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Abstract

This thesis verses about the research conducted in the topic of speaker recognition in real conditions like as

meeting rooms, telephone quality speech and radio and TV broadcast news. The main objective is concerned

to the automatic detection and the classification of speakers into a smart-room scenario.

Acoustic speaker recognition is the application of a machine to identify an individual from a spoken sentence.

It aims at processing the acoustic signals to convert them in symbolic descriptions corresponding to the

identity of the speakers. For the last several years, speaker recognition in real situation has been attracting a

substantial research attention becoming one of the spoken language technologies adding quality improvement,

or enrichment, of recording transcriptions. In real conditions and particularly, the human activity that takes

place in meeting-rooms or class-rooms, compared to other domains exhibits an increased complexity and a

challenging problem due to the spontaneity of speech, reverberation effects, the presence of overlapped speech,

room setup and channel variability or a rich assortment of acoustic events, either produced by the humans or

by objects handled by them. Therefore, the determination of both the identity of speakers and their position in

time may help to detect and describe that human activity and to provide machine context awareness.

We first seek to improve traditional modeling approaches for speaker identification and verification, which are

based on Gaussian Mixture Models, through multi-decision and multi-channel processing strategies, in smart-

room scenario. We put emphasis in studying speaker and channel variability techniques such as Maximum a

Posteriori Adaptation, Nuisance Attribute Projection, Joint Factor Analysis, or score normalization; aiming

to find out strategies and techniques to deal with such drawback. Moreover, we describe a novel speaker

verification algorithm that makes use of adapted features from automatic speech recognition.

In a second line of research, related to speaker detection in continuous audio stream, where the optimum

number of speakers of their identities are unknown a priory. We developed and adapted some of the previous

speaker recognition techniques to a baseline speaker diarization system based upon Hidden Markov Models

and Agglomerative Hierarchical Clustering. We evaluate the application of TDOA feature dynamics and other

features in order to improve clustering initialization in the AHC or the detection and handling of speaker

overlaps; we assess the impact and synergies with technologies like as Speech Activity Detection and Acoustic

Event Detection integrated with the diarization system; and we propose and compare new methods as spectral



clustering. Moreover, the adaptation of the diarization system to broadcast news domain and to the speaker

tracking task is also addressed.

Finally, the fusion and combination with video and image modalities is also highlighted across this thesis work,

in both speaker identification and tracking approaches. Techniques such as Matching Weighting or Particle

Filter are proposed in order to combine scores and likelihoods from different modalities. Results provided

demonstrate that these information sources can play also an important role in the automatic person recognition

task, adding complementary knowledge to the traditional acoustic spectrum-based recognition systems and

thus improving their accuracy. This thesis work was performed in the framework of several international

and national projects, among them the CHIL EU project and the Catalan founded project Tecnoparla; and in

the participation in technology evaluations such as CLEAR, NIST Rich Transcription (RT), NIST Speaker

Recognition Evaluation (SRE) and the Spanish tracking evaluation Albayzin.



Resumen

Esta tesis resume el trabajo realizado en en el área de reconocimiento de hablantes en condiciones reales tales

como reuniones en salas, en conversaciones de calidad telefónica y en el dominio de programas de tv y radio.

El principal objetivo se centra en la detección automática y clasificación de hablantes en una sala inteligente.

El reconocimiento automático del hablante se define como el uso de una máquina para identificar a un

individuo a través de su voz. El objetivo es el procesamiento de la señal acústica para convertirla en

descripciones simbólicas que se correspondan con las identidades de los hablantes. Durante los últimos años,

el reconocimiento del hablante en situaciones reales ha atraı́do una sustancial atención de los investigadores

convirtiéndose en una de las tecnologı́as del habla capaz de aportar calidad, o enriquecer, las transcripciones

de grabaciones de audio. En condiciones reales y en concreto, la actividad humana que tiene lugar en salas

de reuniones o clases docentes, comparada con la de otros dominios exhibe una mayor complejidad y es un

problema arduo debido a la espontaneidad del habla, los efectos reververantes, la presencia de solapamientos

entre locutores, la configuración de la sala y la varibilidad de canal o la gran cantidad de eventos acústicos,

tanto producidos por las personas como por objetos. Es evidente que discernir tanto la identidad del hablante

como su posición en tiempo puede ayudar a describir la actividad y proporcionar el conocimiento y percepción

de la situacón por parte de la máquina.

En el inicio se busca la mejora de los sistemas tradicionales de modelado para las tareas de identificación

y verificación, basados en modelos de mezcla de Gaussianas, a través de estrategias de decisión múltiple y

procesamiento multi-canal en salas inteligentes. El estudio se centra en técnicas de variabilidad del hablante y

de canal tales como adaptación Maximum a Posteriori, proyecciones Nuisance Attribute, análisis factorial, o

normalización de puntuaciones; intentando encontrar estrategias para atacar dicha problemática. Además, se

describe un original método para la tarea de verificación del hablante que utiliza caracterı́sticas adaptadas a

través de un reconocedor automático del habla.

Una segunda lı́nea de investigación se relaciona con la detección automática en audio de múltiples hablantes,

dónde tanto su número y sus identidades son desconocidas de antemano. En ella se desarrollan y adaptan



algunas de las anteriores técnicas a un sistema estándard de diarización basado en modelos ocultos de Markov y

clustering jerárquico aglomerado de los datos. Evaluamos la aplicación de la dinámica dada por caracterı́sticas

basadas en retardos entre sensores (TDOA) con intención de mejorar el clustering o la detección y tratamiento

de los solapamientos entre hablantes; evaluamos el impacto y las sinergias creadas con tecnologı́as como la

detección del habla y la detección de eventos acústicos, integrándolas con el diarizador y se propone un nuevo

método basado en clustering espectral. Además se adapta el sistema de diarización tanto para el procesamiento

de programas de radio y televisión como para el seguimiento de locutores especı́ficos.

A lo largo del trabajo se resalta la fusión y combinación con las modalidades de vı́deo e imagen, tanto en

diarización como en seguimiento de hablantes. Técnicas basadas en ponderación seg ún acierto o en filtros de

partı́culas se proponen para combinar puntuaciones y probabilidades generadas por cada modalidad.

Esta tesis se realizó en el contexto de varios proyectos internacionales y nacionales, entre los que se encuentra

el proyecto europeo CHIL y el proyecto Catalán Tecnoparla; y en la participacion en evaluaciones de tecnologı́a

como CLEAR, NIST Rich Transcription (RT), NIST Speaker Recognition Evaluation (SRE) y la evaluación

española Albayzin en seguimiento.
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Chapter 1

Introduction

T his PhD thesis presents research in the field of speaker recognition in real conditions such as interactive

meetings, conferences or TV and radio broadcast news. Speech is the natural human way to communicate

ideas, opinion or to express our feelings to others. Automatic speaker identification in a real scenario could

bring us a huge range of applications and an improvement of the already existing technologies. Some of them

include:

• Speaker identification - Who said that?

• Speaker verification - Is that voice from Anna?

• Speaker segmentation - When did he say it?

• Speaker clustering - Was it again the same speaker?

• Speaker diarization - Who spoke when?

• Speaker tracking - Anna spoke when?

In this PhD thesis we will face these and other tasks, as example of the same general problem - understand

speech.

Speech processing by computer involves diverse fields such as computer science, speech communication

or linguistics. At the same time, this discipline can be divided into several sub areas: speech recognition,

speech coding, speech synthesis, speech enhancement and speaker classification. Speech recognition deals

with the analysis of the linguistic content of a speech signal. Speech coding and speech enhancement are

focused on data compression and on the increasing of the intelligibility of the speech signal respectively.

Speech synthesis focus on the creation of artificial voices which usually means computer-generated speech.
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Speaker classification is mainly concerned with extracting information about individuals from their voices.

This includes gathering different idiosyncratic characteristics such as the gender of the speaker [Peterson and

Barney, 1951], the language or dialect of the person who is speaking [Atkinson, 1968] and the age, analysis of

their emotional expressions [Hecker et al., 1968], health, the cultural and education level, the social status or

even the speakers nationality. The speaker identity can also be determined by the speech signal and such task is

known as speaker recognition, which is one of the most widely investigated sub areas in speaker classification
[Kersta, 1962], [Doddington, 1971], [Furui, 1996], and the focus of this PhD thesis.

Despite all the research conducted in last decades, a continuous speaker recognition in real conditions is far

to be a solved problem. In a real situation which presents a typical multi-speaker environment together with

continuous interactions between speakers, it becomes a really hard puzzle. For instance, in a meeting where

several people interact with each other to exchange information, the speaker recognition system faces a lot of

troubles which degrade the performance of actual speaker recognition algorithms. Non-speech events such as

silence, steps, chair moving, laughs, reverberation effects, the mismatch among environment conditions in

different scenarios; or speech events in itself as speech overlapping between speakers or simply the accurate

detection of the speaker turn, are some examples that can be reeled off from a long list.

We can find two main tasks in the literature related the identification of people across time. The speaker

diarization task generally answers to the question Who spoke when?. It is performed without any prior

knowledge of the identity of the speakers in the audio stream or how many are there. Hence the output of the

diarization are labels which identify regions in the recording from the same speaker without take care about

his identity, who is?. In contrast, speaker tracking task attempts to put a name to such labels, identifying the

speakers from a set of known target speakers.

1.1 Motivation and objectives

The tasks of speaker tracking and speaker diarization in continuous audio streams involve several processing

stages. The two issues are really so close to each other and generally share some main components. Diarization

or tracking of speakers involve various technologies such as audio and speaker segmentation, speaker clustering,

speaker identification and speaker verification. The techniques from all of these areas are usually applied

together.

We can find a high number of approaches in the literature for the continuous acoustic person identification

but two of them deserve a preferential treatment. The first one handles the segmentation and identification in

separated steps, and the other one deals with them in an integrated approach. In the step-by-step approach,

also called sequential systems, Generalized Likelihood Ratio (GLR), Bayesian Information Criterion (BIC)

and speaker verification techniques are employed for speaker change detection and clustering distance. In the

integrated approach, Hidden Markov Models (HMM) are in charge of carry out the clustering in an iterative
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strategy, performing the segmentation and the identification at the same time. The latter approach has obtained

the best results as reported in literature [Anguera et al., 2011] becoming the most employed method in the

task.

The main objective of this PhD thesis is to benchmark and to improve the performance of actual state-of-the-art

diarization/tracking systems mainly based on low-level information also knows as spectral features systems.

The idea is studying speaker verification/identification techniques to select appropriate characteristics related to

the human speech and to take advantage of several information sources like as different sensors and modalities

coexisting in the speaker’s environment like as multi-microphones or video modality.

In order to test and compare the proposed algorithms and methods with other implementations, they were de-

veloped for participation in different national and international speaker recognition and diarization evaluations.

Such participation not only allowed the author to receive feedback from other researchers and institutions but

also getting access to a huge amount of transcribed audio material in order to strengthen the obtained results.

Several databases have been employed to elaborate this thesis. They cover a wide range of domains, ranging

from the meeting and the conference domain to radio and television broadcast news or conversational telephonic

speech. In addition, and due the quantity of speech data, the speaker’s characteristics are also well represented.

Male and female, native and non-native, languages as English, Spanish, Catalan, Portuguese, spontaneous,

text-read speech, ... are some examples of them. This great quantity of speech material will allow us to tune

different algorithms, being as independent as possible to any room distribution, number of microphones and

placement, cellular/land phone type, the style of speech or the speaker characteristics itself.

Finally, a real speaker verification application was developed mainly linked to the participation in the European

CHIL project [chil, 2006]. Different systems and algorithms were implemented in the UPC CHIL room

laboratory. For this purpose a internal speaker database, around 30 speakers including colleges, students and

professors, was recorded twice during different years in order to implement the target speaker models.

In what follows, a set of points which summarizes the objectives and deserve an special attention are listed:

• The speaker diarization system was built using the expertise accumulated at International Computer

Science Institute (ICSI) in the research done in broadcast news and at the previous work conducted by

Xavier Anguera during his PhD. Such algorithms were taken as starting point for the work of this thesis.

• Different speaker recognition algorithms were adapted or developed from scratch aiming to participate

in several national and international evaluations. The Albayzin Spanish evaluation for speaker tracking
[Segundo, 2006], the NIST Rich Transcription (RT) evaluations for 2007 and 2009 [Fiscus and et

al., 2007a], the CLEAR evaluations [Mostefa and et al., 2006], [Mostefa and et al., 2007] and the

NIST Speaker Recognition (SRE) Evaluation [Martin, 2010] were selected in order to benchmark the

performance of the technology and implemented algorithms.
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• The algorithms were adapted both to specific tasks and the characteristics of speech data. Adaptation

to speaker tracking task, algorithms developed to deal with multiple training conditions, meeting and

broadcast radio speech are some examples. These works were performed in the framework of several

national and international projects. Among them: the Catalan project TECNOPARLA the Spanish

project SAPIRE (TEC2007-65470), the European project CHIL (IST-2004-506909) or the Spanish

project ALIADO (TIC2002-04447-C02).

• Multichannel information processing and fusion with other cues of information will be also highlighted

in several chapters. The use of various audio channels or the information fusion coming from other

modalities, like as video and image, will be assessed as a promising future way of improvement in the

framework of smart-room environments.

1.2 PhD Thesis Overview

This PhD thesis is split into five main parts related to different topics of speaker recognition. A brief description

follows of how it is structured:

In part I, the state of the art in speaker recognition is reviewed. This part includes several sections with a brief

description of the recognition systems and their areas of application, the speaker information that can be found

in the speech signal and some of the most common automatic speaker recognition techniques. Then follows

a review of previously proposed diarization algorithms and implementations. Finally and depending on the

multi-sensor capabilities of the environment, the main techniques for fusion of modalities are introduced and

reviewed in order to process and to fuse multiple microphones, images, prosody parameters and several cues

of information usually present in a smart-room environment.

Part II is divided into two main chapters. Chapter 3, put emphasis on the work developed on speaker

identification algorithms in the meeting and conference domain. It pays special attention on the participation

in the CLEAR 2006 and 2007 evaluations for the audio and the audio-video speaker recognition categories.

The algorithms developed for such evaluations which include audio and video fusion and decision fusion

strategies are also reviewed. The following chapter focus on the various speaker verification systems developed

for participation on the NIST SRE 2010 Speaker Recognition Evaluation. Chapter 4, gives an overview of

such algorithms with especial care on the state-of-the-art speaker recognition techniques related to speaker

and channel variability and, as in the previous chapter, on the use of Automatic Speech Recognizer (ASR)

technology and prosodic features as new cues of information to gather the speaker identity.

Part III leads the reader through the implementation of diarization and tracking algorithms, their adaptation

and their assessment in several audio conditions. An initial review of the ideas behind the system and the

implementation of speaker diarization and tracking is followed by an analysis of the differences and needs in
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order to adapt it to the different database conditions: meetings or conference domain, broadcast news data or

the fusion with other sources of information. As in the previous part, the work was mainly developed in the

framework of the participation in technology evaluations: NIST Rich Transcription (RT) evaluation in 2007

and 2009 in chapter 5 or in the JTH Spanish Tracking Challenge for Spanish broadcast news radio, in chapter

6.

In the same chapter 6 speaker diarization algorithms were developed to deal with Catalan TV broadcast news

in the framework of the Catalan government founded project Tecnoparla. Chapter 7 reports the work developed

in the integration and development of a fully automatic person recognition algorithm. The proposed system

makes uses of the combination of information from several audio and video modalities into a smart-room

aiming to identify and to track several persons at the same time.

Finally, part IV is devoted to report the conclusions. It summarizes the major contributions and results obtained

during the elaboration of this PhD thesis, a review of objectives completion and proposals for future work.





Part I

State of the Art





Chapter 2

Speaker Recognition

In speech processing, recognition usually refers to speech recognition. It tries to determine the linguistic

content of an utterance on the basis of information obtained from the speech wave whereas speaker recog-

nition determines the talker’s identity. Speaker recognition may be further divided into speaker identification

and speaker verification. The aim of a speaker identification system is to identify the person who spoke the

utterance from a pool of possible speakers or to identify the speaker as unknown. In contrast to identification,

speaker verification is used to authenticate a person’s claimed identity. Hence the main difference between

identification and verification is the number of decision alternatives. In identification, the number of alterna-

tives is equal to the size of the population whereas in verification the solution becomes in a binary decision:

accept or reject the claimed identity.

An specific case is the “open-set” speaker identification which involves representing a given set of speakers

using their corresponding statistical model descriptions λ1, λ2, λ3 . . . λN , where N is the number of speakers

in the set. If the system is provided with the information that all possible test utterances belong to one of the

speakers λi, we have a “closed set” of training speakers. If a test utterance may be originating by a person

that has not been shown to the system before, it is know as an ”open set” of speakers. In this case the system

should be able to make a rejection.

For a given test utterance, the process of “open-set” speaker identification can be divided into two successive

stages of identification and verification. Firstly, it is required to identify the speaker model in the training

set, answering the question: which is the model that best matches the test utterance? Secondly, it must be

determined, verified, whether the test utterance has actually been produced by the speaker associated with

such best-matched model or, in the end, by some unknown speaker outside the speaker’s pool.
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Figure 2.1: Example of state-of-the-art speaker verification system.

max
1≤i≤N

Pr (O|λi) ≷ θ (2.1)

→ O ∈





λn, n = argmax
1≤i≤N

Pr (O|λi)

unknown speaker model

where O denotes the feature vector sequence extracted from the test utterance and θ is a pre-determined

threshold. In other words, O is assigned to the speaker model that yields the maximum likelihood over all

other speaker models in the set, in the case this maximum likelihood score is greater than the threshold θ.

Otherwise, it is declared as uttered by an unknown speaker.

Speaker recognition methods may be also divided into two approaches depending on the application: text

dependent and text independent. In the former, the speaker is required to pronounce a specific phrase in

both training and recognition steps. When the phrase (or transcription) is known then it is also possible

for the system to model learned characteristics of the client’s voice, such as speaking rate and accent. The

text-dependent methods are usually based on template/model-sequence-matching techniques in which the

time axes of an input speech sample and reference templates or reference models of the registered speakers

are aligned, and the similarities between them are accumulated from the beginning to the end of the speech.

Since a text dependent system models more variability in a person’s voice then it is generally more accurate

than a text independent system. In the latter, the applications do not rely on any specific spoken message

hence a verification phrase is not required. A text independent system is capable of authenticating claimants

independently of what is spoken. This approach, therefore, ignores the linguistic variability and it models only

the sound of the client’s voice which is determined by the physical characteristics of the client’s vocal tract.

The open-set identification in the text-independent mode is the most challenging class of speaker recognition

with various applications including surveillance, and constant authorization control in smart environments and

in communications.

There are several applications, such as forensics and surveillance applications, in which predetermined key

words cannot be used. Moreover, human beings can recognize speakers irrespective of the content of the

utterance. Therefore, text-independent methods have attracted more attention. Another advantage of text-

independent recognition is that it can be done sequentially, until a desired significance level is reached, without
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Figure 2.2: Example of speaker diarization output.

the annoyance of the speaker having to repeat key words again and again.

In classical speaker identification and verification tasks the systems decide about the speaker’s identity by

analyzing an excerpt of audio from which is supposed to be just one speaker. This is the usual way for control

access applications in which the system forces the claimant to speak an specific utterance or in a two-side

telephonic conversation in which each side is provided independently from each other. In such situations the

system do not take into account the speaker boundaries or the estimation of the conversation turns.

Nowadays, a huge amount of data is accessible from a wide number of sources like as mass media radio

and television, internet, recorded meetings and conferences and so forth. The actual power of computers

give us the possibility to analyze and process such data. In any case, to detect and to identify the talkers in

a conversation is a real hard challenge. Speaker diarization face such complicated task relying on similar

techniques and methods as automatic speech transcription does. Speaker detection and identification in

continuous audio streams involves audio segmentation and classification in order to discriminate between

speech and non-speech events, speaker segmentation to arrange the speaker turns and speaker clustering

aiming to create homogeneous speech segments produced by an unique speaker. In addition, speaker tracking

provides a label to the speech segments in order to follow a particular talker among the target speakers from a

database. In sharp contrast, speaker diarization do not relies in any prior information about the speakers or how
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many of them are in the recording. Both diarization and tracking tasks not only have in common the speaker

recognition techniques employed in speaker identification and verification tasks but also those well-know

techniques from automatic speech recognizers. The use of speech/non-speech segmentation, bandwidth and

gender detectors or segmentation methods as the application of Hidden Markov Models (HMM) are some

examples that can be found in the literature.

2.1 Speaker Recognition and Diarization: Applications

Speaker Recognition is becoming a task with a raising interest during last decades among the scientific

community. A great amount of work from several disciplines are continuously appearing focusing on this issue.

The correct estimation of the person identity is one of the goals from technologies as information indexing and

information retrieval, people surveillance, automatic minutes transcription of meetings and , in general, the

interaction between computer and humans, the so called context-awareness. The use of audio technologies has

found a large acceptance within the scientific community since it is the natural human way of communication

and due the actual chance of accessing a wide ocean of audio documents as those coming from radio and

television, telephone conversations, meetings, lectures, internet, etc. In addition, this sort of technology has

achieved a high performance together with a low grade of intrusion on the human environment.

Such information is of interest for several speech and audio applications [Reynolds and Torres-Carrasquillo,

2005]. For instance, in automatic speech recognition systems the information about who is speaking? can

be applied for unsupervised speaker adaptation [Anastasakos and et al., 1996], [Matsoukas and et al., 1997]

improving the performance of speech recognition in large-vocabulary continuous-speech-recognition (LVCSR)

systems [Gauvain and et al., 2002], [Beyerlein and et al., 2002] and [Woodland, 2002]. Other possible use of

the speaker labels provided by the speaker identification systems is to aid the transcription task. In this way

the transcription is annotated with different label for each speaker. That kind of transcriptions is more readable

and useful and could also be used for automatic speaker indexing of audio documents [Makhoul and et al.,

2000].

Therefore, nowadays, there is a wide variety and continued growth of applications based on speaker recognition

technologies. The most common areas where these applications can be found are listed next.

• Access control applications related to secure access to physical and electronic sites are probably the

most popular ones. These applications have the advantage that, unlike personal passwords and keys,

voices cannot be stolen. However they can be copied by using, for instance, recording devices. In order

to protect security systems from this risk, the speaker wishing to access to a secure place is usually

asked to pronounce a specific text. In this case, both speaker and the linguistic content of the speech are

taken into account.

• Caller verification in banking and telecommunications Furthermore to access control, higher levels

of verification may be needed for telephone banking in order to achieve more secure transactions. Some
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recent applications are also focused on user authentication tasks for remote electronic purchases and

both fixed telephone and mobile shopping.

• Surveillance, law enforcement and forensics Security agencies have several means of collecting

information. One of these is electronic eavesdropping of telephone and radio conversations. As this

results in high quantities of data, filter mechanisms must be applied in order to find the relevant

information. One of these filters may be the recognition of target speakers that are of interest for the

service. Law enforcement includes several applications such as home-parole monitoring, where parolees

are called in order to check that they are staying at homeprison call monitoring, border controls, etc.

Forensic applications are highly related to law enforcement applications, especially those concerning

location of missing people and criminal identification.

• Speech data management The use of speaker recognition is also incipient in several applications such

as voice mail browsing or intelligent answering machines, where incoming voices are labeled with the

speaker name. Speech data management can also be found in smart rooms to automatically track who

said what, for example, in a boardroom meeting in order to produce rich transcription and minutes.

• Speaker indexing and information retrieval Speaker diarization allows searching for words spoken by

a speaker or aiding speaker adaptation techniques for a speech recognition system. Sources in an audio

document may also be non-speech events like music, commercials, noise, etc, where diarization could

help find the structure of a broadcast program detecting the presence of music, locating commercial to

eliminate unwanted audio or be used by speech recognition systems to skip sections for faster processing.

As illustrated in the examples, the output audio annotations from diarization may be used directly for

applications or as input to assist some downstream human language technology system.

• Speech transcription Audio diarization is a useful preprocessing step for an automatic speech transcrip-

tion system. By separating out speech and non speech segments, the recognizer only needs to process

audio segments containing speech, thus reducing the computation time and avoiding word insertions in

these portions.

• Speaker adaptation Clustering segments of the same acoustic nature, condition-specific models can

be used to improve the quality of the transcription. By clustering segments from the same speaker,

the amount of data available for unsupervised speaker adaptation is increased, which can significantly

improve the transcription performance.

• Personalization More and more, a wide variety of devices and smart systems can be found to organize

and facilitate or daily life. Presumably, those devices controlled by voice will perform better with a good

personal customization. Furthermore, there is also an incipient interest in using speaker characterization

in order to provide personal information to be used in advertisements or other services.
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Figure 2.3: General speaker recognition scheme composed by two main phases: training and
testing. Upper, train phase in a common speaker recognition application. Bottom, the template

matching corresponding to the testing stage.

2.2 Speaker Identification and Verification

Automatic speaker recognition is the use of a computer to identify an individual from a spoken utterance. As

human beings, we are able to recognize someone just by hearing him or her talk. Usually, a few seconds of

speech are sufficient to identify a familiar voice. The idea to teach computers how to recognize humans by the

sound of their voices is quite evident, as there are several fruitful applications of this task as mentioned in

previous section.

In a human speaker recognition process, the better one knows a person, the easier is to identify others by their

speech. Like humans, automatic speaker recognition systems need a training period to learn how this speech is.

For this purpose some data from the target speaker has to be collected and, like humans, as more data to create

the speaker template more accurate is the recognition. The figure 2.3 presents the general scheme applied in

speaker recognition. It involves two main stages: the training or enrollment of the speaker models and the

testing phase in which a decision about the speech’s identity is taken straight afterwards matching the voice

against the speaker database.

The pattern-matching task of speaker recognition involves computing a match score which is a measure of

the similarity between the input feature vectors and some model. Speaker models are constructed from the

features extracted from the speech signal. To enroll users into the system, a model of the voice, based on

the extracted features, is generated and stored. Then, in order to authenticate a user, the matching algorithm

compares/scores the incoming speech signal with the model of the claimed user.

One of the central questions addressed by this field is what is it in the speech signal that conveys speaker

identity. Traditionally, automatic speaker recognition systems have relied mostly on short-term features as

the wide-used Mel Frequency Cepstrum Coefficients (MFCC) or Linear Prediction Coefficients (LPC) all

of them related to the spectrum of the voice. However, human speaker recognition relies on other sources
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of information; therefore, there is reason to believe that these sources can play also an important role in

the automatic speaker recognition task, adding complementary knowledge to the traditional spectrum-based

recognition systems and thus improving their accuracy. The first box in the figure 2.3, Feature Extraction, both

in training and testing, represents the extraction of such characteristics from the speech wave. The extracted

features are modeled during the enrollment stage, for example, by means statistical methods such as Gaussian

Mixture Models (GMM) [Reynolds, 1995] in order to create a speaker template/model and to update the

speaker database.

In the testing stage, the prior trained models are matched against the observations (features) extracted from the

test utterance and a similarity/likelihood measure is obtained expressed as in equation 2.2.

L = Pr
(
λi|O

)
(2.2)

Speaker Identification

In speaker identification applications, given a set of S speakers {s1, s2, ..., sN}, and a set of models Λ =

{λ1, λ2, . . . , λN}, the aim is to find the speaker whose model is assigned to the maximum likelihood:

L̂ = argmax
1≤i≤N

L (2.3)

Bayes rule can be applied to statistical models combining equations 2.2 and 2.3 obtaining the following

expression:

L̂ = argmax
1≤i≤N

Pr(O|λi) Pr(λi)

Pr(O)
(2.4)

Due Pr(O), the probability of the feature O coming from any speaker, remains constant for all the speakers,

the maximization is not affected by this probability. Moreover, all the speakers are assumed to be equally

possible, Pr(λi) = Pr(λj) ∀i, j = 1, . . . , N , it means the prior probabilities for each of the speakers are

assumed to be equal. Therefore and assuming equal prior probabilities per speaker, the decision rule can be

simplified as follows:

L̂ = argmax
1≤i≤N

Pr(O|λi) (2.5)

where the probability Pr(O|λi) or likelihood depends on the statistical technique selected to model the

observations. The figure 2.4 summarizes this procedure. Once the feature extraction is carried out, a one-to-

one comparison between the observed features O and the set of speakers models Λ is performed. Maximum

likelihood criterion as in 2.5 is taken into account to pick out the speaker with highest chance, in the case of

“close-set”. In the “open-set” scenario, the final selection depends upon a threshold which decides whereas the

speech can be attributed to any of the target speakers in the database or to an unknown speaker.

Finally, the likelihood of a sequence of independent samples O = {oj} is given by
∏
j Pr(oj). The speaker to



16 Speaker Recognition

Figure 2.4: General speaker identification scheme as in [Furui, 1996]

choose will simply depend on which speaker has the highest likelihood. This will be the most likely speaker

given the observed feature, and is known to result in the minimum error strategy [Duda and Hart, 1973]. The

work in [Schwart et al., 1982] were first to apply this statistical modeling to the speaker identification task.

Speaker Verification

The speaker verification procedure, as far as a user of such a system is concerned, is similar to that of a

password entry system. The user, from here to be known as the claimant, claims the identity of a client,

someone authorized to access the system. The verification system requests the claimant give a sample of

speech into a microphone. The speech may be prompted or it may be a predefined verification phrase. The

system then processes the recorded speech and compares it to a model of the client’s voice stored in its

database. If it matches then the claimant is authenticated. The length of the verification phrase may affect the

system accuracy. Usually, longer verification phrases yield more accurate systems. Depending upon the type

of security, the system may request another sample of speech if the match is borderline. For extra security, the

system may also pass the recorded speech to a speech recognizer to ensure that the correct response is given.

In a system where speech is prompted, this extra security measure prevents the use of recordings.

The speaker verification task, also referred to as detection, mainly consists in to assess whether the test segment

O was spoken by a hypothesized speaker S usually with the assumption that O contains speech from only one
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speaker. The single-speaker detection task can be stated as a basic hypothesis test between two hypothesis
[Bimbot et al., 2004]:

• H0: O was uttered by the hypothesized speaker S

• H1: O was not uttered from the hypothesized speaker S

In order to decide between these two hypotheses a threshold Θ is introduced as a confidence measure on the

likelihood values of the hypothesis,

 Pr(O|H0) ≥ Θ, accept H0

Pr(O|H1) ≥ Θ, accept H1

where Pr(O|H0) is the probability density function for the hypothesis H0 evaluated for the observed speech

segment O, also referred to as the likelihood of the hypothesis H0 given the speech segment. The likelihood

function for H1 is likewise Pr(O|H1). The decision threshold for accepting or rejecting H0, Θ, is estimated

depending upon the application. Θ controls the trade-off between false detections (Type I errors) and false

alarms (Type II errors) in the system hence the value of Θ is estimated depending on the error cost we consider

for a given application.

The equation 2.6 can be written as a likelihood ratio (LR) between these two hypotheses, see equation 2.6,

“ratio” since it is usually computed in the logarithm domain,

Pr(O|H0)− Pr(O|H1) ≥ Θ, accept H0 (2.6)

The model for H0 is well defined and is estimated using training speech from S. However the model for

H1 is less well defined since it potentially should represent the entire space of possible alternatives to the

hypothesized speaker. From the area of speaker recognition, two main approaches have been taken for this

alternative hypothesis modeling. The first approach is to use a set of other speaker models to cover the space

of the alternative hypothesis. In various contexts, this set of other speakers has been called cohorts models or

background speakers [Auckenthaler et al., 2000] [Zheng et al., 2005]. Given a set of N background speaker

models {λ1, . . . , λN}, the alternative hypothesis model is represented by

Pr(O|λp) = Ψ
(
Pr(O|λ1), . . . ,Pr(O|λN )

)
(2.7)

where Ψ() is some function, such as average or maximum, of the likelihood values from the background

speaker set. The selection, size, and combination of the background speakers has been the subject of much

research [Zheng et al., 2005], [Reynolds, 1997], [Auckenthaler et al., 2000]. In general, it has been found that

to obtain the best performance with this approach requires the use of speaker-specific background speaker sets.
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Figure 2.5: General speaker verification scheme.

This can be a drawback in an applications using a large number of hypothesized speakers, each requiring their

own background speaker set.

max
1≤i≤N

Pr (O|λi) ≷ Θ (2.8)

→ O ∈




λn, n = argmax
1≤i≤N

Pr (O|λi)

unknown speaker model

The second major approach to alternative hypothesis modeling is to pool speech from several speakers and

train a single model which represents the whole speaker space of characteristics. Such model is known as the

Universal Background Model (UBM) in the literature [Reynolds, 1997]. The UBM is trained given a collection

of speech samples from a large number of speakers, usually some hundreds, representative of the population

expected during verification. The main advantage of this approach is that a single speaker-independent model

can be trained once for a particular task and then used for all hypothesized speakers in that task.

As conclusion, the output of a verification system is a binary decision: to accept or not to accept the claimed

identity, that is the key difference with identification systems.

2.2.1 Speech Features

Next sections introduce to the reader a brief description of the speech production system, the speech signal

parametrization and its modeling to compress and analyze the useful parts which convey speaker characteristic

information from the speech waveform. Finally, some of the state-of-the-art learning algorithms applied in

automatic speaker recognition systems are also reviewed.
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Figure 2.6: Sagittal section of nose, mouth, pharynx, and larynx. From Gray’s Anatomy 1918
edition. http://commons.wikimedia.org/wiki/File:Sagittalmouth.png

Speech Production

The physical and learned are the two main sources of speaker-specific characteristics. The vocal tract shape is

an important physical distinguishing factor of speech. The vocal tract is generally considered as the speech

production organ above the vocal folds. As shown in figure 2.6, this includes the following: laryngeal pharynx,

oral pharynx, oral cavity, nasal pharynx, and the nasal cavity.

Speech is considered as the response of a slow time varying system. There are two main types of excitations:

periodic and noise like which simplify the modeling, but in more detail, excitation can be characterized as

phonation, whispering, frication, compression, vibration, or a combination of these. The speech production

mechanism consists of a series of pressure changes in acoustic tube, the vocal tract that is excited to generate

the desired sound. The excitation is generated by airflow from the lungs, carried by the trachea (also called

the wind pipe) through the vocal folds. The vocal folds (formerly known as vocal cords) are shown in figure

2.6. The larynx is composed of the vocal folds, the top of the cricoid cartilage, the arytenoid cartilages, and

the thyroid cartilage, also known as ”Adams apple”. The vocal cords constrict the path from the lungs to the

vocal tract. As the lung pressure is increased, air flows out of the lungs and through the opening between vocal

cords. The area between the vocal folds is called the glottis. If tension in vocal cords is properly adjusted, the

reduced pressure allows the cords to come together, thereby completely constricting the airflow. As a result,

pressure increases behind vocal cords, this pressure force it to open and allow the air to pass. Again the air

http://commons.wikimedia.org/wiki/File:Sagittalmouth.png
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Figure 2.7: A speech waveform and its corresponding spectogram.

pressure in the glottis falls and the cycle is repeated. As the acoustic wave passes through the vocal tract, its

frequency content (spectrum) is altered by its resonances. Vocal tract resonances are called formants. Thus, the

vocal tract shape can be estimated from the spectral shape of the voice signal. Automatic recognition systems

typically use features derived only from the vocal tract. An adult male vocal tract is approximately 17 cm long
[Flanagan et al., 2008] and the fundamental frequency of general female voice is roughly 225 Hz, male voice

is 120 Hz and a small childs voice is around 300 Hz [Kent and Read, 1992]. The physical size and shape of

speakers vocal tract determine the range of sounds that can be produced by humans and since each person has

their own vocal characteristics there is reason to believe that an individual can be uniquely identified by voice

alone [Wolf, 1972], [Rabiner and Schafer, 1978].

There are three main representations of the speech signal: The oscillogram or waveform which represents

air pressure changes in a speech wave as a function of time, the spectrum which plots amplitude against

frequency and the spectrogram a 3-dimensionally plot of amplitude, frequency and time. The figure 2.7 shows

the waveform and the spectrogram corresponding to a 10 seconds sentence uttered by a male speaker. Note

that, in the spectrogram, amplitude is represented as a third dimension by dark shades.

The speech production system is usually modeled as the response of linear time varying system (vocal tract)

with properly excitation, see scheme in figure 2.8. Speech production is described as two separate and

independent processes: the sound generation in the larynx (source) on the one hand and the acoustic filtering

of the speech sounds in the vocal tract (filter). The human vocal mechanism is driven by such excitation source,

which also contains speaker-dependent information. This representation of the speech production is known

as the source-filter approach. If the vocal cords are tensed then voiced sound like vowels are produced by

vibration and modulation of the air flow. In case of unvoiced sounds, vocal cords are spread apart and one or

two conditions are possible. Either a turbulent flow is produced or a brief transient excitation occurs.

The discrete linear speech production model introduced by [Flanagan et al., 2008], assumes that, for a voiced

speech s(n) generated in the larynx, the source (excitation) is a periodic delta train. Unvoiced sounds are

represented as noise, see figure 2.8, hence for an unvoiced speech s(n), the source is represented by a random

white noise. The speech signal s(n) is filtered through V (z) which represents vocal tract, glottal and lips linear

filtering. A common estimation of the signal s(n) is the all-pole linear prediction model, a linear combination
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Figure 2.8: In the linear acoustics model of speech production [Flanagan et al., 2008], the speech
signal is produced by filtering an excitation signal (produced in the subglottal system) with a
time-varying linear filter (the vocal tract). It should be noted that this model is not valid for all
classes of speech sounds, such as frication, where excitation occurs above the glottis. The vocal

tract parameters ak are linear coefficients and they may be estimated by linear prediction

of its past values and a scaled present input [Picone, 1993],

s(n) = −
p∑
k=1

aks(n− k) +Gu(n), (2.9)

where s(n) is the present output, p is the prediction order, ak are the model parameters called the predictor

coefficients (PCs), s(nk) are past outputs, G is a gain scaling factor, and u(n) is the present input. This

modeling yields to the LP transfer function,

H(z) = V (z) =
S(z)

U(z)
=

G

1 +
∑p
k=1 akz

−1 . (2.10)

LP analysis determines the PCs that minimize the prediction error ŝ(n)−s(n). Speech features are constructed

from the speech model parameters ak reported in equation 2.9. These LP coefficients are typically non linearly

transformed into perceptually meaningful domains suited to the application.

Human voice is characterized by a high degree of variability within the same speaker known as intra-speaker

variability. Different emotional states of speakers, colds, time of the day, age, etc., or other external factors

such as environmental noise, type of microphone, channel distortion and so forth, make that two speech signals
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uttered by the same speaker are rarely equal, even when the speaker tries to make them identical. One of

the milestones of the speaker recognition technologies is to find those features that can properly characterize

a single speaker; i.e. those features whose intra-speaker variability is smaller whereas it presents a high

variability between speakers, also known as inter-speaker variability.

Feature Extraction

Most of the parametrization applied in speaker recognition are well known in the speech recognition field
[Furui, 2005]. Likewise automatic speech transcription (ASR) the use of parameter based on short-term, frame-

based cepstral coefficients, as the well known Mel Frequency Cepstral Coefficients (MFCC) [Furui, 1981],

has become the most popular feature domain for signal representation in speaker recognition technologies

,[Reynolds, 1994],[Campbell, 1997], [Kurematsu et al., 2005]. Latest NIST Rich Transcription [Fiscus and et

al., 2007a], [Fiscus and et al., 2009a] and NIST Speaker Recognition Evaluations [Martin, 2010] show that

most of the presented systems applied MFCC both in speaker diarization and speaker identification/verification

tasks. Nevertheless, other kind of parameters such as Frequency Filtering (FF) [Nadeu et al., 2001], Linear

Frequency Cepstral Coefficients (LFCC), Perceptual Linear Predictive (PLP), Linear Predictive Coding (LPC)

have their small place in the literature.

In some classification problem we need to define

• Elements, the things we want to classify

• Classes, the labels we want to give at each element

• Descriptors or features, how an element is represented in our system

Let suppose there is a correct classification, i.e. a function which ties one class to each element, therefore a

learning algorithm associates a class to a list of descriptors in order to fit the classification function defined

previously. The following diagram gives a general overview of the learning process,

Π
feature extraction

(X)
- Θ

{1, . . . , c}
C�Y -

where Π is the element population, Θ is the feature/descriptor domain and the set {1,. . . ,c} represents

the classes (speakers). The function X : Π → Θ associates one feature vector to each element and it

represents the feature extraction procedure. The Θ space is composed of several dimensions, each of them

characterizes one attribute A, logical or numerical. In the speech processing task, a0, a1, . . . are usually the

coefficients of the acoustic vectors, the cepstral coefficients for example. From the user point of view, the

function Y : Π → {1, . . . , c} is the classification function and the function C : Θ → {1, . . . , c} is the real

classification in the system space. The aim of automatic learning is to find a function C with C ◦X = Y , in
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Figure 2.9: Feature extraction scheme for the Mel-Frequency Cepstral Coefficients (MFCC)

fact, what we want to find is C with C ◦X being a good approximation of Y . Hence in order to describe one

element into the Π space we need to give a value associated to an element in the feature space.

In speech processing the mapping of the population Π (speech domain) to the descriptor domain Θ is known

as feature extraction. The speech signal is converted into an electrical signal by a microphone. The obtained

electrical signal is then sampled and quantized by an A/D which converts the captured analogical signal from a

sound pressure wave to a digital signal. Usually follows a digital filtering that emphasizes important frequency

components. It is most often executed using a Finite Impulse Response (FIR) filter of one coefficient digital

filter, known as a pre-emphasis filter:

Hpre(z) = 1 + aprez
−1 (2.11)

The pre-emphasis filter enhances the signal spectrum approximately 20 dB per decade. There are two common

explanations of the advantages of using this filter [Picone, 1993]. First, voiced sections of the speech signal

naturally have a negative spectral slope (attenuation) of approximately 20 dB per decade due to physiological

characteristics of the speech production system. An alternate explanation is that hearing is more sensitive

above the 1 kHz region of the spectrum and the pre-emphasis filter amplifies this area.

The short-term frame-based approach applied in current speaker recognition systems consists in a segmentation

of the digital speech signal into regular segments. The speech signal is usually chopped in frames of 20−30ms

at a rate of 10 − 20ms. The frames are commonly weighted by a Hamming window. Values in this range

represent a trade-off between the rate of change of spectrum and system complexity. The proper frame duration

is ultimately dependent on the velocity of the articulators in the speech production system (rate of change

of the vocal tract shape). While some speech sounds (such as stop consonants or diphthongs) exhibit sharp

spectral transitions which can result in spectral peaks shifting as much as 80 Hz/ms [Picone, 1993], frame

durations less than approximately 8 ms are normally not used. Equally important, however, is the interval over

which the power is computed. The number of samples used to compute the summation N , is known as the

window duration (in samples). Window duration controls the amount of averaging, or smoothing, used in

the power calculation. The frame duration and window duration together control the rate at which the power

values track the dynamics of the signal. Finally, a power spectrum estimation is computed in each segment,

and speech parameters are extracted. This is the general process to compute short-term frame-based spectral

coefficients. In addition, MFCC coefficients, also known as mel-warped features, are based on the non-linear

perception of the frequency of sounds and they can be computed as follows:

• Window the signal, usually a Hamming window is applied with overlapping.
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Figure 2.10: At the top left, plots of pitch mels versus hertz. fmel = 2595 log10(1 + f
700

).
Bottom, overlapped triangular filter bank. At the top right, power spectrum without Mel-frequency
wrapping. Bottom, Mel-frequency wrapping of power spectrum. Considering the full image with
the mel frequency wrapping set, there is less information than the one without the mel frequency.
But instead if we looking in details,we see that the image with the mel frequency wrapping keeps
the low frequencies and removes some information. To summarize,the Mel frequency wrapping set

allows us to keep only the part of useful information.

• Compute de Discrete Fourier Transform (DFT)

• Take the square-magnitude

• Warp the frequencies (Apply mel-scale by means a filter bank)

• Take the logarithm (compression) of the filter bank energies

• Compute the Discrete Cosine Transform (DCT) of the log filter-bank energies

The mel scale [Stevens, 1937] attempts to map the perceived frequency of a tone, or pitch, onto a linear scale.

This scale is displayed in figure 2.10. The mel warping transforms the frequency scale to place less emphasis

on high frequencies. It is often approximated as a linear scale from 0 to 1000 Hz, and then a logarithmic

scale beyond 1000 Hz. Mel warping is implemented by passing the DFT coefficients through a filter-bank

of Q overlapped triangular bandpass filters , see figure 2.10, about 12− 20, compacting the information and

reducing the variance by averaging the DFT samples in each filter.
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The cepstrum can be considered as the spectrum of the log spectrum. Removing its mean (Cepstral Mean

Normalization, CMN) reduces the effects of linear time-invariant filtering (e.g., channel distortion). The density

of the cepstrum has the benefit of being modeled well by a linear combination of Gaussian densities as used in

the Gaussian Mixture Model [Reynolds, 1995] and together with the well performance in speaker-recognition

systems have popularized their use in speaker recognition tasks.

Often, the time derivatives of the mel cepstra (also known as delta cepstra) are used as additional features to

model trajectory information [Furui, 1986]. The case of the velocity and acceleration parameters, computed

from the first and second order derivatives of the spectral parameters is commonly applied in speaker identifi-

cation and verification tasks though in the speaker tracking and diarization this kind of parameters degrades

the speaker segmentation. It suggest the use of different sets of parameter depending on they are applied to.

Delta coefficients are computed by means the following regression formula,

∆ot(i) =

∑D
d=1 d

(
ot+d(i)− ot−d(i)

)
2
∑D
d=1 d

2
(2.12)

where ∆ot(i) is the delta coefficient i at time t computed in terms of the corresponding static coefficients ot−d

to ot+d. The same formula is applied to the delta coefficients with another window size to obtain acceleration

coefficients.

Frequency Filtering (FF) parameters [Nadeu et al., 2001] has been also applied to speaker recognition with

successful results [Hernando, 1997], [Luque and Hernando, 2008a], and [Luque and Hernando, 2008b]. These

parameters are computed in the same fashion as the MFCC but replacing the final Discrete Cosine Transform

of the logarithmic filter-bank energies by the following filter:

H(z) = z − z−1 (2.13)

These features have several interesting characteristics: they are uncorrelated, computationally simpler than

MFCCs, have frequency meaning and they have generally shown an equal or better performance than MFCCs

in both speech and speaker recognition.

The spectral features are so far the parameters more widely applied to perform automatic speaker recognition,

nevertheless some recent papers have introduced some novels parameters taking benefit from the multi-

microphone conditions. [Pardo et al., 2007] and [Pardo et al., 2012] report that the use of the time-delays

between microphones is useful for speaker diarization and [Koh and et al., 2008] submitted a novel diarization

system to NIST RT’07 evaluation based upon both segmentation and clustering by means the Direction of

Arrival (DOA) information.

Nonetheless, such spectrum-based parametrization obtain an acceptable performance in speaker recognition,

they are not focused on representing the useful information to distinguish among speakers and to discriminate

from other sources like background noises or music. This approach, while highly successful in clean or

matched acoustic conditions, suffers significant performance degradation in the presence of variability. It

ignores long-term information that can convey supra-segmental information, such as prosodic and speaking
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Figure 2.11: Speech and non-speech labeling for further processing in a recognition task.

style. That is the reason why a considerable amount of work about this issue attempt to center on the speaker

characteristics and the particular conditions of the task that they are applied to. In [Chan et al., 2006] they

propose the use of vocal source features for the task of speaker segmentation and [Yamashita and Matsunaga,

2005] proposes a speaker segmentation system based on energy, peak-frequency centroid, peak-frequency

bandwidth and other spectral features.

Furthermore, there are other levels of information that convey useful characteristics about the speaker. Because

spectral slices are not modeled in sequence, the spectrum-based approach fails to capture longer-range stylistic

features of a persons’ speaking behavior, such as lexical, prosodic, and discourse-related habits. Recent studies
[Reynolds et al., 2003], [Shriberg et al., 2005], [Dehak et al., 2007] have demonstrated that these level can add

complementary knowledge to the traditional spectrum-based recognition systems, improving their accuracy.

Research on additional information sources in speaker recognition has been mainly focused on the use of the

fundamental frequency and energy trajectories to capture long-term information. One of the reasons is that

fundamental frequency appears to be more robust to acoustic degradations from channel and noise effects.

Other studies suggest the use of different information sources: number of phonemes per word, number of

frames per word, pause rate and duration, etc. [Dehak et al., 2007], [Shriberg et al., 2005]. In [Abad and

Luque, 2010] and [Abad et al., 2011] the phonemes output by an hybrid ANN/HMM speech recognition

system using acoustic models of phonemes in various languages are applied to obtain a high-dimensional

Parallel Transformation Network feature vector for speaker characterization.

Voice Activity Detection

Voice activity detector (VAD), as illustrated in figure 2.11, aims at locating the speech segments from a given

audio signal. VAD is an important sub-component for any real-world recognition system and usually it is

applied as a dedicated speech/non-speech detector in a pre-processing step. Even though a seemingly trivial

binary classification task, it is, in fact, rather challenging to implement a VAD working robustly across different
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domains. In the context of meetings non-speech segments may include silence, but also ambient noise such as

paper shuffling, door knocks, keyboard typing or non-lexical noise such as breathing, coughing and laughing,

among other background noises. In BN data, commercials, street noise, or background/overlapped music

are common events among the several non-speech sources. For CTS audio, typically some form of standard

energy/spectrum based speech activity detection is used since non-speech tends to be silence or noise sources
[Abad et al., 2010].

Therefore, depending on the domain data being used, the non-speech classes can consist of silence, music,

room noise, street noise, etc. For broadcast news audio, e.g, usually five class models are trained: speech,

music, noise, speech+music, and speech+noise. The extra speech models are used to help minimize false

rejects of speech occurring in the presence of music or noise. It is more important to minimize speech miss

rates since these are unrecoverable errors in most systems. ineffective. For meeting domain, the model-based

approaches also tend to have better performances and rely on a two-class detector such as a HMM, with

models pre-trained with external speech and non-speech data [Wooters and et al., 2004], [Zhu et al., 2008]

and optionally adapted to specific meeting conditions. Discriminant classifiers such as Linear Discriminant

Analysis (LDA) [Rentzeperis et al., 2006] or Support Vector Machines (SVM) [Luque and Hernando, 2008b],
[Temko et al., 2007] have also been proposed in the literature. The main drawback of model-based approaches

is the lack of robustness against unseen conditions due their reliance on external data for the training of speech

and non-speech models.

2.2.2 Modeling

One of the key issues in speaker recognition is the technique applied for speaker modeling. Several modeling

strategies has been applied in the speaker recognition task. Most of them rely on assuming some data structure

to a greater or lesser extent like as its probability density function. Such structure is usually characterized by a

collection of parameters. The negative aspects stem from the structure assumption itself, one which may not

be adequate to the modeling task by limiting the form that the multivariate probability density can take. The

positive aspects derive from the succinctness of the representation and the fact that the more limited the form,

fewer data that are needed to specify the density.

Following, we introduce a brief summary of the most applied modeling techniques applied to speaker

recognition task.

First attempts to speaker recognition tasks employed methods based on template matching and can still be

useful under constrained circumstances. By template matching, we mean the comparison of an average

computed on test data to a collection of stored averages developed for each of the speakers in training. In more

complex probabilistic models, the pattern matching is probabilistic and it results in a measure of the likelihood,

or conditional probability, of the observation given the model. The observation is assumed to be an imperfect

replica of the template, and the alignment of observed frames to template frames is selected to minimize a

distance measure d. The likelihood L can be approximated by exponentiating the utterance match scores and

assuming in that way that scores are proportional to log-likelihoods:
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L = exp−ad (2.14)

where a is a positive constant.

Statistical feature averaging or also termed Long-term averaging [Markel et al., 1977] is an approach which

employs the mean of some feature over a relatively long utterance to distinguish among speakers. For text-

independent recognition, ideally one has utterances of several seconds or minutes in order to ensure that a

voice is modeled by mean features of a broad range of sounds, rather than by a particular sound or phone. Test

utterances are compared to training templates X by the distance between feature means, x̄. Several metrics

can be used for minimum distance classifiers like as the Euclidean (W = I) or Mahalanobis (W = Σ−1 )

distances.

d(xi, x̄) = (xi, x̄)TW (xi, x̄) (2.15)

The nearest neighbor (NN) method for estimating the density from a sample R = {ri} at point x is to

measure the distance between and the point in the sample closest to x, x’s nearest neighbor:

dNN (x,R) = min
rj∈R

|x− rj | (2.16)

Let X = {xi} and R = {ri} denote the collections of feature vectors extracted from test and reference

utterances, respectively. R is used to estimate the speaker’s density. There exists an inversely proportional

relationship between the probability density function and the distance at the point xi:

P̂r(xi) =
1

Vn
(
dNN (xi, R)

)
ln P̂r(xi) ≈ − ln dNN (xi, R) (2.17)

where Vn(ρ) represents the volume of sphere in n-dimensional space with radius ρ which is proportional to ρn.

For the complete collection of test feature vectors X the log-likelihood is expressed as:

ˆ̀(X) = −
∑
xi∈X

ln dNN (xi, R) (2.18)

Since more than one neighbor is normally taken into account, the technique is commonly referred to as k-

nearest neighbor (kNN), where k nearest neighbors are used in the identification process. Majority voting and

sum rules are the most commonly used approaches in NN classification (Campbell, 1997; Kouand Gardarin,

2002; Cunningham and Delany, 2007).

Vector quantization (VQ) modeling constructs representatives of the data. VQ modeling is identical to

nearest neighbor modeling except that distances to nearest data representatives are measured. The need to

reduce the computation and memory demands of the nearest neighbor approach is a chief motivation behind

VQ modeling [Soong et al., 1985]. In practice the features are multi-dimensional (usually greater, nominally
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between 12 − 20) and hundreds of vectors are employed for characterizing the speaker. Selecting the data

representatives can be approached as a problem of grouping the training feature vectors into clusters. All

vectors falling inside a cluster are represented by a centroid, perhaps the cluster mean or a member of the

cluster. The feature space is quantized by mapping every vector to one of the cluster centroids. The clusters,

however, create unrealistically rigid boundaries in the sense there can be no overlap in the features generated

by two different acoustic classes. Each vector belongs to one and only one cluster. The matching score for L

frames of speech is given by the following expression:

zV Q =
L∑
i=1

min
cj∈C

d(xi, cj) (2.19)

where C = {cj} represent the collections of centroids also known as VQ codebook.

The corresponding distance measure in VQ modeling is perhaps the most intuitive method. This technique

can be independent of time, as previous highlighted methods in which all temporal variation is ignored and

global averages (e.g., centroids) are all that is used, or time-dependent. The time-dependent model is more

complicated because it must accommodate human speaking rate variability.

Dynamic time warping (DTW) is the most popular method to compensate for speaking-rate variability in

text-dependent systems. A text-dependent template model consists of a sequence of templates (X1, ..., XN )

that must be matched to an input sequence (x1, ..., xM ) usually of different length. A DTW algorithm does

a constrained, piece-wise linear mapping of one or both time axes to align the two speech signals while

minimizing the accumulated distance z, which is expressed as follows:

zDTW =
M∑
i=1

d(xi, Xi(j)) (2.20)

The template indexes j(i) are given by the DTW algorithm which aligns each xi from the input sequence to

the most likely template at the sequence step i constrained to previous and late templates. At the end of the

time warping, this accumulated distance DTW is used as a match score. Dynamic time warping accounts for

the variation over time of parameters corresponding to the dynamic configuration of the articulators and vocal

tract [Campbell, 1997]

Gaussian Mixture Models

The Gaussian mixture model (GMM)-based approach has been identified as an effective approach for speaker

modeling [Reynolds, 1995]. A GMM is a parametric probability density function represented as a weighted

sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability

distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral

features in a speaker recognition system.

The Gaussian Mixture Model [Reynolds, 1995] is a weighted sum of Gaussian distributions:
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Figure 2.12: Gaussian Mixture Model (GMM) example for feature samples of two dimensions for
two speakers. The Gaussian means µ determine the location and the covariances Σ establish the

shape of Gaussian distributions.

Pr
(
x|µi,Σi

)
=

M∑
i=1

wi g
(
x|µi,Σi

)
(2.21)

where x is aD-dimensional continuous-valued data vector, i.e. measurement or features, wi, i = 1, . . . ,M , are

the mixture weights, and g
(
x|µi,Σi

)
, i = 1, . . . ,M , are the component Gaussian densities. Each component

density is a D-variate Gaussian function of the form,

g
(
x|µi,Σi

)
=

1

(2π)
D
2 |Σi|

1
2

exp
{
−1

2
(x− µi)TΣ−1i (x− µi)

}
(2.22)

with mean vector and covariance matrix µi, Σi respectively and the mixture weights wi satisfying the

constraint:
∑M
i=1 wi = 1. Vertical bars | · | indicates matrix determinant. Therefore the GMM is represented

by the parameter set λ,

λ = {wi,µi,Σi}, i = 1, . . . ,M (2.23)

For a sequence of T training vectors X = {x1, ...,xT}, the GMM likelihood, assuming independence between
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the vectors1, can be written as,

Pr(X|λ) =
T∏
t=1

Pr(xt|λ), (2.24)

or in a more common expression by means log-likelihoods, just applying logarithm function to each side in

equation 2.24, which allows a more tractable computation,

log Pr(X|λ) = log
T∑
t=1

log Pr(xt|λ). (2.25)

For each speaker that the system has to recognize, the GMM parameters are estimated from training data using

the iterative Expectation-Maximization (EM) [Dempster et al., 1977]. Maximum likelihood (ML) parameter

estimations are obtained by using a few iterations of the EM algorithm, around 10− 20 iterations are usually

computed. The basic idea of the EM algorithm is, beginning with an initial model λt0 , to estimate a new model

λt1 , such that Pr(X|λt1) ≥ Pr(X|λt0). The new model then becomes the initial model for the next iteration

and the process is repeated until some convergence threshold is reached.

In speaker recognition task, a speaker may be modeled by using either a decoupled GMM from training data or

by means a Maximum A Posteriori (MAP) estimation, a form of Bayesian adaptation [Duda and Hart, 1973],

from a well-trained prior model [Gauvain and Lee, 1994], [Reynolds, 2002]. In the former case, each model

is built independently by using the training utterances provided by the registering speaker. In the latter case,

also termed GMM-adaptation, each model is the result of adapting a general model, which represents a large

population of speakers, to better represent the characteristics of the specific speaker being modeled. This

general model is usually referred to as world model or universal background model (UBM). An UBM is a large

GMM (2048 mixtures) model used in a biometric verification systems to represent general, person independent

feature characteristics to be compared against a model of person-specific feature characteristics when making

an accept or reject decision. For example, in a speaker verification system, the UBM is a speaker-independent

Gaussian Mixture Model (GMM) trained with speech samples from a large set of speakers to represent general

speech characteristics. Using a speaker specific GMM trained with speech samples from a particular enrolled

speaker, a likelihood-ratio test for an unknown speech sample can be formed between the match score of the

speaker specific model and the UBM. The UBM may also be used when training the speaker-specific model

by acting as a the prior model in MAP parameter estimation in order to gain robustness against newly or

incomplete data.

The specifics of the adaptation are as follows. Given a prior model and training vectors from the desired class,

X = {x1, . . . ,xT }, we first determine the probabilistic alignment of the training vectors into the prior mixture

components. That is, for mixture i in the prior model (UBM), we compute Pr(i|xt, λUBM) as the percentage

of the mixture component i to the total likelihood,
1The independence assumption is often incorrect but needed to make the problem tractable.
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Pr(i|xt, λUBM) =
wi g

(
xt|µi,Σi

)∑M
i=1 wi g

(
x|µi,Σi

) (2.26)

Then compute the sufficient statistics for the weight, mean and variance parameters 2

Figure 2.13: Example of adaptation of the mean component of a Gaussian Mixture Model (GMM)
in feature space of two dimensions. This procedure is one of the most popular approaches for
model adaptation due its simplicity and good performance. The training vectors (red dots) are
probabilistically mapped into the UBM (prior) mixtures and the adapted mixture parameters are
derived using the statistics of the new data and the UBM (prior) mixture parameters. The adaptation

is data dependent, so UBM (prior) mixture parameters are adapted by different amounts.

ni =

T∑
i=1

Pr(i|xt, λUBM) (2.27)

Ei(x) =
1

ni

T∑
i=1

Pr(i|xt, λUBM) xt (2.28)

Ei(x
2) =

1

ni

T∑
i=1

Pr(i|xt, λUBM) x2
t (2.29)

Lastly, these new sufficient statistics from the training data are used to update the prior sufficient statistics
2(x)2 is shorthand for diag((xx)).
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(prior model λUBM for mixture i to create the adapted parameters for such mixture through equations:

ŵi =
[αwi ni

T
+ (1− αwi )wi

]
γ (2.30)

µ̂i = αmi Ei(x) + (1− αmi )µi (2.31)

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂
2
i (2.32)

The adaptation coefficients controlling the balance between old and new estimates are {αw, αm, αv} for

the weights, means and variances, respectively. The scale factor, γ, is computed over all adapted mixture

weights to ensure they sum to unity. Note that the sufficient statistics, not the derived parameters, such as the

variance, are being adapted. For each mixture and each parameter, a data-dependent adaptation coefficient

αp , p ∈ w,m, v, is used in the above equations. This is defined as:

αpi =
ni

ni + rp
(2.33)

where rp is a fixed relevance factor for parameter p. It is common in speaker recognition applications to use

one adaptation coefficient for all parameters (αw = αm = αv = ni

ni+r
) and further to only adapt certain

GMM parameters, such as only the mean vectors, as it is depicted in the figure 2.13, while the weights and

covariances are shared between all speakers. The relevance factor is a way of controlling how much new data

should be observed in a mixture before the new parameters begin replacing the old parameters. This approach

is robust to limited training data.

The concept of a UBM is also applied for discriminative systems, such as Support Vector Machines (SVM),

where explicit likelihood functions for the two hypothesis (belongs or not belongs) are not used. In this case,

the UBM refers to the collection data from the general population used as negative examples when training a

person specific discriminate function.

Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic model, a kind of Bayesian network, commonly used for

modeling sequences, in which the observations are a probabilistic function of the state [Rabiner, 1989];[Rabiner

and Juang, 1993];[Campbell, 1997]. Gaussian mixtures are usually employed in speech to model probability

distributions of each state, where the probability density function associated to the random variables (features)

is a multivariate distribution with probability density function: X ∼ N(µ,Σ). The HMM, as a finite-state

machine, has each state associated with a deterministically observable event and the observations (features)

are stochastic function of the state. The states are connected by a transition network, where the state transition

probabilities are aij = Pr(si|sj). The figure 2.14 illustrates and example of a four-state hidden Markov model

commonly applied to text-dependent speaker recognition. Note that a GMM may be considered as an HMM

composed by just one state.

By using the Baum-Welch algorithm, the probability that a sequence of speech frames was generated by the
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Figure 2.14: Examples of Hidden Markov Models. At top, a common topology for a text-dependent
text recognition system. At bottom, a trivial HMM composed of one state modeled by a GMM.

model can be determined [Rabiner and Juang, 1986];[Rabiner, 1989]. This probability, or likelihood, is used as

a score for L frames of input speech given the model. Given a sequence of speech frames X = {x1, . . . ,xL}
the likelihood depending on the model is computed as:

Pr(X|λ) =
∑

all state
sequences

L∏
i=1

Pr(xi|si) Pr(si|si−1) (2.34)

Artificial Neural Networks

Artificial neural networks Artificial neural networks (ANN) are also used in speaker recognition applications.

The kind of neural networks used are feed-forward neural networks, where the information moves only in one

direction (forward) from the input nodes, through the hidden nodes, if any, and to the output nodes. Commonly,

a feed-forward neural network is created for each known speaker, and each network contains one output that is

trained to be active only for its speaker. In the testing phase, an input feature vector is fed forward through

each network, and the identification is determined by the network with the highest accumulated output values.

In the speaker verification mode, the input vectors of the unknown user are fed forward through the network

belonging to the claimed speaker. If the average output value is bigger than a threshold, the speaker is accepted
[Oglesby and Mason, 1990].
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Figure 2.15: Artificial Neural Network example.

Another kind of networks, the time-delay neural networks (TDNN) were developed by [Bennani and Gallinari,

1991] to capture transient information using a connectionist approach.

In a recent work [Abad and Luque, 2010; Abad et al., 2011], the authors present a new approach based upon

ASR transcriptions and upon an adaptation network. In this case, features carrying out speaker characteristics

are obtained from the adaptation transforms applied to the Multi-Layer Perceptrons (MLP) that form a

connectionist speech recognizer. Finally, speaker features are modeled by means SVM technique. Such a

system is described in more detail in chapter 4.

Support Vectors Machine

Support vector modeling relies on stacking a huge number of speech features in a vector (super vector) which

is finally modeled by a Support vector machine (SVM). This strategy is known to be a high performance

speaker recognition approach and other tasks thanks to their ability to generalize. Support vector machines

(SVM) [Boser et al., 1992], [Cortes and Vapnik, 1995] is a state-of-the-art binary classifier and one of the

most currently fusion techniques based on the discriminative approach. Recent works on statistical machine

learning have shown the advantages of discriminative classifiers like SVM in a wide range of applications
[Cristianini and Shawe-Taylor, 2000].

The SVM model relies on two assumptions. First, transforming data into a high-dimensional space may

convert complex classification problems (with complex decision surfaces) into simpler problems that can use

linear discriminant functions. Second, SVMs are based on using only those training patterns that are near the

decision surface assuming they provide the most useful information for classification. The maximum margin
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Figure 2.16: Two-class linear classification by SVM. Image from [Boser et al., 1992].

training algorithm finds a decision function for pattern vectors x of dimension n belonging to either of two

classes A and B which separates through the hyperplane of equation wx+ b = 0. The input to the training

algorithm is a set of p examples xi with label yi:

{(x1, y1), (x2, y2), . . . , (xp, yp)} (2.35)

where

 yk = 1 if xk ∈ class A

yk = −1 if xk ∈ class B

From these training examples the algorithm finds the parameters of the decision function D(x) during a

learning phase. After training, the classification of unknown patterns is predicted according to the following

rule:

x ∈ A if D(x) > 0 (2.36)

x ∈ B otherwise

The algorithm corresponds to a linear method in a high-dimensional feature space non-linearly related to

the input space. Given a linearly separable two-class training data, the SVM algorithm finds an optimal

hyperplane that splits input data in two classes, maximizing the distance of the hyperplane to the nearest

data points of each class, see figure 2.16. However, data are normally not linearly separable. In this case,
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non-linear decision functions are needed, and an extension to non-linear boundaries is achieved by using

specific functions called kernel functions [Boser et al., 1992]. The kernel functions map the data of the input

space to a higher dimensional space, the feature space, by a non-linear transformation. The optimal hyperplane

is then constructed in the feature space, creating a non-linear boundary in the input space. The mentioned

hyperplane for a non-linearly separable 3 data is defined by:

D(x) =

p∑
k=1

αktkK(xk,x) + b (2.37)

where tk = {1,−1} are the labels or desired outputs, K is a chosen kernel and the coefficients αi are such

that the following condition is satisfied:

N∑
i=1

αiyi = 0; 0 ≤ αi ≤ C (2.38)

The vectors xk are the support vectors, which determine the optimal separating hyperplane and correspond to

the points of each class that are the closest to the separating hyperplane. N is the number of support vectors

and C is an adjustable parameter that controls the effect of the misclassified data. In linearly non-separable the

SVM replaces the inner product x · y by a kernel function K(x; y), and then constructs an optimal separating

hyperplane in the mapped space. The kernel K(x; y) is constrained to have certain properties (the Mercer

condition [Vapnik, 1998]), so that can be expressed as:

K(x,y) = b(x)tb(y), (2.39)

where b(x) is a mapping from the input space (where x lives) to a possibly infinite dimensional space. The

kernel is required to be positive semi-definite. The Mercer condition ensures that the margin concept is valid,

and the optimization of the SVM is bounded. The optimization condition relies upon a maximum margin

concept, see figure 2.12. For a separable data set, the system places a hyperplane in a high dimensional space

so that the hyperplane has maximum margin. The data points from the training set lying on the boundaries (as

indicated in dashed lines in figure 2.12) are the support vectors in equation 2.37. According to the Mercer

theorem [Vapnik, 1998], the kernel function implicitly maps the input vectors into a high dimensional feature

space in which the mapped data is linearly separable. Possible choices of kernel functions include:

• Polynomial K(x; y) = (x · y + 1)d where the parameter d is the degree of the polynomial

• Gaussian Radial Basis Function K(x; y) = exp(− (x− y)2

2σ2
), where the parameter σ is the width of

the Gaussian function

• Multi-Layer Perceptron K(x; y) = tanh(k(x · y) − µ), where the k and µ are the scale and offset

parameters.

3In a linearly separable case, D(x) = sign(
∑t

i=1 αiyi(xi · x) + b) the kernel function is just an inner product
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Figure 2.17: A Gaussian supervector modeling example by stacking the GMM-UBM means which
feed a SVM classifier.

Since the SVM is a two-class classifier, we handle speaker recognition as verification problems. That is, we

use a one vs. all strategy [Campbell et al., 2006a]. We train a target model for the speaker and the set of known

non-targets are used as the remaining class. We repeat the process and produce models for other speakers. For

speaker verification, we train in a manner similar to speaker identification. For each target speaker, we label

the target speaker’s utterances as class 1. We also construct a background speaker set (class 0) that consists

of example impostor speakers. The example impostors should be representative of typical impostors to the

system. We keep the background speaker set the same as we enroll different target speakers. In contrast to

the speaker identification problem, the non-target set of speakers is not as well defined; we try to capture a

representative population of example impostors and, in contrast to GMM-UBM approach, we look for a set of

impostor speakers ”close” to the target speaker instead of a set representative of the whole population.

Furthermore, combining Gaussian mixture models with Support vector machines [Campbell et al., 2006b],

the so-called Gaussian supervector approach (GSV), see figure 2.17 surpasses previous approaches based

on standard GMM-UBM or SVM classification of spectral features. Supervectors modeling is a robust way

to present utterances using a single vector. Such single point representation leads to several advantages i.e.

avoids the normalization issues due the length variability of utterances in training and enrollment and on the

other hand, supervectors give a new feature domain (the supervector space) in which compensation methods as

inter-session variability compensation techniques have a suitable framework for development, see joint factor

analysis (FA) [Kenny et al., 2008b] in next section or nuisance attribute projection (NAP) [Solomonoff et al.,

2007]. It that sense, it becomes possible to directly quantify and remove the unwanted variability from the
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supervectors.

The supervectors has applied as inputs to support vector machine (SVM) as illustrated in figure 2.17 with

successful results in speaker recognition tasks. This leads to sequence kernel SVMs, where the utterances with

variable number of feature vectors are mapped to a fixed-length vector using the sequence kernel [Wan and

Renals, 2005]. The way to obtain an enrolled speaker model is as follows. First Gaussian Mixture Models

for each speaker client are obtained with MAP adaptation of the Gaussian means of the UBM, i.e. based on

spectral features [Reynolds et al., 2000], as described in the section 2.2.2. The UBM means are adapted with

few MAP iterations and usually with a relevance factor of 16. The Gaussian Super Vector (GSV) system stacks

the mixture means of the MAP adapted Gaussian speaker models to obtain super vectors of every speech

segment. For each speaker, that the system has to recognize, a high dimensional supervector are computed

which feeds a discriminative algorithm, i.e. SVM, to perform classification.

In [Campbell et al., 2006b] the authors derive the Gaussian supervector kernel by bounding the Kullback-

Leibler (KL) divergence measure between GMMs. Lets the UBM λUBM = {wk,µk,Σk}Kk=1 and two

utterances a and b which are described by their MAP-adapted GMMs, see section 2.2.2. That is, λa =

{wk,µak,Σk}Kk=1 and λb = {wk,µbk,Σk}Kk=1. The KL divergence kernel is then defined as,

K(λa, λb) = ΣKk=1

(√
wkΣ

(−1/2)
k µak

)T (√
wkΣ

(−1/2)
k µbk

)
, (2.40)

which just is a variance normalization of the means. All the Gaussian means µk need to be normalized with

factor
√
wk Σ

(−1/2)
k before feeding the SVM classifier with them.

2.2.3 Compensation Techniques

Segmentation and Score Normalization

Observe that if we decompose a segment X which is a collection of N frames, into K segments of size nk
where nk = N , and let logLk denote the log likelihood of the kth segment, then

S = logL =
K∑
k=1

logLk (2.41)

That is, the log likelihood (or segment score S) of the full segment is, because of the frame independence

assumption, the sum of log likelihood of the smaller segments. The first step is to extract segments from the

test utterance. A direct approach is to uniformly chop the dialog into segments of some arbitrary size, with the

idea that a subset of these segments will be pure enough to be recognized. The importance of representing the

log likelihood as the sum of smaller segments is that it enables us to generalize the scoring of a utterance in

several important ways. The first aspect is our ability to select the best model from the collection of models

for each speaker for each of the different segments. The second reason for evaluating multiple segments is

that partitioning an utterance enables us to discard or de-emphasize segments contaminated by other speakers

and noise. The above log likelihood 2.41 provide us with the unnormalized scores. These scores require



40 Speaker Recognition

normalization. Recall that the log likelihood of the data for a segment is obtained by evaluating a probability

model or the data in the segment; other segments have different data scored with different models and therefore

there is no basis for comparison of likelihoods from different segments. The line of research into the field of

acoustic which faces such issues is speaker normalization. Such sort of techniques have the main purpose

of avoid the influence of background, non-linear distortions produced by the channel or noise and other

non-speaker events giving robustness against unseen data and variability in the channel or the environment.

Normalization techniques can be applied at different levels.

At the speech waveform level, e.g. spectral subtraction algorithms [Boll, 1979] which aims to suppress or to

reduce the spectral effects of acoustically added noise in the digital waveform. Spectral subtraction relies on

the suppression of stationary noise from speech by subtracting the spectral noise bias calculated during non

speech activity.

At the feature level, e.g. cepstral mean normalization (CMN) [Liu et al., 1993] which removes the mean of

the cepstral coefficients in order to avoid non-linear effects due the channel distortions or feature warping

techniques [Pelecanos and Sridharan, 2001] that attempts to warp the cepstral distribution into a standardized

Gaussian shape. Some examples applied in the diarization task can be found in [Zhu and et al., 2005]

and [Sinha et al., 2005]. In these works, feature warping [Pelecanos and Sridharan, 2001], [Ouellet et

al., 2004], [Reynolds, 2003] is applied on the distribution of cepstral features mapping it to a standardized

distribution over a specified time interval.

At the model level, e.g. newly introduced techniques which deals with the intra-speaker variability and the

inter-session variability. Some examples are the nuisance attribute projection (NAP) method that works by

removing subspaces that causes variability in the kernel of the SVM [Campbell et al., 2006b], or the joint factor

analysis (JFA) [Kenny, 2005] modeling which attempts to estimate such variability in order to compensate it

directly from the models.

At score level, e.g. in speaker recognition task the works from [Zhu and et al., 2005] and [Abad and

Luque, 2010] make use of score normalization techniques applied on the models and at the score level.

Some of normalization techniques are based on the world model as UBM normalization [Reynolds, 1997]

[Reynolds, 1995], which is derived from Bayes’ theorem, or perform distribution scaling like as cohort

normalization [Rosenberg et al., 1992] which uses a set of cohort speakers who are close to the target speaker,

test normalization (also known as T-norm), zero normalization (also known as Z-norm) [Zheng et al., 2005].

Mostly of them coming from the speaker verification field [Liu et al., 1993] [Bimbot et al., 2004]. The cohort

can be seen as a replacement for the world model by calculating a probability of the cohort under the conditions

of the observation. The selection of the cohort set of speakers can be done during the training stage. If a large set

of speakers is chosen for a cohort, it behaves as an impostor-centric normalization. A normalization technique

which uses a mean and variance estimation for distribution scaling is zero normalization (Z-norm) [Reynolds,

1997]. The advantage of Z-norm is that the estimation of the normalization parameters can be performed

off-line during training. A speaker model is tested against example impostor utterances Z = {z1, z2, . . . , zN}
and the log-likelihood scores are used to estimate a speaker specific mean µZ and variance σZ for the impostor
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Figure 2.18: ZT normalization scheme to perform distribution scaling over the scores. Firstly
a T-norm is applied over the log-likelihood produced by the test utterance. Following, a zero
normalization with parameters estimated from a set of impostors utterances is applied to previous

T-scaled log-likelihoods.

distribution. The normalization has the form,

SZ = logLZ =
log(Pr(λ|O))− µZ

σZ
, (2.42)

A normalization method which is also based on a mean and variance estimation for distribution scaling is

test normalization (T-norm). During testing, a set of example impostor models is used to calculate impostor

log-likelihood scores for a test utterance, similar to a cohort approach. However, unlike the cohort approach, a

mean and variance parameter are estimated from these scores. These parameters are then used to perform the

distribution normalization in the same fashion as equation 2.42,

ST = logLT =
log(Pr(λ|O))− µT

σT
, (2.43)

where µT and σT are the scores’ mean and standard deviation respectively that are obtained by a set of

impostors models λT−norm = {λ1, λ2, . . . , λN} evaluated over the speech segment. The advantage of

T-norm over a cohort normalization is the use of the variance parameter which approximates the distribution

of the cohort population more accurately. The estimation of these distribution parameters is carried out on

the same utterance as the target speaker test. Therefore, an acoustic mismatch between the test utterance and

normalization utterances, possible in Z-norm, is avoided.

The figure 2.18 depicts the scheme to obtain ZT-normalized log likelihoods by combining a test normalization

step together with zero normalization. Such score normalization has been applied to speaker recognition task

with well performance in spite of the prohibitive computational cost, where impostor models and impostor

utterances sets can reach hundreds of speakers. [Auckenthaler et al., 2000].



42 Speaker Recognition

Nuisance Attribute Projection

Any variation in different utterances of the same speaker (be it due to different handsets, environments, or

phonetic content), as characterized by their supervectors is harmful and leads to degradation on the speaker

recognition performance. For a given speaker, the supervectors estimated from different training utterances may

not be the same especially when these training samples come from different handsets. Channel compensation

is therefore necessary to make sure that test data obtained from different channels (than that of the training

data) can be properly scored against the speaker models. We will now discuss two different techniques. Former

based on switch off those directions of variability, nuisance attribute projection (NAP), and latter based on

generative modeling, that is, Gaussian mixture model (GMM) with factor analysis (FA) technique.

Nuisance attribute projection (NAP) is a successful method for compensating SVM supervectors [Solomonoff

et al., 2007]. It is not specific to some kernel, but can be applied to any kind of SVM supervectors. The NAP

transformation removes the directions of undesired sessions variability from the supervectors before SVM

training. The NAP transformation of a given supervector s is [Brummer et al., 2007],

ŝ = s−P(PT s), (2.44)

where P is the eigenchannel matrix. The eigenchannel matrix is trained using a development data set with a

large number of speakers, each having several training utterances (sessions) and labeled with channel nuisance

variables, e.g. electret, carbon button, cell microphones. The training set is prepared by subtracting the mean

of the supervectors within each speaker and pooling all the supervectors from different speakers together; this

removes most of the speaker variability but leaves session variability. By performing eigenanalysis on this

training set, one captures the principal directions of channel variability. The P projection matrix removes the

component of a vector in the direction of a specified subspace. Hence NAP attempts to estimate a subspace

that contains mostly channel information and build a projection that zeroes that out, by minimizing the figure

of merit:

δ =
∑
ij

WijP(si − sj)
2, (2.45)

where si is the supervector from utterance i, Wij are a weight matrix whose entries correspond to pairs of

training observation vectors, weighting the importance of the variability direction, and P is a projection matrix

with corank(P)� dim(X) and P2 = P. Wij is positive for pairs of vectors that we want to move together,

it means, sessions i and j have different background conditions or zero otherwise. Taking into account P

matrix can be written as P = I− vvt where v is a matrix with orthonormal columns spawning the directions

being removed. The design criterion for P is:

v∗ = argmin
v,‖v‖2

i,j∑
Wij ‖ Psi −Psj ‖22, (2.46)
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whose solution is an eigenvalue problem:

A(diag(W1)−W)Atv = λv, (2.47)

where A is a matrix whose columns are si, W is the matrix consisting of Wij and 1 is the vector of all ones.

Summarizing, equation 2.44 then just means subtracting the supervector that has been projected on the channel

space.

Joint Factor Analysis

The technique of joint factor analysis (JFA) [Kenny and Dumouchel, 2004] was proposed for modeling

explicitly the channel variability aiming to compensate the channel effects. The JFA model considers the

variability of a Gaussian supervector as a linear combination of the speaker and channel components. Given

a training sample, the speaker-dependent and channel-dependent supervector M is decomposed into two

statistically independent components, as follows

M = s + c, (2.48)

where s and c are referred to as the speaker and channel supervectors, respectively. Let d be the dimension of

the acoustic feature vectors and K be the number of mixtures in the UBM. The supervectors M , s and c live

in a Kd dimensional parameter space. The channel variability is explicitly modeled by the channel model of

the form,

c = Ux, (2.49)

where U is a rectangular matrix and x are the channel factors estimated from a given speech sample. The

columns of the matrix U are the eigenchannels estimated for a given data set. During enrollment, the channel

factors x are to be estimated jointly with the speaker factors y of the speaker model of the following form:

M = m + Vy + Dz, (2.50)

In the above equation, m is the UBM supervector, V is a rectangular matrix with each of its columns referred

to as the eigenvoices, D is Kd × Kd diagonal matrix and z is a Kd × 1 column vector. In the special

case y = 0, s = m + Dz describes exactly the same adaptation process as the MAP adaptation technique

(section 2.2.2). Therefore, the speaker model in the JFA technique can be seen as an extension to the MAP

technique with the eigenvoice model Vy included, which has been shown to be useful for short training

samples. The matrices U, V and D are called the hyperparameters of the JFA model. These matrices are

estimated beforehand on large data sets. One possible way is to first estimate V followed by U and D [Kenny,

2005], [Kenny et al., 2008b]. For a given training sample, the latent factors x and y are jointly estimated and

followed by estimation of z. Finally, the channel supervector c is discarded and the speaker supervector s is
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Figure 2.19: Joint Factor Analysis’ key point: At left, the target speaker model is obtained through
Bayesian adaptation (Maximum a Posteriori, MAP) of the means of the UBM. Next a decision
threshold is chosen based upon the training data. Both the high session variability or intra-speaker
variability is depicted as newly target speaker data (blue dots). In that case the decision leads to an
error since the trained models does not count for such variability. At right, JFA estimation allows to
compensate such variability, shifting the models consequently and compensating the newly data
variability. For recognition, move both models along the high inter-session variability direction(s)

to fit well the test data (e.g. in ML sense).

used as the speaker model. By doing so, channel compensation is accomplished via the explicit modeling of

the channel component during training. For detailed account of estimation procedure the reader should refer to
[Kenny et al., 2005]; [Kenny et al., 2008b]. For comparing various scoring methods, refer to [Glembek et

al., 2009]. The JFA approach has become one of the most successful compensation techniques for speaker

verification as has been reported in [Kenny and Dumouchel, 2004], [Kenny et al., 2007] and [Kenny et al.,

2008a] dominating the latest NIST 2010 and 2008 speaker recognition evaluations (SRE) [Martin, 2010].

2.2.4 Evaluation metrics

After having computed a match score of similarity between the input user and the corresponding template

stored in the database, a decision is taken whether the user must be accepted or rejected by the system.

However, such decision can be both correct or not correct. If the decision is incorrect, two different types of

error can occur [Chollet and Bimbot, 1995]:

• False rejection (or non detection): the system rejects a valid identity claim.

• False acceptance (or false alarm): the system accepts an identity claim from an impostor.

Both types of errors give rise to two types of error rates, which are commonly used to measure the performance

of a system:

• False rejection rate (FRR): the system rejects a valid identity claim.

• False acceptance rate (FAR): the system accepts an identity claim from an impostor.

Either of the two types of errors can be reduced at the expense of an increase in the other, so that the trade-off

between FRR and FAR depends on a decision threshold. In a real-world system, which is usually not perfect,
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Figure 2.20: FRR and FAR as a function of a threshold θ. The intersection point between the two
curves determines the value of the EER.

FRR and FAR intersect at a certain point (figure 2.20). Such a value of FRR and FAR at this point is known as

Equal Error Rate (EER).

If the threshold is set to a low value, the system tends to accept most of the identity claims, giving few false

rejection errors but many false acceptances. On the contrary, with a high threshold the system tends to reject

most of the identity claims, giving rise to few false acceptance errors and a lot of false rejection.

The Receiver Operating Characteristic (ROC) curve plots the FRR versus the FAR [Chollet and Bimbot,

1995]. This curve is monotonous and decreasing, and the better the system is, the closer to the origin the curve

will be. Another representation of the ROC curve is used sometimes by plotting the correct detection rate

(instead of FRR) versus the false alarms [Duda and Hart, 1973].

It is also common to plot the error curve on a normal deviate scale. In this case, the curve is known as the

Detection Error Trade-offs (DET) curve [Chollet and Bimbot, 1995]. In an hypothetical system whose clients

and impostors scores are Gaussians with the same variance, the DET curve is a linear curve where the slope

equals −1, which becomes more easily readable and comparable to other DET curves. As in the ROC curve,

better systems are closer to the origin. In a real system, the score distributions are not exactly Gaussians, but

they are close enough to them to allow this representation. Figures 2.21 depicts an example of both ROC and

DET curves. The intersection of each curve with the diagonal dotted line indicates the value of the EER.

Detection Cost

Apart from the DET curve and the EER associated, for the NIST speaker evaluations [Fiscus and et al., 2009a],

NIST provides and additional cost function which measure the system performance establishing a fixed cost to
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Figure 2.21: (a) Example of a ROC curve. (b) The corresponding DET curve (b).

FA and FR errors as well as a priori probability for target and non-target individuals. Likewise, it matches the

metric to the particularities of the task by favoring the cost of some error type instead of the other one. This

cost is defined for speaker verification as:

CDet = CFR · PFR|ST
· PT + CFA · PFA|SNT

· PSNT
(2.51)

where CFR and CFA are the associated costs to FR and FA errors respectively; PFR|ST
(the probability of

false reject given a target speaker) measures the system FR; PFA|SNT
(the probability of false acceptance

given a non-target speaker) measures the system FA; and finally, PT and PNT = 1PT the prior target and

non-target probability. In NIST speaker evaluations and by extension, in this work, costs and target probability

will be set as follows:

• CFA = CFR = 1

• PT = 0.001

2.3 Speaker Diarization and Tracking

Speaker diarization and tracking belong to the speaker-based processing techniques. Therefore the feature

representation of the acoustic signal attempts to represent the speaker information and discriminate between

different talkers as it is done in the previous mentioned tasks, identification and verification. With the increasing

availability of archived audio material comes an increasing need for efficient and effective means of searching

and indexing through this voluminous material. Searching or tagging speech based on who is speaking is

one of the more basic components required for dealing with audio archives, such as recorded meetings or the

audio portion of broadcast shows. Traditional approaches to speaker recognition, however, are designed to
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identify or verify the speaker in a speech sample known to be spoken by a single person. For audio indexing

or searching, the basic recognition approach needs to be expanded to handle both detection and tracking of

speakers in multi-speaker audio [Dunn et al., 2000].

In general, a spoken document is a single-channel recording that consists of multiple audio sources. Audio

sources may be different speakers, music segments, types of noise, etc. For example, a broadcast news program

consists of speech from different speakers as well as music segments, commercials, and sounds used to segue

into reports. Audio diarization is defined as the task of marking and categorizing the audio sources within a

spoken document where types and details of the audio sources are application specific.

Audio diarization is the process of annotating an input audio channel with information that attributes (possibly

overlapping) temporal regions of signal energy to their specific sources. These sources can include particular

speakers, music, background noise sources, and other signal source/channel characteristics. Diarization has

utility in making automatic transcripts more readable and in searching and indexing audio archives [Reynolds

and Torres-Carrasquillo, 2005]. The goal when searching and indexing target speakers is to find and identify

the regions in the audio streams that belong to the target speakers and produce an efficient way for accessing

these regions in the audio-data archives. The task of finding such speaker-defined regions was first introduced

in the Rich Transcription project in “Who spoke when“ evaluations, [Fiscus and et al., 2004]. The diarization

task is also defined by the amount of specific prior knowledge allowed, as example, speech from just a few of

the speakers, the number of speakers in the audio, or the structure of the audio recording, like as commercials

or music to segue into next show sections.

Whenever there is a speaker of interest, it may be desirable to determine not only whether the speaker appears

in a multi-speaker segment, but to identify the specific intervals within the segment corresponding to the

speaker through speaker identification methods. The task of identifying the regions associated with particular

speakers is known as a speaker tracking task and was defined during a 1999 NIST Speaker Recognition

evaluation, [Martin and et al., 2000]. Whereas diarization and tracking procedures serve for the detection of

speakers in audio data, the purpose of speaker indexing is the organization of audio data according to detected

speakers for efficient speaker-based audio-retrieval. For a more portable and independent speaker diarization

system, it is desired to operate without specific prior knowledge of speakers, the number of speakers in the

audio or the structure. This is the general task definition used in the Rich Transcription evaluations [Fiscus and

et al., 2004].

Most speaker diarization systems and tracking systems share a similar general architecture, see figure 2.22.

Firstly, the signal is chopped into homogeneous segments. The segment boundaries are located by finding

acoustic changes in the signal and each segment is expected to contain speech from only one speaker. The

resulting segments are then clustered so that each cluster corresponds to an unique speaker, a major issue being

that the number of speakers is unknown a priori and needs to be automatically estimated. There may be specific

prior knowledge via previous example speech from the speakers in the audio, then the task becomes a tracking

task. The true identities of the speakers are obtained in a speaker-identification module in the next stage. Here,

a multiple-speaker verification of each cluster is performed. A speaker-identification module is capable of
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Figure 2.22: General speaker diarization and tracking schemes.

recognizing just those speakers, who are present in the database of target speakers and are previously enrolled

in the system. The speech data from clusters that do not correspond to any of the speakers in the target group

should be marked as unknown speaker data. At the end, a speaker index is derived, which is used as a basis for

searching and tracking speakers in the audio database. Each particular system also presents specific aspects

which can be classified following different criteria, performing speaker segmentation and clustering at the

same time instead of the sequential approach or introducing the prior speaker knowledge at the beginning of

the diarization process. Anyway, the figure 2.22 does not try to explain all possible ways to perform speaker

diarization/tracking but give the reader a brief summary of the main concepts in such tasks.

Speaker Diarization Domain

There are three primary domains for speaker diarization research and development: broadcast news audio,

recorded meetings, and telephone conversations [Reynolds and Torres-Carrasquillo, 2005]. Depending on

domain characteristics, diarization algorithms had to be adapted according to such differences. The three

domains mainly differs in the nature and quality of the data recorded: bandwidth, kind of microphones, studio

or telephonic conditions, background noises, music, the amount and types of non-speech events, the number of

speakers, the durations and sequencing of speaker turns and the style or spontaneity of the speech are some

examples. Each domain presents unique diarization challenges, although often high-level system techniques
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tend to generalize well over several domains. The NIST Rich Transcription speaker evaluations [Fiscus and et

al., 2007a], [Fiscus and et al., 2009a] have primarily used both broadcast news and meeting data whereas the

NIST speaker recognition evaluations [Martin, 2010] have primarily used conversational telephone speech

(CTS) with summed sides, also known as two-wire conversational telephonic speech.

Number of speakers is usually larger in broadcast news ranging among 25− 50 in a one-hour duration show,

4 − 10 for a conference meeting or 2 in CTS data. Speaker turns occur less frequently than they do in

conference meeting data or telephone data, resulting in BN having a longer average speaker turn length. For

CTS data, a huge variety of cellular and microphones are used to capture the speech signal and, as is well know,

with a characteristic bandwidth of 8 KHz. In the case of BN speech data is usually acquired using lavalier

microphones with some recordings being made in the studio and others outside. The diarization systems must

be able to deal with the non-homogeneous data found in broadcast audio, such as a wide variety of speakers

and speaking styles, changing speakers, accents, background conditions, etc.

There are notable differences in speaking style observed in BN, meetings and CTS data. Broadcast speech

is much closer to written language than conversational speech or meeting speech are, where different social

conventions are observed. Speech may be spontaneous or often read, as in a news reporting or at least prepared

in advance as in an interview or telephone speech. At the other side, meetings are usually recorded using

desktop or far-field microphones which are less invasive for meeting users than head-mounted or lavalier

microphones that are used primarily for annotation purposes. In CTS, the speech quality is affected by a

variety of different types of telephone handset, the background noise (other conversations, music, street noise,

etc.), as well as a much higher proportion of interruptions, overlapping speech, and third person interjections

or side conversations. The challenges for CTS at the acoustic level concern speaker normalization, the need to

cope with channel variability, spontaneous speech, and the need for efficient speaker adaptation techniques.

Therefore, just differences between meeting room configurations, microphone placement or kind of telephone

handsets lead to variations in recording quality [Reynolds, 1996]. Furthermore, speech overlapping among

speakers or the Lombard effect 4 results in a signal-to-noise ratio generally better for BN data than it is for

meeting recordings. Although BN recordings may contain speech that is overlapped with music, laughter, or

applause, in general, the detection of acoustic events and speakers tends to be more challenging for conference

meeting data than for BN data or CTS data.

In terms of linguistic content, in CTS data there are many more speech fragments, hesitations, restarts and

repairs, as well as back-channel confirmations to let each interlocutor know the other person is listening. The

first-person singular form is much more predominant in conversational speech. Another major difference from

BN is that some interjections such as ”uh-huh” and ”mhm” (meaning yes) and ”uh-uh” (meaning no) that

are considered as non-lexical items in BN. The word ”uhhuh,” which serves both to signal agreement and a

back-channel ”I’m listening,” accounts for about 1% of the running words in the CTS data. The most common

word in the English CTS data, I, accounts for almost 4% of all word occurrences, but only about 1% of the

word occurrences in BN [Matsoukas et al., 2006].
4The Lombard effect is the involuntary tendency of speakers to increase their vocal effort when speaking in loud noise to enhance the

audibility of their voice
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An extensive analysis of BN characteristics is reported in [Anguera, 2006] and a comparison of BN and

conference meeting data can be found in [Mirghafori and Wooters, 2006].

Main Algorithms

Automatic speech transcription (ASR) and speaker diarization rely on similar methods for segmentation and

clustering. Nonetheless, differences in their objectives leads to different needs, particularly concerning where

accuracy is most important. Automatic transcription requires accurate segment boundaries. Although the

rejection of non-speech segments is useful in order to minimize insertion of words and to save computation

time, it is important that the segment boundaries are located in non-informative zones such as silences or

breaths. Indeed, having a word cut by a boundary disturbs the transcription process and increases the word

error rate. In speaker diarization or tracking the error is computed by a time-metric which computes the error

rate frame-by-frame as the percentage of frames correctly identified. Therefore, fuzzy speaker boundaries

or not well detected are not specially harmful as in the ASR case. In typical diarization tasks, the number

of speakers in a given audio stream is not a priori known and must be estimated from data. This means that

the diarization system has to solve simultaneously two problems: finding the actual number of speakers and

pooling together speech from the same speaker. This problem is often cast into a model selection problem.

The number of speakers determines the complexity of the model in terms of number of parameters. The model

selection criterion chooses the model with the right complexity and thus the number of speakers. It can be

found several diarization approaches in the literature but main algorithms can be summarized in the following

points:

• Speech enhancement: Speech data can be optionally preprocessed using Wiener filtering [Wiener,

1949] to attenuate noise using, for example, [Adami et al., 2002]. The most common approach to multi

channel speaker diarization involves acoustic beamforming as initially proposed in [Anguera et al.,

2007a]. Many RT participants use the free and open-source acoustic beamforming tool kit known as

BeamformIt [Anguera, 2005] which consists of an enhanced delay-and-sum algorithm to correct miss

alignments due to the time-delay-of-arrival (TDOA) of speech to each microphone. A reference channel

is selected and the other channels are appropriately aligned and combined with a standard delay-and-sum

algorithm. The contribution made by each signal channel to the output is then dynamically weighted

according to its SNR or by using a cross-correlation based metric.

• Voice activity detection: The aim of this step is to find the regions of speech in the audio stream. A

simple solution that works satisfactorily on typical telephone-quality speech data, uses signal energy

to detect speech. Nevertheless, differences in the kind of speech, microphones or room configurations

may result in variable signal-to-noise ratios (SNRs) from one data to another and high differences on

energy levels can be observed in the non-speech parts of the signal. Therefore, the characterization and

classification of non-speech class becomes one of the most difficult due its natural variability. More

complex approaches apply maximum likelihood classification with Gaussian Mixture Models (GMMs)
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trained on labeled data for both speech and non-speech events. Viterbi algorithm is a common technique

to perform segmentation using the models to identify speech regions. A word or phone decoding step

may also be used for finer grain speech boundary detection. Usually non-speech frames detected are

discarded for further processing in the diarization algorithm.

• Modeling strategy: Each speaker can be modeled by a Gaussian mixture model (GMM) with diagonal

covariance matrices composed of several components. As is done in the speaker recognition task, larger

models with 2048 components have been proposed [Ben and et al., 2004], [Meignier and et al., 2001],
[Ajmera and Wooters, 2003]. In this case, a more robust estimation of the models despite the limited

amount of data per speaker can be obtained by performing the maximum a posteriori (MAP) adaptation

of a prior model [Gauvain and Lee, 1994]. On the other hand, using a single Gaussian with a full

covariance matrix for the modeling of a speaker also provides good results [Moh et al., 2003]. Some

approaches, as in [Ajmera and et al., 2004], make use of an automatic model complexity estimation

known as model selection criterion, i.e. inference on the suitable number of models’ parameters aiming

both to avoid manual parameter tuning and to obtain better estimate of the right number of actual

speakers.

• Link between segmentation and clustering: Segmentation can be done first, followed by clustering

with no connection between the two parts [Ben and et al., 2004], inspired from the work presented

in [Siegler and et al., 1997], [Chen and Gopalakrishnan, 1998]; alternatively, the segmentation and

clustering can be jointly optimized, via, for example, the iterative segmentation and clustering procedures

described in [Gauvain et al., 1998], [Meignier and et al., 2001], [Ajmera and Wooters, 2003]. A limitation

of the first method is that errors made in the segmentation step are not only difficult to correct later, but

can also degrade the performance of the subsequent clustering step.

• Clustering strategy: It relies either on an agglomerative clustering [Gauvain et al., 1998],[Ajmera and

Wooters, 2003] or on a divisive clustering method [Meignier and et al., 2001], [Tranter and Reynolds,

2004].

2.3.1 Speaker Segmentation

The aim of audio segmentation is to find time-stamps in the audio streams at changes between different

speakers or acoustic environments. To detect target speakers in an audio stream, it is best to segment the audio

into homogeneous regions according to changes in speaker identity, environmental conditions and channel

conditions. Furthermore, if the content is Broadcast News (BN), one would like to segment the audio stream

into homogeneous regions according to speaker identity or gender, environmental condition and channel

condition so that regions of different nature can be handled differently: e.g., regions of pure music and noise can

be rejected; also, one might design a separate recognition system for telephone speech. Since a same speaker

may appear multiple times in several conditions it is not easy to create a correct segmentation. Most of the

systems are based in the Bayesian Information Criterion (BIC) but there exist various segmentation algorithms
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proposed in the literature that can be categorized into three main categories [Chen and Gopalakrishnan, 1998]:

Energy and Decoder-guided, Model-based and Metric-based. The energy-based segmentation only places

boundaries at silence locations, which in general has no direct connection with the acoustic changes in the

data. Both the model-based and the metric-based segmentation schemes rely on thresholding of measurements

which lack stability and robustness. More importantly, they do not generalize to unseen acoustic conditions.

Energy-based Segmentation

Energy-based approaches have been widely used (e.g. see [Wegmann et al., 1999], [Wactlar et al., 1996]) and

are particularly easy to implement. Basically, silence periods in the input signal are detected, and segment

boundaries are hypothesized in such silence periods if some additional constraints are satisfied, like minimum

length of the silence period.

Energy or decoder-guided segmentation is based on the hypothesis most changes will occur between the

speakers silences though there is no clear relationship. Two main examples joins this category. Energy-based

systems which use the energy behavior to seek the points most likely to exist a speaker change [Kemp and

M. Schmidt, 2000] and decoder-guided systems which by means a recognition system find the points from the

detected silence regions [Tranter and Reynolds, 2004]. A constrain in the length of the silences is normally

imposed to avoid false alarms and other techniques are in charge of assess the exactly point of change. They

are oriented to speech recognition and their use in diarization or tracking is marginal.

It is reported in the literature that model-based and metric-based techniques outperform the simpler energy-

based algorithms [Kemp and M. Schmidt, 2000]. While model-based segmenters achieve very high level of

segment boundary precision, the metric-based segmenter performs better in terms of segment boundary recall
5.

Model-based Segmentation

In model-based segmentation [Wilcox et al., 1994], [Woodland et al., 1998], a set of models for different

acoustic classes is defined and trained prior to segmentation. The incoming audio stream is classified using

the models, usually imposing additional minimum class length constraints. Boundaries between the classes

are used as segment boundaries. Model-based segmentation assumes knowledge about the type of the audio

that is to be segmented thus specific models for a closed set of acoustic classes are trained “a priori“. Models

are applied to the audio stream to classify by Maximum Likelihood (ML) and to obtain the changing points

as the boundaries between classes. Speech, silence, female-male, target speakers and combinations of them

are some examples of such prior trained classes [Kubala and et al., 1997], [Gauvain et al., 1998], [Kemp and

M. Schmidt, 2000].
5The result of a segmentation can contain two possible types of error. Type-I-errors occur whether a true segment boundary has not

been detected (deletion). Type-II-errors occur if a found segment boundary does not correspond to a segment boundary in the reference
(false alarm, or segment insertion). The information retrieval community uses two closely related numbers, precision (PRC) and recall
(RCL).They are defined as RCL = number of correctly found boundaries

total number of boundaries and PRC = number of correctly found boundaries
number of hypothesized boundaries
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Model-based segmentation is the common point for algorithms which perform both segmentation and clustering

at the same time and without prior knowledge of the classes. The best systems in later NIST RT Evaluations

follow this strategy based on a ML decoding of Gaussian Mixture Models (GMM) [Ajmera and Wooters,

2003], [Wooters and Huygbregts, 2008].

Metric-based Segmentation

Metric based segmentation is the most applied technique up to date [Chen and Gopalakrishnan, 1998], [Cettolo

and Federico, 2000], [Chen et al., 2002], [Pietquin et al., 2002], [Lu and Zhang, 2002], [Ajmera and Wooters,

2003] and [Perez-Freire and C-Garcia-Mateo, 2004]. The audio stream is segmented at places where the

maximum of distances between neighboring windows appear. Therefore it is based on a computation of a

distance between two acoustic segments to discern the homogeneity of segments. A change point is detected

whenever the distance among two windows is over a threshold. Mainly, there are two different kind of distances:

The former is statistics-based distances which compares the sufficient statistics from two acoustics sets of

data. It relies on the computation of single mean and variance. The latter, called likelihood-based distances,

are based on the evaluation of the likelihood computed by models representing the data. Nevertheless these

distances are costly than the first one, they obtain better results than statistics-based methods. Following, the

most popular metrics we can find in the literature are briefly described:

• Bayesian Information Criterion (BIC): Probably is the most extensively used segmentation and

clustering metric due to its simplicity and effectiveness. Introduced by Schwarz in [Schwarz, 1973]

and [Schwarz, 1978] the BIC value gives a mind about how well the model suits the data. BIC is

a maximum-likelihood, asymptotically optimal, Bayesian model selection criterion penalized by the

model complexity. Consider a data set Z , and a set of parametric models {m1,m2, . . . ,mj} where mj

is a parametric model with parameters trained on the data Z. Model selection aims at finding the model

m̂ such that

m̂ = argmax
j
{Pr(mj |Z)} =

Pr(mj) Pr(Z|mj)

Pr(Z)
, (2.52)

which depends only on the maximization of Pr(Z|mj) since Pr(Z) and Pr(mj) are considered constant

and uniform prior, respectively. In case of parametric modeling, e.g., HMM/GMM, it is possible to

write:

Pr(Z|mj) =

∫
Pr(Z,θj |mj)dθj . (2.53)

This integral cannot be computed in closed form in the case of complex parametric models with hidden

variables (e.g., HMM/GMM). However, several approximations for 2.53 are possible, the most popular

one being the Bayesian Information Criterion (BIC) [Schwarz, 1978],
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Figure 2.23: Example of metric-based segmentation. The distance measure between two windows
is computed, e.g. by means Bayesian Information Criterion (BIC) and iterated along time by sliding
such windows. An algorithm post-processes the distances values and decides whether a speaker

change turn occurs.

BIC(mj) = log Pr(Z|θ̂j ,mj)−
pj
2

logN, (2.54)

where pj is the number of free parameters in the model mj , θ̂j is the MAP estimate of the model

computed from data Z, and N is the number of data samples. Hence models with larger number of

parameters will produce high values of log-likelihood but will be penalized by the second term in

equation 2.54. BIC is only exact in the asymptotic limit N →∞ which implies to tune the penalty term

according to an heuristic threshold.

For application on speaker turn detection, two different models are employed. Assume that there are two

neighboring segments and around time. The problem is to decide whether or and not a speaker change

point exists at tj . Let Z = X ∩ Y and NX , NY , NZ be the numbers of samples in segments X,Y and

Z, respectively. Obviously, NZ = NX +NY . The problem is formulated as a two hypothesis testing

problem. Under H0 there is no speaker change point at time tj . MLE is used to compute the parameters

of a Gaussian distribution that models the data samples in Z. Let us denote by θZ the parameters of the

Gaussian distribution, i.e., the mean vector µz and the full covariance matrix σZ . The log-likelihood

under H0 is
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L0 =

Nx∑
i=1

log Pr(zi|θZ) +

Nz∑
i=Nx+1

log Pr(zi|θZ) (2.55)

where zi ∈ <d, i = 1, 2, . . . , Nz which are assumed to be independent vector of acoustic features.

Under H1 there is a speaker change point at time tj . The segments X and Y are modeled by a

distinct multivariate Gaussian densities, whose parameters are denoted by θX and θY , respectively. The

log-likelihood L1 under H1 is given by

L1 =

Nx∑
i=1

log Pr(zi|θX) +

Nz∑
i=Nx+1

log Pr(zi|θY ) (2.56)

The BIC value variation is defined as:

∆BIC(Z) = L1 − L0 −
λ

2

(
d+

d(d+ 1)

2

)
︸ ︷︷ ︸

complexity

lnNz ≶ 0, (2.57)

where the term over the bracket is the penalty, which corresponds to the number of free parameters of a

multivariate Gaussian process in d dimensions and λ is the weight penalty factor (tuned ”a priori“ with

training data). If ∆BIC > 0, then time tj is considered to be a speaker change point. Otherwise, there

is no speaker change point at time tj . Such comparison is performed over the data by means a sliding

window, as illustrated in figure 2.11, leading to a set of BIC values for further processing, e.g., a second

BIC step for refinement [Perez-Freire and C-Garcia-Mateo, 2004]. Detection of acoustic changes clearly

depends on λ; as a matter of fact, performance of BIC-based systems is very sensitive to the selection

of this parameter. Another parameter that requires special attention is N , i.e. the size of the analysis

window, since reliability of Gaussian estimates depends directly on this value.

∆ BIC segmentation was first applied to speaker segmentation task in [Shaobing and Gopalakrishnan,

1998] and [Chen and Gopalakrishnan, 1998] using a single full covariance Gaussian for each neighboring

segment model. Most of the implementations make use of a growing window with inner variable length

segments to iteratively find the changing points [Shaobing and Gopalakrishnan, 1998], [Lu and Zhang,

2002], [Cettolo and Vescovi, 2003], [Barras and et al., 2004], [Zhu et al., 2008] and [Li and Schultz,

2009]. ∆BIC is computationally demanding compared to other statistics-based metrics but it has been

reported to perform better results. Some works propose a two-pass implementations through other

faster metrics as GLR and the use of BIC as a second-pass for refinement [Delacourt and Wellekens,

2000], [Vandecatseye and et al., 2004], [Kim and et al., 2005]. Other recent work handles the high

computational demanding by computation of ∆BIC just on potential speaker change points estimated

from a model of utterance durations [Kotti et al., 2008]. BIC has also been applied as a initial step to
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obtain data partitioning for a posterior integrated segmentation/clustering approach as in [Barras et al.,

2006]. Another BIC-variant metric, referred to as cross-BIC and introduced in [Anguera and Hernando,

2004], involves the computation of cross-likelihood: the likelihood of a first segment according to a

model tuned from the second segment and vice versa.

New approaches have been appeared last years which aim to avoid the dependency of ∆ BIC on the

overall sample size, i.e. avoid the penalty term estimation. In [Stafylakis et al., 2010] the authors

proposed a new variant of BIC, the segmental-BIC where each parameter of the model is penalized only

with its effective sample size. Using this approach, the dependency of the BIC formula on the overall

sample size is eliminated.

• Generalize Likelihood Ratio (GLR): GLR was first proposed for change detection in [Willsky and

Jones, 1976] and [Appel and Brandt, 1982]. Given a set of observations Z and a partition Z = X ∪ Y ,

H0 hypothesis considers that both segments are uttered by the same speaker and, consequently, a single

model, θZ , trained with the whole Z data segment represents better it. Whilst hypothesis H1 considers

each segment comes from a different speaker, therefore two disjoint models, trained with X and Y

respectively, θX and θY , represents better it. The test is defined as a likelihood ratio between such two

hypothesis, as follows:

GLR(X,Y ) =
Pr(H0|Z)

Pr(H1|X,Y )
=

L(Z|θZ)

L(X|θX)L(Y |θY )
. (2.58)

The GLR distance is stated as D(X,Y ) = − log(GLR(X,Y )) and setting a suitable threshold in

order to decide whether the speaker change occurs. GLR differs from the ∆BIC technique in that the

probability density functions of the models are unknown and they must to be estimated directly from the

segment data. Usually GLR is applied at the first stage of a two-step implementation, over-segmenting

the data [Gangadharaiah and et al., 2004], [Delacourt and Wellekens, 2000]. The most representative

algorithm of the GLR applied to the speaker segmentation task is DISTBIC [Delacourt and Kryze,

1999], [Delacourt and Wellekens, 2000]. DISTBIC makes use of a two-step segmentation by firstly

applying GLR followed by a BIC as refinement boundaries step. Furthermore, a penalized GLR was

proposed in [Liu and Kubala, 1999] in order to adapt the criterion taking into account the amount of

training data available into the two neighbor segments.

• Gish distance: is a likelihood-based metric obtained as a variation to GLR introduced in [Gish and

Schmidt, 1994]. GLR is defined as follows,

Dgish(i, j) = −N
2

log
( |Si|α

|Sj |1−α/|W |
)
, (2.59)

where Si and Sj represent the sample covariance matrices for each segment , α =
Ni

Ni +Nj
and W is
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their sample weighted average W =
Ni

Ni +Nj
Si +

Nj
Ni +Nj

Sj .

The work in [Kemp and M. Schmidt, 2000] reports a comparison of this distance against other metrics

in the speaker segmentation task.

• Kullback-Leibler (KL): Introduced by Siegler [Siegler and et al., 1997] is an efficient and fast metric

with acceptable results. Given two random distributions X,Y K-L distance between distributions is

defined as,

KL(X,Y ) = EX(log
PX
PY

), (2.60)

with Ex is the expected value with respect to the pdf of X. Assuming two Gaussian distributions it can

be written in function of their covariance and means [Campbell, 1997]:

KL(X,Y ) =
1

2
Tr
[
(CX − CY )(C−1Y − C

−1
X )
]

+ (2.61)

+Tr
[
(C−1Y − C

−1
X )(µX − µY )(µX − µY )T

]
A symmetric alternative of KL distance has proved to be more popular in speaker diarization when used

to characterize the similarity of two audio segments,

KL2(X,Y ) = KL(X,Y ) +KL(Y,X), (2.62)

being X ,Y the pdf distribution of the samples into two acoustic segments. A distance between such

distribution can be obtained applying 2.62 as in [Delacourt and Wellekens, 2000] and [Zochova and

Radova, 2005].

• Information Change Rate (ICR): is a newly introduced distance metric that has shown promise in a

speaker diarization task [Vijayasenan et al., 2007], [Han and Narayanan, 2008] and [Vijayasenan et

al., 2009]. The Information Change Rate (ICR), or entropy can be used to characterize the similarity

of two neighboring speech segments determining the variation in terms of information that would be

obtained by merging them. Unlike the measures outlined above, the ICR similarity is not based on a

model of each segment but on the distance between segments in a space of relevance variables, with

maximum mutual information or minimum entropy. The ICR approach is computationally efficient

and, in [Han and Narayanan, 2008], ICR is shown to be more robust to data source variation than a

BIC-based distance.
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2.3.2 Speaker Clustering

Both speaker diarization and speaker tracking systems refers to those systems that perform a segmentation of

the input audio and then a speaker clustering, joining the created segments into homogeneous groups, or in the

tracking approach, to the corresponding target speakers. Most of them make use of a same strategy. It defines

some sort of distance between segments and iteratively shares out them amongst the clusters minimizing

such distance. Therefore speaker clustering can be applied as a second step following the prior segmentation

provided by a speaker segmentation algorithm. Such a kind of approaches are known as sequential systems or

step-by-step systems.

However, with such an approach to diarization, there is no provision for splitting segments which contain more

than a single speaker, and thus performance of diarization algorithms relies on a segmentation of sufficiently

high quality. Alternative approaches combine clustering with iterative resegmentation, hence facilitating

the introduction of missing speaker turns, correcting early errors, mostly missed speaker turns from the

segmentation step. Most state-of-the-art speaker diarization engines unify the segmentation and clustering

tasks into one step. In these systems, segmentation and clustering are performed hand-in-hand in one loop

by means a Viterbi realignment. During realignment, the audio stream is resegmented based on the current

clustering hypothesis before the models are retrained on the new segmentation. Several iterations are usually

performed taking into account all data instead of local information as sequential system makes. Most state-

of-the-art systems employ some variations on this strategy. Furthermore, the diarization algorithms include

mechanisms to estimate the right number of classes (total number of speakers) since no prior knowledge about

speakers is given. Most of the clustering distances employed are based on distances presented in previous

section 2.3.1. Different segments are usually represented using HMM/GMM models with EM training or

MAP adaptation and a Viterbi algorithm is used to reassign all the data into the closest newly-created models.

Such processing is sometimes performed several times for the frame assignments to stabilize. Moreover, a

minimum assignment duration, according to the estimated minimum length of any given speaker turn, is

usually enforced. Such a minimum duration turn avoids an unrealistic assignment of very small consecutive

segments to different speaker models.

In a wide view, the most popular speaker clustering technique is agglomerative hierarchical clustering (AHC).

It can be categorized into top-down or bottom-up clustering depending on the initial strategy.

The hierarchical algorithms reach the optimum number of clusters by iterative processing of the different

clusters obtained by merging or splitting existing ones. The details of how this strategy works (for the

bottom-up alternative) are shown in Algorithm 1. In other words, using given speech segments as initial

clusters, AHC recursively merges/splits the closest pair of clusters. The recursive process is stopped when it is

decided that extra cluster merging/splitting does not improve clustering performance any more.

• Bottom-up clustering Coming from the Pattern Classification field [Duda and Hart, 1973] is by far

the mostly used approach for speaker clustering. Such a method was initially proposed by ICSI for a

bottom-up system [Ajmera et al., 2002] and [Ajmera and Wooters, 2003] and has subsequently been

adopted by many others , [Luque and Hernando, 2008a], [van Leeuwen and Konečný, 2008], [Bozonnet
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Algorithm 1 Agglomerative Hierarchical Clustering (AHC), bottom-up alternative.

Require: {xi}, i = 1 . . . , n̂ : speech segments
Ĉi, i = 1, . . . , n̂ : initial clusters

Ensure: Ci, i = 1, . . . , n : finally remaining clusters
1: Ĉi ← {xi}, i = 1, . . . , n̂
2: repeat
3: i, j ← argmin d(Ĉk, Ĉl), k, l = 1, . . . , n̂, k 6= l
4: merge Ĉi and Ĉj
5: n̂← n̂− 1
6: until no more extra cluster merging is needed
7: return Ci, i = 1, . . . , n

Figure 2.24: Two main approaches to clustering schemes.

et al., 2010a], [Friedland et al., 2011]. It usually defines a distance matrix associated with the current

clustering and it merges the closest pair iteratively until the stopping criterion is reached. Combinations

of the previous distances in the segmentation and merging stages are assessed in the recent literature and

newly distances adapted to the multi-Gaussian case have been introduced. For example, [Beigi and et

al., 1998] proposed a matrix distance between all Gaussian pairs among two models where Euclidean,

Mahalanobis and KL distances are benchmarked. The work in [Rougi and et al., 2006] proposes a

distance between two GMM based on KL by defining an average of the minimum KL distances from

each Gaussian pairs between such two models,

d(θ1,θ2) =

K1∑
i=1

W1(i)
K2

min
j=1

KL(N1(i), N2(j)), (2.63)

where N1(i) is the ith Gaussian from the model θ1, N2(j) is the ith Gaussian from the second model

θ2; K1 and K2 are the number of Gaussian components per each model respectively and W1(i) is the

ith Gaussian weight from model 1. The strategy was oriented to perform on-line speaker clustering by

reducing the computation of the distance just taking into account a few number of components. Most of

the systems with access to the whole recording, off-line systems, propose some threshold in the distance

as stopping criterion as in [Ben and et al., 2004] and [Sankar and et al., 1995]. In [Sankar and et al.,
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1995] and [Malegaonkar and et al., 2006] the symmetric relative entropy distance [Juang and Rabiner,

1985] is used for speaker clustering as follow:

d(X,Y ) =
1

2

[
log Pr(X|θ1)− log Pr(X|θ2) + x+ log Pr(Y |θ1)− log Pr(Y |θ2)

]
A particular interest have been focus on the systems which obtain the speakers models by means speaker

adaptation. They use a Universal Background Model (UBM) and MAP adaptation to derive speakers

models from each cluster. It have been used in [Ben and et al., 2004], [Moraru et al., 2005], [Barras

and et al., 2004], [Zhu and et al., 2005] and other work has been defined distances depending of the

adaptation models as in [Reynolds, 1998] which defines the distance:

d(X,Y ) = log
Pr(X|UBM)

Pr(X|θ2UBM)
+ log

Pr(Y |UBM)

Pr(Y |θ1UBM)
(2.64)

where the speakers models θ1UBM ,θ1UBM are MAP-adapted through UBM model, see section 2.2.2.

Finally, some other work integrates segmentation with clustering by using model-based schemes and

BIC for the stopping criterion as in [Ajmera and Wooters, 2003], [Wooters and et al., 2004] where

after an initial segmentation iteratively decode the audio based on ML and adaptative GMM models.

They also introduce the modeling of the temporal dynamics of the GMM observations by imposing a

minimum duration of the speaker turn length.

• Top-down clustering Top-down algorithms were initially proposed by LIA [Meignier and et al., 2001],
[Meignier et al., 2006] as used in their latest system [Bozonnet et al., 2010a]. In [Meignier and et al.,

2001] and [Anguera and Hernando, 2004] an initial cluster is trained with all acoustic data available.

Iterative decoding of MAP adapted models is performed where new clusters are split using a likelihood

metric averaged over a window. They start from one cluster and iteratively split it until the stopping

criterion is reached in the same way as previous systems. The top-down approach first models all data

with a single speaker model and successively adds new models iteratively one-by-one, with interleaved

Viterbi realignment and adaptation. Segments attributed to any one of these new models are marked as

labeled. Stopping criteria similar to those employed in bottom-up systems may be used to terminate

the process or it can continue until no more relevant unlabeled segments with which to train new

speaker models remain. The use of this strategy has a low presence in the speaker clustering literature
[Johnson and Woodland, 1998], [Tranter and Reynolds, 2004]. In [Johnson and Woodland, 1998] MLLR

adaptation and the Arithmetic Harmonic Sphericity (AHS) [Bimbot and Mathan, 1993] are proposed.

With AHS as:
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D(X,Y ) = log
[
Tr(σY σ

−1
X ) · Tr(σY σ−1X )

]
− 2 log(d) (2.65)

• Other clustering approaches: There exist other systems that do not fit in the previous classification.

The list includes a variety of techniques such as Vector Quantization [Mori and Nakagawa, 2001] which

proposes the VQ distortion as a distance. Genetic algorithm are proposed in [Tsai and Wang, 2006] and

Self-Organizing Maps (SOM) [Kohonen, 1990] are proposed for speaker clustering in [Lapidot, 2003].

Some newly approaches combine eigenvoices and speaker factors for segmentation and clustering in
[Castaldo et al., 2008] and spectral clustering [Keshet and Bengio, 2008] has been also applied to

speaker diarization in [Iso, 2010] and [Ning et al., 2010].

A recent alternative approach is the Information Bottleneck (IB) principle. IB is inspired from rate-

distortion theory [Cover and Thomas, 1991] and it is based on an information-theoretic framework.

Work reported in [Vijayasenan et al., 2007] and [Vijayasenan et al., 2009] introduce two suitable

methods: agglomerative information bottleneck (aIB) and sequential information bottleneck (sIB) both

of them also bottom-up in nature. IB is completely non parametric and its results have been shown to

be comparable to those of state-of-the-art parametric systems, with significant savings in computation.

Clustering is based on minimizing the mutual information I(X,C), where X represents the speech

segment set at each iteration and C represents the clustering in the classes,i.e. speakers. At the same

time, aIB tries to maximize mutual information I(Y,C), which measures the mutual dependence of

relevant variables Y and the clustering/partition C. Only a single global GMM is tuned for the full

audio stream, in order to represent the relevant variable Y and to compute mutual information I(Y,C)

in new space of relevant variables defined by the GMM components. The approach aims at minimizing

the mutual information between successive clusterings and the actual segment set X while preserving as

much information as possible from the relevant variables Y , i.e. maximizing I(Y,C). This corresponds

to the maximization w.r.t the stochastic mapping Pr(C|X) of the objective function:

F = I(Y,C)− 1

β
I(X,C), (2.66)

where β is a Lagrange multiplier.

There are other approaches have become popular in speaker diarization by the end of this decade most of

them based on Bayesian machine learning [Mackay, 2003]. One of them is Variational Bayes (VB) which

refers to a set of methods, the most popular of which being the mean-field VB, that approximate the

desired quantities (e.g. marginal likelihoods, posterior probabilities, predictive densities) by bounding

the marginal likelihood of the model from below. The use of VB in speaker diarization has been

pioneered by [Valente and Wellekens, 2004] and has been refined in [Valente et al., 2010] and applied to

i-vectors in [Kenny et al., 2010]. In [Fox et al., 2011] describes a Bayesian non-parametric approach to

speaker diarization that builds on the hierarchical Dirichlet process hidden Markov model (HDP-HMM)
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[Teh et al., 2004]. VB is a general purpose (approximate) inference method and its use is not limited to

finite mixture models, on the contrary, it can be applied to nonparametric models, too (e.g. Dirichlet

Process Mixture Models. In [Kenny and Castaldo, 2009] VB is combined successfully with eigenvoice

modeling, described in [Kenny, 2008], for the speaker diarization of telephone conversations. However

these systems still consider classical Viterbi decoding for the classification. A full review of Bayesian

methods applied to diarization can be found in [Stafylakis1 and Katsouros, 2011].

2.3.3 Evaluation Metrics

Regarding diarization and tracking tasks, the main metric used to evaluate either systems or algorithms is the

Diarization Error Rate (DER).

2.3.3.1 Diarization Error Rate

The main metric that is used for speaker diarization experiments is the Diarization Error Rate (DER) as

described and used by NIST in the RT evaluations (NIST Fall Rich Transcription on meetings 2006 Evaluation

Plan 2006). It is measured as the fraction of time that is not attributed correctly to a speaker or to non-speech.

To measure it, a script names MD-eval-v12.pl (NIST MD-eval-v21 DER evaluation script 2006), developed

by NIST, was used. As per the definition of the task, the system hypothesis diarization output does not

need to identify the speakers by name or definite ID, therefore the ID tags assigned to the speakers in both

the hypothesis and the reference segmentation do not need to be the same. This is unlike the non-speech

tags, which are marked as non labeled gaps between two speaker segments, and therefore do implicitly need

to be identified. The evaluation script first does an optimum one-to-one mapping of all speaker label ID

between hypothesis and reference files. This allows the scoring of different ID tags between the two files. The

Diarization Error Rate score is computed as

DER =
S∑
s=1

dur(s) · (max(Nref(s), Nhyp(s))−Ncorrect(s)) (2.67)

where S is the total number of speaker segments where both reference and hypothesis files contain the same

speaker/s pair/s. It is obtained by collapsing together the hypothesis and reference speaker turns. The terms

Nref(s) and Nsys(s) indicate the number of speaker speaking in segment s, and Ncorrect(s) indicates the number

of speakers that speak in segment s and have been correctly matched between reference and hypothesis.

Segments labeled as non-speech are considered to contain 0 speakers. When all speakers/non-speech in a

segment are correctly matched the error for that segment is 0. The DER error can be decomposed into the

errors coming from the different sources, which are:

• Speaker error: percentage of scored time that a speaker ID is assigned to the wrong speaker. This type

of error does not account for speakers in overlap not detected or any error coming from non-speech

frames. It can be written as,
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ESpkr =

∑S
s=1 dur(s) · (min(Nref(s), Nhyp(s))−Ncorrect(s))

Tscore
(2.68)

where T score =
∑S
s dur(s) ·Nref(s), is the total scoring time, in the denominator in equation 2.67.

• False alarm speech: percentage of scored time that a hypothesized speaker is labeled as a non-speech in

the reference. It can be formulated as,

EFA =

∑S
s=1 dur(s)(̇Nhyp(s)−Nref(s)

)
Tscore

∀
(
Nhyp(s)−Nref(s)) > 0 (2.69)

computed only over segments where the reference segment is labeled as non-speech.

• Missed speech: percentage of scored time that a hypothesized non-speech segment corresponds to a

reference speaker segment. It can be expressed as,

EMISS =

∑S
s=1 dur(s)(̇Nref(s)−Nhyp(s)

)
Tscore

∀
(
Nref(s)−Nhyp(s)) > 0 (2.70)

computed only over segments where the hypothesis segment is labeled as non-speech.

• Overlap speaker: percentage of scored time that some of the multiple speakers in a segment do not get

assigned to any speaker. This errors usually fuses either into the EMISS or EFA, depending on whether it

is the reference or the hypothesis containing non assigned speakers. If multiple speakers appear in both

the reference and the hypothesis the error produced belongs to ESpkr.

Given all possible errors one can rewrite equation 2.67 as

DER = ESpkr + EMISS + EFA + Eoverlap (2.71)

When evaluating performance, a collar around every reference speaker turn can be defined which accounts

for inexactitudes in the labeling of the data. It was estimated by NIST that a 250ms collar could account

for all these differences. When there is people overlapping each other in the recording it is stated so in the

reference file, with as many as 5 speaker turns being assigned to the same time instant. As pointed out in

the denominator in equation 2.67, the total evaluated time includes the overlaps. Errors produced when the

system does not detect any or some of the multiple speakers in overlap count as missed speaker errors. Once
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the performance is obtained for each individual meeting excerpt, the time weighted average is done among all

meetings in a given set to obtain an overall average score. The scored time is the one used for such weighting,

as it indicates the total (overlapped speaker included) time that has been evaluated in each excerpt.

2.4 Speaker Information Fusion

All those works that address the speaker recognition issue by fusing several cues of information, such as

multi-modality or multi-sources approaches has a common goal: search for getting all the useful information

from the environment and, of course, the fusion of such information in an intelligent manner. It is the inevitable

direction driven by the fact that the more knowledge the recognition system has, the more the performance it

obtains.

2.4.1 Multi-microphone approaches

Speaker diarization and tracking using multi channel information have been addressed in recent work and

it have been proved to be useful [Pardo et al., 2007; Pardo et al., 2012] and [Anguera et al., 2007a]. In a

smart-room environment multiple microphones are usually available for processing and their use can aid the

global identification system. As example, it is clear that the position of the speaker across the time is a feature

that can help to discriminate between different speakers since same spatial position can not be shared for

different speakers. Estimates of inter-channel delay may be used not only for delay-and-sum beamforming of

multiple microphone channels, but also for speaker localization. If we assume that speakers do not move, or

there exists a tracking algorithm of their positions, then estimates of speaker location may thus be used as

alternative features, which have nowadays become extremely popular. In this line, the computation of the time

delay of arrival (TDOA) or the direction of arrival (DOA) between channels are the techniques most cited to

estimate speaker location. The combination of the MFCC features and the TDOA have reported promising

results in [Ajmera and et al., 2004], [Pardo et al., 2007] and [Barra-Chicote et al., 2011].

The Weighted-Delay-and-Sum (W-D&S) technique [Flanagan et al., 1985] is one of the simplest beamforming

techniques but still gives a very good performance. It is based on the fact that applying different phase weights

to the input channels the main lobe of the directivity pattern can be steered to a desired location, where the

acoustic input comes from. It differs from the simpler D&S beamformer in that an independent weight is

applied to each of the channels before summing them. The principle of operation of W-D&S can be seen in

figure 2.25. If we assume the distance between the speech source and the microphones is far enough we can

hypothesize that the speech wave arriving to each microphone is flat. Therefore, the difference between the

input signals, only taking into account the wave path and without taking care about channel distortion, is a

time delay of arrival due the different positions of the microphones with regard to the source. So if we estimate

the time τ , see figure 2.25, we could synchronize two different input signal in order to enhance the speaker

information and reduce the additive white noise.
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Figure 2.25: Weighted-Delay-and-Sum algorithm block diagram

Given the signals delivered by N microphones, xi[n] with i = 0 . . . N − 1 (where n indicates time steps)

if we know their individual relative delays d(0, i) (called Time Delay of Arrival, TDOA) with respect to a

common reference microphone x0 , we can obtain the enhanced signal as follows,

y(n) = x0[n] +

N−1∑
i=1

Wixi[n− d(0, i)]. (2.72)

By adding together the aligned signals the usable speech adds together and the ambient noise (assuming it is

random and has a similar probability function) will be reduced. Using D&S, according to [Flanagan et al.,

1985], we can obtain up to a 3dB SNR improvement each time that we double the number of microphones.

In order to deal with acoustic conditions into a meeting room, like as reverberation or noise due far-field

microphone conditions, the generalized cross correlation with phase transform (GCC-PHAT) method [Knapp

and Carter, 1976]; [T. Gustafsson and B. Rao and M. Trivedi, 2003] has reported robust performance. Given

two signals xi(n) and xj(n) the GCC-PHAT is defined as follows,

ĜPHATij
(f) =

Xi(f)
[
Xj(f)

]∗∣∣Xi(f)
[
Xj(f)

]∗∣∣ , (2.73)

where Xi(f) and Xj(f) are the Fourier transforms of the two signals and []∗ denotes the complex conjugate.

The TDOA for two microphones is estimated as:

d̂PHATij
= arg max

d
R̂PHAT (dij) (2.74)
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where R̂PHATij
(d) is the inverse Fourier transform of ĜPHATij

(f), the Fourier Transform of the estimated

cross correlation phase. The end-best maximum value of R̂PHATij (d) are computed for each frame and

the best sequence across all the meeting is finally selected for the beamforming according to a continuity

maximization algorithm.

TDOA features, without relying on the room setup i.e. without knowledge about the microphone locations,

are usually mixed, in the context of NIST evaluation, with MFCC features at weighted log-likelihood level.

Several evaluation systems make use of those two feature streams as in [Pardo et al., 2007; Wooters and

Huygbregts, 2008; van Leeuwen and Konečný, 2008; Friedland et al., 2011; Barra-Chicote et al., 2011] where

TDOA-MFCC combination showed to be very effective in reducing the diarization error. Recent work in
[Vijayasenan et al., 2011] investigates the integration of the Modulation Spectrum and the frequency domain

linear prediction (FDLP) features together with MFCC and TDOA in the space of relevance variables of the

agglomerative information bottleneck framework.

For the segmentation task a speaker tracking approach is proposed in [Lathoud and et al., 2002] using only

between channel differences. [Koh and et al., 2008] submitted a novel diarization system to NIST RT 2007

and 2009 Evaluation with excellent results. It was based on a first segmentation and clustering by means DOA

features and followed a spectral stage to ensure purity in the obtained segments. Also, the RT Evaluations

have shown the common use of speech enhancement techniques. In the most recent NIST RT evaluation, in

2009, most of participants used estimates of inter-channel delay both for beamforming and as features. The

success of these systems in NIST RT evaluations would seem to support their use.

Other implementations are focused on the source separation handling with the overlapping speech issue,

an inherent characteristic of conversational speech. In [Anliker and et al., 2006] a two steps strategy was

presented for a two-microphone system in a mobile environment. The proposed system makes use of the

feedback between a blind source separation algorithm based on the degenerate unmixing estimation technique

(DUET) [Yilmaz and Rickard, 2004] and a speaker tracking algorithm based on various distances.

Application to Overlap Detection

Speaker overlap is a commonly occurring event in human conversation. Shriberg et al. in [Shriberg et al.,

2001] reported this phenomenon is frequently observable not only in meetings including several people, but

also in telephone dialogues. Overlaps can stem from various situations. For instance, in meeting domain,

listeners sometimes try to interrupt the speaker in order to grab floor or encourage his talk with backchannel

sounds or words, e.g some interjections such as ”uh-huh” and ”mhm” (meaning yes) and ”uh-uh” (meaning

no), the word ”uhhuh,” which serves both to signal agreement and a back-channel ”I’m listening,’. Some

overlaps, obviously, originate accidentally. Their amount is related with the spontaneity and formal nature of

the discourse.

Overlapping speech has been identified as one of the main challenges for automatic human language technolo-

gies [Shriberg, 2005], speaker diarization being no exception. The regions where more than one speaker is

active, missed speech errors will be incurred and, given the high performance of some state-of-the-art systems,



2.4 Speaker Information Fusion 67

Figure 2.26: Examples of turn and speaker durations in the presence of overlapped speech and
silences.

this can be a substantial fraction of the overall diarization error. Such a common drawback of conventional

diarization systems is mainly due most systems are only able to assign one speaker label per segment. Hence

in cases when a segment contains simultaneous speech, this implicitly leads to missed speech errors. In

addition, the effect of overlapped speech in diarization degrades speaker clustering and modeling [Otterson

and Ostendorf, 2007] since speaker models could be corrupted if simultaneous speech is included into their

training data, also known as cluster purity.

Several algorithms have been published in the literature that aims to detect overlap speech as a result of

multi-speaker speech activity detection on personal close-talking microphones [Pfau et al., 2001; Laskowski

et al., 2004; Wrigley et al., 2005; Laskowski and Schultz, 2006; Nwe et al., 2008]. In order to deal with

crosstalk,[Pfau et al., 2001] applied cross-correlation analysis to detect speaker overlaps, and the system

presented in [Laskowski et al., 2004] used joint maximum cross-correlation exclusively. [Wrigley et al., 2005]

proposes a speech overlap model included in segmentation step into an ergodic hidden Markov model (HMM)

framework and discussed a large set of suitable features. Among the most discriminating features were kurtosis

and cross-correlation metrics.

The speaker diarization approach discussed in [van Leeuwen and Huijbregts, 2006] employed an initial

diarization output to select training data for building a combined Gaussian mixture model (GMM) for every

pair of previously detected speakers. These new speaker-pair GMMs were then integrated within the original

single-speaker models into a new HMM and the meeting data was resegmented again. Even though some

overlap was detected in this way, it did not lead to a reduction of diarization error. On the other hand, assuming

that speaker overlap is likely to occur around speaker-turn points, the training of an ”ad hoc” overlap model in

one diarization pass and its application for the second pass improved results on the NIST RT data [Huijbregts

et al., 2009]. The HMM-based system presented in [Boakye et al., 2008a] and [Boakye et al., 2008c] utilized

various spectral features (cepstrum, entropy, modulation spectrogram, etc.) for detecting overlaps on single

distant channel. Detected overlapping speech was subsequently processed in speaker diarization.

A few algorithms for speaker overlap detection make use of time delays between microphone-pairs. [G.



68 Speaker Recognition

Lathoud and I.A. McCowan, 2003] suggested to segment the audio according to speakers using microphone-

pair time delays and showed the possibility to detect two simultaneous talkers by modeling short-term turns

for each speaker combination. In [Luque et al., 2008b], TDOAs features are employed to segment speakers

aiming to obtain an initial segmentation with highly stable speakers positions along time. Such a segmentation

provides the starting point for a classical ergodic-HMM clustering. In the same way, they suggests the ability

of TDOAs to detect overlapped speech.

In [Zelenák et al., 2011], the authors propose the use of more spatial information in the overlap detection

stage previous to the speaker diarization system itself. Spatial features are extracted from the Generalized

Cross-Correlation with Phase Transform weighting (GCC-PHAT) [T. Gustafsson and B. Rao and M. Trivedi,

2003] from all channel pairs, and consist of the main peak magnitude of the cross-correlation, the rate of

change of the TDOA and a dispersion ratio that measures the energy dispersed in the neighborhood of the

main peak in the GCC-PHAT [Zelenák et al., 2010]. Features obtained per each microphone-pair are projected

by means a PCA and compared with a multilayer perceptron (MLP) fusion, whose output classification score

is used as an extra spatial feature.

2.4.2 AudioVisual Diarization

There exists a variety of work which describes systems performing localization and identification fusing

several cues such as audio and video sources. In [Bernardin and Stiefelhagen, 2007] an audio-visual algorithm

is described. It fuses the information coming asynchronously from the sources at the higher level. The speaker

ID are accumulated across the time and they are associated with the speaker localization creating a dynamic

histogram of the confidence of the cues. In this manner they get increased the system’s global confidence in

the set of target identities. Busso et al. [Busso and et al., 2005] presented a smart meeting room application

by which the location of the participants is extracted from audio and video recordings. They are fused to an

overall location estimation. The microphone array is steered towards the estimated position by beamforming

techniques and the speaking identity are obtained from the steered audio signal. In the speaker identification

and verification tasks a great variety of work related the audio-video approach can also be found. They fuses

several classes of features as lips features, cross-modal features, voice spectral, etc. at different level and they

use different techniques for this purpose such as DBN, Evolving Connectionist Systems (ECOS) [Kasabov,

1973], Neural Networks (NN), Particle and Kalman Filters. Some examples in [Zhang and et al., 2004], [Whu

and et al., 2005], [Chetty and Wagner, 2007]

Focusing on speaker diarization and tracking, the work in [Noulas and Krose, 2007] address the on-line

diarization problem by means a system based on audio and video modalities. The Dynamic Bayesian

Networks (DBN), an extension of factorial hidden Markov models (fHMM) [Ghahramani and Jordan, 1997], a

generalization of the HMM models, and mutual information (MI) [Peng et al., 2005] between the audio-visual

cues are applied, creating evolved complexity models as more data become available. Another use of DBN

is proposed in [Noulas et al., 2011] as an audiovisual framework. The factorial HMM arises by forming a

dynamic Bayesian belief network composed of several layers. Each of the layers has independent dynamics
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but the final observation vector depends upon the state in each of the layers.

In [Salah et al., 2008a] the authors implemented a person tracking system within a smart-room environment

at UPC equipped with various cameras and microphone sensors and in which the participants are able to

move around freely in the room. Several technologies are employed. For visual-based identification, face

recognition, based on the work in [Luque et al., 2006b], is used to identify persons initially as they enter into

the smart room and a visual tracking method based on probabilistic occupancy maps [Fleuret et al., 2008] is

extended and adapted to the experimental setting at the room. For audio-based localization and identification,

algorithms based on GCC-PHAT and AHC with HMM [Luque and Hernando, 2008a] are employed. The

information of audio and video sources is also effectively combined, when acoustic information is available,

employing Particle Filtering (PF) [Gordon et al., 1993] [Carpenter et al., 1997] strategies for active speaker

tracking [Nickel et al., 2005b] or audiovisual multi-person tracking [Gatica-Perez et al., 2007].

Anyway, few articles discus joint audiovisual diarization. The work in [Friedland et al., 2009a] for multiple-

camera and [Friedland et al., 2009b] using only a single, low-resolution overview camera has been first

attempts to deal with joint audiovisual diarization. The algorithm relies on very few assumptions and is able to

cope with an arbitrary amount of cameras and subframes. Most importantly, as a result of training a combined

audiovisual model, the authors found that speaker diarization algorithms can result in speaker localization as

side information. This way joint audiovisual speaker diarization can answer the question who spoken when

and from where.

2.4.3 Multi-decision approaches

Like in other pattern classification tasks, combining information from multiple sources of evidence, a technique

called fusion, has been widely applied in speaker recognition. System or component combination is often

reported in the literature as an effective means for improving performance in many speech processing

applications [Chen et al., 1997; Slomka et al., 1998; Rodrguez-Liares et al., 2003; Farrús et al., 2006;

Hernando et al., 2006]

In speaker identification and verification, typically, a number of different feature sets are first extracted from the

speech signal; then an individual classifier is used for each feature set, note that several models per speaker are

stored for such purpose; following that the sub-scores or decisions are combined. It is also possible to obtain

fusion through modeling the same features using different classifier architectures, feature normalizations,

or training sets [Brummer et al., 2007]. A general belief is that successful fusion system should combine

as independent features as possible low-level spectral features, prosodic features and high-level features.

But improvement can also be obtained by fusion of different low-level spectral features (e.g. MFCCs and

LPCCs) and different classifiers for them [Brummer et al., 2007; Campbell et al., 2006b]. Fusing dependent

(correlated) classifiers can enhance the robustness of the score due to variance reduction [Poh and Bengio,

2004].

Recently, some improvements to fusion methodology have been achieved by integrating auxiliary side

information, also known as quality measures, into the fusion process [Ferrer et al., 2008; Kryszczuk et al.,
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2007]. Unlike the traditional methods where the fusion system is trained on development data and kept fixed

during run-time, the idea in side-information fusion is to adapt the fusion on each test case. Signal-to-noise

ratio (SNR) [Ferrer et al., 2008; Kryszczuk et al., 2007] and nonnativeness score of the test segment [Ferrer et

al., 2008] have been used as the auxiliary side information, for instance.

A theoretically elegant technique for optimizing the fusion weights based on logistic regression has been

proposed in [Brümmer and Preez, 2006; Brummer et al., 2007]. An implementation of the method is available

in the Fusion and Calibration [Brummer, 2005]. By considering outputs from the different classifiers as another

random variable, score vector, a “backend“ classifier can be built on top of the individual classifiers [Abad et

al., 2011; Abad et al., 2010].

In addition to this, in the speaker diarization and tracking tasks, very few studies related to speaker diarization

have been reported in recent years. Some of the combination strategies proposed consist of applying different

algorithms/components sequentially, based on the segmentation outputs of the previous steps in order to

refine boundaries (referred to as hybridization or piped systems in [Meignier et al., 2006]. In [Vijayasenan et

al., 2008] the authors combine two different algorithms, aIB and sIB based on the Information Bottleneck

framework. In [Bozonnet et al., 2010b], the best components of two different speaker diarization systems

implemented by two different French laboratories (LIUM and IRIT) are merged and/or used sequentially, which

leads to a performance gain compared to results from individual systems. An original approach is proposed in
[Gupta et al., 2007], based on a real system combination. Here, a couple of systems uniquely differentiated by

their input features (parametrization based on Gaussianized against non-Gaussianized MFCCs) are combined

for the speaker diarization of phone calls conversations.
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Speaker Identification and Verification





Chapter 3

Speaker Identification in Meetings:
The CHIL Project and
CLEAR Evaluations

This chapter covers the description of the UPC person identification systems submitted to the CLEAR

2006 and 2007 evaluations [Luque et al., 2006b; Luque and Hernando, 2008a]. In addition, it also

presents the work developed on technology demonstrations at the UPC meeting room concerned to speaker

recognition, inside the framework of the CHIL (Computers in the Human Interaction Loop) project. The CHIL

project [Casas and Stiefelhagen, 2005] is an Integrated Project (IP 506909) funded by the European Union

under its 6th framework program. The project started on January 1st, 2004 and had a duration of four years.

Rather than requiring user attention to operate machines, CHIL services attempt to understand human activities

and interactions to provide helpful services, aiming to radically change the way we use computers. Instead

than expecting a human attending to technology, CHIL attempts to develop computer assistants that attend

to human activities and interactions or even assess human’s intentions. To achieve this goal, machines must

understand the human context and activities likewise human being does. Computers must adapt to and learn

from the humans’ interests, activities, goals and aspirations. This requires machines to better perceive and

understand all the human communication signals including speech, facial expressions, attention, emotion,

gestures, and many more. The team sets out to study the technical, social and ethical questions that will enable

this next generation of computing in a responsible manner. The CHIL results were disseminated and made

available to a wide community of interested researchers.

CLEAR was meant to bring together projects and researchers working on related technologies in order to

establish a common international evaluation framework in this field. CLEAR evaluations were supported by the

European Integrated project CHIL and the US National Institute of Standards and Technology (NIST). Spring

2006 and 2007 CLEAR evaluations and workshops were an international effort to evaluate systems designed
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from the team members of the CHIL consortium to recognize events, activities, and their relationships in

interaction scenarios. The CLEAR evaluations consist on a set of audiovisual recordings which were collected

between years 2004 to 2006. The database is composed of several speakers in various smart rooms from

partners of the CHIL consortium. The tentative tasks to be addressed in CLEAR included the following:

• Person Tracking (2D and 3D, audio-only, video-only, multimodal)

• Face Tracking

• Vehicle Tracking

• Person Identification (audio-only, video-only, multimodal)

• Head Pose Estimation (2D, 3D)

• Acoustic Event Detection and Classification

Specifically, CLEAR PID (Person Identification) evaluations campaign were designed to study issues causing

important degradations in highly interactive scenarios like occurs in meetings or conferences. One of the main

focus along evaluations was the identification errors due the amount of speaker data available for training

speaker models as a function of available testing data. In most of the real situations, there not exists enough

data available to compute an accurate estimation of the person model. In such a situation the performance

degradation is a common feature of most of the systems. Robustness against that issue has become a “tour

de force“ in the person identification community. For instance, if available data for testing reduces from 5

seconds to 1 second, the systems show a big drop in correct identification rates whilst a human being could

recognize voices with high accuracy just by half of a second .

Far-field sensor conditions of CLEAR evaluations also bring to researchers the chance of study another of

the common problems of performance degradation. CLEAR database is composed of a set of audiovisual

recordings coming from a wide variety of sensors: head-mounted and wall-mounted microphones, microphone

arrays, table-top microphones, wall-mounted cameras and pan-tilt-zoom cameras are some examples.

On one hand, such a quantity of sensors give to researchers an opportunity to study a great variety of issues.

For instance, the systems performance due to signal degradation by acquisition in multi-path propagation in

audio modality; and due occlusion or tiny images in image modality, respectively. On the other hand, studying

the benefit of the redundant information from multiple input sources brings to them a wide field to explore

more complexes and ambitious approaches. In such a situation, the system implementation could be improved

by means of multi-microphone processing techniques to deal with channel and noise distortion or, through

multimodal approaches, fusing video and audio modalities.

Furthermore, CLEAR data was collected by different CHIL partners from several smart-rooms. It also brings

an opportunity to study system performance degradation imputable to different room conditions or, taking into

account the international nature of the evaluation, due the English speaker accent variability among sites.
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(a) (b) (c)

(d) (e)

Figure 3.1: Sample camera recordings from the different smart-room of the partners of the CHIL
project. Seminars (a) AIT, Greece, (b) UPC, Spain and (c) IBM, USA. All of them corresponds to
interactive seminars. (d) AIT-irst, Italy and (e) UKA, Germany which corresponds to non interactive

seminars where the lecture monopolizes the session.

The UPC person identification systems presented to CLEAR evaluations were composed of different ap-

proaches. They include a single microphone identification system, the use of combined microphone inputs

by means signal enhancement or multi-decision approaches and, finally, the use of audiovisual information

through the integration of audio and video data in a multimodal system.

3.1 The CHIL project: CLEAR Evaluations in Speaker Identification

The project CHIL [chil, 2006] is an Integrated Project (IP 506909) funded by the European Union under

its 6th framework program. The project started on January 1st, 2004 and had a planned duration of four

years. The CHIL team is a consortium of internationally renowned research labs in Europe and the US, who

collaborate to bring friendlier and more helpful computing services to society. The CHIL team is a consortium

of internationally renowned research labs in Europe and the US, who collaborate to bring friendlier and more

helpful computing services to society. The research consortium includes 15 leading research laboratories from

9 countries representing today’s state of the art in multimodal and perceptual user interface technologies in

European Union and the US.

Requiring user attention to operate machines is the usual way we actually interact with computers. Nonetheless,

CHIL services attempt to understand human activities and interactions to provide helpful services implicitly

and unobtrusively. Considerable human attention is expended in operating and attending to computers, and

humans are forced to spend precious time on fighting technological artifacts, rather than on human interaction



76 Speaker Identification in Meetings: The CHIL Project and CLEAR Evaluations

and communication. CHIL aims to radically change the way we use computers. Rather than expecting a

human to attend to technology, CHIL attempts to develop computer assistants that attend to human activities,

interactions, and intentions. Instead of reacting only to explicit user requests, such assistants pro actively

provide services by observing the implicit human request or need, much like a personal butler would. To

achieve this goal, machines must understand the human context and activities better; they must adapt to and

learn from the humans’ interests, activities, goals and aspirations. This requires machines to better perceive

and understand all the human communication signals including speech, facial expressions, attention, emotion,

gestures, and many more.

Inside the framework of CHIL project, the UPC has built the smart-room, a room equipped with multiple

cameras and microphones, with the purpose of investigating the video and audio perception of the computer

systems. In a smart room, the typical situation is to have one or more cameras and several microphones. UPC’s

smart-room is an intelligent space designed as a meeting-room with a table in the center and chairs around it.

The configuration of the UPC’s smart-room is depicted in figure A.1 and a more accurate description is given in

appendix A. Among others, there are several audio-visual sensors (cameras and microphones), synchronization

and acquisition equipments, working computers, and a video projector. The smart-room is the indispensable

installation for the UPC research groups that work on multimodal interfaces. The acquired audio-visual

signals allow both developing the technologies of audio and video analysis, and making demonstration of the

technology that can offer specific services in the configuration of meeting rooms or teaching rooms.

Perceptually aware interfaces can gather relevant information to recognize, model and interpret human activity,

behavior, actions and intentions. The main goal is to give to the computer systems awareness of the activity

that is going on in the room and to interact with human beings as reaction to a request or interactions among

them. in conclusion, if computers know the environment they can interact with us in the same manner we

interact with each other. The speech-related technologies like speech and speaker recognition are part of the

fundamentals of the analysis of the human activity in the smart-rooms. At present, robust speech recognition

systems, that use a signal from a far-field microphone, are investigated in order to avoid bothering people wear

cables or close-talk microphones. On the other hand, the video technologies analyze the presence, localization

and movements of the peoples, face recognition, gesture detection, postures and attention tracking, in order to

classify the events, activities, and relationships. The detection technologies, classification and recognition

based on multiple sensors, like audio and visual localization, person identification based on speech and face,

activity detection based on acoustics or images, can increase the robustness of existing systems.

In order to be in accordance with ambitious goals of CHIL, a series of international technology evaluations

were supported by the CHIL project. Computer perception and awareness is achieved by means perceptual

components based on state-of-the-art technologies. Aiming to evaluate performance of such technologies,

several evaluation campaigns were conducted during CHIL project. Among them, person identification

evaluations are of our interest inside the scope of this PhD thesis.

CLEAR data evaluation is composed of a set of audiovisual recordings of seminars and of highly-interactive

small working-group. These recordings were collected by the CHIL consortium for the CLEAR 2006 and
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Figure 3.2: CLEAR participants in both 2006 and 2007 person identification evaluation campaigns.

2007 evaluations. The recordings were done according to the ”CHIL Room Setup” specification [Casas and

Stiefelhagen, 2005] matching features as far-field conditions. A complete recordings description can be found

in [Moreau et al., 2008; Mostefa and et al., 2006; Mostefa and et al., 2007].

In order to evaluate how the duration of the training data has effect upon the performance of the system, two

training conditions have been considered: 15 and 30 seconds of training segment duration. Furthermore, test

segments of different durations: 1, 2, 5, 10 and 20 seconds, were employed during algorithm development

and testing stage. For CLEAR 2006 evaluation, a total of 26 personal identities were used to compile the

recognition experiments. In CLEAR 2007 database, such a number reached a total of 28 personal identities

and 108 identification trials per speaker (of different durations) were evaluated. The person identification

(PID) task consists in determining the identity of a person by means speech segments and/or video segments.

It was assumed that all the possible speakers are known, i.e. a classical ”closed-set” person identification task.

Far-field conditions have been considered for both modalities, i.e. corner cameras for video and Mark III

microphone array for audio. Audio recordings are composed of several hammerfall channels in WAV or RAW

format sampled at 44kHz with 24 or 16 resolution bits and 64 channels from MarkIII array in Smartflow

format [smartflow, 2002], sampled at 44kHz with 24 resolution bits. From each seminar, belonging to the

CLEAR database, just one audio signal from microphone number 4 of the Mark III array is selected to

benchmark systems’ implementation based on single channel whereas rest of channels are allowed to be

used for development purposes. Each audio signal is manually split into excerpts which theoretically contain

information about just one speaker. These excerpts are merged to form the final testing segments of 1, 5, 10

and 20 seconds (see 3.2) and training segments of 15 and 30 seconds.

For video modality, video is composed of 4 or 5 video sequences. It is recorded in compressed JPEG format,
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Number of segments

CLEAR PID 2006 CLEAR PID 2007

Segment Duration Development Evaluation Development Evaluation

1 sec 390 613 560 2240

5 sec 182 0 112 448

10 sec 78 411 56 224

20 sec 26 178 28 112

Total 676 1202 756 3024

Table 3.1: Number of segments composing the data employed in algorithm development as well as
for each test condition in CLEAR 2006 and 2007 PID evaluation, respectively.

with frame-rates of 15, 25 and 30 frames per second and at different resolutions depending on the recording.

In video task, four fixed position cameras are continuously monitoring the scene. All frames in the 1/5/10/20

seconds segments and all synchronous camera views can be used jointly. Furthermore, the various cameras’

information can be fused with other modalities to find out the identity of the concerned person. In order to

search faces to be identified, a set of labels is provided along with the position of the bounding box per each

person’s face in the scene. These labels are supplied each 1 second. The face bounding boxes are linearly

interpolated to estimate their position in intermediate frames. To help this process, an extra set of labels is

provided, giving the position of both eyes of each individual each 200 ms.

3.2 The UPC Speaker Identification System

Different approaches are described in this section. Audio, video and multimodal person identification

techniques are described and the official results obtained in CLEAR 2006 and 2007 evaluation campaigns are

also reported. The CLEAR person identification evaluation is a closed-set task, that is, all the possible speakers

are known ”a priori”. In addition, matched training and testing conditions and far-field data acquisition are

assumed, as well as no “a priori“ knowledge about room environment.

For audio person identification, the mono-microphone algorithm is based on a short-term estimation of the

speech spectrum using Frequency Filtering (FF) parameters over the filter bank energies, described in [Nadeu

et al., 1997]. Such parameters are modeled by Gaussian Mixture Models (GMM) [Reynolds, 1995] with

diagonal covariance matrix. This approach is used as a baseline system and we will refer it to as: Single

Distant Microphone (SDM) approach.

In addition, two multi-microphone approaches are studied that try to take advantage of the information diversity.

The former applies a Delay and Sum [Flanagan et al., 1985] algorithm with the purpose to obtain an enhanced

and noise filtered version of the speech wave. The latter profits the multi channel diversity fusing, through a

voting scheme, three identical SDM classifiers.
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In the case of visual identification, an appearance-based technique is used as response to the low quality of

images. Face images of the same individual are gathered into groups. Frontal images within a group are jointly

compared to the models for identification. These models are composed of several images representative of

the individual. The joint recognition enhances the performance of a face recognition algorithm applied on

single images. Individual decisions are based on a PCA [Kirby and L.Sirovic, 1990] approach given that the

variability of the users’ appearance is assumed to be low and so are the lighting variations.

Multimodal recognition involves the combination of two or more human traits like voice, face, fingerprints, iris,

hand geometry, etc. to achieve better performance than using monomodal recognition [Bolle and et al., 2004],
[R.Brunelli and Falavigna, 1995]. In the CLEAR approach submitted, a multimodal score fusion technique,

Matcher Weighting with equalized scores, was applied improving the correct identification rate in most of the

evaluation conditions.

3.2.1 Audio Person Identification

Below we describe the main features of the UPC acoustic speaker identification system. The three audio

approaches submitted to CLEAR 2006 and 2007 evaluations have in common the same characteristics about

parametrization and speaker modeling, but they differ in the way how they take benefit of the multi-microphone

information. Firstly, the single distant microphone system (SDM) approach is summarized. In next subsection,

the signal enhanced approach is described in which beamforming technique is applied on a set of audio

channels to obtain an improved version of the signal to apply in the identification process. Finally, we describe

a fusion scheme composed of three SDM classifiers and a simple fusion decision rule in order to judge the

person identity.

Following speech wave processing is shared among the three approaches: The audio data provided is decimated

from 44.1KHz to 16KHz sampling rate. The audio is analyzed in frames of 30 milliseconds at a rate of

10 milliseconds. Then, each frame window is processed subtracting the mean amplitude (Cepstral Mean

Subtraction) and no pre-emphasis filter is applied. A Hamming window is applied to each frame and a

short-time frequency estimation based on FFT is computed. Finally, the FFT amplitudes are averaged in a 30

overlapped triangular filters, with central frequencies and bandwidths defined according to the Mel scale. All

test are conducted in matching conditions.

Baseline: Single Distant Microphone System

The SDM approach is based on a short-term estimation of the spectrum energy in several sub-bands. The

scheme we present follow the classical procedure applied to obtain the Mel-Frequency Cepstral Coefficients

(MFCC), see section 2.2.1, however in this approach instead of using the Discrete Cosine Transform, such as

usual in the MFCC procedure [Davis and Mermelstein, 1980], the log filter-bank energies are filtered by a

linear and second order filter. This technique is known as Frequency Filtering (FF) [Nadeu et al., 1997]. The

filter selected to this implementation has the following transform frequency response:
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H(z) = z − z−1, (3.1)

and it is applied over the log of the filter-bank energies. The shape of this filter allow a best classification due it

emphasizes regions of the spectrum with high speaker information yielding more discriminative information.

A vector of 30 FF coefficients are extracted from the speech signal every 10ms. The choice of this kind of

parameters is based on the fact that the use of the FF instead of the classic MFCC has shown promising

results in both speech and speaker recognition tasks [Nadeu et al., 2001]. This features have exhibit both

computational efficiency and robustness against noise than the MFCC. In addition, as it can be seen as a filter

in the frequency domain, they have frequency meaning. By means this notion, FF features allows the use of

frequency techniques as masking, noise subtraction and so forth. Furthermore, other interesting characteristics

can be found: Such as they are uncorrelated, computationally simpler than MFCCs and it does not decrease

clean speech recognition results [Macho and Nadeu, 1999]. Summarizing, the FF filter technique must be seen

as a liftering operation performed in the spectral domain equalizing the variance of the cepstral coefficients.

Aiming to capture the temporal evolution of FF parameters, the first and second time derivatives of the features,

so called ∆ and ∆-∆ coefficients [Furui, 1986], are appended to a basic static feature vector yielding to a

vector of dimension 90. Note that the first and the last coefficients of the FF output of each frame contain

absolute energy [Nadeu et al., 1995], so despite of they may carry much noise, they are also employed to

compute model estimation as well as its velocity and acceleration parameters.

Finally, in order to compute the likelihood between the training and the testing speech, for each speaker that

the system has to recognize, a Gaussian Mixture Model (GMM) [Reynolds, 1995] of the probability density

function of the parameter vectors is estimated. A weighted sum of size 64 Gaussians is applied in this approach.

Given the collection of training vectors for one speaker, maximum likelihood (ML) model parameters are

estimated through the iterative Expectation-Maximization (EM) algorithm. It is well known, the sensitive

dependence of the number of EM-iterations in the conditions of few amount of training data. Hence, to avoid

over-training of the models, 10 iterations are considered enough for parameter convergence in both training

and testing conditions.

In the testing stage of the speaker identification system, a set of FF parameters X = {xi} is computed from

testing speech signal, in the same way as explained above. The likelihood that each client model performs

over the vector X is computed and the speaker exhibiting the largest likelihood is chosen,

s = argmax
j

{
L
(
X|λj

)}
, (3.2)

where s is the recognized speaker and L is the likelihood function from a linear combination of M unimodal

Gaussian of dimension D. L
(
X|λj

)
thereby is the likelihood that the vector X has generated by the speaker

with the model λj .
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Speech Beamforming

The Delay-and-Sum beamforming technique [Flanagan et al., 1985] is a simple yet effective way to enhance

an input signal when it has been recorded on more than one microphone. It does not assume any information

about the position of the microphones or their placement.

We can hypothesize that the speech wave arriving to each microphone is flat whether we assume the distance

between the speech source and the microphones is enough far. Therefore the difference between the input

signals, only taking into account the wave path and without take care about channel distortion, is the delay of

arrival due the different positions of the microphones with regard to the source. So if we estimate the delay

between two microphones we could synchronize two different input signal with the aim of enhancing speaker

information and reduce additive white noise.

Hence, given the signals captured by N microphones, xi[n] with i = 0 . . . N − 1 (where n indicates time

steps) and their individual relative delays d(0, i) (TDOA) with respect to a common reference microphone x0 ,

we can obtain the enhanced signal by adding together the aligned signals by means equation:

y(n) = x0[n] +
N−1∑
i=1

Wixi[n− d(0, i)]. (3.3)

In order to estimate the TDOA between two segments from two microphones we have used the generalized

cross correlation with phase transform (GCC-PHAT) method [Knapp and Carter, 1976] as explained in previous

chapter in section 2.4.1.

The complete sentence is employed for TDOA estimation. TDOA values are computed as the maximum value

of R̂PHATij
(d) in both testing and enrollment stages. This estimation is obtained through different window

size depending upon duration of the testing speech (1s/5s/10s/20s). During training stage, the same scheme

is applied and TDOA values are computed from the training sets of 15 and 30 seconds, respectively. It is

worth to mention that differences in the window size in each TDOA estimation are due to use of all speech

data available to compute it. The weighting factor Wi, which is applied to each microphone to compute the

beamformed signal, is fixed to the inverse of the number of channels taking into account. It relies on the

assumption that each microphone has the same frequency response. A total of 20 microphones are mixed to

perform the acoustic delay-and-sum, selecting 1 out 3 channels from the MarkIII array.

Multi-microphone Decision Fusion

In this approach a multiple distant microphone (MDM) system is implemented by fusing three SDM classifiers,

described at the beginning of this section, working on three different microphones. The microphones number:

4, 34 and 60, chosen from the total of 64 mics of the MarkIII array, are employed. The three systems estimate

independently the speaker identification and, by means a simple voting rule, a final ID decision is taken. The

figure 3.3 depicts the approach implementation.

Although the system identification methodology applied to each microphone is essentially the same as in

the SDM case, in some cases the three classifiers do not agree about the detected speaker. That is due to the
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Figure 3.3: Once the individual decisions of each classifier are performed, a simple voting rule
is in charge to estimate the correct ID among the three different identifications provided by each

individual SDM system

fact that the input speech wave processed per each of the systems are not the same. Speech input on each

microphone depends upon the microphone position with respect to the speaker. Thus different mic channels

can suffer different degradation caused by reverberation effects into the room or by multi-path propagation. In

order to decide a sole ID in function of each classifier output, a simple fusion of decisions is applied based on

the following voting rule,




if Di �= Dj ∨ i, j �= i select the central microphone ID

if Di = Dj for some i �= j select Di

(3.4)

where Di corresponds to the decision of the i-th SDM classifier. An ID is decided whether two or more of the

individual systems agree about it. Otherwise, the central microphone decision is chosen, e.g., in the case all

three classifier decide different ID outputs. Such a selection of the central microphone decision is motivated

by its better single performance during the SID development experiments.

3.2.2 Video Person Identification

Recognition is stand-alone, taking detection and tracking for granted, i.e., the system is semi-automatic.

A specific technique has been developed for face recognition in smart environments. The technique takes

advantage of the continuous monitoring of the scenario and combines the information of several images to

perform the recognition. Appearance based face recognition techniques are used given that the scenario does

not ensure high quality images. As the visual identification evaluation is a close-set identification task, models

for all individuals in the database are created off-line using two sets of video segments: the former consists on

one segment of 15 seconds per each individual in the database, whilst the latter consists on one segment of 30

seconds per individual.
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The image based system works with groups of face images of the same individual. For each test segment, face

images of the same individual are gathered into a group. Then, for each group, the system compares such

images with the model of the person1.

Briefly, let xi = ~x1, ~x2, ..., ~xM be a group ofM probe images of the same person, and let Cj = C1, C2, ..., CS

be the different models or classes stored in the (local or global) model database where S is the number of

individual models. Each model Cj contains Nj images, yjn = ~y j1 , ~y
j
2 , . . . ~y

j
Nj

where Nj may be different

for every class. The group was assigned to the class resulting in a highest likelihood value. Likelihood was

computed based upon a PCA approach as in [Kirby and L.Sirovic, 1990]. This way, the decision function,

which computes similarity among the probe images and the model images, is the Euclidean distance between

the projections of ~xi and ~yjn on the subspace spanned by the first eigenvectors of the training data covariance

matrix:

d(~xi, ~y
j
n) = ‖WT~xi −WT~y jn‖, (3.5)

where WT is the projection matrix. The XM2VTS database [Messer and et al., 1999] was used as training

data for estimating the projection matrix and the first 400 eigenvectors are preserved. Due to the images being

recorded continuously using the corner cameras, face images can not be ensured to be all frontal. Mixing

frontal and non-frontal faces in the same models can be quite a problem for face recognition systems. To avoid

this situation, eye coordinates are used to determine the face pose for each image. Only frontal faces were used

for identification. Note that models per each person were automatically generated, without human intervention.

All images for a given individual in the training intervals are candidates to form part of the model. Candidate

face bounding boxes were projected on the subspace spanned by the first eigenvectors of the training data

covariance matrix WT . The resulting vector was added to the model only if it was different enough from the

vectors already present in the model.

3.2.3 AudioVisual Person Identification

The modality integration is addressed on the example of a smart room environment aiming to perform person

identification by combining acoustic features and 2D face images. Results from various sensory modalities,

speech and faces, are performed both individually and jointly with the purpose to compare the different

approaches.

In a multimodal biometric system that uses several characteristics, fusion is possible at three different levels:

feature extraction level, matching score level or decision level. Fusion at the feature extraction level combines

different biometric features in the recognition process, while decision level fusion performs logical operations

upon the monomodal system decisions to reach a final resolution. Score level fusion matches the individual

scores of different recognition systems to obtain a single multimodal score. Fusion at the matching score level

is usually preferred by most of the systems [Hernando et al., 2006; Farrús et al., 2006].
1For further details about the image person identification in CLEAR evaluations approach see the works in [Luque et al., 2006b;

Luque et al., 2006a].
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Matching score level fusion is a two-step process: normalization and fusion itself [Fox and et al., 2003],
[Indovina and et al., 2003], [Lucey and Chen, 2003], [Yuan et al., 2004]. Since monomodal scores are usually

non-homogeneous, the normalization process transforms the different scores of each monomodal system into a

comparable range of values. One conventional affine normalization technique is z-score, that transforms the

scores into a distribution with zero mean and unitary variance [Lucey and Chen, 2003],[Yuan et al., 2004].

After normalization, the converted scores are combined in the fusion process in order to obtain a single

multimodal score. Product and sum are the most straightforward fusion methods. Other fusion methods

are min-score and max-score that choose the minimum and the maximum of the monomodal scores as the

multimodal score.

Normalization and Fusion Techniques

Scores must be normalized before being fused. One of the most conventional normalization methods is z-score

(ZS), which normalizes the global mean and variance of the scores of a monomodal biometric. Denoting a raw

matching score as a from the set S = {s1, s2, . . . , sn} of all the original monomodal biometric scores, the

z-score normalized biometric xnZS is calculated according to following equation,

xnZS =
sn − µS
σS

, (3.6)

where µS is the statistical mean of set S and σS is its standard deviation.

Once score normalized are obtained, histogram equalization (HE) is applied aiming to equalize the variances

of two monomodal biometrics, looking for reducing the non linear effects typically introduced by speech

systems [de la Torre et al., 2005; Farrús et al., 2007]. Histogram equalization (HE) is a general non parametric

method to match the cumulative distribution function (CDF) of some given data to a reference distribution.

HE is a widely used non linear method designed originally for the enhancement of images. HE employs a

monotonic, non linear mapping which reassigns values from input in order to control the shape of the output

values in order to match a desired distribution. Hence, the objective of HE is to find a non linear transformation

to reduce the mismatch of the statistics of two signals. For instance, in [Pelecanos and Sridharan, 2001;

Skosan and Mashao, 2006] this concept was applied to the acoustic features, instead of scores, to improve the

robustness of a speaker verification system.

In this case, the HE technique matches the histogram obtained from the speaker verification scores and the

histogram obtained from the face identification scores, both evaluated over the training data. The designed

equalization takes as a reference the histogram of the scores with the best accuracy, which can be expected to

have lower separate variances, in order to obtain a bigger variance reduction.

The figure 3.4 gives a visual explanation of HE technique. N intervals with the same probability are assigned

in the distributions of both signals. Each interval in the reference distribution, x ∈ [qi, qi+1[ , is represented by

(xi, F (xi)). Where xi is the average of the scores and F (xi) is the maximum cumulative distribution value:
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xi =

ki∑
j=1

xij

ki
, F (xi) =

Ki

M
, (3.7)

where xij are the scores in the interval, ki is the number of scores in the interval, Ki is the number of data

in the interval [q0, qi+1[ , and M is the total amount of data. All the scores in each interval of the source

distributions are assigned to the corresponding interval in the reference distribution. F (xi) sets the boundaries

[q∗i , q
∗
i+1[ of the intervals in the distribution to be equalized. These boundaries limit the interval of values that

fulfills the following condition: F (qi) ≤ F (y) < F (qi+1) , and all the values of the source signal lying in the

interval [q∗i , q
∗
i+1[ will be transformed to their corresponding xi value.

In Matcher Weighting (MW) fusion of each monomodal score is weighted by a factor proportional to the

recognition rate, so that the weights for more accurate classifiers are higher than those of less accurate matchers.

When using the Identification Error Rates (IER) the weighting factor for every biometric is proportional to the

inverse of its IER [Indovina and et al., 2003]. Denoting wm and em the weighting factor and the IER for the

m-th biometric xm and M the number of biometrics, the fused score u is expressed as

u =
M∑
m=1

wmxm, (3.8)

where,

wm =

1

em
M∑
m=1

1

em

. (3.9)

Figure 3.4: Example of histogram equalization.
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Before carrying out the fusion process, HE is applied over all the previously obtained monomodal scores.

Since the best recognition results have been achieved in the acoustic recognition experiments, the histogram of

the voice scores has been taken as a reference in the histogram equalization. After the equalization process, the

weighting factors for both acoustic and face scores are calculated by means corresponding Identification Error

Rates, as in equation 3.9. Z-score normalization is also applied, and final fused scores are obtained through

equation 3.8.

3.3 Experiments

In this section we summarize the official results for the UPC person identification systems for both CLEAR

2006 and 2007 evaluations. We examine the differences between the two evaluations as well as between the

single and multiple microphone approaches and the audiovisual approach. The metric selected to benchmark

the performance of the algorithms is the percentage of correctly recognized people from test segments.

Table 3.2 shows the correct identification rate for both audio and video modalities and the fusion identification

rate obtained depending on the time duration of the test files. Related to acoustic identification task, it can be

seen that the results, in general, are better as the segments length increases. For different test segment duration,

the recognition rate increases as more data is used to match against speaker models. Overall, using the 30

seconds training segments, an improvement of up to 8% in the recognition rate is obtained with respect to

the case where 15 seconds segments are used. For the face identification evaluation, in general, these results

show a low performance of the system. Results for the training set B (using a segment of 30s to generate the

models) show only a slight increase of performance with respect to training set A. It can also be seen that the

results improve slowly as the segments length increases.

The reasons for this low performance in video approach are manifold: First of all, the system uses only frontal

faces to generate the models and for recognition. However, most of the face views found in the recordings

are non frontal. Another reason for the low percentage is the low quality of the images. The need to cover

all the space in the room with four cameras results in small images, where the person’s faces are tiny. In the

worst cases, face sizes are only 13× 13 pixels. In addition, poor illumination conditions in some recordings

causes cameras to work at large diaphragm apertures. As a result, the depth of field is very shallow and several

images are out of focus. Other recordings present interlacing errors. The figure 3.5 shows several examples of

all these problems. Another problem is that, due to the fact that face bounding boxes are interpolated from the

1 second labels, our system is, in many cases, considering as “frontal“ faces that are not really frontal ones.

The figures (a), (b), (c) and (e) are examples of this situation.

This leads us to conclude that, under these conditions, a more elaborated video technique should be used. For

instance, non-frontal face views should be taken into account, as most of the views found in the recordings are

non-frontal. Even in this case, person identification using face detection alone is probably not going to give

good results in these conditions. Identification should be performed combining more features other than those

obtained from face bounding-boxes.
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CLEAR 2006 % ID rates in TRAIN A % ID rates in TRAIN B

Duration (sec) No. Segments Speech Video A/V Fusion Speech Video A/V Fusion

1 613 75.0 20.2 77.3 84.0 19.6 87.8

5 411 89.3 21.4 92.0 97.1 22.9 97.3

10 289 88.2 22.5 93.4 97.6 25.6 98.6

20 178 92.1 23.6 97.7 98.8 27.0 100

Table 3.2: Percentage of correct identification for both audio and video unimodal modalities and
multimodal fusion in CLEAR 2006 evaluation data. First column shows the duration of test segments
in seconds. Second one shows the number of tested segments. Train A and B corresponds to training

sets of 15 seconds and 30, respectively

Figure 3.5: Examples of face bounding boxes taken from several recordings and its relative sizes.
Smallest image (c) is 13 × 13 pixels and larger image (a) is 29 × 47 pixels. Images are taken from
the training segments of the AIT, IBM, ITC, UPC and UKA recordings. Images in the test sequences

are similar.

CLEAR 2007 % ID rates in TRAIN A % ID rates in TRAIN B

Duration (sec) SDM’06 SDM’07 Fusion D&S SDM’06 SDM’07 Fusion D&S

1 75.0 78.6 79.6 65.8 84.01 83.3 85.6 72.2

5 89.3 92.9 92.2 85.7 97.08 95.3 96.2 89.5

10 88.2 96.0 95.1 83.9 96.19 98.7 97.8 87.5

20 92.1 98.2 97.3 91.1 97.19 99.1 99.1 92.9

Table 3.3: Percentage of correct identification in both TRAIN A and TRAIN B conditions just for
audio systems. The table shows the rates obtained for the single microphone (SDM’07), Decision
Fusion and Beamforming (D&S) systems. In addition, results from the single channel system from

previous evaluation (SDM’06) are also provided.

For the audiovisual approach, determination of the weighting factors applied to multimodal fusion has been

estimated by using the training signals of 30 seconds as a development set. First 15 seconds have been used for

training and the other 15 seconds for testing. The recognition results obtained in the evaluation for multimodal

identification can also be seen in the table 3.2. Fusion results of both systems are also shown for the different
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Figure 3.6: Normalized Speaker Error from SDM in all test conditions. We can see the error mostly
appears between the speakers of the same recording conditions.

test durations. Overall, fusion correct identification rates are higher than the monomodal rates, outperforming

those obtained with both monomodal systems.

Note that microphone number 4 from the MarkIII array was selected for testing in the SDM algorithm with the

purpose of comparing among CLEAR evaluations. Table 3.3 shows the correct identification rate for both

2006 and 2007 CLEAR Speaker Identification Evaluation using the single microphone approach. In addition,

we also can see the identification rates obtained by the two multi-microphone implementations described in

the previous section.

Some improvements have been performed on the system since the CLEAR’06 Evaluation, leading to better

results than the ones presented in that. It can be seen that the results, in general, are better as the segments

length increases. The tables show that for the different test segment duration the recognition rate increases

when more data is used to test the speaker models. Overall, using the 30 seconds training segments, an

improvement of up to 6% in the recognition rate is obtained with respect to the case where 15 seconds

segments are used.

On one hand, as we can see in the tables 3.3 the delay-and-sum system is not well adapted to the task. The low

performance of this implementation may be due to a not accurate estimation of the TDOA values, nonetheless

all systems presented in the evaluation based on any kind of signal beamforming neither did not show good

results. By contrast, the same technique was applied in the Rich Transcription Evaluation-07 [Luque et al.,

2006b] obtaining good results in the diarization task. Other possibility to this low performance could be the

background noise and the reverberation effects from each room setup. The recordings was collected from 5
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Figure 3.7: Percentage of correct identification of the SDM approach in function of the number
of short-term coefficients and the kind of parametrization. The 30s training set and the 1s test

condition from the Evaluation data 07 were employed to draw the figure

different sites, which could aid the MFCC+GMM system to discriminate between the recorded speakers from

different room environments.

On the other hand, the decision fusion system seems, even with a very simple voting rule, to exploit the

redundant information from the multi channel system. This technique achieves the best results in the tests of

1s using any enrollment set and, in general, in all the conditions of the training set of 30s.

The figure 3.6 depicts the error behavior between speakers from the SDM implementation, a total of 348 over

3024 ID experiments. The boxes around the main diagonal enclose speakers from the same site, i.e., recordings

with the same room conditions. As we had commented above, we can see the distribution of speakers errors is

focused over the main diagonal. The picture shows that the system in general confuses the speakers from the

same site. This kind of behavior could be motivated not only by the room conditions, such as room setup and

geometry or the microphone response for the data acquisition, but also by accent and dialect of the speakers.

Therefore, the speech parameters seem also modeling the room environment as well as the speaker features.

Some post-evaluation experiments focusing on the signal parametrization, that is, a comparison between fre-

quency filtering and cepstrum-based parameters, are also provided. The figure 3.7 draws correct identification

rates as function of number of parameters extracted from speech wave. The figure 3.7 reports the results in the

TRAIN A and 1s test condition as function of number of these parameters. We can see that the selection of

30 dimensional static parameters vector employed in the evaluation system, value which was tuned through

CLEAR development data, is so close to the optimum one, 26. Furthermore, the figure 3.7 also shows the
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Figure 3.8: Percentage of correct identification of the SDM approach using 4 frequency filters. The
former is the same employed approach than in the SDM submitted system: H(z) = z − z−1. The

others are H(z) = 1 − αz−1 as function of α value.

performance achieved by MFCC coefficients. The performance of the MFCC parametrization is always below

the FF result curve independently of number of parameters fixed for each couple of FF and MFCC compared.

Moreover, a comparison between several frequency filters is also provided in the figure 3.8. The filter applied

to outputs of the filter-bank energies in the evaluation, z − z−1, is compared to first-order filter 1− αz−1 for

different values of alpha, that is, we are weighing differently in the quefrency dimension. As the development

experiments had showed, the best behavior is obtained by the second-order filter.

3.4 Conclusions

In this chapter several techniques for acoustic and visual person identification into smart room environments

has been described. The approaches were submitted to the international CLEAR evaluations.

Several audio approaches based on Gaussian mixture models and frequency filtering coefficients has been

employed to perform speaker recognition, as well as two multi-microphone systems based on acoustic

beamforming and a fusion rule at decision level. For video, an approach based on joint identification over

groups of images of a same individual using a PCA approach has been followed.

For the acoustic identification task, the results show that the presented approach is well adapted to the

conditions of the evaluation. For the visual identification task, the low quality of the images results in a low

performance of the system. In this case, results suggest that identification should be performed combining

more features other than frontal face bounding-boxes.

To improve the obtained results, a multimodal score fusion technique was suggested and implemented. Matcher

weighting join histogram equalized scores are applied to monomodal scores of both audio and video systems.

The multimodal results show that this technique leads to improvement of the recognition rate in all train/test

conditions compared to individual modalities rates.

It is worth to mention that UPC acoustic evaluation [Luque and Hernando, 2008a] results in CLEAR evaluation

2007 ranked the best among the different approaches submitted by other participants [Stiefelhagen et al.,
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2007]. The UPC audio result shows that GMM technique based on FF parameter flawlessly suits the evaluation

requirements reaching identification rates over 90 % in most of the conditions. Anyway, controlled condition

(test excerpts are manually extracted from recordings) of the evaluation that ensures a unique speaker per

test segment, absence of long silences and overlap speech or few amount of speaker to be identified, helps to

such a easy recognition system to obtain so high recognition rate results. In next chapters such issues will be

addressed within the framework of a recognition system equipped to deal with them in a really multi-party

environment, that is, a speaker diarization system.





Chapter 4

Speaker Verification in Conversational
Telephone Speech: NIST Speaker
Recognition Evaluations

R esearch on speaker recognition began in the 1960’s when scientists attempted to use the speech

spectrogram as a tool for speaker recognition [Kersta, 1962]. Nevertheless, computer technology was, at

that time, not advanced enough to complement the manual work of phoneticians interpreting the spectrograms.

According to [Reynolds, 2002], there are two main factors that make human voice a compelling characteristic

to recognise people: in the first place, speech is a natural signal to produce that is not considered threatening

by users to provide. Second, the telephone system provides currently a ubiquitous, familiar network of

sensors for obtaining and delivering the speech signal. One can find in the literature an enormous amount of

different approaches to the problem of speaker recognition (SR). Although short-term cepstral based systems

are still the core of some of the most successful systems, current state-of-the-art systems typically employ a

combination of different features and classification approaches permitting a better characterization of speakers

and consequently an improved performance. NIST SRE evaluations has become the best place to assess and

discuss approaches, given a common framework of development and discussion to researchers in speaker

recognition community.

NIST (The National Institute of Standards and Technology) has coordinated evaluations in various relevant

speech processing topics. Over the past sixteen years, NIST organized evaluations of text independent

speaker recognition using conversational telephone speech [Doddington et al., 2000; Przybocki et al., 2004;

Przybocki et al., 2006]. These evaluations aim to explore promising new ideas in speaker recognition,

developing advanced technology by incorporating these ideas and measuring its performance. By providing

explicit evaluation plans, common test sets, standard measurements of error, and a forum for participants to

openly discuss algorithms, the NIST series of Speaker Recognition Evaluations (SRE’s) has provided a means
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for recording the progress of text-independent speaker recognition performance.

This chapter presents the speaker recognition system jointly developed by the INESC-ID’s Spoken Language

Systems Laboratory (L2F) and the TALP Research Center from the Technical University of Catalonia (UPC)

for the SRE’10 campaign [Abad et al., 2010]. Systems’ implementation were carry out in the international

L2F speech laboratory during a four month stage by the author of this PhD. dissertation. A great variety of

systems were implemented and submitted to SRE’10 evaluation, but most of them with similar characteristics

and the same objective: robustness against a huge variety of speech conditions and a crowd speaker database.

Among all of them, we will refer as the primary system, the one composed by the fusion of five individual SR

sub-systems of very different characteristics. Two of the sub-systems are based on Joint Factor Analysis (JFA)

with two different sets of speech features, two additional sub-systems are based on Gaussian Supervectors

(GSV) and relying on different approaches for the combination of GMM and SVM techniques. Finally, an

original system based on adaptation features from an ASR is also compared:

• (I) JFA-spectral based on Perceptual Linear Prediction (PLP) features with log-RelAtive SpecTrAl

(log-RASTA) processing.

• (II) JFA-prosodic which mimics previous system’s implementation but relies on prosodic features.

• (III) GSV-SVM which is the standard supervector approach, combining Gaussian mixture models (GMM)

with Support Vector Machines (SVM), using also PLP features with log-RASTA processing.

• (IV) GSV-GMM which is the pushing-back version of the supervector approach and makes use of same

set of features as previous system.

• (V) Transformation Network features with SVM modeling (TN-SVM) system is a new approach

modeling features obtained from the adaptation transforms applied to the Multi-Layer Perceptrons

(MLP) that form a connectionist speech recognizer.

The TN-SVM sub-system is the only one that makes use of the automatic transcripts provided by NIST. In

addition to the primary system, two alternative systems consisting of different system combinations were

submitted. The first alternative submission consists of the fusion of the two JFA sub-systems, that is JFA-

spectral + JFA-prosodic (I+II). The second one is the combination all the sub-systems that do not depend on

the automatic transcriptions provided by NIST, that is JFA-spectral + JFA-prosodic + GSV-SVM + GSV-GMM

(I+II+III+IV).

4.1 Speaker Verification in Conversational Telephone Speech

NIST Speaker Recognition Evaluation (SRE) main task consists of determining whether a specified speaker

is speaking during a given segment of speech uttered by an unknown speaker, that is, a speaker verification

task. During the sixteen years of NIST Speaker Recognition evaluations the tasks have evolved focusing on
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different topics, i.e., tracking and segmentation [Martin and Przybocki, 2001]. But the basic task of speaker

detection (determining whether or not a given speaker is speaking) has remained the primary focus of all the

NIST Speaker Recognition Evaluations. The evaluations have all included the basic one-speaker detection

task consisting of a series of trials. Each trial presents the system with a target speaker, defined by some

speech by the speaker (duration are condition dependent), and with a test segment spoken by a single or

various unknown speakers. For each trial, the system must decide whether or not the unknown speaker is

the target, producing both a yes-or-no hard decision and a likelihood score. Each SRE evaluation have its

own characteristics, train and test conditions and corpora, e.g., but mainly them are focused on the speaker

detection task in conversational telephone speech. The factors of interest include most particularly variations

in the telephone handsets used and the types of transmission channels involved, and the match or mismatch

of these between the training and test speech data. As example of such a variety of tasks and conditions,

in last SRE’10 [Martin, 2010] evaluation the gender of speakers is known “a priori“ in both train and test

segments, the vocal effort is also annotated as well as the speech transcription, there exits a wide variety of

microphone types and handsets (more than 20), different speaker languages (but mainly English) are used, also

a two-speaker detection task and tracking using summed two-channel telephone is included, different train and

test trial durations, session and conversation variability, a huge amount of trials (just the core condition last

SRE’10 included more than half a million of them) and so on. All of them are some examples can be reeled

off from a long list. Detailed information on the SRE’10 campaign can be found in the specific evaluation

plan document [Martin, 2010] and, in general, in the NIST SRE website [National Institute of Standards and

Technology, NIST, 1995]. The particular advantage offered by voice as a biometric is that it is transmissible

over telephone channels. Telephone handsets, landline or cellular, are ubiquitous in modern society. The

variability of telephone handsets and telephone channels makes the recognition task far more difficult and

degrades the quality of performance. Nevertheless this has been the area of greatest application interest, and

thus of greatest interest for evaluation.

It is well known that recognizing speakers in conversational telephone speech is a significantly more challenging

task than speaker detection in broadcast news (BN) or meeting data. BN audio or meeting data are for the

most part wide band, with telephone speech data accounting for only a very minor portion of the data in the

case of BN. Hence spectral estimation is performed on the 0-3.8KHz band as opposed to the 8KHz bandwidth

used for BN or meeting data with the consequent loss of speaker information.

One of the main factors of interest, in addition to those related to the voices of the speakers themselves, include

most particularly variations in the telephone handsets used and the types of transmission channels involved.

Performance of SR systems is usually enhanced when matching conditions occurs between training and testing

conditions, e.g., when speakers use same handsets. This is not surprising since different speakers essentially

always use different handsets, so success may be attained by identifying handsets rather than voices. Requiring

that training and test handsets always be different is therefore a desirable evaluation objective, becoming one

of the milestones of SRE evaluations in spite of being a challenging goal.

NIST evaluations have also shown how the two common handset microphone types (carbon button and
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electret) of landline phones affect performance [Przybocki et al., 2004; Przybocki et al., 2006]. Performance

is generally enhanced both by the use of electret microphones and by the use of matched type between training

and test. Carbon button handsets now are becoming uncommon. Recent NIST evaluations have also shown

that cellular transmission generally produces performance inferior to that with landline transmission. This is

perhaps not surprising, but further investigation of related issues is needed. The previous NIST evaluations

have made clear the need to investigate the effects of different handset and telephone transmission types on

performance. The use of cellular and cordless phones has become pervasive in the past decade, and the use

of specialized handsets such as speaker phones and headsets has increased. There has also been renewed

interest in the effect on performance of speakers of different languages, particularly if some speakers should

use multiple languages. For forensic applications there is interest on the interaction of collection channels that

may include different types of microphones as well as telephone data.

Following a list of some of the main factor of interest in processing CTS data:

• Handset type In addition to the microphone type, telephone handsets may differ in how speakers use

them for speaking and listening. They may involve speaker phones, headsets, ear-buds, or just ordinary

hand-held devices. It is of interest to learn how these options, in different training and test combinations,

may affect speaker recognition performance.

• Transmission type The effects of different types of cellular transmission are also worthy of examination

in CTS data. Land-line, cellular, and cordless transmission are all widely used today. While older SRE

evaluations had focused on either land-line or cellular calls, a careful examination of the alternatives,

with training and test data always involving different handsets and sometimes involving different

transmission modes, is attempted in recent SRE evaluation.

• Language The effect of language differences on recognition performance has been a subject of great

interest, but one that has received limited study, due perhaps to a lack of comparable data involving

multiple languages, and especially a lack of data involving bilingual speakers. It is generally believed

that speaker recognition performance should not vary greatly with language, as long as the speech data

used is entirely in one language, but this has not been verified in a formal evaluation. It is less clear what

may be the effect on performance of having speech, for some speakers, in more than one language. The

use of ”higher level” types of features such as word n-grams, in conjunction with traditional acoustic

type features, to achieve improved greater performance levels, as pioneered in recent NIST evaluations,

could make cross-language recognition performance more problematic. But test data from bilingual

speakers is needed to investigate this.

• Microphones The primary application interests for speaker recognition, especially text-independent

speaker recognition, have involved voice transmission over telephone lines. This is the area of advantage

that voice possesses over other biometrics. But there is some interest, particularly for forensic applica-

tions, in recognizing voices recorded over various types of microphone channels. Of particular concern

is the impact on performance of training and test data being recorded over different channel types,
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perhaps telephone in one case and microphone in the other. This cross channel speaker recognition

problem was investigated to a limited extent in the 2002 NIST evaluation and extended in last SRE

evaluations 2008 and 2010.

4.2 NIST 2010 Speaker Recognition Evaluation Data

Appropriate data is essential for research in speaker recognition, and large quantifies of appropriate data are

needed for statistically significant results. NIST has benefited from the ongoing collections of conversational

telephone speech by the Linguistic Data Consortium [Linguistic Data Consortium, LDC, 2002]. Several

collections of Switchboard style corpora [Godfrey et al., 1992], each of which included hundreds of speakers

and thousands of conversations, were used extensively in the detection tasks of the NIST Speaker Recognition

Evaluations from 1996 to 2003. The 2004, 2005, 2006, 2008 and 2010 evaluations all used conversational

speech data of the recently collected Mixer Corpora of the LDC [Campbell et al., 2004; Przybocki et al.,

2007]. These corpora are based on a platform utilizing an automaton that can initiate contacts via phone to

find pairings of registered participants to engage in recorded conversations on assigned topics. As with the

previously used Switchboard platform, the participants can also initiate calls, and have the platform find them

a conversational partner. The objective is to secure from a large number of target speakers a significant number

(eight or more for the recent evaluations) of conversation sides from a single handset (telephone number) that

may be used for training, and some number of conversations from other handsets, which may be used for test

segment data.

SRE 2010 evaluation presents some new features compared to previous evaluations, e.g., by including in the

training and test conditions for the core (required) test not only conversational telephone speech recorded

over ordinary telephone channels, but also such speech recorded over a room microphone channel, and

conversational speech from an interview scenario recorded over a room microphone channel. But unlike in

SRE 2008 and prior evaluations, some of the data involving conversational telephone style speech has been

collected in a manner to produce particularly high, or particularly low, vocal effort on the part of the speaker

of interest.

SRE 2010 evaluation includes 9 different speaker detection tests defined by the duration and type of the

training and test data. The data used comes from the Mixer telephone speech corpus collected by the Linguistic

Data Consortium (LDC) [Campbell et al., 2004; Przybocki et al., 2007], as part of the various phases of its

Mixer project or of its earlier conversational telephone collection projects, which consists of thousands of

telephone conversations between hundreds of speakers within the US. The speakers cover a distribution of age,

gender, location, and native languages. The participants in a telephone call are given general topics to discuss,

but the conversations are unscripted and about five minutes in duration. Participants were encouraged to make

many calls to the system over several weeks and to use varied telephone instruments and locations to provide

large session and handset variability in the data.
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The core test interview segments are of varying duration, ranging from three to fifteen minutes. Systems know

whether each segment comes from a telephone or a microphone channel, and whether it involves the interview

scenario or an ordinary telephone conversation, but it is required to process trials involving all segments of

each type. Systems not know ”a priori” information about level of vocal effort in the conversational telephone

style speech. Submitted results will be scored after the fact to determine performance levels for telephone data,

for microphone data of different conversational styles and microphone types, for conversational telephone

style data of different levels of vocal effort, and for differing combinations of training and test data.

The training segments in the 2010 evaluation are continuous conversational excerpts. As in recent evaluations,

there will be no prior removal of intervals of silence. Also, except for summed channel telephone conversations

as described below, two separate conversation channels will be provided (to aid systems in echo cancellation,

dialog analysis, etc.). For all such two-channel segments, the primary channel containing the target speaker to

be recognized will be identified. Word transcripts (always in English), produced using an automatic speech

recognition (ASR) system, are also provided for all training and testing segments of each condition. These

transcripts may be wrong, with English word error rates typically in the range of 15-30%.

SRE 2010 training conditions

The four training conditions to be included involve target speakers defined by the following training data:

• 10-sec: A two-channel excerpt from a telephone conversation estimated to contain approximately 10

seconds of speech of the target on its designated side. (An energy-based automatic speech detector will

be used to estimate the duration of actual speech in the chosen excerpts.)

• core: One two-channel telephone conversational excerpt, of approximately five minutes total duration,

with the target speaker channel designated or a microphone recorded conversational segment of three

to fifteen minutes total duration involving the interviewee (target speaker) and an interviewer. In the

former case the designated channel may either be a telephone channel or a room microphone channel;

the other channel will always be a telephone one. In the latter case the designated microphone channel

will be the A channel, and most of the speech will generally be spoken by the interviewee, while the B

channel will be that of the interviewer’s head mounted close-talking microphone, with some level of

speech spectrum noise added to mask any residual speech of the target speaker in it.

• 8conv: Eight two-channel telephone conversation excerpts involving the target speaker on their desig-

nated sides.

• 8summed: Eight summed-channel excerpts from telephone conversations of approximately five minutes

total duration formed by sample-by-sample summing of their two sides. Each of these conversations

will include both the target speaker and another speaker. These eight non-target speakers will all be

distinct. speakers will all be distinct.
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SRE 2010 Testing Conditions

For the interview segments, the provision of the interviewer’s head-mounted close-talking microphone signal

in a time aligned second channel, with speech spectrum noise added to mask any residual speech of the

interviewee, is intended to assist systems in doing speaker separation, such as by using a speech detector

to determine and remove from processing the time intervals where the interviewer is speaking. The test

segments in the 2010 evaluation will be continuous conversational excerpts. As in recent evaluations, there

will be no prior removal of intervals of silence. Also, except for summed channel telephone conversations as

described below, two separate conversation channels will be provided (to aid systems in echo cancellation,

dialog analysis, etc.). For all such two-channel segments, the primary channel containing the putative target

speaker to be recognized will be identified.

The three test segment conditions to be included are the following:

• 10-sec: A two-channel excerpt from a telephone conversation estimated to contain approximately 10

seconds of speech of the putative target speaker on its designated side (An energy-based automatic

speech detector will be used to estimate the duration of actual speech in the chosen excerpts.)

• core: One two-channel telephone conversational excerpt, of approximately five minutes total duration,

with the target speaker channel designated or a microphone recorded conversational segment of three to

fifteen minutes total duration involving the interviewee (speaker of interest) and an interviewer. In the

former case the designated channel may either be a telephone channel or a room microphone channel;

the other channel will always be a telephone one. In the latter case the designated microphone channel

will be the A channel, and most of the speech will generally be spoken by the interviewee, while the B

channel will be that of the interviewer’s head mounted close-talking microphone, with some level of

speech spectrum noise added to mask any residual speech of the target speaker in it.

• summed: A summed-channel telephone conversation of approximately five minutes total duration

formed by sample-by-sample summing of its two sides.

For the interview segments, the provision of the interviewer’s head mounted close-talking microphone signal

in a time aligned second channel, with speech spectrum noise added to mask any residual speech of the

interviewee, is intended to assist systems in doing speaker separation, such as by using a speech detector to

determine and remove from processing the time intervals where the interviewer is speaking.

The results presented in this chapter are focused on SRE 2010 core condition (core train vs core test) which is

composed of 5 and 8 minutes audio excerpts from a conversational two sides telephonic (conv) or from an

interview (int) each recorded using several telephonic channels or microphones placed at the room. Within the

core test there are 9 Common Conditions. They are summarized as follows:

• CC1: Interview speech trials with matched microphones for train and test.

• CC2: Interview speech trials with unmatched misc for train and test.
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Core condition Styles train-test Vocal effort tel/mic Number of speakers Number of trials

CC1 int-int - same mic 2, 159 62, 864

CC2 int-int - dif. mic 2, 159 219, 842

CC3 int-conv NVE tel 1, 609 58, 043

CC4 int-conv NVE mic 1, 520 85, 902

CC5 conv-conv - tel 580 30, 373

CC6 conv-conv NVE-HVE tel 365 28, 672

CC7 conv-conv NVE-HVE mic 360 28, 356

CC8 conv-conv NVE-LVE tel 300 286, 04

CC9 conv-conv NVE-LVE mic 293 27, 520

Total 9, 345 570, 176

Table 4.1: Core (required) conditions in SRE 2010 evaluation. Each of the columns corresponds
to: Speech style in train and test, conversation or interview; Vocal effort: low (LVE), normal (NVE),

high (HVE); number of speakers both male and female; and number total of trials.

• CC3: Trials involving interview training speech and normal vocal effort conversational telephone test

speech.

• CC4: Trials involving interview training speech and normal vocal effort conversational telephone test

speech recorded over a room microphone channel.

• CC5: Different number trials involving normal vocal effort conversational telephone speech in training

and test

• CC6: Telephone channel trials involving normal vocal effort conversational telephone speech in training

and high vocal effort conversational telephone speech in test.

• CC7: Room microphone channel trials involving normal vocal effort conversational telephone speech in

training and high vocal effort conversational telephone speech in test.

• CC8:Telephone channel trials involving normal vocal effort conversational telephone speech in training

and low vocal effort conversational telephone speech in test.

• CC9: Room microphone channel trials involving normal vocal effort conversational telephone speech in

training and low vocal effort conversational telephone speech in test.

Tables 4.1 and 4.2 summarize the conditions in train-test with different styles as Normal Vocal effort (NVE),

High Vocal Effort (HVE) or Low Vocal Effort (NVE) summarize the core-core condition in the evaluation.

A completed description of the evaluation data in SRE 2010 evaluation can be found in the evaluation plan
[Martin, 2010].
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Common Condition Trials Target (non-target) Extended Trials Target (Non-target)

CC1 2,152 (60,712) 4,304 (795,995)

CC2 7535 (212307) 15,084 (2,789,534)

CC3 1,633 (56,410) 3,989 (637,850)

CC4 2,366 (83,536) 3,637 (756,775)

CC5 708 (29,665) 7,169 (408,950)

CC6 361 (28,311) 4,137 (461,438)

CC7 359 (27,997) 359 (82,551)

CC8 298 (28,306) 3,821 (404,848)

CC9 290 (27230) 290 (70,500)

Table 4.2: Core (required) conditions in SRE 2010 evaluation. Number total of trials both target
an non-target for several common conditions in core test and for extended trials.

4.3 The L2F-UPC Speaker Verification System

In this section some common characteristics shared by various sub-systems of the L2F-UPC submission are

described. The UPC-L2F system is composed of a fusion of five different SR sub-systems. Figure 4.1 gives

a brief scheme of the SR systems and techniques employed. In general, most of the systems are based on

features estimated from a classical UBM-GMM system which are enhanced with robust techniques to deal

with speaker and session variability like as JFA analysis and NAP. Furthermore, systems based on SVM, GMM

push-back are also evaluated and contrasted. Prosodic characteristics are also applied in addition to spectral

features as well as a newly set of features estimated from a connectionist transformation network in which

ASR transcriptions are used.

4.3.1 Common characteristics

Most of the systems have in common several characteristics and strategies. That is the case of speech

parametrization, universal background models (UBMs) or speaker and trials sub-sets applied to normalize

scores. Following such a common features are illustrated.

Development and Training Corpora

Previous NIST evaluations’ data is used for algorithm development and training of different sub-systems.

Specifically, NIST SRE 2004, 2005 and 2006 telephone data sets were used for the training of systems and the

SRE 2008 core test condition for development and algorithm assessment. Different subsets were selected for

the various training stages:

• Gender dependent Universal Background Models (UBM).
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Figure 4.1: Schematic diagram of the UPC-L2F system submitted to SRE’10 evaluation.

• Background impostor set in SVM based sub-systems (for sub-systems III and V).

• ZT-score normalization.

• Speaker/channel variability compensation techniques as modeling of JFA channel and speaker space

and for NAP.

The performance of the individual sub-systems and several other tested SR approaches was assessed in

the NIST SRE 2008 telephonic-telephonic test sub-set. The SRE 2008 core test condition, the so called

short2-short3 task condition, with around one hundred thousand trials was also used for system calibration

and fusion of the final submission.

Notice that some of the tools used by the SR system and developed at the L2F during the last years have been

trained with additional data. For instance, the MLP speech-non-speech detector was trained mainly with down

sampled broadcast news (BN) data, augmented with music and sound effects data. The MLP acoustic models

of the hybrid speech recognizer, used in phone-alignment for the system (V), were trained on 140 hours of

manually transcribed HUB-4 data.

The total amount of speech training material is around 400 hours, composed of 150 hours from males and 250

hours from females roughly, from more than 2000 male speakers and 3000 female.

Speech/Non-speech Segmentation

In order to detect low-energy and highly likely non-speech frames, a MLP-based speech-non-speech detector

was trained with down sampled broadcast news (BN) data. Its output is combined with the alignment generated
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by a simple bi-Gaussian model of the log energy distribution computed for each speech segment to obtain

speech/non-speech segmentation for training data and trials.

The speech/non-speech detector is used in most of sub-systems. JFA-spectral, JFA-prosodic, GSV-SVM and

GSV-UBM (sub-systems I through IV). All of them make use of silences detection in some manner, particularly,

in the feature extraction process, by discarding non-speech frames and computing feature mean and variance

normalization on speech frames. Notice that the segmentation available in the automatic transcriptions provided

by NIST is only used by sub-system TN-SVM (sub-system V).

Segmentation of the interview segments was additionally post-processed. In order to obtain a better target

speaker segmentation, the speech/non-speech segmentation of the interviewer (non-target) channel was

obtained. Then, regions with simultaneous speech activity in the interviewee and the interviewer channels

were removed from the target speaker segmentation.

Speech Features

The spectral features used in sub-systems JFA-spectral (I), GSV-SVM (III) and GSV-GMM (IV), consist of

19 PLP features with log-RASTA processing [Hermansky and Morgan, 1994] and the frame energy, from a

sliding window of 20 ms with a step size of 10 ms. First and second derivatives are concatenated to form 60

element feature vectors. Low-energy and highly likely non-speech frames are removed according to the speech

segmentation previously described. Finally, mean and variance feature normalization is applied with mean and

variance being computed independently for every speech utterance.

The prosodic features used in sub-system JFA-prosodic (II) are aimed at modeling the prosodic contours (both

energy and pitch) of syllable-like regions [Ferrer et al., 2010]. We use the Snack toolkit [Sjlander, 1997]

to extract the log-pitch and the log-energy of the voiced speech regions of every utterance. Log-energy is

normalized on an utterance basis. The prosodic contours are segmented into regions by splitting the voiced

regions wherever the energy signal reaches a local minimum (the minimum length of the regions is 60 ms).

For each region, the log-energy and log-pitch contours are approximated with a Legendre polynomial of order

5, resulting in 6 coefficients for each contour. The final feature vector is formed by the two contour coefficients

and the length of the syllable-like region, which results in a total of 13 elements.

The third set of features applied to sub-system TN-SVM (V) are obtained from a connectionist transformation

network and are explained in detail in the system description section 4.3.3.

Universal Background Model

Gender-dependent Universal Background Models (UBMs) were trained on NIST SRE 2004, 2005 and 2006

telephone data. The Audimus software package [Meinedo et al., 2003] and its utilities developed at the L2F

Laboratory were used for GMM modeling. A total of 72 hours from 870 male speakers and 100 hours from

1200 female speakers were used. The two gender-dependent UBMs were incrementally trained up to 1024

Gaussians, doubling the number of Gaussians at each iteration up to 25 iterations of the EM algorithm.
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For each gender, two sets of UBMs were also trained depending upon speech features extracted from speech

wave, described above. The former was trained using spectral features and used for building the sub-systems

(I), (III), and (IV); and the latter was trained with the prosodic features used for the development of sub-system

JFA-prosodic (II).

Score Normalization: ZT-norm

As has been reported in the literature [Auckenthaler et al., 2000; Wan and Renals, 2005; Kenny et al., 2008b],

score normalization is a key point in SR systems. Specially, in order to enhance performance in JFA-based and

GMM-based systems. Thus, raw scores are ZT-normalized [Zheng et al., 2005] in sub-systems JFA-spectral

(I), JFA-prosodic (II) and GSV-GMM (IV). In the case of sub-systems GSV-SVM (III) and TN-SVM (V), which

are based on SVM classifiers, a significant impact of score normalization strategies was not observed and

hence these strategies were not applied in the submitted version.

Gender-dependent sets were defined for score normalization. We used 400 speech segments (200 male

and 200 female) for modeling the impostor set of speakers (set T of impostor speakers, corresponding to

T-normalization) and a total of 400 speech segments (200 male and 200 female) for modeling the impostor

score distribution per each target speaker (set Z of impostor trials, corresponding to Z-normalization). Both

sets were randomly selected from the SRE2004 and SRE2005 data and no care was taken to avoid overlapping

with the data used for UBM training, that is, no speaker overlap between UBM-GMM data and ZT-norm data

was taken into account.

In the case of sub-systems GSV-SVM (III) and TN-SVM (V), which are based on SVM classifiers, a significant

impact of score normalization strategies was not observed in development data and hence these strategies were

not applied in the submitted version.

4.3.2 Speaker Verification using an Automatic Speech Recognizer

Sub-system TN-SVM (V) uses a set of novel features extracted from adaptation techniques applied to the Multi

Layer Perceptrons that form a connectionist speech recognizer [Abad and Luque, 2010; Abad et al., 2011].

Such features are extracted from speaker-phoneme adaptation thus phonetic alignment is required and a speech

recognizer transcription was obtained for such purpose.

The Audimus Hybrid Speech Recognizer

The Audimus [Meinedo et al., 2003] ASR module uses MLP networks that act as phoneme classifiers for

estimating the posterior probabilities of a single state Markov chain mono phone model. The baseline system

combines three MLP outputs trained with PLP features (13 static + first derivative), log-RASTA features (13

static + first derivative) and Modulation SpectroGram features (MSG, 28 static). When applied to narrow

band recordings, the advanced Font-End from ETSI features (13 static + first and second derivatives) are also

used. The number of context input frames is 13 for the PLP, RASTA and ETSI networks and 15 for the MSG
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network. The system adopted in this work models only mono phone units, resulting in MLP networks of 40

soft-max outputs for English. The decoder of the recognizer is based on a weighted finite-state transducer

(WFST) approach to large vocabulary speech recognition.

Narrow-band Acoustic Models

The lack of conversational telephone speech (CTS) orthographically labeled data prevented us from devel-

oping an ASR system matched to the characteristics of the NIST Speaker Recognition Evaluation data sets.

Consequently, a simple narrow-band speech recognizer with acoustic models trained with down-sampled BN

data was used for this evaluations. The MLP acoustic models were trained on the same 140 hours of manually

transcribed HUB-4 speech used for our American English BN transcription system [Pellegrini and Trancoso,

2009].

Generation of Phonetic Alignments

Word-level automatic transcriptions provided by NIST were forced aligned using the narrow-band acoustic

networks to obtain phonetic alignments. Then, the alignments were used for training the speaker dependent

transformation networks. Whenever the NIST transcriptions were not available, the narrow-band speech

recognizer with the BN language model was used to generate a (weak) automatic transcription.

4.3.3 The L2F-UPC SR Sub-systems

The complete L2F-UPC speaker recognition system is the result of the fusion of five speaker verification scores

generated by 5 individual sub-systems. We will briefly describe particularities of the sub-systems.

(I) The JFA-spectral Sub-system

JFA approach has become one of the most successful compensation techniques for speaker verification as

has been reported in [Kenny and Dumouchel, 2004], [Kenny et al., 2007] and [Kenny et al., 2008b]. L2F-

UPC’s JFA system closely follows the description of “Large Factor Analysis model” in paper [Kenny, 2005]

and described in the section 2.2.3 in which speaker model is represented by mean supervectors (stacked

GMM-UBM means):

M = m + Vy + Dz + Ux, (4.1)

where m is the speaker independent mean supervector, V is a subspace with high speaker variability whose

columns are referred to as eigenvoices, U is a subspace with high intersession/channel variability whose

columns are referred to as eigenchannels, and D is a diagonal matrix describing remaining speaker variability

not covered by V . Speaker factors y, z and channel factors x are assumed to be normally distributed random



106 Speaker Verification in Conversational Telephone Speech: NIST SR Evaluations

variables. It is worth to mention that this representation constrains all supervectors m to lie in an affine

subspace which is spanned by the columns of V .

Our JFA based submission consists of a Universal Background Model generation and JFA itself. UBMs are

those described in the section 4.3.1. For JFA, the cookbook developed by Ondrej Glembek at Brno University

of Technology [Glembek, 2009] has been used. Finally, JFA scores are ZT-normalized as described in previous

section 4.3.1.

The UBMs were used to collect zero and first order statistics for training two gender-dependent JFA systems.

The mean m and the variances of Gaussian components are set to the UBM mean and UBM variance

respectively thus their estimation are not computed during the training of JFA parameters. WE briefly review

the data and techniques employed for such parameter estimation:

• For JFA speaker modeling, 300 eigenvoices are trained on the NIST SRE 2004 and 2005 sets using

speakers with at least 8 recordings or sessions (a total of 372 male and 519 female speakers). MAP point

estimates of speaker factors are obtained and they are fixed for the following training of eigenchannels.

• A set of 80 eigenchannels were trained on NIST SRE 2004 and 2005 telephone data (1806 recordings

from 184 different male speakers and 2301 segments from 245 different female speakers).

• The diagonal matrix D in the JFA equation was estimated on all eigenvoices and eigenchannels.

• A set of NIST SRE 2006 speakers composed of 2384 and 3215 recordings of 298 male and 402 female

speakers respectively is used for this purpose. MAP estimates of speaker and channel factors are fixed

for estimating this diagonal matrix which stands for a speaker variability not represented in matrix D.

• The speaker factor y was jointly estimated with the channel factor x from the enrollment data. The

common factor z was also estimated from training data.

In the testing stage, zero and first order statistics are extracted from the trial data. The channel’s shift from

UBM, i.e. the channel factor x, is estimated from trail segment, fixing it for all the speaker models, following

the UBM point estimate assumption in [Glembek et al., 2009]. A linear scoring was performed to obtain the

scores. Finally, factor analysis likelihood ratios were ZT-normalized, as described in section 4.3.1.

(II) The JFA-prosodic Sub-system

The JFA-prosodic (II) system have in common the same architecture of previous JFA-spectral system, as

explained above, but relies on a complete different set of features for speech representation. Instead of the

classical spectral coefficients, the prosodic features described in section 4.3.1 are modeled in this system. The

data sets for UBM modeling, estimation of speaker parameters in equation 4.1 and for score normalization

remain the same as in the JFA-spectral (I) sub-system. Likewise, ZT score normalization normalization is also

applied by applying same sets as described in the section 4.3.1.



4.3 The L2F-UPC Speaker Verification System 107

(III) The GSV-SVM Sub-system

Combining Gaussian mixture models with Support Vector Machines [Campbell et al., 2006a], the so-called

Gaussian supervector approach, is known to be a high performance speaker recognition approach.

For this evaluation, a GSV system based on mean supervectors was developed. First Gaussian mixture models

for each target speaker are obtained with MAP adaptation of the Gaussian means of the UBM based on spectral

features. UBM means are adapted with 20 MAP iterations with a relevance factor of 16 to finally obtain

GMM-UBM speaker models.

The Gaussian Super Vector (GSV) system concatenates the mixture means of the MAP adapted Gaussian

speaker models to obtain super vectors of every speech segment. The linear SVM kernel of [Campbell et al.,

2006b] is used for training speaker models by means libSVM [Chang and Lin, 2001] software package. The

background set used as negative examples for SVM training is formed by 874 male, and 1204 female speech

segments extracted from the SRE2004, SRE2005 and SRE2006 1 side training corpora. Finally, enrolled SVM

speaker models are used for scoring supervectors obtained from the trials segments.

Due to time constraints, we did not implement Nuisance Attribute Projection (NAP) for this sub-system, which

is known to provide additional benefits [Campbell et al., 2006a].

(IV) The GSV-GMM Sub-system

The GSV-GMM sub-system is based on the GSV-SVM speaker recognition system explained in the previous

section, but uses the alternative scoring approach of [Campbell, 2008].

In contrast to the conventional GSV, each speaker SVM model is pushed back to a positive and a negative

speaker GMM model, which are used in testing to calculate log-likelihood ratio scores. In certain situations,

especially on short utterances, this approach provides improved performances. In this sub-system score

normalization is also applied. However, at the time of the submission all the necessary trials for performing

the complete ZT-norm with 200 files per normalization and per gender were still not available. For that

reason, Z-norm with only 100 Z-segments per gender was applied to the scores generated by the GSV-GMM

subsystem.

(V) The TN-SVM-NAP Sub-system

The Transformation Network features with SVM modeling system is a novel approach [Abad and Luque, 2010;

Abad et al., 2011] that makes use of adaptation transforms employed in speech recognition as features

for speaker recognition. However, in contrast to [Stolcke et al., 2005], the automatic speech recognizer

that we used relies on for computing the “differences” between the speaker independent and the speaker

dependent model is the connectionist hybrid artificial neural network/hidden Markov model (ANN/HMM)

system described in 4.3.2. Sub-system approach makes use of a method known as Transformation Network
[Abrash et al., 1995] to train a linear input network that maps the speaker-dependent input vectors to the

speaker independent system, while keeping all the other parameters of the neural network fixed. The necessary
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phonetic alignments for network adaptation are obtained as described in section 4.3.2. For each MLP network

that composes the acoustic models, described in 4.3.2, TN adaptation method is applied and a set of adaptation

weights is obtained. A single TN feature vector of total size 3895 is formed with the linear transformation

weights of the four MLP networks, and with the mean and variance statistics of the features data.

Additionally, nuisance attribute projection (NAP) is applied to the TN features as described in section 2.2.3.

Gender-dependent NAP projections were trained with the multisession conversational telephone speech sets

from SRE2004, SRE2005 and SRE2006. A total of 7195 recordings from 921 different female speakers and

5226 recordings from 670 male speakers were applied for such purpose. A nuisance space of dimension 32

was employed in this work.

The resulting TN features with NAP compensation are used for training SVM speaker models. Gender-

dependent negative examples for SVM training are obtained from the 1 side conversation training corpus of

SRE2004, SRE2005 and SRE2006 like as in previous SVM-based approaches. A total of 867 and 1201 male

and female segments are used for modeling of the background SVM samples. In this case, score normalization

was not applied to the TN-SVM-NAP system since no enhanced results was noted during development.

Additional implementation details can be found in [Abad and Luque, 2010; Abad and Trancoso, 2010;

Abad et al., 2011].

4.3.4 Calibration and Sub-systems Fusion

The SRE2008 short2-short3 evaluation condition data set was used for adjusting calibration and fusion of

the sub-systems which compose the L2F-UPC submission. Unfortunately, this set is known to be small and

not adequate to the particularities of the new cost function considered in SRE2010 evaluation. We are quite

confident that the quality of calibration and fusion stage may be improved through a larger number of trials.

Linear Logistic Regression with FoCal

Linear logistic regression tools provided by the FoCal Toolkit [Brummer, 2005] were used for both calibration

and fusion. In a first stage, sub-system was independently calibrated and in the case of gender-dependent

system two different calibration were performed for male and female speakers, respectively. In some cases,

some of the sub-systems were not able to produce a score for a concrete trial, due to the fact that some data

excerpts are malformed. In that case, a score of 0 was given to the trial for that sub-system after the first

calibration stage. Then, with all the scores from the five sub-systems, a second linear logistic regression was

trained to compute the final fusion score. The decision threshold was set in accordance to the new SRE2010

cost function.

Configurations

Three different calibration and fusion configurations were trained depending on the characteristics of the

training/testing segments involved in a given trial. The channel type: microphone (mic) or telephone (tel) and
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Configuration SRE’08 SRE’10

MIC-TEL int-conv/tel int/conv-tel

TEL-TEL conv-conv/tel conv-tel/conv-tel

MIC-MIC int/int Rest of trials

Table 4.3: Calibratrion training sets applied to SRE’10 test data.

the speech style: interview (int) or phonecall (conv). The following table summarizes such configurations.

The “mic-mic” configuration in SRE’10 was trained with the interview-interview subset of the short2-short3

data set. The “mic-tel” configuration was obtained with the interview-phonecall/telephone trials. The

phonecall-phonecall/telephone trials were used for estimating the calibration and fusion weights of “tel-tel”

configuration.

Finally, the “mic-mic” configuration is used for the rest of the test trials: trials with interview data segments in

both training and testing (independently of their length), trials with models trained with interview data and

tested with phonecall/microphone, and trials with both phonecall/microphone data in train and test.

In testing stage, the “tel-tel” configuration was used for the trials with both the training segment and the test

segment identified as phonecall telephone data segments. The “mic-tel” calibration and fusion is used for

trials that involve speaker models trained with interview data (both 3min and 8min) and test segments with

phonecall/telephone data.

4.4 Experiments

In this section, a brief guide of the strategy followed for developing of previous reviewed algorithms is given.

Previous NIST SR evaluations were applied for such purpose. In addition, official evaluation results for the

different systems submitted to the last NIST SR 2010 evaluation are also presented.

Algorithm Development and Training

The SRE2008 short2-short3 evaluation data set were used for adjusting calibration and fusion of the sub-

systems, algorithm development and tuning of parameters.

• Short2 training condition: A two-channel telephone conversational excerpt, of approximately five

minutes total duration, with the target speaker channel designated (telephone telephone) A microphone

recorded conversational segment of approximately three minutes total duration involving the target

speaker and an interviewer (interview microphone)

• Short3 testing condition: A two-channel telephone conversational excerpt, of approximately five minutes

total duration, with the putative target speaker channel designated (telephone telephone) A similar
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such telephone conversation but with the putative target channel being a (simultaneously recorded)

microphone channel (telephone microphone) A microphone recorded conversational segment of approx-

imately three minutes total duration involving the putative target speaker and an interviewer (interview

microphone)

The short2-short3 condition is composed of 3, 623 speakers models (1, 270 male and 1, 993 female) and a

total of 6, 377 different files. Combination of test segment and claimed identities results in a total of 98, 776

different trials. In order to speed-up the development experiments a sub-set from short2-short3 was selected

which includes all trials from tel-tel condition, known as condition 6 of the SRE’08 core condition. This set is

composed of 1, 789 speakers models (648 male and 1, 141 female) and a total of 2, 573 different files resulting

in 37.069 trials.

The figures in next pages present the development results for the implementation of the different algorithms

described in previous sections. Firstly, the performance results of the UBM employed for most of the

systems are depicted in figure 4.2. The figure (a) draws the DET curves in tel-tel SRE 2008 data for both

male and female trials. The optimum detection cost function (DCF) point is drawn as a triangle point

while the equal error rate (EER) as a circle dot, see section 2.2.4. In the figure (b) the comparison with

different normalization techniques as well as with the calibrated scores are depicted. As we can see at

the DET curves the normalization plays and important role in UBM-system performance. ZT-norm shows

the best results on SRE 2008 tel-tel data reaching a 16% of EER. Anyway, results presented are far from

those obtained by best UBM-based systems presented in previous evaluations [Martin and et al., 2008a;

Martin and et al., 2008b]. Such a deviation is due to the fact that not enough data is considered for UBM

estimation as well as for the normalization sets Z and T. For instance, most of the best systems presented in

SRE’08 make use of 3-4 times more data for that purpose.

The figure 4.3 (a) depicts the results obtained by the Gaussian Super Vector with SVM classifier and by the

push-back GMM version compared to the ZT-normalized GMM-UBM system. Scores from male and female

speakers are polled together in this picture and for all the following. Furthermore, all the systems are calibrated

and normalized with same Z and T sets described in section 4.3.1. The figure 4.3 (b) also reports the results

Task #Models #Tests #trials

short2-short3 SRE’08 3,263 6,377 98,776

short2-short3 SRE’08-male 1,270 2,528 39,433

short2-short3 SRE’08-female 1,993 3,849 59,343

tel-tel SRE’08 1,788 2,573 57,050

tel-tel SRE’08-male 648 895 12,922

tel-tel SRE’08-female 1,140 1,678 24,128

Table 4.4: Number of different target models, different test signals and total number of trials in the
developments data sets.
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(a)

(b)

Figure 4.2: DET curves in SRE 2008 short2-short3 in tel-tel condition data. Equal Error Rate
(EER) (circle dot) and optimum Detection Cost Function (DCF) point is also depicted (triangle
point). (a) Top: Detection curves for both male and female trials (by using a gender dependent
GMM-UBM in each case) and the resulting DET curve for arranging in stack the gender-dependent-
scores for all trials. (b) Bottom: Detection curves for GMM-UBM system with score normalization:
Z-norm, T-norm and ZT-norm normalization techniques as well as the ZT-norm calibrated version.
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(a)

(b)

Figure 4.3: DET curves in SRE 2008 short2-short3 in tel-tel condition data. Equal Error Rate
(EER) (circle dot) and optimum Detection Cost Function (DCF) point is also depicted (triangle
point). (a) Top: Detection curves for both Gaussian Super Vector (GSV) SVM and push-back
GMM versions compared to GMM-UBM system. (b) Bottom: Comparison for previous systems to

MLP-SVM system based on connectionist transformation network features.
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(a) (b)(b)

(c)

Figure 4.4: Development of JFA spectral sub-systems. DET curves in SRE 2008 short2-short3 in
tel-tel condition data. Equal Error Rate (EER) (circle dot) and optimum Detection Cost Function
(DCF) point is also depicted (triangle point). Left: figure draws JFA sub-system’s DET curves for
different sub-space dimensions of eigenchannels and fixing eigenvoice sub-space to dimension 350.
Right: figure draws JFA sub-system’s DET curves for different sub-space dimensions of eigenvoices
and fixing eigenchannel sub-space to dimension 50. Bottom: figure draws DET curves for JFA
sub-systems joining different normalization techniques as Z-norm, T-norm, ZT-norm and ZT-norm

augmented with calibration. Raw scores DET curve is also shown for comparison purposes.



114 Speaker Verification in Conversational Telephone Speech: NIST SR Evaluations

Figure 4.5: DET curves in SRE 2008 short2-short3 in tel-tel condition data. Equal Error Rate
(EER) (circle dot) and optimum Detection Cost Function (DCF) point is also depicted (triangle
point). Development DET curves for the five sub-systems and the fusion calibrated system submitted

to SRE 2010.

for the original MLP-SVM system based on ASR transcriptions with same normalization and calibration

procedure as previous systems. The results reported are consistent with state-of-the-art performance: The

GSV-SVM based system outperforms the results obtained by other implementations. It is worth to mention the

promising performance obtained by the MLP-SVM system despite of the use of not well adapted acoustics

models and transcriptions for this task.

The development results of the JFA spectral sub-systems are also reported in figures 4.4 (a)-(c). The figures (a)

and (b) in 4.4 study the effect of eigenvoice and eigenchannel dimensions on the performance of the system.

As we can observe, the best results on SRE’08 data were obtained by setting the sub-space dimension of

eigenvoices to 350 and the sub-space dimension for eigenchannels to 40. The figure 4.4 (c) depicts the DET

curve comparison for the JFA spectral based-system for various normalization techniques. The enhancement

of results by using score normalization techniques is obvious but it is not enough compared to those results

reported in the literature [Burget et al., 2008; Kenny et al., 2007]. Furthermore, Z normalization does not

seem to work properly since not significant improvement is perceived in the results. However, in the case of

ZT-norm and ZT-norm joining together with logistic calibration, their results outperform those from scores

without normalization. Note that the normalization sets for Z-norm and ZT-norm remain the same in both

cases.

Finally, the figure 4.5 reports the DET curve, the EER and the DCT points for the five sub-systems on the

SRE’08 tel-tel data and the comparison to the final fused system. The last was submitted to the SRE 2010
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evaluation. Following we outline the results.

Evaluations Results in SRE 2010

The table 4.5 summarizes the official results per each “common condition“ (CC) in core test condition, that

is, the single required condition. The JFA based on spectral features (I) obtained the best individual results

whereas the fusion of all individuals sub-systems outperforms it.

Overall, the results in terms of EER(%) are as poor as we expected since our development was mainly focused

on SRE’08 short2-short3 tel-tel and rounding 9% EER which is in agreement with CC5. Anyway, our results

are far away from state of the art results or best-team results in SRE’10 evaluation [Martin and et al., 2008b],

due to the fact of a not well adapted training corpus for UBM estimation as well as for the score normalization

sets.

Another issue affecting most of the participants was the poor calibration showed by the systems. Maybe as

consequence of the reduced set of trials for adapting the calibration to each condition in the SRE’10 data and

to the new cost function [Martin, 2010]. The new operation point for SRE’10 evaluation makes systems work

around very low False Alarm rates due the target prior of 0.001. In our case, the actual DCF of our systems

showed such behavior in most of the cases resulting in normalized DCF greater than 1 as can be observed in

the table 4.5.

The fusion of individual sub-systems outperforms the previous showing as each individual system can provide

useful information. That is the case of the FUSION-1 system where the JFA-prosodic system provides an

additional improvement to the spectral one. Anyway the fusion of the 4 sub-systems also provides a slight

enhancement.
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System CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9
13.72 21.69 16.47 17.87 15.23 15.62 18.69 7.112 12.38

(I) JFA-spectral 0.98467 0.9996 0.99694 0.98648 0.97175 1 0.99721 0.98322 0.94014

1 1 0.9939 1 0.98305 1 1 1 1

28.96 36.56 34.20 28.82 27.54 32.09 35.46 25.25 28.11

(II) JFA-prosodic 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

16.36 26.96 20.16 18.87 14.42 21.41 21.95 9.39 11.58

(III) GSV-SVM 0.9698 0.99602 0.99694 0.97802 0.93785 0.99723 0.94933 0.97987 0.86552

6.0497 1.2819 1.1874 2.0057 1.3177 1.2304 1.2069 1.0421 0.96495

21.41 32.36 30.24 25.76 19.90 26.64 25.46 13.19 15.31

(IV) GSV-GMM 0.97649 0.99589 0.99633 0.98998 0.94774 1 0.97214 0.95973 0.89876

0.99954 1 0.99878 1 0.96045 1.0353 1 0.98993 1

38.43 46.28 40.45 43.89 14.98 16.27 43.57 18.03 44.44

(V) TN-SVM-NAP 1 1 1 1 1 0.92328 1 1 0.9966 1

1 1 1 1 1 1 1 1 1

12.48 21.81 15.82 15.72 15.07 15.06 20.10 6.75 11.56

(I + II ) FUSION 1 0.99164 1 0.99571 0.99577 0.97034 1 0.99443 0.97651 0.96897

1 1 0.9988 1 0.9845 1 1 1 1

12.37 22.46 15.38 14.62 13.75 14.75 17.95 6.55 9.66

FUSION 2 0.97072 0.99456 0.99449 0.97971 0.9548 1 0.9354 0.95476 0.8069

( I + II + III + IV) 2.4069 1.0277 1.0091 1.0644 0.96045 1 1.0078 0.98993 0.87241

11.31 20.96 16.19 14.94 13.23 11.50 18.05 8.54 8.14
ALL FUSION 0.97305 0.99522 0.99388 0.98436 0.91243 1 0.89919 0.99664 0.7931

2.3737 1.0406 1.2955 1.186 0.96328 1.1384 0.96657 0.99664 0.86897

Table 4.5: Summary of results in 2010 data. For each system, the first line contains EER[%], the
second line is the optimum DCF and the third one is the actual DCF both normalized by the target

prior 0.001
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Figure 4.6: DER official results on SRE’10 evaluation for the primary system. DET curves in SRE
2010 core condition data for each common condition.

Figure 4.7: Official results on SRE’10 evaluation for the two alternative systems. DET curves in
SRE 2010 core condition data for each common condition.



118 Speaker Verification in Conversational Telephone Speech: NIST SR Evaluations

4.5 Conclusions

The speaker recognition teams of L2F (from Lisbon, Portugal) and UPC (from Barcelona, Spain) presented a

joint primary submission at the core condition of the NIST SRE 2010 campaign, consisting of the fusion of

five different sub-systems. Additionally, two different combinations of the sub-systems that form the primary

system have been presented as alternative contrastive systems. Time constraints made it impossible for us to

submit results for the other evaluation conditions. We expect to evaluate our primary system in some of the

alternative conditions as part of our post-evaluation work.

Our main objective in participating in this evaluation was to introduce ourselves to the speaker recognition

community, to explore the recently proposed methods and to learn as much as possible. In this sense,

independently of the final results, our participation was already quite successful. Additionally, the collaboration

between two research groups from different countries was a nice achievement and we hope that can produce

future fruitful collaborations.

Since it was the first participation for both L2F and UPC at NIST SRE, most of our work prior to the evaluation

was focused on the development and assessment of SR algorithms and methods. As a consequence, we could

not devote enough attention to the new challenges proposed in the 2010 campaign. For instance, no special

attention was given to “low vocal effort” challenge or to the problems introduced as a consequence of the new

cost function.

One important limitation of the submitted system is that cross-channel problems have been little or not

studied during the development. Most of the data used for development is telephonic (background, UBM,

eigenchannels, eigenvoices, NAP...). In fact, in most cases SR experiments during the development of the

sub-systems were performed only in the tel-tel condition of SRE 2008. Thus, we can expect a considerable

better performance in the tel-tel condition compared to the other evaluation conditions.

Additionally, two different combinations of the sub-systems that form the primary system have been presented

as alternative contrastive systems. Time constraints made it impossible for us to submit results for the other

evaluation conditions. We also believe that significant improvements could be potentially obtained just by

selecting carefully the sets for calibration and fusion, for normalization or compensation techniques. Some

sub-systems could have been significantly improved. In fact, some modules were removed at the very last

minute due to time problems and implementation difficulties. For instance, NAP was not applied to sub-system

III, although it was in our initial plans. Neither we were able to submit ZT-norm scores of sub-system IV,

having just applied z-norm. We also believe that significant improvements could be potentially obtained just

by selecting a better calibration and fusion development set.



Part III

Speaker Diarization and Tracking





Chapter 5

Speaker Diarization in Meeting Domain

Speaker and speech recognition use similar speech signal processing techniques. However, speech

recognition (if it is to be speaker independent), focuses on those aspects of the speech signal carrying

more linguistic information, whereas speaker recognition is based on those idiosyncratic speech features that

characterise an individual. Indeed, speaker recognition in continuous audio streams is refereed as speaker

tracking, whether the speaker identity tracked is known, otherwise diarization task. The two approaches involve

several processing stages, they are really close to each other and generally share some main components.

Among them, there are various speech technologies such as audio and speaker segmentation, speaker clustering,

speaker identification and speaker verification. The techniques from all of these areas are usually applied

together to obtain the desired outcome at each time: “Who is speaking?”.

The main purpose of this chapter will be to develop a research on speaker diarization in meeting environment

using as starting point the techniques and implementations briefly described in chapter 2. The research will

focus on the interaction between the related topics looking for the global improving in real situations together

with the on-line constrain. Therefore this chapter is devoted to explain the baseline diarization system, the

development strategy and benchmark applied to assess the algorithm performance and some novelties applied

to the system.

The remaining sections are organized as follows. In the section 5.1, a description of the main parts of the

baseline system developed during this PhD thesis is highlighted. The diarization engine was benchmarked

within the framework of NIST Rich Transcription evaluations. In order to focus on conference and meeting

data, several databases from NIST evaluations have been used to perform experiments. In the section 5.2, the

baseline system based on a single audio channel is augmented by the inclusion of multiple audio inputs. It

allows to improve previous results by exploiting speaker source position as well as dealing with diarization

overlap issues. In section 5.3, a newly published diarization approach is implemented based on spectral theory

aiming to compare recent clustering algorithm with the classical agglomerative approach. Finally, the tuning

of the diarization algorithm as well as the results of new techniques are reported in the section 5.4. The results

are presented using data delivered for the last three Rich Transcription evaluations campaigns, aiming to reach
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statistical significance by agglomerating around 24 different recordings from several sites and speakers.

5.1 AHC Single Channel Diarization

Speaker diarization refers to the systems performing speaker segmentation of the input signal and then speaker

clustering of the created segments into a homogeneous groups, all within the same input stream. The diarization

task assumes no prior knowledge about the speakers or how many people participate in the meeting. In order

to get acquainted with the problem, the data and the evaluation methodology, we have taken as a baseline

a simplified version of the International Computer Science Institute (ICSI) RT’06 system as presented in
[Anguera et al., 2006c].

The system currently used at ICSI, which has been used as a base for our diarization system, was originally

created by Jitendra Ajmera around 2003 to perform speaker diarization in broadcast news (BN) data. The

system was built while he was a PhD student at EPFL (Lausanne, Switzerland) and IDIAP (Martigny,

Switzerland) and implemented it at ICSI while visiting for 6 months. ICSI participated in several NIST

evaluations on BN including NIST 2003 Rich transcription of broadcast news spring evaluation and the RT’04

evaluation (Wooters et al. 2004). Afterwards, it was improved and adapted to meeting domain by Xavier

Anguera during his stay at ICSI as a PhD student from UPC. The system has been maintained and improved

during the elaboration of this PhD. It has also been submitted on the following NIST evaluations focused on

meeting data, specifically in conference domain:

• The Rich Transcription Spring 2007 Evaluation (RT’07) focused on the English Meeting Domain speech.

The cross site evaluation corpora included conference room meetings and lecture room meetings.

• The Rich Transcription Spring 2009 Evaluation (RT’09) focused on the English Meeting speech.

Including just conference domain data.

The system is a bottom-up agglomerative clustering approach that uses a modified version of the BIC distance
[Ajmera and Wooters, 2003] in order to iteratively merge the closest clusters until the same BIC distance

determines the system to stop merging. Speaker segmentation of the data is not explicitly done before the

clustering part, as step-by-step approaches do, but it is done via Viterbi decoding of the data given the current

speaker models at every iteration. For a thorough description of the system refer to [Ajmera and Wooters, 2003;

Anguera, 2006]. The philosophy behind the system and all research that has been done towards its improvement

is based on the same key concepts as previous developers:

• Make the system as robust as possible to data within the same domain.

• Allow for a fast adaptation of the system to use it in new domains (i.e. broadcast news, meetings,

telephone speech, and others).

These key concepts were put into practice by imposing the following guidelines:
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Figure 5.1: Brief scheme of the implementation of the single channel diarization system.

• Use as few training data as possible so the system can be easily adapted to new domains and it is not

over-tuned to the data it is trained on.

• Avoid the use of thresholds and tuning parameters as much as possible. If not, try to define parameters

that once tuned can achieve good performance in different kinds of data.

The figure 5.1 depicts the main blocks constituting the diarization core system that will be used as a baseline

in the experiments section. In the following sections a detailed description of the different blocks is given. It

differs from the previous diarization system by Ajmera and Anguera in several points: First, the inclusion of a

speech/non-speech detector developed at UPC based on SVM classifier in order to filter out the non-speech

segments prior to doing any further processing to the data; second, the automatic initial selection of clusters

which aims to ensure statistical significance in the GMM model parameter estimation as in [Imseng and

Friedland, 2010]. Furthermore, in order to speed-up the agglomerative clustering process, we have adopted

several strategies: A merging rule based on a threshold in the standard deviation of BIC values which allows

the system to merge more than one cluster at each iteration, a look-up table for the logarithm function based

on [Vinyals and Friedland, 2008] and a multi-threading version based on MPI [Snir et al., 1998] for parallel
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computations. In the multiple channel approach (known as MDM condition) for meetings, the system still uses

the multi channel capabilities developed by Anguera et al., as the use of a beamformed channel [Anguera et

al., 2007a] and the estimated position feature of speaker by means TDOA as in [Pardo et al., 2007]. Moreover,

some novelty contributions are included as the initialization of the clustering based upon estimated speaker

positions as in [Luque et al., 2008b].

5.1.1 Front-end Processing

The speech parameterization is based on a short-term estimation of the spectrum energy in several sub-bands.

The speech channel is analyzed in frames of 30 milliseconds at intervals of 10 milliseconds and 16 kHz of

sampling frequency. Each frame window is processed subtracting the mean amplitude from each sample. A

Hamming window was applied to each frame and a FFT computed. The FFT amplitudes were then averaged

through overlapped triangular filters, with central frequencies and bandwidths defined according to the Mel

scale.

Two main sets of features have been studied, one of them based on Mel-Frequency cepstral coefficients (MFCC)

and the other based on the Frequency Filtering approach. The frequency filtering squeme we apply follows the

classical procedure used to obtain the Mel-Frequency Cepstral Coefficients (MFCC), however in this approach,

instead of using Discrete Cosine Transform, such as in the MFCC procedure [Davis and Mermelstein, 1980]

log filter-bank energies are filtered by a linear and second order filter. The filter H(z) = z − z−1 has been

applied for some experiments over the log, of the filter-bank energies. The shape of this filter allows a

best classification due it emphasizes regions of the spectrum with high speaker information yielding more

discriminative information. These parameters have shown a good results in the last CLEAR Evaluation

Campaign in the acoustic person identification task [Luque and Hernando, 2008a] and its choice is based on

the fact that the use of the FF instead of the classic MFCC has shown the best results in both speech and

speaker recognition [Nadeu et al., 2001].

The use of complementary coefficients ∆ and ∆∆ parameters have been suppressed from the formation of

Figure 5.2: Brief scheme of the implementation of the single channel diarization system. The
highlighted box corresponds to the feature extraction module. It computes a set of parameter,
usually based on spectral information as MFCC, in order to extract useful and compact information

from the audio signal.
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the feature vector applied in speaker diarization and tracking experiments. Their application did not report

significant improvements, therefore, a set of static spectral coefficients are usually applied to perform most of

the experiments.

SVM-based Speech Activity Detection

The Speech Activity Detector (SAD) applied in this work is based on the SVM classifier [Schlkopf and Smola,

2002]. The system has been developed at UPC and it has shown a good performance in the last RT SAD

Evaluations [Temko et al., 2007]. The algorithm is based on Proximal SVM (PSVM) [Fung and Mangasarian,

2001] and on a fast training technique which allows the training of huge amounts of data. Additionally,

the SAD algorithm makes use of a cross-validation technique to select those frames which show higher

speech/non-speech detection accuracy. Finally, such frames were used to train a classical SVM model which

we applied to obtain the speech/non-speech segmentation.

A set of several hundred of thousand of examples is a usual amount of data for classical audio and speech

processing techniques that involves GMM. Nevertheless, it is an enormous number of feature vectors to be

used for a usual SVM training process and it makes challenging such training feasible in practice. Alternative

methods should be effectively applied to reduce the amount of data.

Proximal Support Vector Machine (PSVM) has been recently introduced in [Fung and Mangasarian, 2001] as

a result of the substitution of the inequality constraint of a classical SVM yi(wxi + b) ≥ 1 by the equality

constraint yi(wxi + b) = 1, where yi stands for the label of a vector xi, w is the norm of the separating

hyperplane H0, and b is the scalar bias of the hyperplane H0. This simple modification significantly changes

the nature of the optimization problem. Unlike conventional SVM, PSVM solves a single square system of

linear equations and thus it is very fast to train. As a consequence, it turns out that it is possible to obtain an

explicit exact solution to the optimization problem [Fung and Mangasarian, 2001].

The proposed algorithm of dataset reduction consists of the following steps:

• Step 1. Divide all the data into chunks of 1000 samples per chunk

Figure 5.3: Brief scheme of the implementation of the single channel diarization system. The
highlighted boxes correspond to SVM-based speech activity detector which is in charge of detecting

speech frames.
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• Step 2. Train a PSVM on each chunk performing 5-fold cross-validation (CV) to obtain the optimal

kernel parameter and the C parameter that controls the training error

• Step 3. Apply an appropriate threshold to select a pre-defined number of chunks with the highest CV

accuracy

• Step 4. Train a classical SVM on the amount of data selected in Step 3

The proposed approach is in fact similar to Vector Quantization (VQ) used for dataset reduction for SVM in
[Lebrun et al., 2004]. With Step 2 some kind of clustering is performed, and Step 3 chooses the data that

corresponds to the most separable clusters. However, unlike VQ, SVs which are obtained with the proposed

algorithm in Step 4 are taken from the initial data. Besides, additional homogeneity is achieved because the

PSVM data clustering is performed in the transformed feature space, through the transformation functions that

correspond to the Gaussian kernel. Finally, the same kernel type is applied to the chosen data in Step 4.

The feature set used is mainly based on Frequency Filtering (FF) parameters. Its computation is divided

into two parts. The first part, extracts information about the spectral shape of the acoustic signal in a frame.

It is based on Linear Discriminant Analysis (LDA) of FF parameters. The size of the FF representation

(16FF+16∆FF+16∆∆FF+∆E= 49) is reduced to a single scalar measure by applying LDA. The second part

of the feature set focuses on the dynamics of the signal along the time, observing low- and high-frequency

spectral components. The contextual information is involved in several ways. First, before applying the LDA

transform, the current delta and delta-delta features involve an interval of 50 and 70 ms, respectively, in their

calculation. Next, for the representation of the current frame, eight LDA measures are selected from a time

window spanning the interval of 310 ms around the current frame. Finally, low and high frequency dynamics

involve a smoothed derivative calculation that uses 130 ms interval. The first and the second part of the feature

set form a vector of 10 components. Additionally, a cross-frequency energy dynamic feature, which is obtained

as a combination of low and high frequency dynamics, is added to the final feature vector. A more accurate

description of the features employed is given in [Macho et al., 2006].

The SVM based SAD system applied in this PhD. proposal was trained with the RT 2005, 2006 and 2007

conference data, the CHIL 2007 meeting data and the Speecon (far-field microphone) data. It yielded to more

than 25 hours of training material.

5.1.2 Clustering Initialization

At the beginning of the clustering algorithm, a uniform initialization is performed so the system starts with

an homogeneous splitting of the whole data among the initial number of clusters (see figure 5.4 block A).

The number of initial clusters is determined automatically depending on the meeting length with minimal

and maximal value constraints. In this PhD. proposal, the total amount of clusters was constrained to a

minimum and a maximum of 35 and 85 clusters respectively, aiming to avoid overclustering and to reduce

the computational cost of the iterative approach. The automatic selection of the number of clusters (Kinit) is

defined as,
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Kinit =
N

Ginit RCC
(5.1)

The previous expression takes into account the total amount of data available per speaker cluster (N), the

number of Gaussian mixtures initially assigned to each speaker cluster (Ginit) and the cluster complexity

ratio (RCC). The RCC is a constant value across all meetings that defines the number of frames per Gaussian.

It was fixed to 7 seconds of speech per Gaussian whereas the initial number of Gaussians per model (Ginit)

was set to 5. In addition, the total amount of clusters was constrained to a minimum and a maximum values

respectively, aiming to avoid overclustering and to reduce the computational cost of the iterative approach.

Moreover, a method to reduce manual tuning of these values [Imseng and Friedland, 2010] is also implemented.

The solution reduces the sensitivity of the initialization values and therefore reduces the need for manual

tuning significantly while at the same time increases the accuracy of the system.

The figure 5.5 presents the results plotted as the number of seconds per Gaussian vs the Speaker Error for

different durations of segments. By tuning the seconds per Gaussian parameter yields low speaker error even

in short meetings. It also can be observed that the optimal amount of speech per Gaussian used for the training

procedure seems to roughly follow a curve that has a global minimum. The estimation method balances the

relationship between the optimal value of the seconds of speech data per Gaussian and the duration of the

speech data. In [Imseng and Friedland, 2010] the authors use a linear regression to estimate RCC,

RCC = 0.01 · speech in seconds + 2.6 (5.2)

fixing Ginit = 4 and then using the linear regression to estimate Kinit using 5.1, leads to improved results.

Such a strategy produces relative improvements of up to 50% for very short meeting segments (100 seconds)

while maintaining the performance of the system for long recordings (600-700 seconds).

Figure 5.4: Speaker diarization scheme. The left highlighted box is in charge of selecting the
initial number of clusters (classes) to feed the agglomerative approach. The right highlighted side

corresponds to the agglomerative hierarchical clustering stage by itself.
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Figure 5.5: Speaker Error versus seconds per Gaussian. Each data point corresponds to the average
speaker error of 12 meetings (2.05 hours of data) for one particular configuration. Configurations
for all tested segment durations are depicted in the same plot. One can recognize a combination of
curves, the minimum seems to be similar for different recording durations. Image from [Imseng and

Friedland, 2010].

5.1.3 HMM-based Agglomerative Hierarchical Clustering

Our speaker diarization system follows the commonly used agglomerative hierarchical clustering (AHC)

approach as explained in chapter 2 in section 2.3.2. Firstly, speech is broken into short uniform segments.

Such clusters are modeled by mixture of Gaussians and the successive clustering stage groups acoustically

similar segments, assigning them to speaker clusters based upon a Bayesian information criterion (BIC) metric

among Gaussian distributions. The figure 5.4 depicts an overall scheme of the diarization system submitted to

Rich Transcription (RT) 2007 and 2009s evaluations [Luque et al., 2008a]. The main stages of the diarization

can be condensed in the following points:

• Feature extraction and removal of non-speech frames. At this stage, a clustering initialization is also

performed based on an homogeneous partition of the data (see figure 5.4 block A).

• Model complexity selection based on the amount of data per cluster and the cluster complexity ratio

(CCR), which fixes the amount of speech (seconds) per Gaussian. A HMM/GMM training and cluster

realignment by Viterbi decoding based on maximum likelihood (see figure 5.4 block B).

• Agglomerative clustering based on the Bayesian information criterion (BIC) metric among clusters. The

stopping criterion, also based on the BIC, drives the ending point of the algorithm (see figure 5.4 block

C).
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Figure 5.6: The clusters in the diarization algorithm are modeled by means of an ergodic
HMM/GMM with a minimum duration constrain which ensures a minimum length in the speaker

turn duration.

Once the initial segmentation is performed, each cluster is modeled by one mixture of Gaussians, fitting the

probability distribution of the features by the classical expectation-maximization (EM) algorithm (see figure

5.4 block B).

It follows an iterative bottom-up strategy driven by a loop of BIC estimations and HMM alignments (see figure

5.4 block C). In this step the segments which belong to the same speaker are combined in a new model at

each iteration. A time constraint as in [Ajmera and Wooters, 2003] is also imposed on the duration of the

speaker segments through a hierarchical modeling of each state, see figure 5.6. In that sense, Viterbi decoding

decisions are taken based on the estimation of the observation probabilities by accumulating the likelihoods

per cluster/state in a 3 seconds window.

This procedure is iterated until the stopping criterion is reached. It is met whenever all the remaining set of BIC

cluster-pairs show negative values, meaning that no suitable candidates are found to merge and consequently

the algorithm ends. Finally, at the last iteration and once the stopping criterion is met, each remaining state

represents a different speaker. A more detailed description of the system can be found in [Luque et al., 2008a].

The performance of the speaker diarization was evaluated by means of the diarization error rate (DER) as

defined by NIST [Fiscus and et al., 2007a]. The DER is a time-weighted metric composed of the sum of

missed speaker time, false alarms and speaker error time as explained in chapter 2 in section 2.3.3.
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Automatic Model Complexity Selection

At each iteration j, the number M j
i of Gaussian mixtures to model the cluster i is updated by

M j
i =

⌊( N j
i

RCC

)
+

1

2

⌋
, (5.3)

whereN j
i is the number of frames belonging to the cluster i. Whenever two segments are merged a new segment

model is also trained pooling all the features from the merged segments and fixing the model complexity

according to the RCC value. Such automatic selection of the modeling complexity has demonstrated a

successful performance while avoiding the use of the penalty term in the classical BIC metric [Anguera et al.,

2006c].

Iterative Viterbi Segmentation

The agglomerative clustering algorithm models the acoustic data using an ergodic hidden Markov model

(HMM), where state corresponds to one of the initial clusters. Lets X = {x1, x2, ....., xN} the audio data to

be segmented, we want to find the optimal number of clusters k∗ and their acoustic models θ∗k that produce

the “best“ segmentation, in likelihood sense, of the data (X) according to:

θ∗k, k
∗ = argmax

θk,k
{Pr(X, pbest|θk, k)}, (5.4)

where pbest is the Viterbi segmentation path with the highest likelihood, that is, a sequence of states/models

which produce the maximum likelihood given the observations. Upon completion of the algorithms execution,

each remaining state is considered to represent a different speaker. This step aims to refine the data partition

obtained by the agglomerative clustering and improves the speaker segment boundaries [Tranter and Reynolds,

2006]. Thus, we want to find the set of clusters and their acoustic models that maximize the likelihood of

the data and the associated segmentation based on this HMM topology. Since we do not want to consider all

possible values for k, we start choosing a maximum value (k = K) by means an initial segmentation. Then,

through the process of cluster merging, we reduce the value of k until we find an optimal number of clusters

k∗ and their acoustic models θ∗k according to equation 5.4.

In addition, a minimum duration (MD) constrain have been imposed in the HMM topology, see figure 5.7,

which ensures a minimum length in the speaker turn duration. Each state in the HMM is composed by a set of

sub-states, as seen in figure 5.7, imposing a minimum duration of each model. Each one of the sub-states has a

probability density function modeled via a Gaussian mixture model (GMM). The same GMM model is tied

to all sub-states in any given state. Once entering a state, at time n the model forces a hop to the following

sub-state with probability 1.0 until the last sub-state is reached. In that sub-state, it can remain in the same

sub-state with transition weight α, or jump to the first sub-state of another state with weight β
K , where K is

the number of active states/clusters at that time. A justification for this values of the transition probabilities,

β and α, in the chain of sub-states is given in [Anguera et al., 2006d], where a disadvantage arises by using
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Figure 5.7: Minimum duration constrain, which ensures a minimum length in the speaker turn
duration, by stacking a set of substates on each state.

β + α = 1 as an artificial penalization of long speaker turns against turns with minimum MD frames.

In order to illustrate such a drawback, lets define the likelihood performed by an observation sequence

Y = {y1, y2, . . . , y2MD} of 2 times MD of duration in the case the speaker change does not occur, lkldAA,

and in the case there is a speaker change turn between A and B, lkldAB :

lkldAA = Pr(y(0) | ΘA)
MD−1∏
i=1

(1 · Pr(y(i) | ΘA)) ·
2MD−1∏
i=MD

(α · Pr(y(i) | ΘA)) (5.5)

lkldAB = Pr(x(0) | ΘA)
MD−1∏
i=1

(1 · Pr(y(i) | ΘA)) · β
K

Pr(y(MD) | ΘB)
2MD−1∏
i=MD+1

(1 · Pr(y(i) | ΘB))(5.6)

in which y(i) stands for the acoustic observation i and Θj stands for the model of the j state. Equation 5.5

shows the computed likelihood given 2 times MD acoustic frames and remaining in cluster A during all of

them. In contrast, equation 5.6, shows the total likelihood if we jump to a model B after the initial MD frames.

The only way to ensure that equation lkldAA > lkldAB given A = B is setting β = α = 1, [Anguera et al.,

2006d]. Thus, once a segment exceeds the minimum duration, the HMM state transitions no longer influences

the turn length; turn length is solely governed by acoustics.

Whenever two clusters are merged, the total number of parameters in the HMM decreases. Modeling the same

amount of data using fewer parameters yields a lower likelihood score. Given that the merging process can

only result in monotonically decreasing likelihoods, we will not observe a maximum in the likelihood function

5.4 at any point rather than the starting point. Therefore we need to choose a likelihood threshold to tell us

when to stop merging.

5.1.4 Merging Clusters and Stopping Criterion

Once the data has been segmented into many small pieces and each piece is assigned to a cluster, the system

then iteratively merges clusters and stops when there are no clusters that can be merged. This procedure

requires two different metrics: one to determine which pair of clusters to merge, and a second measure to
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determine when to terminate the merging process. We used a modified BIC-based metric [Ajmera and Wooters,

2003] to decide in both cases: the most likely-pair of clusters to merge and the stopping point.

Ideally, we would like to find a method of selecting similar clusters which results in an increase of the objective

function 5.4 when the pair of right clusters 1 are merged and an incorrect merge will result in a decrease. A

common competing models selection method is to use the Bayesian Information Criterion (BIC).

Assuming that there are two clusters/segments to compare, the problem is to decide whether such two segments

are uttered by the same speaker. Let Z = X ∩ Y and NX , NY , NZ be the numbers of samples in clusters

X,Y and of their union cluster Z, respectively. Obviously, NZ = NX +NY . The modified BIC equation is

defined as:

∆BIC(Z) = BIC(X,Y ) = L0 − L1 ≶ 0, (5.7)

which does not make use of the penalty term, which corresponds to the number of free parameters of a

multivariate Gaussian process, see section 2.3.1. L0 is defined as the log-likelihood performed by a model

θZ which takes into account the whole data Z and stands for the parameters of the Gaussian distribution, i.e.,

the mean vector µz and the full covariance matrix σZ . Whereas L1 is defined by the sum of log-likelihoods

performed by two independent models θX and θY on each data cluster X and Y , respectively:

L0 =

Nx∑
i=1

log Pr(zi|θZ) +

Nz∑
i=Nx+1

log Pr(zi|θZ) (5.8)

where zi ∈ <d, i = 1, 2, . . . , Nz which are assumed to be independent vector of acoustic features. The

segments X and Y are modeled by distinct multivariate Gaussian densities, whose parameters are denoted by

θX and θY , respectively.

L1 =

Nx∑
i=1

log Pr(zi|θX) +

Nz∑
i=Nx+1

log Pr(zi|θY ) (5.9)

In the case BIC(X,Y ) > 0, it implies that the clusters X,Y are best modeled by one independent model θZ
rather than by two independent models θX and θY . That is, the clusters X and Y are candidates for merging.

The equation 5.7 is similar to traditional BIC criterion, except by the lack of the penalty term and that the

model θZ is constructed in such a way that the number of parameters is equal to the sum of the number of

parameters in θX and θY . By keeping constant the number of parameters on both sides in equation, we have

eliminated the traditional BIC penalty term. Selecting candidates for merging using this criterion does indeed

result in an increase in the objective function associated with 5.4. This increases the robustness of the system

as there is no need to tune this parameter [Ajmera and Wooters, 2003].

The segmentation obtained at the output of the block B) (see figure 5.4) defines a new set of speaker
1That is, a merge involving clusters of data from the same speaker
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clusters/states which will be retrained. After every new segmentation-training step, we look for the pair

(X,Y ) satisfying BIC(X,Y ) > 0 . In the case of many candidate pairs, we choose the pair that maximizes

BIC(X,Y ). This method provides a fully automatic stopping criterion that does not require the use of any

tunable parameters. However, there are a few hyper-parameters in this algorithm, namely the initial number of

clusters (K), the initial number of Gaussian components in each cluster (M), the type of initialization used to

create the clusters, and the set of acoustic features employed to parameterize the signal.

In the case of the stopping criterion, we decide to halt the iterative procedure based on the BIC values of the

remaining cluster-pairs. Once we do not find a couple of cluster X,Y with BIC(X,Y ) > 0 we stop the

merging and the final clustering hypothesis is provided by the system . In the final clustering the remaining

classes are considered as different speakers.

Multiple Cluster Merging Criterion

Most of the systems based on agglomerative clustering perform just one merge at each BIC iteration, in

which they choose to merge those couple of clusters with higher BIC value. Since the computational cost of

the agglomerative clustering increases roughly with the square of the number of clusters, we have explored

strategies in order to increase the number of initial clusters without significantly impacting the run-time and

performance. Instead of selecting the cluster-pair with higher BIC value as the merging candidate, a threshold

is applied depending on the standard deviation of the set of BIC value obtained among the whole set of

cluster-pairs. This strategy leads to a set of cluster-pairs candidates for merging instead of just one candidate.

Therefore, the system might merge more than one pair of clusters per iteration yielding to a speed up in the

agglomerative clustering. We expect that using this merging approach allows us to start with a much larger

number of initial clusters without dramatically increasing the run-time or degrading the performance. In

general, we decide to merge all cluster-pairs (X,Y ) fulfilling:

BIC(X,Y ) > BICµ +
3

2
BICσ (5.10)

where BIC(X,Y ) is the BIC value between the clusters X and Y , BICµ is the mean of BIC(X,Y ) for

X 6= Y and BICσ the standard deviation for the same set, that is, the mean and standard deviation of the

whole set of BIC measures.

5.1.5 Inclusion of a Turn Taking modeling

The modeling of the turn taking or social interactions in a multi-party conversation has been addressed in

several works in the past becoming an active field [Thomas P. Wilson and Zimmerman, 1984]. Recently,

speaker roles and dynamics within the conversation and social interactions has attracted special attention from

researchers [Valente et al., 2011; Laskowski and Shriberg, 2012].

Turn-taking models use a truncated representation of past speech activity to specify how likely the speaker is

to talk at the next instant. We study this question using the NIST RT database and the algorithms we developed
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and presented in the Rich Transcription evaluation in 2009.

The turn taking modeling presented proposes to model the speaker sequence using n-grams of speakers

occurrences which can be then combined with the acoustic information coming from MFCC features. The

approach is largely inspired by the current Automatic Speech Recognition (ASR) framework where the acoustic

information from the signal, i.e., the acoustic score, is combined with the prior knowledge from the language,

i.e., the language model. The most common form of language model is represented by words n-gram.

Let us consider the meeting as a sequence of speaker turns, i.e. speech regions from same speaker, uninterrupted

by pauses longer than 50 ms:

T = {(t1,∆t1, s1), . . . , (tN ,∆tN , sN )} (5.11)

where tn is the starting time of the n-th turn, ∆tn is its duration, sn the speaker label and N the total number

of turns in the recording. Once we obtain an initial estimation of the number of speakers in the meeting, that is,

a partition of the data in clusters – see section 5.1.2 – we also get an estimation of the speaker sequence:

T ∗ = {(t∗1,∆t∗1, s
∗
1), . . . , (t

∗
N ,∆t∗N , s∗N )} (5.12)

In our modeling we do not take into account the starting time and duration of the speaker turn, thus we are only

interested on the sequence S of speakers occurrences. Such a sequence S can be modeled using n-grams of

Pr(sn|sn1, . . . , snp), i.e., the probability of the speaker n depends on the previous p speakers in the sequence,

which is called the context. The duration of the mentioned context limits the computation of the probability of

the sequence. Therefore the probability of a sequence S can be written as:

Pr(S) = Pr(s1, . . . , sn) = Pr(s1, . . . , sp)

N∏
n=p

Pr(sn|sn−1, . . . , sn−p) (5.13)

After the initial clustering, the speaker sequence is re-estimated using an ergodic Hidden Markov Model/Gaussian

Figure 5.8: Speaker diarization scheme, language modeling inclusion in the HMM/GMM decoding.
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Mixture Model where each state represents a speaker. The maximum likelihood sequence is decoded using

a conventional Viterbi algorithm which implements a minimum duration constraint – see section 5.4. The

optimal sequence is obtained maximizing the following likelihood, omitting the k number of clusters and the

speaker model θ:

S∗ = argmax
S
{Pr(X|S)}, (5.14)

and also neglecting the fact that not all speaker sequences S have the same probability. This new type of

information can be included extending the maximization as :

S∗ = argmax
S
{Pr(X|S) Pr(S)}, (5.15)

in which the probability Pr(S) can be estimated from 5.13. This is somehow similar to what is done in

Automatic Speech Recognition (ASR) where sentences (i.e. word sequences) are recognized combining

acoustic information together with linguistic information captured in the language model (n-gram of words).

Recalling previous equations 5.5 and 5.6 which stand for the probability of remain in state A (same speaker)

or change from state A to state B (change the speaker turn) based uniquely on the acoustics, we can introduce

the language model information as in equation 5.15 and solve it by means of the same Viterbi algorithm. In

that sense, a speaker change occurs whenever the following inequality is fulfilled:

(1− LM) · lkldAB + LM · log(Pr(sp, sp−1, . . . , sA, sB)) > (5.16)

> (1− LM) · lkldAA + LM · log(Pr(sp, sp−1, . . . , sA, sA))

in which the maximization is expressed in the logarithm domain, the language/speaker transition probability

Pr(S) depends on the p previous speaker turns and LM stands for the weight of the language model. As in

ASR, the weight is introduced to scale Pr(S) values to comparable ranges with those obtained from acoustic

observations. In addition, the LM weight is incorporated once the computation of the acoustics probabilities

is performed ensuring the Minimum Duration (MD) constrain.

Several strategies were presented in the last RT evaluation in order to estimate the probability Pr(S). The

most simple of them relies on the estimation of a transition matrix among clusters, that is, a 1-gram model

equivalent to the number of occurrences of a cluster normalized by the total number of occurrences, i.e. the

occurrence frequency of each cluster. Therefore we obtain a k × k matrix T , where k is the total number of

clusters, which represents the probability of ”jumping“ from one cluster to other or just to remain in the same

cluster. At each iteration of the agglomerative clustering, a new speaker sequence is obtained and the matrix T

is updated with the information of the new clustering.

• Unigram: Count each transition among consecutive clusters and compute T .

• Unigram updated with some trigrams: Count the trigrams of the form ABA and increase the transition
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probability from any speaker A to speaker B. That is inspired by the common behavior in a conversation

with short speaker interruptions.

• Trigrams weighted by interruption duration: Depending on the duration of previous speaker inter-

ruptions, the transition probability of the speaker B is increased by a factor proportional to that duration.

Speaker interruptions of 250ms and 150ms are taken into account in this approach.

5.1.6 Fast Logarithm and MPI Processing

In this subsection we give a brief idea of the implementation efforts carried out during the elaboration of this

PhD thesis in order to speed up the agglomerative clustering approach. Two technical ideas were implemented:

a fast logarithm based on a lookup table and the C++ code adaptation to MPI multi-core capabilities. First

of them is inspired by the total amount of computational time spent by the AHC approach in computing

logarithms, due to the fact that we are always working with log-likelihoods. The second is devoted to get

benefit of the actual multi-core processors.

The proposed fast logarithm function is a fast single precision approximation of the natural logarithm with

adjustable accuracy [Vinyals and Friedland, 2008]. Given an IEEE 754 floating point number, the main idea is

to use a quantized version of the mantissa as a pointer into a lookup table. The amount of quantization of the

mantissa determines the table size and therefore the accuracy. Current processors are able to store relatively

large lookup tables in cache memory. Therefore an acceptable accuracy can be reached without too many main

memory accesses.

Conceptually, a 32-bit IEEE 754 floating point number is stored as follows. A value V of a number is the

product of a 23-bit mantissa m and an 8-bit exponent e. One bit is reserved for the sign, s. If s = 0 the sign is

positive, otherwise it is negative. Since the real- valued logarithm is only defined for positive numbers, the

sign bit can be ignored. We get:

V = 2e ·m (5.17)

We can use the multiplicative property of the logarithm function to decompose the logarithm computation as:

log2(V ) = log2(2e ·m) = e+ log2(m) (5.18)

In order to calculate the natural logarithm, we can take advantage of the property that all logarithms are

proportional to each other. This results in the following equation:

loge(V ) = (e+ log2(m))loge(2) = e · loge(2) + log2(m) · loge(2) (5.19)

where loge(2) = 0.6931471805 is a constant. Calculating the logarithm with respect to any other base only

requires multiplying with a different constant. Extracting the exponent and the mantissa of a floating point

number can be performed quickly using bit shift operations. Therefore, in order to calculate the left part of
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the sum, only one multiplication is required. To calculate the right part of the sum, we store the results of the

computation log2(m) · loge(2) in a lookup table. Unfortunately, this still requires a table with 223 entries with

each entry needing 4 bytes, thus 32 MB. Nevertheless, using a table of this size increases the performance

of the logarithm computation only very slightly since memory accesses take about the same time than the

computation of the Taylor approximation [Vinyals and Friedland, 2008]. In order for the look up table to

fit into cache, we quantize the mantissa, i.e. we ignore q least significant bits of the mantissa. The table is

then indexed using the 23 − q most significant bits of the mantissa. The result is calculated by adding the

value looked up in the table and the down scaled exponent. Accuracy is lost because of the quantization of

the mantissa, however not a significant drop in DER performance is noticed while the computation time is

reduced in a factor of 3 or more.

MPI is a library of message passing routines [Snir et al., 1998]. The library allows a user to write a program

in a familiar language, such as C, C++, FORTRAN77 or FORTRAN90, and carry out a computation in

parallel on an arbitrary number of cooperating computers. Thus, this is the most remarkable feature: the user

writes a single program which runs on all the computers. In addition to MPI, a High Throughput Computing

(HTC) called Condor [Tannenbaum et al., 2001] was also employed for computing distributively. Condor is a

specialized workload management system for compute-intensive jobs. Like other full-featured batch systems,

Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and

resource management. Users submit their serial or parallel jobs to Condor, Condor places them into a queue,

chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately

informs the user upon completion.

5.2 AHC Multi Channel Diarization

The multi channel speaker diarization approach follows an strategy commonly applied in most of the state-of-

the-art systems [Pardo et al., 2012; Anguera et al., 2011; Friedland et al., 2011; Anguera et al., 2007b]. In a

multi-microphone environment, the use of redundant signals can improve the classical diarization systems.

On the one hand, this information can be used for signal enhancement by applying a delay&sum algorithm

as in [Anguera et al., 2007a]. On the other hand, the speaker localization can directly perform the speaker

segmentation and the clustering as in [Koh and et al., 2008] where a diarization based on Direction Of Arrival

(DOA) information is proposed. In [Wooters and Huygbregts, 2008], the diarization is performed in an

agglomerative way mixing the cepstral and the delay observations.

In this section, the previous described single-channel diarization is improved through the use of multiple

microphone channels. It is achieved by means signal enhancement techniques like as Wiener filtering and

signal beamforming, that mainly concentrate on obtaining a clean version of the speech wave or in focusing on

the active speaker.

In addition, other information sources present in the speech, as the time delay of arrival (TDOA), are also

employed. TDOA features are processed as a additional stream feature and combined jointly with MFCC
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features leading to an strategy which has become one of the most popular system reported in the literature and

in NIST Rich Transcription evaluations [Pardo et al., 2007]. Moreover, the TDOA statistics and beahaviour

are analyzed and their application in different parts of the diarization is demonstrated by several original
works which apply them, e.g., to clustering initialization and speaker overlap detection.

5.2.1 Wiener Filtering

A Wiener filtering technique is applied on multiple distant microphone data (MDM). The combined use

of Wiener filtering together signal beamforming has demonstrated to be a successful approach whereas in

the previous case, in the single distant microphone (SDM) condition, no Wiener filtering is applied due no

improvement was observed in experiments.

The noise reduction implementation from the QIO front-end [Adami et al., 2002] is applied on each MDM

microphone channel as can be seen in figure 5.9. In order to estimate the noise we also applied the same

procedure than in the QIO front-end, in which the noise estimation is initialized from the beginning of each

show and updated with those frames of the show selected as non-speech based on an energy threshold. Noise

estimation is done in a causal fashion, so that each frame is noise-reduced using a noise estimate which does

Figure 5.9: Speaker diarization scheme, multi-microphone approach. In this approach TDOA
features extracted from several channels are employed as an independent feature set. Statistical
models of the TDOA distribution are employed in HMM training/segmentation as well as in BIC

matrix computation.
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not depend on future frames.

5.2.2 Acoustic Beamforming and TDOA estimation

We applied the Weighted-Delay-and-Sum (W-D&S) technique [Flanagan et al., 1985] to perform the signal

enhancement as explained in section 2.4.1. It differs from the simpler D&S beamformer in that an independent

weight is applied to each of the channels before summing them. We estimate the delay TDOA in order to

synchronize two microphone signals for enhancing the signal to noise ratio and to obtain a second stream of

information to combine with classical MFCC parameters in the diarization algorithm.

Given the signals captured by N microphones, xi[n] with i = 0 . . . N − 1 (where n indicates time steps) if

we know their individual relative delays d(ref, i) (Time Delay of Arrival, TDOA) with respect to a common

reference microphone xref , we can obtain the enhanced version of the signal by means equation:

y(n) = x0[n] +
N−1∑
i=1

Wixi[n− d(ref, i)]. (5.20)

In order to estimate the TDOA between two segments from two microphones we applied the generalized cross

correlation with phase transform (GCC-PHAT) method as defined in section 2.4.1 by equation 2.73. The

TDOA for two microphones is computed as in equation 2.74 using a window of 500 ms. at a rate of 250 ms.

applied on the Wiener filtered channels. The weighting factor Wi applied to each microphone i and estimated

depending on the cross correlation between each channel and the reference channel.

The TDOA information along with the MFCC stream are also combined throughout the diarization process,

in the Viterbi decoding as well as in the computation of the BIC values among clusters. Due to the fact of

different feature rates for each stream, recall that MFCC features are obtained at a rate of 10ms compared to

250ms in the TDOA case, and aiming to synchronize the TDOA and the MFCC streams, each TDOA value is

repeated 25 times to match the rate of the MFCC stream.

In order to obtain a combined TDOA-MFCC score or likelihood we follow the same procedure than in [Pardo

et al., 2007], in where the TDOA stream is modeled as a GMM distribution and its log-likelihood is weighted

with the MFCC log-likelihood considering the joint log-likelihood for any given set of frames X belonging to

a cluster as:

`(X
mfcc

, Xtoda|Θmfcc
,Θtdoa) = α `(Xtoda|Θtdoa) + (1− α) `(X

mfcc
|Θ

mfcc
) (5.21)

where Θ
mfcc

, X
mfcc

are the acoustic model and the set of MFCC frames data respectively, Θtdoa, Xtdoa are

the delay model and the TDOA data, and α the weight of each stream. ` stands for the log-likelihood, that

is, log(Pr(X|Θ). It is worth to mention that, in this formulation, each stream is considered to be statistically

independent from each other.
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Figure 5.10: Speaker diarization scheme, multi-microphone approach with cluster initialization
based on TDOA features. In this approach TDOA features are employed to obtain a speaker
clustering based upon speaker location. The resulting clustering initializes the MFCC-based

diarization algorithm.

5.2.3 TDOA Features for Clustering Initialization

In this section a TDOA-based initialization for the hierarchical diarization system is presented. The novel

TDOA clustering proposed is based on the analysis of the temporal statistics of the distance among TDOA

pairs. The aim is to obtain speakers clusters from a unique person. Such a cluster purity is based on the

hypothesis that if a speech is produced from the same location during a certain period of time, it might

come from the same speaker. The resulting TDOA clustering becomes the initial clustering condition for the

integrated speaker diarization based on a HMM modeling of cepstral features as can be noticed in the scheme

of the figure 5.10.

TDOA-based Clustering

In order to estimate the TDOA between segments corresponding to two microphones, we used a modified

version of the Generalized Cross Correlation with phase transform GCCPHAT [Brandstein and Silverman,

1997]. GCCPHAT has been widely used in the acoustic localization task [Segura et al., 2007] and in the blind

signal separation field [Swartling and et al., 2006]. Moreover, it is known to perform robustly in reverberant



5.2 AHC Multi Channel Diarization 141

environments.

TDOA features by themselves permit short-term speaker segmentation by analyzing the delays steadiness. It

can be employed for the tracking and the segmentation of individuals in a 2D or 3D metric space by making

use of the geometrical information between microphones. Unfortunately, for the NIST database, where

microphone locations are not available, a different strategy is needed.

Anyway, the delays between microphone pairs are related to a positions in the 3D space by a non-linear

hyperbolic function. Without the knowledge of the microphone geometry, we can only conclude that a

displacement of an active speaker in the room yields to different shifts in the estimated delays of each

microphone pair. Such relationship with the real 3D geometry depends on the distance between microphones

and the relative position of the speaker. Thus, the total dynamic range of the TDOAs of every microphone

pair is associated to the maneuvering of the speakers in the room. With this assumption and analyzing the

distribution of the TDOA values along time, a set of possible locations can give us the information of the

speech events during a recording. The continuity of such values within a segment of time might be associated

to the same speaker position. When a speaker change occurs, the TDOA changes and its value is associated

to the new speaker location. Moreover, if a set of TDOA is available a smoothing of this strategy can be

performed rejecting the wrong estimations of the time delays.

In terms of the number of microphones K in the recording, the total number of possible TDOAs at each

time t is given by the combinatorial number
(
K
2

)
= N . We define the TDOA space as the set of points

~τt = (τ1t, τ2t, ..., τNt) where each τit is the estimated TDOA from a given pair of microphones i in time t.

The range of values that can reach each component of ~τt differs since the real distance between microphone

pairs might be different. To avoid this problem each component of ~τt is normalized, independently for each

component, based on the dynamic range of the TDOA values during an interval of time T as follows:

τitnorm =
τit

(max
t∈T

(τit)−min
t∈T

(τit))
, i = 1, . . . , N (5.22)

After this normalization, the distance between two points d(~τt, ~τt+1) is defined by means the Euclidean

distance. Next the tracking and segmentation of moving speakers can be obtained by applying classical spatial

data association and clustering techniques [Bar-Shalom and Fortman, 1988].

However, the Euclidean distance between ~τt vectors is highly sensitive due the TDOA estimation errors. Thus,

we assume that if a percentage of the TDOAs are not changing during a time segment, the same person is

speaking.

With such assumption we propose to compute the distance in the normalized TDOA space as the Euclidean

distance in a subset of N with dimension n < N . That subset represents the TDOA components of ~τ which

have the lowest variation in each time step. In order to select the n best TDOAs, the difference in two time

steps, ~τt − ~τt+1, is computed. Next, those n closest TDOAs are selected based on a threshold and they are

employed to compute the Euclidean distance as,
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Figure 5.11: Two speaker example where two tracks are associated to the same observed TDOAs,
involving 3 microphone pairs. The arrow indicates the speech source orientation and, for this

example, the distance is defined with dimension n = 2

d(�τt, �τt+1) =
1

n

n∑
i=1

(
τit − τi(t+1)

)2
(5.23)

Such TDOAs are more likely to focus on a particular source. Note that this criterion is evaluated in each t so

the n selected components of �τ could be different at each iteration.

Finally, with the purpose of capturing the temporal evolution of distances d(�τt, �τt+1) and to associate several

speakers detections along time, we track the temporal variations of �τt in the normalized TDOA subset in the

following way:

• Assignation of new TDOAs to their corresponding active tracks, if they exist. The incoming TDOA

estimates are associated to tracks based on the distance.

• Check the distance between tracks. Similar tracks are merged into one model. Tracks without an input

association during a period of time are marked as non-active.

• Search of new tracks from TDOA history based on a distance threshold. Coincidence with non-active

tracks are taken into account. The potential tracks are tested with deactivated tracks based on both

TDOA distance and an exponential function of the elapsed time since the deactivation.

With this strategy, the non-active tracks are more likely to be merged with the new potential track. That

assumption is based on the hypothesis that the tracking of a person that is not speaking may lead to errors since

the person might have moved to other position losing the association between the speaker and his observable

TDOAs. A time constrain is also imposed on the minimum duration of the tracking, fixing it to 3 seconds.

Tracks with less duration are not considered.

As a example, the figures 5.11 and 5.12 show an hypothetical case involving two persons that are speaking

simultaneously. We assume that due to the orientation of the speakers, the estimated TDOA at the microphone

pair 1 is steered to person 1 and the TDOA at the pair 3 focus to speaker 2, while the pair of microphones 3
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Figure 5.12: Two speaker example where two tracks are associated to the same observed TDOAs,
involving 3 microphone pairs. In the example, the TDOA subsets Track 1 and Track 2 are associated

since they present lower variation in such a 3-dimensional TDOA space, compared to Track 3.

has a TDOA that points to both speakers. In this hypothetical case and using n = 2, two overlapped tracks are

associated to the speakers and the set of TDOA pairs. So the algorithm also detects overlapped speakers in the

recording.

Finally and based on the previous processing of the TDOA values, a speaker clustering is obtained which will

be employed as the initial segmentation of the data for the classical agglomerative clustering, see figure 5.10.

5.2.4 TDOA Features for Detection and Handling Speaker Overlap

In this subsection we propose the use of more spatial information in the overlap detection stage previous to the

speaker diarization system itself. This strategy is concerned with applying a set of cross-correlation-based

spatial features for simultaneous speech detection on distant channel data. Spatial features are extracted from

the Generalized Cross-Correlation with Phase Transform weighting (GCC-PHAT) from all channel pairs, and

consist of the main peak magnitude of the cross-correlation, the rate of change of the TDOA and a dispersion

ratio that measures the energy dispersed in the neighborhood of the main peak in the GCC-PHAT [Zelenák et

al., 2010]. These spatial features pose the problem that the dimensionality of spatial feature space is dependent

on the number of microphone channels available and can be eventually very high or can vary across different
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Figure 5.13: Word network topology in decoding process.

rooms. In order to deal with these issues, we suggest a reduction and normalization of the size of spatial

feature vectors by using principal component analysis (PCA). Afterwards, spatial information is integrated into

a spectral-based overlap detection system. The PCA-based microphone-pair fusion is additionally compared

to an alternative strategy involving a multilayer perceptron (MLP) neural network, whose output classification

score is used as an extra spatial feature.

Our aim is to improve the baseline diarization system by handling detected simultaneous-speech segments, as

in [Boakye et al., 2008d],[Boakye et al., 2008b]. Two techniques are considered to accomplish this purpose.

In the former approach, also referred to as overlap exclusion, overlaps are discarded from training, hoping to

achieve purer cluster models and thus a more precise segmentation. The latter technique allows to assign two

speaker labels in segments with simultaneous speech. In the latter case, the overlap hypothesis needs to be

sufficiently precise, since all of the falsely detected overlaps will contribute to diarization error and only a

perfect selection of speaker labels would recover the missed overlapping speaker time.

Baseline Overlapped Speaker Detection

The baseline overlap detection utilizes a number of spectral-based features. Cepstrum is successfully applied

in various speech-related tasks and forms a good basis for a feature set. For that reason, 12 mel frequency

cepstral coefficients (MFCCs) were extracted every 10 ms over a window of 30 ms.

Another spectral-based feature is the spectral flatness (SF), which was extracted over 30 ms windows. Spectral

flatness was applied for discrimination between speech and non-speech [R. Yantorno, 2001], but can eventually

convey information about the number of speakers speaking [Boakye et al., 2008d]. It is defined as the ratio

between geometric and the arithmetic mean of N spectral magnitudes (N = 100 in our case)

MSF = 10 log10

N

√∏N−1
i=0 mag(i)∑N−1

i=0 mag(i)
. (5.24)

Linear predictive coding (LPC) analyzes the speech signal by estimating the formants of a speaker. It is

assumed that LPC of a reasonably chosen order can model the spectrum of a single speaker quite well, but

will fail for a region with multiple speakers [Sundaram et al., 2003; Boakye et al., 2008b]. Consequently

more energy is left in the residual signal (prediction error) in the later case. In our system, residual energy of
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Figure 5.14: Overlap detection system diagram.

a 12th-order LPC (LPCRE) was computed over a 25 ms window. All features vectors were mean-variance

normalized according to statistics of the training data and first order differences were added totalling 28

features with 10 ms frame rate.

The system considers three acoustic classes representing non-speech, single-speaker speech and overlapping

speech. For each class an HMM is defined. For a more accurate modeling of transitions between classes the

HMM has three states, which also works as a minimum duration constraint. Every state is modeled with a

GMM using diagonal covariance. Since the amount of training data is not balanced among classes, we use 256

Gaussian components for single-speaker speech and 64 components for overlapping speech and non-speech.

GMMs are created by iterative Gaussian-splitting technique and subsequent re-estimation.

Detection hypothesis is obtained by Viterbi (maximum-likelihood) decoding and applying a word network

whose topology is depicted in the figure 5.13. It is worth to mention that the transition probabilities between

different HMMs states are not trained. They are set manually. In order to increase the precision, the transition

from single-speaker speech to overlapping speech might be penalized with an overlap insertion penalty (OIP),

e.g. imposing that certain transitions are completely forbidden. The detection hypothesis are then fed to the

speaker diarization system as shown in the figure 5.14.

Spatial Features for Overlap Detection

The cross-correlation function is well-known as a measure of the similarity between signals for any given time

displacement and ideally its maximum lies in correspondence to the delay between the pair of signals [Svaizer

and others, 1997]. A commonly used technique to estimate the time delay between two acoustic signals that

performs robustly in reverberant environments is the Generalized Cross-Correlation with Phase Transform

weighting (GCC-PHAT) [Brandstein and Silverman, 1997; T. Gustafsson and B. Rao and M. Trivedi, 2003].

Although it is a general purpose technique and not fully adapted to speech, it has turned out to be the most

successful state-of-the-art approach to speaker localization and it has been employed by some researchers in

the field of speaker diarization, including [Luque et al., 2008b; Araki et al., 2008]. See chapter 2, section 2.4.1.

The GCC-PHAT function exhibits a prominent peak at the elapsed time corresponding to the dominant sound

source in the room, minimizing the peaks of the non-dominant sources and reverberation at the same time,

see figure 5.15. The value of the GCC-PHAT peak provides a measure of the coherence between signals

independently of the microphone gains or the signal power, and varies with the distance between microphones,
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Figure 5.15: Example of the cross-correlation between a pair of microphones involving two con-
current speakers. The value of the main peak is the confidence feature C, and its time displacement
τ̂ corresponds to the TDOA. The ratio between C2 and the quadratic sum of the values in bold

under the window is used as the dispersion feature D.

the distance between the acoustic source and the microphone pair, and with the environmental noise and

reverberation conditions.

In situations dealing with multiple, possibly moving, concurrent speakers, we have observed that the time delay

estimates produced by the GCC-PHAT jump from one speaker to another at a very high rate as one source

dominates due to the non-stationarity of the voice. The maximum value of the cross-correlation sequence

is also lower than in the single speaker situation, since multiple speakers introduce random peaks, which

attenuate the main peak. Based on these observations we are proposing several cross-correlation-based spatial

features for every microphone pair that provide some degree of information on speaker overlaps.

An easily observable feature is the coherence value, defined in equation 5.25. This is the value of principal

peak of the GCC, and in ideal conditions should be high for single-source situations, while the presence of

noise, reverberation and concurrent acoustic sources attenuate this value.

Cmn = max(Rmn(τ)) (5.25)

Derived from the coherence value, we are also proposing to extract the coherence dispersion ratio, as follows,

Dmn =
C2
mn∑wmn

t=−wmn
R2
mn(t+ τ̂mn)

. (5.26)

This value is computed as the ratio between the square of the main peak value and the square quadratic sum of

the cross-correlation values under a time delay window wmn. The size of the window wmn varies for different

microphone pairs and it is set to the TDOA standard deviation of each pair. In this way, the dispersion ratio

measures the relation between the energy of the main peak and the energy that is scattered in its neighborhood.

Similar to the coherence feature Cmn, the dispersion ratio is close to 1 in the case of a single speaker and ideal
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Figure 5.16: HMM diagram with two feature streams.

conditions, while it has a lower value in reverberant conditions or concurrent acoustic sources situations.

Finally, the delta of TDOA obtained by equation 2.74 for every microphone pair also carries information

on overlaps. The derivative of the TDOA is high in situations where the speaker is moving, multiple non-

concurrent speakers change turns at talk or multiple speakers talk simultaneously. An illustration of the

cross-correlation between a pair of microphones and the proposed spatial features can be seen in the figure

5.15.

One of the main problems that arise is the high dimensionality of the spatial feature vectors. A recording

involving 12 microphones yields to 66 pairs and 198 features. Also the number of microphones differs from

site to site, making it difficult to train a general model. Other issue is that the proposed spatial features are, in

general, not commensurable across different microphone pairs, since they are intrinsically tied to physical

characteristics of the pair like the inter-microphone distance.

Our first strategy for dimensionality reduction and normalization is the application of a sequential PCA [Ross

et al., 2008], originally introduced in [Levy and Lindenbaum, 2000], which transforms the original feature

space into a new coordinate system with the greatest variance lying on the first component. PCA was used

for similar issues in diarization in [Otterson, 2007]. We estimated a separate transformation matrix for every

discussed spatial feature kind per each site and then we use just the first principal component. Hence, in the

given example with 12 microphones, we would end up with one transformed coherence, one dispersion and

one TDOA delta, which are finally added to spectral vector.

We also considered an alternative approach to reduce the spatial vector dimensionality based on a neural

network with a four-layer perceptron. The input of the MLP is composed by 6 input neurons, 3 for spatial

features and 3 for normalization values (mean of coherence, variance of coherence, variance of TDOA) for

every pair. The output is a binary score classifying between overlap and non-overlap, which is commensurable

across microphone pairs. For a given frame the average score was taken and merged with corresponding

spectral feature vectors. Spatial information is modeled in the overlap detection HMM-based system with a

separate Gaussian mixture as the spectral features (see figure 5.16). Furthermore, the spatial GMM shares

means and variances across the three states.
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5.3 Other Diarization Approaches: Spectral Clustering

Agglomerative hierarchical clustering (AHC) has become one of the most widely applied approach to speaker

diarization task. Clusters are represented by parametric probability densities like Gaussian mixture models

(GMMs). Hidden Markov Models (HMM) together with Viterbi perform segmentation and clustering of

audio data in an iterative bottom-up fashion [Ajmera and Wooters, 2003]. In such a framework, Bayesian

information criterion (BIC) is one of the most popular metrics to estimate which couple of clusters merge

at each agglomerative iteration. BIC is usually also employed as a stopping criterion for the agglomerative

process [Anguera et al., 2011]. Metrics like as Generalized likelihood ratio (GLR), Kullback-Leibler (KL)

divergence, information change rate (ICR), amongst others, has been also proposed, but all of them with same

Achilles’ heel, that is, a high computational cost and a performance heavily depending on the choice of the

metric [Han et al., 2008].

To overcome this drawback, we propose a speaker diarization approach method based on spectral clustering

(SC) avoiding the use of computationally demanding statistical metrics like BIC. Spectral clustering refers to

a class of techniques which rely on the eigenstructure of a similarity matrix to partition points into disjoint

clusters. Points having high similarity are pooled together in the same cluster whereas they evidence a

low similarity among other points grouped in different clusters. SC has been successfully applied in blind

source separation, separating speech mixtures from a single microphone [Keshet and Bengio, 2008] with no

requirement of explicit models for speakers. However, there are a few recent works which use SC to infer

speaker clusters specifically in speaker diarization task [Ellis and Liu, 2004; Ning et al., 2006; Ning et al., 2010;

Iso, 2010].

Instead of making assumptions on data distribution, SC relies on analyzing the eigenstructure of an affinity

matrix [Keshet and Bengio, 2008; Luxburg et al., 2007] which models the similarity among the clusters.

Nevertheless, in contrast to classical AHC clustering approaches, such affinity matrix is treated as part of the

learning problem. Our proposal is based on a parametric segment representation through a Gaussian super

vector (GSV). The GSV vector is composed by stacking just the means of the Gaussians [Campbell et al.,

2006b]. The classical BIC metric in AHC is replaced by Ng-Jordan-Weiss (NJW) spectral clustering algorithm
[Keshet and Bengio, 2008]. In our work, the affinity matrix is built by defining the similarity between segments

through the Euclidean distance in the GSV space of segments representation. We employ spectral clustering

algorithm with cluster number estimation based on eigenstructure analysis, searching the drop in the magnitude

of the eigenvalues as in [Ning et al., 2006; Iso, 2010].

Our clustering algorithm still depends on HMM/GMM modeling and Viterbi segmentation as pre and post -

processing for spectral clustering. For instance, they are used for obtaining the GSV vector representation

per each segment which feed the SC algorithm. In that case, the initial segmentation is computed through a

initial partition in homogeneous segments. Such segments are realigned by an HMM/GMM model together

with Viterbi decoding up to no variation in segmentation structure is noticed. Finally, it is also applied as a

post-processing of spectral clustering results. This approach generates results comparable to AHC+BIC ones

but achieves much higher speed than the latter.
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Figure 5.17: Speaker diarization scheme based on spectral clustering with Viterbi HMM/GMM
initialization and clustering refinement.

Despite of the good results achieved by popular AHC systems, an important drawback arises in the case of

long duration audio documents. AHC approach is a highly time consuming approach. The processing time

for audio recordings depends directly on the number of initial segments taken into account. For instance,

augmenting the initial number of segments in long audio documents considerably increases the size of the BIC

comparison matrix and, therefore, the total time processing of the iterative approach. Reducing the number of

initial segments drastically makes smaller such time but at the expense of the speaker detection accuracy due to

the initial cluster impurity. So there exists a trade-off between computational cost and detection performance

in AHC based systems. To overcome such drawback we propose a clustering approach based on spectral

clustering that, despite of its computing time is still dependent on the number of initial segments, it avoids

statistical metrics to build the similarity matrix yielding to a faster algorithm than AHC+BIC one.

In the figure 5.17 we draw the scheme of the proposed system based on spectral clustering. As in the AHC

approach, we keep as prior modules, the oracle Speech/Non-Speech detection module and a Wiener filtering

implementation from the QIO front-end. Cluster initialization is still based on an homogeneous splitting of
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data but, in contrast to AHC approach, no automatic selection of number of clusters is performed. Number of

initial cluster is tuned with development data.

5.3.1 Segments Representation

The core of the proposed system is shown in blocks B and C in the figure 5.17. Before spectral clustering was

carried out, initial segments are modeled by a mixture of Gaussians with fixed complexity, that is, number

of Gaussians is independent of the duration of the segment. Following, a Viterbi decoding is performed by

means an ergodic HMM. Once initial segmentation is stabilized, the segments presents a great variety of

durations. To overcome this drawback, a Gaussian super vector (GSV) modeling is proposed [Campbell et al.,

2006b]. Furthermore, segments lesser than 3 seconds are discarded in order to ensure statistical significance

in Gaussian parameter estimation. Such segment discarding is motivated by characteristics of our data. The

estimated probability density for a speech segment is assumed to represent speaker characteristics. However

for conversational speech recordings, plenty of short utterances and changes in speaker turns, the density

estimation by means GMM will be strongly biased by their phonemic variations. In any case, initial discarded

segments will be assigned to discovered clusters by the SC through Viterbi alignment in last step of the

approach, see block C in the figure 5.17.

Only the means of the Gaussians µik are stacked in a vector to build the GSV. The µik means are normalized

through the corresponding variance σik and weight of the Gaussian as follows:

GSVik =
√
wik Σ

(−1/2)
ik µik, (5.27)

k = 1, . . . , D , i = 1, . . . ,M

where w stands for the weight of the Gaussian, Σ is the corresponding variance and µ represents the mean

of the Gaussian. Indexes i and k stand for the number of Gaussian in the mixture model and the Gaussian

dimension respectively. Therefore, stacking normalized Gaussians’ means in a vector leads to a length of the

GSV vector equals to the number of Gaussian M employed to model i-th segment (which is always the same

for all segments) times the number of dimensions D.

Other segment representation has been proposed for spectral clustering in diarization task. In [Ning et al.,

2006] GMM parameters adapted from a UBM, trained on the whole audio data, are employed as representation

for speech segments whereas KL distance is used for building the affinity matrix. In [Iso, 2010], author

employed a non-parametric representation of speech segments based on Vector Quantization (VQ) in which

the VQ codebook is created from the audio recording and utterances are represented as a vector of frequencies

in VQ space. The affinity matrix is constructed by means cosine similarity distance.

In our approach we have decided to apply Gaussian super vector model due his excellent results in speaker

verification tasks and its robustness against trials involving segments of different duration [Campbell et al.,

2006b]. In addition, no statistical measure as KL is proposed to construct the affinity matrix but Euclidean



5.3 Other Diarization Approaches: Spectral Clustering 151

distance is computed in GSV space, consequently saving in computational time.

5.3.2 Spectral Clustering

Once a initial segmentation and a segment representation is computed, a speaker clustering is performed to

join those segments which belong to same speaker. We use a modification of the Ng-Jordan-Weiss (NJW)

algorithm [Ng et al., 2001] and a modified implementation in C++ programming language taken from [Chen

et al., 2011], which we first briefly review. Given a set of speech segments S = {s1, . . . , sn} represented by n

points X = {x1, . . . , xD}, in this work the GSV vector, that we want to cluster into k subsets:

• Form a similarity graph defined by the affinity matrixA ∈ Rn×n whereAij = exp(
−d2(si, sj)

σ2
) if i =

j, and Aii = 0, where d(si, sj) is distance function and σ2 is a scaling parameter.

• Define D to be the diagonal matrix whose (i, i)-element is the sum of A’s i-th row, and construct the

normalized symmetric graph Laplacian matrix L = D−1/2AD−1/2.

• Select the number of clusters k.

• Find {u1, u2, . . . , uk}, the k largest eigenvectors of L, and form the matrix U = {u1, u2, . . . , uk} ∈
Rn×k.

• Re-normalize the rows of U to have unit length yielding Y ∈ Rn×k , such that Yij = Uij/(
∑
j U

2
ij)

1/2.

• Cluster the points Yij with k-means algorithm into clusters C1, . . . , Ck.

The main idea behind spectral clustering algorithm relies on changing the representation of data points xi in

yi ∈ Rk, that is, mapping xi into a space where the simple k-means clustering algorithm has no difficulty to

detect clusters. Nevertheless, such a situation only occurs in an ideal case whether data is enough clean and

consequently no overlap among different classes takes place.

In order to form the affinity matrix, it is required to define a similarity function d on the data and a scaling

parameter σ. In this work, the Euclidean distance among GSV vectors has been employed, fulfilling distance

requirements such as: be non-negative, be low for similar segments and high otherwise. Euclidean distance

has clearly an intuitive sense in GSV space, giving an idea of how far are Gaussian mixtures among different

segments. In addition, all distances amongst segment-pairs has been considered leading to a fully connected

graph. The scaling parameter σ is some kind of measure of when two points should be considered similar and

controls how rapidly the affinity matrix Aij falls off with the distance between si and sj segments. As the

work presented in [Ning et al., 2006], we calculate a scaling parameter depending on the pair of segments

(si, sj) involved in distance computation, by considering the second order statistics of distances to all other

data segments as follows,
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σij =
√
V ar(d(si, sn))V ar(d(sj , sm)), (5.28)

with n 6= i, m 6= j

where V ar(·) computes the variance and d(si, sn) are distances from segment si to all other segments. In

contrast to [Ning et al., 2006] we do not include the scalar parameter β in computation of σij .

As part of the diarization task, the number of clusters has to be estimated automatically. In model-based

clustering approaches, such decision is usually based on the likelihood performed from data as in the previous

AHC system. In this work, number of clusters is estimated by analyzing the magnitude of the eigenvalues

of the normalized Laplacian matrix L as in [Ning et al., 2006; Iso, 2010]. It is known as eigen gap heuristic,

where the objective is to select k clusters as the number of k maximum eigenvalues of the Laplacian L matrix,

γk = |λk − λk+1| > Θ, (5.29)

where γk is the eigen gap between two consecutive eigenvalues {λk, λk+1} and Θ is a threshold we tune with

development data. There exists different explanations to the use of such criterion, as those from perturbation

theory or geometric graph invariants, due to the fact that similarity information can be compacted with just

first eigenvalues/eigenvectors of the Laplacian matrix L [Keshet and Bengio, 2008; Luxburg et al., 2007].

Finally, in the last step of the SC approach and once we have selected the number of k clusters, a k-means

algorithm is employed to link up segments in clusters into the new space representation, yi ∈ Rk

Clustering Refinement

As we can see in block C in the figure 5.17, the resulting clustering obtained by SC feeds a last HMM alignment

step. In contrast to the initialization step, a complexity selection as in AHC system is employed, and the newly

clusters are modeled by an HMM/GMM. Several Viterbi alignments are performed until no variation in the

segmentation is perceived and a final clustering hypothesis is obtained.

5.4 Experiments

This section verses about the experimentation of the different proposed techniques in order to evaluate its

suitability in the task of speaker diarization for meetings. It is done by first defining a baseline system to

compare all algorithms to. Such baseline system is derived from the broadcast news mono-channel system with

several improvements that were considered standard and necessary to the system as adapted to meetings. Then

a set of metrics used in the evaluation of the different techniques are described in detail. Next, the databases

that are used to compare the algorithms performance with that of the baseline and the reference segmentations

which are used in the experiments are explained and reasoned. Finally, the different experiments with the

proposed algorithms are performed and results are explained.
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5.4.1 Meetings Domain Experiments Setup and Corpora

As has been reported in NIST Rich Transcription evaluations and for researches in speaker diarization, there

are two phenomena that were common to all diarization systems. These are the big variance of the scores

among all evaluated shows and the extreme susceptibility of the scores to experience big changes upon small

modifications of their tuning parameters. Such a evidence forged a common term inside the speaker diarization

community: the ”flakiness“, a term started being used for speaker diarization during the RT04f workshop. The

DER results depend on many factors and, as it is reported in [Mirghafori and Wooters, 2006] where some of

these factors are studied, they refer to the high variability of the DER values as show flakiness.

The ”flakiness” corrupts the conclusions obtained when comparing the performances of several algorithms to a

baseline and it mights yield to an incorrect selection of the optimum baseline parameters and test conditions.

In many cases, due to flakiness, testing the same algorithms with two different databases or baseline systems

derives into two very different results, one proving the validity of the proposed algorithm and one otherwise.

In order to run meaningful and fair experiments using the algorithms proposed in this thesis one needs to

carefully define:

• A baseline system, which acts as the comparison ground to all systems proposed and tested.

• A common development and test datasets, based on the NIST RT evaluations datasets, in order for

results to be comparable between experiments and to systems outside of the thesis.

• A set of metrics in order to evaluate such systems with commonly used and available techniques.

In the following subsections each of these items is described as it has been used in this thesis for most of

the experiments with the main blocks of the system. Taking as a reference the block diagram in the figure

5.1, experiments were conducted on three of the main blocks, namely the single channel diarization, the

speech/non-speech module and the multiple channel speaker diarization module. For each block a baseline

was defined to suit its characteristics and to allow for the development of its optimum parameters selection.

The initial Wiener filtering of the signal was not analyzed as it was used without modification from its original

implementation outside of the scope of this thesis.

The single channel diarization depicted in figure 5.1 is considered as the baseline system. It is employed for

comparison in SDM experiments. It is worth to mention that the complex selection algorithm is not used as

baseline. The speech parametrization is conformed of 16 static MFCC parameters without energy and without

deltas. The number initial of cluster is set to 65 at each show and the number of Gaussians per cluster is fixed

to 5.

During the agglomerative clustering processing the same speaker turn minimum duration is applied, that is 2.5

seconds. Before the output of the resulting segmentation, a final segmentation step is performed using the

same speaker models but reducing the minimum duration to 1.5 seconds to allow for smaller speaker turns to

be properly detected. The merging criterion is driven by the BIC value among cluster and just the highest BIC

pair-value selects the couple of clusters to merge. In the same way, the stopping criterion is reached based on

the BIC value as explained in previous sections, see section 5.1.4.
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Dataset # excerpts Ave. duration Meeting Sources

in seconds CMU ICSI TNO NIST AMI/EDI VT IDI

RT05s 10 722.21 2 2 2 2 2

RT06s 9 1080.43 2 1 2 2 2

RT07s 8 1352.19 2 2 2 2

RT09s 7 1551.21 3 2 2

Table 5.1: Summary of datasets used in the experiments.

The fast logarithm implementation, see section 5.1.6, was employed in the experiments in order to speed-up

them. The Q parameter was set to 12.

The baseline system used for experiments in the multichannel-approach is mainly the system submitted to

RT09s NIST evaluation campaign. This contains all the modules explained for the baseline SDM system,

those explained in the MDM section 5.2 and their parameters were optimized using a subset of 17 meetings

from the development data available for RT06s and RT07s. Differences between official results [Fiscus and et

al., 2009b] and those reported in this PhD thesis proposal are due to a “bug“ in the processing of the audio

data during RT09s evaluation participation.

Corpora

In the experiments in this thesis the datasets used were obtained from the data available for the Rich Tran-

scription (RT) evaluations for meeting domain. This databases were delivered by the National Institute of

Standards and Technology to participants in RT evaluations. During the development of this thesis the author

participated in the later two evaluations, RT07s and RT09s whereas datasets from previous evaluations was

So far the evaluations on meetings have been RT02, RT04s, RT05s, RT06s, RT07s and RT09s. On the later

four editions only the conference room type data has been used as it contains a richer variety of speakers

and with characteristics matching more closely the aim of the algorithms presented in the thesis. From all

available datasets, two groups have been defined as development and test. The RT05s, RT06s and RT07s sets

form the development set, with a total of 26 meeting excerpts, ranging from 10 to 12 minutes in duration

each. The RT05s data was only used as training material for the SVM-based speech detector. In addition, the

meeting evaluation data from CHIL 2006 database and the Spanish Speecon database 2 was also employed for

speeh/non-speech model estimation. The datasets RT06s and RT07s (with 17 meetings) was used for algorithm

development and tuning of diarization parameters. Finally, the RT09s dataset has been used as a test set (with 7

meetings), to compare the system improvements on data not used to tune its parameters, “unseen“ data. Table

5.1 summarizes the data available in each one of the RT sets used. For a complete list of the individual files

refer to Appendix C.
2http://www.elda.org/catalogue/en/speech/S0160.html
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SAD SVM-based

RT’05 sdm RT’06 sdm RT’07 sdm RT’09 sdm RT’07 mdm-softsad RT’07 mdm-hardsad RT’09 mdm

8.03 % 4.88 % 7.03 % 6.02 % 5.39 % 4.72 % 5.9 %

Table 5.2: SAD error official results in previous RT Evaluation, conference data condition.

5.4.2 Speech/Non-Speech Detection based on SVM Classifier

Experiments for the speech/non-speech module were obtained for the SDM case to make it directly comparable

with the baseline system results reported in the previous section. The training set for model estimation was

the RT05s dataset + CHIL06 development meeting set 3 + Spanish Speecon database. The development

set consisted on the RT06s + RT07s datasets (17 meeting excerpts) and the test is the RT09s set. In the

development of the SVM-based speech/non-speech detector there is a main parameters that need to be set, that

is the bias b of the separating hyperplane, see section 2.2.2, which allows to adjust the speech detection in the

testing stage without modification of the trained SVM models.

This section summarizes the official results in RT evaluations of the SVM-based speech detector and some post

experiments aiming to study the SAD performance impact on the global diarization error of the agglomerative

clustering. Mainly, we focus on two open issues: Examining the trade-off between misses and insertions

introduced by the SAD system and the difference between a SAD module as a pre-processing step to the

agglomerative against a SAD as a post-processing of the agglomerative output. Furthermore, we examine the

results not only in the sdm condition but also in the multi channel approach.

The table 5.2 reports the official performance results of the SAD module in the different Rich Transcription

evaluations conducted in the conference room environment. The Rich Transcription evaluation was composed

by an specific SAD evaluation until the RT06s evaluation. Therefore, the results reported in the table 5.2 refers

to those results performed in RT05s and RT06s specific SAD evaluations, respectively, and corresponds to the

participation of a UPC team previous to the work presented in this PhD thesis. For the rest of the evaluations,

RT07s and RT09s in where no specific SAD evaluation was conducted during Rich Transcription, the results

reported correspond to the diarization system output scored considering any speaker labeling in the NIST

official references as speech.

Pre-processing SAD Versus Post-processing SAD

Speech/non-speech activity detection is a key component in any diarization system which handles data in a real

multi-party environment. The SAD module gives to the diarization system those frames which are considered

speech and therefore the data to be clustered. This is the case of our baseline approach, in where the SAD is

considered as a pre-processing step to the agglomerative clustering. In such a situation, the errors introduced

by the SAD module can not be recovered in following processing since no strategy has been implemented
3It corresponds to RT06s lecture data set



156 Speaker Diarization in Meeting Domain

(a) Oracle SAD with NIST references(a) Oracle SAD with NIST references

(b) Classical pre-processing SAD (c) Post-processing SAD

Figure 5.18: Three main schemes about SAD are studied. (a) An oracle SAD, provided by the NIST
official references, serves us to study the effect of non-perfect SAD references and gives us an idea
of the room for improvement. (b) The classical pre-processing SAD which discards non-speech
frames before feed with them the diarization system. (c) A post-processing approach which masks

the output of the diarization engine.

System MISS (%) FA (%) SER (%) DER (%)

Oracle SAD (NIST reference) 3.7 0 6.5 10.27

SAD as pre-processing 5.7 2.3 4.6 12.61

SAD as post-processing 5.7 2.3 4.5 12.41

Table 5.3: DER error rates obtained in RT07s dataset. Results reported at the RT09s workshop
[Fiscus and et al., 2009b].

to deal with this issue. Therefore the miss speech, that is, the speech not detected by the SAD module is no

further processed by the AHC system and, as a consequence, it sums directly to the final DER error, see section

2.3.3. For the false alarms errors, those non-speech regions detected as speech by the SAD, the situation is

identical as for misses but, in addition, the fact that the AHC has to deal with false speech degrades the purity

of the speakers clusters and it likely leads to increasing diarization errors.

Three main schemes around the SAD scheme are studied in this section, focused on assess the impact of a

pre-processing SAD compared to a post-processing SAD. The figures 5.18 stand for these two strategies. First

of all, an oracle SAD is taken into account by using the official references provided by NIST. It counts for the

effect of non-perfect SAD references, giving us an idea of the possible room for improvement. The second

scheme, depicted in the figure 5.18 (b) shows the classical pre-processing SAD which discards non-speech

frames before they are further processed by the diarization system. This is the most employed strategy by
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Figure 5.19: One a SVM model for speech is trained, in this case using proximal SVM technique
see section 2.2.2, the corresponding separation hyperplane between classes can be modified by
introducing a bias b. Geometrically, it can be interpreted as a displacement of the hyperplane H0

towards one of the classes, that is, favoring the detection of that class.

most of the diarization systems reported in the literature. Finally, in figure 5.18 (c) a post-processing approach

is proposed in where the diarization output obtained by clustering the whole data (speech and non-speech

frames) is masked by the SAD output labeling.

The table 5.3 reports the diarization errors rates obtained in RT07s dataset. These are official results reported

at the RT09s workshop [Fiscus and et al., 2009b]. The diarization scheme is comparable to the mdm version

depicted in figure 5.9, for further details see the workshop presentation in [Fiscus and et al., 2009b]. Both pre

and post processing SADs just differ in the way how they combine with the agglomerative clustering. The

SAD was trained with the corpus data explained in the introduction of this section and developed using RT06s

and RT07s datasets in order to choose the best bias parameter b, see following section, for SVM modeling

w.r.t DER obtained in RT07s dataset.

Two main conclusions can be extracted from the previous table 5.3. First, the DER obtained by the system

with oracle SAD references give us an inferior threshold for the improvement of the global DER of the system.

It can be noticed that up to a 2.5% absolute improvement can be reached with a SAD perfectly adapted to the

NIST references. It worth to mention that the miss speech in this case is far from be 0.0%. It is due to the

fact that overlap speech is taken into account in the computation of the DER and therefore all overlap speech

is considered as miss speech since the SAD references does not provide information about more than one

speaker at the same time.

A second impression reflects that there is no a statistical difference between discard non-speech frames before

the clustering or just masking the clustering output with the non-speech frames detected by the SAD. Only a

0.20 absolute improvement is reported by the post-processing strategy that seems insufficient to decide which
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Figure 5.20: Effect on misses and false alarms by shifting the corresponding separation hyperplane
between classes through the bias b. (a) Results in RT09s dataset and in (b) AMI dataset by using

the same SAD trained with Speecon, CHIL06 evaluation dataset, RT06s and RT07s datasets.

of the two approaches is better. The RT07s dataset is only composed of 8 excerpts and a great number of

shows should be necessary to elucidate what is the better strategy.

Speech Misses versus Speech Insertions

The bias b of the separating hyperplane, see section 2.2.2, is chosen according to the DER performance

obtained in the RT06s and RT07s datasets. The trade-off between miss speech and false alarms produced in

the results of the development data can be observed in the figure 5.20 and the table 5.4. The bias b acts as a

weighting parameter which controls the decision boundary between the speech and non-speech classes. Thus,

by adjusting the bias of the hyperplane benefits the detection of one class with respect the other one and, as

can be seen in the table 5.4, it has a noticeable impact on the total DER error of the diarization process itself.

It is worth to mention that such a parameter tuning can be done after model estimation which means that no

new model computation is required, see figure 5.19.

The effects of varying the bias b is visible in the trade-off between misses and false alarms. The figure 5.20

clearly illustrates this impact which also can be noticed in the two first columns in the table 5.4. The sum of

misses and false alarms corresponds to the third column. The impact on the speaker error is also reported in

the fourth column and the total sum of errors (DER) in the last of them. The speaker error seems to follow a

trend in which false alarms errors has a higher impact on the DER to those errors caused by misses. If we

focus on the results with a sum of errors belonging to the range [8.0, 8.2] it can be observed that the DER

oscillates inside the interval [6.7, 4.6], that is, the standard deviation for the DER is higher compared to that

obtained from the sum of misses and false alarms. The minimum speaker error 4.6 is reached at the operation

point (MISS, FA) = (5.7, 2.3) which correspond also to the minimum DER error, 12.61. Summarizing,

such a results suggest a higher sensibility of the DER error against the false alarms, yielding to the conclusion
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MISS (%) FA (%) MISS+FA(%) SPK ERR (%) DER (%)

7.0 1.6 8.6 7.2 15.79

6.6 1.7 8.3 9.5 17.76

6.1 2.0 8.1 6.6 14.72

5.7 2.3 8.0 4.6 12.61

5.3 2.7 8.0 6.7 14.72

5.2 2.8 8.0 4.7 12.76

5.0 3.2 8.2 5.0 13.1

4.7 3.8 8.5 6.3 14.80

4.4 4.7 9.1 5.6 14.77

4.2 6.4 10.6 5.3 15.94

Table 5.4: Development results on the RT07s conference dataset depending on the SVM model’s
bias b. The trade-off between miss speech (MISS) and false alarms (FA) and the impact on the total

DER error can be felt by examining the corresponding columns.

that the diarization are more robust to misses errors than to false alarms. In that sense, the tuning of speech

activity detection module during the elaboration of this thesis follows the conclusions presented in this section.

5.4.3 Baseline AHC Single Channel Diarization

The diarization system described in the section 5.1 and depicted in the figure 5.1 is taken as reference system

for comparing the improvements by applying different techniques. In the figure 5.21 the diarization error

rate per excerpt and its standard deviation is reported. Such a result is summarized in the table 5.5, reporting

DER per both development and evaluation datasets. The diarization systems corresponds to a SDM system

without any of the improvements proposed in this PhD thesis and without the use of any speech activity

detection module. Aiming to study the influence in the system performance due the false alarms and misses

caused by a non perfect SAD, an oracle SAD is employed by taking as SAD references the official NIST

reference results. It is worth to recall that, despite of there is none dependence of the system on training data

for development, some parameters of the diarization system has been tuned using the RT06s and RT07s data,

such as initial number of clusters, the cluster complexity or the minimum duration, see previous sections,

which still depend on the nature of the meetings. Finally, a ”blind“ test is conducted on RT09s database to

assess the generalization of the algorithm to unseen data.

Looking at the figure 5.21, it can been observed the DER degradation by taking into account the speech overlap,

that is, segments of time in where two or more speakers are talking at the same time. This increment can be

noticed in both the total DER, the red color bar at the right side of the picture, and the standard deviation per

excerpt, σ. The total DER raises 8.75% absolute, from 35.65% to 44.4%, just counting as miss errors the

overlap speech appearing in the recording. As expected, the standard deviation per excerpt also increases,
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Figure 5.21: Diarization error rate (DER) results on NIST Transcription evaluation conference
data. At the top, baseline system without any improvement and with an oracle sad. At the bottom,
DER degradation taking into account the speaker overlap regions as misses due to the fact that just

one label is provided by the diarization engine.

from 14.20 to 16.41. These results evidence the great impact on the diarization performance due the speaker

overlap issue and suggests mechanisms to handle such situations in order to reduce the error caused by the

speaker overlap regions. This issue will be analyzed in the next sections.

It is worth to mention the high percentage of error obtained by the baseline system in both development and
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AHC SDM Baseline AHC SDM Baseline overlap Total Time seconds Time

%DER / σ %DER / σ (seconds) µ/ σ

RT06 44.33% / 9.73 56.62% / 6.39 84,119 9,346 / 5,355

RT07 34.83% / 18.92 37.95% / 19.56 94,550 11,818 / 6,002

RT06+RT07 39.86% / 15.10 47.83% / 16.74 178,669 10,509 / 5,632

RT’09 30.54% / 11.24 35.66% / 12.78 105,351 15,050 / 7,645

Table 5.5: DER results and standard deviation (σ) per set in Rich
Transcription 2006, 2007 and 2009 conference data by the baseline system.

evaluation sets. Focusing on the results with overlap, that is the NIST RT official metric see section 2.3.3,

we can see that the worst results are obtained in development datasets whilst better performance is observed

in the evaluation RT09s set. Similar results has been reported in the literature [Anguera et al., 2011] and in

the RT workshops [Fiscus and et al., 2009b]. This DER variation among datasets may be due to the data

characteristics itself such as the excerpt duration or the difference in speakers’ interactivity. Nonetheless, the

impact of overlap is noticed in any of the RT datasets.

In addition, the effect of ”flakiness“ is also also visible in the same table by looking at the σ value. The DER

variance obtained per dataset counts for more than 30% of the total DER. It translates into a big difference

in DER among recordings, even from the same site. For instance, in non-overlap metric, the DER obtained

after processing the show NIST 20051104-1515 is around 2.21% while that obtained by processing the

NIST 20080201-1405 recording is over 40.76%. Same situation is also noticed in the DER variation by the

parameters tuning of the diarization approach.

Table 5.5 gives a summary of the results independently per both development and evaluation sets. The higher

error due the speaker overlap is perceived in the RT06s, not a surprising result since this dataset presents the

higher number of overlap regions compared to others RT datasets, see the Appendix C. Overall, the overlaps

degrades the total DER by two main factors: Directly as miss speech since the baseline diarization approach

just provides one speaker label at the same time and by cluster purity due to the fact that clusters might be

contaminated by speech coming from several speakers corresponding to those overlap regions.

The configuration used to obtain the results for the diarization baseline includes fixing a variety of parameters.

Among them, the initial number of clusters was fixed to 65 and initialized following a homogeneous splitting

of the recording data. The number of Gaussians to model each cluster was set to 5 and the minimum duration

to 250 milliseconds. The feature set is composed of 16 MFCC static parameters and an oracle speech activity

detection module based on the NIST references was employed. The parameter Q which defines the precision

(number of bits) to compute the logarithm function was set to 12.

Following, a brief summary of experiments related to techniques discussed in previous sections is given. The

behavior of the agglomerative hierarchical clustering system is studied to determine which parameters and

modules impact accuracy most. Therefore, it aims to quantify the impact on the DER by applying the different

strategies and algorithms with respect to the results of the baseline single channel diarization reported above.
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Cluster Initialization

The cluster initialization is a key feature in the AHC diarization approach. Most of the system makes uses of

an uniform splitting of the data to obtain a fixed number of initials clusters for further processing. Nonetheless,

such approach combined with the agglomerative hierarchical clustering is highly dependent on the number

of clusters and the quantity of data belonging to each of them, that is, to the total length of the recording to

process.

In addition, Gaussian mixtures models, as generative models, specially suffer from the cluster impurity. In

the case a cluster composed with speech from two different speakers, there exists a trade-off between over

fitting and under fitting the cluster data. In the overfitting case, the overlapped data will lead, at the end of

the agglomerative clustering, to a erroneous speaker cluster that likely will join two different speakers. In the
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Figure 5.22: Diarization error rates (DER) for the baseline diarization system varying the number
of initials clusters, Kinit, and the number of Gaussians mixtures used to model each of them, Ginit.
(a) In the development RT06s and RT07s datasets, (b) In the evaluation RT09s dataset and (c) In all
the three RT datasets. The oracle SAD has been employed and no overlap is taking into account.
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underfitting case, a not good estimated model mights contaminate other clusters models leading to erroneous

cluster merges during the agglomerative procedure. In any case, it yields to raise of the speaker diarization

error of the system.

The figure 5.22 draws the DER curves in log-log scales for the baseline diarization system varying the number

of initials clusters, Kinit, and the number of Gaussians mixtures Ginit used to model each of them, see section

5.1.2. The figure (a) shows results on the development RT06s and RT07s datasets, while the the figure (b) does

on the evaluation RT09s dataset. In the figure (c) the DER error curves are depicted for all RT datasets. The

oracle SAD has been employed and no overlap is taking into account to compute the DER metric. As can be

noticed looking at the results on the development set, the figure (a), lowest values of DER are obtained using 3

2 4 6 8 10

20
30

40
50

60

DER in RT06s and RT07s datasets depending on RCC

RCC value

D
E

R
 %

Ginit = 2
Ginit = 3
Ginit = 4
Ginit = 5
Ginit = 6

(a)

2 4 6 8 10

10
20

30
40

50
60

DER in RT09s dataset depending on RCC

RCC value

D
E

R
 %

Ginit = 2
Ginit = 3
Ginit = 4
Ginit = 5
Ginit = 6

2 4 6 8 10

20
30

40
50

60

DER in RT06s, RT07s and RT09s datasets depending on the RCC

RCC value

D
E

R
 %

Ginit = 2
Ginit = 3
Ginit = 4
Ginit = 5
Ginit = 6

(b) (c)

Figure 5.23: Diarization error rates (DER) for the baseline diarization system with automatic
estimation of the number of initial clusters. The figures depict the DER curves varying the number
of Gaussians mixtures used to model each cluster, Ginit and the RCC which defines the number of
frames assigned to each Gaussian. (a) In the development RT06s and RT07s datasets, (b) In the
evaluation RT09s dataset and (c) In all the three RT datasets. The oracle SAD has been employed

and no overlap is taking into account.
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or 4 Gaussians and a number of initial clusters ranging between 15 and 30, which correspond to the red and

green curves. A trend is also observed by raising the number of Gaussians which model the clusters. From

M = 3 forward, the values of DER increase as the number of cluster does. Same conclusions can be extracted

from the figures 5.22 (b) and (c).

As the accuracy of the diarization system is indeed very sensitive to the values chosen for the initialization

parameters and factors such as the duration of speech in the recording, an automatic method is also implemented.

The automatic selection of initial clusters is based in equation 5.1 and computes the number of clusters based

on the number of Gaussians mixtures Ginit initially assigned per cluster and upon RCC which defines the

number of frames per each Gaussian. Such a parameters have still to be fixed in this estimation of initial

clusters. The figure 5.23 draws the DER curves depending on the number of Gaussians mixtures used to model

each cluster, Ginit and the RCC value. (a) In the development RT06s and RT07s datasets, (b) In the evaluation

RT09s dataset and (c) In all the three RT datasets.

As in the previous curves, the oracle SAD was employed and no overlap was taking into account to compute

the DER. The results on the development set, see the figure 5.23 (a), show that lowest values of DER are

obtained using 3 or 4 Gaussians and among 6− 8 seconds of training speech per each of them. It corresponds

to the red and green curves. Anyway, both 5.22 and 5.23 figures show a similar behavior, evidencing a trade-off

between the initial number of segments and the available data to compute Gaussian parameter statistics. In

conclusion, 20− 30 initial segments seems to be a good starting point for the agglomerative algorithm in the

RT datasets. The latter along with models build of 4 Gaussians appear to obtain lowest DER results based on

our experiments.

Finally and looking for a method to reduce manual tuning of previous presented parameters, a new initialization

algorithm [Imseng and Friedland, 2010] is compared, see section 5.1.2. In order to estimate RCC, we employ

the linear regression:

RCC = 0.01 · speech in seconds + 2.6 (5.30)

The figure 5.24 depicts the DER per recording obtained using the estimated RCC based upon the length of the

show. The improvement in DER is over 3% absolute, from 24.4 to 21.11. The baseline SDM system used

for comparison just differs in the RCC and Ginit parameters which were fixed to 7 seconds and 5 Gaussians

respectively per each show, it corresponds to a point in the blue curve in figure 5.23 (c). It is worth to recall

that in the case of the automatic approach such a value is estimated independently per each recording.

In overall and comparing to the manual tuning results per different couples of values (RCC, Ginit), represented

in previous figures (a), (b) and (c) in 5.23, the automatic estimation of RCC proposed reaches comparable

results than those obtained by the best values of (RCC, Ginit) couples. As can be seen in the figure 5.23 (c),

the couple (RCC, Ginit) = (8, 3) reaches around 21% of DER whereas even lower DER values are obtained

in figure 5.22. DER around 20% are observed by fixing the couple (Kinit, Ginit) in the range (15− 30, 3− 4)

which corresponds to the green and the red curves.

As conclusion, both the automatic estimation of Kinit in the first approach and the estimation of the couple



5.4 Experiments 165

Rich Transcription 2006, 2007 and 2009 Conference Data

%
D

E
R

0
10

20
30

40
50

60
70

CM
U_2

00
50

91
2−

09
00

_d
02

CM
U_2

00
50

91
4−

09
00

_d
02

CM
U_2

00
61

11
5−

10
30

_d
01

CM
U_2

00
61

11
5−

15
30

_d
01

EDI_
20

05
02

16
−1

05
1_

ci0
1

EDI_
20

05
02

18
−0

90
0_

ci0
1

EDI_
20

06
11

13
−1

50
0_

ci0
1

EDI_
20

06
11

14
−1

50
0_

ci0
1

EDI_
20

07
11

28
−1

00
0_

ci0
1

EDI_
20

07
11

28
−1

50
0_

ci0
1

ID
I_

20
09

01
28

−1
60

0_
ci0

1

ID
I_

20
09

01
29

−1
00

0_
ci0

1

NIS
T_2

00
51

02
4−

09
30

_d
03

NIS
T_2

00
51

10
2−

13
23

_d
03

NIS
T_2

00
51

10
4−

15
15

_d
03

NIS
T_2

00
60

21
6−

13
47

_d
03

NIS
T_2

00
80

20
1−

14
05

_d
03

NIS
T_2

00
80

22
7−

15
01

_d
03

NIS
T_2

00
80

30
7−

09
55

_d
03

TNO_2
00

41
10

3−
11

30
_d

02

VT_2
00

50
40

8−
15

00
_d

01

VT_2
00

50
42

5−
10

00
_d

01

VT_2
00

50
62

3−
14

00
_d

02

VT_2
00

51
02

7−
14

00
_d

02

DER A
LL

 R
T’06

,R
T’07

 a
nd

 R
T’09

AHC SDM oracle SAD
AHC SDM oracle SAD and CCR

24.24%, 
21.11%, 

σ = 12.6
σ = 13.41

Figure 5.24: Diarization error rate (DER) results on NIST Transcription evaluation conference
data. DER improvement by using CCR.

(RCC,Kinit) in the second seems to be well suited to the NIST data while avoiding the manual tuning of such

a parameters. In next subsections will be discussed an original approach to initialize the cepstral diarization

algorithm based on the speaker position estimation inside the room.

Model Complexity Selection and Multiple Merging Criterion

The model complexity selection is not a new algorithm [Anguera et al., 2006d] but its importance has been

addressed in several works and diarization approaches based on AHC clustering. It is also used as a core

module in the diarization system employed in this PhD thesis. This subsection is devoted to report results

about complexity selection algorithm, see section 5.1.3, aiming to assess the impact of the algorithm in our

diarization approach. In addition, experiments about the new merging criterion proposed in section 5.1.4

which merges more than one cluster in each AHC iteration are also reported. The figures in 5.25 show the

DER per each technique.

For the model complexity a factor of RCC = 7 was fixed to compute at each agglomerative iteration the

number of Gaussians which compose each cluster. In the case of the merging criterion, equation 5.10 sets the

threshold on the BIC for selecting those couples to merge.

The DER results for the complexity selection algorithm does not show a significant improvement over the

SDM baseline. For the merging criterion the situation is even worst by degrading the baseline DER over

1.7 absolute. Nonetheless, we will see in next subsections that these techniques along all other improve the
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Rich Transcription 2006, 2007 and 2009 Conference Data
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Figure 5.25: Diarization error rate (DER) results on NIST Transcription evaluation conference
data. (a) DER improvement by using complexity selection and (b) DER decreasing by using merging

more than one couple at each iteration depending upon BIC values.
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Figure 5.26: Diarization error rate (DER) results on NIST Transcription 2006 and 2007 evaluation
conference data depending on the minimum duration taken into account in the HMM decoding.

baseline in spite of their individual performances.

Minimum Duration in the Speaker Turn and Turn Taking Modeling

The minimum duration constrain imposed upon the HMM topology, see figure 5.7 in section 5.1.3, guarantees

a minimum length in the speaker turn duration. It avoids so short speaker turns and ensures enough speech

data for estimation of speakers models. The figure 5.26 draws the diarization performance depending on

this parameter. The baseline SDM system with oracle SAD was used for drawing the picture. However, the

baseline was augmented with previous techniques: the automatic initialization based on the regression 5.5 and

with the two techniques presented in the previous section.

It is worth to mention that once the agglomerative clustering has finished, a last Viterbi alignment using a

minimum duration value of 1 second is conducted until no variation in the clustering is noticed.

Such a last Viterbi step is in charge of detecting shorter speaker interventions once a reliable estimation of

speakers cluster has been done. The curve clearly shows a drastic drop in the diarization error from 25 to 150

milliseconds, then it stands around the minimum DER value reached at 450 milliseconds. Despite of this, most

of the experiments reported in this PhD thesis proposal were carried out fixing the minimum duration value to

250 milliseconds.

In the modeling of the speaker turn-taking, the n-gram sequences of speakers occurrences were combined
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DER% evolution depending on language weighting
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Figure 5.27: Diarization error rate (DER) results on NIST Transcription evaluation conference data
depending on the language model threshold. All three language model strategies are implemented.

LM technique RT’06 & RT’07 RT’09 RT’06 RT’07 RT ALL

Unigram (w = 0.7) 12.98 % 17.57 % 16.85 % 9.04 % 14.49 %

Unigram + Trigrams (w = 0.9) 12.91 % 14.06 % 15.84 % 9.92 % 13.29 %

Unigram + Weighted Trigrams (350ms) 12.54 % 14.03 % 14.98 % 10.04 % 13.03 %
Unigram + Weighted Trigrams (250ms) 12.33 % 14.73 % 14.99 % 9.62 % 13.12 %

Table 5.6: Development and evaluation best results of the language model based on weighting the
speaker transition probability, Pr(S). In brackets the weight for which the DER value is reached.
The LM technique column stands for the way to compute such a transition matrix: Unigram, counts
the frequency of occurrence of that speaker, Unigram + Trigrams, also takes into account trigrams
of the form A?A oriented to anchor speakers who tend to speak before and after an intervention.
The Unigram + Weighted Trigrams cases of 350 ms. and 250 ms. give even more weight to that

speaker interruptions with shorter interventions, see section 5.1.5 for further details.
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with the acoustic information from MFCC features. As commented in the section 5.1.5, several strategies are

proposed based on weighting the speaker transition probability of changing speaker turn, Pr(S). The figure

5.27 depicts the DER curves per each RT depending upon the weight assigned to the language model scores. In

this case, the speaker-turn system makes use of unigrams along with weighted trigrams as explained in section

5.1.5. Looking at the picture, the simple speaker-turn modeling seems to work since it obtains significant

DER reduction in RT’06 and RT’09 datasets. In such a situations, the DER is improved by 4 absolute points.

Nonetheless, in RT’07 dataset the DER value degrades over 2 absolute points. Anyway and in overall, the

red curve, that shows the DER per all RT data, shows a significant drop for weight values within the range

(0.5, 0.8). It is worth to mention that previous weight values not directly represent the portion of the final

score since scores from acoustics and speaker-turn were not normalized.

Table 5.6 compares the different results by using several techniques in order to model the speaker-turn

transitions. As can be observed, the combination of acoustic probabilities along with the probability of speaker

turn improve the DER for all the techniques and in most of the datasets, except for the RT’07 data. Anyway,

such a degradation does not impact significantly the global DER for the development dataset, RT’06+RT’07,

leading to an overall improvement in DER which is also noticed in the evaluation set RT’09. The LM technique

column stands for the way to compute the speaker transition matrix. Unigram, counts the frequency of

occurrence of that speaker, Unigram + Trigrams, also takes into account trigrams of the form A?A oriented

to anchor speakers who tend to speak before and after an intervention of the same speaker. The Unigram
+ Weighted Trigrams cases of 350 ms. and 250 ms. give even more weight to that speaker interruptions

with shorter interventions, see section 5.1.5 for further details. The results give evidence of the importance

of modeling speaker transitions in speaker diarization and that there is still a room for improvement in the

combination with acoustic probabilities.

Speed-up depending on Logarithm Precision

In this subsection experiments adjusting the number of Q most significant bits employed to quantize the

mantissa in the logarithm approximation, see section 5.1.6, are reported. The figure 5.28 shows the DER

behavior aiming to assess the influence of the logarithm precision on the diarization error and the trade-off

with the time consumption.

The logarithm lookup-table is indexed using the Q most significant bits of the mantissa. Accuracy is lost

because of such a quantization of the mantissa, however not a significant drop in DER performance is noticed

while the computation time is reduced in a factor of 3 or more for some recordings. Furthermore, the DER

results in the figure 5.28 show that the best DER is reached using the Q = 15 most significant bits while worst

error even is obtained by means the full mantissa, that is, Q = 23 bits.

The figure 5.29 depicts the mean time spent by the diarization algorithm to process a recording. The curve

was obtained by computing the mean time consumption per show using 24 recordings belonging to NIST RT

2006, 2007 and 2009 datasets. In addition, the standard deviation is also reported. As can be noticed, there is a

clear trade-off between the logarithm precision employed, number of Q bits, and the time consumption of the



170 Speaker Diarization in Meeting Domain

DER% evolution depending on Q bits
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Figure 5.28: Diarization error rate (DER) results on NIST Transcription evaluation conference
data depending on the number of Q most significant bits employed to quantize the mantissa, see

section 5.1.6.
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Figure 5.29: Mean time consumption per show in seconds on NIST 2006,2007,2009 conference
data depending on the number of Q most significant bits employed to quantize the mantissa, see
section 5.1.6. It is depicted the mean duration in processing a recording and the standard deviation.
Curves were obtained with the AHC system augmented with all techniques and working with 22

MFCC parameters.
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algorithm. Using Q = 10 bits save in mean more than 25 minutes in processing a recording w.r.t. the same

processing but using Q = 20 ans without a drastic drop in DER performance, see the figure 5.28 above.

Aiming to put emphasis in the time consumption reduction rather than improved DER results, in the experiments

performed during this PhD thesis a value of Q = 12 was selected in the quantization of the mantissa in order

to build up the lookup-table.

Single Channel Algorithms Agglomeration Performance

This subsection is devoted to report the different improvements reached by the agglomeration of the previous

algorithms in the single diarization channel condition.

One of the most common parameter to tune in speech applications is the kind of parametrization to use and the

number of speech parameters or feature vector dimension. In the experiments presented in this section, we

have decided to employ classical MFCC parameters, despite of the work submitted to RT’07 [Fiscus and et al.,

2007a] where similar results were obtained by means FF parametrization. The use of delta and delta-delta

coefficients is also not considered since worse results were obtained by augmenting the feature vector with

these parameters. In such a situation, the results presented can be directly compared with most of the state of

the art systems which employ similar speech parameters.

The figure 5.30 depicts the DER curve obtained by shifting the number of static MFCC parameter from 8 to

30. The diarization algorithm employed joins together all the techniques previously commented. As can be

seen in the picture, the lowest DER is reached at 22 MFCC features. A wide variance is also noticed among

the different recordings, translated to a standard deviation per feature set ranging between 10.89 and 16.17 in

DER. Due this fact, the MFCC set of size 22 was selected to perform the baseline experiment in this subsection

and the successive agglomeration steps aiming to offer an easy comparison. The baseline experiments showed

in the following tables 5.7 and 5.8 contrasts to results presented in the figure 5.21 which corresponds to a 16

MFCC parameter set and a different group of cluster initialization parameters.

Table 5.7 shows the DER improvement among the development and evaluation subsets by adding the previous

Development Evaluation

Techniques RT’06 & RT’07 r.i. % RT’09 r.i. %

Baseline 25.24% (13.95) – 24.29% (9.45) –

+ Estimation (RCC,Kinit) 22.88% (12.72) 9.35% 20.76% (15.95) 14.53%

+ Automatic complexity 22.62% (14.97) 1.13% 21.82% (16.92) −5.10%

+ Merging couples 20.94% (13.92) 7.42% 20.61% (15.41) 5.54%

+ Language modeling w = 0.8 18.61% (11.13) 6.35% 18.45% (20.91) 10.48%

Table 5.7: Development and evaluation results, in terms of DER and standard deviation, of the
successive agglomeration of the previous techniques and relative improvement (r.i) per cent w.r.t.

the previous system. 16 MFCC parameters were employed in all systems.
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Figure 5.30: Diarization error rate (DER) results on NIST Transcription evaluation conference
data depending on the number of MFCC parameters extracted from the speech waveform. Baseline

system without any improvement and with an oracle sad.

development all data

Techniques RT’06 RT’07 RT ALL

SDM Baseline 26.17% (14.63) 24.17% (14.06) 24.40% (12.60)

+ Estimation (RCC,Kinit) 24.58% (13.56) 20.98% (12.32) 21.11% (13.41)

+ Automatic complexity 22.57% (15.36) 22.66% (15.58) 21.08% (15.19)

+ Merging couples 22.06% (15.09) 19.68% (13.38) 19.72% (14.02)

+ Language modeling w = 0.8 21.74% (9.63) 15.53% (10.05) 18.59% (10.15)

Table 5.8: The two first columns show the individual development subset results. The global results
per all datasets are also showed in the last column. Results are in terms of DER and standard
deviation – value between brackets –, of the successive agglomeration of the previous techniques.
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techniques to a common baseline in order to assess the joint reached improvement. Looking at the results, both

the linear regression estimation of values for clustering initialization and the language modeling techniques

show the biggest DER improvement w.r.t. the baseline system. Such a situation is comparable for both datasets

reaching similar DER improvements around 4% absolute. Nonetheless, by augmenting the system baseline

with the different techniques, the standard deviation in the RT’09 data considerably arises. It suggests a greater

variance in the individual DER results compared to the baseline which along with the lower DER, likely means

that some particular shows in the RT’09 data reduce considerably its DER compared to the rest.

In contrast, the complexity and merging couples algorithms does not report a drastic DER reduction. In the

first case, we shall see it is an important algorithm for the combination of acoustics and TDOA features while

in the ”merging“ algorithm its use is supported by the reduction in terms of time computation whereas it keeps

DER error constant.

Table 5.7 evidences same effects we have already commented in previous paragraph. It can be noticed in the

last column which shows the DER for the whole RT datasets. Analyzing the development data individually,

first and second column, it can be noticed a drastic DER drop, around 6% absolute, by applying the language

modeling in RT’06 dataset whereas DER in RT’07 raises over 3%. It suggests a really different structure

among data shows, with highly interactive meetings and discussions in the RT’06 set compared to the next one.

Despite of evaluation and global results show the usefulness of the agglomeration of the different algorithms,

the individual results still suggest they could be improved and applied in a data dependent way somehow as is

the case of the language modeling.

5.4.4 AHC Multichannel Diarization

This subsection is devoted to provide results on the Rich Transcription datasets by improving previous single

diarization system with the information provided by the TDOA features as explained in subsection 5.4.4. Main

differences w.r.t. SDM baseline are the Wiener filtering of multiple channels, the diarization on a beamformed

channel and inclusion of second feature stream composed of TDOA values among pair of microphones. The

TDOA features were obtained as in equation 2.74 and they were combined jointly with acoustic observation at

the score level as stated in equation 5.21. The MDM baseline system employed in the following experiments

is mainly depicted in figure 5.9.

Weighting TDOA Features

The figures 5.31 and 5.32 report the diarization error rate results reached for the multichannel diarization

system. The TDOA features computed for each show were combined with the spectral features in order

to compute the output HMM probabilities. They are weighted in the range: w = 0 that uses just spectral

features, to w = 1 in where diarization is performed by means only the TDOA stream. The DER obtained by

varying the TDOA stream weight reach lower values at low values of the weight. Worst diarization results

were obtained as the system more relies on TDOA values instead of spectral information. The MDM with

weight value w = 0.1 reached the best results on development data and the same improvement can be noticed
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DER% evolution depending on TDOA scores weighting
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Figure 5.31: Diarization error rate (DER) results on NIST Transcription conference data depending
on the TDOA score weighting. Results are reported with an oracle speech detection based upon
NIST references. The experiments reported make use of a MFCC stream of dimension 22 and a

TDOA stream of variable dimension per show (number of couples of mics).

in RT’09 evaluation data. Despite of the good results obtained on the evaluation data, TDOA weight seems

highly dependent on the show recording and a specific weight per show should likely improve the global DER,

getting close the development and evaluation curves in the figure 5.31 for all weight values.

The figure 5.32 reports the DER results provided by the same system and using a real speech activity detector.

The DER curve evolution follows same trend as the system employing reference speech/non-speech labels.

The inclusion of a real SAD arises in a DER degradation around 10% and 4% per cent on development and

evaluation respectively. Such a result evidence a clear difference from recordings among the two subsets

possibly due to differences in room setup and speaker interactivity. In overall, the figure 5.33 reports the

decomposition of DER in terms of misses, false alarm and speaker error for all NIST RT data. The error

due to SAD inclusion is around 8% which is comparable to the SER error around 11% which enforces the

idea of the importance of a reliable speech activity detection algorithm to improve diarization results. It

is also worth to mention the high value of DER variance per show. The recordings NIST 20080201-1405,

TNO 20041103-1130 and VT 20051027-1400 present the higher errors contributing to the high variance value.

The individual analysis of previous recordings gives some clues about such particular bad performance. The

NIST 20080201-1405 show is composed uniquely of six female speakers with high interactivity and speech

overlap. For the TNO 20041103-1130 and VT 20051027-1400 recordings possibly low level signal from

far-field mics along with highly interactivity are the main reasons for the low DER obtained.
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Figure 5.32: Diarization error rate (DER) results on NIST Transcription conference data depending
on the TDOA score weighting. A speech/non-speech detector is employed.
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Figure 5.33: Results in terms of speaker error (SER), miss speech (MISS) and false alarm (FA)
speech results on NIST Transcription evaluation. Multiple Distant Microphone (MDM) baseline

with TDOA-weight 0.1 and automatic speech/non-speech detection.
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Rich Transcription 2006, 2007 and 2009 Conference Data
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Figure 5.34: Comparison in terms of Diarization Error Rate (DER) results on NIST Transcription
evaluation conference between the Single Distant Microphone (SDM) system augmented with all

techniques and the Multiple Distant Microphone (MDM) baseline with TDOA-weight 0.1.

Comparison with SDM Baseline

The figures 5.34 and 5.35 report a comparison between the SDM system including all techniques, except

language modeling, and the MDM system with TDOA weight fixed to 0.1. It can be observed a significant

improvement w.r.t. the single channel system. Diarization error rate decreases from 19.72% in the SDM system

up to 11.39% in the MDM case, around a 42.3% relative improvement. Such a improvement confirms results

reported in diarization literature and for submitted RT systems [Pardo et al., 2007; Fiscus and et al., 2009a;

Fiscus and et al., 2007a].

The figure 5.35 reports the comparison between SDM and MDM systems in terms of speaker error, misses

and false alarm time obtained by applying a real speech activity detector. It can be noted that in MDM case

the speech detector is best adapted than in SDM case, obtaining low miss and false alarms rates, 2% absolute

improvement. Anyway, it just account for a few part of the global DER improvement reached by the MDM

with respect to SDM system, 19.7% and 25% respectively.

Finally, in order to assess the improvement reached by the agglomeration of techniques and by incorporating

multi-microphone information, the table 5.9 provides a comparison between previous reported approaches.

The table shows DER per cent results SDM baseline without any improvement, for SDM with most of them
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Development Evaluation

Techniques RT’06 & RT’07 RT’09

SDM Baseline 25.24% (13.95) 24.29% (9.45)

SDM ALL 18.61% (11.13) 18.45% (20.91)

MDM Baseline (w = 0.1) 7.96% (7.36) 13.84% (21.19)

MDM Baseline (w = 0.2) 12.51% (14.18) 14.47% (17.04)

Table 5.9: Development and evaluation results, in terms of DER and standard deviation, of the
diarization system applied on the Single Distant Microphone (SDM baseline) condition and on
the Multiple Distant Microphone (MDM) condition. The SDM ALL system is the same than SDM
baseline system but augmented with the agglomeration of all previous techniques. The MDM
baseline system is the same than SDM ALL system but incorporating the TDOA weighted scores to

compute output HMM probabilities scores. SAD references were used.

and for two MDM systems with best weight threshold tuned during development experiments. The best

TDOA system which makes use of a weighting w = 0.1 outperforms SDM baseline in both development and
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speech results on NIST Transcription evaluation conference between the Single Distant Microphone
(SDM) – right bar of each show corresponds – system augmented with all techniques and the
Multiple Distant Microphone (MDM) – left bar of each show corresponds – baseline with TDOA-
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DER% evolution depending on language weighting
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Figure 5.36: Diarization error rate (DER) results on NIST Transcription evaluation conference data
depending on the language model threshold. All three language model strategies are implemented

evaluation sets. In development data, MDM improves DER over 31% relative w.r.t. SDM baseline and over

57% relative w.r.t. SDM ALL system (which uses all techniques, except language modeling). In the evaluation

RT’09 data, the relative improvement is reduced compared to development results but still significant: 43%

and 25% respectively.

Language Modeling

Results obtained in MDM condition by incorporating language modeling (LM) techniques are reported in

figure 5.36. The inclusion of language modeling we did not report significant improvements in our experiments.

Despite the improved results in the SDM case, same situation does not occur in MDM case. One possible

reason for this low effect of LM in MDM condition could be the lack of normalization among acoustic and

language probabilities which is performed in the HMM. Further research should be conducted in this topic in

order to discern such a hypothesis. The figure 5.36 depicts the different DER curves for several datasets and

depending upon the weight of the language modeling.

Agglomerating Techniques

The table 5.10 reports the results obtained by upgrading the MDM baseline system with initialization methods

and algorithms as complexity selection or multiple merging. In addition an automatic weighting strategy
[Anguera, 2006] was also used employed and compared with best results obtained by manually tuning. When

setting the values by hand they are normally defined for all meetings equally and therefore they do not account
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for peculiarities due to the meeting room or to the nature of the meetings. The automatic weight setting

algorithm is able to compute the optimum values for each meeting independently. The weight is iteratively

computed at the each segmentation iteration setting it proportional to the inverse of standard deviation of the

BIC values among TDOA clusters. Its value remains without modification along the clustering process:

WTDOA =
σ−1(BICTDOA)

σ−1(BICTDOA) + σ−1(BICMFCC)
; WMFCC = 1−WTODA (5.31)

where σ stands for standard deviation. The initial TDOA weight was set to same value, w = 0.2 as baseline

system. Table 5.10 reports development and evaluation results, in terms of DER and standard deviation, of the

agglomeration of several techniques to the MDM baseline system. The relative improvement (r.i. % column)

per cent is also reported w.r.t. the baseline system.

It can be observed a different trend compared to the single channel approach results. In the case of cluster

initialization methods, two methods were evaluated. The former based on linear regression – MDM/I1 –

and the second one based on the automatic computation of clusters setting (RCC = 7, Ginit = 5) values –

MDM/I2. The former outperforms the second method in development data experiments. Nevertheless, results

on evaluation dataset show a lack of generalization of the linear regression method despite of the improvement

reached w.r.t. MDM baseline system.

Automatic complexity algorithm and multiple merging of clusters per iteration did not reach better results in

development data w.r.t. not apply them. The DER reached corresponds to the lowest relative improvement

with respect to MDM baseline, 3.52% and 9.91% respectively. However, MDM/A1 and MDM/A2 systems

outperforms both the baseline and previous system reaching, in the case of MDM/A2, the best relative

improvement w.r.t the baseline system: 66.99%. The automatic TDOA weighting algorithm is shown as

the most successful approach in terms of lowest DER in both sets of data. Last two rows in the table 5.10

report its DER per cent. It obtains the lower DER results independently the initialization method employed. In

Development Evaluation

Name (ID) Techniques RT’06 & RT’07 r.i. % RT’09 r.i. %

(MDM/B) MDM Baseline (w = 0.2) 12.51% (14.17) – 14.47% (17.04) –

(MDM/I1) MDM/B + LR Estimation (RCC,Kinit) 8.63% (7.43) 31.01% 13.54% (17.57) 6.42%

(MDM/I2) MDM/B + (RCC = 7, Ginit = 5) 9.96% (11.01) 20.38% 8.06% (9.28) 35.57%

(MDM/A1) (MDM/I1) + Automatic complexity + Merging couples 12.07% (11.34) 3.52% 11.73% (23.63) 6.23%

(MDM/A2) (MDM/I2) + Automatic complexity + Merging couples 11.27% (11.41) 9.91% 4.13% (5.57) 66.99%

MDM-ALL1 (MDM/A1) + Automatic TDOA weighting 9.88% (9.54) 21.02% 6.76% (22.06) 45.96%

MDM-ALL2 (MDM/A2) + Automatic TDOA weighting 7.95% (9.50) 36.45% 5.60% (12.98) 55.24%

Table 5.10: Development and evaluation results, in terms of DER and standard deviation, of the
agglomeration of several techniques to the MDM baseline system. The relative improvement (r.i. %

column) per cent is also reported w.r.t. the baseline system.
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Figure 5.37: Diarization error rate (DER) results on NIST Transcription evaluation conference
data by the MDM system augmented with automatic computation of initial clusters, automatic
complexity, multiple merging and automatic spatial feature weighting based on standard deviation

of TDOAs, i.e., MDM-ALL2 system in the table 5.10.
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Figure 5.38: Diarization error rate (DER) results on NIST Transcription evaluation conference
data taking into account speaker overlap. The MDM-ALL2, see table 5.10, system results in terms

of DER are reported.
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Show Name ref. #SPK system #SPK diff DER %

CMU 20050912-0900 5 4 1 9.09 %

CMU 20050914-0900 9 4 5 19.68 %

CMU 20061115-1030 4 4 0 4.66 %

CMU 20061115-1530 4 4 0 0.66 %

EDI 20050216-1051 5 4 1 1.95 %

EDI 20050218-0900 5 4 1 14.38 %

EDI 20061113-1500 5 4 1 22.61 %

EDI 20061114-1500 4 4 0 2.95 %

EDI 20071128-1000 4 4 0 0.19 %

EDI 20071128-1500 4 4 0 1.69 %

IDI 20090128-1600 5 4 1 5.48 %

IDI 20090129-1000 5 4 1 3.59 %

NIST 20051024-0930 5 9 -4 5.26 %

NIST 20051102-1323 8 8 0 1.71 %

NIST 20051104-1515 4 4 0 0.8 %

NIST 20060216-1347 7 6 1 6.57 %

NIST 20080201-1405 6 5 1 36.76 %

NIST 20080227-1501 6 6 0 1.5 %

NIST 20080307-0955 8 11 -3 3.97 %

TNO 20041103-1130 3 4 -1 41.82 %

VT 20050408-1500 5 5 0 1.24 %

VT 20050425-1000 4 4 0 1.18 %

VT 20050623-1400 7 5 2 4.38 %

VT 20051027-1400 6 4 2 33.05 %

DER ALL RT’06,RT’07 and RT’09 128 119 25 8.55 %

Table 5.11: Results summary for the MDM-ALL2 system. The second column ref #SPK gives the
number of speaker present in the reference. The third column system #SPK the number of detected
speakers by the system. The labeled column diff reports the difference between detected speaker

and the reference. Last column DER% reports individual DER per cent values per recording.

the case of manually adjusted (RCC, Ginit) values, the full enhanced MDM baseline system – MDM-ALL2

– reaches 7.95% and 5.60% in development and evaluation data respectively. The figures 5.37 and 5.38

report the DER% per show in the whole RT data set, i.e., NIST RT’06-09. The former reports the speaker

error (SER) per cent by the MDM-ALL2 system which reaches 8.55% SER%4 with a standard deviation
4It is worth to note that this result is not the arithmetic mean of the two SER% values reported in last column of the Table 5.10. DER

and SER are time metrics which value is normalized by the total time in the data. That is the reason cause SER% computed taking into
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σ = 12.27. This is the lowest SER% value reached by any of the systems during experiments. It can be

observed the speaker overlap contribution to the diarization error (DER) in the figure 5.37. Last bar in the

graph, dark gray part, corresponds to the speaker overlap error, 9.8% whereas the speaker error is around

8%. The flakiness effect is still perceived and reported by σ = 14.11 value, 6 out 24 recordings have DER%

values higher than 30%. Most of the higher DER% values are due a high percentage of misses produced

by speaker overlap. It can be note in CMU recordings, first two bars, and in first two NIST recordings –

NIST 20051024-0930 and NIST 20051102-1323. Once more time, as in the MDM baseline see figure 5.33,

the recordings NIST 20080201-1405, TNO 20041103-1130 and VT 20051027-1400 report the higher errors.

As explained above, possibly reasons are high interactivity and and low level signal from far-field mics.

Finally, the Table 5.11 reports individual SER% values per each recording and the number of detected speakers

by the MDM-ALL2 system. In overall, the number of speaker is underestimated and there is not a clear

relationship between number of speaker detected errors – diff column – and higher DER% values.

TDOAs for Clustering Initialization

In this subsection experiments of the proposed TDOA initialization, see section 5.2.3, are reported. In order to

assess the TDOA initialization algorithm, it is compared to the uniform initialization based on RCC value. The

uniform initialization defines Kinit initial clusters by splitting the input signal into equal parts and then iterates

over model training and segmentation on the data in order to obtain acoustically homogeneous initial clusters.

Both initialization techniques are compared using the data distributed for the NIST Rich Transcription 2007

Spring meeting Recognition Evaluation, RT07s as evaluation set whereas RT06 was employed for development

and tuning of systems’ parameters. The diarization approach is applied to the single reference channel given

by NIST, SDM condition, or to the enhanced signal from all available microphones, that is the MDM condition

without TDOA feature stream. Complexity selection algorithm with RCC value fixed at 7 was also employed

in both of the systems. The speech activity detection was the same as the presented in the RT07s evaluation

analyzed in section 5.4.2.

For the case of the initialization based on TDOA analysis, a set of parameters was to be tuned in order to

compute ”source of speech” segmentation. Following, a brief setup of the parameters employed is given as

well as the values and percentages they were fixed for the experiments reported:

• The size of the TDOA analysis window is set to 50 frames (at a rate of 250 ms. per frame)

• The percentage of TDOA considered to compute the geometric distance is set 60% of the TDOA

components of that track.

• In order to create a new track and during non-speech, the minimum percentage of TDOAs which have to

remain close together into the analysis window is fixed to 50%.

account speaker overlaps in figure 5.38 does not match SER% without overlap. Overlap segments contribute to the total evaluation time.
Nonetheless, all σ values computed in this PhD thesis proposal equally weight each recording.
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SDM MDM

NAME SHOW % SER % DER % SER % DER

TDOA UNI TDOA UNI TDOA UNI TDOA UNI

CMU 20050912-0900 15.9 30.2 19.4 36.2 11.6 11.4 22.6 25.7

CMU 20050914-0900 14.5 28.2 18.4 30.3 10.3 12.5 21.3 24.5

EDI 20050216-1051 15.7 32.4 20.1 35.3 11.5 13.2 23.6 25.1

EDI 20050218-0900 14.6 27.9 18.8 30.1 10.6 12.1 20.3 24.1

NIST 20051024-0930 4.1 6.9 9.2 13.2 3.7 6.5 7.9 10.6

NIST 20051102-1323 3.4 5.2 8.7 12.1 2.8 6.1 6.5 8.8

TNO 20041103-1130 15.8 33.8 21.7 36.1 11.7 13.6 24.3 25.1

VT 20050623-1400 4.5 6.8 9.4 12.7 4.1 5.9 8.3 10.2

VT 20051027-1400 16.5 34.1 22.4 36.7 12.2 14.1 24.7 26.2

ALL 16.7 19.8 22.75 26.55 9.5 12.3 19.22 23.50

Table 5.12: Diarization Error Rate (DER) per cent and Speaker Error (SER) per cent in the
development RT06s dataset for the initialization based on clustering of TDOAs features – TDOA

column – and for the classical uniform initialization – UNI column.

• Once a track is created, the percentage of TDOAs which have to remain near is also fixed to 50% of the

analysis window, in this case and during such a condition is fulfilled, the associated track is considered

as ”alive“.

• The maximum time in silence or without TDOA correspondence to previously created tracks is 10% of

the analysis window. In this case, the track is discarded for further processing and the temporal segment

associated is considered as over.

• The minimum duration output of a detected speech segment is 3 seconds.

• The threshold for the SRP-PHAT value is set to 0.9.

The figure 5.39 depicts the DER% evolution of a recording for both initialization methods and channel

conditions. It is worth to note that initial DER% observed at the first iteration is directly related to the

employed initialization method. Furthermore, as can be seen in the figure, the lowest DER is obtained in the

TDOA initialization case and such a improvement remains constant during next iterations. That situation

clearly illustrates the importance of the selected initialization method prior AHC. To take an obvious example,

it inspires research in clustering algorithms which aims to improve cluster ”purity” in any stage of the AHC

clustering [Anguera et al., 2006b; Bozonnet et al., 2010a; Nwe et al., 2012].

The Tables 5.12 and 5.13 report the SER and DER per cent results obtained by the TDOA initialization in both

conditions in the RT06s and RT07s datasets. Overall, the use of the TDOA initialization reduces the global
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SDM MDM

NAME SHOW % SER % DER % SER % DER

TDOA UNI TDOA UNI TDOA UNI TDOA UNI

CMU 20061115-1030 5.5 24.9 17.20 38.26 7.3 9.4 18.92 21.04

CMU 20061115-1530 1.3 13.7 8.37 21.27 6.3 9.5 13.42 16.61

EDI 20061113-1500 11.9 24.6 23.29 46.63 19.5 29.8 30.85 41.15

EDI 20061114-1500 13.6 12.2 19.83 29.02 9.9 11.0 16.10 17.26

NIST 20051104-1515 2.0 3.9 7.45 8.31 5.7 1.2 11.12 6.63

NIST 20060216-1347 29.8 2.5 34.28 6.90 7.1 1.8 11.56 6.33

VT 20050408-1500 12.4 6.6 18.21 12.36 1.1 7.1 6.92 12.92

VT 20050425-1000 21.1 7.1 28.97 15.44 10.5 3.7 18.39 11.64

ALL 12.3 11.8 19.73 21.99 8.2 9.0 15.70 16.50

Table 5.13: Diarization Error Rate (DER) per cent and Speaker Error (SER) per cent in the
evaluation RT07s dataset for the initialization based on clustering of TDOAs features – TDOA

column – and for the classical uniform initialization – UNI column.

1 2 3 4 5 6 7 8 9 10 11
10

20

30

40

50

60

70

Clustering iterations

%
 D

E
R

SHOW EDI 20061114−1500

 

 

SDM−UNI

SDM−TDOA

MDM−UNI

MDM−TDOA

Figure 5.39: DER % improvement per iteration for the recording EDI 20061114-1500. The
different curves reports the improvement by applying the TDOA initialization on both Single Distant

(SDM) and Multiple Distant Microphone (MDM) conditions.
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DER as well as the SER error 5.

The lowest DER 15.70% is obtained by the MDM system with the TDOA initialization (MDM-TDOA)

improving a 4% relative with respect to the uniform initialization. In the SDM system, the TDOA initialization

also performs better with a 10% of relative improvement. However, the partial results per recording show a

high variability of the DER and some results show an improvement in the SDM system but not in the MDM,

and viceversa. The reduction of the SER also shows the benefit of the initial TDOA clustering. The initial

estimations of the speaker models are more accurate which results in a SER reduction in the most of the

recordings.

In conclusion, the initial clustering provided by means the analysis of TDOA dynamics supplies ”pure”

segments in which speech belongs to a unique speaker avoiding, therefore, overlapped speech.

Overlapped Speech Detection

In this section we present overlap detection experiments for the multi-site scenario conducted on the NIST

RT evaluation data and compare different overlap detection setups in terms of their effect on diarization

improvement. More a detailed discussion is given in [Zelenák et al., 2011] in where we are also discussing

the behavior of overlap labeling and exclusion in relation to changing overlap detection properties in a wide

dataset, the AMI meeting corpus [Mccowan et al., 2005]. For the experiments reported, the RT ’05–’07 data

were employed for training of the overlap detection system and the RT ’09 corpus for testing.

The Multiple Distant Microphone system was employed in overlap detection experiments. The output HMM

probabilities were weighted in the ratio 0.80 and 0.20, for spectral and spatial feature stream, respectively.

Performance is measured with Recall—the ratio between true detected and reference overlap time, Precision—

the ratio between true and all detected overlap time, and with Error—the sum of missed and false overlap time

divided by the reference overlap time. Note that these metrics are very strongly influenced by the overlap

insertion penalty, since this penalizing parameter controls the number of overlap segments the system will

hypothesize. .

Overlap detection experiments were performed for different feature setups including spectral-only system

(Scpt) and some combinations of spectral and the spatial features, i.e., coherence (Spat C), dispersion (Spat

D) and delta TDOA (Spat dT) and combinations of them. The detection performance on NIST RT 2009 site

recordings for several of these feature setups is given in the figure 5.40. We can see that combined setup

(Spct+Spat CdT), spectral with coherence and delta TDOA, outperform the spectral-only Spct in error and

precision in all penalty regions. Setup Spct+Spat CDdT performs better than Spct in the lower penalty regions.

In general, the best system is (Spct+Spat CdT) achieving lowest error and corresponding precision and recall

of 95%, 58%, 34%, respectively, at OIP of −50. The possible reason for the worse performance of feature

setups involving the cross-correlation dispersion ratio is the fact that this parameter may be closely related to

the spatial distribution of microphones in a room. And the generally worse performance on multi-site data

indicates, that the PCA is probably a too simple technique to compensate for the variability of this scenario.
5The speaker error time (SER) is responsible for the speaker identification error time. DER not only includes the SER error but it also

takes into account the missed speaker time error and the false alarm speaker time error, see section 2.3.3.
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Figure 5.40: Overlap detection performance for NIST RT ’09 data. Feature setups are as follows,
spectral features only (Spct), combination of spectral features with spatial coherence and delta
TDOA (Spct+Spat CdT), and finally spectral features with all three spatial features (Spct+Spat
CDdT). Error is delineated with solid line, precision with dotted line and recall with dashed line.

The results reported in [Zelenák et al., 2011] show a great dependence of the overlap detection algorithm

w.r.t. the room setup and the differences among sites which degrade the detection performance compared to

the single site adapted system. DER error around 95% in NIST RT database, which is a multi-site database,

is coherent with those obtained in the AMI meeting corpus. Despite the high percentage of misses overlap

segments and false alarms introduced by the system, the output overlap regions detected could still be used to

apply exclusion and labeling techniques in order to improve diarization error rate.

The complement of the overlap detection error tells us how much the diarization can possibly gain with

labeling using a particular overlap hypothesis, since all of the overlap false positives will be propagated to

the DER, but only a perfect labeling would transform all true positives into a reduction of missed speaker

time. Sufficiently high precision is also important for obtaining good results. Overlap hypotheses, which were

produced for development recordings for several OIP values with the baseline overlap detection system, were

subsequently applied in diarization system for assigning second labels.

In addition to labeling technique, segment exclusion was also considered aiming to reduce DER results. In the

overlap exclusion approach, overlaps are discarded from training, hoping to achieve purer cluster models and

thus a more precise segmentation. The labeling technique allows to assign two speaker labels in segments with

simultaneous speech. In the latter case, the overlap hypothesis needs to be sufficiently precise, since all of
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System MS FA SPKE #Spks. (Det/Miss/False) DER (with collar) DER

BASELINE, TDOA (w = 0.20) 15.1 0.1 17.4 29-9-3 19.6 32.5
Ovlp Excl + Labl. (Spct system) 11.1 3.3 16.1 30-8-0 17.5 30.6
Ovlp Excl + Labl. (Spct+Spat CDdT) 11.3 3.4 15.5 31-7-0 17.5 30.2
Ovlp Excl + Labl. (Spct+Spat CdT) 11.9 2.4 19 27-11-0 21.4 33.4

Table 5.14: Improved speaker diarization with labeling of simultaneous speech segments on
multi-site data, missed speaker-time error (MS), false alarm error (FA), speaker error (SPKE),
DER and relative improvements over the new baseline (in %). In addition the number of correctly

detected speaker, speaker misses and false speakers are also reported in column (#Spks.)

the falsely detected overlaps will contribute to diarization error and only a perfect selection of speaker labels

would recover the missed overlapping speaker time. In practice, it is useful to have one overlap hypothesis for

overlap exclusion and another for overlap labeling.

In a series of preliminary experiments, we spent some effort to obtain results on the NIST RT ’09 conference

meetings. We selected the overlap hypotheses presented in the figure 5.40 for the OIPs values: no penalization

for overlap exclusion and −100 for labeling, respectively. The baseline diarization performance with the

improved system utilizing beamforming and TDOAs is 32.5%. The application of the overlap handling

techniques reduced the error to 30.6% for the Spct overlap detection setup, and to 30.2% for the Spct+Spat

CdT setup. Again, these DER results were computed with and without any scoring collar. When the standard

NIST RT evaluation collar of 0.25 s is used, the corresponding error reduction is from 19.6% to 17.5% DER

for the latter of the two overlap setups.

5.4.5 Diarization based on Spectral Clustering

This subsection is devoted to provide results on RT datasets about the speaker diarization approach based upon

spectral clustering technique applied on Gaussian superverctor space, see section 5.3.

Tuning System Parameters

Some parameters were tuned through a set of experiments on the development data, such as: The minimum

duration turn per speaker, the initial number of segments, its GMM model complexity and finally the threshold

Θ as maximum eigengap.

In the figure 5.41 (a) we depict the histogram for the segment duration in NIST RT data for the evaluations in

2005, 2006 and 2007. It takes into account any speaker segment in the evaluation time, that is, all consecutive

speech from the same speaker without silences greater than 0.5 seconds. Speaker overlapped segments are

also considered to draw the picture yielding to a total of 8450 samples. As we can see at the red line in the

histogram, the mean duration of the segments is around 2 seconds. The minimum duration constrain for

HMM/Viterbi alignment is set to such value in both SC and HMM+BIC implementations.
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(a) (b)

Figure 5.41: (a) Histogram for segment durations in RT’05, RT’06 and RT’07 data. The tick
marked as the red vertical line stands for the mean duration of a speaker segment. (b) Spectral
clustering performance in terms of % DER depending on the initial number of clusters and the

Gaussian complexity for building the GSV vectors.

The initial number of segments and the number of initial Gaussians per segment has been also tuned using the

development data sets. The figure 5.41 (b) depicts the impact on diarization error rate for the spectral

clustering algorithm for different GMM model complexities: 3,4 and 5 Gaussians respectively; and for a

number of initial segments ranging from 70 to 110 segments. The DER curves are obtained on the development

data RT’06 and RT’07. The lowest DER is reached by using 100 initial clusters and employing GMM models

composed by 5 Gaussians. These values are selected in the SC approach applied to the RT’09 evaluation data.

Finally the threshold Θ, which is used to select the number of clusters, is also tuned based on %DER

performance in development data. Thus the first maximum γk eigengap is fixed to 0.001.

Comparison with Agglomerative Clustering

The figures 5.42 (a) and (b) display the results per each show obtained on RT’06 and RT’07 conference data

respectively. In both data sets, the DER errors produced by the SC-based implementation are only slightly

worse than those obtained by the AHC+BIC approach. In general, AHC system obtains a better performance

for both development and evaluation data sets. Nevertheless and depending on the development subset, SC

outperforms the results obtained by classical AHC+BIC.

As we can see in the RT’07 data, SC obtains a 14.54% DER outperforming the AHC+BIC system with

a 17.73% DER. Nonetheless, the same does not happen in RT’06 data in which SC performance fall off
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(a) (b)

Figure 5.42: Development results on (a) Rich Transcription 2006s and (b) 2007s evaluation data.

compared to the AHC approach. In overall, in the figure 5.43 (a) we report the DER per show and the total

error computed on the development data in which AHC+BIC obtains slightly lower DER results.

Finally, the figure 5.43 (b) shows the generalization of the results to unseen data in the evaluation data set.

As in the case of development experiments, the AHC+BIC approach outperforms slightly the SC-based one,

25.19% compared to 27.52% DER.

Table 5.15 summarizes the results performed by both approaches on the different data sets. DER error rates

and the associated standard deviation (σ) per set are also reported. It is worth to mention the lowest deviation

(σ) observed in the SC results compared to the AHC approach. The SC implementation seems to perform

more robustly across different shows than AHC does, specifically in RT’09 and RT’07 data sets. In addition

and aiming to verify that the SC clustering provides a significant reduction in terms of complexity, we report

in Table 5.15 computational relative time on the different RT evaluation data sets for AHC+BIC and SC

approaches. Feature extraction processing is common for both methods and it was not taken into account

for measuring time consumption. Processes were run on a Intel(R) Xeon(R) CPU E5540 2.53GHz machine.

Experiments conclude that SC based clustering runs around 3 times faster than the AHC+BIC system.

The main advantage of spectral clustering is that it does not build any statistical metric for deciding if two

clusters should be merged. This avoids explicit BIC or KL computation at each merging step, by employing a

Euclidean distance among super vector representation of clusters, thus significantly reduces the complexity of

the clustering algorithm. Experiments are performed on RT’06, RT’07 and RT’09 conference evaluation data

and results are provided in terms of diarization error rate and using an oracle speech detector.
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(a) (b)

Figure 5.43: Development results on (a) Rich Transcription 2006s and 2007s evaluation data and
(b) evaluation results on RT09s data.

To summarize, the spectral clustering based algorithm along with Viterbi realignment is found to achieve

DER results slightly worse than the conventional AHC+BIC system but with reduced computation. Results

presented also display a great variance among different shows as well as between evaluation data sets. It may

be due to data characteristics, e.g., number of speakers involved, room setups, SNR levels and speech overlap

segments. For instance, the worst performance is reported in RT’06 data which exhibits both lower SNR and

higher overlap time than the other databases used, see table C.1.

Finally, this work on spectral clustering theory is based on a series of assumptions that will be further

investigated in future works. For instance, the similarity matrix is built based on Euclidean distances among

Gaussian super vector representation of clusters obtained without MAP adaptation of an universal background

model. In addition, we employ a full connected graph weighted by a scalar parameter for building the affinity

matrix. These steps can be improved by means a more robust cluster representation and a best adapted metric

distance among them, or by a most suitable scalar parameter to improve the merging step. Furthermore, we

used an initial uniform segmentation in blocks of fixed duration. In this case, the system may be improved

through the use of a speaker change detection algorithms to obtain ”pure” initial segments containing a single

speaker. Further research comparing implementation with multiple channels and different sets of features will

also be addressed in future works.
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AHC+BIC SC

Dataset %DER / σ %DER / σ xfaster

RT06 27.88% / 12.38 34.90% / 16.98 3.02x

RT07 17.73% / 13.90 14.54% / 9.13 2.43x

RT06+RT07 22.83% / 13.51 24.81% / 16.82 2.67x

RT’09 25.19% / 15.33 27.52% / 13.19 3.24x

Table 5.15: DER results and standard deviation (σ) per set on Rich
Transcription 2006, 2007 and 2009 conference data and number

of times that SC implementation is faster than classical AHC+BIC.

5.5 Conclusions

In this chapter we have described a speaker diarization system based on agglomerative clustering performed

by a HMM/GMM model applied to meeting domain data. We have described several algorithms and tuning of

different parameters and we assessed its performance in the NIST RT’06-09 conference databases. Speech

activity detection along with cluster initialization and speaker overlap detection has been shown as key points

in the improvement of the global diarization. Due this fact, experiments related to these questions have been

carefully reported.

Some novelties and original works has been also highlighted. The use of complementary cues of information

to classical spectral MFCC features has been shown as an efficient strategy in order to increase the quality of

the diarization. TDOA features has been successfully applied to signal enhancement, for computing output

HMM probabilities or for creating the initial clustering. Furthermore, we found that spatial information can be

used to perform speaker overlap detection and we proposed three new cross-correlation-based features.

Furthermore, a newly method based on spectral clustering was proposed for speaker diarization in meeting

domain. The system switches classical BIC pair computation by euclidean distances in a transformed space

spawned by the Gaussians means of the clusters. The experiments reported show a comparable performance

with respect to the AHC-HMM diarization based on the BIC metric.

Most of the work reported in this chapter was performed within the framework of NIST Rich Transcription

Evaluations 2007 and 2009. It was published in several book chapters, international conference proceedings

and a journal paper.





Chapter 6

Speaker Tracking and Diarization
in Broadcast News

S ince some years we can observe a much easier access to digitalized spoken documents e.g. broadcast

shows or meeting recordings. This situation created a growing demand for applications of human

language technologies. The common goal of these technologies is to provide a complete transcription, also

known as rich transcription. Transcription in this sense means not only the words uttered by the involved

speakers, but also information about the audio conditions, channel conditions, acoustic events, sex of the

speakers or their identities. This additional information allows us to perform effective accessing, searching

and indexing of such spoken documents. Development of techniques for its extraction is a challenging task

and has also woken the interest of the research community up.

Specifically, speaker tracking consists of segmenting and identifying target speakers in a continuous audio

stream. In contrast to diarization task in which there is no prior knowledge about the speakers, it involves

audio segmentation and speaker identification/verification, this latter performed in a supervised way. Usually,

acoustic data from a set of target speakers are used to estimate the corresponding acoustic models. Then,

input streams are segmented, and each segment is classified as belonging to one of the target speakers or as

Unknown (unknown speaker or non-speech). This latter category (acoustically complementary to the set of

target speakers) can be easily integrated in the formalism by estimating its own acoustic model.

This chapter is devoted to describe and to assess the performance of a speaker tracking and a speaker diarization

algorithms in the broadcast news domain. In the section 6.1 it is described a couple of speaker tracking systems

submitted to the Albayzin Evaluations, organized by the Red Temática de Tecnologı́as del Habla (RTTH)
[Segundo, 2006]. A speaker tracking approach based on HMM/GMM-MAP adapted distributions is compared

with a step to step approach, based on BIC segmentation and GMM speaker identification techniques. In the

section 6.2, a speaker diarization algorithm jointly with an acoustic event detection system, are described

and their joint integration results on TV broadcast news data are presented. The detection and handling
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of background conditions as complementary information for speaker diarization was assessed within the

framework of the Catalan government founded project Tecnoparla.

6.1 Speaker Tracking on Spanish Radio Broadcast News:
RTTH Albayzin Evaluations

This section describes two speaker tracking approaches presented to the challenge organized in November 2006

by the Spanish Network on Speech Technology, Red Temática de Tecnologı́as del Habla (RTTH) [Segundo,

2006]. The task consisted on a speaker tracking with speaker open set, i.e., segmentation and identification in

a continuous radio stream of a previously known set of target speakers. In addition, other speakers rather than

the known speakers could be present as well as commercials, noises, different channel background condition

and so forth. All these conditions made the evaluation a really hard challenge.

6.1.1 Albayzin Speaker Tracking Evaluation

The Albayzin Evaluations, among others tasks, aims to promote research work on speaker segmentation of

multiple speakers together with identification of some of them. The evaluation was focused on tracking,

segmentation and identification, of 5 different speakers which could be surrounded by other non-target speakers,

music or commercials. Spanish broadcast news data from a radio show was collected to assess the performance

of the different approaches submitted to the evaluation. The goal of the speaker tracking system is to find

answer to the question: who speaks when?, discriminating among several speakers, some of them known and

other being totally unknown. In conclusion, it might be seen as a speaker indexing audio task.

The evaluation database consisted of audio tracks taken from radio broadcasts in Spanish. It includes several

speakers, around 400 turn changes, music, movie excerpts, commercials, overlaps, etc. Training data were

available only for 5 target speakers. It was composed of 5 short utterances per speaker, 4 of them artificially

distorted with noise and reverberation. The training material for each speaker had an average length of 12.8

seconds (64 seconds joining all utterances). The test corpus was composed of 20 tracks, lasting 4 minutes in

average, yielding to a total of around 77 minutes of speech. Speaker and silence transcriptions were obtained

manually. The silences between interventions of the same speaker and smaller than 500 ms. were not labelled.

Finally, one of the testing tracks was delivered to participants prior the test evaluation and was used for

developing purposes. Target speakers, unknown speakers and other classes of acoustic events were present

in the recordings. Some examples of these acoustics events are: Music, background music, overlapping of

speech, channel and environment changing, studio and telephonic conditions, ...

It was the first edition of the speaker tracking evaluation and just a couple of participants submitted contribu-

tions. The first submitted system was developed by the Software Technology Group of the University of the

Basque Country (EHU). It performed audio segmentation and speaker identification in a completely decoupled

fashion. Segmentation was done in a fully unsupervised way, by locating the most likely change points in
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the acoustic signal. Then the available speaker data was used to estimate single-Gaussian acoustic models

which were finally employed to classify the audio segments. Speaker identification was done by computing

the score of each segment with regard to the speaker models, which were trained beforehand starting from

labelled speaker data. Each segment was assigned the label of the most likely speaker or, alternatively, the

label Unknown, if none of the speakers was likely enough.

The second submitted system, developed at the TALP Research Center of the Technical University of Catalonia

(UPC), was based on the Agglomerative Hierarchical Clustering (AHC) system described in the previous

chapter, i.e., on an iterative segmentation through a HMM/GMM. In contrast to the EHU’s approach, this

strategy allowed for a global clustering of the audio sequence, coupling with the segmentation and identification

tasks at the same time. In order to adapt it to the speaker tracking task, the speaker diarization algorithm was

adapted by including modeling techniques such as Maximum a Posteriori Adaptation (MAP) and some scores

strategies coming from the speaker verification task.

6.1.2 Sequential Approach: XBIC-based Tracking

In the following we briefly describe the speaker tracking approach developed at EHU. Let’s consider two

segments of speech, X and Y , of the same length, and the corresponding sequences of spectral feature vectors,

x = x1, . . . , xN and y = y1, . . . , yN . Assuming that the acoustic vectors are statistically independent and that

can be modeled by a multivariate Gaussian distribution, the acoustic models are defined as λx = N(O;µx,Σx)

and λy = N(O;µy,Σy) and the dissimilarity measure between X and Y is defined as follows:

d(X,Y ) = − log

(
P (x|λy)P (y|λx)

P (x|λx)P (y|λy)

)
(6.1)

where P (z|λ) =
∏N
i=1N(zi;µ,Σ) is the likelihood of the acoustic sequence z given the model λ. In other

words, if X and Y are acoustically close, their respective models will be quite close too, which means that

d(X,Y ) ≈ 0. On the other hand, the more X and Y differ, the greater d(X,Y ) will become.

The audio segmentation algorithm considers a sliding window W of N acoustic vectors and computes the

likelihood of a change at the center of that window, then moves the window n vectors ahead and repeats the

process until the end of the vector sequence. To compute the likelihood of change, each window is divided in

two halfs, Wl and Wr, then a Gaussian distribution (with diagonal covariance matrix) is estimated for each half

and finally the dissimilarity measure between Wl and Wr is computed and stored as likelihood of change. This

yields a sequence of likelihoods which must be post-processed to get the hypothesized segment boundaries.

This involves applying a threshold τ and forcing a minimum segment size δ. In practice, a boundary t is

validated when its likelihood exceeds τ and there is no candidate boundary with greater likelihood in the

interval [t− δ, t+ δ]. An example of audio segmentation is depicted in the figure 6.1.

Once the segmentation is done, each segment must be given a speaker label or, alternatively, the special label

Unknown when no speaker is likely enough. Assuming that a certain amount of training data is available for L

target speakers, speaker models can be estimated beforehand. In the approach developed at EHU, speaker
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Figure 6.1: An example of audio segmentation at EHU. Vertical lines represent actual boundaries.
The local maxima marked with ’X’ represent the boundaries hypothesized by the system. Figure

courtesy of Professor Luis Javier Rodriguez Fuentes.

models are multivariate single-Gaussian distributions: λi = N(O;µi,Σi), for i = 1, . . . , L. To classify any

given segment X , firstly the segment model is estimated (again as a single-Gaussian distribution with diagonal

covariance matrix) λX = N(O;µX , σ
2
X), starting from the sequence of acoustic vectors x = x1, . . . , xN .

Note that P (x|λX) ≥ P (x|λi) ∀i. The label l(X) is given the value:

k = arg max
i=1,...,L

P (X|λi) (6.2)

if 1
N log

(
P (x|λk)
P (x|λX)

)
> ε, where ε is a heuristically fixed margin. Alternatively, if the likelihood ratio of the

most likely speaker does not exceed ε, the label Unknown is assigned to X .

6.1.3 Integrated Approach: HMM/GMM-MAP based Tracking

The system developed at UPC to perform speaker tracking was based on the Agglomerative Hierarchical

Clustering (AHC) algorithm introduced in previous chapter. It was specifically adapted to the speaker tracking

task by the inclusion of speaker identification and verification techniques. Nevertheless, it still relied on the

modeling and segmentation of the input speech by means of a Hidden Markov Models (HMM), in an iterative

strategy of training and segmentation cycles. The stopping criterion in this case is met whenever the clustering

output remains constant between two consecutive iterations.

We should consider the differences of this evaluation with respect to the RT diarization evaluation from NIST

in order to understand differences among the diarization and tracking approaches. In NIST RT, there is no

prior knowledge about the speakers involved in a conversation or how many of them are in the audio stream.

Therefore systems developed to perform diarization in RT do not use any previous speaker data but they create

speaker models from the scratch. In contrast, in the speaker tracking task we seek for specific target speakers

into the audio stream. The speaker indexing task is carried out by comparing input speech to target speaker
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data in a repository. Hence the HMM topology was adapted to the speaker tracking task.

The topology of the HMM was composed of 6 states, corresponding to the 5 target speakers and a General

Model (GM) representing jointly unknown speakers and other acoustic events, see figure 6.3 (a). The

enrollment data available from target speakers was used to train initial target speaker models, by applying

the iterative Expectation-Maximization (EM) algorithm. The GM1 model, composed of 32 mixtures, was

estimated using the whole test data, once again by means Maximum Likelihood algorithm. In order to deal

with mismatch conditions, another General Model (GM0) was also EM-trained through testing data and using

a split-vanish initialization. Afterwards, Maximum A Posteriori (MAP) mean adaptation [Bimbot et al., 2004]

to GM0 was performed for each target speaker and also for the GM1 model, see figure 6.2.

Figure 6.2: Acoustic modeling in the HMM/GMM tracking system. The target models and the GM1

model are MAP-mean adapted to the GM0 model, moving them closer to the acoustics of the test
data.

It is also worth to mention that a frame pruning strategy was also developed. It aimed to avoid frames of silence

or non-speech data which were not masked by the SVM-based speech detector prior to the enrollment stage.

Around 5% of the frames corresponding to those frames with lowest energy were pruned, that is, discarded to

enroll speaker models.

As it is represented in the figure 6.3 (a), each HMM state is composed of a sequence of S sub-states which

imposes a minimum duration of the speaker turn. The initial probabilities of the states are set manually to

make the classes equally likely at the beginning of the stream. The sub-states of any given state share the

same probability density function, that is, the target speaker GMM model. Upon entering a state at time n,

the model forces a switch to the following sub-state with probability 1.0 until the last sub-state is reached.

Then, the model can cycle on that sub-state with transition probability α, or switch to the first sub-state of a

different state with transition probability β = 1/M , where M stands for the number of target speakers. In

this case, α and β were set to 1.0. Thus, once a segment exceeds the minimum duration, the HMM state

transitions no longer influence the turn length, which is solely governed by acoustics [Anguera et al., 2006d].

Note that this strategy in the transition probabilities of the HMM leads to a non-standard HMM topology, since
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(a) (b)

Figure 6.3: The UPC tracking system scheme submitted to Albayzin 2006 Evaluation. (a) An
ergodic HMM models the acoustic data with 6 states, each one of them composed of S sub-states
which share same GMM speaker model. (b) The algorithm employed to perform speaker tracking
in the Broadcast News domain based on iterative MAP adaptation of speaker models. The main

differences with respect to speaker diarization presented in previous chapter are highlighted.

α+ β �= 1.0.

During Viterbi segmentation, some speaker verification techniques were applied. The emission probabilities at

each state were normalized using Log-Likelihood Ratio (LLR) [Bimbot et al., 2004] at score-level. Such a

normalization was computed by dividing the likelihoods performed on the target speakers by the likelihoods

computed on the GM1 model. A likelihood threshold tuned with development data was also imposed as a

condition for target speakers detection. Furthermore, in order to compute the probabilities of each state, only

the 50% of the Gaussians that performed highest frame score by the GM1 model were used. This incomplete

computation of the likelihoods did not affect significantly the system performance, but decreased the time

factor of the whole system.

Once speaker models were computed, it followed a Viterbi decoding of the audio stream in order to obtain a

speaker turn sequence, see figure 6.3 (b), that is, a clustering of the audio stream is obtained. These newly

segmented speaker data was combined with the enrollment set and new speaker models were estimated. It was

done through MAP mean adaptation, but using a smaller adaptation factor due to the low confidence on the

automatically detected speech. The MAP adaptation performed was iterative, i.e. the adaptation of speaker
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Figure 6.4: Post-processing segment boundaries. A sliding window is applied on the shortest
segments in order to split the middle segment data among the adjacent segments.

distributions were recomputed a number of times nMAP. The optimal value of nMAP was fixed by experiments

results obtained in the development data. This iterative training/segmentation process was repeated until no

variation in the clustering output was noticed.

Next the iterative segmentation process, the resulting boundaries were post-processed. Those segments with

duration smaller than 1.1 times the minimum duration (MD) were shared out among the adjacent segments.

Thus the short segment was assigned to previous or next segment depending on the maximum likelihood

obtained by evaluating the short segment data on the two adjacent segments, see figure 6.4. The idea behind

this post-processing relies on the hypothesis that the shortest segments are usually associated to false alarms in

BN data. Frequently in radio and TV broadcast news, the speaker turns are managed by the director of the

show and speakers interventions follow a speak-by-turn script with no room for improvisation and avoiding

speaker interruptions or overlapping in order to improve intelligibility. In contrast, in speech meeting data the

spontaneity an multiparty conditions results on a high number of speaker interruptions and overlaps.

Once the iterative segmentation process is completed and the boundaries post-processed, the final hypothesis is

obtained. Summarizing, different techniques were developed in order to perform speaker tracking. They make

a substantial difference with respect to the system developed for speaker diarization. Such a techniques are:

• Computation of initial speaker models based on MAP adaptation.

• Loop on Viterbi segmentation: It applies the Viterbi decoding of the speaker sequence until no variation

in the clustering is obtained.

• Post processing of cluster boundaries.

• Loop (nMAP) on MAP adaptation, number of MAP adaptation nMAP is proportional to the number of loop

iterations in Viterbi imposing higher adaptation values as more Viterbi iterations has been completed.

• Frame purification, in where the 5% (fixed in development data) of highest energy frames are employed

to compute the model likelihood.

• Gaussian selection to likelihood computation, by selecting 50% of the Gaussians which produces highest

likelihood scores.

• Log-likelihood ratio normalization by the log-likelihood performed on the General Model (GM1).
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6.1.4 Experiments

Both EHU and UPC audio approaches rely on a common speech analysis. In both cases, the audio was

analyzed employing a Hamming window, of 25 ms. in EHU approach and 30 ms. in UPC approach, at 10 ms.

rate. Then, a 512-point FFT was computed and FFT-amplitudes were averaged in 24 overlapped triangular

filters at EHU, 13 filters were used at UPC, with central frequencies and bandwidths defined according to the

Mel scale. A Discrete Cosine Transform was finally applied to the logarithm of the filter amplitudes, obtaining

13 Mel-Frequency Cepstral Coefficients (MFCC). However, the first coefficient, representing the energy, was

not used to estimate the acoustic models. It was only used in the UPC system to prune low energy frames

associated with silences in both enrollment and testing data. Experiments were conducted using recordings

from Spanish radio broadcasts.

To measure the performance of the submitted approaches, the NIST evaluation software for speaker diarization

was used (in particular, the newest version included in the Spring 2007 Rich Transcription Meeting Recognition

Evaluation Plan [Fiscus and et al., 2007a]). This metric, called Diarization Error Rate (DER), is computed

by first finding an optimal one-to-one mapping between the reference labels and the system labels, and then

obtaining the error as the percentage of time that system labels after mapping are wrong, see section 2.3.3.

Consider the example depicted in the figure 6.5, where not only segmentation errors but also clustering errors

are illustrated. Note, for instance, that the last segment is erroneously assigned to a third speaker. After the

alignment is done, the label s01 is considered equivalent to mm and the label s02 equivalent to ft. Finally, it is

found that speakers have been erroneously identified during 10 seconds out of 25 (the shaded regions in figure

6.5) (a), which means a 40% speaker diarization error.

DER takes the system labels as if they were blind, but what we produce in this work are not blind but informed

labels, i.e. actual speaker labels. The speaker identification error must be measured by comparing the system

and reference labels on a frame-by-frame basis. Consider the example depicted in figure 6.5 (b). The system

provides segment boundaries and segment labels. Labels refer to the speaker identity. If a given segment does

not match any known speaker, it is assigned the label Unknown, which works as an additional speaker. The

speaker identification error is computed as the fraction of time system labels do not match reference labels. In

the example in the figure 6.5 (b) speakers are erroneously identified during 15 seconds out of 25, which means

a 60% speaker identification error.

To get the speaker identification error related to speaker tracking, the NIST software was slightly modified,

and two new metrics were defined: Diarization Error Rate Modified (DERM) and Speaker Identification

Error Rate (SIER). DERM computes as errors those frames whose reference label r does not match the label

mapped to r, m(r). SIER computes as errors those frames whose reference label r does not match the system

label s (before mapping). DER is an optimistic metric, since it evaluates the best segmentation in the sense of

minimum DER, whereas SIER is a pure frame-by-frame speaker identification rate (the time system labels do

not match reference labels divided by the total audio time). On the other hand, DERM attempts to measure the

segmentation quality but forcing the correct mapping of speaker labels, becoming a hard metric, since all the

segments whose reference label r does not match the mapped one m(r) are taken as errors.
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(a)

(b)

Figure 6.5: (a) An example of speaker diarization. The system provides a sequence of segments
with blind speaker labels. First, the system and reference segmentation are aligned. Then, among
those labels assigned by the system to any given speaker, that appearing most times is taken as the
system choice and considered equivalent to the reference label. Finally, the speaker identification
error is computed as the fraction of time speakers are erroneously identified (shaded regions).
(b) An example of speaker tracking. The system provides a sequence of segments with labels of
known speakers. The speaker identification error is computed as the fraction of time speakers
are erroneously identified (shaded regions). Figure courtesy of Professor Luis Javier Rodriguez

Fuentes.

In the table 6.1 it is displayed the official evaluation results for the different error metrics explained above.

The results are displayed for both the step-by-step and the integrated approaches. Two different systems

were submitted from UPC that just differ in the post-processing of the short-segment boundaries. The

UPC-contrastive system does not make use of the post-processing technique in contrast to the UPC-primary

submission. Furthermore, the development error rate for both UPC submission systems are also displayed in

the last column of the same table. It is worth to mention that the results reported in the table 6.1 are computed

without collar, see 2.3.3, i.e, the metric counts any inexactitude w.r.t the speaker references. Therefore the

system’s outputs should to match exactly the manual references. Such a evaluation protocol is a really challenge

assessment.

SIER metric was the metric proposed after the evaluation. It compares directly the system output with the

reference without any alignment or mapping, i.e, a frame-by-frame identification rate. In both approaches, the

speaker identification error (SIER) is slightly higher than 17% and not statistically significant difference is

noticed. This, comparable to other results reported in the literature [Dunn et al., 2000], is specially relevant

because: (1) speaker models are estimated from a few utterances taken from radio broadcasts, many of them

(80%) intentionally distorted; and (2) parameters are tuned almost blindly, using just one track of 4 minutes

including only two target speakers, (3) no collar is applied to compute the identification error, imposing the

system to exactly match the reference.

Nonetheless, the results related to DER and DERM metrics are substantially different for both approaches. In
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Evaluation Development
XXXXXXXXXXSystem ↓

Metric→
DER (NIST RT) DERM SIER DER (NIST RT)

EHU 15.20 % 19.50 % 17.25 % –

UPC-primary 17.44 % 17.44 % 17.44 % 6.54 %

UPC-contrastive 18.03 % 18.03 % 18.03 % 6.82 %

Table 6.1: Official results reported by EHU and UPC in the 2006 Speaker Tracking Challenge
Albayzin. The development results are displayed in the first column. The difference between the two

UPC submission systems is just the final post-processing of short segments boundaries.

the case of the NIST DER metric, the BIC-based system outperforms the results of the AHC approach whereas

in the case of the modified DERM metric we see the opposed result. Such a variance in the error rate of the

step-by-step approach is likely due to a high confusion among speakers in this approach than in the AHC

system. The NIST DER metric corrects the error by aligning the output of the system into the best possible

segmentation. However, it does not occur whether DERM metric is applied since DERM does not align the

system hypothesis. Note that, independently the error metric employed, the corresponding error rates of the

integrated approach remain constant. It illustrates the differences among the segmentation based on both BIC

criterion and local audio information (depending on the analysis window) and the HMM segmentation which

employs the whole audio recording to estimate the speaker segmentation.

Finally, the post-processing technique which was included in the UPC-contrastive submission, obtained

promising results during development experiments, see last column in the table 6.1. It was confirmed by the

official evaluation results in where the recognition was improved by 0.5% absolute.

Next Albayzin Evaluation some experiments were performed in order to compare the improvement on the

speaker tracking error by the inclusion of the different speaker identification techniques. A wide development

set was employed aiming to avoid over-training of the algorithm. The original Albayzin evaluation data was

randomly splitted into two sets of the same size. A development set around 40 minutes of duration was used

for tuning of parameters and a testing set of the same duration was employed to assess the AHC/GMM-UBM

algorithm. Table 6.2 shows the impact of the different techniques on the degradation of the DER results.

The first row corresponds to the UPC-primary system submitted to Albayzin evaluation. Several techniques

are eliminated the more we get lower at the column. As can be seen in the table 6.2, the iterative Viterbi

segmentation and the LLR normalization techniques represent most of the improvement from the UPC-primary

system in both datasets. In the first case, it reaches 11% of absolute improvement in development and 7% in

the “blind” data.

The figure 6.6 depicts the DERM error evolution in both development and test sets. The DERM is depicted per

each training/segmentation iteration showing that most of the recognition error is mainly corrected at the two

initial iterations.

The improvement by LLR normalization is lowest but still significant: 3.5% and 1.6% respectively. Other

techniques as Gaussian selection and the iterative MAP-mean adaptation also obtained a enhanced performance
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Development Test

System DERM % (diff %) DERM % (diff %)

UPC-primary 13.36% 18.13%

Loop Viterbi Segmentation 24.55% (+11.19%) 25.22% (+7.09%)

Post Processing 24.55% (+0%) 25.22% (+0%)

Loop MAP 22.50% (−2.05%) 27.38% (+2.16%)

Frame Purification 21.67% (−0.83%) 25.89% (−1.49%)

Gaussian Selection 21.67% (+0%) 26.01% (+0.12%)

LLR Norm 25.20% (+3.53%) 27.60% (+1.59%)

Table 6.2: Diarization Error Rates (DERM modified) of the complete system. The different
techniques are eliminated from the UPC-primary system as we lowered in the column. Looping
in the Viterbi segmentation and the LLR normalization are the techniques that showed higher

improvement in both datasets.

but not at the same time in both development and test sets. It is worth to mention that Gaussian selection and

frame purification reduced the time consumption of the tracking algorithm. In the case of Gaussian selection,

it occurs as well as without any drop of performance despite of it uses just 50% of the Gaussians to compute

the likelihoods.

Finally, in contrast to previous Albayzin evaluation results, in this post evaluation experiments the final

processing of segment boundaries did not seem to aid the diarization system.

Figure 6.6: DERM evolution with respect to the number of training/segmentation iterations. The
depicted system corresponds to the UPC-primary whose results are also reported in table 6.2. The
curves depicte the DER reduction achieved by the iterative segmentation and verification strategies

at each iteration in both datasets.
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6.1.5 Conclusions

No significant differences in performance were found between the two approaches presented in this chapter.

However, the methodologies are quite different. The former makes use of two independent and decoupled

modules for audio segmentation and speaker identification. Moreover, all the acoustic models are single

Gaussians, which can hardly model the spectral variability of speakers and segments, but at the same time

provide robust estimates, even when not many training data are available, and allow real-time operation of the

speaker tracking system. System time consumption was reported by EHU, claiming that in the experiments

reported speaker tracking was completed in less than 0.1 real-time. The surprisingly good performance of this

approach can be due to the low number of target speakers in the proposed evaluation. In other words, single

Gaussians might be the most suitable models, in terms of accuracy and robustness of parameter estimates,

when dealing with only 6 categories, the five target speakers and the Unknown category, and with few available

training material.

The latter integrates audio segmentation and speaker identification in an iterative segmentation/identification

loop in where the speaker acoustic models were continuously adapted maximum a posteriori. Additionally,

it relies on a Gaussian of mixtures model to model speaker voices, each of them composed of 32 active

components. Both submitted systems yielded around 17% speaker identification error time in the speaker

tracking evaluation Albayzin. It is a promising performance due to the fact that the evaluation testing data

were excerpts from radio broadcast recordings without any manual processing. Furthermore, training data

was artificially corrupted with noise aiming to simulate mismatch conditions among training and testing data

which together with error metric proposed drove to a hard evaluation conditions.

The integrated approach, in spite of their higher computational cost compared to the step-by-step system,

should also show a good performance in a wide range of situations. The use of MAP adapted speaker models

and an specific model for the Unknown class make suitable the algorithm to apply in different conditions data

without modification while avoiding, e.g., the manual tuning of a verification threshold as ε at the step-by-step

approach. Nonetheless, it results in a poor estimate of model parameters in the case of the Albayzin Evaluation

which is composed of a small set of samples, thus limiting theoretically the potential performance of the

integrated approach. The step-by-step approach should be a good choice to implement in the case of on-line

processing requirements due its implementation simplicity and good performance. However, real-time tracking

could be faced by applying minor modifications in the iterative system. Among others, the initial steps forward

the adaptation of the speaker tracking system to real time processing conditions should be: Complexity

reduction of the GMM models, adjusting of the number of training/segmentation iterations and the application

of an analysis window instead of the whole recording in order to compute the Viterbi path.
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6.2 Speaker Diarization on Catalan Television Broadcast News.
Tecnoparla Project

Among the human language processing techniques is audio segmentation. It aims to segment the audio signal

according to the predefined acoustic classes (music, speech,silence etc.), and typically, it is requested when

processing broadcast news. Some recent approaches [Neto et al., 2008] took advantage of the information

about the structure of shows such as typical sounds which indicated audio changes. Several works [Scheirer

and Slaney, 1997; Kim et al., 2007] have investigated various features and feature sets for the problem of

music/speech discrimination. Audio segmentation has been employed for instance in the context of robust

speech recognition [Choi et al., 2007]. Unlike previous works [Neto et al., 2008], our aim is to provide not

only a working audio segmentation system but also a more general solution that can fit in other broadcast news

scenarios. Another technique applicable in the context of human language processing is speaker diarization. It

can be seen as a particular task of the audio segmentation issue [Kemp and M. Schmidt, 2000] and consists

in segmenting and labeling an unknown set of speakers in a continuous audio stream. Speaker diarization is

usually described as the task of deciding who spoke when and it involves a large variety of applications.

In this chapter we seek to employ audio segmentation jointly with speaker diarization. We consider detection of

audio segments relevant to speaker diarization task such as speech, music, speech over music, telephone speech,

telephone speech over music, and silence. The main objective is to evaluate and compare the performance of

our diarization system exploiting the audio segmentation information in different ways. On the one hand, it can

be used beforehand to extract speech or more condition-specific segments which are then fed to the diarization

system. On the other hand, the audio segmentation hypothesis can be used with the diarization labeling

to perform some kind of time masking. Furthermore, it will be show that information about channel and

background conditions might improve the diarization performance by handling independently such conditions.

6.2.1 Tecnoparla Corpora

The corpus consists of Àgora TV shows. The Àgora show airs on Monday night in Television of Catalunya

channel. It is a debate show highly moderated and with a high variation in topics and invited speakers. The

total audio time of the database is about 42 hours divided in 34 shows (approximately 1 hour and 20 minute

each show), each one corresponding to an airing day. Each show has been split in two halves to delete the

commercials present during the airing. Thus, 68 files corresponding to 34 shows are the total amount of audio

of this database. The definition of acoustic conditions depends on three variables. First, mode denotes the type

of speech. It can be planned, spontaneous or void if it is not specified. Second, background describes which

conditions co-exist with the signal. We can distinguish between music, speech and void if nothing is specified.

Final variable is the channel. All signals are broadcasted from the studio, but some of them can be band limited

in the source (e.g. telephone speech), although they can be overlapped with whole band background conditions

(e.g. telephone speech with music background). Two channels are defined for the shows: studio and telephone.
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Transcriptions

The manual transcriptions available for the database are mainly intended for speech recognition experiments.

This means that there is nearly no information about silences. Only long silences at the beginning or the end of

the file (half a show) are transcribed. Long silences inside the body of the transcription are not transcribed

directly or indirectly. Furthermore, the temporal positions of various acoustic events (e.g. laugh, cough, etc.)

that appear in the shows are often referred to the words being affected instead of exact timestamps. Another

characteristic is that speaker segmentation has only one boundary. This means that one speaker is supposed to

start when the previous speaker ends, even if there is a long silence, or music, between them.

In this work, for audio segmentation, we considered detection of next classes: speech, music, speech over

music, telephone speech, telephone speech over music and silence. These classes can be seen as a combination

of a background condition (silence or music) with a foreground condition (speech, speech over telephonic

channel or silence).

In general the transcription cannot be trusted for the task of audio segmentation or speaker diarization. For

this reason, we adopted an algorithm of transcription correction to introduce more accurate temporal marks

for the audio classes considered. In order to refine the transcriptions, a background detector was designed. It

enabled us to refine the speech class by detecting either (music or silence, in our case) in the background. The

following design constraints were introduced:

• Conservative behavior. Missing the detection of silence or music in the presence of speech is preferable

to false alarms which cause the error that is not recoverable by posterior processes.

• Minimum duration of a background to detect is considered 500 ms.

The system which modified initial transcriptions was based on GMM. For each acoustic condition considered,

i.e. speech over background music and speech, a 4 Gaussian GMM was trained on the log-short-time-energy

computed in a 30 ms. frame at 10 ms. rate using the EM algorithm. After the model was built the Gaussian

that corresponds to the lowest mean was used to generate a Gaussian probability density function for the

background. The rest of the Gaussians were used to generate a GMM model for the foreground speech as it is

represented in the figure 6.8. We assigned one Gaussian to the background condition as proposed in [Anguera

et al., 2006a], but we observed empirically that three Gaussians modeled foreground data more accurately.

The algorithm was applied separately to each of the considered acoustic conditions. Each frame was then

classified according to maximum likelihood criterion either to one model or the other. Finally, a smoothing

based in median filter is applied to meet the 500 ms. minimum duration restriction.

6.2.2 Audio Segmentation

Audio segmentation, sometimes referred to as acoustic change detection, consists of exploring an audio file to

find acoustically homogeneous segments, or, in other words, detecting any change of speaker, background or

channel conditions. It is a pattern recognition problem, since it strives to find the most likely categorization
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of a sequence of acoustic observations, yielding the boundaries between segments as a by-product. Audio

segmentation becomes useful as a preprocessing step in order to transcribe the speech content in broadcast

news and meetings, because regions of different nature can be handled in a different way.

The SVM-based system that was previously used for detection and classification of acoustic events in meeting

room scenario [Temko and Nadeu, 2006; Temko et al., 2008] was employed in this work for a general task

of audio segmentation. The sound signal was down-sampled to 16 kHz, and framed (frame length/shift was

30/10ms, a Hamming window is used). For each frame, a set of frame-level features was extracted. In [Temko

and Nadeu, 2006] the best performance was obtained with a combination of features used in automatic speech

recognition and other perceptual features. Hence in this work the set of features consisted of the concatenation

of two types of features:

• 16 frequency-filtered (FF) log filter-bank energies, along with first and second time derivatives.

• The subset of features composed by: zero-crossing rate, short time energy, 4 sub-band energies, spectral

flux, calculated for each of the defined sub-bands, spectral centroid, and spectral bandwidth.

The first type of features has been already used for classification of acoustic events in a previous work [Temko

and Nadeu, 2006], where the frequency-filtered log filter-bank energies [Nadeu et al., 2001] shown a better

performance than the usual mel-frequency cepstral coefficients which are used in speech recognition. The

contribution of each feature from the second type is not so well-established and the spectral features included

in the second type were chosen from a much larger pool of features after taking into account their individual

importance and degree of interaction [Temko et al., 2008].

In total, a vector of 60 components was built to represent each frame. In both training and testing processes,

the mean and the standard deviation of the features were computed over all frames in a 0.5 second window

thus forming one feature vector of 120 elements. The resulting vectors of statistical parameters were fed to the

SVM classifier and the decision was made each 100 ms. as it is shown in the figure 6.7. The post-processing

based on median filter was applied to eliminate uncertain decisions and minimum duration threshold was also

imposed to avoid too frequent changes of audio classes. Concerning SVM training, the standard operations

were undertaken: anisotropic data normalization with the normalization templates that were applied afterwards

to test data, and 5-fold cross-validation to obtain optimal values of both the Gaussian kernel parameter and the

C parameter.

Due to the huge amount of data, the dataset reduction technique developed and described in [Temko et al.,

2007] were used in order to decrease the number of training vectors and make model searching and final

training feasible. Briefly, the process consists in dividing all the data into chunks of 1000 vectors per chunk

and training a proximal SVM on each chunk performing 5-fold cross-validation (CV) to obtain the optimal

kernel parameter and the C parameter that controls the training error. To select a pre-defined number of

chunks an appropriate threshold was applied to the CV accuracies of all chunks. With that approach the data

that corresponds to the most/least separable data in chunks can be chosen depending on the difficulty of the

discrimination between classes.
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Figure 6.7: Window analysis strategy performed by the SVM-based audio segmentation module.

After amount of training data was decreased an SVM classifier was trained for each pair of classes. The 1

vs. 1 directed acyclic graphs (DAG) multi-class strategy [Platt et al., 2000] was chosen to classify among 6

audio classes. It is worth to note that, in terms of training data, speech class highly dominates over the other

classes considered. Usually, a discriminative classifier tends to give more priority to the prevailing class. In

our case it implied that speech decisions will be produced more frequently than others. However, as it is

known that a speaker diarization system suffers more from speech deletions than from speech insertions as

unlike the formers the latter can still be corrected further on inside the speaker diarization system, no way to

deal with dataset imbalance problem was considered in this work. As a result, the performance of the audio

segmentation system for every class was not expected to be uniform, but that system still was preferable for

the speaker diarization as a final application.

6.2.3 Speaker Diarization

The speaker diarization algorithm applied was mainly the same than the system described for meeting domain

data. In contrast, the speech data was firstly pre-processed with a high-pass filter at minimum frequency of 100

Hz and analyzed in windows of 30 milliseconds at intervals of 10 milliseconds, i.e., at a rate of 16 kHz. Finally

audio was parameterized using 30 frequency-filtered (FF) log filter-bank energies. The FF features were used

because they outperformed the standard used MFCCs in our experiments. The Speech Activity Detector is

changed by the acoustic event detector explained above, see box B in figure 6.8, resulting in the scheme (c)

proposed in the figure 6.9. The non-speech frames were ignored for further processing in this situation. As in

NIST RT Evaluations, the missed speech and the false alarm speech detected in this stage remained throughout

the agglomerative process, therefore the accuracy and detection performance of the speech was, once more

time, a key point for the performance of the global system. We will see that the non-speech frames masking

can also be shifted to the output of the diarization algorithm, as showed in figure 6.9 (d), without a significant

degradation on terms of DER.

Once the speech features were extracted and the speech segments detected, a uniform segmentation was

applied to initialize the classes/states of the HMM model. The selection of the number of classes or states

(Kinit) was performed in an automatic way by fixing the CCR constant to 7 seconds of data per Gaussian
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Figure 6.8: Brief scheme of the diarization system implementation. The system employed for
speaker diarization in BN are the same system employed in diarization for meeting domain. In con-
trast, Frequency Filtering parameters and a high-pass filter were employed for signal parametriza-

tion and the speech detector is changed by an acoustic event detection module.

and the initial number of Gaussians per model (Ginit) to 5. Considering the mean duration of Àgora shows,

which is over 40 minutes, the initial number of cluster ranges between 40 and 50 clusters. A time constraint

of 3 seconds was set to ensure minimum duration of the speaker segments. In addition, multiple merging

of segments at each iteration was allowed and automatic complexity was also employed during the iterative

training/segmentation steps.

6.2.4 Experiments

The main goal of the experiments which were conducted on the Àgora corpus was to assess the performance

of both audio segmentation and speaker diarization systems, evaluate their joint operation and their integration.

Prior to the speaker diarization experiments the performance of standalone audio segmentation system is

presented. The initial diarization experiments should determine the performance interval in which the error

rate of the system using audio segmentation hypothesis will be positioned.

In general, the segmentation hypothesis can be applied in two ways. First, it can be used beforehand to extract

from the audio stream data of interest and those are consequently fed into the diarization system. Second, all

data can be used in the diarization but the output labeling is masked according to segments of interest in the

audio segmentation hypothesis.

The figure 6.9 depicts a schema for the different strategies employed for assessing influence of acoustic event

detection w.r.t overall diarization performance. The figure (a) stands for the raw strategy which relies on

feeding the diarization system with the whole audio data, by contrast, in figure (b) diarization is performed

over speech segments extracted according an oracle event detector based on the reference transcriptions. In

figure (c) the system relies on prior detection of speech thus the diarization is carried on over speech segments

extracted according to the audio segmentation hypothesis. In figure (d) the diarization still depends upon

acoustic event detection hypothesis but employing to mask the output of the diarization instead of masking

the audio at the beginning. Finally in figure (e) and, as conclusions of the results from previous strategies,

we proposed the use of two independent systems which separately performed diarization for telephone and

non-telephone channel speech, combining both diarization outputs. The evaluation metric employed to assess
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(a) (b)

(c) (d)

(e)

Figure 6.9: Experiment strategies: (a) all audio is fed to the diarization system; (b) diarization
over speech segments extracted according to the reference transcriptions; (c) diarization over
speech segments extracted according to audio segmentation hypothesis; (d) diarization output
speech-masked with audio segmentation hypothesis; (e) Independent diarization for telephone and

non-telephone channel speech and combination of the two clustering outputs.

the performance of the algorithm was the diarization error rate (DER). It involves three types of errors: Missed

speech which refers to the speech segments that were not included in diarization labeling, false alarms which

refer to non-speech segments that were falsely labeled as a speaker, and finally, speech for which an incorrect

speaker tag was selected that is denoted as speaker error (SER). It is worth to note that, in the scenarios when

the diarization system was using the segmentation hypothesis as audio masking, the first two error kinds can

be directly linked to the latter system.

Audio Segmentation Performance

Given that the different acoustic conditions that are intended to be detected span in time much longer than

the ones in [Temko and Nadeu, 2006] the segment duration in which mean and variance across the frames

were computed was one of the parameters under study. Durations of 500 ms, 1 second and 2 seconds were put

under test to evaluate their performance.

The training set consisted in 19.4 hours of audio corresponding to 15 Àgora shows described in section 6.2.1.

These audio recordings were labeled using the references modified according to section 6.2.1 and provided

an unbalanced amount of data for the different acoustic conditions. In average each show contains 3.9%
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Selection 500 ms 1000 ms 2000 ms

Best 0.3 / 2.4 / 4.5 / 7.20 0.3 / 2.4 / 4.5 / 7.19 0.3 / 2.4 / 4.4 / 7.13
Middle 0.1 / 2.5 / 4.5 / 7.18 0.1 / 2.5 / 4.6 / 7.24 0.2 / 2.5 / 4.6 / 7.31

Worst 0.1 / 2.6 / 4.8 / 7.47 0.1 / 2.6 / 4.9 / 7.56 0.1 / 2.6 / 4.7 / 7.39

Table 6.3: Segmentation error rates - organized as Deletions / Insertions / Substitutions / Overall.
The silence hypothesis for 1000 ms. and 2000 ms. is extracted from the 500ms column.

of silence, 1.7% of telephonic speech over music, 5.6% of speech over music, 86.8% of speech, 1.4% of

music and 0.6% of telephonic speech. For the development set 8.6 hours of audio was used, and the modified

references showed that the acoustic condition distribution in this set is 3.4% of silence, 1.6% of telephonic

speech over music, 5.3% of speech over music, 87% of speech, 1.5% of music and 1.3% of telephonic speech.

We observe that there were not enough segments of silence with duration greater than 1 second. Therefore, it

is not possible to train models with silence information for 1 second and 2 seconds. This problem is bypassed

by detecting silence using 500 ms. and merging these silences in the final decisions taken without taking into

account silence information. The table 6.3 shows the segmentation error rates for different silence durations

500 ms. 1 second and 2 second organized as Deletions / Insertions / Substitutions / Overall. In order to select

those data chunks which will be used to train the SVMs, we sort them according to their cross validation

accuracies and select either the best chunks, the worst chunks, or the chunks in the middle respectively. The

segmentation errors obtained suggested us to employ the “Best“ set of chunks in cross-validation and perform

the segmentation using durations of 2 seconds.

Furthermore, taking into account the importance of silence detection for speaker diarization, we dealt with

several approaches aiming to adapt so much as possible to the silence statistics from the data:

• Treating silence as another regular acoustic class.

• Treating silence as a regular class but taking precedence in the DAG architecture.

• Training a discriminative model of silence against non-silence.

Selection SIvsNO SIvsCLASS SIvsBEST

Best 0.1 / 2.8 / 4.7 / 7.58 0.6 / 2.2 / 4.4 / 7.30 0.3 / 2.4 / 4.5 / 7.20

Middle 0.3 / 2.5 / 4.6 / 7.40 0.4 / 2.4 / 4.4 / 7.28 0.1 / 2.5 / 4.5 / 7.18
Worst 0.3 / 2.4 / 5.0 / 7.70 0.4 / 2.4 / 4.8 / 7.63 0.1 / 2.6 / 4.8 / 7.47

Table 6.4: Segmentation error rates - organized as Deletions / Insertions / Substitutions / Overall.
SIvsNO represents the silence versus non-silence architecture, SIvsCLASS represents the architecture
where silence is treated as a regular class and SIvsBEST represents the architecture where silence
is treated as a regular class but taking precedence in the DAG topology. All these values have been

computed using a segment of 500 ms.
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In the table 6.4 it is evaluated which of the three previously methods performs better for silence detection. In

this case, the results corresponds to event detection in 500 ms. segments. The SIvsBEST method performed

better than the others in our experiments hence we decided to follow such a strategy for silence detection in

the following experiments.

Speaker Diarization Performance Bounds

The results for speaker diarization experiments were computed in two data sets: development and evaluation.

Both of them was composed of 13 Àgora show recordings and they were defined to have similar acoustic

characteristics. Development set comprised 8h 38’ and evaluation set 7h 56’ of audio data respectively. In

the first experiment we performed speaker diarization without audio segmentation information. Thus all the

audio data, silences and music included, was considered for speaker labeling. The idea was to define the lower

performance bound of the system.

On the contrary, we can also defined the upper performance bound by using a perfect audio segmentation. A

perfect segmentation was achieved by extracting speech segments according to the reference transcription.

Here, the entire DER was caused either by incorrect speaker clustering or by missed speech due to overlapped

speech of multiple speakers, since our system was assigning only one label for a segment. The difference

between the upper and lower limit corresponds to the impact of applying an audio segmentation for speaker

diarization.

The experimental setup schemas for these two experiments are depicted in figure 6.9 (a) and (b). From the

numbers in the table 6.5 (columns “No AS” and “Oracle AS ”) it is obvious that in the perfect case it might

reach around 2% and 3% absolute DER improvements for development and evaluation sets, respectively. It is

worth to note that the speaker error (SER), which is reported inside brackets, is also degraded due to corrupted

clusters produced by silences, music and other events. As expected, it is lower in the case of “Oracle AS ”

system being more significative in evaluation set than in development, around 1.5% which represents half of

the total DER.

Same conclusions are extracted from columns “AS Input” and “AS Output ”. The use of audio segmentation

as input for speaker diarization performs better than the output masking strategy. Speaker error is degraded

over 0.4% by arranging the AED masking after diarization. It encourages the idea that audio segmentation

applied at the input allows more ”pure” speaker cluster resulting in a better diarization performance.

DER (SER) [%] No AS (A) AS Oracle (B) AS Input (C) AS Ouput(D)

Development 15,77 (10,9) 13,80 (10,7) 14,57 (11,0) 14,49 (10,9)

Evaluation 13,46 (8,7) 10,48 (7,4) 12,11 (8,3) 12.41 (8.7)

Table 6.5: Speaker diarization experiment results: (No AS) without any audio segmentation;
(Perfect AS) speech extracted according to the reference; (SpeechExt) speech extracted according to
segmentation hypothesis; (OutMask) all audio data is given to diarization and speaker labeling
is masked with speech segments; (Tel + Non-Tel). Speaker ERror (SER) is also reported between

brackets.
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Speaker Diarization using Audio Segmentation

The speaker diarization algorithm will try to look for speaker changes and finally will assign cluster labels

to any data which is given as input. The audio segmentation hypothesis assists the diarization process by

localizing applicable data in order to prevent labeling of non-speech segments. One approach is to extract

speech only before providing the data to diarization (figure 6.9 (c)) and the other is to perform a post-processing

of the speaker transcription so that non-applicable time segments are discarded (figure 6.9 (d)). In the context

of this work we refer to the latter case as output masking. It needs to be emphasized that the diarization

labeling which is masked is obtained for the whole audio stream (including e.g. silences). The comparison of

these two approaches unveils the influence of cluster purity on the performance. The difference in DER for

evaluation set, as can be seen from last 2 columns in the table 6.5, is not more than 2.30% relatively and for the

development set the masking approach is even slightly better than the extraction approach. The difference is

not significant and, despite of input masking seems a better strategy, the speaker diarization system performed

robustly to cope with cluster purity issues.

After taking a closer look on the erroneous points, it was discovered that for telephone channel speakers the

diarization system usually creates just one cluster joining all speakers in such recording portions. In order to

cope with this problem, we decided to apply a more tailored diarization for the telephone channel audio.

Again, audio segmentation information was used, but here also to distinguish between telephone and non-

telephone speech. The structure of the TV shows guarantees that the identity of speakers in studio is different

to those who are calling by telephone. Otherwise an additional recognition mechanism would be required for

linking speakers speaking among both channels avoiding to introduce an artificial speaker error.

This diarization strategy is schematically illustrated in figure 6.9 (e). The speech data was split into two sets

and separate diarization was performed for both of them in parallel. The output labeling for telephone and

other speech is disjunctive, so it is easy to merge them into the final speaker labeling. A different feature

extraction was selected for telephone speech diarization. Speech data was band-pass filtered (100 – 4000 Hz)

and only 20 FF coefficients were used. Additionally, instead of using an automatic initial cluster selection, the

number of initial clusters was fixed to 10, due to the prior knowledge about the Àgora shows structure.

The performance of this approach is presented in the table 6.6. For the development set, it can be observed an

improvement over 4.6% relative compared to “AS Input” scenario, see the third column in the table 6.5. The

result is actually slightly worse for the evaluation set although the difference is not very significant. In spite of

the special treatment of telephonic channel speech, the error portions are very unbalanced. Speaker diarization

DER (SER)[%] Tel(F.nt) No-Tel(F.t) Tel +No-Tel(F.unio)

Development 21,09 (12,6) 12,56 (8,8) 12,78 (9,2)

Evaluation 24,65 (15,6) 10,89 (7,0) 11,30 (7,5)

Table 6.6: Individual diarization of telephone speech: (Tel) telephone speech only; (Non-Tel)
non-telephone speech; (Tel + Non-Tel) tel. and non-tel. labeling merged.
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Experiment A A.mfcc B C D D.mfcc F.nt F.t F.merged

Parametres FF 30 MFCC 30 FF 30 FF 30 FF 30 MFCC 30 FF 30 FF 20

DER [%] 15,77% 16,47% 13,80% 14,57% 14,49% 15,19% 12,56% 21,09% 12,78%
MS [%] 3,1% 3,1% 3,1% 3,2% 3,2% 3,2% 3,3% 8,5% 3,2%

FA [%] 1,8% 1,8% 0,0% 0,4% 0,4% 0,4% 0,4% 0,0% 0,4%

SER [%] 10,9% 11,6% 10,7% 11,0% 10,9% 11,6% 8,8% 12,6% 9,2%D
ev

el
op

m
en

t

DER [%] 13,46% 14,52% 10,48% 12,11% 12,41% 13,45% 10,89% 24,65% 11,30%
MS [%] 3,1% 3,1% 3,1% 3,4% 3,4% 3,4% 3,5% 9,1% 3,4%

FA [%] 1,6% 1,6% 0,0% 0,4% 0,4% 0,4% 0,4% 0,0% 0,4%

E
va

lu
at

io
n

SER [%] 8,7% 9,8% 7,4% 8,3% 8,7% 9,7% 7,0% 15,6% 7,5%

Table 6.7: Results summary for the different strategies depicted in the figure 6.9. (A) without any
audio segmentation; (B) speech extracted according to the reference; (C) speech extracted according
to segmentation hypothesis; (D) all audio data is given to diarization and speaker labeling is masked
with speech segments; (F.nt) diarization in non-telephonic channel audio; (F.t) diarization adapted
to telephonic channel audio ;(F.merged) parallel diarization based on telephonic channel detection.
In addition a comparison between mel cepstrum-based (MFCC) features and frequency filtering

(FF) features is reported.

in studio channel reported half of the DER compared to diarization in telephonic channel. The conclusion

extracted by comparing the first and the second column in the table 6.5 is that telephone speech speaker errors

account for the majority of the DER. Therefore, previous DER results support the idea of treating telephone

speech separately is correct, but a more intense focus needs to be put on adjusting of the diarization system for

the particularities of the telephone channel. It should be take in special account for those recordings in which

low-band speech represents an important percentage of the total speech.

The table 6.7 summarizes the diarization results in terms of speaker errors, misses and false alarm errors

for the different strategies joining audio segmentation and speaker diarization. In addition, a comparison

between MFCC and FF features is also reported in which FF clearly outperforms MFCC features. The three

last column in the table 6.7 report the DER obtained by the diarization based on channel detection. It is worth

to mention that the DER reported, e.g., in the telephonic (F.t) system, was computed with respect to the total

telephonic time. It represents the 0.6% and 1.3% total time in development and evaluation sets respectively.

The (F.merged) column stands for the combination of the two hypothesis provided from diarization in both

studio and telephonic channels. Miss speech (MS) and speaker error (SER) account for the degradation of DER

comparing the diarization in studio (F.nt) and in telephonic (F.t) conditions. On the one hand the percentage of

miss speech error increment suggest a not well adapted speech/non-speech segmentation. On the other hand the

growing of speaker error points to a higher difficulty of the diarization system to discriminate among speakers

in low-band conditions. Nonetheless, the specific diarization carried out improved the non-adapted diarization

as it can be seen by comparing between (C) and (F.merge) columns. The speaker error was decreased by

using the “ad hoc“ diarization which confirms the best adaptation of this approach to telephonic conditions.

Summarizing, the results obtained support the idea of specific speaker diarization adapted to channel and

background conditions as a strategy to take into account in broadcast news data.
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Experiment→ Reference A.ff A.mfcc B C D.ff D.mfcc F.merge

Show ↓ #Speakers

agora 2007 01 15 a 9 10 (+1) 10 (+1) 8 (-1) 9 10 (+1) 10 (+1) 12 (+3)

agora 2007 01 29 b 10 10 10 8 (-2) 9 (-1) 10 10 14 (+4)

agora 2007 02 26 a 13 10 (-3) 8 (-5) 9 (-4) 8 (-5) 10 (-3) 8 (-5) 14 (+1)

agora 2007 03 12 a 8 8 7 (-1) 7 (-1) 7 (-1) 8 7 (-1) 10 (+2)

agora 2007 03 26 a 13 11 (-2) 10 (-3) 9 (-4) 10 (-3) 10 (-3) 10 (-3) 14 (+1)

agora 2007 04 02 a 11 8 (-3) 8 (-3) 7 (-4) 7 (-4) 8 (-3) 8 (-3) 13 (+2)

agora 2007 05 07 b 11 10 (-1) 9 (-2) 8 (-3) 8 (-3) 10 (-1) 9 (-2) 12 (+1)

agora 2007 05 14 a 10 9 (-1) 9 (-1) 8 (-2) 7 (-3) 9 (-1) 9 (-1) 12 (+2)

agora 2007 05 14 b 11 9 (-2) 9 (-2) 8 (-3) 8 (-3) 9 (-2) 9 (-2) 12 (+1)

agora 2007 06 11 b 11 10 (-1) 9 (-2) 8 (-3) 9 (-2) 10 (-1) 9 (-2) 14 (+3)

agora 2007 07 02 a 14 12 (-2) 9 (-5) 10 (-4) 10 (-4) 12 (-2) 9 (-5) 17 (+3)

agora 2007 10 01 b 14 12 (-2) 14 12 (-2) 12 (-2) 12 (-2) 14 16 (+2)

agora 2007 11 12 b 13 11 (-2) 13 9 (-4) 11 (-2) 11 (-2) 13 13

D
ev

el
op

m
en

t

Total (Detected / Errors) 148 130(20) 125 (25) 111 (37) 115 (33) 129 (21) 127 (25) 173 (25)

agora 2007 01 08 b 6 9 (+3) 8 (+2) 7 (+1) 8 (+2) 9 (+3) 8 (+2) 9 (+3)

agora 2007 02 12 a 11 9 (-2) 8 (-3) 7 (-4) 7 (-4) 9 (-2) 8 (-3) 12 (+1)

agora 2007 04 16 a 11 9 (-2) 11 7 (-4) 7 (-4) 9 (-2) 11 11

agora 2007 06 11 a 11 9 (-2) 9 (-2) 7 (-4) 8 (-3) 9 (-2) 9 (-2) 12 (+1)

agora 2007 06 18 b 10 8 (-2) 8 (-2) 8 (-2) 8 (-2) 8 (-2) 8 (-2) 12 (+2)

agora 2007 07 02 b 12 11 (-1) 10 (-2) 9 (-3) 9 (-3) 11 (-1) 10 (-2) 14 (+2)

agora 2007 07 09 b 11 9 (-2) 10 (-1) 7 (-4) 7 (-4) 9 (-2) 10 (-1) 11

agora 2007 10 01 a 10 10 9 (-1) 8 (-2) 9 (-1) 10 9 (-1) 11 (+1)

agora 2007 10 08 a 15 12 (-3) 12 (-3) 9 (-6) 10 (-5) 12 (-3) 12 (-3) 12 (-3)

agora 2007 10 15 b 12 9 (-3) 8 (-4) 8 (-4) 8 (-4) 9 (-3) 8 (-4) 12

agora 2007 10 22 a 11 11 11 10 (-1) 10 (-1) 11 (-1) 11 (-1) 15 (+3)

agora 2007 11 05 b 12 11 (-1) 9 (-3) 9 (-3) 9 (-3) 11 (-1) 9 (-3) 13 (+1)

agora 2007 11 12 a 18 12 (-6) 11 (-7) 10 (-8) 10 (-8) 12 (-6) 11 (-7) 16 (-2)

E
va

lu
at

io
n

Total (Detected / Errors) 150 129(27) 116 (30) 106 (46) 110 (44) 129 (28) 124 (31) 160 (19)

Table 6.8: Number of speakers detected for both show recording and speaker diarization strategy.
The number of speakers is reported for development and evaluation test set respectively. First
column labeled ”Reference” shows the number of speakers present in the transcriptions. The
number of speaker detected by the system. Between brackets: the error with respect to reference,
(+) means overclustering and (-) underclustering. Furthermore, the total detected speakers and the

associated speaker error count per system is also reported.

Finally, the table 6.8 reports the number of speakers detected for each recording and by the different speaker

diarization strategies. It is worth to note that a right number of detected speakers might not be directly linked

to lower DER errors. It can be also noticed by comparing columns (C) corresponding to “AS Input” system

with column (B) corresponding to “AS Output ” system. The former tends to undercluster the data more than



216 Speaker Tracking and Diarization in Broadcast News

the “AS Output ” approach does: 33 compared to 21 in development and 44 to 28 in evaluation. Nonetheless,

the experiments reported in the table 6.7 show a similar performance in terms of DER for both systems.

The last column (F.merge) corresponds to the number of speakers detected by the parallel diarization system.

As can be seen such a system overclusters in mean the data. For example, it gets 10 more speakers in evaluation

than those present in the reference. However it obtained the lower number of speaker detected errors in the

same evaluation data, 19 in total. The undercluster suffered by most of the systems is corrected in this approach

but it falls out in an overclustered hypothesis though with higher precision ability to discovering speakers.

6.2.5 Conclusions

The results obtained, with DER percentages around 11%, showed an acceptable adaptation of the audio

segmentation and of the speaker diarization to the Àgora database. The DER error is a time-based metric

which means that during the 11% of the total time of one Àgora show it occurs a speaker error label due to

either speech/non-speech errors or not well recognized speakers. Such a results are comparable to other results

reported in the literature [Fiscus and et al., 2007b].

The proposed strategy which combines audio segmentation with speaker diarization based on channel detection

has reported improved results. Speaker diarization by means several diarization systems adapted to each

background condition is a promising approach to deal with mismatch conditions likely to occur in broadcast

news data as, e.g., changes between studio and outside or telephonic (low-band) channel.

The DER error computed was mainly composed of speaker errors (SER) around 7% and segmentation errors

(MS+FA) around 4%. The experiments reported point towards including verification techniques in order to

still reduce more the DER error by reducing SER. For example, the inclusion of speaker overlapping detection

might reduce speaker overlap errors. It represents half of the total SER error in this case. Speaker verification

techniques as normalization of adaptation might also improve clustering by reducing errors due to linking

and verification errors, which represents the other half of the SER. Furthermore, different proposals for the

stopping criterion should be take into account aiming to improve the number of speakers detected and indeed

the quality of the speaker diarization hypothesis.

The combination and the integration between audio segmentation and speaker diarization should also be other

path for the improvement as it has been reported in this chapter. The finding of useful information and possible

synergies between these two different audio tasks will lead to improved results in both technologies.



Chapter 7

Multimodal Person Tracking

I n this chapter we mainly describe a multi-information approach to deal with the task of person tracking into

a smart-room. The use of several cues of information from multiple microphones and other information

sources, such as video images, were combined to improve stand-alone audio and video person tracking. On

the one hand, taking benefit of multiple microphones information might aid to speaker recognition as it has

been reported in previous chapters, e.g., in the diarization task by joining speaker location information and

classical spectral features or in person identification by combining speech and face identification. In addition,

the combination or the fusion with other modalities as video person identification and video tracking drives to

person identification algorithms which performs robustly in most of the situations. For example, it allows the

automatic system constantly identify people inside a room, specially when it is the case of not existing speech

and the video is the only source of information. The same occurs whenever no images were available into the

room due occlusions and just audio information can be accessed.

Detecting the location and identity of users is a first step in creating context-aware applications for technologically-

endowed environments. The spatio-temporal localization and recognition of people through various sensors

poses problems of great theoretical and practical interest, in particular for home environments and smart

rooms. In these scenarios, context-awareness is based on technologies like gesture and motion segmentation,

unsupervised learning of human actions, determination of the focus of attention or intelligent allocation of

computational resources to different modalities.

This work is the result of the collaboration between the speech processing group (VEU), the image and video

processing group (GPI) both of them from the Signal Theory and Communications Department (TSC) at UPC;

and the Signals and Images Research Group, Centre for Mathematics and Computer Science (CWI) from

Amsterdam. The different groups met at Boĝaziçi University, Instanbul, during the SIMILAR NoE Summer

Workshop on Multimodal Interfaces, eNTERFACE’07 [enterface, 2007] which laid the foundations for this

collaboration. Furthermore, the work performed during the summer school was collected in the Proceedings of

the eNTERFACE 2007 and a journal publication [Salah et al., 2008b] was also accepted in the Journal on

Multimodal User Interfaces.
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7.1 Audio and Video Modalities for Person Tracking

In this work we aimed at putting together different algorithms for detection, tracking and identification,

working in a completely automatic way. Through the observation and subsequent processing of the data

captured using a large number of sensors from multiple modalities, we tried to determine the identity and the

spatial positions of people in the room. Obtaining this knowledge is the first step in developing more elaborate

smart applications. The main contribution of this effort was an intuitive way of connecting different tracking

and recognition methods to perform multimodal tracking and identification in the smart environment.

We propose a system that makes use of motion detection, video tracking, face identification, image-based

identification, audio-based localization, and audio-based identification modules, fusing information to obtain

robust localization and identification.

The smart room sensors and setup employed in this work correspond to the UPC smartroom laboratory

explained in the section 3.1. The data streams are processed with the help of the generic client-server

middleware SmartFlow, resulting in a flexible architecture that runs across different platforms.

7.1.1 Experimental Setup

Audiovisual recordings of interactive small working-group seminars were used. These recordings were

collected at the UPC smart room, in accordance with the “CHIL Room Setup” specifications [Casas and

Stiefelhagen, 2005]. Recordings were performed at different dates (several months apart) to ensure proper

variability (face, hair, etc.) of the participants.

The training data employed for algorithm development was composed of one recording lasting 5 minutes.

Target speakers and different classes of acoustic events were also present in the recording. Background noise,

overlapping speech, door slam, laugh, steps are some examples of these events. Silences of a speaker in

between talk segments were not labeled if they were smaller than 500 ms. Additionally, 1 minute of speech per

speaker was used to train their models and 1 minute of different events were recorded to train an event model.

Finally, an audio sequence around 7 minutes was employed to benchmark the performance of the approach

(TEST).

In both training and test recordings, four people enter an empty room, one by one. Once inside, they move

around a central table, always in standing position, talk to each other, walk around the room from time to

time, and finally leave the room one by one. The length of each recording is approximately five minutes. For

some algorithms a relatively large amount of training data needed to be available. One of the recordings was

intended for training in those cases, and the second one was used for testing without any further change or

parameter adjustment. The second recording is more difficult in terms of tracking, as all subjects wear clothes

of similar colors. For additional training we used a set of similar recordings from the CLEAR evaluation

campaign [Mostefa and et al., 2006].

The UPC’s smart-room has an entrance door, a big window and a table in the middle, see the figure A.1

in appendix A. The window was closed during recordings to avoid illumination changes. However, small
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illumination changes can occur when the door was opened. The room is monitored using six cameras: four

fixed cameras at the corners of the room (labeled Cam1 to Cam4 in the figure A.1), one zenithal fish-eye

camera at the ceiling (Cam5) and one active camera (PTZ) aimed and zoomed at the entry door to capture the

faces of the incoming people at high resolution. Video is interlaced, recorded in compressed JPEG format, at

25 fps and 768× 576 resolution.

The audio sensor setup is composed by one NIST Mark III 64-channel microphone array, three T-shaped

four-channel microphone clusters and eight tabletop microphones. Audio is recorded in separate channels

at 44.100 kHz sampling frequency and 2 bytes per sample. Far-field conditions have been used for both

audio and video modalities. All data flows are timestamped and the computers used to record the signals are

synchronized using the network time protocol (NTP). This makes possible to synchronize audio and video

data. There is no manual segmentation of the data. Each technology is supposed to automatically segment the

recorded signal.

7.1.2 The Middleware

The problem of interconnecting several algorithms that work on data streams coming from a high number of

sensors from different modalities is far from trivial. Synchronization of the different data flows, distributed

computing and the interconnection of the algorithms are issues that need to be addressed.

To allow efficient communication of sensor data and distributed computation, it is useful to have a middleware

that provides infrastructure services. We propose to use the NIST SmartFlow system that allows the trans-

portation of large amounts of data from sensors to recognition algorithms running on distributed, networked

nodes [smartflow, 2002; darpa, 1998]. The working installations of SmartFlow is reportedly able to support

hundreds of sensors [Stanford et al., 2003]. In the present version of our system, the integration was not

completed, as some modules are implemented with MATLAB, and data exchange of modules was simulated.

However, the architecture is set up in a modular fashion to allow complete implementation under SmartFlow.

Smartflow offers a great deal of data encapsulation for the processing blocks, which are called “clients”. Each

client can output one or more flows for the benefit of other clients. The communication over TCP/IP sockets is

transparent to the user, and handled by the middleware. The design of a working system is realized through a

graphical user interface, where clients are depicted as blocks and flows as connections. The user can drag and

drop client blocks onto a map, connect the clients via flows, and activate these processing blocks.

The synchronization of the clients is achieved by synchronizing the time for each driving computer, and

time stamping the flows. The network time protocol (NTP) is used to synchronize the clients with the server

time, and this functionality is provided by SmartFlow. A separate client is used to start the processing clients

simultaneously. The video streams are not completely in one-to-one correspondence, as clients sometimes

drop frames.
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7.1.3 The Information Flow of the System

The figure 7.1 depicts the information flow within the system: When people enter the room, the face detection

module detects the face on the PTZ camera, and marks the face area, which is then identified by the face

identification module. This provides a reliable identification, which is used to trigger the feature-based

identification (FBI) module. The FBI receives moving blobs that are detected and tracked by the tracking

module, and builds a feature model for the identified person on-the-fly. The FBI module is thus responsible for

the continuity of tracked frames, and serves as a weak biometrics system that can identify users in cases where

tracking fails, or stronger biometric information is not available. Motion detection and tracking within the

room are performed using the data from the four corner cameras and the ceiling camera.

The audio modules track people in the room via sound localization, and identify them based on their speech

characteristics. Since sound and speech are not constantly available, this modality is mainly used for making

the decisions of the system more robust. The acoustic identification can help the FBI module to re-assign true

IDs to the detected blobs in case of tracking failures due occlusions or color similarity. Similarly, acoustic

localization is used to assign the ID of the speaker to one of the tracked blobs.

Localization and identification are both controlled from a central logic, which performs quality-based fusion

of information. It corresponds to the labeled ”Multimodal Identification“ box in the figure 7.1.

Figure 7.1: The multimodal flow of information within the smart room architecture. Blue boxes are
related to video and image technologies, that is, motion detection and tracking and face recognition;
whereas brown box encloses acoustic technologies as speaker tracking and speaker localization.
The feature based identification module combines multimodal information in order to provide a
unique robust identity and along with the multimodal identification module perform speaker tracking

into the room.
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Figure 7.2: The stand-alone operation of the localization module. The size of the occupancy grid
spacing is roughly 40 centimeters.

7.2 Visual Processing

The cameras in the system are responsible from motion detection, tracking, face detection and identification,

and feature-based identification. Following we briefly describe the visual algorithms, for further details see the

work in [Salah et al., 2008b].

The motion detection module, see figure 7.1 attempts to separate the foreground from the background for its

operation. The method used was based on detecting moving objects under the assumption that images of a

scene without moving objects show regularities, which can be modeled using statistical methods. The training

set is constructed with a short sequence of off-line recording taken from the empty room and adapted to

illumination changes by on-line adding new samples to the training set. One significant advantage of employed

technique is, as the new values are allowed to be part of the model, the old model was not completely discarded.

If the new values become stabilized over time, the weighting changes accordingly, and new values tend to

have more weight as older values become less important.

In order to track person motion a probabilistic occupancy map (POM) approach, related to the algorithm

proposed in [Fleuret et al., 2008], but simplified to deal with indoor environments, was employed. In the POM

approach, the discrete occupancy map was used to back-project the stub image of a person (a simple rectangle)

to each camera view. The overlaps between the stubs and the detected motion images across multiple cameras

indicate the presence of a person at a given location.

The figure 7.2 illustrates the stand-alone operation of the algorithm on several consecutive frames. Only

the four corner cameras were used in computing the occupancy, the ceiling camera was just used for ground

truth annotation and visualization. The accuracy of this algorithm in terms of correct occupancy detection on
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Figure 7.3: Examples demonstrating variability in faces, acquired with the door camera. Variations
due rotation, expression change and motion blur are apparent.

our database was 96.3 per cent, allowing at most a single grid square deviation from the ground truth. The

false detection rate is 5.5 per cent. Of the true detections, 58.7% were exact matches with the ground truth.

The grid size was set to roughly 40 cm., which was slightly denser than [Fleuret et al., 2008] that used 50

cm. For continuous detection and identification, the output of this module was combined with other types of

information at a later stage.

Face detection was needed both for face identification and feature based identification modules. In this module,

the face of each person present in the scene must be detected roughly (i.e. a bounding box around a face

will be the output of this module). We used the OpenCV face detection module that relies on the adaboosted

cascade of Haar features, i.e. the Viola-Jones algorithm [Viola and Jones, 2001]. The client that performs face

detection receives a video flow from a client that in its turn directly receives its input from one of the cameras,

and outputs a flow that contains the bounding box of the detected face. The face images captured by ceiling

cameras are too small for reliable detection or identification. Consequently, only the door camera is used in

face detection and recognition.

Our face recognition module is semi-automatic, in that it takes motion tracking and face detection for granted.

This module therefore subscribes to the face detection flow that indicates face locations, and to the video flow

to analyze the visual input to a camera. The same technique as in section 3.2.2 for face recognition in smart

environments was employed [Vilaplana et al., 2006; Luque et al., 2006b]. The technique takes advantage of

the continuous monitoring of the environment and combines the information of several images to perform

the recognition. Models for all individuals in the database were created off-line using sequences of images

collected at a different date than the training and testing recordings.

We evaluated the face identification module for the PTZ camera, which records people entering the room

with a high resolution. Its positioning allows the capture of an head-and-shoulders image with a resolution of

768 × 576 pixels. An examples of images are depicted in figure 7.3. As previously mentioned, the gallery

models were created with images of each person taken from a different recording. We used 20 training images
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Figure 7.4: The operation of POM and FBI modules. (a) A sample frame from the second session.
(b) The POM is computed through motion detection in four corner cameras. Darker colors indicate
higher probability. (c)-(f) The posterior probabilities under models of individuals in the room,
computed by the FBI module. The order of maps reflects the relative positions of the persons in the
room. While the persons in (c), (e) and (f) are unambiguously identified, the model for the top-right
person produces high posterior probabilities for two persons as showed in (d). The assignment of
identities to occupied locations that jointly maximizes the posterior probability is able to identify

all persons correctly. Picture courtesy of Prof. Albert Ali Salah

per individual, and the corpora was collected with four people participating the recordings. The identification

module was able to give correct results in all the correctly detected groups of faces. In the case of false

positives of the face detection module, the face identification module correctly classified all the cases in the

Unknown/No face class. For the training recording, the face detection module outputs 172 groups of faces. Of

these 172 groups, only 111 (65%) correspond to good detections of frontal faces. The rest of the detections

correspond to non-frontal faces and false positives (35%).

In order to ensure robust identification in the room, we relied on weak or unanticipated sensor correlations and

patterns for sensing. For this purpose, we propose to use features that are easy to capture, present most of the

time, and helpful when the strong modalities (e.g. face or speech) were unreliable. This is particularly important

in the smart-room scenario, where the ceiling cameras usually cannot capture discriminative face images. Most

proposed systems for this type of application rely on continuous tracking of identified people in the room.

Important approaches that are previously proposed and successfully used are Kalman filters [Katsarakis et

al., 2007] and particle filters [Nickel et al., 2005a]. However, tracking multiple people for a long period is

difficult, there is little possibility of recovering from mistakes.

The proposed feature based identification (FBI) module, see the figure 7.1, aimed at identifying persons in
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the room when the tracking or speaker identification results are not available, or not discriminatory. The

primary assumption behind the operation of this module was that the variability in a user’s appearance for

a single camera was relatively low for a single session (this case is termed intra session in [Vilaplana et al.,

2006]), and a user model created on-the-fly can provide us with useful information [Tangelder and Schouten,

2006]. We used the following general procedure for this purpose: Whenever a person was reliably identified

(i.e. when the face identification or speaker identification modules return a result with high confidence1), the

tracking cameras forward the detected motion blobs to the FBI module. Then, the pixel intensities within the

motion blobs were modeled statistically, and this statistical model was used to produce posterior probabilities

for identification purposes, see figure 7.4. Typically, the system created one model per person per camera,

immediately after the person entered the room, as this was the point where the door camera acquires the face

image. Using a separate module for each camera made a color-based calibration across cameras unnecessary.

Visual Person Tracking

The identification started at the door, where the PTZ camera identified the person. Once the person was

identified, one FBI model per camera was created on the fly. The POM module provided the motion blobs

used for FBI modeling. The motion blobs associated with a single location by the POM module were passed

on to the FBI modules, which compared the whole collection under each person model. Note that there were

four FBI modules working in parallel, one for each camera. Each of them used the most discriminative 20 per

cent of the pixels received from the POM module.

We decided to make use of particle filter (PF) algorithm [Gordon et al., 1993; Carpenter et al., 1997] in order

to implement visual tracking, see following section 7.4.1 for further details. For that purpose, the visual

likelihood evaluation function must be defined. We used a combination of POM and FBI by multiplying both

terms. POM gives a probability of occupancy for each grid location and FBI gives the posterior probabilities

for all participants in each occupied grid position. In order to estimate the 2D position and the identity of a

person Xt = {(x, y)t, ID} at time t, taking as observation the combined results from POM and FBI modules

up to time k, denoted as z1:k.

The function p(zk|xk) was defined as the likelihood of a particle belonging to the position corresponding to a

person. For a given particle j occupying a room position, its likelihood may be formulated by multiplying the

probabilities from POM and FBI. This will give the weight for the particle.

wik = (POM ∗ FBI) (7.1)

Our implementation made use of a set of decoupled PFs, each per target, and define an interaction model to

ensure track coherence. The interaction between filters was modeled by two steps: if a particle fell into the

space occupied by another filter tracking a person, the weight of this particle was set to zero. If a particle

changed randomly its identity and takes the identity of another filter with a higher scoring, the weight of this
1The confidence depends on the modality. For face identification, we required that the average distance to the best-matching template

be smaller than a threshold. This ensured that the detected area contained a face.
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particle was also set to zero. The particle filters were initialized with 10, 000 particles distributed randomly

across the room. Each particle was characterized by its position and its identity. The number of particles,

as well as the other parameters of the PF were optimized using a exhaustive search approach using the

development recording. The resulting parameters were used blindly on the test set.

7.3 Audio Processing

A total of 20 microphones were used to track speakers into the room, 12 of which were omni-directional

microphones and they were placed on the walls in three T-shaped groups of four microphones each. In addition

to these T-shape arrays, four directional and four omni-directional microphones were placed on the table. All

the data was collected at a rate of 44.100 kHz and 2 bytes per sample. The data was downsampled to 16.000

kHz as a pre-processing step.

7.3.1 Acoustic Localization Module

Many approaches to the task of acoustic source localization in smart environments have been proposed in

the literature. Their main distinguishing characteristic is the way they gather spatial clues from the acoustic

signals, and how this information is processed to obtain a reliable 3D position in the room space. Spatial

features, like the Time Difference of Arrival (TDOA) between a pair of microphones [Rabinkin, 1995] or the

Direction of Arrival (DOA) of sound to a microphone array can be obtained on the basis of cross-correlation

techniques [Omologo and Svaizer, 1997], High Resolution Spectral Estimation techniques [Potamitis et al.,

2003] or by source-to-microphone impulse response estimation [Chen et al., 2004]. Conventional acoustic

localization systems also include a tracking stage that smooths the raw position measurements to increase

precision according to a motion model. It is worth to mention that most of these techniques need several

synchronized high-quality microphones.

The acoustic localization system used for this work was based on the SRP-PHAT localization method, which

is known to perform robustly in most scenarios. The SRP-PHAT algorithm (also known as Global Coherence

Field [DiBiase et al., 2001]) tackles the task of acoustic localization in a robust and efficient way. In general, the

basic operation of localization techniques based on steered response power (SRP) is to search the room space

for a maximum in the power of the received sound source signal using a delay-and-sum or a filter-and-sum

beamformer. In the simplest case, the output of the delay-and-sum beamformer is the sum of the signals of

each microphone with the adequate steering delays for the position that is explored. The SRP-PHAT algorithm

consists of exploring the 3D space while searching for the maximum of the contribution of the PHAT-weighted

cross-correlations between all the microphone pairs. The SRP-PHAT algorithm performs very robustly due the

the PHAT weighting, keeping the simplicity of the steered beamformer approach. The figure 7.5 shows an

example of TDOA trajectories which identify an acoustic source in their intersections.

Consider a smart-room provided with a set of N microphones from which we choose M microphone pairs.

Let x denote a R3 position in space. Then the time delay of arrival TDOAi,j of an hypothetical acoustic
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Figure 7.5: An example of TDOA trajectories in a 2D space related to the real space into the
smart-room. The intersection of trajectories identify an acoustic source, in this case, a lecturer
close to a blackboard. The color is related to the contribution of cross-correlation of all microphone
pairs in that position. The red point corresponds to the maximization of such a cross-correlation

function. Right picture courtesy of Carlos Segura Perales.

source located at x between two microphones i, j with position mi and mj is:

TDOAi,j =
‖ x−mi ‖ − ‖ x−mj ‖

s
, (7.2)

where s is the speed of sound. The 3D room space is then quantized into a set of positions with typical

separations of 5− 10 cm. The theoretical TDOA τx,i,j from each exploration position to each microphone

pair are pre-calculated and stored.

PHAT-weighted cross-correlations of each microphone pair are estimated for each analysis frame [Omologo

and Svaizer, 1997]. They can be expressed in terms of the inverse Fourier transform of the estimated

cross-power spectral density (Gm1m2
(f)) as follows:

Rmimj (τ) =

∫ ∞

−∞

Gmimj
(f)

|Gmimj
(f)|

ej2πfτdf, (7.3)

The estimated acoustic source location is the position of the quantized space that maximizes the contribution

of the cross-correlation of all microphone pairs:

x̂ = argmax
x

∑
i,j ∈ S

Rmimj (τx,i,j), (7.4)

where S is the set of microphone pairs. The sum of the contributions of each microphone pair cross-correlation

gives a value of confidence of the estimated position, which can be used in conjunction with a threshold

to detect acoustic activity and to filter out noise. In our work, we used a threshold of 0.5 per cluster of 4

microphones. It is important to note that in the case of concurrent speakers or acoustic events, this technique

will only provide an estimation for the dominant acoustic source at each iteration. The experimental results

obtained with the localization module are given in section 7.4, as they are used jointly with the speaker

identification module.
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7.3.2 Speaker Segmentation and Identification Module

Speaker tracking aims at detecting regions uttered by a given speaker, for which a speaker model is trained

beforehand. Most of the proposed applications in the literature analyze the tracking problem in three parts:

1. Detecting the segments that contain speech.

2. Detecting the speaker turn.

3. Identifying the speaker.

Our speaker identification system was based on Hidden Markov Models (HMMs) and Gaussian Mixture

Models (GMMs) relaying on the maximum a posteriori (MAP) adaptation for training. The HMM/GMM

approach were used to model speaker features and to encode the temporal evolution of the speech segments.

Mainly, the algorithm employed in this work is identical to the one described in chapter 6, which was employed

to perform speaker tracking in broadcast news, but with some minor modifications. Among them: the inclusion

of an acoustic model for detection of noisily events like chair moving, door opening, steps, laugh and so forth ;

or the adaptation to the multiple audio channels available.

The speaker tracking algorithm segmented the audio signal into several clusters using a minimum duration of

the speaker turn parameter, and assigned the most likely identity from the closed database of target speakers to

each segment. We collected a small database composed of four target speakers. Just one minute of speech per

speaker was collected into the room in order to estimate beforehand initial client models.

The input signals from each microphone channel were first Wiener-filtered using the implementation of the

QIO front-end system [Adami et al., 2002]. Then, these channels were combined in order to create a enhanced

version based on beamforming techniques [Anguera, 2005]. The beamformed output channel was analyzed by

the Speech Activity Detector (SAD) module, described in previous chapters, aiming to detect speech segments

and to discard the non-speech portions. Followed, the enhanced speech data were parameterized by means 19

Mel Frequency Cepstral Coefficients (MFCC) features. A brief scheme of the audio processing is given in the

figure 7.6. We will treat each of these stages for completeness’ sake.

Figure 7.6: Brief scheme of the speaker tacking system. A single enhanced channel is employed
to perform diarization as in MDM condition for meeting scenario. Same speech activity detector

based on SVM modeling was also employed.
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(a) (b)

Figure 7.7: (a) An ergodic HMM models the acoustic data with 5 states, each composed of S
sub-states sharing the same GMM model. (b) Steps of the iterative segmentation and identification
algorithm. The tracking is performed on the beamformed channel and an events model was also

included in the HMM topology.

The speech parametrization was based on a short-term estimation of the spectrum energy in several sub-bands.

The beamformed channel was analyzed in frames of 30 milliseconds at intervals of 10 milliseconds and 16 kHz

of sampling frequency. A Hamming window was applied to each frame and a FFT was computed. The FFT

amplitudes were then averaged in 19 overlapped triangular filters, with central frequencies and bandwidths

defined according to the Mel scale. The scheme we present follows the classical procedure used to obtain the

Mel-Frequency Cepstral Coefficients (MFCC) [Davis and Mermelstein, 1980].

The tracking algorithm, as previous approaches, made use of an ergodic Hidden Markov Model (HMM)

composed of 5 states. Four of them was employed per each target speaker model and the last one for the

acoustic events model. The HMM topology is shown in the figure 7.7 (a). Each state contained a set of S

sub-states which imposed a minimum duration constraint of the speaker turn duration. Each sub-state had an

output probability density function modeled with a GMM model, which was the same for all the sub-states of

a given state. For the particular dataset in consideration the minimum duration was set to 3 seconds. Such

a value was changed to 1.5 second at the last segmentation/training iteration aiming to detect small speaker
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turns.

For each speaker that the system had to track, the probability density function of the parameter vectors from

the training speech was modeled. Gaussian Mixture Models (GMM) with diagonal covariance matrices were

employed, and the number of components per mixture was set to 32. The large amount of components ensured

that the statistical learning was robust, and its use was further justified by the availability of a large number of

training samples. The parameters of the model were estimated from speech samples of the speakers using the

iterative Expectation-Maximisation (EM) algorithm. The sensitivity of EM in cases with few training data

is well known thus just 15 iterations were demonstrably enough for parameter convergence avoiding data

overfitting. Such a parameter was retained for both prior training of models and for following MAP adaptations.

Furthermore, a Universal Background Model (UBM) and a acoustic event model were also estimated. The

former was employed to compute likelihood normalization and target speaker model adaptations. The UPC

speaker database, see appendix B, was employed to compute the UBM’s parameters. The second was used to

model, in a explicit way, different noises as steps, chair moving, cough, laugh and so on. For that purpose

a small database of events was collected. Note that in this work we used an integrated event detector by

incorporating an acoustic event model into the HMM topology, at the same level than the target speaker

models.

The figure 7.7 (b) depicts the algorithm step by step once we had enhanced the channel by the beamforming

technique. After the segmentation and the Viterbi decoding, an initial clustering of each class was obtained.

We decided to adapt the target speakers and the event models by means a MAP-mean adaptation through the

UBM at each iteration. Thus the corresponding detected segments were merged with the initial enrollment

data and the models were trained again. The stopping criterion for this iterative segmentation and training

procedure was based on the likelihood returned by the Viterbi segmentation. The final segmentation was

reached once the sequence likelihood did not decrease with respect to the previous iteration.

During the Viterbi segmentation, a normalization of likelihoods were also implemented. The emission

probabilities of each state were normalized with the frame score computed from the UBM model as in the

speaker verification task. That is, the Log-Likelihood Ratio (LLR) method at the score-level [Bimbot et al.,

2004]:

L̂λ(X) = Lλ(X)− LUBM (X) (7.5)

where X stands for a frame parameter vector, Lλ(X) denotes the log-likelihood under class model λ and

LUBM (X) is the log-likelihood under the UBM, trained with the complete training sequence.

7.4 Multimodal Processing

The purpose of the system was to identify the participants once they enter into the room and then track them

during the complete session. To have robust tracking and identification of all persons at the same time, we

used a multimodal approach. In this section we will describe this approach.
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Our multimodal approach was based on a multi-hypothesis tracker that approximates the filtered posterior

distribution by a set of weighted particles. The standard particle filter weights particles based on a likelihood

score, and then propagates these weighted particles according to a motion model.

7.4.1 Particle Filter

Particle Filters (PF) have proved to be a very useful technique for tracking and estimation tasks when the

variables involved do not hold Gaussianity uncertainty models and linear dynamics [Isard and Blake, 1998].

They have been successfully used for video object tracking and for audio source localization. Information

of audio and video sources has also been effectively combined employing PF strategies for active speaker

tracking [Nickel et al., 2005b] or audiovisual multi-person tracking [Gatica-Perez et al., 2007].

The optimal solution to multi-target tracking using PF is the joint PF presented in [Khan et al., 2003].

However, its computational load increases dramatically with the number of targets to track, since every particle

estimates the location of all targets in the scene simultaneously. The proposed solution makes use of a set of

decoupled PFs, each per target, and define an interaction model to ensure track coherence. This approach has

a performance advantage over the use of a joint particle filter while keeping a similar quality of the tracks

generated [Khan et al., 2003].

The estimation xk of the position of a person at an instant k given a set of observations z1:k can be written in

the context of a state space estimate problem described by the following state process equation.

xk = f (xk−1,vk) , (7.6)

and the observation equation:

zk = h (xk,nk) , (7.7)

where f is a function describing the state propagation and h an observation function modeling the relation

between the the hidden state xk and its observable counterpart zk. The functions f and h are possibly non-

linear and the noise components vk and nk are assumed to be independent stochastic processes with a given

distribution.

From a Bayesian perspective, the tracking problem is to recursively estimate a certain degree of belief in the

state variable xk at time k, given the observations z1:k up to time k. Thus, it is required to calculate the pdf

p(xk|z1:k), and this can be done recursively in two steps, namely prediction and update. The prediction step

uses the process equation 7.6 to obtain the prior pdf by means of the Chapman-Kolmogorov integral:

p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1, (7.8)

with p (xk−1|z1:k−1) known from the previous iteration and p (xk|xk−1) determined by in equation 7.6. When



7.4 Multimodal Processing 231

a measurement zk becomes available, it may be used to update the prior pdf via Bayes’ rule:

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)∫

p (zk|xk) p (xk|z1:k−1) dxk)
, (7.9)

being p (zk|xk) the likelihood statistics derived from equation 7.7. However, the posterior pdf p (xk|z1:k) in

equation 7.9 can not be computed analytically unless linear-Gaussian models are adopted, in which case the

Kalman filter provides the optimal solution.

Particle Filtering is a technique for implementing a recursive Bayesian filter by Monte Carlo (MC) simulations.

The posterior density function p (xk|z1:k) is represented by a set of random samples (particles) with associated

weights:

p (xk|z1:k) ≈
Ns∑
j=1

wjkδ(xk − xk
j), (7.10)

where wjk are the weights associated to the particles fulfilling
∑Ns

j=1 w
j
k = 1. As the number of samples

increases, the characterization of posterior pdf improves and the PF approaches the optimal Bayes estimate.

The principal steps in the PF algorithm include:

1. Resample: the particles are resampled according to their score. This operation results in the same

number of particles, but very likely particles are duplicated while unlikely ones are dropped.

2. Apply motion model: predict the new set of particles by propagating the resampled set according to a

model of the target’s motion.

3. Score: Form the likelihood function p (zk|xk) and weight the new particles according to the likelihood

function wik = p
(
zk|xik

)
and normalize so that

∑
i w

i
k = 1

4. Average: the location of the target is estimated as the weighted sum of all the particles. Exk =∑N
i=1 w

i
k ∗ xik

7.4.2 Fusion using Particle Filter

The state we wanted to estimate was the position and identity of each person. The propagation model for the

particles was modeled by adding white noise to the positions and by randomly changing a given percentage

of the identities. Likelihood functions used for scoring were depend on the modality. The proposed solution

makes use of a set of decoupled PFs, each per target, and define an interaction model to ensure track coherence

as visual tracking. For a given filter, the best state at time k was obtained by computing an histogram of the

identities of the particles and selecting the maximum to decide the identity. The mean and the variance for the

particle positions were estimated, and depending on the variance, a decision was taken on whether this filter

was tracking or not a person.

As video modality, the function p(zk|xk) was defined as the likelihood of a particle belonging to the position

corresponding to a person. For a given particle j occupying a room position, its likelihood may be formulated
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by combining the probabilities from POM, FBI, acoustic localization and speaker identification. That is, the

acoustic information was added to the visual information by the combination of modalities by means of a

weighted sum rule, with weights obtained experimentally on the development recording. In this case the

weight for each particle was obtained as:

wik = w1 ∗ (POM ∗ FBI) + w2 ∗ (AcLoc ∗ SpkId) (7.11)

where POM, FBI, AcLoc and SpkId represent the likelihoods of POM, FBI, acoustic localization and speaker

identification respectively. As in video identification, the same number of particles were used. That is, the

particle filters were initialized with 10, 000 particles distributed randomly across the room each of them

characterized by its position and its identity. The number of particles, as well as the other parameters of the

PFs, were optimized using a exhaustive search approach using the development recording and the resulting

parameters were used blindly on the test set.

7.5 Experiments

The following section is devoted to provide identification and localization results for the different modalities

described previously. It is worth to mention that the results from audio and video modality are not directly

comparable due to the fact that audio modality was not always available. Nevertheless, the aim of this

experiments was to assess the improvement by joining audio and video modalities rather than compare

individual performances between them.

7.5.1 Acoustic Identification

The table 7.1 reports the speech detection results in both development (TRAIN) and evaluation data (TEST) in

terms of missed speech and false alarms. The recording employed as development data lasted 281.19 seconds,

201.39 of which was speech. The non-detected speech is around 9.65 seconds which represents 4.79 per cent

of the total speech whereas false alarm speech is lower, 1.82 seconds which just represent a 0.9 per cent.

The total error associated to the speech activity detector (SAD), sum of previous kind of mistakes, is 11.47

seconds, that is, 5.69 per cent of the total speech in the recording. Such a percentages are quite similar in the

evaluation set with a total speech/non-speech detection error around 4.71 per cent. These results show the

well adaptation of the speech activity detector to the smart-room conditions with percentages of accuracy and

detection comparable to those reported in the literature 2.

The metric employed to evaluate the performance of the acoustic identification system was the Diarization

Error Rate (DER), see section 2.3.3. It is worth to remember that the SAD is in charge to choose speech frames

and to discard non-speech therefore the SAD errors impact directly on the DER. That is, the speaker tracking

system will not be able to recover false alarms errors or the missed speech from this stage. The results given in
2 As example, see speech activity detection performance for the different submitted systems in the NIST RT evaluations [Fiscus and et

al., 2007a; Fiscus and et al., 2009a].
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Data sets EVAL TIME EVAL SPEECH MISSED SPEECH FA SPEECH MS + FA

TRAIN 281.19 s 201.39 s 9.65 s (4.79%) 1.82 s (0.9%) 11.47 s (5.69%)

TEST 422.93 s 371.42 s 10.68 s (2.87%) 6.82 s (1.84%) 17.50 s (4.71%)

Table 7.1: Speech activity detection performance in both development (TRAIN) and evaluation
(TEST) datasets.

Data sets SCORED SPK TIME MISSED SPK TIME FA SPK TIME SPK ERROR TIME DER

TRAIN 201.39 s 15.73 s (7.81%) 1.82 s (0.9%) 22.98 s (11.41%) 20.12%

TEST 371.42 s 14.23 s (3.82%) 6.82 s (1.84%) 95.54 s (25.72%) 31.39%

Table 7.2: Speaker Identification performance in terms of DER. In addition, the miss speaker time,
the false alarm speaker time and the speaker error time are also reported.

the table 7.2 correspond to the time-weighted DER averages for both datasets decomposed in miss speech,

false alarms and speaker error. The difference in the missed speaker time, first column in the table, and the

miss speech from the SAD is due to overlap among speakers. It is not significative since the total speaker

overlapped time in the database is just some seconds but it yields to an overall increment of the DER over 3

per cent and 1 per cent in development and evaluation respectively. In both datasets, the speaker error time

dominates the DER.

The speaker error in development is around 11.41 per cent, over 50 per cent of the total DER, whereas it is

around 25 per cent in the evaluation set, over 81 per cent of the total DER. This difference can be mainly

attributed to the small size of the development set which drives to an over-fitting of the tuning parameters.

The DER variation w.r.t. the number of segmentation/training iterations is given in the figure 7.8. The curves

show an abrupt decrement in DER at the iteration 5 and 3 and they remain unaltered up to reach the stopping

criterion. The final decreased of the DER at the last iteration is due to the change (1.5 seconds instead of 3

seconds) in the minimum duration of the speaker turn applied in the last Viterbi segmentation.

7.5.2 Multimodal Identification and Tracking

To have robust tracking and identification of all persons at the same time, we have used a multi-tiered,

multimodal approach. In this section we describe this approach. The most reliable component of the system

was identified as the face detection and recognition module. For this purpose, the first identification started at

the door, where the PTZ camera identified the person. Typically, a single identification result is enough to

bootstrap the system, although multiple subsequent identifications can be used in conjunction to bolster the

confidence of the system. With the presented setup, we did not see any need for further fusion of results, as we

had perfect identification at this tier.

Once the person was identified, one FBI model per camera was created on the fly. We used 3-component
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Figure 7.8: Diarization Error Rate (DER) for training and test datasets. The final decreased of the
DER at the last iteration is due to the change (1.5 seconds instead of 3 seconds) in the Minimum

Duration of the speaker turn.

Gaussian mixtures on the HSV color space as FBI models for each person. The POM module provided the

motion blobs used for FBI modeling.

The second tier of the approach consists of a joint tracking and identification by the POM and FBI modules.

The motion blobs associated with a single location by the POM module are passed on to the FBI modules,

which compare the whole collection under each person model. The table 7.3 summarizes the results for visual

and multimodal identification. For multimodal identification scoring must take into account the position of the

identified target. An identification hypothesis was considered a correct match if the identity corresponded with

the one in the ground truth and the detected position of the identified target felt below a given threshold (50

cm). Number of ground truth targets minus correct matches are misses. The number of hypotheses minus the

number of correct matches are false positives.

The development set was used to optimize the PF parameters and the weights between visual and acoustic

modalities in the multimodal approach. This optimization was performed using a exhaustive search. Once

Visual Visual+Acoustic

Data sets Matches Misses FP Matches Misses FP

TRAIN 81.4% 18.6% 0.0% 83.8% 16.2% 4.2%

TEST 49.3% 50.7% 3.0% 64.5% 35.5% 1.0%

Table 7.3: Visual identification performance compared to multimodal visual+acoustic identification.
For identification scoring must take into account the position of the identified target.
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Figure 7.9: The trade-off between prediction accuracy and prediction frequency for speaker
identification.

these weights were obtained they were used without modification for the test recording. The accuracy of the

combined system at the second tier was 81.4 per cent of correct identification, allowing deviations of at most

one ground square (approximately 50 cm.) in the localization. The false identification rate is 18.6 per cent.

The system sometimes locates occupancy on several adjacent squares, especially if the person is poorly aligned

with the ground grid.

The third tier was the addition of the acoustic information. This information was only considered when it was

available. The acoustic localization of the sound source was jointly considered with speaker identification

output, and used to correct the visual identification results, if it was at conflict. The confidence in acoustic

identification was determined by the likelihood ratio of the most likely class to the second most likely class. A

threshold on this confidence provided us with a trade-off between prediction accuracy and prediction frequency.

The figures 7.9 demonstrates the effect of the threshold. Without the threshold, all acoustic localizations were

associated with an identification, and the accuracy of identification was 75.2 per cent. When the threshold was

increased, so that the identification decision was given for only 75 per cent of the time, the accuracy increased

to 83.3 per cent. In any case, these results are not directly comparable to those from visual identification due

to the fact that speech could be unavailable some times during the recording.

The introduction of the third tier did not affect the accuracy for a reasonable confidence threshold, but when

the confidence threshold was too low, the accuracy decreased up to one per cent (80.4% instead of the previous

81.4%). The reason is that the visual identification was more accurate for the database we used. Obviously

the acoustic information would be much more useful for datasets where the visual information is not as

discriminative. The tuning of such a threshold yields to an improvement on the multimodal approach as can be
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Visual Visual+Acoustic

Data sets MOTA MOTP MOTA MOTP

TRAIN 65.4% 337 mm 67.2% 307 mm

TEST 23.0% 291 mm 40.9% 256 mm

Table 7.4: Visual tracking performance compared to multimodal visual+acoustic tracking in terms
of MOTA and MOTP metrics.

seen in the table 7.3 for both development (TRAIN) and evaluation (TEST) recordings. The huge difference

between matches and misses, around 30 per cent, in the visual identification is mainly due to the differences

between the two datasets. The FBI module, based on color-feature identification, was highly stressed in the

evaluation data in where people wore similar colors of clothes in contrast to development data. Nevertheless,

the fusion of visual and acoustic identification outperforms the visual modality in both cases.

7.5.2.1 Multimodal Tracking Assessment

For tracking evaluation, the metrics proposed in [Bernardin et al., 2006] have been used. The two metrics

employed are: the Multiple Object Tracking Precision (MOTP), which shows ability of the tracker to estimate

precise object positions, and the Multiple Object Tracking Accuracy (MOTA), which expresses its performance

at estimating the number of objects, and at keeping consistent trajectories. MOTP scores the average metric

error when estimating multiple target centroids, while MOTA evaluates the percentage of frames where

targets have been missed, wrongly detected or mismatched. Low MOTP and high MOTA scores are preferred

indicating low metric error when estimating multiple target positions and high tracking performance.

Results in the table 7.4 show a very good performance in the development recording. The evaluation recording

is much more difficult and a degradation on the performance can be observed. Even though video tracking is

good, the audio modalities result into an improvement of the performance and precision of the visual tracking.

For the test recording the results show a performance degradation. This recording is much more complex from

the video point of view as explained above. The gain using acoustic information is much more important here

because the FBI module has problems discriminating the individuals due to the fact that they wear similar

clothing. For such cases, adding an additional visual identification modality, such as face recognition, would

be of great interest.

In overall, results are similar to the ones obtained for identification, with very good performance on the

development set and good performance for the test set. When evaluating the performance we must have in

mind that we are presenting a completely automatic detection/tracking/identification system, able to track up

to 4 persons at the same time into a room.

While our results are not comparable directly with the ones obtained at the CLEAR evaluation [CLEAR, 2007]

because of the different data sets, they are very promising.



7.6 Conclusions 237

7.6 Conclusions

In this chapter we have evaluated several methods for monitoring a room for the purposes of locating and

identifying a set of individuals. We worked with different modalities from multiple sensors to observe a

single environment and to generate multimodal data streams. These streams were processed with the help of a

generic client-server middleware called SmartFlow and signal processing modules. The system was designed

to operate in a completely automatic fashion, there was no manual segmentation or user intervention.

Modules for visual motion detection, visual face tracking, visual face identification, visual feature-based

identification, audio-based localization, and audio-based identification were implemented. Our proposed

system was based on multi-tier information processing, where available modalities were fused into a final

decision.

The tracking and identification system that was based on the combination by means a particle filter of the

probabilities of the occupancy map, the on-the-fly color feature modeling, the acoustic localization and acoustic

identification works effectively. Furthermore, it avoids some of the classical pitfalls faced by continuous

tracker systems. The collected database was relatively small, but it represents a realistic application scenario.

Both the visual and acoustic channels result in high identification rates and tracking accuracy which are

outperformed by the fusion of audio and visual modalities. Such a fusion produce a notable increasing of the

overall accuracy in the case where the visual tracking, based on color features, is not well conditioned to the

data.

Future research within this topic involve the incorporation of additional modalities. For instance, face

identification from the corner cameras would be helpful in maintaining the identity of every moving object in

the cases that FBI is not discriminative enough. Real-time implementations of the presented algorithm are

under study as several of the components are not computationally intensive. One obvious future direction

should be to work with more wide and difficult data (e.g. the CLEAR 2006 and 2007 datasets) in order to

strengthen our previous conclusions and to compare the approach with results reported in CLEAR evaluations.
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Chapter 8

Conclusions and Future Work

8.1 PhD Thesis Final Overview

This PhD thesis presents the work done by the author in the area of Speaker Recognition (SR) focusing

on: 1) speaker identification and speaker verification, using techniques to deal with the difficult problem of

signal mismatch present in multiple type mics or between meeting-room setups; 2) speaker segmentation

techniques in the broadcast news and meeting domain for speaker diarization and tracking tasks and 3)

multimodal integration, combination and fusion of multiple cues of information in both previous fields. In

overall, successful speaker recognition (SR) applications has been developed and implemented during this

thesis work.

In a first line of research, we focused on classical speaker identification and verification tasks. It attempts

to deal with the problem of classifying speakers in a room in multi far-field microphone conditions. The

GMM classifier is chosen as the basic detection technique in speaker identification and verification tasks.

It is worth to mention that two UPC acoustic systems were submitted to both CLEAR 2006 and 2007

evaluations. Furthermore, the acoustic person identification results obtained in CLEAR evaluation 2007
[Luque and Hernando, 2008a] ranked the best among the different approaches submitted by other participants
[Stiefelhagen et al., 2007]. When trying to deal with the problem of acoustic person recognition in the

framework of the CHIL project [chil, 2006], we soon noticed that GMM based systems performed quite good

in same room setup whereas high degradation of correct identification rates is noticed among different mics,

sites or speaker accents [Luque et al., 2006b]. The UPC acoustic person identification system developed in the

framework of the CHIL project suited the evaluation requirements reaching identification rates over 90 % in

most of the conditions of the CLEAR database, which included the UPC smart-room among others sites. Such

a result should be cautiously taken due to the fact of the few number of target speakers (around 30), few sites

(5), the manually segmented recordings which ensured a unique speaker per test segment, the absence of long

silences or overlapped speech.

Such a findings leaded the research to seek for techniques to deal with mismatch conditions and variability
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both in channel and room setups. Despite of Gaussian mixture models and frequency filtering coefficients

showed a good performance in meeting room environment, that is in the stand-alone identification evaluation

conducted in CLEAR, they have proved insufficient in a more challenging conditions. The development and

comparison of state-of-the-art techniques and algorithms in the framework of NIST Speaker Recognition

Evaluation (SRE) 2010 [Martin, 2010] is a contribution of this thesis. The work was partially done during a

stay in L2F laboratory (from Lisbon, Portugal). Several speaker verification systems were submitted as a joint

submission of L2F and UPC labs. The main objective in participating in SRE evaluation was to introduce

ourselves to explore the recently proposed methods and to learn as much as possible about speaker recognition

methods in a really challenging evaluation. NIST SRE is the ideal scenario to benchmark speaker verification

systems. The evaluation is composed of more than 5 thousand speakers and 1 million of trials just in the

core condition. The first participation for both L2F and UPC laboratories at NIST SRE was focused on the

development and assessment of SR algorithms and methods. The submitted systems fused complementary

information from speaker verification systems based on classifiers as: GMM, SVM, GMM push back, JFA

and a newly published algorithm based on Neural Networks adaptation combined with phonetic information

from automatic speech recognition. Techniques to deal with speaker and mic variability were also compared,

among them: UBM adaptation, Z and T score normalization, NAP compensation or JFA adaptation. Without

going too far, most of the ideas aiming to improve speaker tracking and diarization systems which were

implemented in this thesis have their origin in classical speaker recognitions tasks. In our tests, the JFA-based

techniques show a higher classification capability than both the GMM-based techniques or the SVM-based

one, and the best results were consistently obtained with a wide set of speakers and conditions. We also

reported that the newly proposed algorithm based on NN-adaptation obtained a comparable performance to

SVM and better than the results obtained for the GMMUBM-based system. The collaboration between the

two research groups from different countries was a nice achievement and it produced several workshop and

international conferences publications [Abad and Luque, 2010; Abad et al., 2010; Abad and Trancoso, 2010;

Abad et al., 2011] and we expect more fruitful collaborations in the future.

Other contribution of this thesis is related to speaker segmentation, specifically to speaker diarization in

meeting domain. During this process a variety of strategies and algorithms were proposed and benchmarked,

once more time, in the framework of national and international evaluations. The speaker diarization system is

able to process a variable number of microphones spread around the meeting room and determine the optimum

output without any prior knowledge of the number of speakers or their identities. The HMM-GMM classifier

and Agglomerative Hierarchical Clustering (AHC) are chosen as the basic detection and clustering technique to

perform off-line experiments in the framework of NIST Rich Transcription (RT) evaluations [Fiscus and et al.,

2007a; Fiscus and et al., 2009a]. The AHC-HMM based diarization system, previously developed for Xavier

Anguera [Anguera, 2006], was adopted as starting point in the research. As the previous work, the system

makes use of multiple channel for channel beamforming and to retrieve speaker position information in order to

perform diarization in a single channel. The performance of this approach was benchmarked in a wide database

composed of 24 meeting recordings each of them lasting 25 minutes and with multiple speaker interactions,
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that is, the NIST Rich Transcription (RT) 2006, 2007 and 2009 evaluations. Moreover, the development

of the system was closely linked to participation in the speaker diarization evaluations in RT for meetings

proposed by NIST in 2007 and 2009. In both submissions the systems proposed by UPC for conference

room data, with various numbers of microphones, obtained consistently good results. In the experiments

performed we identify the main sources of problems which mainly contribute to speaker errors. We focused

our research in the Speech Activity Detection (SAD) influence on the diarization errors, in cluster initialization

strategies and in the speaker overlap detection and handling. Such an issues are shown as key points in the

improvement of the global diarization. We have also described several algorithms, we tune different algorithm’s

parameters and we assessed its performance in the NIST RT’06-09 conference databases, see appendix B.

Furthermore, a couple of systems were submitted to both RT 2007 and 2009 evaluations [Luque et al., 2008a;

Fiscus and et al., 2009b] and we developed newly algorithms and strategies as initial clustering based on

tracking of TDOA features [Luque et al., 2008b], HMM-based overlap detection/handling [Zelenák et al.,

2011] and language modeling based on frequency and duration of speaker n-grams.

It is worth to highlight the newly proposed speaker diarization system based on spectral clustering theory. The

system still relies on HMM segmentation but switches classical BIC pair computation by euclidean distances

in a transformed space spawned by the means of the Gaussians estimated from clusters. The presented

experiments showed a comparable performance with respect to the AHC HMM/GMM diarization based on

BIC metric whereas reduce computational cost of the AHC approach. The algorithm was presented during the

last Speaker and Language Recognition Workshop [Luque and Hernando, 2012].

The adaptation of the AHC HMM/GMM-based system to perform speaker tracking in Spanish radio broadcast

news and to carry out speaker diarization in Catalan TV broadcast news was also reported in this work. New

strategies and implementations were proposed to bridge the gap between speaker diarization and speaker

tracking resulting in good performances in terms of DER per cent. The works were performed in the framework

of the speaker tracking Evaluation Albayzin 2006 [Segundo, 2006] and the Catalan founded project Tecnoparla.

The adaptation to tracking and broadcast news was accomplished into two main research lines: 1) by using

techniques and algorithms coming from the field of speaker verification like as score normalization, UBM

normalization, Gaussian pruning, maximum a posteriori adaptation (MAP) and so forth and 2) by combining

audio segmentation with speaker diarization. In the first work, the tracking system based on AHC obtained

similar results than the step-by-step approach based on BIC metric segmentation and speaker verification

techniques. In the second work, the detection of channel and background conditions is reported as a potential

cue to improve global diarization in broadcast news data. Speaker diarization adaptation to background

condition as telephonic or studio channels has been shown as a possible way for improvement in such a

scenario. The proposed strategy which combines audio segmentation with speaker diarization based on channel

detection resulted in improved results parallel speaker diarization dependent on each background condition is

a promising approach to deal with mismatch conditions likely to occur in broadcast news data. The results

reported evidences a well adaptation of both the audio segmentation and the speaker diarization to the Àgora

database (more than 24 hours) and comparable to other results reported in the literature [Fiscus and et al.,
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2007b].

Most significant improvements in the speaker recognition systems presented in this work are reached by

the fusion, integration and combination of different cues of information. It has been highlighted across the

different chapter of this PhD thesis. The fusion with face identification information, when it is available,

allows us to increase performance of the stand-alone acoustic identification as is reported in chapters 2 and 7.

Same occurs in the case of simple decision strategies for fusing acoustic system working on different input

channels or for fusing complementary systems as was reported in SRE evaluation. The combination of speaker

verification with Automatic Speech Recognition (ASR) transcripts is given in chapter 4 by incorporating

ASR information to the verification system based on NN adaptation. Moreover, it contributes to the global

verification system complementing the other speaker verification subsystems. In chapter 6, audio segmentation

is also combined with speaker diarization aiming to improve speaker detection in telephonic channel. Finally,

in last chapter 7, we monitor the smart-room for the purposes of locating and identifying – speaker tracking –

a set of individuals. A database was collected at the UPC smart-room for such a purpose, relatively small but

representing a realistic application scenario. We worked with different modalities from multiple sensors to

observe a single environment and to generate multimodal data streams. The system was designed to operate

in a completely automatic fashion, there was no manual segmentation or user intervention. Modules for

visual motion detection, visual face tracking, visual face identification, visual feature-based identification,

audio-based localization, and audio-based identification were implemented. The proposed system was based

on multi-tier information processing, where available modalities were fused into a final decision by means a

particle filter algorithm. Both visual and acoustic channels result in high identification rates and high tracking

accuracy which are outperformed by the fusion of audio and visual modalities [Salah et al., 2008b].

Finally, this PhD thesis has pro actively contributed to provide the tools and resources that make the research

possible, including: making recordings and labeling of databases, making available databases by participating

in technology evaluations and providing support to students and colleagues into the smart-room. The real-time

implementation of a speaker verification system was also carried out and it is currently running in real time in

the UPC smart-room. The participation in technology demonstrations has also continuously been linked to this

work, see appendix A. Besides, the developed real-time SR component contributed to various demonstrations

of technologies and services developed within CHIL, SAPIRE and SARAI projects.

8.2 Future Research Lines

Future research within this topic involve research in several speaker recognition fields and into information

fusion and multimodality topics. As it has been shown during this thesis work, speaker identification and

verification techniques might help to increase the discriminate ability of acoustic based diarization and tracking

systems in order to distinguish among speakers in a wide variety of situations and conditions. In the same way,

the fusion and incorporation of additional information and modalities drastically improves acoustic recognition

rates and allows for a continuous identification. For instance, the combination with speaker localization allows
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to improve diarization by linking positions to speakers in meetings; speaker tracking along with acoustic

segmentation enables the detection of different channel conditions in broadcast news, discarding music and

commercials and giving the possibility to improve speaker detection by prior adaptation to such a conditions.

Classification of sounds and acoustic segmentation has usually been carried out so far to segment digital audio

streams using a limited number of categories, like music/speech/silence/environmental sound. Inclusion of a

variety of event categories, i.e. laugh and cough detection, might benefit diarization performance by creating

“pure” initial clusters in the same way the inclusion of an overlapped speech detector for speech exclusion

reduce speaker errors. In the case of multimodality, face identification technology applied from corner cameras

covering the whole space into the smart-room would be helpful in maintaining the identity of every moving

object in the cases that acoustic identification is not discriminative enough or even not present. The inclusion

of other technologies, like as reliable head orientation information, might also improve robustness, i.e. by

assuming that an interrupting speaker will draw attention by some of the participants.

Nowadays, one of the main drawbacks of current speaker detection systems are the issues with robustness

and lack of flakiness. They are problems present in most of the speaker diarization systems in the literature.

The modeling of speaker variability and channel variability as in JFA or NAP techniques could improve

discrimination among speakers into the same smart-room or between different sites by taking benefit of

multi microphone setup. The experiments reported in the speaker verification task point towards including

verification techniques in order to still reduce more the DER error by reducing SER. The speaker diarization

and tracking systems might be significantly improved by increasing its robustness through these speaker

modeling techniques. Speaker verification techniques as normalization of adaptation might also improve

clustering by reducing errors due to linking and discrimination errors, which represents most of the SER.

These strategies will allow easy adaptation to new domains and parameters should be robust and not flaky.

Anyway, dealing with the flakiness problem should be among the priorities of future research.

Furthermore, different proposals for merging clusters should be take into account aiming to improve the

number of speakers detected and indeed the quality of the speaker diarization hypothesis. This is the idea

behind new proposed algorithms as spectral clustering. Several other strategies should be taken into account

to improve speaker diarization and tracking systems in future works. Among them: The use of a gender

and language detectors might improve the system by performing parallel analysis specifically adapted to

characteristic of the speakers, the application of other speaker features as prosodic or pitch features and other

speaker related characteristics and statistics related to phonemes, spoken words, pauses or silences.

In terms of easy adaptation, the system was developed using separate blocks but the core of the speaker

detection module was kept very similar in the speaker tracking system. It allowed easy recombination of

modules and quick adaptation to the requirements of each task. In this way, modules can be easily employed

or discarded like as the use of the speech activity detection technology, the clustering initialization based on

TDOAs dynamics or the application of the overlapped speech detection module.

Related to real-time implementations of presented algorithms, it is under study since several of the components

are not computationally intensive. Initial steps forward the adaptation of the speaker tracking system to real
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time processing requirements should be: Restrict the complexity of the GMM modeling or take advantage of

faster scoring algorithms as SVM and JFA, adjust the number of training and segmentation iterations or to

apply an analysis window with optimal size instead of the whole recording.



”¿Has acabado la tesis?”

– Bartolomé Luque
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Appendix A

Development into UPC’s Smart-Room

Information technology has penetrated virtually all forms of communication an it has profoundly affected the

way we live our lives. It has been observed that human-human interaction is what humans enjoy and prefer,

and human-machine interaction is generally viewed as a chore and necessary evil to access the benefits that

computing can bring. Projects working on the human-computer interactions set as theirs goals the development

of systems that respond proactively to the needs of their human users, without requiring peoples constant

attention. Such systems must be aware of their users’ current activities, whether they are in a meeting, holding

a seminar, or drafting a document, in order to provide information and services.

In this appendix the activities concerning Speaker Detection (SD) in the UPC’s smart-room are described. It

gives basic clues on the implementation of the speaker ID component into the smart-room. We briefly describe

two different demonstrations in which speaker ID component allows computer awareness about people identity

into the room and enables personalized services.

UPC’s Smart Room

The Speech research group owns, jointly with the Image Processing Group (GPI) a smart multimodal room,

that has been constructed and equipped in a room of the Department of Signal Theory and Communications,

in relation to the integrated european project CHIL, in which both groups participate as a unique partner. The

group is currently involved in several research activities in the area of speech and audio processing, and has

used the room as a laboratory for testing techniques and collecting real data.

Based on the perception and understanding of human activities and social context, a new type of context aware

and proactive services can be developed. Within the years of the CHIL project, four instantiations of such

CHIL services have been implemented:

• The connector: This service attempts to connect people at the best time by the best media, whenever it is

most opportune to connect them. In lieu of leaving streams of voice messages and playing phone tag, the

Connector tracks and knows its masters activities, preoccupations and their relative social relationships
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and mediates a proper connection at the right time between them.

• The memory jog: This is a personal assistant that helps its human user remember and retrieve needed

facts about the world and people around him/her. By recognizing people, spaces and activities around

its master, the memory jog can retrieve names and affiliations of other members in a group. It provides

past records of previous encounters and interactions, and retrieves information relevant to the meeting.

• Socially supportive workspaces: This service supports human gathering. It offers meeting assistants

that track and summarize human interactions in lectures, meetings and office interactions, and provide

automatic minutes and create browseable records of past events.

• The attention cockpit: This agent tracks the attention of an audience and provides feedback to a lecturer

or speaker. CHIL represents a vision of the future - a new approach to more supportive and less burden

some computing and communication services. The research consortium includes 15 leading research

laboratories from 9 countries representing todays state of the art in multimodal and perceptual user

interface technologies in European Union and the US. The team sets out to study the technical, social

and ethical questions that will enable this next generation of computing in a responsible manner.

As commented previously, for the purposes of person identification (PID) a database of target speakers

was designed and collected at the UPC and at other smart-rooms from CHIL partners, which were publicly

disseminated by the European Language Resources Association. This database has been used as a training

material and as a testing material to evaluate algorithm performance of the PID component and its online

implementation as a smartflow component. Algorithm development was assessed on data from the CLEAR

evaluation campaigns [Mostefa and et al., 2006] and performance results can be checked in chapter 3.

Apart from the CLEAR database and aiming to develop an speaker recognition application, working on

real time conditions, a new database, composed of members of UPC and TALP Research Center, was

recorded during several years. Therefore, algorithm adaptation to specifically application conditions, such

as target speakers from UPC, was accomplished by recording individually each UPC participant at different

dates. The data was collected at the UPC smart room, in same accordance with the “CHIL Room Setup”

specifications [Casas and Stiefelhagen, 2005]. Recordings were performed at different dates (several months

apart) to ensure proper variability of the participants. A total of 43 person voices were recorded during three

different sessions. The details of the recording protocol as well as a the session information can be found

in Appendix A. Recorded data has been used to estimate UBM-GMM target speaker models from UPC

smart-room’s users as well as for T-norm score normalization.

The figure A.1 depicts a brief description of the UPC smart-room sensors and space conditions. The room has

an entrance door, a big window and a table in the middle. The window was closed during recordings to avoid

illumination changes. However, small illumination changes can occur when the door is opened. The room is

monitored using six cameras: four fixed cameras at the corners of the room (labeled Cam1 to Cam4 in figure

A.1), one zenithal fish-eye camera at the ceiling (Cam5) and one active camera (PTZ) aimed and zoomed at
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Figure A.1: The UPC smart room setup. A variety of sensors from audio and video modalities can
be found: 6 T-shape omni-directional wall mounted microphones (a total of 24 mics), 4 directional
table-top and 4 omni-directional table-top mics, a 64 mic MarkIII array, 4 high resolution cameras
at each room corner and a pan-tilt-zoom camera. During each recorded seminar, participants also
wore a lavalier microphone which was mainly used for annotation and synchronization purposes.

the entry door to capture the faces of the incoming people at high resolution. Video is interlaced, recorded in

compressed JPEG format, at 25 fps and 768× 576 resolution.

The audio sensor setup is composed by one NIST Mark III 64-channel microphone array, six T-shaped

four-channel microphone clusters and eight tabletop microphones. Audio is recorded in separate channels

in wav format, at 44.100 sampling frequency. Far-field conditions have been used for both audio and video

modalities. All data flows are timestamped and the computers used to record the signals are synchronized

using the network time protocol (NTP). This makes possible to synchronize audio and video data. There is no

manual segmentation of the data. Each technology is supposed to automatically segment the recorded signal.

The figure A.3 shows a sample set of recordings from the room setup.

The Middleware

The problem of interconnecting several algorithms that work on data streams coming from a high number of

sensors from different modalities is far from trivial. Synchronization of the different data flows, distributed

computing and the interconnection of the algorithms are issues that need to be addressed.

To allow efficient communication of sensor data and distributed computation, it is useful to have a middleware

that provides infrastructure services. We propose to use the NIST Smartflow system that allows the transporta-

tion of large amounts of data from sensors to recognition algorithms running on distributed, networked nodes
[smartflow, 2002; darpa, 1998]. The working installations of Smartflow is reportedly able to support hundreds
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(a) (b)

(d) (e)

Figure A.2: Sample sensor devices: video and audio.(a) A corner ceiling camera and (b) A Pan
Tilt Zoom (PTZ) mobile camera. (c) T-shape wall-mounted microphone array. (d) The NIST MarkIII

array.

(a) (b) (c)

(d) (e) (f)

Figure A.3: Sample camera recordings.(a)-(d) Four corner ceiling cameras. (e) Center ceiling
camera. (f) Door camera.
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of sensors [Stanford et al., 2003].

Smartflow offers a great deal of data encapsulation for the processing blocks, which are called “clients”.

Sensor data are captured by clients, cast into a standard format, and a flow for each data stream is initiated. The

processing blocks are themselves Smartflow clients, and they can subscribe to one or more flows to receive the

data required for their processing. Each client can output one or more flows for the benefit of other clients. The

communication over TCP/IP sockets is transparent to the user, and handled by the middleware. The design

of a working system is realized through a graphical user interface, where clients are depicted as blocks and

flows as connections. The user can drag and drop client blocks onto a map, connect the clients via flows, and

activate these processing blocks.

The synchronization of the clients is achieved by synchronizing the time for each driving computer, and

timestamping the flows. The network time protocol (NTP) is used to synchronize clients with servers’ time,

and this functionality is provided by Smartflow.

Speaker Identification Component Implementation

Our system, which is described in the section 3.2, is written in C++ programming language and is a part of the

smartAudio++ software package developed at UPC which includes other audio technology components (such

as speech activity detection, acoustic source localization, and event detection) for the purpose of real-time

speaker detection and observation in the smart-room environment.

The software architecture chosen in the UPC’s smart-room is based on NIST smartflow system [smartflow,

2002] and a socket messaging system (know as KSC). The lower level of the software architecture consists of

the video and audio sensors. The signal capture software is implemented as smartflow clients in the computers

with the corresponding acquisition hardware. The resulting data streams are transferred as smartflow flows

into other computers that can either pre-process the data streams or directly analyze the raw data streams

(as in the case of the speech activity detection audio technology). Smartflow also provides a mechanism to

dynamically decide on which computer in the local area network a specific technology should run. The KSC

message server and the KSC client library allow sending results of data analysis asynchronously.
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The figure A.4 shows the smartAudio map that corresponds to the UPC system technologies already imple-

mented at the UPC smart-room. In addition to speaker identification, other acoustic technologies has been

developed during last years. Among them: Acoustic event detection (AED), acoustic source localization

(SLOC), speech activity detection (SAD), automatic speech recognition (ASR), and speaker identification

(SID). The map shows the various smartflow clients and the interconnections among them. Firstly, an audio

signal from cluster microphones and the MarkIII microphone array are captured with data acquisition clients

RMEAlsaCapBlock and UPCMarkIIICapture, respectively. Three cluster microphones (one from each cluster)

and a channel of the MarkIII are extracted with the RMEChannelExtractors and the MarkIIIChannelExtractor,

respectively. Such audio channels are used to feed AED, SAD, ASR and SID clients.

Following, Resample-Clients are in charge of downsampling signal to 16 kHz. In the case of SLOC client, all

the T-shape wall-mounted microphones, extracted by the client RMEAudioBlock 24c, are used to estimate the

location of the acoustic source. In the case of AED and SAD technologies, a fusion client was implemented

to merge the decisions of 4 individuals algorithms working independently in each audio channel selected

previously. For ASR and SID technologies just one audio channel is applied, though a channel selector based

on SNR is in charge to select the channel with highest SNR value.

Depending on the demo, in which the SID perceptual component is involved, there can be components shared

among several clients, for instance data acquisition or resample clients, and clients responsible for results

visualization. In addition, SID client versions use several strategies to segment speech: a non-stop SID, which

gives speakers labels every N seconds, a SID which performs identification on speech frames detected by SAD

client and a ASR combination which tries to recognize people that are in a concrete dialogue state.

Speaker Identification in CHIL demonstration

Several demonstrations has been conducted in the UPC smart-room during the elaboration of this PhD.

dissertation. Among them, it is worth to mention the integration of the SID component together with other

technologies in the mockup demonstration [Casas and Neumann, 2007], within the framework of the CHIL

project, and the effort conducted to integrate it in an intelligent manner with speech/non-speech detection,

automatic speech recognition and localization technologies into a smart-room, within the framework of the

Spanish founded project Sapire. Demonstrations into the UPC smart-room have become an efficient but

subjective way for assessing quality and performance of the technologies involved as well as a never ending

source of new troubles to solve which usually there not exists in controlled recordings from other databases.

Real-time constrain, overlapping of events and speech from various speakers, speech style, speaker and session

variability are some of them from a long list.

The aim of the mockup demonstration [Casas and Neumann, 2007] designed at UPC is to gain context

awareness in the framework of the CHIL (Computers in the Human Interaction Loop, IP506909) memory jog

assistant. It is achieved by means of detection of people, objects, events, and situations in the interaction scene.

Some effort has been made in the last years in the design of communication systems that respond proactively

to the needs of their human users, without requiring peoples constant, undivided attention. However, in order
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Figure A.5: Service example: The journalists service provide the front page edition of the UPC
newspaper by joining the news from a field journalist and journalists in the office (smart-room).

to bring the new communication technologies near to real world, it is still required the development of more

intelligent systems with perceptive functionalities based on non-intrusive sensors providing visual and auditive

capacity, that is, that they can detect and robustly adjust to new and varied environments, and accommodate

and adapt to individual user preferences and requirements in a minimally disruptive manner. With this purpose,

this project developed technologies that observe and model human activity and communication, and that use

such models to provide a family of non-disruptive multi-modal user services, for human memory support and

proactive telecommunication assistance. Substantial progress has been made in the component technologies

required for the automatic perception of the activities, intentions, and needs of human subjects.

The information needed to build the relevant context awareness and computer’s cognition stems from the

analysis of the signals acquired in real-time from a collection of sensors. Specifically, the journalist service

developed at UPC focuses at providing information to a group of newspaper journalists gathered together in

the CHIL smart-room. Within ten minutes the front page of tomorrows edition of their newspaper has to be

decoded. One of the most outstanding means of the journalist service to interact with the journalists is a talking

head. It is depicted in figure A.5. Talking head responds to a few commands, looks to the speaker or where

activity is detected and responds to a few events. In addition, talking head not only informs the journalists

about available resources, and points out events such as the arrival of a latecomer or news being contributed by

remote colleagues (by means text-to-speech technology), but also facilitates information requests from the

journalists in a human-like interface based on automatic speech recognition technologies.

A real-time video stream coming from one of the cameras of the meeting room is used to show audience what

is happening at the room. An automatic cameraman is choosing the optimal camera from five possible angles.

This decision is based on the location of persons and the last speech or acoustic event in the room and it is

smoothed by a hysteresis to avoid rapid camera changes. A person of interest (e.g. the latecomer) can be

tracked and identified in the room. This location is used to direct the talking head and automatic cameraman

to his current position. The real-time video streaming also displays annotations in the form of subtitles that

explain the situation, e.g., ”people enter”, ”Journalist Ramon detected”, ”interaction with ASR”, ”keyboard

typewriting”, ”front page published”, ”The meeting has started”, by means the position of all participants and
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Figure A.6: Journalist service: Screen-shot of the field journalist’s laptop.

person identification technologies, e.g. between the states people enter, meeting starts or coffee break. On the

left side of the screen, a graphical user interface allows the field journalist to add a piece of news (a test and an

image) to share with the journalists in the room.

The dialogue system allows a human-like verbal interaction with the computer’s service. It is based on two

components: a commercially available 2D animation of a talking head [Haptek, 2011] and an ASR based

dialogue system that utilizes the ATK recognizer, an on-line API for the well known HTK speech recognition

toolkit [Young et al., 1993]. Interactive behavior of the talking head depends upon the latecomer detection or

an acoustic event. Such interaction is expressed like an utterance Dont forget your keys! when key jingle is

detected, by exclamation: Great! Well done! when applause is detected or by welcome the latecomer using his

name.

In the service implemented at the UPC’s smart-room, context awareness consists of knowledge about the

number of persons in the room, their identification, position in the room and their orientation. Objects in the

room and acoustic events also add information to the context awareness. It is worth to mention that when

humans experience the computer-driven service, another subjective bias naturally arises: unexpected actions of

the service triggered by a false-positive detection of one of the technologies turn out to be far more annoying

than a service not provided due to false-negative detection.

The combination of video-based and audio-based systems allows computer to gain a basic understanding of

what happens in the smart-room. Perceptual components are computing modules that analyze the signals

provided by the network of sensors in order to detect and classify objects of interest, persons and events

adding information to context awareness. In total 8 perceptual components which are based on more than 40

smartflow clients, are integrated into the single application called central logic which fuses the information
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Figure A.7: Sapire data flow schematic in smartflow.

coming from the several technologies, creating a virtualization of the environment which brings cognition to

computer and allows interaction with humans.

Speaker Identification in Sapire project

Sapire project (TEC2007-65470) seeks to work on a system of acoustic scene and human-to human communi-

cation analysis, both verbal and non-verbal, which shows a number of perceptual and cognitive functionalities,

doing research in the speech and audio technologies that make them possible: speaker identification, speech

recognition, acoustic source localization, sound detection and classification, head pose and emotion estimation,

etc. The project hunted for continuing the development, started in CHIL, aiming of creating the technological

foundation required to bring the multimodal technologies more near to the real world. In this way, multimodal

perception and situation understanding technologies developed under CHIL were extended, so that they could:

• Robustly detect and adapt and adjust to new and varied environments

• Accommodate and adapt to individual user preferences and requirements in a minimally disruptive

manner.
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Figure A.8: Audio map for demonstration in Spanish Sapire project (TEC2007-65470). Among
audio technologies: Acoustic event detection (AED), acoustic source localization (SLOC), speech
activity detection (SAD), automatic speech recognition (ASR) and speaker identification (SI). In the
case of speaker identification, the SI inputs consist of three flows: speech data samples, dialogue
state and speech/non-speech detection state. The ASR and SAD outputs are applied in order to
segment speech. SI client just performs person identification whether speech exists and there is a

dialogue with CHIL computer to request a service.

Project Sapire wants to augment services with an ability to initiate brief, optimized direct interaction to learn

progressively abstract information about objectives and preferences. Main objective includes the research on

several technologies of speech and audio processing for the development of functionalities in the environment

of the smart multimodal room of the UPC taking as framework, activities related to presentations, meetings or

seminar-like courses. We seek to detect of the presence and position, either spacial and/or temporal, of the

acoustic events that take place in a given environment. Once the acoustic event has been detected (Acoustic

Event Detection), and localized (Acoustic Source Localization), this event has to be classified. A first level

of classification specially important due to its direct use by the speech recognition system- is the distiction

between presence or absence of speech (Speech Activity Detection). In a second level, the aim is determining

the specific kind of sound (Acoustic Event Classification), or speaker (Speaker Identification), obtaining a

temporal segmentation of each audio signal corresponding to the characteristics of each different source. At
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the same time, the segments classified as speech have to be recognized (Speech Recognition). Moreover, it

would be useful the detection of head-pose (Speaker Head Orientation) or the perception of affect (Emotion

Recognition). The project aims at the three concrete objectives:

• The development of perceptive functionalities in the environment of a smart multimodal room, where

teaching activities like presentations or seminars are carried out. The functionalities answer questions

about what is happening in the room: Who is talking? What is he saying? Where is the speaker?, etc.

• Research on robust speech&audio processing technologies which allow functionalities such as detection,

recognition, localization, separation, segmentation, etc.

• Coordination with the image&video processing activities, looking for the multimodal integration and

fusion of audio and video technologies.

SAPIRE will strongly emphasize real world issues, articulating them in a number of subtopics: the notion

of technology appropriation, which addresses how real users adopt the technologies, and adapt them to

their needs; the balance between implicit and explicit interaction modes, the new challenges that adapting

to groups and teams dynamics (groupalization) arise with respect to the better-studied individual-oriented

adaptation (personalization); robustness and scalability issues; the supports for the development, integration

and deployment of real world services, in the form of tools and software infrastructure.

The range of interaction scenarios considered in SAPIRE presents significant challenges to the development

of technologies required for the envisioned services. We propose to achieve this goal by focusing on the

following two themes: adaptability and multimodality of the designed components.

Adaptability: The perceptual and communication technologies should be able to characterize, remember, and

react to the variability factors encountered: environmental, sensory, individual, group patterns.

Multimodality: The perceptual and communication technologies should be able to utilize all or an appropriate

subset of the available modalities to accommodate the requirements of the envisioned services.
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UPC-TALP Database of Speakers for
Recognition in Smart-Room

Last update: May 12, 2011

DDBB 2006: CT mic = 020

DDBB 2007: CT mic = 021

DDBB 2009: no CT mic

(1) Without MarkIII recordings

Count Person Unique ID Gender DDBB 2006 DDBB 2007 DDBB 2009 DDBB 2011

1 UPC 000 M - x -

2 UPC 001 M - x -

3 UPC 002 M January 12 06 x -

4 UPC 003 M - x -

5 UPC 004 M July 20 x -

6 UPC 005 M June 1, July 20 x -

7 UPC 006 M - x -
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Count Person Unique ID Gender DDBB 2006 DDBB 2007 DDBB 2009 DDBB 2011

8 UPC 007 M - - x

9 UPC 008 M - - x

10 UPC 009 M - - -

11 UPC 010 M January 12 06 x x

12 UPC 011 M - - x

13 UPC 012 F - - x

14 UPC 013 M January 12 06 x -

15 UPC 014 M June 1 x -

16 UPC 015 M - x -

17 UPC 016 M - x -

18 UPC 017 M - x -

19 UPC 018 M July22, July 27 x -

20 UPC 019 M - x (1) -

21 UPC 020 M - x -

22 UPC 021 M - x -

23 UPC 022 M - x -

24 UPC 023 F July22 x -

25 UPC 024 M - x -

26 UPC 025 F - x -

27 UPC 026 M December 20 - -

28 UPC 027 F December 20 - -

29 UPC 028 M June 1, July 6 - -

30 UPC 029 F July 6 - -

31 UPC 030 M July 6 - -
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Count Person Unique ID Gender DDBB 2006 DDBB 2007 DDBB 2009 DDBB 2011

32 UPC 031 M July 6, July 27 - -

33 UPC 032 M July 6 - -

34 UPC 033 M July 20 - -

35 UPC 034 F July 20 - -

36 UPC 035 M July 20 - -

37 UPC 036 F July 22 - -

38 UPC 037 M July 22 - -

39 UPC 038 M July 22 - -

40 UPC 039 F July 27 - -

41 UPC 40 M July 27 - -

42 UPC 41 M July 27 - -

43 UPC 42 M January 12 06 - -





Appendix C

NIST Rich Transcription Database

The Rich transcription evaluations conducted by NIST started with the RT02s in 2002 until the latest one in

2009. According to NIST Rich Transcription Meeting Recognition Evaluation Plan, the Rich Transcription

(RT) of a spoken document addresses the need for information other than the set of words that have seen said

(extracted with a Speech-to-Text, STT, system). When obtaining a transcription of the words that have been

spoken in a recording it is difficult to receive all the information that the speakers tried to convey. This is

because spoken language is much more than just the spoken words; it contains information about the speakers,

prosodic cues and intend, and much more. The goal of future RT systems is for transcripts to be created with

all sorts of metadata to allow the user to fully understand the content of an audio recording without listening

to it. In the recent RT evaluations NIST has focused on three core technologies that are important elements

of the metadata content. These are Speech-to-Text (STT), Speaker Diarization (SPKR) and Speech Activity

Detection (SAD)1. In the last years (RT05s, RT06s, RT07s and RT09s) evaluations have mainly been focusing

on the meetings domain.

First three databases are similar in that two different subdomains were proposed, with different microphone

configurations within each subdomain whereas RT09s was focused on the conference subdomain. All systems

were allowed to run with unlimited runtime speed so that they could be comparable within the same metrics.

The speed of each system was reported as part of the system description. In brief, the two proposed subdomains

were:

• Conference room meetings: These are conducted around a meetings table with several participants

involved in an active conversation among them. It contains various amounts of speaker overlap

(depending on the nature of the meeting). These have been the focus of research of several projects

including the European AMI project.

1 Speech Activity Detection Evaluation was eliminated from RT07s and RT09s.
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• Lecture room meetings: These are conducted in a lecture setting where a lecturer gives a presentation in

front of an audience, which normally interrupts with questions during the talk. In these meetings the

lecturer normally speaks for most of the time during the talk, and it becomes more balanced during

question and answer sections. It has been the focus of research of the European CHIL project.

In each one of the meeting rooms there are multiple microphones available which record the signal syn-

chronously. In some settings there are also cameras, but these fall outside of the scope of the speaker diarization

evaluation. The microphones are clustered in different groups to determine different conditions/evaluation

subtasks. The following list points out the terminology used for each of the possible groups and whether it is

used in the speaker diarization evaluation and in which domain:

• SDM (Single Distant Microphone): This is defined as one of the centrally located microphones in the

room, located on the meetings table. This microphone is always part of the bigger MDM group. Both

lecture and conference room subdomains run this task.

• MDM (Multiple Distant Microphones): These are a set of microphones situated on the meeting table.

All participants in the conference room subdomain sit around the table as well as participants on the

lecture room subdomain except for the lecturer. This task also exists in both subdomains.

• MM3A (Multiple Mark III Microphone Arrays): The lecture meetings contain one or two of these arrays,

which were built by NIST and contain 64 microphones setup linearly. Diarization could be run on either

64 channels or a beamformed version of it distributed by Karlsruhe University for RT06s.

• MSLA (Multiple Source Localization Microphone Arrays): These are four groups of four microphones

positioned into a “T“ shape array which were originally defined for speaker localization. They are only

found in the lecture subdomain.

• ADM (All Distant Microphones): In lecture room recordings this task allows the system to use all

possible microphones previously explained (all except for the IHM microphones). The conference room

subdomain does not usually define this task as all distant microphones are of MDM type.

• IHM (Individual Headphone Microphone Arrays): Although not evaluated in the diarization evaluations,

these microphones are worn by some of the participants in the meetings. They are a task in the STT

evaluation and are also used when creating the forced-alignment reference segmentations for speaker

diarization.

The test datasets used in both RT05s and RT06s evaluations were composed of conference and lecture type

data. The conference data is composed of ten and nine meeting excerpts of 12 minutes each. One meeting was

eliminated from RT06s after the evaluation finished for technical issues. These datasets have been used in this

thesis to evaluate the different proposed techniques and are covered in mode detail in the experiments chapter

and in appendix B. The lecture room data for test was composed of excerpts of different sizes contributed
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by the different partners in the CHIL project and corresponding to different instants in a lecture meeting. In

particular:

• RT05s test data was composed of 29 excerpts, all recorded at Karlsruhe University. Up to three excerpts

were selected from each meeting, but systems were not expected to process the data from each meeting

together. The majority of data corresponded to the lecturer, resulting in many excerpts where only one

person was speaking. The shortest excerpt was 69 seconds and the longest 468 seconds.

• RT06s test data was composed of 38 excerpts of five minutes each, recorded in 5 different CHIL meeting

rooms: 4 at AIT, 4 at IBM, 2 at ITC, 24 at Karlsruhe and 4 at UPC. This year the excerpts were chosen

to contain a bigger variety of speakers and situations. After the evaluation finished, the set was reduced

to 28 excerpts for technical reasons 2. The development data used in these evaluations was usually a

compilation of the data sets from previous evaluation campaigns. The used sets for conference room data

were from RT02s and RT04s evaluations for RT05s, and a subset of RT02s through RT05s for the RT06s

evaluation. For the lecture room evaluations, as this subdomain was first included in the evaluation in

RT05s, there was no prior datasets available and therefore NIST distributed a set of transcribed lecture

recordings similar to those in RT05s. For RT06s development was done using a subset of the original

development set plus the RT05s evaluation set.

• RT07s evaluation data was divided into three portions according to meeting genre: conference meetings

,lecture meetings, and coffee breaks, the latter being a more interactive variant of the lecture room

setup. The conference data consisted of excerpts from 8 meetings recorded at 4 sites in the U.S. and

Europe (CMU, Edinburgh, NIST, and Virginia Tech), totaling 3 hours in duration. This part has been

used in the experiments reported during this thesis work. The lecture data was collected at 5 different

CHIL-consortium sites (AIT, IBM, ITC, UKA, and UPC), and comprised 32 lecture excerpts totaling

2.7 hours. Coffee break data originated from the same 5 sites and added up to 0.7 hours.

• RT09s evaluation data not includes lecture room or coffee break data. Only conference meetings were

included in the evaluation. However, visual data and a new video input condition was presented. The

conference data consisted of excerpts from 7 meeting recorded at 3 sites: 2 meeting from Edinburgh, 3

from NIST and 2 meeting from IDIAP, lasting 1 hour per each site, that is, a total of 3 hours of speech

data.

Although the diarization system does not use any training data, the speech/non-speech detector based on the

SVM classifier that has been used in the experiments of this PhD. was trained witn RT05s data, among other

databases such as the CHIL meetings and the Speecon Database. All the diarization experiments performed in

RT data were conducted on the conference subdomain. Following a brief description of each of the shows, in

that subdomain, is provided in terms of SNR, number of speakers, speech time and overlap time, see table C.1.

2TNO show was discarded for evaluation purposes during RT06s but it was recover for experiments in this PhD. thanks to the
corrections provided by NIST.
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RT data Show Name SNR (dB) #Speakers Eval time Speech time Speaker time Overlap time

Conference RT06s

CMU 20050912-0900 18.75 4 1070.9 1033.93 1495.96 387.13

CMU 20050914-0900 13.50 4 1078.18 1036.76 1472.16 361.24

EDI 20050216-1051 16.75 4 1079.29 964.11 1206.61 210.1

EDI 20061114-1500 18.50 4 1356.91 964.71 1022.48 56.4

NIST 20051024-0930 18.25 9 1088.24 1065.71 1642.07 423.84

NIST 20051102-1323 17.25 8 1085.78 1031.82 1447.91 324.27

TNO 20041103-1130 19.75 4 1079.53 971.42 1172.6 176.16

VT 20050408-1500 27.25 5 1344.14 1023.84 1044.97 20.58

VT 20050425-1000 27.50 4 1356.78 1031.3 1171.63 131.03

Conference RT07s

CMU 20061115-1030 21.75 4 1349.12 1100.53 1288.75 179.14

CMU 20061115-1530 21.00 4 1353.16 1030.61 1130.69 96.52

EDI 20050218-0900 19.25 4 1088.65 997.07 1272.04 211.91

EDI 20061113-1500 20.00 4 1354.8 1094.86 1323.8 199.28

NIST 20060216-1347 20.75 6 1347.86 1053.49 1131.2 70.75

NIST 20051104-1515 20.00 4 1340.21 1054.88 1166.41 107.89

VT 20050623-1400 35.50 5 1080.3 955.01 1306.95 276.48

VT 20051027-1400 25.25 4 1064.91 878.16 982.78 96.77

Conference RT09s

EDI 20071128-1000 20.00 4 1761.77 1355.4 1475.91 114.37

EDI 20071128-1500 21.75 4 1843.07 1266.92 1467.71 189.3

IDI 20090128-1600 40.00 4 1805.96 1615.74 1808.6 177.35

IDI 20090129-1000 23.00 4 1803.55 1366.91 1510.37 133.96

NIST 20080201-1405 19.50 5 1218.64 1088.7 1569.24 385.61

NIST 20080227-1501 24.50 6 1134.71 1021.36 1274.32 216.58

NIST 20080307-0955 20.00 11 1278.59 1121.05 1286.71 140.81

Table C.1: NIST Rich Transcription official conference evaluation data from RT06s, RT07s and
RT09s. The “Show Name“ column gives the site which provided the recording, next column stands
for the number of speaker involved, ”Eval Time” is the total time evaluated in seconds, “Speech
Time“ stands for the total time evaluated without non-speech in seconds, ”Speaker Time” is the
speech time counting the overlap speech between two speakers as twice or more depending of the
numbers of overlapped speakers and “Overlap Time“ is the speech time corresponding to any kind

of speaker overlap. All time columns are expressed in seconds.



271

<Recname> <#Spks> <Evaltime> <Speech> <Spktime> <Overlap> <2-Ovlp> <3-Ovlp> <4-Ovlp>

CMU 20050912-0900 4 1070.9 1033.93 1495.96 387.13 317.4 66.19 3.54

CMU 20050914-0900 4 1078.18 1036.76 1472.16 361.24 294.23 60.12 6.90

CMU 20061115-1030 4 1349.12 1100.53 1288.75 179.14 170 8.87 0.11

CMU 20061115-1530 4 1353.16 1030.61 1130.69 96.52 92.98 3.55 0.00

EDI 20050216-1051 4 1079.29 964.11 1206.61 210.1 180.84 26.86 2.41

EDI 20050218-0900 4 1088.65 997.07 1272.04 211.91 157.65 45.63 8.63

EDI 20061113-1500 4 1354.8 1094.86 1323.8 199.28 170.48 27.92 0.88

EDI 20061114-1500 4 1356.91 964.71 1022.48 56.4 55.04 1.36 0.00

EDI 20071128-1000 4 1761.77 1355.4 1475.91 114.37 108.23 6.14 0.00

EDI 20071128-1500 4 1843.07 1266.92 1467.71 189.3 178.02 11.05 0.22

IDI 20090128-1600 4 1805.96 1615.74 1808.6 177.35 163.05 13.37 0.93

IDI 20090129-1000 4 1803.55 1366.91 1510.37 133.96 124.75 8.91 0.30

NIST 20051024-0930 9 1088.24 1065.71 1642.07 423.84 309.99 81.32 20.96

NIST 20051102-1323 8 1085.78 1031.82 1447.91 324.27 256.15 54.9 12.19

NIST 20051104-1515 4 1340.21 1054.88 1166.41 107.89 104.48 3.17 0.24

NIST 20060216-1347 6 1347.86 1053.49 1131.2 70.75 64.34 5.9 0.51

NIST 20080201-1405 5 1218.64 1088.7 1569.24 385.61 302.6 76.18 6.83

NIST 20080227-1501 6 1134.71 1021.36 1274.32 216.58 183.87 30.09 2.62

NIST 20080307-0955 11 1278.59 1121.05 1286.71 140.81 119.35 18.96 2.49

TNO 20041103-1130 4 1079.53 971.42 1172.6 176.16 151.21 24.86 0.08

VT 20050408-1500 5 1344.14 1023.84 1044.97 20.58 20.03 0.55 0.00

VT 20050425-1000 4 1356.78 1031.3 1171.63 131.03 121.5 9.3 0.00

VT 20050623-1400 5 1080.3 955.01 1306.95 276.48 215.11 51.31 8.60

VT 20051027-1400 4 1064.91 878.16 982.78 96.77 89.61 6.47 0.69

Table C.2: Statistics of recordings in NIST Rich Transcription official conference evaluation
datasets RT06s, RT07s and RT09s. Number of speakers (#Spks); duration of recording (Evaltime);
duration of speech (Speech); total speaker time including overlaps (Spktime); total overlap time
(Overlap); total overlap time involving just two speakers (2-Ovlp); involving three speakers (3-Ovlp)

and four-speaker overlap (4-Ovlp) in seconds.
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