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1 Introduction 

 

Scientific progress was long confined to its subject areas, but at least since 

ground braking inventions and discoveries like the double helix model by 

Watson and Crick it got obvious that interdisciplinarity can often be the key to 

access still unexplored fields of science. Nanotechnology or Nanoscience is one 

of the big examples for interdisciplinary fields, since in principle it does not 

mean anything more specific than science of very tiny things including all the 

areas from Physics over Chemistry to Biology. I believe to be more 

interdisciplinary is almost impossible. In a more critical way one might also say 

that a vaguer definition is impossible. But actually when looking for example at 

the number of scanning probe techniques for nanoscale characterization that 

were developed in last 30 years and since then had great impact on science, 

one finds also that nowadays most of them can be applied to investigate very 

diverse problems reaching from molecular biology to solid state physics. So at 

the end, it might be not necessary to be more specific, because all the 

problems are somewhat related to the type of interaction that occur and that 

are ultimately determined by the length scale that is the nanometer. Although 

the context or background, be it Biology or Physics, might be different, when 

you go to the actual problem the science is the same. I think this is what 

Nanoscience makes also so attractive and brings many different people 

together.   

My work of the last four years was devoted to the development of a 

nanoscale characterization technique and to make it more interdisciplinary by 

extending its application range to the field of Biology. In particular the 

objective was to develop a novel technique to probe the dielectric properties 

of biomembranes in their native physiological environment. The dielectric 

constant of biomembranes is a parameter especially important in cell 

electrophysiology as it ultimately determines the ion membrane permeability, 

the membrane potential formation or the action potential propagation 

velocity, among others. Knowing the dielectric properties of biomembranes 
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with nanoscale spatial resolution is very important due to the nanoscale 

hetereogeneous composition of plasma membranes (e.g. lipid rafts). However, 

no technique is able to provide this quantity with the required nanoscale 

spatial resolution and in electrolyte solution. 

In recent years, AFM has proved to be an extremely powerful tool and 

today it is a well established technique to image the surface topography of a 

biological sample at the nanoscale and in its physiological environment. 

Moreover, it is extremely versatile since it can be combined with many 

techniques formerly working only at the macro-scale so that today magnetic, 

optical, electrical and many other properties can be investigated 

simultaneously with the topography of the sample.  

In particular, a vast number of electrical characterization techniques 

have been developed for the nanoscale electric characterization of materials, 

mainly driven by the needs of the semiconductor industry since structures 

were continuously shrinking deep into the nanoscale. Also for organic 

materials and in the field of biology, electrical properties have been measured 

at the nanoscale, but in no case the polarization properties of biomembranes 

could be measured in the physiological environment.  

Even for measurements made in air, data interpretation is complex and until 

now it has been difficult to extract quantitative dielectric constant values from 

the performed measurements in many cases. This is even complicated further 

when working with organic samples like biomembranes which very often could 

not be adsorbed on flat metallic substrates and insulating substrates like glass 

or mica have to be used.  

The other aspect mentioned is that when performing electrical 

measurements with biomembranes, it is often necessary to work in an ion 

containing liquid environment to ensure that the function and the natural 

structure of the biological specimen under investigation is conserved.  

The objective of my work was therefore to extend dielectric imaging 

methods to the liquid environment and to develop a new electric AFM 

technique and corresponding models that work in ionic solution in order to 

address the nanoscale dielectric properties of biomebranes their physiological 

environment. The successful realization of this goal is presented here.  

In order to reach this objective, I followed a step by step approach to 

the problem. In a first step, I investigated further the quantification of the 

dielectric constant of biomembranes on metallic substrates and in air 
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environment by using DC Electrostatic Force Microscopy measurements also 

with the objective to gain deeper insight into the problem. Further, I showed 

that a conveniently modified approach could be followed for the case that a 

thick dielectric substrate (like glass or mica more appropriated for 

biomembranes) was used. In this case AC-EFM was used in order to increase 

the measuring sensitivity and more effectively decouple the dielectric 

response from the surface potential properties. Finally, I worked out the 

adaptation of the previous methodologies to the liquid environment, requiring 

the introduction of important innovation with respect to the approaches used 

in air measurements. 

 

The thesis is organized into eight chapters. After this first chapter I will give a 

short introduction into AFM techniques for electric and dielectric 

characterization (second chapter). This follows the third chapter dealing with 

the developed methodologies to extract quantitative values of the dielectric 

constant from the performed measurements. The fourth chapter will present 

the first quantitative nanoscale measurements of the dielectric constant on 

biomembranes (purple membrane) and thin films on metallic substrates using 

DC electrostatic force microscopy. Thereafter the fifth chapter will deal with 

the quantitative extraction of the dielectric constant values on insulating 

substrates. Finally, the sixth chapter will be about the first successful 

polarization imaging measurements of lipid bilayers in ionic solution. The 

seventh and eighth chapter will contain a conclusion and an appendix.            
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2 Electrical Atomic Force Microscopy techniques 

2.1 Scanning Probe Microscopy &   

 Atomic Force Microscopy        

 

A Scanning Probe Microscope (SPM) is an instrument for surface imaging with 

the capability to measure a number of physical surface properties with a 

resolution down to the atomic level. Although just 30 years have gone since its 

invention, it has proved to be an invaluable tool for investigation in all areas of 

science starting from solid state physics to molecular biology. 

Two fundamental components of a SPM are the scanner and the probe. The 

scanner is responsible for the precise lateral and vertical positioning of the 

probe with respect to the sample. It consists of a piezoelectric ceramic that 

changes its geometry according to an applied voltage with sub-nanometric 

precision. The probe, brought very close to the sample, interrogates the 

surface of the specimen using a given physical interaction that reveals a certain 

local material property. In any case, the interaction sensed by the probe is very 

sensitive to the probe-sample distance and using a feedback-control that 

adapts the vertical scanner position, the probe- sample distance can be 

controlled while scanning the sample laterally in the x and y direction. From 

the acquired movement of the scanner one can finally reconstruct an image of 

the studied sample surface as shown in Figure 2.1. 

Depending on the kind of probe-sample interaction that is sensed, a vast 

number of scanning probe techniques with different names have evolved. The 

first SPM was a scanning tunneling microscope. It was invented by G. Binning 

and H. Rohrer in 1982
1, 2

 and senses a dc tunneling current between the 

conducting probe and sample. 
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Figure 2.1 Simplified set up for a scanning probe microscope. The piezo scans 

  the sample laterally and adjusts the tip sample distance, z. The probe 

  senses the sample and gives a signal that is dependent on the probe-

  sample distance. The control and feedback circuit maintains the 

  probe-sample distance so that a surface image can be acquired.    

The tunneling current goes exponentially with the probe sample separation, 

what makes the technique so sensitive and enables atomic resolution. 

However, the measurement of DC-currents requires conductive samples or at 

least very thin insulating samples on a conductive substrate. The invention of 

STM triggered the development of the Atomic Force Microscope a few years 

later and a series of ground breaking results in various fields of science, all 

based on the strength of SPM techniques to work under natural ambient 

conditions with resolutions down to the sub-nanometer scale.  

The Atomic Force Microscope (AFM) or Scanning Force Microscope (SFM) is a 

surface imaging tool and was invented in 1986 a few years after the STM by G. 

Binning, C.F. Quate and Ch. Gerber
3
 at the Stanford University and the IBM San 

Jose Research Laboratory. Its development was a consequence of the 

limitation of STM to conductive samples. In contrast to STM the AFM senses 

attractive or repulsive atomic forces like for example the van-der-Waals force. 
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The AFM probe consists of a sharp tip with an apex that has just a few tens of 

nanometers in diameter. To sense the force when the apex interacts with the 

sample, the tip is located at the free end of a cantilever that is usually between 

100 and 400 µm in length. The interaction force leads to a bending of the 

cantilever that can be measured by the deflection of a laser spot focused onto 

the cantilever. The deflection is registered by a position sensitive four 

quadrant photo-diode giving the cantilever position with sub-nm precision as 

shown in Figure 2.2. In this way, depending on the dimensions of the 

cantilever, it is possible to measure forces down to the range of pN, just 

limited by the thermal noise. 

 

Figure 2.2 Atomic Force Microscope a special type of SPM. The probe consists of 

  a very sharp tip mounted at the free end of a cantilever that bends 

  when the probe senses the sample. The bending is precisely acquired 

  by a position sensitive photodiode sensing the deflection of a laser 

  beam reflected on the backside of the cantilever. The probe-sample 

  distance dependent signal is used to maintain the contact with the 

  sample and acquire an image like in Figure 2.1. The inset shows the 

  side view of the cone and cantilever obtained with SEM (source: 

  AFM-tip catalogue from Atomic Force at www.atomicforce.de). 
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2.1.1 AFM Topography scanning modes 

 

Most commonly Atomic Force Microscopy is used to scan the topography 

of the sample surface. As mentioned earlier, the interaction typically sensed in 

this case is the short range van-der-Waals force. The van-der-Waals Force can 

be attractive or repulsive depending on the distance between the sample and 

probe and according to which part of the force is sensed in the AFM-

experiment, different operation modes were developed. A schematic of the 

van der Waals interaction potential as a function of the probe-sample distance 

is shown in Figure 2.3. At far distance (typically >5-10 nm) the potential is zero 

and no force is sensed. Reducing the distance the force gets attractive and one 

speaks of the non-contact region. Approaching further the potential rises again 

and for very close distances the interaction force is repulsive and rises steeply 

when probe and sample continue to approach. AFM images acquired in the 

repulsive region of the van-der-Waals potential are acquired in contact 

whereas when working in both the repulsive and the attractive region one 

speaks of the intermittent contact region.  

 

Figure 2.3  Interaction regimes for Atomic Force Microscopy. At large separations 

when the sensed forces are just attractive images are acquired in non-

contact. At close distance and repulsive forces – contact mode. Covering 

both ranges - intermittent contact mode.  
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Contact mode  

Contact mode works in the repulsive region of the interaction potential. It is 

usually performed with soft cantilevers (k<1N/m) to avoid the damage of the 

sample surface. There are two different operation modes: The constant height 

mode where the probe remains at a fixed vertical distance in contact on the 

sample, while the piezo is scanning the sample in x and y direction without any 

feedback activated. From the acquired deflection of the cantilever in each 

point one can obtain the sample topography. This mode is preferable for very 

flat samples and where fast scanning is desired. On samples with big 

topography changes one has to assure that the interaction force is not 

changing too much, what can lead to modifications of the probe or the sample, 

and one fixes its value by defining a force set-point. An electronic feedback 

between the cantilever deflection signal and the scanner elongation maintains 

the force then constant. This constant-force mode is much gentler to probe 

and sample, but the available scanning speed is usually limited by feedback 

circuit.  

 

Amplitude modulation mode 

The amplitude modulation mode, or depending on the AFM-company also 

called dynamic or tapping mode™, is operated in the intermittent contact 

region. It is a dynamic mode where instead of measuring just the static 

cantilever-deflection in contact, the cantilever gets excited to oscillate at its 

mechanical resonance frequency. The amplitude of the oscillation gets 

precisely detected by measuring the oscillation of the photodiode signal with a 

lock-in amplifier. The lock-in amplifier is very sensitive, since it is able to cancel 

out noise in the frequency range that does not agree with the excitation 

frequency. 

The excitation is usually realized in a so called acoustic mode with the help of a 

small piezo mounted close to the cantilever chip. But there exist also 

alternative modes that excite the cantilever oscillation by varying magnetic 
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forces (eg. MAC-Mode™) or thermally using an additional laser heating up the 

cantilever and inducing a bending
4, 5

. These alternative excitation modes have 

been proven to be especially effective when AFM is performed in liquid 

environment where sometimes the acoustic mode leads to an increased noise 

and instabilities, since it excites not only cantilever oscillation modes but also 

mechanical modes in the liquid.  

The measured oscillation amplitude is finally used to drive the feedback that 

keeps the distance between tip and sample constant. Therefore one defines a 

set-point for the amplitude smaller than the oscillation amplitude out of 

contact that is maintained during the scan by the feedback control-circuit as 

shown in Figure 2.4.   

 

Figure 2.4  Set up for amplitude modulation AFM. The cantilever is excited 

  mechanically to oscillate at its resonance frequency. The oscillation is 

  monitored by the deflection of the laser spot on the photodiode. A 

  lock-in amplifier detects from this oscillation the amplitude and 

  phase of the cantilever oscillation that change when getting into 

  contact with the sample. The amplitude signal is used to maintain the 

  probe sample distance and acquire a topography image. 
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The big advantage of the amplitude modulation mode is that it is less invasive 

than contact mode, since the interaction can be tuned to be much softer. 

There is also no lateral force present during scanning that can lead to a 

modification of the sample like in contact mode. In general amplitude 

modulation mode is very effective and can be used on nearly any kind of 

sample allowing also the scan of very big areas. Usually cantilevers with a 

higher spring constant (k>1 N/m) are used so that the resonance frequency is 

high enough (fres>10 kHz) and the increased quality factor leads to good signal 

to noise ratios. This is especially important in liquid where the resonance 

frequency drops by about 50% due to hydrodynamic drag. 

Apart from the amplitude that is used to measure the sample topography, the 

lock-in also acquires the phase shift of the cantilever oscillation with respect to 

the excitation signal for every image point. This phase image gives access to 

additional material properties like the stiffness of the sample or the local 

adhesion. These properties allow the detection of changes in the material 

composition or simply differentiation of different materials that cannot be 

detected by the topography.  

 

Non-contact frequency modulation AFM 

To acquire AFM-images sensing the attractive forces in the non-contact 

regime, again, the cantilever has to be oscillated at its resonance frequency. To 

sense the force, the microscope detects the change of the oscillation 

amplitude or the shift of the cantilever resonance frequency with a phase lock 

loop circuit to maintain the feedback.  

To understand in more detail how the frequency shift or modulation image is 

generated, one has to take a look at the mechanics of the cantilever. Assuming 

the cantilever is a damped oscillator (damping γ, mass m) that gets excited by 

some external periodic force Fext(t), the differential equation for the cantilever 

movement satisfies, in a lumped element description: 
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system is well known and given by the equations (2.2)-(2.6) (see a plot of the 

harmonic oscillator amplitude in the frequency space in Figure 2.5). 
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However, when imaging, the tip feels an additional interaction that can be the 

the van-der-Waals-Force or an electrostatic force. These forces are dependent 

on the distance between tip and sample, especially when approaching close to 

the surface, and couple with the motion of the cantilever. To see the effect 

one can follow a perturbation approach and the force resulting from the 

interaction with surface can be developed by: 

0
0 0 0

( )
( ( ), ) ( ) ( ( ) ) ...vdW

F z
F z z t t F z z t z

dz

∂+ = + − +      (2.7) 

For small cantilever displacements, it is sufficient to consider the first two 

terms that are shown. Putting this into equation (2.1) we find that the spring 

constant and the resonance frequency get modified to: 

0( )k k F z′= +ɶ      (2.8) 

00
0 0

( )( ) 1
F zk F z

m k
ω ω

′′−= = −ɶ    (2.9) 

This result is graphically displayed in Figure 2.5 and explains why detecting the 

shift of the resonance frequency yields the gradient of the sensed force.  
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Figure 2.5 Shift of the cantilever resonance peak due to the effect of a force 

  gradient acting on the cantilever.  

Since the measured forces are much smaller than in contact or intermittent 

contact mode and the cantilevers have to be chosen very stiff in this mode 

(k>10N/m), the oscillation-detection has to be more sensitive compared to the 

other modes, thus making it more difficult to maintain a good feedback in non-

contact AFM. 
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2.2 Atomic force microscopy techniques for 

electrical characterization 

 

 

Like in STM it is possible to measure also electrical properties with an AFM. In 

this case it is necessary to use conductive probes, additional electronics and 

usually a conductive substrate to apply an electric field between the tip and 

the substrate. The big advantage of AFM with respect to STM is that it offers 

the possibility to measure the topography simultaneously with the electric 

property of interest, because the probe sample distance can be controlled 

independently. Another advantage is that also measurements on thicker 

insulating samples are possible.  

A number of electrical characterization techniques have been developed over 

the years each specific to probe different material properties. In the scheme in 

Figure 2.6 the most important of them are shown. In general, one has to 

distinguish between two different approaches:  

1. Current detection techniques where the current flowing from substrate to 

tip is measured to access the electrical property of interest. 

2. Force detection techniques where the electrostatic force induced by the 

applied electric field is measured by the bending of the cantilever which 

depends on the electric property of interest.  
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Figure 2.6  Classification of AFM-techniques for electrical characterization. The 

  measured electrical property is shown with the white background. 

  This work is focusing on EFM-techniques. 

 

2.2.1 Conductive Atomic Force Microscopy 

 

In conductive Atomic Force Microscopy (C-AFM) the DC current, Idc, is 

measured when applying a DC voltage between tip and substrate. To measure 

Idc a current to voltage amplifier is mounted close to the tip as shown in Figure 

2.7 and the tip is kept in electrical contact with the sample. In this way the 

conductivity of a sample at a fixed DC-potential can be imaged while scanning 

the topography in contact mode. Alternatively, it is also possible to acquire 

I/V-curves on certain points of interest of the sample to study the resistivity 

and its voltage dependence of the sample. A very much related technique is 

scanning spreading resistance microscopy (SSRM). 
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Figure 2.7  Experimental set up for Conductive Atomic Force Microscopy. 

It basically consists of the same setup and usually a logarithmic amplifier is 

used to measure currents. To maintain good contact the surface is scanned 

with high load. Therefore usually very hard probes with diamond coating are 

used
6
. SSRM was mainly applied to characterize semiconductor structures

7, 8
 

and lateral resolutions down to one nanometer can be reached. 

2.2.2 Scanning Capacitance Microscopy (SCM) 

 

In Scanning Capacitance Microscopy a high frequency AC potential (GHz range) 

is applied between tip and sample to measure with an electronic resonance 

circuit the change of the capacitance between sample and tip. To investigate 

the dependency of the differential capacitance on the DC-potential of the 

sample one applies an additional DC-potential to the sample. To improve 

sensitivity the DC-potential can also be modulated at low frequency (some 

kHz) to make use of lock-in detection and to obtain the differential capacitance 

(dC/dV). The concept of SCM was already developed
9
 in 1985 and 

subsequently improved
10

. Today SCM is a standard technique to probe the 

dopant concentration in a semiconductor at the nanoscale. A schematic of the 

nowadays commercially available set up for SCM is shown in Figure 2.8. The 
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probe scans the sample in contact and the AC voltage is applied in parallel. 

 

Figure 2.8  Experimental set up for Scanning Capacitance Microscopy (SCM) for 

imaging the dopant concentration in a semiconductor covered by a thin 

insulating oxide layer. 

2.2.3 Nanoscale Impedance Microscopy (NIM) 

 

In order to investigate electrical transport processes in the frequency regime, 

an AC-current sensing technique that is able to measure the impedance Z(ω) 

was recently developed
11

. Within the here presented current sensing 

techniques Nanoscale Impedance Microscopy is the least developed one and 

still not commercially available. 

NIM can be run in imaging mode in order to acquire an impedance image at a 

fixed frequency simultaneously with the topography or it can be run in 

spectroscopy mode where the probe is kept fixed in one point of the sample 

and an impedance spectrum is acquired. 

An AC-voltage is applied between the conducting tip and the substrate. But in 

contrast an impedance analyzer is used to measure directly the impedance 

Z(ω)
11, 12

. 
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Figure 2.9  Experimental set up for Nanoscale Impedance Microscopy (NIM) with 

  the implementation consisting of a wide bandwidth current amplifier 

  and a lock-in to demodulate resistive (X) and capacitive (Y) current. 

Another approach is to detect the very small AC-current flowing from the tip 

using a low-noise current-to-voltage amplifier and couple it with a lock-in 

detector to obtain the capacitive and resistive current and so the impedance 

Z(ω)
13, 14

. An important difference with conductive AFM is that this technique 

probes both the (AC) conductivity and dielectric properties of the samples. For 

this reason it can be used in non contact mode if desired. 

Based on the former approach, in recent years our group developed 

methodologies and instruments to measure the local capacitance of insulating 

samples at the nanoscale like for example oxide thin films
15-18

 or even 5nm thin 

biomembrane patches
19

. The main goal of these measurements was to extract 

in a quantitative way the local sample capacitance and its local dielectric 

constant. For this reason we introduced the names Nanoscale Capacitance 

Microscopy (NCM) and Nanoscale Dielectric Microscopy (NDM) for the 

developed methodologies and techniques.  

Contrary to the case of DC measurements, in AC measurements a major 

difficulty appears, namely, that the measured electric current has capacitive 

contributions associated to the whole AFM-probe including the chip and non-

screened connecting cables. These so called stray capacitances are orders of 

magnitude bigger (~30fF) than the local capacitance of the very end of the tip 

(10aF) that is actually of interest for our measurement. Therefore an ultra- 
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Figure 2.10   Schematic of the tip sample configuration with involved capacitances 

  in a NIM-experiment. 

sensitive amplifier had to be developed capable of still resolving local 

capacitance signals
15, 20

. To illustrate these complexities, Figure 2.10 shows a 

schematic drawing of the tip-substrate configuration and involved 

capacitances. 

Finally, the capacitance difference between having a 5nm thin bio-membrane 

and the bare metallic substrate is in range of 1aF. To resolve such differences, 

stray capacitances have to be carefully shielded and then noise levels of 0.1aF 

need to be reached
19

 using still reasonable averaging times compatible with 

AFM imaging. 

Further challenges for NCM arise from the interpretation of the measured 

capacitance in order to extract a local dielectric constant. As will be shown in 

chapter 3 the measured capacitance depends on the geometry of the 

conductive AFM-probe so that a calibration of the tip geometry before or after 

imaging is necessary. Apart from this it has been demonstrated that the 

capacitance signal is more sensitive to the tip substrate distance than to the 

dielectric properties of the sample. In consequence capacitance imaging has to 

be performed out of contact at constant height above the substrate, to 

prevent contributions coming from the vertical movement of the scanning 

stage. 
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2.2.4 Scanning Microwave Microscopy (SMM) 

Scanning Microwave Microscopy (SMM) is a technique that complements NIM 

at higher frequencies from 0.1-100 GHz, but its frequencies lie below those 

used in optical SPM-techniques like Near-field Scanning Optical Microscopy 

(NSOM) (>THz). Like NIM, also SMM has the capability to image conductivity 

and dielectric properties at the nanoscale. Nanoscale studies with SMM have 

been conducted on different types of materials reaching from solid state 

materials to biological samples
21, 22

. SMM has been made only recently 

available on commercial AFM-products. In SMM the magnitude measured is 

the microwave scattering parameters (S-parameters) which can be related to 

the local impedance of the probe substrate system. 

The general experimental setup of SMM is shown in Figure 2.11. The two main 

differences with respect to NIM are the employed probe and the electronics to 

generate the microwave and detect it. The function of the probe is to conduct 

the microwave signal to the very end of the probe that acts like an antenna 

and emits the microwave-signal. First implementations used needle like 

probes
23

, but recently also cantilever-based probes were developed
24, 25

 that 

are compatible with commercially available AFM-systems. Like in NIM an 

important issue in the design of the probes is the stray contribution arising 

 

Figure 2.11 Simplified experimental set up for Scanning Microwave Microscopy 

  (SMM). 
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from the nonlocal parts of the tip (like cantilever and so on) that have to be 

shielded to improve sensitivity
21

.  

There are different solutions to realize the electronics detecting the 

microwave signal. The implementation that is commercially available from 

Agilent Technologies consists of a network analyzer that sends a microwave 

signal through a diplexer to the probe. The signal gets reflected and travels 

through the tip back to the network analyzer where it gets separated into the 

reflection scattering coefficient (S11) which is related to the local impedance 

probed by the tip. Typical noise levels of such setups are in the range of 1aF
22

. 

One of the great difficulties in SMM is like in NIM the quantitative extraction of 

the electric and dielectric properties of the sample from the measured 

impedances. Therefore adequate models have to be developed that take into 

account the specific tip geometry. This goal can be achieved to some extend by 

analytical approximations and finite element modeling
26, 27
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2.2.5 DC-Electrostatic Force Microscopy (DC-EFM) 

The basis of all electric force sensing AFM techniques is the attractive force 

that arises when applying an electric field, V0, between the conductive probe 

and the substrate that reads: 

( )2

0

( , )1
( , )

2
T r

el r sp

C z
F z V V

z

εε ∂= − +
∂

   (2.10) 

Here z is the distance between tip and sample and CT is the total capacitance 

between the cantilever probe and the sample. (Note, different than in cs-AFM 

the chip and cables do not contribute). This electrostatic force can be sensed 

by the bending of the cantilever and essentially two material properties, the 

surface potential, Vsp, and the sample dielectric constant, εr, can be extracted 

from the measured signal. Experimentally the simplest way to get information 

on εr and Vsp is to apply a dc potential, V0, and to measure the static bending of 

the cantilever (DC-EFM).  

 

Figure 2.12   Experimental set up for DC Electrostatic Force Microscopy (DC-EFM).  
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In principle to extract for example εr from the force signal, Vsp has to be 

already known, but when working with high applied DC-voltages the error 

induced by an unknown Vsp is negligible.  

Also, the sensitivity is limited by thermal and other, for example electronic 

noise. However, it is a very clear and simple method, as I will show in detail in 

chapter 4 and it is possible to extract a quantitative value of the dielectric 

constant of thin insulating films from measurements in this mode. 

2.2.6 Amplitude Modulation Electrostatic Force Microscopy 

(AM-EFM) 

 

To get information on both the capacitance gradient and the surface potential 

separately a dynamic detection scheme has to be applied. Therefore an 

alternating voltage  

0 sin( )V V tω=      (2.11) 

with the frequency ω is applied between tip and substrate. This voltage leads 

to a static electrostatic force, Fdc, a force oscillating at the excitation frequency 

Fω and a force oscillating at the double of this frequency F2ω: 

( )22( )1 1
( )

2 2
T

dc ac dc sp

C z
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z
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   (2.14) 

The second harmonic force, F2ω, just contains information on the capacitance, 

CT, of the system and so also on the dielectric constant of the sample. 

However, the capacitance is not a simple function only of the sample dielectric 

constant, it also depends on the nanoscopic and microscopic geometry of the 

probe as will be detailed in chapter 3. 
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The harmonic forces Fω and F2ω can be precisely measured using the detection 

scheme shown in Figure 2.13. The lock-in amplifier excites the oscillation by 

applying the ac-voltage well below the resonance frequency of the cantilever. 

This oscillation are acquired by the photodiode and the amplitudes at the first 

and second harmonic (A(ω), A(2ω)) of the excitation frequency get measured 

by a lock in amplifier. Finally, by calibrating the spring constant of the 

cantilever, the corresponding electrostatic force can be calculated.  

As mentioned before the advantage of AM-EFM is the high sensitivity (due to 

the lock in detection scheme) and the possibility to measure the force related 

to the capacitance and to the surface potential separated by the two 

harmonics. Although the first harmonic signal, A(ω), contains contributions 

from both components, it is possible to calculate the surface potential by 

dividing A(ω) and A(2ω) as has been shown
28

. Another more common 

approach to obtain the surface potential is shown in section 2.2.8. The lowest 

detectable force is: 
29

 

min

2 B

r

k k T Bw
F

Qπ ω
⋅ ⋅ ⋅ ⋅=

⋅ ⋅
    (2.15) 

 

 

Figure 2.13   Experimental set up for Amplitude Modulation Electrostatic Force 

  Microscopy  (AM-EFM).  
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(kB Boltzmann constant, T temperature, Bw lock-in bandwidth, Q cantilever 

quality factor, ωr resonance frequency).So for typical values of k=0.1 N/m, 

Bw=100 Hz, Q=100 and ωr=30 kHz would give Fmin=0.1 pN or with Vac=3 V the 

minimal detectable capacitance gradient is dCT,min/dz= 0.02 zF/nm. This is 

almost four orders of magnitude better than what is currently possible with 

current sensing methods. 

 

2.2.7 Frequency Modulation Electrostatic Force Microscopy 

(FM-EFM) 

 

Apart from the amplitude modulation mode, EFM can also be operated in 

frequency modulation mode what can improve the resolution of the electric 

image. As has been shown in section 2.1.1, an electrostatic force acting on the 

cantilever leads to a modification of the spring constant, k, what leads to a 

frequency shift of the resonance frequency. The measured frequency shift, Δω, 

is related to the force gradient by
30

: 

0

2

F

k z

ωω ∂∆ =
∂

    (2.16) 

where ω0 the free resonance frequency and z the probe-sample separation. 

This shift oscillates with the frequency of the applied electric potential and can 

be detected. The experimental realization of FM-EFM is schematically shown 

in Figure 2.14. It requires two lock-in amplifiers. Like in AM-EFM one applies 

with a first lock-in the alternating electric field of the frequency ωel between tip 

and sample. Simultaneously, the cantilever is excited mechanically at its 

resonance frequency by the second lock-in. The electrical excitation leads to a 

shift of the mechanical resonance frequency that oscillates with ωel (Δωr=Δωr,0 

sin(ωelt)). Notice, ωel should be clearly lower than the resonance frequency. 

The oscillating resonance frequency gets locked by the second lock-in using a 

phase lock loop circuit. This signal is fed into the first lock-in where the 

amplitude of the frequency shift, Δωr,0, is measured. 
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The advantage of such a heterodyne detection scheme like it is used in FM-

EFM is that the measured force gradient is more local since it suppresses 

further the nonlocal contributions from cantilever and cone. Nevertheless, it is 

more complex and the additional PLL-feedback loop makes a further 

calibration neccessary
31

. 

The minimal detectable force gradient in this method is: 

 min 2

4

r

B

r

k k T Bw
F

Q Aωω
⋅ ⋅ ⋅ ⋅′ =

⋅ ⋅
   (2.17) 

(kB Boltzmann constant, T temperature, Bw lock-in bandwidth, Q cantilever 

quality factor, ωr resonance frequency, Aω mechanical oscillation amplitude). 

So for typical values of Aω=5nm, k=0.1 N/m, Bw=100 Hz, Q=100 and ωr=30 kHz 

 

 

Figure 2.14   Experimental set up for Frequency Modulation Electrostatic Force 

  Microscopy (FM-EFM). The technique provides the electrostatic 

  force gradient or the second derivative of the capacitance. 
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would give Fmin=0.05 pN/nm or with Vac=3 V the minimal detectable 

capacitance gradient is d2CT,min/dz2=0.01 zF/nm2
. 

2.2.8 Kelvin Probe Force Microscopy (KPFM) 

 

Kelvin Probe Force Microscopy was invented in 1991
32

 and is an EFM mode 

especially dedicated to measure the surface potential, Vsp, or the work 

function, Wa, of the sample. The surface potential is related to the surface 

charges on the sample and they are of special interest on biosamples
33

, 

organic  samples
34

 but also on inorganic samples like graphene
35

. Studies of the 

local work function are mainly performed on materials like semiconductors 
36, 

37
.  

 

 

Figure 2.15 Experimental set up for Kelvin Probe Force Microscopy (KPFM). KPFM 

can be run in AM (shown here) or FM mode. An additional feedback tries 

to cancel out the first harmonic signal to obtain the surface charge. 
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The experimental set up for KPFM is the same like in FM-EFM or AM-EFM, but 

in order to get direct access to the local surface potential or work function, an 

additional feedback is applied that tries to minimize the first harmonic 

amplitude A(ω) by applying a dc potential at the sample as shown in Figure 

2.15. The first harmonic amplitude is exactly zero when the dc-potential is 

opposite of the surface potential, as can be seen from equation (2.13). 

The applied DC-potential is acquired simultaneously with the topography and 

gives direct access to the surface potential without further calculations. 

KPFM images can be acquired in two different scanning modes. Either in a 

single pass mode in tapping acquiring simultaneously topography and surface 

potential in the same scan line or alternatively in a double pass mode, the so 

called lift mode™ acquiring first the topography and then retracing the last 

scan line just lifted a few tens of nanometers above it. The advantage of the 

single pass method is its speed and higher resolution, however with certain 

samples there the chance to have crosstalk between topography and surface 

charge. Today, KPFM is available, both in frequency and amplitude 

modulation, on many commercially available AFMs. However, its application is 

limited to the use in vacuum or air.   

2.2.9 Scanning Polarization Force Microscopy (SPFM) 

 

Scanning Polarization Force Microscopy is an EFM technique that was 

developed in 1994
38

 and was extensively used to image very thin and soft 

dielectric materials like water layers
39, 40

 that are difficult or impossible to 

image with conventional AFM-modes. It takes advantage of the relative long 

range of the electrostatic interaction compared to the van der Waals force in 

order to realize a real non-contact measurement of the sample. The used 

experimental set up is similar to the am-EFM set up, but by applying a 

feedback between the measured A(2ω)-signal and the controller of the piezo 

z-movement the probe-sample distance is controlled like shown in Figure 2.16. 

Beside the topography also variations of the ionic mobility and the surface 

potential can be measured
41-43

 when an additional feedback is applied like in 

KPFM. 
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Figure 2.16   Experimental set up for Scanning Polarization Force Microscopy 

  (SPFM). A feedback with the second harmonic signal controls the 

  probe sample distance. 
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2.2.9.1   AFM techniques for electrical    

characterization in liquid 

 

The study of nanoscale material properties in their natural liquid environment 

is one of the most import reasons why scanning probe microscopy has become 

so popular in life science. A liquid and ion-containing environment is not only 

the natural environment of many organic and inorganic specimen and allows 

so more realistic studies, it also enables for example (electro)-chemical 

reactions to take place and therefore to study the specimen in function.   

When moving with the AFM from dry into ion containing liquid environment a 

number of electrical properties change. The most evident one is that the water 

provides a media where ions and electro-active species can dissociate and 

move, what leads to a solution conductivity, σ, of the media and to the 

possibility of electrochemical reactions. Another point is that the dielectric 

constant of water is clearly higher than in air (εr,water~78 versus εr,air=1). Finally, 

a very important and particular aspect of ionic water-solutions is the formation 

of electrical double layers.   

An electrical double layer (or just double layer) is formed when a metallic 

electrode surface is exposed to an electrolyte solution. Excess charges from 

the metal form a space charge region that gets compensated by the 

adsorption of counter ions from the solution to reach a thermodynamic 

equilibrium.  
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Figure 2.17   (a) Cartoon of the electrical double layer developing at the charged 

metal interface. (b) Potential distribution in the double layer: Until the 

Outer Helmholtz Layer the potential drops off linearly. In the diffuse 

layer it drops off exponentially. (c) The Double Layer Capacitance in 

dependency of the electrode potential. 

The locus of this single layer of ions is the so called Inner Helmholtz Plane 

(IHP). The dipoles formed by these two opposite space charge layers attract 

solvated ions. These solvated ions experience an attractive force, but also 

possess thermal energy so that they still diffuse around randomly. However, 

they cannot get closer to the electrode surface than to the so called Outer 

Helmholtz Plane (OHP). The solvated ions, that form the so called diffuse layer, 

exhibit a from the electrode surface nearly exponentially decaying 

concentration distribution, as shown in Figure 2.17b. In consequence, also the 

potential drops off in this way. In the limit of small electrode potentials 

(φ<50mV), the potential decay with the distance x is: 

1/2
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Here, e is the elementary charge, z the number of charges per ion, n
0
 the 

charge concentration, kB the Boltzmann constant, T the temperature, φ0 the 

electrode potential and c the concentration. The characteristic length of this 
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decay is defined by the Debeye Length, λD, that is just 10 nm short for 

concentrations of 1mM. 

As derived for example in detail in textbooks like Electrochemical Methods 

from Bard & Faulkner
44

 the space charge regions and the diffuse layer lead to 

the formation of the so called Helmholtz Capacitance
45

, CH, and the Gouy-

Chapman-Capacitance
46

, CG.  
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Both capacitances are in series and form the total double layer capacitance, Cd. 

Also important to notice, the double layer capacitance in this model is 

potential depend as it was also suggested by experimental observations. It 

takes its lowest value at the potential of zero charge, φPZC, a characteristic 

value for every material. For high voltages it gets limited by the Helmholtz 

capacitance as shown in Figure 2.17c. 

This short overview about the properties of the electric double layer should 

show that the potential distribution at the solution/electrode interface is 

clearly different than in air. The electric double layer leads to a rapid decay of 

applied potentials so that electrostatic forces are effectively shielded. This has 

also consequences when detecting electrical currents instead of forces.  

I want to emphasize that the above considerations are only strictly valid under 

static conditions. As reviewed for example by Bazant et al.
47-49

 and others
50

, at 

higher frequencies other effect have to be taken into account. In chapter 6 I 

will also show that under certain conditions for force measurements the effect 

of double layer capacitance can be neglected.    
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Scanning Electrochemical Microscopy  (SECM) 

The most common current sensing AFM-technique in liquid is probably 

Scanning Electrochemical Microscopy (SECM). Although some SECMs are 

commercially available, they are often only operated at the microscale since 

nanometric SECM-probes are difficult to manufacture. SECM is used to probe 

local electrochemical reactions by applying specific electrochemical potentials 

to the metallic probe and/or sample using a potentiostat.  

To access also the nanoscale, different implementations of the probe have 

been reported, some using tuning forks in combination with 

ultramicroelectrodes to acquire topography and electrochemical current 

simultaneously
51

, others use cantilever-tips containing just a small exposed 

electrode-part close to the apex to sense the current
52

. Though, SECM-AFM is 

mainly used to sense dc-currents of electrochemical reaction. Only a small 

number of works apply alternating electric fields and measure the frequency 

dependent current in AC-SECM. These studies were recently reviewed by 

Eckhard and Schuhmann
53

. However, none of these works deals with the 

measurement of dielectric properties of the sample; instead they are centered 

on the resistive component of the current.              

Scanning Microwave Microscopy in liquid (SMM) 

Scanning Microwave Microscopy has the great capability to image conductivity 

but also dielectric properties of the sample under study and this at still 

relatively low frequencies compared to optical techniques like for example in  

NSOM. The big difficulty for the operation in liquid solutions consists on the 

one hand in having probes being sufficiently sensitive to the sample and at the 

same time keeping the capability to scan the topography. Indeed, recently it 

has been shown that at the micrometer scale a scanning microwave 

microscopy can be also operated in liquid using a NSOM-like tuning fork 

detector to control the tip sample distance
54

. Maybe in the near future it will 

be possible to increase the resolution of such systems and also cantilever 

based probes in principle might be operative in liquid at some point.  
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On the other hand a mayor complexity lies in the very different electric 

properties in solution (high conductivity and dielectric constant) that will also 

require new theoretical models in order to reach quantitative results like in air. 

For these reasons until now, SMM has not been shown to provide quantitative 

dielectric imaging in liquid environment.   

 

2.2.10  Electrostatic Force Microscopy in liquid  

 

The formation of the electrical double layer at the surface of a two charged 

electrode surfaces separated a certain distance z from each other, leads to the 

development of an electrostatic force
55, 56

. Using an AFM these forces can be 

measured and quantified assuming the AFM-tip to be a cone with a sphere as 

apex and solving the Poisson-Boltzmann equation. Therefore one has to 

assume that either tip and substrate are at constant potential (cp) or that they 

have a constant charge (cc). Then, as has been shown further revised by Butt 

et al.
57, 58

, the force evolving from the double layer interaction of such a tip 

with a planar surface is: 
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In these equation ψt (σt) and ψs (σs) is the potential (surface charge) of the tip 

and the substrate, respectively, R the apex radius and λD is the Debye length, 

introduced earlier. Recently, also alternative approaches like the constant 

regulation approximation
59

 that combine both conditions were proposed.     

By the direct measurement of these double layer forces with AFM, a number 

of studies have contributed in the last 20 years a lot to the basic understanding 

of charged interfaces in electrolyte solutions. Investigations were carried out 

studying the electric double layer of noble metals like gold
60-66

 for various sorts 
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of ions and concentrations applying different DC-potentials at the sample with 

a (bi-)potentiostat. Also other materials like HOPG
62

, semiconductors
67

 or gold 

with thin adsorbed SAM-layers
68

 were studied. As mentioned, most of these 

publications were performed under potential control using a potentiostat.  

Other authors worked with insulating AFM-tips (SiN) and substrates (mica) in 

the constant charge condition, investigating for example the surface charges of 

phospholipid-membranes
69-71

. In these studies, images of the electrostatic 

double layer interaction-force acquired in lift mode, show that it is possible to 

distinguish different types of phospholipids by their surface charge. It was also 

argued, that the dipole potential of the phospholipid-headgroup can be 

measured
70

. In other works patches of bacteria membrane were studied
72

. 

Also recently, DNA molecules on flat substrates could be resolved sensing their 

electric double layer
71, 73

. 

However, all studies mentioned so far in this section were performed 

measuring the static double layer interaction and so probing the surface 

charges. In contrast, almost no work is dealing with the detection of the AC 

electrostatic force like it can be performed with AM-EFM in air (cp. section 

2.2.6). The first who tried to perform AM-EFM in liquid by using a 

bipotentiostat were Hirata et al.
74

 They could show for solutions of very low 

ion concentration (c<0.1mM) and at low frequency that one can measure 

some electrostatic force and they acquired force versus distance curves. 

Nevertheless, the origin of this force was not clear and the same theoretical 

background like in air was used to interpret the experiments. Indeed studies 

from Raiteri et al.
75

 indicate that the measured forces are mainly induced by 

electrochemical surface stress of the cantilever or the presence of 

electrochemical reactions. Also other authors follow this argumentation
76

. 

However, recently a new method was proposed
77

 to the probe surface charge 

in the AM-EFM mode but using slightly higher frequencies up to 30 kHz. As will 

be shown in chapter 6, I share the idea to use higher frequencies to perform 

AC-EFM in ionic solution with the aim to investigate dielectric sample 

properties, but theoretical considerations will show that much higher 

frequencies are necessary to obtain measurements sensitive to the local 

dielectric properties from the sample.     
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2.3 Quantitative dielectric material properties from 

electrical AFM-based techniques.  

 

One of the most important properties of an insulating material is its relative 

permittivity also referred to as dielectric constant, εr. It represents how electric 

dipoles in a given medium react on an external electric field and how they 

change their orientation and polarize according to the field. This is expressed 

by the equation  

0 0rD E E Pε ε ε= = +     (2.23) 

where D is the electric displacement field, ε0 the vacuum permittivity, E the 

electric field and P the polarization (the second equality is valid for linear 

isotropic materials). It is important to notice that the dielectric constant is a 

material property that is related to the microscopic structure of the material 

under study and how fast this structure changes into its new orientation upon 

an applied electric field. The response time of the process is called the 

relaxation time. This means that the dielectric constant is time-or frequency 

dependent. Indeed, εr is a dielectric function dependent on the frequency of 

the applied field and can be written in the form: 

( ) ( ) ( )iε ω ε ω ε ω′ ′′= + .   (2.24) 

The real part ε ′  is related to the stored energy in the media, while dissipation 

is characterized by the imaginary part ε ′′ . The form of this dielectric function 

depends on which dipole in the material has to be polarized: 

In Electronic and atomic polarization the electric field displaces the center of 

charge of the electrons with respect to the nucleus or opposite charged atoms 

in a molecule. This take place up to very high frequencies (infrared to visual 



2. Electrical Atomic Force Microscopy techniques 

37 

light) since the involved masses and charges lead to a very short relaxation 

time.  

In Ionic polarization the dipoles formed from opposite charged ions (for 

example in a salt crystal) are displaced, what takes place at lower frequencies 

(below IR). 

Orientation polarization occurs in molecules (often liquids or gases) that 

possess natural dipoles like for example water. The dipoles can rotate and 

align according to the electric field. The relaxation frequency of water is in the 

microwave frequency range. 

Interface polarization takes place with mobile charged particles forming space 

charges in the bulk of a material or at the interface of different materials. (The 

formation of the electric double layer is for example an interface polarization). 

Interface polarization relaxation occurs at low frequency (mHz-MHz).   

 

Figure 2.18  Schematic of frequency dependency of dielectric function with 

  underlying processes. The frequency ranges are just for orientation 

  and may differ depending on the exact process. (Adapted from 
78

)  
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In order to measure the dielectric constant of a material at the nanoscale one 

has to relate the measured current or force to the dielectric properties of the 

material through an appropriate theoretical model that takes into account the 

probe geometry and, eventually, the sample geometry.  

In measurements in air environment a number of recent works have been 

dealing with this aspect. Again one has to distinguish between measurement 

of dielectric samples adsorbed on conducting substrates and samples 

adsorbed on thick insulating substrates.  

Metallic Substrates  

The electrostatic force on the AFM-tip above a bare metallic substrate has 

been studied extensively in the past. First simple analytical models that tried 

to approximate the AFM-tip as a sphere above a plane
79

 where replaced by 

more complex models like the cone model from Hudlet et al.
80

 as will be 

detailed also in the next chapter. 

However, for the case of a thin dielectric samples supported by the metallic 

substrate just a few models are available. Various approaches have been made 

like assuming the tip-sample geometry to be a simple parallel plate capacitor 

with two dielectrics – one representing the air and the other the thin film. 

Krayev et al. 
81, 82

 proposed another model consisting of a spherical capacitor 

with two dielectrics representing the air and the thin dielectric film. The 

advantage of these analytical models is their simplicity. Recently our group 

presented another analytical approximation for thin dielectric films that is 

related to the Hudlet-formula
18

 and will be detailed in chapter 3. Although the 

accuracy of this analytical approximation is good, its applicability is a bit 

limited to certain experimental conditions. Another completely different 

approach consists in performing numerical calculations and simulations to 

compare them with the experimental results and finally extract the dielectric 

constant of the sample 
31, 83

. In this case, usually the tip geometry is 

determined in a separate calibration step and the simulation is performed with 

the extracted specific geometry. 
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Thick Dielectric Substrates 

For thick dielectric substrates clearly less quantitative models are available. 

Actually, until now, no work has been published quantifying the dielectric 

constant of a thin dielectric sample on top of a thick insulating substrate.  

Studies are still concentrating on the electrostatic problem of a AFM-probe 

above the bare dielectric substrate. Experiments showed that a simple parallel 

plate model which would lead to zero force for very thick substrates does not 

describe the physical reality. Other analytical models, like those of a sphere 

above an infinite dielectric
84

, show at least the qualitative agreement with 

experimental observations and the force does not vanish for very thick 

substrates and tends to get independent from the thickness. However, 

quantitative agreement is not reached. 

Again, more realistic and therefore more quantitative models could be 

obtained using numerical calculations using the generalized image-charge 

method as reported in Ref.
85

 In this article the importance to include not only 

the apex but also the cone is emphasized, since although it is not contributing 

directly to the measured force, it may have an indirect effect. Another work is 

dealing with the indirect effect, additionally, an infinite cantilever would have 

for the measured force
86

. 

However, so far no closed methodology was reported to quantitatively extract 

the absolute value of the dielectric constant from thick insulators by 

electrostatic force or capacitance measurements. The work on the 

development of such a methodology is described in chapters 3 and 5. 
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2.4 Motivation and Objectives of this work  

 

As shown in this chapter, AFM is an extremely versatile tool to investigate 

electric properties at the nanoscale and hence constitutes a good candidate 

technique to approach the quantification of the nanoscale dielectric properties 

of biomembranes. Although a few AFM techniques exist capable of 

investigating polarization properties, it remains difficult to extract quantitative 

values of εr from the measurements, and most importantly, they do not work 

in the liquid environment.  

One reason for this is on the instrumental side, since for studies at the 

nanoscale very small quantities have to measured, that can be easily 

overwhelmed by electronic noise as it maybe for example the case in current 

sensing based techniques. Electrostatic Force sensing techniques may in 

principle have an advantage here, since the used cantilevers for force 

detection are extremely sensitive and naturally, undesired nonlocal electrical 

signals from the cantilever are suppressed. 

Another important aspect is attributed to a lack of sufficiently precise 

quantitative models to relate measured force with the dielectric constant 

value of the sample. Indeed, for measurements on insulating substrates like 

mica or glass that are sometimes required for biological samples, still no 

quantitative model is available. Moreover, successful measurements of 

dielectric properties in liquid media, that is fundamental for the functionality 

of some biological samples, has not been shown until now. 

As consequence of the existing limitations for quantitative dielectric imaging 

the objectives of this work were to extend the quantitative capabilities of 

Electrostatic Force Microscopy to image the dielectric constant of 

biomembranes with nanoscale spatial resolution. In particular, I addressed 

four objectives: 
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1. To evaluate the possibility to perform quantitative dielectric 

measurement of biomembranes on metallic substrates and in air with 

Electrostatic Force Microscopy that may offer higher precision with 

respect to current sensing techniques.   

2. To extend the applicability of quantitative dielectric measurement to 

the case of thick insulating substrates in order to facilitate its use with 

biomembranes that cannot be prepared on metallic substrates. 

3. To develop a setup for dielectric imaging in liquid environment based 

either on direct current detection or on the principles of electrostatic 

force microscopy.  

4. To perform nanoscale dielectric measurements on biomembranes in 

their natural liquid environment. 
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3 Quantitative Electrostatic Force Microscopy 

 

The main goal of this work and of the work of our research group is the 

quantitative extraction of the dielectric constant on biomembranes and other 

samples. As mentioned earlier, one important issue, apart from the 

measurement itself, is the interpretation of the obtained dC/dz-image or 

curve. This is because the dC/dz-signal depends apart from the dielectric 

constant also strongly on the probe-geometry. For this reason, using the 

dC/dz-image alone, in principle, it is just possible to make comparative 

measurements stating that one material has a higher dielectric constant than 

the other – and this only in the case that for the measurements the same 

unmodified AFM-tip has been used and the sample geometry is not different. 

Therefore, to obtain a good quantitative estimation of the absolute dielectric 

constant value independently of the used AFM-tip, it is necessary to apply a 

calibration procedure to extract first of all the effective tip-geometry to 

subsequently convert the dC/dz-image into a quantitative dielectric image.  

In what follows, I will shortly review the different analytical approximations 

that relate the measured electrostatic force for a conductive AFM-tip above a 

conductive substrate with the tip geometry. 

As mentioned earlier, when calculating the dielectric constant with the 

calibrated geometry and the dC/dz-image, analytical expressions are only 

available for a limited number of sample geometries. In the case no analytical 

model is available, finite element simulations can be used that are capable to 

calculate the electrostatic force for any geometry – although being clearly less 

flexible in usage. In order to cope with this drawback I developed in context 

with my work a number of finite element models (FEM) and scripts offering 

now almost the same flexibility and applicability like an analytical expression.  
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3.1 Analytical approximations of the probe-

substrate force 

 

Metallic substrates  

To calibrate the effective electrical tip geometry with an EFM-measurement an 

electrostatic force versus distance curve on a flat metallic surface is acquired 

and compared with a theoretical prediction of this force. As explained above in 

section 2.2.5 the force depends apart from the applied voltage on the 

capacitance gradient, dC(z)/dz. The element that senses most of the force 

when approaching close to the surface, is the apex that can be modeled as a 

sphere with radius R0. The force for a sphere above a metallic plane can be 

calculated and agrees with experimental observation for close tip sample 

separations (z< R0)
79, 87, 88

. However, for larger distances (z>> R0) the force is 

also influenced by the microscopic part of the tip
88, 89

 that is modeled as a cone 

with an aperture angle of θ0 and a height of H. The described geometry with 

the corresponding parameters is shown in Figure 3.1. For such a model Hudlet 

et al.
80

 developed the approximation  
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that relates the capacitance gradient to the tip geometry. An alternative 

expression for dC(z)/dz can be derived modeling the tip as a hyperboloid, 

however, this model is just exact under certain conditions and I will not  
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Figure 3.1 Cone-Apex-model used by Hudlet et al. 
80

 to find an analytical 

approximation for the force on the tip above a metallic substrate. 

 

consider it further. The cone-apex model from Hudlet et al.
80

 was 

experimentally revised and fits very well with experimental force-approach-

curves provided the very small force contribution from the cantilever is 

considered
90

. The extracted tip parameters R0, θ0 and H are in good agreement 

with the physical dimensions
90

. 

In order to extract with the calibrated geometry the dielectric constant of an 

insulating thin film on the metallic substrate our group developed in recent 

years
17-19, 91

 an approximation for the capacitance gradient contribution of the 

apex in dependency of the thickness, h, and dielectric constant, εr, of the 

insulator: 
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Under the conditions that the tip radius, R0, is bigger than the tip sample 

distance, z, and the dielectric film is thin (h<100nm) and not to small in 
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diameter (h<<D, D>R0) equation (3.2) can be used to extract information about 

the dielectric constant. This is shown in detail in chapter 4 for two different 

types of thin film insulators. In other cases a modified version of equation (3.2) 

can be derived (see sections 4.7.3 – 4.7.4) or finite element simulations should 

be applied. 

 

Insulating substrates  

Depending on the sample under study not always metallic substrates can be 

used to measure the sample of interest. In these cases, nevertheless, it is 

possible to measure an electrostatic force. However, approximating the 

electrostatic forces acting on the AFM-tip above the insulating substrate is 

more challenging than in the case of metallic substrate and only a small 

number of works trying to engage this issue have been published until now 
85, 

86, 92
. One main difference with respect to metallic substrates is that the local 

electric field lines from the apex are indirectly influenced by the macroscopic 

parts of the AFM-tip (cone and cantilever). Chapter 5 will summarize the work 

to reach a methodology to quantify the local dielectric constant of thick 

insulating substrates that enables quantitative dielectric measurements of 

samples on dielectric substrates.         
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3.2 Finite Element Method (FEM): Introduction 

into electrostatic modeling with Comsol 

Multiphysics™ 

Most problems in physics that consider slightly more complex geometries have 

no analytical solution and approximations are only valid in very limited ranges. 

Therefore, one has to restore to numerical methods. This is also the case for 

the electrostatic problem of the AFM-tip above the dielectric sample and 

substrate I was dealing in my work.  

The numerical method I applied in all my work is the Finite Element Method 

(FEM), a simulation method that is especially powerful for geometrical models 

involving irregular shapes and curved surfaces. It solves the partial differential 

equation (PDE) of interest on as many points as necessary in the defined 

geometry. For the electrostatic problem of the AFM-tip in air above the 

substrate this is the Poisson Equation. The result of this calculation is for each 

point of the geometry the potential, V, and the electric field, E, that can be 

used to calculate for example the electrostatic force on the AFM-tip. Important 

to mention, the points where V and E get calculated are defined in a meshing 

step. A particular aspect of FEM is that the shape of mesh elements is 

triangular (or tetrahedral in 3D) so that the specific geometry can be followed 

much better than with other methods. 

Beside in science, applications of FEM are also found in the field of engineering 

where sometimes complex three-dimensional geometries are involved. FEM is 

a computational intensive method that requires, depending on the specific 

problem, beside CPU-time also big amounts of RAM (in this case at least 4 GB). 

To do all the simulation in the work I present here, I used the commercially 

available FEM-software Comsol Multiphysics™ that has a very user-friendly 

graphical interface to define the geometry and run the simulations, but works 

also with a scripting language in conjunction with Matlab™ when more specific 

and repetitive simulations are required.    
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To perform a finite element simulation of a particular problem, usually the 

following steps are followed: 

1. The geometry is defined by drawing the sub-domains. 

2. Boundary conditions are defined on the borders of the sub-domains. 

3. Electric properties in the domains are defined. 

4. A mesh is generated refining especially the mesh elements where 

the gradient of the electrical potential is high in order improve the 

quality of the solution. 

5. The electrostatic problem is solved to obtain V and E. Usually V is 

plotted to see the quality of the solution.   

6. The quantity of interest is calculated. For the case of the 

electrostatic force, the Maxwell-Stress-Tensor is integrated over the 

whole tip surface. 

To reduce the calculation effort, it is sensible to make use of existing 

symmetries in the geometry that is calculated. For the model of the AFM-tip 

above the substrate I assumed like in the derivations of Hudlet et al.
80

, that the 

tip is a cone and axis-symmetric with the z-axis. The simulations can be run in 

2D-mode then. To give a practical idea of the simulation results I show in 

Figure 3.2 a plot of the solved model (colors are the potential).   

The symmetry-axis is on the left and the tip consisting of apex, cone and 

cantilever is located just a few nanometers above the substrate. The insets 

show the defined mesh (above) especially refined on the surface of the tip, a 

zoom onto the edges of the cantilever (middle) with rounded edges to make 

an accurate calculation of the electrostatic force on these boundaries possible 

and a zoom onto the tip-apex (bottom). Notice, to make the simulation more 

realistic the inner domain is enclosed by outer domains that use the infinite 

elements function to effectively transform the position of the outer 

boundaries to infinity.  
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Figure 3.2   Finite Element Model of an axis-symmetric AFM-tip above a metallic 

  substrate. The potential is plotted in colors. In the outer sub-domains 

  the infinite element function is active. The insets show the used mesh 

  and a zoom onto the cantilever edge and the apex. 

 

Bottom boundaries are set to ground, boundaries on the tip are set to port, 

left side boundaries are axis-symmetry, top and right side boundaries are 

insulating or zero charge. 

The size of tip domain is chosen at least 4 times bigger than the tip 

dimensions so that at least 90% of the applied potential has dropped off in this 

domain. Only then effects of the domain size in the simulated force curves are 

clearly below 0.1zF/nm. Nevertheless the possible domain size is limited since 

too big domains create too many mesh elements and also problems during the 
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meshing of the very small apex (degenerated triangles or cavities are 

generated).  

The mesh-size on the tip-boundaries was set to 20 nm, except from the apex 

where the mesh size was set to the size of the tip radius R divided by 20. The 

global mesh quality was set to extra fine.     

To obtain the electrostatic force o the AFM-tip the Maxwell-Stress-Tensor in z 

direction was integrated over the whole tip geometry following the equation: 
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where n represents the respective normal vector. In Comsol-electrostatics 

mode this equation reads:  

Maxwell=1/2*pi*r*((Vr*VVz*nr+0.5*(Vz^2Vr^2)*nz)*epsilon0_emes)*epsilonr_emes 

Vr=-nr*(lm1)/r/(epsilon0_emes*epsilonr_emes) 

Vz=-nz*(lm1)/r/(epsilon0_emes*epsilonr_emes) 
 

To improve accuracy the variable lm1 defined on the boundaries and derived 

from the weak constraints is used to calculate the electric field Vr and Vz.   
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3.2.1 A ready tool for standardized electric tip calibration 

using finite element simulations 

 

In order to quantify the dielectric image of the sample with EFM I used the 

following procedure: 

 

1. A normal topography image is acquired in dynamic or tapping mode. 

2. A dC/dz-image is acquired scanning the sample again a few tens of nm 

out of contact and at a defined constant height above the flat 

substrate. 

3. Since the dC/dz signal depends not only on the sample dielectric 

constant, but also on the probe geometry the AFM-tip has to be 

calibrated by a dC/dz-approach curve onto the bare metallic substrate. 

4. The tip geometry is calibrated in a fitting procedure as detailed below 

and the dielectric image is calculated with the tip geometry, the 

acquired topography and the dC/dz image. 

Since the tip geometry is a very important parameter it is advisable to repeat 

the tip calibration from time to time.  

 

As mentioned, in order to perform a quantitative extraction of the dielectric 

constant, εr, of a sample it is necessary to calibrate tip-geometry in a first step. 

In such a calibration procedure a theoretical expression is fitted to the 

experimental dC(z)/dz-curve giving the best fitting geometric parameter R0 and 

θ0 and corresponding error bounds. For the case of metallic substrates this 

theoretical expression can be an analytical approximation as shown in section 
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3.1. However, as mentioned for insulating substrates and more specific sample 

geometries no analytical expressions are available and the alternative 

approach is to use finite element simulations. Unfortunately, one of the big 

shortcomings of finite element simulations is that they give just the solution 

for one specific set of parameters (e.g. one tip geometry, one tip substrate 

distance z).  In consequence they are not very flexible and easy to use 

compared with analytical expressions.  

To provide, however, a methodology capable to calibrate the tip geometry for 

measurements on dielectric substrates my approach was to: 

1. Simulate a large number tip-sample geometries covering the whole 

range of possible parameters (apex radius R=1-120nm, cone angle 

θ=5-44°, cone height H=5-20 µm, cantilever width L=0-70 µm, 

substrate dielectric constant εr=2-10). The simulations had to be very 

precise and fast at the same time to finish in a finite time (e.g. 1 

month).  

2. Generate a 5-dimensional interpolation function Force(H, L, R, Q, εr) as 

a fitting function on non-linear grid. 

3. Write a script capable to perform a fitting procedure with the 

generated interpolation function to put out the desired parameters. 

The large set of simulations was performed with Comsol™ using the scripting 

in Matlab™. The total number of simulations performed for one interpolation 

function is around 500.000.        

The final calibration tool performing the interpolation and fitting is written in 

Mathematica™. The tool works successfully and is used by the group for the 

electrical tip calibration. Further details are described in chapter 5.     
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Figure 3.3  Calibration tool to calibrate the AFM-tip geometry from EFM-

measurements. The dC/dz-approach curves onto a metallic and a 

dielectric substrate are shown. Fit and corresponding residuals (inset) 

are plotted.  
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4 Quantitative dielectric constant measurement 

of supported biomembranes by DC-EFM 

 

4.1 Abstract 

 

A simple method to measure the static dielectric constant of supported 

biomembranes with nanometric spatial resolution is presented. The dielectric 

constant is extracted from DC electrostatic force measurements with the use 

of an accurate analytical model. The method is validated here on thin silicon 

dioxide films (8 nm thick, dielectric constant ~ 4) and Purple Membrane 

monolayers (6 nm thick, dielectric constant ~2), providing results in excellent 

agreement with those recently obtained by nanoscale capacitance microscopy 

using a current-sensing approach. The main advantage of the force-detection 

approach resides in its simplicity and direct application on any commercial 

atomic force microscope with no need of additional sophisticated electronics, 

thus being easily available to researchers in materials science, biophysics and 

semiconductor technology. 

This chapter reproduces almost literally the article: Quantitative dielectric constant 

measurement of thin films by DC electrostatic force microscopy, Nanotechnology 20, 395702 

(2009) by G. Gramse, I. Casuso, J. Toset, L. Fumagalli and G. Gomila. 

In this article I was in charge of performing the experiments, the theoretical modeling and 

processing the results. In this part of the work I followed suggestions in the experimental 

methodology by I. Casuso and L.Fumagalli and in the theoretical part by J. Toset and my 

supervisor. The article was written by me with the collaboration of my supervisor and the senior 

researcher L. Fumagalli. 
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4.2 Introduction 

As we mentioned in the introduction, probing the nanoscale dielectric 

constant of biomembranes is fundamental in biology, because many 

bioelectric processes depend on the value of this property at the nanoscale 
93

. 

Since standard characterization techniques are not capable of addressing the 

dielectric constant of biomembranes at this scale, new techniques are needed 

to achieve higher spatial resolution.  

 

The large number of electrical scanning force microscopy (SFM) techniques 

applied in recent years to study electrostatic and dielectric properties of 

nanostructures and thin films both at low and high frequency 
11, 12, 15, 17-20, 32, 38, 

69, 70, 82, 83, 94-103
 still present some fundamental problems. In particular, the long 

range nature of the electrical interaction and the complexity of the tip-sample 

geometry, make the accurate modelling of experimental data and hence the 

correct quantification of the dielectric properties rather difficult. 

 

For thin dielectric films this difficulty has been recently overcome by the 

derivation of a simple analytical model that accurately quantifies the tip-thin 

film capacitance 
18

. Applying this model to local capacitance measurements  

obtained with a current-sensing nanoscale capacitance microscope 
15, 20

 the 

precise quantification of the low-frequency dielectric constant of thin silicon 

dioxide films 
17

 and supported biomembranes 
19

 has been successfully 

achieved at the nanoscale. However, current-sensed dielectric microscopy on 

ultrathin films has the drawback of requiring an extremely sensitive 

instrumentation (sub-attoFarad capacitance resolution) that is usually not 

available with commercial SFM. 

 

 In this work we adapted the method and analytical model validated 

with the current-sensing approach to DC electrostatic force microscopy (DC 

EFM) and provide a simple measurement approach for supported 

biomembranes and thin dielectric films in particular, using standard SFM. We 

will show that, in spite of its simplicity, the DC force-detection based approach 
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can provide quantitative values of the static dielectric constant of supported 

biomembranes and thin films at the nanoscale with a performance comparable 

(or better) to nanoscale capacitance measurements. In particular, we will show 

that for ultrathin films (thickness <10 nm) and low dielectric constant materials 

(εr <10), a precision below ~5% and a spatial resolution better than ~70 nm can 

be easily obtained with a commercial atomic force microscope (AFM) with no 

need of any additional electronic instrumentation. 
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4.3 Theoretical model and measurement protocol 

Let us consider a conductive AFM probe positioned above the dielectric film of 

the thickness h with the tip apex separated by an initial distance z0 from the 

conductive substrate, as schematically shown in Figure 4.1. When a DC voltage 

is applied between the probe and the substrate, the cantilever deflects by an 

amount D, yielding a new equilibrium position of the apex at a distance 

0z z D h= − −  from the thin film. The deflection D depends on the spring 

constant k of the cantilever, the potential difference between tip and sample 

(the applied voltage V reduced by the surface potential VSP) and the total 

capacitance CT between the probe and the sample, according to the relation

       

( )2

0

1

2
T

SP

C
D z h z V V

k z

∂≡ − − = − −
∂

     (4.1) 

The Van der Waals interaction has not been included, since it is negligible at 

the tip-substrate distance considered here (tens of nanometers).  

The total probe-sample capacitance CT can be modelled as the sum of two 

contributions, the stray capacitance Cstray given by the micrometric 

components of the probe (cone and cantilever) and the apex contribution, 

Capex. The apex capacitance, Capex, depends on the local properties of the 

sample and for thin dielectric films, it can be modelled using the formula 

already experimentally validated by nanoscale capacitance microscopy and 

finite-element numerical simulations 
17

 

02 ln 1 ( , )apex
r

R
C R K R

z h
πε θ

ε
 

= + + + 

ɶ
  (4.2) 

   

where (1 sin )R R θ= −ɶ , ε0 is the vacuum permittivity, εr the relative dielectric 

constant, h the film thickness, R the apex radius, θ an angle defining the apex 

surface (typically the cone angle) and K is an irrelevant constant term 

depending on the tip geometry. This model is valid for smooth surfaces with 

topography variations with a lateral spatial variation longer than the spatial  
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Figure 4.1 Schematic representation of a DC electrostatic force microscopy 

measurement on a thin film for dielectric constant extraction. A DC 

voltage bias is applied between a conducting probe and substrate, 

resulting in a deflection D of the cantilever, which depends on the static 

dielectric constant of the thin film. Reprinted from Ref. 
91

 (copyright 

2009 of IOP). 

 

 

resolution of the technique. In the case of rough surfaces one needs to restore 

to theoretical approaches including the effect of roughness (see for instance 
104

).   

On the other hand, the stray capacitance, Cstray, is independent from the local 

properties of the thin film, provided the film thickness is in the nanometre 

range 
86

. In addition, for nanometric displacements around the measuring 

position, the stray capacitance can be assumed to vary linearly with the tip-

sample distance and hence it only gives a constant deflection term, D0 
86, 105

. 

For larger displacements one may need to consider an explicit z dependence of 

the stray contribution term 
80, 90

. 

Substituting equation (4.2) in equation (4.1), the total DC electrostatic 

deflection of the cantilever over a thin dielectric film can then be expressed as 
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Equation (4.3) constitutes a generalization to larger tip-sample distances of the 

expression proposed by Sacha et al.
85

 In addition for metallic samples, since 

0→rh ε , equation (4.3) reduces to the well known formula by Hudlet et al. 
80
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Equation (4.3) can be solved to express the dielectric constant as a function of 

the cantilever deflection, 
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Note that, in order to express equation (4.5) in terms of measurable 

quantities, the tip - sample distance z should be substituted with z0 −  D − h. 

Equation (4.5) provides a simple analytical expression that can be used to 

reconstruct quantitative maps of the dielectric constant from static EFM 

images. We will practically demonstrate this here by implementing a protocol 

similar to the one used in Ref. 
19

 for current-detected dielectric measurements. 

 

After taking the topography of the thin film in dynamic mode to obtain its 

thickness h, the tip is retracted out-of-contact at a distance z0 above the 

substrate and scanned at constant-height with a DC applied voltage while the 

cantilever deflection is recorded, as shown in Figure 4.2. 
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Figure 4.2 Schematic representation of a DC EFM protocol to map the dielectric 

constant of thin films at the nanoscale. After acquiring the 

topography, the AFM tip is scanned at constant height with a DC 

voltage applied, while the probe deflection is recorded. From the 

topographic and deflection data the dielectric constant is obtained by 

using equation (4.5). Reprinted from Ref. 
91

 (copyright 2009 of IOP). 

 

From the thickness and deflection data, the dielectric constant is extracted 

point-by-point using equation (4.5). The initial distance value z0 is obtained in a 

quantitative way from force curves with no potential applied measured at the 

beginning and at the end of each scan line. The remaining parameters 

appearing on the right hand side of equation (4.5), i.e. ( )0, , , ,SPk V R Dθ  are 

accurately calibrated as described in section 4.7.3. Note that the initial 

distance z0 as well as the applied voltage V and spring constant of the 

cantilever k are chosen so that the probe will not collapse onto the substrate 

or sample during the constant-height scan (see Ref. 
105

). 
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4.4 Validation of the method  

 

We validate the method on two different samples, a silicon dioxide thin 

film and a supported biomembrane, namely Purple Membrane (PM). The Si02 

thin film has been deposited on a flat gold substrate in the form of a squared 

pattern by using Focused Ion Beam (FIB) deposition. The Si02 square has the 

nominal dimensions (length x width x height) = (6 μm x 6 μm x 8 nm).  

The Purple Membrane has been obtained by isolation from Halobacterium 

Salinarum following standard procedures 
106

. The membrane patches with 

typical diameters below 1 µm and thickness around 6 nm have been adsorbed 

on a highly ordered pyrolytic graphite (HOPG) substrate by placing a drop of 

PM solution (concentration of 0.1mM in MilliQ water) under an electric field of 

approximately 10V/cm for ~3 min. Subsequently the sample was rinsed gently 

and dried under dry N2 flow. 

We used a commercial AFM (Nanotec Electrónica S.L, Spain) controlled 

with the WSxM software. Two types of conductive probes were employed: the 

Pt-Ir coated tips on the Si02 sample (SCM-PIT-20, Nanoworld®, nominal spring 

constant k = 2.8 N/m) and boron-doped diamond tips on the PM sample (CDT-

FMR, Nanosensors, nominal spring constant k = 2.8 N/m). Spring constant of 

medium values were chosen as a trade-off between force sensitivity and snap-

in distance under a DC applied voltage 
105

, as discussed in section 4.5. All the 

measurements reported in this session were carried out at ambient conditions 

with 10 V applied. 
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4.4.1 Nanoscale dielectric constant measurement on a thin 

SiO2 film 

A topographic image and profile of the SiO2 thin film, obtained with the Pt-Ir 

tip is shown in Figure 4.3A. The SiO2 film shows the nominal thickness of ~8nm 

except at the edges where it is higher due to the deposition process. Figure 

4.3B shows the corresponding deflection profile obtained by scanning the 

probe above the sample at an initial tip-substrate distance z0 ~ 36nm with 10 V 

applied. The measured cantilever deflection profile displays a striking 

resemblance to the topography profile shown in Figure 4.3A, indicating both 

the sensitivity and locality of force-detected dielectric measurements.  

Figure 4.3C shows the dielectric constant calculated using equation (4.5) from 

the profiles given in Figure 4.3A and Figure 4.3B on the central points of the 

scan line where the dielectric film is ~8nm thick. The calibrated parameters 

used in the calculation are: VSP,substrate= 0.04V, VSP,sample= 0.15V, R = 87nm, k = 

2.5N/m and D0,Si02 ~ −3.7 nm (see section 4.7.1 for calibration details).  

The obtained dielectric constant values display the statistical distribution 

shown in the histogram in figure 3D with a mean value of εr,Si02=4.0 ± 0.9 and 

the error corresponding to one standard deviation.  

It is worth remarking that the uncertainty in the dielectric constant σε~ 0.9 is 

consistent with the noise present in the deflection detection system (σ∆ ~ 0.1 

nm) as computed from the relationship σε ∼ 
D∂

∂ε  σ∆ (see section 4.7.2 for 

statistical details). This indicates that the main source of uncertainty in the 

present measurements comes from the deflection detector noise. The 

obtained dielectric constant is well in agreement with values reported in the 

literature for bulk samples (fused silica εr = 3.8) 
107

 and for similar thin SiO2 

films measured at the nanoscale by nanoscale capacitance microscopy (εr ~ 4) 
17

. 
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Figure 4.3 Nanoscale dielectric constant extraction for a ~8 nm thin SiO2 film on 

gold. The topography (A), cantilever deflection (B), extracted 

dielectric constant (C) and statistical distribution of the dielectric 

constant (D) are plotted. A least square fit of the statistical 

distribution is plotted as a solid line in (D) from where a value εr,Si02 = 

4.0 ± 0.9 is obtained (Calibrated parameters: initial scan height z0=36 

nm, applied voltage V=10 V, spring constant k=2.5 N/m, stray 

deflection D0,Si02 ~ −3.7 nm and  apex radius R=87nm). Reprinted from 

Ref. 
91

 (copyright 2009 of IOP). 

 

 

4.4.2 Nanoscale dielectric constant measurement of   Purple 

Membrane  

The topographic image of a Purple Membrane patch on a HOPG substrate 

obtained with a diamond tip is shown in Figure 4.4A. The lateral dimensions of 

the patch are around 500 nm x 1 µm with a thickness of around 6 nm. The two 

protrusions that reach 12nm height are small adsorbed membrane pieces.  

The electrostatic deflection image is shown in Figure 4.4B together with a 

histogram of measured deflection values (left inset) and a representation of 

the measured initial distance values for each scan line (right inset). The 

deflection image of the membrane patch shows again a striking resemblance 

to the topographic image, thus constituting a good indication of the locality of 

the measurement. The only appreciable difference can be seen on a band of 

lines below the middle part of the image that correspond to a number of scan 

lines that were unintentionally taken at a significantly higher scan height, as 

revealed by the right inset in Figure 4.4B. This fact introduces three levels of 

deflection on the membrane patch, namely, ~ 5.7 nm (green) corresponding to 

the flat parts of the membrane ~ 6.1 nm (blue) corresponding to the region 

with the protrusions and ~ 5.3 nm (red) for the scan lines taken at a higher 

height (the substrate deflection is ~ 5.0 nm (orange)). 
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 Figure 4.4C displays the reconstructed dielectric constant image together 

with the histogram of values on selected areas (inset). The image values have 

been computed by using equation (4.5) with the deflection and topography 

image given in Figures 4.4A and 4.4B, including the initial distance values 

shown on the right inset of Figure 4.4B. The calibrated parameters used in the 

calculation are in this case: k = 3 N/m, R = 167 nm,  VSP,substrate=0.01V, 

VSP,PM=0.11V and D0,PM ~ −0.5 nm (see Appendix 1). The values of the dielectric 

constant obtained on a flat region of the membrane (squared area I in figure 

4.4C) follow the statistical distribution shown in the inset of Figure 4.4C, with 

mean εr,I=1.78 ± 0.07. This value is in good agreement with the value recently 

obtained on a similar sample by means of nanoscale capacitance microscopy 

(εr= 1.9 ± 0.1) 
19

. Again, the standard deviation of the dielectric constant 

(σε~0.07) is consistent with the deflection detection noise (σD~0.06 nm) 

displayed by the measuring system. This shows that even when different scan 

lines are involved in the calculations, the main source of noise continues to be 

the deflection detection noise. 

 It is worth remarking that the obtained dielectric constant value is 

insensitive to the scan height provided its value is recorded precisely as we did 

here, thus showing the robustness of the present method. This can be 

observed by the fact that the dielectric constant value extracted in the area II 

in Figure 4C scanned at a different scan height, εr,II=1.82±0.06, agrees with the 

value extracted in area I, εr,I=1.78±0.07. 

 

 

Figure 4.4 Nanoscale dielectric constant measurement on a Purple Membrane 

patch. The topography (A), the cantilever deflection (B) and the 

extracted dielectric constant (C) are displayed. In the right inset in B the 

simultaneously acquired lift height is plotted for each line. Histograms in 

the inset of B and C show the distribution of the cantilever deflection and 

the dielectric constant on the purple membrane, respectively. (Calibrated 

parameters: applied voltage V=10V, spring constant k=3.0 N/m, stray 

deflection D0,PM ~ −0.5 nm and apex radius R=167nm). Reprinted from 
Ref. 91 (copyright 2009 of IOP). 
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 Finally, we note that the dielectric constant obtained at the edges or 

on the nanometric protrusions of the membrane is slightly smaller (εr ~1.5) 

and exceeds the experimental error obtained on the flat regions. This is 

probably due to the fact that the model is only valid on flat thin films larger 

than the spatial resolution of the technique, whereas the size of the 

protrusions is at or below the resolution limit. In the present case the lateral 

resolution can be estimated to be ~80 nm, defined as half the distance needed 

for the deflection to pass from the average value on the bare substrate to that 

on the flat membrane region (data not shown). This value is in good 

agreement with the theoretical lateral resolution of the technique 
108

 ~ 

0 70Rz nm≈ . 
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4.5 Discussion 

 

In the previous section we have shown the ability of DC EFM to quantify the 

static dielectric constant of two different thin films at the nanoscale. Here we 

will analyze the factors that determine the uncertainty of the extracted values 

and establish the best application range of the technique.  

According to the results reported in Section 4.4 the uncertainty of the 

dielectric constant value, represented by the standard deviation of values, σε, 

is mainly determined by the deflection detection noise of the AFM system, σD, 

through the relationship σε ∼ 
D∂

∂ε  σD. Several parameters appear in this 

equation, which can play a role in the final standard deviation of dielectric 

constant σε. In order to illustrate the most relevant factors, we will consider 

the case of the measurement performed on the Purple Membrane patch. By 

taking as initial parameters those of the experiment, namely, k=3 N/m, V=10 V, 

εr=2, z0=30 nm, h=6 nm, R=167 nm, we will analyze how the uncertainty of the 

measurement evolves when varying each of them individually, while keeping 

the others fixed. In each case, three levels of deflection detection noise will be 

considered, namely, σD = 0.06 nm, 0.03 nm and 0.01 nm, corresponding, 

respectively, to the noise of our setup, of a state-of-the-art commercial AFM 

and to further optimized AFM for static measurements.  

Figure 4.5 shows the predicted variation for the relative error in the dielectric 

constant as a function of (a) initial scan height, (b) applied voltage, (c) spring 

constant, (d) apex radius (lateral resolution), (e) relative dielectric constant of 

the material and (f) film thickness. In each case the parameters are varied in a 

range satisfying the condition that the tip does not collapse onto the sample. 

Figure 4.5 reveals a rather different impact of each parameter on the 

uncertainty of the measurement. 

 Explicitly, for the present case, the relative error depends in each case 

roughly as: ~z0
β 

(β=1-2), ~V
−2

,
 
~ k

1
, ~R

−α 
(α=1-2), ~ εr

1
, ~h

−γ   
(γ=1-2). 

According to these results, for a given instrumental detection noise, the 
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precision of the measurement can be greatly increased by reducing the scan 

height and spring constant, and by increasing the applied voltage, as expected. 

However, the condition that the probe does not collapse onto the sample or 

substrate imposes a trade-off between these parameters. Since the collapse 

distance does not depend on the spring constant of the cantilever but on the 

voltage at which the electrostatic collapse occurs 
105

, it turns out that 

intermediate spring constant cantilevers (k~1-10 N/m) are expected to provide 

the best results, since softer cantilevers would not allow applying large enough 

voltages, while stiffer cantilevers would produce deflection values below the 

deflection noise of the instrument. 

On the other hand, by increasing the spatial resolution (decrease in the apex 

radius) a large increase in the uncertainty of the measurement is observed. 

This means that also here a trade-off should be made between spatial 

resolution (apex radius) and dielectric constant precision.  

Concerning the parameters of the thin film, εr and h, the relative error 

increases linearly with εr and decreases slightly faster with h. This means that 

in principle increasing the sample thickness could constitute a good strategy to 

increase the precision of the measurement. However, this is not the case in 

practice since only slight variations of this parameter are allowed without the 

need to increase the scanning height, which will result in an overall decrease 

of precision. 

Therefore, the best results will be obtained in the ultrathin limit (<10 nm), with 

a precision still acceptable in the molecularly thin (<2 nm) or thicker limits (>10 

nm). In all the cases, since the uncertainty increases linearly with the dielectric 

constant of the material, measurements will be significantly more precise on 

low dielectric constant materials (εr<10) than in higher dielectric constant 

materials. The increase in the uncertainty with increasing dielectric constant 

value is a consequence of the fact that the measurement is not performed in 

contact with the sample. In this condition the applied potential partitions 

between the air gap and the thin film in such a way that the interaction 

between probe and thin film gets remarkably less sensitive to the dielectric 

constant of the material than expected from contact measurements. 

According to the above discussion, the present technique is expected to be 
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best suited for ultrathin films (h<10 nm) and low dielectric constant materials 

(εr<10). For these thin films, if an appropriate trade-off between the different 

parameters and measuring conditions is achieved, dielectric constant values 

with relative errors well below ~5% and a spatial resolution below ~70 nm can 

be obtained with a commercial AFM system.  

Higher spatial resolution can be achieved at the cost of precision, unless the 

deflection detection noise of the system is reduced. To this end, besides 

instrumental optimization, one can reduce the experimental noise by 

increasing the measurement time and averaging a number of identical 

measurements. Further improvements can only be achieved by moving to a 

more sensitive detection scheme such as alternating applied voltage EFM (AC-

EFM), which however requires additional instrumentation (i.e. lock-in 

amplifier) not always available with standard AFM. 
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Figure 4.5 Relative error of εr as a function of (a) initial scan height, (b) 

voltage  applied, (c) spring constant, (d) apex radius (lateral 

resolution), (e) relative dielectric constant of the material and (f) 

film thickness. In  each figure three levels of noise are considered 

(from top to bottom): σD=0.06 nm, 0.03 nm and 0.01 nm. The 

remaining parameters are k=3 N/m, V=10 V, εr=2, z0=30 nm, h=6 

nm, R=166 nm, θ=30°, D0=0.5nm and VSP=0.1V. In each figure the 

symbol corresponds to the experimental conditions of the purple 

membrane experiments reported here. Reprinted from Ref. 91 
(copyright 2009 of IOP). 
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4.6 Conclusion 

 

In this chapter we have demonstrated a simple methodology based on DC 

electrostatic force microscopy to obtain quantitative values of the static 

dielectric constant of supported biomembranes and thin insulating films at the 

nanoscale. we have shown that, in spite of its simplicity, the proposed 

methodology implemented on a conventional AFM system can provide 

dielectric constant values with relative errors below a 5% and spatial 

resolutions below ~70 nm for ultrathin (thickness <10 nm) and low dielectric 

constant materials (relative dielectric constant < 10) materials. The technique 

has been validated on a ~8 nm thin SiO2 film and on a ~6 nm thin biological 

membrane, with results in excellent agreement with dielectric constant values 

found in the literature for bulk samples or obtained with the current-sensing 

based nanoscale dielectric microscopy, recently reported. This method 

constitutes a very simple approach to the measurement of nanoscale dielectric 

constant on thin films as it can be implemented on virtually any commercially 

available AFM with no need of additional electronics or complex numerical 

simulations, thus making this technique easily accessible to researches in 

material science, semiconductor technology and biophysics. 
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4.7 Appendix   

4.7.1 Parameter calibration 

 
In order to obtain quantitative values for the dielectric constant from equation 

(4.5), precise calibration of the parameters appearing in this equation is 

essential.  

The spring constant of the cantilever, k, has been calibrated here by 

analysing the thermal oscillation of the cantilever as described in Ref. 
109

. We 

have obtained the values kPtIr= 2.5 ± 0.1 N/m and kdiamond= 3.0 ± 0.1 N/m for the 

Pt-Ir and diamond tips, respectively. 

The surface potential, VSP, was estimated by acquiring the DC deflection 

while sweeping the voltage between -3V and 3V on the bare substrate as well 

as on the dielectric sample at different tip-sample separations (for details see 

Ref.
110

). Fitting the deflection curve to a parabolic function of the voltage, the 

following surface potentials where obtained: VSP,PtIr-Au= 0.04 ± 0.02V, VSP,PtIr-Si02= 

0.15±0.02 V, VSP,diamond-HOPG= 0.01 ± 0.02 V, VSP,diamond-PM=0.11 ± 0.03 V.  

 The probe radius, R, was calibrated by measuring a deflection distance 

curve on the conducting substrate with a DC voltage applied and fitting it to 

equation (4.4), valid for metallic samples, with the apex radius R and stray 

deflection D0 as free parameters (for the extraction of the radius the mean 

spring constant values have been used, i.e. kPtIr=2.5 and kdiamond=3.0, while in 

order to reduce the number of parameters in the fitting process, θ was set to 

30°).  

Following this procedure we obtained the values RPtIr= 87±1 nm, 

D0,PtIr=−4.0 ± 0.1 nm and Rdiamond= 167±1 nm, D0,diamond= − 0.17±0.01 nm. The 

goodness of the procedure is shown in Figure 4.6, showing residuals with an 

almost uniform distribution (standard deviations 0.11 nm and 0.05 nm for the 

PtIr and diamond probes, respectively). Note that the larger deflections on the 
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PtIr probes are due to the larger voltage applied (10 V) as compared to the 

voltage  

 

 

 

Figure 4.6 Cantilever deflection as a function of tip-substrate distance taken on 

the conducting substrate with a DC voltage applied used for tip 

radius calibration. The Pt-Ir probe curve (black symbols) is 

obtained with V=5V, the diamond probe curve (blue symbols) with 

V = 10V. Solid lines are the least square fitting of the experimental 

data to equation (4.4) and fit residuals are plotted on top, showing 

standard deviation of ~0.11nm and ~0.06nm respectively. The 

obtained radius are RPtIr= 87 ± 1 nm and Rdiamond= 166 ± 1 nm. 

Reprinted from Ref. 
91

 (copyright 2009 of IOP). 
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applied when using the diamond probe (5 V). Note also that for the PtIr probe 

the extracted radius is appreciably bigger than the nominal value. This 

difference can be explained by two effects that add up for this type of probes, 

namely, (i) the Pt-Ir probes can get blunt very easily, thus displaying usually a 

bigger apex radius and (ii) for small radii the use of a constant stray 

contribution term in equation (4.4) is less accurate thus giving rise to slightly 

larger apex radius values. These two facts are not relevant for the diamond 

probes and do not affect the extraction of the dielectric constant, as we have 

shown. 

Finally the stray deflection contribution, D0, has been quantified using 

equation (4.4) for metallic samples from the deflection measured on the 

conductive substrate during the scan line taken at constant-height. To reduce 

the uncertainty on this parameter several deflection data obtained on the flat 

substrate have been averaged out. The values obtained are then D0,Si02 ~ −3.7 

nm and D0,PM ~ −0.5 nm.  

4.7.2 Statistical analysis of the data 

 
The measured deflection values display a statistical dispersion due to the 

detection system noise that follows the Gaussian distribution  

( )2

2

1
p(D exp

22
D

DD

D µ
σσ π

 −
) = − 

 
 

            (4.6) 

where Dµ  and Dσ  represent the mean and standard deviation of the 

distribution, respectively. Accordingly, the dielectric constant values obtained 

from the deflection through the function εr(D) given in equation (4.5) are also 

statistically distributed and follow the distribution  

)
( ) ( ) r

r
r

D
p p D

εε
ε

∂ (  = ⋅
∂

                        (4.7) 

which in general is non-Gaussian. The mean and standard deviation values of 

the dielectric constant are then given by  

 

2( ) ; ( ) ( )r r r r r r r rp d p dεε ε ε ε σ ε ε ε ε= = −∫ ∫    (4.8) 
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In this paper we firstly obtained the distribution by fitting the histogram of 

measured dielectric constant to equation (4.7) with 
Dµ  and 

Dσ  as free 

parameters and then calculated the mean and standard deviation using 

equations (4.8). For the results reported here, it can be shown that these 

values can be equivalently obtained using the approximated relation of the 

non-Gaussian distribution of dielectric constant to the first order in the 

deflection noise 

( )
2

2
2

( )1
~

2
r D

r r D DD

ε µε ε µ σ∂+
∂

                (4.9) 

and 

( )
~ r D

DDε
ε µ

σ σ
∂

∂
     (4.10) 

This justifies the use of equation (4.10) in the precision analysis given in 

Section 4.4. 

 

4.7.3 Analytical formula for the electrostatic force on 

small AFM-tips including the cone contribution 

 

As we mentioned in section 2.3, the formula relating the dielectric 

constant with the capacitance gradient and consequently with the measured 

electrostatic force is just valid under a limited number of conditions. Especially 

for tips with smaller apex radii than the ones we used in this chapter, I showed 

that the use of equation (3.2) can yield incorrect dielectric constant values. 

This is because for small tips (R<50-100nm) not only the apex but also the cone 

is contributing to the measured force-difference. I found that under these 

conditions instead the following analytical equation can be used to extract the 

correct dielectric constant from the measured capacitance gradient difference, 

ΔC’: 
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( ) ( )sample metalC C z C z′ ′ ′ ′∆ = − ,   (4.11) 

where the sample capacitance gradient is: 
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 (4.12) 

In order to obtain the metal capacitance gradient, C’metal, the dielectric 

constant in this equation is simply set to the value εr= 1. 

To show the good agreement of equation (4.12) with numerical 

calculations, I compare in Figure 4.7 the force difference between the bare 

metallic substrate and a membrane of the dimensions 5nm x 1000nm and 

dielectric constant εr=3 (black, line) that I calculated with the finite element 

method and the force difference calculated using the proposed equation (4.12) 

(red line) and equation (3.2) (blue line) that has been used by us earlier.  

The comparison is shown for a tip of small apex radius R=20 nm, a big apex 

radius R=100 and in both cases a cone angle of θ=30°. As can be seen, the new 

equation reproduces the finite element simulations much better than the 

older one. Especially at close distance, where measurements are usually 

carried out, the equation (4.12) agrees almost perfectly with the simulations 

what demonstrates the good quality of this approximation. However, for big 

tip radii the difference between both models is very small and the in this 

chapter applied equation 3.2 gives also correct results.  
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Figure 4.7 Capacitance gradient differences between metallic substrate and 

membrane of 5nm in height, 1000 nm in diameter and dielectric 

constant of εr=3. The differences are plotted for varying tip substrate 

distances. Geometric tip parameters are R=20nm, R=100nm, θ=30°, 

H=15 µm. Simulations are compared with equation 4.12 and 3.2, 

respectively. Note, the log scale on the y-axis. 

 

 

  

 

 



 

 

5  Quantifying the dielectric constant of thick 

insulators using EFM 

 

5.1 Abstract  

 

This chapter deals with extending the methodology developed in the 

previous chapter to the case in which thick insulating substrates, instead of 

metallic substrates, are considered. As I have mentioned, the use of insulating 

substrates such as glass or mica turns out to be very advantageous when 

dealing with supported biomembranes. Here we present a systematic analysis 

of the effects that the microscopic parts of electrostatic force microscopy 

probes (cone and cantilever) have on the electrostatic interaction between the 

tip apex and thick insulating substrates (thickness > 100μm). We discuss how 

these effects can influence the measurement and quantification of the local 

dielectric constant on thick insulating substrates. We propose and 

experimentally validate a general methodology that takes into account the 

influence of the cone and the cantilever, thus enabling to obtain very accurate 

values of the dielectric constants on thick insulators. Finally, the locality of the 

technique is discussed. 

 

This chapter reproduces almost literally the article: "Quantifying the dielectric constant of thick 

insulators by electrostatic force microscopy: Effects of the microscopic parts of the probe", 

Nanotechnology 23, 205703, 2012 by G. Gramse, G. Gomila and L. Fumagalli and it includes also 

a part of the article "Quantifying the dielectric constant of thick insulators using electrostatic 

force microscopy", Applied Physics Letters 96, 183107, 2010, by L. Fumagalli, G. Gramse, D. 

Esteban-Ferrer, M. A. Edwards, and G. Gomila. In these two articles I was in charge of 

performing the theoretical modeling. In this part of the work I followed suggestions in the 

modeling methodology by M. A. Edwards. The experimental data was acquired and processed by 

L. Fumagalli. This part of the work was supervised jointly by the senior researcher L. Fumagalli 

and my supervisor. The first article and the part of the second article reproduced here was 

written in both cases by me, in collaboration with my supervisor and the senior researcher L. 

Fumagalli. 
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5.2 Introduction 

 

Measurement and quantification of the dielectric constant, εr, at the nanoscale 

has been demonstrated using scanning force microscopy based on 

capacitance
17, 19

 and electrostatic force 
82, 83, 91, 102, 111, 112

 detection for the case 

of thin insulating films (thickness < 1μm), with examples ranging from thin 

oxide films and polymer blends to supported biomembranes. On thick 

insulators (thickness > 10μm), on the other hand, quantifying εr is much more 

difficult, not only because the signal-to-noise ratio is smaller, but also because 

the data interpretation sensitively depends on the modeling of the probe. This 

is due to the fact that the geometry of the microscopic parts of the probe, that 

is, the cone and the cantilever, can indirectly influence the local electrostatic 

interaction between the tip apex and the thick dielectrics, as suggested by 

some theoretical works 
85, 86, 113, 114

. However, the ability to quantify the 

dielectric constants on thick insulators would open new possibilities, such as 

the study of interfacial effects of insulators 
115

 and thick nanocomposite 

insulators 
116

. Particularly, it would enable the electrical/dielectric 

characterization of molecules and nano-objects (single biomolecules
117

, self-

assembled monolayers
38, 118

, liquid layers
38

, nanotubes 
119

, nanoparticles
120

) 

directly on millimeter-scale insulating substrates like mica or glass cover slips, 

thus avoiding the difficulties in preparation on conductive substrates.  

 

Here, we systematically analyze from a theoretical point of view the 

influence of the cone height and the cantilever area on the local electrostatic 

interaction between the tip apex and thick dielectric substrates and hence on 

the quantification of the local dielectric constant. Based on these results, we 

propose and experimentally validate a general methodology to properly 

account for these effects. We show that adding a disc that simulates the 

cantilever further improves the accuracy of the obtained dielectric constants. 
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The final result is a very accurate and systematic methodology to extract the 

dielectric constant of the nanometric volume at the surface of a thick 

insulating material. This methodology is also readily applicable to quantitative 

measurements on bio-membranes.   

The chapter is organized as follows. In section 5.3 we describe the probe-

thick insulator system and the numerical approach used to solve the 

corresponding electrostatic problem. In section 5.4 we analyze how the cone 

and the cantilever affect the tip-substrate electrostatic interaction. In section 

5.5 we investigate their influence on the obtained dielectric constant from 

EFM measurements and propose a general methodology to extract the 

dielectric constants on thick insulators, taking into account the microscopic 

effects of the cone and cantilever. In section 5.6 we address the locality of the 

technique. Finally in section 5.7 we summarize the main conclusions of this 

chapter. 

 

5.3 Theoretic Modeling 

To analyze the effect of the microscopic parts of the EFM probe (the cone and 

the cantilever) on the tip apex – thick insulator interaction, we considered the 

simplified model given in Figure 5.1. The probe consists of a truncated cone of 

height H and cone aperture angle θ ended with a semi-spherical apex of radius 

R. In addition, a disc of radius and thickness w is located on top of the cone, 

where L is the part of disc radius not covered by the cone base. Here, for 

simplicity, we will refer to L as to the cantilever disc radius. The tip apex is 

positioned at a distance z from the thick insulator substrate of dielectric 

constant εr. we assume that the insulating substrate has infinite lateral and  
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Figure 5.1   Schematic representation of the probe-thick insulator system 

modeled with 2D finite-element numerical calculations. A disc over 

the cone is used to model the cantilever effects. The scheme is not to 

scale. Reprinted from Ref. 
121

(copyright 2012 of IOP). 

vertical size, since the width is much larger than any microscopic part of the 

probe and the thickness is larger than 100 μm - see Ref 
122

 where we showed 

that for this range of thickness the local electrostatic forces become 

independent of the insulator thickness, reaching the limit of an infinite-thick 

slab. 

To analyze the electrostatic field over a bare metallic substrate, we considered 

the same probe model of Figure 5.1 but substituting the insulator with a 

metallic surface located at a distance z from the tip apex.   

We modeled the cantilever as a simple disc, although in fact it has 

rectangular or triangular shape. This simplification gives an excellent 

approximation, provided that the disc radius is chosen properly, as we will 

discuss in section 5.5. The main reason for using the disc geometry is that it is 

axisymmetric. Hence, it enables the use of 2D numerical solvers, which are 
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much faster and accurate than 3D solvers when large geometries including 

nanometric features (here the apex) have to be calculated.  

 The electrostatic problem was solved numerically by the finite-

element package COMSOL Multiphysics 4.0 (AC /DC electrostatic module). The 

infinite lateral and vertical dimensions of the simulation box (air and substrate 

domain) were implemented by using the built-in infinite elements function 

around an inner domain of finite size having ten times the width and height of 

the largest tip dimension. Constant potential boundary conditions were 

assumed on the probe surface and at the bottom of the insulating substrate 

(here taken as ground), while insulating boundary conditions were used on the 

lateral and upper sides of the simulation box. The calculation was done with 

the direct axisymmetric 2D solver PARDISO (calculation time per point 

between 6 and 10 seconds on a computer with a 2.5 GHz CPU and 4 GB RAM).  

 The force acting on the probe was calculated by integration of the 

built-in Maxwell-stress-tensor function over the probe surface. To pass from 

the 2D calculations to the 3D ones, the corresponding 2πr factor was included, 

where r is the distance from the 2D probe surface to the symmetry axis. We 

estimated the accuracy of our calculations to be better than 1% against the 

analytical expression of the electrostatic force acting on a conducting sphere in 

front of an infinite dielectric substrate 
84

. To analyze the electrostatic 

interaction independently of the applied potential and to get rid of non-local 

contributions, the calculated force F2ω(z,εr) was converted into capacitance 

gradient variations ∆C’(z,εr) = C’(z,εr) – C’(z0,εr), as we already detailed in 

Ref.
122

.  

We systematically calculated the capacitance gradient as a function of 

all the parameters, covering the range of values of interest (R = 1-120 nm, 

θ=5º-40º, H = 5-20 μm, L = 0-35 μm, εr = 1-11, z = 6-800 nm, w = 2 μm) using an 

automatic script (with a total computational time of 3 weeks). We then 

implemented a code in Mathematica 7.0 that interpolates the calculated 

values, generates two functions, corresponding to the metallic and the 

dielectric substrate respectively, and finally fits them to the experimental data 

with no need for further finite-element calculations.  
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5.4 Effects of the microscopic probe geometry on 

the local electrostatic interaction. 

 

The local electrostatic interaction between the probe and the thick 

insulator depends on the size of the microscopic parts of the probe, and thus 

on the cone height, H, and the cantilever disc radius, L. To show it, we 

analyzed the capacitance gradient variation, ∆C’(z, εr), as a function of the tip-

surface distance z (approach curve) for different probes of variable size H and L 

but fixed apex radius and cone angle (R = 30 nm and  θ = 30°). For clarity, we 

also calculated and separated the capacitance contribution of the cone, 

∆C’cone(z,εr), from the contribution of the cantilever, ∆C’cant(z, εr), where 

∆C’(z, εr) = ∆C’cone(z, εr)+ ∆C’cant(z, εr). For a given probe size, we calculated and 

analyzed the approach curves on both metallic and insulating substrates. 

 

5.4.1  Metallic substrates  

 

Figures 5.2a and 5.2b show calculated approach curves, ∆C’metal(z), on a 

metallic substrate for probes with variable disc radius L = 0, 10, 20 and 30 µm 

for small (H = 5 µm, Figure 5.2a) and large cone heights (H = 15 µm, Figure 

5.2b). Separated contributions from the cone and cantilever parts are shown in 

the insets. In all cases, the cone contribution, ∆C’metal,cone(z), is independent of L 

and H. This confirms the functional dependence given by the analytical 

approximation derived by Hudlet et al. in Ref. 
80

 (dashed line in the insets of 

Figure 5.2) 
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 (4.1) 

where the capacitance gradient associated to the cone is independent of L and 

it includes the cone height H through a logarithmic term that cancels out when 

computing capacitance gradient variations. 

 The cantilever contribution instead shows a linear dependence on the 

vertical displacement, Δz, i.e.  '
, 0( , , ; ) ( , )metal cant metalC z H L z a H L z∆ ≈ ∆ , where ametal is 

a function that increases with L and decreases with H. The linear dependence 

is a consequence of the fact that H , L >> ∆z and hence the Taylor expansion to 

the first order can be applied. Note that the cantilever contribution becomes 

comparable to the cone contribution in the case of small cone heights (H < L), 

while for H > L it is almost negligible in front of the cone contribution. Hence, 

the total capacitance gradient ∆C’metal(z) is independent of the cone height and 

cantilever disc radius when H > L (Figure 5.2b), while for small cone heights 

when H < L (Figure 5.2a) it can depend on them through the direct cantilever 

contribution. For AFM-tips with small cone heights the latter result should be 

kept in mind, since in general microscopic parts of the probes are assumed not 

to play any role in the analysis of EFM measurements on metallic substrates. 
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Figure 5.2 Calculated capacitance gradient approach curves on (a, b) a metallic 

and (c, d) insulating substrates for probes with (a,c) small (H = 5 µm) 

and (b,d)  large (H = 15 µm) cone heights for different disc cantilever 

radii (L = 0, 10, 20, 30 µm). In all curves the apex radius and cone 

aperture angle are R =30 nm and θ = 30°. The dielectric constant of 

the insulating substrate is εr = 6. Insets: separated contributions of 

the cone (symbols) and cantilever (solid lines) to the total 

capacitance gradient variations. The dashed line in the inset of (a, b) 

gives the calculations using the analytical formula of Eq. (5.1) for the 

cone contribution on a metallic substrate. Reprinted from Ref. 
121

(copyright 2012 of IOP). 
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5.4.2  Thick insulating substrates  

 

Figures 5.2c and 5.2d show the capacitance gradient approach curves 

calculated for the case of an insulator substrate (εr = 6), ∆C’dielec(z, εr), with the 

same probe sizes considered in Figures 5.2a and 5.2b, respectively. Again, the 

insets of Figures 5.2c and 5.2d show the separated contributions of the cone 

and cantilever. The main difference with respect to the case of a metallic 

substrate is that on a thick insulator the cone contribution, ∆C’dielec,cone(z, εr), 

depends on both the cone height, H, and the disc radius, L. For a given cone 

height, H, the cone contribution decreases with increasing the disc radius.  

Moreover, for a given disc radius L, the cone contribution decreases 

(increases) when increasing the cone height for H > L (H < L). This indicates that 

the microscopic parts of the probe might have an indirect influence on the 

local tip-surface interaction, thus giving such a complex behavior as 

theoretically anticipated in Refs. 
85, 86, 108, 113, 114

. We support this statement 

with Figure 5.3, where local and non-local potential distributions are shown for 

four representative probes corresponding to: (Figure 5.3a) H = 5 μm, L = 0 μm, 

(Figure 5.3b) H = 15 μm, L = 0 μm, (Figure 5.3c) H = 5 μm, L = 30 μm, and 

(Figure 5.3d) H = 15 μm, L = 30 μm. The local voltage drop in the air gap below 

the tip apex (insets), which ultimately determines the local force acting on the 

probe, is affected by the dimensions of the microscopic parts of the probe (H 

and L). The value of this voltage drop follows the same qualitative 

dependencies on H and L as the cone capacitance gradient contribution 

described above, thus providing an explanation to that. The effect on the 

capacitance gradient is less pronounced than on the voltage drop, because the 

former is an integral quantity that tends to smooth out variations. Note that 

indirect effects related to the microscopic probe geometry do not happen in 

the case of a metallic substrate and hence quantifying the electrostatic 

interaction is clearly easier.  
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Figure 5.3.  Microscopic (non-local) and nanoscopic (local) (in the insets) electric 

potential distributions for probes of a given apex geometry (R = 30 

nm, θ= 30 °) and variable microscopic geometry: (a) (H = 5 µm, L = 0 

µm), (b) (H = 15 µm, L = 0 µm), (c) (H = 5 µm, L = 30 µm) and (d) (H = 

15 µm, L = 30 µm). The thick insulator substrate has a dielectric 

constant of εr = 6. The probe is at 1V while the backside of the 

substrate is at ground, 0 V.  Note that the voltage drop in the air gap 

below the tip (insets), which determines the force acting on it, 

depends on the microscopic geometry of the probe (cone and 

cantilever). Only the first 20 µm of the dielectric substrates are 

shown. The color scale is the same for all the figures. Reprinted from 

Ref. 
121

(copyright 2012 of IOP). 

   



5. Quantifying the dielectric constant of thick insulators using EFM 

91 

 

The cantilever contribution, on the other hand, ∆C’dielec,cant(z, εr), shows a linear 

behavior with the tip vertical displacement, Δz, (see Figures 5.2c and 5.2d, 

insets), that is, 
'

, ( ; ) ( , , )dielec cant r dielec rC z a H L zε ε∆ ≈ ∆ . The slope adielec 

increases when increasing L, decreasing H or increasing εr. To understand the 

linear behavior of ∆C’dielec,cant(z, εr) with Δz, a similar reasoning as for metallic 

substrate can be followed. Note that also in the case of dielectric substrates, 

the direct contribution of the cantilever becomes comparable to the cone 

contribution for small cone heights (H < L).  

We can now explain the complex dependence of the total capacitance 

gradient, ∆C’dielec (z, εr), on H and L given in Figures 5.2c and 5.2d. For probes 

with a high cone (Figure 5.2d) (H > L) the total capacitance is dominated by the 

cone contribution and hence it decreases when increasing the cantilever 

dimensions (and also when increasing the cone height). Instead, for short cone 

height probes (Figure 5.2c), when H < L, initially the capacitance gradient is 

dominated by the cone and hence it decreases when increasing L, but at some 

point it stops decreasing and starts increasing as a result of the direct 

contribution from the cantilever.  

 

In summary, it has been shown that the local electrostatic force between the 

probe and a thick dielectric substrate depends on the microscopic geometry 

and size of the cone and the cantilever mainly due to their indirect effects on 

the local tip-substrate interaction. In addition, direct effects from the 

cantilever can be relevant for short cone probes. 
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5.5 Quantification of the dielectric constant of 

thick insulators 

 
According to the results presented in section 5.4, the microscopic geometry of 

the probe needs to be taken into account in any geometrical model used to 

quantify the local dielectric constant of thick dielectric substrates using EFM. In 

this section, we show that the simplified 2D axisymmetric model of Figure 5.1 

can include them in an effective manner, thus optimizing the quantification 

procedure demonstrated in Ref. 
122

 by adding a disc to the cone model that we 

used.  

We validated the method with the AM-EFM experiments performed on 

different insulating substrates (PEN, PMMA, borosilicate glass, mica as 

dielectric substrates and HOPG as metallic substrate) that we reported and 

analyzed in Ref. 
122

 (experimental data kindly provided by Dra. L. Fumagalli). 

This first set of experiments was obtained using commercial conductive 

diamond coated probes (CDT-CONTR, Nanosensors). In addition, a second set 

of measurements was performed on mica and HOPG using another type of 

conductive diamond coated probes (CDT-FMR Nanosensors), which differ from 

the previous one only in the cantilever size (450x50x2 μm
3
 vs 225x28x3 μm

3
, 

respectively), while they have similar cone heights (12.5 ± 2.5 μm, as obtained 

from the datasheet), cone angles and apex radii. The spring constants of the 

probes are different due to their different cantilever geometry (0.2 N/m vs 2.8 

N/m, respectively).  

As for the case of the numerical calculations, we obtained the capacitance 

gradient variation ∆C’(z,εr) from the measured approach force curves F2ω(z,εr) 

(see Ref.). The experiments were performed under dry environment (0% RH) 

by flowing N2 through the AFM chamber to avoid water layers on the surfaces. 

The dielectric constants of the substrates were obtained from the measured 

capacitance gradient approach curves by using the 2D geometric model in 

Figure 5.1 and following the two step procedure proposed in Ref. 
122

, but 

generalized to include a variable microscopic geometry. First, we calibrated 

the apex geometry of the probe (R and θ) by a least square fitting of the 
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metallic theoretical curve to the experimental curve taken on the metallic 

substrate with H and L fixed to given initial values. Then, with the obtained 

probe geometry, the dielectric constant was extracted by a least square fitting 

of the dielectric theoretical curve to the experimental curve taken on the 

insulator using the dielectric constant as the only fitting parameter. The same 

procedure was then repeated for different values of the microscopic geometric 

parameters H and L to evaluate how they affect the extracted dielectric 

constant and the goodness of the fittings. The only constraint set to the values 

of H and L was that the goodness of the fitting gave r
2 

> 0.9999.       

Figure 5.4 shows the measured capacitance gradient curves obtained on (a) 

mica, glass, PEN, PMMA and (inset) HOPG with the CDT-CONTR probe 
122

, and 

on (b) mica and (inset) HOPG with the CDT-FMR probe. Note that the noise in 

Figure 5.4b is higher due to the higher spring constant of the CDT-FMR probes 

as compared to the CDT-CONTR probes. Examples of the fittings obtained with 

our procedure are given in Figure 5.4 (solid lines) for H = 12.5 µm and L = 3 µm, 

showing very good fitting for both the insulating and metallic substrates.  
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Figure 5.4 Experimental capacitance gradient as a function of the tip-surface 

distance obtained  (a) with the same CDT-CONTR probe (conductive 

diamond coated, spring constant 0.2 N/m), on different substrates: 

HOPG (black), glass (magenta), mica (red), PEN (green) and PMMA 

(blue) (ref. 
122

); (b) with the same CDT-FMR  probe (conductive diamond 

coated, spring constant 2.8 N/m), on HOPG (black) and mica (red). Solid 

lines correspond to theoretical least square fittings of the data using the 

2D geometric model of Fig. 1 with H = 12.5 µm and L = 3 µm. The fitted 

parameters are given in Table 2. Reprinted from Ref. 
121

(c 2009 of IOP). 
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Similarly, good fittings can be obtained for other values of H and L. Figure 5.5 

shows the extracted dielectric constant values, εr, together with the 

geometrical parameters of the probe, R and θ obtained from the experimental 

data in Figure 5.4a (CDT-CONTR probe) as a function of the cantilever disc 

radius L and cone height H. In Figures 5.5a and 5.5b we observe that the 

extracted tip radius and cone angle (R and θ) are practically not affected by the 

microscopic probe geometry and size of the probe (H, L). This is because good 

fittings are obtained only for H > L and for these values, the probe - metallic 

substrate interaction is nearly independent of the microscopic geometry. On 

the contrary, Figure 5.5c shows that for a given cone height, H, the extracted 

dielectric constant increases when increasing L. Moreover, for a given 

cantilever disc radius, the dielectric constant increases (decreases) when 

increasing H for H > L (H< L). This behavior is clearly reminiscent of the 

dependence of the local electrostatic interaction between the probe and the 

thick insulating substrate described in section 5.4. 

Remarkably, the dependence of the extracted dielectric constants on the 

macroscopic parameters H and L for H > L can be described by the following 

simple phenomenological relationship 

[ ]0

( )
( , ) 1 log ( ) 1

( )r r

L m
H L H m H L

H m

µε ε α µ β
µ

 
 ≈ + + >  

 
,   (4.2) 

where, εr0, α and β are three parameters independent of H and L and given in 

Table 5.1 for each substrate.  

 

The results of Figure 5.5c demonstrate that the extracted dielectric constant 

for a thick dielectric substrate significantly depends on the cantilever disc 

radius, L, and on the cone height H. Therefore, care should be taken when 

choosing these geometrical parameters to quantify the dielectric constant.  

In Ref. 
122

 we showed that one can choose a simplified model that consists of 

only the cone and no cantilever. There, we obtained good agreement with 

nominal values, only slightly underestimating them, provided the cone height 

was set to the higher value of the range given by the manufacturer, i.e. H = 15 

µm (see Table 5.2). 
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Figure 5.5. Extracted apex radius (a), cone angle (b) and relative dielectric 

constant (c) from the data plotted in Figure 5.4a by using the 

theoretical model with variable L (0-30 µm) and different cone 

heights H (5-20 µm). (continuous lines). The continuous lines in (c) 

correspond to the predictions of Eq. (5.2) for the mica substrate. (d) 

Extracted dielectric constants for glass, mica and PEN (symbols) as a 

function of H and L, normalized by the values obtained for PMMA for 

the same H and L. The ratios are almost independent of H and L and 

roughly equal to the ratios of the nominal values (continuous lines). 

The data of glass (black) are not visible, because they are identical to 

the values obtained for mica (red). Only values of H and L giving a 

fitting with r
2 

> 0.9999 have been considered. Reprinted from Ref. 
121

(copyright 2012 of IOP). 

 

 

 

Here, as an alternative approach, we demonstrate that one can obtain more 

accurate values of the dielectric constant by including the contribution of the 

cantilever and calibrating its effective length, that is the value of L, on a 

reference substrate. For instance, if we set the cone height to its mean 

manufacturer value (H = 12.5 µm) and use PMMA as reference substrate (ԑr = 

2.6), we obtain L = 3 µm for the disc cantilever radius.  
 

Using these geometrical values, for all the substrates analyzed in the present 

paper we obtained dielectric constants in perfect agreement with nominal 

values (see Table 5.2), while the cone model used in Ref. 
122

 gives slightly 

smaller values. The additional calibration of L, then, provides a simple method 

for accurate quantification of the dielectric constant of thick dielectric 

substrates.  

In summary, the dielectric constant of a given insulator substrate can be 

obtained by fitting theoretical approach curves to measured ones, with the 

dielectric constant as single fitting parameter, provided a probe geometry like 

the one shown in Figure 5.1 is used with the cone height given by the 

manufacturer, the apex radius and cone angle being determined from 

approach curves on a metallic substrate and the effective cantilever radius  
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Table 5.1  Phenomenological parameters of Eq. (5.2) extracted for the different 

substrates and probes used in the present study. 
 

 εr,nominal εr0 α β 
Probe CDT-CONTR 

PMMA  2.6 1.67 0.462 0.191 

PEN      3.2 1.89 0.502 0.198 

Mica    6-7 4.15 0.467 0.189 

Glass  6.7 4.29 0.446 0.184 

Probe CDT-FMR 

Mica 6-7 3.95 0.479 0.171 

     
 
 
 
 
 
 
 
 

Table 5.2.  Dielectric constants extracted from the data of Figure 5.5 using the 

cone and cantilever model with H =12.5 µm and L = 3 µm. For 

comparison, the dielectric constants obtained using  the simplified 

probe model that consists of only the cone used in Ref.
122

 are also 

given. The fitted radii and angles are R = 28.5 ± 1 nm and θ= 30.8 ± 

0.4° for the CDT-CONTR probe and R = 39.5 ± 3.6 nm, θ= 34.8 ± 1.3° 

for the CDT-FMR probe.  
 

 εr,nominal εr,cone+disc εr,cone  (Ref.
122

) 

Probe CDT-CONTR 

PMMA  2.6 2.61  ± 0.04 2.40 ± 0.04 

PEN      3.2 3.11 ± 0.05 3.00 ± 0.04 

Mica    6-7 6.57 ± 0.07 6.20 ± 0.04 

Glass  6.7 6.67 ± 0.06 6.20 ± 0.04 

Probe CDT-FMR 

Mica    6-7 6.80 ± 0.20 - 
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being determined from an approach curve on a reference substrate of known 

dielectric constant. 

An intriguing aspect of this procedure concerns the surprisingly small value 

obtained for the effective parameter L as compared with any physical 

dimension of the cantilevers. In particular, we have obtained the same value of 

L for the two types of probes used in this study, which show rather different 

cantilever size. This result suggests that the parameter L is related to an 

effective cantilever interaction area rather than to the physical area of the 

cantilever. Further theoretical investigation in this direction would require the 

full three-dimensional simulation of the cantilever-probe system, which lies 

beyond the scope of this work. 

Finally, we note that the use of a reference substrate has a further 

unexpected property, that is, it makes the extraction of the dielectric 

constants independent from the whole microscopic geometry of the probe 

(both H and L). Indeed, the ratios of dielectric constant values extracted for 

different materials for given H and L are independent from these geometrical 

parameters and, at the same time, are equal to the ratios of the corresponding 

nominal dielectric constant values. We show it in Figure 5.5d, where the 

normalized dielectric constants with respect to the dielectric constant values 

obtained for PMMA are given (symbols) and compared to the ratios of nominal 

values (continuous lines). Hence, although the absolute value of the extracted 

dielectric constant depends on H and L, its relative value with respect to a 

reference substrate measured with the same probe does not depend on them. 

As a consequence, by using a reference substrate of known dielectric constant, 

the dielectric constants of other substrates can be estimated without knowing 

the detailed micrometric geometry of the probe. This result can also be read 

from Table 5.1 where we found that the parameters α and β are independent 

from H, L and εr, while the parameter εr0 is almost linear with εr. 

 

 

 

 

 

 



 

100 

5.6 Locality of the electrostatic force signal 

 
Apart from the microscopic dimensions of the cone and cantilever another 

aspect concerns the microscopic dimensions of the substrate under study. A 

central role hereby has the thickness of the dielectric substrate that for thin 

substrates is an important parameter that has to be considered. We showed in 

contrast in Ref.
122

 that the measured forces for thick substrates >100µm is 

independent from the exact substrate thickness.  

This indicated that the measurements are not equally sensitive to the 

whole substrate and we found that we are actually just probing the 

nanometric volume of the substrate just below the tip. To evidence this we 

performed simulations for a probe above the dielectric substrate and 

calculated the volume that is actually contributing to the measured signal. In 

order to reduce the number of parameters and the complexity of the 

discussion here, we will only analyze the effect that the local parameters R and 

θ have on the probe volume. The indirect effects of cone height and cantilever 

will not be the scope in this discussion. Note that for this reason the cone 

height is always fixed to H=15 µm and no cantilever is used. In any case a 

different L and H would only lead to a small quantitative change of the results 

and the qualitative conclusions would remain. 

As mentioned above we calculated the volume of the insulator that is 

actually probed through evaluating the difference in the force density on the 

substrate with the probe at near and far distance, z0 and zref. This resembles a 

typical experiment where also the force differences rather than the absolute 

forces are regarded. Such a difference is illustrated in Figure 5.6 for the case of 

z0 = 10nm, zref = 20nm. A roughly exponentially decay in ΔC’(z0) density is 

observed with increasing contour radius (note: logarithmic color-scale), 

showing that most of the contribution comes from close to the dielectric-air 

surface.  
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Figure 5.6  Calculated locality of ∆C’(z) on a ~250mm thick insulator. The ∆C’(z0) 

density in the substrate (z0 = 10 nm, zref = 20 nm, R = 32 nm, θ  = 30º) 

is given with the contours (dash lines) enclosing the 50%, 70% and 

90% of the total variation. Inset: Plot of cumulative ∆C’(z0) along the 

probe surface as a function of the cone height zH for different radii 

and reference distances. Apex and cone regions of each curve are 

plotted with thick and thin lines, respectively. Reprinted from Ref. 
122

(copyright 2010 of AIP). 
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Integration within contours of equal value allows evaluation of the build up 

of ΔC’(z0) while penetrating into the insulator. The integrated values of density 

distribution, which gives the 50% of the signal confined in a hemispherical 

region of r50% ~ 50 nm radius below the tip apex and the 70% within 100nm, 

confirm the locality of the interaction. Note, however, that the 90% contour 

penetrates rather deeply into the insulator down to ~ 400 nm. Interestingly 

this volume does not shrink with the tip radius, e.g. r90% ~ 617 nm for R = 10 

nm, whereas it is slightly smaller with larger tip radius, e.g. r90% ~ 360 nm for R 

= 100 nm. This is because with smaller apex the signal is increasingly located 

on the cone, thus spreading into a larger volume in the substrate.  

This is evidenced in the inset of Figure 5.6, which plots the build-up of 

ΔC’(z0) on the probe surface. The apex and cone region of each curve are 

indicated as thick and thin lines, respectively and illustrate that for R = 32 nm, 

z0 = 10nm and zref = 20 nm, the apex accounts for more than 90% of the total 

variation, while it reaches 99% for R = 100 nm. Conversely, with smaller radii (R 

= 10 nm) or larger reference distances (zref = 150 nm) the cone contribution 

gains importance (22% and 28% respectively) and correspondingly the probed 

volume in the insulator gets larger.  
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5.7 Conclusion 

 
In this chapter we demonstrated by means of finite-element numerical 

calculations that the microscopic parts of an EFM probe (the cone and the 

cantilever) affect the local electrostatic interaction between tip apex and a 

thick insulator substrate, and hence the quantification of the dielectric 

constant at the nanoscale.  

We showed that these effects can be included into a simple 2D axisymmetric 

probe model. By adding a disc with an effective radius that accounts for the 

cantilever contribution, we optimized the quantification procedure that we 

demonstrated in Ref. 
122

 based on a simple cone model.  

Perfectly accurate dielectric constants can be obtained, provided that the 

cone height is set similar to the real height of the cone and that the cantilever 

disc radius is taken as a parameter that gives the effective interaction area of 

the cantilever. This parameter is independent of the dielectric constant of the 

substrate and hence it can be determined using a reference insulating 

substrate of known dielectric constant.  

Furthermore, the use of a reference substrate enables to obtain the 

dielectric constants of other substrates even without knowing the detailed 

microscopic geometry of the probe (cone height and disc radius).  

These results offer a general framework under which accurate quantification 

of the local dielectric constants of thick insulators can be achieved using EFM, 

opening new possibilities for the dielectric characterization of insulating 

materials at the nanoscale in general but especially for bio-samples that 

cannot be measured on metallic substrates. 

Also the fact that the actual volume that is probed in the insulating 

substrate, was found to be located in a very confined region below the apex, 

indicates that measurements of bio-membranes on thick insulating substrates 

will be sensitive to the bio-membrane itself and quantitative extraction on 

such materials will be possible. Experiments performed within our research 

group confirms this assertion 
123

(in preparation) 
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6  Dielectric constant of biomembranes in 

electrolyte solutions 

 

6.1 Abstract 

 

In the previous chapters we showed that dielectric constant quantification 

of biomembranes on both metallic and insulating substrates can be performed 

with nanoscale spatial resolution in air environment. However, the 

physiological environment of biomembranes is an electrolyte solution. In the 

present chapter we report quantitative imaging of the local dielectric 

polarization properties of supported biomembranes in electrolyte solutions 

with nanoscale spatial resolution. Local dielectric imaging has been achieved 

by probing high frequency (>1 MHz) electric forces at the nanoscale, which, we 

show, are dependent on the local dielectric properties of the materials. we 

demonstrate the possibility to quantify these frequency and ionic 

concentration dependent electric forces by means of finite element numerical 

calculations including calibrated probe geometry, and deriving from it the 

nanoscale dielectric constant of the materials in electrolyte solutions. The 

developed method is demonstrated by imaging and quantifying the dielectric 

properties of a 20 nm-thin SiO2 test microstructure and 5 nm-thin lipid bilayer 

nanopatches. The technique shows high sensitivity to the dielectric properties 

of the materials enabling distinguishing insulator materials with close dielectric 

response. Present results open fascinating possibilities in fields like 

Electrophysiology or Electrochemistry where quantitative measurements of 

the nanoscale dielectric properties of materials under electrolyte solutions can 

provide new insights not accessible until now. 
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This chapter reproduces almost literally the manuscript in preparation: " Nanoscale dielectric 

polarizability of biomembranes and insulating thin films imaged and quantified in electrolyte 

solutions", by G. Gramse, A. Dols, M. A. Edwards, L. Fumagalli and G. Gomila. In this manuscript I 

was in charge of performing the experimental and the theoretical parts and of processing the 

results. In this work I followed some experimental and theoretical suggestions by M. A. Edwards. 

Moreover, the lipid bilayer samples were prepared by A. Dols-Pérez. The manuscript was written 

by me in collaboration with my supervisor. 

 

 

 

6.2 Introduction  

 
We described in the Introduction of this thesis that one of the distinctive 

aspects of Atomic Force Microscopy (AFM) is its capability to investigate 

nanoscale phenomena in the liquid environment. This capability has made of 

AFM an invaluable instrument for in situ imaging and surface characterization 

of materials under liquids, with a strong impact in fields like Biology
124, 125

 or 

Electrochemistry
52, 126

, among others. The number of surface material 

properties that can be determined with AFM based techniques under liquids 

covers a wide range of possibilities, including surface stiffness
127-129

, 

electrochemical activity
52, 130

, piezoelectric response
95, 131, 132

 or surface 

charge/potential 
60, 61, 63, 69, 73, 74, 77

. 

 But still at present some physical surface properties cannot be imaged 

and quantified in the liquid environment with AFM based techniques. Among 

them a major example refers to dielectric polarization, the property of 

materials to orient permanent or induced electric dipoles in response to an 

external electric field. Measuring dielectric polarization phenomena at the 

nanoscale under electrolyte solutions is extremely challenging due to the 

complex frequency dependent response of the electrified solid-electrolyte 

interface and to the presence of large stray contributions preventing access to 

local material properties. But yet dielectric information of material surfaces 

under electrolyte solutions is fundamental to understand a broad variety of 

electric phenomena in fields like Electrophysiology or Electrochemistry, where 

dielectric properties of materials at the nanoscale in electrolyte solutions can 

play an important role. This situation contrast with nanoscale dielectric 

polarization studies of material surfaces in air, which can be thoroughly 
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analyzed with a variety of techniques such as scanning capacitance 

microscopy
13

, scanning polarization force microscopy
38

, scanning impedance 

microscopy
11, 14

, electrostatic force microscopy
122, 133

 or scanning microwave 

microscopy
98

. 

 In this chapter we propose and implement a high frequency (> 1 MHz) 

Electrostatic Force Microscopy method for liquid imaging, and its 

corresponding finite element numerical modeling, able to provide local 

quantitative dielectric contrast of sample surfaces in electrolyte solutions with 

nanoscale spatial resolution. High frequencies are used because we found that 

at these frequencies the electric force acting on a conductive tip in close 

proximity to a sample becomes local and sensitive to its local dielectric 

polarization properties. The imaging and quantitative capabilities of the 

technique are unambiguously demonstrated on a 20 nm thin silicon dioxide 

microstructure and on 5 nm thin supported lipid bilayer nanopatches in 

electrolyte solution. 

 

 

6.3 Experimental Set up  

 The experimental set up used for the measurements is schematically 

detailed in Figure 6.1. It consists of an AFM system compatible with both liquid 

and electrical measurements. A voltage of frequency ωel in the MHz range, 

whose amplitude is modulated with a frequency ωmod in the kHz range, is 

applied between a conductive cantilever probe and the bottom of the sample. 

The high frequency voltage, which is beyond the cantilever mechanical 

resonance frequency, bends the cantilever in a static way due to the non-linear 

dependence of the actuation force on the applied voltage. The low frequency 

signal modulates this cantilever bending allowing an increased signal to noise 

detection. Dielectric images are obtained by scanning the probe at constant 

height with respect to the substrate at distances much larger than the Debye 

screening length (which is typically 10 nm in 1mM electrolyte solutions). 
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Figure 6.1 EFM set up to measure the local dielectric polarization properties of 

samples in electrolyte solution. An amplitude modulated ac-potential 

with frequency ωel (>MHz) and modulation frequency ωmod (<10kHz) 

is applied between a conducting tip and a substrate in an electrolyte 

solution. An external lockin amplifier detects the modulated bending 

of the cantilever. The cantilever bending depends, among other 

factors, on the local dielectric properties of the sample, thus allowing 

imaging them when the probe is scanned at constant height with 

respect to the substrate. 

Inset: Electrochemical model and equivalent circuit of a surface 

element of the tip-solution-sample system, where Cdl is the double 

layer capacitance, Rsol is the solution resistance, Csample is the sample 

capacitance and Vac is the applied voltage.  
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6.4 Theory of Electrostatic Force in Liquid 

 

This experimental set up is able to produce local dielectric images of material 

surfaces in electrolyte solutions for applied frequencies above a critical 

frequency in the >MHz range due to the frequency dependent response of the 

force acting on the probe. Indeed, in an electrolyte solution the electric force 

acting on the conducting probe in response to an ac applied voltage Vac(t) is 

given by 
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(6.1) 

 

where Vsol is the voltage drop in the solution and Csol is the capacitance of the 

solution gap between probe and sample. From the analysis of the equivalent 

circuit for the probe-solution-sample system sketched in the inset in Figure 6.1 

one finds that the voltage drop in the solution is dependent on the dielectric 

properties of the sample (see details in appendix). In particular, it can be 

shown that the voltage drop in the solution, and hence the electric force, are 

detected only for frequencies higher than a critical frequency, fact given by 

( )1 2act sol eq solf R C Cπ− = +  where Rsol is the solution resistance and Ceq is 

given by ( )2eq dl sample dl sampleC C C C C= ⋅ +  with Csample and Cdl being the sample 

and double layer capacitances, respectively.  

 

An estimation of fact can be obtained by assuming a simple parallel plate model 

for the cantilever and for the tip end and neglecting double layer contributions 

(see appendix), giving 
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      (6.2) 
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where c is the solution ionic concentration, Λ the molar conductivity, h the 

thickness of the sample, εr,water=78 is the relative dielectric constant of water, 

εr,sample the sample relative dielectric constant and z the distance between the 

sample and the tip (or cantilever). Assuming typical experimental parameters, 

i.e. Λ=13.3 S m
-1

mol
-1

, c=1 mM, h=10 nm and εr=4, and taking z=z0=10 nm for 

the tip-sample distance and z=H+z0 for the cantilever-sample distance, where 

H =10 µm is the cone height, we obtain fact,cant=60 kHz and fact,tip=3 MHz, for the 

cantilever and tip, respectively. Therefore cantilever electric actuation can be 

achieved in electrolyte solutions for frequencies f> fact,cant~kHz but local 

dielectric contrast can only be measured when f> fact,apex~MHz.  

 

6.5 Materials and Methods 

 

In order to validate this theoretical prediction we have considered a test 

structure consisting of a 20 nm thin silicon dioxide stripe 2.5 µm wide on a 

highly doped silicon substrate. Experiments have been performed with a 

commercial AFM (Nanotec Electronica S.L.) equipped with a custom made 

liquid cell compatible with electrical measurements made from Teflon and 

using apiezon-wax for sealing. Solid platinum tips from Rocky Mountain 

Nanotechnology with a spring constant of k~0.3N/m and resonance frequency 

in solution of ~6 kHz were used. All solutions were prepared from MilliQ and 

KClO4. We used the Agilent 33250A as external waveform generator and an 

external Anfatec eLockIn 204/2 to modulate the signal. For the quantitative 

interpretation of the experiments finite element numerical simulations have 

been performed with Comsol MultiPhysics 4.0, in which we modeled the AFM-

tip as a truncated cone of height H with an aperture angle, θ, plus a spherical 

apex of radius R located at a distance, z, above the dielectric sample of height, 

h, diameter, D, and dielectric constant εr. To account for the very thin layer of 

native oxide on the silicon substrate a distributed capacitance was added on 

the conducting part of the substrate, Cnative (see appendix for further details on 

the numerical calculations). To make forces measured at different applied 
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voltages comparable we represent in all experiments a normalized value with 

units of capacitance gradient, 
2

,0'( ) 2 elec acC z F V= . 

 

6.6 Results 

 In Figure 6.2a a topographic image of the Si02 microstructure obtained 

in conventional intermittent contact mode is shown together with the 

dielectric images obtained in aqueous electrolyte solutions for two ionic 

concentrations 1 mM (Figure 6.2b) and 10 mM (Figure 6.2c). The dielectric 

images were measured with the tip scanning at constant height (z=100nm) 

over the baseline of the substrate and changing the frequency of the applied 

voltage every 10 lines from 20MHz (top) to 100kHz (bottom).   

 

As it can be seen the dielectric images nicely reproduce the presence of the 

20nm thin silicon dioxide stripes showing the capability to perform local 

dielectric images in electrolyte solutions. We note from the images that there 

is only local contrast for applied frequencies above a given characteristic value, 

which is here f>100 kHz for c=1 mM and f>1MHz for c=10 mM. This is in 

agreement with the simple dependence of the critical actuation frequency on 

ion concentration predicted from Equation (6.2), fact~c. As shown in Figure 

6.2d, for rising frequencies the contrast increases monotonically over two 

orders of magnitude until it plateaus at about 10 MHz for c=1 mM and about 

100 MHz (estimated) for c=10 mM. Due to the specific cone geometry this 

crossover is much smoother than it would be predicted from the simple 

parallel plate model. We verified this with numerical calculations including a 

realistic cone geometry for the probe (see appendix for further information).  

 

Notice that due to the high dielectric constant of water (εr,water=78) the 

measured capacitance gradients are almost two orders of magnitude higher 

than in air (εr,air=1) thus allowing to reach excellent signal to noise ratios by 

applying the small voltages required to avoid electrochemical surface reactions 

(here Vac,p=0.5 V). 
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Figure 6.2  (a) Topography and (b,c) dielectric images (ΔC’) of 20 nm thin and 2.5 

µm wide Si/SiO2 microstripes obtained in electrolyte solutions. 

Dielectric images were obtained at constant height z=100nm from 

the Si baseline with ion concentrations c=1mM (b) and c=10mM (c) 

with 0.5 V applied. The applied frequency fel was changed from 

20MHz to 0.1MHz to show how the image contrast depends on 

frequency and finally disappears at low frequencies.(d) Plot of the 

dielectric contrast (ΔC’) extracted from image (b) and (c) as a 

function of the applied frequency. Dotted line is to guide the eyes.  
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The contrast displayed in Figure 6.2 reflects the dielectric properties of the 

materials, and not only its topography. This can be better evidenced from the 

approach force curves measured on the Si
++ 

substrate and on a SiO2 stripe, 

respectively, shown in Figure 6.3 for different frequencies and for a 

concentration of 1 mM. If the measurements were only sensitive to the oxide 

topography the curves would appear shifted one with respect to the other by 

just a distance equal to the thickness of the oxide, i.e. 20 nm, what is clearly 

not the case, thus showing the sensitivity of the measurements to the local 

dielectric properties of the sample surface.  

The sensitivity to the local dielectric properties of the sample surface allows 

using these measurements to extract the dielectric constant of the materials. 

To this end we adapt the procedure developed for air measurements 
91, 122

. 

First, for a given frequency, one calibrates the probe geometry (R and θ) and 

the native oxide capacitance (Cnative) by a best fit of numerical calculations to 

an approach curve measured on the bare Si
++

 substrate. Then one uses these 

parameters to fit the approach curve on the Si02 stripe with the dielectric 

constant being the single fitting parameter. 

 Proceeding in this way we obtained R=96 nm, θ=10°, Cnative=1.1 µF/cm
2 

and εr=4.4±0.5 for the measurements performed at 20 MHz These values are 

in very good agreement with probe specifications, native oxide dielectric 

properties and dielectric constant of Si02, showing the excellent quantitative 

capabilities of the method.  

The sensitivity of the results to the dielectric constant of the thin film are 

illustrated by the dashed lines in Figure 6.3, which correspond to the results 

assuming εr=5 and εr=3. The above predictions are robust against variation of 

the frequency as can be seen in Figure 6.3 from the excellent adjustment of 

the theoretical calculations to the experimental results for frequencies 5 MHz 

and 2 MHz, which have been obtained with the above derived parameters with 

no fitting parameter.  
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Figure 6.3 (Symbols) Approach curves onto the Si
++

 and the SiO2 parts of the 

microstructure measured at various frequencies in electrolyte  solutions 

(c=1mM and Vac=0.5 V). Solid lines represent numerical results obtained 

considering a probe with tip radius R=96nm, cone angle θ=10°, a native 

oxide capacitance Cnative=1.1µF/cm
2
 and a dielectric constant εr,oxide=4. 

Dashed lines represent εr,oxide=3 and 5. Additional model parameters 

used in the numerical calculations are: cone height H=10 µm, Si02 

thickness h=20 nm and Si02 diameter D=3 µm. Insets show the respective 

simulated potential distributions for two frequencies (20 MHz and 100 

KHz). 
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Only at lower frequencies and for very close distances to the surface the 

theoretical predictions deviate from the measurements since the model does 

not include the true 3D sample geometry and the effect of double layer 

capacitances, which become relevant in the corresponding situations. The 

above results show unambiguously that the local dielectric constant of 

materials can be obtained in electrolyte solutions with the proposed 

technique.  

Further insight on why the measurements are sensitive to the local dielectric 

properties of the sample can be gained by comparing the calculated potential 

distributions shown in the insets of Figure 6.3 for a high frequency (20 MHz) 

and a low frequency (100 kHz). As it can be seen, only at high frequencies a 

potential gradient develops below the tip enabling field lines of different 

intensity to pass through the oxide layer leading to an electrostatic force on 

the apex sensitive to the local oxide dielectric properties. 

  

As an example of application of the developed methodology, we consider 

the determination of the local dielectric constant of biomembranes in 

electrolytic solutions. As we have mentioned earlier, the dielectric constant of 

biomembranes is a parameter especially important in cell electrophysiology as 

it ultimately determines the ion membrane permeability, the membrane 

potential formation or the action potential propagation velocity, among 

others
93, 135-137

. Knowing the dielectric properties of biomembranes with 

nanoscale spatial resolution is very important due to the nanoscale 

hetereogeneous composition of plasma membranes (e.g. lipid rafts). However, 

no technique is able to provide this quantity with the required nanoscale 

spatial resolution and in electrolyte solution. As representative model of a 

biomembrane we consider here dipalmitoylphosphatidylcholine (DPPC) single 

bilayers. Phosphatidylcholines are the main components of eukaryotic cell 

membranes
138

, and DPPC is one of the most widely used phosphatidylcholine models. 

The DPPC bilayer patches have been formed on the Si/Si02 sample studied 

above by means of the liposome fusion technique.  

Figure 6.4 shows the topography (a) and phase (b) images of a single DPPC 

bilayer (5 nm thin) adsorbed onto the Si/SiO2-sample in an aqueous solution 
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with an ionic concentration of 1mM. The topography and phase images show 

that the lipid bilayer spans over the Si
++

 substrate and the Si02 stripes. The 

corresponding dielectric image, obtained at constant distance, z=80nm, and at 

frequency f=80 MHz, is shown in Figure 6.4c. The dielectric image clearly 

resolves the 5 nm thin lipid bilayer on the Si
++

 substrate and, to a lesser extend, 

on the Si02 stripe. This is also illustrated in the corresponding profiles taken 

along the lines marked and shown in Figure 6.4d. Even double lipid bilayers, 

occasionally present and 10 nm thin (marked with an arrow in Figure 6.4c) can 

be distinguished in the dielectric image. A zoom onto an isolated DPPC patch 

next to a bare SiO2 portion taken at a closer distance (z=50 nm) is shown in 

Figure 6.4f where we can observe the good spatial resolution of the dielectric 

image clearly resolving features below 100 nm. These results show the 

dielectric imaging capabilities of the proposed technique for soft biological 

samples. 

Quantification of the measurements and extraction of the corresponding 

dielectric constants of the materials present in Figure 6.4 (Si02 and DPPC) can 

be obtained by quantitative analysis of the force approach curves following the 

procedure detailed above. Figure 6.4e shows representative curves measured 

on Si
++

, Si02 and DPPC.  

 

Figure 6.4 Patches of DPPC adsorbed onto Si/SiO2 structures. (a) Topography, (b) 

phase and (c) dielectric image are shown for a large scan. The dielectric 

image is obtained at a constant lift height of 80nm (d) Profiles of 

topography, phase and electric image. Notice, in the dielectric image 

∆C’Vd(z=0) is set to zero. (f) Zoom onto an isolated patch next to the SiO2 

structure. The electrical image is acquired at a constant lift height of 

50nm.  (e) Experimental approach curves (dotted) onto Si (blue), SiO2 

(red) and DPPC patch (green). Applied voltages Vp=0.25V, f=80MHz. 

Simulations with εr,SiO2=4 and εr,DPPC=3.2 are shown as solid lines. Tip 

radius R=45nm, cone angle θ=15° and native oxide capacitance 

Cnative=0.71mF/cm
2
 were calibrated as described above. Dashed lines 

represent simulations for εr,DPPC=2.2 and 4.2. Additional model 

parameters used in the numerical calculations: Ion concentration 

c=1mM, oxide/lipid height and diameter hSiO2=20nm, DSiO2=3µm, 

hDPPC=5nm, DDPPC=1.5µm and cone height H=10 µm. 
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6.7 Discussion 

 
 

Quantification of the measurements gives εr,Si02=4±0.2 for the Si02, confirming 

the above findings, and εr,DPPC=3.2±0.1 (error bounds from the fitting routine) 

for the DPPC lipid bilayer. This value is slightly larger than the usual theoretical 

value quoted for the hydrophobic part of lipid bilayers 
139

 (εr=2-2.5), or the 

nanoscale value measured by us in dry air conditions for the so called purple 

membrane 
19, 91

. However, it is remarkably close to εr~3
140, 141

 predicted by 

recent simulations including the contributions from the water/lipid interface 

and polar heads. Moreover, putting together the bilayer thickness and the 

obtained dielectric constant the capacitance per unit area of the DPPC bilayer 

turns out to be cm=ε0 εr,DPPC/h=0.57 µF/cm
2
. This value is in excellent 

agreement with experimental values reported in literature and obtained from 

macroscopic impedance based measurements on supported lipid DPPC layers 

on gold electrodes (cm =0.52-0.57 µF/cm
2
)

142
. The proposed approach then has 

demonstrated the capability to quantify the dielectric constant of a 

biomembrane with the great advantage over macroscopic techniques to 

provide also information on the thickness of the sample and a spatial 

resolution below 100 nm.  

 In the present implementation of the technique we showed a spatial 

resolution below 100 nm and a remarkable sensitivity to the dielectric 

constant of the materials, which can discriminate between materials of 

relatively close dielectric response such as silicon dioxide (εr~4) and lipids 

(εr~3). These results, however, do not represent the absolute limits of the 

technique. At present the technique is essentially limited by the need to be 

operated at distances larger than several times the Debye screening length. By 

using novel instrumental advances and appropriate theoretical models, it 

should be possible to remove this limitation and increase both the spatial 

resolution and the dielectric sensitivity of the technique.   
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6.8 Conclusion 

 

 In summary, we have demonstrated for the first time imaging and 

successful quantification of dielectric polarization properties on material 

surfaces in electrolyte solutions with nanometric spatial resolution. The 

proposed technique is applicable to both inorganic samples and biosamples, 

thus opening a number of fascinating possibilities in fields like 

Electrophysiology or Electrochemistry where nanoscale information on the 

dielectric properties of materials under electrolyte solutions was not 

accessible until now. 
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6.9 Appendix  

6.9.1 Dependency of electric force on voltage drop in 

solution Vsol and sample dielectric constant εεεεr 

 

In an electrolyte solution the electric force acting on the conducting probe in 

response to an applied ac voltage ( ),0( ) sinac acV t V tω= ⋅  is given by 
134
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The relationship between the voltage drop in the solution and the applied 

voltage can be obtained by solving the circuit depicted in Figure 6.5. The 

following derivations in this paragraph are based on a parallel plate model. 

After some algebra one finds: 

( )
,0 22

/
( )

1 1/ 1/

eq
sol ac

eq sol

f f
V V

f f f
ω =

+ +                         (6.4) 

where we have introduced two characteristic frequencies given by 

1 2eq eq solf C Rπ− =
 

and 
1 2sol sol solf C Rπ− =  and the equivalent capacitance 

corresponding to the series combination of the sample capacitance and double 

layer capacitance ( )2eq dl sample dl sampleC C C C C= ⋅ + . Notice, that since the 

double layer capacitance is usually much bigger than the sample capacitance it 

can be neglected except for the case when measuring a metallic substrate with 

a metallic tip.  
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Figure 6.5 Electrochemical model (a) and equivalent circuit (b,c) of a surface 

element of the tip-solution-sample system, where Cdl is the double 

layer capacitance, Rsol is the solution resistance, Csample is the sample 

capacitance and Vac is the applied voltage. The double layer and the 

sample capacitance can be added up to an effective capacitance, Ceq, 

as described in the text. 

 

As one can read from Eq. (6.4), the voltage drop, Vsol, is highly frequency 

dependent. There is a high frequency limit where some voltage drops off in the 

solution and an electrostatic force can be measured, a low frequency limit 

where the voltage drops off completely in the dielectric and consequently no 

force can be measured: 

( )
0

lim 1 2 ( )

lim 0

elec sol eq eq sol
f

elecf

F C z C C C

F

→∞

→

′= ⋅ +

=
  (6.5) 

and a transition between both cases.  

We visualize this in Figure 6.6a where we plot the calculated normalized force 

(capacitance gradient C’(z) per surface area) as a function of the frequency for 
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the circuit depicted in Fig. 1c with the parameters: Rsol=z(Λ c)
-1

, 

Csol= ε0 εr,water/z, Ceq= ε0 ερ,sample/h, Λ=13.3 S m
-1

mol
-1

, h=10 nm, z0=10 nm, 

ερ,water=78 and εr,sample=4.  

The transition frequency defined as 1 ( )2act elecf f F f = → ∞
   and marked 

by the dotted lines in Figure 6.6a is:  
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      (6.6) 

 

From Eq. (6.6) we argued in section 6.3 that nonlocal electric cantilever 

actuation (where z=H+z0~10μm) can be achieved in electrolyte solutions for 

frequencies f> fact,cant~kHz, but local dielectric contrast from the apex (where z= 

z0~10nm) can only be measured when f> fact,apex~MHz. 

Another important consequence of Eq. (6.6) visualized in Fig. 6.6b is that for 

low (high) distances, z, and large (small) sample thicknesses, h, the actuation 

frequency gets fact =fsol (fact =feq). 

 

This finding is important since it means that when approaching the tip to 

the sample, and once the relaxation frequency of the solution, fsol, is reached, 

the transition frequency is independent from the distance, z, and from the 

thickness, h, of the dielectric sample. In such case the actuation frequency just 
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Figure 6.6  (a) Normalized force on a parallel plate configuration consisting of a 

  dielectric (εr=4, h=10nm) and an ion containing domain (εr=78, 

  z=10nm) for changing ion concentrations c=0.1mM, 1mM and 10mM 

  (black, red and blue).  (b) Evolution of the actuation frequency with 

  changing tip sample distance, z (c=1mM). For high separations fact=feq 

  and for low separations fact=fsol .  
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depends on the ion concentration and is 3 ( )actf MHz c mM≈ ⋅ . This defines 

ultimately the frequency necessary to obtain local dielectric contrast during a 

complete force distance curve. We visualize this is in Figure 6.7, where we plot 

the corresponding approach curves for the case of a low and a high frequency 

(f=1/2 fsol and f=2 fsol) and different sample dielectric constants. As can be seen, 

different dielectric constants gives clearly more contrast at high frequency. 

Moreover the curves at high frequency are steeper indicating a higher locality 

of the signal. 

 

Figure 6.7 Normalized force approach curves for a parallel plate configuration 

at high frequency (thick lines, f=2 fsol =6MHz) and low frequency (thin 

lines, f=1/2fsol=1.5MHz). Other parameters are: h=10nm and 

εr,sample=5 (blue), 4 (red), 3 (black), c=1mM, Λ=13.3 S m
-1

mol
-1

.  
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6.9.2 Data Interpretation using Finite Element simulations 

 

Measured forces obtained with the described heterodyne detection 

method were normalized to give 
mod

2 2
0 , 0'( ) 2 4elec elec fC z F V F V= = , where V0 

is the amplitude of the applied ac-potential with the frequency f and 
mod,elec fF is 

the measured electrostatic force modulated at a frequency fmod. 

For the quantitative interpretation of the experiments we compared our 

results to forces calculated with a finite element model of the AFM tip above 

the dielectric sample and substrate. To obtain the electrostatic force acting on 

the specific tip geometry the equation ( )( )0 0ri Vσ ωε ε∇ + ∇ =  was solved 

using the electrostatic AC/DC module of Comsol Multiphysics 4.0, and from its 

solution, the harmonic force on the AFM-tip was calculated by using the built-

in Maxwell stress tensor. All simulations were carried out in the 2D 

axisymmetric mode (electric quasistatics, meridional electric currents).  

The geometry was defined like shown in Figure 6.8 with the tip 

parameters: tip radius, R, cone angle, θ, and cone height H. The sample is 

defined by the parameters: sample height, h, sample radius, l, and sample 

dielectric constant εr,mem. Notice, the sample is a cylinder since we are working 

in axisymmetric 2D mode. To account for the native oxide on the highly doped 

silicone sample we added a distributed capacitance on top of the conducting 

substrate that is set to ground. The solution is defined by its dielectric constant 

εr,sol and its solution conductivity σsol =c Λsol, depending on the electrolyte 

concentration, c, and the molar conductivity Λsol.  

The domain containing the solution is enclosed by the outer boundary 

conditions electric insulation or 0n J⋅ =
��

. Notice, in order to cancel out any 

effect from the finite size of the simulated volume we added an additional 

outer simulation box where we use the function “infinite elements” to move 

the outer boundaries to infinity. The defined geometry was meshed refining 

especially the tip and sample surface and solved using the parametric solver 

PARDISO with the frequency as parameter. The Maxwell-Stress-Tensor was 

integrated over the whole tip surface to obtain the tip force. 
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Figure 6.8 Schematics of simulated model. The AFM-tip is defined by its tip radius, 

R, cone angle, θ, and cone height H. Cone height is fixed to H=15µm. 

The sample is defined by its sample height, h, sample radius, l, and 

sample dielectric constant εr,mem. A distributed capacitance is added on 

the conducting substrate. Tip and sample are surrounded by water 

defined by its dielectric constant εr,sol and solution conductivity σr,sol. 

Extension of solution simulation box is infinity (infinite elements). 
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To facilitate the data analysis simulations were carried out for an extensive 

set of parameters (R = 25-125 nm; θ = 10−30 °; h = 5, 20nm; l = 750, 1500 µm; 

c = 0.1, 1, 10 mM; f = 20 kHz – 80 MHz; z = 10- 1000 nm; Cthin = 0.035-0.25 F/m
2
, 

εr,mem = 2-10) and the data was interpolated using Mathematica 7 to obtain 

finally a fitting function for the experimental data analysis. In this way we are 

able to investigate the effect of every simulation parameter almost like with a 

normal analytical function and we can extract the sample-dielectric constant 

fitting best to the measured data. 

 

6.9.3  Calculating Forces: Parallel Plate Model versus Cone 

Model Simulations  

 

Although, many valuable insights can be gained from investigating the 

electrostatic force in a parallel plate configuration, there are substantial 

quantitative differences between the force in such a configuration and the 

more realistic tip cone-substrate model. We show this in Fig. 5 where we plot 

(a) the frequency dependency of the force at z=15nm and (b) the distance 

dependency of the force at a fixed frequency f=20MHz for the parallel plate 

model (thick line) and the cone model (dashed line). The forces are calculated 

for a 5nm thin and laterally infinite dielectric of εr=4. As one observes in Figure 

6.9a the frequency transition is much smoother for the cone model and 

(nonlocal) forces are still present at frequencies below 100 kHz. In general it 

becomes difficult to define a unique transition frequency since apex and cone 

contribute at different frequencies. Also the approach curves at fixed distance 

are much smoother for the cone model and rise for z>100nm almost 

logarithmically with decreasing distance, whereas in the parallel plate model 

the forces rise much steeper close to the surface.   
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Figure  6.9 Comparison of electrostatic force calculated for the parallel plate model 

(dashed, black) and the finite element cone model (solid, red). (a) For 

varying frequency and fixed distance z=15nm. (b) For varying distance z 

and fixed frequency f=20MHz. Other parameters are: cone height 

H=15µm, ion concentration c=1mM, molar conductivity Λ=13.3 S m
-1

mol
-

1
, apex radius R=60nm, cone angleθ=30°, dielectric thickness h=5nm and 

dielectric constant εr=4. Results for the parallel plate model are 

normalized by the area. The dotted line represents the actuation 

frequency of the parallel plate model. 
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7 Conclusion and Summary  

 

7.1 Conclusions 

 

The initial objective of my thesis consisted in the development of a current 

sensing-AFM based technique to measure the dielectric constant of biological 

samples in their natural ion containing liquid environment. However, with the 

time we noticed, also from theoretical calculations that this is going to be a 

very tough aim. The primary experimental difficulty, as also noticed by other 

researchers, is to develop a probe that can be used to measure topography, 

but at the same time shields well stray capacitances and can be used for local, 

electrical current measurements. To approach the problem from a different 

direction, I also started to test EFM to see whether one can perform 

quantitative dielectric measurements of biosamples on metallic substrates 

with it – at this time still in air. And as I showed in chapter 4 even in a DC-

detection mode this yielded very good quantitative results of the dielectric 

constant on purple membrane patches. 

I continued with EFM experiments also in the AC-detection mode what 

encouraged me and also the rest of the group to further explore the 

capabilities of EFM. In continuation I worked on another more theoretical 

aspect that was dealing with the interpretation of measurements on insulating 

substrates like mica. This came just very recently to an end and the scientific 

community and our group has now a systematic methodology to analyze also 

dielectric measurements on insulating substrates. This extends the 

applicability of dielectric measurements to a considerably bigger number of 

biological samples that require insulating substrates like glass or mica. 
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However, through all this time in parallel I was trying to make EFM also 

work in liquid and to elucidate experimentally and theoretically the origin of 

electrostatic forces in liquid solution. At some point I probably asked myself 

the right question and I did the right experiments to understand that the 

frequency-dependency of the electrostatic force is the key. The final result of 

all this work is the successful implementation of an EFM-based technique to 

measure the dielectric constant of biosamples in liquid solution as I showed in 

chapter 6 on the example of lipid bilayers. This technique allows now the 

investigation of polarization properties of systems that only remain stable in 

ion containing liquid solutions. Therefore it may open completely new areas of 

research in the field of Biology. 
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7.2 Perspectives 

 

The thesis presented here is no closed work and as mentioned in chapter 5 

the group is working on the application of the accumulated knowledge to new 

experiments. Now, that we have a better understanding on the origin of the 

electrostatic force in thick insulating substrates, also measurements of 

biomembranes and other samples on these substrates can be interpreted and 

the dielectric constant can be extracted.   

The new developed EFM-technique for measurements in liquid 

environment is ready to be used for the study on relevant biological 

membrane-systems. Currently, we are working on the measurement of multi-

component phospholipid systems to investigate whether there is a dielectric 

contrast between both components and if it is big enough to be resolved. This 

would enable the use of this technique to resolve membrane domains in a 

label free way which cannot be distinguished solely by their topography.  

Then, probably also other membrane systems can be investigated and by 

increasing the measurement-frequency it will be also possible to increase the 

ion concentration up to c=0.1M, the natural values of most biological 

specimen. 

Of course the technique is not limited just to membrane systems; also 

objects with other geometries can be measured. Also on the technical side I 

see still a lot of potential to increase the sensitivity, resolution and 

functionality of the technique by for example applying the frequency 

modulation detection scheme.  

Apart from its applicability in liquid environment the implemented 

detection scheme and the developed theoretical framework show also a route 
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to access local information on the dielectric constant and conductance in more 

complex samples like bacteria or virus by performing tomography-type 

experiments sweeping the frequency during the measurement. In this case the 

frequency range necessary for the measurement would be probably much 

lower as simulations performed in our group indicate. 
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7.3 Summary/Resumen (en Castellano)  

 

Introducción y objetivos  

El objetivo de mi tesis era desarrollar nuevas técnicas y métodos para 

medir las propiedades dieléctricas de biomembranas en aire y en su medio 

natural, es decir, en solución líquida. La constante dieléctrica (εr) de las 

biomembramas es un parámetro especialmente importante en la 

electrofisiología celular, ya que fundamentalmente determina la 

permeabilidad iónica de la membrana, la formación del potencial de 

membrana o la velocidad de propagación del potencial de acción, entre otros.  

El AFM es una herramienta extremadamente versátil para investigar 

propiedades eléctricas a nanoescala, y por ello constituye una buena técnica 

candidata para la cuantificación de las propiedades dieléctricas de las 

biomembranas a nanoescala. Aunque existen algunas técnicas basadas en el 

AFM capaces de investigar las propiedades de polarización, continúa siendo 

difícil extraer valores cuantitativos de εr de las medidas, especialmente en 

medio líquido.  

Una de las razones radica en la parte instrumental, ya que para los estudios en 

la nanoescala tienen que medirse cantidades muy pequeñas, y este proceso 

puede verse entorpecido por ruido electrónico como puede ser el caso, por 

ejemplo, en las técnicas basadas en la detección de corriente eléctrica. En 

principio, las técnicas de detección de fuerza electroestática disponen aquí de 

una ventaja, ya que las sondas utilizadas para la detección de la fuerza son 

extremadamente sensibles y naturalmente se suprimen señales eléctricas no 

locales y no deseadas. Otro aspecto importante se atribuye a la falta de 

modelos cuantitativos suficientemente precisos para relacionar la fuerza 

medida con el valor de la constante dieléctrica de la muestra. En realidad, para 

realizar medidas en sustratos aislantes como son la mica o el vidrio, que a 

veces son necesarios para muestras biológicas, todavía no se dispone de 
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ningún modelo cuantitativo. Por otra parte, hasta ahora no se han publicado 

medidas de propiedades dieléctricas en medio líquido, que para algunas 

muestras biológicas es fundamental para mantener la funcionalidad.  

Como consecuencia de las limitaciones existentes de las medidas dieléctricas, 

el objetivo de este trabajo fue extender las capacidades cuantitativas de la 

Microscopía de Fuerzas Eletroestáticas para hacer imágenes dieléctricas de 

biomembranas con resolución espacial a nanoescala. En particular, los tres 

objetivos hacia los que he enfocado mi trabajo son: 

1. Evaluar la posibilidad de ejecutar con Microscopía de Fuerzas 

Electroestáticas (EFM) mediciones dieléctricas cuantitativas en 

bimoembranas sobre sustratos metálicos y en aire, lo que puede 

ofrecer una mayor precisión con respeto a las técnicas de detección de 

corriente eléctrica.   

2. Extender la aplicabilidad de mediciones dieléctricas cuantitativas al 

caso de sustratos aislantes como vidrio o mica para facilitar su uso con 

biomembranas que no pueden prepararse en sustratos metálicos. 

3. Desarrollar un método para hacer imágenes dieléctricas en medio 

líquido basado en los principios de la Microscopía de Fuerzas 

Electroestáticas. Y finalmente, llevar a cabo mediciones dieléctricas a 

nanoescala en biomembranas en su medio líquido natural. 

En las secciones que siguen a continuación aparece resumido cómo se 

lograron cada uno de estos objetivos. 

 

1. Medidas cuantitativas de la constante dieléctrica de 

biomembranas con DC-EFM 

A diferencia de trabajos previos del grupo, que se basaron en la medida 

directa de la capacidad, C(εr) con un detector de capacidad de ruido ultra bajo, 

aquí he demostrado que también es posible extraer la constante dieléctrica de 

la muestra, εr, con un acercamiento más simple que puede aplicarse en 
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cualquier microscopio de fuerza atómica comercial sin necesidad de otros 

sistemas electrónicos sofisticados. Con esta aproximación se mide la fuerza 

electroestática, Fel(εr), en la punta conductora del AFM aplicando un potencial 

dc entre la punta y el sustrato conductor mientras se escanea a una distancia 

establecida sobre el sustrato y fuera de contacto. Finalmente, se calcula la 

constante dieléctrica de la muestra a partir de su medida eléctrica y 

topográfica. Para validar la aproximación he utilizado una muestra de dióxido 

de silicio antes de aplicar el método a una biomembrana sobre sustrato 

conductor.  

Este trabajo constituye el primer paso de nuestro grupo de técnicas de 

medidas de corriente (CS-AFM) hacia la Microscopía de Fuerzas 

Electroestáticas. He podido demostrar, con una aproximación experimental 

muy simple y controlada y un marco teórico apropiado, que es posible extraer 

la constante dieléctrica local de muestras aislantes finas con éxito como se 

demostró previamente con CS-AFM.      

A todo esto, descubrí que EFM puede ofrecer mediciones más precisas, ya 

que las contribuciones no locales debidas al chip y la palanca se suprimen y la 

punta del AFM como sensor de fuerza es muy preciso. Además tiene el 

potencial de dar señales con un rango de ruido con órdenes de magnitud más 

bajo que en la detección de corriente del AFM (especialmente cuando se 

utiliza en el modo ac-EFM).            

2. Cuantificando la constante dieléctrica de sustratos aislantes 

gruesos utilizando EFM  

Este capítulo trata de extender la metodología desarrollada en el capítulo 

anterior a sustratos aislantes gruesos en lugar de sustratos metálicos. Como he 

mencionado, el uso de sustratos aislantes, tales como el vidrio o la mica, 

resulta ser muy ventajoso cuando se trabaja con biomembranas soportadas. 

El trabajo resumido aquí se constituye sobre un primer estudio donde 

hemos demostrado que es posible extraer la constante dieléctrica de las 

mediciones de EFM utilizando un procedimiento de calibración basado en 

simulaciones de elementos finitos.  En este proceso tan sólo se calibran los 

parámetros que definen la geometría nanométrica de la punta, es decir, el 
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radio del ápice y el ángulo del cono, y entonces la constante dieléctrica del 

sustrato, εεεεr, se puede extraer en un segundo paso. 

  

Aquí, a continuación, he investigado los efectos que tienen las partes 

microscópicas de la punta del AFM (es decir, la palanca y el cono) sobre la 

extracción de la constante dieléctrica. Este trabajo también estuvo motivado 

por el hecho de que en nuestro trabajo anterior todavía subestimábamos en 

parte la constante dieléctrica de los sustratos aislantes medidos.  

A diferencia del caso de medidas sobre sustratos metálicos donde la forma  

microscópica no tiene ningún efecto importante para la extracción de 

constante dieléctrica de una muestra, esto cambia si se trata de sustratos 

dieléctricos gruesos. Por consiguiente, he analizado de forma sistemática la 

influencia de la altura del cono y del área de la palanca en la interacción 

electroestática local entre la punta y el sustrato y, por lo tanto, la 

cuantificación de la constante dieléctrica.  

La clave reside en que las partes microscópicas de la punta tienen un 

efecto indirecto sobre la distribución potencial alrededor del ápice y del cono 

inferior que definen las contribuciones locales de la fuerza medida. Esto es lo 

que he demostrado con las gráficas correspondientes de la distribución de 

potencial alrededor de la punta y las curvas de aproximación dC/dz resultantes 

sobre el sustrato que al final representan la medida.  

Finalmente propongo una metodología de calibración que ofrece una 

geometría determinada de la punta y la posibilidad de extraer la constante 

dieléctrica de sustratos dieléctricos desconocidos. Además, también discuto la 

dependencia local de este tipo de medida.        

Además del beneficio directo que tiene este trabajo para la caracterización 

de aislantes gruesos a nanoescala, también constituye el fundamento para la 

cuantificación dieléctrica de muestras dieléctricas finas sobre sustratos 

aislantes, lo que es esencial para el trabajo con muestras biológicas.    
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3. Medidas de la constante dieléctrica de biomembranas en 

soluciones electrolíticas  

Además de las dificultades con el sustrato que pueden aparecer cuando se 

trabaja con muestras biológicas, otro aspecto de todavía mayor importancia es 

el medio que rodea la muestra. Generalmente en Biología es necesario un 

medio que contenga iones y agua para que la muestra mantenga su estructura 

natural y también su función. Pero aunque el AFM puede ser operado en un 

medio ambiente líquido, hasta la actualidad no existe ningún método que haya 

podido medir imágenes dieléctricas en solución iónica.  

Aquí presento la primera implementación de una técnica que da acceso a 

imágenes y la cuantificación de las propiedades de polarización  dieléctrica de 

materiales en soluciones iónicas y a la nanoescala. La aproximación que 

presento está basada en una nueva implementación de EFM en medio líquido 

que consiste en la medición de fuerzas eléctricas en el rango de frecuencia 1-

100 MHz  y no en el rango usual de 10-100 MHz. En este rango de frecuencias 

de MHz demuestro que la fuerza entre muestra y punta presenta de 

improvisto una dependencia local sobre las propiedades dieléctricas de la 

superficie del material, mientras que una dependencia local de este tipo se 

pierde en frecuencias más bajas. 

 Finalmente he demostrado con éxito la adquisición de imágenes 

dieléctricas a nanoescala de materiales en soluciones electrolíticas. En 

particular he  mostrado imágenes de una capa de óxido delgado e islas de 

bicapas de fosfolípidos. La información dieléctrica inequívocamente facilitada 

por las imágenes queda demostrada por su cuantificación, llevada a cabo con 

cálculos numéricos de elementos finitos de la fuerza eléctrica actuando sobre 

la punta, dando la constante dieléctrica local de los materiales. También hay 

que mencionar que esta es la primera vez que se puede medir la polarización 

dieléctrica de una membrana en su medio fisiológico y con una resolución 

espacial a la nanoescala. Los resultados muestran el papel relevante que 

juegan los grupos polares del cabezal del fosfolípido en la respuesta 

dieléctrica. 

 Los resultados mostrados aquí abren un amplio abanico de nuevas 

posibilidades. Por un lado, permitirán explotar las capacidades únicas de la 
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EFM (y las técnicas relacionadas) para examinar las propiedades conductivas y 

no conductivas de objetos y materiales en el medio natural líquido a la 

nanoescala de una forma similar a como se hace convencionalmente en el aire. 

Por otro lado, y probablemente esta es la parte más importante, los 

resultados permitirán investigar las propiedades de polarización de sistemas 

que sólo permanecen estables en soluciones líquidas que contienen iones y 

que hasta ahora no han podido ser abordadas. Me refiero básicamente a las 

muestras pertenecientes al campo de la Biología y la Electroquímica.  
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8 Appendix 

8.1 Acronyms 

 

Abbreviation  Description 

AC alternating current 

AFM  atomic force microscopy / microscope 

C-AFM  conductive atomic force microscopy 

CS-AFM current sensing atomic force microscopy 

DC  continuous current 

EFM  electrostatic force microscopy 

KFM kelvin force microscopy 

NIM  nanoscale impedance microscopy 

SCM  scanning capacitance microscopy 

SEM scanning electron microscopy 

SFM scanning force microscopy 

SPM scanning probe microscopy 

STM  scanning tunneling microscopy 

HOPG highly oriented pyrolytic graphite 

SMM scanning microwave microscopy 

SECM scanning electro-chemical microscopy 
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