors, such as the GPUs, this chapter provides the basics of
OpenCL, which is the programming language used through the thesis. The bioinformatics
applications which have been mapped onto GPUs in the recent years are also presented.

• The main method of creating indexes for large genetic sequences is then introduced in
Chapter 2: “Given a large genetic sequence, how can we keep the occurences of each
seed so that their neighborhoods can be retrieved and compared efficiently?” We choose
the “neighborhood indexing approach”, which consists in storing the neighborhoods along
with the position of each seed occurrence in the sequence. This chapter discusses the
framework of neighborhood indexing with two main problems: the data structures
to keep the neighborhoods and the algorithms to do the approximate matching in the

9



10 Introduction

requirement of efficient implementation on GPUs. The core of this thesis is then built on
this framework:

– Chapter 3 implements the direct neighborhood matching approach which stores
the neighborhoods of each seed occurrence as a flat list. The input pattern is directly
compared with the elements of the list, either using mflBPR (our approximate pat-
tern matching bit-parallel algorithm for a set of fixed length words adapted from the
work of [Wu and Manber, 1992a]) or applying a traditional binary search (BS)
algorithm on the set of degenerated patterns.

– Chapter 4 proposes another solution in which the neighborhood list of each seed
is indexed with perfect hash functions (PH). Thanks to the BDZPH algorithm
[Botelho, 2008], a neighborhood can be retrieved and compared in constant time, at
a very small cost in storage space.

– The performance results of these three solutions (mflBPR, BS, and PH) are ana-
lyzed and discussed in chapter 5.

• The approach of neighborhood indexing is further developed into MAROSE: a proto-
type of read mapper for manycore processors, which is the content of Chapter 6.
It is a direct application of our work to build a potential high-performance tool to map
genetic sequences onto genomes.

• Finally, chapter 7 gives conclusions and proposes some perspectives for future works.



Chapter 1

Background

The background of this thesis is concerned with massively parallel manycore computing in bioin-
formatics. The Graphics Processing Units (GPUs) will be our representative of the manycore
processors and the Open Computing Language (OpenCL)1 will be our programming language.
The first section deals with the evolution of computer architecture and presents the hardware
and programming models of GPUs. The second section is a brief technical introduction of
OpenCL, and the third section introduces some applications of GPUs in bioinformatics.
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12 Chapter 1. Background

1.1 New hardware models, new programming languages

This section explains the trend of manufacturing multicore and manycore processors since the
early 2000s and the massively computing potential of the GPUs. It also introduces the technical
improvements that leads to the interest on general purpose computation on GPU (GPGPU).

1.1.1 From traditional processors to multicore and manycore processors

A Central Processing Unit (CPU), or a computer processor, plays a role of a “brain” in a
computer: it dispatches the input instructions, loads and stores the input data, executes the
instruction with the corresponding data and stores the output results. A CPU can be traditionaly
programmed within a “serial programming model”: the instructions in a program are dispatched
and executed sequentialy according to their orders.

The famous Moore’s Law states that the number of transitors on a chip doubles every
two years [Moore, 1965, Moore, 1975]. This was consistent with what was observed since 1965,
and “more than a natural observation, this is a self-fullfilling prophecy that drives the semicon-
ductor industry” [Varré et al., 2011, Chapter 1.1].

The continuous improvement of CPU computer power has always been driven by the Moore’s
Law, enabling more complex operators and better architectures (instruction pipelines, super-
scalar architectures, out-of-order executions...).

However, between the years 1965 and 2000, the higher frequencies are another important
factor that also explained the improvement of computing power, doubling every 18 – 24 months
in this period [Shalf et al., 2009]. Since the beginning of 2000s, the frequency of CPUs has
not increased anymore. Indeed, increasing the clock frequency is more and more difficult and
expensive due to heat dissipation issues [Shalf et al., 2009].

New hardware models. However, the famous Moore’s Law is still “alive” regarding the
increase of the number of transistors. How can be these transistors turned into computed
power?

• The first solution is to multiply the cores on the chip [Shalf et al., 2009, Asanovic et al., 2006,
Asanovic et al., 2009]. It has led to the developements of multicore CPUs since the last
decade. The mainstream CPU now evolves more with a multiplication of the core number
than with an improvement of the core architecture. “The industry buzzword “multicore”
captures the plans of doubling the number of “standard core” per die with every semicon-
ductor process generation, starting with the single processor.” [Shalf et al., 2009, page 43].
A good example of a current CPU is depicted on Table 1.1: the CPUs of the Intel Nehalem
microarchitecture has up to 8 cores that are full-featured processors sharing a common die
and the L3 cache.

• Another method is to “adopt the “manycore” trajectory, which employs simpler core run-
ning at modestly lower clock frequencies. Rather than progressing from 2 to 4 to 8 cores
with the multicore approach, a manycore design would start with hundreds of core and
progress geometrically to thousand of cores over time” [Shalf et al., 2009, page 43]). In
the recent years, the Graphics Processing Units (GPUs), which are today the main
representative of the manycore processors, have gained a high interest of developments,
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firstly to satisfy the needs of the game and cinema industries. Table 1.1 describes two
examples of GPU: the NVIDIA Fermi family and the AMD Evergreen family. They both
show a higher number of “cores” and “processing elements” that will be discussed later.
Although GPU programming is still a complex task, nowadays GPU applications are not
limited to the graphics processing fields.

The two solutions are today not so different: “recent trends blur the line between GPUs and
CPUs: CPUs have more and more cores, and cores in GPUs have more and more functions”
[Varré et al., 2011, Chapter 1.2].

Parallel and programming models. These devices, multicore CPU and manycore/GPU
processors, have challenged the traditional “serial programming” method and may be developed
with several strategies for parallelism:

• Inter-core parallelism is all that will be achieved between independent cores (and is some-
what analogous to what exists in a grid). This parallelism can be defined in the programs
by using explicit multithread programming or with the help of high-level frameworks such
as OpenMP. Inter-core parallelism can also happen with the automatic execution of dif-
ferents tasks simultaneously on cores of the same machine thanks to the scheduler of the
operating system. This parallelism naturally applies to both multicore CPU and many-
core/GPU processors.

• Intra-core level involves parallelism inside a core – for example through a SIMD (Simple
Instruction Multiple Data) model, which means several Processing Elements controlled by
a same instruction flow. Another example is out-of-order executions where independent
instructions can be executed simultaneously, regardless of their orders in the program.
Again, this parallelism applies to both multicore CPU and manycore/GPU processors.
However, it is fundamental for the performance of GPU/manycore processors because
they have a much higher PE/cores ratio than a mainstream CPU (Table 1.1).

To further exploit the advantages of the modern GPUs and CPUs, there is thus a need for
new programming languages that can adapt to the variety of processor architectures, dealing
with the ever increasing number of cores and the heterogeneity of the computing environments
(see Section 1.1.3).

Task and data parallelism. Generally, a program consists of one or multiple computational
tasks. When different tasks process different chunks of data in an independent way, these
tasks can run concurrently. If the computing system has enough computional resources so that
each task can map onto one independent processing elements, the concurrent tasks can run
simultaneously: this is the task parallelism.

This parallelism can be used both in a corse-grained way (inter-core parallelism), dispatching
tasks on independent cores. Moreover, if the computations are very regular and can be described
with a unique instruction flow, it is further possible to use a fine-grained intra-core parallelism,
one data chunk being be further divided to be processed simultaneously by different processing
elements (Figure 1.2): this is the data parallelism. In the case of the GPU, the large number of
available processing elements will thus mean a high computing power.
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VLIW

16x2x4-wide
SIMD

Total 512 1600a 108

Max Clock Frequence
(MHz)

1401 850 2270

In-core Memory

Shared Memory (KB) 48 or 16 32 x

L1 Cache (KB) 16 or 48 8 64

L2 Cache (KB) x x 256

Out-core Memory

L2 Cache (KB) 768 512 x

L3 Cache (MB) x x 4 - 12

Processor Memory

Speed (MHz) 1848 1200 x
Max Size (GB) 6 1 x

Type GDDR5 GDDR5 x

Table 1.1: Technical features of NVIDIA GPU, AMD Evergreen GPU and Intel Nehalem CPU.

aThe number of processing elements here is based on the official documents of the hardware vendor (see page 22
for more details)
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Figure 1.2: The Task parallelism and the Data parallelism. The program is launched as m instances, processing
n data chunk groups simultaneously. The data chunks in each group are being streamed into the program to
process sequently by all the tasks in the program. [data(i, j)]k means the data chunk j of group i after being
processed by task 0, task 1, ..., task k.

? ? ?

According to the technical definition of NVIDIA, “a GPU is a single chip processor with
integrated transform, lighting, triangle setup/clipping, and rendering engines that is capable of
processing a minimum of 10 million polygons per second”2. Initially, each type of “engines” in
GPU was responsible for one specific task such as vertex shading, pixel shading, etc. These
tasks are linked sequentially, as the output of one is the input of another, forming the “graphics
pipeline”. The main role of the GPUs is to efficiently process the huge volume of input graphics
data on its embeded graphics pipeline.

This family of processors were created to serve the graphics processing tasks, but for the
last ten years they have been also widely used with other types of computations, especially
to accelerate the scientific applications. The usage of GPUs for tasks others than graphics
processings are called the General Purpose Computation on GPU (GPGPU)3.

As the GPU is today the most available manycore processor, it is choosen to be the focus
of this thesis. The following sections further explain why the GPU has gained much interest
in the current years.

2Information and definition can be found in the website of NVIDIA, at:
http://www.nvidia.com/object/gpu.html and at http://www.nvidia.com/page/geforce256.html

3The collection of the bioinformatics applications which are implemented on GPUs is presented
and studied in Section 1.3. For the GPGPU in the other fields, the NVIDIA CUDA Zone
(http://developer.nvidia.com/category/zone/cuda-zone) and the Research category of the GPGPU website
(http://gpgpu.org/category/research) give many links to CUDA applications.
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1.1.2 Improvements in GPU architecture

The widely used graphics processing algorithms in the industry usually contain a large number of
calculating operations executed in the same instruction flow. The GPU was primarily designed
to match these requirements as the majority of the transitors in a core is used for the execution
units (Figure 1.1). Moreover, the memory bandwidth of the video memory inside the GPU
is very high4, sufficent for the huge number of data read/write accesses required by a parallel
execution of graphic operations.

However, in the GPUs of the first generation, the stages in the graphics pipeline were not
programmable and could only be configurated. It means that these stages operated fixed pro-
grams, and only the input arguments could be changed. The GPU development rapidly reached
the second generation, in which some pipeline stages can be programmed. These programmable
stages, called the shaders5, are usually classified into two groups: for vertex processing (vertex
shader) and for pixel fragment processing (pixel shader or fragment shader) [Blythe, 2006].

In the first and second generations, the cores inside the GPUs are organised as discrete
groups, relating to each type of shaders. The main advantage of this architecture is that the
cores in the same group have the specialized designs and instruction set in order to maximize
the processing capabilities. But it can also be a serious problem if there is the disbalance in the
computation requirements at each stage. The free cores in one group can not be used to execute
the shaders in other groups, causing a waste in computional resources [Owens et al., 2008].

In the years 2006 and 2007, there was a number of changes in the graphics processing field,
from both the software and hardware sides, that directed the GPUs to the next generation with
unified shader architecture. Some facts illustrate this trend:

• Starting from the Direct3D’s Shader Model 4.0 or the OpenGL’s GLSL 3.3, the different
shader types share the same instruction set ;

• Starting from the AMD Radeon HD 2000 or the NVIDIA 8000 series, the cores in the
GPUs have the same hardware design and can thus be used for any type of shaders.

With these changes, unified shaders are now more and more flexible, being capable of exe-
cuting a wide range of different codes.

1.1.3 New programming languages for GPU and manycore processors

Along with the development of hardware architectures, there was also a number of changes
in GPU and manycores programming languages. Even when GPUs were only used for graph-
ics computations, there was an evolution from the initial assembly languages to more C-like
languages and APIs (such as NVIDIA Cg, OpenGL GLslang, Microsoft HLSL, Direct3D...).
However, these languages were only popular among the experts in graphics processing with an
extensive knowledge of the librairies and the hardware features [Buck et al., 2004].

The release of Brook in 2004 as “a system for general-purpose computation on programmable
graphics hardware” [Buck et al., 2004, Abstract] can be considered as one of the first attempts to

4A comparation (from NVIDIA) between the memory bandwidth between the some GPUs and CPUs, from
2003 to 2010, can be found in [NVIDIA Corp, 2012, page 8]

5In terms of graphics processing, “shader” means “graphics functions”. For example, the definition of the
“Pixel shader” in the website of NVIDIA is that: ”A Pixel Shader is a graphics function that calculates effects on
a per-pixel basis.” (http://www.nvidia.com/object/feature pixelshader.html)
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make GPU programming easier, for both the graphics processing experts and the programmers
from the other fields. The early works to map scientific applications onto the GPUs usually used
Brook, as in [Charalambous et al., 2005] or [Horn et al., 2005].

CUDA. Two years later6, the emergency of NVIDIA’s Compute Unified Device Architecture
(CUDA) [NVIDIA Corp, a] rapidly accelerated the development of GPGPU trend and caused
an explosion of GPGPU publications in the recent years.

To implement applications on CUDA, developers can use programming languages such as
C for CUDA, HLSL, OpenCL, etc [NVIDIA Corp, 2009a]. Up to now, C for CUDA is still the
most widely used GPU programming languages with a lot of supports:

• Helpful toolkits7, including integrated development environment with debuggers and pro-
filers,

• Optimized programming libraries for common functions in high-performance computing,
such as cuFFT (Fast Fourier Transform), or cuBLAS (Basic Linear Algebra Subroutine),

• Plenty of guides and documents, hundreds of source code examples, and a wide user
community.

It should be noted that in this thesis, we simply use the terminology “CUDA” for “C for
CUDA”, for example when describing the applications in Sections 1.3 and 6.2.3.

However, C for CUDA only allows the GPGPU applications to be executed on NVIDIA
hardwares: there is a need for a more general standard that can program in a heterogenous
enviroment.

OpenCL. The Open Computing Languge (OpenCL) “is an open industry standard for pro-
gramming a heterogeneous collection of CPUs, GPUs and other discrete computing devices or-
ganized into a single platform” [Khronos Group, 2010, p.21]. Since 2008, OpenCL has the aim
of becoming an open standard for heterogenous computing, including for GPGPU.

OpenCL is now managed by the Khronos Group [Khronos Group, 2008] and is supported
by many companies and institutions. Up to the middle of 2012, there are 5 implementations of
OpenCL:

• NVIDIA: NVIDIA GPU Computing SDK, for NVIDIA GPUs [NVIDIA Corp, d]

• AMD: AMD Accelerated Parallel Processing SDK, for AMD GPUs and multi-core CPUs
[AMD Inc, ]

• Apple: As a feature of operating system from Mac OS X v10.6, Snow Leopard [Apple Inc, ]

• IBM: OpenCL Development Kit, for PowerPC CPU [IBM, ]

• Intel: Intel OpenCL SDK, for multi-core CPU [Intel Corp, a]

The details of OpenCL will be presented in the next section.

6NVIDIA announced CUDA in November 2006, released the first beta CUDA SDK in the first quater of 2007
7http://developer.nvidia.com/cuda/cuda-toolkit
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Other languages. Another category of manycore programming solution try, like OpenMP,
to mix regular Fortran, C/C++ code with directives, such as OpenHMPP8, and, more recently,
OpenACC9. Other languages may be proposed in the following years as the field is rapidely
evolving.

? ? ?

At the beginning of this thesis, in 2009–2010, we decided to use OpenCL since it was a
promising standard. Indeed, we managed to run the same OpenCL code both on NVIDIA
GPUs, on CPUs through the AMD SDK, and also (to a lesser extent) on some AMD GPUs
(see on page 118). The following section will thus present in more the details the OpenCL
architecture. However, many of these concepts can also apply to other existing languages (such
as C CUDA) and potentially to future languages for manycore processors programming.

Remarks on C for CUDA. On the implementation of NVIDIA, it should be noted that both
OpenCL and the progamming language “C for CUDA” function as a “device level programming
interface” for the CUDA parallel computing architecture [NVIDIA Corp, 2009a]. The main
difference is that while OpenCL interacts with the CUDA driver through the “OpenCL driver”,
C for CUDA directly interacts with the CUDA driver.

C for CUDA is usually “ahead” OpenCL as it is designed specially for the NVIDIA GPUs,
while OpenCL is an open standard, which is limited to common features of modern manycore
processors. It means that, on the homogenous NVIDIA platform, OpenCL may not be as
efficient as C for CUDA if the applications require advanced features such as the remote direct
memory access (RDMA) between GPUs or the dynamic parallelism of CUDA 5 [Harris, 2012].

All the algorithms and data structures proposed in this thesis are implemented with funda-
mental concepts. But when these algorithms and data structures are applied to a real application
(see Chapter 6), some implementations with C for CUDA could be slightly more efficient. Nev-
ertheless, we decided to keep OpenCL for his portability.

In general, we can say that C for CUDA benefits from specialized NVIDIA platforms, while
OpenCL has the advantages of portability over heterogenous platforms.

1.2 Manycore high-performance computing with OpenCL

The OpenCL architecture consists of 4 models, which will be further discussed in the next
sections:

• Platform model (Section 1.2.1): This section will describe the general architecture of an
OpenCL compute platform as a host with one or multiple “computing devices”, and explain
the hierarchy of the computing elements inside a device and the mapping of OpenCL
platforms onto different processor architectures;

8http://www.openhmpp.org/en/OpenHMPPConsortium.aspx
9http://www.openacc-standard.org/
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• Execution model (Section 1.2.2): This section will describe how a computing kernel can
be run as multiple instances on the platform and explain the portability of an OpenCL
program on different type of computing devices;

• Memory model (Section 1.2.3): This section wll present different types of memory regions
which can be used by an OpenCL program and describe how these regions are mapped
onto the physical parts of the device;

• Programming model (Section 1.2.4): This section will introduce data-parallelism and task-
parallelism as two available programming models for the developement of OpenCL appli-
cations.

Finally, Section 1.2.5 will explain some guidelines for efficient manycore programming. Again,
these guidelines are not limited only to OpenCL and can be applied to any applications that
run on current manycore processors.

OpenCL platforms used in this thesis. In order to clarify how the OpenCL standard run
on heterogenous computing architectures from different vendors, we will use three examples: the
NVIDIA’s Fermi generation GPUs [NVIDIA Corp, c], the AMD’s Evergreen generation GPUs
[AMD Inc, 2011b] and the Intel’s Nehalem microarchitecture CPUs [Semin, 2009]. These selec-
tions are consistent with the hardwares used for the experiments in this thesis: an NVIDIA
GeForce GTX 480 GPU, an ATI Radeon HD5870 GPU and an Intel Xeon E5520 CPU.

This means that, on the five OpenCL implementations cited in page 18), only the NVIDIA’s
and the AMD’s implementations will be introduced and analysed (Figure 1.3):

• NVIDIA implements the OpenCL standard as a “device level programming interface” for
the CUDA parallel computing architecture [NVIDIA Corp, 2009a, NVIDIA Corp, 2012].

• AMD implements the OpenCL standard in the AMD Accelerated Parallel Processing SDK
(AMD APP SDK) [AMD Inc, 2011a], which supports both AMD GPUs and multi-cores
CPUs from any vendor.

Comparing these three platforms in the light of the OpenCL architecture allows us to explain
the difference of the hardware models between these GPU/CPU processors.

Remarks on the use of terminologies. Up to the mid 2012, the OpenCL standard is still
being developped, so the terminologies may not be stable because different papers use differents
terminologies. There are also differences between the documents of the same vendor. For exam-
ple, in a technical white paper of AMD, published in june 2011, [AMD Inc, 2011c], the streaming
core (SC) was considered as the processing element (PE). But in the AMD APP SDK OpenCL
programming guide [AMD Inc, 2011a], published in december 2011, the SC is no longer consid-
ered as the basic PE. Logically, the SC is further divided into other levels with each sub-SC
containing which are considered as the PE.

In this thesis, the OpenCL specification of the Khronos Group [Khronos Group, 2010]10,
the book “Heterogenous Computing with OpenCL” [Gaster et al., 2011], the AMD APP SDK

10In november 2011, the Khronos Group released the OpenCL 1.2 specification, but all the implementation
used in this thesis are based on OpenCL 1.1.
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Figure 1.3: OpenCL implementations on different platforms.

OpenCL programming guide [AMD Inc, 2011a], the paper of [Gummaraju et al., 2010] and the
paper of [Zhang et al., 2011] are used as the main reference for the use of terminologies.

1.2.1 The OpenCL platform model

An OpenCL platform consists of a host connected to one or more compute devices, each of
which contains one or more compute units. Each compute unit consists of one or more pro-
cessing elements. This hierachical model gives an abstract logical view over an heterogenous
and scalable computing system:

• The compute devices can be any kind of “processing units”, from different vendors, such as
the Intel CPUs, the AMD GPUs, the NVIDIA GPUs, the AMD APUs, etc. Any compute
device can be added to or removed from the computing system.

• The number of “cores” in each compute device can vary in a very wide range. Based on
the design of the vendor and the hardware driver, the “core” can be further divided into
processing elements. The scheduling and executing of the computing tasks in the compute
units and the processing elements are transparent for the programmer.

The mapping of the OpenCL platform onto different architectures is based on both the
physical and logical features of the devices. It depends also on the implementation approach of
the SDK vendors. The mappings of the OpenCL platform onto Intel Nehalem microarchitecture
CPUs, AMD Evergreen generation GPUs and NVIDIA Fermi generation GPUs are described in
Figure 1.4 and Table 1.2:
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Compute device Compute Unit Processing Element

NVIDIA Fermi GPU Streaming Multiproces-
sor (SM)

Streaming Processor
(SP, or CUDA core)

AMD Evergreen GPU SIMD Engine Processing Element
(PE)

Intel Nehalem CPU Thread (Logical Core) Thread

Table 1.2: Mapping of OpenCL platform model onto Intel Nehalem CPU, AMD Evergreen GPU and NVIDIA
GPU.

• Fermi GPUs, NVIDIA Computing SDK. An NVIDIA Fermi GPU contains upto 16
streaming multiprocessors. Each streaming multiprocessor consists of 32 “CUDA cores”.

• Evergreen GPUs, AMD APP SDK. An AMD Evergreen GPU contains upto 20 SIMD
engines. Each engine consists of 16 stream cores, in each of which there are 5 processing
elements. It means that there are 80 processing elements in an “AMD Evergreen SIMD
engine”.

• Intel Nehalem CPUs, AMD APP SDK. At the physical view, there are upto 8
cores in an Intel Nehalem CPU. Thanks to the Intel’s Hyper-Threading Technology (HT)
[Intel Corp, 2002], it reaches 16 logical cores. In Intel’s offical technical specification doc-
uments, the HT based logical cores are called threads. In the OpenCL implementation of
AMD APP SDK, the work-items are executed in turn by a thread (further presented in
1.2.2). This approach is the same with the Intel’s OpenCL implementation [Intel Corp, b].
Thus, for the Intel Nehalem CPUs, the thread is also the processing element.

At the physical view, the AMD SIMD engine is in the same level with the NVIDIA streaming
multiprocessor, thus, the AMD stream core is comparable to the NVIDIA CUDA core. But as
described above, the AMD stream core is further divided into a deeper level, while the CUDA
core is not, even there are also 2 computational elements inside each CUDA core, the FP Unit
and the INT Unit. The main reason for the difference between the logical view of the two
vendors is that an AMD SIMD engine is a vector processor, where all processing elements
can execute the same operation simultaneously on multiple data elements, while an NVIDIA
streaming multiprocessors is a scalar processor where, at a point of time, either the FP Unit or
the INT Unit is used to execute an instruction11.

Thus, the difference in types of processor results in a signicicant difference between the
numbers of “cores” in the technical specifications of the comparable GPUs of AMD and NVIDIA.
For example, the ATI Radeon HD 5870 has 1600 “cores” while the NVIDIA GeForce GTX 480
has 480 “cores”, even these two GPUs seem to tie in the computing performance.

11The multiprocessors of the NVIDIA changed from vector to scalar since the GeForce 8 series
[NVIDIA Corp, 2006].
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1.2.2 The OpenCL execution model

An OpenCL program contains two parts: a host program that runs on the host and one
or more kernels that runs on the compute devices. The host program aims to set up the
OpenCL context and to provide the host-device interaction mechanism. The kernel will be run
as a number of instances which are executing independently on the processing elements of
the compute device.

The execution of an OpenCL program in the host side within the OpenCL context.
The OpenCL context is an abstract container created on the host. A context can include one or
more following resources: computing devices, command queues, memory objects, event object,
program objects and kernels:

• Computing devices: as described in the platform model, a host connects to a set of
computing devices. When creating a context, it must specify the list of selected devices
from this set. An OpenCL context can be only created from the devices that belong
to the same platform. In the case of multiple platforms co-existing in the machine, this
heterogenous computing environment can be created and monitored by multiple contexts
in the host program.

• Command queues: the OpenCL command queue is the mechanism which provides the
interaction between host and devices. One command queue is associated with only one
device, but one device can be associated with one or more command queues.

• Memory objects: the OpenCL memory objects are the “encapsulated container” pre-
senting the data which can be transfered between the host and the device.

• Event objects: the OpenCL event objects are the mechanisms which allow the profiling of
the submitted commands in the command queue and represent the dependencies between
these commands.

• Program objects: the program objects represent the OpenCL C source code that can
be compiled and run on the computing devices12. To avoid the confusion with the whole
OpenCL program which consists of both the host program and the kernels, from now on,
this part of source code will be called the kernel program. The OpenCL kernel program
usually be compiled into the device specific instructions in the run time, allowing the
execution in the heterogenous enviroment.

• Kernels: The OpenCL kernel is a function contained in the program and is a unit of
execution that can be run on a device.

OpenCL provides a runtime layer called “installable client driver” (ICD). With the ICD,
one can select, at runtime, a platform from heterogeneous computing environment (which may
contain different OpenCL platforms from different vendors, Figure 1.3). An OpenCL program
can be first compiled with one of these implementations, and the OpenCL APIs are linked only
to the ICD13. When this program is launched, the host program can retrieve the list of platforms

12The OpenCL C programming language, used to implement the kernels that run on the computing devices, is
based on the ISO/IEC 9899:1999 C language specification (C99 specification).

13The common ICD is implemented as libOpenCL.so in both AMD APP SDK and NVIDIA Computing SDK.
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Figure 1.5: The compilation of OpenCL C Kernel on different platforms.

as well as the available devices in order to create the context. For each selected platform or
device, the OpenCL program will transparently link to the dynamic library interface of the
asscociated vendor’s SDK (Figure 1.3)14.

The OpenCL kernel programs is built by the compiler of the selected vendor’s SDK. The
kernel compilations on the AMD APP SDK and the NVIDIA Computing SDK are described
in Figure 1.5. For x86 multi-core CPUs, the kernel program is compiled into the x86 instruc-
tions. For AMD GPUs and NVIDIA GPUs, there are two compilation levels. First, the kernel
program is compiled into an intermediate representation: AMD’s IL (Intermediate Language)
or NVIDIA’s PTX (Parallel Thread Execution). This intermediate representation is further
just-in-time (JIT) compiled into the device specific instruction set architecture (ISA), which will
be run on the GPUs.

Generally, the execution of an OpenCL program has three main steps: (1) create the context,
(2) compile the kernel program, (3) monitor the devices to do the computing works by submiting
the commands (host-device data transfer, kernel execution, etc) to the command queue.

The mapping of the OpenCL kernel instances into the OpenCL index space. When
the host submits a kernel to execute, the OpenCL runtime defines an N-dimensional index
space called NDRange. The number of the dimensions of an NDRange can be 1, 2 or 3. An
instance of the kernel, running on the computing device, is called a work-item. Each work-
item, corresponding to one point in NDRange, executes the same code source on its given data.
An NDRange of size G provides the execution space in which there are G work-items intended
to be executed concurrently.

14The NVIDIA GPU Computing SDK’s driver is provided in libCUDA.so. The ADM APP SDK’s driver is
provided in liboclamd32.so and liboclamd64.so.
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Figure 1.6: Example of the execution of an OpenCL program. An OpenCL context consists of 2 devices,
associated with 2 command queues. The OpenCL program is a collection of 4 kernels: K1, K2, K3, K4.
K1, K2, K3 are independent from each other, except that K4 is dependent on K3. The kernels are submited and
scheduled to run on the devices through the command queues. The event object associated with the submission
of K3 maintains the dependency between K4 and K3 as well as the synchronization between the executions of the
commands in different command queues.

At the view point on the whole index space, each work-item can communicate with the
others in the global level. To support the local cooperations level, work-items are organized into
work-groups. The data exchanges and the synchronizations between the work-items within the
same work-group are simpler and more efficient than at the global level. Globally, the work-item
and the work-group are assigned a unique identifier (ID). Inside the work-group, the work-item
is also given the local ID.

The execution of the OpenCL kernel instances in the compute device. In both
the NVIDIA Computing SDK and the AMD APP SDK, each work-group is mapped onto one
compute unit, and one compute unit can host one or more work-groups. This means that each
work-item is executed by one processing element, while one processing element may execute one
or more work-items. At the device level, the execution of work-items on the GPUs and the
multi-core CPUs are different.

The GPU compute unit schedules and executes the work-group as multiple sub-groups of N
work-items. In the AMD APP SDK, these sub-groups are called the wavefronts and, in the
NVIDIA Computing SDK, they are called the warps. The size of the wavefronts or the warps
depends on the device. For example, the ATI HD 5800 series GPUs of the AMD Evergreen
family contain the 64 work-item wavefronts and the NVIDIA Fermi GPUs contain the 32 work-
item warps. The work-items in the same wavefronts or the same warps always execute the
same instruction. Thus, the total number of the instructions needed to finish a kernel program
increases linearly with the number of divergent code paths. A compute unit can support multiple
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NDRange size: G

work−group size: S
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gId = wId*S+lId

work−item

gId = wId*S+lId

lId = S−1

work−item
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Figure 1.7: Example of an 1-dimensional NDRange which contains G work-items, each with the unique global
ID (gID) as well as the local ID (lID). The work-items are organized in work-groups of size S. Each work-group
has a unique group ID (wID).

OpenCL CUDA

work-item thread

work-group thread-block

NDRange grid of thread-blocks

Table 1.3: The correlation between the execution model terminologies of the OpenCL standard and of the CUDA
architecture

wavefronts/wraps simultaneously15. From now on, we use the notation warp to represent both
the NVIDIA warp and the AMD wavefront, except the cases that need explicit distiguishment.

For multi-core CPUs, the AMD APP SDK maps the whole work-group to one thread. Gener-
ally, the kernel program can be divided into multiple sequential sections by the synchronization
barriers. Each section is executed by each work-item in turn before changing to the next section.
One thread can run multiple work-groups (Figure 1.8 a)16.

1.2.3 The OpenCL memory model

The OpenCL memory model is an abstract memory system with 4 distinct regions:

• Global memory is with full read/write access for all the work-items in the computing
device. This region also plays the role of host-device data exchange.

• Constant memory is read-only accessible to all the work-items in the computing device.
It is used for unchanged data that are written from the host and read simultaneously by

15For exeample, the Streaming Multiprocessor of the NVIDIA Fermi GPUs can support upto 48 warps simul-
taneously [NVIDIA Corp, b].

16The more detail description of the OpenCL work-group execution by the CPU thread can be found in
[Gummaraju et al., 2010, section 4.1] and [Gaster et al., 2011, Chapter 6].
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Figure 1.8: The AMD APP SDK implementation of OpenCL on multicore CPUs. (a): The execution of work-
items of the work-group in the single thread. (b): The mappings of the local memory, private memories and
constant memory associating to a work-group, from the main memory of the host to the cache inside the CPU
core.

Global Constant Local Private

Host Dynamic allocation
read/write

Dynamic allocation
read/write

Dynamic allocation
no access

No allocation
no access

Kernel No allocation
read/write

Static allocation
read-only

Static allocation
read/write

Static allocation
read/write

Table 1.4: Memory region - allocation and memory access capabilities (table cited from “The OpenCL Specifi-
cation, version 1.1” of the Khronos Group [Khronos Group, 2010]).

all work-items.

• Private memory belongs to a work-item. This type of memory can only be accessed
(read/write) by a work-item that owns it, and contains either variables declared inside the
kernel codes or non-pointer arguments of the kernels.

• Local memory is assigned for a work-group and is shared among the work-items of this
group. It can be dynamically allocated from the host program as the argument of the
kernel or be statically allocated as a variable declared inside the kernel program. The host
can not directly read from or write to this region: Only the work-items of the considered
work-group can do the transfers between the local memory and the three other types of
memory.

The mapping of the OpenCL memory platform onto each type of device depends on the
memory system of the device and on the implementation of the vendor. For the GPUs, the
global memory and the constant memory are mapped to the off-chip video memory of the
GPUs. The private memory is usually mapped to the registers, but with the AMD GPUs, it
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Compute DeviceNVIDIA Fermi GPU AMD Evergreen GPU
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Register File
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Figure 1.9: Mapping the OpenCL memory model (centre) onto NVIDIA Fermi GPU (left) and AMD Evergreen
GPU (right). With AMD Evergreen GPUs, the private memory can be mapped on to either the registers or the
video memory.

can be also mapped to the video memory (in the cases of private arrays and spilled registers
[Gaster et al., 2011]).

The local memory on the GPUs of the two vendors is both mapped to the on-chip memory
inside each compute unit17. For the AMD Evergreen GPUs, this type of memory is called “local
data share” (LDS), inside each SIMD engine, and has the size of 32 KB. For the NVIDIA Fermi
GPUs, the 64 KB on-chip memory inside each Streaming Multiprocessor is used to host both
the local memory and the L1 cache.18.

Comparing to the off-chip memory, the on-chip memory is much larger in size, but has
smaller bandwidth and higher latency.

The AMD APP SDK maps all types of OpenCL memory onto 4 continous distinct regions
in the main memory of the host, outside the multi-core CPUs. But there are also mappings
from local memory, the private memory and the constant memory regions in the main memory
to the cache in each CPU core (Figure 1.8 b)19.

1.2.4 The OpenCL programming model

The host-device interactions through the command queues and the simultaneous execution of
the kernel instances, as the work-items in the N-dimensional index space, allow the development
of an OpenCL as the hybrid of 2 parallel programming models:

17The on-chip memory inside the AMD Evergreen GPUs and NVIDIA Fermi GPUs is the scratchpad memory
[Banakar et al., 2002]. It is also called the “programable cache”

18The on-chip memory of the Fermi GPUs is configurable, the size of local memory and of L1 cache can be
either (48 KB, 16 KB) or (16 KB, 48 KB).

19The more detail descrition of mapping OpenCL memory model onto the main memory and the CPU caches
can be found in [Gummaraju et al., 2010, section 4.2] and [Gaster et al., 2011, Chapter 6].
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OpenCL CUDA

global memory global memory

private memory local memory

local memory shared memory

constant memory constant memory

Table 1.5: The correlation between the memory model terminologies of the OpenCL standard and of the CUDA
architecture

• Data parallelism.

• Task parallelism.

Data parallelism. At the global view, a kernel program is executed as a Single Program
Multiple Data (SPMD) application: the same code is applied to different data. As one work-
group is usually scheduled to run on one computing unit, one compute device can simultaneously
process multiple work-units (instances of the kernel). However, as described in 1.2.2, the work-
items that belong to the same wavefronts/warps always execute the same instruction, even if
there are divergent code pathes20. It means that the execution of the work-items in the same
wavefronts/warps follows the Single Instruction Multiple Data (SIMD) model.

The organization of the work-items into work-groups and the different levels of the memory
model support multiple degrees of data parallelism. There following features of OpenCL should
be noticed to achieve a good parallel strategy:

• The communications and synchronizations among the work-items in the same work-group
are supported by the on-chip local memory and “barrier” OpenCL functions.

• Among the work-groups, the communications can only done by the out-chip global memory.

• OpenCL does not support global synchronizations among work-groups.

So, it would better to implement the fine-grain parallelism on the work-items inside the same
work-group, and the coarse-grain parallelism are on “inter-work-group” level.

Task parallelism. As an OpenCL kernel can be considered as one task, an OpenCL program
is the form of a processing pipeline which consists of multiple tasks. The parallelism of the tasks
and the multiple instances executing of the processing pipeline are shown in Section-1.1.1. The
dependencies and the synchronizations between the tasks are defined and maintained by the
event objects. There are two levels for processing the tasks simultaneously in the running time
enviroment:

• Inter-device task parallelism: the tasks can be submitted to different compute devices to
be processed parallely. For example, in Figure 1.6, two kernels K1 and K2 run parallely
on Device 1 and Device 2.

20More detail about the branch divergence can be found in 1.2.5.1.
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• Intra-device task parallelism: In modern GPUs, multiple kernels can run concurrently in
one compute device21. Depending on the global sizes of the kernels and the number of the
processing elements, at one point in time, one or multiple kernels can be executed by the
computing device.

1.2.5 Optimizing code for manycore OpenCL programming

This section discusses two factors that can significally influence the performance of an OpenCL
application when running on GPUs: the global memory access and the branch divergence22.
These two factors are analyzed and in particular cases which are further presented in Chapter-2,
Chapter-3 and Chapter-4.

1.2.5.1 Branch divergence

As the running instance of the kernel code, a work-item consisits of multiple instructions that are
dispatched to run on a processing element. In the GPU computing unit, the work-items are not
processed independently but grouped into warps23. Moreover, the processing elements are also
organized into the lanes. The scheduler at the computing unit level decides which instruction
of which warp is executed by which lanes, thus the work-items belongs to the same warp always
execute the same instruction simultaneously (as known as SIMD, Single Instruction Multiple
Data).

In the run time, the data differences between the work-items can lead to different execution
paths. This problem is called the branch divergence, and has a large impact on the per-
formance of GPU applications, as all possible paths are dispatched sequentially to be executed.
Having the SIMD behavior, the warp serially passes through all the available paths of the kernel
code while disabling work-items that are not in each one. These work-items converge back when
all the paths are completed [Lindholm et al., 2008] (Figure 1.10).

Moreover, there is a waste in the use of processing elements: the total number of dispatched
instructions is higher than the number needed to process them serially [AMD Inc, 2011a, Chap-
ter 1].

1.2.5.2 Random global memory access

GPUs have a large off-chip memory, on which located the global memory, with high bandwidth
but high latency (1.2.3)24. This type of memory is advantageous when the frequence of access
transactions is small but the data amount of each transaction is large and in continuous region.
As long as the memory access pattern is optimized, it can effectively handled hundreds or
thousands simultaneous data read or write transactions [Jang et al., 2011]. But, in the case
of high frenquency light weight memory accesses to the random region in the global memory,

21For the NVIDIA GPUs, begin from the Fermi family, a GPU can execute the kernels in the same context
concurrently [NVIDIA Corp, c, page 18].

22The complete guides about optimization of OpenCL implementations on GPUs can be found in
[NVIDIA Corp, 2009b] and [AMD Inc, 2011a].

23As mentioned in page 26, the notation warp is used to represented both the NVIDIA warp and the AMD
wavefront.

24The bandwidth and the latency of the GPU off-chip memory is compared with the main memory of the
computer.
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data

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

l id = get local id ;
if data[l id]%2 == 0 then

computational-statment-1;
else

computational-statment-2;
end
for i = 0 to data[l id] do

computational-statment-3;
end

Figure 1.10: Example of branch divergence on a work-group of 16 work-items. get local id is the command to
get the local identifier of the work-item in the work-group. All the work-items have to pass througth both paths
in the conditional statement if-then-else and 4 iterations of the for-loop, even in each pass not all of them
have to execute the corresponding computational statement.

it can cause the botleneck in data transfer due to the high latency and seriously decrease the
performance of the application on the GPU. However, for the GPUs of NVIDIA Fermi or AMD
Evergreen class, there is a cache for data transfer from the global memory.

As recommended in the OpenCL programming documents such as [NVIDIA Corp, 2009b,
Chapter 3] or [AMD Inc, 2011a, Chapter 4], the global memory should be accessed in the coa-
lesced pattern where the the work-items in the same wavefront/warp read from or write to the
contiguous data elements. Moreover, the local memory, which is located in the very fast on-chip
memory (1.2.3), should be used to temporarily store the computing data in order to reduce the
number of global memory accesses.

Depending on the application and the size of the data, it is not always possible to apply these
memory access optimizations. In this thesis, one of the key features of data structure design is
to reduce as much as possible the number of random global memory accesses, which is the main
idea of the neighborhood indexing approach, presented in Chapter-2. The use of local memory
with coalesed data tranfer is also discussed in 3.1.4.

1.3 GPU in Bioinformatics

The main purpose of this section is to list the bioinformatics applications that have been mapped
onto GPUs. It can be considered as an extension from [Varré et al., 2011] with the addition of
the bioinformatics GPGPU publications since 2009.

A note on speedups. In this section, we report many different studies from various fields
of bioinformatics, with different methodologies for parallelizing, experimenting and evaluating
the speedups. Moreover, the GPUs to do the experiments are also in the wide range and
span several architecture generations. Generally, it is very difficult to fairly measure these
speedups – for example, with GPU/CPU comparison, what is the base reference (CPU?, multi-
core CPU? multi-core CPU with SIMD instructions? grid of CPUs?), and was this CPU code



1.3. GPU in Bioinformatics 33

really optimized?

In addition, the raw times, in seconds, could be interpreted differently depending on the
objective of application – for example, in our Chapter 5, we will use a normalized measure for
solving approximate pattern matching (see page 84). Finally, it lacks the independent bench-
marking suite for these solutions. The speedups reported here should thus not be taken absolutely
and should not be used to compare these different studies, but rather as a raw indication given
by the different authors.

Contents of this section. Many bioinformatics high-performance studies concern sequence
similarities: this domain was previously dominated by pairwise alignment (Section 1.3.1), either
by exact dynamic programming or with heuristics. With the advances in High-Throughput
Sequencers (HTS), sequence similarities are now used in fruitful new domain of research (1.3.2).
We also list other GPU studies in sequence algorithms (1.3.4), proteomics (1.3.5), data mining
(1.3.6) and cell simulation (1.3.7).

? ? ?

Note that the motivation for studying similarities between genomic sequences will be pre-
sented in the next chapter (page 43), focusing on the core of this thesis – the filtering phase of
seed-based heuristics.

The following pages do not aim to explain all cited problems, it is more a preview of what
has already done with GPUs in bioinformatics – and what speedups the authors usually report.

1.3.1 Pairwise alignment

The tools presented here find similarities between two genomic sequences, either by exact dy-
namic programming or, like in the rest of this thesis, within a seed-based heuristics.

1.3.1.1 Pairwise alignment by exact dynamic programming

Smith-Waterman. The main algorithm for computing local similarities between genomic
sequences is Smith-Waterman [Smith and Waterman, 1981] which runs in quadratic time over
the length of the sequences. This algorithm is very regular and was often parallelized in the three
last decades on various platforms (dedicated hardware such as FPGA, CPU with SIMD, grids,
etc) [Lavenier and Giraud, 2005]. One of the most efficient parallelizations of this algorithm
should be the SIMD implementation of [Farrar, 2007], in which the author proposed an “striped
query profile” technique to reduce the number of iteration loops over the dependent data. When
running as a single thread on a 2.0 GHz Xeon Core 2 Duo, it achieved the speed about 3 billion
cell updates per second.

The Smith-Waterman alorithm was thus an interesting target of choice for GPU paralleliza-
tion. In 2006, [Liu et al., 2006b] proposed the GPU implementation of the algorithm by using
OpenGL. The anti-diagonals of the dynamic programming matrix are processed simutaneously.
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The implementation on a GeForce 7800 GTX has a reported speedup of almost 16× than OS-
EARCH and 8× than SSEARCH25. The first Smith-Waterman CUDA implementation should
be the work of [Manavski and Valle, 2008] which was published in 2008. Their implementation
on a single GeForce 8800 GTX was reported to be 3.5× to 4.7× faster than the experiments
of [Liu et al., 2006b]. In the same year, but some months later, [Munekawa et al., 2008] pub-
lished another CUDA Smith-Waterman implementation which also uses the anti-diagonal based
parallelization strategy but with improved memory assigment and data reuse schemes. On
a single GeForce 8800 GTX, the implementation of [Munekawa et al., 2008] was reported to
be 3.1× faster than the one in [Manavski and Valle, 2008] and 6.4× faster than the one in
[Liu et al., 2006b].

In 2009, [Striemer and Akoglu, 2009] also showed that [Manavski and Valle, 2008] was still
highly CPU dependent. They proposed GSW, the absolute GPU dependent Smith-Waterman
implementation. In comparison with the serial version of SSEARCH, GSW has a reported
peak speed-up of 23× on a Tesla C87026. At the same year, [Liu et al., 2009a] released CUD-
ASW++ which has a lot of memory access optimizations to gain the sequencing speed. More-
over, there are two parallelization strategies in CUDASW++: the intra-task and the inter-
task, which are used for the long and short queries respectively27. In comparision with the
work of Manavski and Valle, on the same dual-GPU GeForce GTX 295, CUDASW++ had the
speedup of up to 10×. In 2010, the same authors, [Liu et al., 2010b], released the upgraded
version (CUDASW++2.0), with the optimized SIMT (Single Instruction Multi Thread) algo-
rithm and the virtualized SIMD (Single Instruction Multi Data) vector programming model.
On an NVIDIA GeForce GTX 295, CUDASW++2.0 was faster than CUDASW++ from 1.45
× to 1.72 ×. Independently, [Hains et al., 2011] showed that the intra-task kernel of CU-
DASW++, which deals with the long queries, have a great impact on the overall perfor-
mance of the genome database aligning and thus, they proposed their upgraded kernel. On
an NVIDA C2050, the improved version of [Hains et al., 2011] increased the performance of at
most 39.3. There were also other CUDA Smith-Waterman implementations in 2009 presented by
[Ligowski and Rudnicki, 2009] and by [Ling et al., 2009]. The peak performance of the imple-
mentation of [Ligowski and Rudnicki, 2009] on a dual NVIDIA 9800 GX2 was 4.1× higher than
that of [Manavski and Valle, 2008] on a dual NVIDIA GeForce 8800 GTX. [Ling et al., 2009]
did not focus on the running speed but on the length of the queries. In most cases, their imple-
mentation was slower than those of [Manavski and Valle, 2008] and of [Munekawa et al., 2008]
but it could align the sequence of any length28.

In 2010, [Dohi et al., 2010] (include all 3 authors of [Ling et al., 2009]) published the CUDA
Smith-Waterman implementation with deeply optimizations on both algorithmics side and hard-
ware side. In the peak performance, this implementation was about 1.45× faster than CUD-
ASW++ 29. In this year, there was the first report of an OpenCL Smith-Waterman implemen-
tation [Razmyslovich et al., 2010]. On an NVIDIA GeForce GTX 260, the authors announced

25OSEARCH and SSEARCH are two Smith-Waterman implementations in the FASTA program
[Lipman and Pearson, 1988].

26Striemer and Akoglu did not do the direct comparation between their works with the one in
[Manavski and Valle, 2008]. They explained that the mapping in [Manavski and Valle, 2008] was the combination
of CPU and GPU, and it could not align more than 400 residues on the GPU.

27In CUDASW++, the defaut threshold to differentiate long and short queries is 3072 residues.
28Both [Manavski and Valle, 2008] and [Munekawa et al., 2008] have the limit on the query length. On the

testing platform of [Ling et al., 2009], the limits were 2500 and 2048 respectively.
29It means that the performance of the implementation of [Dohi et al., 2010] is approximately equal to that of

CUDASW++2.0
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the speedup of 3× over CUDASW++2.0.

In 2011, there were others publications with CUDA implementations : [Hasan et al., 2011b],
[Hasan et al., 2011a] and of [Zheng et al., 2011]. The implementation of Hasan et al, in compa-
ration with CUDASW++2.0 on a NVIDIA GeForce GTX 275, in the case of fully optimization
was reported to be about 1.13× faster but was 1.52× slower in the less optimized implementa-
tion.

Up to mid of 2012, the Smith-Waterman should thus be the most favorite bioinformatics
algorithm to be mapped on the GPU.

Needleman-Wunsch. The Needleman-Wunsch algorithm was actually published before the
Smith-Waterman algorithm [Needleman and Wunsch, 1970]: it consists in finding the global
alignment between two genetic sequences. This alogorithm also has quadric time complexity
over the length of the sequences.

In 2008, [Che et al., 2008] introduced the CUDA implementation of the Needleman-Wunsch
algorithm [Needleman and Wunsch, 1970] as a case study in an article about the performance
exminations of some general-purpose applications. With the anti-diagonal parallelization scheme,
on an NVIDIA GeForce GTX 260, this implementation was reported to be up to 2.9× faster
than the näıve serial CPU version. In 2010, [Siriwardena and Ranasinghe, 2010] studied dif-
ferent levels of memory access methods on the CUDA compatible GPUs in order to find the
efficient ways to implement the Needleman-Wunsch algorithm. On an NVIDIA GeForce 8800
GT, their implementation had a reported speedup of up to 4.2× over the CPU version. Re-
cently, in 2012, [Farivar et al., 2012] carefully examinated the CUDA implementation of the
Needleman-Wunsch algorithm. They proposed the solutions for two serious problems of high
memory consumption and of diverging SIMD flows when mapping the algorithm to the GPUs.
On a NVIDIA GeForce GTX 275, this implementation was reported to be up to 8× faster than
a multi-thread implementation which run on a quad-core Intel Core i7-920 CPU.

Traceback. The traceback, also called backtrack, is the process to get the full alignment from
a dynamic programming matrix. Many high-performance tools do not implement this phase, or
fall back to the CPU, arguing that, in many applications, there are very few such alignments at
the output of the algorithm.

In 2011, [Blazewicz et al., 2011] published a CUDA implementation of both Smith-Waterman
and Needleman-Wunsch with an efficient traceback routine. They did the comparision with the
corresponding implementations in the EMBOSS package [Rice et al., 2000]30. On a NVIDIA
GeForce GTX 280, their implementations had a reported speedup of at most 68× with the
Needleman-Wunsch and 108× with the Smith-Waterman. Their experiments on multiple GPUs
also achieved a linear speedup.

1.3.1.2 Pairwise alignment with seed-based heuristics

The tools in this section use “seed-based heuristics” to execute the pairwise aligment between
large sequences, with the trade-off between the speed and the sensibility. More details about
this technique can be found in the next chapter (Section 2.1.2).

30In the EMBOSS package, the implementation of Needleman-Wunsch algorithm named needle, the implemen-
tation of Smith-Waterman algorithm named water.
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BLAST. As one of the most popular bioinformatics applications, BLAST [Altschul et al., 1990]
is an interesting target to be mapped onto the GPUs. There are some variants in the BLAST
family, but generally, they all have four steps: (1) Hit detection, (2) Ungapped alignment, (3)
Gapped alignment and (4) Gapped alignment for traceback. In fact, the first and second steps
are usually intergrated into one kernel.

• [Ling and Benkrid, 2010] developed a CUDA implementation of gapped BLAST with 2
kernels. The first kernel does the first and second steps of BLAST. The host evaluates
the output ungapped alignment and sends to the second kernel, which does the third step.
On an NVIDIA GeForce 8800 GTX, it was reported to be from 1.7× to 2.7× faster than
NCBI-BLAST.

• [Vouzis and Sahinidis, 2011] released a CUDA implementation named GPU-BLAST that
is based directly on the source code of NCBI-BLAST31. GPU-BLAST only maps the hit
detection and gapped extension to the GPU in one kernel. The speedup of GPU-BLAST
over NCBI-BLAST on a NVIDIA Fermi C2050 was reported to be between 3× and 4×.

• In 2010, Liu published a Tesla-GPU version of BLASTP (named CUDA-BLASTP) on
the website of NVIDIA [Liu, 2010]. The speed up of this CUDA-BLASTP version on a
dual NVIDIA C1060 computer was reported to be at most 10× over NCBI-BLAST 2.2.22.
As discussed lately in [Xiao et al., 2011], this version parallelized only the first two steps
of BLAST. This work was further improved in [Liu et al., 2011c] with the paralleliza-
tion of the third step of BLAST in a second kernel. On a NVIDIA GeForce GTX 295,
this implementation had a reported speedup of at most 10.0× over NCBI BLAST 2.2.22.
Using MPI (Message Passing Interface), OpenMP (Open Multi-Processing) and CUDA,
[Liu et al., 2011b] developed the more parallelized version named mpiCUDA-BLASTP
that can run on the clusters of GPU nodes. This implementation is a colaboration of
different parallelization levels: on the cluster nodes (message passing), on the multicore
CPUs (multi-threaded) and on the GPUs. On a cluster which consisted of 2 Tesla S1060
quad-GPU computing systems, their implementation was reported to be 1.6× and 6.6×
faster than GPU BLAST 1.0-2.2.24 of [Vouzis and Sahinidis, 2011] when run with a single
GPU and with 6 GPUs respectively.

• [Xiao et al., 2011] deeply experimented the mappings of BLASTP on the Tesla and Fermi
NVIDIA GPUs. Their authors proposed and implemented 5 GPU BLASTP versions with
diffirent optimization techniques and carefully evaluated the speedup in the parallelization
of the each in the first 3 steps of BLAST. The highest reported speedup between their
GPU implementation and their CPU implementations was 6×. In comparision with the
Tesla version of CUDA-BLASTP [Liu, 2010] on a NVIDIA C1060, their implementation
was reported to be from 1.8× to 2.0× faster32.

• [Lin et al., 2011] used a CUDA GPU kernel for the “matching word” step of Mercury
BLAST [Jacob et al., 2008]. This step bases on the Bloom filter [Bloom, 1970] and is
originally accelerated by the FPGAs. In comparision with the CPU version which ran on
an AMD Opteron quad-core, the reported speedup was approximately 35×.

31Thus, the implementation of [Vouzis and Sahinidis, 2011] maintains the indentical results as of NCBI-BLAST.
As mentioned in the article, this version of GPU-BLAST is only for BLASTP

32[Xiao et al., 2011] did the comparision with the very first version of CUDA-BLASTP, which parallelizated
only step-1 and step-2 of BLAST.
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PLAST. Based on the idea of BLAST, [Nguyen, 2008] developed PLAST (Parallel Local
Alignment Search Tool), specialized for the alignment between genetic sequence banks. The
GPU version of PLAST parallelized the ungapped extension and the small gapped extension
over the flanking region around each detected hit. On a platform with dual NVIDIA C870
GPU, it achieved the speedup from 5.38× to 10.13× over the NCBI TBLASTTN, which ran as
2 threads on a 2.6 GHz Xeon Core 2.

MUMmer. While the BLAST family used the fixed-length seed in the “hit detection” step,
MUMmer [Delcher et al., 1999] 33 can detect the hit of maximal length, or the maximal unique
matching (the MUM), by using the suffix tree [Weiner, 1973]. Once the MUMs between two
sequences are found, MUMmer uses the Smith-Waterman algorithm to do the full extend (seed-
and-extend). [Schatz et al., 2007] published MUMmerGPU 1.0, which mapped the MUM de-
tection step on to the GPUs. The suffix tree is flattened to keep in the 2D texture memory
of the GPUs. On an NVIDIA GeForce 8800 GTX, this implementation was reported to be
from 3.4× to 3.8× faster than the serial MUMmer. This implementation was further improved
[Trapnell and Schatz, 2009] with a reported speedup of 13× over the serial version.

1.3.2 Algorithms for High-Throughput Sequencers (HTS)

High-Throughput sequencers will be presented in Section 6.1. Such sequencers have drawn a
lot of interest in recent years, notably with the tools for read mapping and read assembly. The
applications presented here takes as input a large set of millons of reads (very short sequences,
about tens to hundreds residuces) and thus requires a large amount of computing power to be
solved.

Read mapping. In all resequencing projects, the main problem is to locate reads on a ref-
erence genome (such as the human genome). Read mapping will be extensively discussed in
Chapter 6, with a summary of all available CPU and GPU read mappers (see page 99).

Read assembly. When there is no base genome reference, the main problem is to reconstruct
a genome (or several genomes in the case of metagenomics) from the reads (de-novo assemly).
As described in [Shi et al., 2010], the existing assemblers can be classified as the overlap graph
based and the de-Bruijn graph based. The de-Bruijn based assemblers consists of two main
stages: finding the exact overlaps of a given length from the input reads, and then, constructing
and finding the contigs in the graphs by using the found overlaps.

The study [Mahmood and Rangwala, 2011] implemented a CUDA version of the second stage
of the other de-Bruijn based assembler: Euler-SR [Pevzner et al., 2001]. The authors mapped
onto GPU all 3 steps in the second stage: the graph construction, the Euler tours finding and the
contigs indentifying steps. On an NVIDIA Quadro FX 5800, the new version, called GPU-Euler,
is reported to have a peak speedup of about 5× over Euler-SR.

Read correction. Sequencing errors in reads has may have a great influence on the re-
sult of assemblers. An additional step of read correction is thus often implemented before
the asssembler. Accelerating this step on the GPUs is the cumulating work of the research

33MUMmer have been upgraded into: MUMmer 2.0 [Delcher et al., 2002], MUMmer 3.0 [Kurtz et al., 2004]).
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group at the Nanyang Technological University, from [Shi et al., 2009] to [Shi et al., 2010] and
to [Liu et al., 2011e]. Using CUDA, the authors implemented the spectral alignment error cor-
rection which used Bloom filter for membership testing. The GPU based error correction stage
then can be used in any existing de-Bruijn graph based assemblers. The final result, named
DecGPU [Liu et al., 2011e], is the GPU based fine grain parallel error correction, that are used
as the core of the bigger coarse grain parallel framework using OpenMP and MPI which can run
on the cluster of GPU nodes. Comparing with hSHREC, the other error correction algorithm,
the speedup of DECGPU was reported to be about 22×. Moreover, DECGPU showed high
quality correction results when integrating with two assemblers: Velvet and ABySS.

1.3.3 Motif/model discovery and matching

Algorithms in this category also look for similarities in sequences, but modelize these similarities
through different models, which can range from a simple regular expression to more elaborated
matrices or probabilistic models.

Motif discovery Motif discovery problem can be defined as “given a set of unaligned genetic of
protein sequences, indentify and characterize shared motifs which are the families of subsequences
having some biological property of interest” [Bailey and Elkan, 1993]. One of the most popular
softwares to solve this problem is MEME ([Bailey and Elkan, 1993], [Bailey and Elkan, 1994]),
which bases on iterative approache exploiting probabilistic matching models.

[Liu et al., 2010a] proposed CUDA-MEME with the highest speedup reported on an NVIDIA
GeForce GTX 280 was 20.5× over the serial MEME 3.5.4. This work was then improved into
mCUDA-MEME [Liu et al., 2011d] as a combination implementation of MPI, OpenMP and
CUDA. On a cluster of 2 Tesla S2050 computing systems, which consists of 8 GPUs, mCUDA-
MEME was reported to run at most 8.3× faster than a parallel MEME 4.4.0 on a cluster of 32
CPUs.

DNA transcription factors binding side locating. The transcription process from the
DNA to the RNA can be studied by discovering the possible binding sites for the TF proteins34

along the DNA. Position Weight Matrices (PWMs) are used as a step in a pattern matching with
a score threshold process to locate these putative TF binding sites. A CUDA parallelization of
PWM algorithms of [Giraud and Varré, 2010], on an NVIDIA GeForce GTX 280 was reported
to have speedup of more than 10× than a serial implementation.

HMMER. Modeling a set of sequences in a same family can be done with probabilistic ap-
proaches, in which Hidden Markov Models (HMM) are a very popular method. The HMMs,
built from the given set of sequences can be further used to evaluate the similarity between any
member in the set and the query sequence.

In the HMMER package35, the most intensive calculation stage in the search is the ob-
servation sequence generations using the P7Veterbi dynamic programming algorithm. The
HMMER implementations on GPUs, reported by [Horn et al., 2005], [Walters et al., 2009] and

34TF, which stands for Transcription Factors, is a types of proteins which can bind themself to the DNA to
help enabling the transcription of genes.

35http://hmmer.janelia.org
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[Ganesan et al., 2010], focus on accelerating this stage. The study [Horn et al., 2005] should be
the first GPU version of HMMER, written in BrookGPU and run on both NVIDIA and ATI
cards with the peak speedup over the serial version, obtained with the ATI R520, was reported
to be about 35×. Both using CUDA, [Walters et al., 2009] and [Ganesan et al., 2010] reported
a speedup of 38× and more than 100× on an NVIDIA 8800 GTX Ultra and on a Tesla C1060,
respectively.

1.3.4 Other sequence-based algorithms

Multiple sequence alignment. Multiple sequence alignment (MSA) can be considered as
an extension of pairwise sequence alignment: the goal is to align a set of query sequences
between themselves. One very popular MSA method is Clustal-W [Thompson et al., 1994,
Larkin et al., 2007], which has 3 main steps. It uses the Smith-Waterman algorithm to compute
the distance matrix between all input sequence pairs (step 1) in order to build the tree (step 2)
and finally to guide the progressive alignment (step 3).

The computation of the distance matrix, which is the most time consuming step in Clustal-
W, is the interest target to map onto GPU as in [Liu et al., 2006a] and in [Ling et al., 2011].
Using the same technique than the GPU implementation of the Smith-Waterman algorithm in
[Liu et al., 2006b], the study [Liu et al., 2006a] developed GPU-ClustalW by using OpenGL.
On an NVIDIA GeForce 7800 GTX, the first step of GPU-ClustalW was reported to be 10×
faster than that of the serial version of ClustalW, bringing an overall speedup of 6×. Using the
same approach, and basing on the intra-task parallelization strategy of [Liu et al., 2006a] but
with improvements, [Ling et al., 2011] proposed a CUDA implementation which, on an NVIDIA
GeForce 8800 GTX, was reported to be 20× faster than the serial ClustalW.

[Liu et al., 2009b] proposed MSA-CUDA, an upgraded version of GPU-ClustalW, which
maps all 3 steps of ClustalW onto the GPU. The technique to parallelize the second step is
the same as in [Liu et al., 2009c], the other work of the same authors. The third step paral-
lelization technique is very similar to the first step. On an NVIDIA GeForce GTX 280, for long,
average and short sequences MSA-CUDA is reported to be 36×, 18× and 11× faster than a
serial ClustalW, respectively.

Phylogeny. Phylogeny tools aim at laying out a set of sequences into an evolutionary tree.
They often begin with a pariwise comparison between the sequences. [Charalambous et al., 2005]
proposed the BrookGPU version of RAxML [Stamatakis et al., 2005, Stamatakis, 2005]. On an
NVIDIA 5700 LE, the GPU version was reported to be 1.2× faster than the CPU version.
Although this speedup was not so high, the work of [Charalambous et al., 2005] is usually con-
sidered one of the first GPU bioinformatics applications.

[Suchard and Rambaut, 2009] developed other GPU algorithms to calculate the phylogenetic
likelihoods of molecular sequence data. On a combination of three NVIDIA GeForce GTX 280
GPUs, their speedup was reported to be up to 90× over the optimized CPU-based computation.

Finally, [Ying et al., 2011] proposed the OpenCL implementation of DNADIST, a DNA dis-
tance matrix computation used in the phylogenetic tree reconstruction of the PHYLIP phylogeny
inference package [Felsenstein, 2010]. On a dual AMD HD5850 and on an NVIDIA C2050, this
implementation has the speedup reported of 24 × and 16× over the serial implementation,
respectively.
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Bit-Parallel Pattern Matching. Bit-parallel algorithms are efficient for some problems
of approximate pattern matching (see Section 3.1.2). [Li et al., 2011] developed GPU-Agrep,
a CUDA version of the approximate pattern matching program Agrep of Wu and Manber
[Wu and Manber, 1992b], [Wu and Manber, 1992a]. On a NVIDIA GeForce GTX 285 and to
search in the whole human genome, their GPU implementation was reported to be 70× faster
than their multi-thread implementation that run on a quad-core CPU36.

Suffix Tree and Suffix Array. Suffix trees and arrays are data structures enabling fast exact
matchings; they are very efficient on CPUs. [Encarnaijao et al., 2011] maps both the suffix tree
and the suffix array to the GPUs. Their work is limited only to the exact matching problem.
On an NVIDIA GeForce GTX 580, their implementation was reported to have a speed-up of at
most 85× over the CPU version.

RNA folding. Starting from sequence, RNA folding aims to find the secondary structure of
RNA (which can be further used to study the teritary structure). of the RNAs. Folding algo-
rithms include the basic Nussinov algorithm [Nussinov et al., 1978], based on the maximinization
of base pair, and extensions based on the energy minimization, such as the complete “Turner
folding model” [Matthews et al., 1999].

• [Rizk and Lavenier, 2009] implemented the GPU version of the mfold/unafold packages
[Zuker, 2003], which does the RNA folding with the Turner model. On an NVIDIA GTX
280, this implementation was reported to be 17× faster than the serial verison.

• [Chang et al., 2010] mapped the Nussinov algorithms onto GPU and with an NVIDIA
Tesla C2050, the authors reported a peak speedup of 290× over the serial version.

Generic dynamic programming. Finally, [Steffen and Giegerich, 2005] developed the Al-
gebraic Dynamic Programming (ADP) as the framework to encode and generate automatically
the C source code for different dynamic programming problems. This framework is able to en-
code several problems previously presented, such as sequence comparison or RNA folding. The
CUDA backend of ADP was released in [Steffen et al., 2009].

1.3.5 Proteomics

Algorithms in this category deals with the 3D structure of proteins.

Protein structure alignment.

• [Stivala et al., 2010] developed the GPU implementation of protein structure and substruc-
ture searching which used simulated annealing. On an NVIDIA GTX 285, the speedup
over the serial version was reported up to 34 × and it was proved to be one of the most
accurate and fastest methods while compare with the other existing programs.

36GPU-Agrep can process the input patterns whose lengths are up to 64 with the Levenshtein edit distance is
up to 9.
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• Using Brook+, [Hung et al., 2011] proposed GPU-Q-J to accelerate the root mean square
deviation calculation between the coordinates of two structure, which is very common used
in structural biology. On an ATI 4770, GPU-Q-J was reported to be hundreds of times
faster than the existing CPU-based methods.

• ppsAlign of [Pang et al., 2012] is a framework of parallel protein structutre alignment. The
authors implemented 5 different CUDA kernels to map the 3 most time-consumed steps in
the framework on to the GPU. On an NVIDIA Tesla C2050, ppsAlign was reported to be
faster than other protein structure alignment methods which run on the CPU: 35.9× over
TM-align [Zhang and Skolnick, 2005], 64.7× over Fr-TM-algin [Pandit and Skolnick, 2008]
and 40.3× over MAMMOTH [Ortiz et al., 2002].

Protein docking. Protein docking is the computational task to study the prefer positions
when the other molecular binds with the protein to form a stable complex. It usually requires
very intensive calculations, as the 3D structures of the two molecules must be examined.

• [Friedrichs et al., 2009] mapped all the basic steps of the general protein docking pipeline
onto GPU, with BrookGPU for the ATI devices and CUDA for the NVIDIA devices. In
some cases, their implementation was reported to be up to 700× faster than the corre-
sponding serial implementation.

• One of the main step in protein docking is to calculate the correlation between the
surface of the protein with the other molecular by mearsuring the solvation energies.
[Dynerman et al., 2009] implementated a CUDA code name CUSA et CUDE to compute
the solvent accessible surface and the corresponding desolvent. On an GTX 280, these
CUDA versions were reported to be up to 2× faster than the serial versions.

• [Ritchie and Venkatraman, 2010] proposed Hex as the first exhaustive Fast Fourier Trans-
form based protein docking application thanks to the use of GPU. On an NVIDIA GTX
285, Hex was reported to be 45× faster than the corresponding serial version and is 2×
faster than the reference docking tool ZDOCK 3.0.1.

1.3.6 Genetics or biological data mining

Genome-Wide Association Studies. According to the definition in the website of the
United State’s National Human Genome Research Institute37, “a genome-wide association study
(GWAS) is an approach that involves rapidly scanning markers across the complete sets of DNA,
or genomes, of many people to find genetic variations associated with a particular disease.”.
One of the popular methods to implement the GWAS is the epistatis analysis which studies
the interactive effects between genetic variants. [Sinnott-Armstrong et al., 2009] focused on the
gene-gene interaction identifying problem with the multifactor dimensionality reduction (MDR)
method of [Ritchie et al., 2001]. MDRGPU is implemented with pyCUDA and on three NVIDIA
GeForce GTX 280 GPUs, it ran 140× faster than the serial version. Using the same method but
with the improvements in mapping the MDR algorithm onto the GPU, [Kwon et al., 2010] pro-
posed cuGWAM which can reach 2.9× speedup over MDRGPU. [Jiang et al., 2009] proposed
epiCUDA, the framework to detect the epistasis with the other method than the MDR for

37http://www.genome.gov/20019523
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GWAS. On an NVIDIA GTX 280, epiCUDA was reported to have a speedup of at most 25.7×
over the CPU version.

Protein clustering. The Markov clustering algorithm (MCL) [Van Dongen, 2008], a tool for
finding clusters in a network, can be applied to the protein interaction networks to determine
protein family, as in the work of [Enright et al., 2002]. Bustamam et al proposed CUDA-MCL
[Bustamam et al., 2010a], [Bustamam et al., 2010b] which on an NVIDIA GeForce GTX 285
has a reported speedup upto 9× over the corresponding serial implementation.

1.3.7 Cell simulation

• [Roberts et al., 2009] proposed a new cellular automata (CA) method to perform the whole
cell reaction-diffusion simulation in long time-scale and under in-vivo38 conditions. Al-
though the first performance was not as good as the theoretical performance, their imple-
mentation was analysed for further improvements. Moreover, by comparing between an
NVIDIA FX 5600 and an NVIDIA GeForce GTX 280, it was reported that their imple-
mentation could achieve a speedup which was proportional with the speed of GPUs: as
a GeForce GTX 280 is 1.67× (602/325 MHz) faster than a FX 5600 in clock speed, the
performances were from 1.8× to 2.4× higher.

• [Chalkidis et al., 2011] mapped the biological network modeling with the hybrid functional
Petri Nets on to the GPUs with CUDA. On an NVIDIA GeForce GTX 285, their imple-
mentation was reported to be 18× faster than the serial implementation and when applying
to simulate the cell boundary formation of a model containing 1600 cells, the speedup was
reported to be approximately 7×.

• [Falk et al., 2011] simulated the signal transduction processes within a cell. On an NVIDIA
GeForce 465 GTX, one step of this simulation was reported to be 12.4× faster than the
reference OpenMP version which run on an AMD Athlon 64X2 Dual Core.

1.4 Conclusion

This chapter starts with a brief overview of the hardware models and the programming model
of modern multicore and manycore processors. As the main presentatives of current manycore
processors, the Graphical Processing Units (GPU) are selected to be the focus of this thesis.
The massively computating performance of GPUs and the technical developements that have
made GPU programming more and more popular are then studied and presented. OpenCL, the
programming language used throughout this thesis, is also introduced.

We saw that many applications of GPU in bioinformatics were already proposed on GPUs,
mostly on sequence comparisons. This thesis will also focus on sequence comparison, but on a
particular problem, namely the approximate pattern matching, which may have several applica-
tions in sequence similarity tools. This problem will be discussed in the next chapters, from the
description of the framework to the implementations and benchmarks.

38“in-vivo” means: “within a living organisim”



Chapter 2

Seed-based Indexing
with Neighborhood Indexing

Seed-based heuristics have proved to be efficient for studying similarity between genetic databases
with billions of base pairs. This thesis focuses on algorithms and data structures for the
filtering phase in seed-based heuristics, with an emphasis on efficient GPU/manycores
implementation. This chapter explains the ideas between seed-based heuristics, then presents
the general framework of neighborhood indexing, which will be further implemented in chapters
3 and 4.
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2.1 Similarities and seed-based heuristics

This section contains 2 parts. The first part is an introduction on similarity studying and
aligment algorithms for genomic sequences. The second part presents the “seed-based heuris-
tics”, which are an efficient approach to compute alignements, and also the main target for
improvement of this thesis.

2.1.1 Similarities between genomic sequences

“Similarities between genomic sequences are often traces of common ancestry, and the study
of distances between species teaches us about the history of the evolution” [Pisanti et al., 2011,
Introduction]. Indeed, homological breeds diverge from the common ancestry by the process of
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Figure 2.1: Examples of edit distance, global alignment, and local alignment between two sequences S =
ATCCATGAATT and T = TATCATCACA. For 2 subsequences, S′ = ATCCATGAA in S and T ′ = ATCATCACA in
T , the Hamming distance between S′ and T ′ is 5 (a) while the Levenshtein distance between them is 3 (b). For
the whole S and T and with the score system is: +1 for matching, −1 for substitution and −2 for indel, the best
global alignment has a score of −1 (c), the best local alignment has a score of 1 (d).

mutation and natural selection. Some basic mutational processes in the genetic sequences are
the change of a residue (substitution), the addition of a residue (insertion) or the removal of a
residue (deletion). The natural selection screens the mutations, thus some types of mutational
processes may be more frequent than others [Durbin et al., 1998]. The homologies between the
breeds can be studied from the similarities between genomic sequences.

Even when one does not directly study evolution, similarities are useful to predict homologies
between sequences: similar sequences may have similar functions. Given an unknown sequence,
searching similar sequences in databases may help to understand its function. Finally, similarities
are at the core of tools for resequencing (see the prototype read mapper, chapter 6) where the
short genetic fractions collected from the new breeds are mapped to the well known genomes to
study their relations.

Formally, the edit distance between 2 words is the minimal number of edits needed to
tranform one word into the other. The distance is the Hamming distance if only substitutions
are allowed, and the Levenshtein distance if substitutions, insertions and deletions (so-called
indels) are allowed. More elaborated alignment distances can be defined by assigning different
scores for each type of point mutation (figure-2.1, a and b).

From a computational point of view, the computation of the similarity can be done with
alignment algorithms. Given two genetic sequences and a score system, those algorithms are
able to find the most optimal global or local alignment (depending on the type of analysis
we do) and output the score (which provides an evalutation of the similarity) and an alignment
(which provides a description of the similarity) (figure-2.1, c and d).

The score system, used to quantify the similarity, is usually defined based on the expert
knowledge of the sequences under study in combination with the statistical models [Korf et al., 2003,
chapter 4]. Some popular score systems for protein comparison are PAM (Point Accepted
Mutation) matrices [Dayhoff et al., 1978] and BLOSUM (Blocks of Amnino Acid Substitution
Matrix) matrices [Henikoff and Henikoff, 1992].
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2.1.2 Seed-based heuristics

Well known dynamic programming based algorithms as [Needleman and Wunsch, 1970] and
[Smith and Waterman, 1981] are able to find the best global and local alignments (respectively).
But they are not suitable for long sequences due to their quadratic time complexity of O(mn)
with two sequences of length m and n (figure-2.2, a). In practice, there is a need for being
able to compute alignments between sequences of hundred millions to billions of base pairs. For
example, the re-sequencing process usually maps tens to hundreds millions short reads39 to the
human genome which contains 25 chromosomes with a total of 2.7 billions base pairs, or even
to databanks of all known sequences (Genbank40 revision 191 contains 143 billions of base pairs
for 156 millions of sequences).

The seed-based heuristics algorithms, such as FASTA [Lipman and Pearson, 1988] and
BLAST [Altschul et al., 1990], were proposed in the late 1980s to increase efficiency against pure
dynamic programming algorithms.

Seed-based heuristics are based on the assumption that two similar sequences share some
identical parts. Thus, seed-based heuristics approaches consist in using relatively short words
for comparing sequences to “anchor” an alignment. Those short words are named seeds. Once a
common seed has been identified in both sequences, further extension is realized to get the full
local alignments. The pair of common seed occurrences in two sequences is called a candidate.
In this context, a good candidate means a candidate that leads to the local aligment with a
score greater than or equal to a choosen threshold.

The advantage of the seed-based heuristics approach is that it can significally reduce the
search space. With two sequences of length m and n, the size of the search space becomes
O(r×m′× n′), where r is the number of candidates, and m′ and n′ might be much less than m
and n (figure-2.2, b). In practice, as the seed size is extremely shorter compared to the sequence
length, the number of candidates might be numerous, containing both true positive ones and
false positive ones. To improve selectivity a filtering phase is added to the whole seed-based
heuristics aligment process. The filtering phase is usually applied to the flanking regions around
the seeds: the neighborhoods. This phase is called: “neighborhood filtering” (figure-
2.2, c).

The seed design, which is not addressed in this thesis, has a large impact on the sensitivity
and selectivity of the seed-based heuristics alignment algorithms. For the example shown in
figure-2.2, choosing the seed AT leads to the miss of the alignment in figure-2.2, d.

? ? ?

The design of the seeds and the full extension algorithms is not addressed here: see [Brown, 2008]
for a survey of seeding for sequence alignment. This thesis focuses on neighborhoods of the seeds,
and, more precisely, on “the algorithms and data structures to index the seed and to do neigh-
borhood filtering”. We discuss in the following sections two problems:

39In this context, short reads mean the genetic sequences of tens to hundreds base pairs
40http://www.ncbi.nlm.nih.gov/genbank/

http://www.ncbi.nlm.nih.gov/genbank/
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Figure 2.2: Comparision between Smith-Waterman algorithm and seed-based heuristics alignment algorithm
in finding the occurences with at most 1 error of sequence T = TTGATGT of length m = 7 in sequence S =
CTCCACCTCCTTGAGTCCCCTGCACGT of length n = 27. The score system is: 0 for matching, −1 for substitution and
indels. We are here in the case of finding the best semi-global alignment, that is the best alignment between
the whole sequence T and a subsequence of S. The rectangles describe the search space, thus the number of
calculations needed to be performed and the memory needed to be used. (a) is the search space of dynamic
programming algorithm on sequences S and T , that is m×n; (b) is the search space when choosing the word A for
the seed and then applying a dynamic programming around the candidates , that is k×m2 with k the number of
occurrences of the seed is S; (c) is the search space when choosing the same seed and applying the neighborhood
filtering phase with two flanking regions of size ` = 2 around the candidates, that is k × 2× `2. (d) is the result,
which finds an alignment with one deletion between T and the subsequence TTGAGT in S.
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Figure 2.3: Example of seed’s neighborhoods in the first 100 residues of the chromosome 10 with seed length
u = 3 and neighborhood length ` = 4. For each occurrence of the seed s (here AAT), the left and right flanking
regions of 4 residues are considered as the neighborhoods.

• Seed and neighborhood retrieval (section-2.2): how to store and retrieve the occurrences
and the neighborhoods of a given seed? As in [Peterlongo et al., 2008], we choose the
neighborhood indexing to efficiently access the neighborhoods.

• Approximate neighborhood matching (section-2.3): once the candidate occurrences are
retrieved with their neighborhoods, how to implement the neighborhood filtering? The
following chapters will then describe the solutions we adopted to solve those problems using
manycore processors.

2.2 Seed and neighborhood indexing

A seed s is simply defined as a contiguous word of length u over Σ. There are |Σ|u such different
seeds. In this section, we discuss the methods to keep the list of the occurrence positions of
each seed in a sequence t over Σ and their associated neighborhoods. All implementations in
this thesis are used for DNA sequences, thus Σ = {A,C,G, T} and |Σ| = 4.

For each occurrence of the seed in the sequence S, the two flanking regions of size ` will
be named the neighborhoods (figure-2.3). In our work, only the right neighborhood, denoted
by q, will be processed: We thus consider the sequence sq of size u + `. In practice, the
selection of a flanking region to be indexed and the usage of this indexation depends on the
design of the application. An example is further described in chapter-6. Our work can also be
straightforwardly extended for the applications which need both left and right region indexing.

2.2.1 Offset and neighborhood indexing

The usual scheme to index the seeds consists to store the positions (in the sequence t) of all
occurrences of each seed in a data structure (figure 2.4, left), which is called offset indexing
in [Peterlongo et al., 2008]. Such an indexing is used in many bioinformatics tools, such as
SSAHA2 ([Ning et al., 2001]), BLAT ([Kent, 2002]) or RMAP ([Smith et al., 2008]). For each
query position, each candidate returned by the seed matching phase leads to an iteration of the
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neighborhood filtering phase. This iteration accesses some neighborhoods of the positions. These
memory accesses are random, i.e. unpredictable and non contiguous. As described on page 31,
such accesses are not efficiently cached and require high latencies, for both CPUs and GPUs.

A way to reduce the computation time is thus to avoid as far as possible such random memory
accesses. In [Peterlongo et al., 2008], a neighborhood indexing approach has been proposed.
The idea is to directly store in the index the neighborhoods of size ` for every seed occurrence
(figure 2.4, right). Thus all neighborhoods corresponding to a seed are obtained through a single
contiguous memory access. Obviously, this index is redundant, as every character of the text
will be stored in the neighborhoods of ` different seeds: the neighborhood indexing enlarges the
size of the index (see below). However, it can improve the computation time by reducing the
random memory access. In [Peterlongo et al., 2008], the authors claimed that the neighborhood
indexing speeded up the execution time by a factor ranging between 1.5 and 2 over the offset
indexing. The neighborhood indexing approach are used to implement PLAST, the aligning
tools for protein sequences41 ([Nguyen and Lavenier, 2008], [Nguyen and Lavenier, 2009] and
[Nguyen, 2008]) or GASSST, the short read mapper ([Rizk and Lavenier, 2010]). Both PLAST
and GASSST create the index for sequences in the running time, as a data preprocessing step.
In applications we have in mind, the indexes of the sequences are created, stored on the hard
disk so that they can be loaded to be reused.

Considering GPUs, the neighborhood indexing approach has also two advantages:

• Avoiding as much as possible the random data exchanges between global and local mem-
ories of the GPU.

• Allowing coalesced accesses of the work-items to global memory of the GPU.

As the neighborhood length is fixed, it is also an advantage to efficiently design the memory
access pattern and the kernels. The high throughput data should be uniform and the algorithms
should avoid as much as possible branch divergences, which could be caused by the heterogeneity
in the input data sizes.

Size overhead of the neighborhood indexing. An obvious drawback of the neighborhood
indexing is that additional memory is required to store neighborhoods. If n is the size of the
sequence to be indexed:

• With the offset indexing, each offset takes dlog ne bits, thus the index size is n × dlog ne
bits;

• With the neighborhood indexing, and considering the nucleotide alphabet which require
2 bits to store each character, the overall index size is equal to n× (dlog ne+ 2× `) bits,
where ` is the length of the neighborhood.

The ratio between the overall index sizes of the neighborhood indexing and the offset indexing
is thus r` = 1 + 2×`

dlogne [Peterlongo et al., 2008]. For alignment purposes, it is common to round

dlog ne to offsets of an integer number of bytes. Table-2.1 shows the comparision between two
indexing approaches on a nucleotide sequence of 100 MB where the neighborhood lengths are
4, 8 and 16. The overhead of using neighborhood indexing is thus not so large.

41For protein sequences, |Σ| = 20.



2.2. Seed and neighborhood indexing 49

AAA 26, 105, 106, ...

AAC

AAG

AAT

107, 255, 299, ...

206, 311, 319, ...

11, 27, 67, ...

47, 48, 61, ...TTT

AATGAAACGGG

NNNNNNNNNNGAATTCCTTGAGGC C
TAAAT GCAT CGGGGTGCTCTGGTT T

TTA CT TTGG TGC TCTTTATTT TGCG
TGT TG TTGT TAT TTCTGAATGACAT

>chr10

..........................

AATGAAACGGG

AAA

AAC

AAG

AAT

TTT

TATT, ATTT, TGTG, ...

TGTT, GTTG, CTGA, ...

TGCA, ACTA, CTAT, ...

GGAT, CCCC, CATA, ...

TCCT, GCAT, GACA, ...

AAA 26, 105, 106, ...

AAC

AAG

AAT 11, 27, 67, ...

47, 48, 61, ...TTT

107, 255, 299, ...

206, 311, 319, ...

AATTCCT

AATGACA
AATGCAT

AATGAAACGGG

at most
2 mismatches

(rejected)
(candidate)
(candidate)

Offset index of

chromosome 10

seed
matching

neighborhood
retrieving

filtering
neighborhood

AATTCCT

AATGACA
AATGCAT

AATGAAACGGG

at most
2 mismatches

(rejected)
(candidate)
(candidate)

Offset index of
chromosome 10

(not used in these 2 phases)
chromosome 10

Neighborhood index of

seed
matching

neighborhood
filtering

Figure 2.4: Examples of using offset indexing (left) and neighborhood indexing (right) to search for the pattern
P = AATGAAACGGG with at most 2 substitutions in the human chromosome 10. The indexes of the chromosome
is created with seed length u = 3 (length of s) and neighborhood length ` = 4 (length of q). During the seed
matching phase, the seed s (here AAT) is used to access to the index, then the filtering phase get neighborhoods
of this seed to compare them against q (here GAAA) with a chosen threshold of 2 mismatches. (left) With offset
indexing approach, it requires one memory access (to the chromosome) per occurrence to get the corresponding
neighborhood, thus the random memory accesses. (right) With neighborhood indexing approach, all neigh-
borhoods are stored in the contigous region, along with the offset of each seed occurrence as the independent
offset index. One unique memory access allows to retrieve all the data needed by the filtering phase. Note that
the offset index is also required in the neighborhood indexing approach, but it is not used in the neighborhood
filtering phase.

` offset indexing neighborhood indexing ratio
(MB) (MB)

4 400 500 1.25

8 400 600 1.5

16 400 800 2

Table 2.1: The sizes of offset indexing and neighborhood indexing of a nucleotide sequence of 100MB. The
overhead of neighborhood indexing depends on the length of neighborhood (`). 32 bit machine word is used as
the unit to represent the offset and to keep the neighborhoods.
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2.2.2 Data structures for neighborhood indexing

We now present the data structures that we will use to store the neighborhoods. We will use a
simple “general structure” which is a flat list of occurrences, and a “reduced structure” which
contains a further level of indirection to regroup identical neighborhoods.

j j

u
4

 +
 1

seed s
s

address  = i

positions

neighborhoods

neighborhoods

neighborhoods

positions

positions

positions

neighborhoods SeedBlock 1

SeedBlock i

SeedBlock i+1

SeedBlock_list

u
SeedBlock 4

i + 1

i

start_list

Figure 2.5: General structure of the index. It is the simplest structure, with 1 start list and 1 list of SeedBlocks.
From a seed s, we compute its address i. Then start list[i] gives the address of the neighborhoods of s in the
SeedBlock list: its SeedBlock. Each SeedBlockis a sequence of neighborhoods foloowed by the sequence of their
positions. An example is given figure-2.6.

General Structure. For each seed s, the list of all its neighborhoods (and their positions) are
kept in a contiguous region called SeedBlock(s). As the size of seed is u, there are 4u SeedBlocks
(figure-2.5).

We use an array called the start list to keep the start positions of each SeedBlock. The
address in the start list associated to the seed s is a key computed from the seed:

addresss =
u−1∑
i=0

s[i]× |Σ|i

It requires only the seed key to access to the whole SeedBlocks of the given seed, from
start list[addresss] to start list[addresss + 1], so we must use one additional element to
keep the end position of the last SeedBlocks. Thus, the start list has 4u + 1 elements.

In practice, we use the machine word as an unit for storing data. Here, we use the
assumption that both neighborhood and position can be stored in one unit42. The more compact
case, where multiple neighborhoods can be kept in one unit, is further presented in Section 3.1.4.
In each SeedBlock, there is a 1 − 1 relation between a neighborhood and its positions. If they
are N neighborhoods of a SeedBlock, then the size of the SeedBlock is:

SSeedBlock = 2×N × Sunit

where Sunit is the size of a machine word (either 32 or 64 bits).

42For the alphabet Σ = {A,C,G, T}, a character is represented by 2 bits, so a machine word of size 32 can
store a neighborhood of length up to 16. It is the case for all implementations in this thesis.
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Figure 2.6: Example of a SeedBlock in the general structure. (a) is the neighborhoods and the seed occurrence
positions, (b) is the corresponding SeedBlock made of a sequence of neighborhoods and their corresponding
positions.

Reduced Structure. The disavantage of the general structure is that the neighborhoods
might be redundant. We will consider a reduced structure where the neighborhoods are
sorted and kept in the list as unique keys. The trade-off is that the data structure is now more
complex, as it must divide the SeedBlock into the block of neighborhoods (the nb block) and the
block of positions (the pos block).

As there is no longer the 1− 1 relations between a neighborhood and its position, it requires
another list as the pointer to the sub-block which contains the positions of all occurrences of
each neighborhood (the nb pos block) (figure-2.7).

Indexed Block Structure. In general structure and reduced structure, the neighborhoods
are kept in flatten lists. To apply approximate matching methods, the lists must be traversed.
In order to speedup the matching time, the lists can be also indexed themselves. In this case,
another list is added to keep the neighborhood list index information. This leads to the indexed
block structure. Details about this data structure and a solution using this data structure
with perfect hashing are further presented in chapter-4.

2.3 Approximate neighborhood matching

The neighborhood filtering phase verifies all candidates returned from the seed matching phase
by comparing the neighborhoods associated with this pair of seed occurrences. To validate a
candidate, one can compute the edit distance between two neighborhoods (see page 44) and
select it or not based on a given threshold.
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figure-2.8.
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This phase can be implemented as an approximate pattern matching process over all pairs
coming from two sets of neighborhoods. One neighborhood set can play the role of the texts
while the other can play the role of the patterns and each pattern can be queried in turn. It
is related to a generic basic problem where a pattern is queried against one or several texts,
allowing some errors. This is the core problem of this thesis, formalized as follows:

Problem 1 (Approximate neighborhood matching) Given a pattern q and a parameter
e, find all words in a set of fixed-length words such that the edit distance with q is at most e.

This problem can be solved following two approaches:

• Approximate neighborhood matching based on exact matching. From the input
pattern q, the set of all patterns Πe(q) is generated by iterations. Each degenerated
pattern is queried against the text with an exact matching algorithm. This method is
simple, but is obviously exponential, the set Πe(q) having a size O(|Σ|e). Nevertheless,
taking parallelism into account, this “naive” approach for approximate matching could be
the most powerful. It seems the matching process of each degenerated pattern is easy to
implement and to launch simulaneously and independently on the processing elements of
an OpenCL device. We will use this strategy in 3.2. A drawback of such an approach is
that it can only be used for small values of e. Thus in this thesis, we will experiment it
with small Hamming distance, for e = 1 or 2.

• Approximate neighborhood matching by dedicated algorithm. More generally,
one can design specific algorithms able to to find the Levenshtein or other distance between
two words [Navarro and Raffinot, 2002]. Of course, although it is more general than the
above method, it requires suitable algorithms for the GPUs, which ideally should terminate
after a predictible number of iterations and contain few branch condition statements. The
BPR algorithm, which is based on bit-parallelism (3.1.1) is selected as it can satisfy these
requirements.

2.4 Conclusion

Seed-based heuristics alignment process is based on three phases:

1. seed indexing,

2. neighborhood filtering,

3. and full extension.

We focus in this work on the redundant neighborhood indexing approach that can be effeciently
used to accelerate the filtering phase. The main ideas in data structures and approximate pat-
tern matching methods were also presented. The following chapter-3 will show how we use the
general index structure together with an extension of the Wu-Manber bit parallelism approxi-
mate matching algorithm as well as the benefits of the reduced index structure to implement a
binary search strategy. The usage of the indexed block structure using perfect hashing functions
will be presented in chapter-4.
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Chapter 3

Direct Neighborhood Matching

This chapter brings two solutions to the problem-1 (Section-2.2) using the index structures
where the neighborhoods are kept in the index in flatten lists. The first part, which
was presented at Parallel Bioinformatics Conference (PBC) [Tran et al., 2011], is about the
usage of Bit Parallel Row-wise (BPR), an approximate pattern matching bit-parallel algorithm
proposed in [Wu and Manber, 1992a] and adapted by us for a set of fixed length words. The
second part uses the binary search strategy.
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3.1 Bit-parallel rowise algorithm

General structure and reduced structure introduced in the previous chapter are just flatten
lists of the neighborhoods and of the occurrences of the seeds (page 50). It is well suited for
data parallelism as each element is independent with the others. BPR is a powerful tool for
approximate pattern matching using the Levenshtein distance between two words of length less
than a machine word. Without branch divergence, BPR is also an efficient algorithm to process
massively parallel data.

3.1.1 Bit-parallel approximate pattern matching

We start this section with the problem of generic approximate pattern matching between a
pattern q = q1q2...qv of length v and a text t over an alphabet Σ as: “Given a pattern q and a

55
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parameter e, find all the occurrences of q in the text t such that the distance between q and its
occurrence in t is at most e.”

The main difference from this problem with the core problem of the thesis (“approximate
neighborhood matching”, defined on page 51) is that here we look for matches of q anywhere in
t (that may be here a large text) while the core problem searches for matches of q in a set of
fixed-length words.

This problem can be solved by passing the characters in the text through a matching au-
tomaton, built from the pattern. The most simple type of automaton, used in this chapter, is
the prefix automaton which can recognise all the prefixes of q with at most e errors. They
are a nondeterministic automaton with (v+ 1)× (e+ 1) states, which are virtually organised as
a matrix M of e+ 1 rows and v + 1 columns (figure-3.1):

• Once a state Mi,j is active, it means the prefix q1q2...qj−1 is recognized with i errors.

• For each state Mi,j , 0 ≤ i ≤ e + 1, 1 ≤ j ≤ v, there are 2 (Hamming distance) or 4
(Levenshtein distance) transitions:

– The matching transition, which reads the character qj and changes to the stateMi,j+1.
It means that the prefix q1q2...qj is recognized with i errors.

– The substitution transition, which reads any character in Σ, and changes to the state
Mi+1,j+1. It means that the prefix q1q2...qj is recognized with i+ 1 errors.

– (only for Levenshtein distance) The deletion transition, which reads nothing (denoted
by ε) and changes to the state Mi+1,j+1. It means that once the the prefix q1q2...qj−1
is recognized with i errors, the prefix q1q2...qj can be automatically recognized by
deleting the character qj , thus with i+ 1 errors.

– (only for Levenshtein distance) The insertion transition, which reads any character
in Σ and changes to the state Mi+1,j . It means that the character qj is inserted to
the the prefix q1q2...qj−1, thus the prefix q1q2...qj is recognized with i+ 1 errors.

• Mi,v+1, 0 ≤ i ≤ e+ 1, are the finite states, which have only (for the Levenshtein distance)
an insertion transition. Once the finite state Mi,v+1 is active, the pattern is matched with
i errors.

• M1,1 is the initial state with the self-loop to express the travere of all the characters in the
input text.

As this matching automaton is in the nonderterministic form, it must be either transformed into
the deterministic one (with a possibly exponential number of states) or run by simulating updates
of states [Holub, 2002]. One of the automaton state simulation methods is bit-parallelism,
which emerged in the early 90’s. This approach consists in taking advantage of the parallelism
of bit operations, encoding the states of a matching automaton into a machine word
seen as a bit array so that they can be updated simultaneously by one operation. Ideally,
these algorithms divide the complexity by w, where w is the length of a machine word. The
Shift-or algorithm for exact pattern matching [Baeza-Yates and Gonnet, 1989] is one of the first
algorithms using this paradigm. In 1992, Wu and Manber [Wu and Manber, 1992a] proposed an
approximate matching algorithm. The Wu-Manber algorithm (called BPR, for Bit-Parallelism
Row-wise, in [Navarro and Raffinot, 2002]) allows substitution, insertion and deletion errors,
and was implemented in the agrep software.
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Figure 3.1: Example of the nondeterministic finite matching automaton of pattern q = GATGC which allows
upto 1 error in the Levenshtein distance. The automaton has 2 “rows”, corresponding to the exact matching case
and the 1-error matching case. There are 4 types of transitions: matching (horizontal arrows), insertion (vertical
arrows), substitution (diagonal arrows) and deletion (dash curved diagonal arrows). The shaded states are the
active ones after parsing the text t = GATG. One approximate matching with 1 deletion from the pattern is
recognized.

Many other bit-parallel algorithms have been designed. One can refer to [Navarro and Raffinot, 2002]
or [Simone and Therry, 2013] for reviews on the subject. BPR has been reported as the best
unfiltered algorithm in DNA sequences, for low error levels and short patterns (p. 182 of
[Navarro and Raffinot, 2002]). We thus focused on this algorithm instead of theoretically better
ones such as BNDM, implemented in the nrgrep software [Navarro and Raffinot, 2002]. More-
over, BPR is more regular than other solutions, simple to implement on GPUs without creating
divergent branches (further discussed in 5.2.5). The two following sections will present details
of this algorithm and our extension for multiple fixed length words.

3.1.2 Bit-parallel rowise (BPR) algorithm

We now present the Bit Parallel Rowise (BPR) algorithm proposed in [Wu and Manber, 1992a].
This algorithm simulates each row in the matching nondeterministic finite automaton (NFA)
as a bit vector. All states can be updated simultaneously by a combination of bit operators.

BPR Exact matching. The pattern q of length v is encoded over a bit array R of length v.
Characters of the text t are processed one by one, and we denote by R[j] the value of R once
the first j letters of the text have been read. More precisely, the ith bit of R[j] equals 1 if and
only if the first i characters of the pattern (q1...qi) match exactly the last i characters of the
text (tj−i−1...tj). The first bit of R[j] is thus just the result of the matching of (q1 = tj), and,
when i ≥ 2, the ith bit R[j](i) of R[j] is obtained by:

R[j](i) =

{
1 if R[j−1](i− 1) = 1 and (qi = tj) (match)
0 otherwise

With bitwise operators and ( & ) and shift (� ), this results in Algorithm 1.

The pattern bitmask B is a table with |Σ| bit arrays constructed from the pattern, such that
B[tj ](i) = 1 if and only if (qi = tj). This algorithm works as long as v ≤ w, where w is the
length of the machine word, and needs O(z) operations to compute all R[j] values, where z is
the length of the text.
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 R[0] ← 0v

R[j] ←
(
(R[j−1] � 1) | 0v−11

)
& B[tj ]

Algorithm 1: Exact Bit-Parallel Matching

BPR Approximate matching. To generalize the matching up to e errors, we now consider

e + 1 different bit arrays R0, R1, ...Re, each one of length v. The ith bit of R
[j]
k equals 1 if and

only if the first i characters of the pattern match a subword of the text finishing at tj with at
most k errors, leading to Algorithm 2. Due to insertion and deletion errors, the length of a
match in the text is now in the interval [v− e, v+ e]. This algorithm works as long as v+ e ≤ w,
but now takes O(ez) time. An illustration of this algorithm is given figure-3.2.
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Algorithm 2: BPR Matching

This algorithm can easily be changed in the cases that not all 3 types of edits are allowed. For
example, if only the substitution is allowed (the Hamming distance), we remove the components

corresponding to the deletion and the insertion, thus the update of R
[j]
k is:

R
[j]
k ←

(
(R

[j−1]
k � 1) & B[tj ]

)
| (R[j−1]

k−1 � 1) | 0v−k1k

(match) (substitution) (init)

3.1.3 Multiple fixed length bit-parallel rowise (mflBPR) algorithm

In this section, we propose an extension of BPR to solve the core problem of “Approximate
Neighborhood Matching” (defined on page 51), taking account of memory accesses into consid-
eration. We will call this algorithm mflBPR, for “multiple fixed length Bit Parallel Rowise”.
Formally, we compare here a pattern q of length v against a collection of words t1, t2, ... tn of
length ` = v + e, allowing at most e errors (substitutions, insertions, deletions).

The existing bit-parallel algorithms for multiple pattern matching (reviewed in Section 6.6 of
[Navarro and Raffinot, 2002]) match a set of patterns within a large text. Our setup is different,
as we want to match one pattern with several texts. Of course, one could reverse the multiple
pattern matching algorithms and build an automaton on a set of all neighborhoods. This would
result in a huge automaton, and the algorithm would not be easily parallelizable.

The idea of mflBPR is to store h fixed-length words into a machine word, so h matchings
can be done simultaneously. As in BPR, to have a matching up to e errors, we consider e + 1
different bit arrays R0, R1, ...Re, but each one is now of size vh, that is h slices of v bits. If
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Figure 3.2: Example of Bit Parallel Rowise matching algorithm (BPR), searching the patern p = GATGC
in the text t = GTGCATGC. On the left is the bit mask corresponding to p. On the right is the updates of
simulation matrix R, corresponding to the approximate matching automaton in figure-3.1, after the read of each
character in t. There are two matches with 1 error. The first match is found after reading the character t(4),
starts from t(1) to t(4): matched with 1 deletion from the pattern. The second match is found after reading the
character t(8). There are 2 possibilities for this match: (1) starts from t(5) to t(8): matched with 1 insertion to
the pattern or (2) starts from t(4) to t(8): matched with 1 substitution in the pattern.

1 ≤ r ≤ h and 1 ≤ i ≤ v, the ith bit of the rth slice of R
[j]
q equals 1 if and only if the first i

characters of the pattern match the last i characters of the rth text (trj−i−1...t
r
j) with at most k

errors. We thus obtain Algorithm 3.



R
[0]
k ←(0v−k1k)h

R
[j]
0 ←

(
(R

[j−1]
0 � 1) | (0v−11)h

)
& B̂[t̂j ] (match)

R
[j]
k ←

(
(R

[j−1]
k � 1) & B̂[t̂j ]

)
| R[j−1]

k−1 | (R
[j−1]
k−1 � 1) | (R[j]

k−1 � 1) | (0v−k1k)h

(match) (insertion) (substitution) (deletion) (init)

Algorithm 3: Multiple Fixed-Length BPR (mflBPR) Matching

Figure 3.3 shows a run of this algorithm. Compared to BPR, the initialization is (0v−k1k)h

instead of 0v−k1k. This initialization puts 1’s at the k first bits of each slice, thus overriding any
data shifted from another slice. Moreover, to allow better memory efficiency:

• The set of n fixed-length words t = {t1, t2, ..., th} is stored and accessed through a stripped
layout, as each access j returns the jth characters of every word: t̂j = t1j t

2
j ...t

h
j

• The block mask B̂[t1j t
2
j ...t

h
j ] = B[t1j ]B[t2j ]...B[thj ] is thus now larger, having |Σ|h bit arrays

(instead of |Σ|). As in BPR, the computation of this table still depends only on the pattern.
This table is somehow redundant, but at least it now allows the match of h characters
with one unique memory access: This is designed to fit our manycore hardware.

mflBPR works as long as vh ≤ w, where w is the length of the machine word, and needs O(ez/h)

operations to compute all R
[j]
k values, where z is the total length of all texts. Comparing to the

BPR algorithm, there are h times less operations. Of course, the limiting factor is again the size
of a machine word.
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t1 = ATCG

t2 = GGAC
t3 = AGCG
t4 = AGTC

q = ATC

B[A] 0 0 1
B[C] 1 0 0
B[G] 0 0 0
B[T] 0 1 0

−→

B̂[AAAA] 0 0 1 0 0 1 0 0 1 0 0 1

B̂[AAAC] 0 0 1 0 0 1 0 0 1 1 0 0

B̂[AAAG] 0 0 1 0 0 1 0 0 1 0 0 0

B̂[AAAT] 0 0 1 0 0 1 0 0 1 0 1 0

B̂[AACA] 0 0 1 0 0 1 0 1 0 0 0 1

B̂[AACC] 0 0 1 0 0 1 0 1 0 0 1 0

. . . . . . . . . . . . .
B̂[TTTA] 0 1 0 0 1 0 0 1 0 0 0 1

B̂[TTTC] 0 1 0 0 1 0 0 1 0 1 0 0

B̂[TTTG] 0 1 0 0 1 0 0 1 0 0 0 0

B̂[TTTT] 0 1 0 0 1 0 0 1 0 0 1 0

Execution

B̂[AGAA] 0 0 1 0 0 0 0 0 1 0 0 1 −→

B̂[TGGG] 0 1 0 0 0 0 0 0 0 0 0 0 −→

B̂[CACT] 1 0 0 0 0 1 1 0 0 0 1 0 −→

B̂[GCGC] 0 0 0 1 0 0 0 0 0 1 0 0 −→

t1 t2 t3 t4

R
[0]
0 0 0 0 0 0 0 0 0 0 0 0 0

R
[0]
1 0 0 1 0 0 1 0 0 1 0 0 1

R
[1]
0 0 0 1 0 0 0 0 0 1 0 0 1

R
[1]
1 0 1 1 0 0 1 0 1 1 0 1 1

R
[2]
0 0 1 0 0 0 0 0 0 0 0 0 0

R
[2]
1 1 1 1 0 0 0 0 1 1 0 1 1

R
[3]
0 1 0 0 0 0 1 0 0 0 0 0 0

R
[3]
1 1 1 0 0 1 0 1 0 0 0 1 0

R
[4]
0 0 0 0 0 0 0 0 0 0 0 0 0

R
[4]
1 1 0 0 1 1 1 0 0 0 1 0 0

Figure 3.3: Execution of the algorithm 3 on 12-bit machine words. The pattern q = ATC, of length v = 3, is
compared against h = 4 words with up to e = 1 error. The block mask B̂ of q is generated based on the bit mask B.
The text data t = {ATCG, GGAC, AGCG, AGTC} is stored in a stripped layout as {AGAA, TGGG, CACT, GCGC}.
After 2 iterations, there is one approximate match for t1 (AT, one insertion). After 3 iterations, there is one
exact match for t1, and one approximate match for t3 (AGC, one substitution). After 4 iterations, there are three
approximate matches, for t1 (ATCG, one deletion), t2 (AC, one insertion) and t4 (AGTC, one deletion).

3.1.4 Implementing BPR and mflBPR on OpenCL devices for approximate
neighborhood matching

Let w the size of the machine word, ` the size of the neighborhood and b the number of bits
encoding a character in Σ, the maximal number of neighborhoods in a machine word is:

h =

⌊
w

`× b

⌋

In the framework of using neighborhood indexing for the seed-based heuristic alignment, the
lists of the neighborhoods and of the occurrences of a seed s are kept in the SeedBlock(s) (see
section 2.2.2). With N the number of neighborhoods, and a machine word of 32 bits (4 bytes)
as the unit to store both the neighborhood and the position, the total size of a SeedBlock is:

SSeedBlock =

(⌊
N
h

⌋
+N

)
× Sunit
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` h nbBlock size posBlock size SeedBlock size
(MB) (MB) (MB)

4 4 0.5 2 2.5

8 2 1 2 3

16 1 2 2 4

Table 3.1: The maximal number of neighborhoods (h) in a 32 bit machine word and the sizes of a SeedBlock for
the general index of a nucleotide sequence of length 128Mbp in 3 cases of neighborhood length with seed length
u = 4.

The position posi of the ith neighborhood is calculated as:

posi =

(⌊
N
h

⌋
+ i

)
× Sunit

The average value of a SeedBlock depends on the length of the text (n) and the seed length
(u): SSeedBlock ∼ n/4u. Table-3.1 gives examples of h values and SSeedBlock size for the general
index of a 128Mbp nucleotide sequence, with u = 4 and for several `.

The problem-1 can be solved by applying either BPR or mflBPR over all the elements in
the neighborhood list partition of the SeedBlock. This index is intrinsically parallel, as the
neighborhoods are processed independently. Figure-3.4 depicts the diagram of using BPR or
mflBPR on general index structure over OpenCL device. All the index data are precomputed
and transferred only once to the device. Then the application runs looping on each query:

• The pattern pre-processing as well as the SeedBlock(s) position retrieving is done on the
host.

• The block bitmask B(q) or B̂(q) and the positions of SeedBlock(s) are sent to the global
memory of the device.

• The device is devoted to the neighborhood filtering phase. Depending on the size of
SeedBlock(s), several comparing cycles may be run (dashed arrow on figure-3.4). In each
comparing cycle, neighborhoods are distributed over different work groups and loaded in
the local memory of each work-group, and processed by several work-items. The positions
of the matching neighborhoods are then written back to a result array in the global memory.
They are transferred back to the host once all comparing cycles are finished.

3.2 Binary search (BS)

This section is about approximate pattern matching based on exact matching. We use the
binary search strategy to find the occurrences of all substitution patterns (thus considering
the Hamming distance). The patterns are generated from the original word from the list of
neighborhoods. This approach is suitable only for the cases of small Hamming distance, over a
small alphabet, and we will see in chapter 5 that it is highly efficient in these cases.
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work−group 0 work−group 1 work−group N−1

Block Bit Mask

Bit Mask or

Block Bit Mask

Bit Mask or

Result

Index

OpenCL

Device

Output to Host

s
q

Q(sq)

NBlock s

Figure 3.4: Using BPR and mflBPR with OpenCL devices. The index is written and kept in the global memory
of the OpenCL device. For each query sq, the bit mask or block bit mask corresponding to q is calculated
and transfered to the OpenCL device. The SeedBlock corresponding to s is divided and written to the local
memory of the work-groups. Each work-item in a work-group processes a number of independent neighborhood
simultaneously. The input queries are processed in turns, represented by the dashed line arc in the diagram.

3.2.1 Generating degenerated patterns

Given a pattern q of length v and a parameter e ≥ 0 over an alphabet Σ, we have to generate
the set of degenerated patterns Πe(q) which have a Hamming distance of at most e with q. It
can be solved by substituting the characters in e different positions of the pattern q. We denote
by SP ⊂ [1, v]e the set of combinations of e positions of the pattern. Each element (i1, . . . , ie)
of SP denotes a set of positions to be substituted in q. The size of SP is:

|SP| =

(
v

e

)
=

v!

e!(v − e)!
= O(ve)

For each substituting position in the pattern q, there are |Σ| − 1 different characters to be
changed in turn. Thus there are:

|Π=e(q)| = |SP| × (|Σ| − 1)e = O(ve · |Σ|e)

degenerated patterns with exactly e substitution errors. To avoid branch divergence in the
algorithm, and to generate patterns with < e errors, we will also subtitute each character
by itself, giving |Σ| different characters for each position. It means that we allow redundant
computations to have a simpler algorithm which do not require conditional statements. We
denote by SC the set of combinations of e letters from Σ. An element (α1, . . . , αk) ∈ Σe of SC
means that the character qik will be substituted by αk. The size of SC is:

|SC| = |Σ|e
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1 2 3

4 16 96 256

8 32 448 3584

16 64 1920 35840

Table 3.2: The number of degenerated patterns with 1, 2, 3 substitution errors for v = 4, 8, 16

Each couple of elements in SP×SC will map to an elemnt of Πe(q). For example, let q = AGCTAAGT,
Σ = {A,C,G,T}:

• ((1, 3), (T,G)) produces the degenerated pattern TGGTAAGT (2 errors from q)

• ((1, 2), (A,A)) produces the degenerated pattern AAGTAAGT (1 error from q)

This mapping is not injective, as all degenerated pattern with < e errors will be generated
several times : ((2, 5), (A,A)) produces the same degenerated pattern with 1 error. Nevertheless
the size of Πe(q) can be bounded by:

|Πe(q)| ≤ |SP| × |SC| = |SP| × |Σ|e = O(ve · |Σ|e)

In practice, all elements of Πe(q) can thus be generated in turn by iterations with the
complexity of O(ve · |Σ|e). The parallel solution to generate and process Πe(q) is presented
in the following section. As shown in table-3.2, the number of degenerated patterns grows
exponentially: it will become eventually greater than the maximal number of work-items in
each work-group. Of course, one could also serialize the process on some work-items, but we
choose to implement this technique with a unique work-item for each element of SP× SC. We
choose to consider only the case with 0 ≤ e ≤ 2. When the Hamming distance is greater than
2, we can still use BPR allowing only substitutions.

3.2.2 Implementating binary search on OpenCL devices

Given a query in the form of sq, where s is the seed part and q is the neighborhood part. The
key of s is used to locate the SeedBlock(s) on which all elements of Πe(q), generated from q,
are queried by the binary search. The whole work which contains |SP | × |SC| independent
processing elements can be divided as follows:

• The whole work is processed by a block of |SC| work-groups;

• Each work-group processes a whole set |SP| for one element in SC;

• Each work-item processes one element of SP for the element of SC of its work-group.

Parallelizing the Hamming-distance degenerated patterns Once a kernel is launched
as multiple instances in the OpenCL index space, each work-item can use the native command to
get its local identifiers (l id) and the identifiers of its work-group (gr id). These two identifiers
are used to calculate the elements of SP and SC.

• e = 0: exact matching case, Πe(q) = {q}.
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• e = 1: |SP| = v and |SC| = Σ.
The element of SP× SC for a given work-item is:

(l id mod v), (gr id mod |Σ|)

• e = 2: |SP | = v(v−1)
2 and |SC| = |Σ|2.

To compute efficiently the position of substituing characters, we precompute a comple-
mentary data structure, called the position substituting list (LPos). The construction
of LPos only depends on v. Let Msub be a v× v matrix ranging from (0, 0) to (v− 1, v− 1)
such that Msub(i, j) = iv+ j, we construct LPos as a 1 dimension array ranging from 0 to
|SP | − 1 made of the upper right triangular values of Msub, excluding the main diagonal.
Let gr sub id = gr id mod |SC|, the element of SP× SC for a given work-item is:

(LPos[l id] div v, LPos[l id] mod v), (gr sub id div |Σ|, gr sub id mod |Σ|)

An example for v = 4 is given on figure-3.5. The advantage of this method is that LPos
depends only on v and e, which are constants for the kernel. LPos can thus be built in the
host and then transfered to the kernel.

In all these cases, each work-item can build its element of SP×SC Πe(q) by some basic operators
as mod and div in constant time. Once this element is known, the work-item can do the binary
search in time O(log(N ). This technique could be extended for error numbers e > 2, but again
the exponential size of Πe(q) would become a limiting factor.

Usage with OpenCL devices Figure-3.6 depicts the usage of binary search with the Ham-
ming distance patterns generating model on the OpenCL devices. All the index data are pre-
computed and transferred only once to the device. The input queries, each in the form of sq,
are divided into batches of size N . The constants related to the configuration of the kernel such
as: |SP|, |SC|, LPos, etc. are calculated in the host and written to the constant memory region
of the device. Then, the application runs looping on each batch of queries:

• Each work-item follows those steps:

– Use the key of s to get the address of the corresponding SeedBlock(s).

– Generate the degenerated pattern from q based on its local identifier and group
identifier.

– Search for the degenerated pattern in SeedBlock(s) using the binary search.

• The positions of the matching neighborhoods are then written back to a result array in
the global memory before being transfered back to the host.

Comparing with the usage of BPR and mflBPR on OpenCL devices, this strategy has both
advantages and disadvantages:

• The search can be done in time O(ve log(N )), where N is the size of the SeedBlock (see
Table 3.3). For small Hamming distance, the ve factor can be efficiently parallelized, as
presented above;

• The size of a SeedBlock can be greater than the size of the local memory. In this case, it
leads to random accesses to the global memory when doing the binary search.
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0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

−→ LPos 1 2 3 6 7 11
(α1, α2) (0,1) (0,2) (0,3) (1,2) (1,3) (2,3)

LPos

Block of 16 work−groups

: {A,C,G,T}Σ

P  :  CAGT

work−group 15work−group 0 work−group 1

gr_sub_id = 0 : SC(A,A) gr_sub_id = 1 : SC(A,C) gr_sub_id = 15 : SC(T,T)

5
4

3

2

0

1

7
11

1

2

3

6

SP(0,1),SC(A,C): ACGTSP(0,1),SC(A,A): AAGT 

SP(0,2),SC(A,A): AAAT 

SP(0,3),SC(A,A): AAGA 

SP(1,2),SC(A,A): CAAT 
SP(1,3),SC(A,A): CAGA

SP(2,3),SC(A,A): CAAA 

SP(0,2),SC(A,C): AACT

SP(1,3),SC(A,C): CAGC

SP(2,3),SC(A,C): CAAC

SP(1,2),SC(A,C): CACT

SP(0,1),SC(T,T): TTGT

SP(0,2),SC(T,T): TATT

SP(0,3),SC(A,C): AAGC SP(0,3),SC(T,T): TAGT

SP(1,2),SC(T,T): CTTT
SP(1,3),SC(T,T): CTGT

SP(2,3),SC(T,T): CATT

Figure 3.5: Parallelizing the Hamming-distance pattern generating model for e = 2 errors and a pattern of size
v = 4 (note that in computing, all character position start from 0). The substituting list LPos has 6 elements
whose values are the upper-right diagonal triangle of a 4×4 matrix. For a pattern of size 4 over Σ = {A,C,G, T},
we use a block of 16 work-groups, corresponding to elements (α1, α2) of SC: {(A,A), . . . , (T, T )}. Each work-
group contains 6 work-items with the local identifier from 0 to 5. This figure shows an example of generating all
edited patterns which have the Hamming-distance of at most 2 with the pattern q = CAGT.

Total time complexity
(uint operations)

Global memory access

Generate Pe O(ve) 1

Binary Search O(ve · log(N )) ≤ ve · log(N )

Table 3.3: The time complexity, the number of uint operators and the memory access number of a binary search
query. This complexities are divided by ve when using several work-items as described in the text.
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Figure 3.6: Using binary search with reduced index on OpenCL devices. LPos is written to the constant
memory, the other structures of the reduced index: nb block,nb pos block,pos block (2.2.2) are written to the
global memory. The input queries are divided into batches of size N , which are processed in turns as described
by the dashed line arc in the diagram.
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3.3 Conclusion

Considering data structures where the SeedBlocks are stored in flatten lists, the approximate
pattern matching against these lists of neighborhoods can be done simultaneously on the OpenCL
device by either a dedicated algorithm such as BPR or the use of an exact matching algorithm for
the set of all degenered patterns at a given Hamming distance. We proposed and implemented a
new algorithm, mlfBPR, a parallel extension for BPR. Results of this algorithm and comparison
with BPR will be discussed in chapter 5. We will see that mflBPR outperforms BPR, with a
speedup close the theoretical ratio h. However, in the case of small Hamming distances, which
is the case of many applications such as for the read mapper presented in chapter 6, the binary
search performs better than both BPR and mflBPR.

Keeping neighborhoods in flatten list in the general structure and the reduced structure
has the disadvantage that the SeedBlocks has to be traversed to find the occurrences, either
exhaustively or dichotomously. Thus the compute time depends on the size of the SeedBlock of
the considered seed. The next chapter will propose to index also the neighborhoods.
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Chapter 4

Neighborhood Indexing
with Perfect Hash Functions

We first remember that the core problem of this thesis is to efficiently retrieve and (approxima-
tively) compare neighborhoods stored in a seed-based index.

In the previous chapter, we investigated solutions when the neighborhoods of a given seed
were kept in a flatten lists sorted or not. This chapter presents another approach. We will use
hashing in order to index the neighborhoods. This means that we now use a two-stage index:
the main index, given a seed s, returns as before a neighborhood block SeedBlock(s), but this
block is further stored in a indexed way. To allow very efficient querying, in constant time, we
will use techniques of perfect hashing.

The chapter starts with an introduction on perfect hashing techniques, then explains how
this is implemented to solve approximate neighborhood matching.
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4.1 Motivation

In the previous chapter, given a seed s, the neighborhood block SeedBlock(s) needs to be tra-
versed to apply the matching algorithms. In these 2 cases, the processing time depends on N ,
the size of SeedBlock(s): either O(N ) or O(log(N )) for exact matching, and either O(N ) or
O(log(N ) · ve) for approximate pattern matching.

The idea of this chapter is to further index the neighborhoods in order to be able to retrieve
the occurrences of a neighborhodd in constant time. This would allow us to compute the exact
matching in O(1) time and the approximate matching in O(ve) time. One good technique is to
use hash functions: given a neighborhood q, a hash function can effectively gives a hashed value
addr = h(q) in constant time, “where” we can store occurrence information.

The problem of hash collisions. The disadvantage of using hash functions is the eventuality
of collisions where multiple neighborhoods q are hashed to the same addr. How can the
collisions be handled ?

1. Usually, librairies using hashing techniques explicitely handle collisions. A common so-
lution is to use a linked list at the value addr. Another solution is the linear hashing
[Litwin, 1980], which continues generating a new hashed value addr′ from the current
value addr by a deterministic function, until collision is ended. In both solutions, the
problem is that the access time to the value does not remain constant, and can be differ-
ent between elements. For implemention on GPUs with the diagram presented figure-3.6
page 66, this drawback can cause branch divergence because of a difference in the number
of random accesses to the global memory, like the binary search.

2. Some techniques further lower the expected number of collisions. For example, when one
only wants to test the appartenance of key to a set, Bloom filters reduce the number of
collisions by combining several hash functions [Bloom, 1970]. For Bloom filters, the query
of the existence of a key in a set (the filter step) can be done in constant time. Although
this techniques avoids false negatives, it leads to some false positives. Such filters need
further post-processing to effectively access the values and to check the false positives.
Moreover, another disadvantage of Bloom filters is that the addresses (or the positions) of
the keys in the set are not stored. It means that to check the false positives of the filter
Bloom and to obtain the address of the true existence keys, it require to do an additional
searching process over the set (the search step). Even if the number of the keys needed
to be search could be much less than the original queried keys, it leads to the following
problems, especially considering implementations on GPUs:

• The disadvantages of the direct neighborhood matching approach (chapter-3) still
remain. Even if the number of keys that passed through the filter is very few, it
still causes branch divergence, thus there could be a lot of waste due to work-items
that terminate after the filter phase and have to wait for the other ones (in the same
warps) doing the searching step.

• In cases where the number of keys that passed the filter is numerous, it leads to waste
time for the filter step.

We made some preliminary tests with Bloom filters in cooperation with the BPR/mflBPR
as the search step, but the performance was very poor (results not shown). Moreover, it leads
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to additional complexity to the program structure.

Related works on GPU-bashed Hashing. A number of works on mapping popular hasing
algorithms onto GPU have been anounced, such as “Open adressing” [Alcantara, 2011, chapter
3], “Chaining” [Alcantara, 2011, chapter 4], “Cuckoo hashing” [Alcantara, 2011, chapter 5,6],
“Multidimensional linear dynamic hashing” [Liu et al., 2012b]. One point of focus of these
works is on the speed of the hash table building phase and on subsequent dynamic updates.
However, the need for collision handle in the key retrieval phase still remains (as in the original
serial hashing algorithms). Although the queries can be executed in parallel, there is always
the possibility of nondeterministic accesses to the hash table, which can lead to both random
memory accesses and branch divergence problems.

In addition to such problems, these works are different from the main purpose of this thesis
in that the index is constructed only once without requiring dynamics update: we focus here
more on the key retrieval phase, which must be efficiently parallelized on the GPU.

The selection of using perfect hash functions. We finally decided to use another tech-
nique, by using perfect hashing functions which allow no collision at all. In this case, the test of
an exact match of a neighborhood in SeedBlock(s) can be done exactly in constant O(1) time,
with a fixed number of memory accesses. Moreover, it fits particularly well on the GPU, because
it requires intensive but homogeneous computational operations.

Formally, let U be the universe of keys (in our context, the neighborhoods, that is words of
length v), let S ⊆ U be a subset of n keys and let V = [0..m−1] be an interval of integers called
the values. A hash function is a function h : U → V that maps the set of keys S into V. A
perfect hash function is a one-to-one hash function: two different keys maps two different
values. If m = n, then we say that h is a minimal perfect hash function.

Once the elements in the set are indexed by a perfect hash function, aO(1) access is guaranted
but the size of the list used to store the elements may not be optimal (further discussed in
Section 4.2.5). A minimal perfect hash function also guarantees that the final list of elements
is of minimal size. However, computing and using minimal perfect hash functions requires an
additional data structure and some further computing steps, particularly for the algorithm used
in this thesis: BDZPH, which will be presented in the following section. It is the main reason
why we choose to use perfect hash functions, instead of minimal ones.

Section 4.2 will explain how to build perfect hash function with the CHMPH/BDZPH algo-
rithm. Then we will see, in Section 4.3, how to use these functions for our problem of approximate
neighborhood matching.

4.2 Random hypergraph based algorithms for constructing per-
fect hash functions

This section is a brief summary about the methods for designing perfect hash function based on
random hypergraph. We describe here the BDZPH algorithm [Botelho et al., ], which is largely
based on the the CHMPH algorithm [Majewski et al., 1996] (Note that in this work, we use from
the BDZ algorithm only the mapping and assigning steps which lead to obtain a perfect hash
function and not a minimal one.)



72 Chapter 4. Neighborhood Indexing with Perfect Hash Functions

4.2.1 Key idea

Let be a graph G = (V, E), where

• the vertices V are the choosen interval of values.

• the edges E are randomly built (by hashing) from the set of keys S

Finding a perfect hash function exactly means finding a one-to-one function mapping
an edge e = (v0, v1) to a vertex phf(e). A practical way to do that is an assignation, that is
selecting, for each edge e, a value phf(e) = vj with either j = 0 or j = 1.

If the graph is acyclic, this is fairly simple to find such assignation: one picks one edge
containing a vertex of degree 1 and assign this vertex, removing the edge, and one iterates.
Moreover, it is easy to remember this assignation, by storing only one bit of information by
vertex : j = (g(v1) + g(v2)) mod 2, where the g maps any vertex to 0 or 1.

The problem with regular graphs is that random acyclic graphs are not so common – in
fact, it requires to have |V| > 2E in order that a random graph be acyclic with a probability of
almost 1 [Majewski et al., 1996].

A better solution is to use this idea with hypergraphs. The major property of such graphs
is that random hypergraphs are very common, at a cost of a few vertices: 3-hypergraphs
with |V| > 1.23E will be enough to have an “acyclic” property with a probability of almost
1 [Majewski et al., 1996].

4.2.2 g-Assignation in a hypergraph

We begin with some definitions, following [Majewski et al., 1996] and [Botelho, 2008].

Definition 1 Let r be an integer greater than 2, a hypergraph G = (V,E), denoted by r−graph,
is the generalization of a standard undirected graph where each edge connects between 2 and r
vertices : e = {v0, v1...vd} with 2 ≤ d ≤ r.

Definition 2 A r−graph is acyclic if and only if some sequence of repeated deletions of edges
containing at least one vertex of degree 1 yields a graph with no edges.

Definition 3 A k-partite r−graph is a r−graph whose vertices can be partitioned into k dis-
joint sets so that no two vertices within the same set are linked by an edge.

The perfect hash function building of BDZPH can be formalized as follows.

Given an undirected r-partite r−graph43 G = (V,E), |E| = n, |V | = m, find an assignment
g to all vertices in V such that for each edge e = {v0, v1, . . . , vr−1} ∈ E, the function

phf (e) = vj

43In theory, the algorithm of building perfect hash function of BDZPH can apply for any r−graph. However, in
practice, [Botelho, 2008] uses the Jenkins hash functions which creates in parallel three values in different ranges
(4.2.4). Thus, in BDZPH, the r−graph is always r-partite
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where

j =

(
r−1∑
i=0

g[vi]

)
mod r (4.1)

is a one-to-one function.

The function phf : S → V is a perfect hash function which maps each key in S to a
unique value in the interval V = [0, |V| − 1].

With the assumption that the hypergraph G is acyclic, [Czech et al., 1992] proposed an
algorithm, denoted here by g-Assigning, to solve the computation of the assignment g with
time complexity O(|V|+ r× |E|). We thus have a method to build a perfect hash function from
a r−graph. The task is now to design an algorithm to build an acyclic r−graph.

4.2.3 Randomly building acyclic r−graph

[Havas et al., 1994] and [Majewski et al., 1996] conducted intensive studies on the probability
of having a random acyclic r−graph with the following important conclusion:

“For a random r−graph G = (V,E), starting a constant ratio c = |V |
|E| , the probability

that G is acyclic is greater than zero.” When |E| closes to infinity, this probability
closes to 1.

A random r−graph G = (V,E), |E| = n, |V | = m is here a graph that the selections of r
vertices v0, v1, ..., vr−1 ∈ V for each edge e ∈ E are random.

The minimum value of c depends on r and is calculated in [Majewski et al., 1996, Chapter
4]. The best value known is for r = 3, with c = 1.23. It means that, with a suitable ratio
between the number of edges and the number of vertices, after a finite number of attempts
(outputing a random r−graph), we can obtain an acyclic r−graph which then can be applied
the g-Assigning algorithm to find the table g and then the perfect hash function phf .

In our own experiments, as soon as |V | ≥ 1.23|E|, we never had to do more than 1000
attempts.

To implement this method, it remains to solve the two following practical problems:

1. How to construct a random r−graph? Ideally, the function to select the vertices
for each edge of the r−graph needs to be absolutely random. In practice, a family of
universal hash functions [Carter and Wegman, 1977] can be used with an acceptable limit
in randomness. [Czech et al., 1992] used a family of universal hash functions, denoted here
by H = {h0, h1, ..., hr-1}, which need O(log(m)) space to store and that can be evaluated
in constant time. The procedure Graph-Creating(S,H) outputs a random r−graph
G(V,E) for the set S of keys as follows:

V = ∅, E = ∅;
for each k ∈ S do

e = {h0(k), h1(k), ..., hr−1(k)};
E = E ∪ e;
V = V ∪ {h0(k), h1(k), ..., hr−1(k)};

end
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2. How to check if an r−graph is acyclic? Based on the definition-2, [Havas et al., 1994]
proposed an algorithm with a time complexity of O(rn+m), denoted here by Acyclic-
Testing(G), to verify if an r−graph G is acyclic (details of the algorithm are not shown).

4.2.4 Jenkins hash functions

The algorithm works with any “universal” hash functions [Czech et al., 1992]. BDZPH uses
the universal hash function family developed by Jenkins [Jenkins, 1997]. We call the functions
in this family by the Jenkins hash functions and we denote them by HJ in the following.
As mentioned in [Botelho, 2008], although the Jenkins hash functions have not been proved
theoretically they have very good performance in practice. Morever, there are two key advantages
of using HJ that support the implementation:

• One can generate in parallel three random 32-bit integers (or 64-bit integer, depending
on the size of the machine word) in constant time. This feature well support the case of
random 3-graph. Thus, the random r−graph, created by BDZPH, is always r-partite.

• The functions in HJ are represented only by the seed (denoted here by Jseed). It is the
32-bit (or 64-bit) integer, which is used as the initialization for the mixture of bits to create
the random values.

Starting from a set of keys S and a seed Jseed, we denote by Jenkins-Graph-Creating(S,Jseed)
the function that creates the random r−graph G by using HJ . As |S| is fixed, the time com-
plexity of Jenkins-Graph-Creating(S,Jseed) is O(1).

4.2.5 Complete CHMPH/BDZPH algorithm

We now have all the components needed to implement the algorithm. It leads to the BDZPH

algorithm to generate perfect hash functions:

Data: S
Result: Table g and seed Jseed
repeat

Jseed = random seed
G = Jenkins-Graph-Creating(S,Jseed)

until Acyclic-Testing(G);
g = g-Assigning(G);

The time complexity of the entire algorithm is thus O(1)+O(rn+m). Once the perfect hash
function have been created, each key in the data set S can be saved in the list at the position
addr. The query of the existence of a key in this list can be done in O(1) time.

4.2.6 An example of the BDZPH algorithm with r = 3

We now give an example of using BDZPH to index a set of keys S and to query against the
indexed set L. We re-use the input key set S from the example of reduced list (Figure 2.6). We
chose r = 3 and the seed from the Jenkins family hash functions Jseed = 13.
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Computation of phf . We first start by creating the perfect hash function for S. We thus
compute the 3−graph made of 6 edges (the set of keys contains 6 keys) and 9 vertices. The list
of edges is given in Figure 4.1.

e = {v0, v1, v2}
e0 = {2, 4, 7}
e1 = {0, 3, 6}
e2 = {2, 5, 7}
e3 = {0, 4, 8}
e4 = {1, 5, 7}
e5 = {1, 4, 6}

g−Assigning−−−−−−−→

g
0 2
1 0
2 0
3 1
4 1
5 3
6 1
7 3
8 3

Computation of phf−−−−−−−−−−−−→

g[v0] g[v1] g[v2] j phf (e)

e0 0 1 3 1 4
e1 2 1 1 1 3
e2 0 3 3 0 2
e3 2 1 3 0 0
e4 0 3 3 0 1
e5 0 1 1 2 6

Figure 4.1: Example of the computation of phf for 6 keys.

We do not give the details of how the graph is computed. Once the graph is built, we are
able to compute the g table (details not given). Note that in g, there are three elements whose
values are 3 (at position 5, 7, 8). As 3 is the initialization value of all the elements in g, it means
that these elements are not changed when g is computed.

The function phf can now be computed. For example, for edge e0 = {2, 4, 7} we compute
j following equation 4.1, that is j = (g[2] + g[4] + g[7]) mod 3 = (0 + 1 + 3) mod 3 = 1. Thus
phf (e0) = v1 = 4. Computation for the other edges are given figure 4.1. We verify that we
obtained a different value for each edge.

Using phf to index the set of keys. Thanks to phf each number between 0 and the size
of the set of keys S is assigned a unique value as seen before. Indexing consists in assigning the
phf value to each key. Because the number of vertices is greater than the number of keys, we
have to pad the empty slots with a key present in the set S (the first one for example). This is
depicted figure 4.2.

S hash key

AATCGCTG 4
AATGGGAA 3
ATCGGATG 2
ATTCGGCC 0
ATTTTTTT 1
TTAAGGCC 6

indexing−−−−−→

L
0 ATTCGGCC
1 ATTTTTTT
2 ATCGGATG
3 AATGGGAA
4 AATCGCTG
5 AATCGCTG padding
6 TTAAGGCC
7 AATCGCTG padding
8 AATCGCTG padding

Figure 4.2: Example of indexing using perfect hashing

Querying using an index built with perfect hashing. We present 2 examples of querying
against the index. For the query word ATTTTTTT, we compute the corresponding edge which is
e = {1, 5, 7} and then j = (g[1] + g[5] + g[7]) mod 3 = 0 and phf (e) = v0 = 1. The corresponding
hash key is thus 1, and L(1) = ATTTTTTT which is equal to the query word: There is a match.

For the query word AATCGCTC, we compute the corresponding edge which is e = {1, 3, 7}
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and then j = (g[1] + g[3] + g[7]) mod 3 = 1 and phf (e) = v1 = 3. The corresponding hash key is
thus 3 and L(3) = ATTCGGCC which is different from the query word: There is no match.

4.3 Using perfect hashing functions for approximate neighbor-
hood matching

As we mentionned in chapter-2, we will use another data structure in which the lists are indexed
themselves. Thanks to this additionnal information we will speedup the matching time. The
way of indexing the lists will use perfect hashing.

4.3.1 Using BDZPH to create indexed block structure

The Indexed Block Structure SeedBlock(s) contains all the lists and blocks as in the Reduced
Structure together with further informations (see figure-4.3 and figure-4.4):

Reduced Structure
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Figure 4.3: Indexed Block Structure together with the BDZPH algorithm on the SeedBlock. Compared to the
reduced structure (figure-2.7, right on this figure), the ph block (which contains the table g) and the start list ph
(which contains the start position of the table g and 3 data: JSeed, Nrnb and R) are added. More details about
JSeed, Nrnb and R can be found in page 76.

• The list of neighborhoods, as in the Reduced Structure. These neighborhoods are now
sorted according to their phf values. As the hash function is not minimal, the size of the
hash table M is:

M = d(1.23×N)/3)e × 3 (element)
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Figure 4.4: Example of indexed block structure by BDZPH based on the same example than before (figure-2.6
and figure-4.2.6). For a query Q(sq), its index is calculated and then the matching is verified by comparing q
(here ATTCGGCC) with the neighborhood kept in the address associating to this index. The occurrences and
their positions of the query are retrieved in the same process with the reduced structure.

It leads to (Npad = M − N) phantom values that are not mapped by any key. As a
pattern that is not really in the SeedBlock can be hashed to any address in the table,
including to these phantom values, we added Npad elements into the SeedBlock with the
value of the first existing neighborhood. It does not yield false positive matching results
because of the difference between the value of the padding element and the query itself
that can be hashed to this address.

• The family of the universal hash functions {h0, h1, h2}. With the Jenkins hash functions,
all this family can be stored with only the seed (jenkins seed, one unsigned int value,
which can be kept in 1 word).

• The assignment table g, of size |g| = dM/4)e (byte), as we can use 2 bits to present a
element in g.

• Two supplement data are added to the data structure:

– The number of actual elements (excluding the phantom values): Nrnb

– The ratio between Nrnb and the total elements (including the phantom values): R.
In theory, it is about 1.23×. But in practice, it must be rounded up. This value is
kept in order to avoid additional computational operation in the query phase.

The total size is thus

(M + 3)× Sunit + dM/4)e (byte)

that is an overhead of

(3 +Npad)× Sunit + dM/4)e (byte)

compared to the data structures used in the previous chapter.

Finally, as the list of neighborhoods is in the same format than in the previous chapter,
it could be used as well with mflBPR, especially in cases where a large number of errors are
allowed.
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4.3.2 Implementing BDZPH query on OpenCL devices

Figure-4.5 depicts the usage of perfect hashing with the Hamming-distance patterns generating
model on the OpenCL devices. All the index data are precomputed and transferred only once
to the device. The input queries, each in the form of sq, are divided into batches of size N .
The constants related to the configuration of the kernel such as: |SP |, |SC|, LPos, etc. are
calculated in the host and written to the constant memory region of the device. Then, the
application runs looping on each batch of queries:

• Each work-item follows these steps:

– It uses the key of s to get the addresses of the corresponding SeedBlock.

– It generates the degenerated pattern from q based thanks to its local identifier and
group identifier.

– It uses the Jenkins hash functions h0,h1,h2 and the table g to calculate the address
of the degenrated pattern.

– It compares the degenerated pattern with the element in the calculated address.

• The positions of the matching neighborhoods are then written back to a result array in
the global memory in order to be transfered back to the host.

Time complexity uint operations Global memory
access

Generate Pe O(ve) ve 1

PHF O(1) 54 3

Compare O(1) 1 1

Table 4.1: The time complexity, the number of uintoperators and the memory access number of a BDZPH query.

As shown in Table 4.1, although the work-items need to do one more step (comparison with
the degenrated pattern) compared to binary seach, this approach is more suitable for the GPU
because the number of computing operations and memory accesses is fixed, and there is no
branch divergence during the execution of a work-items.

4.4 Conclusion

This chapter presented an approach different from that in Chapter-3 which consists in index the
set of neighborhoods of the seeds. For this we use the very efficient technique of perfect hashing
which allows us to query a neighborhood q in the SeedBlock in constant time. The performance
of this approach will be analysed and compared with the other approaches in Chapter-5.



80 Chapter 4. Neighborhood Indexing with Perfect Hash Functions



Chapter 5

Performance Results

Chapter-3 and chapter-4 described several solutions for approximate neighborhood matching:
bit-parallel (mflBPR), binary search (BS) and perfect hashing (PH). This chapter presents the
performance measurements when experimenting these solutions on a GPU and on a multicore
CPU. Firstly, we will explain the methodology. Then, we will present measurements and discuss
about the gain of parallel computing. The results are analyzed to show the impact of several
parameters of the method on the performances, and a comparison between the three solutions
is presented.
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5.1 Benchmarking environments and methodology

This section introduces the setup for the experiments of each solution (table-5.1) and the units
used to evaluate the performance results.

81
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5.1.1 Benchmarking environments

We benchmarked our solutions on two types of OpenCL devices: a GPU and a multicore CPU.
In all cases, the same OpenCL code was used, but with different OpenCL libraries on the two
platforms, leading to two environments:

oclGPU: GPU, NVIDIA GTX 480 (30× 16 cores, 1.4 GHz, 1.5 GB RAM), with the OpenCL
library NVIDIA GPU Computing SDK 1.1 beta.

oclCPU: CPU, Intel Xeon E5520 (8 cores, 2.27 GHz, 8 MB cache), with the OpenCL library
AMD APP SDK 2.4.

All programs were compiled using GNU g++ with the -O3 option. The host computer had 8
GB RAM.

Moreover, we also tested a pure C++ “CPU serial” version of mflBPR, leading to a third
environment:

serialCPU: CPU, 1 core of an Intel Xeon E5520 (8 cores, 2.27 GHz, 8 MB cache)

It should be noted that:

• As described in chapter-1, our work focuses more on GPUs than on multicore CPUs. Nev-
ertheless, we made benchmarking on multicore CPUs by taking advantage of the portability
of OpenCL on different types of processors. But all the analyses, designs and implementa-
tions of our work are specialized and customized for GPUs, especially for NVIDIA Fermi
GPUs.

• While there are actually 4 physical cores in an Intel Xeon E5520, upto 8 parallel threads
can run simultaneously on this CPU (thus 8 “logical cores”) thanks to the Intel ’s Hyper-
Threading Technology (see section 1.2.1).

• Although these implementations can run on an ATI Radeon HD5780, the performances
were very low in our implementation (see page 118). We thus only report here the bench-
marks on the NVIDIA 480 GTX and on the Intel Xeon E5520.

5.1.2 Experiments setup

Table 5.1 summarizes the experiments setup described below.

Genetics data and indexes. Indexes were computing using the first 100 Mbp of the human
chromosome 1. Remember that the indexes can be laid out with a full list of neighborhoods
(general structure) or with an additional table to regroup identical neighborhoods (reduced
structure, see page 50). The following implementations were benchmarked:

• The mflBPR solution using the general structure;

• The binary search solution using the reduced structure;

• The perfect hashing solution using the indexed block structure.
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Bit-parallel
(mflBPR)

Binary Search (BS) Perfect Hashing
(PH)

Text Length First 100 Mbp of the human chromosome 1

Index Structure general reduced indexed block

Number of Patterns 100 1000 1000

Seed Length 3, 4, 6 4 4

Neighborhood
Length

4, 8, 16

Index Size (MB) 500 – 800 400.5 – 1094.14 400.7 – 1360.53

Number 0 – 3 0 – 2 0 – 2
of errors (e) (Levenshtein) (Hamming) (Hamming)

Benchmarking envi-
ronment

oclGPU, oclCPU, se-
rialCPU

oclGPU, oclCPU oclGPU, oclCPU

Table 5.1: Experiments on 3 solutions: mflBPR, binary search (BS), perfect hashing (PH) on the first 100 Mbp
of the human chromosome 1. More details about the index sizes can be found in Table A.1 and Table A.2.

Even if the mflBPR solution can work on reduced structure, we chose the general structure
as it is the most simple case to implement.

The binary search solution can also work on general structures44. In this case, the size of
SeedBlock may be larger due to the redundancy. Morover, it requires also more calcultations to
get all the occurrences and their positions as the binary match return only one occurrence.

In order to analyse the speedup of the mflBPR solution over BPR, we created another version
of general structure where several neighborhoods are not packed into a unique word45.

Number of patterns. With the mflBPR solution, we ran searches on 100 successive queries,
but we saw no significant difference between 1, 10, 100 or 1000 queries, as soon as enough
computations hide the transfer times. With the binary search and perfect hashing solutions, we
ran searches with 1000 successive queries.

Error Numbers. With the mflBPR solution, the error number e is from 0 (exact matching) to
3. With the binary search and perfect hashing solutions, the error number is from 0 to 2 (table-
5.1) as the number of the degenerated patterns exceeds the maximal number of work-items in
each work-group from e ≥ 3 (see page 62).

5.1.3 Performance units

Device time. Generally, the running times of the experiments are used to evaluate the speed
of the solutions. As described pages 60, 63 and 79, the index is loaded only one time to the
global memory of the OpenCL devices. The time measured, the device time, denoted here by

44To apply the binary search, the SeedBlock in general structure must be sorted, but it also allows for the
redundancy

45To benchmark BPR, we used the mflBPR code, setting the neighborhood per word (h) parameter to 1. An
optimized BPR-only implementation could be slightly more efficient.
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Tdev, is the sum of 3 phases46:

1. Transfer times from host to device for the input queries;

2. Compute time of the OpenCL kernel;

3. Transfer times from device to host for the output result.

It should be noted that the benchmark of the binary search solution and the perfect hashing
solution presented in this chapter do not include the running time of the position retrieval stage
(as described in page 64 and page 79). More precisely, the Tdev of these 2 solutions are only the
running time of the approximate matching stage, which may make their performance (measured
here) to appear higher than that of these actual solutions. It can slightly impact the performance
comparision of these 2 solutions with the mflBPR solution (see 5.2.5). However, it does not
cause any problem for what are discussed in 5.3. In addition, the full implementations of the
binary search solution and the perfect hashing solution are confirmed by the executions of the
Seed− Filter kernel of the real application of short read mapper (MAROSE) (see chapter 6).

Neighborhood matched per second. Once an input pattern sq has been processed against
the SeedBlock of a seed s, which contains Ns neighborhoods, we will say that “N neighborhoods
have been processed”. Thus we will measure the performance of our algorithms in terms of neigh-
borhoods processed per second, denoted here by nps, representing the number of neighborhoods
(n) per second: n/s.

For mflBPR, nps really reflects the number of neighborhoods which are loaded and com-
pared to the neighborhood part q in the pattern. But for binary search and perfect hashing,
it is not exactly this number that is measured because the algorithms do not compare all the
neighborhoods in the SeedBlock with q. However, it remains a good measure to describe the
quantity of index information processed.

Finally, as the binary search solution is experimented on reduced structures and the perfect
hashing solution is on indexed block structures, the number of neighborhoods is not the same
as in general structures. It can lead to an over-estimation of the true computing performance
of these solutions.

In order to compare the performance between all our solutions, we thus used the size of the
SeedBlock in the corresponding general structure, before being reduced to calculate nps. For an
experiment which takes the set of pattern P as an input:

nps =

∑
s∈P Ns
Tdev

(n/s)

where N is the neighborhood number of the SeedBlock in the general structure.

5.2 Performance measurements

In this section, the experiments results of mflBPR, binary search (BS) and perfect hashing
(PH), are presented. For mflBPR, we give both running times and neighborhood per second.

46These times are measured by profiling the return events of the corresponding OpenCL commands: clEn-
queueWriteBuffer, clEnqueueNDRangeKernel and clEnqueueReadBuffer.
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For BS and PH, we show only the nps, as the running time is directly related to this measure
(explanations in page-84). The purpose of this section is to explain the performance of these
solutions in different cases.

5.2.1 Performances of bit-parallel solutions (BPR/mflBPR)

Speedup of mflBPR over BPR using the serialCPU environment To analyse the
speedup of mflBPR over BPR, we use the serialCPU environment to run mflBPR on two types
of general index: one with multiple neighborhoods packed in machine words (mflBPR) and the
standard approach with only one neighborhood per machine word (BPR). Figure-5.1 depicts the
experiments result of the case that the seed length = 4 and the neighborhood lengths = 4, 8
and 16.
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Figure 5.1: Running time of BPR (left) or mflBPR (right), both on CPU serial version, u = 4, ` = 4, 8, 16.

With 32-bit integers and 2 bits to encode each character, the numbers of neighborhoods
kept in each word is respectively 4, 2 and 1 with neighborhoods lengths 4, 8 and 16. Thus
the theoretical gains are 4, 2 and 1, respectively. As depicted on the figures, running the serial
version on CPU for BPR (` = 16) and mflBPR leads to performance gains for mflBPR compared
to BPR ranging from 2.73× to 3.92× for words of length 4, and from 1.89× to 2.06× for words
of length 8, which are very close to the 4× and 2× theoretical gains.

Performance of mflBPR. We investigate the performance of mflBPR. As said before, we also
have an implementation of mflBPR for the serialCPU environment. We thus compare mflBPR
on the three environments. Results are depicted figure-5.2 (running time) and figure-5.3 (nps).

In the most simple instance (neighborhoods of size 8, no error), the serial CPU implemen-
tation peaks at 59 Mn/s, the oclCPU at 189 Mn/s, and the oclGPU at 3693 Mn/s. In this
case, using OpenCL brings speed-ups of about 3.2× on CPU and about 62× on GPU (thus the
speedup about 19× between oclGPU and oclCPU).

In the same setup, the offset indexing peaks at 4.0 Mn/s on serial CPU, 108 Mn/s on OpenCL
CPU and 1706 Mn/s on OpenCL GPU (data not shown).

When the number of errors rises, performance degrades in both implementations. On small
neighborhoods, starting from e = 2, the performance of both GPU and CPU versions are limited
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Figure 5.2: Running time of mflBPR with the neighborhood length 4, 8 and 16. Seed length is 3, 4 and 6 (from
top to bottom). Three benchmarking environments were used: serialCPU, oclCPU and oclGPU (from left to
rigth). For each environment, there are three different curves, corresponding to different neighborhood lengths
(4, 8 and 16).
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Figure 5.3: Performance of mflBPR in neighborhoods per second with neighborhood length 4, 8 and 16. Seed
length is 3, 4 and 6 (from top to bottom). Three benchmarking environments are used: serialCPU, oclCPU and
oclGPU (from left to right). For each environment, there are three different curves, corresponding to different
neighborhood lengths (4, 8 and 16).
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by the number of matches in the output. In these cases, almost all queries are matched, causing
a bottleneck when each work-item writes its results to the global memory using an atomic
function47.

However, even in the worst case (7.5 Mn/s, CPU serial implementation, 3 errors, seed length
4 and neighborhood length 16), using the neighborhood indexing takes less than 0.06 s for
parsing a chromosome of length 100 Mbp, while non-indexed approaches using bit parallelism
takes 0.9 s with agrep and 0.7 s with nrgrep.

5.2.2 Performance of binary search (BS)
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Figure 5.4: Performance of binary search on the neighborhood indexing on CPU (left) and GPU (right), with a
seed length of 4 and a neighborhood length of 4, 8 and 16. Indexes created from 100 MB. The number of queries
is 1000.

Figure 5.4 shows performance of the binary search on the neighborhood length of 4, 8 and
16 with seed length 4. Those results show that the performance increases when the length of the
neighborhood decreases: ` = 4 is the best, then ` = 8 and ` = 16 (explanations can be found in
5.3.2)

Figure-5.5 shows that the GPU is in the worst case 3.3× faster than the multicore CPU
(` = 16, 1 error) and in the best case 13.1× faster (` = 16, exact matching). The speedup
increases with the number of the errors with ` = 4 and 16, but decreases with ` = 8. We have
not found the reason for this problem, which could require further experiments on multicore
CPUs.

5.2.3 Performance of perfect hashing (PH)

Figure-5.6 shows the performance of the perfect hashing solution with neighborhood lengths 4,
8 and 16 considering a seed length of 4. Generally, the performance profile is very similar to the
binary search one: the performance clearly depends on the length of the neighborhood (5.2.2),
and again the best result is obtained with neighborhood length 4 and the worst for length 16.

Figure-5.7 shows the speedup of the GPU over the multicore CPU. The GPU is in the worst
case 4.5× faster than the CPU (` = 4, exact matching) and in the best case 29× (` = 4, 2
errors) faster. This result demonstrates the advantage of the GPU over the CPU when running
applications which require intensive calculations without divergent branches.

The same than the binary search solution, there is also the abnormality in the speedup when
the number of errors increases, now with ` = 16 (5.2.2). This should require more experiments

47The atomic function used here is atomic inc
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Figure 5.5: Speedup of GPU over CPU of querying by binary search on the neighborhood indexing (for the
performances presented in figure 5.4).
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Figure 5.6: Performance of query by perfect hashing on the neighborhood indexing on CPU (left) and GPU
(right), with a seed length of 4 and a neighborhood length of 4 , 8 and 16. Indexes created from 100 MB. The
number of queries is 1000.

on multicore CPUs to find the reason.

5.2.4 Efficiency of parallelism on binary search and on perfect hashing

By comparing with the corresponding serial version, mflBPR showed striking speedups with the
OpenCL version both on multicore CPU and GPU. For the binary search and perfect hashing
approaches, we did not implement the serial versions. Nevertheless we are able to estimate the
increase of running time which depends on |Πe(q)|. As depicted in figure-5.8, the growth of the
running time is always less than that of |Πe(q)|. Thus we can conclude that OpenCL versions
should improve serial version.

5.2.5 Performance comparisions between approaches

Figure-5.9 shows the performance comparisons between our three solutions on the oclGPU
benchmarking environment. Seed length u was set to 4 and the neighborhood length ` varies
from 4 to 16.

In all cases, using perfect hashing leads to the best solution. Binary search follows and
mflBPR ends. Measured in nps, on the GPU, the perfect hashing solution can be up to 10×
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Figure 5.7: Speedup of GPU over CPU of querying by perfect hashing on the neighborhood indexing for the
performances presented in figure-5.6.

better than binary search (explanations in 5.3.3). Compared to mflBPR, perfect hashing is up
to 1000× faster.

In fact, mflBPR solution has to traverse all the neighborhoods in the list, while the perfect
hashing solution needs only 3 accesses to the table g and 1 access to the list of neighborhoods.
This explains the gain obtained with perfect hashing.

5.3 Discussion

We have presented raw results of performance for mflBPR, binary search and perfect hashing
approaches. This section analyses the performance of these methods against their arguments:

• The length of the seed.

• The length of neighborhood.

• The number of errors.

We seek to compare global memory accesses and branch divergences of the three methods. Table
5.2 summarizes data that are discussed in the three next sections.

5.3.1 Impact of the seed length

The length of seed (u) is related to the number of seed occurrences. Thus the number of neigh-
borhoods and the size of SeedBlock. For a text of length n, the average number of neighborhoods
in a SeedBlock is:

N ∼ n

4u

As the length of text used for all experiments is 100 MB, about 227 MB, N ∼ 219.

The length of the seed does not have any influence on the time complexity of the perfect
hashing method.
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Figure 5.8: The running times of binary search (BS) and perfect hashing (PH) compared to the growth of the
number of degenerate patterns |Πe(q)|. For e = 1 (top) and e = 2 (bottom) on oclCPU environment (left) and
oclGPU environment (right).

But, for the two other methods of direct neighborhood matching, N is an argument of the
time complexity (table-5.2). Indeed, as a number of elements have to be traversed during the
searching, the number of global memory accesses could be important.

mflBPR has to process all the neighborhoods in the SeedBlock, but it has the advantage
of coalesed access pattern and the use of local memory as the temporary memory storage. As
the index segment in the local memory is divided to process among the work-item in the same
work-group, we can choose a number of neighborhoods to be processed with a work-group as a
multiple of its work-item number. In this case, there is no branch divergence.

The binary search method uses randomly accesses to the global memory. As the binary
search process can terminate at any iteration, there is a high probability of branch divergence.
In the worst case, all the work-items in the same warp have to pass through log(N ) iterations.

It means that even if the mflBPR has to process much more elements than the binary search,
it still benefits from the advantages of contiguous memory accesses and the absence of branch
divergences while accessing to the neighborhood data.

5.3.2 Impact of the neighborhood length

The length of neighborhood (`) is one of the arguments in the time complexity of mflBPR (but
it does not cause any divergence branch). In addition, it can also change the number of the
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Figure 5.9: Performance comparisons between the mflBPR, the binary search and the perfect hashing solutions
on the oclGPU benchmarking environment, for seed length u = 4 and neighborhood length ` = 4, 8, 16 (from left
to right).

mflBPR binary search perfect hashing

Time complexity O(N · ev/h) O(log(N ) · ve) O(ve)

Access to data N ≤ log(N ) · ve ve

(fixed-length words) contiguous random random

uint operations 7× e 3 54
for each step

Access to index 3
random

Index of 100 MB (n ∼ 227), u = 4, |Σ| = 4

SeedBlock size 219

Global memory 219 19 · ve (1 + 3) · ve
access (contiguous) (random) (random)

Performance range
(GPU, nps) 107 − 1010 1010 − 1012 1011 − 1012

Performance range
(CPU, nps) 106 − 109 109 − 1011 109 − 1011

Table 5.2: Comparations between mflBPR, binary search and perfect hashing methods .
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neighborhood kept in one word (h). Thus ` affects the number of global memory accesses. As a
result, the algorithm runs faster on smaller neighborhoods than on longer ones. The performance
of mflBPR (5.2.1), in the case of exact matching (to avoid the impact of the error number), is
a good example for this argument (figure-5.2 and figure-5.3).

We continue to discuss the binary search and perfect hashing in the context of exatch neigh-
borhood matching, in order to isolate effect of the number of errors. Theoretically, the per-
formance of both the binary search and perfect hashing approaches is independent from `, as
the neighborhood is always treated as an unsigned int or a string of 4 characters. However,
as in figure-5.4, for the binary search, the running time of ` = 4 is about 1.5× faster than of
` = 8 and ` = 16. The reason is that we used the reduced structure, where the maximal number
of neighborhoods in the SeedBlock depends on `. For ` = 4, 8, 16, these values are 28, 216, 232,
respectively. In the case of ` = 16, with the limit in the text size n ≈ 227, N is about 219

(see section 5.3.1). It leads to a change in the maximal numbers of iterations when doing the
binary search, either 8 or 16 or 19 (the log2 of the number of neighborhoods) which results in
the observable difference between the case of ` = 4 and the others.

Figure-5.6 also shows that the perfect hashing is independent of the size of SeedBlock with
a running times very similar for ` = 4, 8, 16 on the GPU. However, for the experiments on the
multicore CPU, there is a difference between ` = 4 and ` = 8, 16. The reason for this difference
could be the automatic usage of the L1 cache of the CPU when the size of SeedBlock fit in this
cache (64KB).

In the case of approximate pattern matching, for the binary search and the perfect hashing
methods, the length of neighborhood indirectly affects the performance because the number of
degenerate patterns with errors Πe(q) depends on ` (see section 3.2.2). As we used one work-item
to process one degenerate pattern, the size of the work-group is in O(`2). Large neighborhood
sizes will thus imply more simultaneous random global memory access requests and also more
possibility of having branch divergence.

5.3.3 Impact of the error threshold

The performance of mflBPR directly depends on the error number (e), but it does not cause any
change neither in the number of global memory accesses nor in the possibility of having branch
divergence.

For the binary search and the perfect hashing methods, as for the length of neighborhood,
the error number contributes exponentially to the number of work-items needed – O(ve). It
also contributes to the growth of random global memory accesses and the possiblity of having
branch divergence (see section 3.2.2). The combination of these two disadvantages, from both e
and `, leads to a decrease in performance dur to the increase of the number of error in all three
cases of ` = 4, 8, 16, as depicted in figure-5.4 and figure-5.4.

Figure-5.10 compares the performances between the binary search (5.2.2) and perfect hashing
for the two benchmarking environments: oclGPU and oclCPU. On the multicore CPU, the
performance of binary search and perfect hashing is almost similar. However, on the GPU,
except for the case of exact matching where the performances of these two approaches are
almost equal, perfect hashing always have a better speedup over binary search, in the best
case 7.8× faster (` = 8, 2 errors). It means than random global memory accesses and branch
divergence less impact perfect hashing than binary search. Indeed, as the number of errors
grows, the number of degenerated patterns grows faster and thus the number of queries in the
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Figure 5.10: Speedup of query by perfect hashing over binary search on the neighborhood indexing on CPU(left)
and GPU (right). The speedups are calculated based on the performances presented in figure 5.4 and figure 5.6.

index is larger. The binary search strategy is disadvantaged by its higher number of branch
divergences and memory accesses compared to perfect hashing.

5.4 Conclusion

In this chapter, we demonstrated the efficiency of using OpenCL and GPUs to speed-up the
neighborhood filtering phase extension in seed-based heuristics: in all our experiments, the
implementation on GPU is at most 19× (mflBPR) or 13.1× (BS) or 29× (PH) faster than on
CPU (even when using multiple cores on the CPUs through the OpenCL code). Moreover,
both on GPU and on CPU, the PH and BS solutions are far more efficient than the direct
BPR/mflBPR approaches. Finally, we can draw some general conclusions:

• mflBPR is a general solution for approximate neighborhood matching, allowing any number
of errors and potentially complex edit operations. However, it is slowler than the binary
search and the perfect hashing.

• In our experiments, the perfect hashing approach is the best solution for neighborhood
matching with small Hamming distance. This is consistent with the theoretical analysis,
as the perfect hashing requires only constant time for each work-item.

Note that the error model of BS and PH is not the same as the one of mflBPR, which can be
used with edit distance. A fair comparison of performance between BS/PH and mflBPR could
be approached in two ways:

• mflBPR can be run with Hamming distance (see section 3.1.2). Even if this leads to
a reduction in the number of bit operators in the update operations, the whole list of
neighborhoods in the SeedBlock must still be traversed. The runtimes should be a little
faster, but it could stille not compete with BS and PH.

• It could be possible to run BS and PH with edit distance, by adding the insertions and
deletion to each position in the error generating model (section 3.2.1). But this could be
efficient only for very small distances, as the number of edits needed for each position is
|2× Σ + 1|48, instead of |Σ| [Klus et al., 2012].

48|Σ| edits for substitution, |Σ| edits for insertion and 1 edit for deletion.
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With the analyses of the impacts of the 3 factors u, ` and e, we showed that the manycore
processors such as the Fermi GPUs have a good scability on our core problem, but are very
sensitive on problems such as branch divergence and random global memory accesses.
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Chapter 6

MAROSE
A Prototype of a Read Mapper

for Manycore Processors

In the previous chapters, we explored several solutions for the efficient retrieval and approximate
comparisons of the indexed neighborhoods, which can accelerate the filtering phase in seed-
based heuristics applications for genetic similarity study (see page 43). This chapter presents
the developements of these solutions into the whole process of mapping short genetic segments
to a reference genome (read mapping). Many read mappers were proposed in the five last
years thanks to the advances in sequencing technologies. In this chapter, we attempt to build a
parallel read mapper using GPUs and OpenCL.

After an overview of available read mappers and their algorithmic foundations, we describe
the feature analyses, the design and the implementation of our short read mapper prototype
using OpenCL named MAROSE (Massive Alignments between Reads and Sequences). Finally,
we present experiments of applying MAROSE on benchmarks involving the complete human
genome, and compare against other read mappers that were evaluated by [Schbath et al., 2012].
A submission for a journal article on this readmapper is in preparation.
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6.4.5 Prospective features of MAROSE . . . . . . . . . . . . . . . . . . . . . 113
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6.1 Motivations

Recent advances in sequencing technologies have led to the emergence of new fields of research
in bioinformatics such as re-sequencing [Bentley, 2006] or metagenomics [NRC, 2007]. New
sequencers are able to produce gigabytes of sequence data in short time at low cost. For example,
the average cost of generating one million DNA base pairs in January 2012 is about 0.09$49.

Such high-throughput applications require the design of new pairwise aligment tools capable
of aligning a very large number of short sequences, namely reads, against a long reference
sequence or a set of reference genomes depending on the application. This alignment process is
called read mapping.

The length of reads often varies from tens to hundreds bases (for example: 50 − 100 for
Illumina and SOLiD sequencing, 300 − 400 for 454 sequencing49), and the number of reads
produced for sequencing a genome is very large: from millions to billions depending of the
length of the genome and the accuracy (for example, the Illumina Hiseq system can produce 3
billions reads per run50).

The set of reference sequences is usually a genome bank made of billions base pairs. For
example, the size of the human genome from the assembly 37.1 of the United States National
Center for Biotechnology (NCBI)51 is 2.7 Gbp52.

The traditional sequence aligment tools such as FASTA [Lipman and Pearson, 1988], BLAST
[Altschul et al., 1990], BLAT [Kent, 2002], MUMmer [Delcher et al., 1999] or HMMER53 are not
dedicated to process such a quantity of reads. Despite their efficiency both in computation time
and in the quality of the results, they are not efficient enough to deal with big data. It thus
requires another type of alignment tools able to map the large number of short reads to the
genome bank in acceptable time authorizing some reduction of accuracy. Those tools, the read
mappers, take as input a set of relatively short sequences (of length between tens and hundreds
base pairs) and a set of long sequences named references, and output all the possible alignments
between the whole read and the subsequences of the references. In recent years, many such
softwares have been designed. We review some of them in the Section 6.2 and in the Table 6.1,
with a special focus for GPU read mappers and “seed-and-extend” read mappers.

Our research and experiments on neighborhood indexing and approximate matching (see
the previous chapters) can be directly applied to create the filtering phase of a seed-based read
mapper. We thus propose a prototype, MAROSE, to evaluate the use of the techniques proposed
in this thesis (Section 6.3), which will be tested and compared against some read mappers on
real datasets (Section 6.4).

49Data cited from http://www.genome.gov/sequencingcosts/
50Data cited from http://www.illumina.com/Documents/products/Illumina_Sequencing_Introduction.pdf
51http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/index.shtml
52This genome bank is further used to evaluate our read mapper (6.4.1)
53http://hmmer.janelia.org

http://www.genome.gov/sequencingcosts/
http://www.illumina.com/Documents/products/Illumina_Sequencing_Introduction.pdf
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/index.shtml
http://hmmer.janelia.org


6.2. Methods for read mappers 99

6.2 Methods for read mappers

This section contains three parts. The first part introduces and classifies several recent read
mappers (table 6.1). MAROSE, our prototype read mapper, is developed using seed-based
heuristics (2.1.2), so the second part studies some read mappers using the same technique.
The third part is about GPU read mappers as MAROSE is implemented to run on manycore
processors such as the GPUs.

6.2.1 Classification of read mappers

One of the common points between these read mappers is the use of indexation in order to
accelerate the search. Different methods of indexation led to plenty of the read mapping
tools. The most recent surveys and evaluations on existing tools such as [Schbath et al., 2012],
[Li and Hormer, 2010], [Horner et al., 2010], [Bao et al., 2011], etc. uses the indexing algorithms
as the base for the classification of the read mappers. On the other hand, the sequences to be
indexed by the tools are either the genomes or the reads. The Table 6.1 lists some read mappers,
classified according to their algorithms and to their indexing target.

Algorithms classification. We follow here the classification proposed by [Schbath et al., 2012].
Considering indexing algorithms, there are hashing-based and Burrow-Wheeler Trasform
(BWT)-based read mappers.

• Hashing-based read mappers. The principle of these read mappers consists in build-
ing a hash table for seeds (either contiguous k-mers or spaced seeds). To evaluate the
occurrence of the whole read, several techniques may be used:

– Similarly to the seed-based heuristics presented in Section 2.1.2, the positions of the
seeds could be used to do a full alignment in order to calculate a matching score
between the read and the corresponding segment of the genome, that is the seed-and-
extend technique.

– Another technique does not use all of the alignments: a simple combination of the
occurence of the seeds allows to decide if it is an occurrence or not, precise or with
errors, based on the pigeon hole principle.

• Burrow Wheeler Transform-based read mappers. Index data structures for hashing-
based algorithms are very large. The Burrow Wheeler Transform (BWT) algorithms en-
ables a smaller memory footprint. In this type of read mappers, the index is a suffix-array
of the data (genome or set of reads), which would be further applied the BWT to get a com-
pressed data structure allowing the search inO(p+occ logεu) [Ferragina and Manzini, 2000].
This approach constructs a very compact index and avoids multiple queries in case of a
repetition but it is not so efficient when errors are allowed.

Indexing target classification. Finally, the indexation can be applied for either the reference
genomes or the set of input reads, which led to genome indexing (GI) and reads indexing
(RI) (see Table 6.1). Indexing a large genome always requires more time and space. But this
disavantage is acceptable because the indexes are created only once and stored in the hard disk
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GI RI GI RI

Before 2008

SSAHA2. Sequence Search and Alignment by Hashing Alogrithm
[Ning et al., 2001]

X

2008

MAQ. [Li et al., 2008a] X
SOAP. Short Oligonucleotide Alignment program [Li et al., 2008b] X
RMAP. [Smith et al., 2008] X
ZOOM. Zillions of Oligos Mapped [Lin et al., 2008] X
SeqMap. [Jiang and Wong, 2008] X

2009

segemeh1. Read mapper using enhanced suffix array, with mismatch,
insertion, deletion [Hoffmann et al., 2009]

SAa

SOAP2. Short Oligonucleotide Alignment program 2 [Li et al., 2009] X
BFAST. [Homer et al., 2009] X
MPSCAN. Multi-Pattern Scan [Rivals et al., 2009] Trieb

SHRiMP. The SHort Read Mapping Pakage [Rumble et al., 2009] X
Bowtie. [Langmead et al., 2009] X
BWA. Burrow-Wheeler Alignment tools (for short reads)
[Li and Durbin, 2009]

X

PASS. [Campagna et al., 2009] X
CloudBurst. [Schatz, 2009], the cloud computing version using
Hadoop of RMAP

X

MOM. Maximum oligonucleotide mapping [Eaves and Gao, 2009] X X
EMBF. [Wang et al., 2009] X X

2010

BWA-SW. Burrow-Wheeler Aligner’s Smith-Waterman Alignment
(for long reads) [Li and Durbin, 2010]

X

GPU-RMAP. [Aji et al., 2010], the massively parallel version of
RMAP [Smith et al., 2008]

X

Novoalign. [Technologies, ] commercial software, the free trial is avail-
able.

X

GASSST. Global Alignment Short Sequence Search Tools
[Rizk and Lavenier, 2010]

X

2011

SARUMAN [Blom et al., 2011] X
SOAP3 [Liu et al., 2011a] X
BWT-GPU [CIPF, ] X
BWT-GPU BWT based exact GPU read mapper
[Chen and Jiang, 2011]

X

2012

BarraCUDA. [Klus et al., 2012], the GPU version of BWA X
CUSHAW. [Liu et al., 2012a] X
GPU Exact Alignment. [Torres et al., 2012] X
NGM2 [CIBIV, ] X
Bowtie2 [Langmead and Salzberg, 2012] X
CUSHAW2 [Liu and Schmidt, 2012] X

aSearch by using the suffix array of the genome
bReads are indexed by a trie-like structure.

Table 6.1: List of read mappers and classification. GI: Genome Indexing, RI: Read Indexing.
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in order to be reused. Moreover, in the case of millions of reads, the size of an index on the
reads may be similar to the one of an index on the genome.

6.2.2 A focus on read mappers with seed-and-extend heuristics

In the readmappers using hashing-based techniques to index seeds, some of them use full seed-
based heuristics as presented in Section 2.1.2, with an extension to the neighborhood regions of
the matching seeds in order to select the good candidate to do the full extension. This type of
read mapper is also called “seed-and-extend” or “BLAST-like” with 3 main phases of seeding,
neighborhood filtering and extending. The Table 6.2 summarizes the techniques used by three
of those read mappers: PASS, EMPF and GASSST.

seeding filtering extending

PASS GI PST specialized dynamic programming
[Campagna et al., 2009]

EMPF GI and RI FVF Smith-Waterman
[Wang et al., 2009]

GASSST GI PST and FVF Needleman-Wunsch
[Rizk and Lavenier, 2010]

Table 6.2: Table of seed-and-extend short read mappers, which generally consist of 3 phases: seed, filter and
extend (GI: Genome Indexing; RI: Read Indexing; PST: Precomputed Score Table; FVF: Frequency Vector Filter)

The significal differences between these 3 read mappers is in the techniques of the filtering
phase, which are applied on the flanking regions around the seed (the neighborhoods, see 2.1.2)

• PST, “precomputed score tables”, which uses 2-dimension matrices that keep the Lenven-
shtein distances between 2 fixed length words.

• FVF, “frequency vector filter”, which bases on the counting of the difference number of
each character between 2 fixed length words.

In comparison with these read mappers, MAROSE uses the approximate neighborhood
matching techniques developed in the previous chapters to implement the filtering phase.

6.2.3 A focus on GPU read mappers

Along with the trend in GPGPU, in the recent years, there have been works and publications
on GPU read mappers. We now focus of the read mappers using GPUs.

6.2.3.1 Hashing-based GPU read mappers

GPU-RMAP. [Aji et al., 2010] developed GPU-RMAP, a CUDA massively parallel version
of RMAP [Smith et al., 2008]. GPU-RMAP parallelized the mapping step, which accounts for
more than 98% of the running time of RMAP. GPU-RMAP allows only substitutions, but can
be applied to unlimited number of errors.

GPU-RMAP indexes the reads. The genome, which is divided into segments, and the hash
table of the reads are transfered to the GPU. The mapping step is implemented as 2 kernels:
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• Kernel 1. Each thread scans the corresponding segment, looks-up and scores.

• A synchronization step after Kernel 1 distributes the reads among the threads of Kernel 2.

• Kernel 2. Each thread inspects the respective read in the list of correspoding sites, scores
and chooses the best-mapped site for each read.

The authors discuss the use of binary search instead of the hashing technique, with collisions
resolved by chaining, in the original RMAP tool. In GPU, the binary search on the look-up
table, which is optimized with the hierachy of GPU memory, is better than hashing.

SARUMAN. [Blom et al., 2011] proposed SARUMAN (Semiglobal Alignment of Short Reads
Using CUDA and NeedMAN-Wunsch). SARUMAN indexes the reads, selects the candidates
by using a q-gram lemma (mapping phase) and aligns them with the corresponding segment
of the reference genome with semi-global Needleman-Wunsch algorithm (aligning phase). The
mapping phase run on the host, and the candidates are processed simultenously on the GPU.
SARUMAN allows both substitutions and indels.

6.2.3.2 Burrow Wheeler Transform (BWT)-based GPU read mappers

BWT-based exact GPU read mapper. [Chen and Jiang, 2011] proposed an approach for
high throughput exact matching based on BWT and GPUs. The reference genomes are indexed
using BWT, the input reads are sorted and combined before searching on the BWT. The authors
implemented both a CPU and a GPU version, with a speedup of at most 2.46× on a NVIDIA
Tesla C2050.

BarraCUDA. [Klus et al., 2012] implemented the GPU version of the BTW searching phase
of BWA[Li and Durbin, 2009]. To fit with the limit of the on-chip shared memory, the authors
changed the traditional breath-first-search of BWA with a different bound depth-first-search.
Moreover, the reads are divided into short fragments of size 32 to be serially processed through
a pipeline of kernels to further exploit task-parallelism.

? ? ?

As this field of research is rapidely evolving, new read mappers were recently proposed. These
GPU read mappers are also either hashing-based such as NGM2 [CIBIV, ] or BWT-based such
as CUSHAW [Liu et al., 2012a], SOAP3 [Liu et al., 2011a], BWT-GPU [CIPF, ] and the GPU
Exact Alignment of [Torres et al., 2012].

However, according to our knowledge, up to the middle of 2012, there is not any publication
about a GPU read mapper which utilizes the full seed-based heuristics with all 3 phases of the
seed-and-extend approach. Looking on the two hashing-based GPU read mappers presented in
section 6.2.3, GPU-RMAP does not use the full extension and SARUMAN does not use the
neighborhood filtering phase.

The following section presents MAROSE, our seed-and-extend GPU read mapper which does
the filtering phase by using the neighborhood indexing approach.
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6.3 MAROSE: Massive Alignments between Reads and Sequences

This section describes the design and implementation of MAROSE. Firstly, we introduce the
general process of MAROSE to map a read onto a sequence. Then we present the OpenCL
implementation to explain the design of the two kernels.

6.3.1 Mapping a read to a sequence by MAROSE

MAROSE maps the reads in accordance with the definition:

Given a read r, a sequence t and a parameter ae ≥ 0, find all the occurrences of r in t such
that the Levenshtein distance between r and its occurrences in t is at most ae

54.

Once an occurrence of a read r is found at position pos in the sequence t, we say that “r is
mapped to t at pos”. Once a read is mapped to any position in a sequence, we say that there is
a hit.

A DNA sequence is made of residues in {A, C, G, T, N}. For any ambiguous nucleotide N,
we chose here to randomly change it to either A or C or G or T . Thus all the reads and sequences
are finally written over an alphabet Σ = {A, C, G, T}.

The sequence t is indexed with the seed length u and the neighborhood length `. The
resulting index, denoted by It, is created once and stored in the hard disk. Each input read55 is
then processed independently through two phases (see Figure 6.1):

Extend

It

LPOS

LHit

t

Seed

and

Filter

r

Figure 6.1: Process of mapping a read r onto the sequence t. It is the neighborhood index of t, LCPos is the list
of the putative position to do the full alignment of r on t. LHit is the list of hits of r as the result of the whole
process.

Phase 1: Seed and Filter phase.

The input read is divided into a set of consecutive overlapping patterns {siqi}. Each
pattern is the concatenation of a seed s and a neighborhood q, where |s| = u and |q| = `.
For a read of length `r, there are thus `r − u− `+ 1 such patterns (Figure 6.2).

For each pattern sq, q is matched with at most fe errors with the corresponding list of
neighborhoods in SeedBlock(s) (Figure 6.3, a). Here fe stands for “filtering error”. Each
matching of q leads to one putative alignment position on the genome, called the absolute
candidate position Cap.

54In this definition, ae stands for “aligning error” which is further discusted in 6.3.2.2
55Note that for a read r, we also implement the mapping process with its reverse complement, which is created

in the running time. The read, and its reverse complement are processed independently.
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r A T T C G G C A C A C G A T T C

A T T C G G C A C A C G

T T C G G C A C A C G A

T C G G C A C A C G A T

C G G C A C A C G A T T

G G C A C A C G A T T C

s1q1

s2q2

s3q3

s4q4

s5q5

Figure 6.2: An example for processing an input read r of length `r = 16 into a set of consecutive overlapping pat-
terns {siqi}. With a seed length of u = 4 and a neighborhood length of ` = 8, the read r = ATTCGGCACACGATTC
of length 16 is processed into a set of 16− 4− 8 + 1 = 5 patterns {s1q1, ..., s5q5}.

As the patterns overlap along the read, multiple patterns may match to one Cap. After
a “multiplication removing” step, we store only once each candidate position in the Cap
result list (Figure 6.3, b)56. The result of this phase is a list of unique Cap, denoted
by LCPos.

Phase 2: Extend phase.

For each absolute position Cap ∈ LCPos, the read r is aligned with a subsequence tsub of
the sequence t, taken as follows (figure 6.3,c):

tsub = tCap−ae , ..., tCap+`r+ae (6.1)

This subsequence allows to take into account any alignment with at most ae insertion or
deletion errors. If the alignment score is less than or equal to ae, the read r has one
hit at position Cap in the sequence t. This phase outputs a list of absolute positions
of the hits, denoted by LHit. This is the mapping result.

6.3.2 Parallel implementation

We now present the implementation of MAROSE on GPUs as a solution to process a large
number of reads and huge reference sequences. MAROSE takes a set of reads R = {r1, ..., rn},
a set of sequences T = {t1, ..., tm}, and an alignment error ae.

The sequences are further divided into k smaller subsequences ti,1, ..., ti,k, in order that the
corresponding indexes Iti,1 , ..., Iti,k fit into the GPU global memory (with their subsequence).
We thus finally consider a set of indexes IT = {Iti,1 , ..., Iti,k}.

Each index of IT is loaded in turns, from the hard disk to the main memory of the host and
to the global memory of the GPU, to serve in the mapping process with R. R is also divided
into smaller batches of reads, denoted here by Br. Each batch of read is also loaded in turns to
the GPU to map with the subsequence ti,j .

56The process to remove multiple positions is based on the idea of GASSST [Rizk and Lavenier, 2010]
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r: T C G T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

t: A T C G T T T A G G C G T T G G C C G G A T C G T A A A

s1q1: T C G T T C G T

C G T T C G T T

G T T T

(a)

pattern multiplication

T C G T 1, 21 removing

C G T T 1, 10 {1, 10, 21}

G T T T 1

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A T C G T T T A G G C G T T G G C C G G A T C G T A A A

T C G T T T T C G T T T T C G T T T

(c)

s2q2:
s3q3:

 Cap

 LCPos =

Figure 6.3: Example of exact mapping of between the read r = TCGTTT and the sequence t =
ATCGTTTAGGCGTTGGCCGGATCGTAAA, with u = 2, ` = 2, fe = 0, and ae = 0. (a) is the creation of con-
secutive patterns {sq} and the result of the exact matching of each pattern along the sequence t (using the
neighborhood indexing). (b) shows that the candidate position Cap = 1 is found 3 times. After the multiplication
removing, there are 3 unique candidate positions in the list LCPos. (c) shows the exact alignment between r and
the corresponding subsequences in t, from Cap to Cap + `r (as ae = 0).
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The execution of MAROSE now can be viewed as the result of independent mappings between
the batch of reads Br and the subsequence ti,j, using the index Ii,j . We call this the “core process”
of MAROSE. The rest of this section describes the parallel implementation of this core process,
implemented with two OpenCL kernels, the Seed− Filter kernel and the Extend kernel.

6.3.2.1 The Seed− Filter kernel (phase 1)

There are two stages in the Seed− Filter kernel, Filtering and Multiplication Removing.

Stage 1: Filtering: It computes the approximate matching between the patterns sq, generated
from the read r, with the corresponding list of neighborhoods in SeedBlock(s) of Ii,j . The
absolute candidate positions (Cap) returned from the match of each sq are kept in the
matching list, denoted by LMatch.

Step 1a: Matching: Each read r ∈ Br is processed independently by one work-group57.

Each patterns sq is approximately matched with at most fe substitutions against the
nb block in SeedBlock(s) by one work-item, independently. We implemented this step
with two methods detailed in the previous chapters:

• Binary search (BS) with reduced structure,

• Perfect hashing (PH) with indexed block structure.

However, in the current version, we have not implemented the model of generating
Hamming-distance patterns (3.2.1), but rather used the following techniques:

• With binary search (BS), the degenerated patterns are created and compared to
q sequentially;

• With perfect hashing (PH), the set of combinations of substituting positions
(SP ) is traversed sequentially. However, for each combination, |SC| degenerated
patterns, created by changing the characters in each set of positions, are queried
in parallel by using the vector data type.

It means that we only take advantage of the efficiency of the neighborhood retrieving
of the index. The advantage of parallel approximate matching has not yet been full
exploited.

Step 1b: Positions retrieving: Each match of sq corresponds to a list of positions in
pos block. This step accesses to the nb pos block and the pos block the global memory
to retrieving the position in order to calculate the list of Cap of r in the reference
sequence. The Cap found by all work-items is gathered to the LMatch, thus duplicates
could arise, as one Cap may occur multiple times in LMatch. LMatch is kept in the
local memory of the work-group, on which each work-item has a region of fixed size
to store its Cap.

Stage 2: Multiplication Removing. A traversal of LMatch allows to remove the multiplica-
tion of each Cap. The list of unique Cap is stored in LCPos. This is implemented by using
a “sort and reduce” strategy with 3 steps:

57In this version of MAROSE , we experimented with 40, 000 work-group for the Seed− Filter kernel. Thus,
there were 40, 000 reads that is mapped simultaneously (|Br| = 40, 000)
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Step 2a: Sorting: As LMatch is kept in the local memory, it can be accessed by any
work-item in the work-group. To sort LMatch, we used a parallel version of a radix
sort where the whole list is shared and sorted together by 16 work-items.

Step 2b: Reducing: After the list of absolute positions is sorted, it is traversed to
reduce the multiplications of each Cap. After this step, each read has the list of
unique absolute candidate position in the reference sequence (LCPos).

Step 2c: Output writing: LCPos is written to the global memory58 of the GPU, ready
to be processed by the Extend kernel.

6.3.2.2 The Extend kernel (phase 2)

The Extend kernel is implemented with a banded semi-global alignment algorithm, which allows
us to find any alignment within a ae Levenshtein distance (substitutions, insertions and dele-
tions). The space complexity of this algorithm is O(ae · `r), instead of O(`2r) if the full dynamic
programming matrix is computed.

The LCPos from all reads r ∈ Br, returned by the work-groups, are gathered to create the
alignment candidate list, denoted here by LAC . We denote the size of LAC by SAC . Each
element AC(r, Cap) ∈ LAC corresponds to an alignment between a read r and a subsequence
tsub, located in the reference sequence from Cap − ae to Cap + `r + ae.

We launched the Extend kernel with SAC work-items, each work-item process one alignment
candidate in LAC independently. The alignment results are gathered into the LHit list which is
returned to the host.

6.4 Results

Following the benchmarks of [Schbath et al., 2012], MAROSE was evaluated on a complete
human genome in two cases: exact mapping and approximate mapping allowing 3 substitutions.
The following subsections will describe and analyze the experiment results both on performance
and on quality.

6.4.1 Experiment data sets and setups

The data sets. To evalutate MAROSE, we used the datasets on the human genome proposed
by [Schbath et al., 2012]. This dataset consists of two sets of reads, H0 and H3, which are
queried against a reference genome bank Href :

• Href is the human genome from the assembly 37.1 of the United States National Center
for Biotechnology (NCBI). It contains 25 human chromosomes (1 to 22, X, Y and M) and
has a total size of 2.7 Gbp.

• H0 is a set of 10 millions reads of length 40, extracted uniformly from Href .

• H3 was created by adding exactly 3 randoms substitutions to each read in H0. Thus, there
are 10 millions reads of length 40 in H3.

58The OpenCL atomic operation atomic add() is used for this purpose.
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Reduced Indexed Block
u ` TIndex size (GB) TIndex size (GB)

IHU8L16 8 16 43m 31s 30.10 91m 21s 37.73

IHU7L8 7 8 34m 55s 27.13 82m 38s 33.57

Table 6.3: The creation time and the size of neighborhood indexes for the human genome bank Href , which
contains 25 sequences for a total size of 2.7 GB.

Experiment fe ae Read Index

EChr100 0 0 Chr100 IChr10U8L16

EChr103 1 3 Chr103 IChr10U7L8

EH0 0 0 H0 IHU8L16

EH3 1 3 H3 IHU7L8

Table 6.4: Four experiments to evaluate MAROSE on the human genome bank Href .

Indexes on the reference genome. We created two indexes for Href , denoted by IHU8L16

and IHU7L8, including both reduced structure and indexed block structure. The seed length,
the neighborhood length, the total size and creation time of these indexes (TIndex) are presented
in Table 6.3. More details on the size of these indexes can be found in appendix (Table A.3 and
Table A.4).

Benchmarking environment. We used the oclGPU environment (see page 82): all the
results are from the experiments on a host with 8 GB RAM and an Intel Xeon E5520 which
uses an NVIDIA GTX 480 GPU as an OpenCL device.

Experiment setups. We evaluated MAROSE with the complete human genome Href for
two cases: exact mapping and approximate mapping with 3 substitutions. These two experi-
ments are denoted here by EH0 and EH3 with the parameters presented in Table 6.4.

We will analyze the 5 steps of the seed and filter kernel: matching, position retrieving,
sorting, reducing and output writing (6.3.2.1). In order to measure the running time of those 5
steps, we measured the running time of each step in the experiments with the data corresponding
only to the chromosome 10. It means that, in H0 and H3, we mapped only the reads extracted
from the chromosome 10 (denoted here by Chr100 and Chr103). Both Chr100 and Chr103
contains 460, 544 reads of length 40. For the index, we used only the indexes of chromosome 10
in IHU8L16 and IHU7L8 (denoted here by IChr10U8L16 and IChr10U7L8). It leads to 2 other
experiments, denoted by EChr100 and EChr103 (see table 6.4).

In each experiments, we run the Seed− Filter kernel with both binary search (BS) and
perfect hashing (PH) methods.

6.4.2 Running times of the two main kernels

Table 6.5 presents the results of EH0 and EH3, which includes:

• TK1: running time of the Seed− Filter kernel.
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Experiment TK1 Candidate TK2 Hit Trest Tmap
(second) (second) (second) (second)

BS EH0 2672.60 6582496108 151.60 547034208 1231.98 4056.18
(65.89%) (3.74%) (30.37%) (1h 7m)

PH EH0 2402.10 6582496108 151.60 547034208 1423.28 3976.98
(60.40%) (3.81%) (35.79%) (1h 6m)

BS EH3 21051.81 89844054473 3419.95 811734862 1932.83 26404.59
(79.73%) (12.95%) (7.32%) (7h 20m)

PH EH3 6673.06 89844054473 3396.09 811734862 1381.85 11451.00
(58.27%) (29.66%) (12.07%) (3h 11m)

Table 6.5: Experiment results of exact mapping (EH0) and approximate mapping with 3 substitutions (EH3)
on Href .

• Candidate: number of candidates for the extend phase.

• TK2: running time of the Extend kernel.

• Hits: number of hits (we have one hit once a read is mapped to any position in a sequence)
after the extend phase.

• Tmap: total running time of the whole application.

It should be noted that TK1 and TK2 are only the running time of the two kernels59. Tmap,
the running time of the whole application, is measured by the time command of the Linux
operating system. Trest, which includes the times of read preprocessing, index loading, data
exchanging between the host and the OpenCL device, mapping results writing, is computed as
Tmap − TK1 − TK2.

In the case of exact mapping, the running time of BS is not very different from PH. But PH
is 2.3× faster than BS in the case of approximate mapping. This comes from a 3.15× speedup
of the Seed− Filter kernel (matching with 1 substition over neighborhoods of length ` = 7).

In all of these experiments, exact and approximate mapping, the majority of running time
is for the Seed− Filter kernel. The time contributions of each step in the kernel are detailed
in Table 6.6 for both EChr100 and EChr103 experiments.

It shows us that the step that mostly consumes computation time in each experiment is the
sorting step for exact mapping and the matching step for approximate mapping, which is not
suprising.

For approximate mapping, the running time percentage of the Extend kernel is higher than
the one of exact mapping (12.95% over 3.74% for BS and 29.66% over 3.81% for PH) because it
aligns much more candidates (about 13.65×). In addition, the number of operations of banded
alignment with 3 errors is 7× more than the one without errors. We can also computed the
average aligning time for a candidate: about 3.81× 10−8s with 3 errors and about 2.30× 10−8s
for exact aligning. So the processing time grows 1.65× while the number of compute operations
grows 7×.

59Time measured by profiling the return events of the clEnqueueNDRangeKernel OpenCL command
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BS PH
step EChr100 EChr103 EChr100 EChr103

1a. Matching 0.77 29.22 0.009 6.32
(9.62%) (66.15%) (0.18%) (44.98%)

1b. Position retrieving 0.023 0.78 0.25 0.41
(0.29%) (1.77%) (5.07%) (2.92%)

1c. Sorting 6.16 11.76 4.12 4.51
(76.97%) (26.62%) (83.59%) (32.10%)

2a. Reducing 1.02 2.26 0.53 2.59
(12.75%) (5.12%) (10.75%) (18.43%)

2b. Output writing 0.03 0.15 0.02 0.22
(0.37%) (0.34%) (0.41%) (1.57%)

TK1 (s) 8.003 44.17 4.929 14.05
(100%) (100%) (100%) (100%)

Table 6.6: Running time of 5 steps in the Seed− Filter kernel (in seconds) and corresponding percentages
relative to the total time of the kernel TK1.

In EH3, the number of candidates is about 13.65× greater than that of EH0 while the number
of hits is only 1.48× greater than EH0. It leads to the conclusion that one has to pay attention
in the selections of the seed length (u), the neighborhood length (`) and the filter error (fe).
Indeed, with wrong parameters, the Seed− Filter could outputs too many candidates rather
than many good candidates, resulting in a waste of time during the alignment process. Searching
for best values and a good tradeoff should be a rewarding work for the future.

6.4.3 Comparisons with other read mappers, in different platforms

This subsection gives a comparison of the running time and sensibility of MAROSE with the
softwares presented in [Schbath et al., 2012]. EH0 was used to compare 11 softwares (table 6.7)
in the case of exact mapping. As MPScan can not map with error, and SOAP2 can only treat
up to 2 substitutions, only 9 softwares were used in the case of approximate mapping, with the
experiment EH3.

We evaluated both the speed and the sensibility of MAROSE :

• Speed: we compared the indexing time (TIndex) and the mapping time (Tmap). As the
sequences are indexed only 1 time we used Tmap of the PH method to rank the speed.

• Sensibility: we used the number of reads which are mapped as the main factor to evaluate
the sensibility. In addition, two other factors were used:

– Unique reads: In H0, there are 8, 877, 107 reads that occur exactly once in Href
60.

The ability to find all unique reads is a key factor to evaluate the sensibility of a read
mapper.

– Mean number of multiple hits: For the reads that have multiple hits, the mean number
of hits was used to evaluate the capacity to find all the occurrences of each read in
the targets sequences.

60Schbath et al used a dedicate naive algorithm to compute the occurrence number in Href of each read in H0
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It should be noted that the platform to run MAROSE and the one to run the other softwares
are different. In addition, these softwares ran with only 1 thread on the CPU, while MAROSE
run on GPU. Thus, the comparision of speed in this section is here not significant. The TIndex
in Table 6.7 and Table 6.8 still function as a performance parameter, but the corresponding
analysis will focus on the sensibility. A comparison between MAROSE and BWA (version
0.6.2) [Li and Durbin, 2009] on a same platform with multiple threads will be presented in
Section 6.4.4.

The Reference row in Table 6.7 gives the true numbers of the unique reads, of the multiple
hit reads, and the true mean of the number of multiple hits. However, until now we did not
have the list of unique reads of this benchmark, so in Table 6.7 and Table 6.8, the value in the
unique read column of MAROSE is the number of reads that have only one hit in the results of
EH0 and EH3. In the current results, a unique read found by MAROSE should be either the
true unique read or a read with multiple hits that is mapped only once. We will thus report a
unique hit number of MAROSE as the reference with the other read mappers and focus on the
number of mapped reads and the mean of multiple hits to analyse the sensibility.

Multiple hits
Software Memory Indexing Mapping Non-mapped Mapped Uniquely Number Mean

usage
(GB)

time time reads reads hit

SOAP2 51.78 1h 56m 56m 49 9999951 8877061 1122890 653.26
MAROSE 37.73 91m 21s 1h 6m 21 9999979 8877100 1122879 479.26
BWA 2.18 1h 35m 1h 13m 49 9999951 8877061 1122890 722.81
MPSCAN 2.67 1h 20m 26 9999974 8877081 1122893 722.81
Bowtie 7.36 3h 25m 2h 42m 49 9999951 8877061 1122890 722.81
GASSST 57.93 8h 45m 49 9999951 8877061 1122890 722.47
PerM 13.77 13h 05m 115871 9884129 8877068 1007061 126.42
Novoalign 8.12 8m 13h 24m 632 9999368 8877107 1122261 698.63
BFAST 9.68 18h 01m 15h 02m 726332 9273668 8840305 433363 2.96
SSAHA2 9.60 24m 1d 1h 35875 9964125 8886204 1077921 79.52

Reference 8877107 1122893 722.81

Table 6.7: Comparison between MAROSE and others short read mappers in the benchmark [Schbath et al., 2012]
in the case of exact mapping. This table is built from the results of experiment EH0 and the data from Table 3
and Table 4 in [Schbath et al., 2012]. For MAROSE, the index size and the indexing time are the ones of the
indexed block structure, and the mapping time is the one of the PH method.

.

Exact mapping (Table 6.7). MAROSE is the second faster (but remember that the speed
comparison is here not significant), but has the highest mapped reads number. All 21 non-
mapped reads contain at least 1 residue N. For 8877100 unique reads, there are 10 reads that
are not mapped to the original position (from where they were extracted). It means that there
are at least 10 reads which have multiple hits but are mapped only once. The number of
multiple hit reads found by MAROSE is 1122879, less than the reference value of 14 reads
(1122893− 1122879). It allows us to conclude that the difference in the number of unique reads
of MAROSE is between 10 and 14 in comparaison with the referent number. This difference
is very small in relation with the number of reads and can not cause a significal change in the
accuracy of the reported results.

However, the value of the mean of multiple hits shows that we can find about 66.3% of the
total hits of the reads that occur more than 1 time in Href while BWA, MPSCAN, Bowtie and
GASSST can find 100%. This problem is further discussed in the results of the experiment in
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approximate mapping (see page 112).

For the running time, Table 6.6 shows that most of the time is taken in the sorting step in
the Seed− Filter kernel. As this step is limited by the local memory size (without dynamic
allocation of the GPU), if we keep the structure of MAROSE as in this version, it is difficult to
find a solution to improve this point.

Table 6.5 shows that 30.37% or 35.79% of the total running time is for the preprocessing
and the data exchanges. It is a disadvantage of MAROSE as large sequences are divided into
smaller subsequences so that their indexes fit with the global memory of the GPU (1.5 GB here).
The indexes of the subsequences are loaded in turns, from the hard disk to the main memory
of the host, and from the main memory to the global memory of the GPU (more details about
the number of subsequences in Href can be found in Table A.3). However, this problem is only
significant when we run MAROSE on a single host and with a GPU with limited global memory.
It can be solved by using the latest GPUs with larger memory.

Moreover, the most important thing is that thanks to independent processing of the indexes of
the subsequences of MAROSE, it is now very easy to run on a distributed computing platform
such as a cluster or a grid, thus providing a high scalibility with input data. It means that
MAROSE exchanges the advantage when running in a single host with the high potential of
parallelism in distributed computing platforms.

Multiple hits
Software Memory Indexing Mapping Non-mapped Mapped Uniquely Number Mean

usage
(GB)

time time reads reads hit

MA ROSE 33.57 82m 38s 3h 10m 11573 9988427 8424955 1563472 513.79
Bowtie 7.36 3h 25m 9h 57m 49 9999951 8496649 1503302 1161.98
PerM 13.75 12h 25m 186752 9813248 8496655 1316593 147.25
BWA 10.01 1h 38m 17h 04m 49 9999951 8496649 1503302 1161.98
BFAST 9.68 18h 01m 10h 02m 199451 9800549 8476476 1324073 6.17
GASSST 27.14 1d 12h 326598 9673402 8193650 1479752 1139.25
Novoalign 8.12 8m 2d,6h 47 9999953 8699117 1300836 15.12
SSAHA2 9.60 24m 3d 11h 213 9999787 8286416 1713371 6.81

Table 6.8: Comparison between MAROSE and others short read mappers in the benchmark of Schbath et al
[Schbath et al., 2012]. in the case of approximate mapping with 3 substitutions. This table is built from the
results of experiment EH3 and the data from Table 5 and Table 6 in [Schbath et al., 2012]. As in Table 6.7, for
MAROSE, the index size and the indexing time are the ones of the indexed block structure, and the mapping
time is the one of the PH method.

Approximate mapping with 3 substitutions (Table 6.8). MAROSE ranks first in speed
(same remark applies), but fifth in the number of mapped reads. This experience highlights the
problem of multiple hits already pointed out in the results of exact mapping. The reason for this
problem is that the size of the matching list (LMatch) and the absolute positions list (LCPos)
inside the Seed− Filter kernel are small and can not be dynamically allocated. It leads to
the miss of good candidates when a read occurs multiple times in the reference sequence as the
matching step returns a lot of results and causes an overflow in these two lists. It is one of the
most critical problems in the current version of MAROSE. We tried to solve with 2 solutions:

• Increase the size of LMatch, in the restriction of the size of the local memory (48 KB on
the NVIDIA GTX 480).

• Use a “heuristic index structure” with a threshold to limit the number of occurrences of sq.
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But the sensitivity was not significally increased. The reason could be that the number of
occurrences of each sq is very large while the local memory size of the GPU is very limited.
In the case of using global memory to keep the matching results and the candidates, one must
modify the structure of current version of our software.

Table 6.6 shows that most of the time is consumed in the matching step. As presented in
6.3.2.1, in the current version, the model of generating Hamming-distance patterns (3.2.1) has
not been fully applied and the degenerated patterns are created and compared to q sequentially.
This leaves scope for significantly improvement of the running time of MAROSE in the case of
approximate mapping once this step is fully parallelized.

6.4.4 Comparisons between MAROSE and BWA on a same platform

This section presents the comparison between MAROSE and BWA (version 0.6.2) in the oclGPU
experiment environment (page 108). We perform the approximate mapping with 3 substitutions
of 460,544 reads of size 40 onto the human chromosome 10 (experiment EChr103 in Table 6.4).
BWA runs on the Intel Xeon E5520 in two cases: single thread and 8 threads.

According to Table 6.7 and Table 6.8, BWA is one of the most sensitive short read mappers
while MAROSE only ranks the fifth. In this section, we only compare the running times, which
are reported in Table 6.9.

For BWA, the running time is significantly different between ungapped alignment and gapped
alignment. The number of allowed gaps (among the number of errors) is configured by using
the -o parameter. For the experiment EChr103, the gap is not allowed (-o 0). In this case,
MAROSE runs in about the same time than BWA on 8 threads, and about 6.9× faster than
BWA on 1 thread.

When the gaps are allowed, the running time of BWA increases substantially while for
MAROSE it does not change thanks to the full extend phase. One conclusion can be drawn
from this is that MAROSE can run much more faster than BWA in the case of mapping with
gaps, but with a decrease in sensibility.

BWA
MAROSE -o 0 -o 1 -o 2

1 thread 8 threads 1 thread 8 threads 1 thread 8 threads

Running time (s) 31.56 210.97 34.55 635.75 130.42 825.05 161.72

Speedup of MAROSE – 6.9× 1.09× 20.14× 4.13× 26.64× 4.8×

Table 6.9: Running time comparison between MAROSE and BWA.

6.4.5 Prospective features of MAROSE

We report now preliminary tests on improvements for MAROSE :

• Non-consecutive patterns: the successive patterns created from the input read may be
not consecutive, but taken with a shift of δ positions to the right. For a seed of size u and
a neighborhood of size `, the read r of size `r is processed into a set of [(`r − u− `)/δ] + 1
patterns (Figure 6.4, a). The number of patterns can be significantly reduced, so the speed
of the matching phase in the Seed− Filter kernel could be improved but with a trade-off
in sensibility.
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Moreover, using this feature, we can tune the number of created patterns to fit with the
computation and storage capability of the device. It gives to MAROSE a possibility of
processing reads of larger sizes.

• Spaced seeds: As being proved in various researches such as [Brown, 2008], spaced seeds
[Ma et al., 2002] can improve the sensibility of the read mapper. To use spaced seed in
MAROSE , the indexes needs to be recomputed as the seeds are changed (Figure 6.4, b).

delta = 2 Model : # - # # #

r A T T C G G C A C A C G A T T C r A T T C G G C A C A C G A T T C

A T T C G G C A C A C G A T C G G C A C A C G A

T C G G C A C A C G A T T C G G C A C A C G A T

G G C A C A C G A T T C T G G C A C A C G A T T

C G C A C A C G A T T C

(a) (b)

s1q1 s1q1

s2q2 s2q2

s3q3 s3q3

s4q4

Figure 6.4: Example of non-consecutive patterns and spaced seeds, on a read r of length `r = 16. (a) shows the
creation non-consecutive patterns from r with the step δ = 2, and (b) shows the creation of spaced seeds with
the seed model #-###.

The implementation of these two extended features did not critically change the structure of
MAROSE , the only modification being in the process of creating the patterns from the input
read. Table 6.10 shows the results of experiment EChr103 when performed with non-consecutive
patterns of step δ = 2 and with a spaced seed of model ####-####. The result of EChr103 in
Section 6.4.2 and Section 6.4.4, corresponding to the case of seed model = ######## and δ = 1,
is used as a reference. These results confirms the intuitions on these techniques:

• Using non-consecutive patterns, the mapping time is significally improved, but the sensi-
bility is of course reduced;

• Using spaced seeds, the mapping time and the total number of hits are not significaly
changed, but the sensibility is improved (as expressed by the decrease in the number of
non-mapped reads).

Non-mapped mean of Tmap
Seed Model delta Hits reads multiple hits (second)

######## 1 2013786 1345 31.52 30.54

######## 2 1677504 2592 25.34 22.19

####-#### 1 2036021 893 31.76 31.19

Table 6.10: Experiments with nonconsecutive patterns and spaced seed

By using non-consecutive patterns, MAROSE is able to treat long reads. We have run
experiments with reads that were as long as 400bp. As those experiments are yet under analysis,
we are not ready to show comparisons with other read mappers.
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6.5 Conclusion

This chapter presents the integration of the solutions presented in the previous chapters into a
real application about read mapping. MAROSE, a prototype of short read mapper, demonstrates
a striking performance. Even in this preliminary version, in which we only applied a solution for
“efficient neighborhood retrieving” and the “approximate neighborhood comparison” was not
fully exploited, the speed and the ability to process large data is proved. In addition, MAROSE
can be adapted to use other techniques such as the spaced seeds and also has the capability
of processing longer reads. Thus, MAROSE is a promising prototype for a powerful GPU read
mapper.
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Chapter 7

Conclusions and Perspectives

Focusing on parallel data structures and algorithms to solve the problem of massively approxi-
mate pattern matching, our work considered neighborhood indexing as the method for building
data structures on manycore processors such as the graphical processing units (GPUs). For
this purpose, we investigated two main approaches: i) direct matching and ii) matching with
indexes created using perfect hashing functions. Algorithms and data structures were imple-
mented and tested, and their performances were analyzed and compared. This work ended with
the development of a prototype of a manycore read mapper as an application case.

7.1 Conclusions

Our work started with the background of programming on manycore processors with the Open
Computing Language (OpenCL) and the brief summary about the usages of GPUs in bioinfor-
matics. We showed that a number of applications using such devices already exist and that they
could bring substantial speedups.

Chapter 2 explained the main target of our work and why we focused on developing methods
about approximate matchings between fixed length words. Indeed, such a basic tool involved in
numerous applications, especially for the filtering phase in seed-based heuristics commonly used
to compare large genetic sequences. Thus, it was worth an effort to design efficient methods
for the GPUs. This problematic leads to the requirements of indexing the occurrences of small
words, namely the seeds, in large genetic sequences. The neighborhood indexing approach
was choosen with adaptation with the behaviours of the global memory accesses of the GPUs.
Chapter 2 also discussed the features of the algorithms that can be efficiently mapped on GPUs
for which the aim is to avoid divergent branch problem.

Chapter 3 presented two solutions to the appoximate pattern matching for the neighborhoods
kept in the flatten lists, what we called direct matching.

• The first solution is the usage of the well-known Bit Parallel Row-wise (BPR) algorithm,
an appoximate matching algorithm, we adapted for a set of fixed length words: mflBPR.
The expriments in chapter 5 showed an improvement in the speedup of mflBPR over
BPR, thus proving the effectiveness of our apdatation. Moreover, running on the GPU,
our implementation achieved at most 19× faster than the same parallel version on the
multicore CPU, 62× faster than the corresponding serial version. Even in the worst case, it

117
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is 15× faster than agrep, the original implementation of BPR. Thus, mflBPR should be an
excelent solution for high throughput general approximate matching with the Levenshtein
distance on GPU, especially for short patterns over small alphabet.

• The second solution seeks to simulate the errors by producing a set of degenerated patterns
from an initial pattern. We used the binary search strategy to search in an index which was
parallelized by simultaneously matching with the degenerated patterns. The advantage of
this solution is the simplicity of the algorithm, as binary search is one of the most popular
searching algorithms. Again, performance analysis in chapter 5 showed that this further
stage of indexing, for small Hamming distance, could give up to 1000× improvement on a
non-indexed solution such as mflBPR.

Chapter 4 proposed a solution where the neighborhoods (inside each SeedBlock) are further
indexed. We investigated the usage of perfect hashing functions to do that. While the number
of arithmetic operations is more intensive as compared to the 2 previous solutions, this solution
is appealing because it can be implemented to obtain a constant time complexity, which is
important for application on GPUs. As described in chapter 5, the performance of such approach
outweighed the two preceeding solutions, being about 10× faster than the binary search on the
experiments with small Hamming distance.

In chapter 5 we presented some performance measurements, analyzing the impact of several
parameters. The efficiency of the implementations on the GPUs is proved. The advantages,
the disadvantages of each solution in relation with various arguments from both the computing
device and the data structure are pointed out. The performance analyses showed that GPUs
are able to deal with intensive computations, but are very sensitive to the branch divergence
and random accesses to the global memory.

Finally, in chapter 6 we attempted to demonstrate the usage of our indexes and matching
strategies in a “real” application. We thus developed a prototype of a parallel read mapper
named MAROSE (Massive Alignment between Reads and Sequences). Though only a proto-
type version, the efficiency of MAROSE was proved with the experiments on real data and in
comparison with other read mappers: in some cases, MAROSE ranks as one of the fastest read
mappers with an acceptable sensitivity.

7.2 Perspectives

Scalability with large data. The solutions in this thesis were designed and customized for
current GPUs, but we believe that the principles studied here will also apply to future manycore
processors, as soon as some high-throughput data is divided and processed simultaneously on
multiple processing elements. Moreover, the distribution of the work-items to the processing
elements is transparent for the programmer and is implicit in the source code. The solutions
developed in this work have drawn from this and can thus will run on other GPUs/manycores
with any number of processing units, without any requirement for critical modifications.

Moreover, when dealing with large data sets, the sequences can be divided into subsequences
in order to create neighborhood indexes that can fit in the global memory of GPUs (see what
we did to process the complete human genome in chapter 6). As these indexes can be loaded to
GPU and processed independently, our solutions have high scalability by either adding GPUs
to the running environment or using GPUs with higher computing capability.
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Optimization on Other OpenCL Platforms. Writing in OpenCL, our codes can work on
different platforms as shown in Chapter 5. But until now, all the designs and implementation
was developed with the NVIDIA Fermi GPU in mind. Also, the experiments on multicore CPUs
were only carried out to demonstrate the true portability of OpenCL and were not tuned for
other modern GPUs or multicore CPUs. That is, the code can be compiled and performed
but its efficiency is not the same on all platforms (independently of the device efficiency). For
example, the mflBPR was tested on ATI GPU cards (Radeon 5870), but unfortunately gave
poor performance (best result peaking at 39.6 Mw/s on a smaller index, not shown). This opens
up the problem of writing a unique code that can perform well on different platforms, with
different architectures.

One of the perspectives for solving this problem is that we can test and analyze several
customizations of the source code and of the launching arguments so that these implementations
can work with the best performance on different OpenCL computing devices.

Optimization on the Memory Hierachy of the GPU. Among the three proposed approx-
imate matching methods, only mflBPR takes advantage of the local memory as the neighbor-
hoods are processed independently, allowing a SeedBlock to be divided in smaller segments which
are sequentially loaded into the local memory. For the binary search and the perfect hashing
methods, even if the number of accesses to the SeedBlock should be much less than that of the
mflBPR solution due to the non-contigous and random nature of the accessed neighborhoods,
the SeedBlock cannot be divided to be loaded to the local memory.

One of the possible solutions would be to use the size of the local memory as a threshold for
the size of a SeedBlock. In this case, some neighborhoods may be lost, leading to false negative
results: we will miss some occurrences. It could be worth testing such approach as trade-off
between the speed and the accuracy.

Use with Protein Sequences. The work in this thesis is limited to nucleotide sequences
(|Σ| = 4). For the protein sequences (|Σ| = 20), the size of the index could be theoretically 2.5×
larger, or 4× larger in practice. Experiments of neighborhood indexing on protein sequences can
be found in [Nguyen and Lavenier, 2009]. Even there could be some overheads of data loading,
some advantages of neighborhood indexing on GPUs (such as the prevention of numerous global
accesses) will be conserved.

Further Development of the Read Mapper Prototype. The experiments in chapter 6
showed the potential of MAROSE as a powerful high-throughput read mapper. We argue that
it is worthwhile pursuing its development with the solutions for the current bottleneck phases:
the multiplication reduction phase for exact filtering and approximate neighborhood matching
phase for approximate filtering. Moreover, the prospective tests shows that MAROSE could be
improved by using other techniques (spaced seeds, q-gram filtering). Finally, it could be also
possible to develop a version of MAROSE targeted on longer reads.
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Appendix A

Index Sizes

This appendix presents the details of the size of the indexes used in Chapter 5 and Chapter 6.

u = 3 u = 4 u = 6
` = 4 ` = 8 ` = 16 ` = 4 ` = 8 ` = 16 ` = 4 ` = 8 ` = 16

Size (MB) 500 600 800 500 600 800 500 600 800

Create time (s) 19.83 30.96 58.91 25.11 36.07 60.73 29.31 40.40 65.22

Table A.1: Index size and creation time of general structures for the first 100 MBps of the human chromosome
1.

u = 4, ` = 4 u = 4, ` = 8 u = 4, ` = 16
Reduced Indexes Block Reduced Indexed Block Reduced Indexed Block

start list nb 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB
nb block 0.25 MB 0.31 MB 47.46 MB 58.38 MB 347.07 MB 426.9 MB
start list nb pos 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB
nb pos block 0.25 MB 0.31 MB 47.46 MB 58.38 MB 347.07 MB 426.9 MB
start list pos 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB 0.98 KB
pos block 400 MB 400 MB 400 MB 400 MB 400 MB 400 MB
start list ph - 3.92 KB - 3.92 KB - 3.92 KB
ph block - 0.077 MB - 14.59 MB - 106.73 MB

Total Size (MB) 400.5 400.7 494.9 531.4 1094.1 1360.5

Create Time (s) 59.64 60.47 73.00 84.06 97.92 197.00

Table A.2: Index size and creation time of reduced structure and indexed block structure for the first 100 MBps
of the human chromosome 1.
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Chro- Size Segment
Sequence mosome (Mbps) number

1 10 125.53 3
2 11 125.06 3
3 12 124.27 3
4 13 91.13 2
5 14 84.20 2
6 15 77.57 2
7 16 75.23 2
8 17 74.20 2
9 18 71.20 2
10 19 53.20 2
11 1 214.58 5
12 20 56.75 2
13 21 32.59 1

Chro- Size Segment
Sequence mosome (Mbps) number

14 22 33.24 1
15 2 226.70 5
16 3 185.69 4
17 4 178.62 4
18 5 169.47 4
19 6 159.53 4
20 7 147.77 3
21 8 136.01 3
22 9 114.58 3
23 M 0.02 1
24 X 144.06 3
25 Y 24.46 1

Table A.3: List of sequences in the human genome bank (Href ) from the assembly 37.1 of the United States
National Center for Biotechnology (NCBI). As the sequences are divided into smaller segments whose maximum
size are 50 Mbps, thus there are totally 65 segments.

IHU8L16 (u = 8, ` = 16) IHU8L16 (u = 8, ` = 7)
Reduced Indexes Block Reduced Indexed Block

start list nb 16.75 16.75 16.75 16.75

nb block 9930.68 12264.40 8408.37 10391.96

start list nb pos 16.75 16.75 16.75 16.75

nb pos block 9947.23 12280.95 8424.92 10408.51

start list pos 16.75 16.75 16.75 16.75

pos block 10902.53 10902.53 10902.53 10902.53

start list ph - 67 - 67

ph block - 3074.40 - 2606.30

Total (MB) 30830.69 38639.54 27786.07 34376.30

Create Time 43m21s 91m21s 34m55s 82m38s

Table A.4: Index size and creation time of reduced structure and indexed block structure for the human genome
bank (Href ) from the assembly 37.1 of the United States National Center for Biotechnology (NCBI).
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Résumé

Rechercher les similarités entre séquences est une opération fondamentale en bioinformatique,
que cela soit pour étudier des questions biologiques ou bien pour traiter les données issues de
séquenceurs haut-débit. Il y a un vrai besoin d’algorithmes capables de traiter des millions de
séquences rapidement. Pour trouver des similarités approchées, on peut tout d’abord considérer
de petits mots exacts présents dans les deux séquences, les graines, puis essayer d’étendre les
similarités aux voisinages de ces graines. Cette thèse se focalise sur la deuxième étape des
heuristiques à base de graines : comment récupérer et comparer efficacement ces voisinages des
graines, pour ne garder que les bons candidats ?

La thèse explore différentes solutions adaptées aux processeurs massivement multicœurs:
aujourd’hui, les GPUs sont en train de démocratiser le calcul parallèle et préparent les pro-
cesseurs de demain. La thèse propose des approches directes (extension de l’algorithme bit-
parallèle de Wu-Manber, publiée à PBC 2011, et recherche dichotomique) ou bien avec un index
supplémentaire (utilisation de fonctions de hash parfaites). Chaque solution a été pensée pour
tirer le meilleur profit des architectures avec un fort parallélisme à grain fin, en utilisant des cal-
culs intensifs mais homogènes. Toutes les méthodes proposées ont été implémentés en OpenCL,
et comparées sur leur temps d’exécution. La thèse se termine par un prototype de read mapper
parallèle, MAROSE, utilisant ces concepts. Dans certaines situations, MAROSE est plus rapide
que les solutions existantes avec une sensibilité similaire.

Mots-clés: bioinformatique, calcul d’haute performance, manycore architecture, GPU, OpenCL,
index, heuristics seed-based, approximate pattern matching, short read mapper

Abstract

Searching similarities between sequences is a fundamental operation in bioinformatics, providing
insight in biological functions as well as tools for high-throughput data. There is a need to have
algorithms able to process efficiently billions of sequences. To look for approximate similarities,
a common heuristic is to consider short words that appear exactly in both sequences, the seeds,
then to try to extend this similarity to the neighborhoods of the seeds. The thesis focuses on
this second stage of seed-based heuristics : how can we retrieve and compare efficiently the
neighborhoods of the seeds ?

The thesis proposes several solutions tailored for manycore processors such as today’s GPUs.
Such processors are making massively parallel computing more and more popular. The thesis
proposes direct approaches (extension of bit-parallel Wu-Manber algorithm, published in PBC
2011, and binary search) and approaches with another index (with perfect hash functions).
Each one of these solutions was conceived to obtain as much fine-grained parallelism as possible,
requiring intensive but homogeneous computational operations. All proposed methods were
implemented in OpenCL and benchmarked. Finally, the thesis presents MAROSE, a prototype
parallel read mapper using these concepts. In some situations, MAROSE is more efficient than
the existing read mappers with a comparable sensitivity.

Keywords: bioinformatics, high performance computing, manycore architecture, GPU, OpenCL,
indexing, heuristics seed-based, approximate pattern matching, short read mapper
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